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ABSTRACT

This dissertation examines possible modifications 

to Benders' partitioning procedure for the solution of mixed 

integer problems with the intent of reducing the amount of 

time required for the solution of such problems. In gen

eral this can be done in two ways, by reducing the number 

of iterations required by the procedure for solution and/or 

by reducing the time per iteration.

The three modifications to Benders' original 

algorithm all relied upon changes in the technique of 

solution of the integer subproblem. On larger problems the 

majority of the time spent in solving mixed integer problems 

arises from the integer subproblem and thus this would be 

an excellent place to reduce solution time.

The changes effected in the integer subproblem were: 

(a) solution of the integer program to a non-optimal, 

feasible point, (b) addition of multiple constraints to 

the integer subproblem at each iteration, and (c) solution 

of the integer subproblem as a linear program until certain
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characteristics are recognized as indicating a need for 

solution as an integer program.

The first of these modifications attempts to reduce 

the time spent per iteration in the integer subproblem with 

the hopes that the number of iterations will not be in

creased. The second modification's efficiency depends 

chiefly upon reducing the number of iterations required for 

solution but, to some extent, also results in reduced time 

per iteration as well. The last suggested modification 

relies entirely upon reduction of time per iteration, 

which, hopefully, will offset the necessitated extra iter

ations which quite frequently arise.

The research for this dissertation consisted of 

analysis of the effect of the proposed modifications upon 

time of execution, coding of computer programs to solve 

problems using Benders' original algorithm and Benders' 

algorithm plus modifications, and analysis of results 

obtained on a large number of real-life problems.
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INTRODUCTION

In 1962 Benders (7) developed an algorithm for the 

solution of programming problems which involve a mixture of 

either different types of variables or functions. The 

general mixed programming problem can be expressed as (28):

Minimize: = CX + f(Y)

Subject to: AX + F(Y) > B (PI)

X > 0 Y £ S.

A is an m by n matrix, X and C are n-vectors, Y a p-vector,

F an m-vector whose components are functions of Y, f a

scalar-valued function of Y, B an m-vector and S a subset 

of EP, the Euclidean space of dimension p.

As an example of (PI), one can consider a problem in

which both functions f(Y) and F(Y) are nonlinear. One would

then have a problem in which the functions involve both 

linear and nonlinear terms. These linear and nonlinear 

terms are separable by definition and therefore Benders' 

algorithm may be applied to the problem. As another example 

of a possible form of (PI), consider the case in which all
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the functions of Y are linear but Y is constrained to be 

integer valued, i.e. S=|y | Y > 0 and Y integer}. This is 

the type problem to be considered in this dissertation.

A. Previous Research and Applications

Although the procedure outlined by Benders can be 

used on any mixed integer problem, other more specialized 

methods have generally been used in the optimization field. 

With the ready availability of commercial computer codes for 

mixed integer programming it is seldom that the coding of 

a general algorithm such as Benders' is attempted for a 

single application problem.

It appears, therefore, that research might be done 

into the possible advantages of Benders' algorithm over 

other solution procedures on specific application problems. 

It would seem from the literature available that Benders' 

algorithm has not found wide spread use. This lack of 

references, however, is not necessarily an indication of 

lack of research into the algorithm.

Buzby, Stone and Taylor (9) were probably the first 

persons to get computational experience using Benders' 

algorithm. In 1964-1965 they solved a type of non-linear 

distribution problem which was slightly more general than 

the plant location problem. By randomly generating such



3
problems and using Benders' algorithm, they found that as 
the problems became more difficult, i.e. more feasible 
answers, the realative efficiency of the procedure increased.

Geoffrion (17) used Benders' algorithm in the design 
of optimal distribution systems and (18) generalized Benders' 
algorithm so as to handle non-separable functions under 
certain conditions.

Gorry, Shapiro and Wolsey (23) used an adaptation 
of Benders' algorithm in which group theoreticsmethods were 
usdd to solve the series of integer subproblems arising in 
the procedure.

Balinski.and Wolfe (3) used Benders' algorithm on a 
plant location problem and had promising results on small 
problems.

Finally, Muckstadt and Wilson (34) also developed a 
mixed integer problem dealing with the scheduling of thermal 
generating systems and showed good results using Benders' 
algorithm. Despite their assertions of extensive modifi
cations, the algorithm used was essentially Benders' 
original algorithm.

This dissertation will place heavy emphasis on the 
computational comparison of Benders' original algorithm and 
some other algorithms which are based on Benders' dual



decomposition concepts. The type problems to be investigated 

will be restricted to the mixed integer programming problem 

with binary variables. In this way, it will he possible to 

obtain computational results on a type of problem which has 

numerous applications.

Glover's redefinition of Benders' algorithm is also 

examined for the extra insight which it can give. A com

parison of the similarities, differences, and the general 

relative efficiency of the two statements of the same pro

cedure is given. No attempt is made, however, to compu

tationally compare the two.

B. Benders' Algorithm for Mixed Integer Programming

Since this paper will deal specifically with the 

mixed integer problem, (PI) is here restated as such and 

development of Benders' algorithm will be in terms of this

restatement. The general mixed integer problem is (28):

Minimize: = CX + C'Y

Subject to: AX + A'Y > B (?2)

X,Y > 0 Y = 0 (mod 1).

Both the objective function and all of the constraints are 

linear in both X and Y. Y = 0 (mod 1) is a mathematical 

statement of the requirement that Y have only integer values. 

Let Y take some specific value, say Y*. Then (P2)



becomes:
Minimize: X = CXo
Subject to: AX > B - A'Y* (P3)

X > 0
* ,which is merely a linear program since Y is a constant.

(P3) can, of course, be sàlved by any linear programming
technique. Note that an objective function of X^ = CX may

*be used in place of X = CX + C'Y since the addition 6f ao
*constant (C'Y ) to the objective function in no way affects

the solution point of the linear program. After such a
solution point has been found, the objective function value 
calculated would be supplemented by the amount C'Y* to give 
the true objective function value at that point.

Now consider the dual of (P3).
MaKimize: = U(B - A'Y*)
Subject to: UA £ C (P4)

Ü > 0.
Note that the feasible region (as defined by the constraints) 
is now independent of Y so that regardless of what value Y 
may assume, the optimal point of (P4) will be a vertex of the 
space defined by ÜA £ C and U ^ 0. In the solution of (P4) 
three cases may occur. First, there may be no feasible 
solution; second, (P4) may be unbounded; and finally.



a feasible finite solution may be derived.

Case 1; Suppose (P4) has no feasible solution for
i(Y = Y . Since the feasible region is independent of Y, 

there will be no feasible solution for (P4) for any value of 

Y, Let us consider the relationships between the primal and 

dual problems so that infeasibility in the dual problem can 

be explained in relation to the primal problem.

Primal
Level

Dual
Level

PROBLEM

FINITE
FEASIBLE

FINITE
FEASIBLE UNBOUNDED

UNBOUNDED

INFEASIBLE

INFEASIBLE

By inspection of this relationship tree it can be 

seen that if the dual has no feasible solution, then the 

primal could be either unbounded or infeasible. One can 

easily determine which of these two possibilities is true by 

adding a constraint to the primal problem so as to prevent 

unboundedness. The most commonly used constraint for this 

purpose is X + Y < M, where M is an extremely large number. 

The addition of this constraint to the primal problem will 

have the effect of increasing the dimensionality of the dual



by one; i.e. adding one variable. If the dual still has no 

feasible solution, the original mixed integer problem must 

be infeasible for all values of Y as now the primal problem 

cannot be unbounded. If it occurs that the dual now has a 

feasible solution, the original mixed integer problem was 

unbounded and by using Step 1 of the procedure outlined 

below it is possible to determine a value of Y at which this 

occurs. One would then have a solution to the original 

mixed integer problem, namely = - » (unbounded), Y = Y* 

and X such values as necessary to produce the unboundedness.

Case 2 ; If (P4) is determined to have an unbounded 

solution, add to (P4) the constraint:

m
I U. < M (El)
i=l

where M is again an extremely large number. Upon the 

resolving of (P4), one should obtain a feasible finite 

solution. Note that unboundedness in the dual results from 

infeasibility in the primal problem. Thus, for Y = Y*, the 

primal problem is infeasible. One would therefore like to 

delete Y from any future consideration in the process of 

the algorithm. By using Benders' algorithm, any future 

objective function value derived for the original mixed



*integer problem when Y = Y" will be very large (due to the
addition of (El) to the set of constraints) and as the
problem is being minimized, simply continuing in the

*algorithm will have the practical effect of Y' being deleted 
from future consideration.

Case 3: It is well known that a set of linear con
straints results in a space which is convex, i.e. any pos
itive linear combination of two points within the space is 
also within the space. Also, if the space is bounded, a 
solution to a linear program lies at one of the extreme 
points or vertices of that space.

Thus, in the third case, i.e. the obtaining of a
finite feasible sôlution to (P4), the solution will occur
at some vertex of the space defined by UA £ C and U £ 0. 
Suppose there are a total of N such vertices and let 
represent the P'th such vertex. One can then write (P4) as:

Maximize: = uP(B - A'Y*)
for p = 1,2,...,N. (P5)

*By duality theory, the solution to (P5), say U^, must be
equal in value to the value of the objective function of the

*primal problem at its solution point. Thus, = CX. Since 
= CX + C'Y, substituting (P5) into (P2) results in:



= r'v + Max Û i 
p=l,...,N

Minimize: = C'Y + Max U^(B - A'Y)

Y a  0 Y E 0 (mod 1). (P6)

(P6) can be expressed as :

Minimize: Z

Subject to: Z ^ C'Y + Max U^CB - A'Y)
p=l,...,N

Y ̂  0 Y = 0 (mod 1). (P7)

Finally, (P7) can be written:

Minimize : Z

Subject to: Z 2" C'Y + U^(B - A'Y) p=l,...,N

Y ̂  0 Y E 0 (Mod 1). (P8)

In (P8), there would be N constraints of the form

Z > C'Y + U^(B - A'Y), one constraint for each vertex (cf) 

of the hyperspace created by the constraints of (P4). Since 

there are N vertices in the dual solution space, a maximum 

of N constraints will completely define the integer problem 

and hence the original mixed integer problem. As N is 

typically very large, however, and the number of constraints 

which are tight at the final solution stage is small, one 

would like to solve a "relaxed" version of (PS), i.e. one 

that has only a small subset of the N constraints. Benders' 

algorithm is an iterative procedure which solves a relaxed 

version of (P8); at each iteration a new constraint of (P8)
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is added to the relaxed problem.

Outlined below is the complete Benders' algorithm 

for mixed integer programming. Following that is a detailed 

graphical description of (P8), and Benders' algorithm for 

solving (P8).

Step 0 : Set t, the iteration number counter, equal one.

Select some > 0 such that U^A < C. It is not

necessary that this point be a vertex of the space

defined by UA < C. If upon examination of the 

problem it is found that no such point exists, then 

the original problem had no feasible solution or 

was unbounded, and the method previously outlined 

can be used to determine which case has occurred. 

