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1, Introduction

The dynamic performance of cup and propeller anemometers
has been extensively studied and reported in the literature.
They are commonly used for the measurement of small scale
atmospheric motions because they are relatively inexpensive,
reliable, and easy to use. However the dynamic performance
of mechanical anemometers is often marginal for such appli-
cations so the data must be corrected for the sensor response
characteristics. Since these corrections can be quite large
it is necessary to have a good differential equation model
for the anemometer dynamic performance.

A linear model is frequently used as a first approxima-
tion to anemometer dynamic performance but dynamic non-
linearity has often been observed, most noticeably in over-
run or overestimation of the mean in turbulent flow. It is
assumed in this study that propeller anemometers are linear
in the static sense above the threshold region. This means
that in steady flow, well above the propeller starting speed,
and with proper calibration applied, the anemometer output
is equal to the input.

Izumi and Barad (1970) made a comparison study of a cup
anemometer, a sonic anemometer and a hot-wire anemometer.
Each was calibrated in a wind tunnel and then mounted on a
tower at 5.66 m. Average values were calculafed over 15
minute intervals when the wind direction was in a quadrant

to minimize tower interference. They did not report wind
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spectra or even the variance but only mean values. They
found the cup anemometer consistently overestimated the
wind speed compared to the sonic or hot—wire.anemometers
by 8-12% with only slight variation by stability class.
This is a little surprising since one would expect the
overestimation of the mean to be a function of the average
wind speed and of the spectrum. At times the overestima-
tion ¢of the mean should be nearly zero. The speed range
of their observations was from 2 to 9 m sec—l.

Hyson (1972) observed overestimation of the mean in
field comparison of cup and hot-wire anemometers., He found
that in neutral conditions at a height of 1.5 m, the over-
run percentage was 16.7 (cV/V - 0.12) for UV/V > 0.12. He
observed overrun up to 3% and found the overrun percentage
decreased with height. 1In one case it decreased from about
1% at 1 m to 0.5% at 4 m to 0.2% at 8 m. This is to be ex-
pected since the average wind speed increased rapidly with
height in the first few meters.

Many investigators, e.g., Hyson (1972), Kondo, Naito
and Fujinawa (1971) and Acheson (1970) attempted to deter-
mine nonlinear anemometer response models from step function
wind tunnel tests. In these tests the tunnel speed is held
constant and the anemometer is released from a braked (usu-
ally stopped) or overspeed condition. The response shows
a noticeable deviation from the simple linear step function

e—t/T

response which has the form B + (A - B) where the initial
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and final anemometer speeds are A and B, respectively. This
deviation may be partially obscured by experimental problems
with anemometer release and by noiée. But even without these
problems, it is difficult to fit a model involving terms in
V2 and VVi, where V and Vi are the anemometer and tunnel
speed, respectively, when the tunnel speed is constant. Evi-
dently a fluctuating wind speed is required to produce more
noticeable nonlinear response. An analysis based on rela-
tively small deviations from linear response produced in a
wind tunnel does not find ready acceptance since it is easy
to dismiss the results as biased by experimental error or as
being not representative of atmospheric conditions.

Commenting on the results of models derived from analysis
of constant tunnel flow data, Acheson (1970) concludes:
"However, differences still remain to which the only ob-
vious resolution lies in performing the measurements neces-
sary to determine which differential equation best approxi-
mates the sensor at hand."

It is difficult to run a test in the atmosphere that
will provide data for critical analysis of nonlinear models.
The anemometers to be compared do not '"see" the same input
and can be compared only statistically. As shown by pre-
viously quoted results, it is possible to detect overestima-
tion of the mean in the atmosphere but that is insufficient
for model fitting. Spectrum analysis is also insufficient

due to the failure of the superposition‘principle for nonlinear
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models. Another difficulty is the normal lack of station-
arity in the atmosphere.

These problems were bypassed by the use of a wind tunnel
at the National Center for Atmospheric Research which could
generate variable, controlled tunnel speeds in the appro-
priate amplitude/frequency range to excite nonlinear response
characteristics of a propeller anemometer. An experiment,
described below, was designed for this wind tunnel to gener-
ate data which could be used for objective analysis of various

nonlinear anemometer performance models.



2. Mathematical Models
The linear model often used to describe the dynamic
performance of cup and propeller anemometers, for example

(MacCready, 1970) is

TdV =V, -V (1)

where time constant

-3
]

Ii

output wind speed

input wind speed

ot < <
]

= time.

Schubaer and Adams (1954) found in wind tunnel tests that

the time constant 7T is an inverse function of wind speed,

_ -1
T = XVi (2)

where the new constant A is called a distance constant. If
(2) were substituted into (1), the result would be a non-
linear model. To preserve linearity with all the attendant
advantages, the average wind speed is used so T = XVi—l.
This is a reasonable assumption when the turbulent fluctua-
tions in the wind speed are small compared to the mean. In
any event, it provides a very convenient linear reference
model.

