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BY

JOSEPH KWANG-CHAO CHENG

MAJOR PROFESSOR: Dr. Jimmy F. Harp

ABSTRACT

The problem of urban area floodwater containment has become more
and more serious as the process of urbanization continues. This research
effort is an extensive study of the current graphical methods which have
been most widely used. Hydrologic methods are not envisioned as candidate
models, or equations, to be computerized. The basic partial differential
equations of unsteady non-unifcrm flow are to be assembled and a digital
computer assisted finite differences techniques developed. This eliminates
the utilization of one of the classical approximate methods whereby
storage~depth assumptions are made. An applicable, suitable, computer

method 1s developed, and an application to urban areas is made.
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UPSTREAM DETENTION METHODS AS A FLOOD

CONTROL PRACTICE IN URBAN AREAS
CHAPTER 1
INTRODUCTION

Whenever heavy rainfall or melting snow provides more runoff than
can be carried within the normal channels of existing streams, a flood
results. The excess water overflows to adjacent areas, the valley lands,
and invades developed areas. Then, the flqod damage is relative to:
transportation impediment, agricultural destruction, urban development
inundation, and loss of human life and property. There is no known abso-
lute method of controlling the rainfall itself apart from current weather
modification efforts such as cloud seeding, etc. Nature alone controls
the cycle from sea to sky to earth. Man's efforts are confined to attempts
at guiding the water on that part of its course from earth back to the sea.
The ;egulation of the waters that could cause floods present the flood-
control problem.

Many structures are built to control water: waterways of proper
depth and width control arteries of transportation; water discharged
through water-wheels provides controlled power; water may be caught in

storage basins and distributed for irrigation or water supply; and water
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that is an actual or potential source of damage or danger to property or
human life may be controlled to prevent floods. When this control of
water involves improvement of reclamation of property not damaged in its

' and when it

present conditions, the control is termed "reclamation,'
involves the prevention of flood damage is termed "flood control."

Flood problems are diverse in nature. Uncontrolled runoff results
in erosion of land and contributes to sediment-deposition problems down-
stream. '"Among the devices employed under the general concept of flood
control, the storage, or detention, of excess flood waters in reservcirs
designed for that purpoge constitute one method of flood contro." Another
is the diversion of excess flood waters into floodways specifically
designed for that purpose. By contrast, levees, dikes, floodways and
channel improvement merely serve to protect property from overflow but do
not control floods; in fact, their presence tends to confine flood flow
and thereby increase the height of flood stages. As population increases,
the natural trend is for more people to crowd into the low valley lands,
which are natural pathways for flood water. Subsequently, there is a
greater demand for more extensive flood protection.

The function of a flood-control reservoir is to store a portion
of the flood flow in such a way as to minimize the flood peak at the point
to be protected. In an ideal case, the reservoir is situated immediately
upstream from the protected area and is operated to "cut off" or alter
the flood peak. This is accomplished by slowly_diséharging all reservoir
inflow until the outflow reaches the safe capacity of the channel down-
stream. All flow above this rate is stored until inflow drops below the

safe channel capacity and the stored water is released to recover storage
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capacity for the next flood.

The common method of determining storage in a reach of natural
channel is to use one of several storage equations in conjunction with
obsered flows. Figure 1-1 shows an inflow and outflow hydrographs
relationship. In the case of a proposed flood-control reservoir, it is
necessary to determine the degree of flood protection offered. This
requires that an operating plan for the reservoir be determined and that
actual floods of various magnitudes be "routed" through the reservoir
following the'proposed operation schedule.

To solve the problem of hydrologic reservoir routing, the reservoir
storage configuration must be known. A storage equation, "inflow minus out-
flow equals change in storage per unit time," becomes the basis of the
routing. In routing a flood through a reach, it is necessary to know:

(1) Total inflow into reach

(2) Profile of water surface at any instant

(3) Storage under the profile

The storage equation is:
(I - 0) At = AS

in which I is the total inflow rate, O is the total outflow rate, AS is the
change in volume in storage in the reach, At is the length of the time
period.

Until recently, most of the water flood flow research has been
aimed at determining the variables influencing runoff, and the relation-
ships between the variable has been empirical or statistical because of

the complexity of the problem and the lack of data involved. In recent
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times, high speed digital computers have been used for both basic and
applied research to flood flow problems. Most of the techniques for over-
land flow routing in streams are based, in various degrees, on the
integration of the partial differential equations of motion. The equations
of flood flow can be a powerful tool for the different areas of research.
In this study, there are two fundamental partial differential equations.
One is the conservation of mass or the continuity equation and the other
is the momentum equation. These two partial differential equations from
the basic mathematical models represent the various phenomena. These
equations are not simple to solve by analytical methods, and numerical
solutions prove to be too tedious for practical purposes. Simplified -
methods based primarily on the equation of conservation of mass have been
widely used in the past. The digital computer has made it feasible to
obtain numerical solutions for the complete system of equations of motion
by the finite difference method.

Accordingly the flood problem, water in the stream channel system
(see Fig. 1-2), has been observed to be unsteady non-uniform flow, etc.,
but the reservoir routing problem is different from the streamflow routing
problem in its fundamental nature and by difference from local runoff
entering along the length of the stream channel. This study will entail
the use of partial differential equations to solve the problem of reservoir
routing. The solution requires as input information:

(a) The reservoir geometric elements.

(b) The total time.

(c) The inflow hydrograph.

Programs for the solution of the partial differential equatioms of
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7
the open channel flow have been written for solution by digital computers
such as the IBM 360. The programs have been designed to utilize a variety
of languages such as FORTRAN, MAD, ALGOL, etc.

The reservoir routing problem has been solved by several graphical
methods which will be described in the literature review. The original
purpose of this disseration was to present a solution similar to the ICES-
HYDRO scheme (25) whereby a practical method is made available for the
problem of urban area floodwater containment. However, due to circum-
stances beyond our control. z lesser goal was achieved. Specifically, this
study will examine one aspect of this problem -~~ reservoir routing. Hope-
fully, the end result of this research will be the development of a
practical, usuable technique for urban area floodwater containment.

The ICES-HYDRO (25) package solves the streamflow routing problem
but not the reservoir routing problem solved here. This technique uses
the ALGOL computer, which is not available at the University of Oklahoma

computer laboratory.



CHAPTER II
REVIEW OF LITERATURE

The history of flood routing through reservoirs will be revicwed
in this chapter. For many years most engineers have recognized the pro-
blem of water overflow and have expended considerable time and thought to
its solution. Usually the investigators directed their efforts towards an
analytical approach to the problem. A Erief evaluation of the work that
has been done in this field will be described.

In the past, most research has been done by two methods for opti-
mum flood control. First, the unit hydrograph method along with a basic
water balance relationship shows the water overflow as a linear system.
Second, the flood routing method uses two complete partial differential
equations for open channel flow, one being the continuity equation and the
other, the momentum equation.

In order to study the storage influence on the outflow hydrograph,
the differential equation containing the storage term (inflow minus outflow
is the change of storage in a given time increment) is infegrated over a
cycle inflow function (an assumed hydrograph) and for outflow ratinglcurve
which is linear with respect to the reservoir level. This theory was com-
pleted by J. A. Seddon 1898 (1). He let the function H = £(t) be a
reservoir level hydrograph where the area of the reservoir is either con-

stant or changing with the reservoir level, and where H is the reservoir

8
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level and t is the time. The effect of storage on the amplitude of the
crest flo& and on phase shifting (the postponement of maximum Q) is derived
analytically for one of more reservoirs.
In 1914 T. R. Running (2) used the storage equation and 2 graph-

ical method for its integration:

P-Q=Aa? (2-1)
where P = reservoir inflow in cfs

Q = reservoir outflow in cfs

A = area of rerservoir in square miles

H = depth or elevation of the reservoir area in feet

t = time

Since P = £(t), Q = £(H), and A = £(H), then g%-= f(H,t). The
| family of curves of g%-= f(t) for constant H can be plotted, when P, Q,
and A are known. Using the starting point BO (HO, to) (where B is the
width of reservoir) and selecting the point Bl on the line Hl so that the
area under BOB1 is (Hl- HO), the point ty is obtained, etc. The function

H = £(t) is thus derived.

H. A. Thomas 1917 (3) solved the storage equation by mass curves

p-q=3¥ (2-2)

Given the mass curve of P, storage W = £(Q) computed form W = f(H)
and Q = f(H). An interval At is selected as fixed, inside of which all
changes are considered linear. On the storage W for each outflow Q, 1/2QAt

is added and a new curve W + 1/2QAt = £(Q) is plotted. If the accumulated
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outflow is known for t1 and At 1is added, the value of EpiAt is determined

for the center of the At range.

ZPiAt - ZQiAt = W+ 1/2QAt (2-3)
and with the value from the curve W + 1/2QAt = £(Q), the mean value of Q
in the interval At is obtained. The outflow during the interval is QAt
and the new point of IQAt becomes ZQiAt + QAt. In this manner, the

integration is completed

where P = Inflow of reservoir in cfs
Q = outflow of reservoir in cfs
W = storage volume
H = depth in reservoir in feet
t =>time interval

R. E. Horton, 1918 (4) developed a storage equation of the form

PAt = AAH + [1/2(Q1 + Q2)] At (2-4)

His equation 1s discussed for integration, Q1 and Q2 at the begin-
ning and at the end of At, A and H are area and height of reservoir surface
respectively, At = time interval. For given At, Pl, A, and Q1 and assumed
AH, Q2 can be determined so that AH and Q2 can be obtained by successive
approximations. In order to avoid this procedure, two functions are

developed:

1 At 2 , (2-5)
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and
H Q
2 2
F2 A X + 5 (2-6)

As Q1 or Q2 are functions of H1 or HZ’ F1 = f(Hl) and F2 = f(HZ)’
and two curves can be computed that may be easily plotted, F2 = P -~ Fl,
and for given F1 and Pl’ the value F2 and HZ(QZ) can be obtained, and so

on.

