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DISSERTATION
ECONOMIC O P T I M I Z A T I O N  OF OF FS HOR E 

0 1 J. FIELr DE V E L O P M E N T

Till y study is c o n c e r n e d  with the optimal development  of 
orfsliore oil fieJfis. A g en eral of f shoie de vei.optnent model is 
formulated. Algoritlims for the solution of this general model ai/e 
deveJ oped and are shown to bo c o m p u t a t i o n a l l y  efficient.

[’he general offshoie model considei's the develo pme nt q u e s ­
tions of, (1) the number of platf orms needed, (2) the size of each 
platform, (j ) the locat ion  of each platform, (4) the a s signme nt  of 
wells to p]at forms and i 5) ihe schedule of placing the platforms 
and 'li-iJ.iing the wells. The objective of this model is the m a x i m i ­
zation of disc o u n t e d  a f t e r - t a x  casli flows subject to (l) p l a t f o r m  
and we.I i constraints, (2) p r o d u c t i o n  li mi ting constraints and 
( 3 ) d e p l e t i o n  corist.raints .

Two différent pr oce dures  are ex am i n e d  to obtain soJ.utions 
to tfie g ene ra l offshore d ev elopme nt  model, namely (l) the depend ent 
•s u !i pr ob J. em.s approa ch and ( 2 ) the indepe ndent subpro blems approach. 
Doth sol uti on procedures require that the general model be d e c o m ­
posed Ln to sulj-mode l.s. Th.i s Is n e c essary  because  the size and 
tn.m.lLnocir mature of the getnu'al dev el o p m e n t  mode.L make it iinpossi-

a s a who.l e.

Comj>utatIona 1 res ult s at'e p r e sen te d for the indep en dent s u b ­
problems pr oc edure for two example offshore develo pm ent problems.
11 u; SO re.sults, when compared with an intuitive  approach of d e v e l ­
oping the offshore  property as fast as possible, appear very 
e no ou rag i. ng .
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ECONOMIC OPTIMIZATION OF OFFSHORE OIL FIELD DEVELOPMENT

CHAPTER I 

INTRODUCTION

With most economists forecasting great increases 
in the worldwide demand for oil and gas over the next 20 
years, it is apparent that offshore areas will play an ever- 
increasing role in supplying the world's fossil fuel require­
ments. This trend is already apparent, with "offshore 
investment by the petroleum industry approaching $20 bil­
lion and . . .  growing at the rate of $3 billion a year"
(2 8 ). Because of this it is speculated that petroleum com­
panies will invest an ever-increasing portion of their 
research and development funds in offshore development. Not 
only will these companies seek and extensively produce oil 
and gas offshore, but they will probably also be among the 
first to carry out large-scale commercial offshore mining 
for minerals such as gold, platinum, sulfur, iron and tin.

History of Offshore Oil Development 
Early offshore development took place over inland 

waters such as Caddo Lake, Louisiana, in May of I9II and
1



Lake Maracaibo, Venzeuela, in the early 1920’s. The 
presence of shipworms in Lake Maracaibo require that pil­
ings, initially built of timber, be replaced every six to 
eight months. This lead to the first use of concrete pil­
ings for platforms in 1927» Later, production and drilling 
operations moved from inland to costal waters. The first 
offshore drilling of any consequence in the Gulf of Mexico 
took place in the late 1930's when the first well was 
brought in 6000 feet off Creole, Louisiana. But according 
to one author (13) the offshore age didn't truly begin 
until the summer of 19^7, when the Kerr-McGee Oil Company 
erected a drilling platform 10.5 miles from land. This 
well was significant because now, for the first time the 
drilling platform was essentially independent of land- 
based facilities.

Since that time great strides have been taken in 
all aspects of offshore drilling. Drilling platforms to 
fill just about every need have been designed and built; 
drilling and production have become commonplace out to 300 
feet of water. Automation and computerization of equip­
ment for both drilling and production are now widespread.
In fact, the oil industry no longer questions its ability 
to produce oil from nearly any coastal waters, but it now 
questions the economics of such a production (28).

In the future, as present oil reserves are depleted 
and demand for petroleum products increase, the oil industry
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will move further and further from shore in order to tap 
the remaining oil reserves beneath the sea. This will 
necessitate operating in much greater depths of water 
(usually structures are now placed in less than 300 feet 
of water). The oil industry is aware of this and has been 
investigating methods and equipment which will allow them 
to operate in greater depths of water. Theoretically they 
now are capable of

1. building fixed platforms in water depths up to 
1000 feet.

2. drilling in 20,000 feet of water from ships.
3. establishing complete production, separation, and 

storage facilities underwater. (28)

Offshore Oil--Search and Drilling 
The exploration department of oil companies is 

usually charged with the responsibility of searching for 
new sources of oil. This search is most often begun by 
selecting those areas of the world in which, at some 
period in geologic time, the environment was conducive to 
the formation of hydrocarbons. Regional areas are then 
studied by means of such geophysical methods as magnetic 
and gravimetric surveys, as well as sonic readings. These 
studies then allow the geologist to construct detailed 
maps of the subsurface structure and thereby locate sites 
in which the probability of finding commercial deposits of 
oil is relatively high (15).
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Once oil has been discovered by an exploratory well, 

step-out wells are then drilled to determine the physical 
characteristics of the field (size, pressure, temperature, 
porosity, etc.). At this point top management makes the 
decision as to whether or not to develop the field. If 
the decision is to continue with development, then the 
geologists and petroleum engineers, utilizing the informa­
tion received from exploratory and step-out wells, decide 
on the wells to be drilled as production wells (lO).

Presently most offshore fields are developed by 
drilling directionally from fixed platforms to various 
targets. Once the t a r g e t s  are defined and the oil 
company decides on the number, size, and location of the 
fixed platforms, as well as the time schedule for their 
placement, the drilling of individual wells is begun. The 
cost of drilling each well is dependent on the length of 
the drilled hole and the angle at which the hole is 
drilled (lO).

Problem Statement and Major Contributions 
of the Research

As more and more funds are committed to the devel­
opment of offshore petroleum resources, investment decision 
makers will need quantitative techniques that indicate how 
to optimally develop offshore oil and gas reserves. These 
quantitative techniques usually take the form of mathe­
matical models that optimize the company's objectives (as
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realistically as possible) subject to physical, financial, 
and market constraints. In the development of offshore 
oil properties, management would like to utilize mathe­
matical models that answer such questions as :

1. Where are fixed drilling platforms to be located?
2. How many and what size offshore drilling platforms 

are needed?
3. Which platform should drill each well?
4. How is the drilling of wells and the placement of 

platforms scheduled?
The primary concern of this research is to develop 

a model capable of answering the questions posed above.
This entails the formulation of a general optimization 
model and the determination of relatively efficient solu­
tion procedures. Solution procedures must be fairly effi­
cient so that sensitivity analyses may be obtained at 
realistic costs. Such analyses demonstrate how susceptible 
the model is to errors in pertinent information that must 
be estimated. For example, the investment decision makers 
will certainly be interested in how sensitive solutions are 
to inaccuracies in forecasted production rates.

This research will contribute to the field of 
optimum offshore oil development in the following ways:

1. Depletion is included in after-tax optimization
models. It is shown that not incorporating deple­
tion or using an approximation for the depletion
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term in an after-tax optimization can result in 
nonoptimal investment decisions.

2. The problems of the development of offshore oil 
fields and the scheduling of this development are 
investigated. The problems are then formulated 
mathematically in the form of a general optimiza­
tion model whose objective is to maximize the net 
discounted after-tax cash flow.

3. Computationally efficient algorithms, which allow 
sensitivity analyses to be performed, will be devel­
oped to solve the general optimization model for 
the development and scheduling of offshore develop­
ment activities.

Review of Development Drilling Models 
"When one considers that a single well drilled in the 

offshore areas of Louisiana and California costs approximately 
three million dollars, the risk to capital is staggering" (I5 ). 
It is no wonder that investment managers operating under such 
risks seek decision-making assistance in the form of develop­
ment drilling models, the solutions of which specify the most 
profitable way to develop offshore oil fields. The following 
chart presents a synopsis-type description of optimization 
models that have been applied to petroleum development activ­
ities. Several of these optimization models are then dis­
cussed in more detail.

One of the first approaches was that of Aronofsky
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7
and Lee (l) who developed a linear programming model that 
scheduled oil production from a collection of inland oil 
reservoirs located in the same geographical area. The 
model's objective is to maximize the before-tax cash flow. 
The variables of the linear program are the average produc­
tion rates of the reservoirs during discrete time periods.  ̂

The constraints are primarily material balance relation­
ships. This early model seems unrealistic in that

1. It is only valid for a reservoir in which all the 
wells have been drilled.

2. It does not allow for the production scheduling of 
individual wells in the reservoir.

Aronofsky and Williams^(2) extended the work of Aronofsky 
and Lee to multi-well systems and in addition developed a 
new linear programming model to schedule production. This 
approach assumes that production from a particular well will 
follow a specified production-rate decline curve. The 
objective of this new model is to maximize the total dis­
counted before-tax cash flow subject to constraints on rig 
dynamics and material balance relationships. This model may 
be criticized because:

1. It assumes the production rate of each new well is 
independent of the number of wells already present.

2. It assumes the user of the model is capable of 
specifying "a priori" how production will decline 
with time.
A paper by Coats (9) considers the problem of



8
determining an optimum drilling schedule for a gas field 
that is already partially developed. The objective of the 
model is to meet a field productivity requirement with as 
few wells as possible. The solution procedure employed 
is to utilize a dynamic programming algorithm in order to 
minimize the number of wells drilled at each successive 
time increment (stage). The algorithm obtains the numeri­
cal solution of a particular differential equation describ­
ing semi-steady-state gas flow in a reservoir. Coates' 
assumption that the reservoir rock properties are known 
with sufficient accuracy to specify the coefficients of 
the governing, differential equation seems questionable.

Rowan and Warren (2?) consider the problem of 

what drilling and production policy should be implemented 

subject to practical constraints for a new or partially 
developed reservoir so as to maximize profit. "The 

reservoir is considered to be a dynamic system, the 
behavior of which is reflected in the pressure-production 

history" (27)• This concept leads to a system model 
which has production as the decision variables and reser­

voir pressure as a state variable. The authors state 
that this system approach to obtaining a solution has 

the advantage of dealing with coefficients of a governing 

differential equation rather than with variables which 
are subject to a considerable amount of uncertainty.
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Possible disadvantages of this approach are:

1. It doesn't a l l o w  random production schedules, but 
rather requires that they be in the form of speci­
fied algebraic equations.

2. This model is applicable to a single reservoir 
only.
Hartsock and Greaney's (l6) development drilling 

model is analogous to an inventory problem in that it 
consists of setup costs and shortage costs. "The setup 
costs reflect the costs incurred in providing additional 
crude oil production capacity, while the shortage costs 
represent a penalty for having insufficient crude oil pro­
duction capacity to meet demand" (l6). Production rates 
and demand are treated as random variables of the uncer­
tainty associated with each quantity. The objective of 
this model is to minimize the total cost function, which 
contains expected values for the random variables. The 
function was found to be nonlinear and was solved by Hooke- 
Jeeves pattern search method. It appears that further 
work on the model should include:

1. redefining the objective function so that it mea­
sures after-tax cash flow.

