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ABSTRACT

A method for estimation of Doppler spectrum and its moments as well as several
polarimetric variables on pulsed weather radars is presented. This scheme operates on
oversampled echoes in range, that is samples of in-phase and quadrature phase
components are taken at a rate several times larger than the reciprocal of the transmitted
pulse length. The aforementioned radar variables are estimated by suitably combining
weighted averages of these oversampled signals in range with usual processing of
samples (spaced at pulse repetition time) at a fixed range location. The weights in range
are derived from a whitening transformation, hence, the oversampled signals become
uncorrelated and consequently the variance of the estimates decreases significantly.
Because the estimates’ errors are inversely proportional to the volume scanning times, it
follows that storms can be surveyed much faster than is possible with current processing
methods, or equivalently, for the current volume scanning time, accuracy of the estimates
can be greatly improved. This massive improvement is achievable at large signal-to-noise

ratios (approximately greater than 15 dB).
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1. INTRODUCTION

This introductory chapter presents the basics behind the problem of estimating
meteorological variables using a whitening transformation where the fields of digital
signal processing and remote sensing, particularly in the area of radar meteorology, are
brought together. First, the principles of operation of polarimetric Doppler weather radars
are reviewed, and meteorological parameters of interest obtained by these remote-sensing
devices are presented. Next, weather signals are described both conceptually and
mathematically. Processing of these signals to obtain meteorological variables, which is
usually referred to as weather signal processing, is then presented. Autocovariance
methods are generally preferred due to their computational efficiency and acceptable
accuracy; however, the performance of these estimation techniques is not optimum,
leaving room for a much needed improvement. Finally, the problem of obtaining better
meteorological parameter estimates without sacrificing range resolution or antenna
rotation speed is recognized, and the remainder of this dissertation focuses on a novel

method for its efficient solution.

1.1. Polarimetric Doppler Weather Radars

Polarimetric Doppler weather radars have a unique ability to survey storms due to the
capability of microwaves to penetrate clouds and rain, which does not exist on other
meteorological instruments. These observations enable forecasters to provide timely
warnings and researchers to understand some of the complex dynamics of meteorological

phenomena (Doviak and Zmic 1993).



Pulsed weather radars broadcast a brief intense pulse of energy followed by a relatively
long “listening period” during which energy reflected from scatterers is received and
processed. The time delay between transmitted and reflected signals determines the
distance (range) to the scatterers and the strength of the backscattered signal is measured
to gain information about the scatterers. Doppler radars, additionally, can measure the
radial velocities of scatterers in the electromagnetic beam path of the radar because of the
Doppler effect. The electromagnetic pulse is restricted in azimuth and elevation by the
antenna illumination pattern f{6,#) and in time (or range) by a finite transmission time
(pulse) of duration 7 The space from which the electromagnetic pulse returns echoes to
the receiver such that contributions from individual scatterers arrive at the same time to

the receiver is called the resolution volume (see Figure 1.1).

Resolution
Volume

Figure 1.1. The resolution volume in a pulsed radar is approximately shaped as a frustum of a
cone. The location of its center in space is given by (ro.6.¢b) and its extent by (r,,8,,¢4,) (related
to the pulse duration and the antenna beamwidth).

Doppler radars sample the atmosphere using the resolution volume as the “sampling
unit.” That is, for the collection of all scatterers in each resolution volume, the radar
supplies three parameters of interest: (a) the total reflected power, P, which is related to
the liquid water content or precipitation rate; (b) the composite Doppler radial velocity,

v, which is essentially mean radial motion of scatterers towards or away from the radar;
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and (c) the Doppler spectrum width, &, which is an indication of shear or turbulence

from the scatterers associated with a given resolution volume (Zmic 1979).

Doppler radars capable of transmitting two electromagnetic beams with different
polarization provide several additional parameters of interest. Dual polarization
measurements are based on the fact that raindrops, particularly larger ones, are not
spherical, so they will respond differently to vertically and horizontally polarized
electromagnetic waves. When the information can be retrieved with sufficient accuracy,
polarimetry allows better precipitation measurements, classification of hydrometeors,
identification of electrically active storms, and distinction of biological scatterers as

shown in recent experiments (Zmic and Ryzhkov 1999).

A simplified block diagram of a polarimetric Doppler weather radar like the one planned
as an improvement to the national network of weather radars WSR-88D (NEXRAD) is
depicted in Figure 1.2 (Zahrai and Zmic 1997). The radar transmits and receives
simultaneous horizontal and vertical polarizations with the aid of two receivers and just
one transmitter. A novel arrangement of switches distributes each signal to its
corresponding receiver. After demodulation and synchronous detection, in-phase (/) and
quadrature (Q) components are digitized and routed to the processing subsystem for

parameter estimation and display.

As a reference, some of the parameters of the WSR-88D radar operated by the National

Weather Service are presented in Table 1.1.



Pulse
Modulator
“Stalo” ‘
microwave Klystron
oscillator amplifier
transmitter
y -~
Synchronous Vu .
detector and T/R switch |« >
A/D converters Vv Antenna
Iy | Iv Ou| Qv

Data processing
and display

Figure 1.2. Simplified block diagram of a polarimetric Doppler weather radar. A Klystron pulse
modulated by a radio-frequency (RF) signal is transmitted by the antenna with vertical and
horizontal polarization at periodic time intervals. During the “listening periods”, weather echoes
are received (a tilde indicates signals at RF). Coherent down-conversion (synchronous detection)
controlled by a stable local oscilator (“stalo”) produces base-band complex envelopes
Vi = Iy + jOy and Vy- = Iy + jQy for the horizontal and vertical channels, respectively. After
digitalization, / and Q signals are used for the estimation of spectral moments and polarimetric
variables.



Antenna Subsystem

Pedestal
Maximum scanning rates
Acceleration
Mechanical limits
Reflector
Type
Polarization
Diameter
Gain
Beam width
First sideiobe level

30°s!
15°s?
-1° to +60° in elevation

Paraboloid of revolution
Linear

854 m

445 dB

I°

-26 dB (with radome)

Transmitter and Receiver Subsystem

Transmitter
Frequency
Pulse peak power
Pulse widths, 6 dB
Pulse repetition frequencies (PRF)

2700 MHz to 3000 MHz
700 kW
1.57 ps and 4.71 ps

Eight selectable in the range from

Short pulse 320 Hz to 1300 Hz
Long pulse 320 Hz and 450 Hz
Receiver
Type Linear
Dynamic range 93 dB
Intermediate frequency 57.6 MHz
Bandwidth, 3 dB 630 kHz
Signal Processor Subsystem

Intensity calculation Linear return power average
Velocity calculation Pulse-pair
Spectrum width calculation Pulse pair logarithm
Number of pulses in Doppler modes 40 to 280
Number of pulses in Surveillance 16 to 65

Table 1.1. Summary of specifications for the National Weather Service WSR-88D weather
surveillance radar (also known as NEXRAD).