Where P = inflow discharge in cfs

Q = outflow discharge in cfs
Fl’ F2 = gtorage factors
At = time interval

J. C. Stevens, 1921 (5) used the integration of the storage

differential equation

p-q= (2-7)
The function W = £(Q) 1is replaced by dW= £(Q)dQ, wher £(Q) = m is the
shope of the storage function and may be considered practically constant
in certain limits of Q. The trial-and-erro method is based on different
At and corresponding m. The genral form of the storage differential
equation for Q = £(H) and W = £(H) as power functions of H is developed,
but not integrated because of the difficulty to fit the hydrograph P = f(t)
by a mathematical expression.
Where P = inflow discharge in cfs.

Q = outflow discharge in cfs
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W = storage volume
H = depth in reservoir in feet
t = time interval

A trial-and-error method for flood routing by the use of the stor-

age equation was developed by R. D. Goodrich, 1931 (6). He used
P-Q=—— (2-8)
for the selected time interval using the outflow storage factor equal to

P1 + P2 + Wi - Q1 = W2 + Q2 (2-9)

so that W, and Q2 are obtained by successive operations in tabulating the

2
above values.

Where P = inflow discharge in cfs
Q = outflow discharge in cfs

W = storage volume .

t = time interval

H. K. Barrows, 1933 (7), by using a graphical procedure for the
determination of reservoir storage above the spillway level, computed the
outflow from the reservoir. A simple short method, employing the mass
curves of inflow and spillway discharge is used. As the starting point,
storage W represents the increment of difference in level AH. Using the
slope of the outflow mass curve for AH, a new point on the inflow mass
curve is obtained for the new level H + AH and the computation process

is repeated.
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G. R. Clemens, 1945 (8) proposed a graphical method based on the
storage equation. It is called "Reach Reservoir Method" and is used for

flood routing in reservoirs and in valley storage. The curves

Fl = Wi + 1/2Q1 (2-10)

and

F, =W, - 1/2Q2 (2-11)
both equations are used as well as Q = £(H) and W = £(H), with known inflows.
Curves of different scales can be plotted to increase the accuracy of the
method. The time interval of the wave, the local inflow, and the valley
storage effect are discussed. In the equation, Fl’ F2 = gtorage factors,
Q = outflow discharge, W = storagé volume and H = depth in reservoir.

The slide rule flood routing method was used by C. J. Posey 1935
(9). This method involved short, uniform time increments and required a
separate set of scales for each reservoir having a different volume-depth
or outflow-depth relation. Length along the slide and stock represent
total volumes as "day-second-feet," the former bearing a simple scale with

graduations defined by
F, = W, +Q, =
2 2 22 (2-12)

and the latter bearing two opposed scales with a common origin defined

by I = Pt and
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¢ .
3 (2-13)

in which P = average inflow rate in cfs
t = length of time increment
W, = at beginning storage volume
W, = at end storage volume
Q1 = at beginning outflow rate in cfs

Q2 = at end outflow rate in cfs

The outflow rate is assumed to be a known fuﬁction of the total
storage, and the storage equation is of the form (F1 + FZ)' Given the
inflow and outflow rates at the beginning of a étep, the outflow rate at
the end of the step can be obtained directly by means of the slide rule
or by means of a monograph in which Fl and F2 are storage factors,

The first attempt to complete the general partiai differential
equations of a solution suitable for flood control was begun by H. A.
Thomas, 1937 (10). His was the first real significant contribution to
this disciplinary area, "Hydraulics of Flood Movement in Rivers' using WPA
funded research. His two partial differential equations were:

the energy equation

V2 aY L Vv, 1oV
- xtgxtgse (2-14)

K7y

W @ @ @& 5

and the law of continuity:
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3V Y _ . Y }
agxt Wy~ b5 (2-15)

(6) ) (8

(1) Bed - slope term

(2) Hydraulic - friction term

(3) Depth - friction term

(4) Velocity - Head term

(5) Acceleration term

(6) Prism - storage term

(7) Wedge - storage term

(8) Rate - rise term

: Thomas research paper (10) presents a systematic analysis of un-

steady flow in reivers and of the approximate flood-routing methods that
have been developed. The following are discussed: Review of laws of
steady and unsteady flows, propagatiqn of stable wave forms, difficulties
of integration by exact methods and boundary conditions, use of hydraulic
models for unsteady flow (which is recommended for accurate flood routing),
and approximate methods of flood routing in uniform channels and in actual
rivers. Three approximate methods are analyzed: First approximation, with
a simple storage equation for each Ax and time interval At, based on the
relationship of storage and outflow discharge (this method was found to be
lacking in accuracy); second approximation, in which the slope of the
reach 18 considered to be a straight line, with or without corrections for
velocity head and acceleration term; and third approximation, employing

two differential equations where the solution 1s very impractical and the
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possibility of solving the equations by the finite difference approach is
very difficult. H. A. Thomas did some sample computations discussing how
the technique could be used in the field and acknowledged that the quantity
of computation made its application quite difficult to apply.

A semigraphical method for integrating the storage differential
equation was made by R. S. Goodridge, 1937 (11). For given inflow hydro-
graph, storage-elevation function, and outflow discharge-elevation function
(rating curve), the outflow hydrograph and storage-time function are deter-
mined. The shortcut method described uses a process of direct integration
without employing mass curves. It is based on the use of a selected time
unit At (which is variable) for the equation W= QAt and uses At as a
constant (time required to fill a given volume by a given) discharge); At
depends on the selected increments for storage and discharge in which W is
storage volume, Q is outflow discharge, and At is time interval.

The function of a f£lood control reservoir is to reduce the height
of flood peaks by temporarily storing part of the flood. The feasibility
of the idea was exemplified in studies made by C. J. Posey and I. Fu-Te,
1940 (12). The principal problem in the functional design of a flood
control reservoir is the determination of the relationship between the
amount of storage and the corresponding reduction in the flood peak. They
have been generélized and extended to apply to reservoirs with either
orifice or weir-type outlets and valleys of a wide morphological config-~
uration. Although the relationships derived can be used in the design of
multiple-purpose reservoirs, the present discussion is restricted to
reservoirs designed primarily for flood control.

H. A. Thomas, 1940 (13) made use of the two partial differential
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equations for unsteady flow. A trial-and-error process of determining
local inflow from given stage profiles for different times is given by
using the stage-surface profile for a constant discharge as the reference
base, from which the depth h is measured. By repeating the process,
finite relations of Q = f(t) for given stations and A = f(x) for glven
- times are determined. Having At and Ax for both families of curves, IAQ
a£d AW are obtained, where IAQ is the difference between outflow and inflow

and AW is storage of a reach Ax during the time, At. Local inflow
P = AW - ZIAQ (2-16)

Solution of the trial-and-error process in the case of known local inflow
is also given. Thomas (13) recognizes that the method is laborious but
considers it justified.

D. Johnstone and W. P. Cross, 1949 (14) in "Elements of Applied
Hydrology,'" Chapter 7, discusses the simple storage equation, flood routing
through reservoirs and rétading basins with storage as a function of dis-
charge alone, an example of flood routing by use of a mass diagram and a
storage-factor (2W/At + Q) curve, along with discussion of flood routing
in a stream where storage is used as a function of inflow and outflow.
Derivation is given of the storage relationship for a reach and an example
of the flood routing is shown. In which, W is storage volume. Q is the
outflow rate, and t is the time interval used.

Most text books on hydrology such as Linsley, Kohler, and Paulhus,
1949, 1958 (15, 16) present a good summary on flood routing through reser-

voirs by using the continuity equation. It is the so-called "hydrology
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equation, "written as

(2-17)

The term I represents the inflow discharge, O the outflow dis~-

charge, and As/At the rate of change of storage.

that the rate of change ir storage in a system is equal to

between the inflow and the outflow.

The Hydrology Equation (2-17) may be rewritten as

) ty
5, + Idt = 5, + 0odt  or

it simply states

the difference

(2-18)

(2-18a)

(2-19)

(2-19a)

In the latter form the equation says simply, the total quantity of inflow

into a reach during a given period of time minus the total quantity of

outflow from the reach furing the same period equals the change in the
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volume of water stored in the reaéh.
Since neither I nor O can be expressed mathematically in terms of
t, numerical integration is necessary for the solution of the hydrology
equation. Selecting a time intefval short enough that both I and O may be

considered linear functions of t, the equation may be rewritten as:

I. +1 0, +0
1 2 1 2, _
(tZ-tl) ( 2 - 2 )—S

-8 (2~20)

2 1

By the terms of the problem, I1 and 12 are known and assuming that

0l and Sl are known, the equation has two unknown, O, and S,. For a

2 2

solution of the flood routing problem it is therefore necessary that
another relation involving O and S be found. This relation may be obtained
from the physical characteristics of the reach.

