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PART I

THE CRYSTAL AND MOLECULAR STRUCTURE OF TRICYCLO-

[4.4.2.0%*®1DODECA-3, 8-DIENE-11,12-DIONE
CHAPTER I
INTRODUCTION

Tricyclo [4.4.2.Ol’6]dodeca—3,8-diene-ll,lZ-dione, €yl 9055

is one of a series of tricyclic compounds synthesized by Bloomfield

> The visible and ultraviolet absorption spectra

and co-workers.
of this compound as well as its dihydro and tetrahydro derivatives
have also been reported.3 The title compound and its dihydro deriva-
tive show absorption bands for electronic transitions at unuéually
long wavelengths, compared to other unsubstituted oa-diketones.l*-6

To investigate the cause for this red shift, as well as other in-
teresting features of the low-energy absorptions of these tricyclic
diketone systems in greater detail, it was deemed necessary to obtain
more information about their.molecular conformations. The crystal

structure of the title compound was therefore determined to yield

possible clues about the molecular conformations in solution.



CHAPTER Il
EXPERIMENYAL

A sample of tricyclo[4.4.2.01’6]dodeca—3,8—diene-ll,12-dione,
henceforth to be called 2DB, with a 1% melting point range was supplied
by Bloomfield.7 Crystals were obtailned by slowly cooling a solution of
2DB in redistilled n-hexane from 25°C to 0°C over a period of two days.
Plate-like crystals were obtained in this manner. They showed narrow,
symmetric diffraction peaks and were judged suitable for data collectionm.

Special care had to be taken with this compound due to its rela-
tive instability. The pink crystals of 2DB showed a white, powdery
deposit on the edges after one day's exposure to an open atmosphere at
room temperature. A solution of 2DB will completely decolorize within
a day at room temperature when exposed to light. This decomposition
is due to decarbonylation and is accelerated by light.7’8 When protected
from light and stored in a freezer, crystals and solutions of 2DB have
remained stable for extended periods of time. Consequently, crystals
were stored at low temperatures and only used in subdued light as much
as possible.

A method was sought which would retard the crystal decomposition
and allow data taking at robm temperature. For this purpose, intensities
of several reflections were monitored as a function of time. For crystals

2



3
kept at room temperature in subdued light, and only intermittently
exposed to x-rays, an average intensity loss of about 1% per hour was
obtained. This intensity loss was only slightly greater when crystals
were kept in the x-ray beam continuously. For better protection against
light, a new crystal was completely coated with India ink and placed
in the x~ray beam for seven hours. The average intensity loss of five
reflections was 0.7Z per hour, still far too rapid for satisfactory
data taking. Crystals sealed in an ink~-coated glass capillary tube
showed an average intensity loss of 0.6Z per hour during thirteen hours
of continuous x-ray exposure.

A new crystal of 2DB was mounted on a goniometer and coated
with a thin layer of hair spray. During eleven hours of continuous
x-ray exposure, fifteen reflections were monitored. An average intensity
decrease of only 0.037% per hour was obtained. This seemed to be a satis-
factory way to preserve the crystal at room temperature and was conse-
quently used with the data crystal.

All diffraction work was done with the General Electric XRD-5

diffractometer, using CuKa radiation and nickel filters. The diffraction
pattern of 2DB showed that the crystal belongs to the monoclinic system
with the approximate unit cell dimensions a = 7.38 X, b = 11.49 X,
c = 12,92 R, and B = 115.52°. Systematic absences were found in the hOg
zone for those reflections where g is odd and for OkO reflections with k
odd. This indicated that the space‘group is P21/c. The crystal density
was measured by the flotation method using an aqueous potassium iodide
solution. The experimental value of 1.251 g/cc agreed reasonably well

with the calculated density of 1.264 g/cc, based on the approximate unit
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cell parameters and four molecules of C12H1202 per unit cell.

The two-theta values of 38 reciprocal lattice points were accu-
rately measured, using a 1° take-off angle, and uséd in a least=-squares
cell refinement program. (A list of all programs used is presented in
Appendix A.) The improved unit cell parameters and calculated crystal
densit; are hown in Table 1.

The diffraction intensities of h k £ and h k % reflections with
20 < 140° were measured as integrated intensities using a theta-two
theta scan at a 2° take-off angle. This encompassed 1870 independent
reflections, excluding the systematic absences. Each diffraction in-
tensity was corrected for background radiation by measuring the intensity
at each side of the peak for half of the scanning time and subtracting
this quantity from the total peak intensity to yield a net diffraction
intensity. Of the 1870 intensities measured, 131 were considered too
weak to be observed. They showed a net diffraction count of seven or
less and a value of seven was assigned as their net diffraction inten-
sity;

Two crystgls were required to measure all diffraction intensities.
They were of similar shape, irregular flat plates, and of slightly dif-
ferent size. The first crystal measured 0.69 by 0.55 by 0.19 mm while
the dimensions of the second crystal were 0.69 by 0.52 by 0.29 mm. Each
crystal was coated with a thin layer of hair spray at the start and kept
in subdued light at all times. The intensities of 987 reflections were
measured on the first crystal and 883 on the second crystal. The intensity
of one reflection was measured after approximately each hour of x-ray

exposure and used to scale the intensities to correct for crystal decom-
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TABLE 1

UNIT-CELL DATA

Space Group P21/c
4 Molecules in the Unit Cell

Unit~Cell Dimensions

4

o
7.438 + 0.003A

a =
b = 11.539 + 0.005
c = 12.935 * 0.005
B = 116.22 * 0.02°
Reciprocal Unit-Cell Dimensions
a* = 0.14987 * 0.00004 ()"
b* = 0.08666 * 0.00004
c*k = 0.08618 * 0.00002
g% = 63.78 * 0.02°

Crystal density
Measured = 1.251g/cc
Calculated = 1.255
Unit-Cell Volume = 995.9(X)3
F(0,0,0) = 400
Equivalent Positions
(x,y,2), (-x,yHs,%5~2),

(-x »=Y>=2), (x a}ﬁ'y ,!'5+z)

1
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position. In addition, the intensities of ten reflections, on or near
the reciprocal crystal axes, were measured after every four hours of
x~ray exposure. Only a small, general decrease in diffraction intensi-~
ties was obtained for these reflections with x-ray exposure time. This
decrease was more pronounced for the second data crystal, approximately
10% when the crystal was discarded. Crystal decomposition, evidenced
by a white, powdery deposit on the crystal edges, was also more pro-
nounced for the second crystal. Each crystal was exposed to x~-rays for
approximately 80 hours. The mosaic spread was similar for both crystals
and was checked at the beginning and close to the end of data taking.
A change in ¢ (w for OkO reflections) of 0.45 degrees from one base of
a peak to the other for a new crystal increased to 0.75 degrees after
nearly 80 hours of x-ray exposure. These values were nearly identical
in the directions of the three reciprocal axes. The first data crystal
was discarded after about 80 hours of x~ray exposure due to the marked
increase in mosaic spread. This resulted in quite broad diffraction
peaks and slowed the data collection process considerably.

Thirty-one common reflections were measured on both crystals to
allow the two data sets to be scaled to a common base. The intensities
of most reflections were measured with a common tube'current and nickel
filter. However, the very high intensities of a few reflections necessi-
tated the use of thicker filters and/or a lower tube current. Appropri-
ate current-filter factors were obtained by measuring the integrated
intensities of three suitable reflections, five times each, for each pair
of currents and/or filters. The average value of every 15 ratios thus

obtained was used as a current-filter factor.
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Diffraction data are generally subjected to a series of correc-
tions before being used for further analyses. A data reduction-absorption
correction program was used for this purpose. Each integrated intensity
was first diminished by the measured background count. This value was
then multiplied by the appropriate current-filter factor, when appli-
cable. To correct for the slow decomposition of the crystal, as evidenced
by the decreasing intensity of the hourly monitor with x-ray exposure
time, each group of reflections measured between two monitor reading was

multiplied by the factor Mi/Mt’ where M, is the background corrected

i
intensity of the one-hour monitor as first determined on the new crystal
and Mt is the arithmetic average of the monitor's values before and after
the group of reflections were measured.

Another modification of the data is to correct each diffraction
intensity for the absorption of x~rays by the crystal. When a beam of
x-rays passes through a crystal, it may suffer a significant decrease in
intensity due to absorption. This intensity decrease may be described
by an equation common to absorption processes;lo I = Ioe—ut, where Io is
the intensity of the incident beam, I is the intensity of the beam after
it has traveled tcm through the crystal, and u is the linear absorption
coefficient expressed in reciprocal centimeters. This coefficient is
calculated byll n = %

per unit cell, V is the volume of the unit cell, and the terms (ua)i are

f(“a)i’ where n is the number of asymmetric units

the atombce abgorptlon coefflclents of all atoms in one asymmetric unit.
These path-dependent absorption corrections are most important for
crystal shapes which are far from spherical and where the molecule has

one or more heavy atoms. Here the large atomic absorption coefficients
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of the heavy atoms can cause significant differences in the fatios I/I0
for reflections where the x-ray beam must traverse different thicknesses
of crystalline material.

Two other corrections are routinely made on diffraction intensity
data, the Lorentz and polarization corrections. The Lorentz factor (L)
arises due to the manner in which intensity data are collected, namely,
not all diffraction points are kept under diffraction conditions for the
same length of time., For diffractometer data using a theta-two theta
scan, the crystal is rotated at a constant angular velocity. The time
required for a reciprocal lattice point to pass through the sphere of
reflection is proportional to the inverse of sin 26, where 6 is the dif-
fraction angle. The Lorentz factor, L = (sin 20)-1, is thus employed
for diffractometer data. The second correction accounts for a phenomenon
that is common to reflection and diffraction processes of electromagﬁetic
radiation, partial or total polarization'of the radiation beam after
interacting with the reflection or diffraction planes. The electric
vectors of an incident, unpolarized beam of x~ray photons can be resolved
into two components, one which is parallel to the reflecting surface and
another which is perpendicular to the first. Waves with their electric
vector parallel to the reflecting surface are reflected to an extent that
is proportional to the electron density in the plane. The intensity of
the reflected waves associated with the other component of the electric
vector depends on the electron density in the plane and the angle of
incidence, varying as c09226. The intensity decrease of the overall beam,
due to polarization, is given by the polarization factor p = 1/2 (1 + c08226).

Since the Lorentz and polarization effects are both only functions of the
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diffraction angle, intensity corrections can conveniently be made for
both effects by dividing the diffraction intensities by the Lorentz-
polarization factor, Lp = (1 + c03226)/(2 sin 28).

Absorption corrections were made on the diffraction intensities
in a manner described above. Each crystal face was identified by the
indices of the crystallographic plane most nearly parallel to it and the
perpendicular distance from each face to a common internal point was
determined. From this, the average distance the x-ray beam traveled
inside the crystal was calculated for each diffraction intensity by é
Gaussian interpolation method. Values for atomic absorption coefficients
applicable to Cu Ka radiation were taken from the International Tables

23 23

for X-ray Crystallography11 as 0.073 x 10”“7, 9.17 x 10" “7, and 30.5 x

10-23cm2 for hydrogen, carbon, and oxygen, respectively. This gave a

linear absorption coefficient of 6.905 cm—l.

The absorption corrected intensities of the 31 common reflections
measured on both crystals were compared to obtain a crystal scaling
factor. Based on these values the average intensity ratio I(crystal 1)/
I(crystal 2) = 0.77 % 0.03 was obtained. Thus, all intensities measured
on the second data crystal were multiplied by 0.77 and the two data sets
combined at this point. Lorentz-polarization corrections were then made

to calculate relative structure factor amplitudes from the intensities

as |F(hk9,)|i = I(hk&)/Lp.



CHAPTER III

SOLUTION OF THE CRYSTAL STRUCTURE

Patterson Analysis

The atomic coordinates of the unit cell content may be inferred
from the electron density variations within the unit cell. Electron den-
sity functions can be expressed by means of Fourier series as shown in

equations la and 1lb,

p(X,y,2) = %-ﬁ i i F(hkR)expl-2mi (hxtky+2z)] (1a)
p(X,y,2) = %-ﬁ-i ilF(hkl)I cos[ 27 (hx+ky+22z)-a(hke) ], (1b)

where V = volume of the unit cell, x,y, and z are fractional coordinates,
p(x,y,z) is the electron density at a point (x,y,z), F(hk?) is the struc-
ture factor for reflection hk%, and a(hkf) is the phase angle pf F(hk)
relative to a specified origin. The indices hkf range from minus to plus
infinity. The equations above ca:z generally not be used directly to cal-
culate the electron density functions since only the structure factor
amplitudes, |F(hk?)|, can be ohtained from experimental diffraction in-
tensitles and not the phase angle a(hkft) or the true form of the structure
factor F(hk&) required in equation la. The structure factor of a reflec-
tion hkf is given by

F(hke) = g £, expl 2ri(hx +kyj+22j)] (2)

3= 73 3
10
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where j sums over the N atoms in the unit cell, xj,yj, and zj are the

fractional atomic cooxdinates, and f, is the scattering factor for atom j.

3 2
= fo .e—BS where

j 5]

fo 5 is the scattering factor for an atom j at rest, S = (sin 6)/\ and B
b

A more explicit form of the scattering factor is f

is the temperature factor of atom j. It is thus seen that the calcula-
tion of electron densities requires data which can not be directly ob-
tained from diffraction intensiti;s. A less direct method, the Patterson
method,12 is cften useful for finding atomic coordinates.
The Patterson function may be defined by13
1 111
P(u,v,w) = V-f f f p(x,y,2) p(x + u,y + v,z + w)dxdydz 3
000

where x,y,z and u,v,w are fractional coordinates, (x,y,2) and
p (x+u, y+v, z+w) are electron densities at the points (x,y,z) and
(x+u, y+v, ztw). Any two or more points of significant electron density
within the unit cell, which may be connected by a vector with components
(u,v,w), will give a significant contribution to a Patterson peak,
P(u,v,w). Additional peaks, generated by the Patterson symmetry of the
space group will also be revealed. Thus, a three dimensional Patterson
calculation yields peaks which represent the endpoints of vectors con-
necting volume elements of high electron density. The distance from the
origin to a Patterson peak represents the distance between the atom pairs
which are revealed by this peak and the magnitude of the peak is pro-
portional to the product of the electron densities connected by this
vector. This method is most useful when a heavy atom is present, thus
yielding very prominent heavy-heavy atom peaks and also prominent heavy-

light atom peaks. When no heavy atoms are present in the molecule the
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interpretation of Patterson maps becomes more difficult. For such mole-
cules, a large number of Patterson peaks with similar magnitudes are ob-
tained. Any peaks of prominent magnitudes are merely the results of
overlapping peaks. It is therefore almost impossible to associate a
calculated peak with a specific pair of atoms. Because of the small size
of the molecule in question, it was still thought useful to seek the
trial structure by the Patterson method, although symbolic addition pro-
cedures were also started.

A usable form for the Patterson function may be obtained by re-~
placing the electron demsity functions by their Fourier expansions,

Eq. 1. Integration yields

PCu,v,w) = 52 T |F(hke) | cos2n(hu + kv + )] (4)

<

Since IF(hkSL)I2 is obtainable from the diffraction intensities, P(u,v,w)
can be calculated for any point (u,v,w) desired.‘

A Patterson calculation was made for one-fourth of the unit cell.
This encompasses a total asymmetric unit for the space group P21/c. For
convenience, the asymmetric unit was chosen as u=0 to 1, v=0 to %,
and w = 0 to %, and P(u,v,w) was evaluated at 0.26 K increments over
this range of u,v, and w. The Patterson peaks were sharﬁened by using’
|F(hk2,)|2 M(S) as coefficients in equation 4 instead of 1F(hk2)l2. The

&2

hharpening functions M(S)-@ zZ /Ef )e was used for this purpose.

i
’
Here Z1 is the atomic number of atom 1, S = (sin 0)/k and the summations
extend over all atoms in the unit cell. The magnitudes of the peaks were
scaled to yield the arbitrary value of 5000 for the origin peak. This

represents the sum of all vectors between every atom and itself.
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To obtain the trial structure from the Patterson, it was proposed
to first find the orientations of the molecules in the unit cell by
looking at prominent short vectors and then finding atomic coorﬁinates
by looking at the Harker sections.14 Certain features of the molecules
suggested that this is feasible as can be seen from Figure 1. The ri-
gidity of the four-membered ring was expected to keep the two six-membered
rings nearly in the boat form. The four atom pairs C(1)-C(6), C(3)-C(4),
C(8)-C(9), and C(11)-C(12) should thus be nearly parallel and their
interatomic vectors revealed as one Patterson vector with a very promi-
nent magnitude. Parallel to this vector, but of greater lengths, should
be two other vectors, one for the atom pairs C(2)-C(5) and C(7)-C(10),
and another for 0(1)-0(2). These vectors were sought first in the Patterson
map.

A program was written to calculate the lengths of each vector, the
angle between the vector and the a-c plane (y, measured in the direction
of the b axis), and the angle between the projection of the vector on
the a-c plane and the ¢ axis (§, measured in the direction of the positive
a axis).

Six prominent short vectors were found in the a-c plane as shown

in Table 2. Vector V, represents the largest peak in the Patterson map.

1
Its length of 1.47 % and magnitude of 1138 agree well with the expected
values for a Patterson vector for the atom pairs C(1)-C(6), C(3)-C(4),
C(8)-C(9) and C(11)-C(12) if these atoms are arranged such that their
bonds are parallel or nearly parallel to each other. Vl was therefore

assigned to represent these four atom pairs. A vector approximately

2.8 £ in length for the atom pairs C(2)-C(5) and C(7)-C(10) and another



14

o(l)

I

C(IN

o)
H(IO) (2)'§C(I2)
H(Il)

\
It dy o

CI0)—
2

— .
O™ o M2_cid gz\c(a)/

d* H@
H(7) H(8) \cca)—-——cm)
L

H(g) (O H(4)

8‘..

FIGURE 1. Atom-numbering scheme in the molecule.
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TABLE 2

PATTERSON VECTORS IN THE a-c PLANE

Vector Length (X) Peak height v (%) (%)
Vl 1.47 1138 0 ~19
V2 3.00 630 0 =20
V3 1.53 397 0 101
V4 1.50 445 0 44
V5 2.50 487 0 13
V6 2.58 342 0 -51

vector of length 3.2 X for 0(1)-0(2) were expected parallel to Vl’ Although
two distinct peaks were not found, vector V2 may well represent the re-
sultant of two closely spaced overlapping peaks, thus V2 was assigned to
these atom pairs. This peak indged appeared to be unsymmetric. A major
part of determining the molecular orientation in the unit cell had thus
been achieved with this interpretation. The C(1l)-C(6) bond, and all others
expected to be parallel to it, as mentioned gbove, are parallel to the a-c
plane and are oriented 19-20° from the c axis toward the negative a axis.
The remaining vectors in Table 2 were of great interest. Such vectors

can arise by placing four atoms of a six-membered ring parallel to the a-c
plane as shown in Figures 2 and 3. The magnitudes of these peaks suggested
that each of the vectors, V3 to V6’ represents two C~C vectors. This is
possible when at least one six-membere& ring is in a "wing up" con-
formation. Possible atom pairs which could yield vectors V3 to V6 are

given in Table 3.
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FIGURE 2. Possible atomic arrangements for Patterson
peaks in the a-c plane. -

FIGURE 3. Alternant atomic arrangements for Patterson
peaks in the a-c plane.
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TABLE 3

ATOM PAIRS PARALLEL TO THE a-c PLANE

Vector Atom Pairs Alternant Atom Pairs
Va C(4)-C(5), C(6)-Cc(7) C(1)-Cc(2), C(9)-C(10)
V4 C(2)-C(3), c(1)-c(10) c(5)-Cc(6), C(7)-C(8)
V5 Cc(2)-Cc(4), c(6)-Cc(10) c(1)~Cc(5), C(7)~C(9)
V6 c(3)-c(5), c(1)-c(7) c(2)-c(6), C(8)-C(10)

Two of the most prominent Patterson peaks which were not in the

a-c plane were considered next. These are shown in Table 4.

TABLE 4

PROMINENT PATTERSON VECTORS NOT PARALLEL TO THE a~c PLANE

Vector Length (X) Peak height y(o) 6(°)
V7 2.52 A 717 23 71
V8 5.48 531 23 62

Vector V7 appeared to be of special significance. It is perpendicular

to Vl, it has the proper length to connect two atoms of a six-membered

ring, which are separated by one atom, and the value of 23° for vy is exactly
that expected for a vector connecting two atoms such as C(l) and C(3) when
atoms C(2), C(3), C(4) and C(5) have equal y coordinates, The magnitude
and width of this peak suggested that V., connects more than two atom

7

pairs and that the molecule therefore possesses approximately mm symmetry
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with both wings folded up. Such a symmetry assignment would yield the
long vector V8 for the atom pairs C(3)-C(9) and C(4)-C(8), although this
could well be an intermolecular vector.

With the eight vectors assigned so far, a tentative conformation
and orientation within the unit cell were chosen as shown in Figure 4.
The molecular fragments C(2)-C(3)-C(4)-C(5) and C(10)-C(1)~-C(6)~-C(7)
each lie in planes which are parallel to the a-c plane. Possible addi-
tional peaks which should be obtained for this orientation were found
for several atom pairs to further confirm this orientation.

For the space group P21/c, the symmetry of the Patterson is P2/m.
The orientation represented in Figure 4 is therefore only one of four
possible orientations which would yield the same Patterson peaks. A
second orientation may be obtained by rotating the molecule 180° in the
a~c plane and two further orientations are obtained by reflecting the
two previous orientations through the a-c plane.

Possible coordinates were now sought in the Harker sections. The
presence of two-fold screw axes in this space group ylelds the symmetry-
related coordinates x,y,z, and -x,% + y, %-z. By taking the difference
between these coordinates, 2x, %, 2z + % is obtained. Thus for two mole-
cuies related by a two-fold screw axis, a Patterson peak should be found
in the Harker plane, v = Y%, for each symmetry related pair of atoms. A
projection of the molecule onto the a-c plane should, therefore, be seen
in this llarker plane at twice its size, from which x and z coordinates
can be obtained. The atomic posiéions of a given atom in two molecules
~related by the c-glide plane are x,y,z and x, %~y, % + z. The difference
between these coordinates is 0, % + 2y, %. A Harker line therefore exists

at u= 0, w = % to yield information about the atomic y coordinates.
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FIGURE 4. Trial orientation.
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A écale drawing was made of the Harker plane, v = %, to attempt
to find possible x and z coordinates. Although many prominent peaks ex-
isted in this plane, unique molecular projections were not apparent.
From the partial orientation established by vectors V1 to V8’ it was
clear that atom pairs, or groups of four atoms per molecule, had similar
y coordinstes. The Harker plane, therefore, contained peaks which not
only represented vectors between symmetry-related atoms but also vectors
between all combinations of atoms having similar y-coordinates. Indeed,
larger Patterson peaks are obtained in the Harker plane for two atoms
not symmetry related than for two symmetry-related atoms. The Harker
line at u = 0, w = % contained prominent, but very broad peaks from which
no clear information was discernible. Several possible projections onto
the Harker plane and line were used to assign atomic coordinates. From
these, intra- and intermolecular vectors were calculated for atom pairs
not yet identified by Patterson peaks and the expected peaks were sought
in Patterson map. None of the coordinate sets chosen were satisfactory
in this search. Although this apfroach may be expected to yield a trial
structure eventually, the symbolic addition procedure was pursued more

actively at this point as a source for the trial structure.

Introduction to the Symbolic Addition Method

A number of methods have been proposed for the direct determination
of gtructure factor phases. Many of these methods, including the symbolic
addition procedure, havé been reviewed by Woolfson15 in a recent book.

Only a brief discussion of pertinent relationships will therefore be
given heré.

Structure factor phases can be obtained more readily for crystals
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belonging to centrosymmetric space groups than noncentrosymmetric space

groups. For such space groups, F(hkf) as given in Eq. 2 may be expressed

as:
N/2
F(hke) = jzl fj{exp[Zwl (hxj + kyj + 2zj)]
+ exp [-2mi (hxj + kyj + zzj)]}, (5)
or
N/2
F(hkg) = 2 ) £, cosl2m (hx, + ky, + 22,)]. (6)
jo1 3 i i i

The structure factor is, therefore, a real number for centrosymmetric
space groups. Since |F(hk2)| can readily be obtained from the experi-
mental diffraction intensities, only two values are possible for the
correct expression of F(hkg).
F(hkg) = ( + 1) |[F(hke) | ¢))
or F(hkg) = (- 1) |F(hke)]| (8)
The phase problem has thu; been simplified considerably since only two
phases (signs) are possible. Earliest investigations have only been
concerned with centrosymmetric crystals due to this simplicity; however,
more recently J, Karle and I. L. Karlele-18 have also successfully ap-
plied direct methods to noncentrosymmetric cases.
For brevity, the following notation will be used in this discussion:
=hy, k;, &
K= hj’ kj’ zj
I-K = hi-hj, ki-kj, Ry=2y

S(H) = sign of structure factor F(H)

B

. = hx, + ky, + 2z, .
k| % 73 %5
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The possibility of obtaining structure factor phases from their
amplitudes can be seen by considering the Harker-Kasper inequalities.19

Two obvious relationships are
|F(0,0,0)] >0 (9)
and |F(H)| < F(0,0,0) . (10)

For a centrosymmetric space group, another useful inequality can be obtained.
(Derivations of some of the inequalities given here may be found in

Appendix B.)

F(H) F(2H)

2
(___—_—_F(0,0,0)) sk + ;E(F(O,O,O)) (11)

If |F(H)| and |F(2H)| are both reasonably large, this inequality may
demand that S(2H) = + . Application of this, as well as other Harker-
Kasper inequalities, to the determination of signs requires that many
relatively large structure factors are available. Ordinary structure
factors are not suitable for such calculations. Their magnitudes de-
crease rapidly with an increase in the diffraction angle since atomic
scattering factors decrease for higher order reflections. To circumvent
this difficulty, the unitary structure factor, U(H), has been introduced.
If all atoms in the unit cell are considered to be point atoms at rest,
then they will have scattering factors which are equal to their atomic
number, Zi’ independent of the diffraction angle. The structure factors
for such a set of atoms, F(H)pt, are related to the real structure

factors by

N _ps2 N -1
F() . = F(H)[izlzi][e 1£1f°’1] , (12)



23

where B is the overall temperature factor, S = (sin 6)/A, and fo i is
L]

the atom-at-rest scattering factor for atom i. Unitary structure factors

employ this point-atom—-at-~rest model, but express each structure factor

in the fractional form F(H)pt/F(0,0,0). Thus
2N

u@@) = FE) e
i=

1fo,;_] . (13)
From Eq. 13 it can be seen that U(H) and F(H) differ only in magnitude
and that unitary structure factors will not show the rapid decrease in
magnitude with increasing diffraction angles. From its definition, it
can also be seen that the range of U(H) is -1 to +;.

Some larker-Kasper inequalities, for space groups containing a

center of symmetry, can now be conveniently expressed as:

U(0,0,0) = 1 (14)

U(H) < U(0,0,0) , (15)

u)? < {1 + U(2H)] | (16)

[(U@) + U(K)]2 < [1+ UH+ K)][1 + U(H-K)] (17)
[U(H)-UK) 1% < [1-UCE + K)1[1-U(H=K)] (18)

Equations 17 and 18 may be combined and rewritten in a slightly differ-
ent form by expressing each structure factor as the product of its sign
and magnitude. Considering both cases, S(H)S(K) = + and S(H)S(K) = -,

the following relationships can be obtained:

(Jua| + JudD? < @ + SESE)SH + K) [UEH + K) |)

x (1L + S(H)S(K)S(K-K) |U(H-k)|) (19)
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(ua| - [uED? < A-SE)SE)SH + K) [UH + K)|)

x (1-S(H)S(K)S(H-K) |U(E-k) |), (20)

If only sufficiently large |U|'s are involved, Eq. 19 may demand that

one or both of the following equations be satisfied:
S(H)S(K)S(H + K) = + (21)
S(H)S(K)S(H-K) = + (22)

Thus, if S(H) and S(K) are known, one or twc additional structure factor
signs can be calculated. For two structure factors U(H) and U(K) with
known signs but significantly different magnitudes, Eq. 20 can also place
restrictions on S(H+K) and S(H-K) if |U(H + K)| and |U(H-K)| are suffi-
ciently large.

A major difficulty encountered when employing inequalities is
that generally not enough large unitary structure factors are obtained
in a data set to generate a sufficient number of unambiguous signs. A
representative electron density map of a structure can generally be calcu-
lated if about 157 of the structure factors, consisting primarily of the
largest amplitudes, are correctly signed. It is often not possible to
obtain this many signs, particularly for larger molecules. For a struc-
ture of N similar atoms in the unit cell, the root-mean-square value of
U is approximately equal to N-%.lo Thus, as the molecular size increases,
the number of large U's and consequently the number of signs which can be
calculated decreases.