1.2. Weather Radar Signals

Weather radar signals are a composite of echoes from a very large number of individual
hydrometeors or from refractive index irregularities in clear air. These signals are
sampled at discrete time delays %, where the corresponding range (or distance from the
radar) is given by r = ¢%/2 (c is the speed of light). The “range time” 7 is the time it takes
a transmitted pulse to make a round trip to a distance r. Pulses of a radio-frequency (RF)
sine wave of width 7are sent every T seconds; this gives origin to the sample time, or

time between samples for a fixed location in range (Figure 1.3).

range gate corresponding to the
resolution volume centered at ri=cz;;/2

4
/ sample time \
—» T je— —»ﬂ?n—-—
(4 Tt t;
range Fime range?ime
T;

Figure 1.3. Depiction of sample time and range time in a polarimetric Doppler radar. Pulses of
width zare transmitted every 7, seconds. During reception between pulses, echoes are sampled at
times 7; (range time). Samples at a fixed range location are spaced by 7 and give origin to the
sample time.

For each sample value there is an associated resolution volume in space with the
hydrometeors that contribute the most to that sample. A weighting function that depends
on the antenna radiation pattern, the transmitted pulse shape, and the receiver-filter

transfer function determines how each sample contributes to the composite signal (Zrnic
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and Doviak 1978). Figure 1.4 shows contributions from spaced resolution volumes as
seen by the antenna. Figure 1.5 shows the corresponding signal from the receiver’s point

of view.

VD Vr+?
V(lt—2 ‘
Sa

ri=c(n/2

Figure 1.4. Contributions to weather signals from hydrometeors in a resolution volume. Signal
samples are denoted by V(I7), and their corresponding range, r, is given by c/7/2, where [ is a
positive integer. In this example, as in the WSR-88D radar, range gate sampling times are given
as /7, where 7is the transmitted pulse width.

T (4

> /W( %)
Sample amplitude

—

(3

Figure 1.5. Weather echo amplitude for a point scatterer at range r; after the receiver filter and
the synchronous detector. The contribution of each hydrometeor is determined by the weighting
function W(%). 7 is the radar delay, and 7z is the sampling time (from Doviak and Zrnic 1993).

It was mentioned before that weather echoes contribute to produce a complex voltage
sample V = I + jQ, where / and Q are the in-phase and quadrature components,

respectively. The random size and location of scatterers cause 7/ and Q to be random



variables. By the central limit theorem, I and Q have Gaussian probability density
function (pdf) with zero mean and variance 0% (Zrmic 1975). The pdf of the magnitude of
V is Rayleigh, and the one of the phase is uniform in the interval [0, 27t) (Papoulis 1984).
Although I and Q are uncorrelated random variables, the correlation between successive
samples is not zero. The correlation between two successive samples will be appreciably
different from zero if the distribution of Doppler velocities for the scatterers in the
resolution volume is “narrow” compared to the range of unambiguous velocities. A
narrow distribution of velocities corresponds to a more “coherent” process; this explains

an appreciable correlation between samples.

For Doppler measurements the radar is pulsed at a sufficiently high rate so that the

atmospheric phenomena produce correlated signal samples. The sample-time correlation

of weather signals R.’(mT,) is a Gabor function (it is Gaussian for zero Doppler
velocity) and given by (Doviak and Zmic 1993)

R (mT,) = S exp[-8(mo,mT, [ A)’Je™/*"'4 (1.1)
where the superscript (7) denotes “sample time,” S is the weather signal mean power, v
the mean Doppler velocity of scatterers, and o, the associated spectrum width. In
addition, A is the radar wavelength which is linked to the RF frequency f through the
relation A = c/f.

Under certain assumptions, the correlation of samples along range time can be derived
exactly. If the scatterers are uniformly distributed in space and the transmitter pulse has a

finite duration of 7 seconds, we can decompose the contribution of all hydrometeors in



the resolution volume to the signal V sampled at time 7; as a sum of L contributions dV
from contiguous elemental shells in the range interval cz/2. Each elemental shell has a
depth in range given by r, = ¢7/2L = c%/2, where the sampling time 7, is defined as 7/L.
For simplicity, let us represent all the scatterers in each elemental shell by an equivalent
“aggregate scatterer”. These equivalent scatterers are located at ranges r,, 2r,, 37,, etc.
Here we assume that the scatterers are frozen although they have random placement. This
is a good approximation because the little reshuffling that occurs during the separation
time between echoes from overlapping range intervals can be neglected (7is on the order
of microseconds). Figure 1.6 depicts the decomposition of the resolution volume into
elemental shells and the weighting on each shell’s contribution by the transmitted pulse

shape along the sample-time (range) axis.

p(T+7—7) p(T+T+m7,—1)
»/d Y
i B N . A | i { l“"’-l :>r,’rs
st Tsitmro ra+ct2  rg+mrotcd2
N~ g
e
V(7+m1,)
~— vy
—~—
V(z1)

Figure 1.6. Decomposition of the resolution volume into L independent shells, each contributing
a differential voltage dV weighted by the transmitted pulse shape. Weights of elemental shell
contributions to V(z,) and V(z,+m7,) are shown in solid and dashed lines, respectively.