One nonlinear model, as mentioned above, results from
substituting (2) into (1) which yields,

A %% = Vi(Vi - V). 3)
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This model was studied by Acheson (1970) who also suggested

A av = V.2 - V2, (4)
dt
Ramachandran (1969) proposed
= ; 2
A %% =a, + a1V + azvvi + a3Vi (5)

where ao is a coefficient related to friction. For immediate

purposes, the friction term will be ignored which is reason-
able when the wind speed is well above the anemometer threshold.

Even ignoring (5) does not satisfy the requirement for

Y
static linearity which requires that dv/dt

0 when V = Vi'

In (5) when dV/dt = 0 the right side

2 _
alv + a2VVi + a3Vi = 0

leads to
_ 2 -1

Ramachandran observed that some of the discrepancies in his
results could be explained by letting the coefficient a, be

a function of V. After redefining aj,

_ 2
A g% = alv2 + aZVVi + a3Vi (6)

satisfies the static linearity requirement of a, + a2 + ag

= 0.
The model proposed by Kondo, Naito, and Fujinawa (1971)

is
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AAv = V. (v, - (1 + V) + gV W
T * |

wherein the authors restricted y to the range 0.1 < vy < 0.5.
The three nonlinear models stated in (3), (4), and (6)
can be described as variants of (7) with an expanded range
of the parameter y. Eq. (7) is identical to (3) when y = 0;
identical to (4) when y = -1; and is the same as (6) for all
values of y. The coefficient A that appears in these models
will take on different numeric values for each model but
will remain a distance constant. Therefore, in subsequent
analysis, (7) will be used as the primary nonlinear model

with relaxed restrictions on the value of v.



3. The Experiment

The National Center for Atmospheric Research (NCAR) wind
tunnel, shown in Fig. 1, is a small open return tunnel with
a cylindrical test section 0.9 m in diameter by 1.5 m long
(Pike, 1970). The fan is driven by a 25 hp DC motor with
SCR (silicon controlled rectifier) speed control. Smooth,
stepless control of tunnel speed is possible from below
typical anemometer starting speeds to 30 m sec_l. This can
be accomplished manually or by a 0 - 5 ma control current.
The latter is used for selection of predetermined speeds
through a calibrated speed sensor and servo control. The
speed sensor is a helicoid propeller anemometer, R. M. Young
#27100, with tachometer generator output. Precision switch
selectable reference voltages are established in the control
circuitry representing 15 speed steps. The sensor and refer-
ence voltages feed a high gain operational amplifier which
drives a current generator to satisfy the SCR controller
requirements.

Since the tunnel is designed to accept a 0 - 5 ma signal
to provide continuous speed control, it is possible to dis-
connect the control circuit and control the tunnel speed
with an external signal. This signal can be time-variant
to provide a controlled, periodic wind speed in the tunnel.
The dynamics of the tunnel flow, the motor and the SCR con-
troller are such that the tunnel speed can be made to in-

crease more rapidly than to decrease. Thus, it would be
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difficult to produce a simple, periodic speed fluctuation,
e.g., a sine wave., Furthermore, the rather slowly decaying
speed would severely limit the amplitude~frequency product
of the speed.

To simplify data analysis, the tunnel speed should be
periodic. To be sensitive to anemometer nonlinear charac-
teristics, the test should stimulate the anemometer with
relatively high frequencies. If the fundamental frequency
of the input is too low, it will be difficult to detect
deviations from anticipated linear response because the
anemometer will be able to closely follow the input. If,
on the other hand, the fundamental frequency is too high,
the anemometer response will be sharply attenuated and
difficult to measure;accurately. The ideal fundamental
test frequency would be close to the anemometer ~3dB point
from the linear model. However, the anemometer dynamic
performance is a function of the mean wind speed so it
would be necessary to control frequency and average speed
together. The response characteristics of the tunnel were
not well known so it was not possible to predicf appropriate
control signals. Also, the nature of the tunnel control
system is such that it is desirable to use an on/off con-
trol signal. Thus, a signal generator which produced the
waveform shown in Fig. 2 was used. The ON amplitude, period
and duty cycle were variable. The period and duty cycle
were set experimentally and thereafter, during the test

runs, only the amplitude was varied.
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Fig. 3 shows the data recording and playback configura-
tion. Three anemometers were used simultaneously in the
tunnel. Anemometer S, box 1, was a standard propeller ane-
mometer with four polystyrene blades and tachometer generator
output. Anemometer W, box 2, was similar except that each
blade was loaded with lead shot to double the moment of
inertia.

Anemometer H of box 3 and 5 was a constant temperature
hot-film anemometer (Thermo-Systems Inc. Model 1053B with a
1330-60-6 probe) on loan from the Atmospheric Sciences
Laboratory, White Sands Missile Range. This anemometer
was used to monitor the tunnel speed; however, it was un-
calibrated and did not have a linearizing module.

The signals were amplified, box 4, and recorded on a
SONY PFM-15 four channel tape recorder, box 6. The data were
digifized using the Meteorology Department Metsystem which
includes boxes 7 through 10. The data were filtered before
digitizing and the sample rate was 10 sec™l., The filter is

a second-order active system with a transfer function

H(E) = [1 - (f/fn)2 + j1.4f/fn]“’«’ (8)

where
f = input frequency

fn = 14 Hz

The recording procedure was designed to facilitate throughput
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calibration, that is from the wind tunnel through the com-
plete data path shown in Fig. 3, to the computer.

