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ABSTRACT

A new mathematical model is presented to overcome the limitations in existing 

hydraulic models used to predict cuttings transport when drilling a horizontal or deviated 

well. A new three-segment (a horizontal and near horizontal segment, a vertical and near 

vertical segment, and a transit segment) hydraulic model under two- phase (solid-liquid) 

flow in an annulus was developed to predict and interpret cuttings transport mechanisms. 

In particular, the model developed in this study advances a three-layer (a stationary bed 

layer o f  drilled cuttings at the bottom, a moving bed layer above it, and a heterogeneous 

suspension layer at the top) hydraulic model for the horizontal and near horizontal 

segment. .<\n existing two-layer model was modified for a transit segment, and a one- 

layer model is used for the vertical and near vertical segment.

This study describes the model development for each segment, the combination o f 

each model, the solution, and the simulation results of the combined three-segment 

model. To ensure a comprehensive understanding o f  the effects o f  the parameters 

affecting cutting transport efficiency, the simulation under drilling mode was performed. 

This involves build-up o f cuttings-bed and the cuttings transport out o f an existing 

cuttings-bed.

The concept o f minimum anti-sliding velocity (MASV) o f  the cuttings-bed was 

developed for the transit segment. From a cuttings transport point o f view, this segment is 

the most critical and difficult based on the inter-relationship between parameters. These 

parameters involve fluid rheology, wellbore deviation, interfacial faction between a 

suspension layer and a cuttings-bed, and in-situ fluid velocity in a suspension layer. For

vn



this segment, the following were quantitatively analyzed: cuttings-bed distribution with 

its wellbore deviation, cuttings-bed movement and its direction, MASV, and pressure 

gradient.

In this study a user friendly simulator, CT-WellClean®, was developed based on the 

three-segment hydraulic model. This simulation program is capable o f  predicting the 

cuttings transport in coiled tubing while drilling under the following conditions: fluid 

pumping rate, fluid rheological characteristics, wellbore geometry, formation 

characteristics, and wellbore deviation. In addition, it is capable o f providing solutions to 

problems related to selection o f drilling fluids and prediction o f  fnctional pressure losses 

o f  drilling hydraulic systems. This simulation program also allows drilling engineers to 

simulate all possible in-situ drilling conditions, resulting in the proper design o f  drilling 

programs and selection o f  fluid systems.

The simulation results o f CT-WellClean® show how to obtain a reasonable 

pumping velocity, and how to optimize the rheology o f  drilling fluids for the lowest 

possible pressure gradient. These results can serve as an operational guideline for the 

design o f a drilling program. Moreover, sensitivity analyses o f  the effects o f  the 

parameters that affect the efficiency o f  cuttings transport were performed. The results o f 

the sensitivity analysis are compared with published experimental data. Finally, the 

observed agreement and discrepancies concerning these results are also discussed.
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CHAPTER ONE

FORMULATION OF THE PROBLEM

L i Introduction

It has been recognized for many years that the removal o f the cuttings from a 

wellbore during the drilling o f horizontal and deviated wells poses special problems 

Insufficient hole cleaning leads to accumulation o f cuttings in the annulus especially o f a 

deviated wellbore. As the cuttings settle in the drilling fluid, a cuttings-bed is formed 

along the bottom o f the hole. This may cause severe drilling problems including 

excessive over-pull on trips, high drag and torque, stuck pipe, hole pack-off, wellbore 

steering problems, excessive equivalent circulating density, formation break down, 

premature bit wear, slow ROP, and difficulty in running casing and logs. ‘

Drilled cuttings tend to settle out o f drilling fluids on the lower side o f the wall in 

annulus because o f  the density difference between the solids and the carrier fluid. 

Knowledge o f the dynamics o f cuttings transport mechanism and cuttings settling is 

essential to the design o f effective transport systems. These systems involve pumping 

rates o f drilling fluid, rheological properties, and ROP for a given wellbore configuration

1



An investigation by Amoco^ showed that 70% o f lost time, due to unscheduled 

events, was associated with the sticking o f  the drilling string in deviated wells. A case 

study by Hopkins^ showed that one third o f  all stuck pipe problems are due to insufficient 

wellbore cleaning. A single stuck pipe incident may cost over one million dollars 

depending on the situation. ' Bradley et al.'* reported that stuck pipe costs for the oil and 

gas industry were in the range o f 100 to 500 million US dollars per year.

In an attempt to avoid such problems, drilling operators often include such practices 

as washing and reaming as the drilling tluid is circulated and the drilling bit is intruded 

into the wellbore; and back reaming, wherein the drilling fluid is circulated and the bit is 

withdrawn from the wellbore. Other operations, such as a wiper trip, are often performed 

to attempt to control the amount o f cuttings accumulated in the wellbore.' All these 

operations require time and can significantly add to the costs o f drilling horizontal and 

deviated wells.

In the last two decades, considerable efforts have been made to solve cuttings 

transport problems in horizontal and highly deviated wellbores. These efforts can be 

categorized into two main approaches. One is an empirical approach in which researchers 

begin with experimental work to obtain data from scale-up models and then correlate this 

data by dimensional analysis or semi-theoretical reasoning. The other approach is a 

theoretical study in which researchers develop sets o f maffiematical equations by 

analyzing the forces, stresses, and momentum acting during the cuttings transport 

process. They then solve these equations with certain physical or mathematical 

assumptions(boundary conditions).'



There are numerous mathematical (analytical and numerical) and empirical models 

for the prediction and interpretation o f hydraulics o f cuttings transport mechanism. 

Common problems with most o f these cuttings transport models include inaccurate 

predictions, when compared with the experimental results or in-situ drilling results, and 

discrepancy between the models'" There seem to be two main reasons for these problems 

First, researchers make ambitious attempts to develop comprehensive models that cover a 

wide range o f conditions (from vertical to horizontal) simply as a function o f wellbore 

deviation. Azar and Sanchez*" noted that researchers used the same methodology for 

different physical phenomena that occur under different conditions. Second, researchers 

make too many assumptions or neglect certain observed phenomena.

Thus, a new mathematical model is necessary to overcome some o f  the limitations 

o f the existing hydraulic models.

1.2 L iterature Review

Since researchers were interested mainly in vertical wells, attention was focused on 

prediction o f  the rheology effects and flow rates on drilling operations by knowing the 

slip velocity o f the cuttings '" By the end o f the 70’s, several studies^* developed 

correlations for slip velocity, related to cuttings transport efficiency in vertical wells, 

between fluid rheology and physical characteristics o f drilled cuttings.

The advent o f horizontal and deviated well drilling, due to economic benefits, has 

led to various attempts to resolve cuttings transport problems. Horizontal wells are drilled 

to exploit reservoirs exhibiting thin pay zones, resolve problems with water and gas



coning, obtain greater drainage area, and maximize the productive potential in naturally 

fractured reservoirs. However, a major deterrent to horizontal drilling is the removal o f 

drilled cuttings. Several cuttings transport models (mathematical and empirical) have 

been developed.’"’’ Reviewing these works can enhance understanding o f  how 

researchers approach this problem and what other problems they might have.

Tomren’ performed one o f the first practical studies on cuttings transport in 

deviated wellbores. He identified the existence o f three different layers that might occur 

during the flow o f drilling fluid and cuttings in a wellbore: a stationary bed, a sliding bed 

and a heterogeneous suspension layer. Ford et a l.'” later confirmed these observations 

These experimental observations were used as a basis for a two-layer flow model 

presented by Gavignet and Sobey. ’ ’ They assumed that the cuttings fell to the lower part 

o f the deviated wellbore, and formed a cuttings-bed that slid up the annulas. Above this 

cuttings-bed, a second layer o f pure drilling fluid exists. Consideration o f the momentum 

balance for each o f the two layers enabled the deposit bed thickness to be estimated as a 

function o f  nominal annular velocity and fluid rheology. Neither the cuttings suspension 

nor the stationary bed’s effects on the transport mechanism were considered in the model.

W alton’" developed a mathematical model to describe the suspension mechanism of 

drilled cuttings. He introduced a concept o f particle diffusion in the fluid flow zone over 

the cuttings-bed. He solved a diffusivity equation for the particle concentration in a 

suspension layer. This mathematical model was developed based on analysis o f forces 

and stresses acting on a cuttings-bed and a suspension layer. His model consists o f a 

stationary bed at the bottom and suspension layer at the top. The rolling/sliding 

mechanisms o f  cuttings transport found in a horizontal segment were not considered in



this model. Solids suspension under strong turbulent eddies is the only transport 

mechanism in this model.

Researchers at the University o f Tulsa carried out some o f the earliest experimental 

studies o f cuttings transport in directional drilling. Tomren, lyoho, and Azar*^ studied 

effects o f pipe rotation and eccentricity, wellbore deviation, drilling mud type, and flow 

regimes on cuttings transport performance. They found that a hole deviation angle of 

40"̂  to 50'̂  was critical for cuttings transport, due to the downward sliding o f a cuttings- 

bed. Pipe rotation has less effect on cuttings transport performance than that of pipe 

eccentricity, which was found to have a significant impact on cuttings removal. Okrajini 

and .Azar'"* performed an experimental study o f  the effects o f field-measured mud 

rheological properties (e.g. the ratio o f yield point to plastic viscosity: YP/PV ratio) on 

cuttings transport in directional well drilling. They noted that the effects o f mud yield 

were insignificant in high-angle wells (>55"). Becker, Azar, and Okrajini'' correlated 

rheological properties, including yield point, plastic viscosity, Power-law exponent, 

consistency index. These were developed with 180 tests o f cuttings transport 

performance. They indicated that the data with low-shear-rate parameters correlated 

better with annular cuttings concentration in steady-state flow.

Clark and Bickham'^ used a mechanistic model to describe hole cleaning. This 

model considers the various mechanisms involved in the cuttings transport out o f  a well 

(i.e., rolling, lift, and particle settling). Clark and Bickham’s paper concurs with industrial 

opinion classifying flow rate as the most important factor in hole cleaning, and it 

considers fluid density and rheology as the most important drilling fluid properties that 

affect hole cleaning. The Herschel-Bulkley rheological model was used in their paper



with the fluid’s yield stress being the dominant factor. The influences o f the other 

rheological parameters (i.e. consistency index and fluid behavior index) were unclear.

Rasi*’ investigated the rate o f cuttings-bed development. This researcher focused on 

predictions o f  cuttings-bed height in an eccentric wellbore. In an undefined manner, he 

used a dimensionless friction factor (which included factors for fluid rheology), well 

geometry and design, and pump rate. The plastic viscosity {/Up), the yield point ( z}.), and 

the viscometer 6-rpm term (which approaches the yield stress term r,. in the Herschel 

Bulkley model) were considered as input parameters.

Recognizing the role o f fluid velocity in cleaning an annulus where the drillpipe is 

off-center or eccentric, others have studied the distribution o f annular point velocities.'^ '" 

Sophisticated computer models have been developed to calculate the magnitude o f these 

velocities, both above and below the eccentric drillpipe. These researchers have all 

recognized that the flow index. //, (from the Herschel-Bulkley and Power-law rheological 

models) controls the flow distribution in an annulus when the inner pipe is eccentric 

They also recognized that flow distribution at the bottom part in a highly eccentric 

annulus showed very low or almost zero velocity.

Sanchez et a l.'' investigated the effect o f drill pipe rotation on hole cleaning while 

drilling directional wells. The results showed that the drill pipe rotation had a 

considerable effect on hole cleaning, and that the dynamic behavior o f the drill pipe 

(vibration, turning, etc.) played a significant role in improving hole cleaning. They 

quantified the effects o f drillpipe rotation on cuttings transport through the sensitivity 

analysis o f numerous data from experiments with and without drillpipe rotation.

Martins and Santana'* presented a two-layer model that was more versatile than



Gavignet and Sobey’s m odel.'' This model allows particles to be in suspension in the 

upper layer. The mean particle concentration in this layer was calculated from a 

concentration profile that was obtained by solving a diffusion equation. This approach 

was based on earlier works by Doron et al.'^ on slurry transport.

Recently, Doron et al.'^ introduced a three-layer model for solid-liquid flow in 

horizontal and inclined pipes using continuity and momentum equations to define fluid 

dynamics. This model was designed to overcome the limitations o f  the two-layer model, 

which was developed earlier for pipe flow. However, the applications o f this model also 

have some limitations. This model does not consider annulus flow, rheology o f the carrier 

fluid, and the rolling/lifting mechanism in solid transport.

lyoho and Takahashi'"* proposed a three-layer, two-phase flow model to predict 

flow characteristics that include the formation o f dunes, coupled with velocity and 

pressure fluctuations. Energy balance and pressure fluctuations are the basis o f the model. 

Their model predicts the dune’s thickness only when the pressure fluctuation is known, and 

vice-versa.

Nguyen and Rahman' published a mathematical model based on a three-layer flow 

concept for cuttings transport and hole cleaning in horizontal wells. This model did not 

specify the boundary conditions o f each flow mode. Furthermore, the model did not 

consider the effects o f changes in the drilling fluid rheology and cuttings sphericity. This 

model was developed only for horizontal well applications. The unit used for defining 

force balance on each layer has no consistency in this model. However, they explained 

effectively how a three-layer mode became a two-layer mode with changes in nominal 

annular velocities o f the drilling fluid.



Cho et al.^  ̂ extended the Doron and Bamea^^ mathematical model (horizontal pipe 

flow to annulus flow) with an additional consideration o f  drilling fluid rheology, drilled 

cuttings shape, cuttings concentration, and wellbore geometry with eccentricity o f coiled 

tubing drilling. This model uses a three-layer concept in annuli: i.e., a cuttings stationary 

bed at the bottom; a cuttings moving bed above it; and a heterogeneous dispersed 

suspension layer at the top. The effects o f  the cuttings stationary bed are well defined in 

this model. Local velocity as a function o f cuttings-bed and nominal annular velocity 

terms were used for the analysis o f the transport mechanism. Cho et al.*  ̂ pointed out that 

the conventional mechanistic models, which handle cuttings transport from vertical to 

horizontal as a function o f wellbore deviation, could not properly characterize the 

cuttings transport mechanism. The dominant factors controlling cuttings transport are 

different depending on the wellbore deviation. They further extended a-three layer 

horizontal model to cuttings transport in deviated wellbores.

A detailed review o f the published experimental data reveals that the characteristics 

o f  cuttings transport varies with a change in the deviated wellbore angles. Some 

researchers'^'"^ reported from their experimental works that the cuttings-bed in annuli is 

unstable under a certain range o f wellbore deviation. The most unstable and difficult 

region for cuttings transport in a deviated well is reported as 30" to 60“ from a vertical 

p o s i t i o n . I n  addition, the cuttings-bed sometimes slides down toward the bottom hole. 

However, the existing models, which can handle cuttings transport in highly deviated to 

horizontal wells, do not consider these characteristics for this region. One set o f the 

mathematical model based on wellbore deviation only cannot properly characterize the 

cuttings transport mechanism in horizontal and highly deviated wellbores.



1.3 Objectives and Methodology

A new three-segment mathematical model was developed to overcome the 

limitations in the existing hydraulic models by considering characteristics o f wellbore 

deviation on cuttings transport in annuli. This model consists o f three segments: 

horizontal and near horizontal segment (60“ to 90“), vertical and near vertical segment (0“ 

to 30“), and transit segment (60“ to 90“).*  ̂ Three different layer models can characterize 

the dominant factors that affect cuttings transport in each segment. In particular, the 

model developed in this study advances a three-layer flow m odîl for the horizontal and 

near horizontal section (this section will now be called horizontal segment). The existing 

two-layer model was modified for the transit section (this section will now be called 

transit segment), and the one layer vertical model was used for the vertical and near 

vertical section (this section will now be called vertical segment).

1.3.1 Objectives

There are three major objectives in this study and they are as follows.

1. To characterize the cuttings transport mechanism as a function o f wellbore deviation 

and drilling parameters. These parameters involve drilling fluid flow rate, fluid 

rheological characteristics, wellbore configuration (wellbore and coiled tubing 

diameters), formation characteristics (sphericity and cuttings density), wellbore deviation, 

and the ROP. The cuttings transport mechanism in coiled tubing drilling is analyzed to 

develop a flow layer model for each segment in wellbore deviation.

2. To develop a mathematical model based on forces, stresses, and momentum balances 

acting on each flow layer. The mathematical model consists o f  three-segments, where



each segment uses a different flow layer model. The results o f  the mathematical model 

simulation were compared with the published data.

3 . To develop the computer simulation program, CT-WellClean^. This program can be a 

useful tool for drilling engineers to simulate all possible in-situ drilling conditions, 

resulting in the proper design o f drilling programs and selection o f fluid systems.

1.3.2 Methodology

The methodology of this study was to develop a mathematical model (a three- 

segment hydraulic model) for the accurate prediction and estimation o f cuttings transport 

in coiled tubing drilling. Wellbore deviation was divided into three-segments based on a 

wellbore deviation: a vertical segment, a horizontal segment, and a transit segment. Each 

segment used a different flow layer model. In the development o f the mathematical 

model, factors affecting cuttings transport described in Chapter 2.2 were included.

A simulation program, CT-WellClean®, has been developed based on the 

mathematical model developed in this study. This simulation program was developed to 

predict cuttings-bed area distribution, bed heights, pressure gradient, moving-bed 

velocity, and MASV with changes in drilling parameters that affect cuttings transport 

efficiency. These parameters include wellbore configuration, nominal annular velocities, 

fluid rheology, ROP, coiled tubing used in drilling, cuttings size and density, ROP, and 

wellbore deviation angle.

This program also included the development o f a reference hydraulic module for 

the estimation o f drilling hydraulics for the inside o f coiled tubing and annular section 

(formed with a wellbore and coiled tubing). In this hydraulic reference module, the
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horizontal sections o f coiled tubing and annulus were considered without the effects of 

gravitational force. The magnitude o f hydrostatic pressures inside coiled tubing and 

annulus is the same, but their directions are different. Therefore, these pressures can be 

offset in the calculation o f  pump capacity. This study also included simulations o f this 

program with the various in-situ drilling conditions. These simulation results with the 

similar conditions used in other researcher’s experiments were compared with their 

published experimental data. The analysis o f these comparison results verified the 

appropriateness o f this simulation program.

1.4 Organization of the Dissertation

The most prevalent factors that affect cuttings transport in horizontal and deviated 

wells while drilling with coiled tubing are discussed in Chapter 2. This chapter also 

discusses frictional pressure loss in both straight tubing, as a drilling fluid conduit, and 

annuli. The various correlations for the prediction o f frictional pressure loss are 

discussed. The correlations used in the computer hydraulic simulation program are 

specified. The effects o f wellbore deviation in cuttings transport mechanism are discussed 

with the principles and the background theories related to this mechanism.

Chapter 3 discusses the development o f a three-layer hydraulic model for horizontal 

wellbores. The details o f the model hypotheses, model development, solution, and 

simulation results are discussed. This three-layer model is used for further development 

o f the deviated three-layer model for highly deviated wells (horizontal segments).
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Chapter 4 discusses the development o f each segment o f the three-segment 

hydraulic model. Each segment; a vertical segment (0 -  30*̂ ), a horizontal segment (60 -  

90“̂), and transit segment (30 -  60“), uses a different hydraulic layer model. The 

characteristics o f each segment in cuttings transport mechanism are discussed in this 

chapter. The treatment and combination o f boundaries between segments are also 

described. The sensitivity analysis based on computer simulation with the various 

parameters is performed and these simulation results are compared with published data.

Chapter 5 discusses the development o f a mathematical model to predict the 

minimum anti-sliding velocity (MASV) in transit segment. The cuttings-bed at the transit 

segment is unstable in view of cuttings transport and cuttings-bed movement. This 

chapter focuses on the characterization o f  transit segment for predicting both the MASV 

and additional frictional pressure loss in drilling fluid hydraulics due to a cuttings-bed 

movement and fluid flow through a cuttings-bed.

Chapter 6 discusses the basis o f the simulation program. The details for the three- 

segment model solution, development, and user interface are described.

Finally, conclusions and recommendation are discussed in Chapter 7 based on this

study.
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CHAPTER TWO

THEORETICAL BACKGROUND OF 

CUTTINGS TRANSPORT MECHANISM

2.1 Introduction

Since its formal introduction into the petroleum industry, coiled tubing has 

undergone many applications, such as fracturing, cementing, logging, sidetracking, and 

coiled tubing drilling. These applications have dramatically improved coiled tubing’s 

capabilities. Today, coiled tubing is applied in almost every area o f the petroleum 

industry. Coiled tubing technology has been applied to a wide variety o f oilfield 

applications including, but not limited to, horizontal and directional drilling, electric 

wireline well logging, cementing, completion, tubing conveyed perforating, remedial 

work, acidizing and stimulation, side tracking, foam fracturing, sand control, and 

production.

One o f the primary uses of coiled tubing is in the cleanout o f a deviated wellbore, 

which is similar to cuttings transport during drilling. '̂*’̂ ' Coiled tubing technology, along
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with mud motors, has revolutionized the drilling industry and has dramatically changed 

the way horizontal and directional wells are drilled. This technology also allows for 

underbalanced drilling o f some wells. The operation involves circulation o f fluid through 

the coiled tubing down to the drilled cuttings filled in the wellbore. The fluid mixes with 

cuttings by large turbulent eddies and carries cuttings up to the surface through the 

annulus between the coiled tubing and the casing (wellbore). This chapter discusses and 

summarizes the basic theories adopted in this dissertation, which affect cuttings transport 

in coiled tubing drilling.

2.2 Factors Affecting Cuttings T ransport

There are many parameters that affect the cuttings transport in horizontal and 

deviated wells while drilling with coiled tubing. The most prevalent factors are as 

follows:

I ) Annular drilling fluid velocity

2) Drilling fluid properties

•  Density

• Rheology

3) Wellbore configuration

•  Coiled tubing eccentricity

•  Wellbore deviation angle

•  Hole size and coiled tubing size

4) Rate o f penetration
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• Bulk volume generated by the bit

• Cuttings concentration

5) Physical characteristics o f cuttings

• Cuttings specific gravity

• Cuttings size and its distribution

6) Others

• Coiled tubing movement

• Coiled tubing vibration

• Wellbore surface smoothness

The effects o f the main parameters on cuttings transport efficiency were analyzed 

through sensitivity studies by the theoretical simulation that will be discussed in later 

chapters. Figure 2.1 illustrates a graphical summary o f the major parameters that 

influence cuttings transport in relation to their ease o f control in the field. Practical use of 

these parameters to control cuttings transport is. however, very much dependent on their 

controllability in the field.’ For example, drillpipe eccentricity has a strong influence on 

the cuttings transport. However, it is difficult to control the degree o f eccentricity during 

coiled tubing drilling. As shown in Fig. 2.1, the flow rate o f drilling fluid and rheology 

are the two main parameters. This would strongly influence cuttings transport while their 

control in the field is relatively easy. In other words, to ensure efficient transport o f 

cuttings, one may depend on the optimum combination o f drilling parameters.

The movement o f the coiled tubing while drilling may affect cuttings transport. 

However, its movement is quite small. For example, the rates o f movement o f coiled 

tubing are 0.014 -  0.056 fl/s based on 50 -  200 ft/hr o f the RCP. When these velocities
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are compared with 3 - 10 ft/s o f local velocities (if), their relative velocities are very 

small and their effects may be insignificant.

The vibration o f coiled tubing during drilling may also affect cuttings transport. As 

a result o f  a transferred energy reaction between a drilling bit and a rock formation, the 

downhole motors will generate some vibration in coiled tubing. The coiled tubing 

vibration may enhance cuttings to rebound in the fluid flow regime for cuttings diffusion. 

This vibration may also break some of the cuttings into fine particles, which can then be 

easily lifted into a fluid flow regime. However, this effect, which is quite difficult to 

quantify, is much smaller than that o f a drilling string rotation.
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Fig. 2.1 -  Key variables affecting the cuttings transport'
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Actual wellbore drilling is neither sleek nor smooth. A wellbore drilling will be 

affected by various factors, such as formation types, coiled tubing methods, coiled tubing 

vibration, drilling personnel skills, bit wearing/balling, ROP, and the drilling fluid 

hydraulics. Surface smoothness o f the wellbore clearly affects cuttings transport; 

however, its degree is quite arbitrary and may not be as severe as other parameters. 

Therefore, these items were considered only qualitatively in cuttings transport.

2.3 Coiled Tubing Hydraulics

2.3.1 Background, Scope, and Significance

The bottomhole pressure and the maximum allowable working pressure o f the 

coiled tubing are the critical parameters in coiled tubing drilling applications. An accurate 

estimation o f frictional pressure loss plays a crucial role in determining the horsepower 

requirement for pumping fluids through the coiled tubing. Frictional pressure loss 

calculations are not only useful in determining horsepower requirements, but also in 

estimating the allowable hydraulic forces for downhole motors.

Flow conditions inside the coiled tubing are quite different from the annulus. The 

fluids inside coiled tubing can be regarded as homogeneous.'^ At a lower concentration 

o f drilling solids, the increase in friction pressure loss is not significant. Above 2% 

volumetric concentration o f drilling solids, friction pressure loss becomes important. '" 

Coiled tubing inside a wellbore is not a straight form. Helical buckling occurs easily in 

coiled tubing operations. Since the effects o f  helical buckling on a hydraulic calculation
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have not been clearly studied yet, coiled tubing was assumed as a straight pipe in the 

wellbore in a hydraulic calculation.

The working fluid is not only pumped through the straightened segment o f the 

reeled tubing as it flows down the well, but it is introduced there by the entire length of 

tubing left on the reel. Flow through coiled tubing is uniquely different from that in a 

straight pipe because o f  the secondary flow pattern induced by the imbalance between the 

forces acting in the radial direction o f the pipe coil. This secondary flow pattern is 

composed o f counter-rotating vortices, commonly called Dean vortices, which cause an 

increase in frictional pressure loss.^’ The (fictional pressure loss in the reeled tubing can 

have a major impact on the drilling or fracturing operations. Frictional pressure loss in 

reeled tubing has been shown on to be 200% higher than for the same fluid in straight 

tubing.^’ The friction pressure loss in annulus between the coiled tubing and casing is 

more complicated. A mathematical model was derived from the relationships between the 

forces, stresses, and momentum acting on the fluid layers and the cuttings-bed. This is 

described in later chapters.

2.3.2 Friction Pressure Loss in Straight Tubing

One o f  the important roles o f  coiled tubing while drilling is circulating drilling fluid 

from the surface to the downhole. This operation generates (fictional pressure loss. 

Frictional pressure loss is defined as the energy lost in transporting a fluid through a pipe, 

due to the (fiction between the fluid and pipe wall.^* Mathematically, the friction pressure 

loss can be expressed in terms o f  Fanning (fiction factor,/, defined as:

f  = (2 ID

18



where, pi is fluid density, U  is fluid velocity inside the coiled tubing, and the shear stress 

at the wall (r^,) is calculated by using the following expression.

...if
where, J, is the inner diameter o f coiled tubing, Ap is the frictional pressure loss across 

the coiled tubing length {L). Friction factors have been correlated with Reynolds number. 

Generalized forms o f Reynolds numbers used for non-Newtonian fluids are as follows:

# f r 2 —n /  I \  ft

Pow er-law  model) (2.3)

A'r,:< = ^  (for Bingham-plastic model) (2.4)

where, n and K  are the flow behavior index and flow consistency index for Power-law 

fluids and pp is the plastic viscosity for Bingham-plastic fluid.

Separate analysis o f friction factors versus the generalized Reynolds number is 

necessary for each fluid in any flow regime because their friction factors are different for 

the same Reynolds number. Friction pressure for laminar flow o f drilling fluid in coiled 

tubing can be predicted assuming the Power-law model.

‘1 ^ - K
4L

(2.5)

This equation is equivalent to:

16

where, /  and A//?eg are the Fanning fnction factor and the generalized Reynolds number, 

respectively.
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To predict friction factors for the transition and turbulent flow regimes, Shah^^ 

developed a semi-analytical correlation for linear Hydroxypropyl Guar (HPG) fluids in 

smooth pipes using an equation o f the following form.