Thus, the contribution dV at sample time 7 from the i-th shell in the resolution volume

corresponding to range r; at the receiver front end is given by



dv, (z,.i)= A(r, +l")CXP[J-7ZfT" ﬂ%d j!/f,}p[ﬂrx—m],(lz)
C

where p is the transmitter pulse envelope, A(r;) is the backscattered signal (amplitude and
phase) corresponding to the shell at range r;, and the corresponding phase includes
temporal (27f7), propagation (47r/A), and initial transmitter (y,) phase terms. In (1.2)
the tilde indicates that signals have not been down-converted to base band. The composite
weather signal at a fixed sampling time 7%; can be expressed as the sum of elemental
contributions as

(Z.)= EdV (7,1,0) - (1.3)
Using (1.3), the correlation of samples along range time before the receiver filter

(equivalent to having an ideal, infinite-bandwidth receiver filter) can be written as

Rl;f), (mz,)=E[V (z,)V(z, +mz,)]=

{2 S -t
= E[Zdvm (71,02, 4V, o (T, +mro,k)], (1.9)
i=0 k=0

where the superscript (R) denotes “range time” and the subscript ideal refers to the
receiver filter characteristics. Taking the expectation operation inside the summations in
(1.4) produces

L-1 L-]

® (mz,)=33 EdV (7,,0dV, . (7, +m7,,k)]. (L.5)

o
i=G k=0

The expected value inside (1.5) can be computed as
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EldV (z,,0dV,, ., (z, +m7,.k)]=
= E{A"(r, +ir,))e PFo—srCarin Al plir s o _o0r 4irY/c]
A(r, +mr, +kr,)et7 Catme) S A ey ¢ mT, — 21, +mr, + kr,)/ c]}
= E[A"(r,, +ir,)A(r, + mr, +kr,)] e/*7"% g/¢mmm-binid

ple+t,~2(r, +ir)/clplr+7, +mz, —2(r, +mr, +kr,)/ c]. (1.6)

If the wavelength A is small compared to the size of each elemental shell, the
contributions from different shells are independent random variables because non-

overlapping shells have no scatterers in common. Therefore,
E[A™(r,, +ir)A(r,, +mr, + kr,)]1= 0} (r, +ir,)6(—m—k), 1.7

where Jis the usual discrete-time Kronecker delta, and o2(r) is the backscattered power

contribution of each shell (E[ldVlz]), which was assumed to be uniform so o (r)= of.

Introducing (1.7) into (1.6) and using the fact that 7, = 2r,, / ¢ (1.5) becomes
2 i !
R (mz,)=07e”™" Y p(r~it,)plr—(m—i)z,]. (1.8)
ideal =0
Letting k = L — i so that i = L — k, and using the fact that 7 = Lz, (1.8) becomes
R L-1
RiY (mz,)=07e”™™ Y p(kz,)pl(k —m)z,]. (1.9)
k=0

Finally, recognizing that the summation in the previous equation is the convolution of

p(m7z,) with p(-mz),

R (m7,)=071p(mz,)* p’ (-m7,))e/*™" . (110)

ideal

For a non-ideal receiver filter, i.e. a receiver with a finite bandwidth, the correlation of

11



samples in range time can be determined as (Doviak and Zmic 1979)

RP(mz,)= Rg)l (mz,)*h(mz,)*h (-mz,), (1.11)
where h is the impulse response of the receiver filter. Using the commutative and
associative properties of the convolution, we can define the “modified” pulse envelope

pn(mz,)= p(mz,)*h(mz,), (1.12)
so the correlation of samples in range time after the receiver filter can be written in an
analogous fashion as in (1.10) to obtain

R$®(mz,)=0?[p,(m7,)* p,(~mz7,)]e’ ™™ . (1.13)

The linear phase term of (1.13) is inherent to the propagation of the electromagnetic wave

and has been overlooked in derivations that consider the signal at base band (e.g., Doviak
and Zmic 1979).
After the synchronous detector, the correlation of range samples can be found by

recognizing that V at base band can be obtained from V at RF (radio frequency) via the

down-conversion process as

V(r,)=V(z,)e "™, (1.14)
therefore,
R (m7,)=E[V (z,)V(z, +mT,)]=
= 1;'[?‘(1“)‘7(1,l +mz,)le” ™ =R (m7,)e ™% (1.15)
Finally,

12



R (mz,)=0?[p,(mT,)*p. (—-mz,)]. (1.16)

Although the theoretical result in (1.16) predicts a real autocorrelation for samples along
range time, practical effects such as amplitude modulation-to-phase modulation (AM-to-

PM) conversion within the pulse were not accounted for in the analysis. In fact, the
complex nature of R{® was recently exposed after analyzing practical measurements
performed on oversampled (in range) weather signals acquired with a digital receiver on
the WSR-88D (Ivic 2001). Nevertheless, the analysis in the following chapters can

readily accommodate the linear phase terms in R.® like the ones observed by Ivic (2001).

As a final comment in this section, note that the expression for the correlation coefficient
[dividing (1.16) by 0>Z; |pm(i%)[] along range time depends solely on parameters that are
known (or can be measured) and therefore allows for its exact determination. This

important observation will be exploited later.

1.3. Weather Signal Processing

The principal purpose of radar signal processing is the accurate, efficient extraction of
information from radar echoes. Modern atmospheric polarimetric Doppler radars can
sample an entire volume of a weather event in just a few minutes. Therefore, a very large
amount of data must be processed to give the user compact, comprehensible information
(spectral moments and polarimetric variables). Note that signal processing for weather

radars is primarily used as an estimation procedure. Target detection is not the goal of

these remote sensing devices.
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The output of a polarimetric radar receiver consists of two complex signals (see Figure

1.2),

Vi(kTs) = Ii(KT) + jOu(KT.) = sp(kTs) exp(faukTs) + np(kTy), (1.17)
and

VUKT) = IAKTs) + jOAKTS) = s\(kTy) exp(jankTs) + ny(kTy), (1.18)

where the subscripts H and V stand for horizontal and vertical polarizations (channels), s
and n represent the signal and noise component of the weather echo, @y is the Doppler
shift, and T the pulse repetition time (PRT) or time between pulses. These time series in
raw form convey little useful information about the weather, but their second order
moments are well defined and contain the essential information. Therefore, further
processing is needed to retrieve these statistical quantities and to provide significant

information to meteorologists.

As previously mentioned, V is usually characterized by a Gaussian correlation in sample

time and therefore the auto- and cross-correlation functions for the polarimetric signals

are:
R (mT,) =S, p(mT,)e " *"™"'* + N, 6(mT,), (1.19)
R((mT,) =S, p(mT,)e”"**""'* + N, &(mT,), (1.20)
R, (T,) =[S,/ S, Py (mT,)e™ "%, (L.21)

where  p(mT,) = exp[-8(7o,mT, / A1 is the signal correlation coefficient,

Puy(mT,) = p,, (0)p(mT,) the cross-correlation coefficient, S and N are the signal and
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noise power respectively, and A is the transmitter wavelength. The notation for oy is
simplified to pyy for the sake of consistency with the notation found in the literature.
Note that in (1.21) it was assumed that the cross-coupling between horizontal and vertical
channels is negligible, hence the cross-correlation between the noise in the horizontal and

vertical channels is zero.
Expressions (1.19) to (1.21) correspond to a power spectral density (also called Doppler
spectrum) of the form:

2Ny T,
A

Suy exp[— (v-v) /2af]+ , (1.22)

S V)= J2zo,

where the subscripts A,V indicate that the same expression applies for either horizontally-
or vertically-polarized signals. Parameters S, v and o, are related to precipitation and

kinematic fields and thus contain meaningful information if they are accurately estimated.

