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VOLTERRA INTEGRAL EQUATIONS AND

FRECHET DIFFERENTIALS
INTRODUCTION

In Chapter 1 we will be concerned with the nonlinear Volterra in-
tegral equation,
EL£,g1) x(t) = £(t) + SLg(t,8,x(s))ds,
where £, g and x are functions whose definitions will be made precise in
the theorems that follow. In particﬁlar, variational equations for E[f,g]
will be found by computing the Fréchet differential of the solution of
E[f,g] with respect to the functions f and g. We will follow the work
of Bliss [2], who carried out the same program for ordinary differential
equations.

In Chapter 2 we will study certain solutions of the integral
equation
NCERNID x(t) = £(t) + Sgk(t,s)g(s,x(s))ds
which exist on the interval [0,«). An implicit function theorem of
Hildebrandt and Graves, [8], will be used to establish the existence,
uniqueness and Fréchet differentiability of these solutioné. As a result,
these solutions will possess a stability property with respect to changes
in the function f£f. The Banach and Schauder-Tychonoff fixed point theorems
will be used to establish existence and stability of solutions of per-
turbed equations corresponding to E[f,k,g]. Also, a nonlinear variation
of constants formula will be presented.
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CHAPTER 1

DIFFERENTIABILITY OF SOLUTIONS OF

VOLTERRA INTEGRAL EQUATIONS

1. Notation and conventions. Let R denote the set of real num-

bers and R® = {x = (xl,..., xn); x,€¢ Rfori=1,..., n}. The symbol

i
|a| will mean the absolute value of the real number a and if x € Rp,

n
i=1l

n X n matrix with real elements, define the norm of A by ]lA]] =

the norm of x is defined to be ||x|| = 2 [xil. If A= [aij] is an

n
L1

set U with real valued functions as elements, then B(u) denotes the

_ |a,.]. If B=[b,,] is an n x n matrix function defined on a
=1 '71ij ij

n x n matrix [bij(u)]. Thus, the meaning of the symbol ||B(u)]] is

n
Li-1

and represent elements of D by (s,x) where s € R and x € R®. Let I =

Z?=1 |bij(u)|' Let D C R x R" be a domain (connected open set)

[a, a + p] be a nondegenerate closed interval of real numbers. We con-
sider I and D to be fixed throughout Chapter 1. If f: I -» R? and

g: I x D=~ Rp, denote their respective component functions by fi and 8y
for 1 = 1,..., n. We will use the symbol 8y to represent the n X n ma-
trix function {agi/axj], where i is the row index and j is the column
index. Let

(1.1.1) C(I,Rp) ={f: I~ Rp; f is continuous on I},

(1.1.2) C(I x D,Rp) ={g: IxD=~> Rn; g is continuous on I x D}

and

(1.1.3) BCl(I x D,RF) ={g: I xD= R?; By exists and 8y and

2



3
agi/axj are bounded and continuous on I x D}.
The sets C(I,Rn) and BCl(I X D,Rn) become Banach spaces upon intro-

ducing the following norms:

(1.1.4) [1E]] = sup {||£CB)|[;5 t € I},
and '
(1.1.5) |le]l; = sup {[|g(t,s,2)]]; (t,s,x) € I x D}

+ sup { [ ]gx(t,s,x)H; (tys,x) e I x D}
where f € C(I,Rn) and g e BCl(I X D,Rn).
If X and Y are Banach spaces and (x,y) € X x Y, define the norm of (x,y)
by |].¥)|| = ||x[] + ||y|]|> where ||x]| and | |y|| are the respective
norms of x € X and y € Y. It is well known that X x Y is a Banach space
with the above definition of the norm. If F: X + Y is a bounded linear
operator, dervte the norm (uniform) of F by ||F|].

If x is a member of a Banach space, then B(x,§) represents the
open ball of radius § centered at x. Let A be the closure of the subset‘
A of a Banach space.

A solution of the integral equation,

(E[£,8]) x(t) = £(t) + Sig(t,s,x%(s))ds,

is defined to be a continuous function £ with domain [a,b], (a< D),

such that (t,s,£(s)) is in the domain of g for ag s< tg b and
E(E) = £(t) + Sog(t,s,E(s))ds.

2. Preparatory results. Two theorems of Sato [13] will be

stated since they will be used in the sequel.
THEOREM 1.2.1 (Sato). Let £ € C(I,R") and A(a + p,f,b) =
{ (t,s,x); x € Rn, ag¢ s¢ tg a+ pand ||x - f(t)[ls b(b > 0)}.

Suppose g: A(a + p,f,b) » R" is continuous. Then E[f,g] has at least

one solution defined on [a,a + o], where a = min {p,b/M} and
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M= sup {||g(t,s,x)||; (t,s,x) € A(a + p,£,b)}.

Furthermore, if there exists a non-negative real number L. such
that if (t,s,x) and (t,s,y) belong to A(a + p,f,b) then
(1.2.1) [{g(t,s,x) - glt,s, )| < Lilx - v,

then E[f,g] has a unique solution.

THEOREM 1.2.2 (Sato). Let £ € C(I,R") and g € C(I x D,R"). If

a solution, &, of E[f,g] exists on [a,tO],(a< t.< a + p), then there

0

such that £ is defined on o t el
o n o n
LEMMA 1.2.1. Let f € C(I,R) and g € C(I x D,R") and assume

that E[fo,goj has a solution, go, defined on I. Then there is a § > 0

such that if (f,g) belongs to B(f°,6) x C(I x D,Rn), then E[f,g] has
a solution.
) n o o

Since £ : I - R is a solution of E[f ,g ], it follows that
gr(go) = {(s,go(s)); s € I} <D. In particular, (a,fo(a)) € D. Since
D is open, there exists a 8 > 0 such that E(a,B) X _B-(fo(a),B) C D.
Define a real valued function h on I by h(t) = B/3 - ]]fo(t) - fo(a)H
and observe that h is continuous. If h has a zero on I, let t. be the

0
smallest one; otherwise, set t, = a + p. Also, observe that 0 ¢ h(t) g

0 <
g/3 on [a,to), so that ||f°(t) - f°(a)||< g/3 on [a,to).

Let T = min {to - a,B/3}. It will be verified that A(T,fo,B/B) =
{(t,s,x); ag sg tg T, ||x - £2(t)|| ¢ 8/3} is contained in I x D.
If (t,s,x) € A(T,£°,8/3), then t € I, |s - al] ¢ Ts 8/3 and |]x - fo(t)||
¢ B/3. It follows that ||x - fo(a)l ls ||x - fo(t)H + Hfo(t) - fo(a)ll
€ 2B8/3 < B. Hence, (t,s,x) € I x B(a,B) x F(fo(a),s) CIxD, and so
A(T,£°,8/3) € I x D.

If f € B(fo,B/S), then the set A(T,f,8/3) is also in I x D. For,

as before, if (t,s,x) € A(T,f,B/3), then t € I, |s - als T< B/3 and
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[|x - £&)||s 8/3, and ||x - £2@)|[< [|x - £@®]] + [|£¢e) - £°(0)]]
+ ||f°(t) - fo(a)H < B/3 + 8/3 +8/3 =B8. Consequently, (t,s,x) €
I x B(a,8) x B(f°(a),B) and so A(T,f,8/3) C I x D.

with (f,g) € B(fo,B/3) x C(I x D,Rn), an application of Theorem
1.2.1 yields the existence of a solution of E[f,g] defined on some sub-~
interval of I. The result follows on setting 6§ equal to B/3.

If go € C(I x D,Rn) and § is a positive real number, define V(go,é)
as {g e C(I x D,R); sup { ||g(t,s,x) - g°(t,s,%)|]; (t,s,x) € I x D}< 6},

THEOREM 1.2.3. Let g° e C(I x D,R") satisfy (1.2.1) on I x D

with L > 0. Assume that f° & C(I,Rn) and that E[fo,gO] has a solution,

go, defined on I. Then for each € > 0 there is a <'5e > 0, such that

if (f£,g) belongs to B(fo,ss) X V(go,ﬁs), then E[f,g] has a solution;
and if £ is a solution of E[f,g], then £ is defined on I and § €
B(e%,e) C c(I,RY).

Let ¢ > 0 be fixed. As gr(?,o) C D, the distance between the sets
9D, the boundary of D, and gr(go) is positive, provided 3D is not empty.
Let BO be less than this distance and also less than €. Define a
reighborhood of gr(go) in D by N(EO,BO) ={(s,x); ag< s< a+p,
||x - go(s)H < g%}, If 9D is empty, then D = R" + 1, so that in
either case there is a Bo, satisfying 0< B°< €, such that I x N(EO,BO)
CIxD.

It follows from Lemma 1.2.1 that there is a § such that if
(£,8) € B(fo,s) X V(go,é‘), then at least one solution of E[f,g] exists.
Let Ge = min { G,BOL/[Z((l + L)exp(pL) - 1)]}, where L is the Lipschitz
constant of (1.2.1), and suppose that (f,g) is fixed in B(fo,Ge) b
V(go,se). If £ is a solution of E[f,g], let T = sup {t € I; £ exists on

[a,t]}. We will show that £ is defined at T and that T = a + p.
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If T< a+ p, then for t € [a,T) we have that,
lee) - 2@ l< |l£ce) - 20 ]|
+ I:Hg(t,s,E(S)) - g°(t,8,£(s)) | |ds
+ 10]8%(t,s,E(8)) - £ (t,8,8° () | lds
$ 8+ 6. (t-a) + Li||e(s) - £°(s)]]ds.
An application of the Gronwall-Reid inequality yields
.2.2) [[&ce) - &) | ¢ §_[(1 + Lyexp(pr) - /L] ¢ 8°/2< &7 < ¢
for t € [a,T).
Consequently, gr(f) is contained in the compact set 'I\T(EO,BO/ 2).
It will be established that 1im £(t) exists. We note that
f is uniformly continuous on I and tktxa: t;‘“is uniformly continuous on
I x -ﬁ(EO,BO/Z). Let € > 0 be fixed. There.is a & such that if

€
ty< typ 0< T-t) < §,and 0< T~t,< 8, then [[£(t;) = £(t)[| < ¢/3
and Hg(tl,S:E(S))- g(tz,S,E(s))H <€/I3(T - a)]. Also. select
6€< €/12(3M + 1)) where M = sup { Hg(t,s,x)”; (t,s,x) € I x —1\7(5,‘0,30/2) }.
Then it follows that,
[lece)) - eced [l s [[£¢e)) - £ ]|
t
+ faz “g(tlsssg(s)) - g(tz,s,g(s))l Ids
+ le Hg(tl,s,g(s))llds.
) .
As a result we have that
1.2.3) Ha(ltl) - E(tZ)H < €3+ €(t - a)/[3(T - a)] + M/ [M + 1] < €.
Hence, lim E(t) exists by Cauchy's condition for convergence.
t »> T~
Let £(T) be defined as 1lim £(t) and note that (T,£(T)) €

t - T~
N(EO,BO/Z) € D. Also, for ag t< T, it follows that,

e - £() = 1} g(T,s,8()ds|| ¢ |[e(D) - £C0) || + |[£C8) - £(D]|
+ 15 l8(t,s,66)) = g(T,5,£(s)) | |ds

+ £ille,s,E())| fds.
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That the right hand side of the above inequality is arbitrarily small
for It - T| sufficiently small, follows by the same type of estimatés
used to obtain (1.2.3). Consequently, £ is a solution of E[f,g] on
[2,T]. By Theorem 1.2.2, £ may be extended to the right of T. This
contradicts the definition of T. Hence, T=a + p and so § 1is a
solution of E[f,g] on I. Since the inequality (1.2.2) also holds
with t = T, it follows that £ € B(£,e).

In the proof of the above theorem it was shown that if no € C(I,Rn)
and gr(no) C D, then there is a neighborhood N(no,s) of gr(no) such that
N(n°,8) € D. Note that if n € C(I,R™), then gr(n) ¢ N(n’,8) if and
only if n € B(no,B)CZ C(I,Rn). Consequently, if n° € C(I,RP) and
gr(no) C D, then there is a B $ 0 such that if n € B(nc,B), then
gr(n) € D. In what follows, use will be made of the convexity of B(no,B).

