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ABSTRACT

The linearized set of equations that govern the thermally-driven
natural convection flow of a Newtonian fluid are developed in a rational
manner and the approximations involved are explicitly described. An ar-
bitrarily shaped closed container completely filled with this "Boussinesq"
fluid is considered. It is assumed that the fluid is originally in some
physically permissible stable state of rest and that at an initial instant
the temperature of the container is impulsively changed. The ensuing un-
steady laminar motion is found by solving the linearized equations. A
"boundary-layer, inviscid-interior" decomposition leads to a modified
asymptotic expansion scheme of analysis. The boundary-layer conéept is
valid only for sufficiently large values of the Grashof number. Thus, we
restrict our attention to this practically important flow regime and, in
addition, limit Prandtl number to order unity.

It is found that the inviscid interior region responds to a special
"average" value of the temperature perturbation. The effect of the bound-
ary layer is to smear out, or average, any circumferential variatiom in
this perturbation so that the interior, in effect, responds to an iso-
thermal boundary in each horizontal plane. The temperature and vertical
velocity component are expressed simply in terms of this '"average" con-
tainer temperature. The horizontal velocity potential is governed by a
Poisson equation whose gereral solution is developed in terms of a Neumann
function that depends on the container geometry. Several specific examples

are solved to illustrate the nature of the flow.
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NOMENCLATURE

a semi-major axis (elliptical cylinder)

a cross-plane radius (ellipsoid of revolution)

A cross-plane area (nondimensionalized)

A parameter, see Eq. (4.57)

b semi - minor axis (elliptical cylinder)

cp specific heat at constant pressure (fluid)

QG cross-plane perimeter (nondimensionalized)

Er unit vector in radial direction (cylindrical coordinate
system)

éT unit vector tangent to @

éz unit vector in vertical direction (opposing gravity)

31,32 general cross-plane unit vectors

£(1) function of integration, see Eq. (3.48)

f(x,y) two-dimensional function defining the container, see Eq.
(A.6)

f(z) z-dependence of azimuthally varying container temperature,
see Eq. (4.35)

F(x,y,2z) three-dimensional function defining the container, see
Eq. (A.6)

g gravitational constant

g(z) function of integration, see Eq. (3.49)

h height of rigid cylinder

ix
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NOMENCLATURE (Cont'd.)

general cross-plane scale factors

Heaviside step function

thermal conductivity of fluid

container height

slope of linear temperature profile, see Eq. (4.34)
unit vector mormal to the container

unit vector normal to the container in the cross plane
unit vector normal to top and bottom of rigid cylinder
respectively

Neumann function, see Eq. (4.45)

fluid pressure

arbitrary quantity

radial coordinate (cylindrical coordinate system)
position vector

radius of circular cylinder

arbitrary three-dimensional region, see Eq. (A.1)
three-dimensional closed surface, see Eq. (A.l)

time

fluid temperature

general cross-plane velocity componeunts

elliptic coordinates (elliptic cylindrical coordinate system)
cross-plane velocity

total fluid velocity

vertical component of fluid velocity

general cross-plane coordinates
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vertical spatial coordinate

Greek Letters

frequency of azimuthally varying container temperature,
see Eq. (4.35)

coefficient of thermal expansion, see Eq. (2.6)
basic temperature change across the container (in the
vertical direction)

temperature perturbation parameter

rate-of-strain tensor

position vector to a field point

azimuthal coordinate (cylindrical coordinate system)
coefficient of isothermal compression, see Eq. (2.7)
second coefficient of viscosity

first coefficient of viscosity

boundary-layer coordinate

rescaled boundary-layer coordinate, see Eq. (3.13)
fluid density
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portion of the container above &

heat-up time scale, see Eq. (2.77), nondimensional
viscous stress tensor

heat-up time (e-folding time), nondimensional
cross-plane velocity potential
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Subscripts
B basic-state value (unperturbed state)
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ref reference value (dimensional)
REP representative value, see Eq. (2.13)
z value on the container
0 zeroth-order term (order unity term)
1 first-order term (order R;% term)
Superscripts
* nondimensional perturbation variable
+ rescaled nondimensional perturbation variable, see Eq. (2.58)

through Eq. (2.62)

Abbreviations

LNG liquified natural gas
LOX liquid oxygen
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LINEARIZED BUOYANT MOTION IN A CLOSED CONTAINER
CHAPTER I

INTRODUCTION
Motivation
Many engineering problems have arisen within the past fifteen years
in which unsteady buoyancy-driven flows apparently play a central role.
These problems can generally be classified as either "external" problems,
such as the flow around a heated rod or plate in an otherwise quiescent
fluid, or "internal" problems, such as the flow bétween parallel plates
or in fluid-filled cavities.
As pointed out by Ostrach [l], the external problems have received
a great deal of attention while relatively little has been done about
internal problems thus far. Ostrach contends that the reason for this
is not the greater importance of the external problem but rather that
internal natural convection problems are considerably more complex. This
is because those external natural convection problems for which the Ray-
leigh number is large can be analyzed by the usual Prandtl boundary-layer
theory that is so helpful in other external fluid flow problems. This is
due to the assumption that the region exterior to the boundary layer can
be assumed to be unaffected by the boundary layer in an external problem.
Far confined natural convection problems, on the other hand, a boundary

layer will exist near the walls (for sufficiently large Rayleigh number)



but the region exterior to the boundary layer cannot be assumed to be
independent of the boundary layer. In other words, the region exterior
to the boundary layer will be completely enclosed by the boundary layer
and will form a core region that is greatly affected by the boundary-
layer behavior. Hence, the boundary layer and core are closely coupled
to each other and this coupling counstitutes the main source of difficulty
in obtaining analytic solutions to internal problems.

We shall briefly describe some examples of contained natural con-
vection flows in order to indicate the nature of the problem in general,
the diversity of the specific applications, and the importance attached
to the solution of these specific problems.

The first example in which buoyancy-driven flows play a central
role deals with the storage of liquified natural gas (LNG). With the
rapidly growing consumption of LNG as a low sulfur content fuel, the
need for storage of large quantities of LNG has arisen. Large, land-
based, cylindrical tanks (typically one hundred feet tall and three hun-
dred feet wide) have been constructed for this purpose. Although the
tanks are insulated, heating by solar radiation leads to LNG stratifica-
tion and vaporization with attendant pressure build-up in the container.
Periodically, this pressure must be relieved by venting to the atmosphere
and thus LNG is lost. This loss of LNG by vaporization is critical to
the economics of long term storage such as is involved in peak shaving
operations. Further, at high vaporization rates, the dense LNG vapor
flows along the ground, dispersing very slowly and causing a serious fire
hazard. At present, we are unable to predict vaporization rate as a

function of imposed heating rate, tank geometry and fluid properties



because the stratification is intimately coupled with the induced fluid
motion in the tank.

The manufacture of glass represents a second area in which
buoyancy-driven flows are of central interest. Glass is normally pro-
duced in open-hearth furnaces in which the glass ingredients are flame
heated from above to form a melt. The raw materials (batch) are fed at
one end of the furnace and float on the surface to form the so-called
"batch heap" or cover. The charge reacts, is mixed by buoyancy-driven
convection and by diffusion, and the product glass is withdrawn at the
opposite end of the furnace. A full understanding of the various trans-
port processes and chemical reactions occurring in a glass furnace is an
enormous task. The overall problem involves characterization of the
radiant heat transfer from the flame-fired refractory-lined gas volume
above the surface of the melt. These transfer rates are intimately
coupled with convective rates within the melt, the magnitudes of which
are determined by the interaction of radiant transfer, conductive transfer,
and, in tiie area of the port feed, by melting, chemical reaction, and
gas generation and disengagement. Therefore, it is not surprising that
the design of these furnaces has developed as an art. Uncertainties in
the relation between thru-put rate (quantity of product glass withdrawn
per unit time), heating rates, geometry, etc., presently make optimum
furnace design an impossibility. However, the buoyancy-driven currents
within the melt homogenize the glass and the modification of these

currents can exert a profound influence on product quality and thru-put

rate.



A third problem area involving buoyancy-driven contained flows
deals with the containment of nuclear reactors such as the liquid metal
fast breeder reactor. A spherical reactor core surrounded by a liquid
in a spherical annulus is a typical configuration. The hot inmer and cool
outer surfaces are maintained at constant temperature and heat is trans-
ferred across the annulus primarily by means of buoyancy-driven natural
convection flow. For practical values of the Rayleigh number, there is
no theoretical method for calculating the heat transfer rate across the
annulus and the scaling laws remain empirical.

A fourth area in which buoyancy-driven flows have become of in-
terest is in the study of global plate tectonics and the theory of con-
tinental drift. While the existence of continental drift is almost uni-
versally accepted, the forces which cause the drift are not well under-
stood. The upwelling of material from the Earth's interior near mid-
ocean ridges and the return of material in subduction zones have led
present-day investigators to suspect thermal convection currents as a
possible motive force. The typical analysis considers steady natural
convection between two horizontal infinite slabs heated from below and
thus the geophysical problem is modeled by a geometry for which the
horizontal length scale cannot be determined. While these calculations
do indicate the possibility of geophysical flows being driven by buoyaucy,
they cannot be directly applicable to the continental drift problem be-
cause of the approximate spherical geometry of the Earth and the attendant
global mass conservation restriction implied by a finite flow region.
There is seismic evidence to support the theory that the Earth can be

modeled as a solid spherical core and a thin spherical crust divided by



a molten annular region. The implications of such a model with regard

to possible convection currents and associated internal shear layers have
not been explored. Furthermore, the steady state assumption may not be
justified, as we shall see.

Finally, long-term space missions will require storage of cyrogens
in orbit. Heating by solar radiation leads to cryogen stratification in
much the same manner as with liquified natural gas. Pumping limitations
are determined by the onset of cryogen cavitation which, in turn, depends
critically upon the stratification.

While these examples do not exhaust the various contained buoyancy-
driven flows of interest, they do illustrate the breadth of application

and the importance attached to such flows.

Earlier Work

There have been many efforts to analyze various models of the con-
tained buoyancy-driven flow problem. We shall restrict our attention to
the practicaily important flow regime that corresponds to large values of
the Grashof number (the ratio of buoyant forces to viscous forces) and we
will exclude that class of problems that deals with the stability of
buoyancy-driven flows that is typified by the heat-from-below Rayleigh
instability. Also we will consider laminar flow exclusively.

Previous efforts to analyze this large Rayleigh number, heated-
from-the-side natural convection problem have used either ad hoc boundary-
layer methods or purely numerical solutions by means of finite difference
approximations. Typical of the earlier boundary-layer approaches is
that of Bailey and Fearn [ 2] who considered the transient stratification

of a cylindrical tank with hemispherical ends due to sidewall heating.



All of the heat input to the tank is assumed to appear as sensible heat
in the sidewall boundary layer which empties into a uniformly mixed hot
upper layer in the core and remains there. Mixing between the hot layer
and the lower cold liquid in the core is neglected., Comparison with
experiment is poor and can be attributed to two of the assumptions.
First, the hot upper layer is not uniformly mixed, but is instead strati-
fied. Thus the mass flux into and out of the sidewall boundary layer de-
pends upon the time-dependent core stratification and cannot be a priori cal-
culated by means of results for free convection along a flat plate in a
medium with constant bulk temperature. Second, the boundary layer formed
on the bottom hemispherical end is completely ignored without justification.
More recently Matulevicius [ 3] has measured both temperature and
velocity in an unsteady stratified fluid in a high aspect ratio rectangu-
lar enclosure (initially at uniform temperature) which is heated uniform-
ly on the sides and insulated on the top and bottom. These experiments
have shown that the sidewall heating results in thin boundary layers
being formed along the vertical walls. The boundary layer discharges
fluid into the core region along the entire (time-varying) length of the
stratified region. The greatest amount of fluid discharge occurs approxi-~
mately at the interface of the stratified and unstratified regions in
agreement with the experimental results of Schwind and Viiet [4]. Hori-
zontal temperature gradients in the core are small. The warmer fluid
deposited in the core settles downward like a "plug flow" as cooler fluid
from the lower regions is fed into the sidewall boundary layer. Except

for the top part of the core and a small region near the bottom, the axial

temperature profile is linear after an initial transient period. Lastly,



an unexplained instability in the flow behavior was noted. Initially
the flow appeared to be symmetrical about the central plane. However,
in time the streamlines become skewed and the symmetry was destroyed.
Similar results were observed in dye studies by Drake [5]. The tempera-
ture field was not appreciably affected by this instability.