Spectral moment estimation methods make use of known statistical properties of weather
signals, and a considerable number of such methods have been introduced in the
literature. However, throughout this work special stress will be given to the properties of

those spectral moment estimation methods implemented in the WSR-88D radar.

The total power in the weather echo, P = § + N, is estimated with the formula

- 1 M-l l M-l 2
Puv =25 2P ) =—2 Y Vi T (1.23)
k=0

k=0

where M is the number of samples available for processing. This estimator is unbiased

and its variance is given by
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1

v 2}—P1. (1.24)

Var(P) =

M-1M-1
> S E{varvar)
k=0 =0

The expectation inside the double summation can be simplified for Gaussian processes as

follows (Reed 1962):

efvazvar)

2} = E{V(T,)V" (KT, W (IT.)V"(T.)}

= E{V(KT,)V"(kT,)}E{V (T,)V"(IT,)} +

+ E{V(KT,)V (T, }E{V(T,)V (kT,)}

=P +[R[(k-DT,]|*. (1.25)
Finally,
n M-l — 5
Varhy= 8 M gl ) (126)
m==M +1 M
which gives
M-l - 2
Var(P)= Szm};HTﬂ pz(mTS)+N—;f—SAi : (1.27)

Hence, errors in mean power estimates can be reduced by increasing the available number
of samples M or by reducing the noise power, both of which may be parameters out of the

user’s control.

An important result arises from the noiseless case. If there is no noise (1.27) becomes

. M-l -
Var(P)=S* > MM—ﬂpz(nzn). (1.28)

m=—M +1

This leads to the definition of the equivalent number of independent samples (Walker et
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al. 1980) as the ratio of the variance of a single sample to the variance of the sampled

mean:

M _Var(ﬂ)z( MZ“ M—m'

-1
SRl M ot | (1.29)
T Var(®) \n M® )

where P; is the mean power of each sample used in the average, i.e. Py = E{|Vuu(kT,)’},
so Var(Py) = S° In other words, the equivalent number of independent samples is the
number of uncorrelated samples that achieve the same variance reduction as a given set of

correlated samples.

One of the simplest methods for the estimation of the first and second spectral moments
is the autocovariance or pulse-pair processing (Sirmans and Bumgarner 1975). Using this
technique, the mean Doppler velocity v and the spectrum width &, can be estimated with

the following formulas (Doviak and Zrnic 1993):

A N
p=— R(T)T, 1.30
5 4”Tsarg{(,)} (1.30)
G, = A In ,\S— sgn ln—;S— , (L3
22T, V2| | [RT) RT.)
where
S=P-N, (1.32)

is the weather signal power estimator based on (1.23), and

M-=2
R(T, )=_1_12v‘(mT,)V(m7; +T.) (1.33)
1 m=0
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is the asymptotically-unbiased estimator of the autocorrelation of V for lag one.

Zmic (1977) derived expressions for the variances of these estimators for high signal-to-

noise ratio (SNR) and small spectrum width as

. c.A
Var(v) = ———, 1.34
8MT N7 (1%
and
. 30,4
Var(6)) = —r—. 1.35
@) 64MT, 7 (1.35)

As before, variance reduction is achieved by increasing the number of available samples
M in (1.33).

It was mentioned earlier that polarimetric variables supply additional parameters related
to precipitation type and amount. Here, I will concentrate on three of these, namely the
differential reflectivity Zpg, the total differential phase @pp, and the magnitude of the
cross-correlation coefficient at lag zero |0i/0)|. The differential reflectivity Zpg (in dB) is
used for accurate rainfall estimation and hydrometeor identification. It may be estimated

using the formula

Zop = lOlogm(—;ij, (1.36)

v

where § (for horizontal or vertical co-polar signals) is computed from the mean power
estimate in (1.32) as § ay = 13,“, —-N v - Another polarimetric variable that enhances the

classification and quantification of precipitation is the correlation between the two co-
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polar signals. One co-polar signal is for vertical polarization of transmitted and received

waves whereas the other is for horizontal polarization of these waves. This correlation is
obtained as

fv‘ (KT, )V, (kT,)
Py (@)= (1.37)

\fZIV KT ZIV oy

and the argument of (1.37) gives the total differential phase @pp. As with the spectral
moments, it can be shown that the variances of the estimators in (1.36) and (1.37) are
inversely proportional to the number of samples M (Sachidananda and Zrnic 1985,

Ryzhkov and Zmic 1988, Liu et al. 1994).

To obtain meaningful estimates that allow efficient quantification of weather phenomena,
estimation errors must be kept below maximum allowable limits. WSR-88D
specifications call for a nominal error in Doppler velocity and spectrum width of 1 m s™
and a fractional error of 1 dB is allowed for the estimation of mean power. Similar
constraints are established for the polarimetric variables to obtain accurate meteorological
fields. The only parameter we can adjust to accommodate these requirements is the
number of samples used in the estimation process. More samples are required to lower
error magnitudes, which in turn implies a slower antenna rotation rate and an overall
increase in acquisition time. With longer times between scans, the probing of weather
phenomena is performed less frequently and important storm developments could be
missed. The statistical estimation framework becomes of particular significance when the

goal is to scan a phenomenon quickly and accurately, since the random-process nature of
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weather signals will demand a certain amount of averaging if a desired accuracy is to be

achieved. This is a trade-off in all polarimetric Doppler radar systems.

1.4. Problem Statement

Polarimetric weather radars probe the atmosphere and retrieve spectral moments and
polarimetric variables for each resolution volume in the surrounding space. To reduce the
statistical uncertainty of estimates of spectral moments and polarimetric variables for
each resolution volume it is customary to average signals from many pulses. The variance
reduction of averaged estimates is inversely proportional to the equivalent number of
independent samples (1.29), which depends on the correlation between samples and the
total number of samples averaged. The number of samples available for averaging is
determined by the pulse repetition time 7; and the dwell time, which is usually
determined by the required azimuthal resolution. In addition to averaging along sample
time, some radars average a few samples along range time to further reduce the estimates’
errors. However, this process degrades the range resolution of the system, diminishing its

effectiveness for sampling small-scale phenomena.