2. placing constraints on the number of wells drilled 
and completed in any given time period.
The work of Devine and Lesso (11) considers the 

problem of finding the proper number, size and location of
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drilling platforms, and the allocation of targets to plat­
forms so as to develop an oil field at minimum cost. The 
solution procedures adopted by the authors are heuristic 
in nature in that they provide "good" answers but not 
necessarily optimal ones. This model could be made more 
realistic if;

1. transportation costs were included
2. production rates and crude oil demand were fore­

cast so that the objective of the model could be 
to maximize the after-tax cash flow.
Bohannon (6) presents a linear mixed-integer pro­

gramming model that finds the optimum development plan for 
a multi-reservoir system. This model determines (1) the 
annual production rate for each reservoir, (2) the number 
of development wells to be drilled each year in each 
reservoir, and (3) the timing of major capital investments 
such as tying in unconnected fields, initiating secondary 
recovery projects and expanding pipeline facilities.
Values for these variables are determined so as to maxi­
mize the total discounted "net cash" flows subject to 
reservoir production constraints, pipeline constraints and 
facility expansion constraints. This model is open to the 
following criticisms:

1. The objective function of the author's model is
not an exact measure of the profit resulting from
the development of multi-reservoir systems.
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2. The time and expense required to solve reasonable 

size development problems with Bohannon's linear 
mixed-integer programming model may be prohibitive.



CHAPTER II

OFFSHORE DEVELOPMENT PARAMETERS AND TAX CONSIDERATIONS

Offshore Development Parameters 
There are a number of parameters that influence 

offshore development activities. For our models, we will 
assume that these parameters have been fixed prior to solv­
ing the model. It may be important, however, to determine 
how sensitive the solutions of our model are to variations 
in the parameters. The parameters are:

1. An upper limit on the amount of oil produced during
any future time period.

2. The location of the individual sources of oil (tar­
gets) to be tapped.

3. The production capability of wells drilled to the
individual targets.

Upper Limit on the Amount of Oil Produced During 
any Future Time Period

There are various items that an oil company should
consider when attempting to fix an upper limit on the
amount of oil to be produced in any future time period.
One consideration would be the projected demand for oil in
these future time periods. Other considerations would be

12
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the |)i(> j('c ( 0(1 c a p a b i l i t y  of ( 1 ) tra ns por (. a L i on facilities, 

( 2 ) s t o r a g e  I'ac i 1 i t i es , a n d (3) oil r e f i n e r y  p r o c e s s i n g  

f a c i l i t i e s .

Location of Individual Targets 
The location and extent of oil sources are deter­

mined primarily through seismic readings and exploratory 
drillings. These location tools can be used to provide the 
oil field developer with a graphical representation of the 
sub-surface strata. This enables him to define subsurface 
regions (strata) that are likely to contain hydrocarbons.
The hydrocarbons present in the subsurface strata usually 
occur in the form of large continuous reservoirs or small 
individual pools.

If the oil bearing stratum is in the form of a large 
continuous reservoir the well spacing that will most effec­
tively drain the reservoir must first be determined. This 
determination depends on such things as the rock properties 
of the reservoir, the characteristics of the petroleum 
fluids, etc. Muskat (23) discusses this problem and how it 
may be approached. Second, since the production rate of 
each well, in most cases, is subject to legal constraints 
(allowables), the selection of additional targets so as to 
meet demand may be required.

Some oil fields are composed of a number of dis­
tinct and relatively small pools of trapped oil. Usually
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these small individual pools are considered as separate 
targets each of which is tapped with just one well.

Production Capability of Individual Reservoirs
The production capability of a reservoir is a func­

tion of a number of factors. Some of the most important 
are formation extent, formation physical properties, and 
recovery methods.

The extent of the producing formation is usually 
determined by means of electric logs, radioactivity logs, 
core analysis and local geological information . Th e 
physical properties of the producing formation include such 
things as composition, porosity, permeability, pressure, 
temperatures, etc. (23). The recovery methods used depend 
upon the reservoir energy available for moving the oil to 
the surface. This energy is a function of the ambient 
physical state of the oil reservoir, i.e., the properties 
of the formation. Examples of primary recovery methods 
(those methods that utilize only natural reservoir energy 
for recovery) are gas cap drive, depletion drive, and 
water drive (7).

Production capability may be forecast through the 
use of production rate-decline curves. This method of 
forecasting the future behavior of oil fields is used 
extensively throughout the oil industry (?). Decline 
curves are usually based on a combination of the following:

1. reservoir engineering methods that predict such
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things as volumetric oil reserves and flow charac­
teristics of the trapped fluids

2. data from comparable wells 
3» general regional geological data 

A typical production-rate-decline curve is presented in 

Figure

Production
Rate

B
Time

Figure 1. A Typical Production-Rate-Decline Curve.

Theoretically the production-rate capability of a reservoir 
should start declining immediately after it is placed on 
production if it is operated at its maximum production 
rate. However, many reservoirs are produced at a rate 
less than the maximum possible because of economic and/or 
governmental restrictions such as

1. state or federal allowable productions
2. . transportation capabilities
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3. storage and refinery capacities
4. marketing considerations

This results in essentially a constant production rate over 
a period of time (from time 0 to time B of Figure 1).
Once the production rate of a reservoir starts decreasing 
the decline with time can most often be characterized as 
exponential or hyperbolic (from time B on of Figure 1)
(25). The author proposes to utilize applicable production- 
rate-decline curves in his development model to forecast 
future production. The production-rate-decline method was 
chosen because:

1. It is a simple method which is a familiar and trusted 
tool to those who make investment drilling decisions.

2. This method of forecasting production capability is 
relatively simple to incorporate into the proposed 
development model.
The accuracy of the production capability forecasts 

depends most notably on
1. when within the development phase of a field the 

forecasts are prepared. The later the preparation 
of forecasts the more accurate the available data 
should be.

2. the type of forecasts. If, for instance, daily 
forecasts are attempted with any appreciable lead 
time, the forecasts will probably get more inaccur­
ate as the lead time increases. On the other hand,
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iorecasts o£' average yearly (or even monthly) 
j)roduction rales should be fairly accurate.

It appears that the forecasts of primary interest are those 
which predict average production rates for a time period 
of one year or longer.

Tax Considerations 
The consideration of taxes in optimization models 

serves in most cases, if not all, as a complicating factor. 
This is especially the case in oil field development models 
in which tangible costs and depletion must be taken into 
account.

For income tax purposes tangible cost items are 
those which must be depreciated. This is in contrast to 
intangible costs which may be expensed (22). These tangi­
ble costs complicate the optimization model since their 
calculation requires:

1 . specifying which allowable method of depreciation 
is to be used.

2 . an estimate of salvage values (as functions of 
time) for such things as well equipment and casings. 
Extractive industries must also consider the allow­

able depletion they may claim to reduce their income taxes. 
"Allowabie depletion is the amount in dollars which may be 
deducted from taxable income in a year. It is the greater 
of cost depletion or percentage depletion" (22 ).

1. Cost depletion (CD) is a fraction of the undepleted
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investment in a property (initial investment less the pre­
viously deducted depletion). The fraction is the ratio of 
the amount of reserves produced during the current year to 
the total amount of reserves remaining 

CD - cost depletion 
U = undepleted investment in property 
P = amount of oil, gas, or mineral produced during 

the year
R = amount of oil, gas or mineral estimated to be 

left in the reservoir or mine plus the current 
year's production

2. Percentage depletion (PD)
"The discoverer of an oil or gas field did not buy 
a producing property. He recovers his capital 
through percentage depletion which is 22% of gross 
income--not to exceed 50% of the net income from 
the property" (2 2 ).
PD = percentage depletion
GI = gross income (the total revenue derived from

the property in a year)
NI = net income (gross income less expenses)

In summary, the allowable depletion (DA) is

DA = maximum
CD - |.P

PD = minimum
22% GI

maximum
50% NI 
0

( 1 )



19
In the past oil field development models have 

usually ignored tax considerations. An example of this is 
(2 ) in which the authors maximize before-tax cash flow.
Other models bypass tax considerations by minimizing costs 
(10), ( 16). Simplifying assumptions were made in other 
development models that permitted taxes to be included in 
the model.

One model of maximizing after-tax earnings which 
incorporate depletion allowances is presented by Teichroew, 
Lesso, Rice, and Wright (31). This paper develops dynamic 
programming algorithms for computing the optimal production 
level subject to a specified demand for each of a number of 
properties. Although these algorithms theoretically guaran­
tee an optimal solution, the nature of the solution tech­
nique, dynamic programming, limits their application in 
two ways :

1. The number of state variables required by the 
dynamic programming model quite often becomes large 
enough to make this technique impractical because 
of limited computer time and storage.

2. The dynamic programming procedure can only consider 
a discrete number of alternate production levels. 
This could lead to a nonoptimal solution (depending 
on the levels selected for consideration).
Bohannon (6 ) includes an "effective tax rate" con­

stant to account for the effects of taxes and depletion in
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Ills fot-tiin I a t. i oil ol a iiiLxed 0-1 intogrr, continuous-variable. 
Linear programming model for development of multi-reservoir 
pipeline systems. This effective tax rate is obtained by 
consulting past income tax records to find what percentage 
of net income from oil actually went for taxes under a given 
tax rate. This technique for including taxes in a develop­
ment model, although very simple, can result in a nonopti­
mal decision if the objective is to maximize discounted 
after-tax cash flow, as in Bohannon's model. This is 
illustrated in the following example:

A company must decide between two feasible plans 
for developing a piece of lease property. In each plan it 
is assumed that each oil well requires an initial invest­
ment of $15,000,000 and can produce for 3 years.

PLAN I
This plan calls for drilling of three wells during 

the first year of development. The estimated yearly data 
of importance are in Table 1.

TABLE 1 
PLAN I DRILLING INFORMATION

Year
Product i on 
(10^ barrels )

Gross
income
(10^ $)

Cost 
(10^ $)

Undepleted 
Investment

(10^ $)

Reserves
(10^ 

barrels)

1 12 36 63 43 90
2 24 72 21 39 78
3 15 45 15 27 54
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This alternative calls for drilling two wells dur­
ing the first year and one well during the second year. 
Yearly data for this plan are in Table 2 ,

TABLE 2
PLAN II DRILLING INFORMATION

Year Production 
(10^ barrels)

Gross
Income
(10^ $)

Cost 
(10^ $)

Undepleted
Investment

(10^ $)

Reserves
(10^ 

barrels)

1 8 24 4o 30 60
2 20 60 34 4l 82
3 18 34 17 31 62
4 5 15 5 22 44

The projected after-tax earnings are then calculated 
for both plans using two different methods. Method I 
assumes an effective tax rate of 36% to account jointly for 
taxes and depletion whereas Method II utilizes the depletion 
formula ( 1 ). If a discount factor of 20% is used, the 
total discounted after-tax cash flows are as given in Table 
3 .
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TABLE 3

AFTER-TAX COMPARJ SONS OF TWO TWC'ESTMENT PLANS

Method I Method II

Plan I $19,378,000 $26,003,000
Plan II 19,812,000 25,892,000

Thus, if the investment decision is made by assuming an 
effective tax rate to account for taxes and depletion 
(Method l), then the development should proceed according 
to Plan II since its discounted net cash flow is greater 
than in Plan I (see Table 3 )• On the other hand, actually 
calculating depletion and taxes separately (Method II) 
would indicate Plan I should be followed for development 
of the property. Grouping depletion and taxes together 
and applying an effective tax rate, then, can lead to non­
optimal decisions, as shown in the above example.

In contrast to the above-noted models depletion will 
be incorporated into the model developed here via linear 
integer programming. This may be accomplished if it is 
assumed that the allowable depletion may be modeled as a 
piecewise linear function of a number of decision varia­
bles. Cost depletion (defined p. l8 ), a nonlinear func­
tion, will be omitted from our model. This is done to 
simplify the model and is justified by;

1. In general cost depletion usually has meaning only 
early in the life of a property when net income is
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very small or negative and/or undepleted invest­
ment is very large (22).

2. Intuitively the exclusion of cost depletion from 
our model should have little effect on the final 
solution since its objective is to compare the rel­
ative attractiveness of alternate plans via after­
tax cash flows rather than determining specific 
amounts of profit for each plan.
The exclusion of cost depletion from the allowable 

depletion formula ( 1 ) leaves

D = minimum
22% GI

maximum
(2 )

50% NI 
0

where D is a piecewise continuous linear function if GI 
and NI are continuous linear functions. For example, if 
GI and NI are functions of the single variable P, then D, 
a function of GI and NI, may be expressed graphically as a 
function of P as in Figure 2.
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22 GI(P)

P

Figure 2, Depletion (D) as a Function of a Single Variable, 
P.