Step 1: Solve the "pure"^ integer problem:

Minimize: Z

Subject to: Z ^ C’Y + U^(B - A'Y) i=l,...,t

Y > 0 Y : 0 (mod 1).

The use of quotation marks around the word pure in 
"pure" integer problem throughout this paper arises from the 
fact that although Y is restricted to integer values, the 
value of Z, which can be considered as merely an additional 
variable, may be non-integral. This is due to the possibility 
of non-integral coefficients in the constraints of the inte
ger problem. The algorithm developed to handle this "almost 
integer program" is given in Appendix E.
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Let and be the solution. If Z is unbounded 

from below, take to be some point that gives Z*- 

some arbitrarily large negative value.

Step 2; Solve the linear problem:

Maximize: = U(B - A'Y^)

Subject to: UA < C

U > 0.

If U goes to infinity, i.e. the problem is unbounded, 

add the constraint: 

m
E UjL < M, 

i=l

where M is a large number, and resolve the linear 

program. Let the solution to this linear program 

be and Determine whether:

Zt _ C'Yt = Ut+1(B - A'Y^).

If this equality holds, Y^ is the value for Y such 

that the original problem is optimized. In that 

case, proceed to Step 3. If, however:

- C'Y^ < Ut+1(B - A'Y^), 

not all of the necessary constraints have been 

derived to find a final solution to the mixed 

integer problem and the most violated constraint 

should be added to the existing set of constraints
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in the integer program. The addition of this most 

violated constraint means that if Y = in some 

future iteration, the value of Z associated with Y*- 

will be greater than Z^. This is desirable as Y^ 

did not result in the optimal solution to the mixed 

integer problem and thus Z* > Z^.

Add the constraint:

Z > C'Y + ut+l(B - A'Y)

to the integer problem. Let t = t + 1. Return to 

Step 1.

Step 3 : Using the Y^ obtained in the iteration in which

Z*" - C'Y^ = - A'Y*"), return to the original

problem and solve:

Minimize: X = CX + C'Y^o
Subject to: AX > B - A'Y^

X > 0.

Proof of the finiteness of the algorithm, proof of 

the optimality of the Y and X values derived and 

the yielding of the upper and lower bounds on the 

optimal objective function value during execution 

of the procedure are given in Appendix A,
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As an aid to help understand further the procedure 

involved in the relaxation of the integer program, consider 

the following problem. The mixed integer problem can be 

expressed as a "pure" integer problem of the form:

Minimize : Z

Subject to: Z > C'Y + uP(B - A'Y) i=l,...,N

Y > 0 Y = 0 (mod 1). (P6)

In order to better visualize the procedure involved, let us 

consider a graphical display of the full integer problem and 

note the graphs produced by the procedure at different iter

ations. Unfortunately, in order to have a graphical display, 

it is necessary to restrict ourselves to a single integer 

variable. Thus, consider the case where N = 6 and Y consists 

of a single variable y . Furthermore, let the points U?, 

i=l,...,N be such that (P8) becomes:

Minimize : z

Subject to: z > - 7 y + 4 (1)
z > y - 4 (2)
z > 2/5 y - 1 (3) (P9)
z > 1/6 y + 1 (4)
z > - 2/5 y + 2 (5)
2 > - 3/2 y + 3 (6)

y > 0 y = 0 (mod 1).

Thus, the complete problem would be:
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4
3

(4)
2

1

0
1

2

3
4

(1)

(Dl)

It is easy to see the minimal z over all y from this drawing, 

namely z = 4/3 for y = 2.

Consider Benders' algorithm which finds this point 

by relaxation of the problem and the addition of constraints, 

one at a time. Begin with only the constraint y > 0 and set 

y = 0 as a beginning value. The procedure now would deter

mine the most violated in the set of constraints by the 

solution of a linear program. Graphically, it can be seen 

that that constraint is (1). Thus, the problem becomes:
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z
4

3
2

1

0

1

-2
3
4

When one solves: 

Minimize : z

(D2)

(PIO)Subject to: z > - 7 y  + 4 (1)

y > 0 y = 0 (mod 1), 

a solution of y = z = - «° is obtained. To (PIO) a

limiting constraint of y < M, where M is a very large number,

is added, (PIO) is then resolved for a solution of y = M, 

z = - 7 M + 4.

Now, find the most violated constraint at y = M by

a linear program. One can see that that constraint is (2).

Adding constraint (2), one gets:
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Minimize;

Subject to: z > - 7 y + 4 (1)
z > y - 4 (2)

Graphically:

y > 0 y = 0 (mod 1).
(PU)

-2  "

(1)

(D3)

Solving (PU), y = 1, z = -3. (5) will be indicated by the

linear program to be the most violated constraint at y = 1. 

Now:

Minimize : z

Subject to: z > - 7 y + 4  (1)
z > y - 4 (2)
z > - 2/5 y + 2 (5)

(P12)

y > 0 y 5 0 (mod 1)



Or;
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4
3
2

I

0
1 (5)
2

3
4

(1)

(D4)

Solving (P12), y = 4, z = -2/5 and (4) will be the 

most violated constraint at y = 4. Next:

Minimize: z

Subject to: z >
z >

7 y + 4 (1)
y - 4 (2)

z ^ - 2/5 y + 2 (5)
z > 1/6 y + 1 (4)

(P13)

Y > 0 Y = 0 (mod 1).



Or graphically:
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3-

-1 ' ■

-2 • '

(D5)

Finally, (P13) is solved for an answer of y = 2, 

z = 4/3 and the constraint indicated to be most violated at 

y = 2 is (4) once more. At this point the procedure will 

stop.

This, of course, is an extremely simplistic model, 

being only one*dimensional but lends insight into the actual 

behavior of Benders' algorithm.



INVESTIGATION OF GLOVER'S REDEFINITION

Glover (20) has restated Benders' algorithm in a way 

which lends some insights into and understanding of the 

basic procedure of the algorithm. Again, consider the 

problem:

Minimize: X = CX + C'Yo
Subject to: AX + A'Y > B (P2)

X,Y > 0 Y = 0 (mod 1).

The procedure as described by Glover is basically 

the same as that described by Benders except for the form of 

the integer program. Consider an integer program which has 

the form:

Minimize: Y^ = DY

Subject to: FY < G (P14)

Y > 0 Y = 0 (mod 1).

(P14) is a general form of an integer program where the 

process is started with D, F and G such that the space 

defined by FY 3 G and Y è 0 will contain at least one Y 

which is optimal for the original mixed integer program. An

19
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example of such a program might be:

Minimize : Y

Subject to: Y < M (P15)

Y > 0 Y = 0 (mod 1). 

where M is an extremely large number. As the procedure con

tinues, additional constraints, which will be described 

later, will be added to this integer program.

Once additional constraints have been added to the 

integer program, certain rules are followed. If the integer 

program has no feasible solution, the optimal mixed integer 

solution is the best found thus far by the procedure. If 

there have been no mixed integer solutions found thus far, 

the mixed integer program is itself infeasible.

Suppose there exists a feasible solution to (P14), 

say Y'̂ , If Y* is substituted into (P2) the result is a 

reduced linear program of:

Minimize: X = CX + C'Y*o
Subject to: AX > B - A'Y* (P16)

X > 0.

There are two cases which can occur. Case No, 1:

If (P16) has an unbounded solution, the original mixed 

integer problem is unbounded and has a solution of X^ = - “ , 

Y = Y* and X equal to the values found when solving (P16).
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If (P16) has no feasible solution, then Y is not a feasible 

value for Y for the mixed integer program. A new constraint 

(to be described later) for the integer program will then be 

generated and added to the integer program. The above pro

cedure would then be iterated as many times as necessary.

Case No. 2: If a feasible finite solution to (P16) is found,

then that solution, say X = X* and Y = Y*, is a feasible 

solution to the original mixed integer problem. If this 

solution is better than any previously found, it is possible 

to update the best found thus far to this new solution and

generate a new constraint for the integer problem. The

process would be continued with iterations of this type until 

a solution was found.

Consider the method of determination of the con

straint to be added to the integer problem and the objective 

function of that additionally constrained program. The 

final tableau resulting from the solving of (P16) appears 

thusly:

X. = a + Q° Wo 00

X = Aq + Q W (T1)

where W is the vector of final nonbasic variables.

Consider the representation of the final tableau if 

the integer variables Y had been included in (P16) while
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solving the linear program but were not allowed to enter 

the solution, i.e. the identical pivots were taken as pro

duced (Tl). Then one would have had:

= a + Q° W + P° Y o oo
X = + Q  W + P Y (T2)

First, in the case when an optimal solution to (P16)
1

was found, namely X. = a and X = A , let X be the best ̂ o 00 o' o
solution found to date for the mixed integer problem. If

1
the newly found solution is better than this best (a„^ < X ),' 00 O '’

one immediately sets the best found so far to the newly

found solution, i.e. set X = a . It would be advantageousO 00 °

to add a constraint to the integer program so as to force 

the integer program from the Y previously found as one has 

determined the best possible solution with Y = Y* and now 

wishes to consider another value for Y.
I 'At this point, either X = X (because X was up-0 0 ' o ^

dated to X^ if X^ = a^^ < X^) or X^ > X^. If a constraint
I

is added to the integer program such that X^ < X^, Xq = a^^

could not possibly be a feasible value for X^ in any future

iterations. This is due to the fact that a is the optimal
00

* 'value for X when Y = Y and X < X requires a better valueO 0 0 ^
for X^. Coupling a requirement of X^ < X^ with (T2), one 

gets ;
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X = a + P° Y + Q° W < X'O 00 ^ o

or P° Y < -  a^o -  q° W. (E2)

Since the linear program at this point is optimal 

and it is a minimization problem, it is known that Q° > 0 

and W > 0, so that - Q° W < 0. Thus:

- Q° W < x; - 

or P° Y < x; - a^g. (E3)

Since it is impossible to handle strict inequalities 

in integer programming, subtract a small positive number e 

from the right hand side of the inequality. Then:

? 3 %0 - *00 - e. (E4)
(E4) will be the new constraint to be added to the integer 

program and through its use, Y* will not be derived as a 

solution to the integer subproblem in the future. Note that 

all constraints added to the integer program will depend 

parametrically upon X^.

In the second case, when the reduced linear program 

has no feasible solution, one must add a constraint to the 

integer program also. As the previously derived integer 

point Y* was not a feasible one (as shown by the linear 

program's infeasibility), one would wish to exclude it from 

future consideration.
The infeasibility of the problem will have resulted
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in at least one row, say the r-th one, in the final tableau 

being such that;

Xr = a^o + W + Y (E5)

where a^^ < 0 and Q < 0 with W again the nonbasic variables 

in the final tableau. Considering (E5) and wishing to have 

feasibility (X^ ^ 0) :

Xr = a^o + W + Y > 0

or pf Y > - qf W - a^Q. (E6)

Since - W > 0, one can say:

pf Y > - qf W - 3,0 > - 

or P’̂ Y Ï - (E7)

(E7), then, is the constraint to be added to the integer 

program when (P16) has no feasible solution. Note that the 

previously found integer point Y cannot satisfy the require

ment that X p >  0 and therefore will not be found feasible 

in future iterations.