On one side, large estimation errors restrict the applicability of weather surveillance
radars for precise quantification and identification of weather phenomena. On the other
hand, the need for faster updates between volume scans calls for faster antenna rotation
rates, which limits the number of samples available for each resolution volume, which as

shown before, is inversely related to the variance of estimates. These are conflicting

requirements.
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A technique that increased the number of independent samples by keeping the dwell time
constant without degrading the range resolution would help solve either one of these
problems. More independent samples would reduce the estimates’ errors at the same
antenna rotation rate, or would speed up volume scans while keeping the errors at
previous levels; in both cases no or little degradation in the range resolution of estimates

1s required.

A well-known method to reduce the acquisition time without sacrificing range resolution
is the pulse compression technique (Nathanson 1969, Mudukutore et al. 1998). Pulse
compression can be applied to increase the number of independent samples by averaging
high-resolution estimates in range. However, most ground-based weather radars do not
use pulse compression due to the so-called range sidelobes and the need to increase the

transmission bandwidth.

The remaining chapters of this dissertation are devoted to a detailed study of a novel
method that increases the equivalent number of independent samples available for the
estimation of meteorological variables without requiring a larger transmission bandwidth.
It will be shown that it is possible to utilize the weather signal samples efficiently so that
the variance of the estimates is considerably reduced with little sacrifice in range

resolution or antenna rotation speed.




2. WHITENING TRANSFORMATION OF
OVERSAMPLED RANGE DATA

Chapter 1 presented the problem of obtaining more accurate estimates without decreasing
the antenna rotation speed or degrading the range resolution considerably. This chapter is
devoted to introducing a practical and efficient answer to the aforementioned problem
where the proposed solution involves the use of a whitening transformation on
oversampled data along range time. The study of theoretical estimation performance
limits and the conditions under which these limits are attained motivate the use of a
whitening transformation. Other approaches aiming to solve similar problems found in
the literature are reviewed and disqualified as candidate solutions for different reasons.
Next, the goals and implications of this research work are stated. Finally, the last two
sections of this chapter are devoted to studying the implementation of the whitening
transformation on oversampled range data and its performance in environments with and
without additive noise. The application of this technique to the construction of efficient
estimators of Doppler spectral moments and polarimetric variables is addressed in

Chapters 3 and 4.

2.1. Motivation

The current implementation of spectral moment and polarimetric variable estimators uses
a simple method of averaging samples in range at the expense of degradation in range
resolution. Simple averaging, however, does not yield the best performance when the

observations are correlated [see (1.28)].
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What is the best performance that could be reached? The Cramer-Rao Lower Bound

(CRLB) provides the theoretical ideal performance of an unbiased estimator of a set of

signal parameters. An unbiased estimator that attains the CRLB is said to be efficient in

that it efficiently uses the data. The expression for the bound is (Kay 1993)
var@)=[1'@)].; i=L2,...p, @2.1)

where 8=[8, 6 ... 8,]" is the vector of parameters to be estimated and I(0) is the p-by-p
P P

Fisher information matrix. For the general case, the Fisher information matrix is defined

as

[18)], =—E[%§QJ; ij=1,2,...p; (2.2)
i J

where p(x;0) is the probability density function of the observatiocns x parameterized by
the unknown vector of parameters 0. For zero-mean, complex Gaussian observations with

covariance matrix C, the expression for I() is simplified as [(15.52) of Kay (1993)]

0C(®) ., .. 0C(0)
. 23
20. E T 90, ] @3

[1®)], =2r [C"(e)

Let us compute the CRLB of the power estimator' of complex, zero-mean Gaussian data
with correlation matrix given by C = Sp. Here S is the signal mean power, and p is the
normalized correlation matrix of the complex samples used in the estimation process. In

this case, it is straightforward to see that I(S) =tr{[C™'(§) L "C(S)] }=4& M £ and consequently

! For a more detailed analysis of the CRLB for Gaussian random processes in the context of weather radars
refer to Frehlich (1993).



Var(S) >57 (2.4)

M
Based on the previous equation, the CRLB does not depend on the correlation structure of
the observations, and it can be inferred that it is not the correlation between observations
that limits the accuracy of a given estimator, but the way those observations are used to
compute the estimates. Therefore, it is reasonable to think that knowledge of the
correlation coefficient p(mT;) could be used to formulate estimators that attain the CRLB

(Schulz and Kostinski 1997).

It is know from estimation theory that classical estimators of the mean and variance of
white (i.e. uncorrelated) Gaussian observations attain the CRLB. Therefore, one would
like to derive a transformation on the original data based on their correlation such that the
resulting samples would be uncorrelated (or white). Still, this transformation would have
to preserve the same properties that are of interest in the original data set. If the
underlying samples have zero mean such transformation exists and it is usually termed as
“whitening” (Van Trees 1968) or decorrelation transformation. The whitening
transformation has been applied to solve a variety of signal processing problems (Sosulin
and Kostrov 1998, Mohamed and Schwarz 1998, Izquierdo et al. 2000, Bruniquel et al.
1996) z_md in this research work it will be exploited for the transformation of oversampled

range data to generate efficient estimates of meteorological variables.



2.2. Previous Work

The problem of obtaining more efficient spectral moment and polarimetric variable
estimates is not new, and several solutions have been proposed to reduce output product
errors in weather radars. In the quest for finding better estimators of spectral moments,
Zmic (1979) showed that maximum likelihood (ML) estimators yield errors one order of
magnitude less than those obtained with conventional autocovariance methods. Later,
Frehlich (1993) improved Zmic’s results and derived simplified expressions to test new
estimators based on the ML approach. Due to the complexity of ML estimators,
researchers focused on ways to simplify spectral moment estimators by assuming
knowledge of some of the underlying parameters of the weather signal. Bamler (1991)
computed the CRLB for Doppler frequency estimates assuming both the correlation (or
spectrum) of samples and SNR are known. Frehlich (1993) analyzed the performance of
approximate ML estimators under analogous assumptions. Later, Chornoboy (1993)
obtained an optimal estimator for Doppler velocity that is simpler than ML formulations,
~but again, the SNR and the spectrum width were assumed to be known. Using the
whitening approach, Frehlich (1999) investigated the performance of ML estimators of
spectral moments under the same assumptions of previous works. Summarizing,
compared to classical estimators (Zrnic 1979), ML estimators provide better accuracy for
high SNR and are moderately complex if the spectrum width is known a priori. However,
this last assumption restricts the application of these estimators, because the correlation
coefficient of V(kT5) is not known and must be estimated. That is, for processing spectral

moments, the joint estimate of S, Vv, and &, would need to be calculated, which turns out

to be computationally very intensive.
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Koivunen and Kostinski (1999) took a step further. They suggested that knowledge of the
correlation coefficient could improve the variance of spectral moments estimates. By
means of the whitening transformation, they devised improved estimators that
theoretically can achieve the CRLB. Nevertheless, this attempt fails again because the
correlation of weather signals along sample time must be estimated and Gaussian sample-

covariance matrices are ill conditioned (Kostinski and Koivunen 2000).