Using these results, Matulevicius developed a thermal stratifi-
cation model in which the flow is divided into two regions, a boundary
layer rising at the heated wall and a central core. The boundary layer is
assumed to be quasi-steady and the governing equations were solved by means
of an integral method and the Prandtl number was assumed to be much greater
than unity. By invoking the experimental result that the core tempera-
ture varies only vertically and assuming plug flow, Matulevicius calcu-
lated the core flow numerically using finite difference approximations.
Comparison of these results with experiment was good.

While Matulevicius' work represents an important contribution be-
cause of the data obtained and the importance attached to the core-boundary
layer interaction in the calculations, there are several limitatioms.

The analysis is restricted to a rectangular geometry and a uniform heat
flux at the sidewalls and is strictly applicable only when the Prandtl
number is large. Further, details of the initial transients were obscured
and certain simplifications in the core were not realized. Lastly, the
resullts are obtained numerically and appropriate scaling laws are not
wholly evident.

Integral methods have also been used by Emery and Chu [ 6] to
calculate the steady state heat transfer rate across a rectangular en-

closure with the top and bottom insulated and the two sides at different



constant temperatures. Comparison of the calculated heat-transfer rates
with experiment is good although detailed flow properties are not avail-
able. The extension to the general problem is not considered.

Gill [7] has employed asymptotic methods to study the same steady
flow near the horizontal centerline. Results obtained for the limiting
case of infinite Prandtl number are in agreement with the experimental
data of Elder [8]. The analysis does not apply to the flow away from the
centerline and thus cannot be used to compute the total heat-transfer
rate or describe the general flow pattern.

In a recent important contribution, Krane [ 9] has used similar
methods to calculate the high Grashof number flow in the entire cavity.
His calculations show that the flow divides itself into an inviscid
stratified core (in which there is a pressure-buoyancy force balance)
with nonlinear, nonsimilar free convection velocity and thermal boundary
layers on the vertical walls and linear thermal boundary layers on the
horizontal walls. The results stress the intimate coupling of the core
flow and vertical wall boundary layers by means of entrainment and ex-
trainment. That is, the core velocity field is given directly by the
entraioment into (or extrainment from) the vertical wall boundary layer,
the structure of which, in turn, depends upon the core. Comparison of
the calculated total heat transfer rate with experiment is good.

Steady state calculations such as these are of interest (for a
particular problem) in that they indicate the nature of the final asymp-
totic state. However, they are unable to analyze the important transient
part of the problem. Also, existing calculations are generally restricted

to rectangular cavities. Further, the nonlinear nature of the vertical



wall boundary layer rules out stability calculations which could provide
a theoretical explanation for the occurrence of multicellular flows in
high aspect ratio cavities undergoing sidewall heating.

Sakurai and Matsuda [ 10] consider a Boussinesq fluid at rest in a
circular cylinder with its axis of symmetry parallel to the gravitational
force. They analyze the unsteady flow that results from abruptly changing
the sidewall temperature from its original profile, which is invariant
around the cylinder (in a horizontal plane) and linear along the cylinder
(in a vertical plane), to some new profile that is also linear along the
cylinder. This new profile has a slightly greater rate-of-change than
the original profile and is oriented such that the container is heated
above its horizontal mid-plane and cooled below its mid-plane. They
apply the linearized theory for the case where the Prandtl number is of
order unity to find the temperature and velocity within the core region.
They demonstrate the existence of a meridional circulation that is
pumped by a sidewall boundary layer. This meridional circulation re-
distributes the fluid temperature to bring about a new state of strati-
fication. The time scale for this temperature adjustment process is de-
termined. This work by Sakurai and Matsuda is important in that for the
first time an analytical solution has been developed for the transient
natural convection flow of a fluid in a cavity that makes clear the basic
physical processes that occur. The limitation to their work is that it
applies only to the circular cylinder geometry with the particular linear
boundary condition that they considered. Thus, the general problem of
linearized bouyant motion in a closed container remains to be solved.

The main thrust of the recent research effort in contained
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buoyancy-driven flows has concentrated on development of numerical solu-
tions by means of finite~difference approximations. Although applicable
in principle to arbitrary configurations, the computations deal almost
exclusively with rectangular cavities and steady-state flows. For
reasons of computation efficiency and stability it has become popular to
solve the unsteady conservation equations with the asymptotic steady
state being the result of interest. Thus, in principle, the unsteady
problem can be analyzed numerically and these numerical solutions do en-
joy some degree of success in predicting total heat-transfer rates and
detailed features of the flowfield. However, limitations on computer
storage space have prevented the finite difference models from being
applied to the practically important high Grashof number regime. This
occurs because the boundary-layer thickness decreases with increasing
Grashof number,which requires, in turn, an increase in the number of
gridpoints needed to adequately resolve the features of the flow in the
boundary layer. While the use of variable mesh size can partly alleviate
this difficulty, one still cannot carry out calculations for all Grashof
numbers of interest. Furthermore, as pointed out by Emmons [ 11], there
exists a number of serious questions concerning the adequacy of the con-
vergence criteria used by those employing finite difference techniques.
In the absence of mathematically rigorous proofs of accuracy and con-
vergence, most numerical solutions are assumed to have 'converged'" when
they "look good" when compared with preconceived trends in the data. It
should also be noted that numerical solutions are quite costly in terms
of computer time and programming manhours and thus are not suited for
most design purposes. Most importantly, numerical solutions by their

very nature do not readily indicate parameter trends or lend an understanding
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to the basic physical phenomena occurring in a given problem. The
effects of geometry changes cannot be assessed and the disparate time
and length scales which occur in the practically important high Grashof
number regime are not well suited to numerical solutions. Thus, it is
apparent that more analytical and semi-analytical work (such as that
done by Sakurai and Matsuda and Krane) is needed if advances in under-
standing the unsteady, buoyancy-driven contained flow problem are to be

made.

Method of Attack

Natural convection is a phrase that is used to describe fluid
flow that is driven by a gravitational body force. This body force,
more commonly called the buoyant force, results solely from a nonhomogen-
eous density field if we consider the gravitational field to be invari-
ant. Thus, a fluid is said to be stably stratified if the density gra-
dient produces a huoyant force that tends to restore a perturbed fluid
particle to its original position. We will focus our attention on
stably stratified laminar natural convection in a closed container that
is heated from the side. Thus, we will avoid that class of problems
that deals with fundamentally unstable natural convection.

In the study of natural convection problems, it is a frequent
practice to simplify the basic equations by introducing certain approxi-
mations that are attributed to Boussinesq [12]. The Boussinesq approxi-
mations are examined by Spiegel and Veronis [13], and they summarized
them in two statements: (1) The fluctuations in density which appear
with the advent of motion result principally from thermal (as opposed to

pressure) effects. (2) In the equations for the rate-of-change of
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momentum and mass, density variations may be neglected except when they

are coupled to the gravitational acceleration in the buoyancy force. We
shall develop the linearized equivalent of the "'Boussinesq'" equations
in a rational manner and explicitly describe the approximations involved.
In the particular problem we will treat, we will consider an arbi-
trarily shaped closed container enclosing a Boussinesq fluid which is
initially in some physically permissible stable state of rest, At an
initial instant the temperature of the container will be impulsively
changed. We will describe the ensuing unsteady laminar flow as well as
the final asymptotic steady state that is govermed by the linearized
equations. We refer to this problem as the general heat-up problem
since no restriction has been made as to the container geometry or con-
tainer temperature profile. In requiring the initial state of rest to
be stable, we are specifically excluding that class of problems dealing
with the stability of buoyancy-driven flows typified by the heated-from-
below Rayleigh instability. Many flows of practical interest correspond
to large values of the Grashof number. We shall restrict our attention
to this practically important flow regime. We shall also limit the
Prandtl number to be of order unity. The solution to this general heat-
up problem encompasses most linearized contained buoyant motions as
special cases, and as such, should be of far-reaching practical interest.
Those who study stratified fluids are aware that a very close
analogy exists between stratified fluid phenomena and rotating fluid
phenomena. For example, Veronis [ 14] gives an extensive review of the
analogy between rotating and stratified fluids and Greenspan [ 15] often

mentions the analogy in his book on rotating fluid theory. A "rotating"
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fluid is a fluid in which motion is capable of being driven by a Coriolis
force. This Coriolis force plays the role of the buoyant force in the
analogy with stratified fluids. Thus, both of these subjects have richly
endowed structures for precisely the same reason -- they both support
internal wave motion.

The analogy is derived from the fact that the linearized equationms
governing a rotating fluid and the linearized equations governing a strati-
fied fluid can, in each case, be written as a single sixth-order partial
differential equation for pressure (with different parameters in each
case). However, the boundary conditions for a fluid dynamics problem can-
not, in general, be written in terms of the pressure alone. Thus, even
though the governing equation is the same for both a linearized rotating
fluid and a linearized stratified fluid, the boundary conditions are not
the same in general and an explicit analogy between rotating and strati-
fied fluids is prevented.

There are certain special cases for which the governing equations
and the boundary conditions can be made identical and then the analogy
is "perfect". That is, the solution to a rotating problem can be gener-
ated from the analogous stratified solution by simply renaming the appro-
priate parameters. For example, Trustrum [ 16] considers inviscid, in-
compressible fluids flowing past a small disturbance in an infinite fluid
domain to achieve the perfect analogy. As a rule, the special cases that
allow the perfect analogy are not too appealing physically. A notable
exception is the treatment of linearized buoyant motion due to an impul-
sively heated infinite vertical plate by Doty and Jischke [17]. For

Prandtl number equal to unity, this result is completely analogous to the
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so-called Ekman layer in rotating fluid theory. The Ekman layer is the
boundary layer that forms on an infinite rotating plate when its angular
velocity is impulsively increased slightly from an initial state where
the plate and its surrounding fluid are rotating as a rigid body.

While it is a rare instance when one can draw an exact parallel
between the phenomena in rotating and stratified fluid flow, a wide
variety of phenomena in one physical system can be analyzed and under-
stood in terms of the behavior in the analogous system. The increased
understanding provided by the different viewpoints is one justification
for developing the analogy in some detail. For example, Sakurai and
Matsuda [ 10] were motivated in their work on the heat-up of a circular
cylinder by the work done by Greenspan and Howard [ 18] on the spin-down
process in a rotating fluid. A second reason is that laboratory studies
may be more easily pursued in one of the two systems and experimental in-
formation pertinent to the other may be obtained.

The rotating fluid problem that is similar to our general heat-up
problem for stratified fluids is the general spin-down problem treated by
Greenspan [ 19] . He considers an arbitrarily shaped closed container
filled with an incompressible fluid that is originally rotating as a
rigid body with constant angular velocity. At an initial instant a phys-
ically acceptable initial state of fluid motion is prescribed. Greenspan
then analyzes the ensuing transient motion and describes the ultimate re-
turn to rigid-body rotation. We will adapt the solution procedure used
by Greenspan to solve our general heat-up problem for a stratified fluid.

Briefly, Greenspan's solution procedure is as follows: Expansions

in half powers of the Ekman number (the fourth root of the reciprical of
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the Rayleigh number is the appropriate parameter for stratified fluids)
are introduced into the governing equations and a problem sequence is
resolved. The first of these problems is for the zeroth-order solution
for the inviscid interior region. In the second problem, the internal
motion is corrected for viscous effects to make the basic tangential
velocity zero at the boundary. However, the boundary layers induce fur-
ther interior motion by establishing a small normal mass flux and this
sets up a third problem. Once the secondary interior motion is determined
from this third problem, it too must be corrected at the boundary. How-
ever, our analysis will end with this secondary circulation although, in
principle, the procedure can be carried to higher order. The goal of our
work then, is to adapt this solution procedure to the general heat-up
problem for a stratified fluid and achieve an approximate solution for

the motion that is uniformly valid in time and space.



CHAPTER II

THEORETICAL DEVELOPMENT

Governing Equations

Consider an arbitrarily shaped closed container, ¥, that is com-
pletely filled with a fluid that is initially in a stable state of rest.
At an initial instant, t = 0, the temperature of ¥ is impulsively changed.
A description of the unsteady flow that ensues is desired.

