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ABSTRACT

The results of a deflected streamtube theory for the lift
and induced drag of isolated ring wings are briefly reviewed, and a
similar theory for channel wings is presented. The ring wing theory,
and methods derived from its general conclusions, are compared with
other theoretical derivations and with experimental data. A wind
tunnel test of two channel wings of aspect ratio 1.0 and 2.8 is de-
scribed, and the data are compared Qith the channel wing deflected
streamtube theory. It is shown that the ring wing theory yields
good agreement with experiment and with other developments, but the
channel wing deflected streamtube theory does not. The experimental
results for channel wings and ring wings indicate that these wings
achieve span efficiency factors of approximately 1.5 and 2.0, re-
spectively.

A 1lifting arc theory for channel wings is derived and shown
to agree with the experimental data. A digital computer program
which implements this theory is provided. The computer program al-
lows rapid calculation of 1ift and drag coefficients of isolated
channel wings as a function of wing geometry, airfoil section char-
acteristics, and angle of attack.

Power required, range, and endurance of aircraft with channel
or ring wings are estimated, and compared with that for plane wing

aircraft. The latter requires more power over a significant portion

iv



of the low speed (high 1lift coefficient) flight regime than the for-
mer, at the same aspect ratio. The width of this speed range in-
creases as aspect ratio decreases. Power effects on wing aerody-
namics are not considered. The channel wing aircraft with recipro-
cating engine é;opulsion will have a significant increase in en-
durance as compared to a plane wing aircraft, and a lesser increase

in range. The ring wing aircraft requires more power and has less

range and endurance than the channel wing aircraft.
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INTRODUCTION

Although full-scale channel wing and ring wing aircraft have
been built and flown (the Custer Channel Wing aitéraft and the Bell
X-22A are examples, respectively), few analyses of the aerodynamics
of these wings have been published. Also, the aircraft mentioned
operate with each channel or ring submerged in a propeller slip-
stream. Simple methods of predicting the lift and drag of isolated
channel wings and ring wings are needed in order to evaluate the
possible advantages of these wings.

This paper undertakes to evaluate the validity of published
theory for the lift and drag of ring wings, to develop a suitable
analysis for channel wings, to experimentally verify the latter,
and to investigate briefly the performance advantages, if any, of
these nonplanar wings. Of necessity, the experimental data for
isolated channel wings were obtained by the author by means of a

wind tunnel test program, which is reported herein.



CHAPTER I
DEFLECTED STREAMTUBE THEORY

Ribner's Theory for the Ring Wing

Ribner [1] published a brief deflected streamtube theory for
ring airfoils at angle of attack in 1947. He assumed that the
streamtube threading the ring wing is deflected as a rigid circular
cylinder. Combining this assumption with the notion of a vortex
bound in the ring allowed the determination of the circulation dis-
tribution and the downwash angle. A detailed account of Ribner's
derivation will not be given here, since a similar derivation is
presented for the channel wing. Ribner's result for ring wing 1lift

was:

L = fRAre
1+ 7

Nomenclature for the ring wing are shown in Figure 1.

V'™ Rex, - (1.1)

The ring wing induced drag is easily obtained from Ribner's

[l] equations for outward normal force and downwash angle:

dN _ Rz ‘roo Aim 1.2
236 _.P__-“ v oV c 6 (1.2)
€ = Xe . (1.3)

1+ 4Rz, |



_—i—-

Centerline of Ring

I‘—C'—’I 2R -+

Projected Wing Area S = 2RC

Total Wing Area= 2 1YR¢
= 2R
R= &

FPigure 1. Ring wing nomenclature.
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The local induced angle of attack, consistent with Ribner's assump-

tions, is:

X = €A B . (1.4)

Then the induced drag per unit arc is:

dd, _ dN oo o _dN
Rd6 ~ Rads ™ Rds X
D: _ dN .
R46 — Rdg €48 1.3

where J%;e is the outward normal force per unit arc. Substi-

tuting equations (1.2) and (1.3), we find that

dD; _ 4%

= gVime o pn'8 . (1.6)
R d6 (1+ 4R & )?

Integration of equation (1.6) gives the total induced drag of the ring
aw

wing:D' _ 1R % gvzﬂ'CRO(:fAM:GJB

‘ (1+ 4%:.)‘

15,/' 12 2
D, = (1+ 4‘;&' gV 'm Re e, - (1.7)

Recalling equation (1.1), we see that the ring wing induced

drag can be written as

_ L o,
b - (1 + 4R20)

However, equation (1.1) can also be solved for ¢¢, , yielding

LB + 1)  _ L(1+ *R0)
gVimiRc (4R-) g R ?‘

(1.8)

X, = (1.9)
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With equation (1.9), the ring wing induced drag reduces to
L}
. p—v -—’-— . 1.10
D; 8w Rq ¢ )
The ring wing 1ift and induced drag coefficients are defined

with the projected wing area, S = 2Rc:

C. = '{5 and Cp, = %/S .
Thus, « . .
€= (1/:"*:/:; ! +1:*%k) e e
and . .
C"i. = S_C;_ls? = 7%_% ) (1.12)

By analogy to the standard definition for wing aspect ratio, the ring
wing aspect ratio is defined as the square of the diameter, divided

by the projected area:

2
R = -%-%R?)- == gC_R— . (1.13)

Thus the 1ift and induced drag coefficients may be written as
2

_ 0d

C, = TF %50 X, (1.14)
2
Co

“%= TwR ' @19

Deflected Streamtube Theory for the Channel Wing

Adopting the approach used by Ribner [IJ for the ring wing,
ascuae that the streamtube which threads the channel wing is de-
flected essentially as a rigid cylinder, that at least the lower part

of this cylinder is circular (with radius R), and that the channel
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wing may be represented by a line vortex bound in the wing. The vor-
tex filaments streaming from the bound vortex will form a distribution
of vorticity around the lower surface of the streamtube. This dis-
tribution is such as to produce the assumed deflection of the stream-
tube. Nomenclature used for the channel wing is shown in Figure 2.
The velocity induced at the point of intersection of the

center line of the deflected streamtube and the vertical plane con-

taining the bound vortex, due to one vortex filament, is

_ Y
dq = &w: (1.16)

(Kuethe and Schetzer [2] ), where d¥ is the strength of the filament.
This induced velocity is perpendicular to a line connecting the vor-

tex filament and the streamtube centerline. The vertical component

of d% is dzm@ , and the total induced downwash at the centerline

due to the half-ring of trailing filaments is

v
W = d¥ con . (1.17)

/, “4wR

Now 1f the circulation about the bound vortex is denoted by

[T , then the strength of a vortex filament is

d¥ = dT

and, assuming that M is proportional to sin g » We write

d¥ = dIF = Kwnpdg , (1.18)

where K is a constant. Thus,

14




Centerline of Channel

Vortex

\Bound Vortex

e—rc —
e TS
4 ¢
!
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\mu‘]_ Trailing Vortex
Rectangular Channel Wing:

Projected Wing Area S = 2RC

Total Wing Area S, = WRC
R - 28

Figure 2, Channel wing nomenclature.




gR ° or K = 8Rw ’

[ = 8Rw 4B . (1.19)

Then the circulation distribution is

—— = 8W an.@ N (1.20)

The downwash angle is given by

Aam € = ,yv .

If it is assumed that W4, & 1 , then

w = V¢ ,
and
R"—fé = 8Veunp . (1.21)

Consistent with the assumption of the form of I , the local

velocity induced radially outward at the channel wing is

w,= wdimB ,

4

or ,
w,= Ve am 8 . (1.22)

Then the local induced angle of attack is

-1
0‘{= m -‘viL

R
£
<<
™

l{;

K, = € aiup . (1.23)
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The local airfoil section geometric angle of attack for an un-

twisted channel wing is derived in Chapter VI:

X, = fam' (famex, duaB) (1.24)

where . is the channel centerline angle of attack. For small .,

0<, can be approximated with small error by
K, = K 4B, (1.25)

and this simplification will be used in the present case. Then the
local effective angle of attack is
X, = X, - O
= X, M8 — € Am B
X, = (X.— €) ampB (1.26)
(only symmetric airfoil sections are considered here).

By the Kutta-Joukowski theorem, the normal force per unit arc

is

i-‘-’J—"; = ng" . (1.27)

But also, by definition,

N - - 1
Edjﬁ-?'c‘c'(i) = % Ve C(1.28)

Solving for the circulation, we obtain

If it is assumed, for convenience, that the section lift-curve slope

is 24, then the section lift coefficient is

C = UMK, ,
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and the circulation is

M= nVex, - (1.30)
With the substitution of equation (1.26), the circulation becomes

= mVe («, - e)Mg ; (1.31)

thus the circulation distribution is

dr _ Ve _ .
Rdg = S (% €)cos 8 (1.32)

Equating equations (1.21) and (1.32) yields the downwash

angle at the channel wing:

gVewsp = MVE(x - €) conB

R
8¢ + ;ﬂﬁa € = I%f— X,
€ = i SV (1.33)
(1 + BRge) ¢

The circulation can now be obtained with equations (1.31)

and (1.33):

M= Ve [}!c - (I—:—%ﬁ;zzj'lxc.] ALJM~é?

- 1+ 8B - ’
= Ve [: 9%%§:Y* i .] oL, XDMA(?

F=( Rare )ﬂ’Vcch@ - (1.34)

WRie + 1

Again using the Kutta-Joukowski theorem, the inward normal force per
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unit arc is

8R
_dN _ gVl :<___éf_°__) gv‘macme? . (1.35)

dp 3%4;c + 1
Now consider the incremental lift force:
+
/
47
dlL J*)
B
dL = dN anmg
dL _ dN .
R4 ~ R4B Amf -
Then, with equation (1.35),
R
L _ /fc 2 « 2
Rt = (‘"%c"l) gV e, m B - (1.36)

The total lift is obtained by integrating equation (1.36) around the

channel:

g
- SBV’ 1 * 2
L-(T'T/;:%c—l_> gV TI’RCO(‘IMFdF

_ Bk ) qviwR %
(g gvimmen (%)

4R . _
- (7%'_/—1") gVint Reae - .37
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Equation (1.37) represents the total 1lift produced by a semicircular

channel wing (below the stall).

The channel wing induced drag per unit arc is

dbi - _IN i =~ 2N .
Rd@ = ——Rdg v X Rd@ 0(‘ (1.38)
Recalling equation (1.23), we obtain
dD; dN .
————— - ear——— . 1.39
Rap = Rdp €6 (1.39)

Substitution of equations (1.33) and (1.35) yields

v _ [(_“:"_/_.__> o Vimeoi, 4in <—A‘—""L)¢x]

Rdp R +1 8R/1rc +1
d D IR e 1 L
R4 - (A, + 1) QV X, Am g, (1.40)

and integration around the channel gives the total induced drag:

w
D, = (8%:‘:_ Iy eV chuch B dp

4R 2 2 )
D; = =M oVin?Re o : (1.41)
With equation (1.37), this result can be written as

D, = Y T . (1.42)

8%c+1

But equation (1.37) can also be solved for X, :
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o L(Bm1) _ L(Rg+))
¢ (Rg)eVintRe erq R

Substituting in equation (1.42), we find the channel wing induced

(04 (1.43)

drag to be given by

I
0, = W . (1.44)

As for the ring wing, it is convenient to base the channel

wing induced 1ift and drag coefficients on the projected wing area:

L D:
CL = ?-S—- and Coi = -—1*—5— ’
where S = 2Rc (constant wing chord is assumed). Then
c = Bw | _sVinRex
o(BRge v 1) (Bev(2Rd)
_ (R )’
e + 1
1
C,= [—T ), , 1.45
‘ ( 2+ m/n) ) A
and - C: Q’ St _ C: (ZRc)

" iﬂ'iRﬂlS T 8wR

C, = 5
°t T 4nRg

. (1.46)

Again as for the ring wing, the channel wing aspect ratio is defined

as
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= 2R
R - rd ’
so that
,"2
CL —13 —z-—-'.—j{-r O(c (1.47)
and
C‘&
C°i= 21\"% . (1.48)

These are the 1ift and induced drag coefficients resulting

from a deflected streamtube theory for the channel wing.




CHAPTER II

COMPARISON OF DEFLECTED STREAMTUBE THEORY WITH

EXPERIMENT AND OTHER THEORIES

Ring Wing

NACA TN 4117

Fletcher [3] reports the results of a wind tunnel test on
model ring wings of aspect ratio 3, 1.5, 1.0, 2/3 and 1/3. Figure 3
presents measured 1lift coefficient for three of these wings, along
with calculations from the Ribner deflected streamtube theory. Cor-
relation is good for AR = 3, but the theoretical lift-curve slope is

too high for the lower aspect ratios. The theoretical value is cb-

tained from equation (1.14):
de, 1+ VR

It should be noted that Fletcher [3] used a Clark Y airfoil

(2.1)

section, whereas the Ribner theory was derived only for a symmetrical
section. However, that does not account for the lack of agreement at
low aspect ratio shown in Figure 3, since that disagreement is in the
slope of the 1lift curves, not in the angle for zero lift.

In Reference [1] Ribner predicts the failure of the theory at
very low aspect ratios, but his physical explanation (that the wake

would align itself with the ring axis) is not supported by the wake

15
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Comparison of deflected streamtube theory with experimental
data for ring wings of low aspect ratio.
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observations reported by Fletcher [3] .
Ribner [i] found as a general conclusion that the ring wing
has twice the 1ift of a plane elliptic wing which spans the ring
diameter and has one~quarter the total (not projected) area of the

ring. That is, the elliptic wing has area

w(2R) ¢ v

Se = —7— = 7T Re (2.2)
and aspect ratio
_ (2R _ 4R 8R
Re= % = Zre = < @3
In terms of the aspect ratio A of the ring wing,
= 4 2R _ ¢
Re = £ (T) = iR . (2.4)
Therefore, with
_ R
a = aom , (2.5

as recommended for low aspect ratio wings by Wood [4] » and

a_, = 0.092/degree for the Clark Y airfoil section (Jacobs and Rhode

[5] )» the ring wing lift-curve slope by this method is

R e R
a=@a, Re+ 3 2“‘%**3

= B8R
a = a,(4a - 31\'} - (2.6)

This result is labeled Method 1 in Figure 4, and exactly correlates
the linear portion of the experimental data for R = 3. Agreement

with experiment is good for AA = 1, but poor for R = 1/3.
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—=(D——  NACA TN 4117 (Fletcher (3] )
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Plgure 4. Lift coefficient for ring wings of low asbect ratio.



19

Method 2 in Figure 4 is simply twice the lift-curve slope
(equation (2.5)) of a rectangular plane wing of the same aspect ratio
as the ring wing. as recommended by Fletcher [3] . This method
exactly correlates the experimental data for A\ = 1/3, but is a
little low at A = 1. It is seen in Figure 4 that the average of
Methods 1 and 2 would agree very well with experiment at AR = 1.

Fletcher [3] found very good agreement with Ribner's deflected
streamtube theory result for induced drag. The total wing drag was

calculated using the measured Cp, at C, = 0 for the (constant) C%:

C‘l
Co=Cp, t 21rLAl . (2.7)

Drag polars, for AR 1/3 and 3, calculated in this manner are com-

pared with the experimental data in Figure 5. Correlation of theory
and experiment is good in both cases, but better for the AR = 3

case.

Experiments by Milla

Milla [6] conducted wind tunnel tests in 1966 of a model air-
plane with ring wings and tail. A 14 inch diameter, AR = 2.8, ring
wing was attached directly to each side of the fuselage, and a
smaller ring served as the empennage. Milla found that direct appli-
cation of Ribner's theory would not correlate the experimental lift,
but that an interference 1lift contribution was required.

Milla also found that an interference drag contribution to
the Ribner theory was required. However, part of this lack of cor-

relation was due to an incorrect derivation of the induced drag from
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Figure 5. Drag polars for ring wings of low aspect ratio.



21

the results of Reference [1] :

Cz
Coy = TR ' 2.8
The correct relation is
2
C
C°i= Zﬂ'LRt . (1.15)

NACA TR R-139

Cone [7] predicted the circulation distributions required
for minimum induced drag, and the corresponding maximum span ef-
ficiency factors, for many nonplanar wings. This optimization was
performed on the basis of Munk's [8] theorem for minimum induced
drag: the normal (to the local surface) component of the local in-
duced veloci.y must be proportional to the cosine of the local

"dihedral angle,"

i"= K cAv '

n

Solutions were obtained by conformal transformation, and by

electrical/potential-flow analog techniques for the more complex
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forms. For the ring wing, Cone's result was
e = 2.0 ,

where the span efficiency factor @ is defined by

2
- Co
Co, = Fe A (2.9)

and the aspect ratio AR 1is based on the projected wing span. Com-
paring equation (2.9) and equation (1.15), it is seen that Ribner's

[1] theory yields exactly the same span efficiency factor, e = 2.0,

for ring wings.

NAVWEPS RPT 8401

Reynolds [9] developed a lifting surface theory for the 1ift
and pitching moment of a ring wing. The ring was represented by a
cylindrical vortex surface at angle of attack, with Weissinger's
general boundary condition imposed (radial component of induced flow
is zero at vortex surface). The Kutta condition at the trailing
edge is also imposed. These boundary conditions allow evaluation of
a series representation for the vortex density distribution in the
vortex surface, as a function of aspect ratio. Then the local force

loading is given by the Kutta-Joukowski relation

aP = ¢V¥(x,8) ,

where ¥ (x ,0) is the vortex surface demsity distribution.

Reynolds [9] gives the ring wing lift coefficient as

'

C, = 4;Z(Co + l/e.C;)D(, , (2.10)
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’
where €, is based on total surface area 27 Rc¢ . If this expression

is converted to C} based on projected area S = 2Rc, we have
1“1

Reynolds [9] evaluated the series coefficients for three aspect

ratios:

TABLE 1

SERIES COEFFICIENTS FOR VORTEX DENSITY
DISTRIBUTION OF RING WING,
DUE TO REYNOLDS [9]

R Co c c,
0o 2.000 0 0
2.0 1.098 -0.238 -0.018

Infinite aspect ratio corresponds to the lifting-line case:
v t
c. = Hx = mx,,

and this agrees exactly with Ribmner's [l] result, equation (1.14),

when M=00 . For R = 1, however, the lifting surface theory gives

2
C.= %5(.7% - 200)x, = 2.90 x, ,
while Ribner's theory (equation (1.14)) yields

]

= X =
CL - 1+% mc bt 3.94‘0(, ’
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a 32% difference. These results are compared in Figure 6, with
Fletcher's [3] experimental data for AR = 1.0, Reynolds' lifting-
surface theory almost exactly correlates the wind tunnel data, while
the Ribner theory is too optimistic. It is clear that the lifting-
surface theory predicts 1lift coefficient more accurately at low
aspect ratio than does the Ribner theory. Of course, for aspect
ratios other than 1.0 or 2.0, the user would have to carry out the
series evaluations required. For rapid estimates, the modifications
of Ribner's theory (methods 1 and 2, Figure 4) may be preferred.

The ring wing pitching moment derived by Reynolds [9] (con-

verted to the projected area) is
2
Cu = "/“, (c,- C) X, , (2.12)

where the moment is measured about the quarter-chord point, and is
positive nose~up. Equation (2.12) is compared in Figure 7 with
Fletcher's [3] experimental data for ring wings of aspect ratio 1.0.
Agreement is good, except for angles of attack around zero. Fletcher
did not comment on the failure of the experimental pitching moment
data to go to zero at zero angle of attack, as would be expected for
a symmetrical ring wing.

Equation (2.12) yields a positive value for pitching moment
(for positive angle of attack) for all aspect ratios evaluated by
Reynolds [9] , except for R = 00 , where C = 0 is predicted. This

trend with aspect ratio does not agree with the experimental trend

found by Fletcher [3] s, Who measured a zero pitching moment slope
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Figure 6. Comparison of lifting-surface and deflected streamtube theories
for ring wing 1ift coefficient with experimental data.
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Figure 7. Pitching moment for ring wings of aspect ratio 1.0.
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for A = 1.5, and a negative slope for R = 3.0.

The ring wing center of pressure location can be determined

from Reynolds' [9] results for 1ift and pitching moment:

=L - M - < _ ¢Cn
XCP- 4 L ~— % c. (2.13)

where M is measured about the quarter-chord point, and Xep is
measured from the wing leading edge, positive rearward. Substitu-

tion of equations (2.11) and (2.12) into equation (2.13) yields

1
x.= £ _ eMe(C-Cd® el Ci- €
Tt B i) T # 2(C,+ 24.C)

Xgy = %(1 + ‘_'_zg,: g: , (2.14)
This equation gives X = c/4 at infinite aspect ratio, which is the
two-dimensional airfoil section classical theory (Glauert [10] ) re-
sult for airfoils with C, = 0 at zero lift. Results for other aspect
ratios are shown in Figure 8. Correlation with Fletcher's [3] wind
tunnel data is good for MR = 1.0, but deteriorates as aspect ratio
increases. The experimental center of pressure is at c/4 for aspect
ratio of only 1.5, and is considerably aft of c/4 for aspect ratio

of 3.0. This results in the negative slope of moment about the

quarter~chord point.

Conclusions for Ring Wing

Ribner's [l] deflected streamtube theory gives good results
for induced drag of isolated ring wings of any aspect ratio, and for

1lift of ring wings of aspect ratio about 3.0 and larger. Lift and
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Figure 8. Ring wing center of pressure location.
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induced drag coefficients are easily and rapidly calculable with this
theory. Reynolds' [9] lifting surface theory accurately predicts the
lift of ring wings, but is considerably more difficult to calculate
than Ribner's results. Reynolds' theory also allows calculation of
pitching moment, but the theoretical values do not agree with ex-
periment for aspect ratios above 1.0.

Methods 1 and 2 (Figure 4), which are modifications of
Ribner's theory [1] » are easy to use and yield good estimates for
1ift of low aspect ratio ring wings. The span efficiency factor of
Ribner's theory is identical to the maximum value predicted by Cone

[7] for ring wings, and agrees well with experimental data
(Fletcher [3] ). Ribner's deflected streamtube theory and Reynolds'
lifting surface theory give identical results for 1ift at infinite

aspect ratio.

Channel Wing

Despite a thorough literature search, the author was unable
to find experimental data for isolated channel wings. Crook [11] and
Chamberlain [li] conducted wind tunnel tests of plane rectangular
wings, before and after the center section had been replaced by a

semicircular channel:
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These channel sections were relatively small compared to the planar
wing sections: in the first case, the channel diameter was approxi-
mately one-fourth the wing span, while in the latter case, it was
one-sixth the wing span. The data reported in both cases indicate a
slight advantage in 1lift and drag for the wing with the channel sec-
tion. Unfortunately, the data in both references were not in dimen-
sionless coefficient form (1ift and drag), but were given in pounds-
force, and the ambient conditions of the tests were not given. Thus
references [11] and [12] are considered to have no significance for
verification of theoretical predictions for isolated channel wings,

and the data of these references are not presented here.

Hermes Lifting Surface Theory

Hermes [13] developed a lifting-surface theory for the
channel wing, including the effect of a propeller operating in the
channel as utilized by the Custer channel wing aircraft. The method
is quite detailed and requires extensive machine computation.

Certain calculated data for zero propeller lift and drag were ex-~
tracted from Reference [13] and are compared herein with the de-
flected streamtube theory for the channel wing.

Figure 9 presents channel wing lift-curve slope as a function
of aspect ratio, as calculated by Hermes' [13] lifting-surface theory
and by the deflected streamtube theory developed in Chapter I. A
rectangular planar wing is included for comparison. The latter curve

was calculated using the finite wing lift-curve slope formulas
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ad

a = T Lia R 26, (2.15)
AR
R
a=a, g,z R ¢ 6, (2.16)

recommended by Dommasch, Sherby, and Connolly [14] and by Wood [4] ’
respectively. Above A = 6, the two channel wing theories yield
approximately the same lift-curve slope, and both results are lower
than for the plane wing. At low aspect ratio, the deflected stream-
tube theory is considerably more optimistic than either the Hermes
theory or the planar wing.

Channel wing induced drag predicted by the two theories is
shown in Figure 10. The calculations for a planar wing included for
comparison utilized the equation

C.
0.9 °* A °
recommended by Dommasch, Sherby, and Connolly [14] . The deflected

Co, = (2.17)

streamtube theory gives a lower induced drag, for the same C,, than
does the Hermes lifting-surface theory. Both are lower than the

planar wing.

NACA TR R-139

Cone's [7] theoretical result for maximum span efficiency

factor for semicircular channel wings is

e - 1‘5 ]
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Figure 10. Comparison of 1ifting-suzface and deflected
streamtube theories for channel wing induced drag.
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where O

reR = ¥ : (2.18)

o
However, inspection of equation (1.48) indicates that the deflected
streamtube theory predicts @ = 2,0 for the channel wing. The value
€ = 1.5 gives approximately the same C%yﬂc: as Hermes' [13]

lifting-surface theory, for R 2 2 (see Figure 10).

Conclusions for Channel Wing

A literature search revealed no experimental data for iso-
lated channel wings. The deflected streamtube theory developed in
Chapter I is optimistic with regard to induced drag, as compared to
other theoretical developments. The channel wing wind tunnel tests
described in the following chapters were planned and conducted to

provide experimental data to resolve this lack of agreement.



CHAPTER III

CHANNEL WING WIND TUNNEL TEST PROGRAM

Test Program Requirements

The requirements established for the channel wing wing tunnel
test program were:

1. Obtain reliable 1ift and drag data for isolated channel

wings at low aspect ratio.

2. Minimize costs of the program,

Data for low aspect ratios were preferred because (1) the
lifting line theory was expected to be less accurate at low aspect
ratios, and (2) applications of channel wings to aircraft would be
expected to be at low aspect ratios. The second requirement was

necessitated by the lack of any formal or complete financial support

for this study.