One of the objectives of the experiment was to demon-
strate overestimation of the mean. This requires compensa-
tion for the gain and bias contributions of each of the
system elements in the data path, The procedure consisted
of recording accurately monitored reference voltages,
anemometer signals with the tunnel stopped, and anemometer
signals when the tunnel speed was slowly increased from
zero speed to the maximum used in subsequent tests. The
rate of change was slow enough that anemometer lag was in-

significant.
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4, Preliminary Data Processing
The objectives of preliminary data processing were to
(a) digitize the data; (b) perform throughput calibration
and linearization of the hot-film anemometer data; and (c)
perform Fourier analysis.

(a) Digitization. The data were digitized using the

Metsystem which includes an analog input system comprising

14 channels of variable gain (1 to 10) differential ampli-
fiers and second-order, low~pass filters with switch selected
bandwidth of 14 Hz to 220 Hz. There is also a 1l6-channel
multiplexer and a 10-bit successive approximation analog-
to-digital converter. The three data signals were digitized
in parallel at 10 samples sec_1 using the filter breakpoints
set to 14 Hz.

(b) Throughput Calibration. Anemometer W had been

calibrated prior to and after use. From recorded voltage
reference signals it is possible to establish the through-

put calibration for this anemometer. Since it was most
important to insure correspondence between instruments, i.e.,
relative rather than absolute calibration, the other anemom-
eters were fitted to anemometer W using least squares poly-
nomial regression. Anemometer S was fitted to W using a
first-order polynomial to compensate for the composite

system gain and bias. The hot-film anemometer H was fitted

to W using a fifth-order polynomial to accomplish simultaneous

relative calibration and linearization. The data for this
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matching were obtained by very slowly increasing the tunnel
speed from zero to the maximum used in subsequent tests. The
data below the threshold fegion of the propeller anemometers
were not used in order to avoid the threshold nonlinearity.

(c) Fourier Analysis. The data were found to be periodic

with a period of 8.5 sec corresponding to 85 data points per
fundamental cycle. Therefore, it was appropriate to perform
Fourier analysis over 85 point segments. The coefficients
were averaged over 13 consecutive segments to remove noise.
This resulted in 42 amplitude and 42 phase coefficients for
each anemometer for each run. However, it was determined,
very conservatively, that only the first 19 sets of coeffi-
cients need be saved. The amplitude and phase coefficients
were corrected to compensate for the system filter whose
transfer function was given in (8).

Figs, 4, 6, and 8 show the first 10 amplitude coeffi-
cients for anemometers H, S, and W for 3 selected runs of
some 25 available. These plots show amplitude on a log
scale versus wave number on a linear scale. Wave number
was used for convenience since wave number 1 corresponds to
a frequency of 1/8.5 sec = 0.118 Hz. There are five lines
shown for each wave number. The first is the amplitude for
anemometer H, The next two are for anemometer S and the
last two are for anemometer W, The first line of each pair
is the observed amplitude and the second is the amplitude

predicted by linear theory using the corresponding H amplitude
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as input. From (1) it can be shown that, for a sinusoidal

input, the output will be
2. -1
Ay (n) = Ay(n) [1+ (to)“]72 (9)

where Ap(n) = amplitude predicted for wave number n for in-
put AH(n), and T = time constant = distance constant, A,
divided by the average speed of anemometer H, and w is the
input frequency, w = 2m/8.5 sec. The distance constants
were determined in an earlier step function wind tunnel test
described in Appendix B. The distance constant of the stan-
dard propeller, S, was 0.98 m while that of the weighted
propeller, W, was 1.88 m. These were determined by fitting
the data to the linear model.

The two short vertical bars at the top of the graph show
the location of the breakpoints for anemometers S and W,
again according to linear analysis. The breakpoint frequency
is where Tw = 1 and is used here to show the relative loca-
tion of the excitation frequencies.

Figs. 5, 7, and 9 show thevdata reconstruced from the
averaged Fourier coefficients corresponding to Figs. 4, 6,
and 8 respectively. 1In Figs. 5, 7, and 9 the mean and vari-
ance are tabulated for each anemometer. The variance of
anemometers S and W is leés than for H since the propeller
anemometers are attenuating frequencies passed by the hot-
film anemometer. However, the mean values of S and W are

greater than for H. This is the overestimation of the mean
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predicted by nonlinear models but not by linear models. Since
this effect shoWs up in each run it appears to be a conclusive

experimental demonstration of overestimation of the mean,



16
5. Numerical Analysis.