Assume that the fluid is Newtonian and that it obeys Fourier's con-
ductionr law. Furthermore, assume that the first and second coefficients
of viscosity, w and A, and the thermal conductivity, k, are constant. Also
assume that the only body force acting on the fluid is a gravity force
that acts in the negative z-direction with a constant magnitude of g per

unit mass. With these assumptions, the equations that govern the fluid

are
mass Dp o=
S e TPYV=0 (2.1)
DV - .
momen tum p Pyl Vp + wv2§ + WAV (@-V) - pg e, (2.2)
DI BT (g DT _o3) 475 4t
energy p cp o ” B Dt VeV) +T1e + T . (2.3)

Here pressure, density, and temperature are given by p, p, and T,
respectively. Velocity and time are V and t, respectively. The viscous

Ad -
stress tensor, T, is related to the rate-of-strain temsor, €, according

16
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to the Newtonian law

e + A @I (2.4)

-
T

-
€

vV + o'l . (2.5)

The coefficient of thermal expansion and the coefficient of isothermal
compression are given by B and u, respectively, where these coefficients

are defined as

B = - pl (g_pT)p (2.6)
W= %(S—Z)T : (2.7)

This system of equations becomes closed upon the addition of the
thermal equation of state
p=rp{,T) (2.8)

and appropriate initial and boundary conditioms.

Static Basic State
Assume that the fluid motion to be studied is a perturbation on
a basic state of stable static equilibrium. Then the governing equations

for this basic state (denoted by the subscript B) reduce to

dp

B _
mom 'd—z— = - pBg (2.9)
energy dzTB
7 =0 (2.10)
dz
dp dT dp
state B _ ( _B ”—Js
z P By Em M (2.11)

l.et 2 = 0 represent the bottom of the container where the static
temperature is defined to be the "operating' temperature Top' Let

z =L represent the top of the container where the static temperature is
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defined to be pr + AT. We will require AT to be positive in order to
ensure that the basic state is statically stable. The energy equation

may then be integrated to yield the basic temperature profile

TB = Top + AT(z/L) . (2.12)

This basic state and the container geometry are illustrated in Figure

2.1).

Weak Stratification
Define weak stratification as that state for which any static

thermodynamic variable, Q, can be represented by

Q/Q

ppp = L T higher order terms (2.13)

where QREP is some representative value of Q within the region of in-
terest and the higher order terms are much less than unity. For example,

we see from the basic temperature profile, Eq. (2.12), that if the basic

stratification is to be weak then
< < . .14
AT/TOP 1 (2.14)
This allows us to write

TB/Top

1+ (AT/TOP)(z/L)

]

1 + higher order terms (2.15)

within the region of interest 0 <z < L.

Similarly, the basic equation of state, Eq. (2.11), may be inte-

grated to yield

pB/pop =1 - (BOPAT - popnong)(z /LY + . . . (2.16)

and we see that weak stratification requires two more conditions



i

3]

op

Figure 2.1 The Basic State and Container Geometry
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< < .

8 ﬁAT 1 (2.17)
< < .

poﬁnong 1 . (2.18)

The basic momentum equation, (2.9), may be integrated to yield

Pp/Pop = 1 = (0 8L/p, ) (Z/1) + . . . (2.19)

which gives the fourth and final condition necessary for a weakly-strati-

When the fluid being considered is a perfect gas, the coefficients
of expansion and compression are given by B = 1/T and # = 1/p. In this
case, the four requirements for weak stratification reduce to two require-
ments which can be taken as AT/Top << 1 and pong/pop << 1. In words,
the requirements for weak stratification of a perfect gas are:

(1) the vertical temperature change in the region of interest
must be much less than the operating temperature of the region

(2) the static pressure due to the fluid within the region
of ihterést must be much less than the operating pressure.

The requirements for weak stratification are met in many engineer-
ing problems. For example, air at STP in a 100 ft. container with

o .
AT = 10 F yields AT/Top" 0.02 and Popd L/pop,v 0.004.

p
Some fluids may deviate significantly from perfect gas behavior
such that in addition to the two weak stratification conditions given

in words above the other two conditions must also be checked in order to

ensure that the fluid is weakly-stratified.
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Nondimensional Equations
We may write each thermodynamic variable as the sum of its un-
perturbed basic value and a nondimensional perturbation (denoted by an

asterisk) as follows:

P =Pp + P P¥ B BB+BrefB (2.21 a,b)
= % = %
o pB + prefp= U KB + nref“ (2.22 a,b)
T=T + T _T* c =c +c¢c c* . (2.23 a,b)
B ref P pB pref P

Here the perturbation has been nondimensionalized by an, as yet, unspeci-
fied reference value. We also nondimensionalize velocity, time, and space

by reference values in a similar way

V= vref?/* (2.24)
t =€tk (2.25)
v=THL o . (2.26)

We may now substitute these expression into the governing equa-
tions, nondimensionalize each thermodynamic variable by its operating
value, and obtain a set of nondimensional conservation equations. For
example, this process for the continuity equation, starting with Eq.

(2.1), is as follows:

mass %% +p V:Q =0 (2.1)
op V=
ST+ V-V =0 (2.27)
1 ) ( + p*) + ( + *) V -{7* =90 2.28
t Scx Pp T Pres L © Py T Pres® ref (2.28)
ref ref
p \Y
ref Op* ref Ry e
- ST + - (va'c.pBV* + prefv* - pAVYE) = 0 (2.29)

ref ref
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(pref xef 1 f) Si* e (p_B_ v*) + (p_r_gﬁ) VhpEvE = 0 (2.30)
op op

op ref re
In a similar way, the momentum and energy equations may be written
as

momentum

(pB Pref p*><3%* tref _ (pref tref 1

+ + A/ ?I*.V*?]*) = ) V:'rpv'c
*
pop pop dt Lref ref pop Lref Vref
[ uw_ Sres\[..2 A -
+ ¢ f) [v* v+ (1 + —) v*(v*-v*):l
p L L !
op ref "re
p t
) (g ref ref) 0% 8 (2.31)
p v 2
op ref
energy
° Pref ch cpref AT* tref AT Lref - \ 1
( + p*>( + c *) —_— 4 (———_ v )(———— W*+V*-V*T*)J
° p c c p /Lot* Lref ref Tref L
P Top Pop  Pop
B B T T
) (_§ + _xef B*)( B, _ref T*)
B™ T 8 8 T T
op op op op op op
p n__c % %
0P op P, ( B _ref n*)
M "
op op

< [(BB Bref B*\[BT* + (tref Vref>(él__ Lref Wk o+ Uk . V*T*))

+
*
Bop Bop /\3t Lref Tref L
2
Ceg ¥ t .V
- < ref ref 1 ), T« +< e ref _ref) s, =,
L T B p c L L T
ref ref "op P P, ref ref “ref
k t £ 2

c L
op pop ref "ref

Small Disturbances
If we define small disturbances to the basic state to be those

T*< < T ;

perturbations for which pref p¥< < e 8

*< <
Pp> pref e °p and Tre
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then the assumption that p¥*, p* and T* are of order unity leads to the

conclusion that

<<
Pref’Ph * Pref/Ppr Trep/Tp < < 1 (2.33)

ref
for a small-disturbance flow. 1In other words, the maximum flow-induced
change to each thermodynamic variable is much less than its static value.

As a consequence of a small-disturbance assumption, the equation
of state may be expanded in a Taylor series about the basic state as

follows:

p(p,T) = p(pB + prefp*, Ty + TrefT*)

= PlpgTp) + [<%%)£]p T PregP” + [(g%a ] Tregl™ *+ -

B’ 'p P pp Ty

= % - %
Py +Ppig PofP™ = Pg BB TrefT + ... (2.34)
Thus, by definition, we may write
=9 -
pref pE=p pB
= - { T N - *
pB‘BB L afl™ = MpPogP Y+ ... (2.35)

This is the appropriate small-disturbance form of the equation of state.
Notice that if a small disturbance occurs in a weakly-stratified

basic state then the equation of state may be further simplified as

Tref ] pref
e (o e m (o e PR e
op op pref op op pref

Linearized Equations
We have been considering the problem of a fluid that is confined
to an arbitrary closed container which is characterized by a vertical
height L. Let us now assume that the fluid is initially in a weakly-

stratified state of static equilibrium and that at an initial instant
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the temperature of the container is changed by a "small" amount such

that a small-disturbance flow results. Let this "small" temperature

disturbance be characterized by ¢AT where € is no more than order umity.
Now make the following assumptions:

(1) Assume that the temperature perturbation in the fluid will even-

tually be of the same order as that on the boundary., This implies Tref =

eAT if T* is to be of order unity.

(2) Assume that order unity temperature changes cause order unity

density changes., Then the appropriate equation of state, Eq. (2.36),

implies Preg = € popBopAT.

(3) Assume that an order unity acceleration results from an order

unity buoyant force. The momentum equation, Eq. (2.31), then requires

vref/tref - egBopAT'

(4) Assume that the appropriate length scale is the characteristic

height of the container so that Lref =1L,

(5) Assume that the pressure force and the buoyant force balance in

the steady inviscid interior region (anticipating boundary-layer behavior)

to obtain Pog =€ pongBOPAT from Eq. (2.31).

(6) Assume that the unsteady energy term and the lowest-order con-

vected energy term balance to derive tr \Y = eL from Eq. (2.32).

ef ref

In summary, the reference values are

pmf/pop =€ (pong/pop)(BopAT) (2.37)
Pres/Pop = ¢ B AT (2.38)
'rmf/'rop =¢ (AT/TOP) (2.39)

= LN (2.40)

ref
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toef = 1/N (2.41)
Lref =1 (2.42)
where
g
JL B AT (2.43)

is the so-called "Brunt-Vaisala" frequency.

Two important observations can be made by inspecting these re-
ference values. First, notice that an order unity time corresponds to
the period of a simple pendulum of reference length that is oscillating
in a "gtratified-reduced" gravity field, gBopAT. Second, notice that the
weak-stratification assumption and the small-disturbance assumption are
compatible for € up to order unity. For example, we see from Eq. (2.39)
that if AT/T‘Op is much less than unity (weak stratification) then T f/ op
is also much less than unity (small disturbance) as long as € is no more
than order unity. As a consequence, we will see that the weak-stratifi-
cation assumption and the small-disturbance assumption, as we have defined
them here, are not sufficient to produce a linear set of equations.

Before substituting the reference values back into the governing

equations, let us define the following parameters:

_ 2 .3 2
Gr = pong BopAT/u = Grashof number (2.44)
P *pe J/k = Prandt]l number (2.45)

r p
op
M L./(c AT) = Compressibility factor 2.46
Bop op® /( . ) omp ility o ( )

op
Then the equations governing weakly-stratified, small-disturbance

flow become
P
B - -
mass B AT atx + 9% . 5:p V¥ 4 eBopA']_V* - p*V‘k =0 (2_[;7)
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momentum
(pB + AT *)(a—(’* T 'k-.'k) = *pk
p ¢ BoP PP \Sw + & VEVEYE) = - VP
op
+ G;% [V*z-‘}* + (1 +&> v*(v*.'{;*)] - p* éz (2.48)
energy cp cp
(_2_ +e B AT p*)( B , _ref *)<§Ii + W + e'V*-V*T*>
op op cp Cp P Atk
op op
B8 T
B _xefg,)( B 4 AT )
AT et el Gl sk
_ .op op op op op op
p n ¢C n K
oP 0P Py, (nB + Kref n*)
op op
B B
B ref oT* K ) N S ]
X [(B + 5 B*)(at* + W* + € Vk.U*TH) - 5 AT Ve Yk
op op op
o %
+ =L [e ML p Tagw +V*2T*] (2.49)
P T r .
r op
state
* = - T* *
P T+ Pt opBLlP* - (2.50)

The compressibility factor, M, is generally very small. For
example, air at STP with L = 100 ft yields M AT/Topzw 0.001. Thus, the
viscous dissipation term in the energy equation can be neglected in com-
parison with the conduction term for most values of the Prandtl number.
However, notice that very large Prandtl number flows are inherently non-
linear due to viscous dissipation.