Alternatively, Rodriguez Gonzélez (1999) acknowledged that the variance of estimates
could be reduced by averaging a number of samples along range, and that this number of
samples depends on the range correlation function, which is known exactly in the case of
range samples (1.13). However, in this work the author merely computes the number of
independent samples for a given set of radar parameters, and no effort is being made to

obtain better spectral moment estimates by using the knowledge of those parameters.

More recently, Fjgrtoft and Lopes (2001) proposed a method for estimating the
reflectivity on synthetic aperture radar (SAR) images with correlated samples (pixels).
The 'method is based on a modified whitening transformation (Novak and Burl 1990) that
exhibits a low computational complexity and is suitable for oversampled data. Although
they did not extend this approach to the estimation of other spectral moments or the
polarimetric variables, this work shows one of the first successful attempts at using a

whitening transformation in the pursuit of improved estimators for remote sensing

devices.
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It will be shown later that in contrast to most of the previous work, the whitening
transformation on oversampled data along range time results in an efficient and practical

method of obtaining better estimates of spectral moments and polarimetric variables.

2.3. Significance

The purpose of this work is to provide a method whereby the abovementioned
deficiencies of the previous work are overcome. The proposed processing increases the
number of independent samples in a simple manner while the sacrifice in range resolution
is minimal and the transmission bandwidth is not broadened. It is somewhat surprising
that previous works overlooked the fact that while the correlation of samples separated by
T; needs to be estimated for each particular case (it depends on the meteorological
conditions being observed), samples spaced in range exhibit a correlation coefficient that
allows its exact computation a priori; the underlying assumption here is that the mean
echo power changes very little over the average interval in range. By exactly knowing the
correlation coefficient, it is possible to apply the whitening transformation without
worrying about the pitfalls originating from an estimated quantity. As a result, we obtain

M; =M [see (1.29)], and the variance reduction through averaging is maximized.
Maximization of the equivalent number of independent samples lead to the following
implications:

» For the same uncertainty as the one obtained with correlated samples, faster scan
rates are possible, as the total number M of samples for a resolution volume is

determined by the pulse repetition time (PRT) and the dwell time.



» For the same scanning rates, lower uncertainties can be obtained, making the use of
polarimetric variables feasible for accurate rainfall estimation and hydrometeor

identification.

With the advent of digital receivers (Brunkow 1999), oversampling is indeed feasible.
Therefore, it is possible to maintain the same current radar capabilities (involving no
oversampling or whitening) while adding, in parallel, a set of more reliable estimates

obtained from whitened oversampled range data.

2.4. Implementation

The procedure starts with oversampling in range so that there are L samples during the
pulse duration z (that is oversampling by a factor of L). Assume that the range of depth
ct/2 (where c is the speed of light) is uniformly filled with scatterers. For relatively short
pulses this is a common occurrence. For convenience, the contribution from the
resolution volume to the sampled complex voltage V(nT;) = I(nT;) + jO(nT;) at a fixed
time delay nT;, can be decomposed into sub contributions s(I%,,nT;) from L contiguous
elemental shells or “slabs” each ct/2L thick, as shown in Chapter 1. For simplicity 7, and
T are dropped hereafter so the indexes / and n indicate times at sampling-time (range-
time) increments 7, and at pulse-repetition (sample-time) increments T, respectively. The
voltages s(I,n) are identically distributed complex Gaussian random variables, the real and
imaginary parts, Re{s(/,n)} and Im{s(/,n)}, have variances ¢°, and the average power of
s(l,n) is o> =2 6*. Pulse of an arbitrary shape p(l) (index [ indicates time increments of

7, within the transmitted pulse which correspond to a decreasing index in range, see



(4.17) in Doviak and Zmic 1993) induces weighting to the contributions from contiguous

“slabs” such that the composite voltage is

-1

V(l,n)= I, n)+ jOU,n) =[Z s(l +i,n)p(L—1—i)}=h(l), 2.5)

i=0
where h(J) is the impulse response of the receiver filter. Then, as shown in Chapter 1
R (m)=0c}p,(m)=p,(-m)], (2-6)

where the modified pulse envelope p,, is given by

P,.(m) = p(m)*h(m) . Q2.7

Hence, the correlation coefficient of range samples p\* is

R (m) _ p, (m)* p. (-m)

R(R)(O) - L . (2.8)
v > pa®

=0

Py (m) =

If the transmitted pulse envelope has a rectangular shape (ideal transmitter) and the
receiver has infinite bandwidth, the correlation coefficient of samples along range time
simplifies to

L—|m|

pPmy=i"1 Im<L (2.9)
0 otherwise.

For other pulse shapes and band-limited receivers p.” can be evaluated by attenuating

the transmitted pulse, injecting it directly into the receiver, and oversampling the result to
(R) .

obtain the modified pulse envelope p,. Introducing p,, into (2.8) produces o, ; this is

done only once for a given pulse shape and receiver bandwidth.
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The procedure for implementing the whitening transformation is as follows. Define the

Toeplitz Hermitian normalized correlation matrix Cy as

1 oMW - pPL-b
(R) .. (R) o)
C, = (l) 1 y (.L 21 2.10)
(R)(L 1) (R)(L )' .ee 1

Because this matrix is positive semidefinite (Therrien 1992), it can be decomposed into a

product of a matrix H and its conjugate transpose (or adjoint) as
Cv=HH", @.11)

where the superscript T indicates matrix transpose. Any H that satisfies (2.11) is called a

square root of Cy (Faddeev and Faddeeva 1963) and is the inverse of a whitening
transformation matrix

wW=H", (2.12)
which if applied to the range samples produces L uncorrelated random variables with
identical variance (Kay 1993). Strictly speaking, this is an isotropic transformation
(Manolakis et al, 2000) because it produces unit-variance uncorrelated vectors.
Denote with X(,n) the sequence of time samples spaced T seconds apart each of which is

obtained as
X =WV, (2.13)
where V, = [V(0,n), V(1,n), ..., V(L~1,n)]" and Xa = [X(O,n), X(1,n), ..., X(L—1,n)]". In

general, the orthogonalization is not unique and many well-known methods could be

applied to generate different whitened sequences. Two prominent methods to generate
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whitened sequences are the eigenvalue decomposition (Therrien 1992) and triangular

decomposition, which is equivalent to Gram-Schmidt orthogonalization (Therrien 1992,

Papoulis 1984).

