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HUMAN ERYTHROCYTE MEMBRANE PROTEINS

CHAPTER I

INTRODUCTION

The human erythrocyte (RBC) has been the subject of numerous 

investigations which have been performed over a period of decades. These 

studies have been carried out at many different levels of evaluation.

For instance, the RBC's function in oxygen transport has been examined 

extensively in the intact RBC, both vivo and vitro. Another ex

ample of RBC studies has been the very productive area of hemoglobin 

structure and composition, which led to major advances in the understand

ing of protein structure. In addition, the human RBC has served as a 

model for the exploration of membrane composition and function, the use 

which is most pertinent to this effort.

The human RBC has been used for many investigations of membrane 

structure, function, and composition. The constituents of the red blood 

cell membrane have been examined in many different ways and at several 

different stages of preparation. These include the RBC in vdiole blood, 

the washed intact RBC, the lysed RBC (ghost), and the lipid extracted 

ghost. The RBC ghost as a source for probing into the protein content 

of membranes is a critical feature of this work.

Studies on the RBC ghost in the past have centered on its lipid
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content, while investigations on the protein content have been limited.

The major reason for studying the lipids of the red blood cell ghost has

been that lipid methodology is well-established and relatively simple.

The proteins are more difficult to study, because of problems relating 

to solubility, aggregation, and the many different proteins present in 

the ghost. The initial phase of this study was designed to deal with 

those problems, thereby leading to the isolation and characterization of 

all ghost proteins. The efforts were partially successful and led to a 

second phase in vAich aqueous fractionation was evaluated as a technique 

for the separation of ghost proteins. When the results of the two phases 

were combined and correlated, a more definitive understanding of erythro

cyte ghost proteins evolved and led to the proposal of a classification 

system for the ghost proteins. The sequence of events leading to the 

proposal will now be described.



CHAPTER II

LITERATURE REVIEW

The study of membrane composition has become an area of in

creasing activity. Three major membrane systems have been used for the 

study of animal membranes and their components. Myelin, a membraneous 

covering over both central and peripheral nervous tissue, has served as 

a model system of membranes having the capacity to insulate the trans

mission of nervous impulses from the surrounding tissues. Myelin is 

characterized by a very high lipid and a low protein content; most pro

teins appear to be of relatively low molecular weight. At the opposite 

end of the spectrum, the inner mitochondrial membrane has been extensively 

investigated as an example of membranes with major metabolic functions.

The inner mitochondrial membrane and other membranes of the same type 

are characterized by a high protein content and a small amount of lipid.

In addition, the 'ipid moiety tends to be more uniform in composition 

with fewer types of lipids present. In between these two major types of 

membranes lies the erythrocyte membrane, which has been studied exten

sively as an example of cellular plasma membranes. It consists of almost 

equal proportions of qualitatively heterogenous lipids and proteins.

The mature human erythrocyte has multiple advantages as a source 

of material for the study of plasma membranes. The most obvious advan-
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tage is that there are no intracellular organelles which require complex 

separation techniques for their removal. A second advantage is that the 

major protein of the mature red blood cell (RBC) is hemoglobin, which can 

be readily removed from the mature erythrocyte. The extraction of hemo

globin from the mature RBC is possible because the erythrocyte membrane 

has a capacity to reform intact membranes spontaneously, a property com

mon to many plasma membranes. Another advantage of the erythrocyte mem

brane as a model is that previous extensive studies have already been 

performed regarding the cells' function, composition, enzymes, and anti

gens. This makes it possible for many components, especially enzymes 

and antigens, to be identified on the basis of their previously deter

mined characteristics. Finally, it has been demonstrated that in some 

human hematologic disorders, changes in the RBC membrane have been noted 

which may be related to the etiology of the disease. Thus, if an ade

quate understanding of the composition of the membrane can be developed, 

a number of clinical disorders are available for study.

Unfortunately, the erythrocyte membrane does have some disadvan

tages as a model for membrane studies. The first is that the mature RBC, 

although circulating in the blood, is a nonmotile cell and is not repre

sentative of all cellular plasma membranes. A second disadvantage is 

that the mature RBC is uniquely a non-nucleated cell in its functional 

state. A third problem with the erythrocyte membrane is that, although 

hemoglobin is readily removed, it is impossible to prevent a simultaneous 

removal of other non-hemoglobin proteins from the membrane. Whether or 

not important structural proteins of the RBC membrane are removed at the 

same time as hemoglobin will have to be determined. A final disadvantage
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is that the effects from hemolytic techniques on the membrane itself are 

not clearly understood. For example, major alterations in membrane 

structure and composition may be caused by osmotic lysis, the method com

monly used to remove hemoglobin. Although what is lost from the membrane 

during this process has been partially identified, all changes produced 

in the membrane during this process have not been determined. Neverthe

less, because of its many advantages, the human erythrocyte membrane was 

chosen for investigation in this study, as it has been for many previous 

studies on cellular plasma membranes.

Structure of the Erythrocyte Membrane

The reports on membrane structure are so numerous that a review 

of all major papers on the subject is not possible. Consequently, only 

those papers which are of importance for erythrocyte membrane structure 

will be considered. The studies have been done on materials as diverse 

as mackerel egg oil and muscle cell endoplasmic reticulum. However, all 

these reports have contributed to the understanding of the structure of 

the erythrocyte membrane.

The first paper of major significance on the composition of 

erythrocyte membranes was published in 1925 by Gorter and Grendel (1). 

These workers attempted to determine the composition of the surface of 

erythrocytes. Using careful procedures to separate the plasma from the 

red cells, they extracted the erythrocytes repeatedly with large amounts 

of pure acetone. The lipids were applied to a Langmuir trough and the 

surface area covered by a single layer of lipid molecules was measured. 

Then, by an indirect measurement technique, the total surface area of the 

extracted erythrocytes was calculated. Combining these two findings, the
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authors were able to show that there was in the erythrocytes an amount 

of lipid adequate to cover the cell surface in a layer 2 molecules thick. 

This was approximately true for all six species studied. Although sub

sequent attempts to repeat the experiment showed that the method of lipid 

extraction was not satisfactory for complete removal of lipids and that 

the technique for measuring cell surface was inadequate, the basic as

sumption that the surface of the erythrocyte is covered by a lipid bi

layer has continued to hold true.

The next major advance in understanding the structure of the 

erythrocyte membrane was made by Danielli and coworkers. In the first 

of these papers, Danielli and Harvey (2) measured the surface tension of 

the oil drop of the mackerel egg. The low value (0.6 dyne/cm) at the 

interface between the oil drop and the protoplasm contrasted markedly 

with the much higher value of approximately 9.0 dynes at interfaces be

tween mackerel egg oil and different buffer systems. The authors postu

lated that the explanation for this difference must be that an additional 

substance was present which had lowered the tension. After a series of 

experiments involving tension measurements between brombenzene and an 

aqueous interface, the authors concluded that the material which was re

sponsible for the reduction of interfacial tension was protein in nature. 

They suggested that the low tension observed at the surfaces of living 

cells must be due to the adsorption of proteins on a lipid layer.

The second paper by Danielli and Davson (3) was on the subject 

of the permeability of thin lipid films and considered how it was pos

sible for different molecules to move across a lipid film. They were 

particularly concerned with how a membrane could distinguish between
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molecules of different sizes and solubility characteristics, as well as 

ions of different charge. They concluded that a very thin lipid layer 

with a protein adsorbed upon the surface would be the most likely struc

ture to possess the required characteristics. Within the text itself, 

it was suggested that only one surface, the inner surface, of the mem

brane would have to be covered by a protein film. Nevertheless, the 

authors proposed a specific model consisting of a bimolecular layer of 

lipids with the hydrophobic tails placed internally and the hydrophilic 

heads placed externally in the aqueous media. The proteins were adsorbed 

onto the hydrophilic heads of the lipids to form the membrane structure. 

This concept was to provide the basic model for membrane structure for 

many years and still has not been refuted completely.

In third and final paper, Davson and Danielli (4) further re

fined their model to include an adsorbed layer of protein on the polar 

heads of the phospholipids, forming the bimolecular leaflet. They spec

ified that the protein was bound to phospholipid through electrostatic 

interactions. Their conclusion that the proteins bound ionically to the 

polar heads of the phospholipids has caused a major controversy about 

membrane structure. Davson and Danielli also discussed the binding of 

proteins, especially globular proteins, to lipids at an oil-water inter

face. They suggested that the hydrocarbon residues of the amino acids 

are incorporated into the lipid layer to form a stable film with the 

lipid. As a result of this combination of lipid and protein, it was pos

sible for stable films to be formed and to impart to the remainder of the 

membrane a structural strength which lipids alone could not achieve. The 

specific interaction of lipid and protein ..id not require polar interac-



tions, but did require that the hydrocarbon portion of the amino acids

reside within the oil layer, while the polar groups remained in the aque

ous phase.

The next major advance in the understanding of the structure of 

membranes came about as a result of the development of the electron mi

croscope. Although many workers reported their findings with electron 

microscopy, the work of Robertson was clearly the most important one. 

Basing most of his studies on myelin, Robertson (b) proposed in 1959 a 

model for Schwann cell membranes wrfiich consisted of a single biomolecular 

leaflet of lipid, with the polar surfaces of the lipids covered by mono

layers of non-lipid material. This formed a trilayered membrane struc

ture approximately 75 Â wide. The 75 Â wide structure was made up of 

two 20 X dense lines, separated by a 35 Â light central zone. This model 

was presumed to be common to all membranes, including the red blood cell 

membrane. In 1964, Robertson (6) proposed the concept that the trilay

ered appearance observed by electron microscopy was produced by a so- 

called membrane, which was common to all membranous structures. Although 

recognizing the similarity, Robertson pointed out that his model differed 

from the original Danielli-Davson concept in three major ways. The first 

major difference was that the Danielli-Davson model did not indicate how 

many layers of lipid were present in the membrane core. His studies 

clearly indicated that the unit membrane concept restricted the number 

of lipid monolayers to two. The second major difference was that Danielli 

and Davson could not show whether the non-lipid components on the margins 

of the membrane were present as a spread film or as a sequence of glob

ular molecules. Robertson's theory specified that the non-lipid portion
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of the membrane was spread over the surface as monolayers rather than as 

a globular protein monolayer. This finding was based primarily on X-ray 

studies of myelin and Robertson questioned whether this concept was ap

plicable to , T2 cell membranes. The third and final difference was that

the unit membrane concept proposed an asymmetrical structure for the mem

brane. The surface on the outside of the cell was shown by electron mi

croscopy to be different from that of the inside of the cell. Robertson's 

concept of the unit membrane further strengthened the view that the lipid

bilayer is the major feature of membrane structure.

The next major advance in the study of membrane structure also 

involved the use of electron microscopy, but was based on a technique 

different from the typical thin sectioning method. The procedure of 

freeze cleaving or freeze etching of intact cells was introduced by Moor 

and Muhlethaler (7) in their study of the internal structure of yeast 

cells. However, it was not until 1966 that Branton (8) first described 

the use of this procedure for studying biological membranes of yeast 

cells, algae, and human RBC. Branton noted that previous observations 

had not revealed membrane faces whose morphological features were con

sistent with whaL was previously known about membrane surfaces. He con

cluded that the process of cleaving resulted in separation of the cell 

membrane along internal faces and not at the surface of the membrane.

He based his conclusion on three different pieces of evidence. The first 

was that, where the membrane could be clearly defined as leading from a 

tangential view to the cross-sectional view, an overall cross-sectional 

thickness of 75 A for the intact membrane was not compatible with a thick

ness of 40 Â, which was the cross-sectional thickness found after freeze
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cleaving. The second line of evidence was that the fractured membrane 

surfaces could not be etched, as would be expected if the surface was 

either the outer or the inner membrane surface. The final piece of evi

dence was that the cleaved membrane faces did not show the structural 

features associated with true membrane surfaces. These findings were 

consistent with the concept that the biological membrane is organized, 

at least in part, as an extended lipid bilayer.

A somewhat different concept using the same technique of freeze 

cleaving was proposed by Weinstein and Bullivant (9) in 1967. Using 

mature erythrocyte membranes from both the mouse and humans, the authors 

described a technique for studying the structure of RBC membranes. They 

noted that the cell surface was smooth and partially covered with small 

particles which might represent antigens, enzymes, or structural pro

teins. More particles were observed on the external than on the internal 

surface of the membrane. They considered the possibility, proposed by 

Branton, that the fracture plane might be through the membrane itself, 

but rejected that concept for lack of evidence. Their observation about 

the surface being covered by a large number of small spherical particles, 

which are relatively uniform in size, was substantiated in 1968 by the 

work of Koehler (10), who investigated the same problem in the plasma 

membranes of frog erythrocytes.

In further studies on the erythrocyte membrane surface by the 

freeze cleaving technique, Weinstein (11) again described the numerous 

particles on the external surface as opposed to the smaller number of 

particles on the internal surface. This was true both for intact red 

blood cells and for red blood cell ghosts. However, he did note at this
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time that there was an external coating over the cell surface, the com

position of which could not be determined. In addition, he observed that 

the membrane-associated particles would occasionally penetrate through 

the membrane surface, representing molecules exposed to both the internal 

and external surface. The concept that the erythrocyte membrane is 

covered by a thin exterior coat, the removal of which exposes an under

lying granular surface, has been further supported by the work of Pinto 

da Silva and Branton (12), as well as Tillack and Marchesi (13), both of 

whom used labelling techniques to coat the erythrocyte surface. The dif

ference is that according to Weinstein (11), the lipid layer of the mem

brane was actually fractured, whereas the latter two groups maintained 

that the fracture line separated the lipid layers of the membrane. The 

only definite conclusion that can be reached from these studies is that 

an outer coat is removed from the erythrocyte membrane surfaces during 

the process of freeze cleaving. Whether or not this actually exposes 

the hydrophobic regions of the erythrocyte membrane is yet to be deter

mined.