It was assumed that Y was bounded (FY < G) in the 

initial conditions and therefore there are a finite number 

of values for Y. Note that the constraints added in Glover's 

adaptation of Benders' algorithm completely excluded any 

integer points previously found. Benders' algorithm only 

changed the value associated with each integer point so 

that a previously found integer point could reenter as the
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optimal point, but at a higher objective function value.

Therefore, since in Glover's version of the algor

ithm adding constraints to the integer program results in 

the elimination of at least one integer point from consider

ation in each iteration, there can be only a finite number 

of iterations. Thus, as far as finite convergence of this 

procedure is concerned, thé objective function form is 

immaterial.

Glover considers interesting an objective function

of :

= *()() + Y (E8)
whose coefficients are the same as those of the most recently 

adjoined constraint.

Consider (E4). By a simple manipulation, one can

get:

if ? + *00. (E9)
At the j-th iteration, one would have j of these 

constraints, thusly:

XÔ - e > r °  Y + ajo for 1=1,...,j  (ElO)
fNow, since - e is greater than or equal to all

P? Y + a^ for i=l,...,j, it can be seen that:
•*- 00

- e > Max (P° Ï + aj^). (Ell)
i=l,...,j
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IBut Xq - e merely indicates that it is desired to reduce 

the optimal value found thus far by amount e. Let e be 

considered a variable which one wishes to maximize, i.e. 

one wishes to reduce the best found solution as far as pos

sible. This would have the effect of minimizing - e.

Let Z = X^ - e. Then:
o iZ > Max (P. Y + a ) (E12)

i=l,...,j ^

where one wishes to minimize Z.

It is known from the definition of Benders' algor

ithm that the optimal value of the mixed integer program at

the i-th iteration is C'Y + U^(B - A'Y). From Glover's
i odefinition, the optimal value is a^^ + Y. Since one is

the dual of the other:

a^Q + P° Y = C'Y +  uf(B - A'Y). (E13)
If one substitutes (E13) into (E12):

Z ^ Max (C'Y + U?(B - A'Y)). (E14)
i=l,...,j ^

Since one wishes Z minimized and (E14) to be in closed form,

(E14) can be expanded to:

Minimize : Z

Subject to: Z > C'Y + U?(B - A'Y) i=l,...,j

Y S 0 Y = 0 (mod 1) (P19)
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which is merely Benders' representation for the integer 

problem at the j-th iteration.



SOME PARTITIONING ALGORITHMS FOR THE 

MIXED INTEGER PROGRAMMING PROBLEM

In his original work Benders made two primary 

contributions; (1) development of a "pure" integer problem 

(P8) which is equivalent to the original mixed integer 

problem (P2), and (2) development of an algorithm which will 

solve this resultant "pure" integer problem in a practical 

procedure. This algorithm involves solving two separate 

subproblems iteratively, one a relaxed integer problem and 

the other a linear programming problem involving the non

integral constrained variables of the original problem.

Hence, the term "partitioning algorithm."

There have been some encouraging and somewhat sur

prising results reported by Geoffrion and Marsten (19), 

which show that Benders' algorithm can generally solve the 

mixed integer program in relatively few iterations. An 

investment planning type problem of 378 constraints, 1326 

continuous variables and 24 integer variables was solved in 

4 iterations. Two project evaluation problems, both involving

28
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350 continuous variables, 27 binary variables and 275 

constraints were solved in 10 and 25 iterations respec

tively. Unfortunately, if the original problem involves 

many integer variables, each iteration requires the solution 

of a "pure" integer problem for which the determination of 

the solution require an extreme amount of time.

The purpose of this research is to propose some 

alternative schemes for solving (P8) and then to test these 

schemes computationally. Of course, the way in which to 

improve upon Benders' algorithm is to either (1) reduce the 

number of iterations without increasing substantially the 

time per iteration (although, as mentioned. Benders' algor

ithm has required surprisingly few iterations for solution), 

(2) reduce the time per iteration without substantially 

increasing the number of iterations or (3) reduce both the 

number of iterations and the time per iteration.

In this chapter three algorithms are presented for 

solving (P8) which appear to be promising in terms of the 

saving of time and/or iterations in the solution of mixed 

integer problems.

(A) Use of Non-Optimal Integer Subproblem Solutions

The first algorithm aims at reducing the time per
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iteration by reducing the time involved in solving the 

integer subproblem. There are two primary difficulties in 

the solving of integer programming problems by any presently 

available methods. These are the finding of the optimal 

solution itself and the elusiveness of proof of optimality 

once the solution is found. Feasible answers to integer 

problems are, of course, considerably easier to find than 

the optimal and many times such feasible answers are quite 

close to the true optimum. Some procedures actually find 

the optimum fairly rapidly in some problems, but the pro

cedure does not terminate with an indication that the point 

obtained is optimum for many more iterations. Thus, in 

integer programming, one is not only concerned with finding 

an optimum solution, but also recognizing this solution to 

be optimal as soon as possible.

It would therefore seem to be advantageous (in terms 

of time spent solving the integer subproblem in Benders' 

algorithm) to find only a "good solution" as this can gen

erally be done quite rapidly. In fact, Aldrich (1) and 

Gorry, Shapiro and Wolsey (23) have suggested such a modifi

cation as possibly being advantageous. If this feasible 

point for the integer problem results in a new vertex of 

the linear programming subproblem (and thus a new constraint
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for the integer programming subproblem) being generated, one 

may have possibly gained by not spending large amounts of 

time in the integer subproblem proving optimality. Thus, 

what one would hope is that the feasible solutions to the 

integer subproblem would generate one of the necessary con

straints for eventual solution or, failing that, that the 

number of extraneous constraints, i.e. constraints which 

are generated in addition to those actually necessary for 

solution of the mixed integer problem, would be small.

Let us examine some of the differences in procedure 

that are necessitated by the solution of the integer sub

problem to a "good solution" instead of an optimal solution. 

From Appendix A, (E16) shows that in Benders' algorithm 

< Z*, where Z^ is the solution to the relaxed integer 

problem at iteration t and Z* is the solution to the orig

inal mixed integer problem. Since we have not solved the 

relaxed integer problem completely, this inequality does 

not necessarily hold. Thus, it is possible that the solu

tion of the relaxed integer problem to a feasible point only 

will result in Z*" > Z*, i.e. Z^ is a feasible, non-optimal 

point of the original mixed integer problem space. If this

occurs, it follows that - C'Y^ where U*" is theo o
objective function value obtained upon solution of the
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linear program with Y = Y^. Under normal conditions, i.e. 

the solution of the relaxed integer program to a true opti

mum, this equality would indicate final solution of the 

original mixed integer problem, whereas with the solving of 

the relaxed integer subproblem to only a feasible solution, 

it does not necessarily indicate the finding of the final 

solution. Thus, the stopping rule for Benders' algorithm 

must be changed so as to have some provision to detect the

situation where = Z*- - C'Y^ does truly indicate a finalw i i t i c  J*- = yb _ r'vt

solution.

The detection of the situation in which - C'Y*"

does not indicate a final solution consisted of two parts.

First, the value of the best (smallest) U^, call it U*,

found thus far, along with associated variable values, was

saved and if Z^ > U*, then Y^ is obviously an undesirable

value for Y, i.e. one which will produce the above mentioned

erroneous optimality test. Second, if Z^ < U* and Z*" > Z*,

then as stated above, it follows that = Z^ - C'Y^ when theo
linear program is solved. If either of these two possible 

error conditions (Z^ > U* or = Z*" - C'Y*") occurs, theo o
solution of the previous integer subproblem is continued 

from the point at which it was left off until a new feasible 

point is found. This procedure continues until either
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*
'A

previous integer subproblem is found. If the first of these

t * t *Z £ U* and Z £ Z or until the true optimum for the

situations occurs, a constraint is generated for the integer 
subproblem as usual. If the second occurs, we have the 
final solution td the original mixed integer problem.

A detailed statement of the algorithm suggested
follows.

Step 0; Same as in Benders' algorithm.
Step 1: Solve the "çure" integer program:

Minimize: Z
Subject to: Z > C'Y + (B - A'Y) i = l,...,t

Y ^  0 Y E 0 (mod 1).
t *until a feasible solution is found for which Z < U_.— o

Let Z^ and Y^ be this solution.
Step 2: Solve the linear program:

Maximize: = U(B - A'Y^)
Subject to: ÜA £ C

Ü > 0.
Let and be the solution. If Z^ - C'Y =o
Ü (B - A'Y ), there is a possibility that one has 
found the solution to the original mixed integer 
problem. It is necessary to determine whether this
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test truly indicates global optimality. If the 
problem in step 1 was not solved to optimality, 
return to step 1 and continue solution to the next 
discovered feasible solution, or until the present 
solution to the integer subproblem is proven to be 
optimal. If the problem in step 1 was solved to 
optimality and that optimality was recognized as 
such, go to step 3.

If - C'yt « - A'Y^), add the con
straint:

Z > C'y + - A'Y)
to the integer subproblem exactly as in Benders' 
original algorithm. Let t = t + 1, return to step 
1.

Step 3; Same.as Benders' algorithm.

In step 1 of the procedure outlined above, solution 
of the '̂pure" integer problem was always to the next dis
covered feasible point. Since most algorithms "discover" 
feasible points in such a way that each new feasible point 
is better (in terms of the objective function value gen
erated) than the last, one will eventually be lead to the 
true optimum if one returns to step 1 often enough in a
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single iteration. Of course, if the optimal point is found 

in step 1, then the iterations are the same as Benders' 

original algorithm.

In order to better visualize some of the problems 

and advantages involved in this algorithm, let us consider 

the problem presented in (Dl), where Z* was 4/3. After the 

first iteration we had:

Minimize : Z

Subject to: Z > - 7 y + 4 (1) (P17)

Y > 0 Y 5 0 (mod 1).

or:

4 ■ '

-3 "
-4 ’ ’

(D 6 )

The optimal solution, of course, is y = », Z = -» (computa

tionally, we set y to some very large number), and the most
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violated constraint at that point was (2) which is Z > y - 4.

Suppose that (P17) was not solved exactly so that 

only a feasible solution was found, say y = 3. At y = 3, 

the most violated constraint is (4) or Z > 1/6 y + 1. At 

this point (y = 3), Z = -17 and Z < Z so the procedure con

tinues with the problem:

Minimize: Z

Subject to: Z > -7 y + 4 (1)

Z > 1/6 y + 1 (4) (P18)

y > 0 y = 0 (mod 1).

Graphically we have:

4
3 (4)
2

1

0
1

2
-3
-4 '(1)

(D7)

Now, the solution to (P18) is y = 1 and Z = 7/6 

and, of course, (5) would be added to the integer
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subproblem as the most violated constraint. By solving for 

only a feasible point, suppose one got y = 4 for a solution.