We digress to discuss linear integral equations. Let A(p) =
{(t,s); ag sg tg a+ p}and f € C(I,Rn). If k is a continuous
n x n matrix function defined on A(p), then the equation
(1.2.4) x(t) = £(t) + [ k(t,s) x(s)ds
has a unique solution on I. It is well known, [5; p. 125], that the
| solution is given by
(1.2.5) E(t) = £(8) + Jor(t,s) £(s)ds
where r, the reciprocal kernel associated with k, is a continuous
n x n matrix function defined on A(p) and
(1.2.6) r(t,s) = é: - 1kcm)(t,s).

The matrices k@m)(t,s) are defined by
kB (t,8) = k(t,s)

m-1)

k(m)(t,s) = f:k(t,u)k (u,s)du

for m = 2,3,.... Also well-known is the fact that if lk(t,s)ls M



on A(p), then
1.2.7) ™ (e,0)] |« ¥t - &~ Y@ - 1)1
for (t,s) € A(p) and m = 2,3,.... The inequélity (1.2.7) together
with the expression (1.2.6), yields the inequality
(1.2.8) Hr(t,s)lls M exp(Mp) for (t,s) € A(p).

Perhaps less well-known are the inequalities which will be
estabiish_ed in the next lemma.

LEMMA 1.2.2. If k and k are continuous n X n matrix functions

defined on A(p) such that ||k(t,s)|]|s M, Hl:(t,s)l |< M and
[lk(t,s) - k(t,s)| | & on A(p), then
e®™ ¢t,8) - €™ e, | e ™~ Yt - & ™ Y@ - 1

on A(p) for m = 2,3,.... Furthermore, if r and r are the kernels

reciprocal to k and k respectively, then Hf(t,s) - r(t,s)” g

§(1 + Mp) exp(Mp) on A(p)..
By hypothesis, ||k (t,s) - kP (e,0)]| ¢ 6. 1f
8™ (e,8) - k@ (e,8)] ] s net® ™ e - ) " Y@ - 11,
then
||1:(ln * D) -® 7 l)(t,s)ll
$ fgllﬁ(t,u)ﬁ(m) (@,8) - k(t,wk™ (u,8)| |du
¢ FERE ™ @) - s @e] |
+ 5 ke - kew ] {1 0] [du
s ma/ @- D1 S - " T Law + 68/ (m - 1)1 IO ! du
< @+ 1)eM (e - s)"/m!.

Furthermore,

00

Hrct,s) - e8] 2
-]

s o _ e -9 Y@~

JIE® 0 - 1 (e,0]

£ Q@ + M(t - 8)) exp[M(t - 8)]
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< 6(1 + Mp)exp(Mp).
o 1 n o
We recall that if g € BC (I x D,R"), then B(g ,8) =

{g ¢ BCl(I x D,Rn); g - g° < §} where BC™(I x D,Rn) and
1

11,
were defined in (1.1.3) and (1.1.5) respectively.
LEMMA 1.2.3. Let (£°,g°) be an element of C(I,R™) x BCl(I x D,RY)

for which go, the solution gf_E[fo,go], is defined on I. Then with each

e > 0 there is associated 3'65 > 0 such that if (f,g) € B(fo,se) x

B(g°,ae), then:

(i) the solution, &, of E[f,g] is defined on I,

(ii) if ro, r1 and r2 are the reciprocal kernels associated

with g2(t,8,6°(5)), Jog, (£,8,6°(s) + a(E(s) - £°(s)))da

and gx(t,s,g(s)), respectively, then:

@ |lrte,e) - 2,9 [ < e for (£,8) € 20,
®) | ]r%(t,8) - 2°(t,8) || < € for (t,s) € ACp).

Let ¢ > 0 be fixed. As in Theorem 1.2.3, there exists a 8 > 0
such that N(EO,ZB) ={(s,x); t €1, llx - g°(t)|]< 2R} is a subset of
D. Also, it follows from Theorem 1.2.3 that there is a 61 > 0 such
that if (f,g) € B(fo,Gl)_x B(go,Gl) then the solution of E[f,g] has its
graph in N(go,B). Let M = sup {[Iglll; g € B(go,Sl)} and set € =
e/[4(1 + Mp)exp(Mp)].

The function g: is continuous on the compact set I x EXEO,B), S0
there is a 62 > 0 such that if (t',s',x') and (t,s,x) belong to I X
N(°,8) and || (t",s",x") = (t,s,x)]]| < §,» then ]Ig:(t',s',x') -
g:(t,s,x)|| < g+ Once again it follows from Theorem 1.2.3 that there is
a 63 > 0 such that if (f,g) € B(f°,63) X B(g°,63), then the solution £ of
E[f,g] satisfies £ ¢ B(g°,52). In particular, it is to be noted that if

£ € B(EO,GZ), then ||[(t,s,&(s)) - (t,s,£°(s))]| < §, for as s< ts a+p.
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Set §_=min{6;,8,,c;}, and suppose that (£,g) ¢ B(f°,a€) x
B(go,ée). Let £ be the solution of E[f,g] and denote £ — £° by Af. Then
Ilfcl,gx(t,s,ao(S) + adE(s))da - g:(t,s,EO(S))ll
< ftl,llgx(t,s,s‘)(s) + abE(s)) - go(t,5,%(s) + adE(e))] |da
+ f(l,l |g(tss,E°(s) + abg(s)) - go(t,s,£°(s)) | |da,
and so
Hfzsx(t,s,sc’(s) + abg(s))da - go(t,5,E°(8)) || < §_+ € < 2.
Also,
IEXCERAONEI N CERA O PR I PR CERIONEF W CER IO
+ ||eg(ts,8(s)) - go(t,8,°(sN ],
and we have that‘llgx(t,s,g(s)) - gz(t,s,go(s))ll < 2e;. Simce 2 <
e/[2(1 + Mp)exp(Mp)], it follows from Lemma 1.2.2 that ]]rl(t,s) -
ro(t,s)||< £ and ||r2(t,s) - ro(t,s)|i< e for (t,s) € A(p).

3. Equations of variation. Recall the definition of the

Fréchet differential. Let X and Y be normed linear spaces and let A
be an open set containing x € X. A mapping F: A -+ Y is differentiable
at x if there exists a bounded linear operator dF(x; ¢): X = Y such
that ]IF(x + g) - F(x) - dF(x; E)ll/|l£l| + 0 as ||g|| + 0. The linear
operator dF(x; +) is called the Fréchet differential of F at x. If
such a linear operator exists, then it is unique.

If ge BCl(I X D,Rp), then the boundedness of ]ng]] implies
that g satisfies a Lipschitz condition with respect to x. Also, if
(£°,g%) € c(1,8") x BC1(I x D,R") is such that the solution of E[£°,g°]
is defined on I, then it follows from Theorem 1.2.3 that there is a
§ > 0 such that if (f,g) € B(fo,G) x B(go,G), then the solution of
E[f,g] is also defined on I. Consequently, a function F: B(fo,é) x

B(go,ﬁ) -+ C(I,Rn) may be defined by £ = F(f,g) where £
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is the unique solution of E[f,g]. That & exists and is unique follows
from Theorem 1.2.1.
N o o n 1 n
THEOREM 1.3.1, Let (f ,g ) € C(I,R’) x BC'(I x D,R") be an

element for which the solution Eo gg_E[fo,go] exists on I. Then F is

Fréchet differentiable at (fo,go).

There exists a B > 0 such that any element of B(EO,B) has

graph in D. There exists a §, > 0 such that if (f,g) € B(fo,ﬁl) x

1
B(go,dl), then F(f,g), the solution of E[f,g], is in B(EO,B).

For (f,g) € B(f°,6 ) x B(go,al), define the difference function
AE by Af = € - £° = F(f,g) - F(£°,g°). Then,

£(t) - £2(8) + S

BE(E) g(£,8,E(s))ds - £5g%(t,5,E" (s))ds
[8(t,5,5°(s)) = °(t,s,E°(s)) 1ds

+ f:[g(t,s,g(s)) - g(t,S,Eo(S))]dS-

Lt

£(t) - £9(t) + S

Making use of Taylor's theorem with integral form of the remainder,

and denoting f - £° by Af and g - go by Ag, we have that

BE(E) + Sing(t,s,E°(s))ds
1
0

It follows from (1.2.5) that

AE(t)
+ 1 Upe, (£,5,E°(s) + 0bE(s))du)AE(s)ds.
BECE) = AE(E) + J Ag(t,5,E°(s))ds + Sir(t,8)E(s)ds
+ 1r(,8) (U Sag s, (v))du)ds
where r(t,s) is the reciprocal kernel associated with
f;gx(t,s,go(s) + aA£(s))da. The equation
x(t) = Af(t) + f;Ag(t,s,go(s))ds + f:g;(t,s,go(s))x(s)ds
is linear, so it has a solution
dr(£°,8°%; Af,Ag)(t) = Af(t) + IEag(t,s,E° (s))ds
+ I5x°(e,8)0E (s)ds

+ f:ro(t,S)(f:Ag(s,u,Eo(u))du)ds
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where ro(t,s) is the reciprocal kernel for the kernel g:(t,s,go(s)).
The difference ||A£(t) - dF(fo,go; Af,Ag)(t)II may be bounded
as follows:
| |ag(e) - aF(£°,g°%; af,085(t)]]
s IElleces) - 20| [[age)][ds
+ 152 (e,9) - 22,9 || 2] |8 (s,u,6% (@) [ du)ds
s [1fae)] 75 [re,s) - 2,9 @ + (s - a))ds
s llatap]| @+ p) £1l]x(e,8) - 9] |ds.
For fixed € > 0, we will establish the existence of a 6€ >0
such that, if (f,g) € B(fo,ée) x B(go,Ge), then
sup {||A5(t) - dF(fo,go; Af,Ag)(t)ll; t € I}< éll(Af,Ag)II. It follows
from Lemma 1.2.3 that there is a 65 > 0 satisfying 6€< 61, and such
that if (f,g) € B(fo,Ge) x B(go,ée), then ||r(t,s) - °(t,s)|] <
e/[2p(1 + p)] for as s¢ ts a+p. So, if (£,8) € B(£,6.) x B(g”,8),
then ]lAE(t) -~ dF(fo,go; Af,Ag)(t)||< Ell(Af,Ag)lI/Z. It follows
that ||ag - dF(£°,8°%; af,Ag)|| = sup {|]agCe) ~ aF(e®,& 5 Af,Ag) ()] |3
t € I} < || (af,a8)]].
It is clear that if (¢,Y)'é C(I,Rn) X BCl(I X D,RP), then
| (1.3.1) aF (£°,8°%; ¢,y) (L) = ¢(t) + f: Y(t,s,Eo(s))ds‘+ f:ro(t,s)¢(s)ds
+ 150 (t,9) USv(s,0,8° (@) du)ds
is an element of C(I,Rn). Consequently, a mapping
ar(£%,8% +,+): C(I,E®) x Bc(I x D,R") » C(I,RM)
is defined by (1.3.1).
It is easily verified that dF(fo,go; *y*) is linear on
C(I,Rn) X BCl(I X D,Rn). The boundedness of dF(fo,go; *,*) as a linear
operator will now be established. If (¢,Y) € C(I,Rn) x BCl(I X D,Rp),

then



13

1a7(£%,8% ¢, (®)|] s |16 0] + 5[|v(t,5,6%s)) | |ds

+ 1] 129 | | e6e)] [ds

+ j:i]ro(t,s)ll(lely(s,u,go(u))lldu)ds

s 1@+ (e - a) + 15| [°(e,9)| |ds

+ lelro(t,s)ll(s - a)ds].
It follows from (1.2.8) that I]ro(t,s)lls M exp(Mp) where M is an
upper bognd for ||g§(t,s,x)|| on I x D. Moreover,
|[aP(£°,6% 0.7 (E)|] s (L + p +Mp exp(Mp) + Mp” exp(p))] | (o,v)]|
for t € I, and hence,
sup { ||dF(£%,% ¢,7) ()| |5 t € Th¢ (1 +p)(L + Mp exp(Mp)) || (¢,1)]]-
As (¢,y) is arbitrary in C(I,Rn) x BCl(I X D,Rn), it follows that
dF(fo,go; *,*) is a bounded linear operator and thus it is the Fréchet
differential of F at (£°,g°). |

As was brought out in Theorem 1.3.1 above, dF(fo,go; $,Y) is the

solution of
(1.3.2) =x(t) = ¢(t) + fzy(t,s,go(s))ds + f:gi(t,s,go(s))x(s)ds
where go = F(fo,go). Consequently, equation (1.3.2) is termed the

variational equation associated with E[fo,go].