Wind Tunnel Test Facility

The subsonic wind tunnel of the University of Oklahoma was
utilized for the channel wing wind tunnel test program. This test
facility is used for the undergraduate aerodynamics laboratory
courge, for research by faculty and graduate students, and by air-
craft and other companies for research and development work. The

wind tunnel is described in detail, and operation instructions are
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given, by Comp [15] . The tunnel facility is briefly described here.

The University of Oklahoma subsonic wind tunnel is a verti-
cal (single) return, closed throat, atmospheric pressure tunnel.

The test section has a 4-foot by 6-foot cross-section, made up of a
rectangle 4-foot high by 2-foot wide and capped on each end with a
semicircle of 2-foot radius. In appearance the cross-section ap-
pears almost elliptical; the area is 20.6 ftz. The test section is
11 feet long.

The tunnel fan is a three-bladed, 7-foot diameter propeller
driven through an extension shaft by an Allison V1710 1200 horse-
power engine. The test section velocity range is 100 mph to 200 mph,
and the turbulence factor is 1.35. A pneumatic engine control de-
vice, utilizing differential pressure between the settling chamber
and the test section, automatically holds the set test section dy-
namic pressure. A cross-section of the tunnel is shown in Figure 1l.

The balance system is a six component pyramidal-type with a
single, central model support. Model forces are sensed by electri-
cal resistance strain guages mounted on the weighing beams and are
read directly from SR-4 strain indicators. The balance system

capacities are:
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TABLE 2

THE UNIVERSITY OF OKLAHOMA SUBSONIC WIND TUNNEL
BALANCE SYSTEM CAPACITIES

Component Capacity Component Capacity

Lift +500/-300 1bs. Pitching Moment + 1200 in,-1bs.

Drag + 200 1bs. Rolling Moment + 500 in.-1bs.

Side Force + 150 1bs. Yawing Moment + 600 in.-1bs.

Pitch Angle +25°/-15° Yaw Angle +  30°
(nominal)

The actual pitch angle available depends, of course, on the tail jack
system geometry of the individual model. Test section dynamic pres-

sure is indicated by an inclined water manometer.

Modifications of Model Mounting System

Since the stall characteristics of isolated channel wings
were not known, it was necessaty to provide the capability for test-
ing to relatively high angles of attack. This required modification
of the tail jack system and of the standard mounting ring which is
bolted to the test model and pinned to the top of the tunnel mount-
ing system bayonet. Mr. Earl Finch, University of Oklahoma Aerospace
Engineering machinist, fabricated a 6-inch extension for the lower
arm of the tail jack system. With Mr. Finch's assistance, the author
milled the bayonet clearance slot of a spare mounting ring to allow

a greater angle of attack range. Selective fiiing of the attachment
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bolt heads was also found necessary. A full-scale layout of the
modified model mounting and pitch control systems indicated the
length required for the tail jack arm for each model. These modifi-
cations allowed an angle of attack range of i28° for the wind tun-
nel models. The large negative range was required because evalua-
tion of interference lift and drag required the testing of each

model in the inverted as well as the upright position.

Wind Tunnel Models

Aspect Ratio = 2,8 Model

The ring-wing model built and tested by Milla [6] was made
available to the author by Professor Edward F. Blick of the University
of Oklahoma. Milla constructed the wings of this model by bending an
aluminum box spar into a circle, bonding on sections of balsa wood,
and then shaping the balsa wood to an NACA 0015 section. One wing,
Figure 12, of this model was cut in half, to obtain a channel wing
with NACA 0015 (symmetrical) section, 14 inches diameter, and 5

inches chord, or an aspect ratio of 2.8, based on projected span.

it for use in the wind tunnel. These modifications were carried out
by the author in the University of Oklahoma Aerospace Engineering
Machine Shop. The modifications consisted principally of (1) fab-
ricating and mounting a tail jack arm for wing tunnel pitch control,
(2) machining the bayonet clearance slot in the box spar, (3) drill-

ing mounting holes, (4) fabricating wing tips, and (5) refinishing
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Figure 12, Milla's ring wing wind tunnel model.
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the model. A special jig had to be built to hold the channel wing
during the drilling and machining operations. The aspect ratio 2.8
channel wing model is shown on the left in Figure 13.

The small thickness of the wing model (as compared to a
fuselage) and the large angle of attack range caused the model
mounting ring and bayonet head to be exposed to the windstream at
high angles of attack. Since the model support Ilmage system does
not include these items, it was necessary to build special wind-
screens to shield them. These windscreens are shown in Figure 13
with both of the wind tunnel models. The complete set of items
shown in front of each model in the figure accommodated the four
run-configurations required for each model (upright, inverted, with
and without the image system: see the discussion in Chapter IV on
evaluation of interference and tare drag). The special wiqucreens
attached directly to the model mounting plate. The aspect ratio 2.8

model is shown mounted in the wind tunnel in Figure 14.

Aspect Ratio = 1.0 Model

The aspect ratio 1.0 model used in this wind tunnel test
program was one of two initially identical channel wing models built
jointly by the author and another University of Oklahoma graduate
student, Mr. Edward Parsons. A 12-inch diameter, 12-inch chord ring
wing was built first, then cut in half to yield two channel wing
nodels. Mr. Parsons modified his channel wing for testing with an
engine and propeller.

As the first step in the construction of the aspect ratio
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Figure 13. Channel wing wind tunnel models,
with special windscreen devices.

Figure 14. Aspect ratio 2.8 channel wing
model mounted in wind tunnel.



43
1.0 ring wing model, steel plates for each planned channel wing were
drilled for mounting bolts and milled for bayonet clearance. The
plates were bent to fit the wing curvature by heating with a welding
torch and hammering with a sledge, while clamped in a vise. The
plates were then quenched in water.

Next, a "blank" for lathe turning was constructed by lami-
nating % inch thick strips of Honduras mahogany with glue into the
octagonal block shown in Figure 15. Note that the center was left
hollow to reduce labor and the amount of wood required. The steel
mounting plates were imbedded in carefully measured positions in the
block during the laminating process. The use of Honduras mahogany
for wind tunnel models was recommended by Pope and Harper [16] . The
cost of this wood was donated by the Custer Channel Wing Corporation.

After curing, the laminated block was mounted in a wood
lathe in the University of Oklahoma Wood Working Shop and turned to a
ring wing with NACA 4412 airfoil section, 12-inch diameter (measured
to chord line), and 12-inch chord, Figure 16. The camber of the
4412 gection was turned outwards; that is, the "top" of the section
was toward the inside. Finally, the completed ring wing was cut in
half to obtain two channel wings of aspect ratio 1.0.

Construction of the model was completed by drilling to expose
the bolt holes and bayonet clearance slot in the mounting plate, and
fabricating and installing of tail jack arm. This model also re-
quired special windscreens, as discussed above for the aspect ratio

2.8 model. The aspect ratio 1.0 model is showh on the right in



Figure 15. Mahogony '"blank" for wood
lathe turning of ring wing.

Figure 16. Aspect ratio 1.0 wing before sep-
aration into two channel wings.
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Figure 13, and mounted in the wind tunnel, Figure 17.

Both models were finished with three coats of clear and two
coats of colored model airplane dope, with light sanding with fine
sandpaper between coats. Model airplane dope was used because the
aspect ratio 2.8 model had previously been finished (as part of
Milla's model) with this type of paint. Before application of the
clear dope, the aspect ratio 1.0 model was sanded with rough sand-
paper and sealed with model airplane sanding sealer. The color

coats were sprayed on both models.

Boundary Layer Transition Strips

On the advice of Pope and Harper [16] » the author planned
the wind tunnel tests to include tests with and without boundary
layer transition strips. Pope and Harper caution that laminar sepa-
ration effects may cause difficulty in wind tunnel testing at (rela-
tively) low Reynolds numbers, and advise that testing be done with
boundary layer transition strips insﬁalled on the model to force
transition to a turbulent boundary, thus avoiding premature
separation.

Pope and Harper [16] recommend a transition strip 1/8 to 1/4
inch wide, composed of carborundum grit, and located at about 5%

chord and at 5% fuselage length. The formula
D’ = 4800/Re inches (3.1)

is suggested for the grit diameter. Considering the smaller (chord)

model, the Reynolds number was expected to be about 500,000. Thus,



Figure 17. Aspect ratio 1.0 channel wing
model mounted in wind tunnel.

Figure 18. Calibration of drag scale, University
of Oklahoma subsonic wind tunnel.
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4800
DS = —m = 0,0096 inches,

which corresponds to a commercial carborundum grit number of 70.
The author was unable to obtain this carborundum grit; however,
sand sifted to #100 mesh size, which yields grains of approximate-
ly 0.01 inch diameter, was obtained from the University of Oklahoma
Department of Civil Engineering.

The sand was applied to one side of 1/8 inch wide strips
of Scotch brand '"Double-Sticky" tape, which were then attached to

the wind tunnel models, top and bottom, at 57 chord.

Wind Tunnel Balance Calibration

During operation of the University of Oklahoma subsonic
wind tunnel, model forces and moments are sensed as deflections of
weighing beams by electrical resistance strain gauges, and the de-
flections are read directly from strain indicators. Conversion
factors are required to obtain the actual forces from the measured
deflections. These conversion factors are obtained by calibrating
the balance system by applying known forces and moments and record-
ing the resultant strain indicator readings. Special care must be
exercised to insure that the known force is applied solely in the
direction desired.

Calibration of the drag scale is shown in Figure 18. Drag
weights were hung on a steel cable led over a pulley and attached to

the bayonet head by means of a swivel and pin which applied the drag
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force as would a model. The plumb bob shown in the photograph was
used to align the cable with the tunnel centerline, and a spirit
level was used to insure that the cable was level. For the lift
calibration, a similar method was used, except that a special scaf-
fold with two pulleys was necessary to enable the cable to pull
directly upward, as indicated by a plumb bob. Negative 1ift forces
were simulated by stacking weights directly on the bayonet model
attachment point. The aligmment of the calibrating force was veri-
fied by observing that no deflection was indicated in the other
channels (e.g., no deflection in lift and side force while cali-
brating drag).

The applied calibration forces and resulting strain guage
deflection readings for lift and drag calibration are plotted in
Figure 19. It may be seen in the figure that both calibration
curves are linear; therefore, the slope of the curve may be used
as a calibration factor. The 1lift and drag calibration factors as

measured by the author were

Drag: 0,118_2."’_“‘1‘.di_ Lift: 0.290 pounds .
microinch microinch

Comp [15] gives

Drag: 0.117 —Pounds _ Lift: 0.290 Pounds _ .
microinch microinch

The close agreement lends confidence in the calibration factors
measured in this program. The factors measured by the author were
used in the data reduction because it was considered probable that

they reflected the conditions under which the data were obtained
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Figure 19. Wind tunnel balance calibration.



50

more correctly than calibration factors measured several years before.

Calibration of the model pitch angle indicator scale was
necessary because the actual pitch angle of the model depends on the
model and tail jack dimensions and geometry. This calibration was
achieved by measuring the model pitch angle with a spirit level for
several pitch indicator readings. In making these measurements, it
was found that the backlash in the pitch change mechanism was so
severe that repeatable settings could be achieved only by always
approaching a pitch setting from the same direction. Consequently,
throughout the wind tunnel test program reported herein, pitch set-
tings were approached always from a more nose-down position. The

pitch angle calibrations for both models are shown in Figure 20.

Test Plan

As described above, two channel wing tunnel models were con-
structed: an aspect ratio 2.8 model and an aspect ratio 1.0 model,
where aspect ratio is based on projected span. It was desired to
test each model both with and without a boundary layer transition
strip. Also, as discussed in Chapter IV, four test runs (upright,
inverted, with and without support image system) are required for
each model configuration in order to evaluate tare and interference
1ift and drag. Thus a total of 16 tunnel runs were planned.

The order of the tunnel test runs was planned to minimize
model change time and thus minimize wind tunnel down time. This
objective may seen of minor importance in a university wind tunnel,

but it becomes very important indeed in industrial and government
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Figure 20. Wind tunnel model pitch angle calibrationms.
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wind tunnels, where the investigator is charged for each hour of
tunnel occupancy. In any case, an orderly test plan is desirable.
In order of increasing time required, the model changes expected
were: (1) install or remove dummy bayonet, windscreen, and tail
jack; (2) install or removed boundary layer transition strip; and
(3) invert model.

With these considerations and the additional objective of
avoiding time-consuming combinations of model changes, the follow-

ing test plan was formed:

TABLE 3

INITIAL WIND TUNNEL TEST PLAN

Model Upright | Model Inverted
With With
AR=2.8 |A=1.0 | Transition Dummy Dummy
Run Model Model Strip Support Support
1 X X
2 X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X
8 X X
9 X X
10 X X
11 X X X
12 X X X
13 X X X
14 X X X
15 X X
16 X X




53

The primary data desired were lift and drag coefficients of
each model as a function of model angle of attack. Model pitching
moment was of much less interest, since the deflected streamtube
theory for the channel wing does not predict pitching moment., It
was originally intended to record pitching moment along with the
1lift and drag data. However, during the test program, the pitching
moment strain indicator experienced large drift, became very erratic,
and eventually became inoperative before the test program was com-
pleted. Therefore, no attempt was made to reduce or use the pitching
moment data recorded.

The independent variable in each test run was the model angle
of attack, which was varied in two-degree steps. The angle of attack
range for the aspect ratio 2.8 model (which had a symmetrical air-
foil section) was planned to be from -4® to several degrees past the
stall, which was found to occur at +14°. Thus data were taken
through +20°. The aspect ratio 1.0 model, which had a cambered sec-
tion, was tested from -6° to +28°, the stall occurring at +22°,

The University of Oklahoma subsonic wind tunnel has a nomi-
nal speed range of 100 to 200 mph, or approximately 147 to 293
ft/sec. In the present case, the operating air speed was a compro-
mise between the desire to maximize Reynolds number and the need to
limit test section and engine temperature, since the tests were con-
ducted in July and August. The target operating speed chosen for

the wind tunnel tests was 220 ft/sec., or 75% of the tunnel maximum

speed. Even at this air speed, test section air temperature reached
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115°F and engine 0il consumption was excessive on several especially
hot days. At 115"F, the tape and modeling clay used to seal access
hatches on the models began to soften and release.

A test run was conducted as follows: With no air movement
in the tunnel, the initial strain indicator readings were recorded.
After engine start and stabilization, the desired test section dy-
namic pressure was set with the manual mode of the engine speed con-
trol system. Then, engagement of the automatic mode of the pneu-
matic engine control maintained this dynamic pressure. The model
was set to the most nose~down position required for that test run.
The readings of the lift, drag, and pitching moment strain indi-
cators, AP as indicated by the manometer, and the test section air
temperature were recorded. Then the model was pitched nose-up two
degrees, and data recorded again. This process was repeated until
the required model angle of attack range was covered. After engine
shut-down and cessation of air movement, final strain indicator
readings were recorded.

The initial test plan shown in Table 3 was not followed
precisely because three test runs had to be repeated. This was due
to difficulties with a hatch sealing block blowing loose at high
angle of attack. However, all the test runs represented in Table 3

were completed. In all, 19 test runs were made.



CHAPTER IV

WIND TUNNEL DATA REDUCTION AND CORRECTIONS

Reduction to Uncorrected Lift
and Drag Coefficients

The raw 1ift and drag data were obtained as the difference
between the strain indicator reading for each wind-on data point and
the average of the initial and final wind-off indicator readings for
the particular test run. The pitching moment strain indicator was
erratic and eventually failed; consequently the pitching moment data
were not reduced. The indicated lift and drag forces were calculated

by use of the balance calibration factors:
Ly, = 0.290 L. (4.1)
le. = 0-118 Dﬂ‘“. . (4-2)

Then the uncorrected 1lift and drag coefficients were obtained

as

_L'L'LL 4.3)

“ q S

C, = -q%'u , (4.4)

where S = model (projected) planform area

C.

g = test section dynamic pressure.
The test section dynamic pressure, q > is determined in the
University of Oklahoma subsonic wind tunnel by means of the static

55
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pressure difference, AP » between the settling chamber and the test
section. During tunnel operations, AP is read from an inclined

water manometer. As the result of several measurements of AP and

q Comp [_15] obtained the following calibratioms:

4 = 0.0920 g, AP (4.5)

s
where, with ga,o in lbln/ft3 and AP in inches of water, i is given
in lbf/ft‘ . The manometer water density ?H‘o is based on the
balance room ambient temperature.

In conducting the test runs, it was found that the automatic
engine speed control, which provided control of AP, was unable to
hold AP constant to an accuracy greater than about +0.05 inches of
water, as indicated by the manometer. That is, AP and thus % ex-
hibited short-period excursions of +0.05 inches of water. Indeed,
occasional oscillations to +0.1 inches were observed. Since all
data items could not be recorded simultaneously, it is possible that
the AP recorded for a data point did not in fact obtain at the in-
stant when one or more model force readings were recorded. There-
fore, there is a minimum uncertainty in the measured 1 of approxi-
mately

.05/8.9 (100) = 0.56% ,

and perhaps as much as 1.1%2. Since the 1ift and drag coefficients

are of the form

Force ,
95

and § is assumed to be known with high accuracy, the uncertainty
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in 9 translates into an uncertainty of the same magnitude in the
lift and drag coefficients. This uncertainty was especially im-
poertant when the magnitude of possible data corrections was con-
sidered.

Test section air temperature was recorded for each data
point; however, it was not considered necessary to calculate a
Reynolds number for each data point. Reynolds number was calculated
for each test run using air density and viscosity values based on
the recorded barometric pressure and the average test section air
temperature for that run. The length parameter used in Reynolds
number was the model chord.

The tunnel test Reynolds number was corrected to the "free
air effective Reynolds number'" with the turbulence factor, as recom-
mended by fope and Harper [16] :

Re = (TF) « (Re) . (4.6)
eff

The turbulence factor for the University of Oklahoma subsonic wind
tunnel is given by Comp [15] as TF = 1.35.

The raw wind tunnel data and uncorrected lift and drag co-
efficients for each test run are tabulated in Appendix A.

Correction for Tare, Interference
and Flow Misalignment

Tare is the portion of the drag reading due to the model
support system drag, while the effect of the support system on the
air flow about the model is termed interference. Flow misalignment

refers to the (usual) condition of the test section air stream not
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being perfectly aligned with the balance system, so that a component
of 1ift appears in the drag reading, and conversely. Correction of
the wind tunnel data for these effects is discussed in Pope and
Harper [16] and in Comp [15] ; the derivation below is drawn from

those discussions.

The indicated drag of the model mounted in the normal upright

position may be represented as

or
Dy =Dy, *+ I, + Ty - (4.8)

An explanation of the symbols used is given in the List of Symbols.
For purposes of the evaluation considered here, the special wind-
screens used to shield the bayonet head and model mounting plate
(see Chapter III) are considered part of the bayonet windscreen.
With the model still mounted upright, the image support system is
installed. This image system consists of a dummy bayonet, dummy
(bayonet) windscreen, and a dummy tail jack. The dummy bayonet and
tail jack are attached to the model but touch nothing else, while
the dummy windscreen is attached to the tunnel roof. The image sup-
port system, installed with the (inverted) aspect ratio 1.0 model,

is shown in Figure 21. Then the measured drag will be

+ I + T +1
T M Lw, L va,,
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Figure 21, Image model support system installed with the
(inverted) aspect ratio 1.0 channel wing model.

~t
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Dy =D, +I, +T, +I, +T, . (4.9)
Next, the model is tested mounted inverted. The drag
measured will consist of
D, =D +1 +1I +1 + T
3 My A Moe e v
Dy=Dy +I, +Ty (4.10)

since in this position the support system appears to the model as
the upper or dummy system. Finally, the inverted model is tested

with the image support system installed. The drag is

Dy = DM; +I, +Ty +1I, +T, , (4.11)
because the image system has the same influence as the model support

system.

Now, the drag of the model in the upright position is found

by writing
Dy +Dy =Dy =Dy, +I, +T, +Dy +1I, +Ty,
= an Iy Ty - I, - Ty o
or,
DNn =D, +D, -D, . (4.12)

+D, +1I, +T

v vs

e ~ Iy =Ty
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The same procedure yields comparable results for the lift; that is,
Lm, =Ly +Ly - Ly , (4.14)

and
3 (4.15)

The flow misalignment is indicated by the differences in
1lift and drag between model upright and model inverted (Pope and
Harper [16] ). For example, the angle of attack setting error due
to the tunnel airflow not being exactly perpendicular to the lift
scale is shown for the aspect ratio 2.8 model in Figure 22. The
curves indicate that the balance system was tipped forward with
respect to the test section airstream. A similar plot of C, vs Co
would show the drag error due to misalignment. The most direct pro-
cedure, however, is to simply average the data for the model normal

and inverted; that is,

+
L= Ly 5 Lus (4.16)

and

DM - DHN ; DH: .

This procedure was used for the tunnel tests reported herein; tabu-

(4.17)

lations of the data are presented in Appendix A.

Model Buoyancy Correction

A negative static pressure gradient will exist along the
wind tunnel test section in the downstream direction due to the pro-

gressive thickening of the wall boundary layer, which constricts the
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Figure 22, Angle of attack setting error due to tunnel flow misalignment.
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flow area. Therefore, the model will tend to "float" downstream due

to "horizontal buoyancy." Pope and Harper [16] recommend

%E- = -4 }/B (4.18)
for this pressure gradient, where the factor A may vary from 0.016
to 0.040, and B is the jet width. The factor 4 has not been de-
termined for the University of Oklahoma subsonic wind tunnel. The
maximum pressure gradient to be expected along the test section for
the tests reported herein was calculated using l! = 0.040 and
B = 4.0 (the smaller dimension):

P __ 5L.5 1bg/get
2-1- = -(.040) 4.0 -0.515 ft

The drag increment due to model buoyancy is

- X 3 (4P
AD, = Y )\. T (d_f ’ (4.19)
(Pope and Harper [16] ), where the factor )\. is plotted in Figure
6:14 of the same reference as a function of fineness ratio, and is

the maximum thickness of the model. The fineness ratio of the aspect

ratio 1.0 model was

4. - 8.3 ;
to 1.0/.12 = 8,34 ;

and the figure cited gives }\.- 4.4 for this l/t.,‘-
Then,

aDy = - M4(4.4)0.12) + (~0.515) = 0.00308 1bf ,
or, in coefficient form,

0.00308
AC.,' = T51.5)(1.0) = 0-000060 .

But the minimum Cp measured for the aspect ratio 1.0 model was
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.0221, so the maximum buoyancy correction would be only about 0.3%
of the smallest Cpvalue. Since there was a basic uncertainty in
C° of approximately 1% due to an uncertainty in dynamic pressure,
the buoyancy correction is seen to be negligible. The buoyancy cor-

rection for the aspect ratio 2.8 model would be even smaller.

Lift and Drag of the Model Tail Jack Arms

The tail jack system, which moves the wind tunnel model in
angle of attack, contributes to the measured 1ift and drag. Since
the lower and vertical arms are duplicated by the dummy tail jack,
the effects of these members are removed by the corrections for
tare and interference. However, the upper tail jack arm, which is
fixed to the model, cannot be duplicated by the image system. The
1lift and drag contributions of the model tail jack arms will be
estimated.

The tail jack arm of each model was a smooth, circular cross
section, half inch diameter aluminum rod. The so-called 'cross-
fiow principal,” as applied to circular cylinders, asserts that the
fluid dynamic pressure forces on an inclined cylinder correspond to
the velocity component normal to the axis only (Hoerner [17] ).

Therefore, based on the projected area S& =d.l,

cos N o S 3 (Vamed' S, | Cop g din's
N 15". zs" q

Ch = C, Am?ex, (4.20)

where C’b’ or C, basic, is the drag coefficient of the cylinder at
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& = 90°. Then the lift experienced by the inclined cylinder is
C. = CyernX = Cp, Al con X, (4.21)
and the drag is
Co = Cu |aimed] =

A o] . (4.22)

Hoerner [1i] recommends the addition of a skin friction component to

the drag coefficient:

G = G am3o

+ mC (4.23)
where C, is the skin friction coefficient, and My is the surface
area ratio,

1Y cylinder surface area .
- .area
A reference area §,

In the present case of a circular cylinder,

™ = n;ilx = T .

The Reynolds number based on the cylinder diameter is ap-

proximately

- 8Vd . (.00213)(220)(0.5/12) .
Re = & 3.95 x 107 49,300,

a Reynolds number very much below the critical range. However, since
the tail jack arm is attached to the wing in the chord plane and
fairs into the wing, its boundary layer should be strongly dependent
on the wing boundary layer. For the aspect ratio 2.8 model, for

example, the local Reynolds number at the midpoint of the 6-inch

tail jack arm would be

Re = (.00213)(220)(8/12) ~ 790,000 ,
3.95 x 10-7
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which is into the transition range.

These rather conflicting results for Reynolds number il-
lustrate the difficulty of arriving at a simple model for the 1lift
and drag of the tail jack. However, the lower Re value actually
represents the case of X = 90° , which was not approached in the wind
tunnel tests (where -6 X = 28°). A conservative approach would
seem to be the following: assume C,bto be that of a circular cylin-
der (in cross-flow) before transition, and assume C; corresponding
to forced turbulent flow at a low Reynolds number. Thus, from
Hoerner [17] ,

Co, = 1.1 and C,= 0.009 .
These values were in fact used. Therefore, the 1lift and drag co-

efficients of the tail jack arms, based on their own projected

areas, were estimated to be

C (1.1) cor ok Aim' ok (4.26)

Co,, = (1.1)|»I~\’o<| + 0.0097™ . (4.25)

This estimate neglects end effects, of courgse. For convenience,

Lty

these coefficients were converted to the same reference areas as

the wind tunnel models:

Cips = Sn/f (1.1) cak L' (4.26)

C = SVS“'”IW'“‘ + 0.0293 Sr‘/s, (4.27)

Ory

where S' = 4.4 (of tail jack arm)
(3

S = 2Re (projected wing area).
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For both wind tunnel models, the tail jack arm was mounted in the
"chord plane, so that the angle of attack ¢ was the same as that of
the model.
The exposed length of the tail jack arm of the aspect ratio

2.8 model was 6.5 inches, so that

S’/S = £0.5)(6.5) _ 0.0464 ,

(2)(7) (5)
and
CL" = 0.05f{ Aln'ol cos ¥ (4.28)
Co,, = O.051 |aima| + o.00131 . (4.29)

Using these expressions, Ctr:and C,” were evaluated for the angle
of attack range used in testing the aspect ratio 2.8 model. The
drag coefficient correction ranged from 1.5% to 4%, but the maximum
1lift coefficient correction was only 0.8%. Since there was a basic
uncertainty in C_ of about 1% due to uncertainty in dynamic pres-
sure g , the correction for 1lift of the tail jack arm was not used.
The drag coefficient of the tail jack arm, bes’ is shown as omne of
the columns in the tabulation of data corrections, Appendix A.