We assume that

BOPAT, poﬁnong, M<< 1 (2.51)
and
T .
P << ——2P_ (2.52)

r € MAT



27

Then, to lowest order, the equations governing weakly-stratified, small-

disturbance flow become

mass VhVk = 0 (2.53)
3k | w3 R .
momentum 5= + € Vk.VEV¥k = - J¥kp* + Gr}é VEVk - pre, (2.54)
G %
ener oI+ + W* + ¢ -{7*-V*T’< = X V*2T* 2.55)
Snergy Stk T F, 2.
state p¥* = - T (2.56)

The order of the terms neglected in these equations is BOPAT and

p gL.

"
op op
These equations are valid for € up to order unity. Thus, a lin-
ear set of equations is obtained if we further restrict € to be much less
than unity which corresponds to a "very small" change in the boundary
temperature as depicted in Figure (2.2).

It is convenient to eliminate the Grashof number in favor of the
Rayleigh number since this will yield steady state solutions that depend
on only one parameter, the Rayleigh number, instead of the present two-
parameter steady solutions that depend on the Grashof number and the

Prandtl number.

Let Ra = PrGr = Rayleigh number (2.57)

and restrict the Prandtl number to be of order unity. Renormalize

velocity and time as

v = /P, Vi (2.58)
+
VB ek (2.59)

and let the other variables remain unchanged. That is, let

p+ = p* (2.60)



NOTE:

(1) 'FB is a weakly-stratified basic state since AT/Top << ].
(2) '1z is a "very small" temperature perturbation since ¢ < < 1.

(3) 1%: = (TE-TB)/eA T is a normalized temperature perturbation.

z A eAT z* ‘
AT —g]

L 1
TB
T
0 - 0 .
0 T T 0 1 T*
op
Physical Variables Normalized Variables

Figure 2.2 A Typical Temperature Perturbation Leading to

Linearized Flow

28
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pel
il

TV = T* (2.62)

Then the linear equations become

mass v43?VF =0

o 2,
momen tum oV _ . V+p+ + R-% vt vt p+ e (2.64)
— + a z

ot

+ 2
-% +

energy p 2L Lyt orEet o (2.65)

T at+ a
state R L (2.66)

This set of equations is equivalent to the so-called "Boussinesq"
approximation that is often applied irrationally in the study of natural
convection flows. However, the assumptions of a weakly-stratified basic
state and very small disturbances allowed the rational development of
these equations ia this case,

It should be mentioned that the normalization used here depends on
the fact that AT is not zero. In other words, ewven *hrough the basic
state is only weakly-stratified, that stratification is crucial and the

case of zero stratification is fundamentally nonlinear.

Perturbation Expansion

The heat-up problem for an arbitrarily shaped closed container is
governed by a set of linear partial differential equations when the basic
state is a weakly-stratified state of rest and the change in the boundary
temperature is very small., Dropping the superscript notation, we may
write these equations as

v-V=0 (2.67)



X L% .

= -VDPHRIVVHTE, (2.68)
3T k2

P ST+ W=RIVT . (2.69)

Here we have substituted the state equation into the momentum equation.
To complete the formulation of the problem, we add the following

initial and boundary conditions:

t =0: V(r,0) = T(r,0) = 0 static equil. initially (2.70)
onX T(;Z,t) = H(t)?E(EZ) boundary temperature (2.701)
onXL .Q(; ,t) =0 no-slip on container (2.72)
t oo -Q, T finite bounded solution (2.73)

where H(t) is the Heaviside step function, 1%(?2) is the temperature
profile on the boundary, and‘;t is the position vector to some point on
the container.

We will now make several assumptions based primarily on work done
by Doty and Jischke [17] which gives an exact solution to the problem of
linearized natural convection flow past an impulsively heated infinite
vertical plate. We will assume that the Rayleigh number is large (a
typical value for air at STP is 108 per L3 where L is the container
height in feet) and that viscous action and heat conduction are confined
to thin boundary layers at the container walls throughout the principal
phase of the motion (the boundary-layer dissipation time is anticipated
to be of order RZ). These boundary layers produce a secondary motion
that is of major importance by means of a "buoyancy-induced" transport
of internal energy. Buoyancy, in this fashion, adjusts the temperature
profile to its steady-state value in the "heat-up" time scale, Rz, and

Ra emerges as the significant expansion parameter.
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An approximate solution is sought that consists of an inviscid
motion throughout the interior of the container that is matched to a
motion in the viscous boundary layer in order to satisfy the boundary
conditions. Furthermore, the representation must be uniformly valid in
time and space to ensure that all the important phenomena are included
and described. The solution procedure is to expand the flow variables

Y

in powers of R; , introduce these expansions into the governing equations,
and resolve a problem sequence. The first of these problems is for the
zeroth-order inviscid interior motion. In the second problem, the inter-
nal motion is corrected for viscous effects to make the velocity zero at
the boundary., These boundary layers induce further interior motion by
establishing a small mass flux normal to the boundary which requires a
third problem to correct the interior motion. The analysis ends with

this first-order correction to the interior motion, although in principle,
higher order corrections could be carried out.

It is anticipated (again from reference [17]) that the pressure
force and the buoyant force will be in balance over many periods of the
Brunt-Vaisala frequency within the inviscid interior and that the in-
terior will change slowly, without oscillation, from its initial value
to its final value on the heat-up time scale. Thus, the assumed form

of the interior solution is given by

Vo= V(r,T) (2.74)
p = p(r,7) (2.75)
T = T(e,T) (2.76)
where T o= R %t (2.77)

This inviscid solution must be corrected for viscous action near

the boundary, which in turn induces further inviscid motion in the
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interior, etc. The boundary layers produced by the temperature pertdrba—
tion become fully developed in a relatively short time (a few periods of
the Brunt-Vaisala frequency) and then change very slowly during heat-up.
Thus, as far as the inviscid motion is concerned, the boundary layers can
be considered to be formed instantaneously and to remain steady through-
out the heat-up process. As a consequence, the initial condition on the
velocity must be given up. That is, the interior fluid will not be at
rest initially, within the framework of this analysis, but will have some
initial first-order motion that is dictated by the boundary-layer "suc-
tion".

0f course, we lose the capability of exactly describing the bound-
ary layers and associated secondary flow at the very earliest time, but
only then. Furthermore, these boundary layers and secondary flows are
substantially the same as those determined from the earlier theory of
Doty and Jischke [17] that treats the simpler flat plate geometry,

Based on these notions from the physics of the flow an approxi-

mate solution of the following form is sought:

- _-0 - : _% - - :
V= Vy(r,m) + Vo *+ R [Vl(r,'l') + v1] + ... (2.78)
- ~ =1 - ~
p = po(r,m) + py + R, “ [py(r,1) + Pl o+ ... (2.79)
N — ~ _11 e ~
T=Ty(rr) + 7y +ROLT () + 10 + . L. (2.80)

The tilde symbol denotes a boundary-layer function of a stretched
boundary-layer coordinate, §. These functions approach zero exponentially
fast as € = @, which corresponds to the outer edge of the boundary
layer. The functions without tildes are then the solutiom of the in-
viscid equations of motion. The replacement of the dependent variables

by such a decomposition leads to a modified system of equations within
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a singular perturbation scheme of analysis.

Let n be defined as the outward pointing unit normal to the con-
tainer £. The fluid velocity in the boundary layer can then be resolved
into components that are normal and tangential to L. This is expressed

a

w

=1
=

V=@ -8)a-({Vxaxn . (2.81)

This expression can be substituted into the conservation equations and the
tangential derivatives along X of any flow variable can be neglected when
compared directly with normal derivatives of the same function to lead

to the following set of equations which are valid in the boundary layer:

mass gg-(v-ﬁ) + R;% n - vx(Vxn)=0 (2.82)
> ~ £
TR P Y
momen tum 3E n = Ra 3t + Vzp - agz - T e, _ (2.83)
~ 2>
9 ~ 9T
energy Pr St + W= gEE . (2.84)

Here V2 is defined as the two-dimensional gradient operator with compo-
nents in the plane of £¥. The formal development of these equations can
proceed in several equivalent ways and the presentation here is taken
from Greenspan [15] who, in turn, based his work in part on that of

Crabtree, Kuchemann and Sowerby [20].

Problem Sequence

Substitution of the perturbation expansions into the governing
equations and boundary conditions, Egqs. (2.67) through (2.73), leads to a
sequence of problems for the inviscid interior flow, the boundary-layer
flow and their mutual interactions. The problem sequence is as follows:

Problem Al: The Zeroth-Order Interior
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with {—\70-?1 =Q0ont

Problem A2: The First-Order Boundary Layer

d =~ . o
SE-(Vl-n) = - n-Vx(Vox n)
5 2%V
Cotae—247% &

Y
. %
=TT

13

with -\.Io +-\;0 =0onk
T +T =

0 0 ?E on X

Problem A3: The First-Order Interior

(67
3
i
]
<
o
=
—
m>
N

—
with vV, +

1]
[
o
=]
gl

The zeroth-order boundary-layer equations yield the trivial

results
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which have been incorporated into the first-order problem. These results

follow from the fact that the zeroth-order equations show thatlvo'ﬁ and
}0 are constants and these constants must be zero if the boundary layer
is to decay to zero exponentially in §.

Finally, notice that the vorticity equation for the inviscid in-
terior shows that the vertical component of vorticity is always zero to

all orders of approximation. To see this, simply take the curl of the

momentum equation, Eq. (2.68), to obtain the vorticity equation

aZU. — -% 2-’ A
ac'Ra Vw+vIixe, (2.99)

- -
where ® = curl V. Then, if we neglect the viscous term, the vertical

component of this equation is
9 . -
3t (eZ'w),= o . (2.100)

Thus, we see that the vertical component of vorticity is constant for all
time and since the fluid starts from a state of rest that constant must
be zero. Hence, the fluid will never contain any vertical vorticity in
the inviscid interior. This is true before, during and after the ini-
tial instant in which the boundary layers form. This result is crucial

to the analysis that follows.



CHAPTER III

ANALYSIS

Analysis of the general heat-up problem requires solving problems
Al, A2 and A3 for the interior flow, the boundary-layer correction, and

their mutual interaction. The solution to these problems will be taken

up now.
Zeroth-Order Interior
Problem Al, which describes the zeroth-order interior flow, is

mass v-@g = 0 : (3.1
mom Vp =T e (3.2)
—_— c o z

energy wo =0 (3.3)
with {?zo-a =0on¥ . (3.4)

The curl of the momentum equation yields VTOXEz = 0, which shows
that To depends only on the vertical spatial coordinate z. Of course
time enters into the description of the interior flow, but ounly as a
parameter. Further analysis of the zeroth~order interior must be deferred

until problem A3 is considered.

First-Order Boundary Layer

The first-order boundary layer is described by problem A2, which

is given by

36
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mass g%'(ﬁl'ﬁ) =’: n - Vx(%oxﬁ) (3.5)
3p, az?/o -
mom -a——ﬁ=—2—+Toe (3.6)
dE z
energy WO = ggi— (3.7)
with V0 + V0 =0 on (3.8)
T0 + T0 = F: onyL . (3.9)

The scalar components of the momentum equation normal to the con-

tainer and in the vertical direction are

~ aﬁl;l ~ A A

n°'mom -5 T To(n-ez) (3.10)

A o, .. W, .

gz'mom - gg—' (n-ez) = 8—2— TO (3.11)
g

where we have used the condition-ab-ﬁ = 0 from Eq. (2.98).

By combining these two scalar momentum equations with the energy
equation, we derive a single fourth-order equation for the boundary-

layer temperature which may be written as

3T, g
— +[1 - @e )] T,=0 . (3.12)
4 z 0
of
It is convenient to rescale the boundary-layer variable, €, as
follows
Ao (2
1-(4a-
Edx = 4 (a ez) g . (3.13)
4
Then the equation for the boundary-layer temperature becomes simply
3T,
;H4 T, =0 . (3.14)
ag*

Standard methods for solving ordinary differential equations may

applied to this equation since all variables other than the boundary-layer
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variable are parameters in this problem. Four functions of integration
must be evaluated. The fact that‘i0 must decay exponentially allows two
of them to be set to zero. The third and fourth functions can be shown
to be equal from the no-slip condition and thus the solution can be found
in terms of a function of integration that must be determined by the

specification of the temperature on the boundary. This solution is found

to be

fead

“1‘:0 ="T0(r2;w) exp(-£%) cos E% (3.15)

where ?2 is the position vector to some point on the container and
ﬁTO(EE;T) is the boundary-layer temperature on the container.