Since after-tax earnings (ATE) may be represented by the 
formula

ATE = NI(P) - r(Nl(P) - O)
:r (l-r)Nl(P) + rO 

where r = the applicable income tax rate,

then graphically ATE as a function of P would appear in 
Figure 3.
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ATE

(l-r)Nl(P)
,22GI(P)

(l-r)Nl(P) + .5NI(P)

0
l-r)Nl(P)

Figure 3 . After-Tax Earnings (ATE) as a Function of a 
Single Variable, P.

Thus, if the objective of the model is to maximize after­
tax earnings (ATE) we see from Figure 3 that we should 
be able to model this function with a linear mixed-integer 
(O-l) continuous programming formulation.

If D = minimum
.22GI

maximum
.5 NX 
0

, the model would be:
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Maximize ATE - (l-r)NI + rD 
slibject to

D ^ .22GI
D ^ .5NI + M(l-z)

NI ^ zM
D ^ zM
D ^ 0
z = 0-1 variable; M = very large number

where The value of M is selected so that it will
be greater than any possible value NX could 
obtain.
D = allowable depletion

GI = gross income
NI = net income before taxes
r - applicable income tax rate.

It should be pointed out that cost depletion (CD) 
may be included in a linear, mixed-integer, continuous
variable model for maximizing after-tax cash flow under

U,
r 'special circumstances. From page l 8 , CD = ^'P. If we

let 6 = the ratio of two linear functions, then 6 may 
be considered a constant if the ratio of initial investment 
required to the amount of reserves initially discovered 
remains constant over all possible development plans. In 
this case, allowable depletion (DA) as a function of P 
would appear as in Figure 4.
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22GI(P)

5NI(P)

0

P

Figure 4 . Allowable Depletion (DA) as a Function of a 
Single Variable, P.

After-tax earnings (ATE) as a function of a single variable P 
where cost depletion is considered would appear as in Figure 5,

ATE

l-r)Nl(P)
+ .22GI(P)

(l-r)NI(P) 5NI(P)

0

(l-r)Nl(P) ) 6P

P

Figure 5 • After-Tax Earnings (ATE) as a Function of a Single 
Variable P, where Cost Depletion Is Considered.
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CD ÔP 
D(equation 2)

mixed-integer programming formulation of the function pre­
sented in Figure 5 is :

Maximize ATE = (l-r)NI + rOA 
subject to

D ^ .22GI 
D ^ .5NI + M(l-z)

NX zM 
D < zM 

DA ^ M(l-y) + D 
DA 3 My + 6P 
D 2: 0 

DA 5 0 
y and z = 0-1 variables

M = very large number selected so that it
will be greater than any possible value 
NI could attain.

The use of the suggested after-tax model, even though it gives 
a more realistic measure of the profit of possible invest­
ments , may be criticized because it is more complex than 
the before-tax model. This, for example, would be the 
case for the model presented by Aronofsky and Williams 
(2) if it were modified so as to maximize after-tax cash 
flow. Their original model could be solved with linear 
programming but the consideration of taxes and depletion



29
in their model would require a linear mixed-integer solu­
tion algorithm.

In general, it is not evident whether the complex­
ity of an after-tax model is justified by its capability 
to determine improved solutions.



CHAPTER III

THE DEVELOPMENT MODEL

The proposed development model presented in this 
chapter determines

1. the number of platforms needed
2 . the size of each platform
3. the location of each platform
4. the assignment of wells to platforms
5. the schedule of placing the platforms and drilling

wells,
so as to maximize the total discounted after-tax cash flow 
over a specific time period, while not exceeding a specified 
upper limit on production. After the presentation of the 
model some discussion is given concerning the information 
which must be supplied to the model.

General Development Model 
The general offshore development model is now pre­

sented. First we define the following:
Constants
(a^, b^, c^) = location coordinates for target i 

NR = total number of reservoirs 
NW = total number of targets 

30
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NT*" = total number of targets in reservoir m 
NP total number of platforms to be placed 
N = number of time periods each of length 

A (k - 1, N)
NN = total number of time periods over which 

platform placement may take place 
B = very large number selected so that its 

value is greater than any possible net 
income value for any period 

= elapsed time from beginning of develop­
ment to period k 

= revenue per barrel of crude received in 
period k

= upper limit on production during time 
period k

bĵ  = well cost factor at the ktb period (rela­
tive to cost in the initial time period) 

Pĵ  = platform cost factor at the ktb time per­
iod (relative to cost in the initial 
period)

poj = operating cost per period for platform

j
r - the applicable income tax rate 
a = the applicable discount factor



32
F u n c t i o n s

f(d..) - drilling cost function which can be ij
expressed as a function of the horizon­
tal distance between target i and plat­
form j

where
d . . = horizontal distance between target i and ij 2platform j which = ((a. - x.) +

(b. - y.,2)%
1 J

P(Nj, Xj, yj) = cost of platform j as a function of its
size (M.) and its location (x., y.)

J J JP(M.) = cost of platform j as a function of its
size (M.) only 

Jwhere
Variables

(Xj, yj ) = location coordinates for platform j
= 1 if target i of reservoir m is drilledijk

from the platform j in time period k
- 0 otherwise

u - 1 if platform j is placed in period k jk
= 0 otherwise 

q™ = the average production rate from reser­
voir m during time period k 

= allowable depletion for time period k

The author plans to use applicable production 
decline curves to forecast future production of oil reser­
voirs. The basic assumption made in adapting production
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decline curves into the development model of this chapter is 
that if the reservoir is produced at its maximum capacity, 
the production rate of the reservoir follows an exponential 
decline curve with time. Usually, a reservoir is not pro­
duced at its maximum capacity initially, but rather produc­
tion is constrained for some time, resulting in a constant 
production over this period; then it is produced at the 
maximum rate causing an exponential decline of production 
rate with time (see Figure 6 ).

For any given reservoir subject to exponential 
decline, if we assume that the average production rate 
for any time period is equal to the mid-period instantaneous 
rate, then the following two sets of linear constraints 
essentially model the relationship depicted in Figure 7*
In the following the reservoir superscript has not been 
included since the formulation is for any given reservoir.

The horizontal portion of the curve (from 0 to P )a
is represented by

^ If» — 1 M

The exponential portion of the reservoir curve 
(from over) is modeled by

k-1

(1 + I jç)

In addition to the exponential decline constraints, 
q^, the average production rate during the k*b time period,
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initial production rate
allowable production rate
recoverable reservesRR
time over which production 
rate is constantProduction

Rate

B
Time

Figure 6 . A Typical Reservoir Exponential Decline Curve 
when Production Is Restricted

cumulative production for 
period of constant produc­
tion rate
slope of decline curve

Productio i 
Rate

RRP0

Figure 7 . A Typical Production Rate--Cumulative Produc­
tion Curve for an Exponential Decline Reservoir
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must also be constrained by the production possible due to 
development drilling that has been carried out in all 
previous time periods as well as during the present time 
period k.

k-1 NP NT V NP NT
"̂ k ^ ^ \ r  ^ijr  ̂~  j=l iSl t±jk k = 1, Nr=l j=l 1=1
where

= the average per well production rate for wells 
drilled in period r and producing in period k 

NT = the number of targets in the reservoir

In order to arrive at a final objective function 
for the proposed model that maximizes the total discounted 
after-tax cash flow, we proceed in the following manner:

First determine the total revenue generated during 
any given time period. The revenue generated by the m*b 
reservoir during the k^ time period is The total
revenue generated by all reservoirs during the kîb time 
period is

NR
cf(k) = C, A t, L q”

^ * m=l ^
The costs incurred during any given time period are now 
formulated. The drilling cost in the k*b time period is

NR NP NT*"

The platform cost in the kib time period is
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NP k

pc(k) = PkPj("j' *0- y.i ' ' "jr P°j ^ ^

Thus, the before-tax cash flow is
N

BTCF = E cf(k) - dc(k) - pc(k) 
k=l

To determine the after-tax cash flow, the net taxable 
income (NT.) must first be determined. The net taxable 
income is a function of

g'dc(k) = that portion of the drilling cost which
must be capitalized during the kiS time
period,

(l-g)'dc(k) = that portion of drilling cost which may 
be expensed during the k&b time period, 

h'pc(k) = that portion of platform costs which
must be capitalized for the k^ time
period,

(l-h)'pc(k) = that portion of platform costs which may
be expensed for the k*b time period

using the suni-of-the-years ' digits depreciation method we
find the net taxable income for the kü> time period to be 

NI(k) = cf(k) - (l-g)dc(k) - (l-h)pc(k)

S   Cg.dc(r) + h'pc(r)]
r=l - (N-r+2)

Finally, the objective function that maximizes the total 
discounted after-tax cash flow, and incorporates depletion
is
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N

Maximize S [cf(k) - dc(k) - pc(k) - r(Nl(k)-D )]e ^^k (3) 
k--l

The constraints of this after-tax model fall into 
three general groupings.
PLATFORM AND WELL CONSTRAINTS

NR N NT*"
s

m=l
E

k=l
E 

i = l < j k - M. < 0J j = 1, . . . , NP (4)

N
s

k=l < j k ^ 1
i = 1, 
j = 11m = 1,

. .., n t "*

. . . , NP 

..., NR
(5)

N
E

k=l "jk = 1 j = 1, . . . , NP (6)

k
E

r = l
NR
E

ni = l
NT*" 
E 

i = l 'Tjr
j = i, k = I,

. . . , NP 

. . . , N (7)

PRODUCTION LIMITING CONSTRAINTS

i = 1 , . . . , NT'
j = 1 , . . . , NP
k = 1 , . . . , N
m = 1 , . . . , NR

m

NR
ÀT_ 2 < U k = 1, . . . , N (8 )

k m=l k ^

k : i: T  '?>

q” - q̂ : A
^  -  I  in  -  I  1 • • •  1 /  1 Q  \^k „m k = 1, N ' '

1 * I -  Û  " k
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,m

''k
k-1 NJ> NT
E E E t'". f

r 1 ^  j-1 L 1
„mV, , NP NT

f

DEPLETION CONSTRAINTS
D, ^ .22cf(k) k

^ .5NI(k) I

D, 3 z .B k k
IL s 0 k
z, = 0-1 k

(II)

(12)

(13)

(14)

(15)

The constraints serve the following purposes:
(4) defines the size of each platform
(5) restricts each well to one drilling
(6) restricts each platform to one placement
(?) does not allow a well to be drilled from a plat­

form until that platform has been placed
(8) forces production during period k to be less than 

some upper limit
(9) requires that the production rate from reservoir

m be ^ the allowable production rate for reservoir 
m

(10) requires that the maximum production rate follow 
an exponential decline curve with time
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(11) restricts production to that possible due to 

development drilling that has been carried out 
previously

(12) forces depletion for the time period to be 
less than or equal to 22% of gross income at all 
times

(13) forces = 0 if net income is less than or equal
to zero

(14) forces z^ = 1 if net income for time period k is 
greater than zero

(15) forces D, = 0 if z, = 0k k

The model contains:
2NP + N • NR + N Continuous variables
N(NW • NP + NP + 1) 0-1 variables
NP(N¥ + 2 ) + 6N + 3N • NR Constraints 

This means that a moderate size problem of 10 periods (N),
3 platforms (NP), 5 reservoirs (NR) and 50 wells (NW) would
be formulated as a nonlinear mixed-integer programming 
model with 66 continuous variables, 1540 zero-one variables 
and 366 constraints. No existing solution procedure is 
capable of producing an optimal answer for such a model, 
within reasonable cost limitations.

