
INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the original
submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1.The sign or "target" for pages apparently lacking from the document
photographed is "Missing Page(s)". If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you complete continuity.

2. Whai an image on the film is obliterated with a large round black mark, it
is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the adjacent frame.

3. When a map, drawing or chart, ete., was part of the material being
photographed the photographer followed a definite method in
"sectioning" the material. It is customary to begin photoing at the upper
left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is
continued again - beginning below the first row and continuing on until
complete.

4. The majority of users indicate that the textual content is of greatest value,
however, a somewhat higher quality reproduction could be made from
"photographs" if essential to the understanding of the dissertation. Silver
prints of "photographs" may be ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as
received.

Xerox University Microfilms
300 North Zeeb Road
Ann Arbor, Michigan 48106

73-23,950

MCDANIEL, Roger Dale, 1942-
COMPUTATIONAL ASPECTS OF VARIOUS BENDERS-BASED
PROCEDURES FOR MIXED INTEGER PROGRAMMING.

The University of Oklahoma, Ph.D., 1973
Operations Research

University Microfilms, A XEROX Company, Ann Arbor, Michigan

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

COMPUTATIONAL ASPECTS OF VARIOUS

BENDERS-BASED PROCEDURES FOR

MIXED INTEGER PROGRAMMING

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

BY

ROGER D. MCDANIEL

Norman, Oklahoma

1973

COMPUTATIONAL ASPECTS OF VARIOUS

BENDERS-BASED PROCEDURES FOR

MIXED INTEGER PROGRAMMING

APPROVED BY

i ' ^ ^ —

DISSERTATION COMMITTEE

ABSTRACT

This dissertation examines possible modifications

to Benders' partitioning procedure for the solution of mixed

integer problems with the intent of reducing the amount of

time required for the solution of such problems. In gen

eral this can be done in two ways, by reducing the number

of iterations required by the procedure for solution and/or

by reducing the time per iteration.

The three modifications to Benders' original

algorithm all relied upon changes in the technique of

solution of the integer subproblem. On larger problems the

majority of the time spent in solving mixed integer problems

arises from the integer subproblem and thus this would be

an excellent place to reduce solution time.

The changes effected in the integer subproblem were:

(a) solution of the integer program to a non-optimal,

feasible point, (b) addition of multiple constraints to

the integer subproblem at each iteration, and (c) solution

of the integer subproblem as a linear program until certain

iii

characteristics are recognized as indicating a need for

solution as an integer program.

The first of these modifications attempts to reduce

the time spent per iteration in the integer subproblem with

the hopes that the number of iterations will not be in

creased. The second modification's efficiency depends

chiefly upon reducing the number of iterations required for

solution but, to some extent, also results in reduced time

per iteration as well. The last suggested modification

relies entirely upon reduction of time per iteration,

which, hopefully, will offset the necessitated extra iter

ations which quite frequently arise.

The research for this dissertation consisted of

analysis of the effect of the proposed modifications upon

time of execution, coding of computer programs to solve

problems using Benders' original algorithm and Benders'

algorithm plus modifications, and analysis of results

obtained on a large number of real-life problems.

IV

ACKNOWLEDGEMENTS

The author would like to express his sincere

appreciation for all help given him by his advisor, Dr.

Mike Devine. It was through his aid that the original idea

of this dissertation was formulated and his continuing

efforts which kept it steadfast to the original aim of

research. The work could certainly not have been done

without his ideas and constant attention to detail.

Appreciation is also expressed for the interest and

assistance of Clark A. Mount-Campbell who contributed time,

effort and test problems for the research.

Finally, the deepest appreciation goes to the

author's wife who suffered through the months of creation

of this dissertation.

TABLE OF CONTENTS
Page

ABSTRACT... iii

ACKNOWLEDGEMENTS v

TABLE OF C O N T E N T S vi

INTRODUCTION.......... 1

A, Previous Research and Applications . , 2
B. Benders' Algorithm for Mixed Integer

Programming.......... 4

INVESTIGATION OF GLOVER'S REDEFINITION 19

SOME PARTITIONING ALGORITHMS FOR THE MIXED
INTEGER PROGRAMMING P R O B L E M 28

A. Use of Non-Optimal Integer
Subproblem Solutions.............. 29

B. Generating Multiple Constraints
per Iteration....................... 38

C. Solving of the Integer Program
as a Linear Program............ .. . 47

GENERAL RESEARCH PROCEDURES AND RESULTS 55

APPENDIX A ... 65

APPENDIX B ... 69

APPENDIX C ... 73

APPENDIX D ... 76

APPENDIX E ... 93

BIBLIOGRAPHY 99

vi

INTRODUCTION

In 1962 Benders (7) developed an algorithm for the

solution of programming problems which involve a mixture of

either different types of variables or functions. The

general mixed programming problem can be expressed as (28):

Minimize: = CX + f(Y)

Subject to: AX + F(Y) > B (PI)

X > 0 Y £ S.

A is an m by n matrix, X and C are n-vectors, Y a p-vector,

F an m-vector whose components are functions of Y, f a

scalar-valued function of Y, B an m-vector and S a subset

of EP, the Euclidean space of dimension p.

As an example of (PI), one can consider a problem in

which both functions f(Y) and F(Y) are nonlinear. One would

then have a problem in which the functions involve both

linear and nonlinear terms. These linear and nonlinear

terms are separable by definition and therefore Benders'

algorithm may be applied to the problem. As another example

of a possible form of (PI), consider the case in which all

1

the functions of Y are linear but Y is constrained to be

integer valued, i.e. S=|y | Y > 0 and Y integer}. This is

the type problem to be considered in this dissertation.

A. Previous Research and Applications

Although the procedure outlined by Benders can be

used on any mixed integer problem, other more specialized

methods have generally been used in the optimization field.

With the ready availability of commercial computer codes for

mixed integer programming it is seldom that the coding of

a general algorithm such as Benders' is attempted for a

single application problem.

It appears, therefore, that research might be done

into the possible advantages of Benders' algorithm over

other solution procedures on specific application problems.

It would seem from the literature available that Benders'

algorithm has not found wide spread use. This lack of

references, however, is not necessarily an indication of

lack of research into the algorithm.

Buzby, Stone and Taylor (9) were probably the first

persons to get computational experience using Benders'

algorithm. In 1964-1965 they solved a type of non-linear

distribution problem which was slightly more general than

the plant location problem. By randomly generating such

3
problems and using Benders' algorithm, they found that as
the problems became more difficult, i.e. more feasible
answers, the realative efficiency of the procedure increased.

Geoffrion (17) used Benders' algorithm in the design
of optimal distribution systems and (18) generalized Benders'
algorithm so as to handle non-separable functions under
certain conditions.

Gorry, Shapiro and Wolsey (23) used an adaptation
of Benders' algorithm in which group theoreticsmethods were
usdd to solve the series of integer subproblems arising in
the procedure.

Balinski.and Wolfe (3) used Benders' algorithm on a
plant location problem and had promising results on small
problems.

Finally, Muckstadt and Wilson (34) also developed a
mixed integer problem dealing with the scheduling of thermal
generating systems and showed good results using Benders'
algorithm. Despite their assertions of extensive modifi
cations, the algorithm used was essentially Benders'
original algorithm.

This dissertation will place heavy emphasis on the
computational comparison of Benders' original algorithm and
some other algorithms which are based on Benders' dual

decomposition concepts. The type problems to be investigated

will be restricted to the mixed integer programming problem

with binary variables. In this way, it will he possible to

obtain computational results on a type of problem which has

numerous applications.

Glover's redefinition of Benders' algorithm is also

examined for the extra insight which it can give. A com

parison of the similarities, differences, and the general

relative efficiency of the two statements of the same pro

cedure is given. No attempt is made, however, to compu

tationally compare the two.

B. Benders' Algorithm for Mixed Integer Programming

Since this paper will deal specifically with the

mixed integer problem, (PI) is here restated as such and

development of Benders' algorithm will be in terms of this

restatement. The general mixed integer problem is (28):

Minimize: = CX + C'Y

Subject to: AX + A'Y > B (?2)

X,Y > 0 Y = 0 (mod 1).

Both the objective function and all of the constraints are

linear in both X and Y. Y = 0 (mod 1) is a mathematical

statement of the requirement that Y have only integer values.

Let Y take some specific value, say Y*. Then (P2)

becomes:
Minimize: X = CXo
Subject to: AX > B - A'Y* (P3)

X > 0
* ,which is merely a linear program since Y is a constant.

(P3) can, of course, be sàlved by any linear programming
technique. Note that an objective function of X^ = CX may

*be used in place of X = CX + C'Y since the addition 6f ao
*constant (C'Y) to the objective function in no way affects

the solution point of the linear program. After such a
solution point has been found, the objective function value
calculated would be supplemented by the amount C'Y* to give
the true objective function value at that point.

Now consider the dual of (P3).
MaKimize: = U(B - A'Y*)
Subject to: UA £ C (P4)

Ü > 0.
Note that the feasible region (as defined by the constraints)
is now independent of Y so that regardless of what value Y
may assume, the optimal point of (P4) will be a vertex of the
space defined by ÜA £ C and U ^ 0. In the solution of (P4)
three cases may occur. First, there may be no feasible
solution; second, (P4) may be unbounded; and finally.

a feasible finite solution may be derived.

Case 1; Suppose (P4) has no feasible solution for
i(Y = Y . Since the feasible region is independent of Y,

there will be no feasible solution for (P4) for any value of

Y, Let us consider the relationships between the primal and

dual problems so that infeasibility in the dual problem can

be explained in relation to the primal problem.

Primal
Level

Dual
Level

PROBLEM

FINITE
FEASIBLE

FINITE
FEASIBLE UNBOUNDED

UNBOUNDED

INFEASIBLE

INFEASIBLE

By inspection of this relationship tree it can be

seen that if the dual has no feasible solution, then the

primal could be either unbounded or infeasible. One can

easily determine which of these two possibilities is true by

adding a constraint to the primal problem so as to prevent

unboundedness. The most commonly used constraint for this

purpose is X + Y < M, where M is an extremely large number.

The addition of this constraint to the primal problem will

have the effect of increasing the dimensionality of the dual

by one; i.e. adding one variable. If the dual still has no

feasible solution, the original mixed integer problem must

be infeasible for all values of Y as now the primal problem

cannot be unbounded. If it occurs that the dual now has a

feasible solution, the original mixed integer problem was

unbounded and by using Step 1 of the procedure outlined

below it is possible to determine a value of Y at which this

occurs. One would then have a solution to the original

mixed integer problem, namely = - » (unbounded), Y = Y*

and X such values as necessary to produce the unboundedness.

Case 2 ; If (P4) is determined to have an unbounded

solution, add to (P4) the constraint:

m
I U. < M (El)
i=l

where M is again an extremely large number. Upon the

resolving of (P4), one should obtain a feasible finite

solution. Note that unboundedness in the dual results from

infeasibility in the primal problem. Thus, for Y = Y*, the

primal problem is infeasible. One would therefore like to

delete Y from any future consideration in the process of

the algorithm. By using Benders' algorithm, any future

objective function value derived for the original mixed

*integer problem when Y = Y" will be very large (due to the
addition of (El) to the set of constraints) and as the
problem is being minimized, simply continuing in the

*algorithm will have the practical effect of Y' being deleted
from future consideration.

Case 3: It is well known that a set of linear con
straints results in a space which is convex, i.e. any pos
itive linear combination of two points within the space is
also within the space. Also, if the space is bounded, a
solution to a linear program lies at one of the extreme
points or vertices of that space.

Thus, in the third case, i.e. the obtaining of a
finite feasible sôlution to (P4), the solution will occur
at some vertex of the space defined by UA £ C and U £ 0.
Suppose there are a total of N such vertices and let
represent the P'th such vertex. One can then write (P4) as:

Maximize: = uP(B - A'Y*)
for p = 1,2,...,N. (P5)

*By duality theory, the solution to (P5), say U^, must be
equal in value to the value of the objective function of the

*primal problem at its solution point. Thus, = CX. Since
= CX + C'Y, substituting (P5) into (P2) results in:

= r'v + Max Û i
p=l,...,N

Minimize: = C'Y + Max U^(B - A'Y)

Y a 0 Y E 0 (mod 1). (P6)

(P6) can be expressed as :

Minimize: Z

Subject to: Z ^ C'Y + Max U^CB - A'Y)
p=l,...,N

Y ̂ 0 Y = 0 (mod 1). (P7)

Finally, (P7) can be written:

Minimize : Z

Subject to: Z 2" C'Y + U^(B - A'Y) p=l,...,N

Y ̂ 0 Y E 0 (Mod 1). (P8)

In (P8), there would be N constraints of the form

Z > C'Y + U^(B - A'Y), one constraint for each vertex (cf)

of the hyperspace created by the constraints of (P4). Since

there are N vertices in the dual solution space, a maximum

of N constraints will completely define the integer problem

and hence the original mixed integer problem. As N is

typically very large, however, and the number of constraints

which are tight at the final solution stage is small, one

would like to solve a "relaxed" version of (PS), i.e. one

that has only a small subset of the N constraints. Benders'

algorithm is an iterative procedure which solves a relaxed

version of (P8); at each iteration a new constraint of (P8)

10
is added to the relaxed problem.