/  = (2.7)

where, /„(/») is the infinite friction factor and AfnJ and B(n) are empirical fluid 

parameters. The relationships between these empirical fluid parameters and flow 

behavior index (//) are determined using experimental data. This equation works well for 

several other non-Newtonian fluids, such as Xanthan and Hydroxyethyl Cellulose (H.EC) 

based fluid.^" Shah'*' also studied the effects o f  coiled tubing roughness on friction 

pressure loss. Table 2.1 shows the values for /„ ( « ) ,  A(n), and B(n) with their respective 

values o f n. The Arabic numerals represent different fluids that have not been disclosed 

for proprietary reasons. Table 2.2 presents the Shah*' roughness correction to be used in 

increasing the value o f the friction factor as a function o f the generalized Reynolds 

number and apparent fluid viscosity at 170 s''. Apparent viscosity o f the Power-law 

fluid in centi-poise unit can be defined as follows:

/ i ,  =47880/C I / , .  (2,8)P
\  )

where, Kp is the consistency index for pipe flow (lbis"/fl') and I is the wall shear rate (s'')
\

The Shah^" correlation (Eq. 2.7) and the effect o f coiled tubing roughness are used for the 

hydraulic calculations o f coiled tubing in the hydraulic reference module developed in 

this study.
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Recently, Willingham and Shah’’̂  developed a new correlation to predict frictional 

pressure losses in straightened coiled tubing by extensive experimental work and analysis 

with different fluid systems at the Well Construction Technology Center (WCTC). They 

used a multiple regression method to specify the Fanning friction factor as a function o f 

generalized Reynolds number for polymeric fluids as follows; 

h
V 7 = « - (2.9)

where, R  represents coiled tubing curvature and is zero for straight tubing. Experimental 

constants, a  and h, are functions o f coiled tubing inner diameter {<J,) and apparent 

viscosity (//u) Equation 2.9 can be applied to both straight and reeled tubing as a function 

o f generalized Reynolds number, apparent viscosity, and coiled tubing inner diameter

Table 2.1 Constants for the Shah ’̂ correlation

Fluid n
K

lbfs"/ft^
foofn) A(n) B(n)

Water 1 1.84x10*' 1.40x10*^ 0.125 0.32

# 1 0.715 5.60x10-* 3.80x10“’ 1.96 0.701

#2 0.607 2.80x10*-’ 4.01x10“’ 2.96 0.787

#3 0.47 1.70x10*^ 5.10x10“* 6.44 0.911

#4 0.35 8.10x10*- 6.04x10“’ 14.4 1.012

#5 0.272 1.90xl0*‘ 6.19x10“’ 18.5 1.036

21



Table 2.2 Constants and equations for the Shah'*' roughness correction factor for/

Ha 170 s ' (cp) a B % increase of/

5 33.717 -312.982 (a + b/ln(A^%g))"

10 30.680 -285.388

15 27.833 -258.302

20 25.818 -240.265

30 22.681 -211.424

40 -50.069 0.492 a + b(ln(/V^,s))‘

50 -43.919 0.424

60 -39.999 0.377

80 -89.099 8.362 a + h{\n{NRes))

The frictional pressure loss associated with the turbulent f;ow o f a Bingham-plastic 

fluid is affected primarily by density and plastic viscosity. While the yield point o f  the 

fluid affects both the frictional pressure loss in laminar flow and the fluid velocity at 

which turbulence begins, at higher shear rates corresponding to a fully turbulent flow 

pattern, the yield point is no longer a significant parameter."*^ It has been found 

empirically that the frictional pressure loss associated with the turbulent flow of a 

Bingham-plastic fluid can be predicted using the equations developed for Newtonian 

fluids, if the plastic viscosity is substituted for the Newtonian viscosity. This substitution 

can be made in Reynolds number used in the Colebrook'*'* function defined by:

= -4  log Q.169m Id , +
V

1.255
( 2 . 10)
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where, tu is absolute roughness.

The generalized Reynolds number in terms o f fluid velocity (f/; fbs), and coiled tubing 

inner diameter {d,: in.) yields;

(2 .U ,

where, is apparent viscosity (cp), is fluid density (Ibm/gal).

The most commonly used turbulence criterion involves the calculation o f a 

representative viscosity that can be used in Reynolds number criterion developed for 

Newtonian fluid. The apparent viscosity is given as:

6.66 t J
^  (2 . 12)

where, //p and are plastic viscosity (cp) and yield point (Ibt/100ft*), respectively.

This apparent viscosity can be used in place o f the Newtonian viscosity in Reynolds 

number formula. A turbulence criterion for fluids that follows the Bingham-plastic model 

was presented by Hanks."*  ̂ He introduced Hedstrom number ((V̂ .̂), which is given as 

follows:

(2.13)
Mp

He found that Hedstrom number could be correlated with the critical Reynolds number, 

^Rec -  Reynold number above which the flow pattern is turbulent.

The absolute roughness (ex) is the average depth o f the coiled tubing-wall 

irregularities. The Fanning friction factor, defined in Eq. 2.10, is a function o f the 

generalized Reynolds number, Nfieg, and a term called the relative roughness, lud,. The 

Fanning friction factor,/, appears on both the left hand side and the right hand side o f the
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log term of Colebrook's^"* equation, requiring an iterative solution technique. The 

selection o f  an appropriate absolute roughness, or, for a given applications is often 

difficult. Cullender and Smith'*  ̂ noted that the absolute roughness was 0.00065-in. for 

clean steel pipe. Bourgoyne et al."*̂  suggested that the absolute roughness is usually less 

than 0.0004-in. for most drilling applications. For these conditions, the Fanning friction 

factors for smooth coiled tubing (zero roughness), Eq, 2.10 can be reduced to:

^  = 4 io g K „ ,V 7 ) -0 .3 9 5  (2.14)

2.3.3 Frictional Pressure Loss in Annuli

An effective diameter concept for the flow of drilling fluid through annuli (between

wellbore and drillstring) was introduced as a function o f  annular geometry and fluid 

rheology by Reed and Pilehvari.^^ They showed that this new criterion provides the link 

between Newtonian pipe flow and non-Newtonian flow through concentric annuli. They 

were able to correlate turbulent friction factors by using the generalized Reynolds number 

(^Reg), the effective diameter and apparent viscosity (//a). The relationship between 

friction factor and the generalized Reynolds number for annular flow in laminar region 

remains the same as the classical Eqs. 2.1 to 2.4, but the substitution o f the effective 

diameter (D^,/) and apparent viscosity (fja) is required for the diameter and viscosity, 

respectively.

Shah^^ presented an important study corresponding to friction pressure loss o f 

fracturing fluids. He developed a correlation for smooth pipes that has been widely used 

for the rheological characterization o f non-Newtonian fluids. The friction factor was 

expressed as a function o f the generalized Reynolds number and tliree conslanls, which
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were obtained experimentally (Table 2.1). Later, Shah'*’ extended his work, introducing 

the effects o f  pipe roughness on friction pressure for fracturing fluids (Table 2.2). 

Although this expression was developed for pipes, it is very useful in annular flow when 

the equivalent diameter criterion is applied.*^

It is now well established that frictional pressure loss depends significantly on the 

exact value o f  eccentricity for uniformly eccentric annuli. Haciislamoglu and Cartalos'*'* 

showed that eccentricity effects on annular pressure loss calculations are quite important, 

while dependence on fluid rheology and diameter ratio (the ratio o f coiled tubing 

diameter to the spool diameter) is less pronounced. Johnson and Sparrow '” found 

experimentally that eccentricity influenced the onset and extent o f laminar-turbulent 

transition.

Recently, Silva and Shah'*” demonstrated that the annular pressure in a fully 

eccentric annulus could be as low as 40% o f the value in concentric annulus. They also 

observed that the effect o f eccentricity is more evident as the polymer concentration 

increases. Eccentricity is a function o f the decentralization o f the coiled tubing inside the 

wellbore. Figure 2.2 illustrates the typical coiled tubing eccentricity (c), which is defined 

as;

where, 6  is distance between center points o f wellbore and coiled tubing, D  and d  are 

inner diameter o f wellbore (or casing) and outer diameter o f coiled tubing, respectively.
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We bore

Fig. 2.2 -  Typical eccentricity of coiled tubing in wellbore

The Fanning friction factor and the generalized Reynolds number for non- 

Newtonian fluids through an annulus can be described by applying the equivalent 

diameter concept into commonly used expressions for the pipe flows. These variables can 

be defined by the following expressions:

/  = 154.65
AD-diD'--ci'-^Sp

LpiQ'-
(2.16)

(2.17)

where, is the apparent fluid viscosity {cp) at a given shear rate, 0  is flow rate (gal/min) 

and Pi is the fluid density ( Ib m /g a l) .  The apparent viscosity o f the non-Newtonian fluids is 

represented by the following equation:

/ / ,  =47880 * a:. (2. 18)
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where, Ka is the flow consistency index for annulus flow (lbfs7ft^), y \  is the wall shear 

rate (s'*) given by the following expression:

X,, =39.21
( D - d \ D - - d - ) \

The consistency index, ATv,, obtained from the viscometer or rheometery data, can be 

converted into the annulus Ka by using the following relation:

K .  = K
^2//+l

^3 HÀ
( 2 .20)

where, A is a constant and is defined as follows: 

1 - Q -
( 2 .21 )

n ( l - Q -  ")

where, Q  is the ratio o f the bob to sleeve radius.

Recently, Silva and Shah'*’* developed new correlations to predict friction losses in 

annuli. They performed extensive experimental work with fluids with different polymer 

concentrations. They also developed a generalized Fanning friction factor equation for 

concentric and eccentric annuli under laminar flow conditions as follows:

/  = ^  (2.22)

where, w is a constant, determined by experimental data, for annulus eccentricity 

(between wellbore and coiled tubing) and apparent viscosity.

A separate analysis o f  the friction factor versus the generalized Reynolds number is 

necessary for each fluid in a turbulent flow because they show significant differences. 

By comparing experimental results for different concentrations o f polymer solutions.
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Silva and Shah"** observed that the ratio o f frictional pressure losses in eccentric and 

concentric annuli decreases as the fluid behavior index decreases. The effects o f 

eccentricity were more evident as the polymer concentration increased. They proposed 

the following equation for the Fanning friction factor for both concentric and eccentric 

annuli.

= / .  + " (2 23)

where, /  is the Fanning friction factor, is the generalized Reynolds number. Both /x, 

the infinite friction factor, and B are constants determined experimentally for each fluid 

concentration and type o f fluid flow (concentricity and eccentricity).

The annular friction losses, estimated by the correlations, are compared with the 

friction losses estimated by the mathematical model derived from the relationship 

between forces, stresses, and momentum acting on the flow layer. The details o f the 

derivation and comparison are described in later chapters.

2.4 Cuttings T ransport Mechanism

2.4.1 Classification of Cuttings Transport

One of the primary functions o f the drilling fluids in the coiled tubing drilling 

process is to clean rock fragments from beneath the bit and transport these cuttings to the 

surface. Cuttings generated by a bit are transported to the surface by several different 

mechanisms as they move along the wellbore. The basic principle underlying a particle 

settling velocity, Vp, is derived by the sum o f the forces acting on a particle. The
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gravitational force acts on the solid in the direction o f  the fall, and both the buoyancy 

force and the drag force act in the opposing direction due to fluid motion. The net force 

acting on a particle is the result o f  the gravitational force subtracted from the two upward 

forces (buoyancy force and drag force).

In the vertical segment, cuttings transport in the annulus occurs when upward 

velocity o f the drilling fluid exceeds the fall velocity (settling velocity) o f  the cuttings. 

The average net upward velocity o f the transported cuttings is the difference between the 

average velocity o f the drilling fluid and the settling velocity o f the cuttings in the 

annulus. Fluid rheology, particle size, shape, and wellbore geometry govern this settling 

velocity. The particle settling velocity is the dominant parameter in cuttings transport in 

the vertical segment. The carrying capacity o f the fluid is also affected by the velocity 

profile in the annulus Particle slip direction in a vertical well is opposed by the carrier 

fluid flow, as a result, the particle will be lifted out o f the well, if the mud velocity is 

greater than the slip velocity.

The transport ratio, as defined by Sifferman et al."*̂ , is the average transport velocity 

o f the cuttings divided by the average annular velocity. They suggest that the transport 

ratio should exceed 0.5 for a satisfactory hole cleaning. Walton** noted that the annular 

velocity should be twice the settling velocity o f the cuttings. This is generally accepted as 

a rule o f thumb for cuttings transport in a vertical segment, during which cuttings 

transport is usually not a problem.

In a transit segment, the direction o f cuttings settling is still vertical, but the fluid 

velocity has a reduced vertical component. This decreases the fluid carrying capacity of 

suspended drilled cuttings, resulting in faster particle settling time at higher values o f
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wellbore deviation. There is a tendency for cuttings to fall to the lower side o f the 

wellbore (or casing) and form a cuttings-bed. If a sufficiently high annular velocity is 

available, the cuttings are transported as a pseudo-homogeneous mixture.^' However, this 

situation rarely exists operationally.

The axial velocity increases with a reduction in wellbore deviation in a transit 

segment. The increased axial velocity can support cuttings more than in a horizontal 

segment. Therefore, cuttings can be in suspension for a long time in a suspension layer 

than in a horizontal segment. Lifting and suspending are the dominant transport 

mechanisms in a transit segment. It has been well recognized that solid particles can go a 

long distance by suspending particles in a suitably designed liquid. The flow behavior o f 

liquid/solid systems depends on the basic physical properties o f solids (size, density, and 

shape) and fluid (density and viscosity), wellbore configuration, and the pump rate.'" 

Depending on the values o f these parameters, particles may be conveyed in several 

different ways. Throughout this study, the term “particle” is used to denote a drilled 

cutting.

The velocity at the bottom part o f the wellbore, at which coiled tubing is located in 

horizontal or transit segment, is lower than at the top part in the annulus.'" An increase in 

eccentricity causes an increase in the flow through the annuli, thus increasing the average 

flow velocity. This increase is not uniform and the bulk o f the increase in flow is through 

the wider section. In the case o f high eccentricities, the narrow regions have a very small 

gap width. Thus, the flow regime in the narrow regions remains laminar even at high 

flow rates and the contribution o f these regions to the total volumetric flow rate is not
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significant.Therefore, the cuttings easily settle at the low-side o f the wellbore under the 

normal pumping rate (within nominal annular velocities o f 1 to 3 ft/s).^^

In a horizontal segment, cuttings are no longer fully supported by the fluid drag, 

and it is inappropriate to make predictions o f cuttings transport from the techniques based 

on the settling velocity o f the cuttings. The cuttings transport is significantly different 

from that in a vertical segment. The direction o f the cuttings settling is still vertical, but 

the fluid velocity has a considerably reduced vertical component except those due to 

turbulent eddies. This decreases the drilling fluids capabilities to suspend drilled cuttings 

and results in faster particle settling time at highly deviated wellbores. Particle trajectory 

(influenced by axial fluid movement and downward particle movement) is such that 

particles slip through the fluid, having little distance to travel before settling to the low- 

side o f the wellbore.*^ Local fluid velocities near the bottom wall are small,'" which 

reduces further particle movement. Figure 2.3 shows the direction o f cuttings slip relative 

to carrier fluid direction.

Ford et a l/"  and Gao et al.’̂ ' reported two distinctly different cuttings transport 

mechanisms in the horizontal segment, rolling/sliding and the suspension mechanisms. 

The suspension mechanism requires a higher fluid velocity than the rolling/sliding 

mechanism. The settling tendency o f particles creates a skewed distribution o f  particle 

density, with more particles moving toward the bottom of the annulus.'' This was 

qualitatively confirmed by analysis o f visual iccords for experiments o f wellbore 

cleanout tests at the WCTC.
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Fig. 2.3 -  Direction of cuttings slip related to carrier fluid direction^^

2.4.2 Settling Velocity and Drag Coefficient

A cutting particle, because o f its higher density, tends to settle out o f the drilling 

tluid at a constant rate known as the terminal settling velocity. The settling velocity o f 

any particle depends upon its density, shape, and roughness. The area o f the particle 

projected surface at right angles to the direction o f the relative tluid solid movement also 

affects the settling velocity. The fluid properties (density and viscosity) are important 

parameters that affect the settling velocity.

When a cutting is transported to the surface, there are three forces acting upon it; 

the downward force due to gravity, the upward buoyancy force, and the upward force due 

to viscous drag. Once the cutting reaches its terminal settling velocity, the net effect of 

gravity and buoyancy must be equal to the frictional force on the cutting due to the 

viscous drag. These relations can be expressed for the Newtonian fluid with the following 

equation:



y -  =
’’ 3C

4(/_ f
(2.24)

where, Vp is particle settling velocity, Co is drag coefficient, dp is particle diameter, and g  

is gravitational acceleration. Particle density and fluid density are represented by ps and 

Pi, respectively.

Equation 2.24 can be rewritten as:

Particle Reynolds number, for the non-Newtonian fluid is defined as.

Note that the terminal settling velocity is presented in the equations for ('o  and Nn,.p.

Hence, to obtain a settling velocity from the drag coefficient and the particle Reynolds

number, one needs to perform a trial-and-error procedure.'^

In most practical applications, the particles involved are irregularly shaped. The

irregular shape changes the settling behavior, unlike smooth and symmetrical particles.'■*

Spheres have a sphericity o f 1.0. However, in most practical applications o f  drilling, the

cuttings involved are irregularly shaped. Drilled cuttings have sphericities^"*^^ between

0.75 and 0.85. The sphericity (ç )  represents a degree o f deviation between a cutting

shape from a spherical shape. It is the ratio o f surface area o f  the sphere o f  the same

volume to the surface area o f  the particle. It can be defined as:

surface area o f  a sphere o f  the same volume as the particle
<P = — ----------------------    — --------      (2.27)

surface area o f  the particle
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The drag coefficient for spheres is less than that for cuttings, implying that spheres settle 

faster than non-spherical objects under similar conditions/"*

Another practical consideration is that the drilling fluid is a typically non- 

Newtonian fluid. Chien^' proposed a correlation between the drag coefficient and the 

particle Reynolds number o f irregularly shaped particles. This correlation uses the 

cutting shape factor and the effective viscosity o f  the non-Newtonian fluid at the settling 

shear rate.

F '  +0.45exp(5.03<;!?i - 1-’̂  -1 9 .4 5 exp(5.03^9)c/
[ ^ pPl J . P l

=  0 (2.28)

where, /a? is an effective viscosity. Chabra'*’ suggested using an effective viscosity at a 

shear rate equal to annular velocity divided by the nominal particle diameter. Chien" ' 

showed that the settling shear rate o f the laminar slip regime, where the viscosity o f the 

fluid has a dominant role, is in the range from 0.1 to 50 s ‘, and ;s usually less than 25 s ‘ 

The effective viscosity at various shear rates will depend on the constitutive equation of 

the fluid, or the relationship between the shear stress and the shear rate o f the fluid. 

Effective viscosity o f the two popular drilling fluid rheological models, Bingham-plastic 

model and Power-law model, are summarized below:

= + // (Bingham - plastic model)

f ' y

V‘' , y

Shah^ '̂^* proposed a generalized correlation for the settling velocity and the drag 

coefficient as a function o f the flow behavior index (//) o f non-Newtonian fluids. He

(Pow er-law  model)

(2.29)

(2.30)
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noted that a flow behavior index, //. had a significant effect on proppant settling velocity 

at a low particle Reynolds number. This effect also diminished at a higher particle

Reynolds number. He plotted Â r̂ ^vs. for non-Newtonian pseudo-plastic

fluids based on dimensionless analysis. This generalized plot results in family o f  curves 

that are functions o f the pseudo-plasticity index, n.

Peden and Luo^^ proposed the generalized drag coefficient correlation for Power- 

law fluids in laminar and transit regimes. They developed r generalized model for 

predicting settling velocities o f various shaped particles in both Newtonian and Power- 

law fluids for all flow regimes. Equation 2.31 describes the model proposed by Peden and

Luo 59

1

4

3
(2.31)

where, experimental constants, c// and hi, are proposed as flinctions o f the flow behavior 

index depending on flow regime. ( V represents shape factor (dimensionless).

Recently, Fang"" proposed the settling velocity for intermediate flow (A 'r^p < 100) 

as follows:

= 0.302
m

(2.32)

He assumed that nearly all o f  the particle Reynolds number for drilling applications were 

smaller than 100. When approaches 100, the drag coefficient approaches a constant 

value o f unity.
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Figure 2.4 illustrates the relationship between particle Reynolds number and drag 

coefficient. All the models show the same trend that drag coefficient decreases with an 

increase in a particle Reynolds number. Estimated data points show a wide band in the 

Stokes’ region, which is below a particle Reynolds number o f  2.0 in Fig. 2.4. A Power- 

law fluid model (« = 0.68 and k = 0.006 lbfs"/ft‘) was used to calculate settling velocities.

Figure 2.5 illustrates the relationship between particle Reynolds number and 

particle settling shear rate. The Shah model^’ shows a high shear rate and the Peden 

model^’ shows a low shear rate in the Stoke s region. The range o f particle settling shear 

rate is 0 .1 to 70 s'" for the range o f particle sizes (0.5 mm to 12.25 mm).

Figure 2.6 shows a comparison o f the particle settling velocities with différent 

nominal particle diameters. The settling velocities estimated by Chien”  and Shah"’ are 

very close among the various models. The settling velocities estimated by Fang"" show 

higher than other models. The Chien model^' considers the particle shape factor as a 

sphericity, specified in Eq. 2.27. Therefore, Chien s correlation'^ was used in this study. 

The Shah’s method^’ was also used for checking the appropriateness o f the determined 

settling velocity. The equations relating the drag coefficient, Co, and the particle 

Reynolds number, for Newtonian and non-Newtonian fluid flow around a smooth

spherical particle in three regions (Stokes or creeping, intermediate, and Newton or 

turbulent) are presented in Appendix A.

When the particle volumetric concentration in the drilling fluid is less than 0.5 %, 

the individual particles are so far apart they do not affect each other (i.e., no particle - 

particle interaction) as they move through a laminar fluid."' The practical range o f 

cuttings volumetric concentrations is generally 0.5 to 5 %.
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As the solids concentration in the dispersed suspension increases, inter-particle distance 

during transport becomes smaller and the particles start to interfere with each other. The 

annulus flow conditions o f  a drilling fluid were also considered as turbulent regime, 

where the possibilities for particles to interact with each other increases.

If the particles are not uniformly distributed, the effect may be a net increase in 

settling velocity, because the return flow due to displaced volume will predominate in 

cluster formation. Salama and Mikura'*' noted that the cluster formation effect was 

significant only in suspensions that were nearly mono-dispersed. They also concluded 

that most suspensions were poly-dispersed and the clusters in such suspensions were 

short-lived.

Hindered settling behavior can be defined as a function o f the particle volumetric 

concentration. Since the drilled cuttings suspension consists o f clusters o f many particles, 

the hindered settling velocity was considered in this study. The hindered settling velocity 

can be described as a Stoke’s law correction by introducing a multiplying factor. For 

hindered settling, the correlation developed by Thomas’’* was used in this study.

(2.33)

where, is hindered settling velocity and ( ’, is cuttings volumetric concentration in a 

suspension layer.

2.4.3 Lifting and Sliding/Rolling

Apart from gravity and hydrostatic pressure, the bed particles are also subjected to 

forces caused by the fluid flow. These forces could be resolved into three components:
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(I)  the frictional force, which acts tangentiaiiy along the bottom of the stream; (2) the 

hydraulic lift, which has its largest effect on the top layer o f  the particles forming the bed; 

and (3) a buoyancy force, which acts to lift the particles by the weight o f volume 

excluded by the particles.

At a small velocity the pressure at the front o f the particle is nearly the same as that 

at the back. The drag force acting upon a particle is due to the viscous tangential stress 

along that part o f the surface, which is exposed to the flow. El-Samni*^  ̂ noted that, at high 

velocities, the drag force due to tangential stress becomes unimportant compared to the 

drag due to the pressure differences caused by asymmetric pressure distribution at the 

front and at the rear o f the particle. The second force is the hydraulic lift, which results 

from the pressure difference caused by the velocity distribution along the surface o f the 

particle.

El-Samni"^ and Einstein et al."' presented results o f the dynamic forces due to a 

flowing stream acting on rocks protruding above a sediment bed. Their studies focused 

on a turbulent water stream flowing over a bed o f  rocks. Clark and Bickham'" introduced 

El-Samni’s equation"^ for the calculation o f a lift coefficient for a sphere resting on a 

streambed. They presented the lift coefficient (C^as follows;

C \ = 5.82
V

where, a ,  = —
dll

(2.34)

(2.35)
dr

The lift force {Fi) can then be defined as:

W  '
fc  = C : (2.36)
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Figure 2.7 illustrates force diagram acting on a particle sitting on the surface of a 

cuttings-bed. It will likely be positioned in an interstice of several neighboring cuttings 

held stationary by the bed. The particle was assumed to be at the edge of a rolling and 

smooth sphere. The following equation represents the summation of the moment acting 

on point “A”.

^a)^a — ^a^c; (2.37)

where, Fd is a drag force, Fb is a buoyancy force, Fc is a gravitational force. Ld is acting 

distance of drag force and La is acting distance of Fl, Fb, and Fq.

Suspension Layer
...........

Moving bed

Stationary bed

Fig. 2.7- Forces acting on a particle at the lower stratum

The first two terms give the driving moment and the last term is the opposing moment. 

When the driving moment, which arises from the drag exerted by the viscous fluid, is 

greater than the opposing torque (which arises from the weight of the particle acting on 

moving point A) the particle begins to move. A particle moves in the same direction as
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the carrier fluid when the lift force is not strong enough. This s the sliding mechanism. 

When the lift force is strong enough to lift it up, the particle is lifted into the fluid. As it is 

de-accelerated by a decrease in the fluid velocity due to reduction o f  cuttings-bed area (an 

increase o f flow path area), it will start to settle back in the wellbore due to particle 

settling.

2.4.4 Cuttings Volumetric Concentration

Early investigations o f porosity effect were conducted by investigators in the fields 

o f  ground-water geology, petroleum geology, and petrophysics. Collins"^ considered six 

different packings o f uniform spheres. The porosity o f these various packings fell 

between the limiting values of 0.2595 for rhombohedral packing and 0.4764 for cubic 

packing. Figure 2.8 shows packing o f uniform spheres. It is difficult to duplicate a natural 

packing existing in the wellbore by simply pouring spheres in a container. In addition, the 

cuttings involved are irregular shaped during drilling operations.

Knowledge o f  a cuttings volumetric concentration (f^ ) o f a drilled cuttings-bed and 

its porosity (^) are important in view of a fluid flow path and force balances. The 

cuttings volumetric concentration and its porosity have not been thoroughly investigated. 

Cuttings volumetric concentration affects forces and momentum balances, as well as the 

suspension rate in a dispersed suspension layer. Most recent s t u d i e s ' h a v e  

considered that cuttings were the same size and were spherical in shape. They assumed 

that the cuttings used in their simulation were spheres with cubic packing; cuttings 

volumetric concentration was approximately 52%.
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u) Cubic packing b) Rhombohedral packing

a) Cubic pore space b) Rhombohedral pore space

Fig. 2.8 - Cubic and rhombohedral packing / pore space with uniform spheres

For naturally occurring drilled cuttings o f non-uniform grain size, the porosity is 

dependent on the distribution o f  grain size. A variety o f grain sizes permits smaller grains 

to fill the pores formed by large cuttings. This results in lower porosities. During the 

settling and movement o f cuttings, saltation may exist above the cuttings-bed. This may 

result in the consolidation o f cuttings packing. Conversely, a cuttings-pack usually 

consists o f small regions o f irregular packing in which "bridging” has occurred. In the 

bridging regions, the porosity is invariably greater than regular packing.^^ Therefore, 

the following experimental work was performed to estimate the cuttings volumetric 

concentration, as well as the porosity o f a cuttings-bed.
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2.4.4.1 Experimental Apparatus

The experimental apparatus shown in Fig. 2.9 was used to the measure voids o f a 

cuttings-bed. Eight percent (8%) o f Potassium Chloride {KCt) solution was used to 

measure the voids in order to avoid any dispersion and swelling problems of shale cuttings 

during measurements. Generally, the cuttings size distribution is a function of formation 

types, ROP, torque, bit shape, and weight on bit (WOB). To obtain the generalized cuttings 

size distribution is a quite difficult matter However, Aremu^’ noted that the drilled cuttings 

size distribution is US mesh size 4 to 8, which is generally accepted by the oil and gas 

industry. These are equivalent to 0.09 -  0 .19-in. (2.36 to 4.75 nun).

KCI 
solution 

graduate
Air vent

air gap
Scale 
on each 
comer

5cm

Fig.2.9 - Experimental apparatus for the measurement of cuttings volumetric 
concentration
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2.4 4.2 Experimental Procedure

The apparatus was filled with 4 -  8 US mesh drilled cuttings. The cuttings volume 

was carefully measured without shaking the apparatus. The 8 % KCI solution was used to 

fill up the voids formed by cuttings until the solution level reached the top plate. The 

weight o f the KCI solution used in each test was recorded. Then the required volume of 

KCI was calculated. These tests were repeated, properly shaking the apparatus in order to 

revive the effects of cuttings transport at the bed surface on the cuttings consolidation. 

Cuttings-bed porosity can be obtained by the following equation;

Volume o f  KCI solution
: T I (-( uttmgs packing volume

Volumetric concentration o f drilled cuttings {Ch)  can then be calculated by the following 

equation:

C = l - i y  (2.39)

The porosity o f a naturally settled cuttings-bed during drilling operation is assumed to be 

between the values measured, with or without shaking the cuttings packing.

2 4.4.3 Experimental Results

A statistical analysis was performed using the “SAS Program” in order to determine 

if the two test-methods (shaking and without shaking the cuttings packing) were 

significantly different from each other. This experiment was designed as a two-factor 

(test methods and rock cuttings sources) factorial design with three replications. The test 

design and results are shown in Table 2.3. Two different test methods (shaking and
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without shaking) are tested on cuttings volumetric concentration o f  rock cuttings sources 

(Berea sandstone, and Shale samples: Wapanuka, Atoka, and Wilcox).