Then Z = 3/2 and since Z > Z*, one would get a false test

for optimality using Benders' original stopping rule. As 

can be seen, this situation arises due to the fact that the 

most violated constraint at y = 4 is again (4), a constraint 

already generated. Therefore, return should be made to the 

solution of the relaxed integer subproblem and the solution 

continued until another feasible solution is found. This 

procedure is continued until a point is found at which the 

most violated constraint is not (4) or any of the other 

previously generated constraints or until the true optimal 

to the relaxed integer problem is found and proven optimal.

In our example, suppose we ended up solving the

problem to an optimum. Then at y = 1, the most violated 

constraint is (5). Adding this constraint will eventually 

force the solution of y = 2 and Z = 4/3 in the next iter

ation.

The proof of finiteness of the suggested modifica

tion to Benders' algorithm is as follows; If at some 

iteration Z^ < Z^, where Z* is the optimal value for the 

original mixed integer problem, then the proof is the same 

as for Benders' original algorithm. If Z*- > Z*, then one
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would find that:

- A'Y^) = - c'yt.

In that case, return is made to the integer sub

problem and another feasible point is found. Since these 

additional feasible points found for the integer subproblem 

are such that each is smaller than the preceding one, even-
t ÿptually either Z < Z for some non-optimal point of the 

integer problem solution space or the optimal point for the 

integer subproblem is found and thus Z^ < Z %

Thus, the only time that the procedure continues is
twhen Z < Z and thus a new constraint will be generated 

each time or the solution of the mixed integer problem will 

be found,

(B) Generating Multiple Constraints per Iteration

A second tested alteration of Benders' original 

algorithm was to introduce more than one new constraint at 

each iteration as suggested by Geoffrion and Marsten (17) 

as possibly being advantageous. Since a large portion of 

this algorithm's time is generally spent solving integer 

programs, it would be advantageous to try to cut the iter

ations to a minimum. Since a certain number of constraints 

are required to be generated before convergence of the
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procedure, the faster one can generate those constraints the 

better; that is, if not too many unnecessary constraints are 

generated.

The generation of multiple constraints would be 

accomplished by using not only the IjP which maximized the 

linear program but other vertices as well. Several alterna

tive methods could be used to derive these additional IjP's.

Due to the fact that during research the primal 

problem (P3) was solved rather than the dual problem (P4), 

several correspondences between the primal and dual problems 

had to be examined to determine exactly how to derive these 

other U^'s, Since it was desired to find feasible, non- 

optimal vertices of the dual problem, it was necessary to 

discover non-feasible, optimal vertices of the primal. With 

the current tableau reflecting the optimal solution, the 

following procedure was used to derive a non-feasible, 

optimal vertex in the primal problem.

First, since the dual variable values are found in 

the objective function row of the primal tableau under the 

original basic variables, it was necessary to keep all these 

values greater than or equal to zero. Also, since the value 

of the slack variables for the dual problem occur under the 

beginning non-basic variables, these values also have to be



40
kept greater than or equal to zero.

In order to insure a change in the value of the dual 

variables, it was decided that the entering primal variable 

must be one of the original basic variables and must have 

a strictly positive value in the objective function row.

It follows that this guarantees change in the dual variable 

values as the value in the objective function row under the 

selected entering variable must change from a positive value 

to zero.

Any variable having these two properties was tested 

for the possibility of its being able to enter the solution. 

Two other conditions also had to be satisfied for the var

iable to enter the solution. First, the entry of the var

iable had to make the primal problem non-feasible. This, 

of course, means that the right-hand side had to become 

negative for some given row, call it the infeasibility row, 

and for this to happen the value under the entering variable 

and in the given infeasibility row had to be negative. 

Second, the entry of the variable had to leave the solution 

optimal, i.e. all objective function row values had to stay 

positive or zero. Thus, all columns having negative co

efficients in the infeasibility row were examined and the 

column having the smallest absolute ratio of objective



41
function row value to infeasibility row value was selected 

to be the entering variable.

The first variable found satisfying all four of 

these conditions was entered into the solution and the 

resulting, changed values for the dual variables used to 

generate a second constraint at each iteration.

If no variable was found to satisfy all of these 

conditions, only one constraint was generated in that iter

ation.

This procedure, as mentioned above, can cut the 

number of necessary iterations of the algorithm and thus cut 

the overall time for solution. A detailed explanation fol

lows :

Step 0 

Step 1

Step 2

Same as Benders’ algorithm.

Same as Benders’ algorithm.

Solve the linear program:

Maximize: = U(B - A'Y^)

Subject to: UA < C 

U > 0.

Let yt^^ and be the solution. Determine

another feasible but non-optimal point, say 

and as discussed above. If:

-t+1
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- C'Y^ = - A'Y^)

go to step 3. If:

- C'Y^ < - A'Y^),

add to the integer subproblem the two constraints:

t+1Z > C'Y + U (B - A'Y) and

Z > C'Y + lf''’̂ (B - A'Y).

Let t = t + 1. Go to step 1.

Step 3: Same as Benders' algorithm.

For the purposes of this research only two con

straints at a time were added to the integer subproblem. 

Obviously, any reasonable number of constraints could be 

added to the subproblem at each iteration, each being gen

erated from a different discovered U^.

No checks were made for duplication of constraints 

in different iterations as it was deemed to occur so infre

quently that the additional calculations involved in doing 

such checking could not be justified.

Since this additional constraint is merely an 

attempt to cut the number of iterations, it can be seen that 

Benders' original algorithm is still intact within the pro

cedure. And thus, the proof of finiteness of the algorithm
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must be exactly the same.

To examine this suggested modification more closely, 

let us look at the example previously examined, namely (Dl). 

Let us assume that at each iteration we not only detect the 

most violated constraint of the integer problem but also the 

second most violated.

Thus, at the first iteration, when y = 0, the linear 

subprogram not only generates constraint (1) but also (6), 

Then, our first integer subprogram to be solved is:

Minimize : z

Subject to: z > -7 y + 4 (1)

z > -3/2 y + 3 (6) (P19)

y > 0 y = 0 (mod 1).

The graph of this would be:

-1 ••

(6)

(D8)



44
The solution to (P19) is, of course, z = - » and y = », but 

with the addition of a bounding constraint of y < M, the 

solution becomes z = -3/2 M + 3 and y = M, where M is a very 

large number.

At y = M, we find the two most violated constraints

to be (2) and (3) so both of these are added to the integer

subproblem to produce:

Minimize: z

Subject to: z > - 7 y + 4  (1)

z > -3/2 y + 3 (6)

2 > y - 4 (2) (P20)

z > 2/5 y - 1 (3)

y ^ 0 y = 0 (mod 1).

Or, graphically:

(D9)
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Here the solution is y = 2 and z = 0. Notice that 

we have discovered the correct value for y but the value for 

z is incorrect since an essential constraint, (4), is missing. 

Thus, Benders' stopping rule will not come into play and the 

procedure will continue.

At y = 2, the most violated constraints are (4) and

(5). Adding these two constraints, one gets:

Minimize: z

Subject to: z > - 7 y + 4  (1)

z > -3/2 y + 3 (6)

z > y - 4 (2)

z > 2/5 y - 1 (3) (P21)

z > 1/6 y + 1 (4)

z > -2/5 y + 2 (5)

y ^ 0 y = 0 (mod 1).

Since (P21) and (P9) are identical, i.e. in this case 

we have generated the complete integer equivalent to the 

original mixed integer problem, we know that the answer of

y = 2 and z = 4/3 will be found at this iteration.

Considering the results of this particular example, 

some points need to be made. In this case, the entire 

integer problem was generated. This would seem to be due to 

the small size of the example. Although it is theoretically
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possible that extra constraints added at each iteration 

might result in extra iterations, intuition and all of the 

test problems discussed in this dissertation indicate that 

it will probably seldom happen. In the main then, one can 

make the assumption that under this modification the number 

of iterations will be less than or equal to the number of 

iterations using Benders' original algorithm. If one allows 

this assumption, then by using this particular alteration of 

Benders' algorithm the maximum number of constraints which 

can be generated is twice the number generated using Benders' 

original algorithm. Thus, on large problems only a few of 

the N possible constraints would be generated.

We find that a factor which becomes important in 

evaluation of the efficiency of the modification is the fact 

that since at each iteration two constraints are added 

rather than one, the problem is more restricted, i.e. there 

are fewer feasible answers, at each iteration, than in 

Benders' original algorithm. Since the integer subproblem 

algorithm examines different feasible points, reducing by 

just a few the number of feasible points can reduce signif

icantly the time of execution of the integer subproblem.

Also, of course, with a decreased number of iterations there 

is a decrease in the number of linear programs solved.
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(C) Solving of the Integer Program as a Linear Program

Since the solving of linear programs is generally 

so much more rapid than the solving of integer programs of 

the same size and since the whole purpose of the solving of 

the integer program is to determine a which in turn pro

duces a new U^, any method for determining a value for Y 

which will give a new should be of interest. If the 

procedure advanced by Benders were modified to solve the 

integer program as if it were a linear program for some 

fixed number (k) of iterations before beginning to solve 

the subproblem as a "pure" integer one, it would seem that 

the amount of calculations should be cut significantly.

Also, if a point is reached where no more new U^'s are gen

erated, a switch must be made to solve the subproblem as 

an integer problem. Finally, if the objective function 

value for the integer subproblem (solved linearly, of course) 

is within a given amount of the objective function value of 

the linear subproblem, the integer subproblem should be 

solved as an integer program.

This procedure must be a finite one as, at the worst, 

after k iterations, return is made to Benders' original 

algorithm which must generate the necessary constraints
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eventually,

A more detailed expression of this suggested modi

fication follows.

Step 0 ; Same as Benders' algorithm.

Step 1; If t > k, go to step Ik. If t < k, solve the

linear program:

Minimize : Z

Subject to: Z > C'Y + U^(B - A'Y) i=l,...,t

Y > 0.

Let Y^ and Z^ be the solution.

Step 2: Solve the linear program:

Maximize: = U(B - A'Y^)

Subject to: UA S C

U > 0.

Let and be the solution. Ifo
- (Z*" - C'Y^) < £, and Step 2 was entered 

via Step 1, set k = 0 and go to Step Ik, If:

Z^ - C'Y^ < U^^^(B - A'Y^),

add the constraint:

t+1Z > C'Y + U (B - A'Y) 

to the subproblem of Step 1. Let t = t + 1. Go
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to Step 1. If:

Zt _ C'Y = - A'yt),

and Step 2 was entered via Step 1, set k = 0 and

go to Step 2A, If Step 2 was entered from Step 2A

go to Step 3.

Step 2A: Solve the integer program:

Minimize : Z

Subject to: Z > C'Y + U^(B - A'Y) i=l,...,t

Y > 0 Y = 0 (mod I).

Let Y^ and Z^ be the solution. Go to Step 2.

Step 3: Same as Benders' algorithm.

Graphically, one can see the tremendous advantage of 

the modification. This advantage is due, of course, to the 

much faster execution times in solving linear programs

rather than integer programs. Consider the problem of (Dl).

Let y = 0, then the most violated constraint is, of 

course, (1). Then our problem is:

Minimize : z

Subject to: z > -7 y + 4 (1) (P22)

y a 0.
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2 ' "

(DIO)

The solution isz = - « , y = « > s o  that a limiting function 

(y S M) is added and the answer becomes y = M ,  z = - 7 M + 4 .