As we have already seen, the component of the zeroth-order boundary-
layer velocity that is normal to the container wall must vanish and thus
the entire zeroth-order boundary-layer velocity is tangent to the con-
tainer. Hence, the vector momentum equation that describes the boundary-
layer flow in a direction tangent to the container is

2%V

__O- _~ ~ ~ ~
= T0 (ezxn) XxXn . (3.16)

ag?

The expression just found for the temperature can be substituted
into this equation. Then, by integrating twice, and using the fact that
the boundary-layer velocity must decay exponentially across the boundary
layer, we find the zeroth-order boundary-layer velocity to be

~ N (nxe_ ) x

VO = TO(rg;T) [-—W?EEFEZF] exp(-E¥%)sin E* . (3.17)

Let (3 be the curve that is formed by intersecting & with some
horizontal "cross plane" such that & bounds the cross-plane area A as

shown in Figure (3.1). Define n* to be the normalized component of the
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Figure 3.1 Cross-Plane Geometry and Unit Vectors
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container's outward pointing unit normal, n, such that n* lies in the

cross plane. Then n and n* are related by

~ - ~ ~ '\* ~ . ~ ~
n |n x ezl n* + (n ez)ez (3.18)

as can be seen from the figure. Define e_ to be a unit vector that is

T
tangent to (3 in the cross plane. Then ET is related to n by
. & xad
en = 5, % h (3.19)

and (n*, éT’ Ez) form an orthonormal triad on the container as also shown
in Figure (3.1).

Thus, in terms of ET, we may rewrite Eq. (3.17) as

-§0 ='Tb(; ) (n x ET) exp(-E*)sin €% (3.20)
Hence, we find that?l0 x n is given by

e d A:‘T_.o S -*. * .

VO Xn O(rZ’T) eT exp(-E*)sin § . (3.21)

Then the continuity equation, Eq. (3.5), may be integrated across the
boundary layer to yield the first-order normal component of the boundary-

layer velocity on the container. This boundary-layer "suction'" is given

by ~ band
~ T (r T )e A
SR =L 5.y x[-(’———z——;—g_] (3.22)
/2 la x e |

z
where we have integrated from zero to infinity in € and used the fact
that::V1 must approach zero as § approaches infinity.

Thus, the boundary-layer suction is solved to within a function
that represents the boundary-layer temperature on the container, which

must ultimately be determined from the given temperature distribution

on the container.
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First-Order Interior

Problem A3 describes the first-order interior flow and it is given

by
mass v-'\'/l =0 (3.23)
) A
mom vp, - T, = - 5— (3.24)
dT

energy Wl = - Pr 5T (3.25)

Dith v, +V, =0o0n% (3.26)
T =0atT =0 (3.27)

We now decompose the interior velocity vector into a component
that is in the cross plane and a2 component that is normal to the cross

plane. In other words, let

K ='{z+w“ez (3.28)

where v has no component in the z-direction by definition. Then define

the two-dimensional gradient operator in the cross plane to be

e e
=(_19 28)
vV, % (-—-—-+——-——— (3.29)
2 hlax1 hzax2
where Xy and X2 are arbitrary cross-plane coordinates with unit vectors

El and é? and scale factors h1 and h2. Of course we may express the

cross-plane velocity in terms of these cross-plane coordinates as

v=ue + v e, (3.30)

where u and v are the velocity components in the X1 and X2 directions
respectively.

Thus, the two-dimensional curl of the cross-plane velocity may

be written as
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- 1 (6 ) ) A
V,xv=r——\=—hv-—hule . (3.31)
2 h1h2 AXI 2 BXZ 1 z

-t

Furthermore, the total velocity, W, is seen to be

a = cur1-§
_ 1 [ (aw S+ N . (ﬂ’__ o )*
= wh LMGx " 37 oY) et sk T 5 MY &2
12 2 1
9 ) ) A~
+ <8}";.: hZV - ﬁ; hlu ez_l , (332)

Hence, we are able to deduce the important result

~ -
e - w =y
zZ

, 59 . (3.33)
In other words, the magnitude of the cross-plane vorticity is equal to
the z-component of the total vorticity to every order. But, as was seen
from Eq. (2.100), this component of the total vorticity is zero for all
time and to all orders. Thus, we conclude that the cross-plane velocity
is irrotational in the cross plane.

The continuity equation states that the total velocity vector has
no divergence to all orders. As a direct consequence to this we may

use Eq. (3.28) to write

- oW
v, v=-S8 (3.34)

This can be interpreted as the continuity equation for a constant density
two-dimensional flow in the cross plane with a source term due to the
vertical motion into the cross plane.

The zeroth-order interior has no flow in the verticél direction,
as shown by Eq. (3.3). Thus, the zeroth-order cross-plane velocity has

not only zero two-dimensional curl but also zero two-dimensional divergence.
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It follows that the zeroth-order flow is a potential flow in the cross
plane., Furthermore, the normal component of the zeroth-order velocity
vanishes on the container as seen from Eq. (3.4). Hence, the zeroth-
order flow in the cross plane is described by the Neumann problem with
a vanishing boundary condition. Green's theorem in the plane shows that
the solution to this problem is that the cross-flow vanishes. There-
fore, we conclude that the inviscid interior is motionless to zeroth
order!

Since the first-order velocity has a nonzero vertical component,
Eq. (3.34) for the first-order cross flow becomes

oW

R
v "V T 5, (3.35)

We may integrate this expression over the cross-plane area, A, and use

the energy equation, Eq. (3.25), to show that, like T W depends only

0’
on the vertical spatial coordinate. The result of this integration is
- awl
ﬂvz-vl dA=-Aa—z". (3.36)
A

Green's theorem in the plane may be used to convert the area integral

into a line integral to yield

A ——= = - 9@ vyt n* ds . (3.37)

The expression relating n and n*, Eq. (3.18), can be substituted
into the above expression giving

Az_gl_ § [n-(ne)ez]ds

|n X e|

<l
5>



44

V., -we)-.a
= - § 16 L ds . (3.38)
& !n X eJ
This may be rearranged as
5W1 O -?1 . 'é 1 . _‘.’1 . Fl
A-a—z—’l-[j) —A——Az- dS_l Wl = - —;———A-—ds . (3.39)
G I“ X GJ |n X eJ

Leibnitz's rule for differentiating an integral can be used to show
that the line integral on the left side of this equation is nothing more
than the derivative of the cross-plane area. This calculation is domne
in the appendix. The argument of the line integral on the right is di-
rectly related to the boundary-layer suction through the boundary condi-

tion given by Eq. (3.26), which can be rewritten as

Vl-n = - Vl-n onX . (3.40)

These two results allow us to write Eq. (3.39) in terms of the boundary-
layer suction as

ds

L) ~
a8

%z. (&) = j,@z '\'/1.;;‘1 (3.41)

This equation simply reflects the fact that the vertical flow-rate must
decrease as fluid is taken from the interior by boundary-layer suction

(Ol'ﬁ negative) and vice versa 1f fluid is added by the boundary layer.

We may manipulate the line integral in Eq. (3.41) into a surface

integral by writing

. v Z N~
) 3 r A ds 7
3 (M) == J Lj)e, v, h el | dz
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OJIQ«

JF ?/ (3.42)
Xy

where ZT is that portion of the container surface, ¥, that lies above &
as shown in Figure (3.2).

Now we may write from Eq. (3.42)

§--{Aw + %-ﬁ dz} =0 (3.43)

dz 1 1 - o
ZT

We eliminate W1 in favor of To by using Eq. (3.25) and substitute the ex-

pression for the boundary-layer suction given by Eq. (3.22) into Eq. (3.43)

to obtain
T (r T) e
o) v
é‘E{AP = -"— J’]‘ T_—“—l—%-—]d Z} . (3.44)
nxe,

Stoke's theorem may be applied to the surface integral in this expression

to yield a line integral. Then we have
aT
Sl st -2 g T

%} =0 . (3.45)

We now make use of the fact that the temperature is specified on

|n X el

the container as given by Eq. (3.9), to write

TO(nZ;T) = ?Z - T0 on % . (3.46)

Then the equation governing the zeroth-order interior temperature be-

comes
A
a0 0 1 _
;\'_A{AI’I&—-F §(Tz'f)| xe‘%}—o . (3.47)

This equation can be integrated to yield



z =1
Z:T
ds
g
___.’

Figure 3.2 Surface Integral Geometry
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3T
Or'1§dsj 1§ ds
AP =—— 4| = @ —5 1T = — T + £(T)  (3.48)
. N
AR ArY TR N Tk

!nxe
z
where f(T) is the function of integration. Since TZ depends on spatial
location and f(r) does not, it is obvious that f£(t) is independent of
ii. That is, f(7) is the same no matter what temperature boundary condi-
tion is imposed. Furthermore, if TZ remains zero for all time, then TO
must remain zero for all time, which leads to the conclusion that £(7)
is identically zero. Hence, the solution to Eq. (3.48) can be obtained

by use of the integrating factor as

r 1 1
TO expL/_ -A-§

2 Pr © |n X el

;7]
ds
1 exP[/-.P glnxe|% ]

ds r
/2P §Tzﬁxﬁ|% L

g L

|nxe

+ g(z) (3.49)
where g(z) is the function of integrationm.
Let us define the "average" value of any variable Q around (G to

be ds

. llixe)*
<Q> = @ z (3.50)

‘§ ds
-~ ~ %
Q ln X ezl

Thus the e-folding time, Ty can be defined to be

<|n x éz|%> (3.51)

: /3 A
T“ /2 Pl"fz

so that Eq. (3.49) can be rewritten as
T =< L -
Ly I > + g(z) exp (-7/7) . (3.52)

We may now apply the condition that TO is initially zero, given

by Eq. (3.27), to obtain



48

g(z) = -< L> . (3.53)

Therefore, we can write the solution for the zeroth-order interior tem-
perature to be

Ty =< T > [1 - exp(-1/r)] . (3.54)

The solution for the first-order vertical velocity component in the in-
terior is given in terms of the time derivative of this temperature by
the energy equation which is Eq. (3.25). This velocity component can be

written as
P

= - X< > -
w1 T Ti exp ( T/TH) (3.55)
after performing the time differentiation.

The nondimensional e-folding time, or '"heat-up" time Ty can be

written in terms of physical time as

A Pr%Ra% A Ak
tH=/7 & N <]nxezl > (3.56)
where t, = dimensional heat-up time
A = horizontal cross-sectional area of the container nondimen-
sionalized by L2
& = circumference of A nondimensionalized by L
L = height of the container
N = Bunt-Vaisala frequency
Pr = Prandtl number
Ra = Rayleigh number.

To complete the solution to the general heat-up problem we must
find the first-order interior flow in the cross plane. As we have al-
ready seen, the cross-plane velocity is irrotational in the cross plane,

i.e.
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V2 X v, = 0. (3.57)

Thus, we may derive the cross~plane velocity from a scalar potential by

writing

—t

vl = V2 Py - (3.58)

But Eq. (3.35) gives
oW

- 1
V2-V1 =- 5 - (3.59)

Therefore the governing equation for the cross-plane velocity potential

is Poisson's equation

BWl
2 Qp1=-a—z—. (3.60)

The boundary condition given by Eq. (3.40) is

Vl- n=- Vl' nong (3.61)

which may be rewritten by means of Eq. (3.18) and Eq. (3.28) as

had A . A A ,,* A.A ~ ==*.A
(v1 + Wlez) (\nxez\n +(n ez)e2 V1 nonZ . (3.62)

In terms of the velocity potential, this may be expressed as

o3 ~ ap]. A -~ :‘ ~
\n X ezl ST + (n - eZ)W:l = - Vl' non G . (3.63)

Hence, substituting for the boundary-layer suction from Eq. (3.22)

gives the following problem for calculating the cross-plane flow:

AW
2 o :
Vo 917" 33 (3.64)
with ( o (n-e ) a (L. - T,)e
an}c = _ - AZ wl - ._1_ Anh - Ux A_T_%_%_.O.__;I‘.} on (3- (3'65)
‘nxez /2 |ner ner

where we have used Eq. (3.9) to express'Eo(;z;T) in terms of ?8 and To.