In the eigenvalue decomposition method the eigenvalues 4; of the correlation matrix Cy
are computed first and Cy is represented as Cy = U A U'7, where A is a diagonal matrix
of eigenvalues, and U is the unitary transformation matrix whose columns are the
eigenvectors of Cy. Then, to obtain W, a diagonal matrix D with elements on the

diagonal equal to ;"% is constructed and

W=H"'=DU". (2.14)
The transformation in (2.14) is the Mahalanobis transformation (Tong 1995).
Triangular (or Cholesky) decomposition is identical to Gram-Schmidt orthogonalization
(Papoulis 1984). In this case, the correlation matrix decomposes as Cy = HH'”, where the
matrix H is a lower triangular matrix; hence, the whitening matrix (2.12) is also lower
triangular. A possible advantage of triangular H matrices is that whitening can proceed in
a pipeline manner; that is, computations can start as soon as the first sample is taken and
progress through subsequent samples. Non-triangular H matrices require presence of all

data before computations can start.

Regardiess of the method selected to compute W, the application of the whitening

transformation to a set of oversampled data (fixed n) is given by (2.13), or explicitly as
L-1
X(l,n)=Zw,'jV(j,n); I=0,1,...,L-1, (2.15)
j=0
where w;; are the entries of W = H™'.
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2.5. Performance Analysis

To prove the whitening property of the transformation defined by (2.12), let us apply the

transformation matrix to the data as in (2.13) and compute the correlation for the random

vector X, as
Ry = E[XnX,',T] = WE[V,_V,:T]W'T . (2.16)

L-1

1
Now, the correlation matrix of V, is given by PCy, where P=crf[z p2(l) J [see (2.6)

=0

and (2.8)] and W = H\, then

Ry =H'[PC,JH™")" =PH'H][H"(H")"1=PI, (2.17)

where I is the L-by-L identity matrix.

By definition, X, is white because its correlation is a diagonal matrix. Additionally, all
components have identical variance because Ry is a scalar multiple of the identity matrix
(D). In other words, R{®(l) = PS(l). Furthermore, as discussed before, the signals have
Gaussian distributions hence the variables X(/,n) are independent for a fixed n. In
conclusion, by applying the whitening transformation given by W to the oversampled
weather signal V, we obtained a vector with uncorrelated components, each with the same

mean power (P) as V.

The presence of noise is inherent to every radar system, so it is of concern to analyze the
performance of the whitening transformation under noisy conditions. Let V= Vs + Vy,
where the subscripts ‘S’ and ‘N’ stand for signal and noise components, respectively.

When applying the whitening transformation, both signal and noise are evenly affected,



therefore

X =WV =WV, + WV,. (2.18)

For simplicity, we dropped the subscript “n” that is used to indicate sample time. From
(2.18), we can see that the signal is whitened and the noise, which was white prior to the
whitening transformation, becomes colored. To gain more insight into this process, it is

useful to decompose C,, using eigenvalue decomposition. With this decomposition, the

whitening transformation is given by (2.14). Then, the correlation matrix of X is

R, =E[XX"]
=DU7E[VVT]UD"
=DU" (SCy, + N))UD
=DU7 (SUAU™ + NI)UD
=SI+NA™, (2.19)
where we used the fact that X=WV, wW=DU", UTU =1 (since U is unitary), and by

definition D is real, DD = A™!, and DAD = I. The signal-to-noise ratio (SNR) for the [-th

component of X, is

SNR, =%/l, ; 1=0,1, ..., L-1, (2.20)

where 4, is the [-th eigenvalue of Cy, - The partial SNR defined in (2.20) makes sense

because the eigenvalues of a positive-definite, symmetric matrix are real and positive.
Equation (2.20) indicates that the SNR for each component changes from the original
SNR according to the magnitude of the corresponding eigenvalue. For A; > 1, the SNR of

the whitened signal increases; otherwise, the noise gets enhanced. To quantify this noise-



enhancing effect, compute the total average noise power as

L-1 L-1
N, =% N, _i E_ﬁz,gl 2.21)
=0

It is a well-known fact that if {4} are the eigenvalues of A, then {/l, ‘are the
eigenvalues of A™ (Liitkepohl 1996). In addition, the trace of A satisfies the relationship
tr{A} = Z:L ol/l, therefore, to compute Z 21 we could invert Cy_ and then compute
its trace so

tr{C;,l }
N, =N——Y==N(NEF), (2.22)

where tr{C7 . }/ L is defined as the noise-enhancement factor NEF.

For a correlation matrix corresponding to (2.9) it is not very difficult to find a closed-

form solution for the previous equation. For this ideal case, the correlation matrix is

Lok
Loy L 2
L L
Cy,=|. . . | (2.23)
L 2
L L L ld
and it can be verified that
CL(Le2 L L]
2.+2 2 9 0 ZIe
-5 L -% 0
-1 0 £ - :
Cvs = ) 2 (2.24)
H .. 4]
0 L -+
L L LL+2)
L 222 © 0 -3 3

Then,

34



r(Cyl}

, 2.25
L L+1 ( )
and thus (2.21) becomes
2
N,=N L . (2.26)
L+1

The previous equation shows that the noise its enhanced for L > 1 (which is always the
case if there is oversampling). Therefore, for relatively small SNR, the variance reduction

achieved by increasing L will be masked by a corresponding noise power boost.