The objective of the numerical analysis was to determine
optimum values for the two parameters, y and A, in model (7).
To accomplish this, (7) was integrated to produce a predicted
output, Vb, which could be compared to the observed propeller

anemometer output, Vo.

a. Reconstruction of the data
The numerical integration requires an input stream of

data and the optimization process requires a set of compari-
son data to evaluate the model output. Each data stream was
reconStructed from the averaged Fourier coefficients for one
complete cycle and can be lengthened indefinitely by simply
repeating the cycle. The input data, Vi’ is from the hot-
film anemometer while the observed output data, Vo, is from

one of the two propeller anemometers.

b. Integration

The model (7) was integrated using Vi as the input with
interpolation between adjacent points as necessary. The
integration procedure requires an initial condition for the
output, Vp. The initial value of Vp was set equal to the

. This could cause a

first point of the observed data, Vo

small initial transient which would die out quickly. There-
fore the model was integrated over two cycles and only the
second cycle was used. This'was probably an excessive pre-

caution because the initial transient must have been quite
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small., The longer the solution runs, the greater the accumu-
lated round-off error. This was controlled by using a fourth-
order Runge-Kutta-Gill algorithm with the Thompson (1970)
modification. This procedure controls round-off error ex-
ceedingly well even on machines with a relatively short word
length of 32 bits. The residual error was defined as the
difference between the predicted and the observed data, e =
V. - Vp, and the error variance oez was calculated over the

o
second cycle of the data.

¢. Optimization

Initial values of the two model parameters y and A were
supplied for the integration process. The resulting value
of the error variance was used to guide an optimizing rou-
tine in selecting new values of y and A. Range limits were
put on these parameters to allow effective real time graphic
display of the optimizing process. The constraints were
carefully chosen wide enough to avoid impeding the optimiz-
ing process. Therefore the optimizing algorithm was allowed
to seek an optimum y and A wherever it chose. It was pointed
out above that allowing y to take on an extended range of
values made (7) general enough to cover virtually all of
the proposed models, thus effectively allowing the optimizing
algorithm to choose among these models. The optimizing al-

gorithm is discussed in Appendix C,
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d. Results

The analysis process described above was employed on 52
sets of data. Some of these had to be rejected because of
clearly identified experimental problems such as failure of
the hot-film anemometer. The results were further sorted to
simplify presentation. Only eight cases are shown graphi-
cally in Figs. 10 through 17, while a total of 32 are sum-
marized in Tables 1 and 2.

Fig. 10 shows the results of fitting the model to the
weighted propeller, W, in one case. The input Vi and the
observed output for W, Vo’ are plotted in the top portion
while the error e = Vo - Vp, magnified 7.6 times, is plotted
in the lower portion. The units of e are m sec™l. The pre-
dicted output, Vb, is not shown in the top portion because
it would lie so close to Vo' In some examples, most notably
Fig. 15, the error curve lies wholly above the zero line
indicating a residual bias. This shows that the model did
not completely predict the full amount of the overrun in
che observed data.

Table 1 summarizes the analyzed data. The column head-
ings are explained below:

Col. 1. Data grouping by average tunnel speed class.

Col. 2. VH = average hot-film anemometer speed.

2
H

Col. 4. Type designation is O for observed data, N for
data output of the nonlinear model, and L for
results of the linear model.

Col. 3. o© = variance of hot-film anemometer.



Table 1. Summary of analysis of 32 sets of data.

Standard Propeller Anemometer S Weighted Propeller Anemometer W

1 2 3 4 5 6 7 8 Q 10 11 12
— 2 9 Over- _ 9 Over-

Vy B % i Vg_l 0 o _2 run VR Vw—l . Oy - run VR

Class m sec m- sec Type m sec m- sec % % m sec m- sec % %
1 1.57 .420 0 1.62 .322 2.8 76.7 1.65 .206 5.2 48.7
N 1.60 .316 2.1 75.3 1.64 .203 4.8 48.4

L 1.57 .343 0 83.1 1.57 .232 0 57.2

2 1.68 .419 0] 1.74 .329 3.4 78.5 1.78 .212 5.6 50.6
N 1.71 .323 1.8 77.1 1.75 211 4.3 50.3

L 1.68 .348 0 83.1 1.68 .240 0 57.2

3 2.81 .922 0 2.85 .825 1.6 89.4 2.89 .643 2.9 69.7
N 2.85 .808 0.6 87.7 2.88 .633 2.3 69.5
L 2.81 .832 0  90.3 2.81 .687 0 74.5
4 3.39 1.14 0 3.44 1.05 1.5 92.2 3.47 .855 2.6 75.2
N 3.39 1.03 0.2 90.7 3.44 . 847 1.6 74.5

L 3.39 1.05 0 92.2 3.39 . 902 0 79.3




Table 2. Summary of parameter optimization on 32 sets of data.
S W
Non~linear Linear Non-linear Linear

VH Y A A Y X A

Class m sec m m m T m
1 1.57 -.95 1.71 .836 -.76 3.25 1.71
2 1.68 -.76 1.58 .848 -.62 3.09 1.75
3 2.81 -1.38 2.18 .887 -.48 2.93 1.76
4 3.39 -3.61 4.28 .890 -.64 3.63 1.76

0¢
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Col. 5 and 9. Mean speed observed or predicted.
Col. 6 and 10. Variance observed or predicted.