Shortly after the appearance of the Harker~Kasper inequalities

21,22

Sayre,20 and Karle and Hauptmann derived equations which are not as
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restrictive as the inequalities, but also not as exact. These equations
express a probable relationship between structure factor signs. The
Sayre equation was derived in terms of ordinary structure factors
and may be expressed as (See Appendix C):

F(H) ~ ¢ ) F(K) F(H-K) (23)

K

where ¢ is a scaling factor. When applied to centrosymmetric crystals,
where the phase can only be +1 or -1, equation 23 yields the sign rela-

tionship
S(H) ~ S[) F(K) F(H-K)]. (24)
K

Application of Eq. 24 requires a knowledge of many structure factor
signs before one additional sign, S(H), can be calculated. However,
Sayre showed that if ]F(H)I is large, a tendency exists for all terms of
the series to have the same sign. In particular, terms with both |F(K)|
and |F(H-K)| large will have the same sign as F(H). Thus, a probable

sign relationship can be established as
S(H) ~ S(K) S(H-K). (25)

It may be noted that this equation is very similar to Eq. 22.
However, Eq. 25 is applied more liberally, namely, even if IUI's in Eq.
19 are not large enough to place definite restrictions on the signs, Eq.
25 states that the relationship is still probably true if IF(H)I, |[F ) |,
and |F(H-K)| are reasonably large.

Equation 25 still requires that two signs are known before an ad-

ditional sign can be calculated. These starting signs can always be
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obtained. For most space groups the origin of the unit cell may be
placed at one of several positions. Moving the origin from one allow-
able position to another will change the sigﬁs of all structure factors
of one class of reflections. Another choice of origin would change
all signs of another class of structure factors. Conversely, by arbi-
trarily specifying the signs of some structure factors, the origin of
the un;t cell will be fixed. A study of which structure factors may
arbitrarily be signed for the various space groups has been made by

22,23 and shows the following results. For all primi-

Hauptman and Karle
tive centrosymmetric space groups in the triclinic, monoclinic, and
orthorhombic systems, the sign of one structure factor in each class of
reflections which are not structure invariants may be specified. Thus
three signs may be arbitrarily chosen subject to the following condi-
tions: (a) the crystallographic indices of the three structure factors
must belong to different parity groups, (b) the indices of none of the
chosen structure factors may belong to the parity group eee, and (c) the
parity of linear combination of any two sets of indices may not be
identical with the parity of the remaining set.

Mathematically equivalent results of the Sayre equation had been
derived earlier by Karle and Hauptman21 and led to the development of
tﬁe Sigma-2 equation,22

S(H) ~ S[) E(K)E(H-K)]. (26)
: K

The normalized structure factors, E, used here are related to the ordinary
structure factors by

‘ N o,
E) = FW)/(c ] £57, @7
g=1 7 |
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-BS

where fj is the temperature-corrected scattering factor, fj = fo je .
3

It may be noted that the three types of structure factors introduced so
far, F, U, and E, differ only in magnitude but not in sign. The denomi-
nator in Eq. 27 again serves to increase the amplitudes of higher order
structure factors and thus yield more relatively large E's in a data
set. The factor e corrects for space group extinctions, thereby reduc-
ing all E's to a common base. -

Probability equations, which show the certainty of a calculated
sign, have been derived and are most conveniently applied in the form
given by Woolfson,24 and Cochran and °Woolfson.25 In terms of normalized
structure factors

P, ) =4+ % tanh[c3oz"3/2 |[E@)| ) E(R)E@EK)], (28)
. K
where o, = 121 Z? . A value of P+ (H) = 1 indicates a high probability
that S(H) = +, while P (H) = 0 indicates a high probability that S(H) = -.

The importance of using only large structure factors in the sign
determining process is again brought out. In the early stages,wheh only
a few signs are known, a structure factor, E(H), might only be related
to one paif of signed structure factors, E(K) and E(H-K). The Sigma-2
equation is then applied as S(H) ~ S[E(K)E(H-K)], identical to Eq. 25.
The summation in Eq. 28 will also contain only one term. This requires
rather large |E|'s to yield P, (H) near 0 or 1. As more signs become
available, the summation over K may include several terms. The signs of
smaller structure factors, E(H), can then be determined with a high pro-
bability of being correct. The necessity of having large E's in the early

stages specifies that the origin defining structure factors, in addition
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to satisfying the parity requirements, should be chosen from the largest
few amplitudes in the data set. However, they should also be involved
in as many triplets, of the type H, K, H-K, as possible so that several
new signs can be calculated. Once a sign has been obtained, the signs
of all symmetry related structure factors will automatically be given
and can also be used to generate additional signs. For the space group
P21/c, for example, the structure factor :elationships aré summarized

by the following equations:26

F(hkg) = F(hkg) # F(hkg), F(hkg) = F(hk2) for k+l even, (29)
F(hke) = ~F(hke) # F(hke), F(hke) = ~F(hk2) for k+l odd, (30)
F(hkg) = F(hk?) for general reflectionms. (31)

The number of signs which can be calculated by Eqs. 25 or 26 is
rather limited, however, when atteﬁpting to sign all largé structure
factors first. It is generally found that after a few signs have been

" calculated, no additional triplets of the type H, K, H-K exist where two
of the indices are those of signed E's and the remaining index belongs
to an unsigned structure factor. This often occurs after only a small
fraction of the largest E's have been signed. A symbol sign, e.g. A,
may be given to a new, unsigned structure factor at this point. By
properly choosing this structure factor, a significant number of addi-
tional signs'can be calculated in terms of *A. After all possible signs
have again been caiculated, a new symbol sign, e.g. B, can be given to
another unsigned E and signs in terms of *B and tAB can be calculated.

This process may be repeated a few times, as needed. Alternatively, a
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few symbol signs may be assigned at the very beginning, along with the
.origin—defining signs. The proper choice of structure factors for these
assignments allows the calculation of signs for most of the larger
structure factors. Again, many of the signs will be in terms of symbols
or combinations of symbols. After a sufficient number of signs have been
calculated, the symbols can be evaluated. Most of the signed structure
factors will be involved in several triplets. For a given structure
factor, E(H), Eq. 25 may show S(H) to be equal to several symbols when
applied to different triplets. Thus a relationship between symbols can
be established. By looking at the signs of many structure factors,
several independent relationships can be obtained. Similarly, the symbols
may be evaluated in terms of + or -. Although discrep#ncies will occur
when evaluating the symbols, most often a significantly larger number of
equations will show a symbol to be equal to one sign instead of the
other.

The symbolic addition method can easily be carried out by hand
calculations once the normalized structure factors and triplet combina-
tions have been obtained. In this case, the probability equation, Eq. 28
is too cumbersome to use. Eq. 25 is used directly, and any sign calcu-
lated by this equation is accepted as long as lE(H)l, [E(K)i, and IE(H-K)I
are large. The choice of minimum values of IEI'S to be used is somewhat
arbitrary, although in practice only |E|'s > 2.0 are often used in the
early stages and |E|'s 2 1.5 are allowed in later stages. When a com-
puter is employed to calculate structure factor signs by this method, the
probability equation can be conveniently applied in conjunction with Eq. 26.

Criteria may be set to allow a sign to become accepted only when the
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probability that it is correct exceeds a specified minimum. These
acceptance limits are also somewhat arbitrary. It is very important
that the first few signs are calculated correctly since most of the
remaining signs will be obtained in terms of these signs. Thus, pro-—
babilities very close to 1.0 must be obtained in the early stages.
As the process continues, the limits to be exceeded can gradually be
lowered.

After a sufficient number of structure factors have been signed,
10-15% of the data, electron density maps (E-maps) are calculated which

may yield the trial structure for the compound.

Application of the Symbolic Addition Method

The series of five computer programs, written by S. R. Hall27

and revised by F. R. Ahmed,28 were used for the structure factor sign
determination of this structure. These programs employ the symbolic
addition method in thé manner described by Karle and Karle,18 using
normalized structure factors and the Sigma~2 equation.

An overall isotropic temperature factor, B, and scale factor, K,

were first calculated by means of a Wilson plot.29

This yielded B = 4.63
and K = 0.1437. Normalized structure factor amplitudes were then cal-

culated for all reflections by Eq. 32,

K eBS
|E(H) | = L |[F)|. (32)
N
2
(e I f£g )
1=1 0,1
The experimental structure factor amplitudes, |F(H) |, are placed on an

absolute scale by means of K. All |E|'s 2 1.50 were retained for use in
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the sign determination. This yielded 230 independent structure factors,
about 12% of the total data.

In principle, the distribution of |E|'s in a data set is indepen-
dent of the unit cell content and depends only on the presence or absence
of a center of symmetry. Such a distribution can, therefore, serve as a
statistical method to test for a center of symmetry. The |E| statistics
were calculated for this structure and are compared with theoretical
distribution530 in Table 5. Good agreement is found with the theoretical

distribution for centrosymmetric structures.

TABLE 5

|E| STATISTICS

Theoretical Calculated
Centro- Noncentro-
Symmetric Symmetric
<|E|> 0.798 10.886 0.782
<|E|? 1.000 1.000 0.975
<|E)2-1> 0.968 0.736 0.961
|E] > 3 0.3% 0.01% 0.21%
] > 2 5.0% 1.8% | 4.6%
e[ > 1 32.0% 37:0% , 30.0%

The 230 independent |E|'s and their symmetry-related structure
factors were used to calculate the triplet combinations E(H), E(K), and

E(H-K). Triplets were calculated for all |E(H)| 2 1.50 but using only
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|E(K)| and |E(H-K)| > 1.80. For each triplet, the value of 0302_3/2 x

]E(H)E(K)E(H—K) was also calculated for use in the probability equation,
Eq. 28.

The fourth program of this series initiated the sign determination.
Using |E(K)| and |E(H-K)| > 1.80, signs were sought only for |E(H)| = 1.80
in this step. This involved only the 137 largest independent IEl's and
their symmetry-related amplitudes. The three origin-defining structure
factors were picked from the 15 largest amplitudes available and assigned
the phase + 1. These signed structure factors were then used as E(K) and
E(H-K) to sign new structure factors, E(H), by means of S(H) = S(K)S(H-K)
and the value of 0302—3/2|E(H)}E(K)E(H—K) was stored. For any structure

factor, E(H), involved in more than one triplet, the accumulated sum
_ - =3/2
SUM(H) = ) 040, |E(H) | E (K)E (H-K) (33)
K

was stored. Up to four independent symbol signs were allowed in this
program. Thus, every structure factor accrued 16 different sums as in-
dicators of S(H) being *, + A, + B, *+ AB, * C, * AC, * BC, * ABC, + D,
+ AD, * BD, * ABD, * CD, * ACD, * BCD, and * ABCD.

A calculated structure factor sign was not used to calculate ad-
ditional signs until its probability of being correct, as calculated by
Eq. 28, exceeded specified acceptance limits. The limits used for this
calculation are given in Table 6. Signs calculated from the origin-
defiﬁing signs were tested against limits 1-3, consecutively, and only
accepted if their accumulated value of SUM(H) exceeded the specified
limits. When no additional signs could be calculated, the symbol A was

chosen as the sign of one of the ten largest remaining unsigned structure
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TABLE 6

ACCEPTANCE LIMITS FOR STRUCTURE FACTOR SIGNS

Limit SUM(H) P, (H)
1 8.0 1.00000
2 7.5 1.00000
3 7.0 1.00000
4 6.5 1.00000
5 6.0 0.99999
6 5.5 0.99999
7 5.0 0.99996
8 4.5 0.99987
9 4.0 0.99967

10 3.5 0.99909
11 3.0 0.99752
12 2.5 0.99330
13 2.4 0.99183
14 2.2 0.98787
15 2.0 0.98201
16 2.0 0.98201
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factors and limits 4-6 were made acceptance limits. This process was
repeated by assigning the symbol signs B, C, and D, as needed, and adding
three limits of Table 6 as acceptance limits after each symbol was assigned.
Any structure factor which had accumulated appreciable values of SUM(H)
in more than one counter was given that sign which corresponded to its
largest value of SUM(H). After all possible signs were calculated, all
counters were compared with limit 16 (identical to limit 15 for this cal-
culation). Of the 137 |E|'s 2 1.80, only four signs were left undeter-
mined, 17 were accepted as + or -, and the remaining 116 were in terms of
symbols and combinations of symbols. Symbol signs'were evaluated by
comparing all appropfiate counters having SUM(H) 2 2.0 (limit 16). A
symbol was considered evaluated if at least three equations were obtained
for it and at least two-thirds of these indicated that it was + or -.
These results are shown in Table 7. In practice, a structure factor
sign is never accepted if its probability of being correct, as given by
equation 28, is below 0.97. In the early stages, this value must be much
closer to 1.00. The acceptance limits shown in Table 6 reflect this trend.
They were chosen somewhat arbitrarily, since no fixed criteria exist for
making these choices, and also somewhat higher than usual with limit 16
corresponding to P+(H) = 0,982, The data presented here represents the
first application of the symbolic addition method to this structure. Had
the process been totally unfruitful, subsequent calculations would have
been made with less stringent acceptance limits.

Seven of the fifteen symbol signs were evaluated by the procedure
discussed above, yielding 70 definite structure factor signs for

|E|'s = 1.80. 1In addition, the relationship B = C = -D was also clearly
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TABLE 7

EVALUATED SYMBOL SIGNS

Number of Number of Accepted
Equations Equations Sign for
Symbol for Symbol = + for Symbol = - Symbol
A 38 4 +
B 0 0
AB 0 0
c 0 0
AC 0 0
BC 27 0 +
ABC 22 3 +
D 0 0
AD 0 1
BD 0 5 -
ABD 1 3 -
CD 0 9 -
ACD 1 2 -
BCD 0 0

ABCD 0 ' 0
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revealed. Comparison of these results with the most consistent set of
signs calculated by hand9 showed excellent agreement (only 4 &iscrepancies
for the 70 signs) and in addition indicated the relationship B = C = =D = +.
If the specification that SUM(H) for a structure factor may not be less
than 2.0 in at least two counters before a symbol-identifying equation
could be established had been lowered to 1.7 (corresponding to P+(H) =
0.967), the same relationship would have been obtained and all symbols
would have been evaluated. However, the fact that not a single erroneous
sign was obtained by the method employed may bé a justification for using
such high acceptance limits.

The 70 structure factors for which definite signs had been obtained
in the previous stage were then used to calculate signs of |E|'s in the
range 1.5 < IEI < 1.80 by direct application of the Sigma-2 equation. All
calculated signs with a probability of being correct greater than 0.970
were accepted. This produced 30 additional signs. The 100 signed E's
thus obtained (referred to as Calculation I in Table 8) were then used
to calculate an E-map. Since this calculation employed only 5.3% of
the total da;a, many superfluous peakslwere obtained. However, 14 of
the 32 largest peaks clearly revealed the positions of all carbon and
oxygen atoms as a trial structure which refined readily. This trial
structure was in excellent agreement with one of the possible molecular
orientations deduced from the Patterson analysis.

For comparison, the last stage of the phase determining process
was repeated three times. The 70 signed E's and the 65 remaining struc-
ture faétors with symbol signs and |E| = 1.80 were used twice to calculate

signs for IEI 2 1.50. The first time the assignment B = C = ~D = + was
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TABLE 8

FINAL SIGNS AND E~-MAP RESULTS

Calculation
Starting signs
Definite
Symbol
Symbol Assignment
Signs calculated

Total number of
signed E's

Peak heights at

atomic positions*®

Largest superfluous

peak

Incorrect signs*#*

I I 11T

70 70 70

0 65 65
B=C=-D=+ B=C=-D=-

30 90 . 88

100 225 223

8.0—15.0 18n8-27n5 _1037—].1-0

15.0 9.5 35.0

0 0 114

v

122

78

200

12.8-27.5

11.7

19

*Using coordinates of trial structure obtained from Calculation I.

**Compared with calculated structure factors after 14 refinements.
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made, the relationship expected to be correct, and for the second calcu-
lation B = C = -D = ~ was used. The final calculation used 122 signs
for |El's 2 1.80 calculated by hand9 as starting signs. These three
calculations are referred to as Calculation II, III, and IV, respec-
tively in Table 8. Each set of signs obtained was used in an E-map
calculation and the results are shown in Table 8. E-maps of calcula-
tions I, II, and IV, yielded identical trial structures while the E-map
based on Calculation III yielded peaks which did not correspond to a
meaningful molecular structure, Of special interest are the results
of calculations II and IV. Only about 11% of the structure factor signs
have been determined here, yet the smallest peak at an atomic position
is larger than the largest superfluous peak. Finding a trial structure

from such a map is trivial.



CHAPTER 1V
REFINEMENT OF THE CRYSTAL STRUCTURE

Coordinates of the twelve carbon and two oxygen atoms, taken
from the E-maps, were refined by three-dimensional block-diagonal least-

squares using the weighting scheme
Vw = |Fo|/P if |Fo| < P
or = P/|Fo| if |Fo| > P

with P = 16.0. The atomic scattering factors used for the calculation
of structure factors (Fc) were interpolated from the values of Table 9.
Six refinements were first carried out using the carbon and oxygen co-
ordinates and isotropic temperature factors as parameters. During these

refinements, the residual index

|1Fo| - |F ||
Z|kFo|

dropped from as initial value of 0.316 to 0.169. At this point, aniso-
tropic thermal parameters were introduced and further refinements carried
out. A difference Fourier was calculated after R had dropped to 0.134.
Twelve of the 19 most prominent peaks obtained showed the'expected
positions of all hydrogen atoms. Further refinements added the coordi—
nat2s and isotropic temperature factors of all hydrogens as parametefs.

39
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TABLE 9

ATOMIC SCATTERING FACTORS

stne & £ (o) (e) (e)
A 0,0 0,C o,H
0.00 8.000 6.000 1.000
0.05 7.796 5.760 0.992
0.10 7.250 5.126 0.854
0.15 6.482 4.358 0.712
0.20 5.634 3.581 0.566
0.25 4.814 2.976 0.439
0.30 4.094 2.506 0.330
0.35 3.492 2.165 0.248
0.40 3.010 1.950 0.184
0.50 2.338 1.685 0.104
0.60 1.944 1.536 0.060
0.70 1.714 1.426 0.038
0.80 1.566 1.322 0.020
0.90 1.462 1.218 0.013
1.00 1.374 1.114 0.010
1.10 1.296 1.012 0.007
1.20 1.220 0.916 0.005
1.30 1.144 0.821 0.003
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Significant shifts were initially obtained for the hydrogen parameters.
Least-squares refinement was continued until the shifts in all parameters
were less than 1/7 of their estimated standard deviations. At this point
R had dropped to 0.057 when including all reflections and R = 0.052 when
using observed reflections only. A final difference Fourier map, using
the refined coordinates of all atoms, showed no peaks (positive or nega-
tive) greater than 0.19.e/(X)3. A final Fourier map was calculated and

yielded electron densities at the atomic positions as shown in Table 10.

TABLE 10

ELECTRON DENSITIES AT THE ATOMIC POSITIONS

Atom (e/3%) Atom (e/23)
c@) 7.4 H(1) 0.8
@) 6.5 H(2) 0.9
c@3) 6.5 H(3) 0.8
c(4) 6.1 H(4) 0.7
c(5) 6.2 H(5) 0.8
c(6) 7.0 H(6) 0.8
c(7) 6.4 | H(7) 0.9
c(8) 6.3 H(8) 0.9
) 6.1 H(9) 0.8
¢(10) 6.5 1(10) 0.7
c(11) 6.4 H(11) 0.8
c(12) 7.3 . H(12) 0.8
eh) 7.1

0(2) 8.0




CHAPTER V
RESULTS AND DISCUSSION OF THE CRYSTAL STRUCTURE ANALYSIS

The accuracy of a crystal structure may be assessed by the agree-
ment between observed and calculated structure factors at the conclusion
of least squares refinement, the magnitude of residual peaks in the
final difference Fourier map, the standard deviation of atomic coordi-
nates, bond lengths, and bond angles, and the agreement between calcu-
lated bond lengths and bond angles with those previously determined for
similar structures. The errall R value of 0.057 at the end of refine-
ment shows that an acceptable agreement between observed and calculated
structure factors had been obtained. The flatness of the final differ-
ence Fourier (largest peaks are -0.19 and + 0.18) shows that the entire
unit cell content is accounted for by four molecules of C12H1202. By
collecting intensity data out to 140° in 20, quite small standard devia-
tions were obtained for the atomic coordinates, bond lengths, and bond
angles. The very small shifts in atomic parameters at the end of re-
finement show that these values have probably been determined as accurately
as possible with the present data.

The final atomic coordinates and their estimated standard devia-
tions are given in Table 11. The standard deviations of carbon and oxy-
gen coordinates are t 0.002 X while those of hydrogen atoms are % 0.03 X

42
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TABLE 11

(Estimated Standard Deviations are in Parentheses)

Atom %x/a y/b z/le
c(1) 1295(2) 3860(2) 2293(2)
c(2) 2896 (3) 2942(2) 2493(2)
c(3) 4342(3) 2839(2) 3748(2)
c(4) 3720(3) 2911(2) 4555(2)
c(5) 1566(3) 3096 (2) 4261(2)
c(6) 530(2) 3937(2) 3246(2)
c(?) ~1747(3) 3958(2) 2794(2)
c(8) ~2746(3) 4660(2) 1712(2)
c(9) ~2112(3) 4602(2) 914(2)
c(10) -~ 390(3) 3836(2) 1050(2)
c(11) 2192(3) 5978(2) 2623(2)
c(12) 1413(3) 5158(2) 3553(2)
0(1) 3094(2) 5703(1) 2283(1)
0(2) 1399(2) 5884 (1) 4203(1)
H(L) 3515(27) 3160(16) 1983(17)
H(2) 2208(22) 2149(14) 2208(14)
H(3) 5860(21) 2648 (14) 3942(14)
H(4) 4814(27) 2823(18) 5470(18)
H(5) 1487(26) 3422(15) 4937(15)
H(6) 686(24) 2341(17) 4023(16)
H(7) ~1966(24) 4311(15) 3470(15)
H(8) ~2153(26) 3090(16) 2641(16)
H(9) -3907(26) 5133(16). 1657(16)
H(10) ~2836(25) 5071(16) 166(15)
n(1l) 179(26) 4106(16) 486(15)
H(12) ~ 881(23) 2977(15) 849(15)
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or less. Anisotropic temperature factors of carbon and oxygen atoms and
isotropic factors of hydrogen atoms are given in Tables 12 and 13, re-
spectively. The lengths and direction cosines of the vibrational ellips-—
oids of the anisotropic atoms are given in Table 14. As expected, the
two bridgehead carbons, C(1) and C(6), show the least thermal motion.
All bond lengths and angles are given in Tables 15-18.

The molecular conformation may be described as a nearly planar
cyclobutadione system with the two cyclohexene rings in the boat form,
folded toward the four-membered ring. The molecular symmetry is very
nearly two-fold (Cz), or even mm (sz) although significant deviations
from both of these symmetries exist as can be seen by examining the cal-
culated bond distances and angles (Tables 15-18). For the purpose of
discussing and relating bond lengths and angles, mm symmetry will be
assumed and average values of sets of bond lengths and angles, related
by this assumed symmetry, are given in Tables 19 and 20, respectively.

The four bonds connected to the cyclobutane ring range from 1.528(3)
to 1.541(3) K in length and have an average value of 1.534 K, in good
agreement with the average length of a normal C-C single bond reported
by Sutton31 as 1,537 % 0.005 X. The four bonds in the cyclohexene rings
which are adjacent to the double bonds show the expected shortening from
a single bond length, They range from 1.490(3) to 1.505(3) % and have
an average length of 1.499 2. The two double bonds in the cyclohexene
rings, with lengths of 1.318(3) and 1.313(3) X, are identical within ex~
perimental error, but slightly shorter than the average value of carbon-

carbon double bonds of 1.335 * 0.005 A,

The cyclobutane ring shows a
small increase in some bond lengths, compared to a normal C-C single

bond, as generally found for four-membered rings. The longest bond in
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TABLE 12
ANISOTROPIC THERMAL PARAMETERS OF CARBON AND OXYGEN ATOMS (x104)

(Standard deviation of last digit in parentheses)

Atom b1 b2 b33 P12 P13 P23
c(1) 203(4) 57(2) 63(2) -11(5) 118(4) -88(3)
c(2) 241(5) 81(2) 92(2) 35(6) 154 (5) - 1(3)
c(3) 218(5) 91(2) 101(2) 41(6) 103(5) 32(4)
C(4) 271(6) 98(2) 86 (2) 30(6) 80(5) 43(4)
c(5) 324(6) 105(2) 76 (2) 31(6) 176 (6) 34(4)
c(6) 205(7) 63(2) 67(2) 8(5) 129(5) 3(3)
c(7) 210(5) 96 (2) 103(2) -31(6) 168(5) -17(4)
c(8) 187(5) 92(2) 114(2) 6(5) 90(5) -14(4)
c(9) 247(6) 88(2) 85(2) 1(6) 55(5) 6(3)
C(10) 285(6) 86(2) 66(2)l 32(6) 103(5) 6(3)
c(11) 213(5) 71(2) 89(2) ~23(5) 135(5) 18(3)
c(12) 206(5) 76 (2) 74(2) 24(5) 79(5) -28(3)
0(1) 453(5) 103(2) 173(2)  -117(5) 358(5) 20(3)
0(2) 366 (4) 110(2) 124(2) ~34(5) 192(4)  -100(3)
Temperature factor = exp —(hzb11 + k2b22 + 22b33
+ hkb

+ htb,, + kob

12 13 23)
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TABLE 13
ISOTROPIC TEMPERATURE FACTORS OF HYDROGEN ATOMS

(Standard deviatibn of last digit in parentheses)

Atom B (Az)
H(1) | 7.4(5)
H(2) 5.3(4)
H(3) 4.9(4)
H(4) 8.4(6)
H(5) 5.9(5)
H(6) 7.2(5)
H(7) 5.8(4)
H(8) 6.7(5)
H(9) 6.4(5)
H(10) 6.2(5)
HQL) 6.9(5)

H(12) 6.1(5)
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TABLE 14
LENGTHS AND DIRECTION COSINES WITH RESPECT TO THE UNIT CELL AXES

OF THE .PRINCIPAL AXES OF THE THERMAL ELLIPSOIDS

2 3 3 3
Atom Bi(A) ll(xlo ) 22(x10 ) 23(xlO )
c(1) 3,758 648 ~220 369
3.044 ~378 739 667
2.951 -622 -637 647
c(2) 4.998 325 - 241 677
4,717 —494 -781 560
3.434 -807 575 477"
c(3) 6.249 -338 440 896
4.914 639 756 ~408
3.498 691 ~484 176
C(4) 6.601 -641 501 805
5.463 706 683 -141
3.502 302 ~532 576
c(5) 6. 340 498 699 240
5.300 ~754 641 206
3.243 -428 . ~316 949
c6) 3.901 571 ~079 481
3.410 -242 935. 340
2.841 -785 -346 808
c(7) 5.866 117 ~548 691
4.832 -091 824 541
3.076 . 989 141 ~479
c(8) 7.031 -456 -208 979
4.813 -051 977 209
3.321 888 ~050 017
c(9) 6.531 -825 . 080 866
4.686 126 991 -016
3.689 550 -107 500
c(10) 5.645 911 411 -366
4.414 —412 895 336

3.542 . 034 - -173 868
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TABLE 14
(continued)
Atom Bi(A)z 21(x103) zz(x103) 23(x103)
c(11) 5.047 ~209 433 879
4.126 659 600 -116
3.006 723 672 -463
c(12) 5.493 -593 -607 736
3.483 737 ~145 267
3.219 -324 781 622
0(1) 10.038 437 ~114 608
7.750 -609 693 616
3.182 662 712 -502
0(2) 9.055 -177 -654 738
6.488 966 028 -197
3.427 188 756 646
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TABLE 15

C-C AND C-O BOND LENGTHS

(Standard deviation of last digit in parentheses)

Bond Length (R)*
c@1) - ¢(2) 1.528(3)
c(1) - C(6) 1.572(3)
c(1) - ¢(10) 1.541(3)
c() - c(11) 1.534(3)
c(2) - ¢(3) 1.505(3)
C(3) - c(4) 1.318(3)
c4) - c(5) 1.490(3)
c(5) ~ c(6) 1.538(3)
c6) - ¢(7) 1.528(3)
c(6) - c(12) 1.531(3)
c(7) - c(8) 1.500(3)
c(8) - C(9) 1.313(3)
c(9) - C(10) 1.501(3)

c@l) - ¢(12) 1.551(3)
c(11) - o(1) 1.193(2)
c(12) - 0(2) 1.190(2)

*Not corrected for thermal motion.
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TABLE 16
C - H BOND LENGTHS

(Standard deviation of last digit in parentheses)