The most recent advance in the understanding of biological mem

brane structure has come about as the result of the use of spectroscopic 

techniques. These have included infrared spectroscopy, fluorescent spec

troscopy, optical rotatory dispersion, circular dichroism, and proton 

magnetic resonance. In 1966, Wallach and Zahler (14) used optical dis

persion techniques to evaluate the physical status of proteins within 

the plasma membranes of Ehrlich ascites carcinoma cells. They found that 

the proportion of membrane proteins in the beta conformation was limited 

and that the proteins resided in a medium of high refractive index, where
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they interacted with lipids through hydrophobic interactions. They fur

ther noticed that there was a specific group of membrane proteins pos

sessing both structural and functional activities. In addition, the pro

teins had unusual amino acid sequences, which may be a necessary struc

tural requirement for their lipid binding properties.

In 1966, Lenard and Singer (15) used optical rotatory dispersion 

and circular dichroism for evaluation of protein structure within the 

membranes of human red blood cells and Bacillus subtilis. They found 

that one-quarter to one-third of the membrane protein is in an a-helical 

conformation, with the remainder probably in random coil form. Since 

this appeared to be a common feature of proteins from many different 

membranes, the authors suggested that membranes are formed and stabil

ized through the interaction of lipids with the hydrophobic portions of 

membrane proteins.

Additional physical studies using improved techniques were re

ported by Glazer et ed. (16), who studied the effects of temperature and 

purified phospholipase C on human red blood cell membranes. Phospho- 

lipase C removed 60-7Q% of the phosphorylated amines from the membrane 

without removing any cholesterol, fatty acid, or protein. After phos

pholipase treatment, the average conformation of the proteins determined 

by circular dichroism was not detestably changed. However, proton mag

netic resonance spectra showed that the physical state of the fatty acid 

chains and phospholipids was markedly altered. About three-fourths of 

the fatty acid chains were more mobile in the treated membrane than they 

had been in the untreated membrane. Conversely, the effect of tempera

ture was substantially different on the protein and lipid components of
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the membrane. With untreated membranes at elevated temperatures, as much 

as two-fifths of the protein was noted to have changed in physical state, 

whereas there was no evidence of a change in the lipid fatty acid chains. 

The authors concluded that a large proportion of both the phospholipids 

and the proteins could change independently of one another within the RBC 

membrane. These findings were most compatible with a mosaic membrane 

structure, in vrfiich most of the lipid and part of the protein were not 

interacting. Thus, lipid-protein interaction with the RBC membrane did 

not involve all membrane proteins and lipids.

In 1971, Singer (17) extensively reviewed the major data re

lating to molecular organization of biological membranes and more fully 

described the features of the lipid-globular protein mosaic (LGPM) model. 

This membrane model evolved primarily from the need to account for hydro- 

phobic interactions between the lipids and proteins. The membrane pro

teins were divided into peripheral and integral proteins. The peripheral 

proteins were defined as ionically-bound proteins, which could easily be 

removed from the membrane. In addition, they were not associated with 

lipid after removal from the membrane and were soluble in aqueous buf

fers. The integral proteins were difficult to remove from the membrane 

and required stronger methods for solubilization (e.g., the use of de

tergents). In addition, these proteins were usually associated with 

lipids, the removal of which led to the formation of highly insoluble 

protein aggregates. Within the membrane, the lipids and the globular 

integral proteins were arranged in an alternating mosaic pattern. The 

hydrophobic segments of the integral proteins and the phospholipids were 

isolated within the hydrophobic interior of the membrane and away from
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the aqueous exterior. At the same time, the ionic groups of the lipids 

and the charged residues of the peripheral proteins were both in contact 

with water on the exterior surface of the membrane. The exterior sur

face was also the site where the carbohydrate portions of both glycopro

teins and glycolipids were found. This arrangement allowed for maximum 

hydrophobic and hydrophilic interactions between the different components 

of the membrane.

The mosaic model proposed a considerably different role for 

both the lipid and proteins than the Danielli-Davson-Robertson (D-D-R) 

model. The proteins in the mosaic model were an integral portion of the 

membrane and were inserted into the membrane interior, primarily in a 

globular conformation. This differed markedly from the D-D-R model ac

cording to which the surface of the membrane was covered with proteins 

possessing the beta-configuration. The lipids also differed in major 

ways from the earlier model and, although still assumed to be a bilayer, 

were not present as an uninterrupted continuum. The ionic groups of the 

lipids were not buried and constrained by a layer of lipids, but were in 

contact with the aqueous phase. Thus, the LGPM model proposed by Singer 

provided a modification of the lipid bilayer model, which was more con

sistent with the accumulated knowledge of membrane composition.

Singer then reviewed critically the evidence for the D-D-R 

model, the Benson model (a model similar to the lipid globular model in 

which the lipid and protein are joined together into lipoprotein sub

units), and the LGPM model. Two pieces of evidence, i.e., the railroad 

track appearance found by thin section electron microscopy and the X-ray 

diffraction data on myelin, were compatible with all three systems. Five
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major pieces of evidence were thought to be incompatible with the D-D-R 

model, but compatible with the Benson and the LGPM model. They were; 

l) the unaltered staining pattern of membranes after delipidation, 2) the 

particulate structures found by freeze-etching techniques, 3) the cir

cular dichroism measurements showing a 30-40% a-helix protein content,

4) the cleavage of phosphorylated amines of phospholipids by phospho- 

lipase C, and 5) the binding of a fluorescent dye to phospholipids and 

proteins in a similar manner. One piece of evidence, the occurrence of 

a phase change in lipids demonstrable by differential calorimetry and 

X-ray measurements, was incompatible with the Benson model. None of the 

data selected were inconsistent with the lipid-globular protein mosaic 

model.

In summary, the current data would suggest that the lipid-glob

ular protein mosaic model is the most acceptable model for all cellular 

membranes. Most of the information which was used to develop the model 

was obtained from studies on erythrocyte membranes, the material selected 

for study in this investigation. The data to be presented later should 

provide further arguments for the acceptance of the LGPM model as the 

best current model for erythrocyte membrane structure.

Erythrocyte Membrane Composition

The human erythrocyte membrane is a complex mixture of proteins, 

lipids, and carbohydrates. Of these, none has been studied more exten

sively than the lipid moiety. The studies on lipids developed because 

lipids were assumed to play a critical role in the structure of cellular 

membranes, and an advanced methodology was available for their qualita

tive and quantitative determination. Carbohydrate is the smallest com
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ponent of the red cell membrane on a percentage basis and is covalently 

bound to either a lipid or a protein molecule. On a weight basis protein 

is the largest component, although it is actually a very heterogeneous 

mixture. The relative proportion of the major classes of compounds in 

the red cell membrane is given in Table 1 from the data of Rosenberg and 

Guidotti (18).

Lipid Composition

The content of the individual lipids, as reported by Sweeley 

and Dawson (19), is given in Table 2. On a molar basis, cholesterol ac

counted for 42%, the phospholipids for 54%, and the glycosphingolipids 

for 2.7% of the total lipids. As far as is presently known, lipid 

classes, such as cholesterol esters, triglycerides, and free fatty acids, 

which are normally present in the plasma, have not been found in the RBC 

membrane.

Data obtained by major investigators on the distribution of in

dividual phospholipids are reviewed in Table 3. Although there was some 

variation among the different results and considerable variation in the 

methods used for determining the phospholipid content, certain features 

were consistently reported. The total cholesterol and lipid phosphorus 

content of individual RBC was quite consistent. Only a slight predomi

nance of lipid phosphorus over cholesterol was found on a molar basis.

The method of lipid extraction, as demonstrated in the work of Ways and 

Hanahan (23), influenced the total content of phospholipid and choles

terol. The data of Crowley et al. (24), and Neerhout (27) both demon

strated an increase in the total phospholipid and cholesterol in erythro

cytes obtained from umbilical cord blood, when compared to red blood
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TABLE 1

MAJOR COMPONENTS OF THE HUMAN RBC MEMBRANE®

Component

Protein 49.2#

Lipid (Total) 43.6#

Phospholipid 32.5#

Cholesterol 11.1#

Carbohydrate (Total) 7.2#

Neutral sugars 4.0#

Hexosamines 2.0#

Sialic Acids 1.2#

^Rosenberg and Guidotti (18).
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TABLE 2

LIPIDS OF THE HUMAN RBC MEMBRANE'

tiM X 10‘ ^°/Cell Percent 
Total Lipid

Cholesterol 3.20 43.2

Phosphatidyl Choline 1.20 16.2

Phosphatidyl Serine 0.60 8.1

Phosphatidyl Ethanolamine 1.10 14.8

Phosphatidyl Inositol 0.03 0.4

Sphingomyelin 1.0 13.5

Lysophosphatidyl Choline 0.04 0.5

Phosphatidyl Acid 0.04 0.5

Glycosphingolipids 0.20 2.7

Total 7.41 99.9%

54.0

^Sweeley and Dawson (19).
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TABLE 3

PHOSPHOLIPID DISTRIBUTION IN THE HUMAN RBC MEMBRANE

Reference
Lipid P 
mgsX10“ll/ 

Cell 
(hMX10-13)

Cholesterol
mgsXlO-10

Cell
(u.MXIO'13)

Phosph.
Ethanolamine

Phosph.
Serine

Reed et (20) 1.15
(3.73)

1.13
(2.92)

24.6 14.9

Farquhar (21) 29 10

Bradlow et al. (22) 27.5 13.3

Ways & Hanahan (23) 1.27
(4.12)

1.26
(3.26)

25.7 15.0

Crowley et ad. (24) 

(Cord Blood)

1.27
(4.12)
1.41
(4.58)

1.26
(3.26)
1.50
(3.88)

24.7

22.2

14.8

15.2

Williams et (25) 27.9 3.9

Dodge & Phillips (26) 0.995
(3.23)

1.547
(4.00)

27.5 14.8

Neerhout (27) 

(Cord Blood)

1.22
(3.96)
1.54
(5.00)

1.33
(3.44)
1.79
(4.63)

31.2

29.1

13.1 
(With PI)

15.2 
(wi th  P I )

Jaffe & Gottfried (28) 1.121
(3.64)(gMXlO-iU)

1.330
(3.44)

(pMXlO-10)

29.5 13.8 
(With PI)

Cohen & Derksen (29) 28.3 14.5

Phillips et (30) H.
D.

Young
Old

IT
26.4
26.4 
29.7 
29.0

15.0
14.2 
15.5
12.2

Turner & Rouser (31) 1.05
(3.41)

1.18
(3.05)

26.0 13.4

Dodge et al. (32) 1.28
(4.16)

1.54
(3.98)

29
29
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TABLE 3— Continued

Moles Per Cent of Phosphorus
Phosph.
Inositol

Phosph.
Choline

Lysophosph
Choline

Sphingo
myelin

Phosphatidyl
Acid

Minor or 
Unknown

4.0 30 2.5 22.0 — 2

- 36 - 21 - 3

- 30.5 2.9 24.6 N.D. 1.2

2.2 29.5 0.5 23.8 - 3.3

(Without 29.9 _ 25.3 . 5.0
Sphing)
(without 27.6 - 28.9 - 6.1
Sphing)

2.5 35.6 1.7 28.4 - -

0.6 29.2 1.0 25.4 - 1.5

29.5 1.2 24.1 1.0 -

27.7 1.0 26.0 0.9

28.2 1.4 26.0 1.0 -

< 1.0 33.6 - 23.4 - -

0.5 29.7 1.6 26.3 - 0.6
0.4 30.4 1.4 26.2 - 1.0
0.8 28.8 1.5 23.4 - 0.4
0.6 31.3 1.2 35.4 - 0.4

1.1 28.3 1.1 24.6 2.1 3.5

(Without 33 PS + PI 2.0
Sphing) 49 (Phos.Chol + Sphing) 3.0 7.3
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cells from normal human adults.

Three specific phospholipids (phosphatidyl ethanolamine, phospha

tidyl choline, sphingomyelin) accounted on the average for over 8C9d of 

the total phospholipids in the membrane. Only phosphatidyl serine, which 

accounted for approximately 13% of the lipid phosphorus, could be consid

ered another significant phospholipid component of the membrane. There 

was a slight difference in the percentage of the three major phospho

lipids in erythrocytes from adult blood and from umbilical cord blood.

Both phosphatidyl ethanolamine and phosphatidyl choline were reduced 

with an almost equal increase in the amount of sphingomyelin. The dif

ference between the two types of blood could not be explained on the 

basis of two cell populations, one old and one young, since the data from 

Phillips et &1. (30) demonstrated that there was no consistent difference 

in the distribution of phospholipids between young and old erythrocytes. 

Special consideration should be given to the data of Turner and Rouser 

(31) since they were obtained with the best available methodology for 

the separation of phospholipids. Although surprisingly little informa

tion was available, the phospholipid distribution did not appear to be 

much different in RBC ghosts than in intact cells, as suggested by the 

work of Dodge et (32).

The distributional pattern of individual phospholipids in the 

red cell membrane did not fully express their complexity. One reason is 

that not all of the phospholipids are present as di-acyl phosphoglycer- 

ides, but rather contain a mixture of the di-acyl form and the plasma- 

logen form. The plasmalogen content of the major phospholipids is pre

sented in Table 4. Approximately 50% of the ethanolamine phosphoglycer-
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TABLE 4

PLASMALOGEN CONTENT OF PHOSPHOGLYCERIDES

Percent as Plasmalogen

Reference Ethanolamine
Phospho-
glycerides

Serine
Phospho-
glycerides

Choline
Phospho-
glycerides

Sphingo
myelin

Farquhar (21) 67 8 10 0

Ways and Hanahan (23) 35 1.5 2.0 0

Williams et (25) 52.0 0.0 3.9 0

Cohen and Derksen
(29)

46.3 0.0 3.6 0
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ides were found to be in the plasmalogen form. The more recent data sug

gested that the serine phosphoglycerides and sphingomyelin did not con

tain any plasmalogens. The biological significance of the variation in 

plasmalogen concentrations has not been determined.