Flood routing by the hydrological method is based on the storage

equation which K. E. Sorenson, 1949 (17) arranged in the form:

Wl + 1/2(Q1At) + [1/2(P1 + P2) - Ql] = W2 + 1/2(Q2A) (2-21)

The following curves are used by Sorenson (17) in his solution to
the flood routing through reservoir problem: W + 1/2(QAt) = £(H), W = £(H),
Q= f(H) and P = 1/2(P1 + PZ) = f(t), Q = £[W + 1/2(QAt)].

The functions H = £(t) and Q = £(t) are computed. A graphical
method is used and a combined graphical and nomographic method in which
P = inflow discharge in cfs, O = outflow discharge in cfs, W = storage
volume, t = time interval, and H = depth in the reservoir in feet.

B. R. Gilcrest, 1950 (18) uses two appximation methods for flood
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routing. The first approximation method is based on the neglect of the
momentum equation and the second approximation method is based on the two
differential equations.

These partial differential equations have been directed toward
improving the techniques of solution using the method of characteristics.
J. J. Stoker, E. Isaacson, and A. Troesch, 1953, 1954, 1956, 1958 (19, 20,
21, 22), respectively, did the research in this field with the aid of a
digital computer. The last paper, (22), is actually a summary of the first
three reports which were - prepared for the U. S. Army Corps of Engineers,
Ohio River Division. Those repofts gave a complete discussion of the
restrictions imposed by the characteristic directions, developed grids for
solving the equations by finite differencesmethod on the digital computer,
and comparison with the actual data which was good in the case of a
junction analysis and a reservoir operation. The method of characteristics
is used to determine the time difference range for At when AX is selected
and there is a good analysis of the mesh of points (At, AX) in the plane
(t, X). Although the research efforts of Stoker, Isaacson and Troesch (19,
20, 21, 22) was directed specifically to stream routing, the principal
ideas may be adapted to reservoir routing with some effort.

In Chow's Open-Channel Hydraulics, Part V, 1959 (23), unsteady
flow is discussed in two chapters. Chapter 18 treats gradually varied
unsteady flow, considering continuity of unsteady flow, dynamic equationm,
monoclinal rising wave, dynamic equation for uniformly prqgessive flow,
wave propagation and solution of the unsteady surface flow. Chapter 20
treats flood routing, considering the method of characteristics, the

method of diffusion analogy including principles and methods of hydrologic
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routing, and a simple hydrologic method of routing.

Morgali and Linsley, 1965 (24) preéented a method of syntheéizing
overland flow hydrographs by controlling the parameters. The hydrograph
is constructed for a uniform rainfall on a flow plan of constant slope
with uniform surface texture and a given length, and the effect of each
parameter is isolated by varying it individually. These continuity and
mementum equations are solved on a digital computer using the numerical
procedure for boundary and initial conditions.

The HYDRO Program, 1966 (25) is a content-oriented computer
language system which was first begun in the Civil Engineering Department,
Massachusetts Institute of Technology and was completed later in the
Department of Civil Engineering, Carnegie Institute of Technology. It
was developed for the solution of hydraulic engineering problems and
specifically for the stream flow routing. This system has two principle
components: an ALGOL compiler and a procedure library. The general flood
routing computation is based on the appximate methods of routing proposed
by H. A. Thomas, 1937 (10) in "The Hydraulics of Flood Movements in
Rivers," Carnegie Institute of Technology, Engineering Bulletin P.46-60,
and is applicable to gradually varied unsteady flows in streamflow channels
with no abrupt changes in the cross section. The method makes two basic
approximations: (1) the storage in a reach (reach herein is defined as the
channel length between two stations) is considered equal to the length of
the reach times the average cross section area within the reach, assuming
that the surface profile within the reach does not differ from a straight
line by more than a negligible amount, and (2) the discharge rate at the

downstream end of the reach is considered equal to the normal discharge
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rate corresponding to the given stage at the end of the reach. The
effects of abnormal surface slope in modifying the discharge are
neglected.

Hartman, Ree, Schoof, and Blanchard, 1967 (26) developed a flood
prevention program on Sugar Creek, a tributary to the Washita River in
Oklahoma, where flood peaks were reduced by one-half. The recession parts
of the after-treatment hydrographs were lengthened. The structures re~
duced the infiltration on the flood plane by reducing flood peaks. The
recession flow was increased by the number of detention reservoirs.

The U. S. Army Corps of Engilneers, H&drologic Center, Davis,
California, 1971 (27) have developed very recently a generalized computer
program for the reservoir system analysis. This program was prepared for
use in the CDC 6600 computer and is usable on other high speed computers
if dimensions are changed to fit memory size. Using FORTRAN IV, it per-~
forms multipurpose routing of a reservoir system by any number of periods
of ﬁniform or varying length per year based on varying flow requirements
at reservoirs, diversion, and downstream control points, and power peak~
ing and energy requirements at reservoirs. Although it can accept any
configuration of resefvoirs, diversions, power plants, and control points
and will accept system power demands that override individual power plant
requirements, but it does not provide for channel routings. Therefore, a
more fundamentally based formulation is required if one is to achieve a
high degree of gemerality and flexibility.

A review of the literature relevant to the problem of reseroir
routing has shown that most studies have dealt with practical methods and

use a graphical technique. However, it was found that no research efforts
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have been directed toward solving "flood routing through reservoirs'.
Therefore, it is the purpose of this study to provide development of a
practical, usable technique for urban area floodwater containment.
Having reviewed the literature pertinent to this problem,

Chapter III will present the theoretical work.



CHAPTER III
DEVELOPMENT OF PROCEDURE FOR MATHEMATICAL EQUATIONS

Part I. Basic Theory

In storage reservoirs for flood control, the inflow hydrograph and
outflow-head relationships must be known (see Fig. 1-1). From the mathe-
matical point of view, there are two fundamental partial differntial
equations for open channel unsteady nonuniform flow. One is the continuity
equation commonly called the law of conservation of mass, and the other one
is the momentum equation or the law of conservation of momentum. These two
equations are classified as nonlinear partial differential equations of
the hyperbolic type.

Two Fundamental Partial Differntial Equations

A. Continuity Equation

In Figure 3-1, the AX is the length between the sections a-a and
b-b. Letting X be the horizontal distance in feet in the same direction
as the water flow, p is the water density, t is the time coordinate in
seconds, A is the channel cross section area in square feet, Y is the flow
depth in feet, E is the channel bottom elevation in feet, V is the average
velocity in the same direction as the water flow in feet per second, B is

the channel bottom width in feet, and Q is the volume flow rate entering
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the channel through section a-a in cubic feet per second. This study

assumes no lateral inflow.

The mass of water entering the channel reach during a time interval
will be

pQAt (3-1)

The volume outflow rate is
9 -
Q + X AX (3-2)

The mass of water leaving the channel during the same time At, from

expression (3-2) will be
0(Q + %% AX) At (3-3)

Combining the inflow and outflow from expressions (3-1) and (3-3)

we have the following expression:

pQAt ~ p(Q + %}9{ AX) At (3-4)

The change in storage is given by

dA

° 3¢ AXAt (3~5)

For the law of conservation of mass, inflow minus outflow equals

the change in storage, so we equate the expressions (3-4) and (3-5)

pQAt ~ p(Q + T AX) At s AXAt (3-6)
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Dividing by pAt from equation (3-6)

- 29 - 9A -
Q- (Q+ X AX) 5t AX (3-7)
Simplifying equatiomn {(3-7)
9Q . 3A _ -
53X T ot = O (3-8)

Equation (3-8) is the continuity equation and is the mathematical
expression for the law of conservation of mass for open channel, non-
uniform, unsteady flow. Since Q = AV, for a trapezoidal cross section the
area A = (B + ZY)Y and the top width T = B + 2ZY, so the continuity

equation may be written as the following:

ABY oY DY

T 3% AT 0 (3-9a)

For a rectangular cross section, this expression is given by

v 3Y , oY
XtV *tae =0 (3-9b)

Y
B. Momentum Equation
The equation for conservation of momentum is given by Newton's
second law of motion which states that total forces acting on an element
are equal to the rate of mementum change. The forces acting on the
element are shown in Figure 3~2. These forces are the result of the

‘pressure, gravity and friction forces.
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Letting y be the specific weight of the fluid (v = 62.4 1b/Et>
for water, g is the acceleration due to the gravity which denotes 32.2 ft
per second per second. Also y = pg, Sf refers to the friction slope in
ft/ft, So is the channel longitudinal bottom slope in ft/ft, hf is the

head loss in ft, and the forces F, and F

1 2 represent the hydrostatic forces

at the end faces of the element.