Outlined below is the complete Benders' algorithm

for mixed integer programming. Following that is a detailed

graphical description of (P8), and Benders' algorithm for

solving (P8).

Step 0 : Set t, the iteration number counter, equal one.

Select some > 0 such that U^A < C. It is not

necessary that this point be a vertex of the space

defined by UA < C. If upon examination of the

problem it is found that no such point exists, then

the original problem had no feasible solution or

was unbounded, and the method previously outlined

can be used to determine which case has occurred.

Step 1: Solve the "pure"^ integer problem:

Minimize: Z

Subject to: Z ^ C’Y + U^(B - A'Y) i=l,...,t

Y > 0 Y : 0 (mod 1).

The use of quotation marks around the word pure in
"pure" integer problem throughout this paper arises from the
fact that although Y is restricted to integer values, the
value of Z, which can be considered as merely an additional
variable, may be non-integral. This is due to the possibility
of non-integral coefficients in the constraints of the inte
ger problem. The algorithm developed to handle this "almost
integer program" is given in Appendix E.

11
Let and be the solution. If Z is unbounded

from below, take to be some point that gives Z*-

some arbitrarily large negative value.

Step 2; Solve the linear problem:

Maximize: = U(B - A'Y^)

Subject to: UA < C

U > 0.

If U goes to infinity, i.e. the problem is unbounded,

add the constraint:

m
E UjL < M,

i=l

where M is a large number, and resolve the linear

program. Let the solution to this linear program

be and Determine whether:

Zt _ C'Yt = Ut+1(B - A'Y^).

If this equality holds, Y^ is the value for Y such

that the original problem is optimized. In that

case, proceed to Step 3. If, however:

- C'Y^ < Ut+1(B - A'Y^),

not all of the necessary constraints have been

derived to find a final solution to the mixed

integer problem and the most violated constraint

should be added to the existing set of constraints

12
in the integer program. The addition of this most

violated constraint means that if Y = in some

future iteration, the value of Z associated with Y*-

will be greater than Z^. This is desirable as Y^

did not result in the optimal solution to the mixed

integer problem and thus Z* > Z^.

Add the constraint:

Z > C'Y + ut+l(B - A'Y)

to the integer problem. Let t = t + 1. Return to

Step 1.

Step 3 : Using the Y^ obtained in the iteration in which

Z*" - C'Y^ = - A'Y*"), return to the original

problem and solve:

Minimize: X = CX + C'Y^o
Subject to: AX > B - A'Y^

X > 0.

Proof of the finiteness of the algorithm, proof of

the optimality of the Y and X values derived and

the yielding of the upper and lower bounds on the

optimal objective function value during execution

of the procedure are given in Appendix A,

13
As an aid to help understand further the procedure

involved in the relaxation of the integer program, consider

the following problem. The mixed integer problem can be

expressed as a "pure" integer problem of the form:

Minimize : Z

Subject to: Z > C'Y + uP(B - A'Y) i=l,...,N

Y > 0 Y = 0 (mod 1). (P6)

In order to better visualize the procedure involved, let us

consider a graphical display of the full integer problem and

note the graphs produced by the procedure at different iter

ations. Unfortunately, in order to have a graphical display,

it is necessary to restrict ourselves to a single integer

variable. Thus, consider the case where N = 6 and Y consists

of a single variable y . Furthermore, let the points U?,

i=l,...,N be such that (P8) becomes:

Minimize : z

Subject to: z > - 7 y + 4 (1)
z > y - 4 (2)
z > 2/5 y - 1 (3) (P9)
z > 1/6 y + 1 (4)
z > - 2/5 y + 2 (5)
2 > - 3/2 y + 3 (6)

y > 0 y = 0 (mod 1).

Thus, the complete problem would be:

14

4
3

(4)
2

1

0
1

2

3
4

(1)

(Dl)

It is easy to see the minimal z over all y from this drawing,

namely z = 4/3 for y = 2.

Consider Benders' algorithm which finds this point

by relaxation of the problem and the addition of constraints,

one at a time. Begin with only the constraint y > 0 and set

y = 0 as a beginning value. The procedure now would deter

mine the most violated in the set of constraints by the

solution of a linear program. Graphically, it can be seen

that that constraint is (1). Thus, the problem becomes:

15

z
4

3
2

1

0

1

-2
3
4

When one solves:

Minimize : z

(D2)

(PIO)Subject to: z > - 7 y + 4 (1)

y > 0 y = 0 (mod 1),

a solution of y = z = - «° is obtained. To (PIO) a

limiting constraint of y < M, where M is a very large number,

is added, (PIO) is then resolved for a solution of y = M,

z = - 7 M + 4.

Now, find the most violated constraint at y = M by

a linear program. One can see that that constraint is (2).

Adding constraint (2), one gets:

16
Minimize;

Subject to: z > - 7 y + 4 (1)
z > y - 4 (2)

Graphically:

y > 0 y = 0 (mod 1).
(PU)

-2 "

(1)

(D3)

Solving (PU), y = 1, z = -3. (5) will be indicated by the

linear program to be the most violated constraint at y = 1.

Now:

Minimize : z

Subject to: z > - 7 y + 4 (1)
z > y - 4 (2)
z > - 2/5 y + 2 (5)

(P12)

y > 0 y 5 0 (mod 1)

Or;

17

4
3
2

I

0
1 (5)
2

3
4

(1)

(D4)

Solving (P12), y = 4, z = -2/5 and (4) will be the

most violated constraint at y = 4. Next:

Minimize: z

Subject to: z >
z >

7 y + 4 (1)
y - 4 (2)

z ^ - 2/5 y + 2 (5)
z > 1/6 y + 1 (4)

(P13)

Y > 0 Y = 0 (mod 1).

Or graphically:

18

3-

-1 ' ■

-2 • '

(D5)

Finally, (P13) is solved for an answer of y = 2,

z = 4/3 and the constraint indicated to be most violated at

y = 2 is (4) once more. At this point the procedure will

stop.

This, of course, is an extremely simplistic model,

being only one*dimensional but lends insight into the actual

behavior of Benders' algorithm.

INVESTIGATION OF GLOVER'S REDEFINITION

Glover (20) has restated Benders' algorithm in a way

which lends some insights into and understanding of the

basic procedure of the algorithm. Again, consider the

problem:

Minimize: X = CX + C'Yo
Subject to: AX + A'Y > B (P2)

X,Y > 0 Y = 0 (mod 1).

The procedure as described by Glover is basically

the same as that described by Benders except for the form of

the integer program. Consider an integer program which has

the form:

Minimize: Y^ = DY

Subject to: FY < G (P14)

Y > 0 Y = 0 (mod 1).

(P14) is a general form of an integer program where the

process is started with D, F and G such that the space

defined by FY 3 G and Y è 0 will contain at least one Y

which is optimal for the original mixed integer program. An

19

20
example of such a program might be:

Minimize : Y

Subject to: Y < M (P15)

Y > 0 Y = 0 (mod 1).

where M is an extremely large number. As the procedure con

tinues, additional constraints, which will be described

later, will be added to this integer program.

Once additional constraints have been added to the

integer program, certain rules are followed. If the integer

program has no feasible solution, the optimal mixed integer

solution is the best found thus far by the procedure. If

there have been no mixed integer solutions found thus far,

the mixed integer program is itself infeasible.

Suppose there exists a feasible solution to (P14),

say Y'̂ , If Y* is substituted into (P2) the result is a

reduced linear program of:

Minimize: X = CX + C'Y*o
Subject to: AX > B - A'Y* (P16)

X > 0.

There are two cases which can occur. Case No, 1:

If (P16) has an unbounded solution, the original mixed

integer problem is unbounded and has a solution of X^ = - “ ,

Y = Y* and X equal to the values found when solving (P16).

21
If (P16) has no feasible solution, then Y is not a feasible

value for Y for the mixed integer program. A new constraint

(to be described later) for the integer program will then be

generated and added to the integer program. The above pro

cedure would then be iterated as many times as necessary.

Case No. 2: If a feasible finite solution to (P16) is found,

then that solution, say X = X* and Y = Y*, is a feasible

solution to the original mixed integer problem. If this

solution is better than any previously found, it is possible

to update the best found thus far to this new solution and

generate a new constraint for the integer problem. The

process would be continued with iterations of this type until

a solution was found.

Consider the method of determination of the con

straint to be added to the integer problem and the objective

function of that additionally constrained program. The

final tableau resulting from the solving of (P16) appears

thusly:

X. = a + Q° Wo 00

X = Aq + Q W (T1)

where W is the vector of final nonbasic variables.

Consider the representation of the final tableau if

the integer variables Y had been included in (P16) while

22
solving the linear program but were not allowed to enter

the solution, i.e. the identical pivots were taken as pro

duced (Tl). Then one would have had:

= a + Q° W + P° Y o oo
X = + Q W + P Y (T2)

First, in the case when an optimal solution to (P16)
1

was found, namely X. = a and X = A , let X be the best ̂ o 00 o' o
solution found to date for the mixed integer problem. If

1
the newly found solution is better than this best (a„^ < X),' 00 O '’

one immediately sets the best found so far to the newly

found solution, i.e. set X = a . It would be advantageousO 00 °

to add a constraint to the integer program so as to force

the integer program from the Y previously found as one has

determined the best possible solution with Y = Y* and now

wishes to consider another value for Y.
I 'At this point, either X = X (because X was up-0 0 ' o ^

dated to X^ if X^ = a^^ < X^) or X^ > X^. If a constraint
I

is added to the integer program such that X^ < X^, Xq = a^^

could not possibly be a feasible value for X^ in any future

iterations. This is due to the fact that a is the optimal
00

* 'value for X when Y = Y and X < X requires a better valueO 0 0 ^
for X^. Coupling a requirement of X^ < X^ with (T2), one

gets ;

23
X = a + P° Y + Q° W < X'O 00 ^ o

or P° Y < - a^o - q° W. (E2)

Since the linear program at this point is optimal

and it is a minimization problem, it is known that Q° > 0

and W > 0, so that - Q° W < 0. Thus:

- Q° W < x; -

or P° Y < x; - a^g. (E3)

Since it is impossible to handle strict inequalities

in integer programming, subtract a small positive number e

from the right hand side of the inequality. Then:

? 3 %0 - *00 - e. (E4)
(E4) will be the new constraint to be added to the integer

program and through its use, Y* will not be derived as a

solution to the integer subproblem in the future. Note that

all constraints added to the integer program will depend

parametrically upon X^.

In the second case, when the reduced linear program

has no feasible solution, one must add a constraint to the

integer program also. As the previously derived integer

point Y* was not a feasible one (as shown by the linear

program's infeasibility), one would wish to exclude it from

future consideration.
The infeasibility of the problem will have resulted

24
in at least one row, say the r-th one, in the final tableau

being such that;

Xr = a^o + W + Y (E5)

where a^^ < 0 and Q < 0 with W again the nonbasic variables

in the final tableau. Considering (E5) and wishing to have

feasibility (X^ ^ 0) :

Xr = a^o + W + Y > 0

or pf Y > - qf W - a^Q. (E6)

Since - W > 0, one can say:

pf Y > - qf W - 3,0 > -

or P’̂ Y Ï - (E7)

(E7), then, is the constraint to be added to the integer

program when (P16) has no feasible solution. Note that the

previously found integer point Y cannot satisfy the require

ment that X p > 0 and therefore will not be found feasible

in future iterations.

It was assumed that Y was bounded (FY < G) in the

initial conditions and therefore there are a finite number

of values for Y. Note that the constraints added in Glover's

adaptation of Benders' algorithm completely excluded any

integer points previously found. Benders' algorithm only

changed the value associated with each integer point so

that a previously found integer point could reenter as the

25
optimal point, but at a higher objective function value.