Col. 7 and 11. Observed overrun percentage,
100(VS - VH)/VH‘

Col. 8 and 12. PErcentage of input variance observgd 9

in the propeller anemometer, 100 Og /OH

The hot-film anemometer output‘is taken to be a good
measure of the tunnel speed. The first two columns of Table
1 show the average and variance of the tunnel speed. Vari-
ance is used as a measure of the speed fluctuation since the
speed was composed of many frequency components. Columns 5,
6, 9 and 10, line O show that the propeller anemometer con-
sistently overestimated the mean and reduced the variance.
Columns 7 and 11 show the overrun percentage, the amount by
which the output mean exceeded the input. Columns 8 and 12
show output variance as a percentage of the input variance.

The results of the nonlinear model are shown on line N,
The model consistently overestimates the mean although less
than observed in the anemometer. The model also consistently
underestimates the output variance.

The linear model (1) with T = XVi'l was run for compari-
son purposes. Even though it has only one parameter, A, the
same optimizing routine was used. The results are shown on
line L and indicate no overrun and the model variance is
consistently higher than the observed output.

The optimized parameters are shown in Table 2 for both

propeller anemometers and for both the linear and the non-
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linear models. The dimensionless parameter y showed consid-
erable fluctuation but was consistently negative. The param-
eter A has a trend in the higher speed classes for anemometer
S that is not as pronounced for anemometer W. The distance
constants for the linear model are low compared to the results
previously obtained from step function wind tunnel testing.
Those results were A = 0.98 m for anemometer S and A = 1.88

m for W,
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6. Interpretation.
a. Model fitting

In Table 1 the overestimation of the mean decreases
with increasing wind speed and the output-to-input variance
ratio increases. This can be explained, using the linear
" model as a guide, by noting that the time constant T is an
inverse function of the wind speed. Thus one would expect
the anemometer performance to improve as the mean wind speed
increases provided that the input signal does not shift to
higher frequencies in the same way. Comparing Figs. 4 and
8, it can be seen that while the input variance has more
than doubled (see Table 1), the distribution of the input
variance has not shifted markedly. There is, however, the
expected improvement in the distribution of the observed
anemometer variance. Also, the standard propeller, S, per-
forms better than the weighted propeller which fits the
general pattern of results.

The linear model is incapable of explaining the over-
estimation of the mean since in (1) the steady-state average
output must equal the average input. The linear variance
ratio, columns 8 and 12, approaches the observed variance
ratio as the average speed increases. Evidently the nonlinear
characteristics of the propellers are a function of the mean
wind speed given that the variance distribution does not
change much. This too could be expected since as the speed

increases and the anemometer performance improves, the input
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variance occurs mainly at frequencies below the anemometer
-3 dB point. Figs. 4 and 8 show that there is relatively
little attenuation or nonlinear distortion at frequencies
up to the -3 dB point.

The nonlinear model seems to fit best when there is con-
siderable nonlinear distortion. The more overrun in the ob-
served data, the better the nonlinear model explains it.

In Table 1, when the overrun is 5.2% the model result is
4.8% but when the observed overrun drops to 1.5% the model
result is only 0.2%. The model also fits the variance ratio
best when it is lowest (indicating greater anemometer attenu-
ation), and is a somewhat poorer fit when the variance ratio
exceeds 90%.

With this background it is easier to interpret the param-
eter values of Table 2. The values for the nonlinear model,
when applied to anemometer S, change markedly with the wind
speed. As observed above, the nonlinear model does not fit
well when the nonlinear distortion is small and as a conse-
quence the optimizer is forced to shift y and A over a large
range in its attempt to fit the observed data. These large
shifts in parameter values were accompanied by very small
changes in the residual error variance. In one case the
optimizer moved from y = -2.16, A = 2.86 to y = -3.01,

A = 3.59 to reduce the residual error variance from 1.11 x

"4 12 sec™? 0 1.10 x 10°% m? sec™?. In this case the

input variance was 1.14 m2 sec'2 so a very large change in

10
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parameter value was required to produce a trivial improve-
ment in the quality of the fit. On this basis it is rea-
sonable to assign more weight to lines 1 and 2 of Table 2

than to lines 3 and 4.

b. Model interpretation

Eq. (7) can be written in another form,

av = V; - YV v, - V) (10)

dt A

and interpreted by comparison with (3), repeated here in the

form
_ V.
av = i (v, - V). (3)
t X
In (3) XVi-l represents the time constant and (V; - V) repre-

sents the deviation from equilibrium conditions upon which
the anemometer operates. The time cgnstant could not really
be equal to kVi'1 because that impliés that 7 = « when Vi = 0
which means that if the anemometer were initially set into
motion in still air, it would never stop. The propeller
dissipates its overspeed energy into the air stream, and it
'is reasonable to expect this energy transfer to be a function
of both the air speed and of the propeller speed. The simplest
function is 7 = )\(Vi + V)"1 and since y was observed to be in
the range -1.4 to.-0.5, the A(Vi - \(V)-1 term of (10) appears;
to be a modified time constant. |

It was earlier required that the model be linear in the

static sense, i.e., that dV/dt = 0 when V = V. Thus y could
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not be positive since then dV/dt = 0 in (10) when V = Vi and
when yV = Vi‘ Even with y < 0 (10) is not generally adequate
since_bdth V and Vi can go negative for a propeller anemometer.
The problem did not arise in the wind tunnel study where Vi >
0. Evidently a more general expression would be

= UVl = vIvD . (11)
by 1

d

<

&l

which always satisfies the static linearity requirement for

y < 0.

c. Response to a cosine input

It is useful to explore the properties of (11) by using
a simple input Vi =a + b cos wt where a > 0 and b <a. 1In
this case (11) is equivalent to (10) or (7).