Two significant factors that influence development 
activities are the drilling cost function and the platforms 
cost function, A drilling cost function may be developed 
for a particular area by means of a multivariate curve fit
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for historical cost data taken from an area with similar 
geological features. This approach would, most likely, be 
used successfully only by those companies already involved 
in development drilling because

1, They are the only ones that possess the necessary 
confidential information (cost data).

2. They can readily interpret the available cost 
information and place it in the context of their 
drilling activity.
A drilling cost function may also be developed if 

we consider the following important factors
1. the depth of the well
2 , the maximum angle of deviation at which a well is 

drilled
Usually, as the depth of the well increases, more than 
proportionate increases in costs are incurred because,
(l) the deeper formations are often more difficult to drill 
and (2 ) as the well becomes longer more time is needed to 
change bits, add deviational equipment, make directional 
surveys, etc. (lO). The maximum angle of deviation at which 
a well is drilled is an important factor in influencing 
drilling cost for two reasons. First, it takes a consider­
able amount of time just to build up to the desired devi­
ated angle. Second, the drilling rate will decrease with
increasing angles of deviation. Recognizing the importance 
of these factors Devine (10) suggested that drilling
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engineers estimate total costs for various depths and 
horizontal deviations. "These estimates would be made on 
the basis of experience, after considering the length of 
the hole, maximum drilling angle, etc., for each combina­
tion of depth and horizontal deviation" (lO). From such 
cost estimates a least squares regression equation could 
then be derived. Devine (10) using several "rules of thumb" 
obtained from Mr. Ralph Brumley of Whipstock, Inc., devel­
oped a program to calculate expected total drilling costs 
for various depths and horizontal deviations. A least 
squares regression equation found for a set of generated 
data is

DC = 122.6 - 21.43c + 2.390^ + 12.24HD (l?)
where

DC = drilling cost in thousands of dollars 
C = depth of target in thousands of feet 

HD = horizontal deviation in thousands of feet

This relationship is then modified by adding another term 
that severely penalizes any drilling at angles above 45 
degrees. This modified equation is

DC = 122.6 - 21.43c + 2.39C^ + 12.24HD + 5 . 0 ( H D / ( C - D K ) ( I 8 ) 
where

DK = depth in thousands of feet at which angled drill­
ing is begun
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Note that this penalty term, 5• 0(HD/( C-DK) ) ,  becomes very 
large whenever HD becomes greater than C-DK (i.e., indi­
cates drilling angles of 45 degrees or more). This penalty 
term is included in the drilling cost function because:

1. The data used to arrive at equation (17) don't con­
tain any cases in which the drilling angle is great­
er than 45 degrees.

2. Costs increase very rapidly when drilling at high 
angles.

3. It is deemc(; desirable to have the drilling cost 
function of the development model applicable to all 
horizontal deviations rather than constraining the 
size of the drilling angle, i.e., there really is 
no absolute limit; it is simply a matter of rapidly 
increasing cost for very high angles.

The author proposes to use this drilling cost function, 
equation (I8 ), or one quite similar to it in working exam­
ple problems.

In general, the platform cost will depend primarily 
on its size (the number of wells it can accommodate). The 
platform cost can also depend on its location due to vari­
ations in depth and bottom conditions. The discussion of a 
platform cost function will be postponed until later since 
its composition will influence the type of solution pro­
cedure needed to solve the proposed model.
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Use of the Proposed Model for Investment Decisions
It should be stressed that this proposed model will 

not replace the investment decision maker(s) but rather 
should serve as a guide in the evaluation of investment 
alternatives. Proper use of this method to plan capital 
investments in offshore oil field development would dictate 
the solution of the proposed model a number of different 
times during the development period. This is necessary for 
a number of reasons :

1. The model essentially assumes that no dry wells are 
drilled. The occurrence then of one or more dry 
holes during a given time period could cause the 
existing development plan for the remaining time 
periods to no longer be the best possible.

2. The original development plan is obtained by utiliz­
ing estimates for production rates and demand. Since 
the accuracy of these estimates will improve as 
later and more meaningful information is obtained, 
the development plan for the remaining time periods 
should be checked periodically by resolving the 
development model. This is done to determine if
the development plan for the remaining periods 
should be changed based on updated information.

3. The objectives and policies of a company may change 
with time so that criteria used for making decisions 
in the past may no longer be completely applicable.
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This would be the case, for example, if a company's 
investment funds have been diluted and it is decided 
that the present discount rate applied to maximiz­
ing profit in the investment models is insufficient 
considering the limited amount of investment funds 
they now have available. Thus, since "the program 
which yields maximum profit discounted at 10% will 
usually be different from the program which yields 
maximum profit discounted at 20%" (12), the invest­
ment model should be resolved under such circum­
stances.



CHAPTER IV

SOLUTION PROCEDURES FOR THE GENERAL DEVELOPMENT MODEL

In the previous chapter it was pointed out that for 
realistic size problems there are no existing solution pro­
cedures capable of producing optimal solutions for the gen­
eral development model, within reasonable cost limitations. 
Thus, the purpose of this chapter is to examine approaches 
for obtaining solutions to the general development problem 
that may prove to be computationally feasible. To accom­
plish this the solution procedures developed in this chap­
ter partitions the overall problem into a set of related 
subproblems and then attempts to find solutions to the 
subproblems. Although the solutions to these subproblems 
are not necessarily optimal solutions to the general model, 
computationally they will produce "good" answers to the 
offshore development problem. The approach of this chap­
ter is to break the overall development problem down into 
four component problem areas :

1. platform location problem
2. well assignment problem
3- platform placement schedule problem
4. well drilling schedule problem

45
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Solutions are obtained for combinations of the component 
problems and then combined to specify an approximate solu­
tion to the overall offshore development problem. Two 
possible approaches for obtaining solutions to the develop­
ment problem are:

1 . dependent subproblems solution procedure
2 . independent subproblems solution procedure

Dependent Subproblems Solution Procedure 
One general approach for obtaining a solution to 

the development model of Chapter III would be to decompose 
it into two dependent subproblems. The solution to the 
first subproblem (platform location and placement schedule) 
specifies the location of each platform as well as the 
schedule for the placement of each platform given an assign­
ment of targets to platforms and a drilling schedule for the 
targets. The second subproblem (target assignment and 
drilling schedule) is then solved to determine the best 
assignment of targets to platforms and the schedule for 
the drilling of the targets given the platform locations 
and placement schedules determined via subproblem one.
The solution procedure would continue to alternately solve 
subproblem one and subproblem two until it has been deter­
mined that no better solution can be obtained by continuing.
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Dependent Subprobiem One--Platform Location and 

Platform Placement Schedule
This subproblem determines the best

1. location for each platform
2. schedule for the placement of the platforms

for a given assignment of wells to platforms and well drill­
ing schedule. The platform location and platform placement 
schedule subproblem may be modeled as NP separate nonlinear 
mixed integer programming problems (i.e., a separate model 
for each platform).

The model for the jüi platform is 
N

Minimize 2 dc(k) + pc(k) (19)
k=l
NN

subject to 2 %. = 1 (20)
k=l
k k
s E t,„ a B E p  k = 1, .. NN (21)

r=l i€0j r = l ̂

FUNCTIONS
Drilling Cost Function; dc(k) - S t.*f(d. )

k
Platform Cost Function; pc(k) = j^^Pj(M^ ) + po^ATj^* E 

where
0j = set of all targets assigned to platform j 

f(d^j) = the drilling cost function (see page 32)

r
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CONSTANTS

Pj(Mj) - platform cost of platform j as a function of 
its size, Mj

poj = operating cost per period for the j*b platform
t., = 0 , 1 specified constants that indicate whetherxk

the i^ target is scheduled to be drilled in 
the period or not 

^  = length of time period k
NN = the number of time periods over which plat­

form placement may take place
VARIABLES

= 1 if the j*b platform is placed in period k 
= 0 , otherwise 

(Xj, Yj ) = location coordinates for platform j

The constraints serve the following purposes:
(20) requires that the jWi platform be placed once and 

only once
(21) requires that the jib platform be placed before 

any drilling is scheduled to occur for platform

j
Since NN is usually small, one feasible solution 

procedure would be to solve the jib platform model for each 
feasible platform placement schedule. For instance, if it 
is decided that the platforms must all be placed before 
the end of the third period, NN = 3, then the separate 
platform models would each be solved three times. This



49
approach would necessitate solving an unconstrained opti­
mization problem a number of times. Solutions to this type 
of problem can be obtained by a direct search procedure 
along the negative gradient of the drilling cost function 
(see Reference 5).

Dependent Subproblem Two--Target Assignments 
and Drilling Schedule

This subproblem determines the best
1. assignment of targets to platforms
2. drilling schedule for each platform

for a given location of each platform and a specified plat­
form placement schedule.

The target assignment and drilling schedule model
is

N -or.
Maximize £ [cf(k) - dc(k) - pc(k) - r(Nl(k) - D^)]e

k=l k 
(22)

subject to q" < 4% 2 : Ï; (23)

<  - m = 1, .... NR
qm ^   k = 1, N (24)

(1 + #-Af^)

k-1 NP NT™
9k ^ r £ £ t™ m = 1, .. , NR^ r=i j=l i=l k = 1, N

V™ NP NT™
* E E

j=l i=l
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N NR NT™
L L  L t™.. S M. j = 1, NP (26)
k -1 m -1 i=l ^

N j = l , . . . , N P
E t™ = 1 m = 1, . . . , NR (27)

k-1 i = 1, NT™
NR
S q™ i U k = 1, , N (28)

^ m -1 ^ ^
and the depletion constraints of (l2 ) through (15) of 
Chapter III.

The constraints, functions and variables of this 
model are defined on pages 31 and 32. This target assign­
ment and well drilling schedule model contains

N(NR + 1) Continuous variables
N(NW*NP + 1) 0-1 variables
NP(N¥ + 1) + 3N*NR + 5N Constraints 

A comparison of the size of this subproblem model with the 
size of the general development model for a realistic size 
problem of

10 periods ; N = 10 
3 platforms ; NP - 3 
5 reservoirs ; NR = 5 

50 targets; NW = 50 
is presented in Table 4.
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TABLE 4

SIZE COMPARISON OF ASSIGNMENT AND DRILLING SCHEDULE
SUBPROBLEM MODEL WITH GENERAL DEVELOPMENT MODEL

Column 1

General
Development

Model

Column 2

Assignment
and

Drilling
Schedule

Subproblem
Model

Difference 
between 

Column 1 
and 

Column 2

Continuous Variables 66 60 6
0-1 Variables 1540 1510 30
Constraints 366 353 13

As can be seen from Table 4, the target assignment 
and drilling schedule subproblem is very nearly the same size 
as the general development model for any specific problem.
It should be pointed out that the Assignment and Drilling 
Schedule Subproblem is linear in nature whereas the General 
Development Model is nonlinear. Nevertheless the size of the 
Assignment and Drilling Schedule Model for realistic develop­
ment problems will make the determination of an optimal solu­
tion for these problems very difficult, if not computionally 
prohibitive.

Independent Subproblems Solution Procedures
Another interesting approach to solving the offshore 

development model would be to decompose it into independent 
subproblems. The first subproblem (location-assignment 
subproblem) would determine the number, size, and location 
of each platform and would assign wells to various plat­
forms so as to minimize platform and drilling cost. The 
second subproblem (scheduling subproblem) would then
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schedule the placement of platforms, the drilling of wells 
and the production so as to maximize the after-tax cash 
flow.

The Location-Assignment Subproblem 
The solution to the location-assignment subproblem 

would include
1. the number of platforms needed
2. the location of each platform
3. the size of each platform (i.e., the number of wells

assigned to each platform)
4. the assignment of wells to the various platforms 

This problem has been examined by Devine and Lesso (11), 
who have developed relatively efficient solution procedures. 
Their approach is to decompose this problem into two inter­
related subproblems that are solved in an iterative manner. 
The first subproblem (location subproblem), given an assign­
ment of targets to a fixed number (NP) of platforms, con­
sists of solving NP single platform location problems to 
define the initial locations of the platforms. The formu­
lation of a single platform location problem is

NT
Minimize J) f.(x,y) + P(x,y). (29)

i = l 1
where

(x,y) = coordinates of the platform
f\(x,y) = cost to drill target i as a function of the
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platform location 
P(x,y) = platform cost as a function of location

NT = number of targets to be drilled from this 
platform.