Y AX
F| = YYA - YA=¢. =5 (3-10)

81 AX (3-11)

Fy = YYA+ YAz 55

2

The water depth at section a-a is ¥Y; at section b-b it is

Y +'%§AX ' The cross section area at section a-a is A; at section b-b,
it is A + %%AX The pressure force F1 acts to the right and the

pressure force F, acts to the left. It is assumed that the water depth
at section b-b is greater than the section a-a water depth. So the

resultant hydrostatic force is

5Y ’
F, = -pgh 5z AX (3-12)

The body force expression is equal to the weight of the fluid

inside the element (pgAAX) times the channel longitudinal bottom slope (So)
Fg = pgAAX - S (3-13)

The head loss is equal to the friction slope (Sf) times the length

of the element (AX)
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.hf = 84X (3-14)

The energy losses caused by the boundary drag, turbulence, and
modifications to the velocity distribution pattern produces an energy line

with a slope S_. which results in a loss of head in the length AX. The

£

resistance force is given by

Fo = pghh, (3-15)
From equation (3-14) hf = SfAX
Fp = PgASAX (3-16)
dv

Mass in the small element = pAAX and the acceleration = a = "
Rate of the momentum change of the fluid through the element is the change
in time with respect to the momentum inside of the volume element.
dv

pAAX It (3-17)

where %% 1s defined as

dv _pvdt -dvdx v 3y -
dt 3t dt Taxdr ot TV Bx (3-18)

So the rate of the momentum change is given by

v oV .
pAAX ( =+ wr ) (3-19)
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Finally, using Newton's second law, F = Ma, and combining the equa-
tions of pressure, friction, gravitation, and the rate of the momentum

change equations (3-12), (3-13), (3-16), and (3-19)
oY v v
PBANXS - pgAAXS_ - pgA = AX = pAAX ( o+ Ve (3-20)

Simplifying equation (3-20)

pgA 3% AX + pAAX (3L + VY) = 0gAAXS_ - pASIX (3-21)

GX)

Dividing equation (3-21) by pAAX
- gSf (3-22)

Simplifying equation (3-22)

L,

gx T T ex -8 5 (3-23)

- Sf)
Equation (3-23) is the momentum equation for open channel non-

uniform, unsteady flow. But for this study, it is applied to a reservoir

where friction slope is negligibly small, so let Sf equal zero, whereby

equation (3-23) becomes:

8V oV
g == ax +tpt V=85, (3-24)
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Part 2. Method of Solution

A strict closed form mathematical solution to the reservoir routing
problem has been shown in the literature to be extremely complicated, diffi-
cult, and, as yet unsolved. However, various simplified methods have been
developed for practical purposes. The approach dealt with in this problem
is to use the finite difference technique related to the general method of
characteristics. Now, it is the purpose of this research to seek a
numerical methods type solution which is based on the solution to the set
of differential-equations of unsteady flow in reservoirs.

The equations governing the unsteady flow problem under consider-
ation are treated in this study. Although a general solution is not avail-
able, the method of characteristics is used to transform the partial
differential equations into particular total differential equations which
are then solved by a first order finite difference technique. In order to
obtain an orderly numerical solution on the digital computer, a method of
specified time intervals is adopted.

The continuity and momentum equations (3-9a) and (3-24), form a
pair of quasilinear hyperbolic partial differential equations in terms of
two dependent variable, velocity (V) and depth (y), and two independent
variable, distance (X) along the reservoir and time (t).

The slope of the characteristics curve is used to indicate the
solutions of the following partial differential equations with independent
variables distance (X) along the reservoir and time (t) and dependent

variable flow depth (y) and flow velocity (v).
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The continuity equation

The momentum equation

21. oV ov
gBX+V53{-+8t gso

The total changes in depth
5% dx + 5t dt = dy
The total change in velocity

oV v -
X dx + 5t dt = dv

In the above four equatioms, %%

(3-25)

(3-26)

(3-37)

(3-28)

is the slope of water surface

21 is the change of depth of flow with respect to time, %%-is the change

velocity with respect to distance, and

is the change velocity with

respect to time. These equations (3-25, 3-26, 3-27 and 3-28) are a set

of nonhomogeneous linear equations in the four unknowns 3V/3X, 3V/3t,

dy/9X and dy/3t. These can be expressed by a single matrix equation as

the following:
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dy/9X dy/at av/3x av/at

(v 1 A/T o] loysex] [ o ]
g 0 \Y 1 3y /ot gSo (3-29)
dx dt 0 0 wiex| | ay

LO 0 dx dtJ ~8v/8tJ ‘ dv ]

The theory of linear algebraic equations show that 1f the determinant of

the coefficient matrix vanishes, that is, 1if

v 1 A/T 0
g 0 v 1
=0 (3-30)
dx dt 0 0
0 0 dx dt

The equation (3-30) shows either an infity of solutions or no

solution results and also show discontinuities to determine the character-
istic direction (See Fig. 3-3).

Simplifying eguation (3-30)

2

dx dx - A
(EE - 2V (-&-é.-) + (v2 - g-,f) =0 (3-31)
A
dx _ vt / B (3-32)

dt

For a rectangular cross section, which could sometimes be used,

this expression is given by
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ax . vt /gy (3-32a)
dt
/ BA
Let C = T orC= /E;- (3-33)
The characteristic curve
@ -v+c | (3-34)
dt’a
dx
('EE' 8 v-_C (3-35)

Finite - Difference Equations

The method of the finite-difference technique is based on the
determinaﬁion of approximate solutions of the partial differential equations
in a discrete net of points in the x-t plane. There are various procedures
which can be used to solve approimate solutions. In general, the system
computation normally adopted is used on a rectangular array of points in
distance and time (X, t - plane) as shown in Fig. 3-3. When using a
finite difference technique to solve a partial differential equation (when
given initial and boundary conditions) a network of gird points is first
established throughout the region of intersect occupied by the independent
variables. For example, the distance coordinate x and the time t are
independent variables, the respective grid spacings are AX and At, and the
dependent variables are the flow depth y and velocity v.

Oné solves the characteristic equations by using the first order

finite difference approximations. The subscripts are used to define the
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location of the known and unknown quantity. These two partial differential
equations (3-9) and (3-24a), the initial data, boundary conditions, and in-
flow hydrographs are given. These two equations have a uniquely determined
solution (see Fig. 3-3) for the unknown quantities flow depth y and
velocity v for all future times. The two unknowns y (x,t) and V(x,t) are
advanced by a time increment At through using the partial differental
equations.

To solve these two partial differential equations by using the
first-order finite-difference method can combined the continuity and
momentum equations together and multiplied by K to momentum equation. The

K will make both equations dimensionally compatible.

A3y 3y , 3y dy 0V | » 3V _ -

T x+v8x+8t+Kgax+Kv3x+K8t KgSo (3-36)
v Ay L v oy AT -

REES(V + ) + 52] + [35(V + Kg) + 5] = KgSo (3-37)

Total derivative in velocity respect to time

dv _dvax, vt _
at = sx dt T 3t dt (3-38)

Total derivative in depth respect to time

comparing equations (3-38) and (3-37) gives
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dx A -
t—i-t-?V'l-E,i,- (3-40)

Comparing equations (3-39) and (3-37) gives

dx -
TE’V+K8 (3-41)

Solving for K from equations (3-40) and (3-41)

/A
K= gT

(3-42)

For a rectangular cross section, this expression is given by

-/ %

(3-42a)

Consider that initial conditions for velocity and depth are known at
points L and R from Fig. 3-3. The two characteristic curves C+ and C-,

passing through points L and R and intersect at point P where conditions

are unknown.
Substituting K into the equation (3-37)
dy dv

gc T K i KgSo = O (3-43)
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From equation (3-43) and Fig. 3-3 can write the following finite~-

difference equation

by Av _ - ta_

at T K ~KeSo =0 (3-44)
orxr

Ay + KAV - KgSoAt = 0 (3-45)

From the characteristics curve can obtain the following four
finite-difference equations

(1) The C+ Characteristic Curve

YP - YL + K (VP - Vi% - KgSoAt = O (3-46)

xP - xL = (V+ C) (1:p - tL) (3-47)
(2) The C- Characteristic curve

Y, - Yp - K (V, - Vp) - KgSoAt = 0 (3-48)

X, - XR = (V- C) (tP - tR) (3-49)

The above four equations have four unknowns V_, YP’ XP and tP-
To solve for these unknowﬁé, Let L be the length of the reservoir,

N is the number of equal reaches.
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and YP‘

and

points.
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AX = XP - XL = XP- XR = L/N (3-50)

At=t—t=t—t=-—A-¥- (3-51)

Now, solving equations (3-46) and (3-48) are obtained for Vf

1 1
Y, =5 (O +Y) +5 K (V, - V) + KgSoat (3-52)

1 1
Vp =g (O - ) 45 (U + V) (3-53)

The values of both YP and VP are used to designate the interior

At the upstream end of the reservoir, the velocity Vup is

determined by using the C_ Characteristic Curve based on the both

continuity and momentum equations. The reservoir at fixed level, the

velocity Vup is obtained directly from equation (3-48).

vV =V, + 1 Y, -~ Y

up rtx (fp ~Yp) - 8 So it (3-54)
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At the downstream end of the reservoir, the expression for

velocity VDP becomes

' 3/2
C L, (H)
w1
VDP = P (3-55)

Where: Cw = Coefficient of Discharge

[
]

Length of crest
H = The head

A = The Area.



CHAPTER IV

DIGITAL COMPUTER SOLUTION

The computer solution discussed in this Chapter will provide a
simplified solution to these partial differential equations solved in
Chapter III. In solving these partial differential equations of unsteady

flow, it is necessary to specify initial and boundary conditioms.

Initial Conditions

The necessary initial conditions for the unsteady non-uniform
flow in the reservoir are the inflow and outflow rate and area of water
flow surface along the reservoir (see Fig. 4-1). They (initial conditions)
are specified at fixed values of time (At) at various spatial locations.

Given the initial values of depth y and veloeity V at time t=0
for a series of stations spaced AX along the reservolr, the values of y
and V can be determined for the same stations at a time tl = to + At. By
taking successive time increments the solution can be said to obtain in
time from the initial conditions. A convergent solution requires that the
selection of At with respect to AX be such that no point will lie outside
of the area bounded by the characteristic curves. By the theory of

characteristics, the maximum At can be determined by the following equation.

42
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At = _Ax (4-1)
(max) VHC

The term C in the above equation 1s used to represent the

celerity of gravity wave, and equal to v gA/T.