Since F is differentiable at (fo,go), it is welliknown {9; p. 153]

that F has two partial differentials,
4,F(£%,8% 9) (1) = o(8) + /1% (5,800 (s)ds
and
4,F(E°%,8%5 Y)(E) = S ov(e,8,8%())ds + £or°(t,8) Sy (s,u,6° () du)ds.

Moreover, the differentials le(fo,go; ¢) and sz(fo,go; Y) are solutions
of the respective equations
(1.3.3) x(t) = ¢(£) + Sig2(t,5,6%(s))x(s)ds

and
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(L.3.4)  x(£) = S y(£,5,E%(s))ds + S g2(t,5,6%(8))x(s)ds.
Equation (1.3.3) is the variational equation associated with E[fo,gO]
when only f is allowed to vary, and equatioﬁ (1.3.4) is the variational
equation associated with E[fo,gO] when g alone varies.
THEOREM 1.3.2. Let (£°,8°) be an element of C(I,R™) x BC (I x D,R%)

for which go, the solution of E[fo,go], is defined on I. Then dF is

continuous at (fo,go).

It follows from Theorem 1.2.3 that there is a B > 0 such that
if (f,g) € B(fo,s) x B(go,B), then the solution of E[f,g] exists on I.
By Theorem 1.3.1, the function F is defined and differentiable on
B(£,8) x B(g’,B).

Suppose € > 0 is fixed and for M = sup { ||g| Il; g € B(gO,B)}

let él = eg/[2(2p + p2(1 + Mp) exp(Mp))]. Also, let €, > O be a number

2

for which any element of B(g°,sz) has graph in D and choose ey =
min { el,sz} .

It follows from Theorem 1.2.3 and Lemma 1.2.3 that there exists
a §_> 0 such that if (f,g) ¢ B(fo,Ge) x B(go,éa), then £ = F(f,g)

belongs to B(go,e3) and ||r(t,s) - ro(t,s)H < g, where r(t,s) and

1
r°(t,s) are the kernels reciprocal to g, (t,5,E(s)) and gi(t,s,io(s)),
respectively.
Let (4,y) € C(I,R™) x BcY(I x D,R®) and (£,g) © B(fo,ds) X
B(go,ée). Then, in view of (1.3.1)
| 14F (£,85 ¢,¥) () - dF(£°,e%; ¢,v) ()] ]

s [riv(e,s,66)) - v(t,5,£°()))ds

+ Io(t,8) - °(t,8))d(s)ds

+ 15 (r(e,8) - £°(t,8))/2y (s,u,8 (u))duds

+ 1220 (E,8) /007 (556, E)) = ¥(s,u,E° (u))duds | |
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s IEUTl v (e,8,8°(s) + ade(s))| |aa) | [ag(e) | |ds
+ 15 e ce,e) - O] [160s)] las
+ 1l lxces) = e, 7S] (s ,u,E(u)) | |auds
+ [f:||r°(t,s)|lf:(f$||yx<s,u,g°(u> + adg(u)) | [da)
| |48 (u) | |duds].
It follows from (1.2.8) that ||r°(t,s)|| < M exp(Mp). Consequently,
[1aF(£,8; ¢,7) () - dF(£°,e%; ¢,7)(0)]]
< 1l e = €le + el lege + vl ,e,p?
+ | 1vl] M expp) | [ - £°[]p°
€ [[Gn(egp +ep+ elpz + e3p2M exp (Mp))

s (1@l + 2@ + ¥ expOp))e, .

In view of the definition of El we have that

|1aF(£,85 ¢,v) - aF(£%,8%; ¢,7)] ] < €| ]¢o,v)]]/2.

. Since (¢,y) is arbitrary in C(I,Rn) x BCl(I X D,Rn), it follows that

||dF(f,g; ) - dF(fo,go; °,')||< €. Hence, dF is continuous at
(£°,e°).



CHAPTER 2

STABILITY PROPERTIES OF A VOLTERRA

INTEGRAL EQUATION

1. Notation and conventions. Some further notation will be

introduced although the notation of Chapter 1 remains in force unless
there is a specific statement to the contrary. If R+ = [0,»), let

BC(R+) ={f: R+ -+ Rn; f is bounded and continuous on R+}.
The function defined by

|1x]] = sup {]|x(®)][; £ € &'}

l) is a Banach space.
1.

Denote { (t,x) € R x Rn; 0 t< « and HxH < q} by D(q), where

+
establishes a norm for BC(R%) and (BC(R ),|I°

In the sequel we will use BC(R%) to denote (BC(R%),|

q is a positive real number. Let B(0,q) be the ball of radius q centered
at 0 in BC(R*). The ball of radius q, centered at 0 in R is denoted

by B(O,qm). We observe that if x ¢ B(0,q), then gr(x) is in D(q).

Let h be a function defined on D(q) x B(O,qm) with range in R®. If

the component functions of h are hi’ let hx denote the n X n matrix
[ahilaxj] of partial derivatives gf the hi with respect to the com-

ponents xj of x € R®. Let hc denote the n X m matrix [ahi/acs] of

partial derivatives of the h, with respect to the components cs of

i

c € R°. The n x (n + m) matrix [h ] whose first n columns con-

h
3
ixj ics

sist of hx and whose last m columns are hc is denoted by hz.
Assume that h satisfies the following:

16
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(A;) h is continuous on D(q) x B(O,qm) and h(t,0,0) = 0 for t ¢ R+;

(A;) the component functions of h have continuous first oxrder par-

n
tial derivatives with respect to the components of x € R* and

c € R', and the n x (n + m) matrix Ilhz(t,x,c)ll_ig bounded

above by P° for (t,x,c) € D(q) x B(0,q.);
(A7) for each ¢ > 0 there is a §_ > 0 such that if (t,x,c) and
(t',x',c') belong to D(q) x B(0,q ) and |lx - x'|| < 6_ and
[le = ¢'|] < §_» then ||hz(t,x,c) - hz(t',x',c')||< €.
Let A ={ (t,s) € Rz; 0< sg t< «} and for b > 0 define A(b)
as {(t,s)E‘Rz; 0< sg tg b}. Suppose that k is a continuous n X n
matrix function defined on A with the property that there exists an
M > 0 such that
(2.1.1) I5lk(e,8)[[ds< M, for t e .
We will denote the integral equation
x(t) = £(t) + f;k(t,s)h(s,x(s),c)ds
by E[f,k,h].

2. Existence and differentiability of solutions of E[f,k,h].

With £, x and c denoting arbitrary elements of BC(K+), B(0,q) and
B(O,qm) respectively, define a function c°: BC(R+) X B(O,qm) x B(0,q) +
BC(§+) by
(2.2.)  6%(f,c,%)(t) = £(t) + Sk(t,8)h(s,x(s),¢)ds - x(t).
Since f, k, h and x are continuous, Go(f,c,x) is a continuous function of
t. Also,
fgk(t,s)h(s,x(s),c)ds =f;k(t,s)[h(s,x(s),c) - h(s,0,0)]ds
=f8(fék(t,s)hz(s,ax(s),ac)da)z(s)ds
where Taylor's theorem with remainder has been applied and z(s) is the

transpose of the n + m dimensional row vector [x(s),c]. In view of
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hypothesis (AZ) and the inequality (2.1.1) we obtain
e @lils 1wl
+ f;(féllk(t,s)ll Ilhz(s,ax(s),ac)llda)llz(s)llds
+|]=0)]]
< 1l + 2°dlell + 1= Drgllece,o)ds + | [x]]
s el + 2% lel | + (=] + [Ixl].
That is, l]Go(f,c,x) (t)” is bounded, so that Go(f,c,x) e BC(R+).
I1:1 [1; p. 517], R. Bellman established. a result which contains
the following theorem as a special case.

THEOREM 2.2.1. A necessary and sufficient condition for

fgk(t,s)x(s)ds € BC(R+) whenever x € BC(R+) is that the inequality (2.1.1)

be satisfied.

LEMMA 2.2.1. The partial differential of 6° with respect to the

first variable exists and is continuous on BC(R+) X B(O,qm) x B(0,q).
With (f,c,x) € BC(R+) x B(O,qm) x B(0,q) and ¢ € BC(R+), we have
that Go(f + ¢,c,x) - Go(f,c,x) = ¢(t), and hence
(2.2.2) d,6°(£,c,%; ¢) = ¢.
Since (f,c,x) is arbitra;y in BC(R+) x B(O,qm) x B(0,q) and leo is the
" identity map on BC (R+), the result follows.

LEMMA 2.2.2. The partial differential of 6° with respect to the

second variable exists and is continuous on BC(R+) x B(O,qm) x B(0,q).

If (f,c,x) € BC(R+) x B(O,q_m) x B(0,q) and X € R" are such that
c+ )€ B(O,qm), then .
Go(f,c + A,x) - Go(f,c,x)
= f;(.fék(t,s)hc(s,x(s),al)du)dsk.
We proceed to show that

(2.2.3) 4,6%(£,c,%3 ) (t) = fgk(t,s)hc(s,x(s),c)dsx.
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Let € > 0 be fixed. From hypothesis (Ag), there is a Ge > 0 such thét
if (t,u,c) and (t,u,c') belong to D(q) X B(O,qm) and |]c -~ c'|]| < Ge,
then ||hc(t,u,c) - hc(t,u,c')||< e/(2M), where M is defined by (2.1.1).
Let X € B(O,qm) be such that ¢ + X € B(O,qm) and 0< ||A]]< 65' Then
Ilhc(s,x(s),c + al) - hc(s,x(s),c)||< e/(2M) for each o € [0,1].
It follows that
[16°(Ese + 2,00 () = €2(F,e,0) (8) = 4,6%(E,c,x30) ()|

K3 fg(féllk(t,s)ll [Ihc(s,x(s),c + ad) - hc(s,x(s),c)||da)dsk

< ||a]]er2.
Hence,

[16°¢E,e + A,x) = (£, 0,%) = a,6%(E,c,35 M| [/][A]] < .

With A an arbitrary element of RP, it is clear that d2G°(f,c,x; A) is
linear in A. Also,

[1d,6° (£, ¢,%5 1) (8D ]| f;||k(t,s)|l Ilhc(s,x(s),c)Alldé,
and in view of (2.2.1) and the fact that hc(t,x(t),c)A 3 BC(R+) for
each A € K", it follows from the above Theorem 2.2.1 that d,G°(f,c,x; *)
is a bounded linear map of K" into BC(R%). Hence, deo(f,c,x; +) is
the required partial differential.