Bond - Length (A)
c(2) - H(L) 0.99(2)
Cc(2) - H(2) 1.03(2)
c(3) - H(3) 1.07(2)
C(4) - H(4) 1.10(2)
c(5) - H(5) 0.98(2)

C(5) - H(6) 1.05(2)
Cc(7) - H(7) 1.04(2)
C(7) - H(8) 1.04(2)
C(8) - H(9) 1.00(2)
c(9) - H(10) ’ 1.03(2)
C(10) - H(11) 1.04(2)

c(10) - H(12) 1.05(2)
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TABLE 17
C-C-C AND C-C-0O BOND ANGLES

(Standard deviation of last digit in parentheses)

Atoms ' Angle (%)
C(2) - c(1) - c(6) 115.6(2)
c(2) - ¢c(1) - c(10) 112.2(2)
c(2) - c(1) - c(11) 112.2(2)
C(6) - C(1) - c(10) 114.2(1)
C(6) - C(1) - c(11) 89.6(1)
€(10)- ¢(1) - c(11) 111.1(2)
C(1) - ¢c(2) - c(3) 111.7(2)
C(2) - ¢c(3) - c(& 121.1(2)
C(3) - c(4) - c(5) 121.4(2)
C(4) - C(5) - c(6) 112.6(2)
C(1) - c(6) - C(5) 114.6(2)
Cc(1) - c(6) - c(7) 115.1(2)
c(1) - c(6) - c(12) 89.6(1)
C(5) - c(6) - c(M 112.9(2)
C(5) - C(6) - C(12) 111.3(2)
C(7) - C(6) - C(12) 111.1(2)
C(6) - c(7) - €(8) 112.0(2)
C(7) - €(8) - c(9 120.3(2)
Cc(8) - c(9) - ¢(10) 121.4(2)
C(1) - c(10)- ¢c(9) 111.8(2)
Cc(1) - c(11)- c(12) 90.3(1)
c(1) - c(11)- o(1) 134.2(2)
C(12)~ c(11)- o(1) 135.5(2)
C(6) - Cc(12)- c(11) 90.5(1)
Cc(6) - c(12)~- 0(2) 134.0(2)

C(11)- c(12)- 0(2) 135.4(2)
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TABLE 18
C-C-H AND H-C-H BOND ANGLES

(Standard deviation of last digit in parentheses)

Atoms Angle (o)
Cc(1l) - ¢c(2) - H(D) 106(1)
c(l) - c(2) - H(2) 109(1)
C(3) - c(2) - H(D) 115(1)
C(3) - ¢c(2) - H(2) 109(1)
H(1) - ¢(2) - H(2) 107(2)
€(2) - ¢c(3) - H(3) 117(1)
C(4) - C(3) - H(3) 122(1)
C(3) - c(4) - H(4) 119(1)
C(5) - c(4) - H(4) 119 (1)
Cc(4) - c(5) - H(5) 108(1)
C(4) - c(5) - H(6) 115(1)
c(6) - Cc(5) - H(5) 108(1)
c(6) - Cc(5) - H(6) 105(1)
H(5) - C(5) - H(6) 108(2)
c(6) - C(7) - H(7) 104(1)
Cc(6) - C(7) - H(8) 104(1)
C(8) - C(7) - H(7) 112(1)
Cc(8) - Cc(7) - H(8) 111(1)
H(7) - C(7) - H(8) 113(1)
Cc(7) - c(8) - H(9) 115(1)
Cc(9) - C(8) - H(9) 125(1)
c(8) - c(9) - H(1LO) 120(1)
Cc(10)~- c(9) - H(10) 119(1)
c(1) - c(10)- H(1l) 109(1)
c(1l) - ¢(10)- H(12) ' 108(1)
Cc(9) - Cc(10)~- H(11) 109(1)
c(9) - C(10)-~ H(12) 110(1)

H(11)- C(10)- H(12) 108(1)
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TABLE 19

AVERAGE VALUES AND RANGES OF BOND LENGTHS RELATED

BY ASSUMED mm SYMMETRY

(Standard deviation of last digit in parentheses)

Bonds * Average Length (R) Range (3)
c() - c(2) 1.534(3) .528(3) - 1.541(3)
c(2) - ¢(3) 1.499(3) .490(3) ~ 1.505(3)
C(3) - C(4) 1.316(3) .313(3) - 1.318(3)
c(1) - c(11) 1.532(3) .531(3) - 1.534(3)
C(11)- 0(1) 1.192(2) .190(2) - 1.193(2)
c(2) - H(L) 1.01 (2) .98 (2) - 1.04 (2)
c(2) - H(2) 1.04 (2) .03 (2) - 1.05 (2)
c(3) - H(3) 1.05 (2) .00 (2) - 1.10 (2)

*Each bond shown is one of the gymmetry-related set.
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AVERAGE VALUES AND RANGES OF BOND ANGLES RELATED

BY ASSUMED mm SYMMETRY

(Standard deviation of last digit in parentheses)

Atoms* Average Angle ) Range (°)
C(2) - (1) - ¢(6) 114.9(2) 114.2(1) - 115.6(2)
C(2) - ¢(1) - c(10) 112.6(2) 112.2(2) - 112.9(2)
€(2) - c(1) - c(11) 111.4(2) 111.1(2) - 112.2(2)
C(6) - C(1) - C(11) 89.6(1) 89.6(1) - 89.6(1)
C(1) - €(2) - ¢c(3) 112.0(2) 111.7(2) - 112.6(2)
C(2) - €(3) - C(&) 121.0(2) 120.3(2) - 121.4(2)
C(1) - C(11)- €(12) 90.4(1) 90.3(1) - 90.5(1)
C(1) - c(11)- 0(1) 134.1(2) 134.0(2) - 134.2(2)
C(12)- C(11)- 0(1) 135.3(2) 135.4(2) - 135.5(2)
C(1) - €(2) - H(1) 107 (1) 104 (1) - 109 (1)
C(1) - C(2) - H(2) 106 (1) 104 (1) - 109 (1)
C(3) - c(2) - H(D) 111 (1) 108 (1) - 115 (1)
C(3) - €(2) - H(2) 111 (1) 109 (1) - 115 (1)
C(2) - C(3) - H(3) 118 (1) 115 (1) - 119 (1)
C(4) - C(3) - H(3) 122 (1) 119 (1) - 125 (1)
H(1) - C(2) - H(2) 109 (2) 107 (2) - 113 (1)
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this ring connects the bridgehead carbon atoms, C(1) and C(6), and has a
value of 1.572(3) R. The bond connecting the carbonyl carbons is short-
ened to 1.551(3) g. This shortening is expected through m-electron
interaction. The shortest two bonds in the cyclobutane ring, however,
are the C(1) - C(11) and C(6) - C(12) bonds with values of 1.534(3) and
1.531(3) X, respectively. Interactions between the m-electrons of the
carbonyl carbons and the bridgehead bonds of the cyclohexene rings may
help to keep these bonds close to the normal single bond distance.
Further evidence of such interactions will be given in a later section.

The long bond lengths in the cyclobutane ring are not unusual.
They have been found in various cyclobutane rings for both planar and
puckered rings. Greenberg and Post32 report bond lengths of 1.547(3)
and 1.561(3) X in the planar ring of tetracyanocyclobutane. Dunitz33
has reported bond lengths of 1.555 and 1.585(0.020) for the planar ring
tetraphenylcyclobutane. The puckered ring of trams -1.2- cyclo-
butanedicarboxylic acid has bond lengths ranging from 1.517 to 1.553 2,34
while values of 1.552 and 1.567(6) X are reported for the planar ring of
trans-1,3-cyclobutanedicarboxylic acid.35 The puckered four-membered
ring in trans-Bicyclo 4.2.0 octyl-1-3,5-Dinitrobenzoate has bond lengths
ranging from 1.532(4) to 1.556(4) K, as reported by Barnett and Davis.36

The carbonyl bond lengths of 1.193(2) and 1.190(2) 2 are identical
within experimental error. This value is slightly smaller than the aver-
age carbonyl bond length reported by Sutton as 1.215 % 0.005 X, but in
agreement with the carbonyl bond lengths of the a-diketones glyoxal

31 a11 c-nm

and diacetyl, 1.20 * 0.0l and 1.20 * 0.02 X, respectively.
bond lengths fall in the range 0.98-1.10 X, with standard deviations of

0.02 X. These values are obtained by using the refined hydrogen co-
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ordinates, and are in good agreement with C-H bond lengths reported by

various authors.

Geometry of the Molecule

The deviation of the molecular symmetry from mm symmetry can be
seen from the three least-squares planes in Table 21. Plane 1 was fitted
to the carbon atoms in the four-membered ring. Plane 2 was fitted to
C(1), C(6), and the ethylene portions of the two six-membered rings.
Plane 3 was fitted to the midpoints of the atom pairs C(1) - C(6), C(2) -
C(5), C(3) - C(4), C(7) - €c(10), C(8) - C(9), C(11) - Cc(12), and O(1) -
0(2). For mm symmetry, these three planes should be mutually perpendicu-
lar. The calculated planes show that planes 2 and 3 meet at 90.00, but
the angles between planes 1 and 2 and planes 1 and 3 are 89.2° and 89.10,
respectively. The double bond C(8) -~ C(9) is slightly closer to the
carbonyl carbons than.the C(3) - C(4) bond and the two cyclohexene rings
are twisted from mm symmetry by 0.9° about a line bisecting the
C(1) - C(6) and C(11) - C(12) bonds.

The molecule's deviation from mm symmetry can also be seen from
Table 22 and Figures 7 and 8. For these illustrations, atomic coordinates
were transformed to orthogonal Cartesian coordinates with distances mea-
sured in Angstroms. The midpoint of the C(l) - C(6) bond was placed at
the origin of the coordinate system and the C(1l) -~ C(6) bond was used to
define the x—axis. A line from the origin to the midpoint of the C(1l1l) -
C(12) bond is perpendicular to the x-axis and was used to define the
z-axis. The y-axis was generated perpendicular to the x and z axes. The
coordinate axes thus define three mutually perpendicular planes through

the molecule. The perpendicular distance from every carbon and oxygen
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TABLE 21

LEAST-SQUARES PLANES THROUGH THE MOLECULE

Atoms to which plane

Plane was fitted Equation of Plane*
1 c(1),¢(6) ,C(11),c(12) ~0.629x+0.391y-0.672z = 0.166
2 c(1),C(3),C(4),C(6),C(8),C(9)  —0.323x~0.913y-0.250z =~4.495
3 Midpoints of C(1) - C(6),  0.702x-0.053y-0.710z =~3.156

€(2) - ¢(5),C(3) - €(4),C(7) - €(10),

c(8) - €(9),C(11) - c(12),0(1) - 0(2)

Deviation from

Atom Plane l(X) Plane Z(X) Plane 3(8)
C(i) 0.004 -0.123 0.787
c(2) -1.242 0.438 1.434
c(3) ~2.493 0.067 0.658
C(4) -2.510 0.055 -0.660
c(5) -1.295 0.408 ~-1.436
c(6) ~0.004 -0.121 -0.785
c(7) 1.260 0.451 -1.421
C(8) 2.499 0.065 -0.661
c(9) 2.512 0.057 0.652
c(10) 1.305 0.436 1.431
c(11) -0.004 -1.658 0.775
c(12) 0.004 -1.652 -0.775
0(1) -0.002 -2.496 1.625
0(2) 0.065 -2.483 -1.624
*x, y, and z are given in X.
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atom to each of these planes was calculated and the results are shown
in Table 22. For ideal mm symmetry, the absolute values of all distances
from any plane in each set of atoms shown should be identical.

The nature of the cyclobutadione system can be seen from the
least-squares plane 1 in Table 21. The deviation of each of the cyclo-
butane carbons from this plane is 0.004 R. This is twice the standard
deviation of the coordinates and threfore very near the limits of a sig-
nificant deviation from planarity. It may be noted that O0(l) is removed
by only 0.002 A from this plane while 0(2) is 0.065 R away. The latter
distance is a very significant deviation, enough to destroy both mm and
two-fold symmetry of the molecule. The distances of the remaining atoms
from this plane also show significant deviations from mm and two-fold
symmetry. The dihedral angle for the cyclobutane ring is 179.1°.

Least-squares planes through the carbonyl groups and bonded atoms
are given in Table 23. The carbonyl carbon, C(11l), exist in a virtually
planar environment, deviating only 0.004 X from the plane fitted to C(1),
C(11), C(12), and 0(1l). The surroundings of the other carbonyl carbon,
C(12), is significantly nonplanar, with C(12) about 0.023 R removed
from a plane containing C(6), C(11), and 0(2). The non-planarity of
this group can also be seen in Table 21 by noting the distance of 0(2)
from Plane 1. It is interesting to note that 0(2) is bent out of the
plane in the direction of the cyclohexene ring which is closest to the
carbonyl groups.

The molecular packing in the unit cell is shown in Figure 10 and
some intermolecular distances are given in Table 24. Of interest is the

0(2) - H(12) distance between molecules related by two-~fold screw axes.
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TABLE 22

DISTANCES OF ATOMS FROM IDEAL mm SYMMETRY PLANES

Plane Equation of Plane
4 x =0
5 y=0
6 z =20

Distance from

Set Atom Plane 4(2) Plane S(R) Plane 6(3)
1 C(1) -0.786 0.000 0.000
c(6) 0.786 0.000 0.000
2 c(2) -1.445 1.250 -0.580
c(15) 1.425 1.287 -0.547
c(7) 1.435 -1.268 -0.554
C(10) -1.417 -1.297 -0.542
3 c(3) -0.681 2.497 -0.225
c(4) 0.637 2.506 -0.213
C(8) 0.686 -2.503 ~0.151
c(9) -0.627 -2.509 -0.145
4 c(11) -0.775 0.009 1.534
c(12) 0.775 -0.009 1.531
5 0(1) -1.626 0.011 2.372

0(2) 1.624 -0.074 2.364
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Lon ce@

FIGURE 7. x-y Projection depicting distortion of the
molecule from mm symmetry.

23.6° 227°

c(o) \
—_C(0) >

c(8)
¢(7) c(2)

FIGURE 8. y-z Projection depicting distortion of the
molecule from mm symmetry.



63

FIGURE 9. Stereoscopic view of the molecule with
thermal ellipsoids.



TABLE 23

LEAST SQUARES PLANES THROUGH THE CARBONYL GROUPS

Atoms to which plane

Plane was fitted Equation of Plane*
7 c(1),c(11) -0.626x+0.3934y~0.673z = 0.174
€(12),0(1)
8 c(6),Cc(11), ~-0.620x%+0.371y-0.691z =-0.018
€(12),0(2)
Deviation from Deviation from
Atom Plane 7 (%) Atom Plane 8 (R)
c(1) 0.001 c(6) 0.005
C(11) -0.004 Cc(11) 0.005
C(12) 0.001 C(12) -0.018
0(1) 0.002 0(2) 0.008
*x, y, and z are given in X.
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FIGURE 10. Molecular packing
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TABLE 24

INTERMOLECULAR DISTANCES*

Atom A Atom B Distance (R) Code#*
c(8) c(3) 3.821 a
c(3) c(7) 3.850 b
0(2) c(10) 3.472 a
c(3) 0(2) 3.437 c
C(4) 0(2) 3.541 c
0(1) c(8) 3.686 b
0(1) H(8) 2.854 a
0(2) H(2) 2.887 a
0(2) ~ H(12) 2.441 a
0(2) H(7) 2.858 d
0(1) H(9) 2.768 b
H(9) H(10) 2.537 e
H(11) 1(11) 2.368 £

*Distances are gigen for C - C < 3.90 X, C~-0<3.70 X, 0 -H< 2.90 X,
and H ~ H < 2.6 A.

**Atom A is at (x,y,z) and atom B is located by the following codes:

1}

a ("X,!i + y’li“z)a b= (1+ x,y,2), ¢ = (1-X,1"Y,1—Z), d = (—x,l—y,l-z),

(-1-x,1-y,-2), f = (-x,l-y,~z).

Q
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These atoms are separated by 2.441 X, about 0.16 X less than the sum of

37,38 0(2) is bent out of the

hydrogen and oxygen van der Waals radius.
plane of the four-membered ring in the direction which shortens this
distance. A planar dione system, however, would only have increased the
0(2) - H(12) distance by 0.03 2. Reports are found for other crystal
structures where the distance between an alkyl hydrogen and an oxygen is
considerably shorter than the sum of their van der Waals radii, and the

38,39

possibility of a C - H~---0 hydrogen bond has been suggested. For

molecules with a keto oxygen, a favorable geometry for such a hydrogen

bond seems to have a H----0 distance of 2.27 X and a C - H--—-0 angle

of 1640.38 Deviation from these values exist, of course. The 0(2)-——--H(12)
separation of 2.441 X found in this structure is considerably larger than
the favorable hydrogen bond distance and the C - H----0 angle of 136° is

28 degrees less than the most favorable bond angle. Any existing hydrogen

bond interaction in this crystal would have to be considered as quite weak.
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APPENDIX A

COMPUTER PROGRAMS USED IN THE CRYSTAL STRUCTURE ANALYSIS

Type of Calculation Author
Goniostat Setting......... Ceesesesnes ceennn Ceereeaee P. J. Shapiro
Absorption Corrections...... Cereterataeeaas et P. J. Shapiro
Least-Squares Unit Cell DimensionsS.......ceeceenueen T. V. Willoughby
Least-Squares Planes.......... teenean ereenean veees T. V. Willoughby
Data Reduction....... eeeaeas ceseeanns Ceree et F. R. Ahmed

Tape Generation and Lorentz-Polarization
CorrectlonsS..veeeeniiineiennereennonnscnans F. R. Ahmed

o o = F. R. Ahmed
Structure Factor Least SQUAreS...ccoeececrosasoncasns F. R. Ahmed
Symbolic Addition.....ceeeeseieoneessncecscossasansns F. R. Ahmed
Bond Lengths and Angles................ sssssesssssss M. B, Hossain
Packing Distances........ Cetesserecsenaareannn vesses G, Shepherd
Principal Axes of Thermal Ellipsoids.........c...... W. A, Franks
Structure Factor Listing....ceceeeeeveceionennsse cee E. Enwall

Stereoscopic Drawing..... Cessennn Cereeeneeas cesensae C. K. Johnson
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APPENDIX B

DERIVATIONS OF SOME STRUCTURE FACTOR INEQUALITIES15

The structure factor for a centrosymmetric crystal can be ex-

pressed as
N
F(H) = ) £, cos 27HX,

where H represents a set of crystallographic indices h,k,%, HX? = hxj +
kyj + sz, and fj is the temperature~corrected atomic scattering factor.

The unitary structure factor is related to F(H) by

_FH)
UH) = 3 fj
]
Defining a unitary scattering factor
i
nJ - ij
|

U(H) can be conveniently expressed as

U(l) = % n, cos 27WHX,.
3 J 1

Tt may also be noted that

Harker-Kasper inequalities can be obtained by using the Cauchy inequality
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N
] apyl = Q laylhe

373

j=1 j=1

where aj and bj may be real or complex numbers. With aj = an and bj

an cos ZWHXj,

2
Iz a, b.| = IZ n, cos
i J j J
Also,
2yl
L |a. =
3 J
2
r|b,| =
i J

73

N
2
DAL

ji=1

2 2 5
2mm” = |Jum)| =vuv@°.

T n, =1, and
R

™

(cos ZHHXj)z
1/2 ¢ ni (1 + cos 47mHX,)
j . N

1/2( n, + £ n, cos [27(2H)X.])
PR j

1/2(1 + u(2H)].

Therefore U(H)2 < 1/2 1 + U(2H) .

Equation 17 of Chapter 3 can be derived by applying the Cauchy

inequality to the sum of two structure factors.

U(H) + U(K)

I n,
]

]

J

(cos ZﬂHXj + cos ZﬂKXj)

L an cos [n(H + K)Xj][cos ﬂ(H-K)Xj]

I
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Defining ' a; = Van cosln(H + K)Xi] and
b, = V2n, cosln(d - K)X.1 ,
J J ]
2
2
|za.b.| = [U@H) + UEK)]® and
. J 3]
3
2 2
tla.| =t 2n. cos“ln(H + K)X,]
PN . J J
3 J
= n. (1 + cosl2n(d + K)X,1)
- J J
J
=1+ U(H + K).
2
Similarly, £ |b,] =1+ U@ME-K), yielding

]

A

[um) + U(K)]2 <[+ UE+RK]I[1+UH-K].

For Eq. 18, consider the difference between two unitary structure

factors,
UH) - U(K) = £ n, (cos 27mHX, - cos 21KX,)
. J J J
J
= - % 2n, sin [n(H + K)X.,] sin[n(H - K)X,].
. | ]
J
With aj = VZni sin[n(H + K)Xj] and
b, = ¥2n, sin[nw(H - K)X.,] ,
J J J
2

[UGH) - UK)]? and

™
')
Ce
o
[STY
I
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2
£ la,|] =% 2n, sinZln (Il + K)X, ]
AN . j
3 i
=% n, (L - cosl2r(H + K)X.]
N J
3
=1- U(H+ K).
2
Similarly, % [bjl =1 - U - K).
3

Thus from the Cauchy inequality,

(U@ - v)1% < [1L - v + K11 - UH - K)]



APPENDIX C

THE SAYRE EQUATIONIS’ZO

The electron density in a crystal may be expressed by the Fourier

series

5 F(a)e 2THX

H

<=

p(X) =
The square of the electron density, pz(X), can be expressed by a similar
equation but with different Fourier coefficients,

~27iHX

02(X) = % 1 G(H)e .

<|—=

z
H

F(H) and G(H) are structure factors for the two cases,

F(H) = £ £, e Xy 4ng
i
]

G(H) = 3 g, e2w1HX j
5

For a hypothetical crystal consisting only of equal atoms with their
electron densities completely resolved, all fj's are identical and all
gj's are also identical. In addition, peaks of p(X) and pz(X) would

coincide so that one may equate Xj with Xj. For such a collection of atoms,

FH) = f ¢ e21T1HXj

]

and
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{HX.
GH) = g % e21T1H.J

]

Thus F(H) = é‘G(H)

Sayre pointed out the property of Fourier series that when a function
and the square of that function are both expressed by a series, the
Fourier coefficients of the two series are related. For the series of
p (X) and pz(X), F(H) and G(H) are related by
G(H) = AZ F(K) F(H - K),
K

where A is a scaling constant. Thus

F(H) = % s F(H) FH - K).

K

This relationship between structure factor signs was first
applied by Sayre to a hypothetical, one-dimensional array of eaual
atoms with resolved electron densities. Although the equation is rigor-
ous for a system of equal, resolved atoms, Sayre extended it to real
crvstals as a probable equation,

F(H) = ¢ L F(K) F(H - K),
K
where ¢ is a positive scaling constant when |F(H)| is reasonably large.
For centrosymmetric crystals, where the structure factors are real
numbers, this equation can be used to determine structure factor signs.
Sayre showed that for a pair of structure factors F(K) and F(H -~ K) in
the summation where both have reasonably large amplitudes, the product
of these structure factors has the same sign as F(H). This yields the

useful sign relationship between large structure factors, S(H) = S(K) S(H - K).



APPENDIX D

The following table shows a comparison of the observed and
calculated structure factors. The numbers shown were placed on the
calculated structure factor scale then multiplied by 9.5. Unobserved
reflections are followed by an asterisk. All k indices are shown as

positive numbers although intensities were measured for reflections

with negative k indices only.
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PART II1

LONG~RANGE EFFECTS OF PI ELECTRONS ON

n+m* TRANSITIONS OF CIS o~DIKETONES
CHAPTER I
INTRODUCTION

Molecules which contain oxygen, nitrogen, or sulfur in an un-
saturated group often possess low-intensity absorption bands with molar
absorption coefficients, e, in the range of 10—100.l These bands are
generally observed at longer wavelengths than any other absorption
bands for the molecule. They were first denoted as R-bands by Burawoy2
but are now more commonly referred to as n»>m* bands, a notation intro-
duced by Kasha.3

The low-intensity band for aliphatic ketones and aldehydes is
found at approximately 300 mu with emlo.l It was first suggested by
Mulliken4 that this band is due to an electronic transition from a
lone-pair, non~bonding orbital (n) centered on the oxygen atom, to a
higher energy orbital. McMurry5 showed that the intensity of this band
is far too low to be an allowed n»o* transition, and it is therefore
concluded that the accepting orbital is the antibonding pi molecular
orbital (MO) of the carbonyl group and that the transition is an n»7¥
transition. This absorption usually shows a distinct solvent dependence,
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moving to shorter wavelengths with increasing solvent polarity. Parti-
cularly in hydroxylic solvents the lone pair orbital may participate in
hydrogen bonding with the solvent and thereby be stabilized with respect
to an isolated non-bonding orbital, thus resulting in a blue shifted
n>n* transition.

Other absorptions found for simple ketones include a very weak
absorption band due to a triplet n»>rn* transition, a reasonably intense
band for the n+o* transition, and an intense band for the w7 transition.
Typical wavelengths and intensities of these bands at the peak maxima are

shown in Table 1.6

TABLE 1

ABSORPTION BANDS IN ALIPHATIC KETONES

Transition %max (mp) Intensity
Triplet nopu¥* 400 Very weak (e " 10-3)
Singlet nor ¥ 290 Weak (¢ ~ 10)

n>o¥ 180 Moderate - Strong
e < 180 Strong

Conjugation of a carbonyl with a vinyl group extends the pi-electron
structure over four atoms. Of the four résulting pi molecular orbitals,
the highest occupied and lowest empty MO have energies which are reépectively
higher and lower than the energies of the corresponding MO's in the iso-
lated carbonyl group. With no appreciable change in energies for the non-

bonding and sigma orbitals upon conjugation, a red shift is predicted for
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the n>n* and m>n* transitions and little change for the n+o* transition.
Such a change is observed for o,B-unsaturated ketones.6 The singlet
nm* band appears at approximately 300-330 mp and the w»n* band at about
230 mu. The n»o* band can generally not be seen due to the new locétion
of the intense w»u* transition. The presence of the oxygen atom in the
pi system also makes the w>m* transition assume some charge transfer
characteristics. The excitation involves the transferral of electron
density from an MO centered primarily on the vinyl group to an anti-
bonding MO predominantly centered on the carbonyl group.

When steric hindrance forces the vinyl and carbonyl groups to be
non-planar, considerable overlap may occur between the lone-pair orbital
of the oxygen and the pi system of the vinyl group. This results in an
increase in intensity for the n*m* transition due to intensity borrowing
from the 7% transition. The oscillator strength for a forbidden tran-
sition, such as the n*7%, may be related to the oscillator strength of
the transition from which intensity borrowing oécurs, the m>m* in this

Sp 2

—) , where AE is the difference between the two

case, by fn+w* = fn+ﬂ*(AE

transition energies, S is the overlap integral between the non-bonding
orbital and the vinyl pi system, and P is the mixing energy for unit
overlap.

Ketones which contain a vinyl group that is not formally conju-
gated with the carbonyl group show an absorption band which is not char-
acteristic of either group. In o,B-unsaturated ketones this band appears
in the 200-260 mu region with variable intensity and considerable charge
transfer, as evidenced by solvent effects.6 The spectrum of bicyclo[2.2.2]

octenone in cyclohexane has been investigated and discussed in detail by
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Labhart and Wagniere.8 The charge transfer band for this compound appears
at 202 mp with €nax - 3000 and is identified as a w>m* band similar to
that of a,B-unsaturated ketones. The singlet n»7* transition is found

at 290 mu, as for aliphatic ketones in nonpolar solvents. The intensity
of this band, however, is considerably increased with €nax 110. The
nonplanarity of the double bonds again allows for overlap between the
nonbonding orbital, n, and the ethylene pi system, resulting in intensity
borrowing by the n»w* transition from the charge transfer m+w* transition.

The energy of an n»m* transition may also be slightly altered by
the presence of a non-~conjugated double bond. Labhart and Wagniere show
that a small red shift should be obtained for this band when overlap be-
tween the two pi systems exists. A notable exception to this, however,
is mentioned by Snyder and Franzus.9 The absorption maxima for the band
of 7-ketonorbornene and 7-ketonorbornane are reported as 274 and 290 my,
respectively. Molecular orbital calculations by Snyder and Franzus also
predict the observed blue shift for 7-ketonorbornene.