Table 2.3 -  Two*factor factorial test design and results of cuttings volumetric 

concentrations

Cuttings Source
Test Methods

Shaking Without Shaking

0.4775 0.4127

Berea Sandstone 0.4596 0.4074

0.4854 0.4150

0.5305 0.4483

Wapanuka 0.5019 0.4353

0.5188 0.4489

0.5197 0.4422

Atoka 0.5111 0.4502

0.5142 0.4455

0.4470 0.4380

Wilcox 0.4848 0.4408

0.4781 0.4358

2.4.4.4 Data Analysis of Cuttings Volumetric Concentration

The analysis o f variance (ANOVA) test results shows that the F test” value is 

31.15 with less than 0.0001 o f ”P value” (Table 2.4). This analysis shows that there are 

significant mean differences between the test methods. The test with shaken cuttings 

shows mean volumetric concentration, Q , = 0.4966 with a standard deviation o f 0.0223, 

while the test without shaking shows mean volumetric concentration, C^2 ~ 0 4349 with a
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standard deviation of 0.0149. As expected, the test with a shaken cuttings sample shows 

higher mean scores than the test without shaking.

Table 2.4 -  ANOVA for cuttings volumetric concentrations

Source
Degree o f 

freedom

ANOVA Sum 

o f  Square

Mean

Square
F value P value

Cuttings sample 3 0.00602 0.00201 31.15 <0.0001

Test methods 1 0.02272 0.02272 352.89 <0.0001

Samplex method 3 0.00086 0.00029 4.48 0.0182

Error 16 0.00103 0.00006

Total
1

23 0.03064

Actual cuttings volumetric concentration was considered intuitively to be between 

the mean values o f Q , and . The actual cuttings volumetric mean concentration 

(04805) was obtained by estimating the mean parameter (average between upper 

confidence limit for shaking method and low confidence limit for without shaking 

method), and thus this value was used in this study. The details are described in Table 

2.5. The volumetric concentration in a cuttings-bed with a 95 % confidence interval is 

shown in Table 2.5, regardless o f rock sources.
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Table 2.5 -  Statistical analysis of cuttings volumetric concentrations 

a) Mean concentration of each test method

Level of test No. of sources Mean Std. Deviation

With shaking 12 0.4966 0.0223

Without shaking 12 0.4350 0.0149

b) Mean concentration of each cuttings source

Level of sample No. of sources Mean Std. Deviation

Sandstone 6 0.4805 0.0380

Wapanuka 6 0.4429 0.0353

Atoka 6 0.4806 0.0412

Wilcox 6 0.4590 0.0232

c) Estimation of mean value with a 95 % confidence interval for the shaking 
method

Parameter Estimate LCL UCL
I

Mean 0.4966 0.4824 0.5107

Std. Deviation 0.0223 0.0158 0.0378

Variance 0.0005 0.0002 0.0014

LCL: Low Confidence Limit, LFCL: Upper Confidence Limit
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d) Estimation of mean value with a 95 % confidence interval for the without 
shaking method

Parameter Estimate LCL UCL

Mean 0.4658 0.4503 0.4812

Std. Deviation 0.0365 0.0284 0.0512

Variance 0.0013 0.0008 0.0026

2.4.5 Suspension

2.4.5.1 Classification of Flow Behavior

Suspensions are quite important and wide spread in the peiroleum industry. In fact, 

suspensions may be encountered throughout each o f the stages o f petroleum recovery and 

processing, as shown in the following list*’*;

• Migration o f  fines during secondary and enhanced recovery

■ Dispersions o f asphalt in crude oils

■ Production o f solids in oil recovery at well-head

■ Suspensions o f drilled cuttings in drilling mud

■ Stimulation and fracturing

• Well cementing slurries

A suspension is a special kind o f dispersion. Dispersions can take different forms, 

depending on the dispersion medium and particle characterizations. The term suspension 

refers to the dispersion o f  solids in a continuous liquid phase. Dispersions can be formed 

with mechanical energy input via some form o f fluid agitation, such as strong turbulent 

eddies o f drilling fluid. The term aerosol is conventionally used to refer to dilute
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suspensions o f  fine particles in a gas and the term emulsion is used to identify 

suspensions o f particles in a gas or liquid in the field o f fluidization.^^

Walton'" classified suspensions into the possible flow regimes described below. 

One is a homogeneous suspension (symmetric), which occurs when the fluid velocity is 

extremely high. Such high velocities will only rarely be encountered in cleanout 

operations and the gravitational settling o f  the particles will be negligible compared with 

the mixing generated by the fluid turbulence. All o f the particles are carried in suspension 

and are uniformly distributed over the cross section o f the wellbore. A  uniform 

concentration profile is usually obtained when particles having low settling velocities are 

used. Such low settling velocities are encountered when the density o f the solid particles 

approaches that o f fluid.

The other is a heterogeneous (asymmetric) suspension. At lower velocities than the 

ones for the symmetric suspension case, particles can also be carried in suspension/" 

However, the settling tendency o f the particles creates a skewed distribution o f particle 

density, with more of the particles settling at the bottom of the liole. The particle settling 

velocity in this case is high.

The pressure drop and pumping requirements for transportation o f fluids with 

particles (slurry) depend on the type o f slurry. Shah'^ noted that the flow curve (shear 

stress versus shear rate) is also a strong function o f the slurry type. Figure 2.10 shows the 

variation o f the wall shear stress as a function o f  the nominal shear rate for homogeneous 

and heterogeneous slurry flow in a horizontal pipe. At high shear rates, heterogeneous 

fluid response (curve /I) tends to parallel homogeneous fluid response (Curve B). 

However, at low shear rates, the vertical solids concentration gradient increases until
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either a stationary or slowly moving bed o f deposited particles appears along the pipe 

bottom as the slurry velocity decreases.'^ The slurry velocity at which a bed o f particles 

forms is defined as the critical deposition velocity, To. A further decrease in the slurry 

velocity below I-'d leads to an increase in friction loss and may also result in pipe 

plugging.

Curve B o f  Fig. 2.10 shows the flow curve o f homogeneous slurry. At high shear 

rates, a steep linear turbulent flow regime occurs. As the slurry velocity is decreased in 

the turbulent regime, a sudden transition to laminar flow regime occurs. The transition 

velocity, I V, corresponds to this change in flow regime and remains the same whether 

approached from turbulent or laminar flow d irec tio n s .W ith  an increasing shear rate, the 

wall shear stress decreases until a minimum value is reached in Fig. 2.11. The fluid 

velocity that corresponds to this minimum shear stress is the critical re-suspension 

velocity, IV Figure 2.11 shows that a particle re-suspension velocity is greater than a 

particle critical deposition velocity.

2.4.S.2 Factors AfTecting Suspension

Suspension behavior is largely dependent on particle interactions or the degree of 

flocculation or aggregation.*'** There are several parameters that affect dispersion o f 

drilled cuttings in a drilling fluid. Figure 2.12 illustrates the major factors affecting 

suspension in a drilling fluid. The drilled cutting size distribution, shape, and surface 

characterization are important factors in suspension.
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Most drilled cuttings are o f irregular size and shape. The shape o f drilled cuttings is 

characterized by the degree o f sphericity, as defined in Eq. 2.27. However, the cuttings 

size distribution varies from location to location, drilled bit size and types, rotation speed 

o f  bit, and ROP. In this study, the size range o f drilled cuttings distribution used was 4 to 

8 US mesh.

Suspensions are also strongly influenced by fluid rheology as a function o f the shear 

rate. The shear rate at the drilling bit nozzle is about 10,000 -  100,000 s ', which is about 

100 times larger than while circulating. " ”  A highly viscous fluid may prevent cuttings 

settling out o f the fluid. However, the longer supporting time is not relatively important 

in the horizontal segment because the settling distance for cuttings in the borehole wall is 

short. Moreover, a high viscous fluid makes it difficult to maintain a high turbulency, and 

increases the resistance to fluid flow. However, a highly viscous fluid is useful for 

suspending and carrying cuttings in a vertical segment. Other main factors affecting 

suspensions are cuttings concentration and density o f both cuttings and drilling fluid.

Surface
Characteristics

Particle
Density

Fluid
Rheology

Concentration

Fluid
Density

Size
Distribution

Shape 
or Form

Particle Medium 
Interaction

Particle Behavior 
in Suspension

Fig. 2.12 -  Factors that atl'ect drilled cuttings suspension
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2.4.S.3 Suspension Mechanism

It is generally accepted that particles remain in suspension at a sufficiently high 

flow rate because o f the effect o f the turbulent eddies. These turbulent eddies are 

sufficiently strong to overcome the tendency o f the particles to settle out. Theoretical 

models describe the suspension process variously in the following terms: ( 1 ) the turbulent 

energy required to support the particles; (2) forces on the particles due to the turbulent 

eddies, which balances the gravity force; and (3) balance between a downward drift, 

caused by gravity and diffusion by turbulence against the induced particle concentration 

distribution.^"

Particles are held in suspension against the force of gravity by a combination of 

viscous resistance and diffusion by turbulent eddies. The mechanism, which governs the 

dispersion o f solid particles in the upper layer is represented by the well-known diffusion 

equation:

+ (2.40)
dy- dy

where, C is the local volumetric cuttings concentration (fraction) o f a particle, y is the 

vertical coordinate (perpendicular to the pipe axis), Sp is the diffusion coefficient, and Vh 

is the hindered settling velocity obtained from Eq. 2.33. The volumetric cuttings 

concentration, C, is defined as the percent volume o f the annulus that is occupied by 

cuttings. Over 5 % o f cuttings volumetric concentration in vertical holes have been found 

to cause problems on cuttings transport in the f i e l d . C u t t i n g s  volumetric concentration 

in a transit and a horizontal segment is relatively higher than a vertical segment because 

o f  cuttings-bed formation. By treating both Sp and Vh as constants, Eq. 2.40 can be 

rewritten as:
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(2.41)
dy- dy

Eq. 2.41 is a second-order, linear, homogeneous equation with constant coefficients and 

can be integrated to obtain

C'lv) = C, + C \ exp (2.42)

where, C, and are constants o f integration. This integration can be solved by assuming 

that the particle volumetric concentration in suspension is equal to the particle bed at the 

interface between the bed and suspension as a boundary condition. The detail derivation 

is described in Appendix B. The solution o f the difRisivity equation by integration gives 

the following concentration profile in the upper layer o f a horizontal annulus:

C'W = Qexp iy-ymb -ŷ b) (2.43)

where. C was to be replaced by C,b (cuttings volumetric concentration in the stationary 

bed), which was obtained by statistical data analysis {C\b = 0.4805), and v is the height of 

the bed. This cuttings volumetric concentration obtained from the experiments was 

similar to a maximum cubic packing o f deposited particle (C* = 0.52), which were used by 

other researchers.'**^ A boundary condition that C,„6 = C,b at the interface between the 

bed and the flowing suspension was utilized in the solution o f  Eq. 2.43.

The average cuttings volumetric concentration (Cj</), by integration of Eq. 2.43, 

over the cross section o f the upper layer can be found in the Reference 20.

£ - - ( £ i z £ )  ' r  X -
C- 4/1,., 2^ . T '

y \d y  (2.44)

5 6



where, a  and a ’ are the central angles to the edges o f the moving bed and the stationary 

bed layers, respectively (Appendix C: Wellbore Geometry).

The particle difhisivity, Sp, depends on the physical properties o f the particle, the 

fluid type, a concentration o f particles in suspension, and an in-situ velocity o f the 

suspension, (/,j. Walton*" proposed that the particle eddy diffusivity is a function o f 

Reynolds number o f the fluid in a suspension layer, which was given as:

g , (2.45)

where, Usd is a local velocity o f a dispersed suspension layer and the cuttings particle 

diffusion coefficient is defined as:

r
s . ,  =1

0.12

£„ =1.24
0.12

if C > 0,05 (2.46)

i f C<0 . 0 5  (2.47)
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C H A P T E R  T H R E E

A T H R E E -L A Y E R  H Y D R A U L IC  M O D E L  F O R  

C O IL E D -T U B IN G  H O R IZ O N T A L  D R IL L IN G

3.1 Introduction

Over the last 30 years, substantial progress has been made in understanding the 

mechanism o f cuttings transport and also in developing empirical or semi-analytical 

formulae for transport capacity and friction pressure loss for practical applications. 

The present two-layer model: a cuttings stationary bed and a suspension layer (or a 

stationary bed and a moving bed), does not properly characterize the cuttings transport 

mechanism in horizontal wells. Doron et al^' argued that the two-layer model fails in 

many cases to predict the existence o f a stationary bed, which was indeed observed 

experimentally.

In this study, the Doron and co-workers mathematical models'^^^ in horizontal pipe 

flow were extended to annular flow with the additional consideration o f  drilling fluid 

rheology, drilled cuttings shape, cuttings volumetric concentration, and wellbore
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geometry including eccentricity o f coiled tubing. These extended mathematical models 

have proven to overcome the limitations o f existing two-layer models. This enables an 

efficient prediction o f cuttings transport during horizontal drilling using coiled tubing. In 

particular, the model described in this study formulates a transport process and includes 

the relevant parameters, such as rheological characteristics o f the drilling fluid, cuttings 

size/sphericity/concentration, wellbore geometry, eccentricity o f the coiled tubing, and 

pumping rate o f the drilling fluid.

The objective o f this study was to develop a mathematical model to predict the 

effects o f the parameters and to evaluate their effects, which affect cuttings transport in 

coiled tubing horizontal drilling. In order to accomplish the objective, various fluid 

velocities, concentrations o f cuttings (change o f ROP), fluid rheology, size and sphericity 

o f cuttings, and wellbore geometry were incorporated in the model. The flow mode 

concepts o f Nguyen and Rahman^ were improved and the boundary conditions for 

different flow modes were specified.

3.2 Model Hypotheses and Description

3.2.1 Model Hypotheses

The following hypotheses were considered in the development o f the 

mathematical model so as to simplify it within the range that would not deteriorate its 

accuracy;

( 1 ) Flow phase and state
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•  The flow pattern in annulus was defined as a steady-state and a two-phase solid- 

liquid incompressible mixture.

(2) Cuttings

•  Cuttings size, sphericity {(p = and distribution were assumed uniform.

•  Volumetric concentration o f drilled cuttings in the upper layer (heterogeneous 

fluid layer) was relatively small.

(3) Carrier fluid

•  The Ostwald de Waele (Power-law) fluid model was considered.

• Carrier fluid density and rheological properties were constant.

(4) Pipe rotation

•  Rotation eflfect o f the drill string was not considered since the coiled tubing does 

not rotate while drilling.

(5) Other hypotheses

•  There was no slip between the solid and liquid states in each o f the layers.

•  An isothermal process was assumed.

3.2.2 Model Description

The hydraulic transport o f the heterogeneous mixture o f liquid and solid through the 

annulus is a complex physical phenomenon, which has been analyzed over the years by 

various r e s e a r c h e r s . " A s  a result, ranges o f basic flow patterns have been identified. 

These flow patterns depend on a number o f variables, which involve particle 

concentration, settling characteristics, slurry flow velocity, and pressure gradient.
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Transport process can be categorized into the following flow patterns and are

schematically illustrated in Fig. 3.1:

(1) If the fluid flow rate is high enough, resulting in high turbulence, all solid particles 

will be suspended (Fig. 3.1 A). As the pumping rate decreases, which results in a 

decrease in turbulent intensity, the settling forces acting on the particles become 

significant. Solid particles, whose density is higher than that o f the carrier fluid, tend to 

settle and agglomerate at the bottom of the annulus. This forms a stationary deposit, 

above which a heterogeneous mixture flows (Fig. 3. IB).

(2) As the pump rate is further reduced, the bed height increases to a certain height until 

the in-situ velocity reaches the critical deposition velocity. Then, the interface 

between the contact point o f a surface stationary bed and a carrier fluid is in pseudo

equilibrium (Fig. 3.1C). Reduction in flow area due to the continuous settling o f 

particles on the stationary bed over the pseudo-equilibrium height increases the in- 

situ velocity (Fig 3 .ID). An increase in the in-situ velocity (due to the reduced flow 

path area) increases the energy available for particle clusters in a moving bed layer to 

tumble around on the bed surface. A separated cuttings-bed is formed above the 

stationary bed called a moving bed layer (Fig. 3. IE). The cuttings at the surface of the 

bed travel forward, while the cuttings inside the bed remain stationary, so that the 

cuttings-bed looks as if it is rolling or sliding forward as a whole."*

(3) Continuous reduction in the pump rate causes a reduction in the strength o f turbulent 

eddies, as a result, it eventually reaches the two-layer flow (Fig. 3.1G). According to 

the two-layer model, the bed becomes stationary when the sum o f the driving forces 

acting on the bed is lower than the sum o f the forces opposing the bed’s motion.^^
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(4) As the pump rate is further reduced, the stationary bed height increases (Fig. 3.1H).

It is reasonable that particles at the bottom get "stuck" and caimot be "dragged" by 

the bed at a low bed ve loci tyThese  are the basic descriptions of a three-layer flow 

model used in this study, where the annulus is composed of three layers, i.e. a stationary 

bed at the bottom, a moving bed above it, and a heterogeneous mixture at the top in a 

horizontal segment.

•  # •  #
# e #  #

#  #

(A) (B) (C) (D)

# ^ e ^ X

•  #
•  •

•  •

(E) (F) (G) (H)

Fig. 3.1-Schematic illustration of different cuttings transport modes

3.3 Model Development

A mathematical model was developed based on the fact that cuttings-drilling fluid 

flows in a horizontal well at a flow rate such that there exists three layers in the annulus.
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3.3.1 Continuity Equations

The carrier fluid flow with drilled cuttings can be considered as a stream tube 

bounded by a streamline. The continuity equation can be derived by equating the net 

mass flow rate into a stream tube o f elemental length {dL) and area A, to the rate of 

change o f mass within the elemental control volume. Thus, the steady state, mass 

transport equation for a one-dimensional (horizontal), two-phase and incompressible flow 

(neglecting any inter-phase mass transfer) for these three sections under consideration 

can be written as;

ct cL

1
(3.1)

Dividing by dL (an elemental length), gives:

ct cL
(3.2)

The area Ai is a vector whose magnitude is equal to the magnitude o f the area, and whose 

direction is normal to the plane o f the area. Thus, the dot product o f  the area and the 

velocity indicates that the velocity component normal to the plane o f the area and parallel 

to the vector Ai representing the area is multiplied by the magnitude o f the area to get a 

scalar product, which represents the volumetric flow rate. Whenever the product o f a 

scalar velocity and a scalar area is given as (/, A„ the dot product Vi»Ai is implied.

For steady-state flow, the first term is zero, thus, the second term is also zero, so that

4 -{p ,C ,U ,A ,h O
cL

(3.3)

Where, C is the volume fraction, p  is density, A is the cross sectional area o f  the flow 

path, U  is the velocity, and the subscript / represents any one o f the species in the flow.
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3.3.1.1 For Solid Phase

Assuming no slip between the solid and fluid phase in the cuttings-bed, the 

continuity equation for the fluid and solid particles is written as:

cL
( 3 .4 )

Here, the subscripts "sh'\ "mh". and "s<I' refer to the stationary bed layer, the moving bed 

layer, and the dispersed suspension layer, respectively. The density of each layer at a 

certain point between 1 and 2 in the flow system in Fig. 3.2 can be regarded as constant 

under the steady-state flow conditions. Equation 3.4 was integrated to obtain:

(3.5)

The relevant relation can be described as follows.

+ m̂b A j = ( 3 .6 )

'sdmb

‘mb
'mb

'mbsb

u,sd

_______

tsd

(Suspension layer

Umb i 'tsdrrb • mj ,-------------;---------- i

I T .‘rrbsb ^fncsb

F Stationary bed 11
sb_ :

dL

Fig. 3.2 -  Schematic diagram of the three-layer model; geometry, velocity, and shear 
stress
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3.3.1.2 For Liquid Phase

(3,7)

Under a steady-state flow condition, volumetric flow rate o f  cuttings {Ü^CAo) is 

equal to the volume o f cuttings generated at the drill bit per unit o f  time. Cuttings 

concentration can then be specified as a function o f average rate o f  penetration (ROP):

where, D, is the nominal diameter o f the drill bit and <J is the outer diameter o f  the coiled 

tubing.

3.3.2 Momentum Equations

3.3.1.1 Upper Dispersed Suspension Layer

The upper dispersed suspension layer is a relatively clean fluid or heterogeneous 

turbulent suspension, depending upon the flow conditions. Under a steady-state flow 

condition, the sum of the forces acting on the fluid flow zone should be;

AP

where, AP L is the pressure gradient, and and Tsdmb are the upper layer shear stress and 

the interfacial shear stress acting on the wetted perimeters S^j and Ssjmb. respectively The 

relationships between each cuttings-bed area and the wetted-perimeter are described in 

Appendix C, Wellbore Geometry. The shear stress at the pipe circumference is
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!■,. (3.10)

where, is Fanning friction factor for a dispersed suspension layer. The shear stress at 

the interface between the upper layer and the moving bed is

ŝdmb = -  PsJ {̂ ŝJ )Aw, (3.11)

where, fsdmb is friction coefficient between a suspension layer and a moving bed and pw is

the effective density o f  the upper dispersed suspension layer. It is defined as:

P s d = P s ( ' s d  (3  12)

where, ps and fh. are the density o f the cuttings and carrier fluid, respectively.

The Reynolds number, iV/î̂ ;; was calculated by using a hydraulic diameter. In the 

case o f non-Newtonian fluids, the determination o f  Reynolds number is more complex, 

and many methods have been proposed. Most o f these methods depend on the particular 

rheology o f the fluid being used. The generalized Reynolds number for a Power-law fluid 

was used in this study. It is noted that the eccentricity has no effect on the calculation of 

Reynolds number because it uses only the hydraulic diameter o f the annulus. The 

following correlations for the friction factor o f  the dispersed suspension layer and 

interfacial friction factor were used in this study:

X , = 0 .00454+ 0.645/Vr‘J ; (Ooronet al."") (3.13)

fsdmb - ^ ^ L f
\ ^ s d  j

(Martin et al.” ) (3.14)

where, A = 0.966368, p =  -1.07116, ç = 2.360211, and f =  -2.34539. For both/w  and 

fsdmhs Reynolds number o f  the suspension layer was used.
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3.3.2.2 Moving Bed Layer

Summing up all the forces acting on this region (Fig. 3.2) gives:

f  F  ^mbsb
'^ ^ m b s b ^ m h s b  ( j l 5)

L

where, F,„bsb is the frictional force between the continuous moving and the associated 

stationary bed; r,,,*,/, is the hydrodynamic shear stress acting on the interface between a 

moving bed and a stationary bed; and r,,,/, is the hydrodynamic shear stress acting on the 

surface o f a moving bed. The shear stress at the interface between a moving bed and a 

stationary bed is

^mb.ib ~  ^  Pmb^^mb fmbib ( j  l 6 )

where, pmb is the effective density o f the upper moving bed layer, and it is defined as:

0.17)

The following correlation developed by Doron et al.*  ̂ is used for the calculation o f  the 

moving bed friction coefficient,

/^ = 0 .0 4 6 (V -! :  (3.18)

where, Reynolds number o f a moving bed is used.

3.3.3 Moving Bed Velocity

Figure 3.3 shows a momentum balance on a particle at the upper part o f the 

stationary bed. When the driving torque (which arises from the drag exerted by the 

moving bed layer on the particle) is larger than the opposing torque (which arises from
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the weight o f the particle on the moving bed), the particle begins to m ove/' This is the 

dominant mechanism for cuttings transport in a moving-bed in this study. When the 

magnitudes o f both moments are equal, the particle is in stationary status. This approach 

was useful for finding the mean velocity o f a moving bed. The summation o f moments 

around the acting point “A” is given as;

)4 ; -  - 0  (3-19)

where, Fd is the drag force, Fl is the lift force, Fr, is the gravity force, and Fb is the 

buoyancy force. They were assumed to act through the center of gravity o f the particle.

The auxiliary equations used to calculate the related forces and derivation o f the 

minimum moving bed velocity are described in Appendix A. Equating the driving 

moment and the opposing moment due to gravitational force gives:

^mh -

0 . l 3 l ( p , . - p j g /  ’ y  mb

■ * 7 :L p 1 (3.20)

3.3.4 Summary of the Model

The three-layer model was described by a set o f six equations. They are: Eqs. 2.43, 

3.5, 3.7, 3.9, 3.15, and 3.20. The six unknowns with the given operating conditions were 

U,„b. Cw, y,nh. Vsh, and AP dL (the annular pumping velocities o f the upper dispersed 

layer and o f the moving bed, respectively, the average concentration o f the upper 

dispersed layer, the heights of the moving bed, the heights o f the stationary bed. and the 

pressure gradient). The other sets o f equations were the auxiliary equations derived or 

directly imported from other works.'*•■■’ ’’
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Fig. $ 3  -  Forces acting on a particle at the lower stratum of the moving bed

3.4 Solution of the Model

The continuity equation for solid, Eq. 3.5, and for liquid, Eq. 3.7, may be further 

simplified by assuming that the velocity of the stationary bed iU,b) is almost zero (since it 

is not moving as specified in the model description). Hence, Eqs. 3.5 and 3.7 become the 

following:

= A,C,U, (3.21)

+ U j i - C j A ^  = y . ( l - C , k  Q22)

Adding Eqs. 3.21 and 3.22, it becomes:

(3.23)

Equation 3.23 can be rewritten for a mean velocity of the suspension layer, as 

follows:

69



- u rtih
V y

(3.24)

Substituting for f/jj in Eq. 3.21 gives the following.

(3.25)

Rearrange Eq. 3 .25 gives a solid concentration o f  the dispersed layer (f ',j)  as follows:

A C . U .
—  4  f  u  n\h mb ~ mb (3.26)

All terms at the right-hand side o f Eqs. 3 .25 and 3 .26 are (unctions o f the unknowns _v,„n, 

»  and Umh, which are dependent on the operational conditions.

By applying the momentum equations, Eqs. 3.9 and 3.15, and eliminating the 

pressure gradient from these equations, Eq. 3.27 is obtained and written as follows.

4 , F(r y +7- y ) -  "'t'*
. V‘ .iJ ^  ‘ xJmh J ~

A,,.
F.

^  itibsb^ ttibsh ^  '^'^mb^mb ^  siimb^ xjrnb (3.27)

Eq. 3.27 is rearranged into:

 ̂sdmb ̂  sdmb __

S t /

^ F  \  f F  ^
."ÉÉ. I +  r  V^  J mFsè Z.

^mb ̂  mb ^  sdmb ̂  sdmb

A
(3.28)

mb

Solving these equations simultaneously is quite complicated. An analytical iterative 

solution was used. The hierarchy (low chart for step-by-step calculation is provided in 

Appendix E.
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3.5 Model Simulation Results and Discussion

In order to compare the simulation results with published experimental results, the 

simulation conditions were reviewed and compared, as shown in Table 3.1. From this 

comparison, the most reasonable range o f  simulation parameters was selected as a base 

case used in this study. The effect o f the various parameters, such as fluid rheology, 

nominal annular velocity ( f / J  and cuttings concentration on cuttings transport efficiency 

were simulated and investigated with the base case listed in Table 3.1. The following 

sections are the simulation results showing the effects o f  changes in the parameters:

Table 3.1 -  Selection of simulation parameters

Sources
Nguyen' 

(SPE 36383)

Martins"^ 

(SPE 23643)

Base case | 

in this study |

Fluid type Low-vis bentonite Low-vis bentonite Low-vis bentonite j

n 0.68 0.698 0.68

K
(lb,s"/ft-)

0.00566 0.00615 0.006 1

D (ID o f wellbore) 5.0-in. 5.0-in. 5.0-in.

d (O D  ofC T ) 1.9-in. 1.9-in. 1.9-in.

density o f  solid 2.62 g/cm^ 2.62 g/cm'* 2.62 g/cm^

density o f  fluid 8.41 lb/gal 9.2 lb/gal 9.2 lb/gal

mean dia. o f solid 0.25-in. 0.248-in.
0.25-in. 

(0.63 cm)

3.5.1 Effects of Nominal Annular Velocity in the Annulus

The simulation results for the base case are presented in Figs. 3.4 and 3.5. Figure 

3 4 shows the area distribution of each layer in the annulus with changes o f the nominal
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annular velocity. The moving bed layer is plotted with its area distribution above the 

stationary bed. Similarly, the suspension layer is also plotted in the same manner. An 

increase in the nominal annular velocity, (4, decreases the stationary bed up to 2 ft/s and then 

almost constant up to 3 ft/s. The stationary bed then dramatically reduces for flow velocity 

greater than 3 ft/s.

The simulation results with the different velocities for the base case are shown in 

Table 3.2. At the nominal annular velocity o f 2.5 ft/s, the area o f the moving bed begins 

to decrease. This means that the dispersed suspension criterion is satisfied, resulting in 

the top most particles being lifted into the suspension layer, and carried by the turbulent 

eddies. From the calculation, the turbulent suspension criterion is between 2.5 ft/s and 3 

ft/s of the nominal annular velocity. This is in agreement with the result o f  Nguyen and 

Rahman (2.5 ft/s).'

Table 3.2 -  Simulated results with changes in the annular nominal velocity for the base 
case

Ua

(ft/s)

f/mfc

(f/S)

( / j j

(17s)

K../,

(in.)

Y,„,

(in.)

r , ,

(in.) (in.')