After these NP individual problems are solved, the next 
step is to solve what is termed the allocation subproblem. 
Given fixed locations for each of the NP platforms, the min­
imum cost allocation of wells to platforms is found by- 
solving the following model:

NR NT*" NP NP
Minimize S L  Z c?. t^. + Z P(M.) (30)

m=l i=l j=l j=l J
NP

subject to z = 1 T ; Î; !;;; OT>n <3d
J -1

NR N T ™
Z  Z  t™. - M. S 0 j = 1, NP (32)

m=l i=l J

t™ . = 0-1 i = 1, ..., NW
in — X f  0  0 m  J NR
i = 1, NW
j = 1, . NP

The constants and variables above were defined on pages 31
and 32 but note that c. . = f(d. .) = a constant since plat-ij 1J
forms are fixed. The solution procedure needed to solve 
the above problem depends on the form of the platform cost 
function (P(Mj)). For example, consider the case where the 
platform cost function increases in finite steps (see 
Figure 8 ) , as would be the case when one must choose dif­
ferent size platforms from a list of currently available 
models.
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Cost of 
Platform

j

Figure 8 .
Size of Platform j 

Example Platform Cost Function.

For such a platforr st function the allocation
subproblem can be modeled a 
ming problem as follows;

r.m

1 linear integer program-

Minimize

subject to

NP NR
E E

j=l m=l
NP
E

j=l

NR NT*"
E E

m=l i=l

NP
(33)

=  1

L E t ? . & E s^v^ j = 1 , , NP (35)
=1 i=l ^  k=l  ̂ ^

m 1, « *, NR . .. 
i = 1, , NT"» (34)

K .
k k
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"j ^Z v" = 1 j = 1, NP (36)
k=l J

t T . = 0-1ij

Vj = 0-1

j = 1 , • * • Ï NP

i = 1 , • • • 1 NW
j = 1 , • • • 1 NP
m = 1 , • • • 1 NR
j = 1 , • • • Î NP
k = 1 , • • • Î

CONSTANTS
Kj - number of "steps" in the function for platform j 

(i.e., the number of different size platforms)
= cost of k*b size for platform j (see Figure 8 )

s^ = capacity of the ktb size for platform j (see Fig­
ure 8)

VARIABLES
, = 1 if the kib size of platform j is used,

Vĵ
 = 0 otherwise

A special heuristic approach has been developed that jointly 
obtains solutions to the location and allocation subproblem 
for discontinuous platform cost functions such as the one 
illustrated in Figure 8 . A flow diagram and the basic 
steps of this algorithm are given in Appendix A.

In many problems, however, the platform cost func­
tion is such that it is relatively easy to obtain an opti­
mal solution to the allocation subproblem for a given set 
of platform locations. In this case, once the allocation 
subproblem is solved, then the location subproblem is 
resolved; upon finding this new solution, the allocation 
subproblem is resolved with the new platform locations in
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order to see if a lower cost allocation of wells to plat­
forms is possible. The algorithm thus continues to 
alternately solve the location subproblem and allocation 
subproblem until it is determined that the best possible 
solution has been obtained. The block diagram of Figure 9 
provides a graphical representation of the procedure fol­
lowed by this algorithm to determine a solution to the 
location-allocation problem.

ALLOCATE TARGETS
TO PLATFORMS

FIND LOCATION FOR
EACH PLATFORM

PICK INITIAL LOCATIONS
OF PLATFORMS

Figure 9 . Block Diagram of the Location Allocation 
Algorithm.

The number of platforms is assumed fixed in both
of these subproblems since

the problem becomes easier to formulate and solve.
For most problems, the range on the possible values of 
NP is rather small, usually three or four. Thus, it 
is reasonable to solve the problem for each possible 
value of NP and then to pick the best. (10)
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The Scheduling Subprobiem

Once the number, size, and location of platforms
are determined and each well is assigned to a platform
then f(d. .), P(M.,x.,y.), d. ., M. and (x.,y.) are con- ij J J O  J O J
stants. Incorporation of these constants along with the 
variables ,

Tj T. = 1 if well i is drilled in reservoir m in time 
 ̂ period k

= 0 otherwise
5 = 1 if platform j is placed in time period k

= 0  otherwise
= production rate from the m‘Ji reservoir in period k. 

into our original motel leaves us with a scheduling sub­
problem that can be formulated as a linear mixed-integer 
programming problem as follows :

N -O iT
Maximize L (cf(k)-dc(k)-pc(k)-r(NI(k)-D, ))e (37)

k=l

subject to = i T : i: :::: o»)

NN
E 6., = 1 j = 1, NP (39)

k=l '
k NR
E S S  (40)71 *r=l m-1 iC0_(j)m

k
s B S 6.

r = l J"'
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Qi - s ^ V q ^ A r ^
ni ^ ~ ^ 1 •••I NR / /, g \
k ~m k = l , . . . , N

<1 . I-AT^)

k-1 NT*"
C  ̂  S V™ LtîTk r=l i:l'ir

m = 1 , • • • 1 NR
V™ NT™ 

1=1

k 1 , • • • 1 N

NR
k = 1 , • • • 1 N

"k ' .22cf(k) k = 1, • • • f N

.5Nl(k) + B(l-z^) k = 1 , • * • 1 N

Nl(k) s z^B k = 1 , • • • 1 N

° k " k = 1 , • • • , N

0 k = 1 , • • • » N
j = 1, « • • , NP

< k '
k
m

- 1,
1,

• • • f
• • • 1

Nj
NR

i = 1, • • • 1

(43)

(44)

(45)

(46)

(47)

(48)

where
#^(j) = the set of targets in the mtb reservoir that 

are assigned to platform j 
NR

cf(k ) = T Z q^ k = 1, •••1 N

NR NT™
dc(k) = Z Z T]™, b, f(d. ) k = 1, ..., N

m=l i=l ^
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NP

pc(k) = E «jkPkP(Mj'Xj.yj) 
J --*■

k
+ S Ô. po. A t , 

r = l J

k = 1, . NN

NI{k) = cf(k) - (l-g)dc(k)
- (l-h)pc(k) - k = 1, ..., N

2 N - r   "Cs*dc(k) + h'pc(k)]r = l- -g — (N-r + 2)

The remaining quantities are defined on pages 31 and 32. 
In matrix form the scheduling subproblem excluding the 
tax portion would be

maximize c'q - d'rj - p '6
or

minimize -c'q + fy
subject to Aq , Dy Ï b ’ ^ q.i variable

where
c ' = (Cĵ A T ĵ ) which is a 1 by N*NR matrix
q = q||̂ which is an N*NR by 1 matrix

d ' = (b, *f(d. )) which is a 1 by N»NW matrixk im
V = which is an N*NW by 1 matrix

k
p' = (6 P(M.,x ,y.) + E 6 . po At. ) which is a J J J J” J ^

1 by N'NP matrix 
6 = (5 ) which is an N»NP by 1 matrix

J K

f = which is a 1 by N(NW+NP) matrix
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7}y = ( g) which is an N(NW + NP ) matrix

A is N(3NR + NP + 1) + NP + NW by N.NR
D is N(3NR + NP + 1) + NP + NW by N(NW + NP)
b is N(3NR + NP + l) + NP + NW by 1

This problem has been segregated into a continuous 
portion and a binary portion. The reason for rewriting this 
problem in such a manner is to put it into the notational 
form most often used when applying Bender's Partitioning 
Algorithm to such a mixed integer programming problem. See 
(l8) and (20) for a description of Bender's Partition 
Algorithm. Bender's algorithm might prove to be a compu­
tationally feasible solution technique for this problem if 
the structure of the problem is such that the algorithm 
will converge after a relatively few iterations and/or the 
problem solutions at each iteration are relatively easy to 
determine. However, nothing definite may be stated a priori 
about how many iterations of the Bender's Algorithm will be 
required to solve the scheduling subproblem.

Another characteristic that would encourage one to 
apply Bender's Algorithm to this scheduling problem is the pos­
sibility that the A matrix might be easy to solve, e.g., a 
transportation type matrix, thus indicating the continuous sub­
problem of Bender's would be relatively easy to solve at each 
iteration. This is not the case with the scheduling subproblem 
as can be seen by examining the structure of equation (42) type
constraints.

The scheduling model contains N(NR + 1) 
linear continuous variables, N(NP + NW + 1 )  zero-one
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variables, and iN + 3N*NR + N'NP + NW + NP) linear con­
straints. This means that a 10 period (N), 3 platform (NP), 
5 reservoir (NR), 50 well (NW) problem would necessitate 
solving a linear mixed-integer programming problem with 60 
continuous variables, 5^0 zero-one variables and 283 con­
straints. Although certain sophisticated mixed-integer 
programming (MIP) packages might be able to handle this 
problem (see reference 29 for a discussion of computational 
experience with one sophisticated MIP package), it is be­
lieved that a simplified version of the scheduling model 
presented (equations 37 through (l8) should be developed to 
solve this problem. There are three reasons for this.

1 . Extended access to a sophisticated MIP code is not 
available.

2. It is believed that even with such an MIP computer 
program, the amount of computer time required to 
solve most such problems would be much too expen­
sive .

3. The examination of the structure of the Scheduling 
Model in hopes of identifying characteristics of 
the problem which would encourage one to apply 
Bander's Decomposition Algorithm proved unfruit­
ful.
One approach could be to solve the simplified prob­

lem of determing the number of wells to be drilled from 
each platform to each reservoir per period rather than the
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more complex problem modeled by equations 37 through 48.
Although this approach is not as realistic as the mixed-
integer model formulated previously, this simplified model
for the scheduling subproblem will be employed to obtain
sufficiently efficient solution procedures.

This simplified scheduling model is:
N -ciT 1

Maximize J [cf(k) - dc(k) - pc(k) - r Nl(k)]e (49)
k=l ®

subject t. q; s q% k : i: f  <50)

m  ̂ r=l m = 1, ..., NR r m  \
  k . 1 : N (51) 

(Itf-ATk)

: : I' :::: T  (5 )̂r=l j=l 

Vj- NP
+ - f  ZT?"

 ̂ j=l
N NR
E E T7™ 5 M. j = 1, , NF (53)
k=l m=l ^

NN
£ 6 = 1  j = 1 , ..., NP (54)
k=i
k NR k .
E Et)“ s B- E 8 J : ............... (55)r=l m=l ^  r=l k _ 1, ..., N

VARIABLES
= the number of targets of reservoir m drilled from 

platform j in period k.
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= 1, if platform j is placed in period k.

0, otherwise.
= the a v e r a g e  production rate from reservoir m in 

period k.
CONSTANTS

dj^ = the average drilling cost for wells drilled to 
reservoir m from platform j. 

r^ = effective tax rate that accounts jointly for 
income taxes and depletion allowance.

The remaining constants and functions were previ­
ously defined on pages 31 and 32.

The simplified scheduling model contains N.NR 
linear continuous variables, N*NP zero-one variables,
N*NR*NP integer variables, and (3N*NR + N»NP + 2NP) linear 
constraints. This means that a 10 period (N), 3 platform 
(NP), 5 reservoir (NR), $0 well (NW) problem would neces­
sitate solving a linear mixed-integer programming problem 
with 50 continuous variables, 30 zero-one variables, 150 
integer variables and l86 constraints- When these example 
size figures are compared with the corresponding figures 
for the original scheduling model, it is seen that the only 
appreciable difference is in the number of integer variables. 
The original scheduling model has 5^0 zero-one variables, 
whereas the simplified scheduling model has only 30 zero- 
one variables and 150 integer variables for this size 
example problem.
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Of the two approaches that may be utilized in order 

to obtain a solution to the general development model as 
presented in Chapter III, the independent subproblem approach 
seems to be the best because:

1. The very nature of this approach, independent sub­
problems, will result in considerable savings in 
time and cost when obtaining solutions as compared 
to the dependent subproblem approach. This is 
because each major problem of the independent sub­
problem approach has to be solved only one time.
On the other hand, the two major subproblems of the 
dependent subproblem approach have to be solved a 
number of times before a final solution is reached.