The spectra of o-diketones may be viewed in a similar manner to
those of a,B-unsaturated ketones with some notable differences. The
pi-electron system may again be described by four pi molecular'orbitals.
The energies of these MO's, however, are different for a-diketones and
a,B-unsaturated ketones as seen in Figure 1, and may qualitatively be
discussed on the basils of interaction parameters suggested by Labhart
and Wagniere.8 Ignoring only small interactions between the non-bonding
orbitals, due to the large spatial separation, the energies of the non-
bonding orbitals in the two systems may be taken to be the same. The

- %
bonding and antibonding MO's of an isolated ketone (nK and T ) are about
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FIGURE 1. Interactions of pi MO's in o,B~unsaturated ketones
and a-diketones depicting a red shift of the n»n¥
and a blue shift of the w»n* transitions of the a-
diketone relative to those of the o,B-unsaturated
ketone. ' :
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2.1 and 0.5 eV, respectively, lower than the corresponding MO's of an
* 8
).

ethylene group (nE and w Less interaction is expected between the

E
two antibonding MO's of the unsaturated ketone, due to the difference in
energy, than between the two identical antibonding MO's of the a-~diketone.
This places the lowest empty MO of the diketone (w3’) below the corre-
sponding MO of the unsaturated ketone (w3). Similar interactions are
expected between the bonding MO's of the systems. The large energy
difference between e and L however, leaves Wz’ below Ty The energy
levels of Figure 1 thus suggest that the 1owést—eﬁergy m+T* transition
should be observed at shorter wavelengths for a-diketones than for
a,B-unsaturaged ketones while the n*m* transition should be seen at

longer wavelengths for oc~diketones than for o,B-unsaturated ketones. As

a result of the blue-shifted m>n* transition, a second n>7m* band is also
usually seen for o-diketones due to the transition n+w4’ (Figure 1). This
band occurs at shorter wavelengths than the n+ﬂ3’ transition and appears
as either a distinct peak or as a shoulder on the high intensity w-n*

or n*o* bands. Singlet-triplet n>n* transitions (n+w3’) are sometimes
also observable for o-diketones. These absorptions have been identified

11,12 with unusually .large molar absorp-

for camphorquinone10 and biacetyl
tion coefficients for such transitions, Emax = 0.12 (550 mu) and 0.07
(505 mu) for camphorquinone and biacetyl, respectively.

The extent of interaction between pi MO's in a-diketones also
depends upon the dihedral angle between the carbonyl groups. This in-
teraction should be minimal for a dihedral angle of 90° and begin to

increase as trans-planarity is approached, thereby increasing the

energy splitting of the MO levels ﬂl’-nz” and n3’—n4' (Figure 1). The
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transition energy of n+n3’ should thus decrease and that of n+w4’ should
increase as coplanarity is approached. Experimental evidence of these
trends has been established by Leonard and Mader13 in their investigation
of the visible-UV absorption spectra of a series of oa-~diketones with
varying dihedral angles. Camphorquinone, a molecule expected to have a
dihedral angle that is very close to zero, shows n>n* bands at 460 and
280 mu for n+w3‘ and n+ﬂ4‘, respectively.10 The absorption spectra of
several homologs of camphorquinone in cyclohexane solvent have also been
taken.14 For these compounds the carbonyl groups are also expected to
be very nearly cis-coplanar. Absorption maxima for the long-wavelength
absorption band are found in the range of 462-482 mp with ev30, while
the second weak absorption band has peak maxima in the region of 272-293 myp.
From these, as well as other spectral studies of diketonesls’16 it is evi-
dent that the long-wavelength n»n* absorption for most unsubstituted
a~diketones, which are not further conjugated with other m bonds, appears
at approximately 480 mp or less. A somewhat unusual exception to this
has only recently been reported by de Grootl7 for the spectrum of 3,4-
Di-t-butylbutane-dione which has an absorption peak at 536 mu with e=64.

Conjugating a diketone with other double bonds in a molecule may
lower the lowest antibonding MO, compared to that of an isolated diketone,
and thus impart a red shift to the n*m* absorption band. Thus, the
orthoquinones show n*m* bands at wavelengths greater than 480 mu. For
o~benzoquinone and 1,2~naphthoquinone they are found at 610 and 540 myu,
respectively.18

The spectral features of ketones and diketones, saturated as well

as unsaturated, have been discussed in terms of the energy levels of the
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pi molecular orbitals only. A valid study of these spectral features re-
quires also an assessment of the extent to which the nonbonding orbitals
in a diketone can interact, the cffects of different molecular substituents
on the energy of the nonbonding orbitals, and the participation of sigma
bonds in the interaction between molecular fragments which are separated
by saturated bonds. Calculations of the interactions between nonconju-
gated ethylene gfoups in molecules have recently been made by Hoffmann,
Heilbronner and Gleiter.19 It was pointed out here that not only the
direct overlap between the pi systems but also the interaction through
the intervening sigma bonds is necessary for spectral interpretations.
Calculations presented in Chapter IIT will show the importance of these
effects on n+n* transition energies in o-diketones.

The nature of the visible solution absorption of the three diketones,
tricyclo[4.4.2.01’6] dodeca-3,8~-diene-11,12-dione and its dihydro and
tetrahydro derivatives, were investigated here by theoretical methods.
These compounds will be referred to by abbreviated names thch conveni-
ently indicate the number of carbon-carbon double bonds. Thus the diene
will be called 2DB, the dihydro derivative 1DB, and the saturated, tetra-

hydro derivative will be called ODB.

0 0
C. 0 | [0 N
S 3

2DB 1DB obDB

The visible and near-UV absorption spectra of these compounds in

cyclohexane solvent have been reported by Bloomfleld and Moser 0 and are
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reproduced in Figure 2. The spectral parameters reported for the long-

wavelength absorption band of each compound are shown in Table 2. The

TABLE 2
SPECTRAL PARAMETERS FOR THE LONG-WAVELENGTII ABSORPTION

BAND OF 2DB, 1DB, AND ODB IN CYCLOUEXANE

Compound Amax(mu) € nax
2DB 537.5 71.7
1DB 532-535 32.0

460~-464 38.8
0DB 461 73

molar ébsorptivities and wavelengths of the peak maxima are in the neigh-
borhood of € nax and Amax values of n+n* transitions of g-diketones. It
may be seen that 1DB exhibits two abéorption maxima which coincide very
closely with the single absorption maxima of 2DB and ODB, and that the sum
of the two molar absorptivities of 1DB at the peak maxima is practically
equal to € max of either of the two other compounds. Virtually no change
is obtained in the spectra for solutions in ethanol, mixtures of ethanol
and cyclohexane, and in the presence of benzene, acetic acid, or triethyl-
amine. No deviation from Beer's law can be detected for any of these
solutions.21

It was suggested by Bloomfield and Moser that the long-wavelength
n+n* absorptions for these compounds may be explained when assuming a

staggered conformation for the molecules, as shown below. On this basis,
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FIGURE 2. Solution absorption spectra of 2DB, 1DB, and ODB in Cyclohexane.
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only one unique conformation exists for 2DB and 0DB, conformations 1 and 3,
respectively, while 1DB may have the double bond down oxr up to yield the
two distinct species, 2a and 2b. It was further suggested by Bloomfield
and Moser that interaction between the double bond and dione system is
most favorable when the double bond is up, as in 1 and 2a, and that such
a conformation enhances resonance stabilization of the n»¢* excited state
and yields red-shifted n»>n* absorption peaks. Based on this argument,
1DB should show two absorption maxima while 2DB and ODB should each have
only one peak, in agreement with the observed spectra.

The existence of staggered conformations in solution, however,
is speculative and becomes questionable in view of the crystal structure
results obtained for 2DB. This molecule was found to have both cyclo-
hexene rings folded toward the dione system in the solid state and may
favor this conformation in solution also.

This investigation employed various quantum mechanical calcula-

tions to test the effects of non-conjugated double bonds on the long-



91
wavelength n>m* transition energy in a~diketones and to seek the mechanism
whereby these effects are transmitted. The most favorable ground state
conformations for the molecules under consideration were also investigated

in an attempt to explain the absorption spectra.



CHAPTER II

MOLECULAR ORBITAL METHODS

The development of the molecular orbital (MO) method by Mulliken22

and Hund23 as a method of describing the electronic structure of diatomic
molecules has been well documented. This procedure was first extended to
organic molecules by Hiickel24 and has since then become a popular tool

for the theoretical investigation of the properties of a large variety

of chemical species. Several levels of sophistication have developed
within the framework of the molecular orbital approach. These methods
differ in the extent to which they attempt to describe the electronic struc-
ture of the molecule, the type of wave function representing the molecular
states, and the manner in which parameters in the calculation are evalu-
ated.

One major division can readily be made for MO calculations on
organic molecules. For planar, unsaturated molecules with conjugated
double bonds, the simplifying pi—electrén approximation is usually in-
voked when interest lies only in the properties of the pi-electrons. Only
those atomic orbitals which contribute directly to the pi-electron struc-
ture of the molecule are treated explicitly. The remainder of the mole-
cule is viewed as merely supplying a constant potential field for the pi-
electrons. The Hiickel Molecular Orbital (HMO) method and the pi approxi-
mation of the Self-Consistent Field (SCF) method are two such approximations
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used in this work and will be discussed in more detail later in this
chapter.

More complete MO calculations, applicable to saturated as well
as unsaturated molecules, can be made by the so-called all-valence-shell
MO methods. In these methods, the atomic orbitals of all valence shell
electrons are explicitly included in the calculation and information
about the sigma, pi, and nonbonding orbitals will therefore be obtained.
The Extended Hiickel Molecular Orbital (EHMO) method and the Self-Comsistent
Field method with Complete Neglect of Differential Overlap (CNDO/2) were
used for calculations at this level of approximation.

One common feature is found in the different calculational methods
mentioned. An approximate wave function (y) is chosen to represent the
electronic structure of the molecule. This function may be in the form
of an MO constructed from a linear combination of atomic orbitals (LCAO-MO)

25,26

or a Slater determinant built from such MO's. The expectation energy

for the system described by y is then calculated as

E=J%=:M

Yrydr

where H is the Hamiltonian for the system. Since the energy calculated

in this manner, by use of an approximate wave function, is always too large,
according to the variation principle, E is minimized with respect to all
adjustable parameters imbedded in the wave function chosen. A clear pre-
sentation of the well-known variation theorem is given in the book by

Eyring Walter, and Kimball.27 Solution of the simultaneous equations

obtained from the minimization procedure yields discrete MO energies and

the corresponding molecular orbitals.
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Pi-Electron MO Methods

The pi-electron approximation of the molecular orbital method
attempts to describe only the properties of the pi electrons in an un-
saturated molecule. Such an approach may be deemed valid for planar,
conjugated molecules where the different symmetries of sigma and pi
orbitals prohibit sigma~pi interactions. For nonplanar or nonconjugated
systems, the effects of sigma bonds on the pi electron structure can not
be taken into account. Any interaction between separate molecular frag-
ments can only be revealed as a consequence of direct, through~space
interactions. Two types of calculations, restricted to the frame work
of the pi-electron approximation, were used. The approach and equations

utilized by these methods will now be discussed.

The Hiickel Molecular Orbital (HMO) Method
The pi-electrons in an organic molecule are considered to be free
to move over the conjugated portion of the molecule. To reflect this
property, the wave function describing a pi electron is chosen as an MO

in the form of LCAO's as shown in Eq. 1.

n
¢. = ) C..X. (L)

¢ is considered a one-electron MO, Xj is the 2p atomic orbital (AO) from
atom.j which contributes to the pi-electron structure, n is the number of
AO's, and the coefficients Cij are adjustable parameters. Minimizing the

expectation energy (E) of ¢

f¢i*u¢idT

E=W (2)

with respect to the coefficients Cij for j=1 to n yields n simultaneous

equations,
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It ~18

* - * =
Cij(fxi ijdT efxi deT) 0 (3)

j=1

for i=1 to n. The notation may be simplified by letting

H,

%
fxi ijdr (4)
and

S. .
1]

fxi*xjdr (5)

Hij is called a coulomb integral when i=j and represents the energy of
an electron in AO X When i # j, Hij is called a resonance integral.
Sij is the overlap integral between the two AQ's X4 and Xj' With this

notation, the secular equations (3) may be expressed as
n
Z C, (H.j - eSij) =0 for i=1,n. (6)

Solutions to these equations can be obtained by diagonalizing the deter-

minant

IHij - esijl =0 (7)

This yields n distinct values of e, which may now be called s for i=1
to n, and the corresponding coefficients Cij' Each of the n allowed energy
levels, €5s is associated with a unique MO, ¢i. The pi-electrons are
placed pairwise, with opposing spins, into the lowest available MO's to
form the electronic ground state.

The form of the Hamiltonian (H) is not specified explicitly in
this approximation but treated as an effective one-electron Hamiltonian.
The integrals Hij in equation 7 are thus empirical parameters and the MO
energies are obtained in terms of these parameters. The HMO approximation,

applied to pure hydrocarbons, sets all coulomb integrals equal to a
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common value, the standard coulomb integral, a. Resonance integrals
between AO's centered on nuclei which are bonded to each other are all
assigned a common value, the standard resonance integral, 8, while Hij's
between all othér AO pairs are taken as zero. All overlap integrals
are taken as zero when i#j and set equal to one when i=j, thereby
assuming an orthonormal set of basis functions.

A number of variations and additions have been introduced to the
HMO method so far described. Among these are the inclusion of overlap
integrals and the use of variable coulomb and resonance integrals.zs“33
The latter variations allow the method to be applied to systems with
heteroatoms and varying bond lengths. The HMO method was used here with
some of these variations. All coulomb integrals of carbon atoms were

taken as the standard coulomb integral, o, while those of oxygen atoms

were expressed as
o, = + hB (8)

A summary of values of h which have been used by various authors for
different heteroatoms systems is given by Streitwieser.33 The value h=1
seemed appropriate for carbonyl oxygens and was used here. All overlap

integrals were included and evaluated by the method of Mulliken, Rieke,
34

Orloff, and Orloff. Resonance integrals were set proportional to
overlap integrals, a procedure suggested by Mulliken,go’31 and evaluated
by
Si'
Hs = —lso B 9)

With coulomb and resonance integrals expressed in this way, the solutions

of the secular determinant still yields values of the energy levels in
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terms of the two parameters, o and 8.

Electronic transition energies are taken as the difference in or-
bital energies between the leaving and accepting MO's, thereby neglecting
any othér electron rearrangements upon transition, while the total pi-
electron energy of a molecule is given as the sum of the one-electron
energies. Due to the empirical nature of this method, little can be said
about the absolute MO energies although experimentally observed trends in
the m-»>m* transition energies for series of similar compounds can readily

be correlated by the relative MO spacings.

The Self-Consistent Field Molecular Orbital (SCF MO) Method

The piéelectron approximation of the self-consistent field method
develops a more rigorous treatment of the electronic structure of mole-
cules than the HMO method. A more satisfactory formulation is obtained
by defining the molecular Hamiltonian and also including the important
electron repulsion terms. However, some empiricism is usually employed
in this method.

The basic equations of the SCF approach were first developed by
Hartree35 for the study of atomic systems. The method was employed by
Fock36 for systems where the wave function is expressible in the form
of a Slater determinant and shown by Roothaan37 to be applicable to
systems where the elements of the Slater determinant are LCAO's. The
equations employed in the semiempirical SCF MO approximation for closed

shell systems may be found in several textbooks on quantum mechanics38’39

as well as in the literatur:e.z'o-'44 A summary of the necessary equations
will be given here. For a system with n AO's contributing to the pi

electron structure, MO's are constructed as LCAO's, analogous to Eq. 1 of
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the HMO method. A total wave function for a closed-shell configuration
n
¢, = ) C. X (10)
(2 electrons in each MO) is then expressed by a single Slater determinant,
1
b= 7o [0, (Wa()é; (2)B(2)6,(3a(3)...0 ,, BM]. (11)

Each element of the determinant is a product of an orbital function ¢ and
a spin function o or B. The subscripts here identify the MO's and the
numbers in parentheses label the electrons associated with the respective
MO. The determinant antisymmetrizes the total wave function, as is re-
quired by the Pauli principle. The Hamiltonian for the electronic energy
of the system may be expressed as

n 2 '

H= J [T(u) +H ]+ ] —— (12)

u=1 © wv ‘uy
The repulsion term between nuclei is left off here since this would only '
add a constant term to the energy. T(u) in Eq. 12 represents the kinetic
energy of electron u, Ho(u) is the potential energy bet;een electron u and
the entire molecule after removing all pi-electroms, ;g—- is the elecfron—

uv

electron repulsion term. Using the wave function and Hamiltonian given

above yields the expectation energy for the configuration as
|

E=2)e + ] (27, -K.) (13)
1

where the summations range over the n/2 occupied MO's. The molecular

integrals of Eq. 13 are defined as

m
1]

Core energy for an electron in ¢i

[o %) [TC) + H (W] ¢, (Wdr (14)
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Jij = coulomb integral
2
= ff¢i*(U) ¢j*(V) ;ﬁ; 9; (W ¢j(V) dv dr (15)
Kij = exchange integral
= [fo, %) *(v) f—z—cp.(v) $.(u) dr_dr_ . (16)
i i Tw 1 i u v

Minimizing the total energy (E) leads to Roothaan'537 equations which

must be satisfied by the "best" MO's (¢i)

C, (F_=-5S_e)=0 for q=l to n. 17
L Cip (Fpq = Spq &4 or d 17

Solutions to these equations are obtained by solving the secular deter-

minant

F .| =0, 18
Pq Pq ll (18)

yielding n orbital energies (ei) and the corresponding MO coefficients

(Cip)' The elements qu of the above determinant are defined as

F = [y *Fx d 19
pq = DBl (19)

where F is the Hartree-Fock Hamiltonian operator. F may be divided into

two parts, F=I + G, and thus

F =1 +G . (20)
Pq Pq Pq

Ipq is the matrix element of the one-electron Hamiltonian (T + Ho) and

G is the matrix element due to the other pi-electrons. To evaluate IPq

Pq
the core potential (Ho) may first be replaced by the contributions from

the individual nuclei. With H£+ representing the contribution from

mucleus t,

]
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Interaction elements with other pi-electrons (Cpq) are evaluatead ov
n§2 ) 02
¢ = 2x_*(u)p. *(v) —— x (u)p_ (v)dr
Pa 42 TP j r, 4 i
n§2 f e2
- ) Ix F)e. F(v) — x_(v)¢. (u)dr P9
=1 P J Tw 4 ]

where j sums over the n/2 occupied MO's. Replacing the MO's bv thelr

LCAO's, this yields

n§2 g f 2
G = C. C, [2 X *(u)x *(y) — / (u), (v)d-
Pd j=1 1,5 jr-js Ty
e2
- [ *@x F ) = x, (x (wdr]. ol

uv

In the shortened notation defined above,

n/2 n
Zl ) C, Cigl2(Pasrs) - (ps3am)]. (31
j=1 r,s

The total expression for the matrix elements can now be written as

n

qu = Wquq - t;q [ (t:pq) + (pq;tt)]

n/2 n
- (323
) CJrCJS[Z(pq,rs) (ps;qr)]. (3
j=1 r,s
To make this calculation feasible, the Pariset-Parrbl approximation of

neglect of differential overlap is made. Integrals such as

fxp*(u)xq*(v) ;E— xr(u)xs(v)dr are taken as zero unless both p=r and
uv

q=s. Thus only one-center (pp;pp) and two-center (pp;qq) repulsion
integrals are retained. With these simplifications, diagonal elements

of the F matrix are
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H = ) B, , and (21)
t=1
+ 0% 4+
I =[x *(T+H + H dr 22
g = I @ t; e X (22)
q
+ & +
I = * (T + H dt + *H dt 23)
Pq [XP ( q )Xq t;q XP t Xq (
s +
I =WS + * H dt 24
P4 4 Pq tgq Xp" Pt Xq (24)

where wq is the ionization energy for removing a pi-electron from atom
g. The remaining integrals may be evaluated by replacing Ht+ by the

Goeppert-Mayer and Sklar potential45

2
RN .
B (u) = H (0) - [ —— x *()x (Mdr. (25)
uv
This implies that the potential by core t on electron u equals the po-

tential due to a neutral atom (Ht ) minus the repulsion of a hypothetical

electron v. Now

fxl’;(u)Ht+(u)xq(u)dT = fx;(u)Hti(u) xq(u)dr

2
- [x_*(uy (u) =— x *(u)x, (v)dt (26)
p g\ T Xt t
uv

fxt T (x (Wt = =(c:pq) ~ (pastt) (27)

using the shortened notation (t:pq) for the penetration integral and
(pgq;tt) for the three center atomic repulsion integral. The total ex-
pression for Ipq now becomes

n

g = YeSpq - thtq (t:pq) + (pq;tt) . (28)
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Interaction elements with other pi-electrons (qu) are evaluated by

P

n/2 02
(‘pq = j_z_] fop*(u)dlj*(V) ?—— Xq (u)(b‘i (V)dT

uv
n/2 ez
- jzl fxp*(u)¢j*(v) ;:;'xq(v)¢j(u)d1 (29)

where j sums over the n/2 occupied MO's. Replacing the MO's by their
LCAO's, this yields

n/2 n o2
= Z Z C'rC's [2fxp*(u)xr*(V) ;——-xq(u)xs(v)dr

Jjr

G
Pq j=1 r,s uv

2 .
= xR @) £ x (g (el (30)
uv

In the shortened notation defined above,

n/2 n
®pq = -21 rgscjrcjs[2<pq;rs) - (ps;qr)]. (3D

The total expression for the matrix elements can now be written as

n

Foq = YeSpq t;q [(t:pq) + (pq;tt)]

n/2 n
+ jzl rgscjerSIZ(pq;rS) - (ps;qp)]. (32)

To make this calculation feasible, the Pariser—-Parr41 approximation of

neglect of differential overlap is made. Integrals such as

2
&
r

uv

q=s. Thus only one-center (pp;pp) and two-center (pp;qq) repulsion

fxp*(u)xq*(v) xr(u)xs(v)dT are taken as zero unless both p=r and

integrals are retained. With these simplifications, diagonal elements

of the F matrix are
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Foq = ¥ - t;q [(t:qq) + (qq;tt)]
n/2 n n/2
+ ) Z C (qq,rr) -} ¢, <(qq;9q) (33)
j=1 r=1 j=1 iq

and off-diagonal elements are

% an
F =Ws - (t:pq) - C, (ppsqq) . (34)
Pq TPY dg j=1 jp Jq

To execute an SCF MO calculation, starting MO's are usually ob-
tained from an HMO calculation. Coefficients of these MO's are used
in equations 33 and 34 to calculate the F matrix. Diagonalization of
this matrix yields improved coefficients and orbital energies. The
new coefficients are then reintroduced into Eqs. 33 and 34. The process
is repeated until only negligible changes occur. Orbital energies, MO
coefficients or elements of the bond order and charge density matrix,
defined as

n/2

P =2 ) C, C, (35)
Pq j=1 JP ig

are commonly used as measures of convergence.

It must be noted that each diagon#lization of the F matrix yields
coefficients of n separate MO's, yet the energy minimization uses a
Slater determinant which has only the n/2 MO's of lowest energy occupied.
Strictly speaking then, only the energies and coefficients of these MO's
are improved by the iterative procedure. The remaining n/2 MO's are

37

termed virtual MO's. It was suggested by Roothaan™ that these MO's may

be used for the construction of excited electronic configurations. A
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more accurate, but also a much more tedious,way of constructing excited
configurations utilizes linear combinations of Slater determinants.
Singlet-singlet and singlet-triplet confiéuration transition
energies can be calculated from the orbital energies by equations 36 and
37 respectively. For a one-electron transition from an orbital ¢i to

orbital ¢j,

1,1

>
]
Il
[y]
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+
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(36)

1,3

*“AE (37)
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[yl
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The molecular integrals Jij and Kij have previously been defined by
equations 18 and 19. The total pi-electron energy for the molecule can
be found from Eq. 13 using the final orbital energies and coefficients.
The molecular integrals involved here can be evaluated by replacing
the MO's by their LCAO's and neglecting all but the one—centef and two-
center atomic repulsion integrals.

The agreement between observed and calculated transition energies,
as calculated by Eqs. 36 or 37, is generally improved by following an
SCF MO calculation by a configuration interaction (CI). €Such a calcula-

tion constructs molecular state functions from molecular configurations,

WI - X A;,J,...;k,l,;.. WE,;,... (38)
sjseen

The functions W%’%""

I E

are termed configurational wave functions. They
are single Slater determinants which represent excited electronic config-
urations obtained by moving one electron from ¢i to ¢k, another electron
from ¢j to ¢1, etc. The A's are mixing coefficients and WI is a state

function. In theory the summation may extend over all possible excited
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configurations, although in practice only one-electron-excited configu-
rations are generally considered, and of these only configurations which
are within a few electron volts of the ground state are used in the
summation. No mixing can occur between the closed-shell ground state
(wo) and one-electron~excited configurations (wik), i.e., all fonwikdr =0
vhere H is the Hamiltonian given by Eq. 12. Applying the variation
principle to equation 38 yields the CI interaction matrix whose eigenvalues
are the excited state energies and the eigenvectors are the corresponding
mixing coefficients. The CI matrix elements for singlet excited states

are obtained from equations 39 and 40.46

1 k., 1 . .
= - + 1 -
! bAT = 8,08y, (e - ) + 2 <ik|j1> - <ij|k1> (39)
where 6's are the Kroenecker deltas and the molecular integrals are given
by

(pp3aq). (40)

<kljl> =7 V¢
o q ip kp Jq lq

Electronic transition energies are then obtained from the differences

between excited state energies and the ground state energy.

All-Valence-Shell MO Methods

The concepts developed in the pi-electron MO methods can be ex-
tended to make the MO approach suitable for saturated as well as unsat-
urated molecules. A theoretical description of the electronic structure
;nd the bonding in such molecules can be obtained by expanding the MO
basis set to include the valence-shell AO's of all atoms in the molecule.
Thus the 1ls AO of hydrogen and the 2s and three 2p AO's of any atoms from

the second row of the periodic table would contribute as basis functions
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and be treated explicitly in these methods. The resulting MO's show
not only the pi-electron structure but also the sigma orbitals and any
nonbonding orbitals which may exist. The extended basis set allows
mixing of sigma and pi orbitals in non-planar, unsaturated molecules
where these interactions are not symmetry forbidden and is thereby also
capable of showing the role of sigma bonds in the interactions between
nonconjugated, unsaturated groups in such molecules. The variety of
MO's obtained allows not only the calculation of w>m* electronic transi-
tion energies but also those involving any combination of orbitals,

particularly the n»r* transition energies.

Extended Hiickel Molecular Orbital Method (EHMO)

An extended molecular orbital method has recently been described
by Hoffmann47 and applied to a wide range of compounds. The method
uses all valence orbitals as a basis set and is therefore applicable
to aliphatic as well as aromatic compounds. The mechanics of this method
are very similar to the simple HMO method previously described. MO's
are expressed as linear combinations of all valence orbitals and the MO
energy is minimized with respect to the atomic orbital coefficients to

yvield the secular determinant
lnij - ¢ sijl =0 (7)
where H is an unspecified one-electron Hamiltonian. All overlap integrals

are retained in this method and evaluated by the formulas of Mulliken,34

et al., using Slater AO's as basis functions. Coulomb integrals, Hii’
for the various basis functions are taken as the valence state ionization

potentials. Extensive tabulations of valence state ionization potentials
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48,49

are given by Skinner and Pritchard. Resonance integrals, Hij’

may be calculated by one of the three following methods:

Hij = ov.s K sij (Hii + Hjj) (41)
— 1
Hij =K sij (42)
1 I
Hij =K sij (Hii}ljj) (43)

where the K's are suitable proportionality constants. These, and similar
equations, have been used by different authors to calculate resonance
integrals in various methods of calculations. More details and refer-
ences may be found in reference 47. Hoffmann47 has primarily used
equations 41 and 42 to obtain resonance.integrals. Equation 42, with
K* = -21eV, was found to be satisfactory for conformational analyses of
boron hydrides50 while equation 41 with K=1.75 seems more applicable
to a wider range of heteroatoms and organic molecules.47’51
Electronic transition energies and total ground state electronic
energieé are calculated as in the HMO method. The EHMO method seems
quite useful for predicting molecular geometries and conformations
although it tends to overemphasize steric factors‘47 Electronic transi-
tion energies are poorly predicted, with calculated values generally
smaller than the observed transition energies.47 Qualitative trends in

transition energies, however, can still be reasonably well correlated

for series of similar compounds.

The CNDO Methods

The broad applicability of the EHMO method has prompted the
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development of all-valence-shell MO methods within the SCF framework.
Several such formulations'have been introduced and are currently in use.sz—57
One of these, due to Pople, Santry, and Segal52 uses the approximation of
complete neglect of differehtial overlap and is hence termed the CNDO
method.