Thus, we find that the flow in the cross plamne is equivalent to the flow

of a two-dimensional, constant density, irrotational fluid with a
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uniform source distribution provided by the vertical velocity. The
boundary condition reflects the fact that flow penetrates the cross-
plane circumference due to changing cross-plane area and due to boundary-
layer suction.

This completes the lowest-order solution to the general heat-up
problem. The temperature and vertical velocity are completely specified
in terms of the "average" value around & of the container temperature.
The cross-flow solution follows from the above Poisson equation and
associated boundary condition which, of course, will depend upon the
particular container geometry and temperature boundary condition being

considered,

Remarks

It is interesting to note that, unlike the usual external forced-
convection boundary-layer theory, the theory of buoyancy-driven contained
fluids has an inherent coupling between the inviscid region and the as-
sociated internal boundary layers. In other words, we cannot calculate
the lowest-order interior motion, make a boundary layer correction, and
then proceed to calculate the first-order interior, etc. Instead, each
"interior-boundary layer" pair must be calculated simultaneously. For
example, the equation for the zeroth-order interior temperature, Eq.
(3.45), contains imbedded in it the zeroth-order boundary-layer tempera-
ture, which in turn is known only in terms of the interior temperature.
This reflects the fact that the lowest-order inviscid flow is driven
by the lowest-order boundary layer; a situation far different from the

more familiar external forced convection problem.
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We can also write the energy equation for the next higher order

interior flow. It is given by

oT
P x—=+W,=-VT (3.66)

We see that for the final steady state this equation becomes
d2<<1i >
W2 = - -T (3.67)
dz

From this equation we can note the difference between a flow that is
driven by a boundary temperature that is linear in z and one that is driven
by a nonlinear boundary temperature, In the first case, the vertical
motion ceases when thermodynamic equilibrium is achieved and the boundary
layers die out in the heat-up time. 1In the second case, the final steady
temperature profile is incompatible with a state of static equilibrium
and although the lowest-order vertical motion ceases in the heat-up time

the next higher order vertical velocity component, WZ’ obviously does

not.



CHAPTER IV

APPLICATION OF THE THEORY

Preliminary Remarks

The solution to the general problem of heat-up from a state of
rest of a Boussinesq fluid in an arbitrarily shaped closed container is
complete as far as the lowest-order temperature and vertical velocity
are concerned. Given a particular container geometry and temperature
boundary condition, one may immediately write down the so1utions for

temperature and vertical velocity in terms of the heat-up time, T, and

H
the "average'" value of the boundary temperature, < Tt >.

This "average' value is taken around the perimeter, C¢, of the
cross-plane area, A, where the cross plane is defined to be that cross-
sectional area of the container that is formed by intersecting the con-
tainer with a plane of constant gravitatiomal potential. This average
is somewhat peculiar in that it is taken with respect to the weighting
factorlﬁ X ézl~%, where n is defined as the outward pointing unit vector
normal to the container and éz is the unit vector in the direction of
increasing gravitational potential as shown in Figure (4.1).

Mathematically, this "average" value for any quantity, Q, may be

5) Q!axe{’i

< Q> X (4.1)

§Cz ‘“ xezl !5

written as

52



oo i

Figure 4.1 Heat-Up Geometry
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The solution for the lowest-order temperature, TO, and the lowest-order

vertical velocity component, W , are, for any container geometry and

1’

temperature boundary conditiom, simply

TO =< TZ > [1 - exp(- 'T/TH)] (4.2)
Pr
wl = - G< T'?: > exp(- T/TH) (4.3)
where +_=/2 P é<|?1x'é|%> (4.4)
H r & z '

and Pr is the Prandtl number.

Eq. (4.2) shows that the inviscid interior temperature varies
only with vertical position within the container and that this interior
temperature approaches the average value of the container temperature
asymptotically in time. Furthermore, we see from Eq. (4.3) that the
vertical component of velocity in the interior approaches zero asympto-
tically in time. Thus, if there is any motion at all in the final
steady state, that motion must be purely horizontal. This tendency to-
ward horizontal flow is a characteristic of all stratified fluids and
is often referred to as "plugging" or "plugged" flow. This phenomenon
may be predicted by simply inspecting the linearized energy equation
given by Eq. (2.69). This equation shows that W is identically zero in
the inviscid interior when the fluid is at steady state.

‘The solution for the irrotational flow in the cross plane is not
as straightforward since it involves solving the appropriate Poisson
equation for each particular container geometry and temperature boundary
condition that is considered. This Poisson equation is given by

2 oWy

Vy ®1 = - 355 (4.5)
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with boundary condition

BCP]_ _ (n-ez) 1 "l'\l (TZ'TO)eTj G
— W - Vx| o & (4.6)
dn¥* |_nxez 2 /2 lnxez |nxez 2 -

The solution to this problem is the cross-flow velocity potential which
is defined such that the lowest-order total velocity vector may be
written- as

V1=Vih-+wle . 4.7

For this cross-flow problem, we have defined the gradient and Laplacian
operators to be the appropriate two-dimensional operators in the cross

plane. 1In other words,

e
13 23
v o= (Lo 4 29 4.8)
2 (hlaxl hzaz)
h h
2_(3 M 3 M
v, = (ax 3% 53X & ax) (4.9)

where X1 and X2 are cross-plane coordinates with unit vectors 31 and é2
and scale factors h‘1 and h2 as shown in Figure (4.2). As also shown in
the figure, n* is the outward pointing unit vector normal to & in the
cross plane.

The cross-flow problem, as defined by the elliptic equation given
by Eq. (4.5) with the boundary condition given by Eq. (4.6), is a well-
posed problem whose solution for any container geometry and temperature
perturbation is straightforward. Furthermore, there are special situ-
ations for which closed-form analytic solutions can be found. We will
now attempt to reveal the important physical notions associated with
various container geometries and boundary temperatures by treating sever-

al of these analytical examples.
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Figure 4.2 Cross-Plane Geometry
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Right Cylinders

Let us consider the special class of containers consisting of
right vertical cylinders of arbitrary cross section. That is, let the
container have vertical sidewalls with horizontal ends, and let the hor-
izontal cross section of this container have any arbitrary shape, as long
as this shape is invariant from top to bottom as shown in Figure (4.3).

For this class of containers we have the two conditions given by

n-e =0 (4.10)
Z

it
—

la x & | (4.11)
z
In this case, Eq. (4.1) yields the result

n
i

< 1> =é %E ds (4.12)

which we recognize as the conventional average value of T. around G .

L

Furthermore the heat-up time is a constant given by Eq. (4.4) to be

A
¢H=/3Pr€q . (4.13)

Thus, the temperature and vertical velocity solutions for all

right vertical cylinders are given by Eq. (4.2) and Eq. (4.3) as

Ty =< T > [1- exp(-T/TH)] (4.14)

1e°

W = -

1
1 /5 A

where < L. > is the conventional average value of the boundary tempera-

< Tt > exp(-T/TH) (4.15)

ture around the container perimeter, G, and TH is a constant that depends
on Prandtl number and the ratio of the container's cross-sectional area
to its perimeter.

The cross-flow problem for all right vertical cylinders simpli-

fies somewhat to



N
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Figure 4.3 Right Cylinder
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L &
Va1 T = Ka 5T ey (410
. 3¢
1 . 3 '
with {aTl = - = Vo [(T - <T>+ <T>exp(-r/7.))8,] on(e )

From this problem for flow in the cross plane we deduce the important
result that the final steady state motion in the cross plane is always
zero to lowest order unless the temperature boundary condition varies

around the cross-plane perimeter,(. In other words, as T = ® we have

v, %, ~ 0 (4.18)
%9 A
and {5;];—' -\/—}_2-_ n-VX[(TZ-<’]_‘Z>) éT] onca. (4.19)

This equation describes a nonzero motion only when I: differs from its
average values around @ . Thus, a steady nonzero cross flow results ounly
if the prescribed container temperature perturbation varies around the

perimeter of the container.

Circular Cross Section
If we specialize the cross section of the right vertical cylin-
der of height L to be a circle of radius, R, then the obvious choice for
the cross-plane coordinate system is the polar coordinate system shown
in Figure (4.4). Of course, the nondimensional cross-plane area, A, and

its circumference,®@ , are

A = (R/L)? (4.20)

c

]

21 (R/L) . (4.21)

.

Hence, the heat-up time, as given by Eq. (4.13), is

(4.22)

==

==}
S
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z-Dependent Boundary Condition

Now assume that the given boundary temperature, T., depends only

on the vertical spatial coordinate z, i.e.

Ty: = TS‘J‘(Z) . (4.23)

We refer to this as a z-dependent boundary condition in contrast to ome
which depends upon both z and some azimuthal coordinate. Since ?Z does
not vary around (G it is obvious that the average value of FE around €,
is equal to TT itself. Of course, this can be seen directly from Eq.

(4.12) and this can be expressed as

<I,> =T, . (4.24)

This result holds for any z-dependent boundary condition regardless of
container geometry,
Thus, the temperature and vertical velocity solutions may be

written down directly from Eq. (4.14) and Eq. (4.15) as

T, = T, [1 - exp(- /)] (4.25)

(=

W, =-/2 % T, exp(- T/ ) (4.26)

where fH is given by Eq. (4.22). The Poisson problem becomes simply

1d %, L 9%
cadvg) <7k G ewC Ty (4.272)
. &kp dT
with {.Tul = L 7:§-exp(~ T/TH) onr = % (4.27Db)
ar /‘5 adz

where we have reasoned that P, # @1(9) by symmetry arguments and reduced

Eqs. (4.16) and (4.17) to this form.
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The solution to this problem is found by a straightforward inte-
gration and application of the boundary condition to be

dop d
1 _1 L. _x -
Ir -/75 R @ exp ( T/TH) . (4.28)

Then, if we write,

V1 = ue + Vi€ + W e (4.29)

1

we obtain the following expressions for the velocity components

1 L d '
up=— RT3 exp (- T/TH) (4.30)
/2
v1 =0 (4.31)
= L
W o= - /2 = T exp(- /1) (4.32)
P
where Ty = = % . (4.33)
/2

Since there is no flow in the azimuthal direction, it follows that
the streamlines are along lines of constant ©. Hence, we see that the
flow in the cross plane is purely in the radial direction and that the
speed of this cross-plane flow increases with increasing distance from
the center line of symmetry of the circular cylinder.

For the purpose of illustration, let us consider a boundary temper-
ature that varies linearly in z with some arbitrary slope as shown in
Figure (4.5). In terms of our normalization this translates into a

boundary condition that is given by

T o=m (z - ‘331) (4.34)

m
where m is a parameter which may be varied to describe linear profiles

with various slopes.
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Then, for example, when m = 0 we have the temperature profile and
quantitative flow pattern shown in Figure (4.6). WNotice that dIE/dz is
zero in° this case so that Egs. (4.30) and (4.31) show that u1 = v1 = 0.
Furthermore, Eq. (4.32) shows that W1 is the same everywhere in the con-
tainer at any given time. This is a pathological case for which there
is no boundary-layer suction and hence no cross flow. The fluid simply
rises near the hot container wall, producing a constant thickness verti-
cal boundary layer, and settles in the inviscid interior until each fluid
particle reaches a level at which its initial temperature equals the
boundary temperature at that level. At this time the motion ceases, the
boundary layer decays, and the fluid is heated,

There is no boundary-layer entrainment for the special case of
flow in a vertical cylinder with a constant temperature perturbation,
TE' This is because the rate-of-change of vorticity in the boundary
layer taken with respect to distance in the direction of boundary-layer
flow is proportional to d]i/dz for flow in a vertical cylinder with a
z-dependent boundary condition. Hence, for a constant temperature per-
turbation, this rate-of-change of vorticity is zero. Thus, no vorticity
is diffused out from the wall and a constant value of vorticity is con-
vected along the vertical wall in a constant thickness boundary layer.

Although, in general, there will be boundary-layer suction, and
thus a ﬁross flow, this example does serve to illustrate the basic heat-
up mechanism that typifies all of these contained flows. That mechanism
is the boundary-layer driven convection in the inviscid interior that
moves a constant temperature interior fluid particle from its initial
level to its final level where its temperature matches the boundary tem-

perature,
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As a final example of a linear z-dependent boundary condition, con-
sider the case where m = 2 as shown in Figure (4.7). Here the fluid
rises near the hot wall (the upper half of the container) and falls near
the cold wall (the lower half of the container). Hence, the fluid is
always being entrained by the vertical boundary layers and they grow as
shown. The interior convection is necessarily upward in the bottom half
of the container and downward in the top half of the container in order
to preserve conservation of mass. Hence, a "four-cell" pattern of flow
develops as shown. This particular geometry and boundary condition was
studied by Sakurai and Matsuda [10] by a different method and our solu-
tion agrees exactly with theirs in this case.