In addition to the phospholipid distribution within the red cell 

membrane, the fatty acid composition of human red cells has also been ex

tensively studied and the results are reviewed in Table 5. The major 

fatty acids present in the RBC membrane included palmitic acid, stearic 

acid, oleic acid, linoleic acid, and arachidonic acid. In addition, the 

22-carbon and 24-carbon fatty acids accounted for approximately 15% of 

the total fatty acid composition. There was also a difference between 

the fatty acid composition of erythrocytes from normal adults and from 

the umbilical cord. The cord blood erythrocytes contained more palmitic 

and oleic acid and less linoleic acid. Although slight differences did 

occur, there appeared to be little difference in the fatty acid composi

tion of old and young red cells, as demonstrated by Phillips et (30).

Major differences in the fatty acid composition of the differ

ent phospholipids in the RBC membrane were quite impressive, as shown in 

Table 6. Although palmitic acid was a minor component of phosphatidyl 

serine and phosphatidyl ethanolamine, it was the major fatty acid of 

both phosphatidyl choline and sphingomyelin. Stearic acid was the major 

fatty acid component of phosphatidyl serine, but a relatively minor com

ponent of phosphatidyl ethanolamine, phosphatidyl choline and sphingo

myelin. The mono-unsaturated fatty acid, oleic acid, was a major com

ponent of phosphatidyl ethanolamine and phosphatidyl choline, but a minor 

component of phosphatidyl serine and sphingomyelin. Linoleic acid, the



TABLE 5

FATTY ACID COMPOSITION OF HUMAN RBC MEMBRANES
(MOLES %)

Reference
%
14:0

%
16:0

%
16:1

%
18:0

%
18:1
w9

%
18:2
u6

%
20:3
ti)6

%
20:3
w9

%
20:4
0)6

%
22
(All)

%
24
(All)

Farquhar (21) 0.5 29.9 0.7 15.0 19.9 10.8 1.3 10.0 8.7 -

Ways and Hanahan (23) 0.7 24.5 0.2 19.0 16.4 11.2 1.5 15.1 5.1 5.7

Crowley et aT. (24) 
(Cord Blood)

0.6 25.2 2.0 17.1 13.4 3.4 2.5 16.7 8.5 9.3

Dodge and Phillips (26) 
(Fatty Acid

- 21.4 0.9 14.0 12.6 9.0 1.2 0.3 11.9 10.6 8.0

Neerhout (27) 
(Cord Blood)

Adult

Cord Blood

0.2

0.2

17.0

21.3

0.7

1.0

15.3

16.3

14.6

11.9

10.9

3.4

1.4

2.7

17.4

19.6

7.3

7.4

7.5

8.9

Phillips et (30) Young - 19.3 - 15.9 12.8 8.3 1.3 0.2 16.2 N.E. N.E.

Old - 20.7 - 15.5 14.3 10.1 1.1 0.1 14.2 N.E. N.E.
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TABLE 6

FATTY ACID COMPOSITION OF INDIVIDUAL PHOSPHOLIPIDS

Reference
Phosphatidyl Ethanolamine Phosphatidyl Serine
16:0 18:0 18:1 18:2 20:4 16:0 18:0 18:1 18:2 20:4

Farquhar (21) 18.9 8.0 25.2 7.0 21.9 7.1 41.6 13.0 2.8 19.7

Ways and 
Hanahan (23)

15.5 14.1 17.2 5.6 21.8 4.4 39.7 9.8 2.6 23.5

240 fatty 
acids

m 7.8

Crowley 
et (24) 
[Cord Blood] 
24C

24.4 12.0 18.3 2.5 20.0

L W
4.9 46.4 5.4 1.4 21.7

1 4.3|
Williams 
et al. (25)

13.8 5.8 19.0 6.4 27.1 12.3 10.2 19.1 6.2 22.0

24C 1 0.61 1 0 . 6 |
Dodge and 
Phillips (26)

12.9 11.5 18.1 7.1 23.7 2.7 37.5 8.1 3.1 24.2

24C 1 0.3}
Cohen and 
Derksen (29) 
RBC 16.6 11.2 15.6 4.7 24.8

Platelets 8.5 17.2 6.7 1.9 37.2
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TABLE 6— Continued

Phosphatidyl Choline Sphingomyelin

16:0 18:0 18:1 18:2 20:4 16:0 18:0 18:1 18:2 20:4

33.0 11.7 20.6 18.2 5.0 Not Determined

34.7 13.8 21.1 21.9 6.7 41.3 9.1 5.2 3.7 0.7

1 0 1 30.5

41.5 10.3 18.2 6.8 12.7 41.2 13.2 2.4 0.3 0

rôTTi 31.3j

36.1 10.1 18.6 23.2 5.2 45.7 7.3 1.1 0.3 0

1 0.2& (32.5

31.2 11.8 18.9 22.8 6.7 23.6 5.7 0.8 0.2 1.4

î o.2i joQ.Oi

33.6 12.7 19.7 22.8 6.2

23.8 16.0 20.6 11.5 14.7
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essential fatty acid, was a major component of phosphatidyl choline, but 

only a relatively small percentage was present in the other major phos

pholipids. Arachidonic acid, a chemical relative of linoleic acid, was 

a major component of phosphatidyl ethanolamine and phosphatidyl serine, 

while almost nonexistent in sphingomyelin and only a minor component of 

phosphatidyl choline. The most remarkable difference in fatty acid com

position was noted vrtien the 24-carbon fatty acids are compared between 

the different phospholipid classes. They represented a minor component 

of all of the phospholipids, except for sphingomyelin, vAere it accounted 

for 30 to 50^ of the total fatty acids in the phospholipid.

The same differences were not found when the fatty acid compo

sition of platelets, another circulating component of the blood, was 

studied. As shown at the bottom of Table 6, there was a substantial dif

ference between the fatty acid composition of both phosphatidyl ethanol

amine and phosphatidyl choline for the different membranes. Only the 

oleic acid content of phosphatidyl choline appeared to be similar on a 

percentage basis. The biological significance of the differences in fatty 

acid composition between both the individual phospholipids of the red 

cell membrane and between the phospholipids of RBC's and platelets has 

yet to be determined. It would not be surprising to find that this dis

tribution may ultimately have a major role in determining the relation

ship between the phospholipids and proteins of the RBC membranes.

Carbohydrate Composition

The carbohydrate composition of the erythrocyte membrane has 

been studied in several different manners. In Table 7 are listed the 

results obtained by several investigators. Bakerman and Wasemiller re-



TABLE 7

CARBOHYDRATE COMPOSITION OF HUMAN ERYTHROCYTE MEMBRANES

Reference
Weight Percentage of Whole Membrane

Total Neutral
Sugars Hexosamines Sialic

Acid Fucose

Bakerman and Wasemiller (33) 
(neutral sugars, hexosamines, 
sialic acids)

10.0

Rosenberg and Guidotti (18) 
Ghosts 7.2 4.0 2.0 1.2

Lipid-extracted Ghosts 7.5 2.5 2.6 2.4

Poulik (34)
Butanol supernate: pH 2.0 7.3 2.8 2.3 2.0 0.2

pH 6.0 11.7 4.3 2.7 4.5 0.2

Formic acid extracted
stroma; pH 2.0 7.1 3.5 2.1 1.5 0.1

pH 6.0 7.3 3.7 1.7 1.6 0.1

Galactose Glucose Mannose
Acetyl Acetyl 

Galacto- Gluco
samine samine

Winzler (35) 8.0 1.8 0.8 0.4 1.8 0.8 2.1 0.3
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ported (33) that the total amount of neutral sugars, hexosamines, and 

sialic acids accounted for 1(% of the whole memorane. A somewhat lower 

figure was obtained by Rosenberg and Guidotti (18), who studied both in

tact and lipid-extracted RBC ghosts. A figure of approximately 1% was 

obtained for each, although the distribution of the different types of 

sugars was quite different. Poulik (34), using a butanol extraction 

technique after pre-incubating the ghosts with formic acid at pH 2 or pH 

6 to remove proteins, also obtained values of approximately 1% with a 

relatively stable distribution of the four major sugar groups for both 

pH values studied. A more complete study of the membrane carbohydrates 

was reported by Winzler (35) in 1969. Galactose, acetylgalactosamine, 

and sialic acid were the major sugar components, accounting for 70% of 

the total sugars.

More precise data on the carbohydrate content of the RBC mem

brane are difficult to obtain because they are covalently linked either 

to a lipid moiety or to a protein moiety. The only data which gave the 

distribution of carbohydrate between the lipid and protein moieties were 

those of Rosenberg and Guidotti (18), v itio compared carbohydrate composi

tion for ghosts and lipid-extracted ghosts. In the intact ghosts, car

bohydrates accounted for 7.2% of the membrane mass, including 4% as neu

tral sugars, 2% as hexosamines, and 1.2% as sialic acid. In the lipid- 

extracted ghosts they accounted for 7.5%, with 2.5% as neutral sugars, 

2.6% as hexosamines, and 2.4% as sialic acid. Correcting the figures for 

an 8.7% loss of protein during the process of lipid extraction and assum

ing that the proteins lost do not have a carbohydrate composition differ

ent from that of the iMiole membrane, an estimate of the carbohydrate re
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maining bound to protein is possible. On this basis, 51.4% of the orig

inal ghost carbohydrate is still present in the lipid-extracted ghost.

On an individual sugar basis, this represents 3.^ of the neutral sugars, 

64% of the hexosamines, and 98.:^ of the sialic acid from the intact 

ghosts. Consequently, an estimate can be made that approximately one- 

half of the carbohydrate is lost from the membrane during the process of 

lipid extraction. The carbohydrate-containing material which is removed 

(presumably glycolipids) contains approximately two-thirds of the neutral 

sugars and one-third of the hexosamines originally present in the mem

brane. This suggests a substantial difference in the distribution of 

individual sugars between the glycolipid and the glycoprotein.

The carbohydrate present in the glycolipid fraction has consid

erable biological significance because of its role in determining cellu

lar antigenicity. All glycolipids of the RBC membrane are glycosphingo

lipids. In Table 8 the different types of glycosphingolipids are divided 

into neutral glycosphingolipids, the acidic glycosphingolipids, and the 

glycosphingolipids with blood group activity. As noted, neutral glyco

sphingolipids account for 70%, and the acidic and those containing the 

blood group activities for 30% of membrane glycolipids. It is not pos

sible to quantitate these two latter groups. The gangliosides are made 

up of the ceramide hexosides which contain N-acetyl neuraminic acid. The 

glycosphingolipids with blood group activity are characterized only by a 

terminal sugar sequence, which gives them specific antigenic properties. 

In contrast to the glycolipids of nervous tissue, human erythrocyte mem

branes do not contain galactosyl ceramides, sulphatides, or more complex 

neutral glycosphingolipids.



TABLE 8

GLYCOLIPIDS OF THE HUMAN RBC MEMBRANE

Structure
Con

centration 
(pmoles/lOO 
ml blood)

Desig
nation

% of 
Total

Neutral Glyco
sphingolipids 
(Globosides)

Glucosyl Ceramide Glu-Ceramide 0.50 GL-1
Lactosyl Ceramide 
Trihexosyl Ceramide

Gal(pl-*-4)Glu-Ceramide 
Gal(pl^4)Gal(pi^4)Glu-Ceramide

1.43
1.27

GL-2
GL-3

> 7(%

Tetrahexosyl Ceramide NAcGal ( pi->3)Gal ( pi^4)Gal ( pi^4)Glu-Ceramide 7.05 GL-4

Acid Glycosphingo
lipids (Gangliosides) 
Contain sialic acid -Sugar-Sugar-Ceramide

1
NAcNA

Glycosphingolipids with 
Blood Group Activity 
Contain terminal sugar 
sequences which give 
specific antigenic 
properties

Sugar-Sugar-Sugar-Ceramide
Sugar -

30%

CO

Human erythrocyte membranes normally do not contain galactosyl ceramides, sulfatides, or more 
complex neutral glycosphingolipids.
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An additional interesting feature about the composition of the 

erythrocyte glycolipids was that substantial variation occurred in the 

fatty acid composition of the various glycolipids. The distribution of 

fatty acids in glycolipids as well as the distribution of fatty acids in 

a single neutral glycosphingolipid from different human tissues are pre

sented in Tables 9 and 10, respectively. The neutral glycolipids were 

found to have a distribution different from that of glycolipids wAiich 

are associated with blood group activities, especially as to the content 

of C2 4  fatty acids. Since the variation between the different blood 

groups results from small changes at the nonreducing end of the carbo

hydrate chain, the glycolipids with A, B, and H activities had a similar 

fatty acid composition. A more interesting observation was the variation 

in the fatty acid composition of lactosyl ceramide from human red blood 

cells, leukocytes, and splenic tissue. The erythrocytes again had a 

very high percentage of Cgijrfatty acids, whereas leukocytes and splenic 

tissue contained less C2 4 “fatty acid and more palmitic acid. The spec

ific biological significance of these changes in fatty acid composition 

is not known, but may have some bearing on the process of cellular dif

ferentiation.