The formulation of the CNDO method parallels the SCF method
previously described with the exception that the basis set has been ex-
panded to include all valence-shell AO's. This is reflected in the
elements of the Slater determinant (Eq. 11). The molecular Hamiltonian
is again a many-electron Hamiltonian that includes electron repulsion
terms as in Eq. 12,

i ] e’
H = ugl T(uw) + H_ (w)] + ugv T
The ranges.of u and v are now over the n valence-shell electrons and
the core potential terms Ho(u) represent the potential energy between
electron u and the entire molecule after all valence-shell electrons have
been removed. Elements of the Hartree-Fock matrix, from which orbital
energies and MO coefficients are obtained, are expressed in a form more

suitable to the case where one atom may donate more than one AO to the

basis set.53 For diagonal elements,

= =1 -
F L (Ip + Ap) + [(PAA zA

- -1 +
pp ) = 4( pp MR

BgA(PBB - 2,)7,p (44)

and off-diagonal elements are

F_ =%0B,°+8%s ~-1p (45)

Pq A B ““pq pq TAB
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In the notation above, subscripts A and B label atoms, subscript p labels
an AO from atom A and q labels an A0 from atom B. Ppp and qu are

elements of the bond-order charge-density matrix defined as

n/2
Prq = 2 izl Cip Cig (46)
while PAA is the total charge on atom A, calculated by
n(A)
Py = le P (47)

where n(A) equals the number of AO's used from atom A. ZA is the
charge on core atom A and Y AR is a repulsion integral that represents
the average interaction energy between one electron in any valence or-
bital of atom A with another electron in any wvalence orbital of atom B.
Spq is the ovgrlap integrai and B°'s are empirical parameters which
depend only on the type of atom from which the AO originates. Contri-
buting terms of the diagonal matrix element FPp may again be grouped
into two parts, a term which shows the energy of an electron in atomic
orbital p under the influence of its own atomic core only (this is the
term W in Eq. 36) and terms which show the attractions and repulsions
between this electron and the remaining atomic cores and valence

~ electrons, respectively. To allow the theory to reflect an MO's
tendency to either gain or lose an electron, W is related here to the
ionization potential (I) and the electron affinity (A) of the atom.

For an AO p on atom A,

—Ip = Wp + (ZA - 1) Yap® (48)
_Ap = Wb + zA Yap - (49)
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The average value of Wp can now be used as

W o=-% (I +A) -2 50
b 2(p p) (50)

1
AYaa T3 Vpn

The remaining terms in equation 47,

—— 1 —
(Ppp = 2, ) Vpp * B;ZeA (Ppp = Zp)Ypp

include the interactions between atomic orbital p with the remaining

atomic cores and all electron repulsions. The one- and two-center

repulsion integrals (YAA and YAB) are calculated by Roothaan's formulas.
Calculating the elements of the Hartree-Fock matrix in the manner above
.reflects some modifications of the initial CNDO formulation by Pople53
and is referred to as the CNDO/2 method in the literature. Iterations
may be initiated by first carrying out a simple Hiickel-type calculation
with matrix elements
F_=-5(I_+A 51
pp z(p p) (51)
and
F =%, +8.2s 52
bq = 5B, 80s (52)

The approximate MO- coefficients obtained here are used to calculate the
complete matrix elements, Eqs. 47 and 48, and subsequent cycles utilize
these equations until self-consistence has been attained. Calculations
of ground-state energies and electronic transition energies, parallel
the methods described for the pi-electron SCF MO calculations.

The CNDO/2 method outlined has met considerable success in
the calculation of molecular ground state properties. Calculations of
electronic transition energies, however, were often considerably im-

proved with the modifications introduced by Del Bene and Jaffé.54 One-

58
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center coulomb repulsion integrals were evaluated semiempirically as
the difference between the ionization potential and the electron affinity
and two-center repulsion integrals were determined by the extrapolation
technique developed by Pariser and Parr.42 The otlier change in para-
meterization involves the resonance integral portion of Eq. 45,

=4508.°+8.%9s . 53
qu z(BA BB ) b (53)

For AO's p and q involved in sigma overlap, Eq. 53 is used as the leading

term for qu. When p and q are involved in pi overlap,

=% k(8,° + 8,°)8 - 54
qu s k(8 BB)pq (54)

is used where k is an empirical parameter. Reasonably consistent spec-
troscopic data is obtained.with these changes in parameterization when
using k=0.585. The addition of configuration interaction to the CNDO/2
formulation has yeilded quite satisfactory results for wn>n* and non¥

(where applicable) transition energies for various organic compounds.SA’55



CHAPTER III
CALCULATIONS AND RESULTS

The four molecular orbital methods discussed in the previous
chapter were used for a theoretical study of the three tricyclic dike-

tones shown below. The major goals of these calculations were to test

the effects of the pi electrons in the cyclohexene rings on the low-
energy n>m* transition of the diketones, determine the most favorable
conformations for fhese molecules, and thereby attempt to correlate the
calculated n+>n* transition energies with the solution spectra of Figure 2.
The mechanism of interaction between the cyclohexene and diketone pi
systems was also of interest. Were these interactions primarily due to
spatial overlap of the pi systems or do the intervening sigma bonds exert
a strong influence?

The calculations carried out treat the molecules above at three
levels of complexity, as (1) interacting pi-electron systems, (2) inter-

111
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acting molecular aggregates, where the diketone segment and the unsatu-
rated portions of the six-membered rings are replaced by glyoxal and
ethylene molecules, respectively, but retain the bond distances and
angles determined in the crystal structure of 2DB, and (3) whole mole-
cules. The first two methods are capable of showing the through-space
interactions in the systems while the last approach also includes the
through-bond effects.

The atomic coordinates of 2DB in the crystal structure were sym-
metrized to sz symmetry and used as a guide for determining coordinates
for the various systems considered. Since no crystal data is yet avail-
able on ODB and 1DB, the cyclobutadione segments of these molecules were

maintained as in 2DB and the saturated six-membered rings were constructed

with C-C bond length of 1.54 R and tetrahedral bond angles.

Pi Electron Interactions

The pi-electron structures of the three diketones were described
by means of the molecular fragments shown in Figure 3, using the coordi-
nates of Table 3. This is basically the pi structure of a cis-glyoxal
molecule and two ethylene molecules but with bond distances and angles
equal to those found for 2DB in the solid state. For convenience of
identifying MO's, the molecular, fragments are also labeled by A, B, and
C as shown in Figure 3. B represents the unsaturated portion of ODB, B
and C (to be called BC) represents 1DB, and the three segments shown
(ABC) constitute the pi-electron structure of 2DB. For the purpose of
evaluating overlap integrals, the orientations of the 2p AO basis func-
tions were chosen in the manner dictated by the molecular conformation
found for 2DB in the solid state. A y-z projection of these orbitals

is shown in Figure 4. The HMO and pi-electron SCF~MO methods were employed
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FIGURE 3. Molecular fragments used for HMO and pi-electron
SCF MO calculations.

TABLE 3

ATOMIC COORDINATES OF MOLECULES USED FOR HMO AND PI-ELECTRON

SCF MO CALCULATIONS

Atom x(R) v (&) z(R)
0(1) -1.625 0.0 2.368
c(2) -0.775. 0.0 1.533
c(3) 0.775 0.0 1.533
0(4) 1.625 0.0 2.368
c(5) -0.658 2.504 ~0.184
c(6) 0.658 2.504 ~0.184
c(7) -0.658 ~2.504 ~0.184
c(8) 0.658 ~2.504 -0.184
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FIGURE 4. Orientations of basis functions for HMO and pi-electron
SCF MO calculations are illustrated in this y-z projec-

tion of the orbitals.

for these calculations. The systems B, C, BC, AC, and ABC were con-
sidered, thereby showing the MO's and MO energies of the individual as
well as the interacting systems. The atom numbering scheme in Figure 3

identifies the basis functions in subsequent MO's.

HMO Calculations

Thg HMO method was used with heteroatom parameter h=1 (Eq. 8)
and neglect of overlap. Since weakly-interacting systems were considered,
the standard HMO formulation was slightly modified by using non-zero reso-
nance integrals between any AO's where appreciable interaction is possible.
These integrals were set proportional to overlap integrals and evaluated
as Hij = Ziiﬁ (Eq. 9), while Hij = B was used for the C-0 resonance
integrals.g3 The C(5)-C(6) bond of Figure 3 was used as the reference bond

to define So' All overlap integrals were calculated by the method of

Mulliken, et al.34 for Slater atomic orbitals. Numerical values of the
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overlap and resonénce integrals calrulated for all unique AO pairs are

shown in Table 4. MO energies calculated for the systems are shown in

TABLE 4

OVERLAP AND RESONANCE INTEGRALS FOR WEAKLY-INTERACTING PI SYSTEMS

1 J ij Hi (8)
1 3 0.013 0.045
1 4 0.0 0.0
1 5 0.007 0.006
1 6 0.0 0.0
2 3 0.184 0.641
2 5 0.036 0.126
2 6 0.014 0.049
5 6 0.287 1.000
5 7 0.0 0.0
5 8 0.0 0.0

Figure 5, and nonredundant MO coefficients are shown in Tables 5 and 6
for the pi MO's of ODB and 1DB, respectively.

The interactions between the pi electroms in the cyclohexene
ring (C) and the pi systems of the diketone (B) of 1DB can be seen from

Figure 5. The bonding orbital of C, 7 ¢ at energy o+B, interacts weakly

1
with the lowest empty molecular orbital (LEMO) of system B, n3B at energy
o - 0.240B8, and elevates it to the level shown for the composite system BC,

m BC at energy a — 0.2538. The antibonding MO of C, at energy a-f, inter-

4
acts more strongly with the highest energy MO of B, H4B at energy o — 1.0808.
The stronger interaction is expected since WZC and WAB were initially
almost degenerate. A weak interaction is also calculated between the

bonding MO of C and the lowest energy MO of B. The interesting feature,

however, appears in the results of the first interaction mentioned, the
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Glyoxal-ethylene pi-MO interactioms by the HMO method.




PI MO'S AND ENERGIES FOR ODB BY THE HMO METHOD
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TABLE 5

B B B B

MO " 2 3 "4
Energy o+1.8818 o+1.4388 a-0.2408 a~1.0808
sz Symmetry B2 A2 EZ A2
Cs Symmetry#* A” A”” '\g A””
Coefficient

0(1) 0.5406 0.6426 0.4557 0.2950

c(2) 0.4557 0.2950 ~-0.5406 -0.6426
*Cs plane perpendicular to the C-C bond.

TABLE 6
PI MO'S AND ENERGIES FOR 1DB BY THE HMO METHOD
MO BC BC BC BC BC BC
‘ Ty Ty Ty T, g e

Energy at+1.8978 a+1.4398 o+0.99883 a-0.2538 ° 0-0.9628 o-1.1188
CqSymmetry A~ A°” A” A~ A”” A°”
Coefficients
0(1) 0.5324 0.6424 0.1179 0.4502 0.1558 0.2511
c(2) 0.4561 0.2953 0.0040 ~0.5403 ~0.3160 ~0.5594
c(5) 0.0926 0.0110 -0.6972 -0.0730 -0.6131 ~0.3521
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BC . . B S
fact that T, 1is ata higher energy than LEN These are the LEMO's for
systems BC and B, respectively, and are the accepting MO's for the low-

energy n>n* transitions. Table 6 shows that = BC is an MO that is primarily

4
centered on the diketone with only small contributions from the ethylene
pi system. Inspection of the coefficients shows that a node exists be-
tween the basis functions from the carbonyl carbons and those from the
ethylene group. This antibonding interaction gives rise to the destabi-
lization of the LEMO.

The HMO method employed here allows no assessment of the effects
of the ethylene pi orbitals on the nonbonding orbitals of the diketone
system. If one assumes that no significant interaction occurs between
these orbitals, then the results presented here predict a higher n-r¥
transition energy for 1DB than for 0DB, contrary to what is anticipated
from the solution spectra of these compounds. The energy difference of
0.0138 calculated between the two LEMO's is not a very large éffect,
however. Using an approximate value of 2.38eV for 8,59 this amounts to
an energy difference of 0.031leV or an absorption maximum shift of 4 mu.

The assumption that the pi orbitals of system C have no appreci-
able effect on the nonbonding orbitals of B as a result of a through-
space interaction was tested qualitatively by an HMO-type calculation
with parameters evaluated as for the pi interactions. Lone-pair orbitals
of the oxygen atoms were represented by 2p orbitals placed perpendicular
to the C-0 bonds and in the plane of system C. An HMO calculation for
this two-orbital case was followed by one which included the basis func-
tions from system C. The energies of the lone-pair MO's were only altered
by 0.0018 when'including the pi MO's of system C, a small change compared

to the 0.013B8 change of the LEMO of the pi system of B. This diminished
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interaction is due to the very small overlap between the chosen lone-pair
orbitals an oxygen and the ethylene pi orbitals. S = 0.001 between a 2p
orbital on C(5) and a 2p orbital on 0(l), while a much stronger overlap
exists for pi interactions, with S = 0.036 for 2p orbitals on C(2) and
c(5).

The effects of the two ethylene groups (A and C) on the diketone
system (B) are shown in Figure 6. The alteration of MO energies is similar
to the changes seen in Figure 5. Of interest again is the change in the

LEMO, = B This orbital is raised in energy from o-0.2408 to a-0.2678

3 -
(HSABC), about twice the effects produced by just one ethylene system.
The coefficients of this orbital (Table 7) show that the pi system of the
diketone is coupled to both ethylene pi systems in an antibonding manner
with nodal surfaces between the carbonyl carbon basis functions and both
sets of ethylene basis functions. Thus, when considering the effects of
pi electrons only, 2DB should have the highest n»n* transition energy for
the three compounds considered, contrary to the trends observed experi-
mentally. A calculation of the total pi-electron energy, as a sum of
occupied orbital energies, shows that stabilization is obtained when the
isolated systems are allowed to interact (Table 8).

Through-space interactions between the pi systems based on mole-
cular conformations with the six-membered rings in the boat form but
folded away from the diketone system were found to be negligible. Over-
lap integrals dropped to insignificant values and the Mo energies calcu-
lated were essentiélly those of noninteracting pi systems. No results
are therefore shown for pi systems based on these conformations.

The pi-electron stabilization energies calculated here would

predict that the most stable conformations of these compounds would have



120

ABC
B Ty
—2—z2-- " AsC e T i
d-ﬂ o ‘~§§\Z ——-—--—:—_—‘_—‘_ -——A-c-
.”éABC 7T3
ABC
B Tx
'H'; e e ——
\ \
\ \
\ \ B
A} \\ \
\ ‘\
\
\ \
\ \
\ \
5{3 \ \
g \ \\
R \
\ \
A \
\ ABC \ AC
\ Ty T
<+ e A R Y
Y, ABC AC
/ Tr3 /, qu
B ’ /
’"2 // T’.?BC /
/ /
/ /
B / /
/
m o meY
o(+2ﬂ B 0 , 0

FIGURE 6. Glyoxal-2 ethylene pi-MO interactions by the HMO method.
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interaction is due to the very small overlap between the chosen lone-pair
orbitals an oxygen and the ethvlene pi orbitals. S = 0.001 between a 2p
orbital o2 C(5) and a 2p orbital on 0(l), while a much stronger overlap
exists for pi interactions, with S = 0.036 for 2p orbitals on C(2) and
c(5).

Tae effects of the two ethvlene groups (A and C) on the diketone
system (B) are shown in Figure 6. The alteration of MO energies is similar
to the changes seen in Figure 5. Of interest again is the change in the

2

LEMO, = ! This orbital is raised in energy from o~0.2408 to a-0.267R

3 -
(wSABC), about twice the effects produced by just one ethylene system.
The coefficients of this orbital (Table 7) show that the pi system of the
diketone is coupled to both ethylene pi systems in an antibonding manner
with nodal surfaces between the carbonyl carbon basis functions and both
sets of ethylene basis functions. Thus, when considering the effects of
pi electrons only, 2DB should have the highest n»n* transition energy for
the three compounds considered, contrary to the trends observed experi-
mentally. A calculation of the total pi-electron energy, as a sum of
occupied orbital energies, shows that stabilization is obtained when the
isolated systems are allowed to interact (Table 8).

Through-space interactions between the pi systems based on mole-
cular cornformations with the six-membered rings in the boat form but
folded awav from the diketone system were found to be negligible. Over-
lap intesrals dropped to insignificant values and the ﬂO energies calcu-
lated were essentially those of noninteracting pi systems. No results
are thercfore shown for pi systems based on these conformations.

The pi-electron stabilization energies calculated here would

predict that the most stable conformations of these compounds would have



TABLE 7

PI MO'S AND ENERGIES FOR 2DB BY THE HMO METHOD

MO T ABC - ABC . ABC . ABC T ABC . ABC . ABC - ABC
. 1 2 3 A 5 "6 7 '8
Energy o+1.9123 o+1.4403 o+1.0008 o0+0.9968 o~0.267R «~0.9378 o-1.0008 o-1.1443
sz Symmetry B2 A2 Al B2 B2 A2 Bl A2
Coefficients
0(1) 0.5245 0.6422 0.0 0.1643 0.4449 0.1765 0.0 0.2376
c(2) 0.4564 0.2955 0.0 0.0052 ~0.5400 -0.3525 0.0 ~0.5320
c(5) 0.0911 0.0110 0.5000 0.4864 0.0723 -0.4151 0.5000 0.2786
c(7) -0.0911 -0.0110 0.5000 0.4864 -0.0723 0.4151 0.5000 -0.2786

171
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TABLE 8

TOTAL GROUND-STATE ENERGIES FOR PI SYSTEMS STUDIED BY THE HMO METHOD

System Energy Stabilization energy
C 20+2.0008
B 4ot+6.6388
BC 60+8.6688 0.0308
ABC 8a+10.6968 0.058R8

the unsaturated rings folded toward the diketone. This is in agreement

with the conformation found for 2DB in the solid state.

Pi-Electron SCF MO Calculations
The calculations discussed above were next repeated by a series

of pi-electron SCF MO calculations for identical systems. The closed-

46,60,61

shell SCF program by Bloor and Gilson was employed for this pur-

pose. This program used the SCF formalism with neglect of differential
overlap as shown in the previous chapter. Elements of the Hartree-Fock
matrix were calculated by Eqs. 33 and 34 with one change, the neglect
of penctration integrals (t:qq). One-center repulsion integrals were

set proportional to the Slater effective nuclear charge Zp as46

(ppipp) = 3.294 Zp eV. (55)

Two—-center repulsion integrals were calculated by the formula of Mataga

and Nishimoto,62

14.397

(pp,qq) = ev, (56)

Pq Pq
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where rpq is the distance in Angstroms between nuclei p and ¢, and apq

is calculated by

28.794 0

a = . 57
pqa  (ppsipp) + (qq;49q) G7)

Valence state ionization encrgies (Wq) for carbon and oxygen were taken

as 11.16 and 17.70eV, respectively. The elements of the bond-order charge-
density matrix (qu) were used as criteria of self-consistence. When

every element of qu changed by less than 0.001 between successive in-
teractions, self-consistence was deemed achieved. The final molecular
orbitals and MO encrgies obtained for the pi systems of ODB, 1DB and 2DB
are shown in Tables 9-11, respectively. TG is evident that the SCF MO
cnergy levels obtained here parallel the energy pattern obtained by the

HMO method. Of interest again are the energies of LEMO's for B,BC, and

ABC
5

follows the trend obtained hy the UMO methods showing a destabilization

BC (3.199ev) <

ABC. The pattern n3B(—3.265eV) <y (-3.132¢V)
of the LEMO of the diketone upon interaction with the ethylene systems.

The destabilization of LEMO's calculated here is almost exactly twice as

large as the values obtained by the HMO method with £ = 2.38eV.

Interactions betwecen Molecules

The next level of approximation again considered the effects
‘nf the pi eclectrons in the cyclohexene rings on the electronic structure
of the diketone system by the direct, through-space mechanism. 1In these
caleculations, however, the all-valence-shell MO methods, EHMO and CNDO/2,
described in the previous chapter werc utilized. These methods can morc
satisfactorily show the changes in the nonbondiﬁg as well as the pi orhi-

tals in the diketonce upon interaction with the ethylene orbitals since
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TABLE 9

PI MO'S AND ENERGIES FOR ODB BY THE SCF MO METHOD

B B B B
MO i o Tq 4
Energy (eV) -14.581 -13.036 -3.265 -0.205
C2V Symmetry BZ A2 B2 A2
C_ Symmetry A A”” A~ A””
Coefficients
0(1) 0.5205 0.6261 0.4777 0.3299
C(2) 0.4769 0.3311 -0.5219 -0.6249
*CS plane perpendicular to the C-C bond.
TABLE 10
PI MO'S AND ENERGIES FOR 1DB BY THE SCF MO METHOD
MO BC BC BC BC BC . BC
" "2 "3 "4 s 6
Energy (eV) -14.580 -12.988 -11.029 ~3.199 ~-0.824 -0.086
C Symmetry A’ A"~ A’ A~ A"” A””
Coefficients
0(1) 0.5140 0.6256 0.1017 0.4740 0.1207 0.3077
C(2) 0.4774 0.3313 0.0089 -0.5215 -0.2106 ~0.5882
c(5) 0.0811 0.0086 -0.6996 ~0.0622 -0.6642 0.24238




TABLE 11

PI MO'S AND ENERGIES FOR 2DB BY THE SCF MO METHOD

TAS

_ ABC ABC ABC ABC ABC ABC ABC ABC
MO "1 ) 3 "4 s "6 7 g
Energy (eV) ‘ -14.580 -12.941 -11.018 -11.007 -3.132 -0.869 -0.716 0.014
szSymmetry B2 A2 Al B2 B2 A2 Bl A2
Coefficients
o) 0.5075 0.6252 0.0573 0.1312 0.4704 0.1484 0.0104 0.2959
Cc(2) 0.4776 0.3318 0.0055 0.0122 -0.5211 -0.2561 -0.0183 ~-0.5693
c(5) 0.0808 0.0087 -0.6547 -0.2467 0.0613 -0.4821 0.4742 0.2069

c(7) -0.0806 -0.0093 -0.2606 0.6494 -0.0618 0.4240 0.5241  -0.2127
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the nonbonding orbitals are now more completely described as part of the
diketone electronic structure.
The molecules shown in Figure 7, with atomic coordinates given in
Table 12, were used to construct the unsaturated segments of 0DB, 1DB,
and 2DB for these calculations. The coordinates of carbon and oxygen

atoms as well as those of H(5), H(6), H(9), and H(10) are C v-symmetry

2
averages of the coordinates obtained from the crystal structure of 2DB.
The remaining hydrggen atoms in Figure 7 were introduced into the mole-
cular fragments to maintain the hybridization of the carbon atoms in the
original systems. These hydrogens were placed 1.040 K from the carbon
atom to which they are shown bonded and in the direction dictated by the
appropriate C-C bond in the crystal structure of 2DB. The atom-numbering

scheme in Figure 7 will label AO basis functions in the following calcu-

lations.

Extended Hiickel Molecular Orbital (EHMO) Calculations

EHMO calculations, as described in Chapter 2, were carried out
with Hoffmann's computer program.63 Slater atomic orbitals were used
as basis functions with Slater exponents of 1.300, 1.625, 2.275 for
hydrogen (1s), carbon (2s and 2p), and oxygen (2s and 2p) orbitals,
respectively. Coulomb integrals (Hii) were taken from the valence state

ionization potentials of Skinner and Pritchard48’49

and are shown in
Table 13. Resonance integrals were calculated by Eq. 41 as Hij = 0.5
KS.,,(H,, + H,,) with K = 1,75,
1] 11 13
Calculations were carried out for the species B and C, and for

the composite systems AC, BC, and ABC. For clarity of representation,

the following tables and interaction diagrams only show data for those



FIGURE 7.
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Molecules used for intermolecular interaction
studies by the EHMO and CNDO/2 methods.
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TABLE 12
ATOMIC COORDINATES OF MOLECULES USED FOR INTERMOLECULAR INTERACTION

STUDIES BY THE EHMO AND CNDO/2 METHODS

Atom x(R) v(2) 2 (8)
0(1) -1.626 0.0 2.368
c(2) -0.775 0.0 1.533
c(3) 0.775 0.0 1.533
0(4) 1.626 0.0 2.368
c(5) -0.658 2.504 -0.184
c(6) 0.658 2.504 ~0.184
c(7) ~0.658 -2.504 -0.184
c(8) 0.658 -2.504 -0.184
H(1) ~0.782 0.0 0.493
H(2) 0.782 0.0 0.493
H(3) ~1.194 1.651 -0.442
H(4) 1.194 1.651 ~0.442
H(5) ~1.201 3.352 0.073
H(6) 1.201 3.352 0.073
H(7) ~1.19 -1.651 ~0.442
H(8) 1.194 -1.651 -0.442
H(9) -1.201 -3.352 0.073
11(10) 1.201 -3.352 0.073

TABLE 13

COULOMB INTEGRALS FOR EHMO CALCULATIONS

Orbital Hii(eV)
1H(1ls) -13.60
C(2s) -21.40
Cc(2p) -11.40
0(2s) -32.30

0(2p) -14.80
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orbitals which were identified as pi MO's. The highest occupied mole-
cular orbital (HOMO) is also shown for those systems which contain the
diketone. This MO was always identified as the symmetric combination
of two lone-pair orbitals from the oxygen atoms, delocalized somewhat
over neighboring atoms. It is this combination of lone-pair AO's,
identified as MO n, which can give rise to the symmetry-allowed n-+m*
transition for the systems studied. The MO coefficients are identified
by the atom symbol and numbers assigned in Figure 7 and also the AO's for
the case of carbon and oxygen atoms. Here s, x, y, and z stand for the
2s, ZpX, 2py, and 2pZ AO's, respectively.

The LEMO for each of the three systems B, BC, and ABC (w B,
WABC, and ﬂs
MO's W4BC and WBABC also show significant contributions from those basis

functions which build the pi MO's of the ethylene groups, C(5,y) and

BC, respectively) is a pi MO centered on the diketone. The

C(5,2z) and their symmetry-related basis functions, with smaller contri-
butions from those basis functions which build the sigma structure of the

ethylenes. The interaction between the pi systems of the diketone and

ABC
5

compared to the LEMO of the isolated diketone, H3B (Table 21). The in-

the ethylenes results in a destabilization of the LEMO's NABC and 7

teraction 18 again of an antibonding nature, as calculated by the HMO
method, with nodes between the nearest-approaching basis functions from
the separate systems.

The highest occupied orbital in each case, labeled nB, nBC, and
nABC has its major contributions from the 2px and 2pz AO's of the two

oxygen atoms. The coefficients of these AO's are such that the resulting

contributing orbital from each oxygen is nearly perpendicular to the carbonyl
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TABLE 14

PI MO'S AND ENERGIES FOR ETHYLENE BY THE EHMO METHOD

MO ﬂlc ﬂzc

Energy (eV) -13.276 -8.058

CS Symmetry#* A~ A°”
Coefficients+

c(5,2) 0.8339 0.6247

*CS plane is perpendicular to the C-C bond.

+The molecular plane is the xy plane.