Of course, the most violated constraint is (2), 

which is added to the problem so that we have:

Minimize: z

Subject to: z > -7 y + 4 (1)

z > y - 4 (2) (P23)

y > 0.
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(2 )

-1 • •

-3 "

(Dll)

The solution to (P23) is y = 1, z = -3. Now (5) is the most 

violated constraint. Then our problem becomes:

Minimize : z

Subject to; z > -7 y + 4 (1)

z > y - 4 (2)

z ^ -2/5 y + 2 (5)

y > 0 .

(P24)
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(2)

-3''

(D12)

The solution to (P24) is y = 4 2/7, z = 2/7, At y = 4 2/7, 

the most violated constraint is (4), Adding this, we find: 

Minimize : z

Subject to: z > -7 y + 4 (1)

z > y - 4 (2 )

z > -2/5 y + 2 (5) (P25)

z > 1/6 y + 1 (4)

y > 0 .
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(5)

(D13)
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The solution to (P25) is y = 1 13/17 and z = 1 5/7. The 

most violated constraint is (4) again. Thus, we solve 

(P25) again, this time with an integer restriction on y.

This will give our true answer of y = 2 and z = 4/3.

In this example, we solved four linear programs 

and one integer program whereas by Benders' algorithm we 

solved four integer programs. It is obvious that, due to the 

fact that on large problems integer solutions are much more 

time consuming to find than linear program solutions, this 

modification could possibly have a significant computational 

advantage over Benders' original algorithm.



GENERAL RESEARCH PROCEDURES AND RESULTS

Research Procedures;

The research done for this dissertation was limited 

to mixed integer programming problems with 0-1 variables 

since this type of problem is very common. The test prob

lems (see Appendix D) were mostly manufactured ones and 

came from common, realistic models of different real-life 

situations. In addition, there were a few problems taken 

directly from the literature.

The linear subproblem was solved by means of a 

regular simplex tableau algorithm since time constraints 

and the necessity to change considerably this section of 

the program to effect the desired modifications precluded 

use of more intricate techniques. This procedure was quite 

adequate for the size problems considered in this research. 

Since the chief purpose of the running of test problems was 

a comparison of the different modifications to Benders' 

original algorithm, the efficiency of the subprograms was 

not of great importance. Indeed, the larger execution times

55
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allowed for better timings, reducing the percentage error 

from run to run.

Also, the linear subproblem was solved from a primal 

rather than a dual model as this results in more under

standable intermediate results and eliminates the necessity 

for Step 3 of the algorithm. It also, unfortunately, 

results in the necessity for extra explanation and exam

ination in one of the suggested modifications. The values 

of the were, of course, found in the objective function 

row of the simplex tableau under the variables forming the 

original basis. The possibility of unboundedness in the 

dual was handled by the addition of another variable in the 

primal model with a large objective function coefficient. 

This variable was not allowed to enter the solution unless 

the primal proved infeasible.

The integer subproblem was handled by a modified 

Balas-type algorithm (see Appendix E). This modified 

algorithm seemed to be extremely fast in some problems and 

created some trouble in accurate timing comparisons in 

smaller problems. Also, as in most integer programming 

algorithms, problems of a particular structure resulted in 

extreme inefficiency in the algorithm and a correspondingly 

large increase in execution time can be noted. The modi
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fication of Balas' 0-1 algorithm was almost a complete 

disposal of his decision rules and a return to the basic 

concepts upon which that algorithm was based. This was 

necessitated by the fact that the value of the objective 

function in the integer subproblem is found directly from 

the constraints and also because the integer subproblem was 

not a truly pure one.

No provisions or tests were provided to detect con

straints in the integer subproblem which became redundant 

during the procedure as this would have been of small con

sequence in the given test problems compared to the amount 

of time spent performing these tests.

Some difficulties were encountered due to the 

problem of real-number round-off in the computer so that 

all tests for equality are on a "small epsilon" basis, i.e. 

two numbers closer to one another than a given small value 

were considered to be the same number. Some possible ways 

to alleviate this problem would be double-precision numbers, 

holding all numbers as fractions or a modification of the 

simplex method. Thus, in some very selected cases, the 

program may fail, indicating a solution which is not the 

true solution. These cases, however, should be extremely 

rare.
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Finally, no attempt was made to match or excel 

commercial mixed integer codes due to the limited scope of 

the study.

The problems considered in the testing of the sug

gested modifications were of various sizes as indicated by 

the table below:

Problem Linear Variables Integer Variables Constraints

la - If 12 15 12
2a - 2f 12 15 14
3a - 3f 36 24 14
4a - 4f 36 24 38
5a - 5f 12 25 12

6a 2 2 3
6b 16 4 20
6c 25 25 35

6d - 6e 24 24 32

Results of Testing of Modification A

Looking at the timing and iteration data in Appendix 

C, some points become obvious. First, in almost all cases 

where a solution was found. Benders' original algorithm and 

modification A ran for the same number of iterations. In 

fact, in a large portion of the iterations, it was necessary 

for the actual optimum to the integer subproblem to be found 

and proven to be optimal in modification A. Only in prob

lems 2e - 2f, 4a - 4f and 6c - 6e was this not true. In 

that data set, quite often the integer subproblem was only
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partially solved before generation of a new constraint was 

possible. Thus, in general, the difference in timings lies 

in those few iterations in which the integer subproblem did 

not have to be solved completely in modification A.

In those limited cases where modification A did not 

have to solve the integer problem completely in many of the 

iterations, two possible occurrences are illustrated. In 

2e, 2f, 4c and 6e, one can see that the solution of the 

integer subproblem to a feasible answer only has resulted 

in extra iterations, i.e. "extraneous” constraints have 

been generated. In 4a, 4b, 4e and 4f, 6c and 6d, the true 

relationship between Benders' original algorithm and modi

fication A is clouded by the failure of Benders' algorithm 

to find a solution after almost five minutes of computer 

execution time. However, since modification A has found 

answers in reasonable amounts of time (with the exception of 

6c), one can conclude that the solution of the integer sub

problem to a suboptimal point proved extremely valuable as 

a modification.

Thus, in evaluation of modification A, it can be 

seen that to a large extent, the amount of efficiency in

volved is dependent upon problem structure. In general, on 

"small" problems, i.e. those requiring very little time for
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solution, the advantage of modification A is marginal at 

best. On larger problems, however, the efficiency involved 

in not solving the integer subproblem completely is ex

tremely obvious in most problems. Modification A must be 

recommended in problems in which Benders' original algorithm 

fails due to excessive amounts of time being spent solving 

the integer subproblem.

Results of Testing of Modification B

As should be evident upon examination, modification 

B, in which two constraints are added each iteration, relies 

upon the reduction of the number of iterations to reduce 

time of execution. In addition, there can be small savings 

in execution time in some problems due to the fact that 

integer subproblems with more constraints are more tightly 

bound than those with fewer constraints. The question is, 

can the advantage due to reduced iterations and the time 

savings due to the reduction of feasible answers with extra 

constraints offset the increase in time of execution due to 

the larger size of the subproblems. In general, it was 

found that this occurred with very few exceptions; the most 

notable of which are, of course, problems 4c and 6e.

Once again, it is extremely hard to try to compare
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Benders' original algorithm with modification B in several 

instances as the procedure did not go the completion. In 

the light of all the other examples, however, it would seem 

that modification B offers advantages in time of execution 

in the vast majority of the cases. Unfortunately, like 

Benders' original algorithm, modification B relies upon 

complete solution of the integer subproblem at each iteration 

and there are some problems whose particular structure causes 

extreme amounts of execution time to be necessary to solve 

certain of the integer programs.

Results of Testing of Modification C

Modification C relies chiefly upon the reduction of 

time per iteration to effect a reduction of overall execution 

time. Indeed, in almost all cases (and especially those in 

which a larger number of iterations are involved) modifi

cation C takes more iterations than Benders' original algor

ithm and thus relies strictly upon reduction of time per 

iteration.

This reduction of time per iteration occurs, of course, 

due to the fact that linear programs are executed instead of 

integer programs for the vast majority of iterations in each 

problem. As a matter of fact, every test problem completely
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solved resulted in only one Integer subproblem being solved-- 

a tremendous savings in time. Since the time of execution 

of an integer program generally goes up at a much faster 

rate dependent upon the size of the problem than does the 

time of execution of a linear program of the same size, the 

advantage inherent in the direct substitution of linear for 

integer programs is better illustrated in large problems.

The addition of extra constraints over what are added in 

Benders’ original algorithm will inevitably lead to larger 

times of execution on small problems. This is due to the 

fact that on small problems the time of execution of a 

problem as a linear program is larger than as an integer 

program.

The one extreme example of modification C's failure 

to far outdo Benders' original algorithm in a large problem 

was in the problem 6e. Upon close examination of the inter

mediate solution values for the integer subproblem and the 

constraints generated, it was found that the difficulty 

arose due to extreme degeneracy or near degeneracy about 

several of the intermediate solution points.

Thus, when the integer subproblem was solved as a 

linear program, there were an excessive number of iterations 

necessary in which the constraints generated were of little
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use in the advancement of the solution. In most cases the 

solution value for the integer subproblem changed only a 

small amount in many iterations (1/2 of one percent change 

in 8 iterations in one case). It was found, also, that the 

integer solution to the integer subproblem was far enough 

from the linear solution to avoid this problem.

Thus, on small problems, the modification is at best 

marginal. On large problems, however, the modification 

almost always proves to be the one which most reduced the 

time of execution from Benders' original algorithm (see 4a - 

4d and 5a - 5c). Any problems in which large integer sub

problems are expected should almost certainly be executed 

using modification C.

Overall Results

No attempt was made to study combinations, i.e.

A and B or B and C, of modifications due to the desire to 

study the independent effects of the three modifications. 

Since the research has proven that modification B is ques

tionable in advantage (due to its problem structure depen

dency for efficiency) over Benders' original algorithm, it 

would seem that combinations of modifications would also be 

questionable in advantage.
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The inability of Benders' original algorithm and 

modification B to find solutions in certain of the problems 

was the result of a particularly structured integer sub

problem. As in most integer programs, there are certain 

structured problems which create a situation in which ex

cessive time is spent solving the problem. In those cases 

where an answer was not obtained in almost five minutes, 

the objective function value for a large percentage of the 

cases was very close to the true optimum.

It would appear that the two impressive modifi

cations, A and C, can have great advantage over Benders' 

original algorithm in large problems— the larger the more 

advantage. In the cases where large integer subproblems 

are expected, one of the modifications (and preferably C) 

probably should be used.



APPENDIX A

In this appendix, it will be shown that (a) Benders' 

algorithm is finite, (b) it gives the optimum solution and 

(c) at any time in the process upper and lower bounds to the
ictrue optimum Z can be found.

If the set UA < C is bounded, there are a finite 

number of vertices to the convex polytope of the dual space. 