Therefore, since in Glover's version of the algor

ithm adding constraints to the integer program results in

the elimination of at least one integer point from consider

ation in each iteration, there can be only a finite number

of iterations. Thus, as far as finite convergence of this

procedure is concerned, thé objective function form is

immaterial.

Glover considers interesting an objective function

of :

= *()() + Y (E8)
whose coefficients are the same as those of the most recently

adjoined constraint.

Consider (E4). By a simple manipulation, one can

get:

if ? + *00. (E9)
At the j-th iteration, one would have j of these

constraints, thusly:

XÔ - e > r ° Y + ajo for 1=1,...,j (ElO)
fNow, since - e is greater than or equal to all

P? Y + a^ for i=l,...,j, it can be seen that:
•*- 00

- e > Max (P° Ï + aj^). (Ell)
i=l,...,j

26
IBut Xq - e merely indicates that it is desired to reduce

the optimal value found thus far by amount e. Let e be

considered a variable which one wishes to maximize, i.e.

one wishes to reduce the best found solution as far as pos

sible. This would have the effect of minimizing - e.

Let Z = X^ - e. Then:
o iZ > Max (P. Y + a) (E12)

i=l,...,j ^

where one wishes to minimize Z.

It is known from the definition of Benders' algor

ithm that the optimal value of the mixed integer program at

the i-th iteration is C'Y + U^(B - A'Y). From Glover's
i odefinition, the optimal value is a^^ + Y. Since one is

the dual of the other:

a^Q + P° Y = C'Y + uf(B - A'Y). (E13)
If one substitutes (E13) into (E12):

Z ^ Max (C'Y + U?(B - A'Y)). (E14)
i=l,...,j ^

Since one wishes Z minimized and (E14) to be in closed form,

(E14) can be expanded to:

Minimize : Z

Subject to: Z > C'Y + U?(B - A'Y) i=l,...,j

Y S 0 Y = 0 (mod 1) (P19)

27

which is merely Benders' representation for the integer

problem at the j-th iteration.

SOME PARTITIONING ALGORITHMS FOR THE

MIXED INTEGER PROGRAMMING PROBLEM

In his original work Benders made two primary

contributions; (1) development of a "pure" integer problem

(P8) which is equivalent to the original mixed integer

problem (P2), and (2) development of an algorithm which will

solve this resultant "pure" integer problem in a practical

procedure. This algorithm involves solving two separate

subproblems iteratively, one a relaxed integer problem and

the other a linear programming problem involving the non

integral constrained variables of the original problem.

Hence, the term "partitioning algorithm."

There have been some encouraging and somewhat sur

prising results reported by Geoffrion and Marsten (19),

which show that Benders' algorithm can generally solve the

mixed integer program in relatively few iterations. An

investment planning type problem of 378 constraints, 1326

continuous variables and 24 integer variables was solved in

4 iterations. Two project evaluation problems, both involving

28

29
350 continuous variables, 27 binary variables and 275

constraints were solved in 10 and 25 iterations respec

tively. Unfortunately, if the original problem involves

many integer variables, each iteration requires the solution

of a "pure" integer problem for which the determination of

the solution require an extreme amount of time.

The purpose of this research is to propose some

alternative schemes for solving (P8) and then to test these

schemes computationally. Of course, the way in which to

improve upon Benders' algorithm is to either (1) reduce the

number of iterations without increasing substantially the

time per iteration (although, as mentioned. Benders' algor

ithm has required surprisingly few iterations for solution),

(2) reduce the time per iteration without substantially

increasing the number of iterations or (3) reduce both the

number of iterations and the time per iteration.

In this chapter three algorithms are presented for

solving (P8) which appear to be promising in terms of the

saving of time and/or iterations in the solution of mixed

integer problems.

(A) Use of Non-Optimal Integer Subproblem Solutions

The first algorithm aims at reducing the time per

30
iteration by reducing the time involved in solving the

integer subproblem. There are two primary difficulties in

the solving of integer programming problems by any presently

available methods. These are the finding of the optimal

solution itself and the elusiveness of proof of optimality

once the solution is found. Feasible answers to integer

problems are, of course, considerably easier to find than

the optimal and many times such feasible answers are quite

close to the true optimum. Some procedures actually find

the optimum fairly rapidly in some problems, but the pro

cedure does not terminate with an indication that the point

obtained is optimum for many more iterations. Thus, in

integer programming, one is not only concerned with finding

an optimum solution, but also recognizing this solution to

be optimal as soon as possible.

It would therefore seem to be advantageous (in terms

of time spent solving the integer subproblem in Benders'

algorithm) to find only a "good solution" as this can gen

erally be done quite rapidly. In fact, Aldrich (1) and

Gorry, Shapiro and Wolsey (23) have suggested such a modifi

cation as possibly being advantageous. If this feasible

point for the integer problem results in a new vertex of

the linear programming subproblem (and thus a new constraint

31
for the integer programming subproblem) being generated, one

may have possibly gained by not spending large amounts of

time in the integer subproblem proving optimality. Thus,

what one would hope is that the feasible solutions to the

integer subproblem would generate one of the necessary con

straints for eventual solution or, failing that, that the

number of extraneous constraints, i.e. constraints which

are generated in addition to those actually necessary for

solution of the mixed integer problem, would be small.

Let us examine some of the differences in procedure

that are necessitated by the solution of the integer sub

problem to a "good solution" instead of an optimal solution.

From Appendix A, (E16) shows that in Benders' algorithm

< Z*, where Z^ is the solution to the relaxed integer

problem at iteration t and Z* is the solution to the orig

inal mixed integer problem. Since we have not solved the

relaxed integer problem completely, this inequality does

not necessarily hold. Thus, it is possible that the solu

tion of the relaxed integer problem to a feasible point only

will result in Z*" > Z*, i.e. Z^ is a feasible, non-optimal

point of the original mixed integer problem space. If this

occurs, it follows that - C'Y^ where U*" is theo o
objective function value obtained upon solution of the

32
linear program with Y = Y^. Under normal conditions, i.e.

the solution of the relaxed integer program to a true opti

mum, this equality would indicate final solution of the

original mixed integer problem, whereas with the solving of

the relaxed integer subproblem to only a feasible solution,

it does not necessarily indicate the finding of the final

solution. Thus, the stopping rule for Benders' algorithm

must be changed so as to have some provision to detect the

situation where = Z*- - C'Y^ does truly indicate a finalw i i t i c J*- = yb _ r'vt

solution.

The detection of the situation in which - C'Y*"

does not indicate a final solution consisted of two parts.

First, the value of the best (smallest) U^, call it U*,

found thus far, along with associated variable values, was

saved and if Z^ > U*, then Y^ is obviously an undesirable

value for Y, i.e. one which will produce the above mentioned

erroneous optimality test. Second, if Z^ < U* and Z*" > Z*,

then as stated above, it follows that = Z^ - C'Y^ when theo
linear program is solved. If either of these two possible

error conditions (Z^ > U* or = Z*" - C'Y*") occurs, theo o
solution of the previous integer subproblem is continued

from the point at which it was left off until a new feasible

point is found. This procedure continues until either

33
*
'A

previous integer subproblem is found. If the first of these

t * t *Z £ U* and Z £ Z or until the true optimum for the

situations occurs, a constraint is generated for the integer
subproblem as usual. If the second occurs, we have the
final solution td the original mixed integer problem.

A detailed statement of the algorithm suggested
follows.

Step 0; Same as in Benders' algorithm.
Step 1: Solve the "çure" integer program:

Minimize: Z
Subject to: Z > C'Y + (B - A'Y) i = l,...,t

Y ^ 0 Y E 0 (mod 1).
t *until a feasible solution is found for which Z < U_.— o

Let Z^ and Y^ be this solution.
Step 2: Solve the linear program:

Maximize: = U(B - A'Y^)
Subject to: ÜA £ C

Ü > 0.
Let and be the solution. If Z^ - C'Y =o
Ü (B - A'Y), there is a possibility that one has
found the solution to the original mixed integer
problem. It is necessary to determine whether this

34

test truly indicates global optimality. If the
problem in step 1 was not solved to optimality,
return to step 1 and continue solution to the next
discovered feasible solution, or until the present
solution to the integer subproblem is proven to be
optimal. If the problem in step 1 was solved to
optimality and that optimality was recognized as
such, go to step 3.

If - C'yt « - A'Y^), add the con
straint:

Z > C'y + - A'Y)
to the integer subproblem exactly as in Benders'
original algorithm. Let t = t + 1, return to step
1.

Step 3; Same.as Benders' algorithm.

In step 1 of the procedure outlined above, solution
of the '̂pure" integer problem was always to the next dis
covered feasible point. Since most algorithms "discover"
feasible points in such a way that each new feasible point
is better (in terms of the objective function value gen
erated) than the last, one will eventually be lead to the
true optimum if one returns to step 1 often enough in a

35
single iteration. Of course, if the optimal point is found

in step 1, then the iterations are the same as Benders'

original algorithm.

In order to better visualize some of the problems

and advantages involved in this algorithm, let us consider

the problem presented in (Dl), where Z* was 4/3. After the

first iteration we had:

Minimize : Z

Subject to: Z > - 7 y + 4 (1) (P17)

Y > 0 Y 5 0 (mod 1).

or:

4 ■ '

-3 "
-4 ’ ’

(D 6)

The optimal solution, of course, is y = », Z = -» (computa

tionally, we set y to some very large number), and the most

36
violated constraint at that point was (2) which is Z > y - 4.

Suppose that (P17) was not solved exactly so that

only a feasible solution was found, say y = 3. At y = 3,

the most violated constraint is (4) or Z > 1/6 y + 1. At

this point (y = 3), Z = -17 and Z < Z so the procedure con

tinues with the problem:

Minimize: Z

Subject to: Z > -7 y + 4 (1)

Z > 1/6 y + 1 (4) (P18)

y > 0 y = 0 (mod 1).

Graphically we have:

4
3 (4)
2

1

0
1

2
-3
-4 '(1)

(D7)

Now, the solution to (P18) is y = 1 and Z = 7/6

and, of course, (5) would be added to the integer

37
subproblem as the most violated constraint. By solving for

only a feasible point, suppose one got y = 4 for a solution.

Then Z = 3/2 and since Z > Z*, one would get a false test

for optimality using Benders' original stopping rule. As

can be seen, this situation arises due to the fact that the

most violated constraint at y = 4 is again (4), a constraint

already generated. Therefore, return should be made to the

solution of the relaxed integer subproblem and the solution

continued until another feasible solution is found. This

procedure is continued until a point is found at which the

most violated constraint is not (4) or any of the other

previously generated constraints or until the true optimal

to the relaxed integer problem is found and proven optimal.

In our example, suppose we ended up solving the

problem to an optimum. Then at y = 1, the most violated

constraint is (5). Adding this constraint will eventually

force the solution of y = 2 and Z = 4/3 in the next iter

ation.

The proof of finiteness of the suggested modifica

tion to Benders' algorithm is as follows; If at some

iteration Z^ < Z^, where Z* is the optimal value for the

original mixed integer problem, then the proof is the same

as for Benders' original algorithm. If Z*- > Z*, then one

38
would find that:

- A'Y^) = - c'yt.

In that case, return is made to the integer sub

problem and another feasible point is found. Since these

additional feasible points found for the integer subproblem

are such that each is smaller than the preceding one, even-
t ÿptually either Z < Z for some non-optimal point of the

integer problem solution space or the optimal point for the

integer subproblem is found and thus Z^ < Z %

Thus, the only time that the procedure continues is
twhen Z < Z and thus a new constraint will be generated

each time or the solution of the mixed integer problem will

be found,

(B) Generating Multiple Constraints per Iteration

A second tested alteration of Benders' original

algorithm was to introduce more than one new constraint at

each iteration as suggested by Geoffrion and Marsten (17)

as possibly being advantageous. Since a large portion of

this algorithm's time is generally spent solving integer

programs, it would be advantageous to try to cut the iter

ations to a minimum. Since a certain number of constraints

are required to be generated before convergence of the

39
procedure, the faster one can generate those constraints the

better; that is, if not too many unnecessary constraints are

generated.

The generation of multiple constraints would be

accomplished by using not only the IjP which maximized the

linear program but other vertices as well. Several alterna

tive methods could be used to derive these additional IjP's.