The other major source of carbohydrate in the RBC membrane is 

the carbohydrate which is covalently linked to proteins. Data of 

Rosenberg and Guidotti (18) indicated that slightly over 5(% of the car

bohydrate in the ghost membrane was attached to protein. Essentially 

all of the sialic acid, a large portion of the hexosamines, and a small 

portion of the hexoses were associated with the protein. The distribu

tion and composition of glycoproteins are not well understood, but will
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TABLE 9

FATTY ACID COMPOSITION OF HUMAN ERYTHROCYTE GLYCOLIPIDS®

Human
Globoside

Blood Groups 
A B

H and 
Le

16:0 6.0 3.8 5.1 4.6

16:1 0 4.4 3.9 4.2

18:0 2.0 1.2 1.2 1.5

18:1 0 2.2 1.4 2.0

20:0 1.0 11.4 11.6 9.8

21:0 0 4.2 2.2 2.0

22:0 12.0 9.2 12.8 10.5

22:1 0 16.2 16.7 14.5

23:0 3.0 0 0 0

24:0 35.0 19.3 19.5 20.5

24:1 40.0 17.9 18.1 16.1

^Sweeley and Dawson (19).
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TABLE 10

FATTY ACID COMPOSITION OF LACTOSYL CERAMIDE 
FROM DIFFERENT HUMAN SOURCESa

Human
RBC's

Human
Leukocytes

Human
Spleen

16:0 6.0 27.4 46.0

18:0 4.0 3.9 3.9

18:1 5.6 0.1

20:0 2.0 0.6 4.4

22:0 14.0 4.3 13.0

22:1 1.1

23:0 5.0

24:0 48.0 12.9 24.2

24:1 24.0 38.3 2.7

Other 2.0 5.9 0

agweeley and Dawson (19).
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be considered at considerable length in the next section on protein com

position.

Protein Composition 

The proteins of the erythrocyte membrane are probably the most 

poorly understood of all of the components of the membrane. The protein 

content has been reported to vary from as low as 45% (36) to as high as 

55% (33) of the total dry weight of the ghost membrane. In addition, 

the proteins of the erythrocyte membrane represent a very diverse group 

both with respect to composition as well as to function of individual 

members. The best known of the proteins probably are those which carry 

antigenic activity, such as blood group ABH or blood group MN activity, 

and are the type of proteins to which carbohydrates are attached. There 

are proteins which bind to the lipid of the membrane to form the lipid- 

protein structure which is common to all membranes. Still other proteins 

function to transport substances across the membrane and are probably 

enzymes which have a specific role as transport proteins. Other enzymes 

must also be present to supply the energy needed to maintain the integ

rity of the membrane. These would include glycolytic enzymes as well as 

enzymes which specifically metabolize agents capable of directly destroy

ing the membranes. Finally, a group of proteins may exist whose sole 

purpose is to determine the structure of membranes. These structural 

proteins have quite controversial background, and a major question still 

exists as to their existence. This section will first consider the ef

forts which have been made to separate all of the proteins into differ

ent groups or types. A discussion of attempts to obtain RBC membrane 

proteins with specific chemical or biological properties will conclude
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the review.

Preparation of Membranes for Study 

The preparation of RBC membranes usually involves the simultan

eous performance of two different operations. The first one is the sep

aration of the mature red blood cells from circulating leukocytes and 

platelets, and the second one is the disruption of the RBC membranes to 

remove hemoglobin. This approach is possible because whole blood con

tains only a small number of other cell types (relative to the mass of 

red blood cells), and their removal can be combined with methods used to 

extract hemoglobin from the red cells. Many methods are available for 

the isolation of RBC membranes, but most represent modifications of a 

single basic process.

The classical method for the preparation of erythrocyte mem

branes for many years was the addition of distilled water to a suspen

sion of red blood cells. This readily removed most of the hemoglobin 

from within the cells, and repeated washings produced an almost complete 

removal of hemoglobin. Careful chemical studies have not been carried 

out to demonstrate the major features of the end product of the process. 

However, the process has been used in the relatively recent studies of 

Post et (37) on erythrocyte adenosine triphosphatase activity and 

Green (38) on studies of the Rhesus antigens of the RBC.

In 1953, the general principles of the method most commonly used 

for the lysis of erythrocytes were described. Hillyer and Hoffman (39) 

proposed that a gradual hemolytic technique would produce the best pos

sible end product. The process required repeated cell washes with solu

tions of progressively lower tonicity, starting at a concentration of
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0.03 M sodium chloride, the level at which 100 per cent hemolysis oc

curred in normal human red cells. Repeated washings were then performed 

with solutions of reduced tonicity until the cellular membranes were de

void of hemoglobin. The authors carried out careful electron microscopic 

studies to define the physical state of the membrane and to describe the 

specific changes which resulted from the hemolytic procedure.

In 1956, Danon et (40) modified the procedure of Hillyer 

and Hoffman to produce a more gradual exposure to hypotonic solutions.

The original method required that the hypotonic sodium chloride solutions 

be added directly to the blood cells, whereas the Danon method involved 

the addition of hypotonic solutions by dialysis. The gradual osmotic 

lysis produced a membrane with no major ruptures or alterations which 

might have resulted from the cells' subjection to sudden osmotic shock.

Dodge et (32) described a major modification in the tech

nique of gradual osmotic lysis, including a very thorough chemical eval

uation of the effects of pH and osmolarity of the hypotonic solution on 

removal of hemoglobin and non-hemoglobin protein from the erythrocytes. 

They found that buffer concentrations between 10 and 20 ideal millios- 

molar (imOsm) and pH values of 5.8 to 8 resulted in maximum hemoglobin 

removal from the RBC's. They also demonstrated a maximum binding of 

hemoglobin to the membrane at a pH of 5.8. Conditions for optimal hemo

lysis in a single-stage procedure involved the use of phosphate buffers 

at an osmolarity of 20 imOsm and a pH of 7.4. Under these conditions 

there was an almost complete removal of hemoglobin with very little con

comitant loss of lipid. The amount of non-hemoglobin nitrogen-contain

ing material lost during the process was sizable, but no evaluation of



38

the material removed was made. This study resulted in a procedure which 

has become a standard method for the preparation of erythrocyte membranes 

by osmotic lysis.

Other major procedures for the preparation of erythrocyte mem

branes have received limited use in studies of erythrocyte membrane pro

tein. The technique of Mazia and Ruby (41), which involved the use of 

Triton X-100, a non-ionic detergent, has been followed by a few workers. 

However, the method suffers severely from the fact that membranes can be 

completely solubilized by this detergent and the loss of lipid from the 

membrane has not been determined during the process of hemoglobin re

moval. The procedure of freezing and thawing red blood cells, which has 

been commonly used for the study of intracellular enzymes, has not been 

widely utilized in studies on erythrocyte membrane proteins because of 

the major physical changes which are produced by the process. A few 

methods have been described which are based on the addition of the che

lating agent, ethylene-diamine-tetracetic acid (EDTA), to the buffer sys

tems. However, all of the techniques involve the process of osmotic 

lysis, and no evaluation of the changes produced has been performed.

Thus, at the present time, only the techniques involving the gradual os

motic lysis of the erythrocytes with simple hypotonic buffers have been 

widely studied and definitely determined to be satisfactory for the study 

of the RBC membranes.

Solubilization of Membrane Proteins 

Once satisfactory RBC membranes have been prepared, the next 

step is to solubilize the proteins for further study. The major problem 

of membrane protein chemistry has been the lack of solubility of some,
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if not most, of the membrane proteins. The difficulty arises because of 

the hydrophobic nature of proteins attached to lipids. In fact, there 

is a question even as to what constitutes solubility in an aqueous med

ium for a membrane protein which is normally associated with membrane 

lipid. In general, soluble membrane proteins have been defined as those 

proteins present in the clear supernate after centrifugation of membranes 

to which a solubilizing agent had been added. Many chemical agents have 

been used to solubilize membrane proteins with varying degrees of suc

cess. The types of agents and the difficulties involved in their use 

will now be discussed.

Organic solvents were probably the first agents to be widely 

used for the purpose of solubilizing membrane proteins. Maddy (42) used 

a mixture of water and butanol which resulted in separation of soluble 

proteins into the aqueous phase and lipids into the butanol phase. Ex

cellent solubilization was achieved with ox erythrocytes, although the 

same system has not been as effective in the study of human erythrocytes. 

Blumenfeld (36) used 33% pyridine in water to solubilize 35 to 40% of 

the membrane protein essentially free of phospholipid. Winzler (35) has 

used a mixture of phenol and water (1:1) to extract a mixture of glyco

proteins and proteins, from which further purification of the glycopro

tein was possible. Zahler and Wallach (43) have had extensive experience 

with the use of a mixture of 2-chloroethanol and water for solubilizing 

membranes. They have achieved essentially complete solubilization of 

all membrane protein, although further purification of solubilized pro

teins has been difficult.

The so-called dissociating agents have been widely used in the
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study of soluble proteins to separate the proteins into their individual 

peptides. Both guanidinium hydrochloride (at concentrations up to 6 

molar) and urea (at concentrations up to 8 molar) have also been exten

sively studied for the purpose of solubilizing RBC membrane proteins. 

Results obtained by different workers have been quite variable with the 

use of these agents, even when used at the same concentration. No ex

planation for the variation in results is available at the present time.

The most widely used agents at the present time are the deter

gents. Anionic, cationic, nonionic, and bile salt detergents have all 

been used for the purpose of solubilizing membrane proteins. The most 

effective detergent based on its effectiveness in the hands of many dif

ferent investigators has been the anionic detergent, sodium dodecyl sul

phate (SDS). It has been used for the complete solubilization of RBC 

membrane protein and as an agent in the analysis of the peptides. The 

nonionic detergent, Triton X-100, has also been widely used, but the 

data have been somewhat confused by its use in systems for the prepara

tion of ghosts. The bile salt, sodium deoxycholate, has been frequently 

evaluated as a solubilizing agent, but has also produced quite variable 

results from one investigator to another. However, it has not been as 

widely studied as the other detergents, and further studies are necessary 

to establish its real value. Cationic detergents have not been effec

tive.

Many aqueous systems, including double distilled water, have 

been used to obtain soluble proteins. Marchesi and Steers (44) utilized 

such a system to dialyze ghost suspensions against a dilute solution of 

adenosine triphosphate and p-mercaptoethanol. The method was further
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modified (45) by switching to dilute solutions of sodium EDTA, which 

have also been used in a large number of studies to obtain at least part 

of the soluble membrane proteins. Acids, especially acetic acid and 

formic acid, have been employed for the same purpose, although varying 

degrees of solubility have been obtained. Hypertonic salt solutions 

have been used by some investigators (46), both alone and as part of a 

series of steps in the solubilization procedure.

A limited number of studies have been carried out for the pur

pose of comparing the effectiveness of various agents in solubilizing 

the RBC membrane proteins. Bakerman and Wasemiller (33), using RBC 

ghost suspensions as substrate, evaluated several agents. Approximately 

90% or more of the protein could be solubilized with sodium dodecyl sul

phate, Kryo EO (a non-ionic detergent), and 6 M urea (pH 11.0). They 

found that 75 to 85% of the protein was soluble in 66% acetic acid or in 

sodium hydroxide solution (pH 13.0). Sodium deoxycholate (l.O M), sodium 

sulfide (1.0 M), and 1.5 M guanidinium hydrochloride could dissolve 45 

to 75% of the protein.

In a slightly different study, using lyophilized lipid-extracted 

membrane protein. Rosenberg and Guidctti (18) attempted to solubilize the 

protein using varying agents. Little effect could be obtained with 

guanidinium hydrochloride, urea, glacial acetic acid or Triton X-100. 

About 97% solubility was obtained in 8 ^  formic acid; approximately 9 ^  

solubility was obtained in 1% SDS; and 100% solubilization was obtained 

by succinylation of the membrane protein.

In summary, the problem of solubilizing the RBC membrane protein 

is a complex one. Many agents have been both proposed and used on the
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basis of careful evaluation. The most complete solubilization would ap

pear to be obtained with detergents, especially sodium dodecyl sulphate. 

The dissociating agents and organic solvents may also be very useful for 

this purpose, although the final physical state of the protein after such 

treatment has not been determined. A problem with the use of the dis

sociating agents and organic solvents is that the extraction procedure 

may be selective for specific groups or families of the proteins. The 

aqueous systems appear to be able to solubilize only part of the protein 

present in the membrane, depending upon the system chosen. The data on 

solubilization indicate that methods are available for a complete solu

bilization of all of the proteins, although the mechanism is yet to be 

determined. Partial solubilizations, even on a selective basis, are 

also available for the study of membrane proteins. A better understand

ing of the protein composition of the RBC membranes requires a better 

understanding of both these processes.

Investigations Pertinent to All RBC 
Membrane Proteins

The characterization of red cell membrane proteins is a rela

tively new undertaking, primarily because of the difficulties encountered 

in solubilization of the proteins. The first major step toward charac

terization was made in 1966 by Maddy (42) when he described a method for 

the solubilization of membrane proteins of the ox erythrocyte. By using 

a butanol-water fractionation procedure, he isolated from the aqueous 

phase a protein with an estimated molecular weight of 300,000. He dem

onstrated that the preparation consisted of particles of different sizes, 

probably as aggregates of a smaller unit. Ultracentrifugation separated
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the protein into two fractions with sedimentation coefficients of 5S and 

lOS. By a variety of techniques, 90% of the protein was found to be a 

sialoprotein. Only a trace of lipid was present, and carbohydrates ac

counted for about 8% of the protein fraction.

In 1967, Bakerman and Wasemiller (33) made a major contribution 

toward the understanding of membrane proteins. Using a hypotonic phos

phate buffer system for membrane preparation, they analyzed the ghosts 

and demonstrated that they were a lipoglycoprotein containing 55% pro

tein, 35% lipid, and 10% carbohydrate. Solubilization of the membrane 

was almost complete in anionic detergents, nonionic detergents, and urea. 

Using column chromatography on polyacrylamide gels, membranes dissolved 

in SDS were studied using a sequence of gel particles from P-30 through 

P-300. With the P-300 gel, 9SÇé of the SDS solubilized membrane was re

tarded on the column. The SDS solubilized membranes were separated by 

column chromatography into two principal molecular weight classes which 

had different amino acid distributions and different equilibrium charac

teristics. When the membranes were dissolved in other agents, the gels 

were less effective in separating the membrane proteins. The authors 

concluded on the basis of sedimentation equilibrium experiments that the 

smallest molecular weight class isolated on gel filtration columns had a 

molecular weight of 40,400 with the protein portion having a molecular 

weight of 22,200. They suggested that the two molecular weight classes 

represented the repeating units of erythrocyte structural membrane.