Boundary Conitions

Boundary Conditions are conditions specified at fixed values of
distance (X) at time (t) in various discharge versus time. The boundary
conditions can be prescribed at the upstream end or left boundary (X=o,
t=0), and at the downstream end or right boundary (X=L, t=o). These are

all along the reservoir bottom.

Upstream Boundary Condition

The boundary condition at the upstream inlet of the reservoir is
given by a discharge inflow hydrograph (see Fig. 4-~2). A inflow hydrograph
is a graph of discharge against time. The inflow hydrograph by the
triangular method is used in the case where rainfall and runoff records are
not available. The time to the peak flow and the time from peak flow to

the end flow are computed by the following equations
1
T,=¢T (4-2)

and

5
T = 3 T (4~3)
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in which: TP = the time to the peak flow
TE = the time from peak flow to the end flow
T = total time is given.

Downstream Boundary Condition

The downstream boundary condition is based on the principal spill-
way capacity and retarding storage amount. These are proportioned using
the principal spillway hydrograph commonly called the outflow hydrograph.
It is the safety valve for the flood control reservoir (See Fig. 4-3).

The general formula for the free discharge of a spillway (23, page 362),

1959 is given by the following equation

in which: Q outflow rate in Cfs

(@]
0

Coefficient of discharge

=
n

length of spillway in feet

the head in feet.

=+
]

For the trapezoidal channel cross-section area is computed by the
following equation
A= (B+2Y)Y ' (4-5)

in which: A

Cross section area in feet square
B = the channel bottom width in feet

Y = the channel depth in feet

N
|}

the side slope of channel



Discharge in cfs

Peak flow Qp

Fig. 4-2 1Inflow Hydrograph into Reservoir

9%
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Computer Programming

The computer program is based on the given initial and boundary
conditions to compute the inflow and outflow rate. All programs were
written in FORTRAN IV and were executed on the IBM System 360 Digital
Computer.

Given typical assumed data for an example solution to be the
following:

(1) Peak flow QP =’4200 Cfs

(2) Total time T = 36 hours

(3) The reservoir geometric elements are an assumed
trapezoid channel, the bottom width of reservoir
B=1000 feet, the depth of reservoir y = 5 feet,
the side slope of reservoir Z = 0.25 the length of
the reservoir L = 10,560 feet, the length of the
Welr Crest Ll= 50 feet.

A flow chart for the hydraulic reservoir routing is given in Figure 4-4

and a computer printout is given in the Appendix A.
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FLOW CHART FOR HYDRAULIC RESERVOIR ROUTING METHOD COMPUTATIONS

( START ’

READ B,YN,Z,L,L1,01,SI,S0,ZN,N,T,QP

i

TPBI,TE=§323TM?T,MU=QP/TP, ISAVE=0 ,MD=-QP/TE

]

[WomB+2 .0*Z#YN , Ao= (B+Z#YN) *YN

Po=B+2 ,0XYN* (1,0+Z**2 ,0) *%0 ., 5 ,RomAo/Po

!

Qo='*=(1.49*1&1::*(1!0)**0.667”‘(ch)"""0.S)IZN,VO'EQO/Ao

i

C=(32.2%A0/Wo)**0 .5, NP1=N+1

V(I)=Vo., A(I)=Ao,W(I)=Wo

{

VP(I)=Vo, YP(I)=YN, Y(I)=YN

________ =

T T T T
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DX=L/N

DT=DX/ (V(1)+C)

DTS=DT*60.0%60.0

Q=Qo, T=0, K=0, QDIF=0, SDIF=0

IDX=1, QQ(l)=0, SS=SI-O0I/2

(:::}—- —————— ThilnT
!

IDX=IDX+1, K=K+l

NO

CALCULATED INTERIOR POINTS
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_________ —< D0 25 I=2, N >

f

Y1=Y(I), YR=Y(I), YN=(YL+YR)/2.0

!

A(T)=(B+Z*Y(I))*Y(I), W(I)=B+2,0%Z*Y(I)|"

]

NAMD=(A(I)/ (32.2*W(I)))**0.5

Il

VP (1)=0, 5% (YL~YR) /NAMD+(V(I+1)+V(I-1))/2.0

YP (I)=(YL+YR) /2. 0+NAMD* (V(I+1)-V(I-1))/2.0+32,2*SO*DTS*NAMD

@-————————-—-— — — —| CONTINUE

QQ(IDX) =MU*T

Il

UPSTREAM BOUNDARY CONDITIONS

I

+
QQ (IDX)=QP+¥D* (T-TP)

QAVE (IDX)=(QQ (IDX)+QQ (IDX-1)) /2.0
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A(1)=(B+Z*Y (1)) *Y(1)

W(1)=B+2.0%Z*Y (1)

!

[YP (1)=YP (2)]

[NAMDL=(32.2%W (1) /A(1)) **0.5]

VP (1) = V(1)+NAMD1*(YP(1)-YR)~32.2*So*DTS

!

DOWNSTREAM BOUNDARY CONDITIONS

=

YP (NP1)=YP (N)

|

AP (NP1)= (B+Z*YP (NP1)) *YP (NP1)

{ SS1=QAVE(DX)+SS |

Al+(B+Z*Y (I) *Y(I)

{

S1=A1*T, ,He0 |
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Q1(KK)=3.9*L1*H**1.5

1

Ho=YP (NP1)-Y (1)

VP (NP1)=Q1 (KK) /A(NP1)

%

Y2=Y (I)+H

=

S2= ( (B+Z*Y2) *Y2) *L

!

DS=S2-81, S3=DS/DTS

!

S (KK)=83+Q1 (KK) /2

~ ——————{" CONTINUE |
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KK=KK-1, KKM1=KK-l

QD1F = Q1 (KK)-Ql (KKML)

l

SDIF=S (KK) -S (KKM1)

!

R=QDIF/SDIF

1

QA=Q1 (KK) -R*S (KK) , QOUT=QA+R*SS1

!

SS=SS1-QOUT, H1=(QOUT/(3.9*%L1))**0.6667

———————-~C D0 90 I=1, NP1 >

V(1)=Ve(I), Y(I)=YP(I)

!

—~—————— — | CONTINUE

%

GO To 77

Fig. 4-4 Flow Chart



CHAPTER V

COMPARISON TO HYDROLOGIC RESERVOIR ROUTING

Reservoir routing methods entail the hydraulic and hydrologic
routing. H. A. Thomas' (10), 1937 fundamental contribution to the
literature on flood routing was found to be the use of continuity and
momentum two partial diffential equations in hydraulic reservoir routing.
Generally, hydrologic routing methods are formulations which are approxi-
mate in the sense that the basic continuity equation or conservation of
mass differ from the momentum equation.

Since the function of reservoirs is to provide storage, their
most important physical characteristic is storage capacity. The storage
capacity of a reservoir of regular shape can be computed with the formulas
for the volume of solids. Thefsolution of the storage capacity in either
hydraulic or hydrologic routing invariably requires the use of numerical
analysis methods. The hydrologic reservoir routing are often called
storage routing methods. Reservoirs have the characteristic that either
storage is closely related to their outflow rate discharge. The storage
discharge rate relation is used for repeatedly solving the continuity
equation, each solution being a step in delineating the outflow hydroraph.

The basic point of initiation efforts to solve the hydrologic
reservoilr routing method is using the continuity equation or comservation

55
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of mass. For a given time interval or routing period, the volume of inflow

minus the volume of outflow equals to the change in volume of storage.

The equation is often written in the following form:

AS
Iave —oave AT

(5-1)

in which: I = the average rate of inflow during the time interval

ave

0
ave
At = a time interval

the average rate of outflow during the time interval

AS = change in volume of storage during the time interval

The equation (5-1) inflow, outflow, and storage variable are

expanded as the following

L } I1 + 12
ave 2

. - 0, +0,
ave 2
AS = S2 - Sl
At = t2 - tl

(5-2)
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in which At = the time interval = t2 - t1

the time of the beginning of the interval

ct
i}

t, = the time of the end of the interval -
I1 = inflow rate at time ty

I2 = inflow rate at time t,

0, = outflow rate at time tl

0, = outflow rate at time t,

S, = storage rate at time tl

S, = storage rate at time t2

When routing using equation (5-1) the usual procedure is finding
the outflow rate Oave’ with the equation (5-2) to find the outflow rate 02.
This means that two equations should be reset in some more convenient
working form. Also, it is necessary to use the outflow rate to storage
relationship in making a solution. Generally, it is using the storage-
outflow relationship. Thus the unknowns in equation (5-2) are 02 and Sz.
Placing the knowns on the left side of the equation and the unknowns on

the right side of the equation.

e S e e W
2 At~ 2 t = 2 (5-3)

In the equation (5-3) 1/2(I1 + Iz) are either taken from the mid-
points of routing intervals of the inflow hydrographs or computed from the
inflow tabulated at normal intervals. The S1 and 01 are knowns but the
82 and O2 are unknowns. It caunot be solved unless a second independent
function is available such as a curve showing the relationship between

outflow rate and discharge. Most of the earlier engineers used a graphical
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method to solve the hydrologic reservoir routing. The purpose of this
study is to describe hydrologic reservoir routing method solving by digital
computers. The storage-indication method, which has been widely used for
hydrologic reservoir routing, has iInflow and outflow rate as the input
and output. The method to be described here is suitable for practical
purposes. This is base on computerization to soive the hyrologic reservoir
routing method. It uses the following two assumptions:

(1). Develop the inflow hydrograph from the peak flow

(2). Select time interval (At)

The outflow discharge rate over the spillway (see Fig. 5~1) is a
section of dam design to permit water to pass over the top of the Weir
Crest. The spillway is the safety valve for the flood control reservoir
(see Fig. 4~3). It must have the capacity to carry overflow discharge,
and at the same time, keep the pool level below the maximum valve.