Due to the fact that during research the primal

problem (P3) was solved rather than the dual problem (P4),

several correspondences between the primal and dual problems

had to be examined to determine exactly how to derive these

other U^'s, Since it was desired to find feasible, non-

optimal vertices of the dual problem, it was necessary to

discover non-feasible, optimal vertices of the primal. With

the current tableau reflecting the optimal solution, the

following procedure was used to derive a non-feasible,

optimal vertex in the primal problem.

First, since the dual variable values are found in

the objective function row of the primal tableau under the

original basic variables, it was necessary to keep all these

values greater than or equal to zero. Also, since the value

of the slack variables for the dual problem occur under the

beginning non-basic variables, these values also have to be

40
kept greater than or equal to zero.

In order to insure a change in the value of the dual

variables, it was decided that the entering primal variable

must be one of the original basic variables and must have

a strictly positive value in the objective function row.

It follows that this guarantees change in the dual variable

values as the value in the objective function row under the

selected entering variable must change from a positive value

to zero.

Any variable having these two properties was tested

for the possibility of its being able to enter the solution.

Two other conditions also had to be satisfied for the var

iable to enter the solution. First, the entry of the var

iable had to make the primal problem non-feasible. This,

of course, means that the right-hand side had to become

negative for some given row, call it the infeasibility row,

and for this to happen the value under the entering variable

and in the given infeasibility row had to be negative.

Second, the entry of the variable had to leave the solution

optimal, i.e. all objective function row values had to stay

positive or zero. Thus, all columns having negative co

efficients in the infeasibility row were examined and the

column having the smallest absolute ratio of objective

41
function row value to infeasibility row value was selected

to be the entering variable.

The first variable found satisfying all four of

these conditions was entered into the solution and the

resulting, changed values for the dual variables used to

generate a second constraint at each iteration.

If no variable was found to satisfy all of these

conditions, only one constraint was generated in that iter

ation.

This procedure, as mentioned above, can cut the

number of necessary iterations of the algorithm and thus cut

the overall time for solution. A detailed explanation fol

lows :

Step 0

Step 1

Step 2

Same as Benders’ algorithm.

Same as Benders’ algorithm.

Solve the linear program:

Maximize: = U(B - A'Y^)

Subject to: UA < C

U > 0.

Let yt^^ and be the solution. Determine

another feasible but non-optimal point, say

and as discussed above. If:

-t+1

42

- C'Y^ = - A'Y^)

go to step 3. If:

- C'Y^ < - A'Y^),

add to the integer subproblem the two constraints:

t+1Z > C'Y + U (B - A'Y) and

Z > C'Y + lf''’̂ (B - A'Y).

Let t = t + 1. Go to step 1.

Step 3: Same as Benders' algorithm.

For the purposes of this research only two con

straints at a time were added to the integer subproblem.

Obviously, any reasonable number of constraints could be

added to the subproblem at each iteration, each being gen

erated from a different discovered U^.

No checks were made for duplication of constraints

in different iterations as it was deemed to occur so infre

quently that the additional calculations involved in doing

such checking could not be justified.

Since this additional constraint is merely an

attempt to cut the number of iterations, it can be seen that

Benders' original algorithm is still intact within the pro

cedure. And thus, the proof of finiteness of the algorithm

43
must be exactly the same.

To examine this suggested modification more closely,

let us look at the example previously examined, namely (Dl).

Let us assume that at each iteration we not only detect the

most violated constraint of the integer problem but also the

second most violated.

Thus, at the first iteration, when y = 0, the linear

subprogram not only generates constraint (1) but also (6),

Then, our first integer subprogram to be solved is:

Minimize : z

Subject to: z > -7 y + 4 (1)

z > -3/2 y + 3 (6) (P19)

y > 0 y = 0 (mod 1).

The graph of this would be:

-1 ••

(6)

(D8)

44
The solution to (P19) is, of course, z = - » and y = », but

with the addition of a bounding constraint of y < M, the

solution becomes z = -3/2 M + 3 and y = M, where M is a very

large number.

At y = M, we find the two most violated constraints

to be (2) and (3) so both of these are added to the integer

subproblem to produce:

Minimize: z

Subject to: z > - 7 y + 4 (1)

z > -3/2 y + 3 (6)

2 > y - 4 (2) (P20)

z > 2/5 y - 1 (3)

y ^ 0 y = 0 (mod 1).

Or, graphically:

(D9)

45
Here the solution is y = 2 and z = 0. Notice that

we have discovered the correct value for y but the value for

z is incorrect since an essential constraint, (4), is missing.

Thus, Benders' stopping rule will not come into play and the

procedure will continue.

At y = 2, the most violated constraints are (4) and

(5). Adding these two constraints, one gets:

Minimize: z

Subject to: z > - 7 y + 4 (1)

z > -3/2 y + 3 (6)

z > y - 4 (2)

z > 2/5 y - 1 (3) (P21)

z > 1/6 y + 1 (4)

z > -2/5 y + 2 (5)

y ^ 0 y = 0 (mod 1).

Since (P21) and (P9) are identical, i.e. in this case

we have generated the complete integer equivalent to the

original mixed integer problem, we know that the answer of

y = 2 and z = 4/3 will be found at this iteration.

Considering the results of this particular example,

some points need to be made. In this case, the entire

integer problem was generated. This would seem to be due to

the small size of the example. Although it is theoretically

46
possible that extra constraints added at each iteration

might result in extra iterations, intuition and all of the

test problems discussed in this dissertation indicate that

it will probably seldom happen. In the main then, one can

make the assumption that under this modification the number

of iterations will be less than or equal to the number of

iterations using Benders' original algorithm. If one allows

this assumption, then by using this particular alteration of

Benders' algorithm the maximum number of constraints which

can be generated is twice the number generated using Benders'

original algorithm. Thus, on large problems only a few of

the N possible constraints would be generated.

We find that a factor which becomes important in

evaluation of the efficiency of the modification is the fact

that since at each iteration two constraints are added

rather than one, the problem is more restricted, i.e. there

are fewer feasible answers, at each iteration, than in

Benders' original algorithm. Since the integer subproblem

algorithm examines different feasible points, reducing by

just a few the number of feasible points can reduce signif

icantly the time of execution of the integer subproblem.

Also, of course, with a decreased number of iterations there

is a decrease in the number of linear programs solved.

47
(C) Solving of the Integer Program as a Linear Program

Since the solving of linear programs is generally

so much more rapid than the solving of integer programs of

the same size and since the whole purpose of the solving of

the integer program is to determine a which in turn pro

duces a new U^, any method for determining a value for Y

which will give a new should be of interest. If the

procedure advanced by Benders were modified to solve the

integer program as if it were a linear program for some

fixed number (k) of iterations before beginning to solve

the subproblem as a "pure" integer one, it would seem that

the amount of calculations should be cut significantly.

Also, if a point is reached where no more new U^'s are gen

erated, a switch must be made to solve the subproblem as

an integer problem. Finally, if the objective function

value for the integer subproblem (solved linearly, of course)

is within a given amount of the objective function value of

the linear subproblem, the integer subproblem should be

solved as an integer program.

This procedure must be a finite one as, at the worst,

after k iterations, return is made to Benders' original

algorithm which must generate the necessary constraints

48
eventually,

A more detailed expression of this suggested modi

fication follows.

Step 0 ; Same as Benders' algorithm.

Step 1; If t > k, go to step Ik. If t < k, solve the

linear program:

Minimize : Z

Subject to: Z > C'Y + U^(B - A'Y) i=l,...,t

Y > 0.

Let Y^ and Z^ be the solution.

Step 2: Solve the linear program:

Maximize: = U(B - A'Y^)

Subject to: UA S C

U > 0.

Let and be the solution. Ifo
- (Z*" - C'Y^) < £, and Step 2 was entered

via Step 1, set k = 0 and go to Step Ik, If:

Z^ - C'Y^ < U^^^(B - A'Y^),

add the constraint:

t+1Z > C'Y + U (B - A'Y)

to the subproblem of Step 1. Let t = t + 1. Go

49
to Step 1. If:

Zt _ C'Y = - A'yt),

and Step 2 was entered via Step 1, set k = 0 and

go to Step 2A, If Step 2 was entered from Step 2A

go to Step 3.

Step 2A: Solve the integer program:

Minimize : Z

Subject to: Z > C'Y + U^(B - A'Y) i=l,...,t

Y > 0 Y = 0 (mod I).

Let Y^ and Z^ be the solution. Go to Step 2.

Step 3: Same as Benders' algorithm.

Graphically, one can see the tremendous advantage of

the modification. This advantage is due, of course, to the

much faster execution times in solving linear programs

rather than integer programs. Consider the problem of (Dl).

Let y = 0, then the most violated constraint is, of

course, (1). Then our problem is:

Minimize : z

Subject to: z > -7 y + 4 (1) (P22)

y a 0.

Or:
50

2 ' "

(DIO)

The solution isz = - « , y = « > s o that a limiting function

(y S M) is added and the answer becomes y = M , z = - 7 M + 4 .

Of course, the most violated constraint is (2),

which is added to the problem so that we have:

Minimize: z

Subject to: z > -7 y + 4 (1)

z > y - 4 (2) (P23)

y > 0.

Or:
51

(2)

-1 • •

-3 "

(Dll)

The solution to (P23) is y = 1, z = -3. Now (5) is the most

violated constraint. Then our problem becomes:

Minimize : z

Subject to; z > -7 y + 4 (1)

z > y - 4 (2)

z ^ -2/5 y + 2 (5)

y > 0 .

(P24)

Or graphically;

52

(2)

-3''

(D12)

The solution to (P24) is y = 4 2/7, z = 2/7, At y = 4 2/7,

the most violated constraint is (4), Adding this, we find:

Minimize : z

Subject to: z > -7 y + 4 (1)

z > y - 4 (2)

z > -2/5 y + 2 (5) (P25)

z > 1/6 y + 1 (4)

y > 0 .

Graphically ;

53

(5)

(D13)

54
The solution to (P25) is y = 1 13/17 and z = 1 5/7. The

most violated constraint is (4) again. Thus, we solve

(P25) again, this time with an integer restriction on y.

This will give our true answer of y = 2 and z = 4/3.

In this example, we solved four linear programs

and one integer program whereas by Benders' algorithm we

solved four integer programs. It is obvious that, due to the

fact that on large problems integer solutions are much more

time consuming to find than linear program solutions, this

modification could possibly have a significant computational

advantage over Benders' original algorithm.

GENERAL RESEARCH PROCEDURES AND RESULTS

Research Procedures;

The research done for this dissertation was limited

to mixed integer programming problems with 0-1 variables

since this type of problem is very common. The test prob

lems (see Appendix D) were mostly manufactured ones and

came from common, realistic models of different real-life

situations. In addition, there were a few problems taken

directly from the literature.

The linear subproblem was solved by means of a

regular simplex tableau algorithm since time constraints

and the necessity to change considerably this section of

the program to effect the desired modifications precluded

use of more intricate techniques. This procedure was quite

adequate for the size problems considered in this research.

Since the chief purpose of the running of test problems was

a comparison of the different modifications to Benders'

original algorithm, the efficiency of the subprograms was

not of great importance. Indeed, the larger execution times

55

56
allowed for better timings, reducing the percentage error

from run to run.

Also, the linear subproblem was solved from a primal

rather than a dual model as this results in more under

standable intermediate results and eliminates the necessity

for Step 3 of the algorithm. It also, unfortunately,

results in the necessity for extra explanation and exam

ination in one of the suggested modifications. The values

of the were, of course, found in the objective function

row of the simplex tableau under the variables forming the

original basis. The possibility of unboundedness in the

dual was handled by the addition of another variable in the

primal model with a large objective function coefficient.

This variable was not allowed to enter the solution unless

the primal proved infeasible.

The integer subproblem was handled by a modified

Balas-type algorithm (see Appendix E). This modified

algorithm seemed to be extremely fast in some problems and

created some trouble in accurate timing comparisons in

smaller problems. Also, as in most integer programming

algorithms, problems of a particular structure resulted in

extreme inefficiency in the algorithm and a correspondingly

large increase in execution time can be noted. The modi

57
fication of Balas' 0-1 algorithm was almost a complete

disposal of his decision rules and a return to the basic

concepts upon which that algorithm was based. This was

necessitated by the fact that the value of the objective

function in the integer subproblem is found directly from

the constraints and also because the integer subproblem was

not a truly pure one.