2. Any approach which subdivides the general develop­
ment model into subproblems should insure that the 
subproblems are appreciably easier to handle compu­
tionally than the general development. This is the 
case with the independent subproblem approach whereas 
it is not the case with the dependent subproblem 
approach.

In SŒTunary, this chapter presents two different 
approaches for obtaining solution procedures for the gen­
eral offshore development model presented in Chapter III,

The two solution procedures are labeled
1. Dependent Subproblems Solution Procedure
2. Independent Subproblems Solution Procedure 

Mathematical models are developed for each procedure and 
the relative size and nature of each model are determined.
It appears that the independent subproblem approach is the 
most promising of the two.



CHAPTER V

COMPUTATIONAL RESULTS FOR OFFSHORE OIL FIELD DEVELOPMENT

Computer programs have been implemented to find 
solutions to the problem of offshore oil field development 
via the independent subproblem approach with the simplified 
scheduling subproblem. The intent of this chapter is not 
to parade an extensive collection of computational results 
and corresponding computer processing times, but rather to 
exhibit the fact that worthwhile, computationally feasible 
solution procedures have been developed. Computational 
results are presented for two development problems. The 
results obtained for these example problems via the author's 
proposed solution procedure are then compared with solutions 
obtained from an intuitive approach. Finally, sensitivity 
analyses are presented for two different postoptimality 
problems.

Computational Results via the Independent 
Subproblem Approach

This approach, as explained in Chapter IV, breaks 
the general development problem down into two independent 
subproblems. A computer program has been implemented to 
obtain solutions to the first subproblem, the location- 
assignment subproblem. The drilling cost function used

65
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in the examples is:

D. = 122.6 - 21.43 C. + 2.39 + 12.24 H.
1 X I X

+ 5.0 HL/(C^ - 1.5)

where :
= drilling cost for target i in thousands of dollars 
= depth of target i in thousands of feet 
= horizontal distance from the platform to target i 

in thousands of feet.

The platform cost function increases in finite 
steps (see Figure 8, Chapter IV), as would be the case 
when one must choose different size platforms from a list of 
currently available models. The computer program implemented 
to solve this specific location-assignment problem is a 
Fortran code of the heuristic algorithm described in Appendix 
A. This algorithm utilizes a gradient search algorithm to 
solve each platform location problem and an out-of-kilter 
algorithm to solve the transportation problem for reassign­
ment of targets to platforms after a change in well capacity 
of one platform.

Once a solution is obtained to the location-assignment 
problem, then IBM's Mixed Integer Programming (MIP) package 
is utilized to determine a solution to the simplified 
scheduling problem. The MIP program is basically a branch 
and bound type algorithm ( 4 ).

It is assumed that each oil reservoir considered 
follows an exponential decline of production rate with time
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if the reservoir were produced at its maximum capacity. 
Typically an oil reservoir does follow an exponential or 
hyperbolic decline of production rate with time (23). The 
hyperbolic decline could be approximated with an exponential 
type curve if it were divided into several time segments and 
then each segment fitted with an exponential curve.

Twenty-Four Well Example 
In this example twenty-four wells are to be drilled 

to a total of three oil reservoirs on an offshore tract of 
land approximately five square miles in area. Wells are 
assigned depths between 4000 feet and 7000 feet (See Appen­
dix B). Each well drilled is a single completion type (i.e., 
drilled to only one oil reservoir). The oil reservoir parame­
ters used in the optimization model are tabulated in Table 5-

TABLE 5
OIL RESERVOIR PARAMETERS (EXAMPLE ONE)

Reservoir 1 Reservoir 2 Reservoir 3

Estimated Recoverable 
Reserves (Barrels) 3,000,000 5,000,000 2,400,000

Maximum Production 
Rate (Barrels/Year) 1,000,000 2,000,000 1,200,000

Allowable Production 
Rate (Barrels/Year) 700,000 700,000 700,000

Slope of Decline 
Curve 0.333 0.400 0.500
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Three soluLiotis are obtained Tor the location- 
allocation subprobletn, the best of which indicates that two 
platforms should be located on the offshore tract of land. 
This solution is summarized in Table 6.

TABLE 6
LOCATION-ALLOCATION SOLUTION (EXAMPLE ONE)

Platform 1 Platform 2

Capacity (Wells) 6 18
Cost $700,000 $1 ,590,000
Drilling Cost 8587,679 $2 ,097,123
Location Coordinates* (Thousands 

of Feet)
X  = 9.8 ; 
y = 9.48

X  = 6.22; 
y = 5.53

Targets Assigned 11, 12, 13, 
14, 15, 16

1 , 2 , 3, 4 
5, 6, 7, 8 
9 , 10, 17, 
18, 19, 20 
21, 22, 23 
24

*The origin of the offshore tract of land for ref­
erence purposes was specified as the southwest corner of 
the property and all coordinate locations are relative to 
that coijuex-. The location coordinates Tor the individual 
targets are listed in Appendix C.

Once the solution to the location-allocation sub­
problem is obtained (Table 6 ), the simplified version of 
the scheduling subproblem model is utilized to determine a 
schedule for the placement of platforms and the drilling of 
wells. The total time period over which development activi­
ties were to be considered for this example problem is six
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years spread over four separate time periods. The first 
two periods each have a duration of one year while the last 
two time periods are each for a duration of two years. The 
solution to this problem indicates that both platforms should 
be placed at the beginning of period one. The schedule for 
well drilling is given in Table 7 • The corresponding pro­
duction rates for each reservoir are given in Table 8.

TABLE 7
WELL DRILLING SCHEDULE (EXAMPLE ONE)

To
Reservoir 1

To
Reservoir 2

To
Reservoir 3

Number of Wells 
Drilled From

Platform 1 in Period
1 0 4 0
2 0 0 0

3 0 1 0
4 0 0 0

Platform 2 in Period
1 6 6 6
2 0 0 0
3 0 0 0
4 0 0 0
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TABLE 8
PRODUCTION RATES (EXAMPLE ONE)

Period
Production Rate in Thsds Barrels/Year
Reservoir 1 Reservoir 2 Reservoir 3

1 435.000 700.000 450.000
2 700.000 700.000 700.000
3 425.000 700.000 340.000
4 253.384 628.000 190.027

The solution to example problem one, as listed in 
Tables 6 and 7 , corresponds to a total discounted (15% 
discount factor) net income (before taxes) of $7,690,480.

The computer processing time required to solve 
example problem one is given in Table 9-

TABLE 9
COMPUTER PROCESSING TIME- (EXAMPLE ONE)

Subproblem
Number

of
Runs

AverageT911
Time 

(Minutes)

TotalT) t y ̂
Time 

(Minutes)

Location-Assignment 
Simplified Scheduling 
Total Run Time (Minutes)

9
1

.2128
3.1000

1.9152
3.1000
5.0152

*For IBM 360-50.
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F i f t y - S e v e n  W e l l  E x a m p l e  

The f i f t y - s e v e n  w e l l s  of tills e x a m p l e  p r o b l e m  are 

to be d r i l l e d  to a t o t a l  of t h r e e  oil r e s e r v o i r s  l o c a t e d  o n  

an o f f s h o r e  t r a c t  s i x  s q u a r e  m i l e s  in area. W e l l s  a re to 

be d r i l l e d  to a t o t a l  of 8l t a r g e t s  in the t h r e e  oil r e s e r ­

voirs. R e s e r v o i r  one a n d  two e a c h  h a v e  24 t a r g e t s .  T h e s e  

two r e s e r v o i r s  a re l o c a t e d  in a p p r o x i m a t e l y  the s a m e  o f f ­

shore g r i d  l o c a t i o n  w i t h  r e s e r v o i r  two at a g r e a t e r  d e p t h  

t h a n  r e s e r v o i r  one. Thus, the t a r g e t s  of r e s e r v o i r  one a nd  

r e s e r v o i r  t wo a r e  d u a l l y  c o m p l e t e d ,  i.e., a w e l l  is d r i l l e d  

t h r o u g h  b o t h  r e s e r v o i r s  t a p p i n g  one t a r g e t  f r o m  e a c h  of the 

two r e s e r v o i r s .  It s h o u l d  be n o t e d  that the p r o p o s e d  

d e v e l o p m e n t  m o d e l  does not c o n s i d e r  the g e n e r a l  d u a l  c o m ­

p l e t i o n  q u e s t i o n  of w h i c h  t a r g e t s  s h o u l d  be d u a l l y  comple t e d .  

But, if the t a r g e t s  of a f e w  r e s e r v o i r s  are m a t c h e d  for 

m u l t i p l e  c o m p l e t i o n  a p r i o r i ,  t h e n  the m o d e l  c a n  h a n d l e  

this s p e c i a l  s i t u a t i o n .  T a r g e t  c o o r d i n a t e s  a n d  p l a t f o r m  

sizes c o n s i d e r e d  for this p r o b l e m  a r e  l i s t e d  in A p p e n d i x  C.  

The oil r e s e r v o i r  p a r a m e t e r s  u s e d  in the o p t i m i z a t i o n  m o d e l  

are g i v e n  in T a b l e  10.
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TABLE 10
OIL RESERVOIR PARAMETERS (EXAMPLE TWO)

Reservoir 1 Reservoir 2 Reservoir 3

Estimated Recoverable 
Reserves (Barrels) 10,000,000 11,000,000 13,000,000

Maximum Production 
Rate (Barrels/Year) 3,600,000 4 ,900,000 6,200,000

Allowable Production 
Rate (Barrels/Year) 2,200,000 2 ,900,000 3,700,000

Slope of Decline 
Curve 0.356 0.445 0.457

Three solutions are obtained for the location- 
allocation subproblem of example two, the best of which 
indicates that three platforms should be located on the 
offshore tract of land. This solution is given in Table 11.
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TABLE 11
LOCATION-ALLOCATION SOLUTION (EXAMPLE TWO)

Platform 1 Platform 2 Platform 3

Capacity (Wells) 20 20 18
Cost $1 ,700,000 $ 1 , 700, 000 $1, 590, 000
Drilling Cost for @3 ,1 8 5 , 0 4 0 @2, 336, 300 $2, 3 0 4 ,800
Location Coordinates* X = 3.62 X = 11 .85 X = 11 .22

(Thousands of Feet) y = 6.26 y = 3 .97 y = 10 .52
Targets Assigned 1 , 2 , 3 , 4 , 20, 25, 26, 19, 2 2 , 23

5 , 6 , 7 , 8 , 29, 30, 32, 27, 28, 31
9 , 1 0 , 1 1 , 3 6 , 3 9 , 4 0 , 3 3, 34, 35
12 , 13, 1 4 , 4 4 , 45, 4 6 , 3 7 , 3 8 , 4l
15 , 16, 17, 49, 50, 51, 4 2 , 43, 47
18 , 2 1 , 24 5 3 , 54, 5 5 , 4 8 , 52

56, 57

*The origin of the offshore tract of land for ref­
erence purposes was specified as the southwest corner of 
the property and all coordinate locations are relative to 
that corner. The location coordinates for the individual 
targets are listed in Appendix C.