The discharge rate over a spillway can be computed by the experi-
mental formula.

3/2 (5-4)

Q= CleH
in which Q is the outflow rate in cubic feet per second, Cw is the dis-
charge coefficient, the Cw value varies from about 3.0 to 4.0, L1 is the
length of the Weir Crest in feet, and H is the head above spillway in
feet.

The computer program is based on the continuity equation to com-
pute the inflow and outflow rate. All programs were written in FORTRAN IV

and were executed on the IBM System 360 Digital Computer. A flow chart for
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hydrologié reservoir routing is given in Fig. 5-2 and a computer printout
is given in the Appendix B.

Given data as the same in the Chapter IV.



/

\\

K

Spillway Crest

i

3891) 9y} JFAQ apiey
L

Fig. 5-~1.

Plan View of Spillway

09



61

FLOW CHART FOR HYDROLOGIC RESERVOIR ROUTING METHOD COMPUTATIONS

‘ START }

READ So,01,L,Z,B,Y1,L1,IT,QL

TT 5*TT
TP=0°2"6.0

T(1)=0.0,0(1)=0.0,M=Q1/TP

|

TP=TP+1, ITP=TP

———~———-< D0 200 I=2,ITP >

II=I-1,T(I)=T(II)+1.0,Q(I)=M*T(I)

|

QA=Q(II)+Q(I),V(I)=QA/2

--------- =

M=-Ql/TA, TPMI=TP~-1

B1=Q1-M*TPM1 ,TPP1=TP+1
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TPPTA=TP+TA, ITPP1=TPP1 ,ITPTA=TPPTA

N ~< DO 300 ITPPL,ITPTA >

II=I-I,T(I)=T(II)+1.0,Q(I)=M*T (I)+Bl

:

QA=Q(II)+Q () ,V(I)=04/2

I=2,IT=1,Al=S0-01/2

320 -—%

A2=V(I)+Al

1

AAl=(B+2%Y1)*Y1l ,S1=AA]1%*L ,MA=0,MB=1,0,H=0,K=1
0(K)=3,9*L1*H**1,5,Y=Y1+H,AA2= (B+Z*Y) *Y

!

§2=AA2*L,DT=1.0%*60.0*60.0,DS=S52-S1,S3=DS /DT, S (K)=S3+0 (K) /2




K=K+1

GO TO 330

(3

WRITE 'DIM NOT LARGE ENOUGH'

]

KM1=K-1,MA=0 (K) -0 (KM1) ,MB=S (K)~S (KM1) ,M=MA/MB

BB=0 (K)~-M*S (K) ,00=M*A2+BB,H1=(00/(3.9%L1)) **0.67

|

Al=A2-00,I=I+1,IT=IT+1,IR=TP+TA

FIG. 5-2. FLOW CHART
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Case 2, Dimension Changed
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The figure 5-3 shows differential outflow hydrographs. Because
they have differential time interval, the hydrologic reservoir routing
method, assumes At = 1 hour time interval, using the hydrauiic reservoir
routing method, the time interval is calculated by the formula

At = AX/(VtC). The differential time interval gives differential outflow

hydrograph shapes.,



CHAPTER VI
DISCUSSION OF RESULIS

Although the basic issue is delaying or detaining water as it
moves down well-defined reservoirs, several interesting results have
appeared in the solutions to the problems under study.

Of primary interest is the similarity of the two methods illus-’
trated for comparative purposes in Figure 5-3. The hydrologic reservoir
routing method results (Fig. 5-3 (a)) shown in the upper portion of the
illustration may be dependent on several factors for computing the
resultant outflow hydrograph. These include the time interval, reservoir
configuration, and outflow structure designate.

The other method, hydraulic reservoir routing, (Fig. 5-3 (b)) can
be computed by using a time interval (At) which is a necessary input to both
the continuity and momentum equations used herein. This method is readily
adaptable to limited historical data of hydrologic events. The differences
in the two outflow hydrograph shapes in Fig. 5-3 are due to inherent differ-
ences in the two methods. It should be noted that the peak discharge rates,
the time lag intervals, and the total flow times are not significantly
different for the two routing methods. At least not when the data is
appropriately and carefully refined.

The hydraulic reservoir routing method receives major emphasis in

69
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this research effort due to its mathematical appropriateness. Three
specific cases using this method are discussed below.

In Case 1 (See Fig. 5-4), the time interval has been changed from
two-hour increments to six~hour increments. The well-defined break points,
A, B, C, D indicate a need for closer time spacing on an event of this
particular duration. Increments of twelve and twenty-four hours are also
computed by the method described herein. However, the limited number of
points obtained using those segments did not adequately describe the out-
flow hydrograph. Therefore, the data snd illustrations for increments
greater than six-hours have been eliminated from this study.

In Case 2 (See Fig. 5-5), the reservoir dimension variables are
changed to study the effect of reservoir size on the d¢utflow hydrograph.
The two-hour timé increment is maintained, so that any resulting changes
would be of direct consequence in the reservoir size. Interestingly,
although the shape of the outflow hydrograph for the reservoir dimension
and time intervals changes is quite different, the peak runoff rates are
not affected. However, the reservoir characteristics are responsible for
the delay of peak runoff rates as shown in Case 1 and Case 2. Once the
reservoir is filled to capacity, the outflow rate will be approximately
equal to the inflow rate. Depletion of stored water takes place at an
almost constant rate due to the outflow and control characteristics of the
reservoir. There appears to be no substantial change in depletion charact~
eristics due to either time interval or reservoir dimension changes.

As a final exercise, the time interval and reservoir dimensions
are both changed in Case 3 (see Fig. 5-6). The time interval is now in

six-hour increments but the reservoir size retains the same dimensions as
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in Case 2. The effective outflow hydrograph shape is similar to that of
Case 2. The outflow hydrograph in Case 3 appears to be quite distinct
with respect to time increments for a reservoir of this size. This seems
to indicate that the time increments are adequate in this case. However,
due to the duration of the event, the twelve and twenty~four hours time
increment computations are deleted from this research.

It should be noted that if the event duration T is divided into
time increments %3 whereby N is an integer, that when N is smaller than
gbout 3, unreliable results are obtained.

As to reservoir design characteristics, this research will permit
a rapid evaluation of any assumed configuration dimensions with regard to
hydrograph attenuation and other factors in flood control.

Although the graphical method has been widely used for the hydro-
logic reservoir routing in flood control treatment, it is subject to large
possible errors due the use of long time intervals. In contrast, the
method used in this research, the hydraulic reservoir routing method, is
subject to fewer error because of two important factors. First, this
method encompasses a specified time interval of any selected value. And
mos importantly, whereas, the graphical method used for the hydrologic
reservoir routing uses only the continuity equation, the hydraulic
reservoir routing method incorporates the continuity equation as well as
the momentum equation. Both equations are solved simultaneously by the

finite~difference method.



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

Generally, every flood control problem in engineering hydraulics

entails the prediction by either experimental or mathematical analytical

methods one or more characteristics of flow. There are several types of

predictions:

(1).

(2).

(3).

4).

(5).

By far the oldest is that of "engineering experience" gained
in the field by each individual engineer.

The engineering laboratory experimental method of studying
each flood record by means of scale models. The early
engineers usually used tables, charts, and coefficients for
designing a model to solve the overflow control problems.
The use of flood routing equations of hydrology are empir-
ical and the methods of solution are equally crude trail-
and~error procedures that depend on derived tables and
graphs based on historical records.

The utalization processes of mathematical analysis which are
developing rapidly today.

Digital computer solutions with numerical analysis methods
and digital computer facilities now available can be

utilized to solve most difficult and complex problems. At
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least, they are no longer such an important item of concern.
The input data for the computations are the inflow hydro-
graph, channel configuration, and outflow structure
dimensions.

(6). The two approaches which have been used in this study to
solve the flood routing problem in a reservoir. One is
the hydrologic reservoir routing method based on the
coﬁtinuitf equation only and a relationship between the
inflow and outflow and storage and outflow. The other
approach is called the hydraulic or hydromechanic routing,
which utilizes more fully the basic hydrodynamic equations
of continuity and momentum. A comparison of the two
methods is shown in Fig. 5-3.

New techniques and procedures in numerical analysis methods are
being developed for use with the electronic digital computers in many
areas of study. This study is an attempt to solve reservoir flood routing
problems by a better method than has heretofore been used. The results
should be useful in the planning, design, construction and operation of
flood control projects especially those iﬁ urban areas when intensified
application is of current wide importance.

Unsteady nonuniform flow in reservoir is described by two
partial differential equations. One is the continuity equation (3-9a)
and the other is the momentum equation (3-24). These two equations were
solved by the method of finite difference technique. The following con-

clusions are drawn.
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(1). Any inflow flow hydrograph can be synthesized using
appropricate numerical methods and mathematical models. For
this study, use has been made of initial and configuration
boundary conditions.

(2). The selection of an appropriate time increment (At) is one
hour for hydrologic reservoir routing. A computed
At = Ax/(V4C) is used with hydraulic resexvoir routing
along with the finite difference technique to solve the
equations of unsteady flow.