If it is not bounded, the set UA < C, Z 3 M will be 

bounded and will have a finite number of vertices. Therefore, 

if a different vertex is generated by the linear program 

at each iteration, the algorithm must be finite. It would 

seem possible, however, that two non-optimal values of Y 

could bring about the same vertex being selected since 

the value of Y affects only the objective function of the 

linear program and not the space itself. Fortunately, this 

cannot happen.

For proof, let the solution to Step 1 of the algor

ithm at iteration t be and Y^, i.e.
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7̂  * C'Ŷ  + Ü̂ (B - A’Ŷ )
or - C ‘Y^ = U^(B - A'Y*̂ ) (E15)

where r represents one of the tight constraints at the t-th

iteration. Since was obtained with a subset of the total 

number of constraints for the integer program, one knows:

Z^ ̂  Z* (E16)

where Z* is, of course, the true optimal value for the mixed 

integer program.

From duality theory, one knows that Max U(B - A'Y*-) = 

Min CX where U is constrained by UA < C and X is constrained 

by AX > B - A'Y^, Let the solution to Step 2 of the algor

ithm be Then:

U^+^CB - A'Y^) = CX^, (E17)

It can be seen that X^ and Y^ provide a feasible solution to 

the mixed integer problem since:

AX^ + A'Y^ > B. (E18)

It is evident that:

t , t *CX + C'Y > Z

or CX^ > Z* - C'Y^. (E19)

From (E15), (E16), (E17) and (E19):
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- A'Y^) = CX^ > Z* - C'Y^ > Z^ - C'Y^ =

U^(B - A'Y^) (E20)

where the equality holds only if zf = Z*. If:

U^^^(B - A'Y^) > U^(B - A'Y^) (E21)

then U^, and a new vertex will be obtained on each

iteration of Step 2 or else the optimum vertex will be 

obtained.

There are, therefore, two possibilities. Either the 

optimum will be found sometime during the execution of the 

algorithm or iterations will continue until all vertices are 

considered. In the former case, of course, the optimum is 

found. In the latter, one has generated the complete integer 

program and the solution to that program is by definition 

the solution which produces the optimum value of the objective 

function of the original mixed integer problem.

Note that for any modification which is considered 

to Benders' algorithm, (E21) must hold for finiteness. The 

key inequality in (E20) which controls (E21) is Z^ - C'Y^ >

Z^ - C'Y^ and this inequality must hold for any modification 

attempted.

To see that upper and lower bounds can be obtained
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at any point in the procedure, consider that in the 

integer problem is a lower bound to the true optimum Z 

(see (EI6)). To set an upper bound on Z*, it is necessary

to add to Step 2 the solution of:

Minimize : CX

Subject to: AX > B - A'Y^ (P27)

X > 0

where is the value of Y used in Step 2. If (P27) has a 

feasible solution, say X^, then (X^, Y^) is a feasible 

solution to the mixed integer problem and CX^ + C'Y^ would 

then naturally be an upper bound on the mixed integer solu

tion at each iteration. If (P27) has no feasible solution, 

then the dual of (P27) was either unbounded or infeasible. 

If the dual of (P27) was infeasible, it would have been 

detected in Step 2 of the algorithm that either the mixed 

integer problem was infeasible or unbounded. In either

case, the procedure terminated at that point and determina

tion of an upper bound is immaterial. If the dual of (P27) 

was unbounded, a constraint was added to prevent unbounded

ness in the dual of (P27). This would have the effect of

increasing the dimensionality of (P27) and this altered

(P27) would have a feasible solution which can be used to 

determine an upper bound.



APPENDIX B

The example presented here is the same one used by 

Hu (27) for illustration of Benders' algorithm. Consider 

the problem:

Minimize: 5X + 2Y + 2W

Subject to: X + 3Y + 2W > 5

4X - Y + W > 7

2X + Y - W > 4 (1)

X,Y,W > 0  Y = W = 0 (mod 1). 

Rewriting (1), one has:

Minimize : 5X

Subject to: X > 5 - 3Y - 2W

4X a 7 + Y - W

2X > 4 - Y + W (2)

X > 0.

The dual program of (2) is:

Maximize: (5 - 3Y - 2W) + (7 + Y - W) U2 +

(4 - Y + W) Ug 

Subject to: Uĵ  + 4Ü2 + 2Ug < 5 (3)
Ui, Ug, U3 > 0 .
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Rewriting (1), it is possible to say:

Minimize : Z

Subject to: Z > 2Y + 2W + Max 0^(5 - 3Y - 2W,

7 + Y - W ,  4 - Y + W )

Y,W > 0 Y = W = 0 (mod 1). (4)

One feasible solution of (3) is = 0, = 5/4, = 0.
1 2 J

Substituting this solution into (4), one gets:

Minimize : Z

Subject to: Z > 2Y + 2W + 5/4(7 + Y - W)

Y,W > 0 Y = W = 0 (mod 1). (5)

1' 1 1  The solution of (5) is Z = 35/4 and Y = W =0. Substi

tuting this solution into (3), one gets :

Maximize: 5U^ + 7U^ + 4Ug

Subject to: + 4U^ + 2Ug < 5 (6 )

Up Ug, Ug > 0.

The solution to (6 ) is (UpU^U^) = (5,0,0) with an objective 

function value of 25.

Since 35/4 = 2Y - 2W = 35/4 <25, it is necessary to 

continue and one adds (5,0,0) into (4) in order to generate 

a completely new constraint.
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Minimize : Z

Subject to: Z > 2Y + 2W + 5/4(7 + Y - W)

Z > 2Y + 2W + 5(5 - 3Y - 2W) (7)

Y,W > 0 Y = W = 0 (mod 1).

The solution if Y^ = 0, = 2 and Z^ = 41/4.

Substituting this solution into (3):

Maximize: + 5U^ + ÔU^

Subject to; + 4U^ + 2Ug < 5 (8 )

The solution to (8 ) is = 0, = 0, = 5/2 with an

objective function value of 15. Since 41/4 - 2Y - 2W = 

41/4 - 4 = 25/4 < 15, one continues by generating another 

constraint for (4):

Minimize : Z

Subject to: Z > 2Y + 2W + 5/4(7 + Y - W)

Z > 2Y + 2W + 5 (5 - 3Y - 2W)

Z > 2Y + 2W + 5/2(4 - Y + W) (9)

Y,W > 0 Y = W 5 0 (mod 1).

The solution is Y^ = 1, = 0 and Z^ = 12.

Substituting this into (3):

Maximize: 2U^ + SUg + 311̂
Subject to: + 4U2 + 2U3 < 5 (10)

^1>^2»^3 -
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The solution is « 5, ■ 0 and = 0 with an objective

function value of 10. Since 12 - 2Y - 2W » 12 - 2 = 10, 

the solution is optimum. Substituting Y = 1 and W = 0 into 

(2 ), one has;

Minimize : 5X

Subject to: X % 2

4X > 8

2X > 3 (11)

X > 0.

The solution is X = 2 with 5X = 10 as expected. The optimum

solution to (1) is therefore X* = 2, Y* = 1, W* = 0 and 
*Z = 12.



APPENDIX C

Below is a table showing the timing and iteration 

count results for Benders' algorithm and the three suggested 

modifications. The numbers in parentheses are the iterations 

required for solution.

Problem
Benders' Modification Modification Modification

B

la 1.34(1) 1.23(1) 1.28(1) 1.31(1)
lb 2.69(2) 2.62(2) 2.59(2) 3.22(2)
Ic 1.40(1) 1.59(1) 1.38(1) 1.35(1)
Id 2.76(2) 2.92(2) 2.54(2) 3.99(3)
le 4.07(3) 3.94(3) 3.68(3) 4.39(3)
If 4.44(4) 4.20(4) 4.22(4) 4.45(4)
2a 6.18(3) 6.94(3) 5.74(3) 6.94(3)
2b 7.71(4) 7.74(4) 5.98(3) 7.56(4)
2c 5.94(3) 6.82(3) 6.76(3) 7.01(3)
2d 6.70(4) 8.71(4) 5.11(3) 9.01(5)
2e 8.31(5) 22.44(7) 6.98(4) 1 0 .0 1 (6)
2f 7.12(4) 10.67(5) 7.08(4) 10.07(6)
3a 4.16(7) 3.26(7) 4.07(6) 5.53(9)
3b 5.23(9) 4.82(9) 4.17(6) 8.13(16)
3c 4.00(7) 3.29(7) 4.12(6) 5.20(9)
3d 5.23(11) 4.75(11) 4.58(8) 5.90(11)
3e 3.31(7) 3.13(7) 2.44(4) 4.57(9)
3f 5.15(7) 4.46(7) 4.71(8) 7.82(11)
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Cont.

Benders' Modification Modification Modification
Problem Original A B C

4a *290.55(2+) 116.06(12) *290.10(2+) 83.32(18)
4b *290.25(3+) 158.98(14) *288.90(3+) 89.57(19)
4c 272.82(10) 139.77(15) *289.05(3+) 66.79(12)
4d 209.27(10) 142.31(9) 256.77(10) 97.76(15)
4e *290.25(2+) 105.87(13) *288.75(2+) 101.97(20)
4f *290.85(5+) 40.72(9) *290.55(4+) 85.78(18)

5a 126.00(5) 122.75(5) 88.01(5) 63.11(5)
5b 13.12(3) 12.45(3) 12.88(3) 11.79(4)
5c 98.47(4) 98.72(4) 76.99(4) 64.05(5)
5d 20.32(3) 19.80(3) 24.15(3) 19.05(3)
5e 29.73(4) 28.29(4) 41.78(4) 18.23(4)
5f 7.71(4) 9.88(4) 8.58(4) 9.31(6)

6a 0 .1 2 (2 ) 0.13(2) 0.08(1) 0.20(3)
6b 1.99(6) 1.73(6) 1.81(6) 4.19(10)
6c *288.75(17+) m s .75(33+) 276.81(13) 76.88(19)
6d *288.00(20+) 251.87(33) *287.55(17+) 74.62(18)
6e 191.56(15) 187.89(24) *288.30(13+) *289.20(19+)

* No solution in stated time.

All of the above problems were run on the UNIVAC 1108 located 

on the Madison Campus of the University of Wisconsin and all 

timings are in seconds. The timings were done so as to 

measure the actual time for solution, not including such 

things as input and output.

It has been discovered by the author that the modi

fied Balas algorithm is so efficient that on small problems, 

i.e. 15 integer, 12 linear variables and 12 constraints, the 

suggested modifications' efficiency was at best marginal.
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This is due to the fact that all of the modifications depend 

ultimately upon trading integer iterations for linear iter

ations. Since the modified Balas integer algorithm was so 

efficient, this was not usually a good trade.

As can be seen, however, on large problems, i.e. 

those requiring large amounts of time for the execution of 

the integer subproblem, the relative efficiency of the 

suggested modifications became marked.



APPENDIX D

Test Problems:

The test problems used to evaluate the modifications 

suggeste&"by this paper fall into two categories. The first 

of these is composed of the limited number of mixed integer 

problems found in the literature search. These problems are 

frequently quite small but act as some sort of standard for 

the purpose of evaluation. The second category of test 

problems consists of problems generated by the author. They 

are developed by consideration of three classes of real-life 

situations, capital budgeting problems, fixed charge trans

portation problems and allocation-location problems, all of 

which may be advanced as mixed integer programs.