No provisions or tests were provided to detect con

straints in the integer subproblem which became redundant

during the procedure as this would have been of small con

sequence in the given test problems compared to the amount

of time spent performing these tests.

Some difficulties were encountered due to the

problem of real-number round-off in the computer so that

all tests for equality are on a "small epsilon" basis, i.e.

two numbers closer to one another than a given small value

were considered to be the same number. Some possible ways

to alleviate this problem would be double-precision numbers,

holding all numbers as fractions or a modification of the

simplex method. Thus, in some very selected cases, the

program may fail, indicating a solution which is not the

true solution. These cases, however, should be extremely

rare.

58
Finally, no attempt was made to match or excel

commercial mixed integer codes due to the limited scope of

the study.

The problems considered in the testing of the sug

gested modifications were of various sizes as indicated by

the table below:

Problem Linear Variables Integer Variables Constraints

la - If 12 15 12
2a - 2f 12 15 14
3a - 3f 36 24 14
4a - 4f 36 24 38
5a - 5f 12 25 12

6a 2 2 3
6b 16 4 20
6c 25 25 35

6d - 6e 24 24 32

Results of Testing of Modification A

Looking at the timing and iteration data in Appendix

C, some points become obvious. First, in almost all cases

where a solution was found. Benders' original algorithm and

modification A ran for the same number of iterations. In

fact, in a large portion of the iterations, it was necessary

for the actual optimum to the integer subproblem to be found

and proven to be optimal in modification A. Only in prob

lems 2e - 2f, 4a - 4f and 6c - 6e was this not true. In

that data set, quite often the integer subproblem was only

59
partially solved before generation of a new constraint was

possible. Thus, in general, the difference in timings lies

in those few iterations in which the integer subproblem did

not have to be solved completely in modification A.

In those limited cases where modification A did not

have to solve the integer problem completely in many of the

iterations, two possible occurrences are illustrated. In

2e, 2f, 4c and 6e, one can see that the solution of the

integer subproblem to a feasible answer only has resulted

in extra iterations, i.e. "extraneous” constraints have

been generated. In 4a, 4b, 4e and 4f, 6c and 6d, the true

relationship between Benders' original algorithm and modi

fication A is clouded by the failure of Benders' algorithm

to find a solution after almost five minutes of computer

execution time. However, since modification A has found

answers in reasonable amounts of time (with the exception of

6c), one can conclude that the solution of the integer sub

problem to a suboptimal point proved extremely valuable as

a modification.

Thus, in evaluation of modification A, it can be

seen that to a large extent, the amount of efficiency in

volved is dependent upon problem structure. In general, on

"small" problems, i.e. those requiring very little time for

60
solution, the advantage of modification A is marginal at

best. On larger problems, however, the efficiency involved

in not solving the integer subproblem completely is ex

tremely obvious in most problems. Modification A must be

recommended in problems in which Benders' original algorithm

fails due to excessive amounts of time being spent solving

the integer subproblem.

Results of Testing of Modification B

As should be evident upon examination, modification

B, in which two constraints are added each iteration, relies

upon the reduction of the number of iterations to reduce

time of execution. In addition, there can be small savings

in execution time in some problems due to the fact that

integer subproblems with more constraints are more tightly

bound than those with fewer constraints. The question is,

can the advantage due to reduced iterations and the time

savings due to the reduction of feasible answers with extra

constraints offset the increase in time of execution due to

the larger size of the subproblems. In general, it was

found that this occurred with very few exceptions; the most

notable of which are, of course, problems 4c and 6e.

Once again, it is extremely hard to try to compare

61
Benders' original algorithm with modification B in several

instances as the procedure did not go the completion. In

the light of all the other examples, however, it would seem

that modification B offers advantages in time of execution

in the vast majority of the cases. Unfortunately, like

Benders' original algorithm, modification B relies upon

complete solution of the integer subproblem at each iteration

and there are some problems whose particular structure causes

extreme amounts of execution time to be necessary to solve

certain of the integer programs.

Results of Testing of Modification C

Modification C relies chiefly upon the reduction of

time per iteration to effect a reduction of overall execution

time. Indeed, in almost all cases (and especially those in

which a larger number of iterations are involved) modifi

cation C takes more iterations than Benders' original algor

ithm and thus relies strictly upon reduction of time per

iteration.

This reduction of time per iteration occurs, of course,

due to the fact that linear programs are executed instead of

integer programs for the vast majority of iterations in each

problem. As a matter of fact, every test problem completely

62
solved resulted in only one Integer subproblem being solved--

a tremendous savings in time. Since the time of execution

of an integer program generally goes up at a much faster

rate dependent upon the size of the problem than does the

time of execution of a linear program of the same size, the

advantage inherent in the direct substitution of linear for

integer programs is better illustrated in large problems.

The addition of extra constraints over what are added in

Benders’ original algorithm will inevitably lead to larger

times of execution on small problems. This is due to the

fact that on small problems the time of execution of a

problem as a linear program is larger than as an integer

program.

The one extreme example of modification C's failure

to far outdo Benders' original algorithm in a large problem

was in the problem 6e. Upon close examination of the inter

mediate solution values for the integer subproblem and the

constraints generated, it was found that the difficulty

arose due to extreme degeneracy or near degeneracy about

several of the intermediate solution points.

Thus, when the integer subproblem was solved as a

linear program, there were an excessive number of iterations

necessary in which the constraints generated were of little

63
use in the advancement of the solution. In most cases the

solution value for the integer subproblem changed only a

small amount in many iterations (1/2 of one percent change

in 8 iterations in one case). It was found, also, that the

integer solution to the integer subproblem was far enough

from the linear solution to avoid this problem.

Thus, on small problems, the modification is at best

marginal. On large problems, however, the modification

almost always proves to be the one which most reduced the

time of execution from Benders' original algorithm (see 4a -

4d and 5a - 5c). Any problems in which large integer sub

problems are expected should almost certainly be executed

using modification C.

Overall Results

No attempt was made to study combinations, i.e.

A and B or B and C, of modifications due to the desire to

study the independent effects of the three modifications.

Since the research has proven that modification B is ques

tionable in advantage (due to its problem structure depen

dency for efficiency) over Benders' original algorithm, it

would seem that combinations of modifications would also be

questionable in advantage.

64
The inability of Benders' original algorithm and

modification B to find solutions in certain of the problems

was the result of a particularly structured integer sub

problem. As in most integer programs, there are certain

structured problems which create a situation in which ex

cessive time is spent solving the problem. In those cases

where an answer was not obtained in almost five minutes,

the objective function value for a large percentage of the

cases was very close to the true optimum.

It would appear that the two impressive modifi

cations, A and C, can have great advantage over Benders'

original algorithm in large problems— the larger the more

advantage. In the cases where large integer subproblems

are expected, one of the modifications (and preferably C)

probably should be used.

APPENDIX A

In this appendix, it will be shown that (a) Benders'

algorithm is finite, (b) it gives the optimum solution and

(c) at any time in the process upper and lower bounds to the
ictrue optimum Z can be found.

If the set UA < C is bounded, there are a finite

number of vertices to the convex polytope of the dual space.

If it is not bounded, the set UA < C, Z 3 M will be

bounded and will have a finite number of vertices. Therefore,

if a different vertex is generated by the linear program

at each iteration, the algorithm must be finite. It would

seem possible, however, that two non-optimal values of Y

could bring about the same vertex being selected since

the value of Y affects only the objective function of the

linear program and not the space itself. Fortunately, this

cannot happen.

For proof, let the solution to Step 1 of the algor

ithm at iteration t be and Y^, i.e.

65

66

7̂ * C'Ŷ + Ü̂ (B - A’Ŷ)
or - C ‘Y^ = U^(B - A'Y*̂) (E15)

where r represents one of the tight constraints at the t-th

iteration. Since was obtained with a subset of the total

number of constraints for the integer program, one knows:

Z^ ̂ Z* (E16)

where Z* is, of course, the true optimal value for the mixed

integer program.

From duality theory, one knows that Max U(B - A'Y*-) =

Min CX where U is constrained by UA < C and X is constrained

by AX > B - A'Y^, Let the solution to Step 2 of the algor

ithm be Then:

U^+^CB - A'Y^) = CX^, (E17)

It can be seen that X^ and Y^ provide a feasible solution to

the mixed integer problem since:

AX^ + A'Y^ > B. (E18)

It is evident that:

t , t *CX + C'Y > Z

or CX^ > Z* - C'Y^. (E19)

From (E15), (E16), (E17) and (E19):

67

- A'Y^) = CX^ > Z* - C'Y^ > Z^ - C'Y^ =

U^(B - A'Y^) (E20)

where the equality holds only if zf = Z*. If:

U^^^(B - A'Y^) > U^(B - A'Y^) (E21)

then U^, and a new vertex will be obtained on each

iteration of Step 2 or else the optimum vertex will be

obtained.

There are, therefore, two possibilities. Either the

optimum will be found sometime during the execution of the

algorithm or iterations will continue until all vertices are

considered. In the former case, of course, the optimum is

found. In the latter, one has generated the complete integer

program and the solution to that program is by definition

the solution which produces the optimum value of the objective

function of the original mixed integer problem.

Note that for any modification which is considered

to Benders' algorithm, (E21) must hold for finiteness. The

key inequality in (E20) which controls (E21) is Z^ - C'Y^ >

Z^ - C'Y^ and this inequality must hold for any modification

attempted.

To see that upper and lower bounds can be obtained

68

at any point in the procedure, consider that in the

integer problem is a lower bound to the true optimum Z

(see (EI6)). To set an upper bound on Z*, it is necessary

to add to Step 2 the solution of:

Minimize : CX

Subject to: AX > B - A'Y^ (P27)

X > 0

where is the value of Y used in Step 2. If (P27) has a

feasible solution, say X^, then (X^, Y^) is a feasible

solution to the mixed integer problem and CX^ + C'Y^ would

then naturally be an upper bound on the mixed integer solu

tion at each iteration. If (P27) has no feasible solution,

then the dual of (P27) was either unbounded or infeasible.

If the dual of (P27) was infeasible, it would have been

detected in Step 2 of the algorithm that either the mixed

integer problem was infeasible or unbounded. In either

case, the procedure terminated at that point and determina

tion of an upper bound is immaterial. If the dual of (P27)

was unbounded, a constraint was added to prevent unbounded

ness in the dual of (P27). This would have the effect of

increasing the dimensionality of (P27) and this altered

(P27) would have a feasible solution which can be used to

determine an upper bound.

APPENDIX B

The example presented here is the same one used by

Hu (27) for illustration of Benders' algorithm. Consider

the problem:

Minimize: 5X + 2Y + 2W

Subject to: X + 3Y + 2W > 5

4X - Y + W > 7

2X + Y - W > 4 (1)

X,Y,W > 0 Y = W = 0 (mod 1).

Rewriting (1), one has:

Minimize : 5X

Subject to: X > 5 - 3Y - 2W

4X a 7 + Y - W

2X > 4 - Y + W (2)

X > 0.

The dual program of (2) is:

Maximize: (5 - 3Y - 2W) + (7 + Y - W) U2 +

(4 - Y + W) Ug

Subject to: Uĵ + 4Ü2 + 2Ug < 5 (3)
Ui, Ug, U3 > 0 .

69

70
Rewriting (1), it is possible to say:

Minimize : Z

Subject to: Z > 2Y + 2W + Max 0^(5 - 3Y - 2W,

7 + Y - W , 4 - Y + W)

Y,W > 0 Y = W = 0 (mod 1). (4)

One feasible solution of (3) is = 0, = 5/4, = 0.
1 2 J

Substituting this solution into (4), one gets:

Minimize : Z

Subject to: Z > 2Y + 2W + 5/4(7 + Y - W)

Y,W > 0 Y = W = 0 (mod 1). (5)

1' 1 1 The solution of (5) is Z = 35/4 and Y = W =0. Substi

tuting this solution into (3), one gets :

Maximize: 5U^ + 7U^ + 4Ug

Subject to: + 4U^ + 2Ug < 5 (6)

Up Ug, Ug > 0.

The solution to (6) is (UpU^U^) = (5,0,0) with an objective

function value of 25.

Since 35/4 = 2Y - 2W = 35/4 <25, it is necessary to

continue and one adds (5,0,0) into (4) in order to generate

a completely new constraint.