Figure 2.1 shows the noise enhancement factor in (2.26) obtained through simulations by
measuring the power of white noise before and after the application of the whitening
transformation. Figure 2.2 shows the noise power for whitened and correlated
observations along the range-time axis. As expected, in the case of correlated samples the
noise power is uniform and equal to the simulated noise power. On the other hand, the
whitening transformation enhances the mean noise power by a factor of 9.0909, as
predicted by (2.26). Observe that the noise power is redistributed (colored) in range so
that the enhancement is different for each range component. Note, however, that this
redistribution of noise along the range-time axis does not‘ affect the spectral shape of the
noise in the sample-time domain. That is, the noise is still white along sample time but its

total power is a function of range.
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Effects of whitening on the noise power level
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Figure 2.1. Effects of whitening on the noise power level. The noise enhancing effect of the
whitening transformation is plotted for oversampling factors from 2 to 10. The result of (2.26) is
included to show the agreement between theory and simulations.

The trade-off between noise enhancement and variance reduction makes the whitening
transformation useful in cases of relatively large SNR. Although for weather radars the
SNR of signals from storms is large, the formulation of the whitening transformation in
effect ignores the presence of noise. As a consequence, its use under low SNR conditions

will result in significant noise enhancement given by (2.21).

An alternative is to relax the whitening requirements and select a transformation such that
the output noise power is also minimized. A transformation that is optimized based on the

minimum mean-square error (MMSE) criterion accomplishes the desired goal. The
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analysis of this technique is deferred until Chapter 5.

In the following two chapters we will focus on the application of the whitening
transformation to the problem of efficient estimation of Doppler spectral moments and

polarimetric variables.

Noise power of the ™ range component — Correlated signal
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Figure 2.2. Noise power of correlated (top) and whitened (bottom) observations along range
time. Dashed lines are at the mean power levels for each case. The predicted enhancement factor
of 9.0909 (L = 10) is verified through simulations.
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3. SPECTRAL MOMENT ESTIMATION

This chapter covers the application of the whitening transformation to the estimation of
the Doppler spectrum and its first three moments for weather signals. Whitening-
transformation-based (WTB) estimators of weather signal power, Doppler mean velocity,
and Doppler spectrum width are discussed in detail. Special importance is given to the
statistical performance (bias and variance) of the WTB estimators compared with the case
in which the oversampled data are not whitened. Variance reduction factors are derived

and theoretical developments are verified through computer simulations.

3.1. Estimation of Signal Power

Weather signal power, or the zeroth moment of the Doppler spectrum, can be related to
liquid water content or precipitation rate in the resolution volume (Doviak and Zrnic
1993). In this section the usual power estimator (1.23) is extended to handle oversampled
signals. The simpler noiseless case is examined first, as the assumption of high SNR
leads to compact and meaningful results. Further, weather radar signals from appreciable
precipitation are typically much stronger than noise. The noisy case is studied next to
make evident the noise-enhancing effect of the whitening transformation discussed in the
previous chapter. In both cases, the performance of the power estimator is compared on

whitened and correlated (non-whitened) samples.

3.1.1. Noiseless Case
3.1.1.1 Correlated Samples

A straightforward extension of the usual power estimator applied to oversampled signals

38



is given by

l L—-1 M-l

=WZ Siva.myf, (3.1)

1=0 m=0
where the subscript “corr” indicates that the power is derived from correlated (non-
whitened) samples. In (3.1) V(I,m) is the oversampled (correlated) weather signal, L is the
oversampling factor, and M is the number of samples (pulses). This estimator is unbiased
because

1 L-1 M—~1

Bias{S,,,}=ElS,,,1-S = Ta7 2 2 E[[V(z, m)IZ]— $=0. (3.2)

=0 m=0

The variance of the estimator in (3.1) can be computed as

el

Var(S_, } = E[S2, ]-S>

1 L-1M-1L-1 M-

‘)M IZ

EV @,myva,myv: @, myve,ml-s2, (3.3)

=0 ['=0 m'=0

where the expectation operation in this expression can be simplified as

ElV{,m)V{,m)V (', m V(I ,m)]=
=E[V'(l, m)V(l,m)]E[V.(l',m')V(l',m')] + E[V‘(l,m)V(l',m')]E[V.(l',m')V(l, m)]
=R, (0,0)R,(0,0)+R, (I'-l,m-mR,(I-I',m—m")

=[R, (0,0)]* +|R, ('~ m'—m)|’

=S§*+|R, (I'~1,m—-m)[". (.4
Introducing (3.4) into (3.3) produces

M-l

1 L-1 -
Var{S., }=— R,(I'-l,m-m)|" . (3.5)
r M ; 0 !" =0l Y I

R
&~
L

3
il
W
o
3

The two-dimensional autocorrelation function Ry in (3.5) can be decomposed as the
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product of the autocorrelation along range time R and the autocorrelation along sample
time R{"; i.e, R,(,m)=R (R (m). In addition, by a change of variables (3.5)

reduces to

e L1 2 M -1 >
Var{Sm,,}=z%4—z L=l | XM ~|mp|o m)|, (3.6)
I=—L+1 I

m==M+

where p{® and p{7 are the correlation coefficients corresponding to R!® and R{”,

respectively. For a Gaussian sample-time correlation as in (l1.1), the magnitude of the

sample-time normalized correlation coefficient is
'p‘(,T)(m)l — e-B(tzzr,mT,//I)' — e-z(mr,,,m)' . (37)

where o, = 20,T/A is the normalized spectrum width. With this assumption and for the

usual range of the product Mo;,, the second summation in (3.6) can be approximated as

v M-m|, 4, 2 M—|m| s e i
—— oy M) =| ———e T dx = ———. (3.8)
m=—ZM+l M- , Y l J.:;, M- 2M0’;n&—
The first summation in (3.6) can be rewritten using the identity
L-1 .
> (LD ROR, ) =tr{CC,}, (3.9)

=—L+l

where C; and C; are the correlation matrices corresponding to the correlation functions

R, and R,, respectively. Using (3.8) and (3.9), (3.6) reduces to

s tr{ [C{P]1°}
“’”}—2Mam N e . (3.10)

Vari S

Recall that the normalized correlation matrix C!° is defined as the Toeplitz Hermitian
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matrix of (2.10), and that p{®, which depends on the transmitted pulse shape and
receiver impulse response, is given in (2.8).

An ideal transmitter/receiver system is defined as having a rectangular transmitter pulse
envelope and an infinite-bandwidth receiver filter (consideration of a real system is
deferred to Chapter 6). The correlation matrix corresponding to such system can be

obtained from the correlation coefficient of (29). It is easy to show that

[F+1

r{[CP1%} = , hence, from (3.10) the normalized standard error for the ideal

system is

~ 172
SD{S_,.} 2 +1
corr = ~ . (3 . l 1
S (4ML-am 