The total time period over which development activi­
ties are to be considered for this example problem is ten 
y e a r s  spread over five separate time periods. The duration 
of each time period is:

Time Period 1 - - - 1 year duration
Time Period 2 - - - 1 year duration
Time Period 3 - - - 2 years duration
Time Period 4 - - - 2 years duration
Time Period 5 - - - 4 years duration

The simplified scheduling model solution for example
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two indicates that all three platforms should be replaced 
at the beginning of period one. The schedule arrived at by 
the solution of the simplified scheduling model for example 
two is presented in Table 12. The corresponding production 
rates for each reservoir are given in Table

TABLE 12
WELL DRILLING SCHEDULE (EXAMPLE TWO)

To
Reservoir 1

To
Reservoir 2

To
Reservoir 3

Number of Wells 
Drilled From

Platform 1 in Period
1 15 15 0
2 5 0 0
3 0 0 0
4 0 0 0
5 0 0 0

Platform 2 in Period
1 5 5 15
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0

Platform 3 in Period
1 1 1 14
2 0 0 3
3 0 0 0
4 0 0 0
5 0 0 0
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TABLE 13 

PRODUCTION RATES (EXAMPLE TWO)

Period
Production Rate in Thsds Barrels/Year
Reservoir 1 Reservoir 2 Reservoir 3

1 1260.000 1312.500 1957.500
2 2200.000 2307.500 3021.300

3 1746.490 1810.600 2037.400
4 829.454 1088.700 1082.500

5 312.014 374.986 446.751

The solution to example problem two, as listed in 
Tables 11 and 12, corresponds to a total discounted (15% 
discount factor) net income (before taxes) of $34,222,157» 

The computer processing time required to solve 
example problem two is given in Table l4.

TABLE 14
COMPUTER PROCESSING TIME* (EXAMPLE TWO)

Subproblem
Number

of
Runs

Average Total
Run Run

Time Time
(Minutes) (Minutes)

Location-Assignment 
Simplified Scheduling 
Total Run Time (Minutes)

8

1
1.3250
7.2950

10.6000
7.2950

17.8950

*For IBM 360-50.
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An Intuitive Development Procedure
In order to exemplify the usefulness of the proposed 

model and solution procedures, an intuitive policy for off­
shore development is examined. The intuitive approach 
locates a platform over the center of each reservoir and 
develops the reservoir as fast as possible. The one restric­
tion placed on this development policy is that the maximum 
number of wells that could be drilled per period from any 
given platform is

15 dual completion wells 
20 single completion wells.

The development plans arrived at by means of the intuitive 
approach for the two example problems are presented in the 
following two tables.

TABLE 15
INTUITIVE DEVELOPMENT POLICY (EXAMPLE ONE)

Platform Placement - - - Place a platform over each reser­
voir at the beginning of Period 
One.

Well Drilling - - - drill
6 wells to reservoir one in period one.

10 wells to reservoir two in period one.
8 wells to reservoir three in period one.

Production Rates in Thsds Barrels/Year
Period Reservoir 1 Reservoir 2 Reservoir 3

1 435.0 700.0 600.0
2 700.0 700.0 700,0
3 4 6 6 . 3 700.0 366.7
4 233.2 516.0 122.2
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T A B L E  16

INTUITIVE DEVELOPMENT POLICY (EXAMPLE TWO)

Platform Placement Place a platform over the two 
reservoirs that are to be dually 
compled (reservoirs one and two) 
and one over the third reser­
voir, at the beginning of Period 
One

Well Drilling - - - drill
15 wells to reservoir one and two in period one.
9 wells to reservoir one and two in period two.

20 wells to reservoir three in period one.
13 wells to reservoir three in period two.

Production Rates in Thsds Barrels/Year
Period Reservoir 1 Reservoir 2 Reservoir 3

1
2
3
4
5

9 0 0 . 0
1 9 1 8 . 8
1914.8 
909.4
342.1

937.5
1 8 5 2 . 5
1 8 0 9 . 0
1 1 2 2 . 9
544.8

1 3 5 0 . 0
2 5 2 7 . 2
2 3 7 0 . 41344.4 
425.3

This intuitive approach results in a total dis­
counted (15% discount factor) net income (before taxes) for 

Example Problem One of $7,l46,4lO 
Example Problem Two of #31,217,697 

The net income figures of the intuitive approach are com­
pared with the corresponding net income figures arrived at 
by the author's proposed solution technique in Table I6 .
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TABLE 17
RESULTING NET INCOME FOR INTUITIVE APPROACH vs. 

PROPOSED SOLUTION TECHNIQUE

Intuitive
Approach

1

Proposed Percentage 
Solution Difference 
Technique 2 - 1  

2 1

Example Problem 1 $7,146,410 $7 ,690,480 7.6
Example Problem 2 #31,217,897 $34,222,157 9.6

These computational results indicate that the pro­
posed solution technique is better than a rather perceptive 
intuitive approach.

Sensitivity Analysis
It is important that any solution procedure utilized 

to determine offshore development policy should allow for a 
sensitivity analysis to be performed upon this development 
policy. Sensitivity analysis is desirable because:

1. It allows for the creation of contingency plans 
that can be adapted if some characteristicva) of 
the operating environment change.

2. It can indicate how sensitive the determined solu­
tion is to inaccuracies in the various parameters 
used in determining the development solution.
An illustration of the case in which contingency 

plans could be advisable is when an oil development project 
is currently subject to regulated production but it is felt
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that limitations on production will be lifted in the future. 
To illustrate the capability of the proposed solution pro­
cedure to perform a sensitivity analysis, contingency plans 
are determined for the situation described above. This is 
accomplished by resolving the simplified scheduling model 
with the maximum allowable production rate constraint 
deleted for example problems one and two. The solution 
to example problem two is essentially the same as before 
(with a maximum production rate constraint) except that a 
slightly higher discounted net income is achieved. However, 
the development policy for example problem one does change. 
The development schedule for example one with no maximum 
allowable production is

drill 6 wells to reservoir 1 in period 1 
drill 12 wells to reservoir 2 in period 1 
drill 6 wells to reservoir 3 in period 1 

which results in a total discounted (15% discount factor) 
net income (before taxes) of $8,770,04?.

Another possibility for a sensitivity analysis is 
to ascertain what effect changes in the schedule for place­
ment of platforms has on the adopted development policy.
It is quite likely that unexpected circumstances could dic­
tate that platform placement for one or more offshore plat­
forms be rescheduled. Thus, a sensitivity analysis is per­
formed on the development policy of example problem one by 
determining what effect various delays in the placement of
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platforms would have on the development policy. The
results of this sensitivity analysis are presented in Table 
18.

TABLE 18
SENSITIVITY ANALYSIS ON PLATFORM PLACEMENT SCHEDULE

Alternative Schedule for
Platform 1 
(6 wells)

Platform 2 
(18 wells)

Discounted Net Income*

2 1 $7,536,204

3 1 $7 ,615,604
1 2 $6 ,371,854
jL 3 $5 ,205,155

*Discount factor is 15% and net income is a before 
taxes figure.

When the discounted net income figures for the 
alternative platform placement schedule given in Table iB 
are compared with the net income of $7,690,480 associated 
with the previously determined development policy, it appears 
that

1. Rescheduling the 6-well capacity platform (platform 
one) has little effect on the net income derived 
from the development activities).

2, Rescheduling the l8-well capacity platform (platform 
two) does have a significant effect on the net income 
associated with the development activities.
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The primary reasons that rescheduling platform one 

placement has little effect on the development solution 
whereas the schedule for placement of platform two has con­
siderable influence are

1. Platform two is assigned three times as many wells 
as platform one. Thus, it is expected that platform 
two will be utilized to produce much more oil than 
platform one.

2. Platform two is assigned to drill wells to all three 
reservoirs but platform one is assigned to drill 
wells to only one reservoir. Thus, the placement
of platform two alone allows for the immediate pro­
duction from all three reservoirs.
The sensitivity analysis performed has been dealing 

with the scheduling aspects of the development solution.
See reference 10 for a sensitivity analysis on the location- 
assignment problem solution. It appears that the sensitiv­
ity of the development solutions to changes in important 
parameters depends greatly on the individual characteristics 
of each development problem.



CHAPTER VI

SUMMARY AND RECOMMENDATIONS FOR FURTHER RESEARCH

Summary
The problem of optimal development of offshore oil 

fields has been analyzed. Chapter 1 presents general back­
ground material on oil field development and describes 
briefly how the search and drilling for offshore oil are 
carried out. Attention is also given to reviewing opti­
mization techniques that have been applied to development 
drilling problems in the past.

The major topics of Chapter 11 are offshore develop­
ment parameters and tax considerations. A brief discussion 
of two offshore development parameters,

1. upper limit on the amount of oil produced during 
any future time period,

2. location of individual oil sources (targets)
is presented. A third offshore development parameter , pro­
duction capability of individual wells, is examined in more 
detail with considerable discussion presented concerning 
the use of production-rate-decline curves to forecast future 
production capability of oil reservoirs. Tax considerations 
of offshore development activities are also examined with

82
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an emphasis on the handling of the allowable depletion 
allowance extractive industries may claim in order to reduce 
their income taxes. Mathematical programming models that 
take into consideration the depletion allowance are pre­
sented.

Chapter III presents the mathematical programming 
formulation of a general development model that determines

1. the number of offshore platforms needed
2 . the size of each offshore platform
3. the location of each offshore platform
4. the assignment of wells to the offshore platforms
5. the schedule of placing the platforms and drilling

wells
so as to maximize the total discounted after-tax cash flow.
A discussion of the drilling cost function and how it may be 
determined for any given development is also given in 
Chapter 111.

Two different approaches for obtaining solution pro­
cedures for the general offshore development model of 
Chapter 111, namely

1 . dependent subproblems solution procedure
2. independent subproblems solution procedure 

are presented in Chapter IV. Mathematical programming 
models are also developed for each procedure and the rela­
tive size and nature of each model are determined. From an 
examination of the size and nature of the two solution
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procedures it appears that the independent subproblem approach 
offers the greatest promise for computationally efficient 
solution procedures.

Computational results are presented in Chapter V for 
the independent subproblems solution procedure for a twenty- 
four target problem and a fifty-seven target problem. These 
results, when compared with a perceptive intuitive approach 
of developing thie'offshore property as fast as possible, 
appear very encouraging. The feasibility of performing 
sensitivity analyses with the adopted solution procedures 
is demonstrated by conducting sensitivity analyses on the

1. effect a maximum allowable production restriction 
has on the solution.

2. schedule for placement of platforms.
This research contributes to the field of optimum 

offshore oil field development in the following ways:
1. It is shown that not incorporating depletion or 

using an approximation for the depletion in an 
after-tax optimization model can result in non- 
optimal investment decisions. After-tax optimization 
models are developed that incorporate depletion terms.

2. The problems of the development of offshore oil 
fields and the scheduling of this development are 
formulated mathematically in the form of a general 
optimization model whose objective is to maximize 
the net discounted after-tax cash flow.
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3. Computationally efficient algorithms, which allow
sensitivity analyses to be performed, are developed 
to solve the general optimization model for the 
development and scheduling of offshore development 
activities.

Further Research 
One problem that should be investigated further is 

what path a well drilled at an angle should take. This 
path is determined by such things as kick-off point, rate of 
angle build-up, maximum drilling angle, point at which the 
drill should turn back vertical (if at all), etc.

Another problem for investigation would be the 
determination of the schedule for drilling bit replacement. 
This would entail ascertaining how often a drill bit should 
be replaced so as to balance the cost of operating ineffi­
ciently with a worn bit versus the cost of replacement bits 
and the time lost for replacement ( 21).

The consideration of secondary recovery projects in 
the general development model is also a possibility for 
further research. This extension would give management an 
estimate of the return on investment they could expect by 
engaging in secondary recovery projects.