(3). The time increment (At) selection is a major influence on

the shape of the routed outflow hydrograph.

(4). The inflow hydrograph is plotted as the discharge (Q) versus
the time (t) for this study. Also the inflow hydrograph is
assumed to be triangular. Any input hydrograph functiomn
could be assumed for use with this method. However, a
triangular shape is not an unreasonable approxiation to
natural occurring events.

(5). The method of finite differences technique provides an
accurate assessment of the reservoir routing phenomenon.

Further research has to be done to refine the programming tech-

niques to acieve more generality and flexibility. In this study, emphasis
is given to the development of numerical methods rather than the actual
programming.

The Integrated Civil Engineering System, so-called ICES, was

developed and is being carried out at the M.I.T. Civil Engineering System
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laboratory. This study is directed to developing a powerful computer based
system which solves difficult problems. Recently, HYDRO has been added to
solve "some" hydraulic and hydrologic problems. This subsystem is'in the
earlier stages'of its development. HYDRO presents an opportunity for the
research group who can contribute to its initial design and orientation.
Therefore, it is hoped that this study can ultimately be added to the HYDRO

capability, which was never completed, as a part of the ICES System.
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APPENDIX A

000092768+ KP=29, TIME=120
HYDRAULIC RESERVOIR ROUTING METHOD
SOLVED BY FINITE DIFFERENCES METHOD OF SPECIFIED TIME INTERVALS
FLOOD ROUTING THROUGH RESERVOIR INTOD A TRAPEZOIDAL CHANNEL SECTION
QP=PEAK RATE OF INFLOW HYDROGRAPH IN CUBIC FEET PER SECOND
SI=INITIAL STORAGE IN CUBIC FEETY
OI=INITIAL OUTFLOW IN CUBIC FEET PER SECOND
Q1=0UTFLOW HYDROGRAPH IN CUBIC FEET PER SECOND
TP=TIME TO PEAK FLOW IN HOURS
TE=FROM PEAK FLOW TO THE END FLOW IN HODURS
L=LENGTH OF RESERVOIR IN FEET
L1=LENGTH OF WEIR CRESTY IN FEET
Z=SIDE SLOPE OF CHANNEL
YN=INITIAL NORMAL FLOW DEPTH IN FEET
B=CHANNEL BOTTOM WIDTH IN FEET
A=AREA IN SQUARE FEET
G=THE ACCELERATION DUE TO THE GRAVITY

RS REBEREEEEE LS EE KRR R R E R ER R E R E R R EE RS SRR R AR EE KR AR R R EEEEEE RS SRS K% E

INTEGER NoK

REAL LosL1leZeBsMUsMDsNAMDoSDIF

COMMON V(500)¢Y(500),VP(500)sYP(S00)A(S500),W{(500)
COMMON QQ(S500)+sQAVE(500)+Q12(500)+S(500)
READ(S5+36) BsYNsZoelsll1s0IeSI
FORMAT(7F10.4)

READ(5+236) SO0s2ZN

FORMAT(2F10.6)

READ(S.38) N

FORMAT(I10)

READ(S+426) TeQP

FORMAT(2F10.4)

SR EEEEE R KRR KR EEEEEEREEEE R RE SRS R R R RERERREERER AR ERREER KRR LSRR KL S
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APPENDIX A (continued)

INITIAL CONDITIONS
TP=T/6.0

TEx(Se0#T) /6.0

TM=T

MU=QP/ TP

ISAVE=0

MD=-QP/TE
WO0=B+2.08Z%&YN
AO=(B+Z®YN) *YN
PO=B+2.0%VYN®(1.0+2%%2,0)%%0.5
RO=A0/PO
Q0=149%A0%(RO)*20,667%(S0)*%0.5/2ZN
vO=QO0/A0
C={32.2%A0/0W0)%%0,5
NP1=N+I1

DO 39 I=1.NP1
v(i)=vo

A(LI)=A0

w(i)=wo

vP(I)=VO0

YP(I)=YN

Y(I)=YN

CONT INVE

SESBEREREEERRBEEREEREEE R R R R R XX EREEE R KX ERERREE SRR KRR R EREEE LR

DX=L/N
DY=DX/{(V{(1)+C)
DTS=DT*60.0%60.,0
Q=Q0
T=0

=0
QDIF=0
SDIF=1,.,0
IDX=1
Qa(1)=0

18
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APPENDIX A (continued)

$S$=S1-01/2

WRITE(6515) BesYNsZslLslL1
FORMATY(5F10.4)
WRITE(G6¢215) SO0e¢ZN
FORMAT(2F10+6)
WRITE(6+315) TP,TE.Ts0QP
FORMAT(4AF10.48)

WRITE(6¢65) Q0sDXsDToMUsMD
FORMAT{S5F10.4)

WRITE(6,35)

FORMAT(6X s *HOUR® 3 10X "HEAD®*e8X» * INFLOW® o 10X, *QAVE®* 77X+ *OUTFLOW®)

(22223223332 F 223322332 22232 2222222 222332222 2223222222 e y] L

T=T+DT7

IDX=EDX+1

K=K+1

IF(T«GT«TM) GO TO 600

SRR BRREEREER AR R R EEE RS EEREE SRR EE XSRS EE LB R R R R EREERERER A SRRk KR
CALCULATED INTERIOR POINTS

DD 2S5 I=2eN

YL=Y(I)

YR=Y(1)

YNz (YL+YR)/72.0

A(I)=(B+ZEY(1I))%Y(1)

W{I)=B¢+2,0%2%Y(1)

NAMD={A(I)/7(32.2%W (1)) )%%0.5
VP(I)20eS5%(YL-YR)I/NAMD+(V(I+1)4+V(I-1))/2.0
YP(I)=(YL+YR)I/Z2.0+NAMDER(V(I+1)-V(I-1))/72.04¢322*%S50%DTSENAMD
CONTINUE

EBEEREEAEREREERRRRERERREE KRR EREKEER R EREEREEEERRARERREREREEREREREE

-UPSTREAM BOUNDARY CONDITIONS
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T=AN=THAN
T=2N=
(sHONON3 398V L1ON WIG.*XT)AVWYOd S62
(S62°9)311Ym €82
3NNILINOD 9S2
OH+H=H SG2
G924SS2%SG2 (ISS~-(AMN)IS) AL
270 TOHES=(NN)S
S1Q/SA=€S
1S-25=S0a
2 (2A%(2A%248))=2S
H+ (1)A=2A
(ISNIVZ (DI IB=( TdN ) SA
(I)A-(IdN)CA=0H
S I%HETI1R6°E=(AN) 1D G2
00S*I=X% 9GS2 04Q
0=H
Txlv¥y=1S
(I)A%((I)As248)=1V
SS+(XA1)3AVO=1SS
(TdN)dAR( (TdN)DASZ48)=( TdN)V
(N)dA=( IdN)dA

SNOILIANOD AYVONNOE WYIULSNAOG
SR EEXRERRE R R RN E SRR R RE R R RSB R R R R E R E R KRR R R RS XN R R R R R R S EES S EES
S10%0S#2°2E~(VA~-(T)dAIXTANYN+(TIA=(T)dA
S0 ((T)IV/{1)IARZ*°2E )=TANVYN
(2)dA=(1)dA
(1)A2220°248=(1)A
(T1)AR((1)AS2Z48)=(T)YV
0°2/((1-XA1)00+(XAI)BO)=(XAI)IIAVO 2%
(d1-1)%CH+d0=(XA1 )00 9%
v 01 09
1*NN=(XA1)00 S¥
9v°SY*SY (di-1)dl]

(penurjuod) V XIANAAY

VOuLV



APPENDIX A (continued)

QDIF=01(KK)~Q1(KKM]1)

SDIF=S(KK)-S(KKM1) -
265 R=QDIF/SDIF

QA=01 {KK)~R#*S5(KK)

QOUT=QA+R2SS1

$5=SS1-Q0UT

H1=(QOUT/(39%L1))%%0,6667

#tt"tttttt#‘#t#tttttt##‘*‘#t‘####t*tt###**#*#t*#ttt#“#t‘ttt*t*‘##

NnoOon

DO 90 I=1.NP1
vir)=ve(l)
v(1)=vypP(1)
90 CONTINVE
WRITE(6485) T.H1,00(IDX)QAVE(IDX)»QOUT
85 FORMAT(S(F10.4,4X))
GO0 YO 77
600 STOP
€ND

SEXEC
100040000 5¢0000 0.250010560.0000 5040000
0.000010 0.500000
6.0000 300000 0.0000 420040000
137.1932 24.0000 18886 70040000 -140.0000



HOUR
1.8886
37771
S«6657
75543
94428

113314
132199
151085
169971
18.8856
207742
‘22¢6627
24,5513
2604398
28+ 3284
302169
3241055
23.9940
35.8826

HEAD
0.8621
18665
84,0616
4.4829
S¢9798
6448247
68043
Se.7048
%$.8988
641594
604733
50627
52214
Se4237
33,7753
3.8732
400237
208588
21440

TABLE A

INFLOW
13219940
2643,9890
3965.9840
39824040
37180050
3453.6060
3189.2070
2924.,8080
2660.4100
2396.0130
2131.6160
18672190
1602.8220
1338.4250
1074.0280

809.6313
545.2344%
280.8374

16.4414

Operation Table For Hydraulic Reservoir Routing

QAVE
6609973
19829920
3304.9860
3974.1930
3850.2030
3585.8040
33214060
3057.0070
2792.6070
2528.2100
2263.8140
1999.4170
1735.,0200
1470.6230
1206.2260
941.8298
6774329
413.0359
148.6394