It is useful to put (10) in dimensionless form. Let

o = b/a

U = V/a

Uy = Vy/a

T = wt
then

where f = wA/a and Ui = 1 + a cos T. This reduces the five
parameters a, b, w, y, A to three: o, B and y. The parameter
o is a gustiness factor, B is a dimensionless frequency and

y is unchanged. To further simplify the analysis let y be
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a constant. The amount of nonlinear distortion is propcr-
tional to the '"gustiness factor" o so, for maximum effect,
let o = 1. Figs. 18 through 22 show the solution of (12)
as B is increased from 0.10 to 10.0. In each case the input
is a cosine wave of unit amplitude and each figure shows one
full cycle. 1In Fig. 18 the top portion of the solution de-
viates very little from the cosine wave but the lower portion
shows some distortion. The input mean value is 1.0 but the
output mean value appears to be greater than 1.0. As the
frequency (B) increases, the amount of distortion increases,
as does the overrun until B = 1. As  continues to increase,
the amount of distortion decreases as the input is attenuated
more and more. When B = 10, there is little evident distortion
but considerable overrun. The solution of (12) for u; = 1 +

o cos T would be of the form

U(T) = 1 + Al + Azcos(T + wl)

+ A3cos(2T + @2) (13)

+ A4cos(3T + ¢3) + . . .

where Al, AZ’ A3, A4, . . . are all functions of o, B and Y.

The numerical solutions of (12) were generated and analyzed

for y = -0.652, 0.05 < a <1.00, and 0.1 < 8 < 100. In this

range, the maximum overrun of 25% was produced for a = 1.0

and B = 8.0. For all values of o, the maximum overrun occurred

for 7 < B < 8. The ~3 dB point is at approximately B = 1.7.
The maximum first harmonic, the A3 term, is produced for

a=1and B = 0.9 with amplitude 0.135. At this point the
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amplitude of the fundamental is 0.761 so this represents a
significant distortion as shown in Fig. 20.

Both maximum overrun and maximum distortion are produced
for large values of «a, the 'gustiness'" parameter. For a
given a, maximum distortion occurs at relatively low fre-
quencies, B8 < 1, while maximum overrun occurs at relatively
high frequencies, B > 1. This affords a useful definition
of relative frequency. It is high if B > 1, low if B < 1.
Table 3 gives the B values for the test conditions for the
fundamental tunnel frequency and the first 3 harmonics. This
indicates that the propellers in the wind tunnel were operat-
ing in the region of maximum distortion but not in the region
of maximum overrun. This explains the low values of overrun

observed.

Table 3. Values of B = S\ (dimensionless)
for the test conditions.

Harmonics
Avg. Speed Fundamental 1 2 3
m sec—1l
1.57 .47 .94 1.4 1.9
2.81 .26 .53 .79 1.1

3.39 .22 .44 .65 .87
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7. Conclusions.

A new test procedure for mechanical anemometers has been
devised using a wind tunnel in which the speed can be con-
trolled to produce a periodic floﬁ with sufficient amplitude
and the appropriate frequencies to stimulate nonlinear ane-
momefer performance. One measure of nonlinear performance,
overrun, was consistently produced.

The experimental procedure and the data analysis pro-
cedure described here can be simplified for easier applica-
tion. Once an analysis program is operating satisfactorily
it is possible to quickly change the model to be tested and
therefore evaluate a variety of models with ease. This ex-
periment could very well become a new standard test for
mechanical anemometers since the tunnel flow is repeatable
and reasonably realistic and the data analysis is completely
objective. The usual step function wind tunnel test has none

of these advantages.
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APPENDIX A

List of Symbols

A(n) amplitude coefficient

a, b arbitrary constants

A, B, C arbitrary constants

E objective function

f frequency

H hot-film anemometer

j 2=

n wave number

S standard propeller anemometer
T dimensionless time

t time

U dimensionless speed

Vv anemometer output

Vc constant wind tunnel speed
Vi wind speed

w weighted propeller anemometer
X, ¥y variables

X, Y variables

o model parameter

g dimensionless frequency

Y model parameter

A finite increment

A distance constant

53
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standard deviation
}time constant
phase angle

circular frequency



APPENDIX B

Propeller Anemometer Step Function Response

1. Introduction.

The simplest way to determine the dynamic response of a
rotating anemometer is to measure its step response in the
wind tunnel and fit a performance model to the data. This
requires a performance model that is fairly simple and fits
the data reasonably well. It is convenient, and sometimes
necessary, to use a linear model because of the immense power
of linear systems analysis. The rotating anemometer is not
a linear system and it is difficult to fit a linear model to
the data objectively. Because of this and because exclusive
concern with linear models tends to obscure some markedly
nonlinear aspects of anemometer performance, it is desirable
to use a nonlinear performance model. Therefore, it seems
that both the linear model and a nonlinear model have a place

in the deduction of anemometer characteristics.