71
Minimize : Z

Subject to: Z > 2Y + 2W + 5/4(7 + Y - W)

Z > 2Y + 2W + 5(5 - 3Y - 2W) (7)

Y,W > 0 Y = W = 0 (mod 1).

The solution if Y^ = 0, = 2 and Z^ = 41/4.

Substituting this solution into (3):

Maximize: + 5U^ + ÔU^

Subject to; + 4U^ + 2Ug < 5 (8)

The solution to (8) is = 0, = 0, = 5/2 with an

objective function value of 15. Since 41/4 - 2Y - 2W =

41/4 - 4 = 25/4 < 15, one continues by generating another

constraint for (4):

Minimize : Z

Subject to: Z > 2Y + 2W + 5/4(7 + Y - W)

Z > 2Y + 2W + 5 (5 - 3Y - 2W)

Z > 2Y + 2W + 5/2(4 - Y + W) (9)

Y,W > 0 Y = W 5 0 (mod 1).

The solution is Y^ = 1, = 0 and Z^ = 12.

Substituting this into (3):

Maximize: 2U^ + SUg + 311̂
Subject to: + 4U2 + 2U3 < 5 (10)

^1>^2»^3 -

72

The solution is « 5, ■ 0 and = 0 with an objective

function value of 10. Since 12 - 2Y - 2W » 12 - 2 = 10,

the solution is optimum. Substituting Y = 1 and W = 0 into

(2), one has;

Minimize : 5X

Subject to: X % 2

4X > 8

2X > 3 (11)

X > 0.

The solution is X = 2 with 5X = 10 as expected. The optimum

solution to (1) is therefore X* = 2, Y* = 1, W* = 0 and
*Z = 12.

APPENDIX C

Below is a table showing the timing and iteration

count results for Benders' algorithm and the three suggested

modifications. The numbers in parentheses are the iterations

required for solution.

Problem
Benders' Modification Modification Modification

B

la 1.34(1) 1.23(1) 1.28(1) 1.31(1)
lb 2.69(2) 2.62(2) 2.59(2) 3.22(2)
Ic 1.40(1) 1.59(1) 1.38(1) 1.35(1)
Id 2.76(2) 2.92(2) 2.54(2) 3.99(3)
le 4.07(3) 3.94(3) 3.68(3) 4.39(3)
If 4.44(4) 4.20(4) 4.22(4) 4.45(4)
2a 6.18(3) 6.94(3) 5.74(3) 6.94(3)
2b 7.71(4) 7.74(4) 5.98(3) 7.56(4)
2c 5.94(3) 6.82(3) 6.76(3) 7.01(3)
2d 6.70(4) 8.71(4) 5.11(3) 9.01(5)
2e 8.31(5) 22.44(7) 6.98(4) 1 0 .0 1 (6)
2f 7.12(4) 10.67(5) 7.08(4) 10.07(6)
3a 4.16(7) 3.26(7) 4.07(6) 5.53(9)
3b 5.23(9) 4.82(9) 4.17(6) 8.13(16)
3c 4.00(7) 3.29(7) 4.12(6) 5.20(9)
3d 5.23(11) 4.75(11) 4.58(8) 5.90(11)
3e 3.31(7) 3.13(7) 2.44(4) 4.57(9)
3f 5.15(7) 4.46(7) 4.71(8) 7.82(11)

73

74
Cont.

Benders' Modification Modification Modification
Problem Original A B C

4a *290.55(2+) 116.06(12) *290.10(2+) 83.32(18)
4b *290.25(3+) 158.98(14) *288.90(3+) 89.57(19)
4c 272.82(10) 139.77(15) *289.05(3+) 66.79(12)
4d 209.27(10) 142.31(9) 256.77(10) 97.76(15)
4e *290.25(2+) 105.87(13) *288.75(2+) 101.97(20)
4f *290.85(5+) 40.72(9) *290.55(4+) 85.78(18)

5a 126.00(5) 122.75(5) 88.01(5) 63.11(5)
5b 13.12(3) 12.45(3) 12.88(3) 11.79(4)
5c 98.47(4) 98.72(4) 76.99(4) 64.05(5)
5d 20.32(3) 19.80(3) 24.15(3) 19.05(3)
5e 29.73(4) 28.29(4) 41.78(4) 18.23(4)
5f 7.71(4) 9.88(4) 8.58(4) 9.31(6)

6a 0 .1 2 (2) 0.13(2) 0.08(1) 0.20(3)
6b 1.99(6) 1.73(6) 1.81(6) 4.19(10)
6c *288.75(17+) m s .75(33+) 276.81(13) 76.88(19)
6d *288.00(20+) 251.87(33) *287.55(17+) 74.62(18)
6e 191.56(15) 187.89(24) *288.30(13+) *289.20(19+)

* No solution in stated time.

All of the above problems were run on the UNIVAC 1108 located

on the Madison Campus of the University of Wisconsin and all

timings are in seconds. The timings were done so as to

measure the actual time for solution, not including such

things as input and output.

It has been discovered by the author that the modi

fied Balas algorithm is so efficient that on small problems,

i.e. 15 integer, 12 linear variables and 12 constraints, the

suggested modifications' efficiency was at best marginal.

75
This is due to the fact that all of the modifications depend

ultimately upon trading integer iterations for linear iter

ations. Since the modified Balas integer algorithm was so

efficient, this was not usually a good trade.

As can be seen, however, on large problems, i.e.

those requiring large amounts of time for the execution of

the integer subproblem, the relative efficiency of the

suggested modifications became marked.

APPENDIX D

Test Problems:

The test problems used to evaluate the modifications

suggeste&"by this paper fall into two categories. The first

of these is composed of the limited number of mixed integer

problems found in the literature search. These problems are

frequently quite small but act as some sort of standard for

the purpose of evaluation. The second category of test

problems consists of problems generated by the author. They

are developed by consideration of three classes of real-life

situations, capital budgeting problems, fixed charge trans

portation problems and allocation-location problems, all of

which may be advanced as mixed integer programs.

The test problems used are shown in the two sections

below with a discussion of the mathematical model behind

each of the type two problems.

Literature Problems;

There were only four problems taken from current

76

77
literature to test the suggested modifications. There were

two reasons why such a small number of literature problems

were tested. First, almost all problems presented in detail

in the literature were extremely small and therefore did not

give a true test of the modifications. Second, those prob

lems discussed but not presented in detail were too large

(and therefore too costly) to be included in this limited

study.

The first problem, 6a, was taken from Hu (27) and is

the one presented as an example in Appendix B. The second

problem, 6b, may be found in many references and the author

found it first in the article by Balinski (4). It is a

special form of the plant location problem and is presented

in detail below:

Minimize: n n m
Z f^ y. + Z Z q . X..

i=l i=l j=l J

Subject to: n
Z X.. > 1 for j = 1,...,m

i=l

X^j < for i = l,...,n and j = l,...,m

X.j > 0 Y. = 0,1.

The particular problem presented in the literature

and solved in the dissertation is one in which m = n = 4,

f^ = 7 for i = l,...,n and

78

(^ij) -|

ro 12 20 18

12 0 8 6

20 8 0 6

18 6 6 0

\

Problems 6d and 6e were fixed charged transportation

problems (as described below) and are found in a technical

report by Gray (24). The particular problems used for test

purposes are also presented in the next section.

Author Generated Problems;

Capital Budgeting --

Problems la - If were developed from a very simple

capital budgeting model (33). In this model the 0-1 integer

variables represent the decision on investment in each of a

number of projects. Each of these projects requires invest

ment of differing .mounts of cash in each future time period

considered. Investment in each project also results in some

estimated future return on the investment. This return is

then discounted at the business's required rate of return to

obtain a present value for the project. This present value

appears as a positive coefficient in the objective function.

The linear variables consist of the amount of money

left uninvested at the end of each of the time periods.

79
Since money uninvested generally results in a loss of profit

at a rate equal to the difference between the required rate

of return and the bank rate of interest, the different

amounts left uninvested must be discounted at this rate and

the present value which is obtained will appear as a negative

coefficient in the objective function.

The basic capital budgeting problem can be expressed

as :

Maximize : n m ,
2 c^Xi + 2 c.y.
1=1 j=i ■' :

Subj ect to : n
2 ̂a^iXi + y. - yj_^ = b^ j=l,2 ,...,m

x^ = 0,1 i=l,2,...,n (El)

= 0 , y. > 0 j=l,2 ,...,m

where c^ represents the calculated present value of project
I

i, Cj represents the calculated present rate of loss on

money left uninvested in period j, Xĵ the decision of invest

ment in project i and y^ the amount of cash left uninvested

at the end of period j. a^^ represents the amount of invest

ment required in the time period j for project i and bj

represents the budgeted amount of cash for all projects in

time period j .

(El) can be expressed as:

80
Maximize; CX - C'Y

Subject to: AX + Yj - Yj_^ = B (E2)

X = 0,1 Y , Y > 0 Y = 0.
J - i J °

where the use of Yj and Yj_^ is merely a way to indicate the

relationship between the two column vectors.

For test problems la - If, the following values were

used:

m = 12

n = 15

C = (21.5, 32.0, 17.5, 40.0, 9.4, 3.5, 23.0, 9.0, 15.6,
11.0, 5.25, 17.0, 9.0, 60.0, 18.5)

C = (.0175, .0180, .0186, .0192, .0198, .0204, .0210,
.0217, .0223, .0230, .0237, .0245)

B =

la) (58.45, 45.56, 29.25, 33.78, 19.84, 21.15, 37.36,
27.12, 13.88, 12.84, 13.70, 21.20)

lb) (30., 30., 30., 30., 30., 30., 30., 30., 30., 30.,
30., 30.)

Ic) (22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5,
22.5, 22.5, 22.5, 22.5)

Id) (15., 15., 15., 15., 15., 15., 15., 15., 15., 15.,
15., 15.)

le) (7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5,
7.5, 7.5)

If) (50., 40., 30., 33., 21., 20., 35., 26., 15., 10.,
25., 20.)

30

00*0 OO'tl 08*1 00*0 00*1 00*0 00*0 00*0 00*% 0%*0 00*0 00*0 00*0 00*0 00*0
00*0 00*1 OE*Z 00*0 00*9 00 'J 00*0 00*0 01*% oc*o 00*0 00*0 00*0 00*0 00*0
00*0 01*1 OZ'Z 00*0 00*9 00*0 00*0 00*0 9Z*% 6Z*0 00*0 00*0 00*0 00*0 00*0
00*0 09*1 00 *z 00*0 00*9 00*0 00*0 00*0 09*% 8Z*0 00*0 00*0 00*0 00*0 00*0
sz*t 09*1 00*0 00*0 09'% 09*0 00*0 00*0 09*E zz*o 00*0 09*11 00*0 00*1 00*0
GC*t OS'Z 00*0 00*0 00*9 9Z'0 00*0 00*0 00*0 9Z*0 00*0 09*Z1 00*0 00*1 00*0
sc*t os*z. 00*0 00*0 00*9 08*0 00*0 00*0 00*0 9Z*0 00*0 9Z*1 00*0 00*1 00*0
OG*t 00*9 00*0 00*0 08*9 08*0 00*0 00*0 00*0 %z*o 00*0 09*1 00*0 00*1 00*0
00*0 os*s 00*0 00*€1 08*9 00*1 00*0 00*0 00*0 ez*o 00*0 00*1 9Z'l 00*1 00*9
00*0 00*9 00*0 00*1 00*9 00*1 00*0 00*0 00*0 zz*o 00*0 00*1 09*9 09*E 00*9
00*0 09*% 00*0 00*1 9Z*9 OZ'l 01 *z 00*0 00*0 IZ'O 00*0 00*0 09 *e 00*9 00*9
00*0 00*9 00*0 00*1 01*9 09*1 9Z*Z 06*8 00*0 OZ'O 00*6 00*0 09*% 00*01 00*9 = V

82
Quite often in capital budgeting problems there are

additional constraints placed on the investment procedure.

Two types of restrictions were added to problems la - If to

produce problems 2a - 2f. The first additional type of

constraint arises from the situation in which investment may

be made in only one of a set of projects. For example, the

set of projects may be different brand considerations of a

new truck to be bought. If one lets S be the set of indices

of such mutually exclusive projects, the constraint occurs

thusly:

Z X . = 1 (Cl)
its

The second type of additional constraint occurs when

the choosing of one project necessitates the selection of

one of a set of other projects. An example might be the

case where the decision to build a particular type plant

necessitates choice among several types of equipment for

some part of the plant.