Rega et £l. (47) in 1967 extended the observations of Maddy to 

human erythrocyte ghosts and were able to solubilize 83% of the membrane 

proteins in the butanol-saturated water phase. Following a single ex-
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traction, only 5% of the solubilized material was lipid and approximately 

9% was carbohydrate. The protein was determined to be glycoprotein con

taining hexose, hexosamine, glucose, and sialic acid. Almost 100% of the 

protein had a single electrophoretic mobility on agarose gel electro

phoresis. Only a single peak was found with Sephadex G-lOO column chro

matography, although ultracentrifugation studies demonstrated that the 

protein was heterogeneous. Little effect of solubilization was noted 

upon the content of sulfhydryl groups. Although demonstrable in the in

tact ghost, both cation-dependent nucleoside triphosphatase and acid 

phosphohydrolase activities were destroyed in the process of solubiliza

tion. The results indicated that the technique was effective for solu

bilizing most of the membrane proteins, but was not adequate for further 

study of the peptides.

The utilization of another organic solvent was reported in 1968 

by Zahler (48). Using a 2-chloromethanol water mixture at a pH between 

2 and 3, he completely dissolved the membrane proteins of the erythro

cytes. The membrane solutions were then partitioned by molecular sieving 

on Sephadex LH-20, completely separating the membrane proteins from the 

lipids. The solubilized protein was noted to be heterogeneous by poly

acrylamide gel electrophoresis, although an effort was made to explain 

the heterogeneity on the basis of aggregation. The blood group A sub

stance was still present in the protein, but the Rh activity had been 

destroyed. The acetylcholinesterase, as well as the acid and alkaline 

phosphatase activities were destroyed in the process. The author sug

gested that his technique might be helpful in the study of the hetero

geneity of isolated membrane proteins, but would not be satisfactory for
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studying biological membrane function.

In 1968, Poulik (34) summarized his results with modifications 

of the butanol solubilization techniques. He compared the effects of 

three different conditions; 1) in the absence of urea, 2) in the pres

ence of urea, and 3) after pre-treatment with formic acid. Solubiliza

tion under all three conditions was quite variable, ranging from 2(% to 

55%, with an overall average of about 25%. The proteins in the water 

phase were nearly free of lipid, contained a large amount of carbohy

drate, and retained A, M, and N serological activities. As previously 

noted, the Rh antigen was destroyed during the procedure. The water 

phase (pH 2) was further separated by gel filtration on Sephadex G-lOO 

into an excluded fraction (approximate molecular weight 200,000) and a 

retarded fraction (approximate molecular weight 50,000). The two frac

tions differed in both carbohydrate content and serological activity.

Urea starch gel electrophoresis demonstrated that the water phase and 

the two subfractions were both quite heterogeneous. The data suggest 

that the proteins extracted by butanol, even under varying conditions, 

are a mixture of proteins, which did not include all of the major mem

brane proteins. The authors were not able to reproduce the 8:^ solubil

ization previously reported by Rega et (47).

Also in 1968, Rosenberg and Guidotti (18) published the first 

of two major studies on the solubilization, fractionation, and partial 

characterization of RBC membrane proteins. The authors used exhaustive 

lipid extraction with ethanol-ether to remove essentially all of the 

lipid before studying the lipid-extracted membrane proteins. The data 

on the basis of end-group analysis, electrophoresis, ultracentrifugation,
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and gel chromatography in various solvent systems demonstrated hetero

geneity of membrane proteins. Most of the molecular weights were in the 

range of 50,000, although further fractionation was not performed. They 

suggested that the preparation technique and the solvent systems devel

oped would be valuable for further studies on the individual protein mo

lecules in the red cell membrane.

In the second paper, Rosenberg and Guidotti (49) in 1969 re

ported their efforts to fractionate and partially characterize all of 

the membrane proteins of red cells. Their approach was to progressively 

extract the membrane with a series of solvents before a final solubili

zation procedure. The RBC ghosts were sequentially extracted with: l)

1.0 mM sodium EDTA and 50 mM p-mercaptoethanol, 2) 0.8 M sodium chloride, 

and 3) a mixture of ethanol-ether (3:1, v/v), followed by repeated wash

ings with ether. This removed 11%, 41% and 7%, respectively, of the 

total erythrocyte membrane protein, for a total extraction of 59% of the 

protein. The remaining protein residue was solubilized in 3% SDS and 

chromatographed on Sephadex G-200, using unbuffered 1% SDS for elution. 

The protein residue was separated into 5 major fractions, representing 

the other 41% of the total protein. The composition of the eight frac

tions (Fractions I-III from the extractions and Fractions IV-VIII from 

Sephadex G-200 chromatography), was then further studied. Four of the 

protein fractions (I, III, VI, VII) were found to contain large amounts 

of sialic acid. Several fractions (IV, V, VI) contained more of the 

non-polar amino acids than the other membrane proteins. Studies with 

polyacrylamide gel electrophoresis and N-terminal amino acid analysis 

showed that there were at least 12 different membrane proteins present
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in significant amounts, with molecular weights ranging from about 10,000 

to 150,000. The authors were able to account for all of the membrane 

proteins. Results of this study demonstrated clearly the heterogeneity 

of the membrane proteins on the basis of molecular size and composition 

of the several fractions.

In 1970, Lenard published two papers on the protein components 

of the erythrocyte membrane. The first (50) was on human erythrocyte 

membranes employing a technique by which the proteins were completely 

solubilized in 1% SDS solution and separated by polyacrylamide gel elec

trophoresis in the presence of SDS. The entire membrane was used for 

electrophoresis without any prior extraction as performed by Rosenberg 

and Guidotti (49). Lenard identified 14 different molecular weight 

classes which could not be further fractionated by treatment with deter

gents, alkali, or urea. This suggested that many of the different pro

teins in the membrane were not aggregates formed from smaller units by 

non-covalent binding. Four intensely stained bands were specified as 

the major protein components of the RBC membrane and accounted for 60- 

65^ of the total protein membrane. The molecular weights of the four 

proteins as determined by polyacrylamide gel electrophoresis were about

255,000, 240,000, 108,000 and 86,000. Staining the gels for carbohy

drate revealed that only the 108,000 molecular weight component contained 

significant amounts of carbohydrate, although additional bands were found 

to contain small amounts of carbohydrates. In the second paper in 1970, 

Lenard (51) studied the RBC membrane proteins from pig, sheep, rats and 

dogs in addition to those of man. Eight major bands with a molecular 

weights ranging from 22,000 to 255,000 were found to be present in all
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of the species examined. The 108,000 molecular weight protein, which had 

been shown to be glycoprotein in human membranes, was found to be present 

in all of the species studied. Identification of sulfhydryl groups with 

radioactively-labelled N-ethylmaleimide showed that the two very large 

protein bands contained about half of the radioactivity. These two and 

other sulphydryl-containing proteins were quantitatively and qualita

tively similar in all species. The author concluded that two-thirds of 

the membrane proteins from the different species studied were very simi

lar to one another.

In 1971, Fairbanks ^  (52) presented their findings on the

electrophoretic analysis of RBC membrane proteins. Using polyacrylamide 

gel electrophoresis in 1% SDS, six major protein bands (I-VI) were found

to account for two-thirds of the membrane protein. Component III (molec

ular weight 89,000) was the dominant protein and constituted 30% of the 

total protein. Components I and II (molecular weights around 250,000) 

made up 25% of the total protein. The molar amounts of I plus II, IV 

(molecular weight 77,500), V (molecular weight 41,300), and VI (molecular 

weight 36,200) were similar, with a range of 3.4 to 4.6 x 10^ chains per 

ghost. Identification of the carbohydrate-containing bands was performed 

by the use of periodic acid-Schiff (PAS) reagent. The most rapidly mi

grating PAS-positive zone corresponded to the membrane lipids, but the 

other three bands of lower mobility were sialoglycoproteins. The major 

glycoprotein had an approximate molecular weight of 83,500 and contained 

at least 57% of the sialic acid. The PAS-positive bands were not stained

by protein stains and had altered mobilities after treatment with sial-

idase. Attempts to further reduce the large proteins with a series of
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denaturing agents was unproductive. No polypeptides with a molecular 

weight less than 15,000 could be demonstrated in the gels. A major al

teration in the bands distribution could be produced by heating ghosts 

in solutions containing low levels of SDS and high levels of salts. The 

pattern of the bands became more diffuse with a lower average molecular 

weight. The change was assumed to be due to the activity of proteinases. 

Selective solubilization of some of the major components was possible by 

use of different agents. Components I, II, and V were extracted by in

cubating the ghosts at low ionic strength. Component VI could be re

moved by washing with buffered saline in concentrations above 0.1 M.

The removal was rapid, complete, and selective. In addition, the pat

terns produced in the electropherograms were complementary when the re

leased and retained materials were compared. The material removed con

tained a minimal amount of sialic acid and no PAS-positive lipids. The 

authors concluded that there were two classes of membrane proteins pres

ent in the erythrocyte membrane. Components I, II, V and VI composed 

one major class. This class made up 30 to 35% of the membrane protein 

and was very weakly bound to the membrane, probably by ionic bonds. The 

second class, which included components III, IV, and glycoproteins, along 

with various minor components, constituted 65 to 70% of the protein.

The second class of proteins was tightly bound to the membrane, reflect

ing their involvement in hydrophobic protein-protein and protein-1ipid 

interactions.

Steck et (53) studied the orientation of membrane proteins 

by treating both normal and inside-out vesicles (i.e., membranes treated 

to invert the inner membrane surface to the outside) with proteolytic
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enzymes which are not capable of penetrating into the vesicle's interior. 

Inside-out vesicles were found to be less susceptible to proteolysis 

than ghosts and normal vesicles. All major bands stained with Coomassie 

Blue were digested, except for one protein exposed at the outer membrane 

surface. One protein was attacked only by digestion of inside-out ves

icles, The three glycoproteins which were detected only by carbohydrate 

staining were digested by proteolytic attack at either surface. The 

authors concluded that the membrane was highly asymmetric as to protein 

orientation, with some of the protein spanning the thickness of the mem

brane.

Confirmation of many of the previous studies was presented in 

1972 by Kobylka et (54). They studied the proteins and glycoproteins 

of the erythrocyte membrane by polyacrylamide gel electrophoresis after 

using three different buffer systems for hypotonic hemolysis. Although 

major variations in membrane morphology were produced by each of these 

system, no major variation was found in patterns of the major membrane 

proteins. Several species were studied and all showed a similar pattern 

consisting of nine common bands. The only significant differences which 

could be demonstrated in the protein patterns were attributed to proteo

lytic digestion of the membranes during preparation. White blood cells 

in the membrane preparations were thought to account for the problem of 

proteolytic digestion. The glycoproteins were analyzed both by poly

acrylamide gel electrophoresis and by column chromatography. Each spec

ies was found to have a different major glycoprotein or group of glyco

proteins. A problem was noted with the use of polyacrylamide gel elec

trophoresis for molecular weight determination of glycoproteins. Sub
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stantial variations in molecular weight values were produced by changes 

in gel concentration. Values obtained by polyacrylamide gel electro

phoresis did not correspond to those obtained by gel filtration.

Investigations Pertinent to Selected RBC 
Membrane Proteins

Spectrin

In 1968, Marchesi and Steers (44) described a protein extrac

tion method which involved the dialysis of guinea pig erythrocyte ghosts 

against a solution of adenosine triphosphate and 2-mercaptoethanol. The 

technique removed approximately 20% of the membrane-bound protein. This 

protein produced a single major band on polyacrylamide gel and a single 

boundary in free boundary electrophoresis. It could be polymerized in 

the presence of divalent cations to form coiled filaments visible by 

electron microscopy. Antibodies to the protein reacted specifically 

with red blood cells or their ghosts, but did not react with serum, ery

throcyte cytoplasm, or other blood cells. The authors thought that the

functional role of the protein was not known, but appeared to be involved 

in maintaining the structure of red cell membrane. They suggested that 

the protein be called "spectrin", since it was obtained from membrane 

ghosts.

In 1970 a further extraction and purification with partial char

acterization was reported by Marchesi et al. (45). They found that the

protein could be solubilized from the membranes by low ionic strength 

aqueous solutions containing sodium EDTA. Further purification was 

achieved by gel filtration and confirmed by polyacrylamide gel electro

phoresis. Depending upon the medium in which the protein was dissolved,
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either one or two major species could be found. Using equilibrium ultra

centrifugation and polyacrylamide gel electrophoresis, the molecular 

weight of the monomeric unit was estimated to be 140,000. Cyanogen bro

mide cleavage was consistent with monomeric units of 140,000 to 150,000.

In another report from the same group, Tillack et al. (55) dem

onstrated that the protein could be solubilized not only from human 

ghosts but also from guinea pig, horse, sheep, and rabbit erythrocyte 

ghosts. It constituted approximately 2C% of the total membrane protein 

in all species and was free of both carbohydrate and lipid. Prepara

tions from each species were quite similar when studied by gel filtra

tion, polyacrylamide gel electrophoresis, and immunoprecipitin reactions. 

Amino acid compositions were nearly identical, and antisera to both 

guinea pig and human spectrin cross reacted with all the other species. 

However, cyanogen bromide cleavage of human, horse, and sheep spectrin 

showed that the peptides produced were not the same.