For the aspect ratio 1.0 model, the length of the tail jack

arm was 2 inches, thus

S - _(0.5)(2) _
’;/s OIGI) 0.00695 ,

and Cipy= 0.00765 Con 0X Ak’ o (4.30)
C

Upon evaluating these equations over the angle of attack

by = 0.00765 |ain’| +0.000197 .  (4.31)

range tested, it was found that the maximum 1lift coefficient
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correction was about 0.1%, while the maximum drag coefficient cor-
rection was 0.9%. Referring again to the uncertainty in 9 of about
17, these corrections were seen to be not significant and so were

not used.

Model and Wake Blockage

The presence of the wind tunnel walls produces a lateral
constraint on the flow about the model and the model wake (Pope and
Harper [16] ) termed model, or solid, blocking and wake blocking,
respectively. The model reduces the test section flow area, thus
increasing the air velocity in the model vicinity as a function of
model size, thickness, and thickness distribution. However, the
solid blocking velocity increase is much less than the direct flow
area reduction.

The model wake has an average velocity lower than the free-
stream, thus the velocity outside the wake in the test section must
have a higher velocity than the undisturbed test section freestream.
The velocity increase results in a pressure decrease placing the
model in a negative pressure gradient, which is measured as a model
drag increase.

Pope and Harper [16] present combined theoretical-empirical
analyses for both model and wake blockage; however, the wake block-

age calculation requires a prior knowledge of the model CD » which

varies with angle of attack. Fortunately, it has been found ex-
perimentally that the total velocity increment due to model and

wake blockage is well represented by
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€ = W B ot ares (4.32)
where
Vv=V(1+¢e) . (4.33)
Upon expanding and dropping higher order terms, we find that
g = qu(t+26) . (4.34)
The drag increment due to wake blockage is given by Pope and
Harper as
= Ke % V 4.35
aCy,, (A, )% Co, ° (4.35)

where V is model volume, and K, and %, are empirical functions of
model thickness ratio and model span/tunnel width ratio, respective-
ly, and are presented in graphical form in Pope and Harper [16] .

No correction was required for support system blockage since
the image method of evaluating tare and interference removes any
blocking contribution of the mounting system.

Consider the aspect ratio 1.0 model at an angle of attack.
The frontal area is the projected area in the chord plane multiplied
by the sine of the angle of attack:

A, = (1.0)(4m,) .
The tunnel test section area is 20.58 ftf (Comp [15] ), so that

€ = (u/4) LoDAmke - 01215 dimX, - (4.36)

The aspect ratio 1.0 model was found to stall at 22°; therefore the

maximum blocking condition was

€ = 0.01215(0.375) = 0.00455 ;
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leading to
g = 1+ (2)(.00455)] = (51.5)(1.00910) = 52.0 1bf/ft?.

Thus the maximum correction to dynamic pressue due to model and

wake blockage was

- 52.0 - 51.5 -
E =g (100) = 0.97% .

But, as discussed above on page 56, the uncertainty in the measure-
ment of q vas approximately 1.17; therefore, the calculated model
and wake blockage correction for dynamic pressure was neglected for
both models.

The drag increment due to wake blockage for the aspect
ratio 1.0 model was evaluated with equation (4.35) and the graphi-
cal functions in Pope and Harper [16] :

(1.01)(0.88) V
AC, =
O (20.58)% %

= 0.00953"C.u . (4.37)

For wing volume, Pope and Harper suggest

V = (0.7) teb

where b is the wing span, and in the case of the non-planar wing

must be the curvilinear span. Thus,

V = (0.7)(0.12) (1.0) (7 ) (1/2) = 0.132 ft.>,
and ACom = 0.00126 Cou . (4.38)
The drag coefficient, adjusted for tare, interference, and flow mis-
aligmment, but uncorrected otherwise, of the aspect ratio 1.0 model

at &, = 22., was 0.297. Then the drag correc_t:lon for wake blockage

was
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AC,,,, = (0.00126)(0.297) = 0.000375 ,

which was outside the range of significant figures carried for the
drag coefficient, or a correction of approximately 0.1%. Therefore,

the drag correction for wake blockage was not used for either model.

Boundary Induced Upwash and Streamline
Curvature Corrections

The tunnel test section boundaries alter the normal downwash
such that the measured 1ift is too large and the measured drag is
too small. The lift error is usually treated by a correction to the
geometric angle of attack, since the increased 1lift is due to an up-
wash (increasing the angle of attack). Pope and Harper [16] develop
the corrections by representing the boundaries with images of the

model wing "horseshoe' vortex. The resulting equations are

ax; = § (S/A") C. (4.39)

aCy = § (%ﬂ) c. , (4.40)

where § is a function of
(1) span load distribution,
(2) ratio of model span to tunnel width,
(3) shape of tunnel test section,
(4) whether or not model is on tunnel centerline.
The equations assume that the upwash at the tunnel centerline may be

taken as the average upwash., This condition will hold if the wing

span is less than 80% of the tunnel width (Pope and Harper [IQ] ).
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The normal curvature of the air flow about a lifting wing
is altered by the test section boundaries so that the lift, moment
(about the quarter chord), and angle of attack are increased. The
effect is treated as a variation of the boundary-induced upwash

along the wing chord:

X = X+ A + T,A0 = X, + (1+ 7,)AX;

®=&, + (1+7)S$ (S/A.">CL . (4.41)
Since the streamline curvature effect is more pronounced at the
model tail than at the wing, Pope and Harper [16] present graphical
data for 7, as a function of "tail length." For the wing, the
tail length is taken as one-half the wing chord.

The factor § was determined for the subject models and wind
tunnel by means of graphical data presented in Pope and Harper [16]
It was assumed that the channel wings could be considered as flat
wings of the same projected wing span. Pope and Harper give data
for both uniform and elliptical span load distribution, but for the
subject conditions there was no appreciable difference in § . The
results were

6 =0.114

for both the aspect ratio 1.0 model and the aspect ratio 2.8 model.

The factor T, was found to be
T, = 0.23 for the aspect ratio 1.0 model,
and

T} = 0.10 for the aspect ratio 2.8 model.
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The maximum drag and angle of attack corrections due to

boundary induced upwash and streamline curvature were

AC, = (0.114) (20 58) (1.097" = 0.00667

and

AX = (1 + 0.23)(.114) (20 58) (1.097) = .00749 rad = 0.43°

for the aspect ratio 1.0 model, occurring at .= 22°. These repre-
sent percentage corrections of 2.3% and 1.95%, respectively. As
discussed above, the basic uncertainty in C,, was considered to be
about 1.1%, and the uncertainty in setting the angle of attack was
estimated to be at least i0.25°. Therefore, these corrections were
considered to be significant, and were retained. The percentage
corrections at low C._ were much lower of course, but were retained
for completeness.

Similarly, maximum values for the aspect ratio 2.8 model
were

A(:oi = (.114) (20 486) (1. 061) = 0.00303

and

Ao = (1 + 0.10)(.114) ( 20 5 ) (1.061) = .00314 rad = 0.18°

or corrections of 2.75%4 and 1.28%, respectively, at &, = 14°. The
angle of attack correction here may have been within the setting
uncertainty, but was retained on the data sheets since it required

so little extra calculation effort after obtaining AC.“z .



CHAPTER V

RESULTS OF CHANNEL WING WIND TUNNEL TESTS

Transition Strip

Both channel wing wind tunnel models were tested with and
without boundary layer transition strips, as recommended by Pope
and Harper [16] » and discussed in Chapter 111 above. However, the
transition strip results were not satisfactory; indeed, the 1lift
and drag data readings were more erratic for the transition strip
cases than those with no transition strip. This is illustrated in
Figures 23 and 24 for the A = 2.8 model. Similar results were ob-
tained for the A = 1.0 model. Contrariwise, the data from the
tests with no transition strips were much more orderly, especially
the 1ift data. Therefore, the transition strip data will not be

presented herein.

Premature Stall

The four-run method for evaluation of tare and interference
described in Chapter IV led to difficulties with the aspect ratio
1.0 model. For test runs of types 2, 3, and 4, that is, those with

the bayonet or dummy bayonet extending into the "channel" of the

wing, (see Chapter IV, page 58) this model experienced premature

stall at an angle of attack of about 4 degrees. This resulted in a

74
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R =28

NACA 0015
1.2

Reeff = 665,000
1.0 @ [0) G

Co
0.8“
Q|
0|
0.6.1. o)
0-4"
[} With Transition Strip

® No Transition Strip

-4 12 16 20

X ~ Degrees

Figure 23. Comparison of lift coefficient for the R = 2.8 model with
and without transition strips.
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0 No Transition Strip
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KX ~ Degrees

Figure 24, Comparison of drag coefficient for the R = 2.8 model with

and without transition strips.
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pronounced dip in the lift curve slope after the data were combined
as described in Chapter IV (see Figure 25). Evidently the pressure
field and/or separated flow due to the presence of the bayonet,
bayonet windscreen, and special windscreen for the bayonet head and
model mounting plate produced the early stall'of the wing. Due to
its thinner section and larger diameter, the aspect ratio 2.8 wing
had a larger channel area than did the aspect ratio 1.0 model, so
the former did not suffer this effect.

Since the lift curve obtained from the run of type 1 was
linear to the stall at 20 degrees, the prematurely stalled 1lift
curves of the runs of types 2, 3, and 4 were linearly extended, at
their slope prior to the premature stall, to the same final stall,
as shown in Figure 26. These faired data were then used in the
four-run method to eliminate the tare, interference, and flow mis-

aligmnment. The validity of this approach is illustrated in

Figure 27, where it is seen that the faired and unfaired data merge

again when sufficiently removed from the premature stall area.

Lift and Drag Coefficients

The experimentally determined 1lift and drag coefficients
for the aspect ratio 1.0 and 2.8 models are presented in Figures 28
through 31. The data have been reduced and corrected as described
above and in Chapter IV. Tabulations of the raw data and the re-

duction steps are presented in Appendix A.
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1.2 1
1'0 l%
cl.
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AR =1.0
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Reger = 1.55 x 106
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Pigure 25, Lift coefficient of aspect ratio 1.0 model, showing premature
stall due to presence of bayonet in channel,
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AR =1.0
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Figure 26, Fairing of 1ift data to eliminate premature stall due to presence
of bayonet in channel.




80
A =1.0
NACA 4412 Airfoil Section
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Reegs = 1.55 x 10

1.2 (© Unfaired Data

[l Faired Runs II, III, and IV

-8 -4 0 +4 8 12 16 20 24

oL ~ Degrees

Figure 27. Comparison of faired and unfaired 1ift data for the aspect
ratio 1.0 channel wing model.
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0.8 Least Squares
Curve Fit
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Reges = 1.55 x 10°
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Figure 28. Lift coefficient of A « 1.0 channel wing model.
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Figure 29, Drag coefficient of AR = 1.0 channel wing model.
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1.27
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0.6 R =2.8
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Figure 30. Lift coefficient of AR = 2,8 channel wing model.
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Pigure 31. Drag coefficient of R = 2.8 channel wing model.
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The lift data were correlated with a linear least-squares
curve fit,1 and the drag data with a parabolic least-squares curve
fit.2 It may be seen in Figures 28 and 30 that the linear fit of
the 1ift data is very good. The drag data are somewhat scattered,
but still well represented by the parabolic curve.
Experimental values of channel wing lift curve slope,

dc?‘JC‘c , were obtained from the linear curve-fit of 1lift coef-

ficient in Figures 28 and 30:

e,

d C%{uc

0.040 per degree A

1.0

0.073 per degree R

2.8 .

Span Efficiency Factor

An experimental determination of channel wing span effi-
ciency was obtained from the lift and drag data. If the drag co-

efficient is written in the form
2

- CL
Co= Co *+ 76w

where € is the span efficiency factor, then € can be related to the

’ (5.1)

slope of a straight line through the data plotted in the form (g vs.
2

CL . The data plotted were the parabolic fit of C%, and the

square of the linear fit of (, , Figure 32. The former was chosen

because of the scatter in C; » while the fit of C;’was used only for

1Program IV-2 of the Statistical Package Library for the
Hewlett-Packard Model 9100B programmable calculator.

2Ibid., Program IV-8.
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Figure 32, Experimental determination of channel wing span
efficiency factor.
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convenience. The results were

e 1.51 AR

1.0

€

1.48 AR =2.8.
The 2% difference in measured € is attributed to data scatter rather

than to a trend with aspect ratio.

Angle of Attack Error

Referring to Figure 30, it is seen that the experimental
lift coefficient for the A = 2.8 model does not pass through zero
for (wing angle of attack) &= 0°, as would be expected with a
symmetrical airfoil section. The 1lift coefficient was not expected
to be zero at (X,= 0° for the M = 1.0 model, since a cambered air-
foil section was used for this model. If a constant error of one
degree (negative) in setting the channel wing angle of attack during
the wind tunnel tests were assumed, then the lift coefficient of
the AR = 2.8 model would pass approximately through CL= 0 at
O = 0°. The author, of course, exercised care to prevent this
type of occurrence, but the existence of such a systematic error
cannot be ruled out. Also, a one degree positive shift in all the
data of the wind tunnel tests reported here would afford better
correlation with the lifting arc theory (see Chapter VIII). How-
ever, the latter observation cannot be considered to be as objective
as the failure of the lift curve of a symmetrical-section wing to
pass through the origin. Still, an inadvertent angle of attack

shift in the lift and drag curves seems to be the best explanation

for the location of the 1ift curve of the A = 2.8 wing, and the
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same error would probably have existed for both models. Thus the
author recommends that the reader desiring to use the experimental
lift and drag curves presented herein shift them to the right the
amount required to make the lift curve of the R = 2.8 model pass

through the point & = 0°, C,_ = 0.

Conclusion

The deflected streamtube theory developed in Chapter I for
the channel wing predicted a span efficiency factor of € = 2.0,
while Cone's [7] theoretical maximum for semicircular channel wings
is € = 1.5. Thus the wind tunnel tests reported here have resolved
this lack of agreement in favor of Cone's value, € = 1.5.

It is speculated that the failure of the channel wing de-
flected streamtube theory is due to the fact that the channel wing
is not a closed shape, as is the ring wing. Apparently the concept
of a streamtube "threading" the wing, and being deflected as a rigid
cylinder of definite cross-sectional shape, is not valid for an open
wing. The lifting arc theory presented in Chapter VI was developed
in response to the apparent failure of the deflected streamtube
theory to adequately predict the span efficiency factor and in-
duced drag in channel wings. It is evident that a satisfactory
theory must predict span efficiency factors of approximately 1.5

for channel wings.



CHAPTER VI

LIFTING ARC THEORY FOR CHANNEL WINGS

Linearizing Assumptions

Consider a bound-vortex arc representing a channel wing.
The arc is visualized as having the same spanwise curvature as the
channel wing, and is situated in a plane perpendicular to the steady
free-stream flow V. The bound-vortex arc has the (to be prescribed
subsequently) circulation distribution r'(s), assumed to be sym-
metrical about the wing longitudinal centerline and falling to zero
at the tips. Between the points s and (s + ds) on the arc, the cir-
culation changes by the amounté%ﬁhb-ds; therefore, a trailing vortex
line of this strength emanates from the arc element ds and extends
downstream to infinity (Glauert [10] ). The trailing vortex fila-
ments from all elements of the bound-vortex arc together form a
trailing vortex sheet as sketched in Figure 33. Using the induced
velocity law of Biot and Savart, Cone L?] gives the resulting flow

field as

v, 1 L (7 T
?’V*W[ﬁ‘x ;;JS *ﬁfl"(s)gxﬁds, (6.1)
where }3“ indicates area integration over the trailing semi-infinite

vortex sheet, _f’ indicates line integration along the bound-vortex

arc, and 3: is the vorticity intensity vector of the vortex sheet.

89



Figure 33. Bound vortex arc with trailing vortex filaments.
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This equation is not limited to a bound-vortex arc representing a
channel wing, of course.

Now the field '{ is not in general uniform, so the wake will
react upon itself, producing distortion of the vortex sheet and in-
troducing non-linear effects (Cone [7] ). However, if the rate of
change of circulation along the bound-vortex arc is relatively small,
then the wake induced velocity (second term in equation (6.1)) will
be small compared to —\7 » and the non-linear wake deformation effects
may be neglected. That is, the vortex sheet is assumed to extend un~
altered to infinity, parallel to v , with the cross-sectional shape
of the lifting arc. These conditions may be expected to exist for
most practical 1lifting systems with relatively small maximum lift
coefficient (Come [7] ).

Nonplanar lifting systems have components of induced velocity,
due to the bound vortex, which act parallel to the free-stream ve-
locity —\7 (third term in equation (6.1)), thus producing an "induced

1ift." This is indicated in the accompanying sketch, after Cone [7] :

<]

dL; //
¥,

However, under the assumption of small induced velocities, 71‘5 may
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-l
be neglected in comparison with V

Except as specifically noted, the linearizing assumptions of

)
small induced velocities in comparison with V and negligible wake

deformations will be used in the derivations below.

Induced Velocity

Referring to Figure 34, consider the velocity induced at
point P (y, z) of the bound-vortex arc (representing the channel
wing) by the vortex filament emanating from point P’ (g,iz) of the

arc. The filament has strength
Jy = 4L 4
ds 9% -

is parallel to the free-stream velocity (undistorted vortex sheet

as discussed above), and extends downstream to infinity. For this

case, the Biot-Savart Law reduces to

d¥
4y >

d?’ = (6.2)

(Glauert [10] ), where the induced velocity ch is normal to the
plane containing TF and the trailing filament, with direction as
given by the right-hand rule for the circulation about the filament.
But only the component of induced velocity normal to the bound-
vortex arc is effective in changing the local section angle of

attack and thus producing induced drag:

-1 - . :
dg, = 7o cr (¥ 6) (6.3)

The total effective induced velocity at P due to the entire vortex



Figure 34. Velocity induced at point on channel wing 1lifting arc by a trailing vortex filament.

€6
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sheet is obtained by integrating along the lifting arc:

S¢
‘Zn(Y’z) = ?lffm<;r— 6) (jg\ds . (6.4)
=S¢

/

Local Effective Angle of Attack

Due to the finite span of the lifting arc, the local inci-
dence at a wing station is reduced by the induced angle of attack.
Therefore, the local airfoil section experiences the normal force

corresponding to two-dimensional flow at the effective angle of

attack,

XKy = Kq = X; , (6.5)

x; = 73'*‘:1(%/\/) ~ q"/v (6.6)

see Figure 35. The approximation to (X; is consistent with the

where

linearizing assumption made above (i.e., qn « V). Note in Figure
35 that both &,and &;are measured from the relative wind, and that
ogoand X gare measured to the zero-lift line.
The absolute angle of attack (Xq will be a function of ¢
for the channel wing. The local airfoil section angle of attack
0K, 1s measured in the radial plane at that section. Referring to
Figure 2, the velocity components in the radial plane are (assuming

an untwisted wing)

Vs

V coa X (6.7)

and
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Zero-Lift Line

Chord Line

1

Flight Path \
o, = geometric angle of attack = angle between flight path and
chord line of section.

= angle of zero-lift line = geometric angle of attack for
zero section lift,

O(q = absolute angle of attack = angle between flight path and
zero 1lift line.

®&; = induced angle of attack = angle between relative wind Vg
and flight path.

oL = effective angle of attack = angle between relative wind Vu
and zero-lift line.

Notes: All angles are in the plane of the local airfoil section.

&, ., 1s usually a negative number.

Figure 35. Angles associated with the local airfoil sectionm.
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V. = VoimX, amg - (6.8)

Then the tangent of the angle of the section chord line is

JCV\O(L -V, — vm‘xcmg_
/Vx Verx, °

and thus

;t;”\O(L = ;tauﬂko‘c Ai*~Qb

%, = tam' (Ao, 4im ) . (6.9)

If the airfoil section is cambered, the angle of zero 1lift
must be considered:
V. Zero-Lift Line
v, 4_
- %o (7 x
" \—

Voo

Then the local absolute angle of attack as measured from the section

zero-1ift line is
-1 ( .
X, = Aam ~ \Lani, A«W\‘P) = X .0 (6.10)
(O .o is given in airfoil data as a negative number), and the local

effective angle of attack becomes

X, = K = Ko~ ‘l/v . (6.11)

Circulation
By the Kutta-Joukowski theorem, and with the linearization

assumptions discussed above, the aerodynamic force, per unit arc
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length, normal to both the free-stream velocity and the local seg-

ment of the lifting arc is

4

-f-i = ?_v. X rg . (6.12)

ascelie

while the corresponding force parallel to V is

'F:'= gq‘h x "8 . (6.13)

The magnitude of the normal force intensity is
Fo= oVl = (3 V)e (D
so that the circulation is
r=%c¢qgcV . (6.14)

The local section 1lift coefficient is

C, = A, K, (6.15)

b4
where Q,1is the section lift-curve slope,

= déa
a, = do, :

Thus, with equation (6.11), equation (6.14) becomes

(.

r= _i'g V (o, = oo = ) - (6.16)

Now, substituting equation (6.4) for 2“ , we may write the local

channel wing circulation as

41V Y ds

S,
M= g',ZLV o, —- uno - L con (Y- 6) (d—r'> ds . (6.17)
=S¢
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Since ds = Rd@ , We write

_J_E) = (JI_) = éﬂ)a . 6.18
(ds ds RdF (Rdp) I5) 46 (6.18)
and
w
_ QocV _ - 1 [ewa(¥-0)(dI ,
The variables 7 , 8 , and ¥ will be replaced by use of the relations
A(T=0) = conT oA O + m? 4mb (6.20)
and
2 114
vy = [(z"Z) + (Y-f)] , (6.21)
and the coordinate relation (Cone [7] ):
= g\
ds f1 + (}d/y) dy . (6.22)
Referring to Figure 34, it is seen that
—_—1
= 9y _ n
AT = TS- = !l + (Jzy) (6.23)
- Y-£ _ y-¢
A8 ="y [G-9) + G- )" 6.24)
g = 2= - 2-1 —
S (CETY R PRT R (6.2

434
: - d2_ = di- . dYy = J . .
i TR TR TR (2. ) (6.26
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Then,

o (¥-6) = (Y- ) _* dz/dyz(z“l) __
Ji1+ @) [ + (y-€)1] &

and equation (6.19) may be written as

r= ro Vv m
[ (v-€) + 9%y (a-n) (Jf')dg} . (6.28)

Ea )+ @Y (- + -] '

A further transformation will be useful, as suggested by

(6.27)

Blick in unpublished notes. Again referring to Figure 34, we note

that
Z = R-Ramg =-Rer @ (6.29)
# = R~ Rainp § =~Renp (6.30)
o Ay, =-Read Yo = Ruing (6.31)
and thus A‘/“, = JZ¢ . d% = - -%‘:—%- . (6.32)

Substituting these expressions into equation (6.28), we have

r= !&%EL!L[:(XL - X,
w

_ 1 | R(oAB-cond) - BPR (i B~ aimd) (_dg ’
v f e [R(inB-aing) + Ri(wap- aw] "E’)

After some trigonometric manipulation, we arrive at
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re) = =Y | o - «x,.,

(A
il r
+ ?,waj:a’t (e_;_:f;» (j%) e\, (6.33)
where X = Jam™ (Zdn X ) .

Within the assumptions discussed above, (6.33) is the basic
equation for the local circulation about a channel wing represented
by a lifting arc. Note that the chord ¢ may be a function of ¢ if
necessary. In the study reported herein, an approximate solution
of equation (6.33) was obtained by using a collocation technique
with an assumed infinite series expression for the circulation r.

The solution is not valid in general near the wing tips, however.

Approximate Solution

The circulation distribution is assumed to be a Fourier sine
series in ¢ s symmetrical about the wing midspan, and zero at the

wing tips:
w -
r¢) = VR%A..MMP , n=1,3,5 ... (634

where only the odd n's are retained due to the assumption of sym-

metry. With this expression, equation (6.33) becomes

”»
* a.C
2, A dinnd = 'z"l?[“'- " Kimo

+ g f ;(—'—;_i)(%nl\“mng)dﬁ : (6.35)

where n =1, 3, 5. . . . The integral is evaluated in Appendix B,

where it is shown that
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% nA. 8-4
2w m“?“’*(—z‘) df

= é‘%%[(mmﬁ)i(n— (Mmﬁ)l‘] (6.36)

forn=1,3.5.---s

where

=2 Lv‘[w’t (%)] - 2wad (6.36)
Koz Kp.g= & coAnd — W%m(n-l)qs , n=3, 5, . . . , (6.36b)
I =T+ 24ae (6.36¢)
To= T, * 2amng + 25 um(n-2)9 , n=3, 5. ... (6.36d)

With this result, equation (6.35) may be written as

2 A ssne + (28 [wineer . - (cmnr] )

e e

wheren =1, 3, 5,

o = Zanm! (Zan o, @)

Equation (6.37) determines the coefficients An in the series
‘ .
F(e) = VRZ A,dmnd » n=1,3,5, . . .; (6.38)

however, since K, (equation (6.36a)) is infinite at ¢ = 0, ,
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equation (6.37) is not in general valid at the wing tips. By proper
selection of the collocation points for evaluation of equation
(6.37), as described below, it was found possible to avoid diffi-
culty with the wing tip singularity, and use equations (6.37) and
(6.38) to estimate the 1lift and induced drag of channel wings. Also,
if the problem is such that the chord distribution in the vicinity
of the wing tips is at the discretion of the investigator, the tip
region planform may be chosen such that the singularity in equation
(6.37) is removed. This is demonstrated in a subsequent section of
this chapter.