In order to establish the continuity of d Go, let € > 0 be

2
fixed and select a 6E > 0 such that if (t,u,c) and (t,u',c') are elements
of D(q) x B(0,q ), while ||u - u'[]< §_ and e = ¢} < §_» then
llhc(t,u,c) - hc(t,u',c')||< e/(2M). Let (f,c,x) and (£',c',x")
belong to BC(R%) X B(O,qm) x B(0,q) and be such that ||(f,c,x) -
(f',c',x')ll < 68. Then, with A € R" we have that
[16,6°(E,e,35 A)(E) - d,6%(E" e x5 M) () ]
$ f;llk(t,s)li ||hc(s,x(s),c) - hc(s,x'(s),c)lldsllkll

< |Ixlle/2.
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Consequently, Hdeo(f,c,x; A) - deo(f',c',x'; M <selfrf]/2, and
since A is an arbitrary element of Rm, it follows that Hdeo(f,c,x; ) -

dZGO(f',c',x'; *)|| <e, and hence, d ¢° 1s continuous on BC(R+) x

2
B(O,qm) X B(O:Q)'

LEMMA 2.2.3. The partial differential of ¢° with respect to the

third variable exists and is continuous on BC(R+) x B(O,qm) x B(0,q).
If (f,c,x) € BC(R+) x B(O,qm) x B(0,q) and £ € B(0,q) are such
that x + ¢ € B(0,q), then |
Go(f,c,x + g)(t) - Go(f,c,x)(t)
= FoUgk(t 9B, (8,x(s) + aE(s) ,)da)E(s)ds ~ E(t).
We shall proceed to establish that
(2.2.4)  d6°(F,c,x5 £) (1) = Sok(t,8)h, (s,x(s),e)E(s)ds ~ E(t).
Let ¢ > 0 be fixed. From hypothesis (Ag), there exists a 6€ > 0 such
that if (t,u,c) and (t,u',c) belong to D(q) x B(O,qm) and ||u - u']] <
§_» then Hhx(t,u,c) - hx(t,u',c)||< e/(2M). In particular, if £ € B(0,q)
with x + £ € B(0,q) and 0 < ||&]] < 65, then Hhx(s,x(s) + ag(s),c) -
hx(s,x(s),c)[] <eg/(2M) for o € [0,1]. It follows that if d3G°(f,c,x; £)
is defined by (2.2.4), then A
116%(reux + £)(e) = 67 (E,e,2)(8) = .67 e0x3 )(O)]]
SIEUTE,s) || [ (s,x(s) + agls),e) - h_(s,x(s),¢) | |da)
l1g¢s)]]ds
sellsll/z. |
Hence, we have that
||G°(f,c,x +£) - G°(f,c,x) - d3G°(f,c,x; eyll/|lel] <e.
With £ € BC(R+), it is clear that d3G°(f,c,x; g£) is linear in £. Also,

we have the inequality

| 1456°CEse,x; £)(8) || sfgl[k(t,S)hx(s,X(s),c)H [1&¢s) | lds,
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and since f;l Ik(t,s)hx(s,x(s) ,c)[ ldss Me° it follows from the above
Theorem 2.2.1 that d3G°(f,c,x; *) is a bounded linear transformation
on BC(R+). Hence, d3G°(f,c,x; *) is the required partial differential.
An argument similar to the one given in Lemma 2.2.2 serves to

establish the continuity of d G° as a function of (f,c,x).

3
THEOREM 2.2.2. Suppose that hypot:heseg (A;), (A;), (Ag) and

(2.1.1) are satisfied and that c°® is the function defined by (2.2.1).

Then G° is continuously differentiable on BC(R+) X B(O,q_m) x B(0,q).

Furthermore, if (f,c,x) € BC(R') x B(0,q) x B(0,q) amd (4,1,E) € BC(K)
x B x BC(R'), then
467 (£,c,%5 §,1,8)(£) = $(t) + (ok(t,8)h_(s,%(s),e)ds)A
+ Jok(t,9)h (5,x(s),0)E(s)ds - E(t).

From Lemmas 2.2.1, 2.2.2 and‘2.2.3, we have that leo(f,c,x; $),
deo(f,c,x; A) and d3G°(f,c,x; E) exist and are continuous on BC(R+) X
B(O,qm) x B(0,q). It follows from a well known theorem [9; p. 154]
that 6° is continuously differentiable on BC(R+) X B(O,qm) x B(0,q) and

dGo(f,c,x; PIA,E) = leo(f,c,x; o) + deo(f,c,x; A)
+ d3G°(f,c,x; £).

LEMMA 2.2.4. Let the hypotheses of Theorem 2.2.2 be satisfied.

Suppose there exists a real number Mr'o > 0 such that ro(t,s), the

reciprocal kernel associated with k(t,s)hx(s,0,0), satisfies

J'g”ro(t,s)lldss Mo for t € R'.

Then, d3G°(0,0,0; *) is a linear homeomorphism of BC(R+) onto BC(R+).

For each f € BC(R+) the linear equation
t
(2.2.5) g(t) ==f(t) + Sgk(t,s)h (s,0,0)E(s)ds
has exactly one continuous solution which is given by

£(t) = -£(t) - f;ro(t,s)g(s)ds.



22

Theorem 2.2.1 shows that £ € BC(R+) and since (2.2.5) is equivalent
to d3C°(0,0,0; £) = £, it follows that d3G°(0,0,0; *) is bijective.

It was established in Lemma 2.2.3 that d3G°(0,0,0; *) is bounded
and linear. Since BC(R+) is a Banach space, it is well known [14; p. 180]
that (d3G°(0,0,0; '))-1 exists and is a bounded linear operator on
BC(R+). Therefore, d3G°(0,0,0; *) 1s a linear homeomorphism of BC(R+)
onto BC(R+).

THEOREM 2.2.3. Let the hypotheses of Lemma 2.2.4 be satisfied.

Then there exist open balls B((0,0),r‘;.)CBC(R-'-) X B(O,qm) and B(O,rz) C

BC(R+) and a function F°: B((0,0),rﬁl) > B(O,rhz) with the following
properties:
(1) the point ((£,e), F°(f,e)) € B((0,0),7,) x B(0,r,) is &
solution of Go(f,c,x) = 0 for each (f,c) € B((0,0),rﬂl), and

there is no other solution with the same (f,c) in B(O,rz);

(ii) the partial differential d G°(f,c,F° (f,c); *) is invertible
3 — ———————————nat

for each (f,c) € B((0,0),r,);

(iii) F° is continuously differentiable on B((0,0) ,rl).

The proof is immediate for we observe that GO(O,O,O) = 0 and that
the hypotheses of the implicit function theorem of Hildebrandt and
Graves [8; p. 150] are satisfied.

THEOREM 2.2.4. Assume that the hypotheses of Theorem 2.2.3 are

satisfied and that F°: B((0,0),rl) ->B(0,r2) is the corresponding

implicit function. Also, suppose (f,c) € B((0,0),rl) and x € B(O,rz)

satisfy x = Fo(f,c). Then,
(2.2.6) dF°(£,c,5 6,0) (£) = ¢(t) + f;ro(t,s,c)db(s)ds
+ (I;k(t,s)hc(s,x(s),c:)ds)A

+ (fgro(t,s,c)[[zk(s,u)hc(u,x(u),c)du]ds))\
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where ro(t,s,c) is the kernel reciprocal Eg_k(t,s)hx(s,x(s),c). Con-

sequently, dFo(f,c§ ¢,2) 1is the solution of the variational equation

(2.2.7) £(t) = ¢(t) + f;k(t,s)hc(s,x(s),c)dsl
+ £ ok(t,8)h_(s,%(s) ,)E(s)ds.
By Lemma 2.2.4, (d56° (£, c,x3 )"} exists and is a bounded 1linear
transformation on BC(R'). If d,6°(£,¢,%5 £) = ¢, then
E(t) = - (£) + / k(t,8)h, (s,x(s),)E (s)ds.

The solution of this linear equation is

E(t) = -¢(t) - fgro(t,s,cn (s)ds,
80

(@,6°(E 0,35 =N TH@I(E) = =(6(2) + [;r°(t,5,0)0 ()ds).

Using the chain rule, we obtain

(2.2.8)  dF°(f,e5 6,0 (8) = [-(d,8°(Eseums N7 e (@G0 (F,e,x; ) +
d,6°(F,e,%; +))1(4,1) (1)

[-(@,6° (5 )1 (@,6°(E 0035 6) +

d2G°(f,c,x; A))1(t)

[-(d,6° (F,e,35 )7 (4 +

Lok (e >8)h (s,x(s) ,e)dsM) ] (£)

o(t) + fgro(t,s,c)¢(s)ds
+ [£gk(t,8)h_(s,%(s) ,c)ds]A
+ [fgro(t,s,c)
(fgk(s,u)hc(u,x(u),c)du)ds]l.
Since the right hand side of (2.2.8) is the solution of (2.2.7),
the result follows.,
Since F° is differentiable at (f,c) € B((0,0),gi), it follows
[9; p. 153] that the two partial differentials of F at (f,c) are given by

4,7 (F,c35 9)(2) = () + Jor°(t,8,0) ¢ (s)ds
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and

szo(f,c; A) () = fgk(t,s)hc(s,x(s),c)dsl

+ fgro(t,s,c)fgk(s,u)hc (u,x(u),c)dudsh.

We observe that leo(f,c; ¢) is the solution of the variational equation

E(E) = ¢ () + S k(t,8)h (s,%(s),c)E(s)ds
and szo(f,c; A) is the solution of

E(t) = Jok(t,8)h_(s,%(s),c)dsh
+ fgk(t,s)hx(s,x(s),c)g(s)ds.
In the following sections we wish to suppress the dependence of

h on the parameter c. With this in mind we make the following definitions

and hypotheses.

Let g be a function defined on D(q) with range in R" that satisfies

the following conditions:

(Al) g is continuous on D(q) and g(t,0) = 0 for t € R+

(A2) the components 8; of g have continuous partial derivatives with

respect to the components x:i of x € Rn and the n X n matrix
function ng(t,x)ll_i_g bounded above by P for (t,x) € D(q);

(A3) for each € > 0, there is a 65 > 0 such that if (t,x) and (t,y) are

in D(q) and |[x - y|| < &_, then ||g (t,x) - g (t.1)]] < e.

In order to facilitate further discussion we will list two

more hypotheses.

(Aa) Let k be a continuous n x n matrix function defined on A for

which there exists an M > 0 such that

sollkCe,s)||dss M for t e &',

(AS) Let r(t,s) be the kernel reciprocal to k(t,s)gx(s,O) and suppose

that there exists an Mr > 0 such that

fgllr(t,S)Ildss M_ for t € R
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Even though the hypothesis (Aa) is already in force we list it again so
that in the sequel we may refer to the above hypotheses collectively as
hypotheses (A).
Let G: BC(R') x B(0,q) ~ BC(R') be defined by
(2.2.9) G(E,x) = £(£) + /ok(t,8)g(s,x(s))ds - x(t).
Arguments similar to those used to establish that the range of c° is

in BC(R+) suffice to show that the range of G is also in BC(R+).

THEOREM 2.2.4. If hypotheses (Al) through (A4) are satisfied,

then G is continuously differentiable on BC(R+) X B(0,q). Furthermore, if

(£,x) € BC(R") x B(0,q) and (4,£) € BC(R) x BC(RY), then
(2.2.10) dG(£,x; ¢,6)(£) = $() + Sgk(t,8)g, (s,x(s))E(s)ds - E(t).

Let h(t,x,c) = g(t,x) for (t,x) € D(q) and c € B(O,qm). In view
of Theorem 2.2.2, the result follows.

THEOREM 2.2.5. If hypotheses (A) are satisfied, then there exist

open balls B(O,rl) c BC(R+) and B(O,rz) € B(0,q) and a function

F: B(O,rl) - B(O,rz) with the following properties:

(1) the point (f,F(f)) € B(O,rl) x B(O,rz) is a solution of
G(f,x) = 0 for each f € B(O,rl), and there is no other

solution with the same f in B(O,rz);

(i1) the partial differential de(f,F(f); *) is invertible for

each f ¢ B(O,rl);

(i11) F is continuously differentiable on B(O,rl) .

The result follows from Theorem 2.2.3 on setting h(t,x,c) = g(t,x)
for (t,x) € D(q) and c € B(O,qm).

THEOREM 2.2.6. Assume hypotheses (A) are satisfied and let

F: B(O,rl) > B(O,rz) be the implicit function of Theorem 2.2.5. Also,

suppose that (f,x) € B(O,rl) x B(O,rz) satisfies x = F(f). Then
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(2.2.11) dF(f; ¢) = ¢(t) + f;r(t,s; x)¢ (s)ds,

where r(t,s; x) is the kernmel reciprocal to k(t,s)gx(s,x(s)). Conse~

quently, dF(f; ¢) is the solution of the variational equation

(VIgskig,x])  E(E) = $(£) + [ k(t,0)g, (s,%(s))E(s)ds.

Once more we set h(t,x,c) = g(t,x) for (t,x) € D(q) and
c € B(0,q ). In view of Theorem 2.2.2, (2.2.11) follows from (2.2.6),
since hc = 0. Also, it follows from (2.2.8) that dF(f; ¢) satisfies
- Vio,k,g,x].

If f € B(O,rl), Theorem 2.2.5 guarantees the existence of
exactly one solution of
(EL£,k,g]) x(t) = £(t) + /k(t,8)g(s,5(s))ds
in B(O,rz). However, the possibility of the existence of solutions not
in B(O,rz) remains. Consequently, the following theorem is appropriate.