In 1971, Juliano et al_. (56) reported that a protein, v̂ iich 

they had previously designated as P-II, was essentially the same protein 

as spectrin. The protein had a molecular weight around 150,000 and was 

bound to the membrane through ionic interactions, which could oe dis

turbed by alterations of pH, ionic strength, or divalent cation concen

trations. On SDS polyacrylamide gels a slow running doublet accounted 

for 80-909é of the protein fraction. He noted that the release of P-II 

resulted in fragmentation of the membrane. As performed in the study of

Marchesi et al̂. (45), the membrane proteins were extracted by a single

exposure to a chelating agent solution of low ionic strength.

These results, in conjunction with data of workers attempting
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to characterize all of the membrane proteins, strongly support the con

cept that there are two major proteins of high molecular weight which 

can be extracted by chelating agents of low ionic strength. These pro

teins appear to have a structural role in the RBC membrane, although def

initive proof does not exist at the present time.

Glycoproteins

Several investigators have been interested in the extraction 

and purification of glycoproteins from the RBC membrane. Blumenfeld (36) 

in 1968 described a method by which membrane ghosts were extracted with 

an aqueous pyridine solution. She concluded that the solubilization 

procedure resulted in total extraction of the sialoprotein present in 

the membrane. It contained 35-40% of the total protein, essentially no 

lipid, and all of the sialic acid. Only a portion of the hexoses and 

hexosamines were removed. The author postulated that there were only 

two types of proteins in the erythrocyte membrane. One type was water 

soluble and contained all of the sialic acid, but essentially no lipid. 

The other was insoluble in water, free of sialic acid, and associated 

with the lipids of the membrane.

In 1970, Blumenfeld et (57) further expanded their work on 

pyridine extraction of RBC membranes. The two previously mentioned pro

tein types were found to show multiple bands on polyacrylamide gel elec

trophoresis and had similar band patterns for both of the protein frac

tions and for intact ghost membranes. Only the sialoglycoprotein, con

taining the virus receptor activity, was present uniquely in the water 

soluble fraction. In addition, they noted that the water soluble pro

teins had a very strong tendency for aggregation, especially in the pres
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ence of certain salts. The aggregates could be reduced by SDS gel elec

trophoresis into about 20 bands. These data demonstrated clearly that 

the product of the extraction was a heterogeneous group of proteins and 

that the extraction was not selective.

Winzler (35) in 1969 summarized his extensive studies on the 

use of a mixture of phenol-water (1:1, v/v) for the extraction of glyco

proteins from the RBC membrane. The glycoprotein contained most of the 

sialic acid as well as about half of the hexose and hexosamine content 

of the erythrocyte. The glycoprotein combined with influenza viruses to 

cause hemagglutination and carried the M and N specific antigens. Chem

ical assays showed that the glycoprotein was composed of 37.5% as amino 

acids, 1.0% as lipid, and 64.5% as carbohydrate. Trypsin treatment of 

the glycoprotein produced a glycopeptide containing the M, N, and MN ac

tivity corresponding to the blood group of the donor erythrocytes. The 

glycopeptide obtained by the trypsin treatment contained 20.7% as amino 

acids and 78.6% as carbohydrate, with no lipid present. The insoluble 

residue after trypsin treatment of the stromal glycoprotein contained 

95.0% amino acids, 1% lipid and 3.4% carbohydrate. Major subsequent in

terest has been on the carbohydrate moiety of the sialoglycopeptide, and 

its relationship to the antigenic activity of the cell.

The study by Zvilichovsky et (58) clarified the relation

ship between pyridine and phenol extraction procedures. By adding an 

ethanol fractionation step to the aqueous pyridine solubilization pro

cedure, the authors isolated a preparation which contained glycoproteins. 

The amino acid and carbohydrate composition of this preparation resembled 

that obtained by extraction with phenol. In addition, the antigens pres
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ent were also similar to those obtained with phenol extraction. It was 

suggested that the proteins described by the two groups were essentially 

the same protein, with varying degrees of purification.

Two publications in 1971 produced information about the location 

of the glycoprotein in the membrane. Phillips and Morrison (59), using 

an enzyme, lactoperoxidase, to catalyze the iodination of proteins of in

tact membranes, were able to demonstrate that a glycoprotein with an ap

proximate molecular weight of 60,000 was labelled prior to the procedure 

and occupied an exposed position on the membrane. It was the major gly

coprotein in the erythrocyte membrane and appeared to be the same glyco

protein which had been studied by a number of investigators. Two minor 

glycoproteins which were also demonstrated did not appear to be exposed 

on the surface of the cell. Bretscher (60) used a radioactive labelling 

reagent, which could not penetrate the erythrocyte membrane, to demon

strate that the glycoprotein extended through the membrane and was ex

posed on both surfaces. The carbohydrate-containing portion was found 

to be on the external surface while the other portion resided on the in

ner surface of the membrane. The glycoprotein had a molecular weight of 

about 31,400 and was about one-third protein.

The most definitive characterization of a glycoprotein from the 

RBC membrane was reported in 1972 by Marchesi et al. (61). They isolated 

the major glycoprotein from human erythrocyte membranes by treatment of 

RBC membranes with lithium diiodosalicylate. The protein was a single 

polypeptide chain with a molecular weight of about 50,000 and contained 

approximately 60% carbohydrate and 40% protein. In addition, the glyco

protein carried multiple blood group antigens, the receptors for influ
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enza viruses, and receptors for various plant agglutinins. Tryptic di

gestion of the glycoprotein demonstrated four unique carbohydrate-con

taining peptides. Their sequence in the molecule was determined by tryp

tic digestion of intact erythrocyte membranes and of partially digested 

glycoprotein fragments. Cleavage with cyanogen bromide produced five 

fragments, two of which contained most of the carbohydrate in the mole

cule and were derived from the N-terminal half of the polypeptide chain. 

The nonpolar amino acids of the glycoproteins were located predominantly 

in the C-terminal fragment.

Blood Group Antigens 

Many workers have studied the blood group antigens of the red 

cell membrane. An unequivocal location of all major red cell antigens 

has not yet been determined. Certain blood group antigens, however, 

have been studied to the point where considerable understanding of the 

role of protein in blood group activity can be evaluated. Green (38) in 

1965 studied the Rh antigen starting with a preparation of lyophilized 

cell ghosts. He found that a protein or peptide was the crucial part of 

the antigen, although whether the protein was a glycopeptide, glycopro

tein, or lipoprotein could not be determined. One or more disulfide 

bonds and one or more free sulphydryl groups were necessary for antigen 

activity. In 1967, he (62) expanded his studies using twice lyophilized 

human RBC membranes which had been solubilized and disaggregated with 

SDS. The detergent was then completely removed by ion-exchange column 

chromatography. Gel filtration of the solubilized protein in the pres

ence of the detergent showed multiple peaks, indicating a heterogeneous 

group of molecules. When the detergent was removed, only a single peak
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was found at the void volume. The material remaining after detergent re

moval contained ABH and MN antigens appropriate for the starting mate

rial. However, the Rh antigenic activity was no longer present.

In 1968, Green (63) again contributed to the knowledge of the 

Rh antigen by studying the effects of extraction of RBC membranes with 

100% n-butanol. The extraction procedure destroyed all of the Rh anti

genic activity. However, the addition of either butanol extract of mem

brane or chloroform-methanol extract of human plasma could regenerate 

the activity. Using chromatography with silicic acid, DEAE cellulose, 

and thin layer silica gel as well as snake venom digestion, the active 

component was found to be phosphatidyl choline. He concluded that the 

presence of lecithin was necessary for the expression of Rh antigenic 

activity and that in addition the lecithin must contain unsaturated 

fatty acids.

No other major worker has demonstrated data contrary to those of 

Green, and so it must be concluded that the Rh antigen does involve the 

proteins of the RBC membrane. In addition, a lipid, especially phospha

tidyl choline, must be present with the protein in order for the activ

ity to be regenerated. Further understanding of the role of configura

tion in membrane structure will probably be necessary before the Rh anti

gen and its associated proteins can be adequately evaluated.

The studies on blood group ABH substances have been equally as 

complex. As already discussed, some of the ABH activity occurs in glyco- 

lipids. However, it has been only recently that glycoproteins have been 

clearly identified as a source of such antigenic activity. Whittemore 

et al. (64) in 1969 presented the first evidence that A, B, and H blood



58

group activities were not limited to glycolipids, but could be found in 

human erythrocyte membrane glycoprotein. After butanol extraction of 

stroma, over 8(% of the protein was soluble in the aqueous phase. A re

peated butanol extraction of the aqueous phase removed all detectable 

lipid. The solubilized glycoprotein was found to possess A, B, and H 

blood group activity at a level comparable to intact ghosts at the same 

protein concentration.

Fiori et a_l. (65) in 1971 solubilized erythrocyte stroma with 

the nonionic detergent, Triton X-100, and then fractionated the solubil

ized material on both Sephadex G-200 and G-100. The blood group speci

fic activity appeared in three separate fractions. Although one of the 

fractions was clearly a glycolipid, the other two fractions were glyco

protein in nature and were similar to glycoproteins from salivary secre

tions. Their data showed that previous workers were not able to obtain 

the blood group specific glycoproteins because they were precipitated by 

ethanol, which had been used to isolate the active substances.

An interesting aspect of the nature of the blood group specific 

activity in glycoproteins was reported in 1971 by Gardas and Koscielak 

(66), They found that bleed group A, 3, and K activities were present 

in the RBC glycolipid fractions, independent of the salivary secretor 

status of the blood donor. However, blood group activity could be found 

only in the RBC glycoprotein fractions obtained from salivary secretors 

of blood group activity. Glycoprotein extracts of stroma from nonsecre- 

tors did not contain A and B specificity. This study, along with the 

previous studies, clearly demonstrates that ABH blood group activity is 

associated with the glycoproteins of the erythrocyte membrane. However,
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the association of ABH activity with glycoproteins may be dependent upon 

the secretor status of the individual from whom the blood is obtained.

Enzymes

Many of the proteins from human erythrocyte membranes have been 

shown to have enzymatic activity. In 1966, Firkin and Wiley (67) summa

rized the enzymatic activities which had been reported to be associated 

with the erythrocyte stroma, and their list of different activities is 

given in Table 11. Many of the enzymes included in the list are probably 

not an integral part of the membrane, but rather are loosely bound to the 

membrane surface. In this review only those enzymes which have been 

clearly demonstrated to be closely associated with the membrane will be 

discussed.

Adenosine triphosphatase. One of the major functions of the 

human erythrocyte membrane is to maintain a high potassium, low sodium 

intracellular concentration as opposed to the high sodium, low potassium 

concentration of the plasma. Maintenance of the gradient requires the 

active transport of sodium and potassium across the membrane. Post 

et al. (37) in 1960 presented very strong evidence that this active 

transport function was related to the enzyme, adenosine triphosphatase 

(ATPase). Analyzing human erythrocyte membranes prepared by disruption 

with distilled water, they showed that the enzyme (ATPase) and active 

transport shared an unusual group of properties; (a) location in the 

membrane, (b) utilization of adenosine triphosphate, rather than inosine 

triphosphate, (c) a requirement for the presence of both sodium and po

tassium ions, (d) inhibition by ouabain, (e) the substitution of ammonium 

ions for potassium ions, but not for sodium ions, (f) a requirement for
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TABLE 11

ENZYMES ASSOCIATED WITH THE ERYTHROCYTE MEMBRANE'

1. Adenosine triphosphatase 11. Monacyl phosphatide acylase

2. Adenylic acid deaminase 12. Myokinase

3. Acetylcholinesterase 13. Nucleoside phosphorylase

4. Adenyl cyclase (pigeon erythro 14. Phosphoribose isoraerase
cytes)

15. Phosphoglycerate kinase
5. Aldolase

16. Phosphoketopentose epimerase
6. Carboxylesterase (ali-esterase)

17. Phosphatidic acid phospha
7. Diglyceride kinase tase

8. DPNH-cytochrome c reductase 18. Pyrophosphatase

9. DPN- and TPN-ase 19. Transketolase

10. Glyceraldehyde phosphate 20. Peptidase
dehydrogenase

21. Proteinase

^Firkin and Wiley (67).
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the same concentrations of sodium ions, potassium ions, ouabain, and am

monium ions for half maximal activity.

Hokin and Reasa (68) in 1964 were in general agreement with 

these findings, but found that sodium or potassium alone could have ef

fects on ATPase activity which were not related to sodium or potassium 

transport. They suggested that all of the ATPase activity was not in

volved in the same process.

Marchesi and Palade (69) in 1967 located the sites of activity 

of ATPase in the red cell ghost membrane. They modifed a lead salt 

method to demonstrate chemically the sites of ATPase activity by lowering 

the concentration of lead for incubation with unfixed red cell ghosts.

The sites of chemical reactivity were localized exclusively along the in

ner surface of the ghost membrane for both magnesium ATPase and sodium- 

potassium ATPase. The findings indicated that the ATPase catalyzed the 

release of inorganic phosphate on the inside of the ghost membrane. No 

reaction product could be found deposited on the outer surface of the 

ghost membrane. There was no difference in distribution between reaction 

products for magnesium ATPase and those of sodium-potassium ATPase.

Dunham and Hoffman (70) in lv70 attempted to isolate the sodium- 

potassium ATPase from RBC membranes. They incubated ghosts with triti- 

ated ouabain in the presence of ATP, magnesium, and sodium, which are 

required for ouabain to bind to the sodium-potassium transport sites 

with the highest specificity. The labelled membranes were then solubil

ized with SDS, leaving most of the tritiated ouabain bound to a solubil

ized component. Solubilized sodium-potassium ATPase could be obtained 

after removal of SDS by dialysis. The ouabain-membrane complex and
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sodium-potassium ATPase appeared to be identical and were purified about 

8-fold relative to the starting material. This represented a major step 

toward the isolation of the cation transport system in red cell membranes.