2. Step function response models.

There is one linear model generally used to describe the
dynamic performance of anemometers, and there have been a
number of nonlinear models proposed. The following discussion
describes the linear model and one versatile nonlinear model
from the point of view of step function response. The input,

Vi’ is the step function with initial conditions as described

' 55
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below.

V. =0 for t <0

vV, for t >0

Q

]
=]

v(0)

The linear model is

———

A dZ = v (v, - V) (B1)

and its solution for the step function case is

v, (1 - e~ t/Ty, (B2)

MV,

I

V(t)

where T

This model is linear if the input Vc is constant as in the
wind tunnel.
The nonlinear model proposed by Kondo, Naito, and Fujinawa .

(1971), is

Adv = (V, - y(V, - V) (B3)

————

t

and the solution is

v(t) = 1 - e~ /¢ (B4)
Ve 1 - ye /0

where o = A/(1 - y)VC. Note that if y = 0 (B3) is the same
as (Bl).
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3. Test procedure.

The anemometer is mounted in a wind tunnel operating at
a constant speed. A brake is applied to stop the anemometer
and it is released to start the test. The anemometer responds
as though there were a step function increase in the wind
speed. The data can be recorded on a strip chart recorder.
In abstracting the data it is necessary to carefully deter-
mine the level corresponding to the tunnel speed and the
start time or moment of release. It is often difficult to
determine the start time accurately, especially if the ane-
mometer was not released cleanly. Fig. Bl shows a sample
of propeller anemometer step function data. There was noise
in the data which, combined with abstraction errors, accounts
for the irregularity of the data. Eq. (B2) is the step
response for the linear model and shows that the output is
0 until t = 0, then increases abruptly and approaches the
tunnel speed asymptotically. When t = T, V(t) is equal to
0.632Vé. This point is sometimes used as a quick way of
determining the time constant 7. It is inappropriate if
there is noise present in the data or if the behavior of
the system deviates significantly from the performance model.
Both conditions obtain in anemometer testing. A good graphi-
cal procedure is to plot the data on semi-log paper and fit
a straight line to the data. Note that the slope of the

line should be equal to -1/r.

In1 - V) = - (B5)
v

c

1 G
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Fig. B2 shows the data of Fig. Bl plotted in this way. The
curvature of the data is typical of all the step response
tests performed on propeller anemometers by the author. The
data appear to lie on approximately a straight line for large
values of t, in this case for t larger than 1 second. A
straight line can be fitted to this portion of the data and a
slope determined to give the time constant and the distance
constant. There is uncertainty in this procedure because
there is no objective way of deciding what data are to be
ignored in fitting the straight line.

Fig. B3 shows a plot of (B4), the step function so;ution
of (B3) with the standard linear normalization used above,
i.e., the quantity 1 - V/Vc is plotted versus time on semi-
log paper. When y = 0 the solution is the same as for the
linear case and yields a straight line whereas y # 0 yields
curved linés. For vy = - 0.7 and vy = - 1.0, the curvature is
similar to that observed in Fig. B2.

The value of the parameter Y was chosen arbitrarily to
be - 1.0 in order to explore the possibility that Eg. (B3)
might fit the data better than (Bl). If we define Y = V/Vc’
use the special normalization (1 - Y)/(1 - vyY), and plot on
semi~log paper, we obtain from (B4),

X = ln(l =Y\~ -t/a. (B6)
T ="vY
If this model is appropriate and the correct value of vy

chosen, the data normalized in this way should scatter about
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a straight line. 1In Fig. B4 it can be seen that a straight
line can be fitted to all of the data from t = 0 through
t = 7 seconds. The plot does show fluctuation about this
straight‘line; however it was not necessary to exclude any
of the data in fitting the line. The nonlinear model is a
reasonable fit to the data, and it explains the curvature

of the data.

4., Data analysis.

In this section a procedure is shown that can be readily
automated, is independent of start time, can be used for the
nonlinear model (B3), and includes the linear model (Bl) as
a special case (y = 0). Let Y = V/Vc and use (B6) noting
that a = A/(1 - Y)Vc becomes o = T when Yy = 0. The parameter
a can be found by a least squares regression; the approximate
numerical equivalent of the graphical procedure described a-
bove. Least squares regression of (B6) provides one normal

equation

a' = - IXt/TX?

where o' is the estimate of a. But if there is a start time

uncertainty, t the effect would be to use t + te instead

e’
of t and that would give
o' = - (Xt + tem)(zxz)'l

so that - ZXt/ZX2 does not give an unbiased estimate of a.

If we use



60

X=1nfl -Y\)=-(t+t)/a
T = VY

there would be two normal equations

a" = ¥XTt - NIXt (B7)
NIXZ - (zx)2

ty = IXTXt - TX2¥t.
NIX? - ()ZX)Z

It is not necessary to calculate te because the equation for
a" will be independent of start time uncertainty, te. In
addition it is desirable to 1limit the data used for y = 0
to Y > 0.25, where a straight line fit is more appropriate.
This is the approximate cut-off used in the graphical anzlysis
illustrated in Fig. B4.. There is a possibility of catastro-
phic loss of accuracy in this procedure if Y > 1.0. Due to
the presence of noise, Y can exceed 1.0 and so values of
Y > 1.0 must be excluded.