*^inh

(in.-)

•4 , j

(in.-)

0.75 0.00 4.13 3.93 0.00 1.07 13.73 0.00 3.07

I 0.19 3.63 3.56 0.01 1.42 12.14 0.00 4.66

2 1.07 5.84 3.06 0.32 1.61 9.78 1.51 5.51

3 0.85 7.83 3.02 0.20 1.77 9.58 0.94 6.28

4 0.00 6.89 2.52 0.00 2.49 7.04 0.00 9.76

5 0.00 6.62 1.92 0.00 3.08 4.10 0.00 12.71

6 0.00 6.08 0 .1 1 0.00 4.89 0.17 0.00 16.63
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Figure 3.5 presents the height distribution o f each layer in the annulus. It is quite 

apparent from Fig. 3.5 that the drilling fluid annular velocity plays a significant role in 

cuttings transport. With increased nominal annular velocity ( f / J  over 3 ft/s, the areas o f 

the moving bed and the stationary bed are decreased. With further increase in //„, more 

and more particles are lifted out o f the moving bed and the stationary bed into the 

suspension region. This simulation shows that the critical deposition velocity (I'p) 

defined in the previous chapter is 6 ft/s for the base case.

The cuttings-bed slightly increases or remains almost constant with an increase in 

the nominal annular velocity from 2 ft/s to 3 fl/s. This rang; can be classified as a 

pseudo-equilibrium status during which the in-situ velocity reaches resuspension 

velocity. In order for the cuttings-bed to be eroded, the cuttings should be resuspended by 

the strong turbulent eddies. The increase in nominal annular velocity and the reduced 

flow path area (due to slightly increased or almost constant stationary bed area) lead to a 

sufficient resuspension velocity.

With an increase in turbulent force, the moving bed vanishes after 4 ff/s o f nominal 

annular velocity, after which, the flow pattern changes to two-layer flow regimes. In this 

study the critical velocity o f a moving bed is defined as the maximum nominal annular 

velocity at which the cuttings are entirely suspended into the suspension layer and the 

moving bed vanishes. The simulation results show that the critical velocity o f a moving 

bed is between the annular pumping velocities o f 4 to 5 ft/s. When any layer vanishes, 

there is no solution to Eq. 3.20, which is a physical constraint o f the three-layer model. 

The flow consists of only two layers (stationary bed and suspension layer). In this case, the 

two-layer model is used. The appropriate two-layer model is described in the next section.
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Fig. 3.5 -  Cuttings-bed height distribution of each layer (base case)
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Pilehvari et al7* noted that for steady hole cleaning, (without increasing the 

stationary bed) 4 to 5 ft/s o f fluid velocity was required from a large scale laboratory 

study (with no rotation effect). These simulation results are in good agreement with their 

laboratory study. It is also worthwhile to note that, according to the concept o f Minimum 

Transport Velocity (MTV) introduced by Ford et al.'*', at which all the cuttings are 

suspended and transported together with the transport medium, o f 174.5 cm/s (5.72 

ft/s) corresponds to the result o f this study (about 6 ft/s).

3.5.2 Analysis of Pressure Gradient

Simulation results for the pressure gradient with different nominal annular 

velocities for the base case are presented in Figs. 3.6 and 3.7 An increase in the nominal 

annular velocity up to 2.8 ft/s increases the pressure gradient, which later sharply 

decreases until it reaches 4.5 ft/s. Simulation data o f the pressure gradient with the 

change o f nominal annular velocity is shown in Table 3.3. The Nguyen and Rahman 

modeP shows the same pattern, but the peak point o f the pressure gradient and its 

relevant velocity point are slightly different (the discrepancy is about 0.3 ft/s). However, 

the basic pattern o f high-pressure gradient at about 2.5 -  3 .0 ft/s is the same. The pressure 

gradient when the Power-law fluid is pumped without cuttings in the annulus is also 

shown in Fig. 3.6. It shows that the pressure gradient o f the fluid without solids is a 

function o f nominal annular velocity.

76



Table 3.3 -  Simulation data of the pressure gradient with the change of annular 
nominal velocity (base case)

Mean Fluid Only With cuttings transportation

(ft/s) psi/ft psi/ft (/s</(fl/s)

1 0.0029 0.035 3.63 12.14 0.00

2 0.0047 0.060 5.84 9.78 1.51

0.0061 0.091 7.83 9.58 0.94

4 0.0075 0.057 6.89 7.04 0.00

5 0.0088 0.042 6.62 4.10 0.00

6 0.011 0.026 6.08 0.17 0.00

The relationship between the pressure gradient and the stationary bed height is 

shown in Fig. 3.7. As previously explained, the moving bed is plotted as fractional height 

above the stationary bed. Similarly, the suspension layer is also plotted in the same 

manner for a better visual understanding (Figs. 3.7 and 3.8). The pressure gradient is the 

highest when the summed height o f both the moving bed and the stationary bed reach the 

highest value.

Generally, from the drilling engineering point o f view, it is desirable to minimize 

the stationary bed o f drilled cuttings in the annulus. Low frictional pressure loss in 

drilling fluid circulation is also required in the design o f a drilling program. Finding the 

optimum point means to compromise between parameters affecting cuttings-bed 

accumulation and frictional pressure drop. From this point o f  view, a reasonable drilling 

fluid velocity range should be nominal annular velocity between 3.5 and 4.5 ft/s from 

Fig. 3.7.
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Peden et al.^* recommended 3.3 ft/s minimum transport velocity for the cuttings 

sliding forward. Their recommended velocity was obtained from an experiment with 

drilling rotation at 50 rpm. The effect o f drillpipe rotation is equivalent to 30% of 

nominal annular velocity for this case.*' Therefore, considering the drillpipe rotation 

effect on cuttings transport, Peden's recommended velocity is equivalent to 4.3 ft/s. This 

recommendation is in good agreement with the optimum point obtained from the 

simulation results.

3.5.3 Effects of Drilling Fluid Rheology

The effects o f drilling fluid rheology were simulated for the different fluid systems. 

Fluid A used in simulation is a less viscous fluid (n = 0.76 and K = 0.001 lb| s"/ft*) and 

Fluid B is  a more viscous fluid (// = 0 502 and K = 0.028 lb, s"/ft*). Figure 3.8 shows the 

effects o f  the fluid rheology on cuttings-bed area. Simulation results show that Fluid B 

decreases the cuttings-bed area in horizontal well.

Generally, a more viscous fluid has better suspension and transportation. However, 

the distance traveled by the cuttings in a horizontal well is significantly different from a 

vertical well as shown in Fig. 2.3. Even though a more viscous fluid can suspend the 

particles longer than a less viscous fluid, the suspension time alone does not improve 

cuttings transport efficiency in a horizontal well. Moreover, a more viscous fluid gives a 

less turbulent regime than a less viscous fluid under the same pump rate. Cuttings 

transport efficiency is a strong fimction o f  fluid rheology and turbulence. This might be 

the reason for small differences in cuttings-bed area between Fluid A and Fluid B.
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In addition, it was found that the simulation results with very low flow behavior index (n 

< 0.35) and low pump rate sometimes did not have the positive moving bed areas, at 

which there is no solution to Eq. 3.20. In this case, a two-layer model was used to avoid 

any physical constraints in the simulation program.

3.5.4 Effects of Other Drilling Parameters

The effect o f the suspension layer velocity on the cuttings concentration in the 

suspension layer was also simulated. The relationship between the velocity and the 

cuttings concentration for the base case can be defined analytically. High velocity in the 

suspension area, due to the increase in the moving and stationary bed, increases the 

cuttings concentration. The increased cuttings concentration has enough energy to lift up 

the cuttings from the moving bed. This will lead to an equilibrium condition in the 

horizontal annulus within a certain area o f each flow layer. The correlation between the 

concentration in a suspension layer and nominal annular velocity is shown in Fig 3 9 

Velocity o f a suspension layer increases with an increase in fluid pumping rate.

The highest velocity o f the suspension layer is obtained when the nominal annular 

velocity is about 3 ft/s (Fig. 3.10). Frictional pressure loss o f the suspension layer at the 

nominal annular velocity o f 3 ft/s is greater than other nominal annular velocities with the 

base case drilling data. The change in velocities o f the moving bed is not high with an 

increasing in nominal velocities. The moving bed velocity is almost zero when the 

nominal annular velocity is over 4 ft/s because the moving bed disappears over this 

nominal annular velocity.
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Figure 3.11 shows the comparison between the total volumetric cuttings 

concentration in the annulus o f the two models and the cuttings transport capacity. 

Annular volumetric cuttings concentration was calculated by adding cuttings volumetric 

concentration o f  each layer. There is no stationary cuttings-bed in the Nguyen and 

Rahman^ model before reaching the MTV specified by Ford et al.'°. Their model may 

predict faster erosion o f a stationary bed in coiled tubing drilling. However, the Cho et al 

model"^ predicts that the cuttings-bed may erode and disappear when a nominal annular 

velocity reaches 6 ft/s. This was confirmed by experiments performed by other 

r e s e a r c h e r s . T o t a l  cuttings volumetric concentration in an annulus looks stagnant at 

2.5 ft/s to 3 ft/s o f  nominal annular velocity. Carrying capacity (G) in Fig. 3.11 was also 

obtained by the following equation:

* p , (3

where, is a local velocity o f a suspension layer and ( \ j  is a cuttings concentration o f a 

suspension layer. Carrying capacity exponentially increases with an increasing nominal 

annular velocity.

The visual test results for slurry transport^^ showed that the actual volumetric 

concentration is lower than that o f the stationary bed. In this study, the cuttings 

volumetric concentration o f moving bed is assumed to be 75% o f the stationary bed. The 

cuttings carrying capacity increases with an increasing nominal annular velocity.
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3.6 Summary

The three-layer model properly interrelates nominal annular velocity, cuttings 

concentration, and fluid rheology to the cuttings transport in horizontal well drilling. The 

following conclusions were reached from this study:

( 1 ) A mathematical three-layer model has been formulated to predict and interpret the 

cuttings transport in a horizontal wellbore while drilling with coiled tubing. The 

model predictions, based on the series o f simulation runs, are in good agreement with 

the experimental data published by others.

(2) It is quite clear that the nominal annular velocity o f drilling fluid plays a significant 

role, in both the annular pressure gradient and the cuttings transport. Therefore, the 

selection o f the fluid annulus velocity, the optimum fluid rheology, and a precise 

prediction o f pressure gradient are very important for economical and efficient 

horizontal drilling using coiled tubing.

(3) The conventional drilling fluid velocity range o f 2 to 3 tf/s should be avoided for 

coiled tubing horizontal drilling. It is recommended that the nominal annular velocity 

range o f 3.5 to 4.0 ff/s be used. This is because the a lower pressure gradient and a 

less stationary bed area predicted than those o f conventional velocity range.

(4) A highly viscous fluid increases the pressure gradient under the same nominal annular 

velocity. For economic drilling, the following factors should be evaluated in the 

selection o f  drilling fluid: rheology, fluid velocity, velocity profile, carrying capacity, 

and the pressure gradient.
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CHAPTER FOUR

A THREE-SEGMENT HYDRAULIC MODEL

4.1 Introduction

An increase in the number o f deviated and horizontal wells drilled over the last 

two decades has focused attention on the problem of cuttings removal. The cuttings 

transport in deviated wellbores changes markedly as a function o f wellbore angle. The 

dominant factors governing cuttings transport efficiency are changed with the wellbore 

angles. However, the existing models, which cover cuttings transport in vertical to 

horizontal wells do not consider that an increase in the wellbore deviation changes both 

transport pattern and the dominant factors in the transport mechanism.

A new approach to model the three-segment (a horizontal and near horizontal 

segment, a vertical and near vertical segment, and a transit segment) hydraulic cuttings 

transport under a two-phase (solid-liquid) fluid in the annulus was developed to predict 

and interpret the cuttings transport mechanism. This chapter specifically describes the 

model development for each segment, solution, and the simulation results o f the 

integrated three-segment model. In order to have a comprehensive understanding o f the
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effects o f the parameters affecting cuttings transport efficiency, the simulations were 

performed under different drilling in-situ conditions. The results can be used to obtain a 

reasonable pumping velocity and optimize rheology o f  drilling fluid with the lowest 

possible pressure gradient, which might serve as an operational guideline while drilling. 

Moreover, the effects o f various parameters that affect the efficiency o f cuttings transport 

were discussed. These results were compared with the published experimental data. The 

observed agreement and discrepancies are discussed

4.2 Model Description

4.2.1 Basis for Model Development

A detailed review o f  the published experimental data reveals that the cuttings 

transport characteristics are changed with an increase in wellbore angles. The 

instantaneous bed formation was reported at angles between 60“ to 90“. Researchers 

reported that the experimental data of wells with angles above 60“ were very similar to 

those for the horizontal. The cuttings-bed tends not to slip downward in wells with angles 

above 60“ when drilling fluid circulation ceases.

Martin et a l/°  showed that the worst situation for hole cleaning appeared between 

30“ to 60“, while Walker and noted that the most critical angle range was 35“ to 

55“. A cuttings-bed slides downward when the wellbore deviation is less than the friction 

angle between a cuttings-bed and tubing-casing. Leisng and Walton‘S also reported that 

the wellbore angles between 30“ to 65“ might be considered dangerous from their
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perspective. Other researchers^’'^’ also reported that the cuttings-bed heights could not be 

recorded after the test ended because the cuttings-bed changed immediately and slid 

down when the flow was stopped.

When the angle changes from 0*̂ to 3 0 \ r e s e a r c h e r s n o t e d  that there was no 

cuttings-bed formed from their experimental investigations. In this region, hole cleaning 

is largely determined by the slip velocity o f the cuttings. Jones and Hughes”” noted that 

the cuttings transport mechanism in this range o f wellbore angles is not significantly 

different from vertical wells.

Therefore, a wellbore can be divided into three sections based on wellbore deviation 

(from the vertical position), cuttings transport characteristics, and existing cuttings 

stationary bed; a vertical and near vertical section (0" to 30'’ deviated from vertical), 

horizontal to near horizontal section (60'’ to 90" deviated), and the transit section (30" to 

60" deviated).’” . \  three-layer (stationary bed o f drilled cuttings at the bottom, a moving- 

bed layer above it, and a heterogeneous suspension layer at the top) hydraulic model was 

used for the horizontal and near the horizontal section (here after called a horizontal 

segment).’" An existing two-layer model was modified for the transit section (here after 

called a transit segment), and a one-layer model was used for the vertical and near 

vertical section (here after called a vertical segment).

The main parameters in the cuttings transport mechanism o f  these different 

segments may be different. These different parameters in each segment are discussed in 

the following model descriptions and considered in the model development for each 

categorized segment. The three different mechanistic layer models, representing each
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segment, were Integrated with different wellbore deviation in order to characterize and 

predict cuttings transport in any wells between the horizontal and the vertical.

4.2.2 Model Descriptions

4.2.2.1 Horizontal Segment

The drag force, as explained by Luo et al.,*' tends to drag or slide the cuttings out o f 

a cuttings-bed and thus moves it forward. This is caused by the viscous fluid flow over 

the upper exposed surface o f the cuttings. The drag and the lift forces act against the 

frictional force and the gravitational force. The increase in available energy accelerates 

the particle clusters in the moving bed layer to slide over the stationary bed surface as a 

whole movement.

The other transport mechanism is the dispersed suspension o f  cuttings in a 

heterogeneous flow, called the suspension layer. Cuttings can be lifted under strong 

turbulent eddies when the lift force is strong enough to overcome the gravitational force 

component in the direction normal to the flow.*' Therefore, the annular section is 

composed o f three layers: a stationary bed at the bottom, a moving bed above it, and a 

heterogeneous suspension layer at the top. The role o f the carrier fluid in-situ velocity in 

cuttings suspension and the basic description o f a three-layer model are described in 

Reference 25 .
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4.2.2.1 Transit Segment

There are several forces acting on the particles in cuttings transport. These involve a 

lift force, a drag force, a gravitational force, and a frictional force. Both the drag and the 

lift forces are exerted by the flow of drilling fluid around the particle. The lift force tends 

to lift up the particle to join the main stream of the flow where it moves. This force arises 

either due to the asymmetric distribution o f  the fluid viscosity surrounding the cuttings 

and/or due to the turbulent eddies in the annular flow.

In the transit segment, the coiled tubing is also assumed to lie at the low side o f the 

wellbore as shown in Fig. 4.1. Therefore, a full-eccentric annulus o f the wellbore was 

considered for the transit segment. A cuttings-bed may be formed in the lower side o f the 

annulus in this transit segment. The bed formed may be either stationary, moving upward 

with a small velocity, or moving downward to the bottom hole. While the bed formed is 

unstable, the main cuttings transport mechanisms are that the cuttings are dispersed in the 

heterogeneous suspension layer and are supported by the axial velocity. This annular 

section is composed o f  a cuttings-bed and a suspension layer.

A reduction in the wellbore deviation gives an opposite effect on the drag and the 

lift force on the cuttings’ rolling and sliding because o f an increase in gravitational force. 

A decrease in the lift and the drag force, due to the reduction in strength o f turbulent 

eddies (or increase in gravitational force due to the abrupt reduction in the deviated 

wellbore angle), reduces available energy for particle clusters to move as a whole 

movement. However, the axial (vertical) velocity o f a carrier fluid is gradually increased 

with a decrease in wellbore angles. The cuttings are more supported by the axial velocity
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at reduced wellbore angles than in the horizontal segment, and the cuttings-bed begins to 

erode.

4.2 2.3 Vertical Segment

A drilled cutting, because o f its density difference, tends to settle out o f a drilling 

tluid at a constant rate known as particle settling velocity. When the particle settling 

velocity is compensated by the axial velocity o f  the carrier fluid (drilling fluid), the 

cuttings are strongly supported by the fluid. The cuttings can be transported from the 

bottom of the hole to the surface by the transport velocity, which is the in-situ axial 

velocity compensated with the particle settling velocity (Fig 4.2).

V ertica l
p ositio n

Ssdb

Fig. 4.1 -  Schematic diagram of the two-layer model for transit segment

As the wellbore deviation is increased, the axial in-situ velocity o f drilling fluid 

decreases. The main domains in cuttings transport efficiency for this vertical segment are 

axial in-situ velocity o f the drilling fluid and the cuttings particle velocity, which is 

dependent on the particle size, density and shape, the drilling fluid rheology, and
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wellbore geometry. There will be no stationary bed in this segment. In order to calculate 

the settling velocity o f a particle in this segment, the correlation for irregularly shaped 

cuttings recently developed by Chien”  was used.

Cuttings

Cutbngs
Settling

v ertica l
PositionHorizontal

Velocity
Fluid
Flow

Fig. 4.2 -  Forces acting on particle at the vertical segment

4.3 Model Development

4.3.1 Horizontal Segment

The mathematical model development for a horizontal segment is based on the fact 

that the cuttings-drilling fluid flows at flow rates such that there exists three layers in the 

annulus.

4.3.1.1 Continuity Equations

Basic continuity equations are the same as the three-layer model for the horizontal 

wells Figure 4 1 illustrates the forces and stresses acting on each layer in the horizontal
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segment. The velocity o f the stationary bed (U sb ) is almost zero since it is not moving as 

described by the m o d e l .T h e  continuity equations for the fluid and solid particles are 

summarized as follows:

= / (u O -C X / ,

(3.5)

(3.7)

U'sd

u u

moMnqbed

Fig. 4.3 -  Schematic diagram of a three-layer model for the horizontal segment

Under steady-state flow conditions, the volumetric flow rate o f cuttings WuC(/„) is equal 

to the volume of cuttings generated by the drilling bit per unit o f time.
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4.3.1.2 Momentum equations

Upper dispersed suspension layer

The upper dispersed suspension layer is a relatively clean fluid or a heterogeneous 

turbulent suspension depending upon the flow conditions. Under a steady-state flow, the 

sum o f  the forces acting on the fluid flow zone is given as follows:

f  ^ + /"wc! (4. 1 )

where, r.j is shear stress acting on a relevant wetted-perimeter, S  is the wetted-perimeter. 

F,j() is the gravitational force acting on the mixture in the dispersed suspension layer, 

which is the only component affected by the wellbore deviation.

COS# (4.2)

where, p ,j  is the effective density o f a dispersed suspension layer.

The shear stresses both at the pipe circumference and the interface between the 

upper layer and the moving bed are given in Eqs. 3.10 and 3.16. The following 

correlations for the friction factors o f  the dispersed layer (fsj) and the interface between a 

suspension layer and moving bed (/sjmft)were used in this study:

^  = 0 .00454+  0.645;^/^:;.; (O oronetal.'^) (3.13)

y
(Martin et al.” ) (3.14)

w h e re ,/j  = 0 .966368, p  = -1.07116, <7 = 2.360211, and t =-2.34539. For both 

and/sdmb, Reynolds number o f the suspension layer was used.
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Moving bed laver

From Fig. 4.3, summing all the forces acting on this region gives;

(F . \

J

mb
^ xJmb^ admb

F. \
m̂4C7 (4.j)

where, Fmho is the gravitational force acting on the moving bed. The frictional forces (Fmh 

and F,„bsh) acting on the associated layers can be found in Reference 23. The gravitational 

force in the direction parallel to the deviated well is:

F„br, = C O S #  (4.4)

The following correlation developed by Doron et al.'^ is used for the calculation o f the 

moving bed friction factor for turbulent ilow./mbsh:

(3.18)

where, Reynolds number o f the moving bed was used.

4.3.1.3 Moving Bed Velocity

The moment due to forces around the acting point, "A" in Fig. 4.4 is summed up as 

follows:

Fd^ d ~ ~ Fg )Lr, ^F ^L^  > 0  (4.5)

where, Fd is drag force, Fl is lift force, Fc, is the gravitational force, and Fb is the 

buoyancy force. L with a different subscript is the length o f each force acting. The detail 

derivation procedure is described in Appendix E. The minimum moving bed velocity can 

then be obtained from equating the driving moment and the opposing moment as shown 

in Eq. 4.6.
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[l + 1.732 tan ̂ ’]sin^

Pi(0.1651C o+0.0982Q )
(4.6)

Suspension Layer

Moving bed

Stationary bed

Fig. 4.4 -  Forces acting on a particle at the lower stratum of the moving bed in a 
deviated wellbore

4.3.2 Transit Segment

The mathematical model is developed based on the steady-state flow condition, 

neglecting reservoir inflow and outflow, which is the same condition as the horizontal 

and near horizontal segment.

43.2.1 Continuity Equations

The continuity equations for the fluid and solid particles are written as follows: 

‘t^C^U^ + A,C,U,^A,C,U. (4.7)

aJ i - c^ P ^ * a,(i - c , P , ^ aAi - c , P ,  (4.8)

Equations 4.7 and 4.8 present conservation of mass in the solid and the liquid phase, 

respectively. The relevant relation can be described as follows:
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^SJ + 4  = A, (4 9)

The cuttings concentration, which is generated at the drilling bit, specified in Eq. 3 8 , can 

also be used for this segment. If the bed is stationary or moving relatively slowly, as 

explained by Walton,'" the terms involving ifh can then be neglected by assuming that the 

bed formed is stationary. Equations 4.7 and 4.8 can be simplified as:

= / ! / ' / / _  (4 10)

(4.11)

4.3.2.2 Momentum Equations

The equation, which describes the sum of forces acting on the suspension layer, is:

A., ~ 1  -  (4.12)
I )

where, F\dc, is the gravitational force acting on the suspension layer (mixture), which is 

the only component affected by the wellbore deviation, and can be defined as:

fLu cos g (4.2)

where, p,u is the effective density o f the upper dispersed fluid flov' layer 

From Fig. 4.1, summing up all the forces acting on the cuttings-bed gives:

A,
V

( F A
+ (4.13)

where, Fho is the gravitational force acting on the particles, and can be defined as:

F,a = Pbf^A, C O S #  (4.14)

Equation 4.12 can be written as:
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Equation 4.13 can be written as:

f   ̂ Ta/*^
~ r  = ~ ^ h ^ h '^  ^sjb^^cih -  PbS^b cos# + A f, —— 
L \  L J

By combining Eqs. 4.15 and 4.16 and solving for Ft, it becomes:

(4.16)

F b -

-  -  PbgAb cos# +

Au
^P.ug^.a  COS#)

(4.17)

The force, Fh can be considered the force acting on the cuttings-bed exerted by gravity, 

fluid stress, and fluid pressure gradient. Shear stresses in this segment are given as 

follows:

(3.10)

^b - ~ P b \ F ,  \ U J , (4.18)

(4.19)

where, / j ,  and f^dh are friction factors as a function o f Reynolds number. Dry friction 

factor, fh, can be found from an empirical correlation, which can be calculated based on 

the hydraulic diameters. Equations 3.13 and 3.14 are used for calculating/.j and fuh  

respectively. The friction factor fh is given as^ :̂

A  = 0  04d Pb^bF^h

. P i )
( 4 . 2 0 )

where, hydraulic diameter, Db, is given by
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(4:1)

The solution o f  the difflisivity equation, Eq. 2.41, for the transit segment is obtained by 

integrating it twice. The detail solution o f the difiUsivity equation is described in 

Appendix B. It gives the following concentration profile for the upper layer o f the 

horizontal annulus;

(4.22)

where, Ch is cuttings volumetric concentration (0.4805), 6p is particle eddy ditïusivity, D 

is wellbore diameter, andy^ is a height o f  the cuttings stationary bed.

4.3.3 Vertical Segment

When cuttings are transported to the surface, there are four différent forces acting 

upon them, i.e., the gravitational force, the upward buoyant force, the drag force, and the 

lift force (the axial element o f the lift force in a vertical well is negligible).

For the lift case (Fig. 4.2), the sum o f the forces acting on the particle is given as follows.

Fg cos# + sin 9 - F , ,+ F g  > 0  (4.23)

For terminal settling, the relationship among these forces is:

Fg c o s # 4- f^  s i n # - ( / ^  - F g )  = 0 (4.24)

The momentum equation, which describes the sum of the forces acting on the suspension 

layer, is as follows:

, f A P ]

-It J= cos# (4.25)
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Equations 3.10 and 3.13 can be used to define the shear stress and the friction factor, 

respectively, in this segment.

The net effect o f gravity and buoyancy force must be equal to the axial component 

o f both the drag and the lift force when the particle reaches the terminal settling velocity. 

The related forces acting upon the particle are shown in Fig. 4.2. The cuttings are 

transported from the bottom at a rate equal to the difference o f the axial components 

between the average annular velocity and the particle settling velocity. This particle 

velocity (relative to the surface) is called the transport velocity, defined in the following 

equation:

U , = U ^ c o s e - l \  (4.26)

where, I is the average annular tluid velocity in the vertical segment, which is the only 

component affected by the wellbore deviation. Since drilled cuttings suspension consists 

o f clusters o f many particles, the hindered settling velocity specified by Eq. 2.33 was 

used in this study.

The transport ratio is defined as the transport velocity divided by the annular 

velocity.

As the particle settling velocity increases, the transport ratio decreases and the 

concentration o f cuttings in the annulus increases. Conversely, an increase in the 

transport ratio indicates that the relative cutting velocity has increased to the nominal 

annular velocity, and so the cuttings are being transported to the surface more 

effectively.^
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4.3.4 Summary of the Model

For the horizontal segment (60 -  90“), the model is quite similar to the model for 

horizontal wellbores (90“). The horizontal segment is described by a set o f six equations: 

Eqs. 3.5, 3.7, 4.1, 4.3, 4.6, and 2.43. The six unknowns with the given operational 

conditions are U,j, C'w, ymh, y^h. and AP dL. The auxiliary equations for solving this 

new model are derived in Appendices or directly imported from other researchers.'^

For the transit segment, the model is described by a set o f five equations: Eqs. 4.1, 4.7, 

4.8, 4.12, and 4.22. The five unknowns with the given operational conditions are C\j, 

y,h . AP dL, and Fh. For the vertical segment, the model is simply described by the 

pressure gradient (Eq. 4.25) from momentum balance and particle relative velocity (Eq. 

4.26).

4.4 Solutions

4.4.1 Horizontal Segment

Combining the continuity equation for the solids, Eq. 3.21, to the liquid, Eq. 3.22, 

and solving for the mean velocity o f  suspension layer, Usd, gives the following:

(3 23)

Cuttings volumetric concentration o f a dispersed suspension layer, O ,  is given by .
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All terms at the right-hand side o f Eq. 3.26 are a function o f the unknown v,«a. and 

U,„h, which are dependent on the operational conditions.

The solution to the equations is determined by eliminating the unknown factors.

A,

*mh
V L jy L j  

P.i = A (  u 

P^b = P , C i

V L  y

(4.1)

(4.3)

(3.12)

(3.17)

Eliminating the pressure gradient terms from Eqs. 4.1 and 4.3, Equation 4.28 is obtained.