TABLE 15

PI MO'S AND ENERGIES FOR ETHYLENE-ETHYLENE BY THE EHMO METHOD

AC AC AC AC
MO "1 Ty Tq n4
Energy (eV) =13.277 -13.274 ~8.058 ~-8.057
sz Symmetry A1 B2 B1 A2
Coefficients
c(5,y) 0.1275 0.1289 0.1709 0.1713
c(5,2) -0.4220 ~0.4235 -0.5645 -0.5641
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TABLE 16

MO > ™"
Energy (eV) -12.657 -10.994
Cs Symme try* A” A”
sz Symmetry Al B2
Coefficients
0(1,s) 0.0 0.0 ~-0.0038 0.0
C(2,s) 0.0 0.0 0.1042 0.0
0(1,x) 0.0 0.0 ~0.4639 0.0
C(2,x) 0.0 0.0 0.3653 0.0
0(1,y) 0.7515 0.6345 0.0 0.44
c(2,y) 0.2847 0.2162 0.0 -0.60
0(1,z) 0.0 0.0 -0.2720 0.0
Cc(2,2z) 0.0 0.0 0.1970 0.0

*Cs plane is perpendicular to the C~C bond.
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TABLE 17

MO'S AND ENERGIES FOR GLYOXAL-ETHYLENE BY THE EHMO METHOD

O . BC - BC - BC LBC - BC - BC - BC
1 2 3 4 5 6
Energy (eV) -15.652 -15.359 -13.273 -12.626 -10.914 -8.1698 -7.353
C, Symmetry A’ A” A” A~ A’ A”” A°”
Coefficients
H(1) -0.0029 0.0110 0.0072 0.2265 -0.0082 0.0187 -0.0100
H(3) 0.0273 -0.0162 -0.0009 -0.0223 0.0212 0.0059 0.0155
H(5) -0.0266 0.0230 0.0006 -0.0014 0.0001 -0.0009 -0.0053
0(1,s) 0.0019 0.0054 0.0037 0.0046 -0.0010 0.0015 -0.0007
c(2,s) -0.0017 -0.0018 0.0153 -0.1010 -0.0015 0.0041 -0.0032
c(5,s) 0.0077 0.0031 -0.0003 -0.0085 0.0106 0.0011 0.0056
0(1,x) 0.0126 -0.0625 -0.0390 0.4579 -0.0063 0.0050 -0.0030
c(2,x) 0.0112 -0.0067 0.0307 -0.3631 0.0057 -0.0069 0.0048
C(5,x) 0.0124 -0.0038 0.0015 0.0320 -0.0012 -0.0040 -0.0158
o(l,y) -0.5686 -0.6297 0.0825 0.0164 0.4374 0.1528 0.3237
c(2,y) -0.2809 -0.2151 -0.0478 -0.0135 -0.6002 -0.3094 -0.7159
c(5,y) -0.0305 0.0209 0.1805 0.0449 -0.0477 0.2148 -0.1207
0(1,z) 0.0296 -0.0144 -0.0120 0.2718 -0.0059 0.0059 -0.0040
c(2,2) 0.0086 -0.0202 -0.0027 -0.2022 0.0099 -0.0169 0.0116
c(5,2) ~-0.0361 0.0010 -0.5901 -0.0266 0.0816 -0.7245 0.3228

eT



TABLE 18

PI AND n MO'S AND ENERGIES FOR GLYOXAL-2 ETHYLENE BY THE EHMO METHOD

MO 1rlABc TTZABC Tr3ABc 1r4ABc LABC TTSABc Tr6ABc 1T7ABC "Ach
Energy (eV) -15.646 -15.362 -13.309 -13.235 -12.592 -10.839 -8.269 -8.024 -7.232
C,, Symmetry B, A, B, A A B, A, B, A,
Coefficients
H(1) 0.0 0.0 0.0 0.0071 0.2292 0.0 0.0 0.0303 0.0
H(3) 0.0258 0.0220 0.0024 -0.0033 =0.0231 -0.0203 -0.0080 -0.0017 0.0144
H(5) -0.0246 -0.0296 -0.0004 0.0013 -0.0011 -0.0003 0.0025 0.0020 -0.0045
0(1,s) 0.0 0.0 0.0 0.0053 0.0056 0.0 0.0 0.0024 0.0
c(2,s) 0.0 0.0 0.0 0.0239 -0.0972 0.0 0.0 0.0075 0.0
c(5,s) 0.0072 -0.0039 0.0009 -0.0013 -0.0090 -0.0101 -0.0025 -0.0017 0.0049
0(1,x) 0.0 0.0 0.0 -0.0637 0.4508 0.0 0.0 0.0082 0.0
c(2,x) 0.0 0.0 0.0 0.0496 -0.3602 0.0 0.0 -0.0118 0.0
c(5,x) 0.0114 0.0047 0.0001 0.0013° 0.0318 0.0005 0.0067 0.0031 -0.0144
o(l,y) -0.5680 0.6299 0.1130 0.0 0.0 -0.4311 -0.1759 0.0 0.3114
c(2,y) ~0.2786 0.2161 -0.0638 0.0 0.0 0.6008 0.3518 0.0 -0.6968
c(5,y) -0.0282 -0.0271 0.1236 0.1312 0.0485 0.0452 -0.1413 0.1755 0.0998
0(1,2) 0.0 0.0 0.0 -0.0213 0.2714 0.0 0.0 0.0102 0.0
-¢(2,2) 0.0 0.0 0.0 -0.0017 -0.2075 0.0 . 0.0 -0.0290 0.0
-0.0024 =0.4151 -0.4193 -0.0352 -0.0781 0.4955 -0.5628 0.2705

c(5,z) -0.0345

€eT
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bond and coplanar with the diketone. Significant contributions to this
MO are also obtained from the 2px and 2pz AO's of the carbonyl carbons
while smaller contributions arise from several other basis functions.
This orbital is interpreted to be a molecular orbital arising from the
interaction of two lone-pair 2p AO's of the oxygens through the C-C
bond of the carbonyl carbons with additional delocalization over other
parts of the molecule. Although it no longer has the appearance of an
isoléted nonbonding atomic orbital, it will be referred to as a nonbond-
ing orbital. All-valence-shell as well as aB initio calculations of
other molecular systems have also shown the liberal delocalization of
lone-pair orbitals.64’65

The interaction of this orbital with the ethylene MO's also re-
sults in a destabilization relative to the corresponding orbital in the
isolated diketone. The effects in this case, however, are of smaller
magnitude than those obtained for the LEMO's.

An electronic transition from the HOMO to the LEMO in each of
the three cases corresponds to an n»r* transition that is symmetry
allowed and has a polarization perpendicular to the plane of the diketone.
The n»r* transition energies, summarized in Table 21, are all too low in
magnitude compared to the observed solution spectra. As in the simpler
HMO and the SCF MO calculations, the calculations by the EHMO method
again predicts a blue-shifted n»n* transition as the result of inter-
acting the diketone with the ethylene group.

Since the effects of all valence-~shell electrons can be utilized
in these calculations, a glyoxal-ethane aggregate was also treatéd By the
EHMO method to test the effects of a saturated group in close proximity

to the diketone on the n»>r* transition energy. The atom-numbering
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scheme and atomic coordinates used for this calculation are shown in

Figure 10 and Table 19, respectively.

¥ 4

o(l)

C(2) H(3) (5)
AN i H(7)

| - c(5)
Mcla) y
C(e)
H(8) X

FIGURE 10. Glyoxal-ethane aggregate for all-valence-shell MO calculations.

TABLE 19

ATOMIC COORDINATES FOR GLYOXAL-ETHANE CALCULATIONS

Atom x(X) y(z) z(g)

0(1) -1.626 0.0 2.370
c(2) -0.775 0.0 1.533
Cc(3) : 0.775 0.0 1.533
0(4) 1.626 0.0 2.370
c(5) =0.770 2.508 0.082
c(6) 0.770 2.508 0.082
H(1) -0.782 0.0 0.493
H(2) 0.782 0.0 0.493
H(3) -1.177 1.676 -0.390
H(4) 1.177 1.676 -0.390
H(5) -1.100 2.522 1.068
H(6) 1.100 2.522 1.068
H(7) -1.100 3.362 -0.412

H(8) 1.100 3.362 -0.412




PI AND n MO'S AND ENERGIES FOR GLYOXAL-ETHANE BY THE EHMO

TABLE 20

METHOD
MO “1 nz n n3 n4
Energy (eV) -15.587 -15.375 -12.627 -10.903 -7.456
C, symmetry A~ A°” A” A” A””
Coefficients
H(1) 0.0081 -0.0158 -0.2260 -0.0082 -0.0042
H(3) -0.0348 -0.0087 0.0236 0.0277 0.0194
H(5) -0.0680 0.0563 0.0030 0.0282 0.0204
H(7) 0.0992 -0.0573 -0.0045 -0.0297 -0.0299
0(1,s) -0.0082 -0.0070 -0.0045 -0.0014 -0.0004
c(2,s) 0.0067 0.0020 0.1015 -0.0014 -0.0018
c(5,s) -0.0124 -0.0065 0.0060 0.0173 0.0109
0(1,x) -0.0107 0.0727 -0.4588 -0.0062 -0.0012
c(2,x) -0.0300 0.0082 0.3642 0.0054 0.0020
c(5,x) -0.0133 0.0060 -0.0239 -0.0022 -0.0330
-0(1,y) 0.5505 0.6179 -0.0117 0.4386 0.3561
c(2,y) 0.2561 0.2138 0.0095 -0.6046 -0.7802
c(5,y) 0.0877 -0.0300 -0.0383 -0.0248 -0.0164
o(1,z) -0.0905 0.0163 -0.2720 -0.0051 -0.0018
c(2,2) -0.0156 0.0244 0.2020 0.0095 0.0053
c(5,2) 0.0564 -0.0229 0.0263 0.0236

-0.0824

8ET
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The ethane molecule was placed at that position which the outer segment
of a cyclohexane ring of ODB would occupy when in the boat form and folded
toward the diketone. This places the ethane molecule slightly closer
to the diketone than ethylene in previous calculations due to the differ-
ence in bond distances and angles in cyclohexane and cyclohexene rings.

Inspection of Table 21 shows that for the orientations chosen,
the effects of an ethylene or an ethane mblecule on the nonbonding orbital
of glyoxal are identical. For each case, this orbital is destabilized by
0.030 eV, from -12.657 eV to -12.627 eV. The effects on the LEMO, however,
are slightly different. Ethylene destabilizes the LEMO of glyoxal by
0.080 eV while ethane destabilizes this MO by 0.091 eV. Although this
is not a large energy difference, it does predict a smaller n>n* transi-
tion energy for a glyoxal-ethylene than for glyoxal-ethane aggregate.

The total electronic ground-state energies of the aggregates,
calculated as sums of one-electron orbital energies, show net destabili-
zation for both glyoxal-ethylene and glyoxal-ethane aggregates when com-
pared to the isoléted noninteracting systems (Table 22). However, a
smaller destabilization is calculateéd for glyoxal-ethylene than glyoxal-

ethane.

CNDO/2 Calculations
The molecular species of Figures 7 and 10 were next used for a
series of CNDO/2 calculations. Molecular aggregates were formed in the
same manner as for the EHMO calculations with the atomic coordinates of
Tables 12 and 19. The CNDO/2 formulation of Del Bene and Jaffé,54’55
described in Chapter II, and a CND6/2-computer program kindly provided by

Dr. H. H. Jaffé66 were employed for this purpose. These calculations are
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TABLE 21
n>7%* TRANSITION ENERGIES FOR MOLECULAR AGGREGATES STUDIED

BY THE EHMO METHOD

System LEMO (eV) HOMO (eV) AE (eV) A (mp)

Glyoxal ~10.994 -12,657 1.663 746

Glyoxal-Ethylene -10.914 ~12,627 1.713 723

Glyoxal-Ethane -10.903 -12.627 1.724 718

Glyoxal-2 Ethylene ~10.839 ~12.593 1.756 707
TABLE 22

TOTAL GROUND-STATE ELECTRONIC ENERGIES FOR MOLECULAR AGGREGATES

STUDIED BY THE EHMO METHOD

System Energy (eV) Stabilization*(eV)
Glyoxal -429.147

Ethylene -213.228

Ethane -248.656

Ethylene-Ethylene -426.536 -0.080
Glyoxal-Ethylene -642.096 +0.279
Glyoxal-Ethane -677.333 +0.470

Glyoxal-2 Ethylene -855.026 +0.577
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expected to provide the most sensitive tests of the effects of through-
space interactions on the n+n* transition energies of the diketones. As
in the EHMO method, pi and lone-pair orbital energies are obtained
explicitly by this all-valence-shell calculation but now electron
repulsion terms are also included in the calculation of orbital ener-
gles and configuration transition energies. In addition, the method
also allows n>n* transition energies to be calculated after configura-
tion interaction (CI). 1In this work, all state-transition energies
are based on CI calculations which utilize the forty lowest one-electron-
excited configurations.

' Basis functions for the CNDO/2 method are Slater atomic orbitals
for which overlap integrals are calculablg by the method of Mulliken,

34

et al. The Slater exponents, as well as other parameters used here are

shown in Table 23. These parameters are the optimum values found by

TABLE 23

PARAMETERS FOR CNDO/2 CALCULATIONS

Parameter H- : C : 0
Slater exponent 1.200 1.625 2.275
Core integral of s orbital (eV) -14.352 -28.102 -50.780
Core integral of p orbital (eV) ~-11.144 -18.222
One-center repulsion integral (eV) 12.85 11.11 13.00
Resonance integral term, R°(eV) -12.00 -17.00 -45.00

Del Bene and Jaffésa’55

for predicting spectral data most consistently
for a range of organic compounds. Resonance integrals were calculated

by Eq. 54, as qu = O.Sk(BZ + Bg)Spq with k=1.0 for sigma-overlap contri~-
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butions to qu, while k=0.585 for pi-overlap contributions as suggested
by Del Bene and Jaffé. Two-center repulsion integrals were evaluated
by the extrapolation method of Pariser and Parr.42 Orbital energies
were used as the criterion of self-consistence, interactions were termi-
nated when every MO energy changed by less than 0.0001 hartree. The
energies and coefficients of the pi MO's and the nonbonding MO in sys-
tems involving the diketone are shown in Tables 24-29. The HOMO for
each system which contains the diketone is the nonbonding orbital of
the dicarbonyl group. It is quite similar in form to the corresponding
HOMO obtained by the EHMO method, a symmetric combination of two lone-
pair orbitals from the dxygens with lesser contributions from neighboring—
atom AO's. The LEMO for each system containing the diketone is an anti-
bonding pi MO centered primarily on the diketone.

The interactions between the MO's of glyoxal and the ethylenes
produce results (Figures 11 and 12) which are quite similar to those

calculated by the EHMO method. The LEMO and HOMO of glyoxal are both

destabilized upon aggregate formation. For aggregates of glyoxal and

TABLE 24

PI MO'S AND ENERGIES FOR ETHYLENE BY THE CNDO/2 METHOD

C C
MO "l “2
Energy (eV) -11.941 1,281
CS symmetry* A~ A°”
Coefficients
c(5,y) -0.1925 ) -0.1924
c(5,z) 0.6802 0.6802

*CS plane perpendicular to the C-~C bond.
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TABLE 25

PI MO'S AND ENERGIES FOR ETHYLENE-ETHYLENE BY THE CNDO/2 METHOD

AC AC AC AC

MO wl “2 “3 w4
Energy (eV) -11.942 -11.936 1.282 1.283
sz Symmetry Al B2 Bl A2
Coefficients

c(5,y) -0.1352 -0.1370 -0.1345 -0.1376

Cc(5,z2) 0.4801 0.4818 0.4760 0.4879

TABLE 26
PI AND n MO'S AND ENERGIES FOR GLYOXAL BY THE CNDO/2 METHOD
B B B B B

MO wl “2 n n3 w4
Energy (eV) -17.020 -15.052 -10.974 -0.170 2.077
CS Symme try* ’ A”” A’ A~ .
sz Symmetry B2 A2 A1 B2 A2
Coefficients

H(1) 0.0 0.0 -~0,2263 0.0 0.0

0(1,s) 0.0 0.0 0.0086 0.0 0.0

c(2,s) 0.0 0.0 0.1170 0.0 0.0

0(1,x) 0.0 0.0 -0.4445 0.0 0.0

c(2,x) 0.0 0.0 0.3110 0.0 0.0

o(1,y) 0.5202 0.5933 0.0 0.4790 0.3847

c(2,y) 0.4790 0.3847 0.0 -0.5201 -0,5933

0(1,z) 0.0 0.0 -0.3442 0.0 0.0

c(2,z) 0.0 0.0 0.1490. 0.0 0.0

*CS plane perpendicular to C-C bond.
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PI AND n MO'S AND ENERGIES FOR GLYOXAL-ETHYLENE BY THE CNDO/2 METHOD

MO T BC T BC T BC nBC T BC T BC T BC
1 2 3 4 5 6
Energy (eV) ~16.852 -14.857 -12.273 -10.821 -0.037 0.772 2.204
CS symmetry A~ A”” A~ A” A~ A”” A"~
Coefficients
H(1) 0.0123 -0.0015 0.0060 -0.2296 0.0064 0.0130 -0.0045
H(3) -0.1660 -0.1585 -0.0082 0.0231 -0.0151 0.0081 0.0045
H(5) -0.0935 0.1398 0.0014 -0.0066 0.0106 0.0082 -0.0110
0(1,s) 0.0049 0.0015 0.0052 0.0078 0.0003 0.0007 0.0001
c(2,s) 0.0094 0.0024 .0.0314 0.1112 0.0014 0.0079 -0.0052
c(5,s) 0.0005 -0.0127 -0.0111 0.0180 -0.0193 -0.0135 0.0186
o(1,x) -0.0321 -0.0760 -0.0598 -0.4382 0.0047 0.0017 -0.0008
c(2,x) -0.0084 -0.0160 0.0375 0.3077 -0.0041 -0.0031 -0.0018
Cc(5,x) 0.2993 0.0099 0.0190 -0.0249 0.0066 0.0048 -0.0095
0(1,y) 0.4423 0.5388 0.1091 -0.0216 -0.4733 0.0836 0.3747
c(2,y) 0.4026 0.3409 0.0333 0.0034 0.5220 -0.1054 -0.5840
c(5,y) 0.0256 0.1803 0.1960 -0.0495 0.0262 0.1891 -0.0472
0(1,2) -0.0220 -0.0723 -0.0374 -0.3416 0.0048 0.0022 -0.0026
c(2,2) -0.0248 -0.0221 -0.0105 0.1540 -0.0062 -0.0125 0.0035
c(5,z) 0.1155 0.0649 -0.6637 0.0576 -0.0438 -0.6674 0.1251

79T



TABLE 28

PI AND n MO'S AND ENERGIES FOR GLYOXAL-2-ETHYLENE BY THE CNDO/2 METHOD

MO T ABC T ABC T ABC nABC T ABC T ABC T ABC T ABC
1 3 4 5 6 7 8
Energy (eV) -16.751 -12.263 ~12.258 -10.678 0.089 0.733 0.844 2.319
sz Symmetry B2 B2 Al Al B2 A2 B1 _A2
Coefficients
H(1) 0.0 0.0 0.0002 0.0096 -0.2331 0.0 0.0 0.0195 0.0
H(3) 0.1252 0.1 0.0053 -0.0064 0.0233 0.0148 -0.0066 0.0047 -0.0043
H(5) 0.0602 0.1095 -0.0004 0.0016 -0.0070 -0.0104 -0.0043 0.0076 0.0106
o(1,s) 0.0 0.0 0.0001 0.0076 0.0070 0.0 0.0 0.0010 0.0
c(2,s) 0.0 0.0 0.0007 0.0444 0.1053 0.0 0.0 0.0124 0.0
c(5,s) 0.0044 0.0123 0.0073 -0.0085 0.0185 0.0188 0.0070 -0.0127 -0.0179
0(1,x) 0.0 0.0 -0.0013 -0.0843 -0.4321 0.0 0.0 0.0028 0.0
C(2,x) 0.0 0.0 0.0008 0.0527 0.3044 0.0 0.0 -0.0040 0.0
C(5,x) -0.2088 0.0095 -0.0135 0.0134 -0.0246 -0.0063 -0.0020 0.0051 0.0091
o(1,y) -0.4387 0.5351 -0.1544 0.0024 0.0 0.4681 -0.1082 0.0 0.3676
Cc(2,y) -0.3973 0.3326 -0.0475 0.0008 0.0 -0.5239 0.1343 0.0 0.5783
c(5,y) -0.0220 0.1427 -0.1348 0.1424 -0.0500 -0.0251 -0.1300 0.1387 0.0433
0(1,2) 0.0 0.0 -0.0008 -0.0522 -0.3390 0.0 0.0 0.0040 0.0
c(2,2) 0.0 0.0 -0.0002 -0.0157 0.1594 0.0 0.0 -0.0186 0.0
c(5,2) -0.1068 0.0533 0.4593 -0.4791 0.0581 0.0427 0.4668 -0.4799 -0.1133

AN



146

TABLE 29

PI AND n MO'S AND ENERGIES FOR GLYOXAL-ETHANE BY THE CNDO/2 METHOD

MO Ty Ty n Ty T4
Energy (eV) ~-16.547 -14.530 ~10.828 -0.042 2.151
Cs Symmetry A" A°” A” A’ A””
Coefficients
H(1) 0.0183 ~0.0018 -0.2260 0.0068 -0.0039
H(3) 0.0235 -0.0530 0.0241 -0.0204 0.0108
H(5) 0.0116 -0.1730 0.0022 -0.0172 0.0085
H(7) 0.1784 0.2030 -0.0120 0.0398 ~-0.0289
0(1,s) 0.0125 0.0012 0.0081 0.0006 0.0005
c(2,s) 0.0120 0.0009 0.1124 0.0014 -0.0041
c(5,s) -0.0764 -0.0215 0.0138 -0.0320 0.0240
0(1,x) -0.0249 -0.0755 ~-0.4418 0.0047 -0.0007
c(2,x) 0.0165 -0.0196 0.3097 -0.0039 -0.0018
C(5,x) -0.3437 0.0141 -0.0145 0.0075 -0.0143
o(1,y) 0.4280 0.4980 -0.0141 ~-0.4721 0.3817
c(2,y) 0.3699 0.3016 0.0040 0.5229 ~0.5936
c(5,y) 0.1239 0.1726 -0.0342 0.0096 -0.0053
0(1,2) 0.0142 -0.0871 -0.3443 0.0043 ~-0.0024
c(2,z) -0.0214 -0.0151 0.1541 -0.0059 0.0021
c(5,2) -0.0771 ~-0.2068 -0.0157 -0.0128 0.0087
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ethylenes, the destabilization of both orbitals is almost exclusively due
to the bonding pi MO's of the ethylenes. A CNDO/2 calculation was also
made for a glyoxal-ethane aggregate for comparison. A destabilization
was also calculated here for both the HOMO and the LEMO of the diketone.
This is attributable to the nearest lying sigma orbital of ethane with
A" symmetry, an orbital at -16.126 eV that is strongly C-C bonding with
considerable C-H bonding, involving hydrogens 3,4,5, and 6. The ethy-
lene and ethane molecules are nearly equally effective in this through-
space interaction, destabilizing the LEMO by 0.13 eV and the HOMO by
0.15 eV (Table 30). This fact in itself seems to clearly indicate that
a consideration of the through-space interaction between the pi systems
alone can not be used to explain the absorption spectra of the tricyclic
compounds considered.

With the inclusion of electron repulsion, transition energies
are properly calculated by Eq. 36 as configuration transition energies
and improved by configuration interaction to yield state transition
energies. Values of the n>r* transition energies for the molecular
aggregates considered are shown in Table 30. For all cases, a larger
n>* transition energy is calculated for the molecular aggregates than
for glyoxal alone. Glyoxal-ethylene and glyoxal-ethane show nearly
identical values, particularly after configuration interaction, with pre-
dicted absorption maxima at 484 and 485 mu, respectively. The presence
of two ethylene molecules shows a larger blue-shift. The peak maximum
for glyoxal-2 ethylene is calculated at 457 mp, compared to 494 mu for
glyoxal alone. It may be noted that the observed n+n* transition energies
are much closer to the CI energies which were calculated here than to the

transition energies calculated by the EHMO method.
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TABLE 30
n+1% TRANSITION ENERGIES FOR MOLECULAR AGGREGATES

STUDIED BY THE CNDO/2 METHOD

n>r* Transition

LEMO HOMO Configuration State
System (eV) (eV) AE(eV) »(mu) AE(eV)  x(mp)
Glyoxal -0.170 -10.974 3.132 396 2.508 494
Glyoxal-Ethylene -0.037 -10.821 3.202 387 2.562 484
Glyoxal-Ethane -0.042 -10.828 3.165 392 2.545 485

Glyoxal-2 Ethylene 0.089 -10.673 3.263 380 2,712 457

TABLE 31
TOTAL GROUND-STATE ELECTRONIC ENERGIES FOR MOLECULAR AGGREGATES

STUDIED BY THE CNDO/2 METHOD

System Energy Stabilization* (eV)
Glyoxal -759.825

Ethylene -246.244

Ethane -270.133

Ethylene-Ethylene -482,567 +9.921
Glyoxal-Ethylene -962,341 +43.728
Glyoxal-Ethane -962,208 +67.750
Glyoxal-2 Ethylene -1154.937 +97.376

*Compared to noninteracting systems. Positive values indicate
destabilization.
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The total electronic ground-state energy for all molecular aggre-
gates formed shows a large destabilization compared to the isolated non-
interacting systems. These effects are much larger than those calculated
by the EHMO method, as expected, since electron repulsion terms are in-
cluded in the CNDO/2 formulation. The glyoxal-ethane system again
shows a larger destabilization than glyoxal-ethylene. But the small energy
difference infers that the through-space interaction of the saturated or
unsaturated species in the six-membered rings with the glyoxal moiety is
not very large and can not be used to'explain the variation of the n—+m*

transition in the series.

Intramolecular Interactions

The above studies of through-space interactions between molecules
has clearly failed to show a red-shifted n-rm#* trapsition for the diketone
when allowed to interact with one or two ethylene molecules. Indeed, a
blue-shifted transition was calculated for the interacting systems. Cal-
culations presented here are based on whole molecules which include the
segments previously considered. Electronic interactions can proceed
not only through spatial overlap but also through the intervening bonds
of the molecule which are now included. The likely importance of tﬁis
inclusion can be seen by examining the overlaps of the pi systems with
the sigma bonds now present in the model. The total effect is reflected
in the resulting MO energies.

The fourteen species shown in Figure 13 were used for these calcu-
lations. These represent the nonredundant geometric configurations of
five different molecules with the six-membered rings always in the boat

form. The atomic coordinates of the fourteen species used in these
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calculations are shown in Appendix A. Coordinates of V are the sz—
symmetrized values of the coordinates obtained from the crystal struc-
ture of this molecule. For VI and VII, the cyclohexene rings were folded
away from the diketone system in such a way that all bond lengths and
angles remained unchanged from the corresponding values in V. The satu-
rated six-membered rings in VIII-XIV were constructed by keeping the
geometry at the bridge-head carbons very close to that of V and making
all other C-C~-C, C-C-H, and H-C-H angles tetrahedral. Bond lengths
for C-C and C-H were taken at 1.540 and 1.040 X, respectively. Coordi-
nates of the six-membered rings in I-IV are identical to those of the
tricyclic analogs. Two hydrogen atoms were introduced into these species
to maintain the hybridiéation of the bridge-head carbons the same as in
the tricyclic species. They were placed at 1.040 X from the carbon atom
to which they are bonded in the direction of the carbon atoms they re-
place in the tricyclic analogs. The four-membered ring and the two
oxygen atoms are kept coplanar for all species, using the bond lengths
and angles from the crystal structure of V.

A common atbm—numbering scheme for the identification of atomic
coordinates and AO basis functions is used here for all species, although
only XII-XIV possess all the atoms shown in Figure 14. For VIII-XI, H(15)
and H(16) are deleted, while for V-VII, H(13) and H(14) are also deleted.
Removal of these hydrogens and the formation of double bonds alters the
coordinates of nearby atoms, as seen in Appendix A. The two introduced
hydrogens in I-IV are labeled H(17) and H(18), while the remaining atoms
have the labels of the corresponding atoms in the tricyclic analogs. The

EHMO and CNDO/2 methods were used here with all parameters unchanged
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from those used in the previous calculations described (Tables 13 and 23).

EHMO Calculations

The energies of all pi MD’s and the HOMO (n) for the fourteen species
of Figure 13 are shown in Table 32. The corresponding values for glyoxal,
previously discussed, are also included here for reference. The labels
chosen for the pi MO's reflect the bonding and antibonding characteristics
of these orbitals as well as the major contributing basis functioms. Thus,
nl(CO) and ﬂZ(CO) are the lowest and second-lowest Bonding pi MO's which
have their major contributions from basis functions of the dicarbonyl
segment of the molecules and nl*(CO) and nz*(CO) are the antibonding orbi-
tals centered on this part of the molecule. For the unsaturated diketones,
the pi MO's which are centered on the C-C double bonds are labeled nl(CC)
and wz(CC) for bonding MO's and wl*(CC) and ﬂz*(CC) for the antibonding
orbitals. The orbital labeled n contains the symmetric combination of
the oxygen lone-pair orbitals and was found to be the HOMO for each of
the molecules studied. The LEMO for each molecule was found to be the
orbital labeled ﬂl*(CO), the lowest-energy antibonding pi MO centered on
the diketone part of the molecule. The coefficients of the HOMO and LEMO
of all molecules are tabulated in Appendix B.

The effects of the six-membered rings on the energies of the HOMO
and LEMO can be seen in Figure 15 and Table 32. One six—mémbered ring
elevates both the HOMO and the LEMO by approximately 0.4 eV while two
rings raise the energy of these MO's by average values of 0.6 and 0.5 eV,
respectively, compared to the corresponding MO's of glyoxal. These
effects are 5-10 times as large as the corresponding energy level changes

calculated for the through-space interactions (Table 21). Definite



TABLE 32

ENERGIES OF PI AND n MO'S OF GLYOXAL AND I-XIV BY THE EHMO METHOD

MO ﬂl(CO) WZ(CO) ﬂl(CC) ﬂz(CC) n ﬂl*(CO) Wl*(CC) ﬂz*(CC) “2*(CO)
C, Symmetry A" A" A” A” A” A’ A”” A" A*”
Cyy Symmetry By ) Ay ) Ay B By ) Ay
Molecule Point

Group Energy (eV)
Glyoxal sz -15.659 -15.358 -12.657 -10.994 -7.521
I C -15.481 -15.331 -12.751 -12,141 -10.589 -7.624 -7.202
II Cz -15.688 -15.331 -12.666 -12.199 -10.556 -7.652 -7.146
III CS -15.567 -15.307 -12.234 -10.580 -7.202
1v Cs -15.610 -15.367 -12,217 -10.583 -7.211
v CZv -15.911 -15.467 -12.884 -12.517 -12.001 -10.531 -7.724 -7.512 -7.158
VI CS -15.790 -15.272 -12.827 -12.504 <-12.019 -10.502 -7.725 -7.538 ~7.104
VIiI sz -15.728 -15.402 -12.867 -12.414 -12.051 -10.476 -7.732 =7.547 -7.052
VIII s -15.638 -15.217 -12.711 -12,048 -10.522 -7.616 -7.158
IX s -15.740 -=15.422 -12.697 -12.028 -10.527 -~7.614 -7.167
X s -15.605 -15.286 -12.597 -12,087 -10.492 -7.637 -7.108
X1 Cs -15.687 -15.388 -12.572 -12.065 -10.498 -7.625 -7.115
XII C2V -15.536 -15.208 -12,122 -10.513 -7.156
XIII CS -15.585 -15.283 -12.104 -10.518 -7.165
X1v C -15.634 -15.383 ~12.085 -10.523 -7.175

9ST
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trends can also be seen in the MO energies which depend both on the
nature of the six-membered rings and their conformations. A cyclohexene
ring which is folded toward the diketone destabilizes the HOMO more and
the LEMO less than when such a ring is folded away from the diketone.
The destabilizing effects produced by a saturated six-membered ring are
exactly opposite in nature and of somewhat smaller magnitudes. This
pattern holds for the tricyclic as well as the bicyclic molecules studied.