Azimuthally Varying Boundary Condition

Let us assume that the container temperature is known to be

;E = f(z) cos o8 (4.35)

where 7 must be an integer so that ?S is single-valued, Then its aver-

age value, as given by Eq. (4.12), is

< ?Z > == ‘§ f(z) cos o ds

(2

2 L

1

PZTT
= ;:) ? cos ®8d8 = 0 . (4.3%)
“ 0

This leads to the conclusion that

TO =0 . (4.37)

w1 =0 : (4.38)

as seen from Fqs. (4.14) and (4.15). This result dramatizes what is
apparent from inspecting Eqs. (4.14) and (4.15); namely, that the inter-

ior heat-up process is a response to the "average" value of the boundary
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temperature, and when that average is zero the fluid does not heat-up.

However, this does not mean there is no cross flow.

We can see this by

inspecting the appropriate Poisson equation for this example, which re-

duces to
2 2
o) ml aml 3 @1 .
r° = +r e+ — =
r or " 592
op '
with L. ) cos @® onr = R
or ‘/7 L

The solution to this problem

of separation of variables as

o
1
? = £(z) 2 -1 c°os b
J2a  (R/L)
This potential yields the following
ponents:
£ (2) . o-1
u; = @) (§7£> cos ab
/2
£ Z) r o-1
V1 - . 2(2) <§7£> sin of
/2
The equation for the streamlines of
dr _
1N

which méy be integrated to give the

lines.
const

r = ———
(sin ae)lﬁ”

Then, for example, when o =

temperature profile and flow pattern shown in Figure (4.8).

(4.39)

(4.40)

can be easily obtained by the method

(4.41)

expressions for the velocity com-

(4.42)

; o =1,2,3 (4.43)
this cross flow is given by

(4.44a)

following equation for the stream-

(4.44D)

1 and f' (z) is positive we have the

We see that
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in this case a fluid particle rises in the boundary layer near the hot

wall, crosses the top of the container in a horizontal boundary layer,

descends in the boundary layer near the cold wall until it reaches its

original level, and then crosses the interior of the container from the
cold wall to the hot wall in a straightline motion that is often refer-
red to as "plugging". This preference for purely horizontal motion in

the interior (plugging) is often observed in steady natural convection

problems.

The cross-flow pattern is shown in Figure (4.9) for the case when
o = 2 and f'(2) is’positive. This is an example of a different kind of
four-cell motion than was depicted in Figure (4.7) for the z-dependent
boundary condition.

As the parameter @ increases through the integers, the flow will
continue to divide into 2v cells in order for fluid to enter the inter-
ior at a cold wall and leave the interior at a hot wall. WNotice that
if £'(z) is zero (that is, the boundary temperature varies only azimuth-
ally and not with z) then not only is there no vertical motion but the
cross flow is also zero as seen from Eqs. (4.42) and (4.43).

Although the form of the azimuthally varying boundary condition
used in this example (;E = f(z) cos a6) appears at first glance to be
rather restrictive, it is actually quite general in that any arbitrary
boundary condition can be Fourier synthesized by an infinite series that
is composed of terms of this kind.

It is also worth mentioning at this point that the general solu-
tion to the cross-flow problem can be written in terms of a Neumann func-

tion which depends only on the geometry of the boundary curve & .
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This solution is

a¢1
Py = - § Sox N ds (4.45a)
&
where N is the Neumann function. The Neumann function must be determined

from the following problem:

20 . _ 1

VN = - =N (&4.45b)

?,—N; =0 on & (4.45¢)
with n

N~-'21FLog\_£'—a as;*E. (4.45d)

Here r is the position vector as usual and-z is the position vector at
a field point,.

Thus, in principle, the solution for any geometry and any tem-
perature perturbation is given by Eq. (4.45a) since 8¢1/6n* on (% is
known from Eq. (4.6) and the Neumaunn function can be found for a parti-
cular container geometry from the above problem. Of course, the Neumann
function can be found analytically in very few cases and our discussion
of simplified geometries and boundary conditions will continue. However,
this general solution to the cross-flow problem may be useful in deter-
mining numerical solutions to more complicated problems and certainly

emphasizes the elliptic behavior of the cross flow.

Elliptical Cross Section

Let the cross section of the right vertical cylinder of height L
now be an ellipse with semi-major axis a and semi-minor axis b as shown
in Figure (4.10). Now the obvious choice for the cross-plane coordinate

system is the elliptic coordinate system also shown in the figure. The
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nondimensional cross-plane area, A, and its circumference, {y, are

A= % % 4. h6)
m/2
G=42 j o (4.47a)
L Jy /1 - [1-(b/a)?] sin®
~ o L f.g)z .\ fg>27 C (4.47b)
2|.\L (L J .

The error in the approximation for the elliptic integral grows as
the eccentricity of the ellipse increases. For instance, the expression
for the circumference is exact for the limiting case of a circle (b/a =
1). The error in the approximation for the elliptic integral is less
than three percent for b/a = 1/2 and grows to a maximum value of just
over eleven percent as b/a approaches zero. Thus, the approximation is
acceptable for most engineering work (especially for b/a greater than
one half) and the convenience gained by avoiding elliptic integral tables
justifies introducing the approximation.

The heat-up time (using the approximate perimeter) is

W)

- P , (4.48)
R FRNES
1. L

With this expression, the lowest-order temperature and vertical velocity

can be found from Eqs. (4.14) and (4.15).
It can be shown that the particular value of the elliptical co-

ordinate U that describes the container is given by

& = tanh™L(b/a) . 4.49)
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Then, if we 1imit our attention to z-dependent boundary conditions, the

problem for the cross flow reduces to

o

2 r
Vo, = Ty exp (-7 /7 ) (4.50)
with 5 d
S e B 3
{BU -/_E P exp ( T/TH) on U = UZ‘ . (4.51)

The solution to this equation is

A (costh—sm V)'} 4.52)
4 coshU?sth)_._ TR

=

-/—2 A dz LQ

e 9% 'T/THFA<

Py = _)U+

where the condition that the cross-plane flow must be everywhere irrotation-
al has been invoked in order to make the solution unique.
This expression for the velocity potential corresponds to the

following cross-plane velocity components

—é (1 Co.) A coshy sinh U
. __G dTZ L, " e--'r/'rH . 2rrcosl'UZsmh Uy
1 — b
/2 A \/sinth + sin2V
(4.53)
A sin V cos V 'l
o d - - i
_ G TZ. L 'r/'rH 27 cosh U'Z.‘ sinh UY‘I
v] = PR sinh UZ e ]
/2 A 7 7 |
sinh“U + sin“V | (4.54)
b -l

The governing differential equation for the cross-flow stream-
lines is

i d
hUc u hV Y

(4.55)

u v

] 1

This may be integrated to give the following streamline equation
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—1
.

e + 2 - '/42\2 +1 const
= S (4.56)
W, s can v
e + 2A +-J4A + 1
where
= 2 .
AE (?3 - 1) cosh Uz sinh qz . (4.57)

Notice that we have the following three possibilities:

A>0 for < om (4.58)
A=0 for Co= 2m (4.59)
A< O for &> o . (4.60)

Figure (4.11) shows the cross-flow streamline patterns for each
of these three cases. When G is less than 27 the streamlines tend to
run parallel to the minor axis. When (5 equals 2T the streamlines are
straight lines emanating outward from the cylinder's centerline. When
(, is less than 27 the streamlines tend to run parallel to the major
axis of the ellipse. Inspection of Eq. (4.47b) shows that the approxi-
mate value of (b equals 27 when (az+b2)/2‘= Lz. Thus, the three sepa-

rate cases arise due to a gecmetry effect that compares the size of the

elliptical cross section with the height of the cyliunder.

1lipsoid of Revolution

Let us now consider the container to be an ellipsoid of revolution
of height L and radius a as shown in Figure (4.12). We will introduce
the polar coordinate system shown in the figure and take the radial co-
ordinate r to be ro on the container. The nondimensional cross-plane

z

area and circumference are given by
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A=m I (4.61)

G =o2m r. (4.62)

where rp =% 1 - 4’ (4.63)

The unit vector normal to the container is found to be
2

PN a ~
s er+4(-f> z e

o= (4.64)
2 a\* 2
Jib + 16(5)
Therefore < |?1 X Ez‘ e > is calculated as
% ) 2 !
<laxel®> = Lo (4.65)
' 4 ’
1-4(1-4(-13) )z
Thus, the heat-up time, as given by Eq. (4.4), is
3/4
P 2
s =.r 2 (1-47) (4.66)
H L a 2 9 1/4
L-4(1-4(2) ) <’]

And we see that, unlike the cylindrical case, the ellipsoidal heat-up
time is not constant but varies with z.
If we consider the special case of the z-dependent boundary con-

dition, then the Poisson equation for flow in the cross plane reduces to

l§_<r E(.P_l> _EEE]_’_]:E -T/TH (4.67)
r dr icr / T 1.4z ¢ :
H
with
d -
___d(pl = Ep_r. _TE o Ty - (4.68)
" X Z on r =1 .
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where we have assumed that wl # wl(e) by reason of symmetry. The solu-

tion to this problem, in terms of the velocity components, is

-7 /1'H

u, = ;—E (-%——EH——~> r (4.69)

Q.-lﬂ..
]

v, = 0 . (4.70)

Recall that for a right circular cylinder of height L and radius

R we found the heat-up to be given by Eq. (4.22) as
P

R
7. (cylinder) = L 2. 4.71)
H /2 L

Thus, if we take Eq. (4.66) to give the heat-up time for an ellipsoid

of revolution of height L and radius a, we can form the following compari-

son:
R\ TH(ellipsoid) _ _ (1-42%3/%
(ot gy o
L

A plot of this equation is shown in Figure (4.13). If the two contain-
ers are to have the same volume, then R/a must be taken to be the square
root of two-thirds. 1If instead, the two containers are to have the same
radius, then, of course, R/a is unity by definition. Notice that in both
cases the height of the container is the same, namely L. As a/L in-
creases, the cylinder's heat-up '"'advantage" decreases. That is, the
"fatter" the ellipsoid, the faster the fluid in the ellipsoid heats-up in
comparison with a circular cylinder of the same volume. Observe that an

ellipsoid with a/L = 1/2 corresponds to a spherical container of diameter

L.
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The gemeral heat-up solution will combine all of the features
illustrated in the preceeding examples, When an arbitrarily shaped
closed container is perturbed by a general impulsive boundary tempera-
ture, a boundary layer will be formed almost instantaneously. This bound-
ary layer will entrain fluid from the inviscid interior establishing
boundary-layer suction and consequently (because of mass comservation)
vertical motion in the interior. Furthermore, the boundary layer will
average azimuthal variations in the container temperature‘such that it
presents an effective isothermal boundary to each horizontal layer of
interior fluid. However, each horizontal layer of fluid in the interior
is initially isothermal since the fluid originally is in a stratified
state of static equilibrium. There is no mechanism for heat transfer in
the interior other than convection. Thus, each horizontal layer of iso-
thermal fluid will remain isothermal as it is convected to its new equi-
librium position at a velocity whose vertical component is constant a-
cross each horizontal layer. The final heated state is approached asymp-
totically in time and the e-folding time for this heat-up process will
vary with vertical location within the container. Finally, the interior
fluid layer will (asymptotically) reach a level where the temperature of
this layer equals the average container temperature and the fluid will
have returned to thermal equilibrium with the container. '"Net" boundary-
layer entrainment will cease, as will vertical motion in the interior, and
the fluid will be "heated". Horizontal motion (plugging) will persist,
with fluid entering the interior at a "cold" wall and leaving the inter-
ior at a "hot" wall in such a way that the net mass f£lux into the inter-

ior is zero.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The solution to the general linearized heat-up problem has been
found. That is, given that a Newtonian, weakly-stratified fluid with con-
stant fluid properties is initially at rest in a completely filled closed
container of arbitrary shape, and given that the temperature of this con-
tainer is impulsively changed by a "very small" amount, then the response
of the fluid to this temperature perturbation is now known. The interior
temperature and vertical velocity solutions are simply written in terms
of the circumferential "average'" value of the temperature perturbation.
The flow in the cross plane must be determined by solving the appropriate
Poisson equation for the particular temperature perturbation and container
geometry being considered. However, this Poisson equation is well-posed
and a numerical solution is straightforward.