The test problems used are shown in the two sections 

below with a discussion of the mathematical model behind 

each of the type two problems.

Literature Problems;

There were only four problems taken from current
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literature to test the suggested modifications. There were 

two reasons why such a small number of literature problems 

were tested. First, almost all problems presented in detail 

in the literature were extremely small and therefore did not 

give a true test of the modifications. Second, those prob

lems discussed but not presented in detail were too large 

(and therefore too costly) to be included in this limited 

study.

The first problem, 6a, was taken from Hu (27) and is

the one presented as an example in Appendix B. The second

problem, 6b, may be found in many references and the author 

found it first in the article by Balinski (4). It is a 

special form of the plant location problem and is presented 

in detail below:

Minimize: n n m
Z f^ y. + Z Z q .  X.. 

i=l i=l j=l J

Subject to: n
Z X.. > 1 for j = 1,...,m 

i=l

X^j < for i = l,...,n and j = l,...,m

X.j > 0  Y. = 0,1.

The particular problem presented in the literature 

and solved in the dissertation is one in which m = n = 4, 

f^ = 7 for i = l,...,n and
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(^ij) -|

ro 12 20 18

12 0 8 6

20 8 0 6

18 6 6 0

\

Problems 6d and 6e were fixed charged transportation 

problems (as described below) and are found in a technical 

report by Gray (24). The particular problems used for test 

purposes are also presented in the next section.

Author Generated Problems;

Capital Budgeting --

Problems la - If were developed from a very simple 

capital budgeting model (33). In this model the 0-1 integer 

variables represent the decision on investment in each of a 

number of projects. Each of these projects requires invest

ment of differing .mounts of cash in each future time period 

considered. Investment in each project also results in some 

estimated future return on the investment. This return is 

then discounted at the business's required rate of return to 

obtain a present value for the project. This present value 

appears as a positive coefficient in the objective function.

The linear variables consist of the amount of money 

left uninvested at the end of each of the time periods.
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Since money uninvested generally results in a loss of profit 

at a rate equal to the difference between the required rate 

of return and the bank rate of interest, the different 

amounts left uninvested must be discounted at this rate and 

the present value which is obtained will appear as a negative 

coefficient in the objective function.

The basic capital budgeting problem can be expressed

as :

Maximize : n m ,
2 c^Xi + 2 c.y.
1=1 j=i ■' :

Subj ect to : n
2  ̂a^iXi + y. - yj_^ = b^ j=l,2 ,...,m

x^ = 0,1 i=l,2,...,n (El)

= 0 , y. > 0  j=l,2 ,...,m

where c^ represents the calculated present value of project
I

i, Cj represents the calculated present rate of loss on 

money left uninvested in period j, Xĵ the decision of invest

ment in project i and y^ the amount of cash left uninvested 

at the end of period j. a^^ represents the amount of invest

ment required in the time period j for project i and bj 

represents the budgeted amount of cash for all projects in 

time period j .

(El) can be expressed as:
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Maximize; CX - C'Y

Subject to: AX + Yj - Yj_^ = B (E2)

X = 0,1 Y , Y > 0 Y = 0.
J - i  J °

where the use of Yj and Yj_^ is merely a way to indicate the 

relationship between the two column vectors.

For test problems la - If, the following values were

used:

m = 12

n = 15

C = (21.5, 32.0, 17.5, 40.0, 9.4, 3.5, 23.0, 9.0, 15.6,
11.0, 5.25, 17.0, 9.0, 60.0, 18.5)

C  = (.0175, .0180, .0186, .0192, .0198, .0204, .0210,
.0217, .0223, .0230, .0237, .0245)

B =

la) (58.45, 45.56, 29.25, 33.78, 19.84, 21.15, 37.36, 
27.12, 13.88, 12.84, 13.70, 21.20) 

lb) (30., 30., 30., 30., 30., 30., 30., 30., 30., 30.,
30., 30.)

Ic) (22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5, 22.5,
22.5, 22.5, 22.5, 22.5)

Id) (15., 15., 15., 15., 15., 15., 15., 15., 15., 15.,
15., 15.)

le) (7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5,
7.5, 7.5)

If) (50., 40., 30., 33., 21., 20., 35., 26., 15., 10.,
25., 20.)
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Quite often in capital budgeting problems there are 

additional constraints placed on the investment procedure. 

Two types of restrictions were added to problems la - If to 

produce problems 2a - 2f. The first additional type of 

constraint arises from the situation in which investment may 

be made in only one of a set of projects. For example, the 

set of projects may be different brand considerations of a 

new truck to be bought. If one lets S be the set of indices 

of such mutually exclusive projects, the constraint occurs 

thusly:

Z X .  = 1 (Cl)
its

The second type of additional constraint occurs when 

the choosing of one project necessitates the selection of 

one of a set of other projects. An example might be the 

case where the decision to build a particular type plant 

necessitates choice among several types of equipment for 

some part of the plant.

Letting T represent the set of indices of linked 

projects, one gets:

Z X .  = Xm (C2)
i£T

where is the project variable to which set T is linked.

Problems 2a - 2F were exactly the same as la - If
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except that these two additional constraints have been added. 

The sets S and T were chosen as:

S = (1, 3, 8, 9) and T = (5, 6, 10)

and X.J, was

A third set of capital budgeting problems was run to 

consider the efficiency of the different modifications in 

larger problems. Problems la - If were modified so that an 

additional ten projects were available, i.e. n = 25, for 

investment. The ten projects added were identical to the 

first ten projects already available and all numerical data 

pertaining to these additional projects is the same as given 

for projects through X^^. The labels 5a - 5f refer to 

these larger problems.

Production Allocation --

Problems 3a - 3f and 4a - 4f were developed from 

different mathematical modifications of a production allo

cation model. The basic production allocation problem is a 

linear program. With the addition of set-up costs or concave 

material costs, it becomes a mixed integer program with 0-1 

integer variables. 3a - 3f consist of the basic problem 

with set-up costs, 4a - 4f with concave material costs.

In defining the complete production allocation model, 

the following definitions of variables and constants are



84
necessary.

Variables defining the size of the problem;

n number of plants
m number of warehouses
1 number of products
f number of materials necessary for production
s number of different types of products, each

type requiring a different set-up 
e number of concave cost segments for mater- 
^ ial q

Decision variables;

Pkij amount of production of product k at plant 
i for delivery to warehouse j 

a^^ zero-one variables which are one if some
product of type t is produced at plant 
i, zero otherwise 

b9§ zero-one variables which are one if the
amount of material q used at plant i is
on the g-th cost segment, zero otherwise 

o9^ amount of material q used in plant i as
if all charged at the g-th segment cost

Cost variables ;

Cki production cost of product k at plant i,
excluding set-up and material cost 

w^i cost of material q required to produce
product k at plant i under linear mater
ial costs

X . . cost of shipment of any product from plant i 
to warehouse j 

v̂ ĵ  set-up cost for product type t at plant i

y9^ base cost of the g-th segment for material
q at plant i 

z. incremental cost of the g-th segment for
 ̂ material q at plant i
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Constraint variables;

demand at warehouse j for product k

r^ total available production time at
plant i

tki amount of production time required to
produce product k at plant i 
amount of production time lost during 
set-up for product type t at plant i 

u^. amount of material q necessary to produce
 ̂ product k at plant i

s?^ upper bound in usage of material q at
plant i at segment g's incremental price

In addition, it is useful to define the following

summations to facilitate understanding of our final models

n 1 m
: £ £ £
i=l k=l j=l
n 1 m

. £ £ £
i=l k=l j=l
n m 1
£ £ £
i=l k=l

n X

: £ £ V .  . a
i=l t=l ti

f n eq
: £ £ £
q=l i=l

f n ®q
: £ £
q=l i=l 8=1

be a very large

k̂ij “ki

'’kij \ i

1 i

1 1
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With the addition of set-up costs only, e.g. problems 

3a - 3f, the form of problem to be solved is:

Minimize: C + W + X + A

Subject to: n
Z P > d for k=l;...,l and j=l,...,m i=l klj kj

Pkij \ i  ^ti - ^i ^
1 m

k:

m
Z Z Pki< < Ma . for i=l,..,,n and t=l,...,s 

keCt j=l ^

?kij > 0 for all i, j and k 

a^^ = 0,1 for all i and t

where is the set of indexes of products of type t.

With the addition of concave material costs only,

e.g. problems 4a - 4f, the form of the problem becomes:

Minimize: C + X + B + Z

Subject to: n
Z P m  2 d for k=l,...,l and j=l,...,mi=l

1 m
Z Z t, . < r. for i=l,...,n

k=l j=l ^  ^

 ̂ qg
j!i 'kij "ki

for i=l,...,n and q=l,...,f
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e.■q qgZ b. = 1 for q=l,...,f and 

g=l

1 1
and g=l,...,e

P > 0  for ail i, j and k

qgbj, = 0,1 for ail i, q and g.

In addition, certain assumptions about the models 

were made. First, for all practical purposes an infinite 

amount of each material is available at each plant; second, 

the cost of shipping any product from a plant to a warehouse 

is the same, regardless of the product; and third, the amount 

of material necessary to build a product at a plant was the 

same regardless of its eventual destination.

Test problems 3a and 4a were run with the following data:

n = 2  
m = 2  
1 = 4
f = 2
s = 2  (products 1 and 2 were of type 1 and products 

3 and 4 were of type 2)
e^ = 5

Cki = / 5.54 6.71'
9.72 14.46

18.50 15.03
5.32 16.54,
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''ki

V
t i

y Q g

1

z96

^kj

/0.80 0.95
4.80 3.80
1.60 1.52

\2.20 2.28

/3.90 2.10
Vl.40 2.80

^34.44 19.74
<30.66 48.88

/ 0.0
3.05
6.175
12.675
16.215

0.0 \ 
1.26 ' 
8.3 
10.9 
11.565/

/ 0.0 
2.0  
4.925 
12.605 

\ 13.655

2.60 
2.45 
2.20 
1.60 

\1.55

3 .9 o \  
3.90 
3.00 , 
3.30/

0 . 0  ' 

1.8 
8.565 
11.74 
13.69 /

r.. = (52.3, 85.1)

' k i

% t i
/ 8.2
'4.2
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12.6\ /l2.0 12.0
12.8 / 12.5 12.3
13.0 12.0 12.7
13.3 I 13.0 13.0
99.9 \99.9 99.9

Problems 3b - 3f and 4b - 4f were the same as above except 

that demand at each of the warehouses was altered as was the 

total production time available at each plant. These changed 

values were:

3b and 4b dkj

3c and 4c d^j =

3d and 4d "kj '

3e and 4e d
kj

3f and 4f d, . = kj

2.6 3.l\
2.2 1.0
3.2 4.5
6.1 0.7/

9.4 1.2\
6.2 0.2
0.0 7.1
0.0 2.2/

3.1 2.2\
4.4 4.4
2.2 1.6
3.9 4.4/

3.9 3.9\
4.0 4.0 \
2.0 2.0
0.9 0.9/

4.4 3.9\
6.1 9.4
8.2 2.1/
1.4 1.91

r .1 = (48.7, 69.8)

r. = (72.9, 48.8)

^i = (55.0, 55.0)

r .1 = (77.6, 44.4)

r.1 (28.7, 61.2)

Fixed-Charge Transportation --

The fixed-charge transportation problem as discussed
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by Gray (25) is concerned with the transportation of goods 

from a set of n factories to a set of m warehouses with costs 

involving both a cost per unit measure for each possible 

transportation link and a fixed charge for the operation of 

the link. Thus, if any products are shipped from a partic

ular factory to one of the warehouses, the fixed charge 

associated with that link must be added to the overall 

system cost.