THEOREM 2.2.7. Let hypotheses (A) be satisfied. If f € B(O,rl),

then E[f,k,g] has exactly one continuous solution and this solution is

in B(O,rz).

Let f be fixed in B(O,rl) and x = F(f) be the solution of
E[f,k,g] given by the implicit function ofTheorem 2.2.5. Assume y is
a continuous solution of the same equation and that y is defined on a
non-degenerate interval J. The interval J is closed on the left with
left hand end point O.

Suppose there exists a ty € J with y(tl) # x(tl). The set {t € J;
| ly(t) = x(t)]| > 0} is bounded below by O since y(0) = £(0) = x(0).
Set t2 = inf {t € J; lly(t) - x(t)l[ >0}. Let t, =sup {t€ J; t

0

t, and |[|y(t) - x(t)[| = 0}. If t, < t,, it follows from the defini-

0

tion of to that there exists a t € (to,tz) such that ||y(t) - x(t)ll >0,

which contradicts the definition of t2. We conclude that to = t2- If
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to > 0, then y(to) = x(to) because ||y(t) - x(t)ll is continuous on

[O,to]. Note that t, is not the right hénd end point of J because tle J

0
apd ||y(tl) - x(tl)ll > 0.

Since x € B(O,rz) and r,$ 9 it follows that { (t,x(t));
05 tg to} C D(q). As (to,y(to)) = (to,x(to)) € D(q), the real number
q- Ily(to)ll is positive and, due to the continuity of q - |ly(t)||,

there exists a B > 0 such that [to, + B8] €Jand q - ||Y(t)l| >0 on

%

[to,to +8]. With b = t, + B, it follows that { (t,y(t)); t € [0,b]}C

0
D(q).

The set A(b) ={ (t,s); 0 sg tg b} is compact and so there
exists an N > 0 such that |[k(t,s)|| & NonA(b). For t € [0,b], we
have the inequalities A

Ly - =0 < sllece,9)] letsyis) - gls,x(s))]las

s 15l keeo) | |18, (srx(s) + aty(s) - x()]]

lly(s) - x(s)||)dads

< PNTSIly(s) - x(s)llds
where P is a bound for llgx(t,x)ll. It follows from Gronwall's inequal-
ity that Ily(t) - x(t)||'= 0 on [0,b]. From the definition of to,
there exists a t € (to,b) such that ||y(t) - x(t)ll > 0. So, the as-
sumption of the existence of a t € J such that y(t) # x(t) leads to a
contradiction. Hence, x = F(f) is the only continuous solution of
E[f,k,g] and it is in B(O,rz).

3. Stability and linearization of E[f,k,g]. With the exception

of Theorem 2.3.2, the theorems of this and the next section are gener-
alizations of results concerning the Liapunov stability of solutions of
differential equations of the type x = w(t,x), which may be written in

the form x(t) = xy + f;w(s,x(s))ds. In our theorems the above equation
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is replaced by E[f,k,g], and £ plays the role of the initial vector Xy
-5A common technique used in studying perturbed linear equations

of the form x = A(t)x + w(t,x) is to express the solution of the
equation in the form

x() = 8(6)e™ 1 (O)x, + /o ()6 (e)w (s x(e))ds
where ¢ is a fundamental matrix for the system x = A(t)x. This is accom-~
plished by the method of variation of parameters. Various authors (see
[11] and [12]) have adapted this technique to the study of integral
equations of the form '

x(t) = £(2) + [k(t,s)[x(s) + g(s,x(5))1ds.
In our work, the implicit function of Theorem 2.2.5 will play a role
similar to the variation of constants formula.

THEOREM 2.3,1. Assume that hypotheses (A) hold and let

F: B(O,rl) -> B(O,rz) ke the implicit function of Theorem 2.2.5. Then,
for each ¢ > 0 there is a §_ > O such that if HEL < 8 » then the

unique solution x gﬁ_E[f,k,g] satisfies ||x|| <€,

Let ¢ > 0 be fixed and suppose thate § r The function F is

9*
continuous and, as a result, F—l(B(O,s)) is open in B(O,rl). Since
0 e F-l(B(O,e)), there exists a 6& > 0 with 68 < r, and such that
B(0,8) C F - (B(0,e)). So, if £ € B(0,5), then x = F(£) € B(0,e).
In the language of differential equations, the above theorem
might be stated as follows: The zero solution of E[0,k,g] is stable.

The next result concerns the linearization of E[f,k,g].

THEOREM 2.3.2. Assume that hypotheses (A) hold and let F:

B(O,rl) -+ B(O,rz) be the implicit function of Theorem 2.2.5. Let x and §

denote solutions of E[f,k,g] and V[¢,k,8,0] respectively. Then, for each

¢ > 0, there exists g_de > 0 such that if f and ¢ beloqgﬁgg_B(O,Ge), then




29
= - glf < e.
Let ¢ > 0 be fixed. For each ¢ € BC(R') the solution § of

Vi¢,k,g,0] is given by

LB =) * Six (00 (6)ds,
where r(t,s) is the kernel reciprocal to k(t,s)gx(s,O). From (AS)’ we
have that fg||r<:,s)| ldss ¥ for t € RY, With 8, = /[2Q + M1,
we have that, if [[¢]|]| < &, then

el s o]l + s5llxteoll [lecs)|las

s a+mllell,

and so | ||| < €/2. The function F is continuous and satisfies F(0) = 0.
> 0, satisfying §

As a result, there exists a § < T and such that

‘ 2 2
if ||£]] < &,, then ||x|] < €/2, where x = F(f). Let 6_=min{8 ,6,}
and £ and ¢ belong to (0,8 ); then 1= - gl s |lxl] + ||gll< .

We digress in order to examine the restrictive nature of the

hypothesis g(t,0) = 0 for t € R+. Let x° € BC(R+) be a solution of the

equation
t
(EL£°,k,w]) y(e) = £9(£) + k(e ,8)w(s,y(s))ds,
where £° € BC(R+), and w is defined on D(xo,q) ={ (t,x) € R" + 1; t € R+

and Hx - xo(t)H < q} with range in R". The fuﬁction wo(t,z) =
w(t,x°(t) + z) - w(t,x°(t)) is defined on D(q) ={ (t,z) € R* T 1; ¢ e &
and Hzl | < q} and satisfies wo(t,O) =0 for t € R+.

Assume the zero solution of

(E[0,k,w°]) z2(t) = f;k(t,s)wo(s,z(s))ds

has the following property: for each € > 0 there exists a Ge > 0 such

that if f € B(O,GE), then E[f,k,wo] has a solution in B(0,€).
Let € > 0 and corresponding 65 > 0 be fixed and suppose

f ¢ B(fo,ae). Then Af = £ - £°¢ B(O,&e), and so a solution, Ax, of
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z(t) = Af(t) + f;k(t,s)wp(s,z(s))ds

exists and satisfies Ax € B(0,e). With x(t) = xo(t) + Ax(t), we have

that
x(t) - x°(t) = Ax(t)
' = A£(t) + S k(e,8)%" (s,0%(s))ds
= A£(8) + S k(t,8) [w(s,x(s)) - w(s,x"(s))]ds
and so,

x(t) = Ax(t) + x°(t)
= £(t) + [ k(t,8)w(s,x(s))ds.
Hence, x is a solution of E[f,k,w] and since Ax € B(0,e), it follows
that x € B(xo,s).

Therefore, if one wishes to examine the change in a solution of
E[fo,k,w] induced by a change in fo, it is sufficient to consider the
zero solution of E[O,k,wo].

In the event that w  satisfies the same hypotheses as the function
g in our previous theorems, it follows that the solution, &, of
V[Af,k,wo,OJ satisfies ]|Ax - E||< € so that § approximates Ax when
Af is small.

4., Stability of perturbed equatioas. In this section we direct

our attention to perturbed equations corresponding to E[f,k,g].

THEOREM 2.4,1, Assume that hypotheses (A) hold and.let

F: B(O,rl) > B(O,rz) be the implicit function of Theorem 2.2.5. Let

B(O,ql) c BC(R+) and suppose H: B(O,ql) - BC(R+) satisfies H(0) = 0

EEQ_IIH(u) - H(WV)|] ¢ Ml||u - v|| for some M, > 0 and all u and v that

belong to B(0,q,). If [[dF(0; +)|[M; < 1, then for each ¢ > O there is

g_ée > 0 such that 1£_||f|| < Ge’ then the integral equation

(E[£,k,g,H]) x(£) = £(£) + Sok(t,s)g(s,x(s))ds + H(x)(t)
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has a solution in B(0,e). Furthermore, if E[f,k,g,H] has a unique

solution for each f in B(O,Ge), then the solution x(*,f), corresponding

to £, is a continuous function of f.

Let € > 0 be fixed and select El > 0 so that

(2.4.1) (e, + |[aF(o; )M < 1.
Since F is continuously differentiable on B(O,rl), there is a 61 satis-

fying 0< 6. < s and such that if f € B(O,Gl), then HdF(f;') -

1
dF(0; -)Il < ey Alternately,

(2.4.2) [1arces )[[< e + [[dF (05 *)

Choose §,< min {Gl,Mlql,Mle}. It follows from the mean value theorem

2
[9; p. 149] that if f and f' belong to 3(0,52), then

(2.4.3) ||FC¢E) - F(EY]] ¢ (e, + [larco; )[D]|£ - £']].

Let A be a real number that satisfies
(2.4.4) (e, + [|aF; ) [y =1 -1
and note that 0< A< 1. Set
(2.4.5) p = (L -8,/
and define H: B(0,8,) x B(0,p) » BC(R) by
(2.4.6) H(E,u)(t) = £(t) + H(u)(t).
Fix f € B(0,18,) and let u € B(0,0); then it follows from (2.4.6) and
the hypotheses on H that |

[ @[]« [E@]] + [|B@ () - 5#O) (8)]]
s €]l + | |8@) - B()

.

Since f € B(O,AGZ) and u € E(o,p), it follows from the hypotheses on H
and (2.4.5) that

el + [5G = 8O || < [1€]] + M ]lu]] < xs, +mp =6

2 2

and therefore,

(2.4.7) |[HCE,w] | < 6,
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With f € B(O,J\Sz) fixed, the composite function F ° ﬁ(f,-) is defined
on —B-(O,p) since ﬁ(f,u) € B(O,Gz) for u € E(O,p).

We will verify that F o I;(f,-) is a contraction map on B(0,p).
Since F(0) = 0,

HPGE, )| = ||FEHEW) - FO)]]
and, in view of (2.4.3) and (2.4.7), we have
|1FGE,u - FO)][s (e, + ||aFC0; )| ])s,
In view of (2.4.4) and (2.4.5), we have that
(e, + |]dF(0; -)||)52 = (1 - 2)8,/M =03
so, HF(&(f,u))I | & p for each u € -I;(O,p). It follows that F © ﬁ(f,-):
E(O,p) - E(O,p). Also, if u and v belong to B(0,p), then, from (2.4.6),
||l¥(f,u) - ﬁ(f,v)ll = ||8(u) ~ H(v)||. By hypothesis, [laeu) - HW)|] ¢
Mlllu - v” and so, Hé(f,u) - I-’I‘(f,v){ l < MlHu - v” In view of
(2.4.3) and (2.4.4), it follows that
2.4.8) |[FQ(E, W) - FAE)] | ¢ (e + |15 )by |]u - v]]
¢ @ -1]|u-v]]|.

Since 0< 1 - A< 1, we have that F © };(f,-) is a contraction map on
B(0,p), and it follows from the Banach fixed point theorem that there
exists a unique x € E(O,p) such that x = F(};(f,x)). Since };(f ,X)(t) =
f(t) + H(t), the above statement is equivalent to the existence of a
solution of E[f,k,g,H] in B(0,p). As p = (1 - A)62/Ml< e, the first
conclusion follows on setting 68 = AGZ.