For the major part of the study reported herein, only chan-
nel wings with rectangular projected planforms (and thus square
tips) were considered, since it is believed that this is the most
likely form which might be encountered in practice. For this case,
the chord ¢ is constant, and equation (6.37) is invalid at the wing
tips. However, this singularity did not destroy the value of the
channel wing lifting arc theory for estimating the 1lift and induced
drag for this case, since the collocation points were placed well
away from the wing tips.

The divergence of K; at ¢= 0, leads to a more serious

difficulty in the induced velocity. The latter is given by the

negative of the right hand side of equation (6.36):
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W = —2 %%—[(mmﬁ)K,- (Amng) J,;] , (6.39)

n=j

as may be seen by comparing equations (6.16), (6.33), (6.35), and
(6.36). It is seen in equation (6.39) that the induced velocity is
infinite when K; is infinite; that is, at ¢ = 0,ff. As shown below,
this mathematical singularity in the induced velocity expression is
not carried over into the induced drag calculation. However, if

one is interested in investigating the channel wing induced velocity
distribution, the tip region must be avoided, or a rounded (in plan-
form) tip assumed as discussed in a subsequent section of this

chapter.

Collocation Method

Equation (6.37) determines the coefficients An in the in-
finite series (6.38), but since A, A;, Ag, . . . decrease rapidly
in magnitude, it is sufficient to retain only the first few coef-
ficients. Glauert [lQ] » in his classical approximate solution for
planar wings, which used an approach similar to the present channel
wing solution, recommended retention of the first three or four co-
efficients. Retention of the first five coefficients was the prin-
cipal choice for the present study, although the effect of the number
of coefficients used was investigated, as described below. To de-
termine m coefficients, m simultaneous equations are required, and
these equations are obtained by evaluating equation (6.37) for m

different values of ¢ along the channel wing lifting arc. The
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wing 1lift distribution is assumed to be symmetrical about the center-
line; therefore, only points in the range o'< ¢ < 90° need be con-
sidered. Since equation (6.37) is not valid at the wing tip, ¢=0
should not be chosen as one of the points to evaluate equation
(6.37). These considerations led to evaluation of equation (6.37)
at the points (when five coefficients are desired) ¢ = 18°, 36°,
54°, 72°, and 90°, thus yielding five equations for the five un~

knowns, Al, A3. AS’ A7, and A Evaluation of the coefficients of

9I
the simultaneous equations, and solution of the equations to find
the An's, was performed by the digital computer program developed

to mechanize the chammel wing lifting-arc theory. The program is

described in Chapter VII.

Channel Wing Lift

The channel wing circulation distribution for the symmetri-

cal 1ift case is given by equation (6.38):
P@) = VR[Asing + Ajsin3g+ ... ], (6.40)

where the A's are determined for the particular wing and angle of

attack as described above. Then the normal force per unit span is
] . .
F'= gVl = gV R[A,mcp + AjAm 30 + ] . (6.41)

The total channel wing lift is obtained by integrating the vertical

’
component of E along the wing:

L = [(R sm#)(Rd#)
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w
ipt . . .
L= ¢V R][A1M¢+A3MM3¢+..-]M¢J¢ . (6.42)
(-4
But it is a well-known result from integral calculus that

n’/z,n=1

4
[ simng aing dp =
° O ,n=2,3,4,5, ...

therefore,
L = FqgVR'A, . (6.43)

The dependence of the channel wing 1ift solely on the first coef-

ficient Ay parallels Glauert's [10] approximate solution for the

planar wing.

In coefficient form based on the projected wing area S = 2Rc,
- il

As in Chapter I, the aspect ratio of the channel wing is defined as

so that the channel wing lift coefficient is
I ) /
C.= F RA ' (6.45)

The 11ft coefficient is not actually a linear function of aspect

ratio, since A, is a function of R .

1

Channel Wing Induced Drag

The magnitude of the force acting on the channel wing, due

to the induced velocity, in the direction of the free-stream
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velocity is

eqn [ (6.46)

per unit arc length (see equation (6.13)). The circulation I" is
represented by equation (6.38), while the induced velocity qn is

given by equation (6.39). Thus equation (6.46) becomes

= gV Rz nA B [(4imn8) J. - (crnd)K,]

e % Andam : (6.47)
mzg
The total channel wing induced drag is obtained by inte-

grating K ' along the wing from tip to tip:

= (¥ (rao)

D, = gv K f{é nA, [(AMW(P).T - (cnnd’)K]

)
. 2 Anmm¢} d¢ (6.48)
me g

wheren=1,3,5, ...,andm=1, 3, 5, . . . ,andl(nandJn
are given by equations (6.36a) through (6.36d). The integrand in
equation (6.48) appears to have a singularity at ¢ = O , M due
to Ky (see equation (6.36a)) being infinite at those points, as

discussed above. However, it may be seen in equation (6.48) that

[ ]
K, is multiplied by 2" A Ammo , yielding terms of
me

the form

(Aim m ) [203 (cet 91)].

which is indeterminate at ¢ = O, , since m is an integer.
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Rewriting as

Loy (ot 3%)

e m@

and applying L'Hdpital's Rule, we write

To(eot 9 fin = Y (TamI)(cae” )
Qoo,w cac m¢ $->0, w (colm d)(cac m 8)

= E.:n- A’ m P
>0 "2 coame coa B 2im %

Adn’ M
$-»o0,%

M coAmd g
L'HOpital's Rule yields

h "/zz = Lo 2m amm® cormo

o —HTZE = Sy M[coam cad - maimme aimg]

(6.49)

o]
h

Another application

_ dm 2m @
= Q-»off CAMP CoAP + M wA(M+1) P — mcoame cond

. A 2m D
*>aT (1-m)(coamd con@) + mca(m+1)¢

= 0 . (6.50)
Thus the second term in equation (6.48) is zero in the limit as ¢
approaches zero or % , the integrand is not infinite at the wing
tips, and the induced drag is finite.
The integral of equation (6.48) was evaluated in a subroutine
of the aforementioned digital computer program for channel wings.
The numerical quadrature used is a modified trapezoidal rule method.

The particular value of the integral is, of course, a function of
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the wing parameters and the angle of attack, through the Fourier

coefficients An.

If the integral in equation (6.48) is designated by Io’

then

D, = g\é;Rz I, ; (6.51)
or

Co, = :TIE' = E%-Y-ID (6.52)

in coefficient form, based on S¢= 2Rc. Now, if the induced drag co-

efficient is defined as
2
C, = C. 6.53
% = TeR - (6.53

where @ is called the span efficiency factor, then

.. _ _R
e R 161 70
cz
- ‘ . . .
e 1 ﬁ (6.54)

Substituting equation (6.45) for C_ , the channel wing span efficiency

factor is

_ L6 :
e = w1 (FRA)

. (6.55)
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Channel Wing Profile Drag

The profile drag coefficient of any wing may be represented

as
St

Co, = 1/57 c,c ds, (6.56)

-6t
Abbott and von Doenhoff [18] » where C, is the local (two~dimensional)

section drag coefficient, and §; is the wing curvilinear semispan
(see Figure 34). Now €, is obtained experimentally for infinite
aspect ratio conditions; therefore, a strip-theory summation pro-
cedure is required for evaluation of equation (6.56). For the chan-

nel wing, the local strip is an element of arc length:
2 o °
Co, = 74, s c,c; (Rag),, o< ¢ =90, (6.57)
J

where the symmetrical case has been assumed. Since a constant-chord

channel wing is considered here,

Co,

——(,,,ic) (Re) % ¢, (a ),

C% = %.- 42 Cy; (A¢)j s 0 = ¢ < 90° . (6.58)
Note that (AQ); here must be in radians.

Extensive data on the experimental two-dimensional charac-
teristics of a large number of airfoil sections have been obtained
by the NACA (e.g., Abbott, von Doenhoff, and Stivers [19] ). Typi-
cally, section drag data are plotted as a function of section 1lift
coefficient; thus section drag coefficient is a function of the

local effective angle of attack, which is
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X, = & — X,., — & : (6.11)

Recalling equations (6.9) and (6.39), we find that equation (6.11)

becomes

C (famx, and) - o,

~

+ £ —g—% (coand)K, — (amng) J..“l , (6.59)
e

where Kn and Jn are given by equations (6.36a) through (6.36d).

Assuming a linear lift-curve slope for normal angles of attack, the

local section 1lift coefficient is

= a.{;Cw\-l (Tanx, M) = ,.,
Y\Au l:(MWP)K - (.MMNP)I]} (6.60)

Only the odd n's are retained, since the symmetrical case has been
assumed. Equation (6.60) was evaluated by the channel wing digital
computer program, Chapter VII, using the Fourier coefficients A
determined by the program.

The channel wing 1ift and drag computer program, Chapter VII,
accepts as input a table of airfoil section lift and drag coefficients
for the particular wing being considered. Then values of local sec-~
tion ¢, (calculated with equation (6.60)) are used to enter the air-
foil section data table, the outputs being values of local section
€4 for use in equation (6.58). As discussed above, K; becomes

infinite at the wing tips; however, this presents no difficulty in
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evaluating equation (6.60), since cgj and ng are evaluated at the

center of (A ¢)J .

Channel Wing Total Drag

The profile drag for any nonplanar wing must be based on the
total wing area rather than projected wing area, since profile drag
is composed of skin friction and pressure drag. This was done above

in deriving the channel wing profile drag:

D, =45.C, = ¢ (wRe)C,, : (6.61)
However, it is convenient to base total channel wing lift and drag

on projected wing area. For this purpose, the total channel wing

drag is written as

_ Ds q(mRe) C.
C= 25 * 0y = Y(zRe) % * TeRm
C‘I
C, = %c% t Fem (6.62)

where Cp, 1is given by equation (6.58) and € by equation (6.55), both
of which are evaluated by the channel wing 1ift and drag computer

program, Chapter VII.

Limitations of Lifting Line Theories

The basic idea of lifting line theory is that a stationary
two-dimensional line vortex in a moving stream is the equivalent of
a two-dimensional wing with circulation in otherwise uniform flow.

This conclusion (Kuethe and Schetzer [2] ) is based on the twin
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notions that (1) a unit length of a line vortex stationary with
respect to the general flow experiences a force of magnitude gi'
in a direction perpendicular to both V and the line vortex, and (2)
the lift force experienced by a unit span of a cylinder of any cross
section is gvr', directed perpendicular to V and the cylinder axis
(the Kutta-Joukowski theorem). The first-order effect of finite
wing span is to reduce the local section incidence by an induced
angle of attack. Therefore, the (two-dimensional) Kutta-Joukowski
theorem may be used in the finite wing case by simply assuming that
the force experienced by the local section is the same as would be
felt by a section of an infinite wing set at an angle of attack
equal to the geometric angle reduced by the induced angle. This
assumption has been integral to finite-span lifting line analysis
since the latter's foundation by Prandtl; however, the first-order
effect of finite span has been derived formally by Ashley and
Landahl [20] » Wwho examined the matched inner and outer solutions
associated with the process €,—» 0 at fixed span (where €, is
inversely proportional to aspect ratio), of the equation

(1-M)5% + 3L 4 3w - o

assuming that Mg = 0 and the wing thickness, angle of attack, and
camber are small.

This approach to the finite span problem, which was used in
deriving the channel wing lifting arc theory, might appear to be in-

applicable at low aspect ratios. On the contrary, however, it has
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been found to yield remarkably good results for wing 1ift and induced
drag down to aspect ratio of unity. For example, the results of
using finite-span lifting line theory to correlate experimental 1lift
and drag data for wings of aspect ratio one through seven are pre-
sented in Figure 7-5 of Ashley and Landahl [20] » where the data
are shown to collapse to a single lift curve and a single drag curve,
within the experimental accuracy.

Although lifting line theory yields useful results for total
1lift and induced drag even for wings of low aspect ratio, Jordan [21]
asserts that neither lifting line theory nor approximate (collocation
methods) lifting surface theory can be considered reliable for studies
of downwash distribution in the vicinity of the wing tip, for wings
of any aspect ratio. Jordan's conclusion stems from his study of
the circular planform (planar) wing, for which he obtained an exact
solution for the pressure distribution and thus was able to ac-
curately calculate the downwash distribution. It was found that
the distribution changes sign, going to a large negative downwash
(i.e., upwash) in the vicinity of the wing tip. Jordan states that,
qualitatively, the same downwash distribution will be valid for
other wing planforms, and that, comsequently, elliptic span loading
is invalid in the tip region. He also found that the use of approxi-
mate methods, such as l1lifting line analysis, to calculate the down-
wash distribution from the exact 1lift distribution (of the circular

wing) leads to a divergence to infinite upwash at the wing tip. The

conclusions of Jordan cast doubt on the validity of the calculated



114
channel wing downwash distribution in the tip region, as obtained

below in the section of this chapter on the rounded planform wing

tip.

Convergence of the Approximate Solution

A formal proof of the convergence of the approximate solution
for the channel wing lifting arc was deemed not possible, since the
function to be represented by the infinite series is not known, but
rather is the quantity sought. However, a practical indication of
convergence of the solution was desired, especially in view of the
divergence of K; (equation (6.36a)) at ¢ = 0,% . Therefore, the
convergence of the calculated circulation and induced velocity
throughout a large sweep of the number of Fourier coefficients An
was investigated.

For the convergence study, the channel wing computer program
described in Chapter VII was modified to iterate on the number of
coefficients A retained; that is on the number of (equally spaced)
collocation points along the lifting arc (O < ¢ s 90.) . Calculated
values for circulation and induced velocity for a typical case are
presented in Table 4. It may be seen that the lifting arc solution
is stable and convergent through forty~five coefficients. This area
of convergence represents a wide margin, since five coefficients pro-
vided sufficient accuracy for the studies reported herein. The
number of An's used had little effect on the channel wing circula-
tion distribution, as shown in Figure 36. An example of the varia-

tion of calculated channel wing 1ift and drag with the number of
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TABLE 4

CALCULATED CHANNEL WING* CIRCULATION AND INDUCED VELOCITY
AS A FUNCTION OF NUMBER OF FOURIER COEFFICIENTS RETAINED

Number of Fourier p l" 9
Coefficients /f: A (’ﬁ) /V A (i/v)
Retained At § = 45° At § = 45°

3 0.8022 0.06656
0.0059 0.0069

5 0.8081 0.06725
0.0075 -0.0027

7 0.8156 0.06698
0.0011 0.0012

9 0.8167 0.06710
0.0022 ~-0.0009

11 0.8189 0.06701
0.0004 0.0004

13 0.8193 0.06705
0.0009 -0.0003

15 0.8202 0.06702
0.0002 0.0001

17 0.8204 0.06703

19 0.8209 0.06701
0.0001 0.0001

21 0.8210 0.06702
0.0004 -0.0001

23 0.8214 0.06701
0.00C0 0.0001

25 0.8214 0.06702
0.0002 -0.0001

27 0.8216 0.06701
0.0001 0.0000

29 0.8217 0.06701
0.0001 -0.0001

31 0.8218 0.06700
0.0001 0.0001

33 0.8219 0.06701
0.0001 ~0.0001

35 0.8220 0.06700
0.0000 0.000

37 0.8220 0.06700
0.0001 0.000

39 0.8221 0.06700
0.0000 0.000

41 0.8221 0.06700
0.0001 0.000

43 0.8222 0.06700
0.0000 0.000

45 0.8222 0.06700

* M = 1.0 Model, NACA 4412, Q,= 0.095/degree, x_ = 6
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coefficients retained is shown in Figures 37 and 38. Although the
drag curves for only three through six coefficients are plotted in
Figure 38, the drag curves through forty-five coefficients fall
within the envelope shown.

Major William A. Edgington of the US Air Force Academy is
presently engaged in a general study of lifting-line analysis of
nonplanar wings. In a private communication with the author,
Major Edgington discussed the results of his calculation of circu-
lation distribution for several constant-chord nonplanar wings with
elliptical spanwise curvature, including a semi-circular (channel)
wing. Edgington found that if a collocation point is placed too
close to the wing tip, the calculated circulation distribution ex-
hibits excessive oscillation. For a collocation point at the wing
tip, the solution is divergent, as was found in the study reported
herein. Edgington found that the collocation point separation
(from the wing tip) required to obtain a smooth circulation dis-
tribution varied with the eccentricity of the span curvature. For
the case corresponding to the channel wing, the minimum angular
separation allowable appears to be between 0.100 and 0.025 radianms.
The use of a maximum of forty-five Fourier coefficients, yielding
a separation between the wing tip and the first collocation point
of 0.035 radians, in the study described above was merely fortui-

tous, since the choice was made before the author became aware of
Major Edgington's work.
The results discussed above indicate that the channel wing

lifting arc solution given by equations (6.37) and (6.38) is
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convergent at least through the range of forty-five Fourier coef-
ficients. Ultimately, however, the solution would diverge as the
number of coefficients is increased so as to cause the first col-

location point to approach too close to the wing tip.

Rounded Planform Wing Tip

The majority of the channel wing study was devoted to con-
stant chord channel wings because it was felt that this would be the
planform selected in actual practice. However, the proper choice of
a rounded wing tip was found to be useful for investigating the tip
region, since the Ky term (see equation (6.36a)) in equation (6.37)
is infinite at ¢ = 0,7 for the rectangular wing tip. Consider the

chord distribution
c = C, Mjld? , (6.63)

where C, and k are constants. Substitution of this relation in

equation (6.37) yields terms of the form

(sin k&) [y (o2 5)]

Now if k is an integer, this is exactly the same form as that which
was shown above in the induced drag discussion to be finite even at
¢= 0, . Therefore, the chord distribution given by equation
(6.63) allows evaluation of equation (6.37) in the tip region. How-
ever, it is not practical to evaluate (6.37) exactly at ¢ = 0,
since in that case the equation is identically zero.

The constant k in equation (6.63) is determined from con-

siderations of the size of the rounded tip region desired. At the
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junction of the tip and the constant chord portion of the channel
wing, ¢ = c,, requiring that sin(k¢)= 1, or k¢ = /2. Let the

tip region curvilinear span be YR ,

+
‘l’; ;
Tip Region _—/&
Curvilinear R

Span YR

then at the junction of the tip region and the wing, ¢ = Y, so that
ko= ht ="

L o
bk = 5§ - (6.64)

with the restriction that k must be an integer. It is likely that
a channel wing will have constant chord over the great majority of
its span. Therefore, Y will be small, requiring k to be large.

For example, the channel wing wind tunnel models described in
Chapter III were essentially rectangular in planform, the tips dif-
fering from this shape only by rounding of the edges to avoid sharp
corners and edges. A value of WR = 0.2 inches is representative
of these models (this is not meant to imply that the wing tips were

shaped to the distribution c¢ = c,sin ¢ ). The AR = 1.0 model had

a 6 inch radius, so

»

v 0.

0.0333 radians = 1.9‘

|

and ¥

LLe - ——————— - .
2Y T 2(.0333) 41.2

k
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Since k must be an integer, 47 would be used.

A brief study of the effect of the rounded tip on calculated
induced velocity was conducted. The channel wing computer program
described in Chapter VII was modified to use equation (6.63), and
the induced velocity distributions for several values of tip region
span, for a particular channel wing, are plotted in Figure 39. To
obtain a smooth curve, it was found necessary to calculate the in-
duced velocity at the same points along the span at which equation
(6.37) was evaluated. A large number of coefficients were used to
insure that tip region details of the induced velocity curve would
be obtained. Figure 39 indicates the divergence of the calculated
induced velocity at ¢ = 0 for the rectangular tip case, and shows
how 1/v in the tip region is reduced as the tip span is increased.
The tip region spans used in Figure 39 are small fractions of the
total wing span. For example, the ¥ = 3.8%case corresponds to a
tip span to wing curvilinear semispan ratio of 0.042 for the AR = 1.0
wind tunnel model. A relatively small change in wing area is in-
volved, and the performance is not appreciably effected, as can be
seen in Table 5. In fact,”even for the Y = 11.3°case, the lift
to drag ratio is reduced by less than one percent. For purposes of
comparison, all coefficients in Table 5 are based on the (projected)
area of the rectangular tip wing. Within the range tested, the

rounded tip had no appreciable effect on the circulation.

Alternate Solution Attempted

In the course of the channel wing study reported herein,

several assumed infinite series expressions for circulation other



Wing Tip Chord € = Cgsin k¢
k = -&» , where¥Ris Wing Tip Curvilinear Span

At ¢ =¥, C=¢C,
.08
¥ = 0 (Rectangular Tip)
¢=1.9°
.06
Y= 3.8°
.04 R - 1.0
NACA 4412, @, = 0.095/Deg
& = 6°
(4
.02
0 d A 1 j; _§ Il I
0 10 20 30 40 50 60 70 80 90

¢ ~ Degrees

Figure 39. Effect of rounded tip on channel wing induced velocity distribution.

XA



124

TABLE 5

EFFECT OF ROUNDED TIP ON CHANNEL WING* PERFORMANCE

y Tip Span e
Curv. Semispan c CD. CD (Span Efficiency

Ratio L ¢ Factor)

o’ 0.0 0.4399 | 0.04156 | 0.05310 1.482
1.4 0.016 0.4399 | 0.04156 | 0.05310 1.482
1.9° 0.021 0.4399 | 0.04156 | 0.05310 1.482
2.8 0.031 0.4398 | 0.04155 | 0.05309 1.482
3.8 0.042 0.4398 | 0.04155 | 0.05309 1.482
5.6 0.062 0.4396 | 0.04155 | 0.05308 1.480
11.3° 0.126 0.4386 | 0.04188 | 0.05338 1.462

* M = 1.0 Model, NACA 4412, Qo= 0.095/degrees, O, = 6°; all
coefficients are based on area of the rectangular tip wing.

than
"

M(¢)= VR :‘._:’ A, am(ng) (6.34)

were investigated. In particular, the expression

M) = VRE A, ain’(n6) (6.6

was carried through to a solution for the coefficients An in a man-
ner similar to that used to obtain equation (6.37) above. The

result was
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2 A siatng - (s (g-) (o 244) 3,

n={

+ (Ameﬁ)K } (oc DR (6.66)

where J = W+ AM\(P (6.66a)
= J, + ( £ ) dim(2n-3)¢
( 4 )M(Zn )¢ . (6.66b)
n=357...,and
Ky = 2 Loy (cot %) - 4wid (6.66c)

Ka = Ko - (7%?) ot (2n-3) ¢
(2:1)m(2“ -1)¢ . (6.68d)

n = 3’ 5’ 7’ . . . L]

Although Ky is infinite at ¢ = 0,7 in this case also, the product
(sin 2¢) K; in equation (6.68) is finite. This can be shown with
L'H8pital's Rule exactly as was done above in the discussion of in-
duced drag. However, upon implementation in a computer program
similar to that described in Chapter VII, the solution given by
equations (6.67) and (6.68) was found to be unstable, yielding very
poor accuracy if only three or four An's were retained, and com-

pletely meaningless results if more coefficients were used.



CHAPTER VII
CHANNEL WING DIGITAL COMPUTER PROGRAM

A digital computer program was developed by the author to
implement the lifting arc theory for channel wings presented in
Chapter VI. The source program was written in FORTRAN IV language,
and compiled and executed on an IBM system 360 electronic digital
computer. The program is described briefly in the following para-
graphs, and a complete FORTRAN listing (including subroutines) is

presented in Appendix C.

Program Description

The computer program first develops the simultaneous equa-
tions for the Fourier coefficients of the circulation distribution
by evaluating equation (6.37) for as many ¢ values as the number
of coefficients to be retained. Most of the computations reported
here were done with five coefficients, and the FORTRAN listing
given in Appendix C is set up for five coefficients. The effect of
the number of coefficients retained in the circulation distribution
is discussed in Chapter VI, page 11l4.

The simultaneous equations for the Fourier coefficients are
solved by subroutine SIMQ, obtained from the IBM Scientific Sub-
routine Package. SIMQ uses a Gaussian elimination method and the
"largest pivotal divisor" approach to obtain the solution of a set

126



127
of simultaneous linear equations. The output of the subroutine is
the set of coefficients An in the circulation distribution,
equation (6.38).

The channel wing predicted 1ift is easily evaluated (see
equation (6.45)) using the first Fourier coefficient, A;. However,
the induced drag, equation (6.48), requires the evaluation of a dif-
ficult integral. The double summation required to set up the in-
duced drag integrand is performed by a function subroutine in the
computer program. The summations are carried out only over the
number of coefficients used in the circulation distribution, of
course, Then the integral is evaluated by the subroutine QATR,
another IBM Scientific Subroutine Package subroutine. The numerical
quadrature used is a modified trapezoidal rule method. The numeri-
cal value of the induced drag integral is used in the computer pro-
gram to calculate the induced drag coefficient and the span ef-
ficiency factor, equations (6.52) and (6.55), respectively.

The strip~-theory method used to evaluate the channel wing
profile drag was described in Chapter VI. The computer program
evaluates equation (6.60) to obtain the local airfoil section lift
coefficient, Then the local section drag coefficient is obtained
from an input table of section 1lift and drag coefficients for the
particular airfoil section and Reynolds number being considered.
Interpolation in the data table is performed by the subroutines
ATSG and ALI (again from the IBM Scientific Subroutine Package).