Mathematically, one wishes to: 

n m
Minimize: C = Z Z (c.. x.. + f.-- y..)

i=l j=l J ^  J

n
Subject to: j x.. > D. for j=l,2,...,m

i=l ** J

m
Z X . . < s. for i=l,2,...,n

j=l iJ 1

m.. y.. - X . .  > 0  for i=l,2,...,n and
 ̂  ̂  ̂ j=l,2,...,m

X . . > 0  y,, = 0,1 for i=l,2,...,n and
 ̂ j=l,2,...,m

where x^j is the amount to be shipped from factory i to ware

house j ; y^j = 1 if there is any shipment between factory i

and warehouse j, ŷ ĵ = 0 otherwise; Cĵ j is the cost per unit 

measure from point i to point j ; f^j is the fixed charge for

a shipment from i to j ; Dj is the demand at warehouse j ;
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Sĵ is the supply at factory 1; and = min(Dj, s^), i.e, 

the maximum possible size of all of the shipments.

For the problems (6c, 6d and 6e) used in testing,

the following values were used

6c: Dj = (325, 610, 422, 291, 345)

Si = (482, 799, 123, 385, 204)

6d: D.

'ij

mij

/2.3 2.9 3.4 6.1 4.2
4.7 8.3 1.6 2.7 7.4
3.2 4.1 9.6 6.2 4.8
9.1, 9.2 6.3 2.3 8.4

'4.3 2.0 6.1 3.3 4.4

/328 372 1462 1148 608
/ 332 1934 778 632 1578

78 1488 180 844 322
428 430 1120 892 1826

U824 1000 1306 550 742

/325 482 422 291 345
325 610 422 291 345
123 123 123 123 123
325 385 385 291 345

\204 204 204 204 204

(35, 30, 25, 15, 5, 5)

Sj = (45, 35, 20, 15)

'ij

'ij

0.69 0.64 0.71 0.79 1.70 2.83
1.01 0.75 0.88 0.59 1.50 2.63
1.05 1.06 1.08 0.64 1.22 2.37
1.94 1.50 1.56 1.22 1.98 1.98

/ll 16 18 17 10 20\
14 17 17 13 15 13
12 13 20 17 13 15 ,

\16 19 16 11 15 12/
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mij 30
30
20
15

25
25
20
15

15
15
15
15

6e: D. (55, 54, 35, 22, 9, 8) 

(23, 38, 56, 66)

m. ,ij

5
5
5
5

= 19 6 12 16 13 24
5 29 8 19 109 26

\ 38 17 14 23 27 114\̂  6 20 2 92 29 42

I 4 3 0 6 8 7
5 16 24 9 11 2

12 5 10 6 9 43
\ 8 31 6 12 36 19

= / 23 23 23 22 9 8
38 38 35 22 9 8

\ 55 54 35 22 9 8
V55 54 35 22 9 8

It is interesting to note that once a set of values 

for the 0-1 integer variables is determined that the 

problem is a simple transportation problem. The technique 

used by the author, however, was to continue to use a linear 

programming algorithm rather than a transportation one.



APPENDIX E

The 0-1 integer variable problems were solved using 

an algorithm based upon principles involved in Balas' 0-1 

algorithm. Modification was necessitated by the unusual way 

in which the objective function values are determined in the 

’’pure" integer problem in Benders' algorithm.

The first step in Balas' algorithm is the substi

tution of 1 - y' for any y in the objective function with a 

negative coefficient. This has the practical effect of 

setting y to one and therefore the changing of any value 

(from 0 to 1 for unsubstituted variables, from 1 to 0 for 

substituted ones) will result in an increase in the objective 

function value. As the value of the objective function in 

our case is determined directly from the constraints, we 

would like to do likewise, except that to accomplish the 

same end, i.e. get the problem to an optimal, though possibly 

nonfeasible state, the substitution must be made in each 

individual constraint for those variables with positive 

coefficients.

93
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Then, in order to reach feasibility, some values of 

y and y 'must be changed as it is necessary that y = 1 when 

y' = 0 and, obviously, that y = 0 when y ' = 1 .

Let us look at an example problem so that it will 

be possible to trace the procedure more clearly.

Minimize ; z

Subject to: z + 3x^ - 2%2 + 3x^ > 4

z - x^ + 3x^ - 2xg > 2

z + 4x^ - 3x2 ^^3 - 3

After substitution, one has:

Minimize : z

Subject to: z - 3x^ - 2x2 " ^^3 -

z - Xĵ  - 3x2 - 2x3 > -1

z - 4x| - 3x2 - 2x3 > -3

Xi,X2,X3,x|,X2,X3 = 0,1.

xi +  xĵ  = 1, X2 +  Xg = 1, X3 + x^ = 1.

Feasibility is now determined by assuring that when 

x^ = 0, x^ = 1 and when x^ = 1, x^ = 0 for i = 1,2,3. Note

that the above solution is optimum but not feasible when all

X£ and X£ are zero,

A table can now be set up indicating the resulting
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increase in the right-hand side of each constraint if each 

of the six variables changes to a value of one.

Constraint: I

2 

3

0
1

0

Xi

3 

0
4

2
0

3

0
3

0

0
2

0

IX3

3

0
2

By considering which of each pair of linked variables 

is to be set to one, it is possible to resolve the conflict 

between the linked variables to eventually develop feasi

bility.

It was found that in the example problems used in 

this dissertation that the use of complicated decision rules 

as to the proper order of entry of variables resulted in more 

calculations than a simple order of input scheduling scheme. 

Thus, consider Xji and x|.

xi
1

^1 R.H.S.

Constraint: 1 -2 1* -2

2 0* -1 -1

3 -3 1* -3
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The columns headed by and x| were derived by adding the 

appropriate columns in the table above to the right-hand 

side values. The numbers in the two columns represent an 

optimal, though not necessarily feasible, value for the 

objective function if x^ and x| respectively are set to one.

Since all constraints are "greater than or equal to", one

picks the largest value in each column (indicated by an 

asterisk) to indicate the limiting constraint.

Selecting the column with the smallest of the

asterisked values (thus keeping the objective function 

value as low as possible), one then considers the next 

variable in line, using the selected column as the new right- 

hand side.

X2 1X2 R.H.S.

Constraint: 1 0* -2 -2

2 0 3* 0

3 0* -3 -3

Continuing :
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*3
f

*3 R.H.S.

Constraint: 1 0 3* 0
2 2* 0 0
3 0 2 0

Thus, one has an initial solution, namely = 1, Xg = 1, 
and Xg = & for a value of 2. It is now necessary to back
track to see if cuiy other branch of the solution tree can

Iresult in a lower value. If Xg = 1, the best possible value
Iis 3 so that one should backtrack further. If Xg = 1, the

Ibebt is 3 so backtrack even further. If x^ = 1, the best is
f1 so that it is conceivable that by setting x^ = 1 and then 

applying the procedure as above that it will result in a 
lower value for the objective function than 2. Thus, con
tinuing from this poiht:

R.H.S.

Constraint: 1
-1

Since the best fs now 2 and we already have a 
solution with that value, this branch of the tree has been
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fathomed. Backtracking again now shows that the solution is 

complete. Checking back with our original problem, we find 

that the solution found does satisfy all constraints and 

produces a value of 2 for z.

Thus the solution tree generated in this problem 

would be:

z=-l

x,=l X, =1

2=0 z=l

Xo=l

2=0 z=3 2=4

z=2 z=3

z=2
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A detailed description of the algorithm used to 
solve the integer subproblem follows. Given the problem; 

Minimize: Z
n

Subject to: Z + E a..x. 2. b- for i = 1,... ,m
j=l ^

Xj = 0,1 for j = 1,...,n.
tIn each constraint substitute 1 - x. for any x.J J

Iwhere a^j > 0 and set xy + Xj = 1. Since one begins the
Iprocedure with all Xj and x^ equal to zero, an obvious 

infeasibility exists and the procedure will determine
Iwhether x. or x. will be equal to one. This determinationJ J

Iwill be made beginning with x^ and x^ and proceeding nat-
Iurally to x and x„. After substitution, one has: n n

Minimize: Z
ISubject to: Z - E a..x. - E a.x. >

b. - E a.. for i = l,...,m

I

Xj ^ Kj = 1 for j = l,...,n
IXj = 0,1 Xj = 0,1 for j = l,...,n,

where = ( j | â ĵ > 0 in constraint i) and = (j |
1 0 in constraint i).
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IIf xy = Xj = O,for all j, then one has an optimum

but infeasible solution with:
Z* = max (b. - I a..), 

i ^
IFeasibility is satisfied by making Xj + Xj = 1 for all j.

Let t represent the leve& of the current node in 
the solution tree. will represent the status of the 
branches from the t-th node with = 1 indicating that 
the branch with xy = 1 is being explored, P^ that the

Ione with xy = 1 is being explored and P^ = 3 that both 
branches have been explored.

Step 0: Set t = 1, B = + «  and r̂ ^̂  = b^ - Z a<^.
i=Ji+

step 1: Calculate:

®it =

^it + *it

ifit

if t e J.1-

if t e

®it
it

^it + *it

if t e J.1-

if t e
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step 2; Let:
t I= max (s^^) and = max (s^^).

I IIf min(q^, q^) ^ B, go to step 5. If min(q^, q^)< B, 
and t = n go to step 4, otherwise go to step 3.

t

Step 3: If g^ > q^, set “ ®it i=l,...,m and set
I I

= 1. If < q^f set for i*l,...,m
and = 2. Let t = t + 1, go to step 1.

Step 4: One now has a feasible solution as indicated by the
Ivalues of P^ for t=l,...,n. Since min(q^, q^) < B, 

the presently found feasible solution is better
tthan the best found thus far. Set B = min(q^, q^) 

and save the currently found feasible solttmon.
Go to step 5.

Step 5: Let t = t - 1. If t = 0, go to step 7, otherwise
go to step 6.

Step 6: If (a) P^ = 3 or (b) P^ = 1 and q^ ^ B or (c)
P^ = 2 and q^ ^ B, go to step 5, If P^ = 1 and
I I

q^ < B, set P^ = 3 arid “ ®it i=l,...,m.
If P^ = 2 and q^ < B, set P^ = 3 and “ ®it
for i=l,...,m. Set t== t++^l, go to step 1.

Step 7 : The optimum solution is B with the corresponding
Iderived values for xj and Xj.
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