 ̂P xjM xu cose) =
(4.28)xii

F F
xümb^sdmb ^

mbxh
+  + P .^ S '^ .iC O se

Equation 4.27 can be rearranged as;

cose

+
r F  ^nü)sb

~ ^ ^m b x b ^ m h sb  ^  s jm b ^  xJmb ^  C O S e

(4.29)

A mb

Solving these equations simultaneously is quite complicated, hence an iterative technique 

is used. The hierarchy flow chart for a step-by-step procedure is given in Appendix E.
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4.4.2 Transit Segment

A solution o f the two-layer model for the transit segment is somewhat easier than the 

three-layer model. By adding Eqs. 4.7 and 4.8 and solving for the average velocity o f the 

dispersed suspension layer, it becomes:

=
r x  1 ( a A

f L -
< A,b J

IL (4.30)

When the bed is stationary or its velocity is relatively slower than the suspension layer, 

the velocity of a cuttings-bed can be negligible, that is to say, Uh « 0 . Then, Eqs. 4.7 and 

4.8 can be simplified as:

(4.31)

Equation 4.29 can also be simplified as:

(4.32)

From Eqs. 4.31 and 4.32, it clearly shows that:

C'w = C, (4.33)

Equation 4.33 is satisfied under steady-state flow conditions. Equation 4.31 can then be 

rewritten as:

A i .  ^

u (4.34)
sd J

Equation 4.34 is a function ot'y,j (or vv,) and nominal annular velocity, U,„ The stationary 

bed height, yt, directly affects a local velocity o f a suspension layer and its cuttings 

volumetric concentration. A change in these parameters changes the force and 

momentum balances. Hindered settling velocity {Vh) and dififusivity {Sp) are also
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functions o f a cuttings volumetric concentration on the dispersed suspension layer (C j). 

Therefore, the stationary bed height can be obtained by iterative calculation o f all the 

related equations. The details o f the calculation procedure are described in Appendix E. 

Once the cuttings-bed height (}%) is obtained, the average velocity o f the dispersed 

suspension layer, ( can be obtained from the wellbore geometry.

By combining Eqs. 4.15 and 4.16 and solving for Fb, the force acting on the 

cuttings-bed, it becomes:

-  -  p,gA, cose +

cos#)
(4.17)

The fluid pressure gradient can be obtained from Eq. 4.1, which describes the sum o f  the 

forces acting on the suspension layer.

—  I = (4. 12)
V ^ y

where. F,jo is the gravitational force acting on the suspension layer, which is the only 

component affected by the deviated wellbore angles. It is defined in Eq. 4.2.

4.5 Model Simulation Results and Discussion

The simulation was performed for the base case described in Table 3.1. The effect 

o f  various parameters such as nominal annular velocity ((4 ), wellbore deviation, carrier 

fluid rheology, and the cuttings concentration on the cuttings transport efficiency were 

simulated and investigated with the base case. Three different fluids (fluid A, fluid B, and 

the base case) were simulated to investigate the effect o f fluid rheclcgi' on the cuttings
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transport. Three different mathematical models, representing each segment, produced 

slightly different values at each segment boundary. In order to reduce the discontinuity of 

the combined results from the three segment models, the average simulation results at 

each segment boundary were used. The following simulation results show the effects of 

the various parameters.

4.5.1 Effects of Nominal Annular Velocity in the Annulus

The simulation results for the base case are presented in Figs. 4.5 to 4.7. Figure 4.5 

shows the area distribution o f  each layer in the annulus with a change in the wellbore 

deviation at the nominal annular velocity o f 3 tf/s. The three layers are distinct, i.e., a 

stationary bed o f  drilled cuttings at the bottom, a moving bed layer above it, and a 

heterogeneous suspension layer at the top. The stationary bed and the moving bed layer 

are somewhat stable under the horizontal segment. Below the wellbore deviation o f 60", 

the moving bed abruptly diminishes. The results shown in Fig 4.5 confirm the findings 

published by other researchers.'*'^”'^' The results indicate that it is more difficult to clean 

deviated wellbores than those close to vertical wellbores. Moreover, the axial velocity 

(vertical velocity) o f  the fluid increases with a decrease in the wellbore deviation. .4n 

increase in a vertical velocity can support the particles longer in the suspension layer The 

highest vertical velocity is shown around 55" (Fig. 4.6) and the cuttings-bed begins to 

erode in this region. The cuttings-bed continuously erodes and will disappear at the end 

o f the transit segment.
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The cuttings-bed is almost non-existent in the vertical segment. The cuttings transport 

velocity is the dominant factor for hole cleaning in the vertical segment.

Comparison o f  the cuttings-bed area with the experimental data is shown in Fig. 

4.7. The simulated cuttings stationary bed is stable in the horizontal segment. This pattern 

matches well with the experimental data taken from Tomren.'' Simulation results shows 

54 % of the stationary bed with a nominal annular velocity o f 3 ft/s in the horizontal 

segment. The cuttings-bed diminishes around the wellbore angle o f 30". Meanwhile, the 

experimental data shows that the cuttings-bed areas are 30 % and 20 % with the nominal 

annular velocity o f 2.86 ft/s and 3.34 ft/s, respectively. A 50 % eccentricity and drillpipe 

rotation at 50 rpm were considered in the experiment. Sanchez et al. ’ noted that the effect 

o f  drill pipe rotation on cuttings transport is about 32 %.

Peden et al.-" noted that the effect o f pipe eccentricity on the required transport 

velocity is 26%. The full eccentricity o f coiled tubing drilling is intuitively considered for 

both horizontal and transit segments. This may lead to a large difference between the 

simulation and the experimental data because o f the different conditions used in the 

simulation and the experiments. After consideration o f differences between experimental 

conditions and simulation conditions, the simulation results for cuttings-bed area are in 

good agreement with these experiments.

Figure 4.8 shows the effect o f  nominal annular velocity on the cuttings-bed. From 

this figure the cuttings-bed with the nominal annular velocity o f 3.0 ft/s shows the higher 

cuttings-bed area rather than those o f the nominal annular velocity o f 2.0 and 4.0 tt/s. The 

velocity profiles o f the eccentric annulus presented by the researchers^'" show that the 

velocities are very low in the bottom area where the coiled tubing is located.
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Therefore, cuttings settlement around the bottom area is inevitable in coiled tubing 

drilling with a normal pumping velocity ( 2 - 3  ft/s). The cuttings-bed diminishes with the 

nominal annular velocity o f 5 to 6 ft/s.'"-^ '̂

The particle concentration in an annulus is a strong ftmction o f the nominal annular 

velocity. Simulations o f the particle concentration for the base case are compared with 

the experimental results, as shown in Fig. 4.9. The patterns o f particle concentration in 

the annulus between the simulations and the experimental data are well matched through 

the entire wellbore deviation. As stated earlier, the effects o f drillpipe rotation and 

eccentricity on cuttings transport efficiency are 32% and 26%, respectively. The different 

conditions between the experiment and the simulation were cjnsidered to correct the 

simulation data. The simulation result (28% of the cuttings volumetric concentration) was 

then converted into 14% after correction o f effects o f drillstring rotation and eccentricity. 

The drilling string rotation effect diminishes in the vertical segment, for which the 

cuttings transport velocity is a dominant factor in cuttings transport

4.5.2 Analysis of Pressure Gradient

The pressure drop profile o f the horizontal section with the different nominal 

annular velocities is shown in Fig. 4.10. The pressure drop can be defined as a function of 

the stationary bed area (which affects the in-situ velocity o f suspension layer), nominal 

annular velocity, and cuttings concentration in the suspension layer. The Nguyen and 

Rahman' model shows similar pattern as the Cho et al. model,^ but the peak point o f the 

pressure gradient and its relevant velocity point are different.
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The simulation results show that the pressure gradient increases with an increase in the 

nominal annular velocity up to 2.8 ft/s, and then it decreases. Pressure gradient is a strong 

function o f cuttings-bed area as shown in this figure. The cuttings-bed area increases 

slightly with an increase in nominal velocity from 1.5 ft/s until it reaches 2.5 ft/s.

Effects o f wellbore deviation on the pressure gradient are shown in Fig. 4 .1 1. The 

gravitational effect on pressure gradient is about 0.433 psi/ft physically for vertical wells. 

The magnitude o f frictional pressure loss is relatively smaller than the gravitational 

effect. This magnitude of gravitational effect decreases as a wellbore deviation increases. 

This is because the pressure gradient gradually decreases with an increase in wellbore 

deviation. The pressure gradient in the vertical segment increases with the increase in 

nominal annular velocity. Each layer with its relevant velocity also affects the pressure 

gradient. Table 4.1 presents the effects o f the wellbore deviation and the nominal annular 

velocity on the area o f each cuttings-bed layer. Since there is no cuttings-bed in the 

vertical segment, the pressure gradient is only a function o f cuttings concentration (which 

is also function o f the rate o f  penetration) and nominal annular velocity.

Figure 4.12 presents the pressure gradient without gravitational effect under the 

different pumping velocities. The pressure gradient at the nominal velocity o f 3 ft/s 

shows up high in the horizontal segment. This is because both cuttings-bed and cuttings 

volumetric concentration in the suspension layer are high at tha: velocity. However, the 

nominal velocity o f 4 ft/s shows high pressure gradient (0.017 psi/ft) for the vertical 

segment. The pressure gradient in the vertical segment increases with the increase in 

nominal annular velocity
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Table 4.1 -  Area fraction of each cuttings-bed layer (base case)

Deviation Ua = 2.0 ft/s u , = 3.0 ft/s IIa = 4.0 ft/s

angle Asu Amb Asb Asd Amb Asb Asd Amb Ash

0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0

10 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0

20 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0

30 90.3 0.0 9.7 90.8 0.0 9.2 91.9 0.0 8.1

40 72.0 0.0 28.0 73.5 0.0 26.5 76.5 0.0 23.5

50 56,6 0.0 43.4 59.0 0.0 41.0 63.7 0.0 36.3

60 43.0 3.0 54.0 43.6 5.3 51.0 53.5 1.3 45.2

70 36.2 4.9 58.9 35.5 8.8 55.6 48.6 2.2 49.3

80 35.4 5.3 59.3 34.4 9.5 56.0 48.0 2.3 49.7

90 35.6 5.3 59.1 34.6 9.5 55.8 48.2 2.3 49.5
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4.5.3 Effects of Fluid Rheology

The effect o f drilling fluid rheology with a change in the angles o f deviation is 

simulated by the different fluid systems (fluid A, fluid B, and base case). The details of 

the fluid systems used in the simulation are presented in Table 4.2. The effects o f the 

wellbore deviation and rheological properties o f the fluids on cuttings-bed are presented 

in Fig. 4.13.

Table 4.2 -  Fluid systems used in comparison

Description Base case Fluid A Fluid B

Fluid type
Low-Vis 

Bentonite

HEC based 

Drilling fluid

HEC based 

Drilling fluid

n 0.68 0.76 0.50

K

(lb,s"/ff^)
0.006 0.001 0.028

Density (ppg) 9.2 9.2 9.2

JUa (cp) @ 5 1 1 S'‘ 39.0 10.9 60.0

The simulation results show that a decrease in fluid behavior index slightly decreases the 

area of the stationary bed but, keeps the moving bed layer almost constant. An increase in 

the viscosity o f the carrier fluid increases cuttings transport efficiency for both the 

cuttings rolling/sliding and suspension mechanism. The stationary cuttings-bed is easily 

eroded by the viscous fluid at the transit segment. The more viscous fluid (fluid B) may 

support particles in the suspension layer longer than the less viscous fluid (fluid A). 

However, the pressure gradient o f the more viscous fluid is greater than the less viscous 

fluid for both the vertical and horizontal segments (Fig. 4.14).
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These results indicate that the effectiveness o f a carrier fluid in cuttings transport is 

not only dependent on the rheology o f the fluid, but also on the fluid flow regimes. These 

simulation results also show that the viscous drilling fluid with a high in-situ velocity 

brings good results in the long transit segment, and the viscous drilling fluid with a low 

velocity (laminar flow regime) gives good results in the long vertical segment, in view of 

the cuttings transport. The simulation results are within the industry’s accepted rules of 

thumb.

4.5.4 Effects of Fluid Density

Some researchers have emphasized that the fluid density plays an important role in 

hole cleaning in deviated wellbores.'^ In vertical and deviated wellbores, the increased 

fluid density can serve to reduce particle settling velocities caused by increased buoyancy 

effects. Whether the reduced particle settling velocities promote better cleaning is 

dependent upon other factors as well.'*  ̂ Figure 4.15 presents the effects o f fluid density on 

cuttings bed area distribution with base case. Three base fluids with different densities (8 , 

12, and 18 ppg) were used for simulation with pump rate 3.7 bbl/min. that corresponds to 

nominal annular velocity o f 3 ft/s. Higher density fluid shows less cuttings-bed remained 

under the same nominal annular velocity. An increase o f 50% in fluid density (from 8 

ppg to 12 ppg) decreases the cuttings stationary bed area in horizontal segment by 8.5%. 

From this figure, the heavier mud outperformed the lighter fluid, indicating that increased 

mud density can improve cuttings transport somewhat in horizontal and transit segments. 

However, the other points such as static pressure and pressure gradient must be 

considered in the design o f an optimum drilling program.
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Hemphill and Larsen*^ performed experimental works to investigate the effects of 

circulating fluid density on the required critical velocity. They performed experiments on 

a 5-in. flow loop with 2-5/8-in. diameter inner pipe, which simulated drillpipe rotating at 

50 rev/min. Limestone cuttings having 0.25-in. average diameter were used with an 

injection rate maintained at 20 -  21 Ibm/min. that corresponds to a penetration rate o f  54 -  

56 ff/hr. Two different fluid systems, presented in Table 4.3, were used.

In their experiments," the effects o f fluid density were studied in terms o f the 

critical fluid velocity for the 10.1-lbm/gal (fluid #1) and 15-lbm/gal (fluid U2). Figure 

4.16 illustrates that at the higher deviation angles (horizontal segment), higher fluid 

density requires less critical fluid velocity. It can be interpreted that a higher density fluid 

erodes the cuttings-bed more easily than a fluid with less density These experimental 

results are in good agreement with the cuttings-bed distribution for the different fluid 

density.

Table 4.3 -  Fluid systems used in the comparison of fluid density effects

Fluid Property Fluid #1 Fluid #2

Density (Ibm/gal) 10.1 15

Plastic viscosity (cp) 16 28

Yield point (lbt/100 ft") 11 15

Flow behavior index, n 0,67 0.73

Flow consistency index, K  (lbts"/ft^) 0.0044 0.0048
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The required critical fluid velocity in transit segment has no consistency. Fluid #2 

shows higher critical fluid velocity in deviation angle range 35 -  50"̂ . However, fluid #1 

shows higher fluid velocity in deviation angle range 20 -  35". In this segment, the 

cuttings-bed has been observed to slide down frequently.’* The cuttings-bed is not stable 

in this segment. Hemphill and Larsen*^ noted that increasing mud density and mud 

viscosity could improve cuttings transport somewhat in the transit segment.

The simulation results, illustrated in Fig. 4.16, show that higher-density fluid 

requires lower critical velocity in a horizontal segment. The difference in simulation 

results for the horizontal segment is 5% ( 1 8 -  23%) for both fluids. This can be explained 

from the different conditions: drillpipe was rotated at 50 rpm in experimental conditions, 

but the simulation program(CT-Wei 1C lean® ) is based on coiled tubing drilling without 

the effects o f drillstring rotation The effect o f drillstring rotation in this case was 19.1 % 

obtained from the University o f Tulsa Drilling Research Project (UTDRP) study.”  

Considering the effects o f drillstring rotation on the simulat.on, the results o f both 

simulation and experiments are in good agreement for horizontal segment.

For the vertical segment, the required critical fluid velocities for the simulation runs 

were obtained by doubling the particle settling velocities as recommended by Wlaton.'* 

However, it is not clear, which experimental conditions were applied to measure critical 

fluid velocities in the vertical segment. Generally, the dominant factors in cuttings 

transport in a vertical segment are cuttings settling velocity and buoyancy corrected 

gravity force. The differences between experiment and simulation for fluid #1 are about 

17 -  45%; on the other hand, the differences for fluid #2 are about 165 -  180 %. Even
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though, different conditions (drillstring rotation) were considered in these results, the 

simulation results show much lower critical fluid velocities. The drilling fluid velocity 1 

-  2 ff/s, shown in the experimental result as critical fluid velocities, are generally 

accepted in conventional vertical drilling.

4.5.5 Effects of Borehole Size

Because o f economical advantages, the applications o f coiled tubing technique have 

been developed in many areas. Coiled tubing drilling was initiated with the application of 

sidetracking. The development of coiled tubing drilling technology allows drilling larger 

wellbores and long horizontal wells as well as extended reach wells. The location o f 

coiled tubing in horizontal and transit segments intuitively is at the lower part of 

wellbore, which makes the annulus area fully eccentric.

It is evident that significant variations in flow occur in the narrow regions in the 

annulus. Zamora et al.*"* showed from their experimental results that flow in the fully 

eccentric annulus was highly skewed, as seen in Fig. 4.17. The details o f fluid system 

used in their experiment are well described in Reference 84. Vinod and Mclntire‘“ argued 

that narrow regions o f the annulus always show low velocity profile resulting in laminar 

flow regime, while the wider regions easily reach flow development resulting in a 

turbulent flow regime. This is one o f the reasons for cuttings accumulation around coiled 

tubing in the annulus under the normal range o f drilling fluid circulation.
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The change o f  wide region (due to change in borehole size) may affect the flow 

development resulting in the cuttings transport efficiency. Simulations were performed 

with the base case changing pump rates. Figure 4.18 shows the effects o f the ratio o f the 

wellbore diameter (D) to the coiled tubing diameter (d) in horizontal well. The high ratio 

o f D/d (4) reaches low cuttings-bed area as well as critical fluid velocity (5.4 ft/s). 

However, the low ratio o f D/d (2) shows high critical fluid velocity (6.5 ft/s).

Effects o f borehole size on cuttings transport efficiency with the different ratio 

(D/d) are shown in Fig. 4.19. The stationary bed decreases with an increasing the 

diameter ratio. The moving bed gradually decreases as the ratio o f borehole diameter to 

the coiled tubing diameter increases under the same nominal annular velocity (f/„ = 3 

ft/s). In addition, the pressure gradient in horizontal well also decreases exponentially 

with an increasing the diameter ratio.

4.5.6 Effects of Cuttings Specific Gravity

The specific gravity o f various formations depends upon the rock types; the range 

o f specific gravity o f sedimentary rock*^ is 2.20 to 2 .88 . Generally, the range o f specific 

gravity for shale and sand formation*’ is 2.5 - 2.75. The range o f specific gravity o f the 

formation being drilled in the drilling industry is somewhat limited. Therefore, the 

experimental studies for the effects o f particlespecific gravity on cuttings transport 

efficiency have not been studied much yet.
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Computer simulations were performed to investigate the effects o f specific gravity 

in horizontal well. Figure 4.20 presents the relationship between cuttings bed distribution 

and pressure gradient. The stationary bed increases with an increasing particle specific 

gravity. The moving bed shows gradually decreasing its bed area with an increase in 

particle specific gravity. This may be due to the fact that cuttings with heavier specific 

gravity are more difficult to transport than lighter one under the same fluid density. An 

increase in the cuttings-bed area decreases fluid path area in annulus resulting in 

increased local velocities. These increased local velocities and relatively higher density 

(due to high particle specific gravity) result in pressure gradient increase.

4.5.7 Effects of Penetration Rate

Li and Walker''* performed over 600 tests using 20/40 (USA mesh) Carbolite and 

20/40 Frac Sand at various concentrations. In their experiments, the drillpipe was not 

rotated and positioned at the bottom of the openhole (100 % eccentricity). The test loop 

used consists o f a 20 ft long transparent Lexan pipe with a 5-in. (internal diameter) 

simulating openhole and a 2-3/8-in. steel inner pipe to simulate a drillpipe. They 

confirmed that there was always a cuttings-bed covering drillpipe in the annulus o f a 

horizontal wellbore under the practical value o f fluid rates ( < 0.6 m^/min : Ih, < 3.34 

ft/s), which is also consistent with this simulation result.

133



100

90

80

V 20 
O

10

Suspension layer Pressure gradient

60

Moving Bed50

Stationary Bed

-  0.14

0.12 f
■«
a

* 0.1 %c0)
•o

0.08 2
0)
2
3

0.06 g
2a

0.04 75co

0.02 %
IL

1.8 2 2.2 2.4 2.6 28 3

Cuttings specific gravity, [dimensionless]

22

Fig. 4.20 -  Effects of cuttings specific gravity on cuttings-bed distribution and 
pressure gradient of horizontal well (base case, i/* = 3 ft/s)

134



Simulations were performed with the same conditions. Figure 4.21 illustrates the 

comparison o f  bed height for the horizontal wellbore between experimental data, taken 

from Li and Walker,^^ and the simulation results using CT-WeilClean®. Both results 

show that an increase in nominal annular velocity decreases cuttings-bed height in 

horizontal wellbore. However, the simulation results have a flattening in the curve at 2.0 

-  2.5 ft/s o f nominal annular velocity. The differences in bed height between 

experimental data and those predicted by simulations are about I -  13.5%. For the 

simulation, the data for Fluid A and 0.025-in. average particle size sands were used.

Figure 4.22 shows the effects o f ROP on cuttings transport efficiency with the base 

case o f which pump rate was 3 .7 bbl/min. corresponding to a 3 ft/s o f nominal annular 

velocity. The stationary bed area with 50 ft/hr ROP shows 51% of cuttings bed in 

horizontal segment. This stationary bed area is increased 8.2 % with 150 ft/hr ROP The 

cuttings bed accumulation is not sensitive to ROP as compared to pressure gradient. 

However, pressure gradient abruptly increases with an increasing ROP in the horizontal 

segment: pressure gradient increases 2-times with an increase o f  3-times in ROP in 

horizontal segment.
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4.5.8 Effects of Cuttings Size

The characteristics o f cuttings (such as size, shape, and density) are related to their 

dynamic behavior in a flowing media. The terminal velocity, drag force, buoyancy 

corrected gravity force, and shear forces between cuttings are affected by both the 

characteristics of the cuttings and the properties of the circulât id fluids,^’ There are no 

consistent conclusions related to the effect o f particle size on cuttings transport that can 

be drawn on previous study.® *

Figure 4.23 illustrates the effects o f particle size on the cuttings bed and frictional 

pressure gradient based on the simulation results. Parameters specified in the base case 

were used while varying only the particle size. These simulation results are for the 

horizontal well with nominal annular velocity o f 3 ff/s (equivalent flow rate: 157 gpm). 

This figure indicates that an increase in particle size increases cuttings-bed and pressure 

gradient abruptly at particle size greater than 0.2-in. (5 mm). For the same fluid pump 

rate, larger particle size results in a higher bed height than smaller ones.

Figure 4.24 presents the effects o f particle size on cuttings-bed distribution and 

pressure gradient with the base case (Ua = 3 ft/s). The cuttings stationary bed with fine 

particle size (0.06-in.) is lower than coarse particle (0.25-in.) case. The difference in the 

cuttings-bed area is about 6.5 % only. However, pressure gradient in horizontal segment 

increases 25 % (from 0.069 psi/ft to 0.092 psi/ft). In the vertical segment, the differences 

in the pressure gradient are not significant.
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Walker and experimental study showed a similar trend concerning the particle 

size (0.006 -  0.276-in.: 0.15 -  7 mm) effect on cuttings transport. This experiment result 

showed that larger particle requires high fluid velocity (5 -  5.5 ft/s) to avoid cuttings 

(0.04 -  0.276-in.) accumulation in annulus with a viscous fluid (20lbm/Mgal Xanthan 

fluid). However, UTDRP^'^' reached a different conclusion from that o f Walker and Li.̂ "̂  

UTDRP observed that smaller cuttings are slightly harder to transport. Particles with 

average diameter from 0.08-in. to 0.28-in. ( 2 - 7  mm) were used for their study.

4.6 Summary

The developed three-segment hydraulic model properly interrelates nominal annular 

velocity, wellbore deviation, cuttings concentration, and fluid theology for cuttings 

transport in wellbore during while coiled tubing drilling. The following conclusions were 

reached directly from the various simulations and the comparison o f the results with the 

published experimental data:

(1) A mathematical three-segment model has been formulated to predict and interpret 

cuttings transport in a deviated wellbore from the horizontal section to the vertical 

section during coiled tubing drilling. These model predictions, based on the 

simulation, are in good agreement with the experimental data published by others.

(2) There are significant effects on cuttings transport when the wellbore is at various 

deviated angles. The height o f a stationary bed in a horizontal segment is almost 

constant or slightly increases with a decreasing wellbore deviation within this
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segment. The cuttings bed abruptly decreases with a decrease in wellbore deviation 

angle in a transit segment. This cuttings bed is almost non-existent at the wellbore 

deviation around 25 -  30“. No cuttings-bed is found at the wellbore deviation between 

0“ and 25“.

(3) There is a need for optimization between prevention o f cuttings-bed accumulation, 

pressure gradient, and rheology o f the fluid to obtain an optimum hole cleaning in the 

transit segment. Adjustment o f one parameter affecting the cuttings transport will not 

promote an efficient cuttings transport. The simulation results are useful for 

estimating the total pressure gradient during a coiled tubing drilling Job because the 

coiled tubing consists o f a vertical section, a deviated section, and a horizontal 

section.

(4) The most dominant parameters affecting cuttings transport while drilling a deviated 

well with coiled tubing drilling are nominal annular velocity and the carrier fluid’s 

rheology. However, cuttings transport efficiency is also affected by in-situ drilling 

variables, which may be difficult to control by drilling engineers. These involve 

coiled tubing location in annulus, cuttings density, and cuttings size. Therefore, the 

effects o f in-situ drilling conditions on cuttings transport should be carefully 

evaluated before designing a drilling program. The simulation program developed in 

this study allows drilling engineers to simulate all possible in-situ drilling variables, 

resulting in the proper design o f drilling programs and selection o f fluid systems.

(5) Effects o f fluid density have a significant role in cuttings transport. On the other hand, 

the cuttings size is less significant within the range o f general cuttings size
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distribution (0.09 -  0.19-in.). An increase in cuttings size up to 0.30-in. in diameter 

significantly decreases cuttings transport efficiency.

(6 ) A highly viscous fluid slightly increases cuttings carrying capacity in horizontal and 

transit segments under a turbulent flow regime, as well as the pressure gradient, under 

the same nominal annular velocity. Again, there is a need for optimization between 

prevention o f cuttings-bed accumulation, allowable pressure gradient, cost, and 

readily available drilling fluids in order to achieve optimum hole cleaning.

143



C H A P T E R  FIV E

C U T T IN G S -B E D  C H A R A C T E R IZ A T IO N

5.1 Introduction

In an attempt to avoid problems o f cuttings accumulation in the annulus, drilling 

operations often include such practices as washing' and reaming}. Other operations, such 

as wiper trips, are often performed to attempt to control the amount o f cuttings 

accumulated in the wellbore.

A detailed review o f the published experimental data reveals that the cuttings 

transport characteristics are changed with a change in the wellbore deviation. 

Researchers"’ "’ noted that the cuttings-bed in annuli is unstable under a certain range of 

wellbore deviation. The most unstable and difficult region for cuttings transport in a 

deviated well is reported as 30 to 60'' from a vertical position. In addition, the 

cuttings-bed is unstable and sometimes it slides down toward the bottom hole or moves 

up in the same direction as the drilling fluid flow .'"''’

The objective o f  this chapter was to develop a mathematical model to predict and 

interpret a cuttings-bed movement, and to examine the effect o f  fluid flow through the
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cuttings-bed. In order to examine the effect o f fluid flow through the cuttings porous 

matrix, the bed layer was considered in the present work as a modified porous medium, 

where the velocities o f the cuttings and the fluid in the bed are no longer identical. The 

concept o f minimum anti-sliding velocity o f  cuttings-bed (MASV) was developed based 

on the inter-relationship between the parameters, which involve fluid rheology, wellbore 

deviation, interfacial friction between the suspension layer and the cuttings-bed, and in- 

situ fluid velocity in the suspension layer.*’

This chapter presents the development process o f a mathematical model to predict a 

cuttings-bed movement and estimate the frictional pressure drop, due to drilling fluid 

flow through a cuttings-bed in a transit segment. The effects o f the related drilling 

parameters, which affect a cuttings-bed characterization: cuttings bed distribution, 

movement with its direction, transport efficiency, and pressure gradient are also 

described.

5.2 Model Description

There are several forces acting on particles in cuttings transport. These involve the 

lift force, drag force, gravitational force, and the frictional force. Both the drag and the 

lift forces are exerted by the flow o f drilling fluid around the particle. The lift force tends 

to lift up the cuttings to join the main stream of the flow where they move. This force 

arises either due to the asymmetric distribution o f  the fluid viscosity surrounding the 

cuttings and/or to the turbulent eddies in the annular flow*'.

In a transit segment, the coiled tubing is assumed to lie at the bottom o f  the
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wellbore, as shown in Fig. 4.1. Therefore, a full-eccentric annulus o f the wellbore was 

considered intuitively for the transit segment. A cuttings-bed may be formed in the lower 

side o f the annulus in this segment. The tendency to form a bed is reduced as the angle to 

the vertical is reduced, but there is a possibility that the bed will slide downward against 

the direction o f the fluid flow'". There are many reported observations o f  the bed sliding 

downward at 45 to 60'’ from the vertical position. ̂

The cuttings-bed itself is a porous matrix, which allows drilling fluid to flow 

through the pores. Effects o f drilling fluid flow in cuttings-bed must be evaluated in order 

to analyze the cuttings transport efficiency and fluid hydraulic associated with the 

cuttings-bed movement. The main assumption underlying the existing analysis is that 

there is no slip between the cuttings and the drilling fluid. This assumption may seem 

quite unrealistic, especially regarding the bed layer. The cuttings-bed is a porous 

medium, where the velocities o f the solids are no longer identical with the fluid. 