Now suppose th: solutions of E[f,k,g,H] are unique for f € B(O,Se).
This hypothesis is necessary because it is possible that E[f,k,g,H]
has solvtions not in E(O,p) even though f € B(O,Gs). As we have seen
in (2.4.8), ||F(H(E,w)) - FCHCE,v)) || < (1 - A)|]u - v|| for each

f € B(O,Ge), and hence, F ° H: B(O,Ge) x 'I?(O,p) + B(0,p) is a
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cont:ractioﬁ in u, uniformly over £. That is, the contraction constant,
1 - ), is independent of f. Also, if f and £' belong to B(O,GE) and u €
E(O,p), then it follows from (2.4.6) that Hé(f,u) - ﬁ(f',u)” =
||£ -~ £'|| and consequently, H is continuous in f for each fixed u.
Since F is continuous, F © 1; is continuous in f for each fixed u and it
follows from a well known theorem [9; p. 230] that x(+,f) = F ° I;(f,x(-,f))
is a continuous function of f£.

COROLLARY 2.4.1. Assume that hypotheses (A) hold and let

F: B(O,rl) -+ B(O,rz) be the implicit function of Theorem 2.2.5.! Suppose -
2

with

that k1 1s a continuous function defined on A X B(O,ql) cg??

range in R". Assume further that kl satisfies the following conditions:

W) ¥l(t,s,0) = 0, for (t,s) € A;

(i1) there exists a positive continuous function kO: A >R

and a real number M° > 0 such that Hkl(t,s,x) - kl(t,s,y)H
< k°(t,s)||x - y|| and fgko(t,s)dss M for t € R and

(t,s,x) ;an_d_ (tss’}') in A x B(O)ql)'

If ||dF(0; °)HM° < 1, then for each ¢ > 0 there exists a §_ > 0 such
that if ||£]] < §_» then
(E[£,k,g,k*])  x(t) = £(t) + Ikt 5)g(s,x(s))ds + fgkl(t,s,x(s))ds

has at least one solution in B(0,e).

With u € B(0,q;), define H: B(,q,) BC(RT) by H(w) (t) =
fgkl(t,s,u(s) )Jds. Since kl and u are continuous, H(u) is a continuous
function of t. Also, if u and v belong to B(O,ql), then

|[H@) (&) - B0 (0 ]| S5 [k (E,5,u()) = K (E,s,v()) | Jas

¢ o= v |75 (e, s)ds
s M[u - v]].

Since H(0) = 0, it follows on replacing v with O that H(u) € BC(R+).
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An application of Theorem 2.4.1 establishes the result.

LEMMA 2.4.1. Under the hypotheses of Corollary 2.4.1, there

exists a § > O such that if f € B(0,§), then the solution gf.E[f,k,g,kl]

1s unique.

Recall that g is defined on D(q) and that kl is defined on
A x B(O,ql). Let ¢ be a real number that satisfies 0< ¢ < min‘[q,ql}.
In view of Corollary 2.4.1, there exists a § > 0 such that if ||f|]| < &,
then E[f,k,g,kl] has a solution, x, in B(0,e).

Assume that y is another solution of E[f,k,g,kl] defined on a
non-degenerate interval J. The interval J has left hand end point 0
and is closed on the left.

Suppose there exists a t in J such that y(t) # x(t). As in
Theorem 2.2.7, this implies the existence of a t,. € J such that t, is

0 0
not the right hand erd point of J and y(t) = x(t) for t € [O,to]. Also,

1 1
y(t) # x(t).

if t. € J and t, > to, then there exists a t € (to,tl) such that

Since (t,x(t)) € D(q) for t € R+ and (t,s,x(s)) € A x B(O,ql),
it follows that { (t,y(t)); t € [O,tol}(: D(q) and {(t,s,y(s)); (t,s) €
A(to)} C A X B(O,ql). Consequently, there are positive numbers 61 and
82 such that [O,t0 + Bl] cJ, [O,t0 + Bz] C J while { (t,y(t)); t €
[tgst, + 8,1 C D) and { (t,8,7(s)); (£,8) € A(ty + 8,)} C A x B(0,q,).

Set b = t0 + min {61,82} and note that A(b) is compact. As
a result, there exist real numbers N > 0 and N° 2 0 such that
||k(t,s)||s N and ko(t,s).s ¥° on A(b). In view of hypothesis (ii) of
Corollary 2.4.1 and hypotheses (Az) and (A3) we have the following

inequalities:

lly(®) - x(®)|] s Sl 1kCe,8)]| |les,y()) = gls,x(s)) | |ds
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+ 7K (h50y(8) = K (Eys,1(0) ] | ds
< (NP + ) fglly(s) - x(s)]]as.
It follows from Gronwall's inequality that y(t) - x(t) = O on [0,b].
This contradicts the assumption of the existence of t € J such that

y(t) # x(t), and hence the lemma is established.

COROLLARY 2.4.2. Let the hypotheses of Corollary 2.4.1 be

satisfied. Then for each ¢ > 0 there is a 6e > 0 such that if f € B(O,Ge),

then E[f,k,g,kl] has a unique solution in B(0,e) and the solution is a

continuous function of f.

With ¢ > 0 fixed, it follows from Corollary 2.4.1 and Lemma 2.4.1
that there exists a §, > 0 such that if [1E]] < §,» then E[f,k,g,kll
has a unique solution in B(0,e).

From Theorem 2.4.1, there is a §, > O such that if ||f]|]|< &

2 2
and solutions of E[f,k,g,kl] are unique, then the solution of E[f,k,g,kl]
is a continuous function of £f.

The result follows on setting 6€ = min-[61,62}.

COROLLARY 2.4.3. Assume that hypotheses (A) hold and let

F: B(O,rl) > B(O,rz) be the implicit function of Theorem 2.2.5. Sup-

0 . o
pose k is an n x n matrix function with corresponding real number M,

that satisfies hypothesis (AA)' Assume go is a continuous function

defined on D(q2) = {(t,x) € R" +1

£ € R and ||x|]< q, } with range

n :
in R'. Assume further that go satisfies the following conditions:

(i) £°(t,0) = 0 for t € R';

(i1) for each ¢ > 0 there exists an n > 0 such that if (t,x)

and (t,y) belong to D(q,) with |[|x|}< n and ||y]]|< n,
then ||g°(t,x) - et ] ¢ tf|x - y]|.

Then, for each e > 0 there is a §_ > O such that if [E]] < §_, then
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x(t) = £(t) + f;k(t,s)g(s,x(s))ds + fgko(t,s)go(s,x(s))ds

has a unique solution in B(0,e). Furthermore, the solution is a con-

tinuous function of f.

We will verify the hypotheses of Corollary 2.4.1. Let t;o >0
satisfy ||dF(0; )| ]Moz;o < 1; then from the above hypothesis (ii), there
exists an no, with 0 < nos Ay such that if (t,x) and (t,y) belong to
D(q,) and [[x|[ < n® and ||y[[< n°, then |[g°(t,%) - g°(e,9)] |
MIEE4IE

Since n°< 9,0 2% is defined on D(°) = {(t,x) ¢ R* T 1; r e &¥
and ||x]|] < no}. Define kl by kl(t,s,x) = ko(t,s)go(s,x) for (t,s,x) €
A X B(O,no). Then kl satisfies the conditions:

(@) K'(t,s,0) = KO(t,5)g°(s,0) = 0 for (t,s) € A;

(b) Hkl(t,s,x) - kl(t,S,y)Hs Hko(t,s)ll Hgo(s,x) - go(s,y)l |

¢ Ll |] |1x -yl
for all (t,s,x) and (t,s,y) that belong to A x B(O,no).
Also, IE;OHkO(t,s)Hdss %° for t € R

In view of Corollary 2.4.2, the result follows.

COROLLARY 2.4.4., Assume that hypotheses (A) hold and let

F: B(O,rl) > B(O,rz) be the implicit function of Theorem 2.2.5. Sup~

o, . . + +
pose k™ is a continuous n x n matrix function defined on R x R that

satisfies the following conditions:

(1) there exists an M > 0 such that f°0°| |k°(t,s)|ldss M° for

tGR+;

(ii) for each n > 0 and T > 0, there exists a ¢ > 0 such that

if t and t' belong to [0,T] and |t - t'| < g, then

rgl Iko(t,s) - k°(t',s) [|ds < n.

If ||dF(u; +) ||M°< 1, then for each e > 0 there is a Ge > 0 such that
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if ||f||< 68, then there exists at least one solution of

x(e) = £(£) + S k(t,8)g(s,x(s))ds + S k" (£,5)x(s)ds
in B(0,e).

Define H: BC(R') - BC(R') by H(u)(t) = f°5k°(t,s)u(s)ds. We
will verify that H(u) € BC(R*) whenever u € BC(R+). Letn > 0, u € BC(R+),
and to € Rf be fixed. Set T = to + 1 and choose £ > 0 so that if
t € [0,T) and |t - t0[< r, then

Fol 1K°(e,8) = 1(eq,8)| [ds < n/@ + |[u] ).
Then,
I[H(u)(t) ~ H(u)(to)]|s f;,lko(t,s) - ko(to,s)|| Ilu(s)llds
£ ']u]|f3||ko(t,s) - ko(to,s)llds,
and so [[H(u)(t) - H(u)(to)lls ||u||/(l + Ilull) < 1n. Sinée t0 is
arbitrary in R+, it follows that H(u) is a coatinuocus function on R+.
If u and v belong to BC(R+), then,
|18 (&) = B (0[] s Sl 1K [[uts) - v(s)|]ds
s ¥Wlu -]
Consequently, ||H(u) - H(v)||s Mollu - v||. Since H(0) = 0, we may
set v = 0 and conclude that H(u) € BC(R+).

In conclusion, observe that we have verified those hypqtheses of
Theorem 2.4.1 which guaranctee the existence of a solution of E[f,k,g,H]
in B(0,e) whenever ||f|]| < Ge.

Theorem 2.4.1, Corollary 2.4.2 and Corollary 2.4.4 are similar to
theorems established by Corduneanu [6]. The principal difference is
that our results pertain to perturbations of nonlinear systems while
Corduneanu confined his attention to perturbed linear systems.

The hypotheses placed on the function go in Corollary 2.4.3 are

similar to those found in Miller, Nohel and Wong [11].
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For completeness, we state a version of the Schauder-Tychonoff
Fixed Point Theorem that will be used in the sequel. This form of the
theorem may be found in [4; p. 9].

SCHAUDER-TYCHONOFF THEOREM. Let C(R',R") denote the set of

: + . n
continuous functions on R with range in R, Let S be the subset of

C(R+,Rn) that consists of those functions x such that ||x(t)[]| su(t)

+
for t € R, where p is a fixed positive continuous function defined

on R+. Let T be a mapping of S into itself with the following proper-

ties:

(1) T is continuous, in the sense that if (xm) is a sequence

in S and X, X uniformly on every compact subinterval of

R+, then T(xm) + x uniformly on every compact subinterval

of R';

(11) the functions in the image set T(S) are equicontinuous and

bounded at every point of R+.

Then T has at least one fixed point in S.

LEMMA 2.4.2. Assume hypotheses (A) hold and let F: B(O,rl) -+

B(O,rz) be the implicit function of Theorem 2.2.5. Suppose (fm) is a

sequence in E(O,r) (0 <r < rl) that converges to f uniformly on each

compact subinterval of R+. Then, F(fm) converges to F(f) uniformly on

each compact subinterval of R+.

It is clear that if fm -+ f uniformly on each compact subinterval
of R+, then f € E(O,;) - B(O,rl).

With x = F(f), X = F(fm) and € > 0 fixed, let J be a compact
subinterval of R+. There exists a T > 0 such that J € [0,T]. It
follows from the compactness of A(T) that there is a positive real number

K such that ||k(t,s)|| sK on A(T). Since £+ f uniformly on [0,T],
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there is a positive integer N such that if m > N, then
[lfm(t) - £(t)|| < € exp(-KPT)/2
where P is an upper bound for Ilgx|| on D(q). Taking note of the fact
that g is Lipschitzian in x with Lipschitz constant P, we have that
= (£) = x(e)|| < |[£ (&) - £¢)]]

+ fgllk(tss)ll [le(s,x (s)) - g(s,x(s))|]ds

s € exp(-KPT) + Ko/ [x _(s) = x(s)||ds
for m > N and t € [0,T]. An application of Gromwall's inequality yields

||%_(t) = x()]| ¢ € exp(-KPT)exp(RPT)/2< e,

and so F(fm) + F(£f) uniformly on [0,T]. Therefore,F(fm) -+ F(f) uniformly
on J. Since J is an arbitrary compact subinterval of R+, the result
follows.