In 1970, Rosenthal et al. (71) attempted to isolate the ATPase 

activity from RBC membranes. By extracting the membrane with a dilute 

EDTA solution, they obtained a group of proteins with a fibrillar appear

ance. Within that group of proteins, they found a ouabain-insensitive 

ATPase activity. The activity was calcium-dependent and inhibited in 

the presence of magnesium ions. GTP failed to serve as substrate for 

the enzyme. By studying the erythrocyte membrane before solubilization, 

they observed that a system of fibrils similar to the isolated fibers 

was present on the inner surface of the membrane. This suggested that 

the calcium-activated, magnesium-inhibited ATPase and the associated 

fibrils might be involved in the maintenance of erythrocyte deformabil- 

ity. It was clear from their studies that the ouabain-insensitive ATPase 

was not an integral part of the membrane.

Heller and Hanahan (72) studied enzyme activities in human, 

bovine, and porcine erythrocytes. Treatment of the human erythrocyte 

membrane with high concentrations of sodium iodide in the presence of 

ATP solubilized part of the ouabain-insensitive ATPase, but would not 

remove the sodium-potassium activated ATPase. Their data support the 

concept that sodium-potassium ATPase was not extractable from the mem

brane in aqueous systems as was the calcium-activated ATPase. Also, in 

1972, Hanahan and Ekholm (73) presented more data on changes in ATPase 

activity in human erythrocytes during osmotic lysis. They found that 

with each washing step in the lytic procedure there was a decrease in
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total ATPase activity and an increase in sodium-potassium ATPase activ

ity. These changes were not modified by "freeze-thaw" treatment of the 

membrane. They postulated that this represented removal of one type of 

activity while the membrane is opened up to make more sodium-potassium 

ATPase activity available. Thus the erythrocyte membrane obtained by os

motic lysis must be considered a first derivative of the intact erythro

cyte membrane.

Acetylcholinesterase. The presence of acetylcholinesterase ac

tivity in both red blood cells and plasma has been known for many years. 

In 1949, Michel (74) described a method for the quantitation of the en

zyme activity in red blood cells based on its ability to produce a reduc

tion in pH. The pH change resulted from the release of acetic acid dur

ing the hydrolysis of acetylcholine. In 1966, Mitchell and Hanahan (46) 

used hypertonic sodium chloride solutions to partially solubilize the 

erythrocyte membrane. Ultracentrifugation of the solubilized material 

in sodium bromide solutions (density = 1.21 g/ml) yielded two protein 

fractions. One of the fractions floated in this density medium and con

tained all of the lipid from the red cell membrane, whereas the other 

fraction sedimented and was free from lipid- Inis suggested that the 

enzyme activity was associated with the lipid moiety of the membrane and 

could not be separated from the lipid without loss of activity. Bellhorn 

et al. (75) in 1972 studied the enzyme further using tritiated diiso- 

propylfluorophosphate (DIFP) to selectively label the enzyme. The la

belled membrane protein was then solubilized in SDS for separation by 

polyacrylamide gel electrophoresis. The authors demonstrated that the 

acetylcholinesterase activity could be selectively labelled and visual
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ized as a distinct band in the gel. Their evidence indicated that the 

enzyme existed as a dimer of about 180,000 molecular weight and could be 

broken down into two 90,000 molecular weight components in the presence 

of p-mercaptomethanol.

In 1972, Heller and Hanahan (76) found that activation of the 

enzyme by sodium and calcium ions was independent of the acetylcholine 

concentration, but that the optimum concentration of magnesium was de

pendent upon substrate concentration. Solubilization of 10-45% of the 

erythrocyte membrane protein by such aqueous solvents as sodium chloride, 

calcium chloride, sucrose, or EDTA-p-mercaptoethanol resulted in only a 

10-20% loss of acetylcholinesterase activity in the ghost preparation.

The detergents, Triton X-100 and SDS, were both found to partially solu

bilize the membrane. The enzyme activity was irreversibly lost with SDS 

but some enzyme activity still remained when the membrane was solubil

ized with Triton X-lOO. The changes produced by these agents may be the 

result of alterations in conformation of the enzyme protein.

Miscellaneous enzymes. In 1969, Zamudio et â . (77) studied 

the relationship between membrane structure and the enzyme activity,

NADH:(acceptor) oxicloreducatase, of erythrocyte ghosts. They evaluated 

the effects of hypotonic treatment, sonication, temperature, and divalent 

cations upon both intact and fragmented ghosts. Procedures affecting 

the membrane structure altered the rate of the enzyme reaction. The en

zyme was completely inactivated by SDS, but was not affected by the phos- 

pholipases A and C. Treatment of freeze-dried membranes with anhydrous 

organic solvents did not affect the enzyme activity. The authors con

cluded that NADH;(acceptor) oxidoreductase of red blood cell ghosts was
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a structural enzyme of the membrane.

Also in 1969, Nilsson and Ronquist (78) used a density gradient 

centrifugation technique to separate components of the RBC ghost. The 

main component obtained was found to have glyceraldehyde-3-phosphate de

hydrogenase, phosphoglycerate kinase and adenylate kinase activities.

The authors concluded that the enzymes were associated with the erythro

cyte membrane. Results of a study by Tanner and Gray (79) in 1971, how

ever, do not agree with the preceding authors' conclusion. They isolated 

a protein from ghosts by extraction with EDTA solution after identifying 

the band on polyacrylamide gel electrophoresis. The molecular weight of 

the polypeptide was estimated to be 33,000 and the protein accounted for 

approximately 5% of the total membrane protein. By comparing the N-ter- 

minal sequence of the protein with that of known protein sequences, the 

data suggested that the protein might be erythrocyte D-glyceraldehyde- 

3-phosphate dehydrogenase, and direct enzyme assay confirmed this postu

late. The authors concluded that, although the enzyme is strongly re

tained by erythrocyte ghosts during hemolytic procedures, it is probably 

not an integral part of the structure of the erythrocyte membrane. Their 

conclusion about this glycolytic enzyme is probably true tor all of the 

major glycolytic enzymes.

A recent report in 1972 by Kim et (80) has shown that with

in the erythrocyte membrane there exists a galactosyl transferase which 

catalyzes the transfer of galactose from UDP-galactose to acceptors.

The significance of the enzyme is that it can produce alterations in ABH 

antigens and may be responsible for determining the specific ABH anti

gens. Definitive demonstration that the enzyme was actually bound into
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the membrane has not been presented.

Lipoproteins

The association of lipid and protein in the erythrocyte membrane 

has been described. However, one of the major areas of controversy about 

membrane structure has been whether or not true lipoprotein units exist 

within the membrane structure. A very limited number of investigations 

have been performed which suggest that a lipoprotein does exist as a 

separate entity within the membrane. In 1966, Morgan and Hanahan (81) 

attempted to solubilize and characterize the lipoprotein from erythro

cyte stroma. They isolated a soluble lipoprotein component which con

tained 94% lipid and 6% protein. The component was prepared by ultra- 

sonication in a 10% n-butanol solution followed by density gradient ul

tracentrifugation. The lipoprotein contained 60-80% of the original 

lipid, but only 9-20% of the original protein. In the analytical ultra

centrifuge, a single peak was obtained and electrophoresis by three dif

ferent techniques demonstrated a homogeneous band with a mobility com

parable to that of plasma alpha-2 lipoproteins. N-terminal analysis re

vealed two amino acids, serine and glutamic acid. Amino acid composition 

was noted to differ from that of other erythrocyte proteins. Removal of 

lipids from the lipoprotein fraction did not change the data obtained on 

characterization. On the basis of equilibrium ultracentrifugation, the 

lipid-free protein had an average molecular weight of 163,000.

A very strong criticism of the use of ultrasonication to obtain 

lipoproteins was published in 1968 by Rosenberg and McIntosh (82). On 

the basis of chromatographic, ultracentrifugal, and electron microscopic 

studies, sonication of red blood cell membranes was shown to break the
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membranes into small vesicles and linear fragments with an intact unit 

membrane structure. The fragments ranged in size from 100 to 600 A and 

did not sediment under conditions commonly used to define solubility. 

Morgan and Hanahan probably studied such fragments produced by sonica

tion.

In 1971, Juliano and Rothstein (83) took a somewhat different 

view of erythrocyte membrane lipoprotein and attempted to partially char

acterize proteins which were closely associated with the lipids. After 

a water extraction system to remove 50% of the total membrane protein, 

they obtained membrane vesicles from which an additional 25% of the re

maining protein could be removed by incubation in 8 M urea. The remain

ing lipoprotein fraction contained 50% of the total lipid in the ghost 

and another 25% of the total protein. It was solubilized with detergents 

and electrophoresed on polyacrylamide gel. The major protein component, 

representing over 80% of the total protein in the fraction, had a molec

ular weight of 95,000, contained most of the protein bound hexose, and 

was intensely labelled by application of non-penetrating protein reagents 

to the intact cell. The lipids associated with the protein were not es

sentially different from tnose of the original ghost preparation. The 

authors suggested that a small fraction of the RBC lipid is hydrophobic- 

ally bound to protein and that the remainder of the lipid is held in the 

membrane by lipid-lipid interactions.

Water Extractable Proteins

Many references have already been made to the extraction of red 

cell membrane proteins by aqueous systems. Some specific studies have 

been performed in an attempt to characterize the water soluble proteins
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of the human RBC membrane. In 1970, Hoogeveen et (84) used a double 

extraction of ghost membrane to obtain two different groups of proteins. 

The first extraction was with water at pH 7.0 and resulted in the release 

of a protein fraction which they called P-I. The fraction contained four 

major components with molecular weights ranging from 30,000 to 48,000.

A second fraction was obtained by solubilization with 1.0 mM EDTA at pH

9.0. It consisted primarily of a single molecular weight component of 

about 150,000, which tended to aggregate at higher ionic strengths and in 

the presence of calcium. The water soluble proteins were present at the 

inner face of the membrane and were distinctly different from those pro

teins remaining in the erythrocyte residue.

In 1971, Maddy and Kelly (85) used dilute acetic acid as a sol

vent to liberate 30 to 40^ of the membrane proteins free of phospholipid 

and sialoprotein. Multiple analytical techniques demonstrated that the 

proteins extracted were essentially the same as those obtained with the 

dilute EDTA solutions. Also in 1971, Reynolds and Trayer (86) demon

strated that aqueous solutions of EDTA could extract as much as 89% of 

the protein at a concentration of 5 millimolar EDTA. Increasing the EDTA 

concentration reduced the amount of protein which could be solubilized.

Hamaguchi and Cleve (87) also published on the water-dissolved 

membrane proteins of human erythrocytes using an extraction system which 

included a 0.1% (w/v) aqueous solution of Triton X-100. They obtained 

about 40% of the protein from the membranes. A special note of caution 

should be entered here since Triton X-100 has already been shown to solu

bilize membrane proteins by removing part of the lipid. These data 

should therefore be interpreted with a great deal of caution.



CHAPTER III

MATERIALS AND METHODS 

Materials

Source of Erythrocytes 

The erythrocytes used for this study were obtained from the 

Blood Bank of the University of Oklahoma Hospitals in the form of whole 

blood containing either ACD (acid-citrate-dextrose) or CPD (citrate-phos- 

phate-dextrose) anticoagulants. Most of the blood used was recently out

dated blood, but in many cases the blood had been drawn less than 21 days 

before its use. Although all ABO blood types were used, most of the 

studies were done with blood group A type red blood cells. Except for 

occasional units of blood, the Rhesus typing was positive. No further 

typing of the blood was done except when blood group MN typing had to be 

performed to determine which blood group activity should be assayed by 

hemagglutination inhibition.

Methods

Preparation of Ghosts 

Erythrocyte ghosts were prepared with the hypotonic phosphate 

buffer system of Dodge et (32) according to a procedure in Figure 1. 

Other procedures for the preparation of erythrocyte ghosts, such as the

69
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WHOLE BLOOD

PLASMA AND 
HUFFY COAT 
(Discard)

SUPERNATE 
AND 

HUFFY COAT 
(Discard)

HEMOLYSATE 
AND 

HUFFY COAT 
BUTTON 

(Discard)

Centrifuge for 20 min. at 
13,000 g (2.6 x 10^ g-min) 
at 4°C.

RED BLOOD CELLS

Mix with equal volume of 310 im 
Osm sodium phosphate buffer, pH 
7.4, at room temperature. Cen
trifuge for 20 min. at 13,000 g 
(2.6 X 10^ g-min) at 4®C and re
move supernate. Repeat twice.

WASHED RED BLOOD CELLS

Mix with 9 volumes of 20 im Osm 
sodium phosphate buffer, pH 7.4, 
at room temperature. Centrifuge 
for 90 min. at 10,000 g (9 x 10^ 
g-min) at 4°C and remove hemo- 
lysate. Repeat procedure with 
centrifugation for 40 min. at 
10,000 g (4 X 105 g-min) at 4°C

washes.

(32)).

RED BLOOD CELL GHOSTS 

Figure 1. Preparation of erythrocyte ghosts (Dodge et
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technique of Mazia and Ruby (41), were also evaluated. However, they 

were not as effective either because the product was not completely free 

of hemoglobin or because the method was technically too difficult to 

perform.

Fractionation of Erythrocyte Ghosts

Further fractionation of the erythrocyte ghosts was carried out 

with a number of aqueous systems. The procedure used for extraction of 

proteins with 1.0 millimolar sodium EDTA is given in Figure 2. The same 

procedure was also used with other aqueous solvents, which included 1) 

water at pH 7.0, 2) 0.5 M NaCl, 3) 0.1 M tétraméthylammonium bromide 

(TMAB), and 4) 0.1 (w/v) Triton X-100. The basic procedure was modified 

for a set of experiments which involved the use of a single EDTA extrac

tion (60 minutes) followed by a second extraction with either ammonium 

hydroxide, pH 10.5, or sodium hydroxide, pH 11.0 (15 minutes).