The channel wing profile drag coefficient is estimated by summing
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the local section drag coefficients over the wing, equation (6.58).

The channel wing total drag is the sum of the induced drag
and the profile drag, equation (6.62). The principal outputs of the
channel wing computer program are the 1lift and drag coefficients
calculated as functions of the wing geometry, airfoil section charac-
teristics, and the wing centerline angle of attack, which the program
steps through a range selected by the user. The program as listed in
Appendix C is set up for a channel wing with rectangular planform
(constant chord) and zero twist; however, it would be relatively
simply to modify the program to allow variable chord and twist if
so desired. Indeed, the author did modify the program for a linear
(with ¢ ) wing twist while investigating the correlation between
the circulation distribution calculated with the lifting arc theory

and Cone's [7] optimum circulation distribution. This is discussed

in Chapter VIII.

Program Inputs and Outputs

The input data required for the channel wing computer pro-
gram are listed and described in Table 6. Sample computer print-
outs of input and output data are presented in Appendix C with the
program FORTRAN listing. The input data shown are for the AR = 2.8
wind tunnel model described in Chapter III. The input table of air-
foil section data is not normally printed out. The section 1lift and
drag data for the airfoils used for the wind tunnel models tested

are presented in Appendix D.
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TABLE 6

INPUTS REQUIRED FOR CHANNEL WING COMPUTER PROGRAM

FORTRAN | Input Description Units Comments

Name Format

CIDEN 10A4% Identification of Wing

AERSEC 10A4 Identification of Airfoil

IROW 13 Number of points in air- 50 points
foil section Cy - Cy max .
table.

CDERR F10.0 Upper bound for inter-
polation error in
Cy - C4 table.

CLMIN F10.0 Minimum Cy in Cy - Cy4 If exceeded,
table. Cq = CLMIN,
CLMAX F10.0 Maximum Cy in Cy - Cy If exceeded,
table. Cq = CLMAX.
TCL(I) F10.0 Airfoil section Cg for *

table data point (I).

TCD(I) F10.0 Airfoil section C4 for *
table data point (I).

R F10.0 Wing radius Ft.

c F10.0 Wing chord Ft.

ASO F10.0 Airfoil section 1lift- 1/rad.
curve slope.

ANZL F1G.0 Airfoil section angle degrees
for zero lift.

ALPAS F10.0 First wing (centerline) degrees
angle cf attack point

DALPA F10.0 Wing (centerline) angle degrees
of attack increment.

ALPAE F10.0 Final wing (centerline) degrees

angle of attack point.

*The airfoil section Cy ~ C4 table data points are punched in
pairs (G, C;), three data points to a card (6F10.0).
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The calculated output data for one wing angle of attack (for

the R = 2.8 model) are also shown in Appendix C. These data in-
clude the coefficients of the circulation distribution, the span ef-
ficiency factor, the wing lift coefficient, and the profile, induced,
and total wing drag coefficients. The program can be easily modified
to print out other calculated values, such as the circulation dis-
tribution along the wing. In fact, this was done during the program

development and checkout.




CHAPTER VIII

CORRELATION OF CHANNEL WING LIFTING ARC THEORY

Circulation Distribution and
Span Efficiency Factor

Cone [7] predicted the circulation distributions required
for minimum induced drag (maximum span efficiency factor) for many
nonplanar wings (See Chapter II, page 21 above for a brief descrip-
tion of his method). Cone's optimum circulation distribution for
a semi-circular arc wing (i.e., channel wing) is shown by the dashed
line in Figure 40, where it is compared with the circulation dis-
tribution predicted by the author's lifting arc theory, for several
aspect ratios. The latter distributions are displaced somewhat
from Cone's optimum value, with the displacement increasing with
aspect ratio (although apparently approaching a limiting value).

The channel wing span efficiency factors predicted by the
lifting arc theory are slightly less than Cone's [7] predicted
maximum value of 1.50. For the case shown in Figure 40, the lift-
ing arc theory values for @ are 1.466, 1.466, 1.450, and 1.441, for
aspect ratio 1.0, 2.8, 6.0, and 12.0, respectively. Ife = 1.50 is
considered the nominal value, these lifting arc theory predictions
for gspan efficiency factor are in error by only 2.3% to 3.9%. How-

ever, it is not clear that the correct (actual) value for an
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untwisted channel wing is 1.5, since Cone's value is a theoretical
maximum dependent on a certain optimum circulation distribution.
Thus the lifting arc theory values for @ may be more exact for an
untwisted, constant chord channel wing than is € = 1.50.

The effect of geometric twist on the channel wing was
investigated by modifying the digital computer program (Chapter VII)
to allow for a linear (with¢) twist distribution along the wing
span. Then the calculated circulation distribution was compared
with Cone's [7] optimum distribution. Figures 41 and 42 indicate
the effect of linear twist on the circulation distribution of chan-
nel wings of aspect ratio 1.0 and 6.0, respectively. O£, is the
change in angle of attack at the wing tip due to the wing twist.
The figures show that excessive twist causes the circulation distri-
bution to "overshoot" Cone's optimum distribution, and this effect
is stronger for the higher aspect ratio wing. It may be seen in
Figure 41 that &,= 0.8° produces a circulation distribution very
close to Cone's optimum for the AR = 1.0 case. For the AR = 6.0
case, QQ = 0.8° gives the best agreement with Cone's distribution
in the inboard region, while o, = 1.0° yields closer agreement in the
outboard area. The correlation of circulation distributions shown
in Figures 41 and 42 is probably as close as can be obtained with
simple linear wing twist. A rather complicated twist distribution
would be required to increase the correlation.

Although calculated circulation distributions are shown in

Figures 41 and 42 which lie very close to Cone's [7] predicted
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optimum distribution, the calculated span efficiency factors do not
quite reach Cone's predicted maximum, € = 1.50. As shown in Table 7
the span efficiency factor values predicted by the 1lifting arc theory
for this case are slightly less than i.50, but are maximum when the
circulation distribution is closest to Cone's optimum distribution.
However, the best linear twist yields only a 1.6% gain in span ef-
ficiency factor over the untwisted case, for R = 6.0, and only 0.5%

for A= 1.0.

TABLE 7

CALCULATED CHANNEL WING* SPAN
EFFICIENCY FACTOR AS A
FUNCTION OF LINEAR

WING TWIST
A =1.0 R =6.0
Twist Twist
(Degrees) e (Degrees) e
0 1.466 0 1.450
0.8 1.473 0.8 1.472
1.0 1.473 1.0 1.473
4.0 1.443 4.0 1.382

*NACA 0015, Q,= 0.092/Degree, o= 6°.

An example of the effect of wing twist on calculated chan-
nel wing 1ift and drag is shown in Figures 43 and 44. As might be
expected, 1lift increases with twist, at constant wing centerline
angle of attack. However, this is at the expense of higher drag.

The 1ift curve slope remains unchanged.
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Figure 43. Effect of twist on calculated channel wing 1ift coefficient.
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The effect of twist on channel wing performance is better
illustrated by considering the 1lift to drag ratio, Figures 45 and

46. Note that the gain in L/b , over the untwisted case, for the

best twist distribution investigated is very small, and 54) is re-

duced when the optimum twist is exceeded.

Lift and Drag Coefficients

Lift and drag coefficients calculated with the 1lifting arc
theory are compared with the wind tumnel data (Chapter V) in Figures
47 through 50. For the R = 1.0 model (Figure 47) the calculated
1lift coefficient curve has almost the same slope as does the experi-
mental curve. However, the theoretical curve is shifted to the
right relative to the experimental curve —- 1.5° at O, = 0°. As
discussed in Chapter V, the experimental data may have been shifted
uniformly to the left by approximately one degree. If this actually
is the case, then the correlation would be better than shown.

In Figure 48, the experimental AR = 1.0 drag coefficient is
compared with calculated data for both smooth and rough airfoil sec-
tion data. The rough section data yields better correlation. The
matching of experimental and theoretical drag coefficients around
zero lift (ogrzs -6’) with the rough section data indicates that
the wind tunnel model surface was more like NACA rough condition
than NACA smooth condition. In both cases, the curvature of the
calculated data agrees well with the wind tunnel data. This is to
be expected, since the experimental and the theoretical span ef-
ficiency factor values are very close. Again, the correlation

would be improved by a one degree shift of the experimental data.
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Turning to the R = 2.8 case, it is seen in Figure 49 that
the theoretical wing lift curve slope does not match the experimental
slope as well as in the MR = 1.0 case. Curves calculated for two
values of the airfoil section 1lift curve slope are shown in Figure 49
to illustrate that the majority of the difference is not due to the
section lift curve slope input to the computer program.

Calculated drag coefficient curves are compared with wind
tunnel data for the A = 2.8 model in Figure 50. As discussed in
Appendix D, section data for the NACA 0015, at low Reynolds number,
which would be considered accurate by modern standards are not di-
rectly available. However, estimates for these data for NACA smooth
(partial laminar flow) and smooth, fully turbulent flow are obtained
in Appendix D, and were used to obtain the calculated curves in
Figure 50, That these estimates were only partially successful is
indicated by the failure to match the experimental drag coefficient
around zero 1ift. However, this fault may be due to the lack of
rough section data rather than the methods of Appendix D, since
rough section data were required to match the drag coefficients at

zero lift for the other wind tunnel model. The curvature of the

calculated drag curves in Figure 50 corresponds well with the ex-

perimental curve.

Conclusions
The channel wing lifting arc theory developed herein pre-
dicts induced drag (span efficiency factors) which agree well with
wind tunnel data and with Cone's [7] predicted value. The calcu-
lated 1ift curve slope is in good agreement with experiment at

aspect ratio of 1.0, but is low by 24% at aspect ratio of 2.8.



CHAPTER IX

PERFORMANCE PREDICTIONS

Drag Polars

Drag polars for plane, channel, and ring wings are presented
in Figures 51 through 54. The data for the channel wing were cal-
culated with the digital computer program described in Chapter VII,
while the ring wing data were obtained from Ribner's theory, Chapter
I, with strip theory for the profile drag. The planar wing data
shown are for a wing with elliptical 1ift distribution. In these
figures, the channel and ring wings have rectangular (projected)
planforms, and all coefficients are based on projected area.

Wings with symmetrical (NACA 0012) airfoil sections and
R =1 are compared in Figure 51. As would be expected from con-
sideration of wetted area, the plane wing has the lowest drag at
very low C_. But then its drag exceeds that of the channel wing
at about C, = 0.2, and that of the ring wing at approximately
C, = 0.3. The channel wing has less drag than the ring wing up to
about C, = 0.4. At higher C,, the ring wing has the lowest pre-
dicted drag. These trends are due, of course, to the lower induced
drag (as a consequence of higher span efficiency factors) of the
nonplanar wings. As C_ increases, the induced drag becomes a

larger portion of the total drag, until the higher profile drag of
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the nonplanar wing is more than offset by its lower induced drag.

Figure 52 repeats the cases of the previous figure, but
with the aspect ratio increased to six. The crossovers observed
for the AR = 1 cases occur in the same order, but at relatively
higher 1ift coefficients. This is due to the fact that the induced
drag becomes a smaller portion of the total drag as aspect ratio
increases. |

Drag polars for wings with NACA 23012 airfoil sections are
presented in Figures 53 and 54. Ring wings were omitted for these
cases because it was considered unlikely that a nonsymmetrical air-
foil section would be used for a ring wing. The drag polars are
little changed from the symmetrical cases, and the trends are the

same.

Power Required for Level Flight

The power required for equilibrium level flight of an air-
craft was derived in Appendix E, and suitable modifications for the
increased weight and profile drag of aircraft with channel and ring
wings were estimated. It was assumed that the aircraft propulsion
and 1ift systems were not integrated (e.g., propeller(s) not mounted
in the ring(s)). A generalized plot of power required for plane,
channel, and ring wing aircraft is presented in Figure 55, where it
is seen that both the channel wing and the ring wing aircraft re-
quire less power than the plane wing aircraft in the low speed
range. This occurs because C, must be large at low V, which means

that induced drag becomes relatively more important, and the induced
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drag of the nonplanar wing aircraft is less than that of the plane
wing aircraft. Figure.55 also shows that the channel wing aircraft
retains its advantage over the plane wing aircraft to a higher speed
than does the ring wing aircraft. This is due to the lower profile
drag (which increases with V‘) of the channel wing as compared to
the ring wing. The ring wing aircraft requires as much or more
power for level flight at all velocities than does the channel wing
aircraft.

The power required for a specific aircraft with plane, chan-
nel, or ring wings is plotted in Figure 56. In each case the aspect
ratio is six, and the projected wing area is 182 ft! . The basic
(i.e., that of the plane wing aircraft) weight and profile drag co-
efficient are 2700 pounds and 0.016. The weight and profile drag
coefficient of the channel and ring wing aircraft were increased as
described in Appendix E. The ring wing aircraft requires less power
than the plane wing aircraft up to 65 knots, and the channel wing
aircraft less power to 90 knots. If the aspect ratio is reduced to,
say, three, the nonplanar wing aircraft retain their advantage over
the plane wing aircraft to higher velocities, as shown in Figure 57.
The ring wing aircraft requires less power up to 78 knots, the chan-
nel wing aircraft less power up to 110 knots. The result of further
reduction of the aspect ratio to a value of one is shown in Figure
58. The channel wing aircraft requires less power than the plane
wing aircraft up to 140 knots, the ring wing aircraft less power to

104 knots. This trend with aspect ratio is due to the greater im-

portance of induced drag at low aspect ratio.
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The data of Figures 56, 57, and 58 show an advantage of the
channel wing over the plane wing, for the same aspect ratio, in a
significant portion of the low speed flight regime of a light air-
craft. However, comparison of the figures indicates that the air-
craft with the A = 6.0 plane wing always requires less power than
the aircraft with the channel wing of R = 3.0, and similarly for
the R = 3.0 plane wing versus the R = 1.0 channel wing. Thus the
nonplanar wing will be advantageous only if the maximum span is

fixed.

Maximum Range and Endurance

The Breguet formulas for aircraft maximum range and endur-
ance are given by Perkins and Hage [22] as follows., For recipro-

cating engines, the maximum range in miles is

R = 375<C'/C,>max L %(WVWJ : (9.1)

and the maximum endurance in hours is

]
E_ = 37.9(CL/C.)max (s'g'c) / i ( /w,) -1l . .2

For aircraft powered by jet engines, the maximum range in miles is

% i
=2 (C 394 We (
e~ (T e P [1- ()] 0

and the maximum endurance in hours is

C. W,
Emax‘(s%c)’( /cp)mx ﬂaﬂ( /Nx> . (9.4)
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In these equations,

n:

sfc =

(sfcf

We =
W =

o =

propulsive efficiency

specific fuel consumption in pounds per brake horse-
power-hour

specific fuel consumption in pounds per hour per pound
of thrust

initial weight

final weight = W, -~ W,

% .

For purposes of comparison of aircraft with planar and non-

planar wings,

one may consider # , sfc, (sfc)’ , 0, and S to be

the same for each aircraft. However, it would be unrealistic to

assume that the structural weights of the nonplanar wing aircraft

are equal to that of the planar wing aircraft, since more wing

structure is required for the former. Therefore, W, and W, must

be increased for the channel wing and ring wing aircraft. The in-

crease in aircraft flying weight due to the nonplanar wings was

estimated in Appendix E:

w' = 1.057w for the channel wing,

wo= 1.214W for the ring wing,

vhere W is the gross weight of the planar wing aircraft. Then,

!

W= W

’
W,’W -W' ’

where W, is the fuel weight (assumed constant).

Use of the Breguet formulas requires the evaluation of

(Cyc, )m

C:" and C?.‘ for each type of
//&D max’ //t, max
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aircraft. If a parabolic drag polar is assumed, Perkins and Hage

[22] show that Co, = G, (9.5)

¢

and C, = /fre&C,; (9.6)

for(c%' )max' These results were obtained by differentiating

CVC‘ with respect to C, . A similar approach was used to obtain

C'i = 3G, (9.7)
C.= [3IreRC, (9.8)
3
for (C‘, C,) max and
Cbi = 1/3 CD, (9.9)
C = ,/% eRC, (9.10)

4
for C:/C . For the nonplanar wing aircraft, C, 1s increased
® | max %

as described in Appendix E to account for the higher wing profile

drag:
'
C,. = 1.228 C.. for the channel wing,
’
C,. = 1,858 C,. for the ring wing,

vhere C.. is the profile drag of the planar wing aircraft. Also,

€ values of 1.0, 1.5, and 2.0 must be used for the planar, channel
and ring wing aircraft, respectively.
The Breguet range and endurance equations were evaluated

for the light aircraft of Figures 56, 57, and 58, with the above
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modifications being used for the channel wing and ring wing cases.
The results are plotted against aspect ratio in Figures 59, 60, 61
and 62. These figures show that the channel wing aircraft studied
has greater range than the plane wing aircraft, when reciprocating
engine powered, and longer endurance when powered with either jet
or reciprocating engines. The advantage in range and jet-powered
endurance is only about 4%, but the reciprocating-powered endurance
increase 1s approximately 18%. The ring wing aircraft has 67 longer
endurance than the plane wing aircraft, with reciprocating engine
propulsion, but less endurance than the channel wing aircraft.
Otherwise, the ring wing aircraft is inferior to the plane wing air-
craft in range and endurance.

Although the data show an advantage in maximum range (re-
ciprocating engine powered) and endurance for a channel wing light
aircraft as compared to the plane wing aircraft of the same aspect .
ratio, it should be noted that a not unreasonable increase in
aspect ratio of the plane wing aircraft will nullify the advantage
of the channel wing aircraft. For example, an increase in aspect
ratio from 4.5 to 6.0 for the plane wing aircraft yields more en-
durance than that of the channel wing aircraft of aspect ratio 4.5,
for the reciprocating engine powered case. Therefore, as in the
considerations above on power required for level flight, the plane

wing aircraft would be preferred unless the maximum span is fixed.

Conclusions
Channel wings and ring wings have higher drag (at the same

C, ) than does the plane wing at low 1lift coefficient, but lower
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n=0.85
sfc = 0.45 pounds per brake horsepower-hour
Cp, = 0.016
Wiy = 00866
Channel Wing
Alrcraft
3
Plane Wing
s Alrcraft
Ring Wing
[ Aircraft
1 Adrcraft !Profile Drag Fuel | Projected
Type Coefficient Weight | Wing Area
] Plane Wing Cn. W We S
Channel Wing| 1.228 Co, 1.057w Vi S
Ring Wing 1.858 C,, 1.214w Vy S
0 1 2 3 4 5 6
Aspect Ratio

Figure 59. Maximum range of reciprocating engine powered light

aircraft.
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307 v = 0.85
sfc = 0.45 pounds per brake horsepower-hour
Co, = 0.016
WAy = 0.0866
W= 14,84
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64
Sd-
44
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Channel Wing} 1.228 C% 1,057w We S
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Figure 60. Maximum endurance of reciprocating engine powered light

aircraft.
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280y
" Atrcraft Profile Drag; Weight | Fuel | Projected
Type Coefficient Weight | Wing Area
J' —— N - -
240 Plane Wing Co, W W, S
Channel Wing | 1.228 C, 1.057w Wy S
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200+ Ring Wing 1.858 C,, 1.214w Wy S
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x
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Figure 61 . Maximum range of jet engine powered light aircraft.
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Figure 62. Maximum endurance of jet engine powered light aircraft.
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drag (relatively) at high C_. This is due to the higher profile
drag but lower induced drag of the nonplanar wings. The ring wing
exhibits this trend more strongly than does the channel wing, since
the former has higher profile drag but lower induced drag than the
latter.

Preliminary performance calculations for plane, channel and
ring wing aircraft, with allowances for increased structural weight
and profile drag of the nomplanar wings, showed certain advantages
for aircraft with channel or ring wings. The calculations assumed
that there were no power effects on wing aerodynamics (and there-
fore no engine or propeller mounted in the channel or ring wing).
For the same aspect ratio, both the channel wing and the ring wing
aircraft require less power for level flight than does the plane
wing aircraft over a substantial portion of the low speed flight
regime, This portion is larger for the channel wing aircraft than .
for the ring wing aircraft, and the relative magnitude of this seg-

ment of the flight regime increases with decreasing aspect ratio.
With reciprocating engine propulsion, a channel wing light aircraft
was predicted to demonstrate a significant increase in endurance as
compared to a plane wing aircraft, with a lesser increase in range.
Also, the jet-powered channel wing aircraft has slightly longer en-
durance than the plane wing aircraft. The reciprocating-powered
ring wing light aircraft has greater endurance than the plane wing
aircraft, but this advantage is accompanied by a decrease in range.

The calculated power required for the ring wing aircraft is

always equal to or greater than that for the channel wing aircraft,
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and the ring wing aircraft has less range and endurance than does
the channel wing aircraft. Therefore, the channel wing aircraft ap-
pears to be the more attractive of the two.

Although the performance calculations showed certain ad-
vantages of the nonplanar wings over the plane wing for fixed aspect
ratio, it was also shown that a substantial increase in aspect ratio
of the planar wing yielded better performance than going to the non-
planar wing at fixed aspect ratio. Therefore, the nonplanar wing
will be advantageous only if the maximum span is fixed ~- perhaps
by operational requirements -~ and if the design mission requires
long endurance at low airspeed (high 1ift coefficient). If in-
creased aspect ratio is allowed, the design rule should be (with
apologies to Omar Khayyam): '"Take the aspect ratio and let the

efficiency factor go."



CONCLUSIONS

Ribner's [l] deflected streamtube theory for ring wings, and
methods derived from his general conclusions, yield predictions for
lift and induced drag which agree well with experimental data, and
with other theoretical results. However, a similar deflected stream-
tube theory for channel wings, derived by the author, was not suc-
cessful, as indicated by the channel wing wind tunnel model tests
reported herein. The 1ift and drag data of these model tests ap-
parently constitute the only experimental data available for iso-
lated channel wings,

The channel wing lifting arc theory derived in Chapter VI
provides good correlation of 1lift and induced drag data. The digit-
al computer program developed to implement this theory allows rapid
calculation of 1ift and drag coefficients of isolated channel wings
as a function of wing geometry, airfoil section characteristics,
and wing centerline angle of attack.

Experimental results for channel and ring wings indicate
that these wings achieve span efficiency factors close to the theo-
retical maximums derived by Cone [7] .

Aircraft with channel or ring wings will require less power
for level flight over a substantial portion of the low speed (high
1ift coefficient) flight regime than will a planar wing aircraft of

the same aspect ratio. The width of this speed range increases as

168



169
aspect ratio decreases. Power required for the ring wing aircraft
is equal to or greater than that for the channel wing aircraft, at
any flight speed. Power effects on wing aerodynamics were not con-
sidered.

The channel wing aircraft with reciprocating engine propul-
sion will have a significant increase in endurance as compared to a
plane wing aircraft, and a lesser increase in range. The jet-powered
channel wing aircraft has slightly longer endurance than does the
plane wing aircraft. With reciprocating propulsion, the ring wing
ajrcraft has more endurance but less range than the plane wing air-
craft.

The channel wing is more attractive as a design alternative
than is the ring wing, since the ring wing aircraft requires as
much or more power and has less endurance and range.

The channel wing is an attractive design alternative to the
planar wing if operational requirements restrict the wing span to a
low value, and if the design mission requires long endurance at low
airspeed. Such missions include battlefield surveillance, crop

dusting, traffic control, and towing of aerial advertisement signs.
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TABULATED WIND TUNNEL DATA REDUCTION

AND CORRECTIONS

The wind tunnel raw data, with the workup of data reduction
and corrections, are tabulated in this appendix. As discussed in
Chapter V, the test runs with transition strips installed on the
models did not produce the desired results; therefore, the data from
these runs is not presented.

The data reductions and corrections were carried out as
described in Chapters IV and V. The density of manometer water,
9“'0 , was determined from standard tables as a function of balance
room temperature. Air density and viscosity required to calculate
Reynolds number were based on the average test section air tempera-
ture for a particular test run, while V for Reynolds number was oB-
tained from the AP vs. V graph in Comp [15] , using average AP .
Then the effective Reynolds number was calculated as the average
Reynolds number for the four test runs for each model, multiplied
by the wind tunnel turbulence factor.

The 1ift coefficients (for the AR = 1.0 modei) obtained from
the faired curves of Figure 26 are presented here also. Refer to

Chapter V for a discussion of the use of these data.

173



174

WIND TUNNEL DATA REDUCTION

RUN 1 RUNTYPE I __  MODEL &= 2.8 TRANS. STRIP _No_
MODEL ATTITUDE Upright  IMAGE SYSTEM No = AMB. TEMP _91°F
CORR. BAR. PRESS. 28.96 in.Hg. Qugo = _62.0 1bn/£t3

Fy = (.0920) Qo = 5.70 1b/ft' per in.Ha0 S = 0.486 ft®
h= Q%E = 22025 ft‘lxin. o= 9_.52'9-0' = .39 ft‘l;l:in.

g = -00215 slugs/ft’ M= 3.95x107 ERL8EC v = 219 fe/sec

Re = 496,000

SET q F, F, |Dbrac | ¢, |LIFT | ,c.,
>Xm | (F) @AP)| Foly, | Fu/q (Fg)- (D) (F) (L)
DEGREES | 1bf/ft® |1/Min. | 1/Ain. | AMin. Alin,
-4 51.5 |.00471|.01158| 41.5 | .1955 | -26.5 | -.307
-2 51.5 |.00471].01158| 40.5 | .1908 | -17.5 | -.2025.
0 51.5 |.00471|.01158| 39.5 | .1860 | - 7.5 | -.0868
+2 51.5 |.00471].01158| 38.5 | .1813 | + 2.5 | +.0289
4 51.4 | .00472 | .01161| 38.5 | .1820 | +12.5 | +.1452
6 51.4 |.00472|.01161| 38.5 | .1820 | +23.5 .273
8 50.8 |.00478 | .01173| 38.5 | .1840 | 34.5 .405
10 51.9 |.00467 | .01149| 41.5 | .1940 | 47.5 .546
12 51.4 |.00472 | .o01161| 44.5 | .2100 | 57.5 .669
14 51.5 |.00471|.01158| 48.5 | .2285 | €9.5 .805
16 51.5 .00471 | .01158}| 55.5 .261 63.5 +735
18 51.6 |.00470 | .01155| 62.5 | .294 | 63.5 .734
20 51.5 |.00471|.01158) 67.5 | .318 | 63.5 .735
22 51.5 |.00471 | .01158| 82.5 | .388 | 47.5 .550
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WIND TUNNEL DATA REDUCTION

RUN 2 RUN TYPE II MODEL R = 2.8 TRANS. STRIP _No
MODEL ATTITUDE Upright IMAGE SYSTEM Yes  AMB. TEMP _91°F
CORR. BAR. PRESS. 28.96 in.Hg. Quo = _62.0 1bm/ft?