THEOREM 2.4.2. Assume that hypotheses (A) hold and let

F: B(O,rl) - B(O,r2) be the implicit function of Theorem 2.2.5. Let

Yo be a positive number and suppose H°: B(O,Yo) > BC(K+) satisfies

||H°(u)|| < M°[|u|| for some M° and all u € B(0,v°). Suppose further

that if 0< r«< yo, then the functions in Ho(iko,r)) are equicontinuous

+ . PO
at each t € R ; and if (um) is a sequence in B(0,r) such that um > u

uniformly on each compact subinterval gf_R*, then Ho(um) > Ho(u)

uniformly on each compact subinterval of R+°

If ||dF(0; o)}!MO < 1, then for each e > 0 chere exists a §_>0
such that if f & 5(096€>,‘then

(BL£.k,g,H°]) x(£) = £(£) + [ok(t,8)g(s,x(s))ds + H(x)(t)

has at least one solution in B(0,e).

Let = » 0 be fixed and select El so that

DM =1~ 2

{2.4.9) (e, + |lar(o;

where 9 < A< L. Since F is continuously differentiable on B(O,rl),
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there is a §, satisfying 0< 5l< rs and such that if f € B(O,Gl), then

1
(2.4.10) [larces )| < e + [[aF0; )]].
Choose a 62 > 0 such that
(2.4.11) 62 < min { 61,1-1°Y°,M°e} .

It follows from the mean value theorem that if f and f£' belong to
B(O,Gz), then

(2.4.12)  ||F(E) - F(ED|] s (eq + [[aFCO; )| D]]E - £']].

Set

(2.4.13) o’ = - A)GZ/MO

and, for fixed f € B(0,1,), define H: B(0,0°) + BC(R") by

(2.4.14) B (u) (t) = £(t) + HO(u)(t).

If u € B(0,0°), then from (2.4.11), (2.4.13), (2.4.14) and the hypotheses
on Ho, it follows that ||H°(u) < |IE]] + M°| |ul]. However,

ClIE}] + MOHuH)< (xs, + M°0°) and from (2.4.13) it follows that

so, ||| < &

(s, + M%) = (8, + (1 = 8,) =8 and since

2’ 2
3(0,62) C B(O,rl), the function F o }ib is well defined. Also,
||F(ﬁ°(u))|| = [|F(°(w)) - F(0)|| and, on using (2.4.12) and (2.4.9)
one obtains
[|FE @) - FO)|] s (e + |]ar©; o[ ][E)|]
g (gy + | |dF(0; -)ll)a2 '
< (- A)GZ/M9.
It follows from (2.4.13) that F o Hb: E(O,po) —*E(O,po).
We will verify the hypotheses of the Schauder-Tychonoff Theorem
for the set i(O,po) and the mapping F © ﬁ‘o.
Clearly, u € E(O,po) if and only if ||u(t)||s po. So with u(t) =

pog one of the hypotheses is verified.

Suppose (um) is a sequence in E(O,po) and u *u uniformly on
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compact subintervals of Rf. .Then u € E(O,po) and, it follows from
(2.4.14) that ||é°(um)(t) - ) ()] = [18%(u ) () = Bo(u)(®)]|. Since
Ho(um) > Ho(u) uniformly on compact subintervals of Rf, the statement
also holds for H°, It follows from Lemma 2.4.2 that F © ﬁb(um) >
F o ﬁo(u) uniformly on compact subintervals of R%.

Since F o ﬁb: E{O,po) +~§(0,p°), the functions in the image
set are bounded at each point,

In order to establish that the functions in'§(0,p°) are equicon-

tinuous at each point; we suppose that n > 0 is fixed, t, € R*, T =

0
to +1l, ue E(O,po) and x = F(Ho(u)). The set A(T) is compact and so
there exists a K > 0 such that I[k(t,s)[ls K on A(T). If t > t0 and

t € [0,T], then, on taking note of the relation
|laCes,x6D] | < rolle,tsiaxe)) | ldal [xs) || < B lxl],
we obtain the following inequalities:
(2.4.15) [ [x(t) - x(t) |]s llf(t) - f(to)ll
+ foollk(t,s) ~ k(ty,8)|| [lg(s,x(s))|[ds
+ 17 ||ke,9) || |]g(s,x(s))|]ds
+ |[H o) - B (e ]|
$ llf(z) - £ ]|
+ 2% 0| k(t,8) - k(tg,s)|]ds
+ KP®lt - to] + [ (u)(e) - HOCu)(tp) ]
There exists a 5, > 0 such that if |t - tO!'< t;» then [[£¢t) - f(to)ll <
n/4. There ¢xists a %, > 0 such that if lt - tol < g, then |[k(t,s) -
k(to,s)ll < n/[4(PTp° + 1)]. There is a &y > 0 such that if It - t0|<
g then |/B°(u)(c) - HO(u) (e) || < nf4 for all u € B(0,p°). If ¢ =
min {;l,gz,;3,1/(xvp° + 1)}, then, in view of (2.4.15), if |t - t;]< ¢,

then le(t) - x(to)]i‘: n. Since { does not depend on u, the functions
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in F o HO(E(O,QO)) are equicontinuous at each point.

A similar argument holds if t< t As the hypotheses of the

Ol
Schauder-Tychonoff Theorem have been verified, if |]f,l< AGZ, then

E[f,k,g,HO] has a solution in Eko,p°). Also, in view of (2.4.13) and

(2.4.11), po < ¢ and the theorem follows on setting Ge = A62.

COROLLARY 2.4.5. Assume that hypotheses (A) hold and let

F: B(O,rl) > B(O,rz) be the implicit function of Theorem 2.2.5. Sup-

o . . < o
pose k~ is an n x n matrix function with corresponding real number M,

that satisfies hypothesis (A4). Let go be a continuous function defined

X +
EE.D(ql) ={{t,x) € " +'1; t € R and ||x|| < ql} with range in R® that

satisfies:
o +
(1) g (£,0) =0 for t € R ;
(ii) for each g > O there is a y > O such that if (t,x) € D(ql)

and ||x|] <y, then ||g°(t,x)|] < 8]]x]].

Then for each e > 0 there is a 6_ > 0 such that if [[£]] < 8.
then
t t.o o
x(t) = £(t) + [k(t,s)g(s,x(s))ds + S k™ (t,5)g (s,x(s))ds

has at least one solution in B(0,e).

Let 8° > 0 be such that | |dF(0; +)||8°M° < 1. There egiécs a
v > 0, satisfying y° < q;, and such that if [|x||< y°, then
(2.4.16) [e%¢t,x) | < 8°|x|].

pefine H°: B(0,°) ~+ BC(R') by

H (u)(£) = /k®(t,8)g° (s,x(s))ds.
Then
@ ) |« &5 K@) || [lute)|ldss 8] ful]

and, since H°(u) is a continuous function of t, it follows that H’(u)€

Bc(®Y.
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Let éo be a real number that satisfies 0 < po < yo, and suppose
that (um) is a sequence in'i(o,po) that converges to u uniformly on
compact subintervals of R%. Assume that J (:R+ is a compact interval
and suppose T > 0 is such that J C [0,T]. Let K® = sup {llko(t,s)ll;
(t,s) € A(T)}. Then for t € [0,T], we have
[[E ) () - B )| s sl ke, | ]8°%Gs,u ()
- 8%(s,u(s))]||ds
s T sup {|]g%(s,u_(s))
- g%(s,u(s) || s s € [0,11}.
Since go is continuous and u >u uniformly on [0,T], it follows that
Ho(um) > Ho(u) uniformly on [0,T], and therefore on J. Hence, Ho(um) >
Hp(u) uniformly on compact subintervals of R+.

If u e.i(o,p°), t. € R* and t > to(a similar argument holds if

0
t< to), then
B @ () - 8@ s Iol (K7€) - koeg,9) ]| |[e°(s,u(s))] |ds
+ ft !!ko(t,s)ll Ilgo(s,u(s))llds.
In view of (2.4.16), the contingity of k° and the boundedness of
fgllk(t,s)llds, we have that the functions in H(B(0,p°)) are equicon-
tinuous at t.. |

0
As the hypotheses of Theorem 2.4.2 are satisfied, the result

follows.

COROLLARY 2.4.6. Assume that hypotheses (A) hold and let

F: B(O,rl) - B(O,rz) be the implicit function of Theorem 2.2.5. Sup-

° 4 : . + 4
pose that k° is a continuous n x n matrix function defined on R° x R

and tha;,MQ is'a positive real number which together satisfy the fol-

lowing conditions:

1) .ngko(t,s)Hdss M° for t € R+;
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(ii) lim fg||k°(t + h,s) - ko(t,s)||ds =0 for t € R+.
h~>0
Let go satisfy the hypotheses of Corollary 2.4.5.

Then for each ¢ > O there is a §_> 0 such that if ||£]] < §.>

then
x(£) = €(6) + Jgk(t,8)g(s,%())ds + [ok°(£,8)g” (s,%(s))ds

has at least one solution in B(0,¢).

Let 60 > 0 satisfy IldF(O; -)IIBOMP‘< 1. There exists a yo > 0,
satisfying y° < q;s such that if ||x||< v°, then Ilgo(t,x)ll < Bollxll.

Define H°: B(O,yo) -+ BC(R+) by

H (u) (8) = [k°(t,8)g"(s,u(s))ds.
Then, if u € B(O,yo),

@ e || s rgl1ece,e) || 1% Gsou(s) [ds s 87| [ul].
Consequently, Ho(u) € BC(R%) and IIHO(u)Ils BOMOI]uII.

Let po be a real number satisfying 0 < po < Yo and suppose (um)
is a sequence inlg(o,po) that converges to u uniformly on compact subin-
tervals of Rf. If T is a positive real number, then, with t € [0,T],

[E ) () = B @ @) ||« Sol [ 8] [[8°GHu_(s))
- g°%(s,u(s)) | |ds
< Wsup { ||8%(s,u_(s))
- g%s,u(s))||; s € [0,T1}.
It follows that Ho(um) > Ho(u) uniformly on [0,T]. As we have seen
before, this is sufficient to insure that Ho(um) > Ho(u) uniformly on
compact subintervals of H+,

If u e'i(o,p°) and t. € R*, then

0
@) (e) = 820 (e [ s 8%0°r | [K(e,8) = k(e y,8) [|ds.
By hypothesis, fglgko(t,s) - ko(to,s)[lds +0as t ~+ £ and so it fol-

lows that the functions in HO(E(O,pO)) are equicontinuous at each point.



45
An application of Theorem 2.4.2 yields the result.
Corollaries 2.4.5 and 2.4.6 are similar to results obtained by
Nohel [12]. The result of Nohel corresponding to our Corollary 2.4.6
is strictly nonlinear in the sense that Nohel's hypotheses exclude the
case where g(t,x) = x. However, our hypotheses admit the possibility
that g(t,x) = x.

5. A ponlinear variation of constants formula. In this sectiomn

we will make use of the notions of derivative and integral of a function
defined on an interval of real numbers with values in a Banach space.

A full discussion of these topics may be found in [7; Ch. 8]. Howe'er,
we will list those definitions and results that will be used in the
sequel.

Let [a,b] be a non-degenerate compact interval of real numbers,
and suppose that X and Y are Banach spaces. Let A € X be an open set
and let h: [a,b] - A and H: A -+ Y be functions.

For fixed s()E [a,b], h'(so) is defined by h'(so) = iiﬂ .

[(h(s) - h(so))/(s - so)] provided the limit exists. The vectord h'(a)
and h'(b) are defined by one-sided limits. If H is Fréchet differen-
tiable on A and h' exists on [a,b], then it follows from éhe discussion
in [7; pp. 149, 150] that (H o h)' exists and

(2.5.1) (Ho h)'(s) = dH(h(s); h'(s))

for each s € [a,b]. It is also frue that if h' is continuous on [a,b],
then

(2.5.2) B(b) - h(a) = Soh" (s)ds,

where the preceding intepral and formula are respectively defined and
deduced in [7; pp. 160, 161].

Recall that E[f,k,g] denotes the equation
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x(t) = £(t) + fgk(t,s)g(s,x(s))ds.