To understand this pattern of MO energies, several important
features must be considered. The HOMO and LEMO of each system is much
closer in energy to lower, occupied MO's than to higher, unoccupied MO's
with the proper symmetry for mixing. The orbitals n through nz*(CO) in
Table 32 are all consecutive levels with the next, higher level about 7 eV
removed. The MO's wl*(CC), wz*(CC), and wz*(CO) are of different symmetries
than n and ﬂl*(CO) and are therefore not mixed with these orbitals. The
nearest higher-energy MO's to n and nl*(CO) are thus 10-12 eV removed.
The occupied orbitals, however, are much closer in energy to n and nl*(CO).
Not only are wl(CC) and ﬂz(CC) (for molecules where they exist) less than
one electron-volt below n, but the three electron-volt gaps between n and
nl(CO) contain 4-5 sigma orbitals, for bicyclic species, and 7-8 sigma
orbitals, for the tricyclic species, which have the proper symmetries for
mixing with n or nl*(CO). Due to the presence of these nearby energy
levels, any interaction between an isolated orbital vl*(CO) or an isolated
n orbital with MO's in the rings results in the destabilization of ﬂl*(CO)
or n, since when two isolated systems are allowed to interact, the level
of higher energy is destabilized and the level of lower energy is sta-

bilized. The result of such interactions is evident in Figure 15 where
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the energies of n and nl*(CO) for I-XIV are always higher than the energies
of the corresponding MO's in glyoxal.

The trends in tﬁe energy levels shown in Figure 15 can be explained
by noting the orientations of the orbitals which can best mix with n and
nl*(CO). Species I-IV suffice for this purpose (Figure 16). .The ethylene
pi system mixes best with the HOMO when folded toward the diketone group,
as in I, and best with the LEMO when folded away from the diketone, as
in II, thereby causing maximum destabilization of these MO's. Participa-
tion by the intervening sigma orbitals is required for both cases. For
IIT and IV, where only sigma orbitals are available for mixing with n
and wl*(CO), the opposite trend is expected. A sigma orbital in the six-
membered rings destabilizes ﬂl*(CO) more when folded toward the diketone
(ITII) and has a larger effect on n when folded away (IV). The actual
compositions of the calculated HOMO's and LEMO's can be deduced from the
MO coefficients in Appendix B. The MO's in the tricyclic systems are
similar except that basis functions from both six-membered rings contri-
bute.

The fact that a change in the conformation of a cyclohexene ring
induces a larger change in the energies of n and nl*(CO) than when the
conformation of a cyclohexane ring is altered can be attributed to two
factors. First, the w(CC) orbitals are higher in energy than most of the
sigma orbitals with the same symmetry and can induce more significant
changes in the energies of n and nl*(CO). For I, II, X, and XI, wl(CC)
is the closest MO to n with A“ symmetry, while for VIII and IX one sigma MO
lies less than 0.1 eV above wl(CC). For V—VII,'WZ(CC) is always closest

to n with one sigma orbital between wl(CC) and ﬂz(CC). Second, the w(CC)
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orbitals do not have sigma analogs of comparable energy in the saturated
rings. Thus I, II, and V-XI have more nearby MO's which can mix with
n and nl*(CO) and a conformational change in the six-membered rings can,
therefore, alter the energies of the latter MO's more drastically in these
species.,

The overall effects of changing the molecular conformations on the
n>1* transition energies and the total electronic ground-state energies
can be seen from Table 33. Although the calculated transition energies
are always too small, several interesting trends can be seen. A larger
difference in transition energies and total ground-state energies is cal-
culated between two species where a cyclohexene ring has changed confor-
mation than when a saturated ring has been altered. Only one exception
to this trend is seen, XIV is nearly one electron volt less stable than
XII. XIV requires H(13) and H(16) as well as H(l4) and H(15) to be about
1.5 X apart, a separation less than two hydrogen van der Waals' radii.
For the bicyclic species, I is 0.059 eV more stable than II and has an
n>7m* transition energy that is nearly 0.1 eV smaller than that of II.

The opposite effects are seen for the saturated anmalogs of I and II.

IV is 0.048 eV more stable than IIT and also has the smaller transition
energy, but only a 0.02 eV difference. The same trends in transition
energies follow in the tricyclic species, a cyclohexene ring folded to-
ward the diketone induces a red shift while a cyclohexane ring folded
toward the diketone induces a blue shift to the n*m* transition. The
total ground-state energies of the tricyclic species are always calcu-
lated to be most stable when both‘rings are folded toward the diketone

and least stable when both rings are folded away.
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TABLE 33
n>m* TRANSITION ENERGIES AND TOTAL ELECTRONIC GROUND-STATE ENERGIES

FOR GLYOXAL AND I-XIV BY THE EHMO METHOD

n*>1* Transition Total Ground-
Molecule AE (eV) A (mp) State Energy (eV) A(eV)* N**
Glyoxal 1.663 746 : -429.147
I 1.552 799 -958.142
I1 1.643 755 -958.083 0.059 0.100
111 1.654 750 -993,550 0.048 0.154
iv 1.634 759 -993,598
\Y 1.470 844 -1310.080
VI 1.517 818 ~1309.972 0.108 0.030
Vi1 1.575 788 -1309.843 0.237 0.000
VIII 1.526 813 -1345.459
IX 1.501 826 ~-1345.453 0.006 0.792
X 1.595 778 ~1345.373 0.086 0.035
X1 1.567 792 -1345.342 0.117 0.009
XI1 1.609 771 ~1380.865
XIII 1.586 782 -1380.838 0.027 0.699
X1V 1.562 794 ~1379.933 0.932 0.000

*Ground~state energy above that of the most stable conformation.

**Number of molecules in the stated conformation per molecule of the most
stable conformation as predicted by a Boltzmann distribution at 25°c.
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An interpretation of the solution spectra of the three tricyclic
diketones is possible on the basis of these calculations. This was not
possible with the molecular aggregate studies discussed earlier. The
saturated molecule (0DB) may be expected to exist primarily as XII and

XIII. The calculated n»n* transition energies of these conformations

XH Xl

differ by only 0.024 eV, and a single, broad absorption peak may be
expected from a mixture of XII and XITII. The diene (2DB) is predicted
to exist primarily as V with successively smaller contributions from

the conformations VI and VII. Such an interpretation is consistent with

@0 0

v Vi ‘ Vii

the solution absorption spectrum of this compound which shows a broad,
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unsymmetric absorption peak with a diminishing absorbance toward the high-
energy side. This could correspond to the smaller concentrations of V{
and VII for which higher transition energies are calculated, compared to V.
The total ground-state energies calculated for the four conforma-

tions of 1DB (VIII-XI) differ by less than 0.12 eV and significant concen-

Vil , IX X XI

trations of all species may thus be expected in solution. Species X,
which is only 0.086 eV less stable than the most stable conformation
(VIII), has the largest transition energy of the four species. The
value of 1.595 eV is practically the average value of the transition
energies of the saturated species XII and XIII. An absorption due to

X should thus be seen at the same wavelength as the peak of ODB. One

of the two peak maxima of 1DB does indeed appear at this wavelength.

The calculated transition energiles of VIII and IX are not too-far rémoved
from that of V. Absorption due to these conformations can give rise to
the long-wavelength absorption peak of 1DB which is closed to the peak
maximum of the 2DB absorption band. The relative intensities of the

two absorption peaks of 1DB are not well explained, however. On the
basis of these calculations, the predominant species of 1DB should be
VIII and IX and both of these conformations were assigned as contributors

 to the long-wavelength peak in the spectrum. Yet the intensity of the
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short-wavelength peak is slightly larger. A plot of e(M “em ) vs. ¥(cm ™)
of the 1DB spectrum was resolved into two separate peaks and the peak areas
were measured with a planimeter. The integrated intensity of the short-
wavelength band was determined to be about 2.5 times as large as that of

the second band.

CNDO/2 Calculations

The computer-time requirements of this method did not make it

feasible to allow CNDO/2 calculations on the tricyclic species (V-XIV)

"of Figure 13. Thus“oﬁly the bicyclic species (I-IV) were treated here
both for comparison with the EHMO results and the CNDQZZ intermolecular
interaction studies. The CNDO/2 parameters used here are the same as
those employed_earlier (Table 23). The atom-numbering scheme, atomic
coordinates (Appendix A), and MO labels are identical with those used
for I-IV with the EHMO calculations.

The orbital energies of the pi MO's and the orbital n are shown
in Table 34. The corresponding values for cis-glyoxal are also included
here for reference. Some close similarities were found between these
and the EHMO results. Again the orbital n is the HOMO while nl*(CO) is
the LEMO for each case (coefficients for these MO's are in Appendix B).
The energy differences between the LEMO's and IIOMO's follow the same
pattern as the EHMO results, the energy gap increases in the order I, II,
IV, III, glyoxal. The effects of the intervening sigma bonds on the
interaction between the éthylene pl system and the orbitals nl*(co) and n
can be assessed by comparing the LEMO and HOMO energies of I with the

glyoxal-ethylene aggregate previously described (Table 30). The energy



ENERGIES OF PI AND n MO'S OF GLYOXAL AND I-IV BY THE CNDO/2 METHOD

TABLE 34

MO» wl(CO) HZ(CO) nl(CC) n ﬂl*(CO) nl*(CC) ﬂz*(CO) E[nl*(CO)]-E[n]
C_ Symmetry A’ A" A’ A’ A’ A”’ A®”
Molecule Energy (eV)
Glyoxal -17.020 -15.052 -10.974 0.170 2.077 10.804
I ~15.489 -14.475 -11.264 -10.204 0.304 0.998 2.421 10.508
II -15.344 -13.736 -11.211 -10.262 0.260 1.004 2.371 10.522
I1T -15.234 -14.501 -10.264 0.308 2.413 10.572
Iv -15.491 -14.795 -10.242 0.297 2.416 10.539

991
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of ﬂl*(CO) in T is 0.341 eV higher than that of the aggregate while n is
0.617 eV higher in I than in the aggregate. The inclusion of sigma bonds
has thus decreased the energy gap by 0.276 eV. A similar comparison of
MO energies calculated by the EHMO method (Tables 17 and 32) shows that
nl*(CO) of I ;s‘0.325 eV higher than that of the aggregate while n is
0.485 eV higher in I than in the aggregate. Inclusion of the intervening
sigma bonds in this method has reduced the LEMO-HOMO energy gap by 0.160 eV.

Electronic transition energies, of course, are not taken as simple
orbital-energy differences in this approximation but are evaluated by
Equation 36 and improved by a configuration interaction. The calculated
n>1* transition energies as well as the total ground-state energies for

glyoxal and I-IV are shown in Table 35. The results here are quite dif-

TABLE 35
n>r* TRANSITION ENERGIES AND TOTAL ELECTRONIC GROUND-STATE ENERGIES

FOR GLYOXAL AND I-IV BY THE CNDO/2 METHOD

Configuration State Total Ground-
Transition Transition State Energy
Molecule AE(eV) A(mp) AE(eV) A(mp) (eV) A(eV)*
Glyoxal 3.123 396 2.508 494 -759.825
I 3.341 371 2,753 450 ~-1179.301 6.497
II 3.228 384 2.753 450 -1185.798
III 3.182 390 2.605 476 -1174.762 15.469
v 3.159 392 2.640 470 -1190.231

*Ground—-State energy above that of the more stable conformation.

ferent from the EHMO results. After CI, the n»n* transition energies are
not very dependent upon the conformations of the six-membered rings. For

I and II, this value is 2.753 eV while for III and IV, values of 2.605
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and 2.640 eV, respectively, are calculated. Lower transition energies
are obtained for the saturated species than for I and II, in conflict
with the EHMO results where I had the lowest tramsition energy followed
by IV, II, and III in order of increasing transition energies.

The total ground-state energies show a strong dependence on the
coﬁformations of the six-membered rings. In each case, the conformation
with the six-membered ring folded away from the diketone system is the
more stable conformation. EHMO calculations also show IV to be more
stable than III, but for the unsaturated species, I was calculated as
more stable than II. The conformational energy differences are also

considerably smaller by the EHMO method than by the CNDO/2 method.



CHAPTER IV
CONCLUSIONS

The effects of including all iIntervening sigma bonds on the
interactions between weakly-coupled systems have been tested for a series
of compounds by four molecular orbital methods. A molecular aggregate
of a cis-glyoxal and an ethylene molecule, used for the through-space
interaction studies, showed by the four MO methods that the pi system
of ethylene destabilizes the LEMO of glyoxal, an antibonding pi MO. The
all~valence-shell calculations also showed that ethylene also destabi-
lizes the HOMO of glyoxal. The combined effects were such that all MO
methods predicted a larger n»>7* transition energy for the aggregate
than for the isolated glyoxal molecule. An aggregate formed from one
glyoxal and two ethylene molecules showed even a larger n+n* transition
energy.

All-valence-shell palculations on bicyclic and tricyclic di-
ketones, whose unsaturated segments the molecular aggregate studies
approximated, showed the participation of intervening sigma bonds in
the pi-electron interactions. EHMO calculations showed that the pi
system in a six-membered ring actually destaﬁilized the LEMO in the
diketone system more when the separation between the centers increased
to distances where the orbital overlap becomes negligible but the

169
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orientations became favorable for both pi systems to mix with the inter-
vening sigma orbitals. Thus, for the molecules studied, the interaction
between the pi systems was primarily transmitted through the sigma bonds.
The interaction between the nonbonding orbital of the diketone and the
ethylene pi MO is even more strongly dependent upon the molecular confor-
mations, with maximum effects again calculated for those geometries
where both orbitals could mix most effectively with the intervening sigma
bonds.

The trends in n»r* transition energies established by the molecu-
lar aggregate studies can be completely reversed by the EHMO whole-
molecule calculations. Replacing a cyclohexane ring by a cyclohexene
ring can result in a lower n»>7* transition energy, although the result is
dependent on the molecular conformation (Table 33). It was also seen
that only the whole-molecule EHMO calculations yielded n->w* transition
energies which are in qualitative agreement with the solution absorption
spectra of the tricyclic diketones.

The discrepancies between the EHMO and CNDO/2 results for the
calculations on species I-IV were not completely unexpected. Hoyland,67
in a recent review article of semiempirical MO methods cites several
examples where conformational analyses by these two methods have yielded
diverse results. He concludes that the EHMO method seems to be more
satisfactory than the CNDO/2 method for predicting molecular conformations,
although it still leaves much to be desired, and that the entire area of
predicting molecular conformations by semiempirical methods has not yet
reached a very satisfactory level.

Conclusions aﬁout favored conformations of the tricyclic mole-

cules, based on calculations, may be drawn from the results of the EHMO
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calculations which treated the whole molecules explicitly. For all mole-
cules, the conformations with both six-membered rings folded toward the
four-membered ring (V, VIII, and XI1) yielded the lowest ground-state
energy, and conformations with both six-membered rings folded away from
the four-membered ring (VII, XI, and XIV) had the highest ground-state
energy. The two staggered conformations of 1DB showed a lower ground-
state energy for IX, the species with the carbon-carbon double bond closest
to the four-membered ring. It must be emphasized.that the coordinates
used to construct the various conformations were not the result of a
minimum-energy search, but were based on the crystal structure of the
diene. The cyclobutadione segments of all molecules were kept planar
and the six-membered rings were kept in the boat form. Conformational
changes in the six-membered rings were always made such that no changes
in bond distances or bond angles occured, thus no additioﬁal bond strain
was introduced.

Available experimental data, in addition to the solution.absorp—
tion spectra, may be used to test the validity of the calculations.
Powder reflection spectra in the visible region were recorded for the
three tricyclic diketones. The two unsaturated species showed quite
similar spectra, each had a broad, single peak with Amax at about 520-530
mi. The saturated ﬁiketone showed a single peak with Amax at about 450 mu.
The conformation of the diene 1s certainly expected to be the same in
powder form as in single crystals used for the x-ray study, conformation V.
The close similarity between the powder reflection spectra of 2DB and 1DB
indicates that the conformation of the dihydro derivative in the solid

state is probably VIII or IX (or both), since the calculated n*r* transition
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VIl X

energies for these conformations are close to the calculated value for
conformation V of the diene. EHMO calculations also showed that VIII
and IX are the two most stable conformations of 1DB. Little can be

said about the conformation of the saturated diketone in the solid state
from these spectra since the calculated n>n* transition energies of the
three conformations employed differ by less than 0.05 eV.

More extensive spectral studies have been made of these com-
pounds by J. J. Freeman68 using different media and variable tempera-
tures. Visible spectra were taken of the saturated diketone in organic
solvent from room temperature to -191°C. The single absorption band of
this compound showed only a smooth, continuous intensity increase with
temperature lowering, due to solvent contraction, and a shift in the
peak maximum from 463 mp at room temperature to 471 mp at -191°c. No
significant fine structure was obtained for this band even at the lowest
temperature. The small shift in the peak maximum may be attributed to
enhanced solvent effects at the lower temperature or to a conformational
change. EHMO calculations would predict a blue-shifted band with lower
temperature since the largest n*n* transition energy was calculated for
the most stable conformation. Since less than a 0.03 eV energy differ-

ence was calculated for the n»n* transition energies and total ground—
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state energies of XII and XIII, no definite conclusions can be drawn
about the favored conformation.

The visible absorption spectrum of the diene was taken by Freeman
in organic solvent and as a polycrystalline thin film over the tempera-
ture range mentioned above. The two spectra are quite similar in appear-
ance, thus indicating that the same conformation predominates in solu-
tion as in the solid state. A temperature decrease again showed an in-
tensity increase and a small red shift. More significantly, the un-
symmetric solution absorption band of this compound splits into six clearly
resolved vibronic bands at rower temperatures with peaks ranging from
550 to 485 mu. The vibronic splittings range from 212 to 863 cm_1 and
are in the range of IR-active deformation modes associated with alkenes.
The broad nature of this absorption band thus seems to be due to one
conformation and vibronic structure instead of a mixture of conformations.
Based on the structure found for the diene by x—fay diffraction and the
similarity between solution and solid state spectra, V appears to be

the predominant species in solution. This is also supported by the EHMO

S

\%

calculations which show V to be 0.11 and 0.24 eV more stable than VI and
and VII, respectively.
Spectra were taken of the dihydro derivative in organic solvent,

as a polycrystalline thin film, and as a molten film. The spectrum of .
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the polycrystalline material is similar to the solid state spectrum of
the diene. It showed only one band with peak maximum at 540-550 mp and
leads to the same conclusions about preferred conformations in the.solid
state as those based on powder reflection spectra previously mentioned.
The spectrum of 1DB in the molten state is similar to its solution spec-
trum. It shows two absorption bands with peak maxima at 470 and 540 mu.
A variable temperature study of the solution spectrum also showed that
the intensity of the high-energy band increases while the intensity of
the low-energy band decreases as the temperature is lowered from 110 to
-190°C. This is in conflict.with the EHMO calculations which predict
that the two most stable conformations of 1DB (VIII and IX) have n+m*
transitions which contribute to the low-energy band in the spectrum
and that this band should increase in intensity at lower temperatures.

Variable~temperature studies of the infrared carbonyl absorp-
tions of the three compounds were also made by Freeman. Spectra were
taken of the polycrystalline material in KBr pellets and also of solu-
tions using methylcyclohexane—isopfopanol solvent in a 7:3 volume ratio
from room temperature to about -196°C at 20°C intervals. With one ex-
ception, he observed no significant differences in the carbonyl bands
with changes in temperature or in the matrix. The exception was ob-
served for the dihydro derivative in the organic matrix. A broad,
structureless peak at 5.60p at room temperature splits into a doublet
(5.58 and 5.65u) at about -90°C. At lower temperatures the 5.65u band
weakens while the 5.58y band becomes more intense. This again indicates
that at least two conformations exist in solution at room temperature.

Electron spin resonance spectra of compounds similar to the tri-

cyclic diketones discussed here have been reported, notably the spectra
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of tricyclo[4.4.2.01’6]dodeca—3,8-diene-11,12—semidione and the di- and
tetrahydro derivatives.69 Only the spectrum of the diene has been inter-
preted with the conclusion that the staggered conformation, analagous to
VI, is of lowest energy, with a half-life of at least 10_5 seconds and a
rate of interconversion with other conformations less than lO5 per second
at room temperature. The difference between the most stable conformation
deduced for this compound and for 2DB must be attributable to the dif-
ferent pi systems in a semidione as compared to a diketone.

The EHMO method has thus yielded results which are consistent
with other data. It has predicted the most stable conformation of 2DB
as that found in the solid state. For this conformation, it has also
shown a lower n>1* transition energy than for any expected conformation
of the saturated diketone, in agreement with the solution absorption

spectra.
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APPENDIX A

ATOMIC COORDINATES

The following tables list the atomic coordinates used for
molecules I-XIV for the all-valence-shell calculations. The atom
numbers are with reference to Figure 14. Distances are expressed

in angstroms.
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TABLE 36

ATOMIC COORDINATES FOR MOLECULE I

Atom X Y Z

c( 1) -0.786 0.000 0.000
c( 2) -1.431 1.276 -0.556
c( 3) -0.658 2.504 -0.184
c( 4) 0.658 2.504 -0.184
c( 5) 1.431 1.276 ~0.556
c( 6) 0.786 0.000 0.000
c(11) -0.775 0.000 1.533
c(12) 0.775 0.000 1.533
0(13) -1.626 0.000 2.368
0(14) 1.626 0.000 2.368
H( 1) -2.395 1.358 -0.177
H( 2) -1.473 1.206 -1.593
H( 3) -1.201 3.352 0.073
H( 4) 1.201 3.352 0.073
H( 5) 2.395 1.358 -0.177
H( 6) 1.473 1.206 -1.593
H(17) -1.223 -0.865 ~-0.377

H(18) 1.223 -0.865 -0.377
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TABLE 37

ATOMIC COORDINATES FOR MOLECULE II

Atom X Y 4

c( 1) -0.786 0.000 0.000
c( 2) -1.431 1.276 -0.556
c( 3) -0.658 1.838 -1.710
Cc( 4) 0.658 1.838 -1.710
c( 5) 1.431 1.276 ~0.556
c( 6) 0.786 0.000 0.000
.C(11) -0.775 0.000 1.533
c(12) 0.775 0.000 1.533
0(13) -1.626 0.000 2.368
0(14) 1.626 0.000 2.368
H( 1) -1.473 1.988 0.200
H( 2) -2.395 1.053 -0.874
H( 3) -1.201 2.227 -2.506
H( &) 1.201 2,227 -2.506
H( 5) 1.473 1.988 0.200
H( 6) 2.395 1.053 -0.874
H(17) -1.223 -0.865 -0.377

1(18) 1.223 -07865 -0.377
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TABLE 38

ATOMIC COORDINATES FOR MOLECULE III

Atom X Y Z

c( 1) -0.786 0.000 0.000
c( 2) -1.373 1.276 -0.617
c( 3) -0.770 2.508 0.082
c( &) 0.770 2.508 0.082
c( 5) 1.373 1.276 -0.617
c( 6) 0.786 0.000 0.000
c(11) -0.775 0.000 1.533
c(12) 0.775 0.000 1.533
0(13) -1.626 0.000 2.368
0(14) 1.626 0.000 2.368
H( 1) -2.405 1.277 -0.493
H( 2) -1.145 1.307 -1.631
H( 3) -1.100 2.522 1.068
H( 4) 1.100 2.522 1.068
H( 5) 2.405 1.277 -0.493
H( 6) 1.145 1.307 ~-1.631
H(13) -1.100 3.362 ~0.412
H(14) - 1.100 3.362 -0.412
H(17) -1.223 -0.865 -0.377

H(18) 1.223 -0.865 -0.377
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TABLE 39

ATOMIC COORDINATES FOR MOLECULE IV

Atom X Y Z

¢ 1) ~0.786 0.000 0.000
¢ 2) -1.373 1.276 -0.617
c( 3) ~0.770 1.493 ~2.018
cC &) 0.770 1.493 -2.018
¢ 5) 1.373 1.276 ~0.617
c( 6) 0.786 0.000 0.000
c(1L) -0.775 0.000 1.533
c(12) 0.775 0.000 1.533
0(13) ~1.626 0.000 2.368
0(14) 1.626 0.000 2.368
H( 1) _1.145 2.090 -0.012
H( 2) ~2.405 1.179 ~0.696
H( 3) ~1.100 2.410 -2.380
HC 4) 1.100 2.410 -2.380
H( 5) 1.145 2.090 -0.012
HC 6) 2.405 1.179 ~0.696
1(13) ~1.100 0.728 -2.641
H(L4) 1.100 0.728 ~2.641
H(L7) -1.223 ~0.865 -0.377

11(18) 1.223 ~0.865 -0.377
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TABLE 40

ATOMIC COORDINATES FOR MOLECULE V

Atom X Y z
c( 1) -0.786 0.000 0.000
o( 2) -1.431 1.276 -0.556
c( 3) -0.658 2.504 ~0.184
c( 4) 0.658 2.504 -0.184
c( 5) 1.431 1.276 ~0.556
c( 6) 0.786 0.000 0.000
c( 7) 1.431 -1.276 ~0.556
c( 8) 0.658 -2.504 ~0.184
c( 9) -0.658 -2.504 -0.184
Cc(10) ~1.431 -1.276 -0.556
c(11) -0.775 0.000 . 1.533
c(12) 0.775 0.000 1.533
0(13) ~1.626 0.000 2.368
0(14) 1.626 0.000 2.368
H( 1) ~2.395 1.357 -0.177
H( 2) ~1.473 1.206 ~1.593
H( 3) -1.201 3.352 0.073
H( 4) 1.201 3.352 0.073
H( 5) 2.395 1.357 -0.177
H( 6) 1.473 1.206 ~1.593
H( 7) 2.395 -1.357 -0.177
(¢ 8) 1.473 -1.206 -1.593
H( 9) 1.201 -3.352 0.073
H(10) ~1.201 ~3.352 0.073
1(11) ' -2.395 -1.357 -0.177

H(12) ' -1.473 -1.206 -1.593
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TABLE 41

ATOMIC COORDINATES FOR MOLECULE VI

Atom X Y Z

c( 1) -0.786 0.000 0.000
c( 2) -1.431 1.276 ~-0.556
c( 3) -0.658 2.504 ~-0.184
C( 4) 0.658 2.504 -0.184
c( 5) 1.431 1.276 -0.556
c( 6) . 0.786 0.000 0.000
cC7) ' 1.431 -1.276 ~-0.556
c( 8 0.658 -1.838 -1.710
c(9) -0.658 -1.838 ~1.710
.C(10) -1.431 -1.276 ~-0.556
c(11) -0.775 0.000 1.533
Cc(12) 0.775 0.000 1.533
0(13) -1.626 0.000 2,368
0(14) 1.626 0.000 2.368
H( 1) -2.395 1.358 -0.177
H( 2) -1.473 1.206 -1.593
H( 3) -1.201 3.352 0.073
H( 4) 1.201 3.352 0.073
H( 5) 2.395 1.358 -0.177
H( 6) 1.473 1.206 -1.593
H( 7) 1.473 -1.988 0.200
H( 8) 2.395 -1.053 -0.874
H( 9) 1.201 -2.227 ~-2.506
11(10) -1.201 -2.227 -2.506
(1) ~-1.473 -1.988 0.200

H(12) -2.395 -1.053 -0.874
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TABLE 42

ATOMIC COORDINATES FOR MOLECULE VII

Atom X Y Z

C( 1) -0.786 0.000 0.000
c( 2) -1.431 1.276 -0.556
c( 3) -0.658 1.838 ~1.710
C( 4) 0.658 1.838 ~1.710
c( 5) 1.431 1.276 -0.556
c( 6) 0.786 0.000 0.000
c( 7 1.431 -1.276 -0.556
c( 8) 0.658 -1.838 -1.710
c(9) -0.658 -1.838 -1.710
c(10) -1.431 -1.276 -0.556
c(11) ~0.775 0.000 1.533
Cc(12) 0.775 0.000 1.533
0(13) -1.626 0.000 2.368
0(14) 1.626 0.000 2.368
H( 1) -1.473 1.988 0.200
H( 2) -2.395 1.053 -0.874
H( 3) -1.201 2.227 -2.506
H( 4) 1.201 2,227 ~-2.506
H( 5) 1.473 1.588 0.200
1( 6) 2.395 1.053 -0.874
H( 7) 1.473 -1.988 0.200
H( 8) 2.395 -1.053 -0.874
H( 9) 1,201 - -2.227 ~2.506
H(10) -1.201 -2.227 -2.506
H(11) -1.473 -1.988 0.200