Fg = (.0920)Q, , =5.70 1bf/ft" per in. H,0 S = 0.486 ft"

< 0.118 _ 1bf - 0.290 _ 1bf
i) S 2B 3 t*uin. B s 228 ft'uin.
Q = 002135 slugs/fr* M= 3.95x10" LB v - 219 fe/sec
Re = _493,000
SET q Fo F, | DRAG | Cp, | LIFT ,C,
O | (F)-@P)| F,/q | F /4 (F;)- (D) (F,)- (L)
DEGREES | 1bf/ft* {1/uin. | 1/uin.|AMin. Apin,
-4 50.5 |.00480 | .0118 [ 70 336 | -24 ~-.283
-2 51.3 |.00473 | .01162] 70 331 =20 -.2325
0 51.6 | .00469 | .01154| 70 .328 | -15 -.1731
+2 51.6 | .00469 |.01154| 71 333 [ -11 -.1270
4 51.6 | .00469 | .01154| 71 333 -4 -.0462
6 51,5 |.00471 {.01158{ 73 TV S | -.01158
8 51.1 | .00474 | .01166] 75 358 | +6 +.0700
10 51.3 | .00473 | .01162| 78 .369 | +13 +.1151
12 51.2 | .00473 | .01164| 81 .383 | 417 .1980
14 51.3 | .00473 | .01162] 85 402 | +24 .279
16 51.3 |.00473 | .01162] 90 426 | 430 .349
18 51.5 | .00471 |.01158| 93 438 | 436 417
20 51.3 |.00473 | .01162| 98 464 | +40 .465
22 51.6 | .00476 | .01169] 102 485 | +45 .526
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WIND TUNNEL DATA REDUCTION

RUN 7 RUN TYPE 111 MODEL R = 2,8 TRANS. STRIP No
MODEL ATTLITUDE Inverted IMAGE SYSTEM No AMB, TEMP 95 °F
CORR. BAR. PRESS. 28.93 in.Hg. Queo = _62.0 1bm/ft?

Fg = (.0920)Quo = 5.70_ 1bf/ft® per in. H,0 S = 0.486_ ft"

po= QL8 o 4ps __Lbf P o= 0290 _ 596 _1bf
S ft'uin, L S = ft'uin.
_ ? _ -7 1bf sec _
Q = .00212 slugs/ft A = 3.95x10° ==er— V= 220 ft/sec
pe = 492,000
SET q Fo F. | DRAG | G, | LIFT ,Cey
NN (Fg ) - (AP) Fy /% F, /2 (F; ). (D) (FL) '(L)
DEGREES | 1bf/ft' | l/uin. | 1/uin. | Auin. Agin,
-4 51.0 004751 .01169; 36.5 .1733| -12 -. 1402
-2 51.0 .00475] .01169 | 37.5 .1781 -3 ~-.,0351
0 51.0 .004751 .01169 | 38.5 ,1829]| + 6 +.0701
+2 51.0 .00475 | 01169} 39.5 .1877| +15 +,1753
+4 51.3 .00472 | ,01162 | 41.5 . 1960 22 «256
6 51.3 .00472 | ,01162 | 45.5 .215 30 .349
8 51,3 .00472 1 01162 47.5 . 2245 37 .430
10 51.3 00472 ! ,01162{ 50,5 .2385 42 .488
12 51.3 .00472 1 01162} 56.5 . 267 50 .581
14 51,0 .00475 | ,01169| 59.5 .283 56 .655
16 51.3 .00472 | ,01162 | 64.5 <3045 62 721
18 51,0 .00475 ( ,01169( 67.5 .321 67 . 784
20 50.7 .00478 | ,01177 | 72.5 . 3465 70 .824
22 50,7 00478 | .01177 | 74,5 «356 74 .870
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WIND TUNNEL DATA REDUCTION

RUN 8 RUN TYPE 1V MODEL R = 2.8 TRANS, STRIP No
MODEL ATTITUDE Inverted IMAGE SYSTEM Yes AMB, TEMP 95°%
CORR., BAR. PRESS, 28.93 in.Hg. Quo = _52.0 1bm/fe?

Fy = (.0920)Qu,0 = 5:70 1bf/ft’ per in. H,0 s = 0.486 ¢ 2

3 = _0° 11_8., = 2‘&25 lbf = . = o 596 lbf
‘o S ft!uin, =2 590 ftimin,
Q = .00211 slugs/ft> M= 3.95x1d”12%2gs£ V= 220 ft/sec
Re = 490,000
SET ] F, F. DRAG | Cop, LIFT Cey
K (Fy) < @AP)| Folq F, /?. (F;)‘ (D) (F:)'(L)
DEGREES | 1bf/ft* | 1/min. | 1/ain. | Auin, Apin,
-4 50,7 |.00478 | .01175| 70 .335 | - 5,5| -.0646
-2 50,7 |.00478 | .01175| 70 335 | - 1.5] -.01763
0 51.0 |.00475| .01169| 70.5| .335 0 0
+2 51,0 |.00475| .01169| 72 2362 | +5.5| +.0643
+ 51.0 |.00475| .01169] 72 2342 | 11.5 L1344
6 51,0 |.00475| .01169| 74 .3515 18,5 .2165
8 51,0 |.00475| .01169| 77 .366 | 25.5 .298
10 51.0 |.00475| .01169| 79 2375 | 31.5 .368
12 51.3 |.00472| .01161| 81 .3825| 38.5 448
14 51,3 |.00472 | .01161{ 85 401 | 44,5 .517
16 51,0 |.00475| .01169| 87 413 | 47,5 .555
18 51,3 |.00472 | .01161| 92 436 | 53,5 .621
20 51.0 |.00475! .01169| 93 442 | 57,5 .672
22 51,0 [.00475{ .01169( 98 466 | 60.5 .707




WIND TUNNEL DATA REDUCTION

MODEL R = 2.8 s =486  ft* § = .114 P, = .10 Reavy = 493,000
8(s/A,) = 00269 @ §(5/A,) (1 + ) (57.3) = .170° (J) Regy = (Ren,y) (TF) = 665,000
DRAG LIFT
?
o, @ cou coxnv Co @ C‘-n C'-xuv C" C‘- AG ACD" C°ﬂ' & CDC

1+ I 7)- I0KD)- I |Con o] 1+ I [(D- X [(D- T C»..*zcw @-Cc|@®-cl R
~ “byy

-40| . 3688 .0338| .0328| .0333| -,4472]|-,3826{-.1642{ -.,274 | .0750] -,047°{.000202|.0013|-4.05°| .0322
-2 | .3689|.0339|.0379{ .0359| -.2376]-.2200{-.0051| -.1125 .0127f{-.019 |.000034|.0013|-2.02 |.0346
0| .3689]|.0339| .0409] .0374| -.0167{-.0167|+.1564| +.0698 .0049}+.012 |.000013|.0013}+0.01 | .0361
+2 | .3690|.0270{ .0360] .0315| +.2042|+.1399|+.3312| +.236 | .0557|+.040 |.000150{.0013|+2.04 |.0304
4 | .3780] .0360] .0450| .0405 | +.4012{+.2668| .4474 .357 ] .1275] .061 |.000343|.0013| 4.06 | .0395
6 | .3970| .0455] .0530 .0492| .622 .4055! .6336 .519 | .269 | .088 |.000725]|.0014| 6.09 | .0485
8 | .4085] .0425| .0505] ,0465] .835 .537 .765 .651 | .,424 | ,111 |.00114 }|.0015| 8.11 |.0461
10 | .4325].0575| .0635] .0605| 1.034 .666 | .919 .792 ] .627 .134 |.00169 |.0016|10.13 | .0606
12 | .4770} .0940| .0940| .0940 ] 1.250 | .802 |1.052 .927 | .860 | .158 |.00231 |.0018]12.16 |.0940
14 | .5115{.1105| .1095{ .1100| 1.460 | .943 |1.181 | 1.061 |1.127 .180 |.00303 [.0020(14.18 |.1109
16 | .5655f.1525] .1395} .1460 } 1.456 | .901 | 1.107 1.004 }1.008 | .170 |.00271 |.0024|16.17 |.1463
18 | .6150) .1810f .1770| .1i790 | 1.518 .897 11.101 .999 | .998 .169 |[.00269 |.0028{18.17 |.1788
20 | .6645] .2225{ .2005] .2115] 1.559 | .887 |1.094 .991 | .982 .168 1.00264 |(.0034(20,.17 |.2107
22° .7440| .2780] .2590( .2685 | 1,420 | .713 | .89 .803 | .645 .136°|.00174 |.0040]22.14°(.266

8LI



179

WIND TUNNEL DATA REDUCTION

RUN _19 RUN TYPE _I MODEL R = 1,0 TRANS. STRIP No
MODEL ATTITUDE Upright IMAGE SYSTEM No AMB, TEMP 98°F
CORR. BAR, PRESS. 28,72 in.Hg. Quso = _ 61,9 lbm/ft’
Fy = (.0920)Qu,0 =5.695 1bf/ft® per in. H,0 S=_1,0 ft?
0.118 1b§f 0,290 1bf
F = Sl = . F T cmte— = ot ——————
° S 0.118 i ¢ S 9.2% ftMin.
g = _-00207 siugs/fc® Ak = 4.02x107dBLSeC v o 393 fe/sec
Re = 1.15x10°
SET q F, ¢ DRAG | Gy, LIFT ,Cuy
Om (FQ)*@P)| Fo /3 F. /g (Fy )+ (D) (F_)-(L)
DEGREES | 1bf/ft® | 1/min. | 1/min. |8akin, AMin,
-6 50.65 | .002327|.005725| 42 .0978 | - 8 -.0458
A 50.65 | .002327|.005725 42 ,0978 | + 5 | +.0286
-2 50.65 |.002327|.005725| 42 .0978 17 .0974
0 50.65 | .002327|.005725| 46 .1071 31 .1775
+2 50.65 | .002327|.005725 49 .1141 44 .252
+s 50.65 | .002327|.005725| 52 1211 57 .3265
6 50.65 | .002327|.005725| 58 .1350 72 .4125
8 50.65 | .002327|.005725| 64 . 1490 85 487
10 50.65 | .002327|.005725 73 .1700 | 100 .5725
12 51.25 |.002303|.00566 | 83 L1912 | 112 .634
14 50.65 | .002327|.005725] 92 214 125 .716
16 50.1 .002355| .00579 | 103 L2625 | 140 .811
18 51,25 |.002303|.00566 | 117 .2695 | 153 .867
20 50.1 .002355( ,00579 | 127 .299 164 .950
22 50.65 | .002327(,005725| 139 .3235 | 173 .991
24 51.25 | .002303|.00566 | 141 .325 162 917
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WIND TUNNEL DATA REDUCTION

RUN _13] RUN TYPE _II MODEL A= 1,0 TRANS. STRIP _ No
MODEL ATTITUDE _pright IMAGE SYSTEM _Yes AMB. TEMP 95F
CORR. BAR, PRESS. 28,77 in.Hg. Quo= 62,0 1bm/ft?
Fy = (.0920)Qu,0 = 5,70 1bf/ft’ per in. H,0 s=_1,0 ft*
- 0.118 _ 1bf F o= 0.29 _ g 290 1bf
Fo S 9,118 fe Min. . S === ftmin,
Q = .002085 slugs/ft’ M = 4.00x10"_1.‘2§?8.2£ v = 221 ft/sec
Re = 1.15x10%
SET q Fy F, DRAG | Co, LIFT ,Ceo
Am | (Fy)<(AP) Fo/g | File (Fy ) (D) (F,)=(L)
DEGREES | 1bf/ft? | 1/min. | 1/min. | aMin. AMin,
-6 50,7 | .002327{.00572 | 68 .1582| - 2 -.01145
-4 50.7 | .002327|.00572| 72 1677 + 7 +.04005
-2 50.7 | .002327{.00572 | 72 J1677 | +17 .0973
0 50.7 | .002327|.00572| 76 .1769| 27 .1545
+2 50.7 | .002327{.00572 | 82 .1909| 36 .206
+4 50,7 | .002327|.00572 | 87 .2025| 44 .252
6 50,7 | .002327|.00572 | 92 .214 50 .286
8 50,7 | .002327|.00572 | 103 .240 50 .286
10 50.7 | .002327|.00572 | 108 .2515| 41 .235
12 50.7 | .002327{.00572 | 110 .256 35 .2005
14 s0.7 | .002327{.00572 | 115 .268 38 .2175
16 50.7 | .002327|.00572 | 117 .272 40 .229
18 50,7 | .002327|.00572 | 124 .289 42 . 2405
20 50,7 | .002327|.00572 | 128 .298 47 .269
22 50,7 | .002327{.00572 | 132 .307 50 .286
24 50.7 | .002327{.00572 | 144 .335 53 .303
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WIND TUNNEL DATA REDUCTION

RUN 18 RUN TYPE III MODEL A= 1.0 TRANS, STRIP No
MODEL ATTITUDE Inverted IMAGE SYSTEM No AMB, TEMP 98°F
CORR. BAR, PRESS. 28.72 in.Hg. Qu0= _61.9 1bm/ft?

g = (.0920)Qu,0 = 5.695 1bf/ft? per in. Ha0 S=_3.9 ft*

= 0.118 _ 1bf = 0.290 _ 1bf
Fp = =tz 0.118 T F, = =2 = 0.200 o
= .00207 3 = 4.02,(10‘7 1bf sec -
Q slugs/ft M D3 v =222 fr/sec
Re = 1.14x10°
SET q |F F, DRAG Coy, | LIFT Cey
Xm | (F)«@P) Fp /g |F /g (Fp) + (D) (F.) +(L)
DEGREES | 1bf/ft? | 1/min, | 1/Min. | Amin, AMin,
-6 50.65 | .002327|.005725( 39 .0908 | +17 +,0973
-4 50.1 | .002355|.00579 | 42 .0989 | 29 .1679
-2 50.1 .002355 .00579 | 45 .1060 | 42 .243
0 50.1 | .002355|.00579 | 50 .1178 | 52 .301
+2 50.65 | .002327(.005725 56 .1304 | 61 .3495
4 50.65 | .002327{.005725 64 L1490 | 70 401
6 50.65 | .002327|.005725 73 .1700 | 55 .315
8 50.1 | .002355|.00579 | 77 .1813 | 55 .3185
10 50.1 | .002355|.00579 | 82 .193 55 .3185
12 51.25 | .002303|.00566 | 90 .207 60 .3395
14 50.65 | .002327|.005725 94 .219 66 .378
16 50.65 | .002327|.005725| 101 .235 69 .395
18 50.65 | .002327|.005725| 107 249 71 407
20 49,55 | .00238 |.00585 | 107 .2545 | 73 427
22 50.1 | .002355|.00579 | 115 .271 78 4515
24 50.65 | .002327|.005725| 127 .296 84 481
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WIND TUNNEL DATA REDUCTION

RUN 17 RUN TYPE _IV_ MODEL A= 1.0 TRANS, STRIP NO
[
MODEL ATTITUDE Inverted IMAGE SYSTEM Yes AMB, TEMP 98" ¢
CORR, BAR, PRESS, 28.72 in.Hg. Quo= 819 1bm/ft?
Fg = (.0920)Q,, =5,695 1bf/ft® per in. H,0 s = 1.0 gt
0.118 _ 1bf _ 0,290 _0.290 1bf
F, = 22X = 0.118 PO S, F = a2l = Ve
° S ftiuin., t S ftuin.,
-7
Q =.00209 siugs/ft? M = 3.9%x10 19%2995 v = 221 ft/sec
[
Re = 1,16x10
SET q Fy F, DRAG | C, LIFT Ce,
Xn | (F)-@P)| Foly | F./q (Fg)* (D) (F )+ (L)
DEGREES | 1bf/ft? |1/min. | 1/min. |Aakin. AMin,
-6 50.65 |.002327|.005725{ 75 L1748 | +16 +.0916
-4 50.1 .002355| .00579 76 .1790 27 .1562
-2 50,65 |.002327|.005725| 74 .1723 37 .222
0 50.65 |.002327|.005725| 77 L1792 | 47 .269
+2 50.65 |.002327|.005725/ 80 .1863 59 .338
4 50,65 |.002327|.005725| 87 .2025 67 .384
6 50.65 |.002327|.005725 93 .2165 74 424
8 50,65 |.002327|.005725/ 101 .235 46 .2635
10 50.65 |.002327|.005725| 106 L2647 48 .275
12 50,65 |.002327|.005725{ 108 .2515 50 .286
14 50.65 |.002327|.005725| 114 .2655 53 .3035
16 50.65 |.002327|.005725| 116 .270 57 .3265
18 50.65 |.002327|.005725 118 .275 60 .3435
20 50,65 |.002327|.005725] 125 .291 67 .384
22 50.65 |.002327|.005725| 129 .3005 71 .4065
24 50.65 |.002327|.005725| 139 .3235 76 435
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TABLE A-1

LIFT COEFFICIENTS OBTAINED BY FAIRING
RUNS 11(TYPE 11), 18(TYPE III), AND
17(TYPE 1V) IN FIGURE 26%

oy C‘u
Degrees 11 III 1V
-6 -.011 .108 .095
-4 +.040 .168 .155
-2 .097 .225 .222
0 .150 .286 .268
+2 .205 .343 .324
+4 .255 403 .384
6 .310 463 440
8 .363 .523 498
10 415 .581 .553
12 470 641 .612
14 522 .701 .670
16 .576 .760 727
18 .630 .820 .783
20 .682 .880 .841
22 .710 .920 .870
24 .620 .830 .788

*Model A= 1.0, no transition strip.



WIND TUNNEL DATA REDUCTION

MODEL A = 1.0 s = 1.0 ft* € =.114 %, = 0.23 Re ayq = 1.15x10*
8(S/Ay) = .00554 @ 8(S/A,) (1 +17)(57.3) = _.3%0° Reess = (Rep)(TF) = 1.55x10*
DRAG LIFT
)

o | @ |Co, |Corn | Co ®@ [Cin [Cirnl G0 C. | ax | &, Co., o« | C,,
I+mO-M@D-Io &..;:Mpm (D-TL - I [Ce* Cone @ |®-c! o+ o |Go*aC,y,
2 -C,"
-6°{ .1186| .0138{.0304| .0221 .062|-.033] .073] .020| .0004].004°{.00000{Not -6.00° .0221
-4 1,1967] .0177]|.0290}] .0233 .1971+.042| .157f .100} ,0100|.038 {,00003{Significant{-3.96 .0233
-2 {.2038]|.0315].0361} .0338 .3221 .100| .225} .1631] .0264|.070 |,00018 -1.,93 | .0340
0 |.2249].0457}.0480] .0468 .464] .196f .314] .255| .0650;.104 |,L00040 +0,10 | .0472
+2 |.2445].0582] .,0536} .0559 .595§ .271{ .390{ .331| .1092|.129 |,00060 +2.13 | .0565
+4 | .2701].0676|.0676| .0671 .730! .346] .475] .411| .1685|.160 |,00093 4.16 | .0680
6 |.3050|.0885|.0910| .0898 | .876| .436| .566] .506 .256 |.145 |.00077 6.15 | .0906
8 |.3303).0953|.0903| .0928 |1.010| .512] .647| .579| .335 |.207 |.00156 8.21 |.0944
10 |.3630|.1160}.1115} .1138 |1.154| .601} .739] .670| .449 |.248 |,00224 10.25 | .1160
12 1.3982}.1467|.1422) .1445 [1.275| .663| .805| .734] .539 |.285 |.00296 12.29 ! .1475
14 | .4330{.1675|.1650| .1662 |1.417{ .747| .895/ .821| .674 |.325 [,00384 14.33 | .1700
16 |.4775|.2075|.2055) .2060 [1.571] .844| .995| .919| .845 |.362 |.00477 16.36 |.2108
18 |.5185|.2435|.2295| .2365 |1.687| .904|1.057{ .980| .960 |.383 |,00534 18.38 |.2418
20 {.5535|.2625{.2555| .2585 |{1.830| .989|1.148/1.069|1.142 {.410 [.00613 20.41 | .2646
22 | .5945|.2940|.2875| .2910 |1.911{1.041|1.201]1.121|1.259 |.428 |.00667 22.43 | .2977
24°| .621 |.2975(.2860} .2915 |1.747|0.959|1.127/1.043 |1.088 |.401°|,00586 24,40°] .2974

%81
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EVALUATION OF THE INTEGRAL IN EQUATION (6-35)

The integral required in equation (6.35) is

"

g - _
I'-'-'fmﬂ(gc‘o;t('—ii)d@. n—193,5:--'° (b-l)
Let §-¢ = x, then J€= dx , and the integral can be written as

nN-9¢
I =fco-.t n(x+g)cet (x/g>c/x (b.2)
Yo
-9 m™¢
=fca-tnx coand wt(}z'>dx ~ | Aimnx 2iung cst (%)dx
2é 2¢
n-é w-¢
[ = cand|cornvcat(%)dx -dimnd|bianxest(Z)dx - ®.3)
-4 -¢
Define I = I‘ - Iz , (b.4)
where v-¢ s
[[ = coand|coanx ot (%)dx (b.4a)
-¢
e
I, = swnd | alanx et (B)dx - (b.4b)
-¢

Consider I, first, and further define

I, = (&ang) Jdy (b.5)
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where

v-¢
T, = | aanxceX (%)dx . (b. 5a)

A recurrence relation for J, (for n2 3) may be obtained by
writing
w4 -9
Jo= Jun = [ dianx cot(%)dx —~ | aim(n-2x A (%5)dx . (6.6)
-¢ -¢

Now substitute the trigonometric relation

X
et () = Lo 6.7
w-¢ r-¢
Ja= Jaea = [Amnx (—Iiu—‘f:‘;’-‘-)dx - M(n-z)x(i-f—d‘fr"-)dx . (b.8)
..’ e

The second and fourth terms of equation (b.8) can be expanded with
the formulas for the sine of the difference and the sum of two

angles, respectively:
N ""‘
\To\"' I\-s =fuz:: dx + Am(NK=-X) + COANK 4em X dx

dn X
~¢
fr-¢ t-¢
2 (A -2%) dx — A (AX -2x +x) = m(nx-Zx)de
A X Mx

L ¢ Lo

Tn= Jues fﬁ“—"‘-dx *fm'\xdx fm(m 2x) dx

T-¢
+ |coa(nx-2x)dx . (b.9)
~¢
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Another application of the sine formula yields

. TY7¢ m-9
J =~ T, =[#28 dx + [coanx dx
AP -¢
-¢
_ | Asvnx o 2x = wAnx amm 2X dx
Adm X
-9
-¢
+ | coa(n-2)x dx ,
-4

which becomes, with the aid of the trigonometric formulas for the

cosine and sine of double angles,

1".-4’ w-¢ w-¢
Jo=Ju. = | 2R dx 4+ | canx dx +[ces(n-2)x dx
-9 -~ -9
r-¢ r-¢
_ |amnx (1~ 2 aimPx) CANX Bim X carX
Aim x dx + 2 Aln X dx
- -¢
w-¢ Y-¢ w-g
= | oanx dx +[cd(n-2)x dx + 2|Amnx Aamx dx
-¢ -¢ -9
-9
+ 2fcnnx cAx dx . (b.10)
_‘ :

The lasi two terms are recognized as the cosine of the difference of

two angles, so

m-¢ -
Jo= Ja-r = fcnnx dx  + [coa(n-2)x dx
-¢ -0

v-¢
+ ?.fu—a(nx-x) dx
-¢
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w-¢ v-¢
J~J. = [canxdc + 2fcon(n-1)xdx
-¢ -¢
w-¢
+ [coa (n-2)x dx . (b.11)
-9
The simple integrals of equation (b.1l) are easily evaluated, since
n =3,5,7, . .. ; thus
- ' 2 _ A - (b.12)
J;—J“_z—%Mn¢ + -V-I:_Z-M(m 2)¢ . \
Now consider J,\ when N = 1:
T-¢ T-¢
_ . X — . 1+ coAx
§ = :‘“" wt(¥)dx = j*‘”‘(ﬁm—)d"

-4 w-¢
fclx +fcm.x dx
-¢ ~¢

I=ﬂ+2m¢. (b.12)
Therefore, the second integral in equation (b.3) is

I,= (amng) J, . (b.14)
where J, 1s given by the recurrence relation

J =1+ 24m0

. z .
n = J'“_z + %Mﬂd} +* w3 M(H—Z)d) (b.12)
forn=3,5,7, .. .