THEOREM 2.5.1. Assume that hypotheses (A) hold and let

F: B(O,rl) > B(O,rz) be the implicit function of Theorem 2.2.5. Sup-

pose that £© and f belong Eg.B(O,rl) and that x and y are the respective

solutions QE'E[fo,k,g] and E[f,k,g]. Then y satisfies

(2.5.3) y(t) = x(t) + £(t) - £2(¢t)
+ féfgr(t,s,o)(f<§) - £°(s))dsdo

where r(t,s,o) is the kernel reciprocal Eg_k(t,s)gx(s,x(s,o)), and x(t,o)

is the solution of E[f° + ¢(f - £°),k,g] for each ¢ € [0,1].

Theorem 2.2.5 and Theorem 2.2.7 guarantee the existence of a
unique solution, x = x(t,0), in B(O,rz) of E[f0 + o(f - fo),k,g] for
each ¢ ¢ [0,1].

Define A: [0,1] - B(O,rl) by
(2.5.4) Ao) = £ +o(f - £9),
and note that
(2.5.5) A'(o) = £ ~ £°
for each o ¢ [0,1]. Also, define A: [0,1] - B(O,rz) by A(o) =
(F o \) (o). It follows from Theorem 2.2.5 that x(+,0) = (F © A)(0) =
A(o) 1is the solution of E[fo + o(f - fo),k,g] and that F is conﬁinuously
differentiable on B(O,rl). Since A is continuously differentiable on
[0,1], it follows that A is continuously differentiable on [0,1]. Also,
in view of (2.5.1) and Theorem 2.2.6, we have

At (o) = dF(A(a); A'(a))
= A'(0) + fr(+,5,0)A" (0) (s)ds.
Taking note of (2.5.2), we obtain
ML) = AQQ) = A1) = A(0) + e e (+,5,0))" (0) ()dsdo

or
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0
On evaluating each side of (2.5.6) at t € R*, we obtain

(2.5.6) x(+,1) - x(+,0) = £ - £2 + féf r(,s,0) (£(s) - £°(s))dsdo.
(2.5.7) x(t,1) - x(t,0) = £(t) - £9¢t) + féfgr(t,s,o)(f(s) - £%(s))dsdo.
Since y(t) = x(t,1) and x(t) = x(t,0), the result is established.

COROLLARY 2.5.1. Assume that hypotheses (A) hold and let

F: B(O,rl) - B(O,rz) be the implicit function of Theorem 2.2.5. 1If C

. +
is a subset of BC(R') and H: C > B(0,r;), suppose y € C and f € B(0,r;)

are such that f + H(y) € B(O,rl). Assume further that y satisfies
t
(E[fstg’H]) y(t) = f(t) + fok(t,s)g(s,y(s))ds + H(Y)(t)

4
on R, Then, if x is the solution of E[f,k,g],

(2.5.8) y(t) = x(t) + féfgr(t,s,c)ﬁiy)(s)dsdo + H(y) (t).
Since f + H(y) € B(O,rl), the equation
2(t) = £(£) + [ k(t,8)8(s,2(s))ds + H(y) (),

has a unique solution which we will call z. Hence,

y(8) = 2(t) = fok(,8) [8(s,5(s)) - g(s,2(s))]ds
and the argument given in Theorem 2.2.7, concerning uniqueness, estab-
lishes that y(t) = z(t) for t € R*. An appeal to Theorem 2.5.1 estab-
lishes the result.

We will call equation (2.5.3) a variation of constants.formula.

We note that in the case g(t,x) = x, the difference in the solu-
tions of y(t) = f(t) 4 fgk(t,s)y(s)ds and x(t) = fo(t) + f;k(t,s)x(s)ds
may be computed directly and it is found to be
(2.5.9) y(£) - x(t) = £(&) = £°(t) + JEr(e,8)(£(s) - £°(s))ds,
where r(t,s) is the kernel reciprocal to k(t,s). In this case,
k(t,s)gx(t,x(fﬁo)) = k(t,s) so that r(t,s,o) = r(t,s). It follows that
{2.5.3) reduces to (2.5.9).

LEMMA 2.5.1  Assume that hypotheses (A) hold and let F: B(O,rl)




48

> B(O,rz) be the implicit function of Theorem 2.2.5. Suppose f and £°

belong to B(0,r,), x(+,0) is the solution of E[fo + o(f - fo),k,g] for
belong to 1 is ot Ior

each ¢ in [0,1] and r(t,s,o) is the kernel reciprocal to

k(t,s)g, (s,x(s,0)). Then, for T fixed in K and (t,s,0) € A(T) x [0,1],
the kernel r(t,s,o) is continuous in (t,s,o).

The map ¢ b £2 + o(f - fo) from {0,1] to B(O,rl) is continuous;
and since F is continuous, x(+<,0) = F(fo + o(f - fo)) is a continuous
function of ¢ in the topology of BC(R%).

Let ¢ > 0 and (t0 oo) be fixed in R and A(T) x [0,1] respec~

’So’
tively., Then with (t,s,o) € A(T) x [0,1],
||k(t,s)e (s,%(s,0)) = k(t,s)g, (s,x(s,0,))]]
< sup {||k(t,9)]]; (t,8) € a(D)}
|le,(s:%(s,0)) - g (s,x(s,0))[].
From hypothesis (A3) and Lemma 1.2.2, it follows that there is a 61 >0
such that if |¢ - 00|< 8, and ¢ € [0,1], then ||r(t,s,0) - r(t,s,co)||<
e/2 uniformly in (t,s) on A(T).
For each fixed o, r(t,s,o) is a continuous function of (t,s).
So there is a 5, > 0, depending on (to,so,
r(to,so,00)|| < €/2 provided ||(t,s) - (to,so)|| < 62 and'(t,g) € A(T).

do), such that ]Ir(t,s,oo) -

If Ge = min {61,62}, then it follows that if (t,s,o) € A(T) x [0,1]
and || (t,s,0) - (to,so,co)i[< §_» then
[Ir(t,s,q) - r(to,so,oo)||s [Ir(t,s,o) - r(t,s,oo)ll
+ Ilr(t,s,ao) - r(to,so,ao)ll
< €.
The result is established.

COROLLARY 2.5.2. Under the hypotheses of Theorem 2.5.1, the

formula (2.5.3) may be written
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(2.5.10) y(t) = x(t) + £(t) - £2(r)
+ fg[fér(t,s,o)dol(f(s) - £%(s))ds.

Let t be fixed in R+. Making use of Lemma 2.5.1, we see that the
map, (s,0) b r(t,s,o)(f(s) - fo(s)) from [0,t] x [0,1] into Rn, is con-
tinuous, It follows from elementary calculus that

Sl Ex(t,5,0) (£(s) - £())ds]do = SEUTx(t,5,00d01(E(s) = £°(s))ds,

and consequently equation (2.5.10) holds.

THEOREM 2.5.2. Assume that hypotheses (A) hold and let

F: B(O,rl) > B(O,rz) be the implicit function of Theorem 2.2.5. If

fe B(O-,rl) and x is the solution of E[f,k,g], then
(2.5.11) x(t) = £(t) + fg[fér(t,s,c)do]f(s)ds

where r(t,s,o) is the kernel reciprocal to k(t,s)gx(s,x(s,c)), and x(t,o)

is the solution of E[of,k,g] for each o in [0,1].

Furthermore, if the following additional conditions hold,

(i) lim ||£(®)]| = O,
Er® 1

(11) lim Jg|[Sr(t,s,0)do||ds = 0 for each T > 0,
t > o

(iii) there exists a real number M. > O such that

1
fg”fcl)r(t,s,o)dc]'dss M, for t ¢ R+,
then lim ]Ix(t)” = 0.

t >
Since 0 is the solution of E[0,f,g], it follows from Theorem 2.5.1

and Corollary 2.5.2 that (2.5.11) holds.

Fix € > 0 and cheoose a real number T, > O so that if t > Tl’ then

1
(2.5.12) THEOIE max{e/3,e/(3Ml)}.

Select a real number T2 satisfying T2 > Tl such that if t > T2, then
T

(2.5.13) I rgrte,s,0)da [as < e/[3(L + |[£]])1.

Then, witk t > ‘I‘2 we have that

T
e Ls [e@] |+ £t 155 (e,s,00d0]| ] [£0) |[ds
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05 |05 (e,s 00| |]£¢)] [ds.
1
In view of (2.5.12) and (2.5.13) it follows that ||x(t)]| <€ and there-
fore lim [|x(t)]| = 0.
£ >

COROLLARY 2,5.3., Assume that hypotheses (A) hold and let

F: B(O,rl) > B(O,rz) be the implicit function of Theorem 2.2.5. If £

and £° belong to B(O,rl) and x and x° are the respective solutions of

E[f,k,g] and E[£f°,k,g], then lim [|x(t) - xo(t)ll = 0 provided

t > o
lim |]£(t) - fo(t)ll = 0 and r(t,s,o) satisfies the hypotheses of The-
t > » .

orem 2.5.2.
In view of Theorem 2.5.1 and Corollary 2.5.2, we have
x(t) = x°(8) = £(t) = £°(8) + S (pr(t,s,0)do) (£(s) - £°(s))ds.
An application of Theorem 2.5.2 yields  the result.

The hypotheses placed on the kermel f;r(t,s,o)dc are similar to
those of Nohel [12], which considered the case of kernels not depending
on g.

In a recent paper Brauer [3] established a variation of constants
formula for nonlinear Volterra integral equations under different hypoth-
eses and by entirely different methods. The connection between these
two formulas is unknown to this éuthor. However, our work does permit
us to give a formal derivation of a variation of constants formula which
Brauer [3] attributes to Miller [10].

in Cerollary 2.5.1, let g(t,x) = x and

HEy) (8) = Jok(t,8)w(y(s))ds
where w is a suitably defined function. Then
(2.5.14) y(£) - %(t) = Jok(t,s)w(y(s))ds
+ Jéfgr(t,s)fgk(s,u)w(y(u))dudsdo

where v(t,s) is the kernel reciprocal to k(t,s). As in [5; p. 125], one
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may verify that
(2.5.15) r(t,s) - k(t,s) = Slr(t,u)k(u,s)du.
On using Dirichlet's formula for interchanging the order of integration,
then exchanging the dummy variables s and u and finally, invoking

(2.5.15), the equation (2.5.14) may be written

y(£) = x(£) = fok(t,8)w(y(s))ds

-+

fg(f:r(t,u)k(u,s)du)w(y(s))ds

fgr(t,S)W(y(S))as,

which is Miller's formula.



REFERENCES

1. Bellman, R., On an application of a Banach-Steinhaus theorem
to the study of the boundedness of solutions of nonlinear differential
and difference equations, Ann. of Math., 49(1948), 515-522,

2. Bliss, G.A., Differential equationé containing arbitrary
functions, Trans. Am. Math. Soc., 21(1920), 79-92.

3. Brauver, F., A nonlinear variation of constants formula for
Volterra equations, Math. Systems Theory, 6(1972), 226~234.

4. Coppel, W.A., Stability and Asymptotic Behavior of Differ-
ential Equations, Heath, Boston, 1965.

5. Corduneanu, C., Principles of Differential and Integral
Equations, Allyn and Bacon, Boston, 1971.

6. Corduneanu, C., Some perturbation problems in the theory
of integral equations, Math. Systems Theory, 1(1967), 143-155.

7. Dieudonné, J., Foundations of Modern Analysis, Academic
Press, New York, 1960.

8. Hildebrandt, T.H. and Graves, L.M., Implicit functions and
their differentials in general analysis, Trans. Am. Math. Soc.,
29(1927), 127-153.

9. Loomis, L.H. and Sternberg, S., Advanced Calculus, Addison-
Wesley, Reading, Mass., 1968.

10. Miller, R.K., On the linearization of Volterra integral
equations, Jour. of Math. Anal. and Applications, 23(1968), 198-208.

. 11. Miller, R.K., Nohel, J.A. and Wong, J.S.W., Perturbations
of Volterra integral equations, Jour. of Math. Anal. and Applications,
25(1969), 676-691.

12. Nohel, J.A., Asymptotic relationships between systems of
Volterra integral equations Ann. Mat. Pura Appl., 90(1971), 149-165.

13. Sato, T., Sur 1l'équation intégrale non lineaire de Volterra,
Compositio Math., 11(1953), 271-290.

14. Taylor, A.E., Introduction to Functional Analysis, John Wiley,
New York, 1958.

52