OUTFLOw
156.0983

497.2393

1595.9910
185046650
2851.0830
3175.0930
3460.6000
2656.6850
2793.3080
298044620
3211.1760

2221.0200.°

2326.2500
2862.7790
14302570
14862890
1573.7480

5873870

612.1418

G8
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APPENDIX B

000092768,KP=29+ TIME=120
HYDROLDGIC RESERVOIR ROUTING METHOD
FLOOD ROUTING THROUGH RESERVOIR INTO A TRAPEZOIDAL CHANNEL SECTION
TP=TIME TO PEAK FLOW IN HOURS
TA=FROM PEAK FLOW TO THE END FLOW IN HOURS
01=PEAK RATE OF INFLOW HYDROGRAPH IN CUBIC FEET PER SECOND
SO=INITIAL STORAGE IN CUBIC FEET
O1=INITIAL OUTFLOW IN CUBIC FEET PER SECOND
L=LENGTH OF STORAGE REACH IN FEET
Z=SIDE SLOPE OF CHANNEL
B=CHANNEL BOTTOM WIDTH IN FEET
Y1=DEPTH FROM CHANNEL BOTTOM TO THE WEIR CREST IN FEET
L1=WIDTH OF WEIR CREST IN FEET
AA=AREA, H=CHANNEL HEAD IN FEET

Lt 2 2222322222233 2322222322223 2222222222222 22 2 X a2 2 s 2ttt LR ]

DIMENSION Q(100), T(1060), V(100)s S(100), 0(100)
REAL Q1¢S0e0l el oZsBoeYloelleM
READ(S+100) S0,s01+L.0ZeBeY1lsl]1
FORMAT(7F10e4)

READ(S,10) TT,Q1
FORMAT(2F10e8)

TP=TT/60

TA=S5*TT/7660

WRITE(G.,125) BeY1eZosloolil
FORMAT(SF1044)

WRITE(6+135) TP,TA,TT,01
FORMAT(AF10.4)

T(1)=0.0

Q(1)=0.0

1322142331 R3 3223 R 28232 23 2523232223273 232232222 222222222222t 2 )

28
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200

300

310

320

APPENDIX B (continued)

A}

M=Ql/TP
TP=TP+1

1TP=TP

DO 200 1=2,1TF
I1i=1-1
TCI)=T(I1)+1.0
Q(I)=MExT(1)
QA=Q(11)+Q(1)
v(I)=0QA/2

CONT INUE

It P22 PR PR i 222222222222 2222322222222 22222222223 2t222222222 222222y

HNz-Q1/TA
TPM1=TP-1
B1=Q1~-M*TPM]
TPP1=TP+1
TPPTA=TP+TA
ITPPLI=TPP1
ITPTA=TPPTA

DO 300 I=ITPP1sITPTA
II=1-2
T(I)=T(I1)+1.0
Q(I)=N2T(1)+B1
QA=Q(lII)+Q(])
VII)=0QA/2
CONTINUE

EEEREEBRERE R ERREEREREREREEEE R R EERBEREERERREKEERERERE XK EREEEEEE XK

WRITE(6+310)

FORMAT (3X+ *HDUR® 48X s "HEAD® s 8X s * INFLOW® 38X *QAVE* 38X * OUTFLOW®)
1=2

ET=]1 -~

A1=S0-01/72

A2=V(1)+Al

L8



88

29°0%%{(1126°€)/00)=1H
88+2V*N=00

(X)S*hN-(3)0=H8

GN/VHz=H

CIAN)S-(MN)S=8N

(1N )O-(N)0=VH

: T=N=THWX

CeHONONT 393V L0ON WIQe*XT)IVWHOS
(OEV*9)311uM

OEE Ci1 09

ERRRERBARRREE AR RERRERREXRE TR RERE R R KRR R KRR EER R R EE SRR SR XS R KSR X

T4+%0=M
02%*0TIVve01IYy (9¥2-H)J)
GSC®°0+H=H

0vo¢00%v°00v (2SV~(N)S)dl
S/7N)0+ES=(N)S

14Q/S0=£S

1S~-2S=SQ
0°09%0°09%0°1=10

T % 2¥VY = 2S
Ax{(A%2+8)=2VY

H+T A=A
S°lI%sH® 116 °E=(N)0

=M

O=H

o°1=am

o=VN

AR ERERER R ERRERER SRR R REE SR AL RE SRS KR AR R R KRR EEE R KRR RS X R R KRR

TxIVVY=1S
TAX(TA%2+48)=1VV

REERRREKEKEFSEEREERREREREREAERERERERRRREEEERER R XXX EKE XA SRS REE RS SR

(ponuUTIU0d) g XIANIAY

oy

oEY
o2y

ot

00¢v
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APPENDIX B (continued)

WRITE(6+4500) IToH1+Q(I)sV(I)L00
S00 FORMAT(IS:4(4X.F10e4))

Al1=A2-00

I=1+1

IT=1IT+1

IR=TP+TA

IF(IT=-IR) 320,600+ 320
600 STYOP

END

SEXEC

1000.0000 540000 0.2%50010560,0000 50.0000
60000 300000 - 36.0000 4200.,0000

68



HOUR

VONOONPLPWNM

10
11

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36 -

Operation Table For Hydrologic Reservoir Routing

HEAD
0.2483
0.4983
12514
17549
27639
305220
4.5340
52937
55471
60540
63075
63075
63075
645611
63075
63075
63075
60540
60540
58005
55471
S¢5471
52937
S«0404
50404
4,7871
45340
402809
4,0278
3.7749
37749
35220
3.25692
30165
27639
25115

TABLE B

INFLOW
7000000
1400.0000
21000000
2800.0000
35000000
4200.,0000
4060.0000
3920.0000
3780.0000
3640.0000
35000000
3360.0000
3220.0000
30800000
2940.0000
2800.0000
26600000
2520.0000
23800000
2240.0000
2100.0000
1960.0000
1820.0000
16800000
1540.,0000
1400.,0000
1260.0000
1120.,0000
980.0000
840.,0000
7000000
5600000
4200000
28040000
140.0000
0.0000

GAVE

3500000
10500000
17500000
2450.,0000
31500000
38500000
4130.0000
39900000
3850.0000
3710.0000
3570.0000
34300000
3290.0000
3150.0000
30100000
28700000
27300000
2590.0000
2450.0000
2310.0000
21700000
2030.0000
1890.0000
1750.0000
16100000
14700000
1330.0000
1190.0000
1050.0000
9100000
770.0000
630.0000
4900000
3500000
2100000
700000

OUTFLOW
24.3750
68.9429
272.5205
451.4312
889.2698
1276.8400
18614580
2345.,7050
2515.2340
2865.9020
30468740
3046.8740
3046.8740
3231.5010
3046.8740
3046.8740
3046.8740
2865.9020
2865.9020
2688.6620
2515.2340
2515.2340
2345.,7050
2180.1650
218041650
20187140
1861.4580
1708.5110
1559¢9990
1841600590
1416.0590
12768400
1142.5080
1013.2490

8892698

77048049

06



HOUR
566657
113314
169971
226628
2803284
33.9941

TABLE C

Operation Table For Hydraulic Reservoir Routing (Case 1)

HEAD
51732
65034
Te7675
464969
50627
0.0000

INFLOW
3965.9840
3453.6060
266044100
1867.2150
1074.0190

28048247

QAVE
1982,9920
3709.7940
3057.0070
2263.8120
1470.6170

677.4221

OUTFLOW
2294.1660
3233.5870
4220.7810
18593440
2221.0000

00000

16



HOUR
1.8888
3.7776
5.6664
7.5553

‘ 9e4441

11.3329

13.2217

15.1105

16.9993

18.8881
2067769

226658
24.5546
2604434
283322
30.2210
32.1098
33.9986
35.8874

HEAD
0.8621
2.8018
51664
6.9141
Te¢537S
6.6409
68142
71319
75051
62878
64676
S¢0530
Se2127
3.6114
367292
348656
4,0293
20839
21430

TABLE D

INFLOW
1322.1700
26443420
39665130
39822630
37178290
34533340
318809600
29245260
266040930
239546600
21312270
186647940
16023600
1337.9270
10734940

809.0610
$544.6277
28001946

157617

QAVE
661.0854
1983.2560
3305.4250
3974.3860
385040440
3585.6110
33211750
305647420
2792.3080
25278760
2263.4430
1999.,0100
1734.5770
1470.1440
120S.7100
941.2776
676.8442
412.4111
147.,9781

Operation Table For Hydraulic Reservoir Routing (Case 2)

OUTFLOW
140,4835
823.,0208
2060.6680
319042290
3631.2310
3002.9890
3121.3120
3342,0960
3607+ 7990
2766.7010
2886. 2180
1993.,2000
2088.4230
1204.3570
1263.7330
1333.7250
1419.2910
S27.9233
550.5513

26



HOUR
56666
113332
169998
22.6664
28,3329
339995

TABLE E

Operation Table For Hydraulic Reservoir Routing (Case 3)

HEAD
Se1733
9.7819
3.9770
4.4508
50409
S5692S

INFLOW

39666140

34533540
2660.0320
18667100
10733890

280.0684

QAVE
1983.3060
3709.9820
3056.6930
22633710
14700500

6767290

OUTFLOW
2064+ 7590
$368.2960
1391.7420
1647.7150
1986.0170
2383.2860

€6