Letting T represent the set of indices of linked

projects, one gets:

Z X . = Xm (C2)
i£T

where is the project variable to which set T is linked.

Problems 2a - 2F were exactly the same as la - If

83
except that these two additional constraints have been added.

The sets S and T were chosen as:

S = (1, 3, 8, 9) and T = (5, 6, 10)

and X.J, was

A third set of capital budgeting problems was run to

consider the efficiency of the different modifications in

larger problems. Problems la - If were modified so that an

additional ten projects were available, i.e. n = 25, for

investment. The ten projects added were identical to the

first ten projects already available and all numerical data

pertaining to these additional projects is the same as given

for projects through X^^. The labels 5a - 5f refer to

these larger problems.

Production Allocation --

Problems 3a - 3f and 4a - 4f were developed from

different mathematical modifications of a production allo

cation model. The basic production allocation problem is a

linear program. With the addition of set-up costs or concave

material costs, it becomes a mixed integer program with 0-1

integer variables. 3a - 3f consist of the basic problem

with set-up costs, 4a - 4f with concave material costs.

In defining the complete production allocation model,

the following definitions of variables and constants are

84
necessary.

Variables defining the size of the problem;

n number of plants
m number of warehouses
1 number of products
f number of materials necessary for production
s number of different types of products, each

type requiring a different set-up
e number of concave cost segments for mater-
^ ial q

Decision variables;

Pkij amount of production of product k at plant
i for delivery to warehouse j

a^^ zero-one variables which are one if some
product of type t is produced at plant
i, zero otherwise

b9§ zero-one variables which are one if the
amount of material q used at plant i is
on the g-th cost segment, zero otherwise

o9^ amount of material q used in plant i as
if all charged at the g-th segment cost

Cost variables ;

Cki production cost of product k at plant i,
excluding set-up and material cost

w^i cost of material q required to produce
product k at plant i under linear mater
ial costs

X . . cost of shipment of any product from plant i
to warehouse j

v̂ ĵ set-up cost for product type t at plant i

y9^ base cost of the g-th segment for material
q at plant i

z. incremental cost of the g-th segment for
 ̂ material q at plant i

85
Constraint variables;

demand at warehouse j for product k

r^ total available production time at
plant i

tki amount of production time required to
produce product k at plant i
amount of production time lost during
set-up for product type t at plant i

u^. amount of material q necessary to produce
 ̂ product k at plant i

s?^ upper bound in usage of material q at
plant i at segment g's incremental price

In addition, it is useful to define the following

summations to facilitate understanding of our final models

n 1 m
: £ £ £
i=l k=l j=l
n 1 m

. £ £ £
i=l k=l j=l
n m 1
£ £ £
i=l k=l

n X

: £ £ V . . a
i=l t=l ti

f n eq
: £ £ £
q=l i=l

f n ®q
: £ £
q=l i=l 8=1

be a very large

k̂ij “ki

'’kij \ i

1 i

1 1

86
With the addition of set-up costs only, e.g. problems

3a - 3f, the form of problem to be solved is:

Minimize: C + W + X + A

Subject to: n
Z P > d for k=l;...,l and j=l,...,m i=l klj kj

Pkij \ i ^ti - ^i ^
1 m

k:

m
Z Z Pki< < Ma . for i=l,..,,n and t=l,...,s

keCt j=l ^

?kij > 0 for all i, j and k

a^^ = 0,1 for all i and t

where is the set of indexes of products of type t.

With the addition of concave material costs only,

e.g. problems 4a - 4f, the form of the problem becomes:

Minimize: C + X + B + Z

Subject to: n
Z P m 2 d for k=l,...,l and j=l,...,mi=l

1 m
Z Z t, . < r. for i=l,...,n

k=l j=l ^ ^

 ̂ qg
j!i 'kij "ki

for i=l,...,n and q=l,...,f

87
e.■q qgZ b. = 1 for q=l,...,f and

g=l

1 1
and g=l,...,e

P > 0 for ail i, j and k

qgbj, = 0,1 for ail i, q and g.

In addition, certain assumptions about the models

were made. First, for all practical purposes an infinite

amount of each material is available at each plant; second,

the cost of shipping any product from a plant to a warehouse

is the same, regardless of the product; and third, the amount

of material necessary to build a product at a plant was the

same regardless of its eventual destination.

Test problems 3a and 4a were run with the following data:

n = 2
m = 2
1 = 4
f = 2
s = 2 (products 1 and 2 were of type 1 and products

3 and 4 were of type 2)
e^ = 5

Cki = / 5.54 6.71'
9.72 14.46

18.50 15.03
5.32 16.54,

88

''ki

V
t i

y Q g

1

z96

^kj

/0.80 0.95
4.80 3.80
1.60 1.52

\2.20 2.28

/3.90 2.10
Vl.40 2.80

^34.44 19.74
<30.66 48.88

/ 0.0
3.05
6.175
12.675
16.215

0.0 \
1.26 '
8.3
10.9
11.565/

/ 0.0
2.0
4.925
12.605

\ 13.655

2.60
2.45
2.20
1.60

\1.55

3 .9 o \
3.90
3.00 ,
3.30/

0 . 0 '

1.8
8.565
11.74
13.69 /

r.. = (52.3, 85.1)

' k i

% t i
/ 8.2
'4.2

89
12.6\ /l2.0 12.0
12.8 / 12.5 12.3
13.0 12.0 12.7
13.3 I 13.0 13.0
99.9 \99.9 99.9

Problems 3b - 3f and 4b - 4f were the same as above except

that demand at each of the warehouses was altered as was the

total production time available at each plant. These changed

values were:

3b and 4b dkj

3c and 4c d^j =

3d and 4d "kj '

3e and 4e d
kj

3f and 4f d, . = kj

2.6 3.l\
2.2 1.0
3.2 4.5
6.1 0.7/

9.4 1.2\
6.2 0.2
0.0 7.1
0.0 2.2/

3.1 2.2\
4.4 4.4
2.2 1.6
3.9 4.4/

3.9 3.9\
4.0 4.0 \
2.0 2.0
0.9 0.9/

4.4 3.9\
6.1 9.4
8.2 2.1/
1.4 1.91

r .1 = (48.7, 69.8)

r. = (72.9, 48.8)

^i = (55.0, 55.0)

r .1 = (77.6, 44.4)

r.1 (28.7, 61.2)

Fixed-Charge Transportation --

The fixed-charge transportation problem as discussed

90
by Gray (25) is concerned with the transportation of goods

from a set of n factories to a set of m warehouses with costs

involving both a cost per unit measure for each possible

transportation link and a fixed charge for the operation of

the link. Thus, if any products are shipped from a partic

ular factory to one of the warehouses, the fixed charge

associated with that link must be added to the overall

system cost.

Mathematically, one wishes to:

n m
Minimize: C = Z Z (c.. x.. + f.-- y..)

i=l j=l J ^ J

n
Subject to: j x.. > D. for j=l,2,...,m

i=l ** J

m
Z X . . < s. for i=l,2,...,n

j=l iJ 1

m.. y.. - X . . > 0 for i=l,2,...,n and
 ̂ ̂ ̂ j=l,2,...,m

X . . > 0 y,, = 0,1 for i=l,2,...,n and
 ̂ j=l,2,...,m

where x^j is the amount to be shipped from factory i to ware

house j ; y^j = 1 if there is any shipment between factory i

and warehouse j, ŷ ĵ = 0 otherwise; Cĵ j is the cost per unit

measure from point i to point j ; f^j is the fixed charge for

a shipment from i to j ; Dj is the demand at warehouse j ;

91
Sĵ is the supply at factory 1; and = min(Dj, s^), i.e,

the maximum possible size of all of the shipments.

For the problems (6c, 6d and 6e) used in testing,

the following values were used

6c: Dj = (325, 610, 422, 291, 345)

Si = (482, 799, 123, 385, 204)

6d: D.

'ij

mij

/2.3 2.9 3.4 6.1 4.2
4.7 8.3 1.6 2.7 7.4
3.2 4.1 9.6 6.2 4.8
9.1, 9.2 6.3 2.3 8.4

'4.3 2.0 6.1 3.3 4.4

/328 372 1462 1148 608
/ 332 1934 778 632 1578

78 1488 180 844 322
428 430 1120 892 1826

U824 1000 1306 550 742

/325 482 422 291 345
325 610 422 291 345
123 123 123 123 123
325 385 385 291 345

\204 204 204 204 204

(35, 30, 25, 15, 5, 5)

Sj = (45, 35, 20, 15)

'ij

'ij

0.69 0.64 0.71 0.79 1.70 2.83
1.01 0.75 0.88 0.59 1.50 2.63
1.05 1.06 1.08 0.64 1.22 2.37
1.94 1.50 1.56 1.22 1.98 1.98

/ll 16 18 17 10 20\
14 17 17 13 15 13
12 13 20 17 13 15 ,

\16 19 16 11 15 12/

92

mij 30
30
20
15

25
25
20
15

15
15
15
15

6e: D. (55, 54, 35, 22, 9, 8)

(23, 38, 56, 66)

m. ,ij

5
5
5
5

= 19 6 12 16 13 24
5 29 8 19 109 26

\ 38 17 14 23 27 114\̂ 6 20 2 92 29 42

I 4 3 0 6 8 7
5 16 24 9 11 2

12 5 10 6 9 43
\ 8 31 6 12 36 19

= / 23 23 23 22 9 8
38 38 35 22 9 8

\ 55 54 35 22 9 8
V55 54 35 22 9 8

It is interesting to note that once a set of values

for the 0-1 integer variables is determined that the

problem is a simple transportation problem. The technique

used by the author, however, was to continue to use a linear

programming algorithm rather than a transportation one.

APPENDIX E

The 0-1 integer variable problems were solved using

an algorithm based upon principles involved in Balas' 0-1

algorithm. Modification was necessitated by the unusual way

in which the objective function values are determined in the

’’pure" integer problem in Benders' algorithm.

The first step in Balas' algorithm is the substi

tution of 1 - y' for any y in the objective function with a

negative coefficient. This has the practical effect of

setting y to one and therefore the changing of any value

(from 0 to 1 for unsubstituted variables, from 1 to 0 for

substituted ones) will result in an increase in the objective

function value. As the value of the objective function in

our case is determined directly from the constraints, we

would like to do likewise, except that to accomplish the

same end, i.e. get the problem to an optimal, though possibly

nonfeasible state, the substitution must be made in each

individual constraint for those variables with positive

coefficients.

93

94
Then, in order to reach feasibility, some values of

y and y 'must be changed as it is necessary that y = 1 when

y' = 0 and, obviously, that y = 0 when y ' = 1 .

Let us look at an example problem so that it will

be possible to trace the procedure more clearly.

Minimize ; z

Subject to: z + 3x^ - 2%2 + 3x^ > 4

z - x^ + 3x^ - 2xg > 2

z + 4x^ - 3x2 ^^3 - 3

After substitution, one has:

Minimize : z

Subject to: z - 3x^ - 2x2 " ^^3 -

z - Xĵ - 3x2 - 2x3 > -1

z - 4x| - 3x2 - 2x3 > -3

Xi,X2,X3,x|,X2,X3 = 0,1.

xi + xĵ = 1, X2 + Xg = 1, X3 + x^ = 1.

Feasibility is now determined by assuring that when

x^ = 0, x^ = 1 and when x^ = 1, x^ = 0 for i = 1,2,3. Note

that the above solution is optimum but not feasible when all

X£ and X£ are zero,

A table can now be set up indicating the resulting

95
increase in the right-hand side of each constraint if each

of the six variables changes to a value of one.

Constraint: I

2

3

0
1

0

Xi

3

0
4

2
0

3

0
3

0

0
2

0

IX3

3

0
2

By considering which of each pair of linked variables

is to be set to one, it is possible to resolve the conflict

between the linked variables to eventually develop feasi

bility.

It was found that in the example problems used in

this dissertation that the use of complicated decision rules

as to the proper order of entry of variables resulted in more

calculations than a simple order of input scheduling scheme.

Thus, consider Xji and x|.

xi
1

^1 R.H.S.

Constraint: 1 -2 1* -2

2 0* -1 -1

3 -3 1* -3

96
The columns headed by and x| were derived by adding the

appropriate columns in the table above to the right-hand

side values. The numbers in the two columns represent an

optimal, though not necessarily feasible, value for the

objective function if x^ and x| respectively are set to one.