Transportation cost considerations, either for off­
shore pipelines or oil tanker, in conjunction with an off­
shore development model would also be a topic for further 
research. This would involve developing a transportation
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model for estimating crnde oil costs between a particular 
field and market and incorporating or linking this model 
with a general offshore development model. It is quite 
possible that increasing the complexity of the offshore 
development model with transportation considerations may 
necessitate turning partially to simulation to determine 
solutions to such an offshore model.
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APPENDIX A

HEURISTIC ALGORITHM FOR THE LOCATION-ASSIGNMENT SUBPROBLEM 
WITH A STEPWISE PLATFORM COST FUNCTION

This heuristic algorithm was designed by Devine 
(i d ) to handle the location-assignment problem where the 
associated platform cost function increases in finite 
steps, as illustrated by Figure 8 of Chapter IV.

The following description of this algorithm is 
derived from reference 10.

Step 1 : Pick initial starting points for the platforms. 
Step 2 : The iterative algorithm described on page 56 and 

labeled the "Alternate Location-Allocation (ALA) 
Algorithm" by the author of reference 10 is used 
with each target being allocated to the "closest" 
platform until the solution converges.
By simply assigning wells to the closest platform, 

the solution found by this procedure is locally optimum in 
drilling cost only, since the size of each platform is not 
considered.
Step 3 : If the drilling cost found by this procedure is

below some prespecified cut-off value, then from 
this solution the procedure tries to reduce the
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total cost by reducing the costs of the platforms. 
(Go to Step 4.) If the drilling cost is above 
the cut-off, then the procedure starts over again 
at Step 1.

It is necessary to establish this cut-off level 
because the ALA Algorithm with assignments made on the 
"closest" basis tends to get stuck on poor local optimums. 
Thus, without some cut-off value on the total drilling cost, 
effort would be wasted trying to improve the platform cost 
on a solution which already has a high drilling cost. One 
way to determine an acceptable cut-off level would be to 
solve the problem several times and then pick the minimum 
drilling cost found as the cut-off.
Step 4 : All platforms are included in the set of platforms

whose sizes are subject to reduction (i.e., all 
platforms are placed under consideration).

There are a variety of ways to approach the problem 
of improving the total cost by reducing the platform cost. 
The basic objective is to reduce the platform cost without 
forcing a drastic reassignment of wells to platforms, which 
might increase the drilling cost significantly. Let the 
number of wells to be drilled from platform j (as defined by 
the starting point solution found by the Case 1 method) be 
denoted by . Let S^ be the necessary capacity for plat­
form j, i.e.,

< N.=S 
J J J
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The excess capacity of platform j (denoted by u^) is simply

u. = - N..J J J

Step 5 : From all the platforms under consideration, pick
the one with the largest excess capacity, and 
decrease its capacity to the next lowest level;
i.e., from S^ to 5^ ^. In case of a tie, pick the 
one which will give the greatest decrease in plat­
form cost. Denote this platform as I*.

Step 6 : Is the total capacity greater than or equal to the
number of targets? If yes, go to Step 7» If no, 
go to Step 11.

Step 7 : For the altered platform sizes, find the optimal
reassignment of targets to platforms by solving 
the transportation problem.

Step 8 : For the resulting assignment of targets to plat­
forms, solve the NP location subproblems. Calcu­
late the new total cost.

Step 9 • Has the total development cost decreased? If yes, 
the procedure continues by returning to Step 4.
If no, go to Step 10.

Step 10: Since the total cost did not decrease, the pre­
vious solution is retained and the algorithm stops.

Step 11: This point in the algorithm is reached when
decreasing the capacity of platform I* has made 
the total capacity insufficient. For each platform
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except I*, determine the "incremental capacity" 
(iCj) when the platform is increased to its next 
largest size; i.e.,

i c . = - S^.
J J J

Step 12 : Search for the single platform whose "incremental
capacity" will make the total capacity greater 
than or equal to the number of targets. Is there 
such a platform? Is yes, go to Step 13» If no, 
go to Step l6.

Step 13 : In case of a tie between two platforms in Step 12, 
pick the one with the smallest excess capacity. 
Denote this platform as J*.

Step l4: Increase platform J* to its next largest size.
Step 15 : Has the total platform cost decreased? If yes,

continue the procedure by going to Step 7. If no, 
the algorithm stops.

Step l6: This point is reached from Step 12 if there is no 
platform J* whose incremental capacity will make 
the total capacity greater than or equal to the 
number of targets. Raise platform I* back to its 
original capacity; remove platform I* from the set 
of platforms under consideration for size reduc­
tion; and continue by returning to Step 5»

In this procedure, generally the transportation
problem must be solved several times, and thus it is
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advantageous to use the out-of-kilter algorithm, so that 
information from previous solutions can he used.

A flow diagram of the steps in this heuristic 
algorithm is presented in Figure B-1.
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Uo

Step 1 . Pick starting points 
for platforms

Step 2 . Solve by ALA Method 
(allocating by "closet") until 
solution converges____________

Step 3. 
cü’t’̂ ÔTf?

Is drilling cost below

Yea

Step A . Put all platforms 
under consideration_______

Step 5. From platforms under 
consideration, pick the one 
with largest excess capacity; 
decrease its capacity to next 
Lowest level. In case of tie, 
pick one which will give great­
est decrease in cost. Denote 
this platform as I*.__________

,jtep 6 . Is total capacity > 
number of targets?___________

Yes

N o .

Step l6. Raise platform I* 
back to its original capacity ! 
Eliminate it from consideration

Step 11. For each platform 
except I*, determine the 
"incremental capacity" when the 
platform is increased to its 
next largest size.______________

Step 7 . Solve the transporta- 
tion problem

Step 8 . Solve the resulting 
location problems. Calculate 
the new total cost.___________

Seep y . Has the total cost 
decreased :

re

step 10. Keep previous 
solution. _____

Stop

Step 12. Find the single plat­
form whose "incremental capac­
ity" will make the total capac­
ity > number of targets, at 
minimum cost! Is there such a 
platform?

Yes

Step 13. In case of tie, pick 
one with smallest excess 
capacity

Step lA. Increase to next 
largest s i z e ___________

Yes
jL

Step 15. Has total platform
cost decreased?

No

Stop

Figure A-1. Flow Diagram for Heuristic Algorithm.



APPENDIX B

This appendix contains
1. the target location coordinates
2. the platform cost functions

for the two example problems solved in Chapter V.
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X y c

1 . 0  0 4 . 5 0 4 . 5 0
4 . 0 0 5 . 5 0 4 . 5 0
4 . 0 0 7 . 0 0 4 , 7 0
5 . 2 0 7 .  50 4 . 7 0
4 . 5 0 8 , 5 0 4 . 9 0
5 . 5 0 9 . 0 0 4 , 9 0
6 . 0 0 5 . 0 0 5 . 5 0
7 .  00 6 . 0 0 5 , 7 0
6 . 0 0 6 , 0 0 5 . 8 0
Q . 5 0 7 . 0 0 5 , 8 0
9 . 0 0 7 . 2 0 5 . 9 0
9 , 5 0 8 . 2 0 6 . 0 0
9 . 5 0 8 . 9 0 6 . 0 0

1 0 . 0 0 1 0 . 0 0 6 . 0 0
1 0 . 0 0 11 . 0 0 6 . 0 0
1 1 . 0 0 1 1 . 5 0 6 . 0 0

7 . 5 0 2 . 0 0 6 . 3 0
7 . 7 0 3 . 2 0 6 . 3 0
6 . 0 0 3 . 0 0 6 . 3 0
3 . 3 0 3 . 5 0 6 . 3 0
9 . 1 0 3 . 3 0 6 . 5 0
9 . 6 0 4 , 0 0 6 . 5 0

1 0 . 1 0 3 , 8 0 6 . 5 0
1 1 . 0 0 4 . 5 0 6 . 5 0

EXAMPLE ONE 
Target Coordinates 
x,y -

c --

horizontal coordi­
nates in thousands 
of feet
depth of target 
in thousands of 
feet

EXAMPLE ONE PLATFORM
COST (Thsds Qf Dollars) 

0 0.0
6 7 0 0 , 0
9 1 0 0 0 . 0

12 1 2 8 5 , 0
15  1 4 5 4 . 0
19 1 5 0 0 . 0
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X y c

1 . 0 0 6 . 0 0 8 . 2 0
1 . 0 0 8 . 0 0 8 . 3 0
2 . 0 0 3 . 0 0 8 . 2 0
2 . 0 0 5 . 0 0 8 . 4 0
2 . 0 0 7 . 0 0 8 . 7 0
2 . 0 0 9 . 0 0 8 , 8 0
3 . 0 0 6 . 0 0 8 . 8 0
3 . 0 0 1 0 . 0 0 9 . 2 0
4 . 0 0 1 . 0 0 9 . 0 0
4 . 0 0 3 . 0 0 9 . 1 0
4 . 0 0 5 : 0 0 9 . 3 0
4 . 0 0 7 . 0 0 9 . 5 0
4 . 0 0 9 . 0 0 9 , 6 0
5 . 0 0 2 : 0 0 9 . 0 0
5 . 0 0 6 . 0 0 9 . 2 0
5 . 0 0 1 0 . 0 0 9 . 7 0
6 . 0 0 4 . 0 0 9 . 4 0
6 . 0 0 7 . 0 0 9 .  70
6 . 0 0 1 1 . 0 0 9 . 9 0
7 . 0 0 2 . 0 0 9 .  10
7 . 0 0 6 . 0 0 9 , 8 0
7 . 0 0 9 . 0 0 1 0 . 0 0
7 . 0 0 1 2 . 0 0 1 0 . 2 0
4 , 0 0 8 . 0 0 9 . 5 0
9 . 0 0 2 . 0 0 5 , 5 0
9 . 0 0 7 . 0 0 5 . 8 0
9 , 0 0 9 . 0 0 6 . 0 0
9.00 1 3 . 0 0 6 . 3 0

1 0 . 0 0 4 . 0 0 5 . 6 0
1 0 . 0 0 6 . 0 0 6 . 0 0
1 0 . 0 0 1 2 . 0 0 6 . 4 0
1 1 . 0 0 2 . 0 0 5 . 7 0
1 1 . 0 0 8 . 0 0 6 . 3 0
1 1 . 0 0 1 0 . 0 0 6 . 4 0
I 1 . 0 0 1 4 . 0 0 6 . 7 0
1 2 . 0 0 5 . 0 0 6 . 3 0
1 2 . 0 0 7 . 0 0 6 . 4 0
1 2 . 0 0 1 2 . 0 0 6 . 8 0
1 3 . 0 0 1 . 0 0 5 . 8 0
1 3 . 0 0 3 . 0 0 5 . 9 0
1 3 . 0 0 8 . 0 0 6 . 6 0
1 3 . 0 0  ..... 1 0 . 0 0 6 . 9 0
1 3 . 0 0 1 4 . 0 0 7 . 2 0
1 4 . 0 0 2 . 0 0 6 . 1 0
1 4 . 0 0 5 . 0 0 6 .  70
1 4 . 0 0 6 ,00 6 . 8 0
1 4 . 0 0 9 . 0 0 7 . 1 0
1 4 , 0 0 1 1 . 0 0 7 . 2 0
1 5 . 0 0 1 . 0 0 6 . 3 0
1 5 . 0 0 4 . 0 0 6 . 8 0
1 5 . 0 0 7 . 0 0 7 . 0 0
1 5 , 0 0 1 2 . 0 0 7 . 3 0

9 . 0 0 5 . 0 0 5 . 7 0
1 1 . 0 0 4 . 0 0 5 . 9 0
1 1 . 0 0 6 . 0 0 6 . 1 0
1 2 . 0 0 3 . 0 0 6 . 2 0
1 3 . 0 0 4 . 0  0 6 . 1 0

EXAMPLE TWO
Target Coordinates
x,y --horizontal coordi­

nates in thousands 
of feet

c --depth of target in 
thousands of feet
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EXfVMPLE TWO PLATFORM
SIZE COST (Ths
0 0.0
6 700.0
9 1000.0
12 1285.0
15 1454.0
18 1590.0
20 1700.0
25 2000.0