The results are shown in Table Bl for two propeller
anemometers, one a standard polystyrene propeller and one

which had been weighted.

 Table Bl. Distance constants for two propeller anemometers.

Anemometer Yy = 0 (Linear) y = -1 (Nonlinear)
m m

Standard 0.98 1.71

Weighted 1.88 3.30
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The values obtained for A in each row of Table Bl are differ-
ent simply because they come from different models. This
illustrates the fact that a parameter such as A can be de-

fined only in terms of the differential equation model.
‘{9
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APPENDIX C
Simplex Optimization

The simplex optimization scheme described here is a
numerical method for multivariable optimization derived
from the procedure described by Beveridge and Schechter
. (1970). The purpose of the scheme is to find the optimum
value, in this case the minimum, of some objective function.
In this application, the objective function had two parameters
and was evaluated from experimental data.

The two-dimensional simplex is an equilateral triangle
in the two parameter space (x, y). The objective fuunction
E(x, y) is evaluated at each vertex. The optimization pro-
cedure consists of rejecting the vertex with the highest
value compared to the others. The direction of search is
away from the worst vertex along a line through the center
of gravity of the other two points. The new point is se-
lected along this line so as to preserve the geometric
- shape of the figure and then the function is evaluated at
the new point. The method proceeds by the process of vertex
rejection and regeneration until the figure is in the imme-
diate vicinity of the optimum. Each new simplex requires
only one new function evaluation.

The optimization of the two-dimensional function E(x, y)

using a sequential simplex method is shown in Fig, Cl. The
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initial simplex is the equilateral triangle with the vertices
numbered 1, 2, 3. The optimum is at the point labeled L.

‘The objective function is evaluated at points 1, 2, and
3. Vertex 1 is rejected since it is the highest (because
it is farthest from the low). The new vertex, 4, is
chosen and the objective function evaluated there and the
procedure is repeated. This simple procedure will fail at
a trough line and in the vicinity of the optimum. Consider
simplex 11, 12, 13 where the worst vertex is number 11 which
will be rejected to form 12, 13, 14. But in this triangle
vertex 14 is the worst and application of the above procedure
would lead back to triangle 11, 12, 13. To handle this
difficulty, a second rule is invoked: no return can be
made to a point which has just been left. So instead of
rejecting vertex 14 of 12, 13, 14 the second-worst vertex,
number 13 is rejected and this leads to the new simplex
12, 14, 15.

Application of this procedure in the vicinity of the
optimum will cause the simplex to rotate about the vertex
with the best value. The rotated simplex pattern is shown
in Fig. Cl where the initial triangle of the pattern is
10, 11, 12 and the final one is 10, 12, 16. The search
procedure is stopped when rotation occurs and then the best
approximétion to the optimum is the pivot vertex.

The approximation can be improved by reducing the size

of the simplex and starting over from the last approximation.
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Another way is to fit a quadratic surface to the seven
points of the rotated simplex. This does not require any

additional function evaluations. A quadratic surface

Y + aZXY + a X2 + a Y2 (Cl)

AE = aox + a 3 4

1

can be fitted to the data where the vertex of rotation is

at x Yo with value Eo. Then for any of the rotated simplex

o’
vertices, X = x - X, Y=y - Yo and AE = E - Eo' Since
_{here are five unknowns in (Cl) and seven sets of data,
the coefficients can be evaluated by least squares. Then

the location of the optimum can be found from

a(Ag) =ag + 3,7 + 22X = 0
(c2)
a(gg) =a, + azx + 2a4Y =0
which yields
X, =x_ + (2a_.a, - a.a,.)(a 2 . 4.2 )—1
1 o 0’4 1927 Y92 374
(C3)
-1

2
yi Vo t (2ala3 - aoaz)(a2 - 4a3a4)

where X1, Y, is the improved estimate of the location of
the optimum.

The optimization scheme can fail in several interesting
ways. The simplex could rotate at a point far from the
optimum. A relatively large triangle can rotate in the

vicinity of a narrow trough even when the optimum is not
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in the vicinity. This can also lead to failure of the
quadratic approximation which tends to fail if the data
are taken far from the optimum or if there are small irreg-
ularities in the field being evaluated. Due to combinations
of these effects it is possible for the simplex figure to
rotate and for the subsequent quadratic approximation to
yield a point within the boundary of the rotated simplex
while the optimum is still far away.

With the addition of some control features to the above
logic it is possible to avoid most of the traps and have an
optimizihg scheme which is almost completely automatic. But
theré will probably always be situations where successful
optimization will require human guidance. The additional
controls required are a definition of an allowable range of
parameter values, a limit on the number of iterations of
sequential simplexes, and halving the triangle size until
the quadratic approximation falls within the rotated simplex.
The last condition should be reimposed until the simplex

size is reduced below some specified maximum size.
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Fig. Cl. 1Illustration of sequential simplex optimization.
The optimum is at point L.
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