However, the existing models, which can handle cuttings transport in a highly deviated to 

a horizontal well, do not consider these characteristics for this region o f  intermediate 

wellbore deviation.

Therefore, a mathematical model was developed to characterize a cuttings-bed in 

this region (transit segment) based on analysis o f stress and forces involved in cuttings 

transport with the use o f applicable basic physical principles. This mathematical model 

specifically covers a cuttings-bed velocity with its direction and MASV. Effect o f drilling 

fluid flow in a cuttings-bed on frictional loss is also included in this model.
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5.3 Model Development

A mathematical model was developed based on the tact that the cuttings-drilling 

fluid suspension flows at flow rates such that there exists a cuttings-bed and a dispersed 

suspension layer in the annulus.

5.3.1 Continuity Equations

5.3.1.1 For Solid phase

By assuming there is no slip between the solid and fluid phase in the cuttings-bed, 

the steady-state continuity equation for the solid particles can be written as:

(5.1)
cX

Here, the subscripts "sd'. and "h" refer to the dispersed suspension layer and the cuttings- 

bed, respectively. The density o f each layer at a certain point between 1 and 2 in the flow 

system in Fig. 4.1 can be considered constant. As shown in Chapter 4, Eq. 5 .1 can be 

integrated to obtain:

(4.7)

The relevant relation o f each area is described as.

/I., + JL = (4.9)

5.3.1.2 For liquid phase

The material balance for the liquid phase is written as:

/I., (I -  + .̂(1 = /l,(l -  C, Kf, (4.8)
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If the bed is stationary or moving relatively slowly, as explained by W a l t o n , t h e  terms 

involving Ub can then be assumed as relatively small or negligible. Equations 4.7 and 4.8 

can be simplified as:

(5.2)

a , A \ - c J i , = a X \ - c , Y l  (5.3)

The mean velocity o f  a suspension layer, fAm, is then calculated:

u , (5.4)

where, and U,i are velocities o f the particle and liquid in the suspension layer, 

respectively. Multiplying both sides by Asj and combining Eqs. 5,2 and 5.3, Eq. 5.4 

becomes:

= /! ,( / ,  (5 5)

Rearranging Eq. 5.5 gives:

(5 6 )
jm

By combining Eqs. 5.2 and 5 6 gives:

(5.7)

If there is no slip between the suspended cuttings particles and the fluid in the suspension 

layer, the mean velocity o f the suspension layer is the same as the in-situ fluid velocity 

under steady-state flow condition. Thus Um = (Ap or U„„ = Usi.
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5.3.2 Momentum Equations

The upper dispersed suspension layer consists o f a relatively clean carrier fluid and 

heterogeneously suspended solids depending on the flow conditions. Under the steady- 

state flow condition, the sum o f the stresses and the forces acting on the fluid flow zone 

should be:

V /- y

where, F,do is the gravitational force acting on the mixture in the dispersed suspension 

layer, which is the only component affected by the wellbore deviation angle.

(4.2)

where, p^j is the effective density o f the dispersed suspension layer.

Summing up all o f  the forces acting on the cuttings-bed gives (Fig. 4.1 ):

AP F
~  + (4.13)

where, Fhg is the gravitational force acting on the particles and was defined as:

=P6»4cos^ (4.14)

The shear stresses both at the pipe circumference and the interface between the 

upper layer and the cuttings-bed are given by:

Uj - - P s d ^ s m f s d [ s ^ . _ f ]  (3.10)

-  r jPb\  I  fh (4 18)

^.db -  -  Psdh )’ Adbisn,/1 (4 19)
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where, fsd and fsjb are the friction factors that can be estimated based on the hydraulic 

diameters. The average friction coefficient (ft) for steel on rock cuttings in water base 

muds were measured by Quigley.*** He suggested that the friction factor between the 

borehole and the cuttings be less than 0.2. Martins et al.^* also suggested that the friction 

factor,/;,, be 0.15, which is used in this study. The following correlations for the friction 

factors o f the dispersed layer and the interface are used in this study;

/ u  = 0.00454 + 0.645 (Ooron et al."" ) (3.13)

= - 0.86 In
D

+ 2.51
sJ (Televantos et a l/^ ) (5.8)

For both / j  and /db, Reynolds number o f the suspension layer was used. The hydraulic 

diameter, given by the following equation, was used in the calculation o f Reynolds 

number.

S ., + S.*
(5.9)

5.3.3 Suspension of Drilled Cuttings

The mechanism, which governs the dispersed suspension o f the solid particles in the 

upper layer, is represented by the diffusion equation specified in Eq. 2.40.

ci-C dC
=  0 (2.40)

'  dy - dy

where, C is the local volume concentration (fraction) o f  the particle, y  is the vertical
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coordinate (perpendicular to the pipe axis), Sp is the diffusion coefficient, and Vh is the 

hindered settling velocity.

The boundary condition, Cw = G  at the interface between the cuttings-bed and the 

flowing suspension layer is utilized in the solution o f Eq. 2.40. Integration o f the 

diffusion equation gives the following concentration profile in the upper l a y e r , w h i c h  is 

the same for the transit segment:

= exp ( y - v j (4.22)

The particle diffusivity, Sp, depends on the physical properties o f the particle and 

the fluid, concentration o f particles in the suspension, and the in-situ velocity o f the 

suspension, f/,j.

5.3.4 Minimum Anti-Sliding Velocity

By combining Eqs. 4.15 and 4.16, Fh can be obtained as.

-  ĥ h + -  Phf̂ A cos# -

cos#)
(4.17)

The force, Fh, can be considered as the force acting on the cuttings-bed, exerted by the 

gravity, fluid stress, and the fluid pressure gradient.

The hydrodynamic friction force, Fhf, acting between a cuttings-bed and borehole 

wall, is composed o f  two components: a dry friction force, Fjf  which is exerted by bed 

particles on the contact surface between a cuttings-bed and a borehole wall, and a 

interfacial fnction force, F^, which stems from the bed movement.'^

(5.10)
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The dry friction force is determined by multiplying the dry friction coefficient and the 

sum o f the normal force exerted by the bed particles/^ as shown in Eq. 5.11.

= nips  -  P l )gcosdC \A ,L  (5.11)

An interfacial friction force, is due to a transmission o f stress from the interface 

through the bed particles. Bagnold^" showed that when a fluid flows over a deposit o f 

solid particles, there exists a normal stress at the interface, which is associated with the 

shear stress exerted by the fluid on the bed.’’ The relationship is as follows:

(5.12)
'  tan^

where, t] is the slip coefficient for given solids, and 0 is the angle o f internal friction. The 

value o f tcitiif). which is between 0.35 and 0.75, depending on the type o f flow and particle 

characteristics.^^ The values o f 17 = 0.15 and = 0.6 were used in this study as 

recommended by Martins et al.'^. These experimental coefficients are based on the 

interaction between cuttings-bed and casing. The effects o f wellbore roughness and 

resulting slip coefficient, as the applicable conditions, are required in the estimation of 

MASV for each case.

A cuttings-bed frequently slides down in the transit segment. The movement o f a 

cuttings-bed movement toward the bottomhole increases cuttings accumulation in the 

borehole. In addition, a cuttings-bed will abruptly slide down when carrier fluid is ceased 

in this segment resulting in a wellbore pack off and a stuck pipe.

Minimum anti-sliding velocity (MASV) is the fluid velocity to keep a cuttings-bed 

stationary. MASV can serve as an operational guideline to avoid the sliding down o f  a 

cuttings-bed. When Ft is exactly equal in magnitude to the hydrodynamic friction force.
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Fhf, the cuttings-bed is stationary. The suspension fluid velocity is MASV, which occurs 

when forces are equal (Fa = Fhf) and cuttings-bed is stationary according to the definition 

o f MASV. The MASV is determined by solving Eqs. 4.17, 4.18, 4.19, 5.10. If Fh, is 

larger than Fh, the cuttings-bed will slide down. The cuttings-bed slides upward in the 

reverse case.

5.3.5 Cuttings-Bed Movement

The force ( F a) ,  defined in Eq. 4.17, acting on a cuttings-bed is a function o f  shear 

stress between the borehole wall and the cuttings-bed. The shear stress defined in Eq. 

4.17 is also a function of a cuttings-bed velocity. The iteration method was used to solve 

Eqs. 4.17, 4 . IS, 4.19, and 5.10 for the cuttings-bed velocity,. The calculation procedures 

are shown in Appendix F

The net force, F, acting on a cuttings-bed is defined as:

P ^ F h - f ^ h ,  (513)

The magnitude o f the force F  may be arbitrarily expressed as the product o f a 

characteristic area A, a characteristic kinetic energy per unit area k,, and a dimensionless 

quantify /k n o w n  as the friction factor'^':

F  = A k J  (5.14)

For flow around submerged objects, the characteristic area. A, is usually taken to be the 

area obtained by projecting the solid onto a plane perpendicular to the velocity o f

approach o f the fluid, and k, is taken to be For example, force F  can be defined

for flow around spheres o f radius r as:
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F = ( 2 ; r i | i p , v , =  y (5,15)

In deriving the cuttings-bed movement, the area A and kinetic energy k, can be defined

as:

A = X L (5.16)

(5.17)

Friction coefficient is defined based on flow regime.'^' For the Stoke’s region: 

24
J  =

iV,
(5.18)

Re p

For intermediate region:

^ 18.5
(5.19)

Since the components o f the net force ( f )  vary as the wellbore deviation and 

cuttings-bed distribution are changing, the net force is a function o f wellbore deviation. If 

F  is positive, the cuttings-bed slowly moves up. The gravity acceleration is acting on the 

cuttings weight with the wellbore deviation angle. Re-arranging Eqs. 5.15 to 5.19 and 

solving for terminal velocity is:

V, =
2F

(520)

The velocity obtained from Eq. 5.20 was used in the calculation o f Fi, in Eq. 4.17. 

Iteration calculations were performed until the value o f  previous and present iteration 

(/^ , reaches less than 0.0001, as shown in the flow chart (Appendix F). The

cuttings-bed velocity v, can be estimated by the value o f  Ft, -  Fhf, based on v,./, where, / is
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the iteration integer. If the absolute value o f \F̂ , -  | is less than a specific value

(0 .0001), the calculated value can be regarded as the final cuttings-bed velocity.

5.3.6 Fluid Flow Through Cuttings-bed

The existence o f relative velocity between a cuttings particle and the drilling fluid 

in the cuttings-bed generates additional frictional pressure loss. It is assumed that the 

commonly used expressions for the flow through porous media can be applied inside the 

bed layer. The porous matrix itself may be moving (moves slightly up or slides down) in 

this case. It is further assumed that the diameter of the packing is small compared to the 

area o f a cuttings-bed.

The pressure drop for fluid flow through a porous media is commonly based on 

Darcy’s law. In the case o f packed beds o f large spheres, the pressure drop is given by the 

Blake-Kozeny equation. It is defined as;

This result is generally good for a void fraction less than 0.5, and is valid only in the 

laminar region.^'

Burke-Plummer”  proposed a pressure drop equation for the turbulent region. It is defined

as:

When the Blake-Kozeny equation and the Burke-Plummer equation are simply added 

together, the result is the Ergun equation.^'

155



ZIP 15()pC;|/. 17S/,,C.y:r
( 5 - )

These equations consider Newtonian fluid only. However, the fluids generally used in the 

drilling industry are non-Newtonian.

Recently, Gibilaro et al/^ proposed the following pressure drop correlation for high 

voids o f fixed beds o f spheres.

+ (5 24)
 ̂ Ja,(i-c.r

where. I-a is a relative fluid velocity in the cuttings-bed layer. Equation 5 24 was 

originally developed for a Newtonian fluid as a function o f  Reynolds number. Cho et al.'̂  ̂

extended Eq. 5.24 to non-Newtonian fluid (Power-law model) with the generalized 

Reynolds numbers. The effects o f slip between cuttings and fluid in the bed layer on 

relative velocity was proposed as a function o f volumetric concentration o f a cuttings-bed 

by Doron et al^ :̂

(5.25)

This relative velocity term was used in this study.

5.4 M odel S im ulation Results and  Discussion

The simulations were performed for the various conditions including the base case 

described in Table 3.1. The effects o f various parameters, such as the nominal annular 

velocity, f/^, wellbore deviation, and the cuttings-bed area on the cuttings-bed 

characterization, were simulated and investigated with the base case. Three different
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fluids (base case, fluid A, and fluid B; shown in Table 4.2) were used to investigate the 

effect o f fluid theology on MASV The following simulation results show the effects o f 

the various parameters.

5.4.1 Local Velocity Distribution

Local velocity is defined as the velocity o f a heterogeneous suspension layer at the 

top o f the annulus, which is affected by a cuttings-bed accumulation. On the other hand, 

the nominal annular velocity is the pumping velocity without the presence o f a cuttings- 

bed. Cho et al.'" demonstrated the effects o f nominal annular velocity on a cuttings-bed 

distribution with different wellbore deviations. Figure 5.1 illustrates the local velocities 

with the different fraction o f the cuttings-bed. A high cuttings-bed leads to a small flow 

path area. A high cuttings-bed shows a high local velocity.

5.4.2 Forces Acting on a Cuttings-bed

Forces acting on a cuttings-bed as a function o f  local velocity are illustrated in Figs

5.2 and 5.3. The hydrodynamic friction force acting on a cuttings-bed increases

exponentially with an increase in local velocity. When the wellbore deviation is

increased, the hydrodynamic force, Fhf is also increased. Forces acting on the cuttings- 

bed, which are exerted by gravity, fluid velocity, fluid shear stress, and fluid pressure 

gradient, increases exponentially with an increase in local velocity. The force, Fh, is

negative until the local velocity reaches about 6.5 ff/s, except when the wellbore

deviation is 60''. This wellbore deviation, defined as near horizontal,'^ shows positive 

force at a low velocity profile. This feature may have some relationship with the MASV.
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Velocities below MASV show negative forces. This means that the gravity force, which 

tends to slide a bed downward, is bigger than the shearing force.

Figures 5.4 and 5.5 present two different forces discussed in the previous section of 

minimum anti-sliding velocity. The forces, Ff,, acting on the cuttings-bed are higher than 

the hydrodynamic forces, F/,;; which are above 55 % o f the cuttings-bed portion for a 3 

ft/s the nominal annular velocity. This trend decreases up to 40 % o f the cuttings-bed 

fraction, which is defined as the area occupied by a cuttings-bed divided by the annular 

section area, with an increase in nominal annular velocity o f 4 ft/s

For nominal annular velocity o f  3 ft/s, a cuttings-bed slowly slides down until it 

cuttings-bed reaches 55%, which may increase the local velocity. The increase in local

velocity also increases the force (Ff,), acting on the cuttings-bed. The cuttings-bed will be

stationary at the 55% cuttings-bed fraction. The local velocity o f the suspension layer is 

MASV at this condition. For the nominal annular velocity o f 4 ft/s, a cuttings-bed slowly 

slides down until it reaches 40 %. The cuttings-bed will then move up after 40% cuttings- 

bed fraction.

The MASV, as a function o f the wellbore deviation with the different nominal 

annular velocity, is shown in Fig 5 6 . The MASV increases with an increase in the 

wellbore deviation until it reaches about 50", then it decreases again. Generally, it can be 

said that a cuttings-bed in a horizontal segment is stable. Since sliding force in a

horizontal segment is less than in a transit segment, the MASV in a horizontal segment is

less than in a transit segment. The MASV decreases with a decrease in wellbore deviation 

angles because a cuttings-bed area also is decreasing as a wellbore deviation decreases.
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The range o f the MASV for the base case specified in Table 3.1 is 3 ft/s to 5.3 ft/s. It 

varies with the nominal annular velocities and the wellbore deviation angle. The MASV 

obtained by nominal annular velocity o f both 2 ft/s and 3 ft/s are almost the same. This 

result may be related to the cuttings-bed area.

5.4.3 Rheology Effects

The effect o f  drilling fluid rheology with a changing wellbore deviation is simulated 

for different fluid systems (fluid A, fluid B, and base case). The details o f the fluid 

systems used in the simulation were presented in Table 4.2. Figure 5.7 illustrates the 

effects o f rheological characteristics o f drilling fluid on MASV under the nominal 

annular velocity o f 3 ft/s. Simulation results show that a decrease in the fluid behavior 

index slightly decreases MASV.

Figure 5.8 presents the effects o f rheology characteristics on forces acting on the 

cuttings-bed with a different fraction o f the cuttings-bed. The balance point between Fh 

and Fhf is slightly less than the case shown in Fig 5.4 The problem o f a cuttings-bed 

sliding down is more severe in less viscous fluid. However, the other parameters such as 

pressure gradient and cuttings-bed distribution have to be considered for optimum 

combination o f the parameters
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Figure 5.9 illustrates the relationship between MASV and fluid density. The 

simulations were performed with the base case and nominal annular velocity o f 3 ft/s. 

Local in-situ velocity in suspension layer increases with an increasing the cuttings 

stationary bed height. In addition, the higher-density fluid reduces particle settling 

velocity as well as gravity force (corrected by buoyancy force). From these simulation 

results, cuttings-bed with low fluid density (8 ppg) in deviated wellbore range between 

30" and 55“ may slide downward because the local fluid velocities in suspension layer are 

less than the MASV. However, increase in fluid density (12 ppg) decreases MASV as 

shown in Fig. 5.9. The cuttings-bed at the deviated wellbore 35 -  60“ will slightly moves 

up at the same pump rate (157 gpm: corresponding to nominal annular velocity o f 3 ft/s).

5.4.4 Cuttings-Bed Movement

The cuttings-bed velocities with different nominal annular velocities are illustrated 

in Fig. 5.10. A negative cuttings-bed velocity means the bed slides downward. A positive 

cuttings-bed velocity means the bed is slowly moving up. y\n increase in the cuttings-bed 

accumulation increases the local velocity. In addition, increased local velocity increases 

energy available for the cuttings-bed to move up. High nominal annular velocities show 

that a cuttings-bed moves up with the lower fraction o f the cuttings-bed.

168



60

&5

6

7&S
â

f  ®
I
| 4 S

I  ^
| 3 . S

3

Z S

A Local velocity (8 ppg)
• MASV (8 ppg)
• Local velocity (12 ppg)
• MASV (12 ppg)
— C uttings^  (8 ppg)

so

" E

. 1

J
10

- C u ttings^  (12 ppg)

20 30 40 60

Wellbore deviation angle, [degree]

60 70

Fig. 5.9 -  Effects of fluid density on MASV (base case, C/a = 3 ft/s)

169



1.2

 ̂ . ♦ Nominal velocity 2 ft/s

■ Nominal velocity 3 ft/s 
^  0.8 A Nominal velocity 4 ft/s
“  •  luminal velocity 5 ft/s

•f M
o

1 “
& 0.2 
C
3  .  •
5 ------------------

• 0.2

-0.4

A

A

0 10 20 30 40 50 60 70 80 90 100

Fraction of cuttings bed in annuius area, [%]

Fig. 5.10 -  Cuttings-bed velocity with different nominal annular velocity (base case)

170



For a nominal annular velocity o f 5 ft/s, the cuttings-bed reaches a stationary 

condition at 20% cuttings-bed fraction. The cuttings-bed begins to move up when MASV 

is increased with an increase in the cuttings-bed (reduction in the flow path area and 

increase in the local velocity). In contrast, a cuttings-bed reaches a stationary condition 

with a nominal annular velocity o f  2 ft/s at 65% cuttings-bed fraction. The effects o f a 

cuttings-bed movement on the pressure gradient with the base case are presented in Table 

5.1, This effect is approximately a 0.5 % increase in the pressure gradient o f the 

conventional method (without the effect o f a cuttings-bed movement). A possible reason 

for this is that the cuttings-bed velocity is relatively small compared to the fluid velocity 

of a suspension layer.

Table 5.1 -  Effects of cuttings-bed movement on pressure gradient (base case)

Angle
(from
vertical)

Ut = 2 ft/s {/, = 3 ft/s (/, = 4 ft/s

Convent Bed Move Convent Bed Move Convent Bed Move

60 0.277 0.277 0.300 0.300 0.291 0.292

50 0.334 0.335 0 347 0.348 0.347 0.348

40 0.392 0.393 0.397 0.398 0.400 0.401

30 0.431 0.431 0.432 0.432 0.434 0.435

Note: 1. Convent means conventional method without the effect o f bed movement
2. Bed move means new method with the effect o f  bed movement
3. Gravity force effect is included in the pressure gradient (unit is psi/ft)
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S.4.S Fluid Flow Through a Porous Cuttings Bed

The effects o f fluid flow in a porous cuttings-bed on frictional pressure drops with 

base case fluid are shown in Fig. 5 .11. The pressure drops are calculated purely for the 

fluid flow in the porous cuttings-bed Frictional pressure drop increases logarithmically 

with an increasing wellbore deviation. The cuttings-bed area also increases with an 

increase in wellbore deviation. An increased cuttings-bed area increases a fluid flow 

sectional area, which leads to increased frictional pressure drop. The increased nominal 

velocity increases local velocity as well as relative velocity in porous cuttings-bed, as 

defined by Eq. 5.31. A high nominal velocity increases the frictional pressure drop. This 

trend increases with an increasing wellbore deviation.

Figure 5.12 presents the comparison o f frictional pressure drops, which are 

representing the sum o f the conventional frictional drop (fluid flow through suspension 

layer, i.e. open flow path) and the frictional drop, due to fluid flow in the porous cuttings- 

bed. Table 5 .2 shows the comparison o f these frictional pressure losses. The frictional 

pressure drop increases 1 to 20%, due to the fluid flow in a porous cuttings-bed. 

Therefore, it is important to consider the effects o f fluid flow in a porous cuttings-bed in 

drilling hydraulics.
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Table 5.2 -  Effects of fluid flow In tlie porous cuttings-bed on frictional pressure 
gradient (base case, without gravitational effect)

Wellbore
Deviation
(angle)

Ua = 2 W s //a = 3 ft/s Ua =  4  ft/s

Conv Bed
flow

Diff
(%)

Conv Bed
flow

Diff
(%)

Conv Bed
flow

Diff
(%)

30 0.013 0.015 9.8 0.019 0.021 7.3 0.022 0.026 15.7

35 0.017 0.019 13.5 0.025 0.027 8.5 0.028 0.032 15.6

40 0.019 0.022 17.3 0.031 0.034 9.2 0.035 0.040 15.0

45 0.021 0.025 18.7 0.036 0.039 9.9 0.038 0.044 16.1

50 0.023 0.028 20.0 0.041 0.045 10.5 0.041 0.048 15.7

55 0.027 0.032 18.2 1 0.047 0.051 9.9 0.045 0.051 14.0

60 0.033 0.037 15.1 0.057 0.062 8.6 0.048 0.053 u .

Note: 1 Conv means conventional method without the effect o f fluid flow in cuttings-bed 
Bed flow means new method with the effect o f fluid flow in cuttings-bed 
Gravity force effect is excluded in the pressure gradient (unit is psi/ft)

2
3.

Figure 5.13 shows the comparison o f the frictional pressure loss o f  fluid flow in a 

porous cuttings-bed with different fluid systems specified in Table 4.2 under 3 ft/s 

nominal annular velocity. The pressure drop o f the less viscous fluid (Fluid A) in a 

porous cuttings-bed shows almost the same pressure drop as the base case. A highly 

viscous fluid (Fluid B) shows a lower cuttings-bed area. However, the pressure drop 

increases abruptly with an increase in wellbore deviation. From a drilling hydraulics 

point o f view, the more viscous fluid is not recommended as a drilling fluid media in a 

highly deviated wellbore. However, the selection o f drilling fluid is a somewhat 

complicated matter, and involves optimization and economics.
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5.5 Sum m ary

The newly developed minimum anti-sliding velocity model properly interrelates nominal 

annular velocity, wellbore deviation, in-situ velocity, fluid rheology, and the cuttings-bed 

area for the cuttings-bed characterization. The following conclusions were obtained from 

this study:

( 1 ) A mathematical model for minimum anti-sliding velocity to predict and interpret a 

cuttings-bed movement around intermediate wellbore deviation (30* to 60“) based on 

computer simulation has been formulated.

(2) It is quite clear that nominal annular velocity and the fraction o f the accumulated 

cuttings-bed play a significant role in a cuttings-bed movement. Therefore, the 

selection o f a fluid, the nominal annular velocity, and its operational conditions are 

important for avoiding the cuttings sliding down in this region o f the wellbores.

(3) A highly viscous fluid slightly reduces MASV and increases the pressure gradient 

under the same nominal annular velocity. It is recommended that an optimum 

combination o f the cuttings-bed area, pressure gradient, rheology o f the fluid, and the 

nominal annular velocity should be considered. An adjustment in one parameter that 

affects cuttings transport will not necessarily promote efficient cuttings transport as a 

whole.

(4) The effect of a cuttings-bed movement on the pressure gradient is negligible because 

a cuttings-bed velocity is relatively small compared to the fluid velocity o f a 

heterogeneous suspension layer.
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(5) The effect o f drilling fluid flow in a porous cuttings-bed on pressure drop is 

significant. This effect considerably increases frictional pressure drop (up to 20%). It 

is highly recommended that this effect be considered in drilling hydraulics o f a 

deviated wellbore with a high cuttings-bed area.
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C H A P T E R  SIX

D E V E L O P M E N T  P R O C E S S  O F  T H E  S IM U L A T IO N

P R O G R A M

6.1 Introduction

The preceding chapters enumerated two things; ( 1 ) that a proper design o f drilling 

fluid rheology and pumping rate are very important parameters for a successful drilling 

operation, and (2 ) how the drilling parameters affect cuttings transport and the drilling 

hydraulic design. Specifically, the selection of optimum drilling parameters requires a 

compromised process between the following factors. These factors involve the cuttings- 

bed thickness, the frictional pressure gradient, fluid rheology, wellbore geometry, and 

wellbore deviation.

The rote o f drilling engineers is to design an optimum drilling program, based on 

the estimation and prediction o f effects o f each drilling parameter, under in-situ 

conditions. This can be achieved by simulations o f various drilling conditions. A 

simulator was developed based on the mathematical models described in the previous
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chapters. This simulator allows drilling engineers to predict and estimate the effects o f 

drilling parameters on cuttings transport. Minimum anti-sliding velocity (MASV), which 

prevents a cuttings-bed from sliding downward in a transit segment, can be calculated by 

this program based on the forcer acting on a cuttings-bed.

This chapter provides detailed descriptions o f the development process o f the 

simulator. The details o f the step-by-step procedures used to develop the mathematical 

algorithms are also described in this chapter.

6.2 Development of Simulation Program, CT-WellClean®

A computer simulator program, called CT-WellClean®, was developed to predict 

and interpret the cuttings transport efficiency in horizontal, vertical, and deviated 

wellbores. The development process was divided into principal steps, and each step was 

further divided into sub-steps to accomplish this task.

6.2.1 Selection of user input parameters

There are numerous drilling parameters that affect cuttings transport and drilling 

hydraulics. In this chapter, the selection o f  input parameters in the simulation program is 

discussed.

6.2.1.1 Pump Rate

One o f  the most important parameters that affect cuttings transport and wellbore 

cleanout is the carrier fluid velocity. High fluid velocity generates high turbulent eddies.
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which allow cuttings to be easily suspended in a dispersed suspension layer. At the same 

time, high velocity in the annular section requires a large volume of fluid to be 

transported through coiled tubing, resulting in a high frictional loss in the coiled tubing. 

One o f  the main differences between coiled tubing drilling and a wellbore cleanout is the 

fluid flow rate required. For wellbore cleanout, in order to generate a high turbulence, 

large capacity pumps are operated. Since fluid velocity at the low side o f a wellbore is 

quite low, some cuttings-bed accumulations at the low side o f tl;e wellbore are inevitable 

under the normal fluid velocity.

Regardless, some ranges o f  nominal annular velocities exist which satisfy the three- 

layer model concept. From the numerous simulations, the range o f 0.75 to 5 ft/s nominal 

annular velocity has a general solution (satisfaction in view o f obtaining the positive 

moving bed area). This range is also affected by fluid theological properties. If this 

velocity is greater than 5 ft/s, a moving bed does not exist, resulting in no solution o f the 

model. Similarly, there is no solution o f the model under the low annular velocity, 

because it is difficult to distinguish the two beds (a suspension layer and a moving bed) 

due to the high stationary bed.

In order to extend the simulation limitation, the range o f the nominal annular 

velocity between 0.5 fl/s and 6 ft/s was selected as the fluid velocity limitation. Outside 

the specified range (less or beyond o f 0.75 -  5 ft/s), this program was designed to use a 

two-layer model automatically in order to extend its operation limit. The extension of 

simulation limit allows this program can be used for the simulation o f a wellbore 

cleanout. This program is designed for a user to input various pump rates (gal/ min) to 

simulate its effect. By changing a pump rate under the given conditions, the cuttings
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transport efficiency (cuttings-bed distribution) and frictional pressure gradient can be 

simulated.

6.2.1.2 Fluid Rheology

There are several rheological fluid models used in the drilling industry, but the 

Bingham plastic model and the Power-law model are the most common. The Bingham 

plastic model is widely used in the drilling industry to define rheological characteristics 

o f the drilling fluid, since it is simpler than any other model. The Bingham-plastic model 

is defined as:

^ =  ( 6 . 1)

A Bingham plastic model will not flow until the applied shear stress exceeds a certain 

minimum value r,. known as the yield point. After the yield point has been exceeded, 

changes in shear stress are proportional to changes in shear rate and the constant o f 

proportionality is called the plastic viscosity, fjp. However, published data for the effects 

o f rheological characteristics o f the Bingham plastic models are quite rare.