It was found from the analysis that the inviscid interior region
responds to a special "average' value of the temperature perturbation on
the container and that the effect of the boundary layer is to smear out,
or average, any circumferential variation in this perturbation so that
the interior region, in effect, responds to an isothermal cross-plane
" boundary.

The heat-up mechanism is convective in nature. Conduction and vis-

cosity are important only in thin boundary layers of thickness of the order

83



84

of R;% that lie near the container walls, These boundary layers become
fully developed within a few periods of the Brunt-Vaisala frequency and
then change very slowly during heat-up. The viscous boundary layer re-
quires that a small mass flux be established in the interior region nor-
mal to the container sidewalls which in turn requires a small vertical
mass flow in the interior in order to preserve continuity. This bound-
ary-layer "suction" provides the basic heat-up mechanism. By this pro-
cess, each interior fluid particle convects its "temperature' (more pre-
cisely, its static enthalpy) from its original equilibrium location to
some new equilibrium location within the container where this tempera-
ture must necessarily equal the corresponding boundary temperature as
shown in Figure (5.1). Thus, the fluid is heated-up, i.e. the interior
temperature equals the "boundary" temperature (which is a boundary-layer-
averaged container temperature) and the vertical motion ceases. Hori-
zontal motion will persist if the container temperature has azimuthal
variations. This is the "plugging" effect that is common in stratified
flows.

Several analytical solutions to the Poisson equation for flow in
the cross plane were found in order to illustrate the basic heat-up
process and the alterations to this process that various combinations of
the temperature perturbation and container geometry cause. This first
calculation for the circular cylinder with a z-dependent boundary condi-
tion displays all of the physical ideas associated with the general heat-
up problem and at the same time affords great mathematical simplification.

The circular cylinder with an azimuthally varying boundary condi-

tion demonstrates explicitly the concept that the fluid responds to the
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"average" temperature by showing that the interior temperature does not
change for a sinusoidal azimuthal perturbation,since the average value of
this perturbation is zero. Furthermore, we see that the cross flow is
not zero for this case; instead it is the familiar "plugged" flow found
in many stratified fluid problems.

The elliptical cylinder exhibits an odd "change-of-preference-for-
flow-direction" that is dictated by a parameter that compares the (normal-
ized) cross-sectional area of the cylinder with its (normalized) peri-
meter. This result warns that the effects associated with non-circular
geometry are not safely dealt with by intuition. The calculation for
the ellipsoid primarily demonstrates the fact that the heat-up time varies
with vertical position for non-cylindrical containers.,

The arbitrarily-shaped container was found to approach its final
steady state asymptotically in time and thus the "heat-up" time was de-
fined to be the e-folding time whose value was established to be propor-
tional to Ra%'. Therefore; referring to Eq. (3.51), the insulating air
gap in a pane of thermal glass heats-up in approximately two seconds, a
two foot radius LOX fuel tank in a spacecraft on the pad heats-up in an
hour and a half, a hundred foot diameter LNG storage tank heats-up in
two days and the core of the Earth heats-up in about 109 years. The cal-
culation for the Earth's core is based on data that is sketchy at best.
Furthermore, the Prandtl number in the core is very large and consequently
the viscous dissipation term should not be neglected as was done in our
theory. Nonetheless, our calculation shows the danger of assuming that
the core of the Earth is at steady state in continental drift calculations.

In our work we have assumed that the temperature on the container

changes impulsively in time from a function that varies with location on
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the container only (the basic stratification) to some new function that
also only depends on position as seen from Eq. (2.71). In other words,
the boundary temperature is assumed to be independent of time except
during that initial instant in which it is impulsively perturbed. Never-
theless, if the boundary temperature varies slowly in time (on the heat-
up time scale of order Ra%) then the solution to this more general pro-
blem may be found from our theory by treating this time-varying boundary
condition as an infinite number of impulsive jumps. This leads to the
solution of the more general problem in terms of the so-célled "super-
position integral™ as discussed in Hildebrand [21]. Observe that this
more general solution is possible since the governing equations are
linear (hence superposition is valid) and since a boundary condition that
varies only on the slow heat-up time scale will drive a flow that is ade-
quately described in terms of this slow time variation. Of course, bound-
ary conditions that vary on a shorter time scale (on the order of the
Brunt-Vaisala frequency) cannot be treated by this method and further in-
vestigation is necessary in this case. However, many time-varying bound-
ary conditions do vary on the heat-up time scale, as seen’in the pre-
ceeding paragraph. In particular, the diurnal variation (twenty-four
hour period) is adequately described by this superposition solution for

all examples mentioned above except the Earth's core.

Recommendations for Future Research

By analogy with the initial value problem, or spin-up problem,
treated by Greenspan [ 19] in rotating flow theory it is anticipated that
the assumed form of the interior solutions given by Eqs. (2.74) through

(2.77) will not be adequate to synthesize a completely arbitrary basic
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state. In other words, if the basic state is not a state of rest the
analogy suggests that, in addition to the mode studied in the present
work which varies only on the heat-up time scale, there are an infinite
number of modes that vary on the shorter time scale associated with the
Brunt-Vaisala frequency. Greenspan calls these the inertial modes. Thus,
an investigation is needed to determine what the analogous situation is
for the heat-up problem when the basic state is not one of static equili-
brium. Connected to this investigation will be the problem of how to
synthesize boundary conditions that vary on the shorter time scale associ-
ated with these "inertial" modes.

Another interesting analog with the rotating flow theory suggests
that there are certain container geometries for which monatonic, non-
oscillatory heat-up solutions are not possible. In other words, for cer-
tain containe;s the spin-up solution does not tend asymptotically to a
steady state but remains unsteady for all time. 1In rotating flow theory,
a container that has no closed curves of constant height (such as a cy-
linder with nonparallel planar ends) contains fluid that does not tend
asymptotically to a steady state. Rotating flow solutions of this type
were examined by Rossby [22] in a geophysical context and the resulting
"shedding vortex'" wave solution bears his name. It is suspected that
the analogous container in stratified flow theory is one for which the
derivative of the cross-plane area, dA/dz, is discontinuous. The heat-
up analysis carried out here tacitly assumes that this derivative is
continuous in going from Eq. (3.39) to Eq. (3.41). Furthermore, experi-
ments done by Bishop et al. [23] support this suspicion. Bishop enclosed

air between two concentric spheres that were maintained at different
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temperatures and observed the resulting flow pattern. He found that for
"moderate" temperature differences the flow is unsteady and characterized
by the formation and shedding of small vortex cells. The cross-plane
derivative, dA/dz, is discontinuous for the area between concentric spheres
and therefore the possibility that Bishop observed the "Rossby waves"

of stratified flow theory is ripe for investigation.

Krane [ 9] gave an analytical treatment to the problem of non-
linear, steady, two-dimensional flow in a rectangular cavity with differ-
ent vertical wall temperatures and adiabatic, horizontal walls. Due to
the fact that the vertical wall boundary layers are nonsimilar, Krane re-
sorted to a Von Karman integral solution for the vertical wall boundary-
layer equations. This in turn required the core temperature profile to
be chosen from experimentally observed data rather than by matching with
the vertical wall boundary layers. Thus, an analytical solution to the
appropriate linearized version of Krane's problem could assist in under-
standing the more difficult nonlinear problem as well as reveal the gen-
eral features of the transient motion that leads to this steady two-
dimensional flow.

Other logical extensions of the present work include the following:
(i) specify the heat transfer on the boundary instead of the temperature
(ii) treat a basic state that has a discontinuous stratification (such
as found in a partially filled container or in a container storing sever-
al immiscible fluids)

(iii) perturb the gravity vector instead of the boundary temperature in
€
order to drive a linesrized buoyant motion.
Finally, it should be noted that there is much room for experi-

mental work in the field of contained buoyant fluids. This work cam
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range all the way from simple flow visualization experiments and heat
transfer measurements, up to the more sophisticated measurement of modal

decay factors and natural frequencies.
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APPENDIX

LEIBNITZ'S RULE FOR THE CROSS PLANE
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Let R be some three-dimensional region which varies with time, t,.

This region is bounded by the closed surface, S. Let S have an outward

~ - .
unit normal vector, n, and velocity, V. Then, for any scalar quantity,

Q, Leibnitz's rule for differentiating an integral with variable limits

%E Iﬂ (T, t)dr = Hj %% dr + 5@ QV - nds (A.1)

R(t) R(t) S(t)

is

where T is the position vector and dr and dS are the differential ele-
ments of volume and surface area respectively.

In order to specialize this result to our case of flow in the
cross plane, we take for our "region" the cross-plane area, A, which
depends on the vertical spatial coordinate, z, as shown in Figure (A.1).
Here, the area, A, is bounded byGwith outward unit normal vector n*
in the plane of A. As the area changes from A(zl) to A(zz),CE has a

"velocity" V* that is given by
Ve =92y ydyg ' (4.2)
dz dz

as also shown in the figure.

As a "visual" aid, we may think of our region as being a rigid
vertical cylinder of height h and base A(z), where Q does not vary
over the height of any particular cylinder. This does not say that Q
is invariant in z, but rather that Q varies in z as the base area, A,
changes. This produces a different rigid cylinder over whose height
Q does not vary. This rigid cylinder concept is shown in Figure (A.2).

The conventional form of Leibnitz's rule may be applied directly

to this artificial region and the result is



Top View

Figure A.1 Cross-Plane Geometry
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Figure A.2 Rigid Cyiftnder and Unit Normals
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g_z J(:JFJF Q(x,y;z)dt = ‘H‘j’ 2—3 dr + JI Q_\}* . ndsS . (A.3)
R(z) | R(z) S(z)

The integration over the region is equivalent to the product of the
height of the cylinder with an integration over the base area. The in-
tegration over the surface may be broken into the sum of integrations
over the side, top and bottom of the cylinder. The result of this inte-

gration is

%—HQdA—hH a—°~dA+h§Q'\7*n*ds

A(z) A(z) @(2)
+ H Q'\}*-ﬁTdA + ﬂ Q—{I*-ﬁB da . (A.4)
A(z) A(z)
But ﬁB = - ﬁT and consequently the last two integrations cancel leaving
4 _ [ 2Qaa+ T
a J]1 Q dA = Jjﬁ 57 Q V¥-nds . (A.5)
A(z) A(z) G(z)

Let the container, £, be described by a function, F, such that

F(x,y,2) =z -~ f(x,y) =0 onZ (A.6)
This equation implies the relationship

VF =e_ - Vf (A7)

which may be coupled with the total derivative

dF _ QE AF dy , oF _
3 - ow By i =0onZ (A.8)
to yield

-Vf - Vk+1=0 on¥% (A.9)
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by making use of Eq. (A.2) for V* and noticing that 3F/dz is unity from
Eq. (A.6). The outward unit normal to the container is VF/|VF| , which can
be related to the unit normal in the cross plane, as shown in Figure

(A.2), as follows

VF ez -vE

7
1+(Vf)2

- ~ ~ A* ~ . ~ ~
In X ezln + (n ez)ez (A.10)
Solving this for vf we obtain
|4 x 8|
vf = « ————— n¥* (A.11)
' (- e)
where we have used the fact that
ne = 1 . (A.12)

© L+ en? ;

The latter result can be obtained by ‘inspecting Eq. (A.10), keeping in
¢
mind that V£ has no compoment in the z-direction.
We may now substitute for Vf from Eq. (A.11) into Eq. (A.9) to

obtain

Tedk = - . (A.13)

With this, Leibnitz's rule, as modified for the cross plane, may be written

from Eq. (A.5) as

%;JIQdA=JT ggdA+§ Q(_la'éz|>ds . (A.14)

A(z) A(z) C(z) z

It is of interest to set Q to unity in this expression and obtain

the result
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fi-e
- § ( —-—7"‘—) ds . (A.15)
V] ]ﬁxezl

This result is used in the heat-up analysis in going from Eq. (3.39) to

Eq. (3.41).