H(12) -2.395 -1.053 -0.874
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TABLE 43

ATOMIC COORDINATES FOR MOLECULE VIII

Atom X Y Z
c( 1) -0.786 0.000 0.000
c( 2) ~1.373 1.276 ~0.617
c( 3) -0.770 2.508 0.082
c( 4) 0.770 2.508 0.082
c( 5) 1.373 1.276 -0.617
c( 6) 0.786 0.000 0.000
c( 7 1.431 -1.276 ~0.556
c( 8) 0.658 -2.504 ~0.184
c( 9) ~0.658 ~2.504 ~0.184
c(10) ~1.431 ~1.276 ~0.556
c(11) ~0.775 0.000 1.533
c(12) 0.775 0.000 1.533
0(13) ~1.626 0.000 2.368
0(14) 1.626 0.000 2,368
H( 1) ~2.405 1.277 ~0.493
H( 2) ~1.145 1.307 ~1.631
H( 3) ~1.100 2.522 1.068
H( 4) 1.100 2.522 1.068
H( 5) 2.405 1.277 -0.493
H( 6) 1.145 1.307 -1.631
H( 7) 2.395 -1.358 ~0.177
H( 8) 1.473 -1.206 ~1.593
¢ 9) 1.201 -3.352 0.073
1(10) -1.201 ~3.352 0.073
H(11) ~2.395 ~1.358 ~0.177
H(12) ~1.473 -1.206 ~1.593
H(13) ~1.100 3.362 ~0.412

H(14) 1.100 3.362 -0.412
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TABLE 44

ATOMIC COORDINATES FOR MOLECULE IX

Atom X Y Z

c( 1) ~0.786 0.000 0.000
c( 2) ~1.373 1.276 -0.617
c( 3) ~0.770 1.493 -2.018
c( 4) 0.770 1.493 -2.018
c( 5) 1.373 1.276 -0.617
c( 6) 0.786 0.000 0.000
cC 7) 1.431 ~1.276 ~0.556
c( 8) 0.658 -2.504 -0.184
c(9) -0.658 -2.504 -0.184
c(10) -1.431 -1.276 -0.556
c(11) -0.775 0.000 1.533
c(12) 0.775 0.000 1.533
0(13) -1.262 0.000 2.368
0(14) 1.626 0.000 2.368
H( 1) ~1.145 2.090 -0.012
H( 2) -2.405 1.179 -0.696
H( 3) -1.100 2.410 -2.380
H( 4) 1.100 2.410 -2.380
H( 5) 1.145 2.090 -0.012
(¢ 6) 2.405 1.179 -0.696
HC 7) 2.395 -1.358 -0.177
H( 8) 1.473 -1.206 -1.593
¢ 9) 1.201 -3.352 0.073
H(10) -1.201 -3.352 0.073
H(11) ~2.395 -1.358 -0.177
H(12) -1.473 -1.206 -1.593
H(13) -1.100 0.728 -2.641

H(14) 1.100 0.728 -2.641
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TABLE 45

ATOMIC COORDINATES FOR MOLECULE X

Atom X ‘ Y Z
c( 1) -0.786 0.000 0.000
c( 2) -1.373 1.276 -0.617
c( 3) -0.770 2.508 0.082
c( 4) 0.770 2.508 0.082
c( 5) 1.373 1.276 -0.617
c( 6) 0.786 0.000 0.000
c(C7) 1.431 -1.276 -0.556
c( 8) 0.658 -1.838 -1.710
c(9) ~0.658 -1.838 -1.710
c(10) -1.431 -1.276 -0.556
c(11) -0.775 0.000 1.533
c(12) 0.775 0.000 1.533
- 0(13) -1.626 0.000 2.368
0(14) 1.626 0.000 2.368
H( 1) -2.405 1.277 -0.493
H( 2) -1.145 1.307 ~1.631
H( 3) -1.100 2.522 1.068
H( 4) 1.100 2,522 1.068
H( 5) 2. 405 1.277 -0.493
H( 6) 1.145 1.307 -1.631
He 7) 1.473 -1.988 0.200
1i( 8) 2.395 -1.053 -0.874
¢ 9) 1.201 -2.227 ~2.506
11(10) -1.201 -2.227 -2.506
H(1L) -1.473 -1.988 : 0.200
H(12) -2.395 -1.053 -0.874
H(13) -1.100 3.362 -0.412

H(14) 1.100 . 3.362 -0.412
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TABLE 46

ATOMIC COORDINATES FOR MOLECULE XI

Atom X Y Z
c( 1) -0.786 0.000 0.000
c( 2) -1.373 1.276 -0.617
c( 3) -0.770 1.493 -2.018
c( 4) 0.770 1.493 -2.018
c( 5) 1.373 1.276 -0.617
c( 6) 0.786 0.000 0.000
c(7) 1.431 -1.276 ~0.556
c( 8) 0.658 -1.838 -1.710
c( 9) -0.658 -1.838 -1.710
c(10) -1.431 -1.276 -0.556
c(11) -0.775 0.000 1.533
c(12) 0.775 0.000 1.533
0(13) -1.626 0.000 2.368
0(14) 1.626 0.000 2.368
H( 1) -1.145 2.090 -0.012
H( 2) -2.405 1.179 -0.696
H( 3) -1.100 2.410 -2.380
H( 4) 1.100 2.410 -2.380
H( 5) ' 1.145 2.090 ~0.012
H( 6) 2.405 1.179 ~0.696
H( 7) 1.473 -1.988 0.200
H( 8) 2.395 -1.053 -0.874
H{ 9) 1.201 -2.227 -2.506
H(10) -1.201 -2.227 -2.506
H(11) -1.473 -1.988 0.200
H(12) -2.395 -1.053 -0.874
H(13) -1.100 0.728 ~2.641

H(14) 1.100 0.728 -2.641
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TABLE 47

XII

Atom X Y Z

c( 1) -0.786 0.000 0.000
c( 2) ~1.373 1.276 -0.617
c( 3) -0.770 2.508 0.082
c( 4) 0.770 2.508 0.082
c( 5) 1.373 1.276 -0.617
C( 6) 0.786 0.000 0.000
cC7) 1.373 -1.276 -0.617
c( 8) 0.770 -2.508 0.082
c(9) -0.770 ~2.508 0.082
C(10) -1.373 -1.276 -0.617
C(11) -0.775 0.000 1.533
Cc(12) 0.775 0.000 1.533
0(13) -1.626 0.000 2.368
0(14) 1.626 0.000 2.368
H( 1) -2.405 1.277 -0.493
H( 2) ~1.145 1.307 -1.631
H( 3) ~-1.100 2.522 1.068
H( 4) 1.100 2.522 1.068
H( 5) 2.405 1.277 -0.493
1( 6) 1.145 1.307 -1.631
H( 7) 2.405 -1.277 -0.493
H( 8) 1.145 -1.307 ~1.631
H( 9) 1.100 ~-2.522 1.068
H(10) -1.100 -2.522 1.068
H(11) -2.405 -1.277 -0.493
H(12) -1.145 -1.307 -1.631
H(13) -1.100 3.362 -0.412
H(14) 1.100 3.362 -0.412
H(15) -1.100 -3.362 -0.412
H(16) 1.100 -3.362 -0.412
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TABLE 48

ATOMIC COORDINATES FOR MOLECULE XIII

Atom X Y Z

C( 1) ~-0.786 0.000 0.000
c( 2) -1.373 1.276 -0.617
c( 3) ~-0.770 2.508 0.082
c( 4) 0.770 2.508 0.082
c( 5) 1.373 1.276 -0.617
c( 6) 0.786 0.000 0.000
c(7) 1.373 ~-1.276 -0.617
c( 8) 0.770 -1.493 ~2.018
c(9) -0.770 -1.493 _ ~2.018
Cc(10) -1.373 -1.276 -0.617
Cc(11) ~-0.775 0.000 1.533
C(12) 0.775 0.000 1.533
0(13) -1.626 0.000 2.368
0(14) 1.626 0.000 2.368
H( 1) -2.405 1.277 -0.493
1n( 2) ~1.145 1.307 ~1.631
He 3) -1.100 2.522 1.068
H( 4) 1.100 2.522 1.068
H( 5) 2.405 1.277 -0.493
H( 6) 1.145 1.307 ~-1.631
H( 7) 1.145 -2.090 - ~0.012
H( 8) 2.405 -1.179 -0.696
H( 9) 1.100 -2.410 ~2.380
11(10) -1.100 -2.410 ~2.380
H(11) -1.145 -2.090 -0.012
1(12) -2.405 -1.179 -0.696
H(13) -1.100 3.362 ~0.412
11(14) 1.100 3.362 ~0.412
H(15) 1.100 -0.728 ~2.641

H(16) -1.100 -0.728 ~2.641
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TABLE 49

ATOMIC COORDINATES FOR MOLECULE XIV

Atom X Y Z
C( 1) -0.786 0.000 0.000
c( 2) -1.373 1.276 -0.617
Cc( 3) -0.770 1.493 -2.018
C( 4) 0.770 1.493 -2.018
Cc( 5) 1.373 1.276 -0.617
C( 6) 0.786 0.000 0.000
C(7) 1.373 -1.276 -0.617
Cc( 8) 0.770 -1.493 -2.018
c(C9) -0.770 -1.493 -2.018
C(10) -1.373 -1.276 -0.617
C(11) -0.775 0.000 1.533
C(12) 0.775 0.000 1.533
0(13) -1.626 0.000 2.368
0(14) 1.626 0.000 2.368
H( 1) -1.145 2.090 : -0.012
H( 2) -2.405 1.179 -0.696
H( 3) -1.100 2.410 -2.380
H( 4) 1.100 2.410 -2.380
H( 5) 1.145 2.090 -0.012
H( 6) 2.405 1.179 ~0.696
H( 7) 1.145 -2.090 -0.012
¢ 8) 2.405 -1.179 -0.696
H( 9) 1.100 -2.410 -2.380
H(10) -1.100 -2.410 -2.380
H(11) -1.145 ~2.090 -0.012
1(12) -2.405 -1.179 -0.696
1(13) -1.100 0.728 -2.641
H(14) 1.100 0.728 -2.641
H(15) 1.100 -0.728 -2.641

H(16) -1.100 -0.728 -2.641




APPENDIX B
MO COEFFICIENTS FROM EHMO AND CNDO/2 CALCULATIONS

The following Tables list the coefficients of the highest occupied
molecular orbital, identified as n, and the lowest empty molecular orbital,
identified as wl*(CO). Coefficients are given for I-XIV from the EHMO cal-

culations and for I-IV from the CNDO/2 calculations. The atom numbers are

with reference to Figure 14.
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TABLE 51
MO COEFFICIENTS OF n AND ﬂl*(CO) ORBITALS FOR IIT AND IV

BY THE EHMO METHOD

Molecule II11 v

MO n nl*(CO) n nl*(CO)

Fnergy (eV) -12.234 -10.580 -12.217 -10.583

Cs Symmetzry A~ A~ A~ A~

Coefficients
H(1) 0.0196 0.0018 -0.0409 0.0105
H(2) 0.0779 -0.0202 0.0305 -0.0051
H(3) 0.0082 0.0176 ~0.0337 : 0.0280
H(13) -0.0238 0.0066 0.0038 0.0013
H(17) -0.0819 -0.1075 -0.0804 -0.1055
c(1,s) 0.0580 0.0010 0.0536 0.0038
c(2,s) -0.0212 0.0368 -0.0144 0.0374
c(3,s) -0.0047 0.0059 0.0247 -0.0147
c(11,s) -0.0842 0.0021 -0.0799 0.0017
0(13,s) 0.0118 -0.0015 0.0116 -0.0013
C(1,x) 0.0876 ~-0.0171 0.0734 -0.0168
C(2,x) -0.0442 0.0603 -0.0333 0.0577
€(3,x) 0.0460 -0.0198 0.0018 -0.0159
C(11,x) -0.3539 0.0069 -0.3505 0.0131
0(13,x) 0.4012 -0.0067 0.3958 -0.0112
c(L,y) ~0.0156 0.0646 -0.0195 0.0711
c(2,y) 0.0513 -0.0983 0.0626 -0.0998
c(3,y) - 0.0276 0.0042 -0.0280 0.0110
c(1l1,y) -0.0196 -0.6069 -0.0335 -0.6047
0(13,y) 0.0201 0.4136 0.0350 0.4129
c(l,z) 0.2581 -0.0097 0.2649 -0.0164
c(2,2) -0.0802 0.0665 ~-0.0813 .0.0780
c(3,z) 0.0342 0.0289 0.0785 -0.0375
c(11,z) -0.2292 0.0055 -0.2330 0.0120

C(13,z) 0.2440 -0.0015 0.2468 ~0.0065
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TABLE 52
MO COEFFICIENTS OF n AND nl*(CO) ORBITALS FOR V-VII
BY THE EHMO METHOD
Molecule VI VII
MO o ﬂl*(CO) n nl*(CO) n ﬂl*(CO)
Energy (eV) -12.001 -10.531 -12.019 ~10.502 -12.051 -10.476
C, Symmetry A A7
CZV Symmetry A1 B2 Al B2
Coefficients
H(1) 0.0081 0.0140 -0.0186 0.0119 0.0337 -0D.0048
H(2) -0.1113 -0.0267 0.1243 -0.0236 -0.0410 0.0029.
H(3) 0.0208 0.0247 -0.0198 0.0240 0.0265 -0.0259
H(10) -0.0269 ~0.0267
H(11) -0.0356 -0.0076
H(12) 0.0467 0.0032
c(1,s) -0.0278 0.0 0.0295 -0.0031 -0.0327 0.0
c(2,s) 0.0237 0.0350 -0.0242 0.0343 0.0208 -0.0373
c(3,s) 0.0044 -0.0050 -0.0035 -0.0052 -0.0216 0.0158
c(9,s) 0.0186 0.0167
c(10,s) -0.0198 -0.0380
c(11,s) 0.0722 0.0 -0.0705 0.0013 0.0699 0.0
0(13,s) -0.0129 0.0 0.0130 0.0001 ~-0.0131 0.0
c(1,x) -0.1259 0.0 0.01089 ~0.0033 -0.0912 0.0
C(2,x%) 0.0570 0.0578 -0.0528 0.0568 0.0455 -0.0519
c(3,x%) -0.0432 -0.0053 0.0387 -0.0046 0.0037 0.0040
c(9,x) 0.0050 0.0032
c(10,x%) ~-0.0494 -0.0530
C(11,x) 0.3247 0.0 -0.3290 -0.0067 0.3382 0.0
0(13,x) -0.3438 0.0 0.3510 0.0053 -0.3655 0.0
c(1,y) 0.0 0.0839 -0.0179 0.0900 0.0 -0.0964
c(2,y) -0.0633 -0.0973 0.0690 -0.0948 -0.0777 0.0921
C(3,y) 0.0168 0.0040 -0.0276 0.0045 0.1028 ~0.0439
c(9,y) 0.0800 0.0452
C(10,y) -0.0687 -0.0944
C(1ll,y) 0.0 -0.6049 0.0105 ~0.6048 0.0 0.6050
0(13,y) 0.0 0.4086 -0.0102 0.4064 0.0 -0.4046
c(l,z) -0.2573 0.0 0.2675 0.0108 -0.2823 0.0
c(2,z) 0.0951 0.0572 -0.1071 0.0546 0.0711 -0.0717
Cc(3,2) -0.1460 0.0086 0.1691 0.0101 -0.0118 0.0100
c(9,z) 0.0118 0.0116
C(10,z) -0.0651 -0.0743
c(11,z) 0.2197 0.0 -0.2275 ~0.0089 0.2389 0.0
0(13,2) ~0.2090 0.0 0.2185 0.0061 -0.2334 0.0
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TABLE 53

FOR VIII AND IX

Molecule VIII IX

MO n nl*(CO) n ﬂl*(CO)

Energy (eV) -12.041 -0.522 -12.028 -10.527

Cg Symmetry A~ A~ A~ A”

Coefficients
H(1) 0.0285 -0.0044 -0.0514 0.0050
H(2) 0.0646 0.0179 0.0433 -0.0008
H(3) 0.0000 -0.0163 ~0.0313 0.0263
H(10) -0.0224 0.0244 -0.0209 -0.0239
H(11) -0.0105 0.0154 -0.0164 -0.0148
H(12) 0.1233 -0.0274 0.1255 0.0260
H(13) -0.0200 -0.0059 -0.0057 0.0004
Cc(1,s) 0.0360 0.0025 0.0324 0.0002
c(2,s) -0.0238 -0.0351 -0.0179 0.0360
c(3,s) -0.0072 -0.0048 0.0209 -0.0142
c(9,s) -0.0018 ~0.0046 -0.0024 0.0050
c(10,s) -0.0253 0.0345 -0.0247 -0.0340
c(11,s) -0.0748 -0.0006 -0.0709 0.0002
0(13,s) 0.0131 0.0003 0.0130 -0.0001
Cc(1,x) 0.1296 0.0049 0.1143 -0.0048
C(2,%) -0.0552 -0.0558 -0.0474 0.0534
Cc(3,x) 0.0491 0.0169 0.0219 -0.0130
c(9,x) 0.0419 ~-0.0053 0.0391 0.0045
Cc(10,x) -0.0589 0.0569 -0.0550 -0.0559
c(11,x) ~0.3276 0.0044 -0.3263 0.0017
0(13,x%) 0.3524 -0.0028 0.3495 -0.0016
c(1,y) 0.0367 ~0.0787 0.0306 0.0850
c(2,y) 0.0532 0.0939 0.0626 -0.0956
c(3,y) 0.0363 ~0.0082 ~0.0138 0.0122
c(@9,y) 0.0355 -0.0028 0.0335 0.0040
c(10,y) -0.0755 0.0955 -0.0733 -0.0943
c(11,y) 0.0133 0.6060 -0.0004 -0.6043
0(13,y) ~0.0136 -0.4083 0.0000 0.4081
c(1,z) 0.2520 ~-0.0054 0.2599 -0.0011
c(2,z) -0.0747 -0.0630 -0.0768 0.0739
C(3,z) 0.0328 ~0.0313 0.0724 -0.0339
c(9,z) 0.1844 0.0098 0.1797 -0.0100
c(10,2) ~0.1078 0.0563 -0.1098 -0.0553
c(11,2) ~0.2189 0.0049 -0.2243 0.0016
0(13,z) 0.2215 ~-0.0038 0.2158 -0.0011




MO COEFFICIENTS OF n AND Trl*(CO) ORBITALS

. BY THE EHMO METHOD
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TABLE 54

FOR X AND XI

Molecule X XI

MO n m1*(CO) n T, %(CO)

Energy (eV) -12.087 ~-10.492 ~12.065 ~-10.498

C, Symmetry A~ A" A” A”

Coefficients
H(1) 0.0253 -0.0032 0.0520 0.0024
H(2) 0.0742 0.0152 -0.0379 ~0.0012
H(3) 0.0021 -0,0159 0.0330 0.0259
H(10) -0.0289 0.0265 0.0270 -0.0260
H(11) ~0.0177 0.0095 0.0235 -0.0072
H(12) 0.0438 -0.0029 ~0.0395 0.0021
H(13) -0.0217 ~-0.0054 0.0026 0.0001
c(1,s) 0.0413 0.0054 -0.0369 -0.0028
Cc(2,s) -0.0255 -0.0343 0.0188 0.0353
Cc(3,s) -0.0075 -0,0044 -0.0236 ~0.0136
€(9,s) 0.0203 -0.0169 ~0.0216 0.0167
€c(10,s) ~0.0226 0.0375 0.0218 -0.0370
c(11,s) -0,0760 -0.0020 0.0709 0.0016
0(13,s) 0.0134 0.0002 -0,0132 0.0000
c(1,x) 0.1185 0.0083 -0.0971 ~0.0082
c(2,x) -0,0543 ~0.0548 0.0431 0.0523
C(3,x) 0.0497 0.0159 -0.0109 -0.0136
c(9,x) 0.0045 ~0.0037 0.0018 0.0029
C(10,x) -0.0548 0.0519 0.0486 -0.0509
Cc(11,x) -0.3396 0.0109 0.3375 -0,0049
C(13,x) 0.3709 -0,0080 -0.3669 0.0037
c(1,y) 0.0236 ~0.0854 -0.0175 0.0919
c(2,y) 0.0584 0.0914 ~0.0683 ~0.0932
c(3,y) 0.0360 -0.0096 0.0196 0.0122
c@9,y) 0.1184 ~0.0443 -0.1171 0.0456
Cc(10,y) -0.0899 0.0923 0.0861 -0.0915
Cc(11,y) 0.0263 0.6057 -0.0127 -0.6042
0(13,y) -0.0264 ~0.4058 0.0127 0.4059
c(1,2) 0.2659 -0,0158 -0.2750 0.0096
c(2,2) -0.0830 -0.0608 0.0862 0.0714
c(3,2) 0.0336 -0.0320 -0.0820 -0.0304
c(9,z) -0.0016 -0.0127 ~0.0040 0.0116
C(10,2) ~0.0653 0.0745 0.0688 ~0.0730
c(11,2) ~0.2304 0.0137 0.2367 -0.0073
0(13,z) 0.2268 -0.0098 -0,2322 0.0051
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TABLE 55

MO COEFFICILNTS OF n AND ﬂl*(CQ) ORBITALS FOR XII-XTV

BY THE EHMO METHOD

Molecule XIT XITI XIv
MO n 1% (CO) n m1%*(CO) n m1*(CO)
Energy (eV) -12.122 -10.513 -12.104 -10.518 -12.085 -10.523
Cs Symmetry A A
C2V Symmetry A1 B2 A1 B2
Coefficients
H(1) ~0.0356 0.0058 -0,0282 0.0056 0.0451 0.0045
H(2) -0.0689 -0.0188 -0.0734 -0.0177 -0.0384 0.0002
1H(3) -0.0032 0.0166  ~-0.0035 0.0162 0.0346 0.0265
H(10) 0.0360 -0.0260
H(11) 0.0439  -0.0065
H(12) -0.0460 0.0000
H(13) 0.0271 0.0053 0.0251 0.0052 0.0008 -0.0002
1H(16) : 0.0023 -0.0006
c(l,¢) -0.0512 0.0 -0.0473  -0.0027 -0.0427 0.0
c(2,s) 0.0273 0.0346 0.0268 0.0341 0.0201 0.0350
c(3,s) 0.0044 0.0056 0.0055 0.0048 -0.0241 -0.0143
c(9,s) -0.0228 0.0144
C(10,s) 0.0208 -0.0355
c(11,s) 0.0830 0.0 0.0781 0.0004 0.0727 0.0
0(13,s) -0.0142 0.0 -0.0139 -0.0002 -0.0135 0.0
C(1,x) -0.1477 0.0 -0.1259 0.0 -0.1024 0.0
c(2,x) 0.0620 0.0551 0.0570 0.0541 0.0452 0.0517
c(3,x) -0.0544 -0.0168 -0.0506 -0.0161 -0.0107 -0.0134
C(9,x) -0.0193 0.0131
C(10,x) 0.0513 -0.0528
C(11,x) 0.3442 0.0 0.3425 -0.0060 0.3402 0.0
C(13,x) -0.3800 0.0 ~-0.3766 0.0043 -0.3725 0.0
C(1l,y) 0.0 0.0735 -0.0049 0.0801 0.0 0.0867
c(2,y) -0.0691 -0.0919 -~0.0667 -0.0909 -0.0757 -0.0925
C(3,y) -0.0288 0.0071 -0.0300 0.0085 0.0237 0.0120
Cc(9,y) -0.0207 0.0117
Cc(10,y) 0.0783 -0.0936
c(11,y) 0.0 -0.6071 -0.0142 -0.6052 0.0 -0.6035
0(13,y) 0.0 0.4081 0.0143 0.4077 0.0 0.4075
C(1,y) -0.2513 0.0 -0.2604 0.0064 -0.2698 0.0
C(2,2) 0.0836 0.0625 0.0851 0.0615 0.0865 0.0725
C(3,2) -0.0336 0.0310 -0.0327 0.0316 -0.0785 -0.0338
C(9,z) ~-0.0749 0.0353
C(10,z) 0.0839 -0.0737
Cc(11,2) 0.2236 0.0 0.2303 -0.0065 0.2370 0.0
Cc(13,2z) -0.2211 0.0 -0.2273 0.0048 -0.2335 0.0
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TABLE 56
MO COEFFICIENTS OF n AND "1*(00) ORBITALS FOR T AND 1I
BY THE CNDO/2 METHOD

Molecule 1 II

MO n m1%(CO) n m1%(CO)

Energy (eV) ~10.204 0.304 ~10.262 0.260

C, Symmetry A” A” A” A”

Coefficients
H(1) -0.0328 -0.0045 -0.0137 0.0057
H(2) 0.0882 0.0311 0.0100 -0.0157
H(3) -0.0015 ~0.0025 -0.0217 0.0117
H(17) -0.0411 0.0632 ~0.0435 -0.0639
c(1,s) 0.0626 0.0009 0.0664 0.0006
c(2,s) -0.0148 -0.0478 -0.0147 0.0540
C(3,$) -0,0038 -0.0002 0,0238 -0.0196
Cc(11,s) -0.0901 -0,0008 -0.0902 0.0006
0(13,s) -0.0038 0.0004 -0.0038 ~0.0004
Cc(1,x) 0.0083 0.0015 0.0057 0.0002
Cc(2,x) -0.0128 -0,0298 -0.0157 0.0245
Cc(3,x) 0.0092 ~0,0043 -0.0055 0.0116
Cc(11,x) -0.3035 -0.0028 -0.2067 0.0054
0(13,x) 0.4071 0.0035 0.4172 -0.0059
c(l,y) -0.0219 -0.0322 -0.0198 0.0337
c(2,y) 0.0352 0.0360 0.0512 ~0.0313
c(3.,y) -0.0373 0.0046 -0.1184 0.0110
Cc(ll,y) -0.0027 0.5267 -0.0056 -0.5261
0(13,y) 0.0081 ~0.4590 0.0223 0.4590
c(l1,2) 0.2284 0.0050 0.2335 -0.0086
c(2,2) -0.0923 -0.0190 -0.0470 0.0358
C(3,2) 0.1482 -0.0314 -0.0146 -0.0164
Cc(11,2) ~0.1714 -0.0030 -0.1751 0.0057
0(13,z) 0.3222 0.0025 0.3324 -0.0049
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TABLE 57

MO COEFFICIENTS OF n AND nl*(CO) ORBITALS FOR III AND TV

BY THE CNDO/2 METHOD

Molecule TII IV

MO n m1%(CO) n nl*(CO)

Energy (eV) -10.264 0.308 -10.242 0.297

CS Symmetry A~ A” A~ A°

Coefficients
H(1) -0.0078 0.0023 -0.0270 0.0000
H(2) 0.0573 0.0286 0.0069 0.0084
H(3) 0.0102 -0.0139 -0.0297 -0.0085
H(13) ~0.0053 0.0263 0.0016 -0.0039
H(17) -0.0511 0.0629 -0.0504 0.0632
c(1,s) 0.0809 0.0035 0.0771 0.0015
c(2,s) -0.0171 -0.0501 -0.0137 ~0.0534
C(3,s) -(0.0092 ~0.0176 0.0282 0.0195
C(1l1l,s) -0.0947 -0.0012 -0.0926 ~0.0012
0(13,s) -0.0046 0.0004 -0.0042 0.0002
C(1,x) 0.0057 0.0013 0.0047 0.0016
c(2,x) -0.0119 -0.0300 -0.0132 -0.0286
C(3,x) 0.0101 0.0040 0.0003 -0.0071
C(11,x) -0.3107 -0.0009 -0.3101 -0.0032
0(13,x) 0.4254 0.0021 0.4231 0.0039
C(l,y) -0.0001 -0.0300 -~0.0050 -0.0318
C(2,y) 0.0266 0.0354 0.0344 0.0331
C(3,y) 0.0132 -0.0100 -0.0233 -0.0046
c(11,y) -0.0020 0.5269 ~-0.0033 0.5256
0(13,y) 0.0069 -0.4578 0.0154 -0.4599
C(1,x%) 0.2267 0.0030 0.2304 0.0044
Cc(2,z) -0.0636 -0.0268 -0.0624 -0.0326
Cc(3,2) 0.0199 -0.0199 0.0466 0.0268
c(11,z) ~0.1722 -0.0005 -0.1751 -0.0027
0(13,2) 0.3372 0.0007 0.3363 0.0029