The other model is the Power-law model, which is defined as:

T = k y (6 2 )

Like the Bingham plastic model, it requires two parameters for fluid characterization. The 

Power-law model can be used to represent a pseudoplastic fluid (n < I), a Newtonian 

fluid (n = I), o r a  dilatant fluid (n > 1 ). The parameter k  is called the consistency index o f 

the fluid, and the parameter n is usually called either the Power-law exponent or the flow
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behavior index. The deviation o f the dimensionless flow behavior index from 10 

characterizes the degree to which the fluid behavior is non-Newtonian.^^

Several studies for the effects o f the Power-law models’ rheological characteristics 

on cuttings transport are available. This is because this model effectively represents the 

fluid characteristics o f a variety o f fluid types (including fracturing fluids and drilling 

fluids). This study uses the Power-law model. The Bingham plastic model was reserved 

for future development o f this program. Oil field units o f rheology were also used. This 

program was designed to automatically convert the unit for applications in different 

calculations.

From numerous simulation operations, there may be no solutions (positive moving 

bed area) with certain drilling conditions. When this program has no positive moving bed 

in three-layer model, a two-layer model is used automatically in horizontal segment. This 

change up extends the program capability and reduces its limitation o f simulation. This 

design concept o f the program may bring a quite large flexibility in prediction o f cuttings 

transport efficiency with a broad range of drilling situations.

6.2.1.3 Density of the Fluid

The density o f the fluid directly affects a particle settling velocity. This settling 

velocity influences the cuttings transport efficiency. This program is developed for the 

water-based mud as a carrier fluid. However, this program can be extended to oil-based 

mud, based on the fluid rheological characteristics. In order to cover the density o f oil- 

based muds, which are frequently used for drilling sensitive shale formations, the range 

o f the fluids specific gravity available for a simulation is 0.8 to 2.3 times o f water. These
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are equivalent to 6.6 to 19.2 lb/gal (ppg). The fluid density used in the simulation is 

corrected temperature effect by using the average temperatures between surface and 

bottomhole. Both viscosity and density o f  water are correlated for temperature in this 

p ro g ra m .T h e  default temperature is 75 T .

6.2.1.4 Wellbore Configuration

Well length, wellbore deviation, wellbore diameter, and coiled tubing diameter used 

in drilling or wellbore cleanout are important in predicting the cuttings transport 

efficiency and frictional pressure loss. This program allows a user to input in each 

wellbore length corresponding to the wellbore deviation angle o f 5“. Figure 6.1 shows a 

typical wellbore trajectory for angle build and hold. For example, 12 sections o f wellbore 

length with its angle increment (5'’) can be entered in the program if the wellbore 

deviation is 60". Though the wellbore curvature between each point [Ao to A„) is not 

straight, it can be assumed as straight between the sections as shown in Fig. 6.1.

Frictional pressure gradient per unit length o f each section is calculated, based on 

the cuttings-bed distribution, the cuttings volumetric concentrations, and wellbore 

deviation corresponding to each section. The frictional pressure gradient o f each section 

is computed with its length, and the sum o f each section’s frictional loss is displayed. The 

pressure gradient o f each section is shown in the table o f the Form Field (Fig 6.2). Total 

frictional pressure losses in the entire wellbore length can be obtained by summing up the 

frictional pressure losses.
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Kick-Off s ta r t  o f  build

e n d  of build

Fig. 6.1 -  Wellbore geometry for the angle build and hold
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Coiled tubing is intuitively located at the lower part o f the wellbore in both the 

horizontal and the transit segment. The wellbore configuration is fully eccentric in those 

segments. The wellbore configuration in the vertical segment is quite unpredictable. 

Clearly, it is not to be concentric or fully eccentric. The most critical case in fnctional 

pressure loss is the concentric annulus. Therefore, the concentric case is considered an 

estimation of the fnctional loss.

BMklopiQii

a
a
a

A B C D

|o |t vean \ \
I: |1 49ni4 1 1
|io |1 « 7 7  1 1
|15 |149SiM 1 1
la IV4I7452 1 1
1» haasK  1 1
la |a3979BB 1 1
1» j o n n »  1 1
| « jasiann j |

jasTsn 1 1
1» |a;27)» 1 1
1» |a*7% i 1 1
In 1040*1719 1 1
In |a30Mt7a 1 j
la |0)t#7«a 1 !

!”
l o a n »  1 1

In 102549014 1 1
In 10204*154 1 1
1» 101740931 1 1

Fig. 6.2 -  The user interface for the calculation of frictional pressure gradient 

between each section of the wellbore trajectory
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6.2.1.5 The Other Parameters

The following parameters are also required in the simulation o f this program.

•  Rate o f penetration

• Cuttings specific gravity

• Cuttings size

The input data for the rate of penetration (ROP) is used to calculate the cuttings volume 

generated by a drilling bit during a drilling. This cuttings volume directly affects the time 

that the system reaches steady-state conditions and diffusivity. A cuttings volumetric 

concentration in a dispersed suspension layer is calculated by this cuttings volume under 

a steady-state flow condition. Researchers^^'^"" found from their experiments that over 5% 

o f cuttings volumetric concentration frequently causes pack-oflf and stuck pipe problems. 

In this program if the ROP value, input by a user, leads to over 5 % cuttings volumetric 

concentration, an alert message is displayed. The user may increase the flow rate or 

reduce ROP. In order to simulate over 5 % cuttings volumetric concentration, the user 

ignores the alert message. However, the upper limit is set at 12 % of volumetric 

concentration in a suspension layer because o f the limitation o f the particle diffusivity 

coefficient (Eq. 2.47). This coefficient, proposed by Walton,'^ was obtained from sand 

transport experiments in horizontal pipe at 12% o f volumetric concentration.

The specific gravity of formations varies depending upon the rock types. The 

specific gravity o f sedimentary rock*’ varies between 2.20 and 2.88. In order to provide a 

wide availability in the simulation, the cuttings specific gravity range was decided as 0.9 

to 11 times o f  the specific gravity o f sedimentary rocks, which is equivalent to 1.98 to 

3 .17. This range o f specific gravity can cover most oil formations.
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The mathematical model developed in this study only considers diffusivity. 

Brownian motion and shear-induced random motion o f  the particles, which may affect 

suspensions for light and fine particles are not included. The general drilled cuttings size 

distribution is US mesh 4 to 8 (0.094 -  0.187-in.).'’’ Durand*’ noted that particles less 

than 0.006-in. (0.15 mm) were enveloped in an accompanying film o f carrying fluid, 

which had the effect o f reducing the relative density o f the falling mass with a consequent 

low settling velocity. In addition, the experimental study, performed by Walker et al.’ ,̂ 

showed that larger particles were always harder to clean out than smaller ones. Therefore, 

the cuttings size range o f 0.012 to 0 .3 15-in. (0.3 - 8 mm) was selected for this simulator. 

This range includes the sand size (US mesh 20 - 40) generally used in fracturing jobs. 

The size o f  this sand is equivalent to 0.017 to 0.033-in. (0.43 -  0.84 mm). If the input 

data are out o f range for a simulation, an alert message is displayed and the input data are 

cleaned automatically. The cursor is then moved to the empty data box for a new data 

input. A summary o f the simulation ranges is presented in Table 6 .1.

6.2.2 Development of Algorithm

.Algorithm is a word used by the computing community to mean a rule, procedure, 

or sequence o f  instructions. An algorithm is a description o f  how to do tasks. Each step of 

the description is understood by the person or machine that is to perform the task 

Algorithms developed for solving the models developed in this study and calculations are 

described in this section.
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Table 6.1 -  Summary of simulation ranges of each parameter

Parameters Ranges Remarks

Fluid velocity 
(nominal annular velocity)

1 -  6 (ft/s) Note 1

Fluid rheology Power-law Note 2

Density o f fluid 6.6 -  19.2 (ppg)

Specific gravity o f formation 1 .9 8 -3 .1 7

i  Cuttings volumetric concentration 0 -  1 2 (%) Note 3

Cuttings size 0 .0 1 2 -0 .3 1 5  (in.)

Note 1 : When over the range, need to adjust pump rate or increase a wellbore size 
Note 2: The Bingham plastic model is reserved for future development 
Note 3; There is no limitation directly to R.OP. Cuttings volumetric concentration is 
calculated based on the input data. If this concentration is over the range, need to 
decrease ROP, or increase pump rate and/or wellbore size.

6.2.2.1 Horizontal and Transit Segment

The following step-by-step procedure was developed for solving cuttings-bed 

distribution o f the horizontal segment.

Step 1) Calculate particle settling velocity using Eq. 2.28.

Step 2) Calculate total cuttings concentration using Eq. 3.8.

Step 3) Calculate the hindered settling velocity using Eq. 2.33 

Step 4) Assume area distribution 

+ A,
(6.3)
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F, = ^  (6.4)
■ A,„,

Step 5) Calculate the cuttings-bed heights and wet perimeters using Appendix C.

Step 6 ) Calculate the fluid Reynolds number using Eq. 2.17.

Step 7) Calculate diffusivity using Eq. 2.45.

Step 8) Solve Eq. 2.44 to get the cuttings concentration in the suspension layer.

Step 9) Calculate the particle Reynolds number using Eq. 2.26.

Step 10) Calculate drag coefficient and lift coefficient using Eqs. 2.25 and 2.34 

Step 11 ) Calculate a moving bed velocity using Eq. 4.6.

Step 12) Calculate local velocity in a suspension layer using Eq. 3.24.

Step 13) Calculate the areas o f a suspension layer and a moving bed using Eqs. 4.34 and 

3.23, respectively.

Step 14) Calculate new F/ and /-% value using Eqs. 6.3 and 6.4.

Step 15) Iterate step 5 to step 14 until the differences o f F/ and F, between previous and 

present values reaches 0.0001. If this condition is satisfied, the values are final. The flow 

chart for the calculation o f a cuttings-bed distribution is shown in Appendix E.

6.2.1.2 Frictional Pressure Gradient

This calculation module shares the data calculated from the flow layer calculations. 

The following is a brief algorithm used to solve the frictional pressure gradient.

Step 1 ) Import the following data from the flow layer calculation module (C j, Usj,

Step 2) Calculate the fluid density in a suspension layer using Eq. 3.12.

Step 3) Calculate the Fanning friction factor using Eqs. 3.13, 3. and 4.20.
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Step 4) Calculate shear stress using Eqs. 3.10, 4.18, and 4.19.

Step 5) Calculate frictional pressure losses 

For the horizontal section: Eq. 3.9;

For the horizontal segment: Eq. 4.1;

For the transit segment: Eq. 4.12;

For the vertical segment: Eq. 4.25.

The effect o f the cuttings-bed sliding on frictional pressure loss is excluded because this 

effect is insignificant, as discussed in Chapter 5. However, the recommended MASV is 

calculated in this program. The detail flow chart is shown in Appendix G.

6.2.3 Graphical Data Processing

The operation o f this program generates simulation results in either tabulated forms 

or graphic forms. To enhance the visual presentation, this program provides the data 

plotted by the graphic engine. This graphic data can be directly exported to a Microsoft® 

Office program for a user to compare the simulation data with the experimental data. 

After a user confirms the simulation results by graphical presentation form, then the 

tabulated form is simply obtained by using the back button. The tabulated data, which are 

in rich text form, can be saved directly on a file form and plotted by a different graphic 

program, such as Microsoft® Excel or a user customized graphic engine.

The user interface is created by using the Visual Graphic Array (VGA), which 

allows 800 X 600 pixels, or Super Visual Graphic Array (SVGA), which allows 1020 x 

780 pixels. These graphic modes permit 58 rows in all, in which programming features
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like “Form Fields” can be written from rows 1 to 48 at the top o f the screen. With this 

allowable resolution, it is possible to create “Form Field” in the monitor.

The program is designed to plot the processed graphic data on the Visual Basic® 

basis. The user can select the graphical presentation forms. All graphical presentation 

forms are booted at the same time, and each presentation is displayed by activation o f  the 

plot commander. When the next graphical presentation is displayed, the previous plot is 

in a standby position. This presentation can be redisplayed simply by activation o f the 

display commander.

6.3 Description of the Simulation Program

The development o f a simulator involves writing the program in a special language 

CT-WellClean® is a Window® based application program. It allows the user to enter the 

simulation data by moving from point to point using a mouse. The user interfaces, briefly 

explained in the following sections, are provided to make the program user-friendly.

6.3.1 Program Description

This CT-WellClean® simulation program uses the Microsoft® Visual Basic® 

version 6.0  for the user interface. This program communicates with the user who selects a 

simulation method, range o f simulation, input simulation parameters, and output methods 

o f the simulation results. Many unknown parameters are involved and combined together 

in the model. The analytical solution is obtained by several iterations. The algorithm for 

calculations o f cuttings-bed distribution requires vast amounts o f iteration. Input and
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output (I/O) devices provide means o f communication between the user and the machine. 

The Visual Basic® system has a standard input device and a standard output device for 

the user/machine communication. The standard I/O device is a keyboard, a video display 

monitor, and a cursor mover (mouse). This Visual Basic® is the powerful tool used for 

the user interface.

A layout form window allows a user to design the visualized application forms in a 

screen display. One o f the features o f  Visual Basic® used in this program is that the 

different projects can be included in a single application by using custom controls and 

programs. This allows a user to work with multiple projects w thin a single instance of 

Visual Basic®, as well as allows a user to carry out multiple simulations at one time. 

When a user presses a commander button in each form, select a menu item, or select a 

value o f a scroll bar, the program performs the task designated and then laps back into 

hibernation to await the user’s next command, .\nother feature o f the Visual Basic® is 

that the compiling and debugging o f the program are quite easier than other programming 

languages.

6.3.2 Iteration Calculations

6.3.2.1 Introduction

To simultaneously solve the models described in the previous chapters is quite 

complicated. Some unknown parameters are also involved or included in other 

parameters. Examples are the determination o f the drag coefficient and the particle 

Reynolds number. To define the drag coefficient, the particle Reynolds number is 

needed. To solve both simultaneously, it requires iterations/^ The other example in this
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study is the prediction o f cuttings concentration in a dispersed suspension layer, which is 

required to estimate the density o f the fluid in the suspension layer. The cuttings 

concentration in a dispersed suspension can be obtained from a diffusivity calculation. To 

calculate this diffusivity, Reynolds number has to be defined, which requires the fluid 

flow path area, which is a ftmction o f diffusivity coefficient. Therefore, almost all 

calculations used in solving these mathematical models require a different iteration. The 

following sub-chapters describe the iteration procedures used in this study.

6.3.2.1 Wellbore Geometry Calculations

The areas occupied by each layer are obtained from the initially assumed fractions 

o f each layer. Two layers (the dispersed suspension layer and the stationary layer) are 

used to define wellbore geometry (Appendix C) because a moving bed can be easily 

obtained by deducting areas of these two layers from the annular section area. For a 

three-layer model, the area and the height of the moving bed can be obtained from the 

following equations, respectively.

■̂ mh -  ~ ~ (6 5)

y m b - ^ ~ y \ d ~ y s h  (6.6)

For the two-layer model (transit segment), the height and area o f the moving bed should 

be zero.

The next step is to calculate the bed height and the wet perimeters. In order to 

define each area as a function o f contact angles {a. p, a', the wellbore geometry is 

divided into four cases (.Appendix C). The assumed area is allocated to the geometry 

case, which satisfies the area conditions. The calculation o f  the bed height begins with the
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minimum bed height o f the case. The calculated area with the minimum bed height will 

then be compared with the area. If the absolute value difference between the area and the 

calculated area with minimum bed height exceeds 0.0001 square inches (in.’), iteration 

will be done with the new bed height (small increment of bed height) until the absolute 

value difference falls within the design criteria (0.0001 in.^). The wet perimeter can be 

obtained from the contact angles specified with bed heights. The details are described in 

the Appendix C.

6.3.2.2 Cuttings-Bed Distribution

The basic idea to solve this model is the iterative calculation o f the mathematical 

equations simultaneously until the conditions are satisfied. For this, the area o f  each layer 

was assumed initially. Fractions of these areas, F , and F j are defined as:

F, = (6 .3)

F,  = ^  (6 .4)

These areas are readjusted after each iteration. If the area o f a suspension layer, A.,u, is 

small, the local velocity will increase. The available energy increases for particles to be 

lifted up into the suspension layer. The area o f a suspension layer then increases in the 

next iteration because o f cuttings suspension. The increased fluid flow path area (the area 

o f a suspension layer) reduces turbulent eddies and also its strength to hold particles. 

Therefore, the area should be reduced again. This iteration is done until the differences 

between two consecutive calculated areas are within the specified values (0 .0001- in.').
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Each area will be converged into one value during the iteration process. In some 

cases, negative area was found in the calculation process o f diffusivity compensation. 

This may lead to an error message during calculation. In order to avoid this large 

fluctuation in the convergence process, one o f  the guideline for the assumption o f  Ft and 

F: is necessary. The guidelines for Fi and F: were developed from the numerous 

simulation results. This increases system reliability in finding the convergence value 

resulting in avoiding any negative area during iterations. This is one o f the highlights for 

solving the model developed in this study. The stationary bed area, A,,b, is also estimated 

by the iteration process until all the conditions specified in the previous chapter are 

satisfied.

6.3.2 4 Cuttings-Bed Velocity

At the initial stage, it is assumed that a cuttings-bed is stationary. After calculation 

o f  the hydrodynamic friction force, Fhi, and the force acting on a cuttings-bed, Fh, the 

cuttings-bed velocity is estimated. This estimated cuttings-bed velocity is iterated to 

calculate both forces (F,,; and Fh) until the absolute differences o f the cuttings velocity 

before and after the iteration reaches the value specified in the hierarchy chart (0.0001 

ft/s).

6.3.3 Integration of Simulation Results

The simulations are performed by the different layer models developed for each 

segment. The results from each segment model are integrated into one as a function of 

wellbore deviation. There are two boundaries in layer models between the two segments:
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30“ o f wellbore deviation (vertical and transit segment) and 60“ o f  wellbore deviation 

(transit and horizontal segment). However, this integrated result may have a small 

discrepancy within the value o f the neighbor’s segment. Additionally, the magnitude of 

this discrepancy, which seems to be a discontinuity o f the result, may be high at the 

boundaries between each segment.

In order to reduce this discontinuity in the simulation result at the boundaries, the 

simulations were performed by overlapping 5“ degrees. For example, the wellbore 

deviation angle is 0“ to 80“. A simulation is pertbrmed for wellbore deviation from 55“ to 

80“ based on a horizontal segment (using a three-layer model). A different simulation is 

performed for wellbore deviation from 25“ to 65“, based on a transit segment (using a 

two-layer model). Another simulation is performed simultaneously for wellbore deviation 

from 0“ to 35“, based on a vertical segment (using a one-layer model).

The overlapped simulation results from the different segments are used to obtain the 

average value around the boundaries. The simulation results for 55“ to 65“. obtained from 

both the horizontal segment and the transit segment, are averaged. In the same manner, 

the simulation results for 25“ to 35“, obtained from both the vertical segment and the 

transit segment, are averaged. This procedure reduces the discrepancy between the 

boundaries.

6.3.4 Hydraulic Reference Module

A precise estimation o f the hydraulics inside coiled tubing is essential to accurately 

estimate the hydraulic power available with the hydraulic motor at the bottomhole. An 

estimation o f  frictional pressure loss is also important in order to control and maintain the
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wellbore pressure. This data is useful in the design and selection o f  coiled tubing system. 

Calculation o f the hydraulic friction pressure losses inside both the coiled tubing and the 

annulus is included in the hydraulic reference module.

The Fanning friction factor for fluid flow in coiled tubing is correlated with the 

generalized Reynolds numbers. The Shah correlation for pipe flow, proposed in 

Reference 39, was used in the estimation o f frictional pressu e loss inside the coiled 

tubing. This frictional pressure loss was corrected by the correlation related to the pipe wall 

roughness as a function o f apparent viscosity."*'

The frictional pressure loss due to annulus fluid flow is a function o f in-situ fluid 

velocity, effective density, and fluid rheological properties. Three different fluid models: 

Newtonian, Bingham plastic, and Power-law model, are available for the hydraulic 

calculations. The effective density o f a fluid, flowing in the annulus (or a dispersed 

layer), is affected by a cuttings concentration. Moreover, a cuttings-bed also affects the 

in-situ velocity in the annulus. An estimated frictional pressure loss with the cuttings 

accumulation inside the annulus is a valuable guideline for the design o f a drilling 

program. Therefore, this hydraulic reference module allows a user to calculate the 

frictional pressure loss with the fraction o f  a cuttings-bed in the annulus. The fraction o f a 

cuttings-bed is defined as the ratio o f the cuttings-bed area to the annular section area. 

This fraction o f a cuttings-bed can be entered freely by a user.

In this reference module, the allowable range o f a fluid density is 6.6  to 19.2 

Ibm/gal. If the value entered by a user is out o f this range, this program will notify the 

user to re-enter the realistic data. In order to avoid any illogical data input, this program 

also warns o f unrealistic data when a user enters the data for a wellbore size less than
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1.25 times o f  a coiled tubing’s outer diameter. When a coiled tubing’s inner diameter is 

larger than the outer diameter, this program will also notify the user to re-enter the 

realistic data. If the drilling bit size is smaller than the wellbore size in input data, an 

error message is displayed.

If a user knows the exact rheometer data for the ratio o f bob to sleeve radius, the 

input values will be used for the conversion o f fluid consistency index. Otherwise, this 

program is designed to use the default data: the rheometer constant (/3) is 1.1835166, 

used in Eq. 2.21, based on the standard radius o f sleeve, & , is 1.8415-in. and the radius 

o f bob, Rh, is 1.7245-in. A user’s input data have higher priority than the default data. If a 

user knows either the flow consistency index among the pipe flow consistency index, Kp, 

annulus flow consistency index, K,, or viscometer consistency index, Kv, this program 

automatically calculates the consistency index, which is unknown.

.Annulus eccentricity can be selected by a user during a simulation stage. However, 

full eccentricity is a default with the cuttings fraction because coiled tubing is intuitively 

located at the bottom. If a user enters any fraction o f the cutting-bed, the hydraulic wet 

diameter o f the fluid flow path area is calculated. These wet perimeters and fluid flow 

path area (deducted the cuttings-bed area from the annular section area) are used for the 

calculation o f Reynolds number. Once the value o f a cuttings fraction is plugged in, the 

selection o f concentric case is then invalid (the concentric selection button is deactivated 

to avoid any mis-operation o f this program). The calculation results show two different 

cases for frictional pressure loss in an annulus: with a fraction o f a cuttings-bed and 

without a cuttings-bed fraction.
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A horizontal well case is only considered in the calculation of frictional pressure 

loss, since the objective of this module is to provide the user with a guideline for the 

frictional pressure loss in both coiled tubing and annulus. The pressure gradient with the 

effects of the cuttings distribution for deviated wellbores can be simulated by the main 

program. A user can select to repeat this calculation by resetting the data or returning to 

the main simulation program. Figure 6.3 illustrates the Form Field for the hydraulic 

reference module.
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Fig. 63  -  The user interface for hydraulic reference module
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6.4 Program Layout

A total o f nine main modules are incorporated in CT-WellClean®. All o f the main 

modules are linked to the main program, and in some cases the modules are 

interconnected. Although it is possible to link each o f the modules and forms together, 

this was not done deliberately to avoid any confusion or possible mis-operation. In the 

present set-up, a user can go from one form to the other by clicking the Back’ or Next' 

button to the previous or next form. Modules are automatically connected, if necessary. 

At all times, however, the program interface will inform the user o f the operating form 

currently being used. Figure 6.4 shows the program layout.
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6.5 User Interface

Only authorized user is allowed to use this simulation program. The user can proceed or 

go back by using the control keys: ‘Next’ and ‘Back’, respectively. The first user 

interface Form Field is ‘Selection of Simulation’. This form allows a user to select four 

different cases as shown in Fig. 6.5.

S im u la t i o n  s e l e c t i o n

C  Horizontal We# Only 

^  Vertical We# Only

Deviated WeftMNe

C  Fluid HydrauKc CalculatNNt

Back

i l B

Fig. 6.5 -  The user interface for the selection of simulation methods

If the user selects the vertical well only option or the horizontal well only option, this 

user interface will then be skipped. Once the user selects any one of the simulation 

methods, the user interface for input angles is displayed (See Fig. 6.6). A user may select 

the range of wellbore angles for simulation from list buttons. When a user selects the
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initial wellbore angle (Thêta 1), and final wellbore angle (Thêta 2), the selected wellbore 

angles are shown in a dialog box. A user may confirm the selected angle values. If a user 

wants to change the simulation angle value selected, a new value is simply re-selected 

from the list buttons. The latest value selected will be used for the simulation. This was 

designed to enhance user’s operation reliability.

A n g l e  I n p u t

Wellbore Deviation [5 3  to

: : \

( A ngles from vertical pbsitidii ,
should be bigger than  T heta  1)

T h eta l-0
ThH a2-65

Back

Fig. 6.6 -  The user interface for input angles

The next user interface inputs fluid theological data with the expected temperature. 

Figure 6.7 shows the user interface for fluid theology input. The input data in the Form 

Field is also transferred to the public module for fluid hydraulic calculation. Based on the 

input provided by the user, this program first calculates the designated algorithm. The
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calculation result from this module is interfaced with the Form Field, which the user is 

using. Three different fluid models: Newtonian, Bingham plastic, or Power-law model, 

are available to calculate hydraulics in both coiled tubing and annulus with the hydraulic 

reference module (Fig. 6.2). However, the Power-law model is only used in the 

simulation process. Fluid rheology changes as temperature varies between a surface 

temperature and bottomhole temperature.

««, Fluid ty p e  d a t a

I Power LawFluid Type

n value

' fr;.,-. '.v.;
k value

Temperaluraalaurfj

[Ï25I  empefature at bettemhole

Fig 6.7 -  The user interface for fluid data

Development of a specific correlation to correct temperature effect on rheology has been 

attempted. However, it is known that a universal correlation for correction of temperature 

effects is yet to be developed. Therefore, this program reserved the temperature effects on 

rheology for future development. The input temperature data are used only for correction
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of fluid density and calculation of water (as one of Newtonian fluids) viscosity proposed 

by Dodson and Standing.^ The following Colebrook correlations^’ for the calculation of 

water density and viscosity were used in this program.

Pw =
1

k / / » ' (6.7)
0.01600199 + 2.8404282 * 10"’ • (t )̂  * ln(7’)

= exp[- 5.4381328-0.10613679 • (in 7’)' ] [lb„ I f t - s ]  (6.8)

The user interface is a path to input data representing in-situ conditions, including 

wellbore geometry. These conditions consist of a wellbore diameter (or casing), inner and 

outer diameters of coiled tubing, drilling bit diameter, rate of penetration (ROP), and 

cuttings specific gravity data. Figure 6.8 shows the user interface for general input. The 

simulation is performed with this set-up. The next user interface is an output selection.

^  In p u t  ()<if <1

BonhateanOO)

CdMlubinolOO)

EiüMMGuMngcan

CàMTubinoPOl

DiBBISin

Back I

F
F
FzT

F

F

F

Fig. 6.8 -  The user interface for general input data
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For easy applications of this simulation in the design of a drilling program, 

selection of drilling fluid rheology, and prediction of cuttings transport, the outputs are in 

the tabulated or graphical forms. All output graphics can be seen in a display with 

selection buttons. Figure 6.9 illustrates a typical output. A user can select a button for the 

calculation of a frictional pressure loss with the wellbore trajectory data (wellbore length 

with its corresponding deviation).

Wtllbort Laytrt PreflIt (in*2) vi. Angl* (d tg r t t i )

g? f a  g o - j i o . j w i

nf«rwrtspiBrtK

m Pm ÿw flui I I I I I I I I I [ I f

R e s u l t s  (o r  O e v ia to d  W e ll -  P l o t  F o r m a l

jteslhas Q »lI I

W m M

i

Fig. 6.9 -  Graphical output of a simulation result

207



This graphical output provides various simulation results: minimum anti-sliding velocity 

(MASV), area distribution o f each layer as well as combined distribution, cuttings 

concentration in a suspension layer, moving bed velocity, and bed heights o f each layer. 

The combined cuttings-bed distribution is plotted in order to demonstrate visually the 

actual position o f each layer: a stationary bed is plotted at the bottom, a moving bed is 

plotted above the stationary bed, and rest o f them represents a suspension layer. All these 

data are plotted as a function o f wellbore deviation. These graphical outputs can be saved 

in tabulated form (rich text file), which also can be plotted by a different graphic 

program, such as Microsoft® Excel or a user customized graphical engine.
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6.5 Sum m ary

A typical simulator program is composed o f a user interface for data input, data 

processing calculation module, and an output o f the simulator results. The development 

o f any simulation program requires working in a direction that links these three 

components together. Organizing the structure o f  a simulator, developing algorithms, and 

finally, writing the program, are three distinctive steps that help achieve this goal.