Since all constraints are "greater than or equal to", one

picks the largest value in each column (indicated by an

asterisk) to indicate the limiting constraint.

Selecting the column with the smallest of the

asterisked values (thus keeping the objective function

value as low as possible), one then considers the next

variable in line, using the selected column as the new right-

hand side.

X2 1X2 R.H.S.

Constraint: 1 0* -2 -2

2 0 3* 0

3 0* -3 -3

Continuing :

97

*3
f

*3 R.H.S.

Constraint: 1 0 3* 0
2 2* 0 0
3 0 2 0

Thus, one has an initial solution, namely = 1, Xg = 1,
and Xg = & for a value of 2. It is now necessary to back
track to see if cuiy other branch of the solution tree can

Iresult in a lower value. If Xg = 1, the best possible value
Iis 3 so that one should backtrack further. If Xg = 1, the

Ibebt is 3 so backtrack even further. If x^ = 1, the best is
f1 so that it is conceivable that by setting x^ = 1 and then

applying the procedure as above that it will result in a
lower value for the objective function than 2. Thus, con
tinuing from this poiht:

R.H.S.

Constraint: 1
-1

Since the best fs now 2 and we already have a
solution with that value, this branch of the tree has been

98
fathomed. Backtracking again now shows that the solution is

complete. Checking back with our original problem, we find

that the solution found does satisfy all constraints and

produces a value of 2 for z.

Thus the solution tree generated in this problem

would be:

z=-l

x,=l X, =1

2=0 z=l

Xo=l

2=0 z=3 2=4

z=2 z=3

z=2

99

A detailed description of the algorithm used to
solve the integer subproblem follows. Given the problem;

Minimize: Z
n

Subject to: Z + E a..x. 2. b- for i = 1,... ,m
j=l ^

Xj = 0,1 for j = 1,...,n.
tIn each constraint substitute 1 - x. for any x.J J

Iwhere a^j > 0 and set xy + Xj = 1. Since one begins the
Iprocedure with all Xj and x^ equal to zero, an obvious

infeasibility exists and the procedure will determine
Iwhether x. or x. will be equal to one. This determinationJ J

Iwill be made beginning with x^ and x^ and proceeding nat-
Iurally to x and x„. After substitution, one has: n n

Minimize: Z
ISubject to: Z - E a..x. - E a.x. >

b. - E a.. for i = l,...,m

I

Xj ^ Kj = 1 for j = l,...,n
IXj = 0,1 Xj = 0,1 for j = l,...,n,

where = (j | â ĵ > 0 in constraint i) and = (j |
1 0 in constraint i).

100
IIf xy = Xj = O,for all j, then one has an optimum

but infeasible solution with:
Z* = max (b. - I a..),

i ^
IFeasibility is satisfied by making Xj + Xj = 1 for all j.

Let t represent the leve& of the current node in
the solution tree. will represent the status of the
branches from the t-th node with = 1 indicating that
the branch with xy = 1 is being explored, P^ that the

Ione with xy = 1 is being explored and P^ = 3 that both
branches have been explored.

Step 0: Set t = 1, B = + « and r̂ ^̂ = b^ - Z a<^.
i=Ji+

step 1: Calculate:

®it =

^it + *it

ifit

if t e J.1-

if t e

®it
it

^it + *it

if t e J.1-

if t e

101

step 2; Let:
t I= max (s^^) and = max (s^^).

I IIf min(q^, q^) ^ B, go to step 5. If min(q^, q^)< B,
and t = n go to step 4, otherwise go to step 3.

t

Step 3: If g^ > q^, set “ ®it i=l,...,m and set
I I

= 1. If < q^f set for i*l,...,m
and = 2. Let t = t + 1, go to step 1.

Step 4: One now has a feasible solution as indicated by the
Ivalues of P^ for t=l,...,n. Since min(q^, q^) < B,

the presently found feasible solution is better
tthan the best found thus far. Set B = min(q^, q^)

and save the currently found feasible solttmon.
Go to step 5.

Step 5: Let t = t - 1. If t = 0, go to step 7, otherwise
go to step 6.

Step 6: If (a) P^ = 3 or (b) P^ = 1 and q^ ^ B or (c)
P^ = 2 and q^ ^ B, go to step 5, If P^ = 1 and
I I

q^ < B, set P^ = 3 arid “ ®it i=l,...,m.
If P^ = 2 and q^ < B, set P^ = 3 and “ ®it
for i=l,...,m. Set t== t++^l, go to step 1.

Step 7 : The optimum solution is B with the corresponding
Iderived values for xj and Xj.

BIBLIOGRAPHY

(1) Aldrich, D. W. "A Decomposition Approach to the Mixed
Integer Problem," Dissertation, Purdue University,
1969.

(2) Balas, E. "Discrete Programming by the Filter Method,"
Operations Research, Vol. 15, No. 5, pp. 935-944
Sfgeptember-October, 1967).

(3) Balinski, M. L. and Wolfe, P. "On Benders Decompo
sition and a Plant Location Problem," Mathematics
Working f̂ aper ARO-27, 1963.

(4) Balinski, M. L. "Integer Programming: Methods, Uses,
Computation," Management Science, Vol. 12, No. 3,
pp. 253-313 (November, 1965).

(5) Beale, E. M. L. "A Method of Solving Linear Programming
Problems When Some But Not All of the Variables
Must Have Integral Values," Statistical Tech
Research Group, Princeton University (March, 1958).

(6) Beale, E. M. L. and Small, R. E. "Mixed Integer
Programming by a Branch and Bound Technique,"
Proceedings, IFIP Congress, New York, Vol. 2
(May, 1965).

(7) Benders, J. F. "Partitioning Procedures for Solving
Mixed-Variables Programming Problems," Numerische
Mathematic, Vol. 4, pp. 238-252 (1962).

(8) Benichou, M., Gauthier, J. M., Girodet, P., Hentges, G.,
Ribiere, G.,and Vincent, 0. "Experiments in Mixed-
Integer Linear Programming," Mathematical Pro
gramming. Vol. 1, pp. 76-94 (1971).

102

103

(4P) Buzby, B. R., Stone, B. J. and Taylor, R. L,
"Computational Experience with Nonlinear Distri
bution Problems," Privately communicated to M. L.
Balinski, January 1965. See M. L. Balinski,
"Integer Programming: Methods, Uses, Computations,"
Itenagement Science, Vol. 12, No. 3, pp. 308
(November Ï965).

(10) Dakin, R. J. "A Tree-Search Algorithm for Mixed-
Integer Programming Problems," The Computer Journal,
Vol. 8, No. 3, pp. 250-255 (1965).

(11) Dalton, R. E. and Llewellyn, R. W. "An Extension of
the Gomory Mixed-Integer Algorithm to Mixed-
Discrete Variables," Management Science, Vol. 12,
No. 7, pp. 569-575 (March, 1966).

(12) Dantzig, G. B. "On the Significance! of Solving Linear
Programming Problems with Some Integer Variables,"
Econometrica, Vol. 28, No. I, pp. 30-44 (January
I960).

(13) Davis, R. E. "A Simplex-Search Algorithm for Solving
Zero-One Mixed Integer Programs," Technical Report
No. 16, Department of Operations Research, Stanford
University (October 1969).

(14) Driebeck, N. J. "An Algorithm for the Solution of
Mixed Integer Programming Problems," Management
Science, Vol. 12, pp. 576-587 (1966).

(15) Ellwein, L. B. and Gray. P/ "Solving Fixed Charge
Location-Allocation Problems with Capacity and
Configuration Constraints," AIIE Transactions,
Vol. 3, No. 4, pp. 290-298 (December 1971).

(16) Frair, L. "Benders' Partitioning Algorithm for Mixed-
Variable Programming Problems," Graduate Paper,
University of Oklahoma (Fall 1971).

(17) Geoffrion, A. "Optimal Distribution System Design and
Operation," Feasibility Study for Hunt-Wesson Foods,
Inc. (June 1970).

104

(18) Geoffrion, A. "Generalized Benders Decomposition,"
Proceeding of the Symposium on Nonlinear Pro
gramming, Mathematics Research Center, University
of Wisconsin, Madison^ May 4-6, 1970.

(19) Geoffrion, A. and Marsten, R. E. "Integer Programming
Algorithms; A Framework and State-of-the-Art
Survey," Management Science, Vol. 18, No. 9, pp.
465-491 (May 1972).

(20) Glover, F. "Integer Programming," Working Paper,
Chapter 5 (September 1969).

(21) Gomory, R. E. "An^Algorithm for the Mixed Integer
Problem," Rand Report P-1885 (February 1960).

(22) Gomory, R. E. "A Method for the Mixed Integer Problem,"
Rand Report RM-2597 (1960).

(23) Gorry, C. A., Shapiro, J. F. and Wolsey, L. A.
^Relaxation Methods for Pure and Mixed Integer
Programming Problems," Management Science, Vol. 18,
No. 15, pp. 229-239 (January 1972).

(24) Gray, P. "Mixed Integer Programming Algorithm for
Site Selection and Other Fixed Charge Problems
Having Capacity Constraints," Technical Report No. 6,
Department of Operations Research, Stanford Uni
versity (November 1967).

(25) Gray, P. "Exact Solution of the Fixed-Charge Trans
portation Problem," Operations Research. Vol. 19,
No. 4, pp. 1529-1538 (July-August 1971).

(26) Harris, P. M. J. "An Algorithm for Solving Mixed'.
Integer Binear Programs," Operations Research
Quarterly, Vol. 15, pp. 117-132 (1964).

(27) Herve, P. "Resolution Des Programmes Linéaires a
Variables Mixtes Par la Procedure Sep," METRA,
Vol. 16, pp. 1-67.

(28) Hu, T. C. "Integer Programming and Network Flows,"
Addison-Wesley Publishing Co., Inc., pp. 255-265
(1969).

105

(29) Land, A. H. and Doig, A-. G. "An Automatic Method of
Solving Discrete Programming Problems," Econometrica,
Vol. 28, pp. 497-520 (1960).

(30) Lasdon, L. D. "Optimization Theory for Large Systems,"
Macmillan Co., pp. 135-142, 370-392 (1970).

(31) Lemke, C. E. and Spielberg, K. "Direct Search Algorithm
for Zero-One and Mixed Integer Programming," Opera
ations Research, Vol. 15, No. 5, pp. 892-915 ---
(September-October 1967).

(32) Little, J. D. C. "The Synchronization of Traffic
Signals by Mixed-Integer Linear Programming,"
Operations Research, Vol. 14, No. 4, pp. 568-594
(July-August 1966).

(33) Mount-Campbell, C. A. "Risk, Uncertainty, Money and
Integer Programming," Unpublished Paper, University
of Oklahoma (Spring 1972).

(34) Muckstadt, J. A. and Wilson, R. C. "An Application of
Mixed-Integer Programming Duality to Scheduling
Thermal Generating Systems," IEEE Transactions,
Vol. PAS-87. Mp. 12, pp. 1968-1978 (December 1968).

(35) Rebelein, P. R. "An Extension of the Algorithm of
Driebeck for Solving Mixed Integer &rpgramm@ng
Problems," Operations Research, Vol. 16, No. 1,
pp. 193-198 (January-Febrnary 1968).

(36) Shareshian, R. and Spielberg, K. "On Integer and Mixed
Integer Programming and Related Areas in Mathe
matical Programming," IBM New York Scientific
Center (1966).

(37) White, C. H, "Production Allocation with Set-Up
Penalties and Concave Material Costs," Operations
Researbh, Vol. 17, No. 6, pp. 958-972 (November-
December 1969).

(38) White, W. W. "On Gomory's Mixed Integer Algorithm,"
Senior These, Princeton University (May 1962).

iô6

(39) Woolsey, L. A. "Mixed Integer Programming Discretiz
ation and the Group Theoretic Approach," Tebh.
Report 42, Operations Research Center, M.I.T.
(June 1969X.

(40) Woolsey, L. A. "Group Theoretic Results in Mixed
Integer Programming," Operations Research, Vol. 19,
No. 7, pp. 1691-1697 (November-December 1971).

(41) Zionts, S. "On an Algorithm for the Solving of Mixed
Integer Programming Problems," Management Science,
Vol. 15, No. 1, pp. 113-116 (September 1968).

(42) Zoutendijk, G. "Enumeration Algorithms for the Pure
and Mixed Integer Programming Problem," Internat
ional Symposium on Mathematical Programming,
Princeton University (August 1967).