Turning to ] , we define

I, = (cand)K, ,

(b.15)
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where -9

X
K. = |coanx cﬁ:(/z) dx . (b.15a)
-9 :
Again writing a recurrence relation for n 2 3,

-9 -9
K, - K., =]crnxcet (%)dx - [ cAa(n-2)x cot (%3)dx . (b.16)
- -¢

Substitution of equation (b.7) gives

w-¢ "-9
Ka= Ky = [connx (Logmx Jdx — [em(n-2)x [L4E8K ) 5 (0.17)
-¢ -¢

the second and fourth terms are expanded by using the formula for

the cosine of the difference and the sum of two angles, respectively:

- v-¢ v-¢
o = o[z s sy _ (e,
/¢ -¢ -0
r-9
con (MX = 2% + x) + Mm(nx-2x) dimx dx
» Hin x

"¢ "¢
(= WY S —fMﬂde gggn-Z)x dx

ROAX
-9 -¢
w-é
-fzy&«(n-z)x dx
-¢
o - r-¢
Ko= Kap= [SENXdx — [Amaxdx  — [ada(n-2)x dx

-¢ -4 ¢
-9
CoANX Coa2x + Amnx dim 2x dx (b.18)

Adn X

-¢
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Applying the trigonometric identities for cosine and sine of

double angles,

w-¢ "-¢ ™-¢
Ko~ Kao= | S2BX dx — [ Dlngdx  — [Am(n-2)x dx
-6 -¢ -¢
-9 -9
coanx (1-2 Am’x) _ 2 [ adanx somx corx
- s dx 2 X dx
-¢ -¢
v-¢ -9 w-é
Ko~ Koy = —fu'mnxdx —fAiA(mz)x dx + 2fc°4.nxmxdx
- -¢ -¢
T-¢
- f&&«nx CoaX dx . (b.19)
-¢

The arguments of the last two terms of equation (b.19) are recognized

as the sine of ( nx-x):

w-¢ w-¢ -4
Ko= K, = —fb’»«nx dx =2]|aimn-Nxdx —[am(n-2)Xdx | (b.20)
-4 -4 -4

Now the integrals of the recurrence relation can be evaluated:

Ka= Kpa= — %4 ARG — 25 wa(n-2)@ (b.21)
since n = 3,5,7, .

K. for M =1 must be evaluated:

-4 e (5%
- X = | soAX conl 72
K, _[Tx et (%) dx e ) dx

-9
=fan(x—§i)— Alnx_sinm(Zg) dx
-¢

sin (22)
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-¢

™-¢
K, = fw’f(x/z)dx - Jan'x (b.22)
Lo Lo
Kl E Ku - Kn ‘ (b.22a)

The second integral K, is easily evaluated, yielding

Ki = 2 cnd (b.23)

however, the evaluation of K, requires special care, since cot (2g)

becomes infinite at x = 0. First, let y= ’}i , then dx = 2dy , and

Ky = zf@r () dy ' (b-24)
In order to avoid the singularity at y = 0, it will be shown that

this integral may be replaced by

-4

7
K, = ZICo‘C(y)Jy
*%

The integration interval is divided into three segments:

-] 0/: gf_g
zfcmyuy v 2 [etdy + 2 [cotydy
A A %

K

fr-¢
0 0 -
2 et (y)dy - fq’*(y)dy + 2 {eot (y)dy
% A b
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(] 11'-0
-4 5
g
= 22&3 M -2 M\(O) 2 Co‘t( )J
dim(-4;) Iey| Zeniay | * y)dy
%
- ¢b
Ku = 2 l‘oﬁ(o) - 2.&%(0) + 2 Qyt(y) d)’
9%
"-49
-4
Ki = 2[cet(y)dy - (b.25)
%

This result can be deduced also from consideration of the graph of

cot (y ). FEvaluation of eq. (b.25) is straightforward:

-9
- vl T (- %)
Kn = Z[IO%A«WL)I]% = Zbgl:—-—A‘—M(j/a—)z--J
. 1 ¢ ™ aind
= ZM[M/iCﬂ./M;‘;:/iM z]
¢
= 2 o 24
L’“[M%]

K, = 2 Leg(catds) . (b.26)
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It is interesting to note that a straightforward application of the

Cauchy Principal Value method,

b A-€ b
ff(x) dx = 3‘_’*:0 ff()()dx +ff(x) dx (b.27)
a a A+e

for £(x)=00 at x=A, to K, in the form shown in

equation (b.22) yields

Ko = 2 Log( - cot %)

which cannot be evaluated.

Thus we have

K, = K=K, = 2 Loq (ot ) — 2cnd (b.28)

and

I, = (wand)K, , (b.29)

where K, is given by the recurrence relation

K, = 2 bg(cct %) — 2 cnd (b.28)
Kn = Kpeo = 4% coing — n—f; m(n-z)(b , (b.21)
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The integral required, equation (b.l), is

fmnewt(%i)de = (wang)k,~ @mnd)d, ,  (b.30

n=1,3,5,.. ., vwhere
K = 2 Log(cot 85) = 2 con ¢ (b.30a)

Kn = Kn-2 = %4 coan¢ — xf—z cor(n-2)¢ | (b.30b)

n=1357,..., and

J = T+ 286nm ¢ (b.30c)

Jn = Jnr + 25 00and + 22 Ain(n-2)¢, (5.300)
n=3,57, ...
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FORTRAN LISTING OF CHANNEL WING COMPUTER

PROGRAM, WITH SAMPLE INPUT AND OUTPUT

The FORTRAN listing of the digital computer program de~-
scribed in Chapter VII is presented in this appendix, along with
sample computer printout of input and output data. This program,
written in FORTRAN IV, utilizes the lifting arc theory developed in
Chapter VI to calculate the lift and drag coefficients of a channel
wing as a function of wing geometry, airfoil section characteristics,
and wing angle of attack. Several IBM Scientific Subroutine Package

subroutines are utilized; these are included in the FORTRAN listing.
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*%% LIFT AND DRAG COEFFICIENTS OF A CHANNEL WING *%%*

11

12

13

20

21

22

DIMENSION RHV(5), TJ(9),TK(9), ACOF(9), ADI(5,5), ASI(2S),
1 AUX(200), A(9), CIDEN(10), AERSEC(10), TCL(50), TCD(50), WORK(50)
2, ARG(50), VAL(S0)
EQUIVALENCE (ADI(1,1), ASI(1))
EXTERNAL FCT
COMMON A
INPUT DATA
READ(5,10,END = 99) CIDEN, AERSEC, IROW, CLMIN, CLMAX, CDERR
FORMAT (10A4,/10A4,/2X, I3, 5X, 3F10.0)
AIRFOIL SECTION CL VS. CD TABLE LIMITED TO 50 POINTS
READ(5,11) (TCL(I), TCD(I), I = 1,IROW)
FORMAT (6F10.0)
READ(5,12) R, C, ASO, ANZL
FORMAT (4F10.0)
READ(5,13) ALPAS, DALPA, ALPAE
FORMAT (3F10.0)
PRINT CHANNEL WING INPUT DATA
WRITE(6,20)
FORMAT (1H1, 30X, 23HCHANNEL WING INPUT DATA)
WRITE(6,21) CIDEN, AERSEC :
FORMAT(1HO, 6HWING: , 10A4// 18H AIRFOIL SECTION: , 10A4)
WRITE(6,22) R, C, ASO, ANZL
FORMAT(/ 20H WING RADIUS, FT. = , 1PE16.6,// 19 H WING CHORD, FT.
1= , 1PE16.6, // 48H AIRFOIL SECTION LIFT-CURVE SLOPE, PER RADIAN =
2 , 1PE16.6,// 48H AIRFOIL SECTION ANGLE FOR ZERO LIFT, DEGREES = ,
31PE16.6,//)
* CALCULATION OF COEFFICIENTS OF SIMULTANEOUS EQUATIONS
FOR FOURIER COEFFICIENTS *
PIF = 3.141593
ANZL = ANZL * 0.0174533
CS1 = ASO * C/(2.0 * R)

86T
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ALPAC = ALPAS
IF(ALPAC - ALPAE) 92, 92, 5

92 WRITE(6,23) ALPAC

23

64

66

68

60
62

FORMAT (1H1, 43HWING CENTERLINE ANGLE OF ATTACK, DEGREES = ,
1 F10.2)

ALPAC = ALPAC * 0.0174533

PHI .0

DO 6 =
M=
PHI

H O |

1,5

1on il

PHI + (18.0 * 0.0174533)

ALPAL = ATAN(SIN(ALPAC) * SIN(PHI)/COS(ALPAC))
RHV(I) = CS1 *(ALPAL - ANZL)

DO 60 N = 1,9,2

M=M+1

RELN = N

RNPHI = RELN * PHI

IF(N~1) 64, 64, 66

TJ(1) = PIF + 2.0 *# SIN(PHI)
COTF = COS(PHI/2.0)/SIN(PHI/2.0)

TK(1) = 2.0 * ALOG(COTF) - 2.0 * COS(PHI)
GO TO 68
RELN2 = N ~ 2

RN2PHI = RELN2 * PHI
TI(N) = TI(N-2) + (2.0/RELN)*SIN(RNPHI) + (2.0/RELN2)*SIN(RN2PHI)
TK(N) = TK(N-2) - (2.0/RELN)*COS(RNPHI) - (..0/RELN2)*COS(RN2PHI)
T1 - SIN(RNPHI)
T2 = CS1 * RELN/(8.0 * PIF)*(SIN(RNPHI)*TJ(N) - COS(RNPHI)*TK(N))
ACOF(N) = T1 + T2
ADI(I,M) = ACOF(N)
CONTINUE

* SOLUTION OF THE SIMULTANEOUS EQUATIONS FOR FOURIER COEFFICIENTS

OF CIRCULATION DISTRIBUTION *

661



WRITE (6,28)
28 FORMAT(//1HO,20X,49HFOURIER COEFFICIENTS FOR CIRCULATION DISTRIBUT
110N, /)
CALL SIMQ(ASI, RHV, 5, KS)
IF(KS - 1) 70, 72, 70
72 WRITE(6,19)
19 FORMAT (1HO, 18HMATRIX IS SINGULAR)
WRITE(6,15)
15 FORMAT (1HO, 18HGO ON TO NEXT CASE)
GO TO 5
70 IX = -1
DO 74 I=1,5
IX = IX + 2
A(IX) = RHV(I)
74 WRITE(6,32) IX, A(IX)
32 FORMAT(1H , 30X, 1HA, Il1, 3H = , 1PE20.7)
% EVALUATION OF INDUCED DRAG INTEGRAL *
XL = 0.0
XU = PIF
EPS = 5.0E-4
NDIM = 101
CALL QATR(XL, XU, EPS, NDIM, FCT, DINT, ITGER, AUX)
WRITE(6,37)
37 FORMAT(//1HO, 20X, 24HINDUCED DRAG INTEGRATION )
WRITE(6,38) DINT, ITGER
38 FORMAT( 1HO, 30X, 1SHINTEGRAL OF FCT = , 1PE16.6,//
1 30X, 25H ERROR PARAMETER ITGER = , Il)
* SPAN EFFICIENCY FACTOR *
E = (PIF**2)*(A(1)*%2) /DINT
WRITE(6,40) E

002



C

40

78

80

82

86

88

90

84

FORMAT (1HO, 30X, 38HCHANNEL WING SPAN EFFICIENCY FACTOR = ,
1 1PE12.5, //)
% CALCULATE CHANNEL WING PROFILE DRAG COEFFICIENT *

PHI = 0.0

CDSUM = 0.0

DPHI = 4.50 * 0,0174533

DO 76 J = 1, 20

IF(J - 1) 78, 78, 80

PHI = PHI + DPHI/2.0

GO TO 82

PHI = PHI + DPHI

CLT1 = ATAN(SIN(ALPAC) * SIN(PHI)/COS(ALPAC))
INDUCED ANGLE OF ATTACK

CLT3 = 0.0

DO 84 N=1, 9, 2

RELN = N

RNPHI = RELN ®* PHI

IF(N -1) 86, 86, 88

COTF = COS(PHI1/2.0)/SIN(PHI1/2.0)

TK(1) = 2.0 * ALOG(COTF) - 2.0 * COS(PHI)

TIJ(1) = PIF + 2.0 * SIN(PHI)

GO TO 90

RELN2 = N - 2

RN2PHI = RELN2 * PHI

TK(N) = TK(N-2) - (2,0/RELN) * COS(RNPHI) - (2./RELN2)*COS (RN2PHI)

TI(N) = TI(N-2) + (2.0/RELN) * SIN(RNPHI) + (2./RELN2)*SIN(RN2PHI)

CLT3 = CLT3 + (RELN * A(N)/(8.0 * PIF))*(COS(RNPHI)* TK(N) - SIN(

1RNPHI) * TJ(N))

CONTINUE
SECTION LIFT COEFFICIENT

CLSEC = ASO * (CLT1 - ANZL + CLT3)
CHECK SECTION CL TO BE IN DATA RANGE

IF(CLMIN - CLSEC) 81, 81, 83

tou n
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83 CLSEC = CLMIN
GO TO 89
81 IF(CLSEC - CLMAX) 85, 85, 87
87 CLSEC = CLMAX
89 PHIPD = PHI * 57.29578
WRITE(6,47) PHIPD, CLSEC
47 FORMAT ( 49H *** SECTION CL EXCEEDS RANGE OF CL VS. CD TABLE, 7X,
1 SHPHI =, F9.4, 10X, 13HSET SEC. CL =, 1PE13.5)
ORDER SECTION CL VS. CD TABLE FOR INTERPOLATION ROUTINE
85 CALL ATSG(CLSEC, TCL, TCD, WORK, IROW, 1, ARG, VAL, IROW)
INTERPOLATE SECTION CD VALUE AT SECTION CL
CALL ALI(CLSEC, ARG, VAL, CDSEC, IROW, CDERR, IER)
SUM SECTION CD OVER WINGSPAN
76 CDSUM = CDSUM + CDSEC * DPHI
cpDo = (2.0/PIF) * CDSUM
* LIFT AND DRAG COEFFICIENTS *
ASPRO = 2.0 * R/C
CL = (PIF/4.0) * ASPRO * A(l)
CDI = (CL**2)/(E * PIF * ASPRO)
CD = (PIF/2.0) * CDO + CDI
ALPAC = ALPAC * 57.29578
WRITE(6,42)
42 FORMAT( 1HO, 20X,39HCHANNEL WING LIFT AND DRAG COEFFICIENTS //)
WRITE(6,44) CDO,CDI,CL,CD
44 FORMAT(33H WING PROFILE DRAG COEFFICIENT = , 1PE16.6 /// 33H WING
1INDUCED DRAG COEFFICIENT = , 1PE16.6/// 25H WING LIFT COEFFICIENT
2 =, 1PE16.6///25H WING DRAG COEFFICIENT = , 1PE16.6)
INCREMENT WING ANGLE OF ATTACK
ALPAC = ALPAC + DALPA
GO TO 94
99 STOP
END

4114
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SUBROUTINE SIMQ

PURPOSE
OBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR
EQUATIONS, AX = B

USAGE
CALL SIMQ(A,B,N,KS)

DESCRIPTION OF PARAMETERS’
A-MATRIX OF COEFFICIENTS STORED COLUMNWISE., THESE ARE
DESTROYED IN THE COMPUTATION, THE SIZE OF MATRIX A IS
N BY N.
B-VECTOR OF ORIGINAL CONSTANTS (LENGTH N). THESE ARE
REPLACED BY FINAL SOLUTION VALUES, VECTOR X.
N-NUMBER OF EQUATIONS AND VARIABLES, N MUST BE ,GT. ONE.
KS-OUTPUT DIGIT
O FOR A NORMAL SOLUTION
1 FOR A SINGULAR SET OF EQUATIONS
REMARKS
MATRIX A MUST BE GENERAL., IF MATRIX A IS SINGULAR, SOLUTION
VALUES ARE MEANINGLESS.
METHOD
METHOD OF SOLUTION IS BY ELIMINATION USING LARGEST PIVOTAL
DIVISOR, EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGING
ROWS WHEN NECESSARY TO AVOID DIVISION BY ZERO OR SMALL
ELEMENTS,
THE FORWARD SOLUTION TO OBTAIN VARIABLE N IS DONE IN N
STAGES. THE BACK SOLUTION FOR THE OTHER VARIABLES IS
CALCULATED BY SUCCESSIVE SUBSTITUTIONS. FINAL SOLUTION
VALUES ARE DEVELOPED IN VECTOR B, WITH VARIABLE 1 IN B(1l),
VARIABLE 2 IN B(2),..0s...., VARIABLE N IN B(N).
IF NO PIVOT CAN BE FOUND EXCEEDING A TOLERANCE OF 0.0,

€02



20

30

35

THE MATRIX IS CONSIDERED SINGULAR AND KS IS SET TO 1. THIS
TOLERANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT,.

SUBROUTINE SIMQ(A,B,N,KS)
DIMENSION A(1),B(1)

FORWARD SOLUTION

TOL=0.0
Ks=0

JJ=-N

DO 65 J=1,N
Jy=J+1
JI=JJ+N+1
BIGA=0
IT=3J-J

DO 30 I=J,N

SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN

IJ=IT+I

IF (ABS (BIGA)-ABS(A(1J)))20,30,30
BIGA=A(1J)

IMAX=I

CONTINUE

TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)
IF (ABS (BIGA)-TOL)35,35,40

Ks=1

RETURN

INTERCHANGE ROWS IF NECESSARY

%02
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40

50

55

60
65

70

I1=J+N*(J-2)
IT=IMAX-J
DO 50 K=J,N
I1-I1+N
I12=11+IT
SAVE=A(11)
A(T1)=A(12)
A(I2)=SAVE

DIVIDE EQUATION BY LEADING COEFFICIENT

A(I1)=A(I1)/BIGA
SAVE=B (IMAX)
B(IMAX)=B(J)
B(J)=SAVE/BIGA

ELIMINATE NEXT VARIABLE

1F (J-N)55,70,55
1QS=N*(J-1)

DO 65 IX=JY,N

IXJ=IQS+IX

1T=J-IX

DO 60 JX=JY,N

IXJX=N* (JX-1)+IX

JIX=IXIX+IT

A(IXJIX)=A(IXJIX)- (A(IXJI)*A(JIX))
B(IX)=B(IX)-(B(J)*A(IXJ))

BACK SOLUTION

NY=N-1

11414
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IT=N*N

DO 80 J=1,NY
IA=IT-J
IB=N-J

IC=N

DO 80 K=1,J
B(IB)=B(IB)~A(IA)*B(IC)
TA=TA=-N
I1C=IC-1
RETURN

END

902
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12

14

16

20
30

FUNCTION SUBROUTINE FCT(X)

THIS SUBROUTINE PERFORMS THE DOUBLE SUMMATION REQUIRED TO
SET UP THE INDUCED DRAG INTEGRAND.

FUNCTION FCT(X)

DIMENSION A(9), TJ(9), TK(9)

COMMON A

PIF = 3.141593

IF(X .LE. 0.0) GO TO 30

IF(X .GE. PIF) GO TO 30

COTF = COS(X/2.0) /SIN(X/2.0)

FCT = 0.0

DO 20 N = 1,9,2

RELN = N

RNX = RELN * X

IF(N-1) 12,12,14

TJI(1) = PIF + 2.0 * SIN(X)

TK(1) = 2.0 * ALOG(COTF) - 2.0 * COS(X)
GO TO 16

RELN2 = N - 2

RN2X = RELN2 * X

TI(N)

DO 20 M = 1,9,2
RELM = M

RMX = RELM * X

T2 = A(M) * SIN(RMX)
SBT = T1 * T2

FCT = FCT + SBT
RETURN

FCT = 0.0

RETURN

END

TI(N-2) + (2.0/RELN) * SIN(RNX) + (2.0/RELN2) * SIN(RN2X)
TK(N) = TK(N-2) - (2.0/RELN) * COS(RNX) - (2.0/RELN2) * COS (RN2X)
Tl = RELN * A(N) * (TJ(N) * SIN(RNX) - TK(N) * COS(RNX))

L0t
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SUBROUTINE QATR

PURPOSE

TO COMPUTE AN APPROXIMATION FOR INTEGRAL (FCT(X), SUMMED
OVER X FROM XL TO XU).

USAGE

CALL QATR (XL,XU,EPS,NDIM,FCT,Y,IER,AUX)

PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT,

DESCRIPTION

XL
XU
EPS
NOIM

FCT
Y

IER
AUX

REMARKS

OF PARAMETERS

THE LOWER BOUND OF THE INTERVAL,

THE UPPER BOUND OF THE INTERVAL.

THE UPPER BOUND OF THE ABSOLUTE ERROR.

THE DIMENSION OF THE AUXILIARY STORAGE ARRAY AUX.
NDIM-1 IS THE MAXIMAL NUMBER OF BISECTIONS OF

THE INTERVAL (XL,XU).

THE NAME OF THE EXTERNAL FUNCTION SUBPROGRAM USED,
THE RESULTING APPROXIMATION FOR THE INTEGRAL VALUE,
A RESULTING ERROR PARAMETER,

AN AUXILIARY STORAGE ARRAY WITH DIMENSION NDIM,

ERROR PARAMETER IER IS CODED IN THE FOLLOWING FORM

IER#0
IER¥1

IERi#2

IT WAS POSSIBLE TO REACH THE REQUIRED ACCURACY,

NO ERROR.

IT IS IMPOSSIBLE TO REACH THE REQUIRED ACCURACY
BECAUSE OF ROUNDING ERRORS,

IT WAS IMPOSSIBLE TO CHECK ACCURACY BECAUSE NDIM
IS LESS THAN 5, OR THE REQUIRED ACCURACY COULD NOT

QATR

co.ooa.aoa.n‘o.o.-c...l.c..-.n..-.-o.--.clc..olooo.c..onQATR

QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR

001
002
003
004
005
006
007
oos8
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
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BE REACHED WITHIN NDIM-1 STEPS. NDIM SHOULD BE QATR
INCREASED, QATR

QATR

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED QATR
THE EXTERNAL FUNCTION SUBPROGRAM FCT(X) MUST BE CODED BY QATR
THE USER, ITS ARGUMENT X SHOULD NOT BE DESTROYED. QATR
QATR

METHOD QATR
EVALUATION OF Y IS DONE BY MEANS OF TRAPEZOIDAL RULE IN QATR
CONNECTION WITH ROMBERGS PRINCIPLE, ON RETURN Y CONTAINS QATR
THE BEST POSSIBLE APPROXIMATION OF THE INTEGRAL VALUE AND  QATR
VECTOR AUX THE UPWARD DIAGONAL OF ROMBERG SCHEME. QATR

COMPONENTS AUX(I) (I#1,2,...,IEND, WITH IEND LESS THAN OR  QATR

EQUAL TO NDIM) BECOME APPROXIMATIONS TO INTEGRAL VALUE WITH QATR
DECREASING ACCURACY BY MULTIPLICATION WITH (XU-XL). QATR

FOR REFERENCE, SEE QATR

(1) FILIPPI, DAS VERFAHREN VON ROMBERG-STIEFEL-BAUER ALS QATR
SPEZIALFALL DES ALLGEMEINEN PRINZIPS VON RICHARDSON, QATR
MATHEMATIK-TECHNIK-WIRTSCHAFT, VOL. 11, ISS.2 (1964), QATR
PP.49-54. QATR

(2) BAUER, ALGORITHM 60, CACM, VOL.4, 1SS.6 (1961), PP.255. QATR

QATR
PO o )-
QATR

SUBROUTINE QATR(XL,XU,EPS,NDIM,FCT,Y,IER,AUX) QATR
QATR

QATR

DIMENSION AUX(1) QATR
QATR

PREPARATIONS OF ROMBERG-LOOP QATR
AUX (1)=. 5% (FCT (XL)+FCT (XU)) QATR
H=XU-XL QATR

IF(NDIM-1)8,8,1 QATR

034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
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1 IF(H)2,10,2

NDIM IS GREATER THAN 1 AND H IS NOT EQUAL TO O,

2 HH=H
E=EPS/ABS (H)
DELT2=0,
pP=1.

JJ=1

DO 7 1I=2,NDIM
Y=AUX (1)
DELT1=DELT2
HD=HH

HH=. 5*HH
P=.5%P
X=XL+HH

SM=0,

DO 3 J=1,JJ

SM=SM+FCT (X)

3 X=X+HD

AUX(I)=.5%AUX(I-1)+P*SM
A NEW APPROXIMATION OF INTEGRAL VALUE IS COMPUTED BY MEANS OF
TRAPEZOIDAL RULE,

START OF ROMBERGS EXTRAPOLATION METHOD,
Q=1.