A simulation program called CT-WellClean® has been developed, using interface 

Form Fields based on the Microsoft® Visual Basic® version 6 .0 . This user interface 

increases the communication between a computer and it’s user. This simulation program, 

CT-WellClean®, is capable o f carrying out several important simulations, including 

estimation o f cuttings-bed distribution, and frictional pressure gradient in each segment 

under in-situ drilling conditions. This simulator also allows r user to change in-situ 

conditions and to predict the cuttings transport, drilling hydraulics, and the effects of 

change in other drilling parameters. The user can use this simulator to determine or select 

the optimum drilling parameters as well as selecting the best economical fluid system.
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CHAPTER SEVEN

SUMMARY, CONCLUSIONS, AND 

RECOMMENDATIONS

7.1 Summary and Conclusions

A computer simulation program, CT-WellClean®, for analyzing cuttings transport 

in deviated wellbores was developed based on a three-segment hydraulic model. 

Different layer models were used for each segment, which effectively represents the 

dominant parameters affecting cuttings transport. The simulation results were compared 

with the published experimental data for validation o f the model. Based on the results of 

this study, the following conclusions were reached:

I. A mathematical three-layer model has been formulated to predict and interpret 

cuttings transport in a deviated wellbore from horizontal to vertical during coiled 

tubing drilling. The model predictions, based on the simulation results, are in good 

agreement with the published experimental data.
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2. The wellbore deviation has significant effects on cuttings transport. The height o f a 

stationary bed in a horizontal segment is almost constant or slightly increases with a 

decreasing wellbore deviation. The cuttings bed abruptly decreases with a decrease in 

wellbore deviation angle in a transit segment. This cuttings bed is almost vanished 

(25 -  30") or there is no bed (0 -  25").

3. The most dominant parameters affecting cuttings transport while drilling a deviated 

well with coiled tubing are the nominal annular velocity and the carrier fluid 

rheology. However, cuttings transport efficiency is also affected by in-situ drilling 

variables, which cannot be controlled by drilling engineers. These involve coiled 

tubing location in the annulus, cuttings density, and cuttings size. The effects o f in- 

situ drilling conditions on cuttings transport should be carefully evaluated before 

designing a drilling program. The simulation program developed in this study allows 

drilling engineers to simulate all possible in-situ drilling conditions, resulting in the 

proper design o f optimum drilling programs and selection o f  appropriate fluid 

systems.

4. The conventional drilling fluid velocity range o f 2 to 3 ft/s should be avoided while 

drilling horizontal wells with coiled tubing. It is recommended that the nominal 

annular velocity range o f 3 .5 to 4.0 ft/s be used for a well having a long horizontal 

section, because a lower pressure gradient and a less stationary bed area are predicted 

than those o f conventional velocity range.
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5. Effects o f fluid density have a significant role in cuttings transport; however, it is less 

significant than that o f fluid rheology. The cuttings size is insignificant within the 

range o f general cuttings size distribution (0.09 -  0.19-in.). However, an increase in 

cuttings size up to 0.30-in. in diameter significantly decreases cuttings transport 

efficiency.

6 . A highly viscous fluid slightly increases cuttings carrying capacity in horizontal and 

transit segments under a turbulent flow regime, as well as the pressure gradient, under 

the same nominal annular velocity. Thus, there is need for optimization between the 

various parameters.

7. It is quite clear that nominal annular velocity and the fraction of the accumulated 

cuttings-bed play a significant role in a cuttings-bed movement. A heavier drilling 

fluid requires a low minimum anti-sliding velocity (MASV) than lighter fluid under 

the same wellbore deviation and nominal annular velocity. A highly viscous fluid 

reduces the MASV to prevent a cuttings-bed from sliding downward toward the 

bottomhole.

8 . Even though the effect of a cuttings-bed movement on the pressure gradient is 

negligible because the cuttings-bed velocity is relatively small compared to the fluid 

velocity o f a heterogeneous suspension layer, the effect o f drilling fluid flow in a 

porous cuttings-bed on pressure drop is significant. This effect considerably increases 

pressure drop (up to 20%). It is recommended that this effect be considered in drilling 

hydraulics o f a deviated wellbore with a high cuttings-bed area.

2 1 2



9. A high velocity with a less viscous fluid, resulting in high turbulence compared to a 

highly viscous fluid, is effective in cuttings transport in a horizontal segment. In a 

vertical segment, high fluid density under laminar flow regime is effective in 

obtaining a good cuttings transport. While, the highly viscous fluid under a turbulent 

flow regime easily prevents a cuttings-bed from sliding downward, it can lead to 

pack-off or cause the coiled tubing to become stuck in the hole during drilling in a 

transit segment. The required drilling conditions for the best cuttings transport is 

different for each segment. Simulations with the program CT-WellClean® can be 

used for optimization o f all parameters that affect cuttings transport.

7.2 Recom m endations

Although, the hydraulic layer model and simulation program developed in this 

study are very useful for predicting cuttings-bed distribution and estimating the pressure 

gradient under the given in-situ conditions, the following recommendations seem 

appropriate;

1. A development o f the model covering three-phase (solid, liquid, and gas) fluid 

conditions is recommended in order to strengthen the applications o f  the program 

(CT-WellClean®) for a foam fluid, which is frequently used in underbalanced drilling.

2. The three-segment hydraulic model can be improved by considering other parameters 

such as the effect o f temperature on fluid rheology, coiled tubing vibration/movement 

on cuttings rebound, and wellbore straightness
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3 In order to improve the accuracy o f simulation results, it is recommended that 

experimental coefficients, which are directly imported from other studies, be re

established with new experiments. These coefficients, directly affecting cuttings 

transport efficiency, involve diffijsivity, friction factor with drilled cuttings, friction 

coefficient between cuttings-bed and borehole well, and interfacial friction 

coefficients: a) between a suspension layer and a moving bed, and b) between a 

moving bed and a stationary bed.
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NOM ENCLATURE

A -  cross-sectional flow area o f each layer, (sq. in.)

a, h = constants for the Fanning friction factor (Eq. 2 .9 ), (dimensionless)

til, hi = constants for settling velocity (Eq. 2.31 ) ,  (dimensionless)

Afn) = an empirical fluid parameter, (dimensionless)

BOO -  an empirical fluid parameter, (dimensionless)

B = an experimental constant for friction factor (Eq. 2 .23), (dimensionless)

C = cuttings volumetric concentration o f each layer, (fraction)

( 'i, C’j = integration constants, (dimensionless)

C'd = drag coefficient, (dimensionless)

= lift coefficient, (dimensionless)

C, = delivered cuttings volumetric concentration, (fraction)

f V = shape factor o f a particle. (Eq. 2 .31 ), (dimensionless)

D = internal diameter o f casing, (in.)

D h -  hydraulic diameter o f cuttings bed in transit segment, (in.)

Detf = effective diameter o f annulus, (in.)

D,„b = hydraulic diameter o f  moving bed layer, (in.)

D„/ -  hydraulic diameter o f suspension layer, (in.)

D , = nominal diameter o f drill bit, (in.)

ti -  outer diameter o f coiled tubing, (in.)

c/, = inner diameter o f coiled tubing, (in.)

lip = cuttings diameter, (in.)
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= frictional pressure drop, (psi)

Ap dL = Pressure gradient, (psi/ft)

e = eccentricity, (dimensionless)

F = net force acting on the cuttings-bed, (lb,)

Ft -  ratio o f the assumed area distribution, (Eq. 6.3)

= ratio o f the assumed area distribution, (Eq. 6.4)

Fÿ = buoyancy force, (lb,)

Fh = a force acting on cuttings bed exerted by gravity, fluid stress, and fluid
pressure gradient, (lb,)

Fhc, = gravitational force acting on particles in cuttings bed, (lb,)

Fo = drag force, (lb,)

Fdf -  dry frictional force acting on cuttings bed, (lb,)

Fc, = gravitational force, (lb,)

F}„ = hydrodynamic friction force, (lb,)

Fl = lifting force, (lb,)

Fmbc, = gravitational force acting on the moving bed layer, (lb,)

Fjjfj = gravitational force acting on the mixture in suspension layer, (Ibf)

F^- = interfacial friction force, (lb,)

FI -  ratio o f the assumed cuttings bed distribution (Eq. 6.3)

F: = ratio o f the assumed cuttings bed distribution (Eq. 6.4)

/  = friction coefficient, (dimensionless)

fsd = Fanning friction factor for a dispersed suspension layer, (dimensionless)

fsdmb = friction coefficient between a dispersed suspension layer and moving bed,
(dimensionless)
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/ r  = infinite friction factor (Eq. 2 .23), (dimensionless)

f j n )  = an empirical fluid parameter (Eq. 2.7), (dimensionless)

G = carrying capacity, (Ibm/min.)

g  = gravitational acceleration, (ft/s^)

k„ = power-law consistency index for annulus flow. (lb, s"/A")

kp = power-law consistency index for pipe flow, (lbfs7ft‘)

ky = rheometric power-law consistency index, (lbfs"/ft^)

ki = proportionality constant (Eq. 5.13), (Ibf s/ft)

L = wellbore length, (ft)

Li) -  acting distance on drag force, (in.)

= acting distance on lift, buoyancy and gravitational force, (in.)

Li = acting distance on lifting force, (in.)

m = solid particle density (gm/cm^)

h.p.cfj = constants for interfacial friction factor (Eq. 3 .14), (dimensionless)

yV//e = Hedstrom number (Eq. 2.13)

yV«e, = fluids Reynolds number, (dimensionless)

= generalized Reynolds number, (dimensionless) 

i'̂ Rep = particle Reynolds number, (dimensionless)

// = flow behavior index (Power-law model; Eq. 6.2), (dimensionless)

P V  = plastic viscosity o f  Bingham Plastic mode (cp)

R = coiled tubing curvature, (dimensionless)

R, = cuttings transport ratio in vertical segment, (dimensionless)

r = radius o f cutting particles, (in.)
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s  = wetted perimeter, (in.)

II = local velocity in each layer (the average velocity when a cuttings bed is
present in the annulus), (ft/s)

Ua = nominal annular velocity (the average velocity when a cuttings bed is not
present in the annulus), (ft/s)

I // = local annular velocity (the average velocity when a cuttings bed is present in
the annulus), (ft/s)

(f, = particle transport velocity in vertical segment, (ft/s)

If,I = liquid velocity in suspension layer, (ft/s)

if,,,, = mean fluid velocity in suspension layer, (ft/s)

if,p = particle velocity in suspension layer, (ft/s)

I ’r, = typical deposition velocity, (Fig. 2.10)

I's = critical re-suspension velocity in slurry flow, (Fig. 2.11)

I  ’r  =  typical viscous viscous transition critical velocity, (Fig. 2.10)

V = cuttings-bed velocity, (ft/s)

V,  -  cuttings-bed terminal velocity, (ft/s)

l-'h = hindered particle settling velocity, (ft/s)

I'p = terminal particle settling velocity, (ft/s)

y  = bed thickness, (in.)

X  = horizontal coordinate

Y = vertical coordinate

Subscript

a = annulus

b = cuttings bed

u ^  casing in cartesian coordinate
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d = tubing in cartesian coordinate

i = any one layer 

L = liquid

mb = moving bed layer

mbsb = interface between a moving bed and a stationary bed

s = solid particle (cuttings)

sb = stationary bed layer

sd = solid dispersed suspension layer

sdb = interface between a suspension layer and a cuttings-bed

sdmb = interface between a suspension layer and a moving bed

w = wall

219



G REEK SYMBOLS

a  = angle between center point o f casing and upper contact point o f a stationary
bed, (radian)

a  ' = angle between center point o f casing and upper contact point o f a moving bed
layer at the inner casing well, (radian)

a , = angle between center point o f casing ajid upper contac . point o f a stationary
bed in transit segment, (radian)

P  = angle between center point o f coiled tubing and upper contact point o f  a
stationary bed, (radian)

P ' = angle between center point o f coiled tubing and upper contact point o f  a
moving bed layer at the outer coiled tubing surface, (radian)

Pt = angle between center point o f coiled tubing and upper contact point o f
stationary bed in transit segment, (radian)

Ô = distance between center points o f wellbore and coiled tubing, (in.)

So " cuttings particle diffusion coefficient, (dimensionless)

Sp = cuttings particle diffUsivity coefficient, (dimensionless)

(p = angle o f internal friction, (degree)

•f = shear rate, (sec ')

t] = slip coefficient, (dimensionless)

<p = sphericity o f cuttings, (dimensionless)

X = rheometry constant (Eq. 2.21), (dimensionless)

Ue = effective viscosity (Eq. 2.30), (lb, s/ff")

//u = apparent viscosity, (cp)

jjp = plastic viscosity for Bingham-plastic model, (cp)

9 = deviated wellbore angles from vertical (0 -  90")
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f f  = wellbore inclination angle (90'’ - 9)

p  = density, (ppg)

Ü  = a ratio o f the bob to sleeve radius, (dimensionless)

r  = shear stress acting on each relevant wetted perimeter, (lb /in ')

Ty = yield stress o f Bingham Plastic model, (Ibt/100 ft^)

(o = a constant for Fanning friction factor for annulus pipe (Eq. 2.22),
(dimensionless)

CT = absolute roughness o f coiled tubing, (in.)

ÿ/ = cuttings-bed porosity, (fraction)
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APPENDIX A

Drag Coefficient and Particle Reynolds Number
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In this appendix, particle Reynolds number and drag coefficient o f  a single 

spherical particle under static conditions are provided in detail for both Newtonian and 

non-Newtonian fluids.

I. Drag force

Two expressions may be written for the force, which act on a sphere falling at a 

terminal velocity Vp in a quiescent fluid o f  infinite extent. From Newton's second law the 

drag and gravitational forces deducted by buoyancy force must be equal;

f'D=F,}-FB  (A-1)

where

f'o = (Drag Force)
O

(Gravitational Force)

o
(Buoyancy Force)

Rearranging Eq.(A -l) in terms o f drag coefficient Cp:

P. -P z .1
C ’n  -  —

(A-3)

(A-4)

(A-3)

where, g = acceleration o f gravity

4 = equivalent diameter o f particle

= particle terminal settling velocity

A -  density o f solid particle

Pi = fluid density
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2. Drag coefTicient 

Newtonian fluids

Basically, the drag coefficient represents the fraction o f the kinetic energy o f the 

settling velocity that is used to overcome the drag force on the particle, while Reynolds 

number is a ratio between the inertial force and the viscous force o f a f lu id .T h e  

particle's Reynolds number for Newtonian flow is defined as:

' pR e „ = ^ - ^  (A-6 )
P/.

where, fjL = fluid viscosity.

The drag coefficient Cd is a function o f Reynolds number and is usually presented 

for creeping, intermediate, and turbulent regions. Three regions o f  flow are defined by the 

relevant Reynolds number as follows:

Stokes region: Rcp < 0.1 (A-7)

Intermediate region: 2 < Rep < 500 (A-8)

Newton region: 500 < Rep < 2x10' (A-9)

In these three regions, the drag coefficients are given by Shah.'’

(Stokes) (A -10)

18 5
C q = — —  (Intermediate) (A-11)

RCp

( o s  0.44 (Newton-turbulent) (A -12)
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Non-Ne^vtonian flu ids

Generalized particle's Reynolds number for non-Newtonian power law is usually 

defined as:

(A -13)

The effect o f viscous flow in drag coefficient and particle settling velocity with the 

irregular shape is quite comprehensive. Therefore, simple equations and correlation are 

included in this study. Similarly, the drag coefficients based on Shah’s work‘d are given 

by Meyer.

24X

=

/V
(Stokes)

Rc p

24

N Rc p

18.2

24
- . r '  +7.5

I :

(A -14)

(Intermediate 0.1 < /V̂  <100) (A -15)

iV,
(Intermediate 100<R,..p'<500)

Re p

C’o s  0.44 (Newton 500 <  ̂)

The following boundaries are used'^*: when <1 and X < 1 then; 

low boundary X  = 3" ' [(/; + 2)/ 3/;]" 

when n > 1 and X > 1 then; 

high boundary X  = 1.0 + 0 .8(l -  //)" ^

(A -16)

(A -17)

(A-18)

( A - 19)

3. Moving bed velocity for horizontal wells

The lift force acting on a particle is a function o f lift coefficient, defined as follows:
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c ,  = 5 .82
f ' ^ 1 -

\^^RcpJ
( 2  2 5 )

(2.27)

The perpendicular distances to the line o f action are defined as; (Refer to Fig. 3 .3)

-cos
6 j

(A.20)

Z.,; = L^=  —  sin
71

6 j
(A.21)

Substituting Eqs. A-2 -  A 4, A.20, A.21, 2.25 and 2.27 for Eq. 2.28, it becomes: 

1 /  .
It
—  sin — 
3 3

. i t \ ( d
cos—

A, 2 6
-f

— sin —  
2 6

r » y  mb
mb

. It 
— Sin —  
2 6

-^P s8^]
<̂ p . It ^ 
—̂ sin — = 0 
2 6

Equation A.22 can be rearranged and simplified as:

-
p j0 .1 6 5 l5 Q  + ().0982fJ

(A.22)

(3.20)

The details o f derivation o f moving bed velocity for a horizontal segment are described in 

Appendix D.
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APPENDIX B

Solution o f Diffusivity Equation
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Particles are held in suspension against the gravitational force by a combination o f 

viscous resistance and diffusion by turbulent eddies. The mechanism, which governs the 

dispersion o f  the solid particle in the upper layer, is represented by the well-known 

diffusion equation:

+ = 0 (B .l)
dy- dy

where, C is the cuttings volumetric concentration (fraction), y 's the vertical coordinate 

(perpendicular to the pipe axis), £p is the diffusion coefficient and Vp is the particle 

terminal settling velocity. Hindered settling velocity, Vh, is used instead o f Vp in this 

study. Since £p and Vp are both constants and independent o f  y-coordinate, the partial 

derivatives in Eq. B.l can be replaced by a total derivative and expressed as.

= 0 ,B .2,
d y  £^ dy 

Integrate Eq. B.2 with respect toy , it becomes:

— + — ( ’(y) = ( ’j (B.3)

where C l is a arbitrary constant. Eq. B.3 is a first order, linear ordinary differential 

equation with constant coefficients. The integrating factor for Eq. B.3 is:

Int factor  = ex p j
/■ \ f  \

dy = exp (B.4)

Multiplying Eq. B.3 with Eq. B.4, it becomes:

+ = (B.5)
dy y

or
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( B . 6 )
dy

Integrating both sides o f Eq. B.6 , it becomes:

(B.7)

where C2 is another arbitrary constant. Eq. B.7 can be re-written as.

(B,8 )

Eq. B .8 is a general solution o f  Eq. B.l. In order to solve for the constants C 1 and C2, the 

following boundary conditions are used.

(B.9)
y  = D (diameter o f  t a  sin g) C( v) = o 

y  = y \ (bed height) =

When boundary conditions are applied to the Eq. B.8 , the general solutions are

(B 10)

c \  =C , (B .lI)

Combining Eqs B IG and B. 11 and solving for Ci, it becomes: 

Substituting Eq. B. 12 for Eq. B.9, the following equation is obtained.

(B 13)

Eq. B. 13 can be re-written as:

2 3 8



, 1 f.
= r r-77rr f  V ^ :-:. n c ' ' "  (B. 14)

Substituting Eqs B. 12 and B, 14 for Eq. B.8, the local cuttings volumetric concentration in 

the suspension layer can be expressed as:

Re-arranging Eq. B. 15 will be:

(- ''/,.V4 <•>) _ (-

^ J -  )_( . ( -  I (B.16)

Alternately, when only the homogeneous solution o f Eq. B.8 is considered, the local 

volume fraction o f  cuttings can be expressed as:

rCy) = Q e x p | ^ ( £ > - > - j |  (B.17)

A negative sign o f hindered settling velocity comes from the fact that the particle settling 

velocity has a component in the negative radial direction.
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APPENDIX C

W ellbore Geometry
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The important parameters in hydrodynamics are the heights o f cuttings beds and the 

areas (a stationary bed and a moving bed) under the given pumping velocity with its 

Theological characteristics. The objective o f  this section is to define the relationships of 

wellbore geometry to eccentricity, diameter o f  casing and coiled tubing, and each bed 

height and area. Fig. C. 1 illustrates the typical wellbore geometry for a three-layer flow 

model. This wellbore geometry also works for a two-layer flow model, in that a moving 

bed layer should be zero.

loving bed

rationary bed

suspension layer

Fig. C.I -  Typical wellbore geometry

The angles between the center point o f a wellbore and the upper contact point o f a 

stationary bed, and the lower part o f a suspension layer are defined as a, and a \
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respectively. In the same manner, the angles between the center point o f  a coiled tubing 

and the upper contact point o f a stationary bed, and the lower part o f a suspension layer 

are also defined as /? and p \  respectively. The following equations are developed based 

on those factors relationships. These equations are directly applied to the iterative 

calculation for the model solution.

For Stationary Bed:

Case I) y , , < -

, D
C O S a = | (C .I)

a  = cos -1
D

(C.2)

cos/? = (C.3)

P  = cos' (C.4)

y\b = y ( l - c o s a )  = ^ ( l - c o s ^ ) (C.5)

= ^ ( 2a - s i n 2a ) - ^ ( 2y8 - s i n 2 /î)
O O

= D a+ cip

(C.6)

(C.7)

Case 2) - < y ^ < d

co sa  = D -^-ys t
D

(C.8)
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a  = cos -1

V

cos(;r - / ? )  = 

P  = n  -  cos”

O J

d

(C 2 )

(C.9)

( C I O )

y^h = y ( l -  co sa )  = ^ ( l +  cos(;r -  /?)

Â f, = ^ { 2 a  - sin 2a ) -  — {2;r - 2 p  -  sin(2;r -  2/?)}
8 4 8

= D a  + u p

(C .l l)

(C.12)

(C.13)

Fig. C.2 -  Stationary bed case 1 Fig. C.3 -  Stationary bed case 2
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Case 3) d <  < y

coscr =

a  = cos

D

D

}'sh = — (l-c o so r)

■̂ v/, =  ^ ( 2 a  -  sin  2 a ) -  ^  
8 4

= Da+J7T

D

( C . 8 )

(C.2)

(C.14)

(C.15)

(C.I6)

Case 4) — < y

cos(;r -  a )  = — —
D

a  -  n  -  cos

D

D

>’,i = — {l + c o s (;r-a )}

(C. 17)

(C.18)

(C.19)

^  {2;r -  2 a  -  sin  (2;r -  2 a ) }  -  
4 8

5,^ = D a  + (in

Tid'
(C.20)

(C.21)
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Fig. C.4 -  Stationary bed case 3 Fig. C.5 -  Stationary bed case 4

For Suspension layer: 

Case I)

cosa -

a  = cos

D

D

D

y, j  = —(l -  cosa')

= - ^  (2a'-sin 2a')
O

=Dsina'

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)
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Case 2) ^ < y ^ j < { D - d )

cos(;r -  a ') = — —
 ̂ ’ D

a ' - K -  cos ‘ -y^d -  D 
D

(€ .28)

(€.29)

y<j = y { l  + c o s ( ; r - a ')

-  —  {2;r -  2a ' -  sin(2;r -  2a')} 
4 8

= D a '

= D s in ( ; r - a ')

(€.30)

(€ .31)

(€.32)

(€.33)

Fig. C.6 -  Suspension layer case 1 Fig. C.7 -  Suspension layer case 2
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Case 3) [ D- d) <y^j < ^ D - -
V 2 j

cosi{n -  a ') = 2y.,, - D  
D

a  -  /T -  cos -I

COs(/T -  P') =
D - y , j  -  d  12

P'= cos"'

d l l

y \ j  = -7  {l + cos(;r -  a')} = D -  ^ ( l  + cos/?')

{2;r -  2of'-sin(2;r -  2a ')} -  ^ ( 2/? '-sin  2 /?')

6',, = D a '+ (/^ '

-S',̂ 6 = D s i n ( ; r - a ' ) - t / s i n  /?'

(C .28)

(C.29)

(C.34)

(C.35)

(C.36)

(C.37)

(C.38)

(C 3 9 )

Case 4) D - — < y^j < D

{n  -  a') =cosl;r

a '=  Æ -  cos"'

cos(;r -  /?') = 

P'= ;r -  cos”'

D

V D ,

y , j - D ^ d l 2

d l 2

f :2y „  - 2D f ( / l

I  d J

(C.28)

(C.29)

(C.40)

(C .41)
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y,j = y { l  +  c o s ( ; r - a ' ) (C.42)

=
TiP- D- 

4 8
{27t  -  2a '-sin (2^ -  2a')} h {2/r -  2/9 '-sin (2^ -  2/?')}

4 8

6'^  = JDa'-kc#?'

= D s in ( ;r  -  a ' )  -  d  sin(;r -  /?')

(C.43)

(C.44)

(C.45)

Fig. C.6 -  Suspension layer case 3 Fig. C.7 -  Suspension layer case 4
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APPENDIX D

Derivation o f Minimum Moving Bed Velocity 

for Horizontal Segment
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The moment, due to forces summed around acting point “A”, is described in the 

following equation.

f'D^D ~ (4 5)

where, Fd is drag force, Fl is lift force, Fr, is the gravitational force, and Fb is the 

buoyancy force. L with different subscript is the length o f each forces acting on the 

particle. The cutting will move up into the suspension region when the fluid velocity is 

higher enough to move up cutting from the bed due to the lift force. In the case o f lifting, 

the radial forces in the radial direction gives:

Fi^s inO-F;  + Fij >0  (D .I)

The drag force, fb , is exerted by the surrounding medium (the moving bed layer):

D^p (D 2 )

where p i  is the density o f the carrier fluid, lf,„h is the minimum moving bed velocity, C . n  

is the drag coefficient for the particle. Ap is the area upon which the drag force acts. i.e.. 

the projection o f the particle’s exposed area onto a plane, normal to the flow direction.

\ \ 7T .
—  sin —

v 3  s  J
(D.3)

The momentum balance is acted on the contact point o f  the particle and it’s 

neighbors in the downstream direction denoted, “A” in Figure D. 1. Hence, the 

perpendicular distance from the line o f action o f this force through point “A” is:

L n  —  COS —
2 U J

The drag force in Eq. D.2 can be re-written as:
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K . (
—  sin —
3 U ;

(D 5 )

The opposing moment is due to the normal force exerted by the column o f  particles 

lying above the particle. The average number o f solid particles whose weight is to be 

considered is:[32]

N  = ( (D.6 )

where, y,„h is the height o f  the moving bed layer and Cmb is the moving bed concentration. 

The submerged weight o f a particle is:

= ^ ^ { p c -  p L ) s d ] (D.7)

where g is the gravitational acceleration, pc and pi  are particle density and fluid density 

respectively. The normal force due to gravitational force and buoyancy force is.

(D.8 )

The acting distance, LG, for both the gravitational force and buoyancy force can be 

calculated from the descriptive geometry shown in Fig. D. 1.
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F,

Fig. D. 1 -  Forces acting on a particle

! + 2 sin| —

F,

tan^ ' sin 6) (D.9)

The lift force can be obtained as:

(D.IO)

where .4^ is the projection area o f the particle. It is assumed that the cutting is a sphere 

for this calculation. The projection area o f a sphere, , is:

(D .ll)

The acting distance for lift force, U,  can be calculated from Fig. D. 1.

( D . 1 2 )

2 5 2



The minimum moving bed velocity can then be calculated by equating the driving torque 

and the opposing torque, specified in Eq. 4.5. Each part o f this equation is described 

below. FdLd is:

The term of ( /\ ;  -  Fq )Lq is:

K  ,1
- ~ d ]

'  n . K~^
- J : - S in  — *—̂ COS
4 ^ 8 ^ 3 2 <6 ,

= O . I 6 5 1 p , f / i C %  (D.13)

- 4 a - -  A W ! ^ s i n 0 i + 2 sin — Itan^' 
V J

sin 9 -

C ^ : ^ s i n a [l + 1.732tan6»']sin^

(D.14)

The term o f F^L^ is: = 0 .0 9 8 2 p ,^ /- ,Q J

Combining Eqs. D. 13, D. 14, and D. 15 and solving for it becomes:

(D.15)

=

0.13l(p,. - p ^ ) g c ^ ~ s m e [l + 1.732 tan ^ ']s in ^

p ,(0 .165 lC o  + 0 .0 9 8 2 C J
(4.6)
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APPENDIX E

Hierarchy Chart to Solve Cuttings Bed Distribution
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Hierarchy chart to solve cuttings bed distribution

START

Input D ata

No
No
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ENDNo
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,Yes

Calculation 
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Assume
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Calculation 
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Calculation
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Calculation

Calculation

(Fn, Fzi)
W ellbore configuration 
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wellbore deviation 

fluid rtieology 
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wellbore configuration 

cuttings physical data
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APPENDIX F

Hierarchy Chart for the Calculation o f a Cuttings-bed Velocity 

and its Minimum Anti-Sliding Velocity
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START

Import Data from Flow 
Laver Model

Cuttings-bed distribution 
W ellbore deviation 
Fluid rheology 
W ellbore configuration 
Cuttings physical data

Calculation
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Calculation Uei = 0 as an initial value in

( r ,  f ) iterative calculation
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Calculation

{U,a')

' r

M A SV
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END
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APPENDIX G

Hierarchy Chart to Estimate Frictional Pressure Losses
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Hierarchy chart for the calculation of pressure gradient

Import Data from 
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Calculation 
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