JI=I-1

DO 4 J=1,J1

I11=1-J

Q=QHQ

Q=QHQ

4 AUX(II)=AUX(II+1)+(AUX(II+1)-AUX(II))/(Q-1.)

END OF ROMBERG-STEP

QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR

067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099

ote



O 00~

10

11

DELT2=ABS (Y-AUX(1))
1F(1-5)7,5,5
IF(DELT2-E)10,10,6
IF(DELT2-DELT1)7,11,11
JI=JI+3J

IER=2

Y=H*AUX (1)

RETURN

IER=0

GO TO 9

IER=1

Y=H*Y

RETURN

END

QATR
QATR
QATR
QATR
QATR
QATR
QATR
QATR
0ATR
QATR
QATR
QATR
QATR
QATR

100
101
102
103
104
105
106
107
108
109
110
111
112
113
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SUBROUTINE ATSG ATSG
ATSG

PURPOSE ATSG
NDIM POINTS OF A GIVEN GENERAL TABLE ARE SELECTED AND ATSG
ORDERED SUCH THAT ABS (ARG(I)-X).GE.ABS(ARG(J)-X) IF I.GT.J. ATSG
ATSG

USAGE ATSG
CALL ATSG (X,Z,F,WORK,IROW,ICOL,ARG,VAL,NDIM) ATSG
ATSG

DESCRIPTION OF PARAMETERS ATSG
X - THE SEARCH ARGUMENT. ATSG

z - THE VECTOR OF ARGUMENT VALUES (DIMENSION IROW). ATSG

F - IN CASE ICOL#1, F IS THE VECTOR OF FUNCTION VALUES ATSG
(DIMENSION IROW). ATSG

IN CASE ICOL#2, F IS AN IROW BY 2 MATRIX, THE FIRST ATSG

COLUMN SPECIFIES THE VECTOR OF FUNCTION VALUES AND ATSG

THE SECOND THE VECTOR OF DERIVATIVES, ATSG

WORK - A WORKING STORAGE (DIMENSION IROW). ATSG
IROW - THE DIMENSION OF VECTORS Z AND WORK AND OF EACH ATSG
COLUMN IN MATRIX F, ATSG

ICOL - THE NUMBER OF COLUMNS IN F (I.E. 1 OR 2). ATSG
ARG - THE RESULTING VECTOR OF SELECTED AND ORDERED ATSG
ARGUMENT VALUES (DIMENSION NDIM). ATSG

VAL - THE RESULTING VECTOR OF SELECTED FUNCTION VALUES  ATSG
(DIMENSION NDIM) IN CASE ICOL#1. IN CASE ICOL#2 ATSG

VAL IS THE VECTOR OF FUNCTION AND DERIVATIVE VALUES ATSG

(DIMENSION 2*NDIM) WHICH ARE STORED IN PAIRS (I.E. ATSG

EACH FUNCTION VALUE IS FOLLOWED BY ITS DERIVATIVE ATSG

VALUE) . ATSG

NDIM - THE NUMBER OF POINTS WHICH MUST BE SELECTED OUT OF ATSG

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
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THE GIVEN TABLE (Z,F). ATSG 034

ATSG 035

REMARKS ATSG 036
NO ACTION IN CASE TROW LESS THAN 1. ATSG 037

IF INPUT VALUE NDIM IS GREATER THAN IROW, THE PROGRAM ATSG 038

SELECTS ONLY A MAXIMUM TABLE OF IROW POINTS, THEREFORE THE ATSG 039
USER OUGHT TO CHECK CORRESPONDENCE BETWEEN TABLE (ARG,VAL) ATSG 040
AND ITS DIMENSION BY COMPARISON OF NDIM AND IRCGW, IN ORDER  ATSG 041
TO GET CORRECT RESULTS IN FURTHER WORK WITH TABLE (ARG,VAL). ATSG 042
THIS TEST MAY BE DONE BEFORE OR AFTER CALLING ATSG 043
SUBROUTINE ATSG. ATSG 044
SUBROUTINE ATSG ESPECIALLY CAN BE USED FOR GENERATING THE ATSG 045
TABLE (ARG,VAL) NEEDED IN SUBROUTINES ALI, AHI, AND ACFT. ATSG 046

ATSG 047

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED ATSG 048
NONE ATSG 049
ATSG 050

METHOD ATISG 051
SELECTION IS DONE BY GENERATING THE VECTOR WORK WITH ATSG 052
COMPONENTS WORK(I)#ABS(Z(I)-X) AND AT EACH OF THE NDIM STEPS ATSG 053
(OR IROW STEPS IF NDIM IS GREATER THAN IROW) ATSG 054
SEARCHING FOR THE SUBSCRIPT OF THE SMALLEST COMPONENT, WHICH ATSG 055

1S AFTERWARDS REPLACED BY A NUMBER GREATER THAN ATSG 056
MAX (WORK(I)). ATSG 057
ATSG 058
Y\ T eI 0 L 1)
ATSG 060

SUBROUTINE ATSG(X,Z,F,WORK,IROW,ICOL,ARG,VAL,NDIM) ATSG 061
ATSG 062

ATSG 063

DIMENSION 2(1),F(1),WORK(1),ARG(1),VAL(1) ATSG 064

IF (IROW)11,11,1 ATSG 065
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N=NDIM

IF N IS GREATER THAN IROW, N IS SET EQUAL TO IROW,

IF(N-IROW)3,3,2
N=IROW

GENERATION OF VECTOR WORK AND COMPUTATION OF ITS GREATEST ELEMENT.

B=0.

DO 5 I=1,IROW
DELTA=ABS (Z(I)-X)
IF (DELTA-B)5,5,4
B=DELTA

WORK (I)=DELTA

GENERATION OF TABLE (ARG,VAL)
B=B+1,

DO 10 J=1,N

DELTA=B

DO 7 I=1,IROW

IF (WORK (I)~-DELTA)6,7,7
1I=1

DELTA=WORK (1)

CONTINUE

ARG (J)=Z(II)
IF(ICOL-1)8,9,8
VAL(2*J-1)=F(I1I)
III=ITI+IROW

VAL (2%J)=F(I11)

GO TO 10

VAL(J)=F(II)

WORK (II)=B

RETURN

END

ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG
ATSG

066
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076
077
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SUBROUTINE ALI

PURPOSE

TO INTERPOLATE FUNCTION VALUE Y FOR A GIVEN ARGUMENT VALUE
X USING A GIVEN TABLE (ARG,VAL) OF ARGUMENT AND FUNCTION

VALUES.

USAGE
CALL ALI

DESCRIPTION
X -
ARG -
VAL -

Y
NDIM -

EPS -

IER

REMARKS

(X,ARG,VAL,Y,NDIM, EPS, IER)

OF PARAMETERS

THE ARGUMENT VALUE SPECIFIED BY INPUT.

THE INPUT VECTOR (DIMENSION NDIM) OF ARGUMENT
VALUES OF THE TABLE (NOT DESTROYED).

THE INPUT VECTOR (DIMENSION NDIM) OF FUNCTION
VALUES OF THE TABLE (DESTROYED).

THE RESULTING INTERPOLATED FUNCTION VALUE.

AN INPUT VALUE WHICH SPECIFIES THE NUMBER OF
POINTS IN TABLE (ARG,VAL).

AN INPUT CONSTANT WHICH IS USED AS UPPER BOUND
FOR THE ABSOLUTE ERROR.

A RESULTING ERROR PARAMETER.

(1) TABLE (ARG,VAL) SHOULD REPRESENT A SINGLE-VALUED
FUNCTION AND SHOULD BE STORED IN SUCH A WAY, THAT THE
DISTANCES ABS (ARG(I)-X) iINCREASE WITH INCREASING

SUBSCRIPT I. TO GENERATE THIS ORDER IN TABLE (ARG,VAL),

SUBROUTINES ATSG, ATSM OR ATSE COULD BE USED IN A
PREVIOUS STAGE.

ALI

¢ s e e s 00008 e LRI ) oooolonoaoo.c..o.ooo-ooALI

ALI
ALI
ALI
ALT
ALTI
ALI
ALI
ALI
ALI
ALI
ALI
ALT
AL
ALI
ALT
ALI
ALI
AL1
ALI
ALI
ALI
ALI
AL
ALI
ALI
ALI
ALI
ALI
ALI
ALI
ALI
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(2) NO ACTION BESIDES ERROR MESSAGE IN CASE NDIM LESS
THAN 1.

(3) INTERPOLATION IS TERMINATED EITHER IF THE DIFFERENCE
BETWEEN TWO SUCCESSIVE INTERPOLATED VALUES IS
ABSOLUTELY LESS THAN TOLERANCE EPS, OR IF THE ABSOLUTE
VALUE OF THIS DIFFERENCE STOPS DIMINISHING, OR AFTER
(NDIM-1) STEPS. FURTHER IT IS TERMINATED IF THE
PROCEDURE DISCOVERS TWO ARGUMENT VALUES IN VECTOR ARG
WHICH ARE IDENTICAL. DEPENDENT ON THESE FOUR CASES,
ERROR PARAMETER IER IS CODED IN THE FOLLOWING FORM

IER#0 - IT WAS POSSIBLE TO REACH THE REQUIRED
ACCURACY (NO ERROR).

IER#1 - IT WAS IMPOSSIBLE TO REACH THE REQUIRED
ACCURACY BECAUSE OF ROUNDING ERRORS.

IER#2 - IT WAS IMPOSSIBLE TO CHECK ACCURACY BECAUSE
NDIM IS LESS THAN 3, OR THE REQUIRED ACCURACY
COULD NOT BE REACHED BY MEANS OF THE GIVEN
TABLE. NDIM SHOULD BE INCREASED,

IER#3 - THE PROCEDURE DISCOVERED TWO ARGUMENT VALUES

IN VECTOR ARG WHICH ARE IDENTICAL.
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE
METHOD

INTERPOLATION IS DONE BY MEANS OF AITKENS SCHEME OF
LAGRANGE INTERPOLATION. ON RETURN Y CONTAINS AN INTERPOLATED
FUNCTION VALUE AT POINT X, WHICH IS IN THE SENSE OF REMARK
(3) OPTIMAL WITH RESPECT TO GIVEN TABLE. FOR REFERENCE, SEE
F.B.HILDEBRAND, INTRODUCTION TO NUMERICAL ANALYSIS
MCGRAW-HILL, NEW YORK/TORONTO/LONDON, 1956, PP.49-50.
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SUBROUTINE ALI(X,ARG,VAL,Y,NDIM,EPS,IER)

DIMENSION ARG(1),VAL(1l)
IER=2

DELT2=0.
IF(NDIM-1)9,7,1

START OF AITKEN-LOOP
DO 6 J=2,NDIM

DELT1=DELT2

IEND=J-1

DO 2 I=1,IEND

H=ARG (I)-ARG (J)

IF(H)2,13,2

VAL (J)=(VAL(I)* (X-ARG(J))-VAL(J)* (X-ARG(I)))/H
DELT2=ABS (VAL (J)~-VAL(1END))

1F(J-2)6,6,3

IF (DELT2-EPS) 10,10,4

IF (J-5)6,5,5

IF (DELT2-DELT1)6,11,11

CONTINUE

END OF AITKEN-LOOP

J=NDIM
Y=VAL(J)
RETURN

THERE IS SUFFICIENT ACCURACY WITHIN NDIM=-1 ITERATION STEPS

IER=0
GOTO 8

cesesas ALL
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TEST VALUE DELT2 STARTS OSCILLATING
11 1IER=1
12 J=IEND

GOTO 8

THERE ARE TWO IDENTICAL ARGUMENT VALUES IN VECTOR ARG
13 IER=3

GOTO 12

END
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Sample Input and Output Data Printout

The input data required for the computer program are listed
and described in Table 6. A sample computer printout of input data
is presented on the following page. The data shown are for the AR =
2.8 wind tunnel model described in Chapter III. See Appendix D for
airfoil section data for this model. Following the input data is a

sample printout for one wing angle of attack.
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CHANNEL WING INPUT DATA
WING: MODEL ASPECT RATIO = 2.8

AIRFOIL SECTION: NACA 0015, RE = 8.7E5, SMOOTH

WING RADIUS, FT. = 5.833000E-01
WING CHORD, FT. = 4.166999E-01
AIRFOIL SECTION LIFT-CURVE SLOPE, PER RADIAN = 5.271999E 00

AIRFOIL SECTION ANGLE FOR ZERO LIFT, DEGREES = 0.0
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OUTPUT DATA

WING CENTERLINE ANGLE OF ATTACK, DEGREES = 8.00

FOURIER COEFFICIENTS FOR CI1RCULATION DISTRIBUTION

Al = 1.9793904E-01
A3 = 7.2712824E~03
A5 = 3.2314486E-03
A7 = 1,4179884E-03
A9 = 3.7647272E-04

INDUCED DRAG INTEGRATION
INTEGRAL OF FCT = 2,651325E-01
ERROR PARAMETER ITGER = 0

CHANNEL WING SPAN EFFICIENCY FACTOR = 1,45848E 00

CHANNEL WING LIFT AND DRAG COEFFICIENTS

WING PROFILE DRAG COEFFICIENT

1.228187E-02

WING INDUCED DRAG COEFFICIENT 1.476696E-02

WING LIFT COEFFICIENT 4,3%2306E-01

]

WING DRAG COEFFICIENT 3.405927E-02
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SECTION DATA FOR NACA 4412 AND 0015 AIRFOILS

The channel wing digital computer program described in
Chapter VII requires as input a table of 1ift and drag coefficients
for the particular airfoil section and Reynolds number being con-
sidered. The wind tunnel models of the tests reported herein used
the NACA 4412 and the NACA 0015 airfoil sections. Therefore, for
correlation purposes, data for these sections at relatively low

Reynolds numbers were required.

NACA 4412

The wind tunnel tests of the A\ = 1.0 channel wing model
were conducted at an effective Reynolds number of 1.55 X 106. Sec~
tion drag coefficient data as a function of lift coefficient at
Re = 1.5 x 108 were obtained from Loftin and Smith [23] . This
reference presents section data for several NACA airfoils, over a
wide range of Reynolds numbers. The data were obtained from tests
conducted in the Langley two-dimensional low-turbulence tunnel, and

include data for both smooth airfoils and those with NACA standard

roughness.

NACA 0015

Smooth Section Data

The effective Reynolds number for the wind tunnel tests of
the R = 2.8 model was 665,000. Despite an extensive literature

223
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search, the author was unable to find section data for the 0015 at
such a low Reynolds number which would be considered accurate by
modern standards. Therefore, the best data available is apparently
that of NACA Report 586, Jacobs and Sherman [24] , when modified as
directed by NACA Report 669, Jacobs and Abbott [25] « The data of
Report 586 were obtained from tests of three-dimensional, aspect
ratio 6.0 model wings in an NACA variable density tunnel in 1932
and "corrected . . . for infinite-aspect-ratio characteristics."
Subsequently, in Report 669, the NACA recommended further correc-
tions. More recently, the NACA recommended that Report 586 and
Report 669 be considered superseded by NACA Report 824, Abbott,
von Doenhoff, and Stivers [19] » which presents s;ction data ob-
tained under actual two-dimensional conditions. Unfortunately, the
0015 section was not included in the tests of Report 824.

NACA Report 669, Jacobs and Abbott [25] » recommends the

following corrections to the drag curves of NACA Report 586, Jacobs

and Sherman [24] :

Reg,, = 2.64 Reygs (d.1)
o = X, + 0.39c, in degrees (d.2)
ca = Cp + 0.0016C, - 1/3(t-6)(0.0002), (d.3)

where Regq » &, ,C  ,and C, are read from the Report 586 drag
plots, and t is the maximum airfoil section thickness in percent

chord. The angle for zero 1lift and the section 1lift curve slope
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do not require correction, and so may be obtained from Table I of
Report 586, but as a function of Regy, rather than Regest « The
Regqsr curve of the NACA 0015 data of Report 586 which yields Regsr

closest to 665,000 is Repest = 331,000. Thus
Regpp = 2.64(331,000) = 874,000 ,
and Table I of Report 586 gives

(]

O‘ho =0

A, = 0.092 per degree .

Then the "corrected" section coefficients for the NACA 0015 are

given by
’
o, = X, + 0.39C, in degrees (d.s)
cp = 3,0, = 0.0920x, (d.5)
¢, =Cp +0.0016C; - 1/3(15-6)(0.0002)
¢, =C,+ 0.0016C, - 0.0006 . (d.6)

Using equations (d.4), (d.5), and (d.6), and data read from the C_
and Cp curves of NACA Report 586, c, and c; for NACA 0015 at

Re = 874,000 were obtained, Table D-1. However, when plotted,
Figure D-1, the calculated data showed a slight scatter due to

error in reading the Report 586 curves. Therefore, a faired curve
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TABLE D-1

NACA 0015 AIRFOIL SECTION DATA AT Reess = 874,000, FROM
NACA REPORT 586, CORRECTED BY NACA REPORT 669

Report 586 Corrected by Report 669
’

O(o Cl. CD NO Cx Cd
0° 0.000 .0110 0.00° 0.000 .0105
2° 0.200 .0115 2.08° 0.191 .0110
4° 0.400 .0120 4.16° 0.383 .0115
6° 0.590 .0145 6.23° 0.573 .0145
8° 0.780 .0190 8.30° 0.764 .0194
9° 0.840 .0215 9.33° 0.858 .0220
10° 0.900 .0235 10.35° 0.952 .0242
11° 0.970 .0275 11.38° 1.047 .0284

was drawn through the plotted points, and values from this curve
"were used as input to the channel wing computer program. These
final data for the 0015 airfoil at Re = 874,000 are presented in

Fully Turbulent Boundary Layer Section Data

The airfoil section data of NACA Report 586, Jacobs and
Sherman [24] » are only for smooth sections with, consequently,
extensive but undetermined amounts of laminar boundary layer flew.
That is, no rough or fully turbulent section data are available for
the NACA 0015 at or near the test Reynolds number of 665,000. How-
ever, a semi-empirical method developed by Schwartzberg [26] allows

the estimation of the profile drag coefficient of smooth, symmetrical
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TABLE D-2

NACA 0015 AIRFOIL SECTION DATA AT Re.¢¢ = 874,000,
FROM FATIRED CURVE THROUGH DATA OF TABLE D-1

Cy Cy
0.00 0.0105
0.10 0.0107
0.20 0.0110
0.30 0.0114
0.40 0.0122
0.50 0.0133
0.60 0.0149
0.70 0.0170
0.80 0.0195
0.90 0.0227
1.00 0.0267
1.10 0.0317

aifoils with fully turbulent boundary layer at any Reynolds number.
Briefly, the method forms the airfoil section profile drag as the
sum of friction drag and pressure drag. The former is assumed to
be that of a smooth flat plate in turbulent flow at the desired
Reynolds number, and the latter is obtained from NACA section data
as the difference between total drag and friction drag. The actual
procedure is complicated, and Schwartzberg [26] provides graphs to
facilitate the calculations. In the present case of the NACA 0015

at Re = 665,000, the result is
¢, = 0.01196 + 1.86 (o )" , (d.7)

where (X 1is in radians. With the assumption of a linear 1lift curve

slope of the same value as given by NACA Report 586 for the 0015 at

Reg¢s = 874,000, @, = 0.092 per degree, C, versus ¢, data for
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smooth, turbulent flow were estimated. These data are given in

Table D-3, and plotted in Figure D-1.

TABLE D-3

NACA 0015 AIRFOIL SECTION DATA FOR FULLY TURBULENT
BOUNDARY LAYER, AT Reg¢¢ = 665,000,
BY SCHWARTZBERG'S METHOD

Cy Cd
0.00 0.0110
0.10 0.0120
0.20 0.0122
0.30 0.0128
0.40 0.0137
0.50 0.0152
0.60 0.0172
0.70 0.0200
0.80 0.0234
0.90 0.0278
1.00 0.0329

1.10 0.0391
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Smooth Section

Reges = 874,000

Schwartzbarg's Method
for Fully Turbulent
Boundary Layer

Figure D-1. NACA 0015 eirfoil section data.
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POWER REQUIRED FOR LEVEL FLIGHT

Th.ust Required

For equilibrium level flight at constant altitude and speed,
T = D = Cth . (e.l)

if it is assumed that the thrust vector is aligned with the direc-

tion of flight. Assuming a parabolic drag polar, we write

D = (C% + —-—*MC‘ Gls . (e.2)

Now
L = W,
so
C, = W/ts ’

and thus the thrust required is

T = |Cp + ("ﬁx?’,‘”’s’,) 95 - (e.3)

But the aspect ratio is defined as

1
R = b/s ,
- R ATAY
s° T = C%?,S * req (T)
2 2 2
SR RYCTOURIEN () AR
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Nondimensional Thrust Required

The first term in equation (e.4) is called the parasite
thrust required, and the second term is called the effective induced
thrust required (Perkins and Hage [22] ). The former increases with
V1 and the latter decreases with V', The two terms are equal at
one speed only, and it can be shown that this is the speed for mini-
mum thrust required (minimum drag). Write equation (e.4) as

T = Ava + B/Vg ’

where
A= (% G, )
= 2 _[w \;
8 = sz (%)
then
4T - 2AV - 7'3/\/3 . (e.5)

dv
Setting dT/dV equal to zero and solving for V(.,)“h

= ! * T
v‘.'f)h\\n - \/-az\ = J;—%—g' (-%L) gco S

V _ 1.061
Clia — Ve C%? v ¢b

But we have assumed equilibrium level flight above, with T = D, so

(e.6)

V( %) max = V(D)ni-\ = V‘T)Min

_ _1.061 [_\
V(l./')“' - [e—é——s\ (e.7)
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Thrust at the speed for (L/D)max 1s found by substitution into

equation (e.4):

- : 8
T(L/D)m‘u - A v("/o)mq; + ”".
(“%¥max

=AE+B/X/:=JPTB“+J§T,

confirming that the two terms of equation (e.4) are equal at minimum

thrust. Then

%
Towa= 278 = 2| (% C05)(75)(%)

1:;,53.““ = 1.127(“’/5) ’-c—%"—-s— . (e.8)

The thrust required at any flight velocity can be nondimen-

sionalized with T"'/o)mu

T - A 2 B 1
P = = V' & ==
T s 2,/AB ‘ 2 /AR’ V!

i
Ny
>

[\[ﬁ?V‘*’JF#]- (e.9)

——

Since \/(I = V‘ = \/B/A ,

“/0lmax (Pimin
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the nondimensional thrust required for level flight is

(v/l )z , (e.10)

v(‘/o) may

I =%(v/ '

(3
v‘%)mn )

(*~0)wmax

where V|, RO are given by equations (e.7) and

(LIO)qu

(e.8), respectively.

Nondimensional Power Required

The power required for equilibrium level flight is obtained

from the relation P = TV:
% = I—- ,_\./_. . (e.11)
("’b max -T(-y. nag v(%)nn

Substituting equation (e.l0), we find that

3
% = 1/2 (._Vr + 71— ) (e.12)
() enax Vm.... /V
(56 )aax

The power required at the speed for (L/D)n,, 1is obtained

from equations (e.8) and (e.7):

Rt = Toir Vi)

(1.127)(”%) G, 5 A28 W,



235

p _ 1,195
e m (e.13)

This power equation has units of ft - 1b/sec.
It should be noted that the above development is for low

Mach numbers only, since the drag polar will not be parabolic as the

critical Mach number is approached.

Generalized Power Required

In order to compare power required for aircraft with plane,
channel, and ring wings on a generalized plot, P/P““)m“ is formed

with equation (e.l13):

_ P ver ¢ (J;,'y%
- 4’ N\
() wnex L. 4 95 C°o S w

() - (BR5) . e

p
Also, using equation (e.7), we nondimensionalize the velocity:

¥
Virdmas

4ec°°s

(e.15)

Substituting (e.12) and (e.l15) into (e.l4), we find that

,’/‘Pcf.?s ‘(b/\ﬁl)1/z = For (1 :u)( FF )y

1.061 7y
i v fc. S Zﬁb:
%o /W
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4 b 2
0.597 [o.ese (v !c.. S /Sﬂ )
i.c'u/e
v C/Eo, g Jg 7N . (e.l6)
Y
Thus ‘J'CTJ-E;\ (%l) t can be plotted versus VE_S" /g)“" to

obtain a generalized plot of power required for level flight.

i

+

Modifications for Channel and Ring Wings

The power required for level flight for any aircraft was
developed above as a function of aircraft weight. In order to com-
pare aircraft with plane, channel and ring wings, an estimate of the
relative weights is required. Simply increasing the weight W of the
nonplanar wing aircraft by the ratio of wing total area to projected
area would put the channel and ring wing aircraft at a very large
and unfair disadvantage, since wing weight is only a fraction of
aircraft structural weight, and an even smaller fraction of flying
weight. Some examples of the ratio of wing weight to take-off

weight from Corning [27] are:

TABLE E-1

WING WEIGHT AS A FUNCTION OF AIRCRAFT TAKE-OFF WEIGHT

Aircraft Type Take-0ff Weight Wing Structural Weight
Take-Off Weight

Light private 2,000 1bs. 0.10
Light private 3,000 1bs. 0.09
DC-3 size transport 30,000 1bs. ' 0.12
DC-6 size transport 100,000 1bs. 0.09
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It is seen that wing structural weight is typically about 10% of
take-of f weight. Then the weight increase for the nonplanar wings
may be estimated as the wing area ratio applied to 10% of the air-

craft weight. For the channel wing aircraft the modified weight is

W = 09W + (%‘;) (0.1w) = t.057w (e.17)

and for the ring wing aircraft,

4

W = 0.9W + (—2‘2—%‘55—)(0.1W)= {.214 W (e.18)

b

where W is the take-off weight of the plane wing aircraft.

Other modifications to the results of the previous sections
are necessary. It is convenient to retain S as projected area, but
then the profile drag coefficient must be increased for the channel
wing and ring wing aircraft. However, since the aircraft profile
drag coefficient Co. is composed of fuselage, tail, etc., drag as
well as wing form drag, the C°. should not be increased by the
ratio of total channel (or ring) wing area to projected channel (or
ring) wing area. Hoerner [17] gives the following examples of the
ratio of wing profile drag to aircraft total parasite drag (induced

drag excluded from total):
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TABLE E-2

WING PROFILE DRAG AS A FRACTION OF
TOTAL AIRCRAFT PARASITE DRAG

Aircraft Type Wing Profile Drag
Total Aircraft Parasite Drag
Me-262 0.33
Me-109G 0.41
Ju-88 0.44

A ratio of 0.40 is chosen as a representative value for the work

here. Then the CDO increase due to the nonplanar wings is esti-

mated as the wing area ratio applied to 40% of the planar wing

aircraft profile drag. For the channel wing aircraft the profile

drag coefficient becomes

C;, = 0.60C, + (—’;—ﬁ-&) (0.40) G, = L228C, , (e.19)

and for the ring wing aircraft,

C:. = 0.60 Co. + (212"5:)(0.40) C% = 1.95¢ CD, v (e.20)
where Co, 1s the profile drag coefficient of the plane wing air-
craft. With these changes, the wing span b becomes 2R for the chan-
nel wing and ring wingz aircraft. W and C;b are used in the power

required equations in lieu of W and C.., respectively.

Finally, of course, the correct span efficiency factor e
for each type of wing must be used. For the channel and ring wings,
e was shown in previous chapters to be 1.5 and 2.0, respectively.
To provide conservati’e comparisons, the maximum thecretical value

for e for planar wings, 1.0, will be used.