The extraction procedure resulted in a number of different prod

ucts for which abbreviations will be used. Abbreviations ending in G,

R, and S signify that the products being discussed are ghosts, residues 

and combined extraction supernates, respectively. A product ending in C 

is the supernate obtained from a single extraction. The initial letter 

of the abbreviation identifies the agent used for the extraction proced

ure. These include; 1) E for 1.0 millimolar sodium EDTA, 2) W for water 

a pH 7.0, 3) N for 0.5 M NaCl, 4) TM for 0.1 M TMAB, and 5) TX for 0.1% 

Triton X-100. Numbers in the middle of the abbreviation designate from 

which extraction in the series the product was derived. For example, a 

product abbreviated as W3C is the supernate obtained from the third 

water extraction of RBC ghosts only, whereas W3S is the combined super-
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RBC GHOSTS

EDTA SUPERNATE #1 i /
/

Mix with 1.0 mM sodium EDTA 
solution, pH 9.5, and allow 
to stand at room temperature 
for 60 min. Centrifuge for 
20 min. at 27,000 g (5.4 x 10^ 
g-min) at 4°C. Remove super
nate and save for analysis.

/EDTA RESIDUE #1 (EIR)

EDTA SUPERNATE #2 <T 
(E2C)

Second EDTA extraction

EDTA SUPERNATE #3 < 
(ESC)

EDTA SUPERNATE #4 < 
(E4C)

EDTA RESIDUE #2 (E2R)

Third EDTA extraction

EDTA RESIDUE #3 (E3R)

Fourth EDTA extraction

EDTA RESIDUE #4 (E4R)

EDTA SUPERNATE #5 / Fifth EDTA extraction
(E5C)

EDTA SUPERNATE #6 
(E6C)

,_|DTA RESIDUE #5 (E5R)

Sixth EDTA extraction

EDTA RESIDUE #6 (E6R)

tion.
Figure 2. Extraction of RBC ghosts with hypotonic EDTA solu-
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nates from the first three water extractions. Other examples are E5R and 

E6R, which are the residues of RBC ghosts remaining after the fifth and 

sixth extractions, respectively.

Solubilization

In the initial experiments, the solubility of RBC ghost proteins 

in various solvent systems was determined quantitatively. Ten milli

liters of RBC ghost suspension (approximately 4 mg protein/ml) were mixed 

with 1.0 ml of a concentrated solution of the test solubilizing agent in 

order to obtain the desired final concentration. For example, 10.0 ml 

of ghost suspension was mixed with 1.0 ml of a II.0^ (w/v) SDS solution 

to obtain a final 1.0% SDS concentration. The only exception to this 

technique was in the guanidinium HCl experiment in which the agent was 

weighed and added directly to the ghost suspension. After thorough agi

tation, the ghost-solvent mixture was incubated at room temperature for 

60 minutes before centrifugation at 100,000 x g for 60 minutes (6 x 10̂  

g minutes). When solubilization was incomplete, a button (infranate) of 

undissolved ghosts was visible in the bottom of the centrifuge tube.

The clear supernate above the button was removed by aspiration through a 

Pasteur pipette. The amounts of protein in the supernate and the infra

nate were measured in order to determine the per cent of the protein 

solubilized.

For gel filtration studies in which only SDS was used as a sol

ubilizing agent, a different technique was followed. About 5 ml of ghost 

suspension was mixed with enough concentrated SDS solution to obtain a 

final SDS concentration of 2-3%. This mixture was incubated at 37°C for 

15 to 60 minutes. If the mixture was clear, then a sample was applied
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to the column. However, if it was not clear, additional concentrated 

SDS solution was added until the solution was clear before application 

to the column.

Solubilization for polyacrylamide gel electrophoresis was per

formed in a different manner and will be discussed as part of that tech

nique.

Gel Filtration

Most of the gel filtration studies were performed with Sepharose 

4B. The gel was equilibrated with 0.05 M Iris buffer (pH 7.6) containing 

0.1% (w/v) sodium dodecyl sulphate (SDS). The same buffer system was 

used for elution unless otherwise specified. Because of difficulties 

which arise in maintaining the flow of buffer systems containing deter

gents, the gels were contained in 2.5 cm x 90 cm glass columns with an 

outer water jacket in order that a temperature of 37°C could be main

tained. Fractions from the column were collected with an ISCO Golden 

Retriever fraction collector by the drop-counting method. The drop 

counter was set at 192 drops, which produced a volume of about 4.2 ml 

for each fraction. The volume did vary slightly from that value, depend

ing upon how much protein was present. The elution pattern was deter

mined by measuring the optical density at 280 nm (O.D.2 go)> the protein 

content, the organic phosphorus content, and the carbohydrate content, 

depending upon the experimental objective. Additional gel filtration 

was also performed using Sephadex G-200 in 2.5 x 90 cm glass columns 

with two different buffer systems and at two different temperatures.

When the buffer was 0.05 M Tris (pH 7.6), the procedure was carried out 

at room temperature. However, if the buffer contained SDS, the procedure
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was carried out at 37°C in a water-jacketed column. When needed for ad

ditional studies, fractions obtained from the column were concentrated 

by ultrafiltration with the Amicon Diaflo Ultrafiltration System 202. A 

62 mm PM 10 filter was used under pressure from a compressed nitrogen 

source.

Polyacrylamide Gel Electrophoresis 

Polyacrylamide gel electrophoresis was performed by a technique 

similar to that described by Lenard (50). The membrane material was sol

ubilized by the addition of an equal volume of an aqueous solution con

taining 3.C% or more SDS and 1.0% p-mercaptoethanol. The mixture (ap

proximately 2.0 mg protein/ml) was incubated at 37° for two hours rather 

than boiled for 3 minutes as done by Lenard. Then 25-100 pi of the sample 

were mixed with an equal volume of a 40% sucrose solution applied to the 

polyacrylamide gel. A 5% polyacrylamide gel catalyzed by the addition 

of ammonium persulfate was used for the study with no sample or stacking 

gel. The buffer for electrophoresis was 0.1 M sodium phosphate buffer, 

pH 7.4, containing 1.0% SDS and 1.0% p-mercaptoethanol. After pre-running 

for 60 minutes to remove the ammonium persulfate, the electrophoresis 

was carried out at room temperature for a period of two and one-half 

hours. Longer periods were used when a better separation was desired 

for the larger proteins. The current for the procedure was 5.0 milli- 

amperes per tube. The gels were fixed in a mixture of ethanol, acetic 

acid, and water (50:5:45, v/v/v) as described by Kaplan and Griddle (98). 

Protein staining was performed with 0.125% Coomassie Blue in the ethanol- 

acetic acid mixture. The excess Coomassie Blue stain was removed with a 

Hoefer Destainer (Hoefer Scientific Instruments, San Francisco, Calif.)
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containing 5.C% acetic acid. An alternate staining method for Coomassie 

Blue stain was utilized which produced better bands for scanning. The 

charcoal adsorbent was removed from the center of the Hoefer Destainer 

before the addition of a very dilute aqueous solution (approximately 

0.002%) of Coomassie Blue. The solution was continuously agitated by 

the magnetic stirrer for several hours until readily visible bands were 

noted. This resulted in a minimal amount of background staining. The 

carbohydrate bands were visualized by the periodic acid-Schiff (PAS) 

staining technique described by Zacharius et al. (99). After staining, 

the gels were scanned by a Gilford Recording Spectrophotometer with a 

gel scanning attachment. A wavelength of 540 nm was used for scanning 

both Coomassie Blue and PAS stained gels.

Analytical Methods

Proteins. Protein was determined by a modification of the Lowry 

method (88).

Lipids. Phospholipid was determined either as the total phos

phorus (89) minus the inorganic phosphorus (90) or as the total phosphorus 

only, depending upon the specific experimental situation. The phosphorus 

value was multiplied by 25 to obtain a value for phospholipid. Total 

cholesterol was determined using a cholesterol determination kit from 

Hycel, Inc. (Houston, Texas). Lipid extraction of ghosts and residue 

was carried out with chloroform-methanol according to the method of Folch 

et a. (91).

Carbohydrates. Total hexose content was determined by using 

the phenol-sulphuric acid method of Dubois et (92). To obtain the 

total carbohydrate content, the hexose content was divided by a factor
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(0.41) obtained from the data of Winzler (35) to correct for the sialic 

acid and amino sugars, which the Dubois £t method does not measure. 

Individual hexose contents were determined by gas-liquid chromatography 

on a Barber-Colman Series 500 Gas Chromatograph employing a glass column 

packed with 2% ECNSS-M on Gaschrom Q, 8 O/1 OO mesh, according to the 

method by Holme e^ (93). Individual hexosamine contents were deter

mined by the amino acid analyzer. Sialic acid was determined by the 

method of Warren (94).

Amino acid analysis. Amino acid analyses were carried out on a 

Beckman Model 1200 Amino Acid Analyzer. The amino acid analysis of pro

tein bands separated by polyacrylamide gel electrophoresis was carried 

out as described by Houston (95). The gels were first stained with 

either Coomassie Blue or with PAS stain. The bands produced were re

moved by careful sectioning using a razor blade to cut the gel. Several 

gel sections from the same protein band were hydrolyzed with 5.7 N hydro

chloric acid in evacuated, sealed tubes at 110° for 24 hours before ap

plication onto the analyzer.

Enzyme Assays

Acetylcholinesterase was determined by the method of Michel 

(7 4 ). NADH;(acceptor) oxidoreductase was measured by the method of 

Zamudio _et al_. (77). Glucose-6-phosphate dehydrogenase, aldolase, and 

lactate dehydrogenase were determined with kits from CalBiochem, Inc.

Immunological Methods

Hemagglutination inhibition. A, B, H, M, and N blood group ac

tivities were determined by the hemagglutination inhibition method with
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a modification (96) of the microdiluter system of Takatsy. Commercially 

available antibodies for the studies were obtained from Ortho Diagnos

tics, Inc., Raritan, N. J. Known type A and type B red blood cells were 

also obtained from Ortho Diagnostics, Inc.

Immunodiffusion. Immunodiffusion studies were performed using 

the Ouchterlony double diffusion technique (97). The studies were carried 

out on agar gel plates containing 1,0% (w/v) agar in 0.05 M Iris buffer 

(pH 7.6). This technique was also utilized to detect antigens in unfixed 

polyacrylamide gels. The gels were divided into 12 equal sections from 

top to bottom. The gel sections were then embedded in 1% agar and im

munodiffusion was performed against previously prepared antibodies.

Antibody production. Antibodies for the immunodiffusion studies 

were obtained from rabbits in the following manner. Antigens used to 

stimulate antibody production were prepared from several sources, includ

ing RBC ghost suspensions, concentrated column fractions, extraction res

idue suspensions, and polyacrylamide gel sections. For liquid antigenic 

material, 1.0 ml of the sample was vigorously mixed with 1.0 ml of 

Freund's adjuvant (complete or incomplete) to form an emulsion and in

jected into rabbits both subcutaneously and intraperitoneally. The anti

gens were administered at weekly intervals for at least 4 weeks and for 

longer periods in cases where antibodies were slow to appear. The plasma 

was initially harvested after two weeks and then at weekly intervals un

til precipitating antibodies against the antigens could be demonstrated 

by immunodiffusion.

When polyacrylamide gels were used for antibody induction, the 

carbohydrate bands were stained by the PAS method and removed by cutting
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out the bands with a razor blade. The gel sections (usually four) with

out adjuvant were injected every other day into rabbits for a total of 

4 injections. Thereafter, the sections were given on a weekly schedule 

until precipitating antibodies appeared.

Electron Microscopy 

Both the erythrocyte ghosts in hypotonic phosphate buffer and 

the EDTA-extracted residue in EDTA buffer were examined by electron mi

croscopy. They were fixed with glutaraldehyde-osmic acid and embedded 

in epoxy resin. The embedded material was sectioned and photomicrographs 

were taken at magnifications of 10,000X, 30,000X and 300,000x.



CHAPTER IV

RESULTS

Isolation and Characterization of 
Erythrocyte Ghosts

Composition

The relative composition and concentration (expressed in mg/mg 

protein) of the major components of RBC ghosts are given in Table 12.

The major component in the ghost is protein, accounting for almost one- 

half of the total weight. An almost equal percentage of the membrane is 

made up of cholesterol and phospholipid. The approximate values for the 

phospholipid:protein, the cholesterol;protein and the carbohydrate:pro

tein ratios are 0.6, 0.4, and 0.15, respectively. Assays of individual 

sugars reveal that sialic acid and galactose are the two major sugars 

present. The hexosamines; glucosamine and galactcsamine are the next 

most common sugars with minor amounts of glucose, mannose and fucose 

present.

The enzymatic activities found in erythrocyte ghosts are given 

in Table 13 under Experiment A. The two glycolytic enzymes (glucose-6- 

phosphate dehydrogenase and aldolase) are present in small amounts, 

whereas no lactic dehydrogenase activity could be demonstrated. The two 

membrane-associated enzymes, acetylcholinesterase (AChEase) and NADH:(ac-

80
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TABLE 12

COMPOSITION OF RBC GHOSTS AND EXTRACTED RESIDUE (E6R)

Major Component
Percent by Weight mg/rag Protein

Ghosts Residue Ghosts Residue

Protein 47.3 36.1 1.0 1.0

Phospholipid 27.8 33.2 0.588 0.918

Cholesterol 17.8 19.3 0.376 0.535

Carbohydrate 7.0 11.4 0.148 0.316

Carbohydrate
Comp. Percent by Weight pg/mg Protein

Galactose 21.5 23.0 22.4 39.8

Glucose 6.8 13.9 7.1 23.9

Mannose 6.4 3.0 6.7 5.2

5.3 1.3 5.5 3.0

Glucosamine 14.3 15.3 14.9 26.4

Galactosamine 14.0 10.4 14.5 17.8

Sialic Acid 31.7 32.7 33.0 56.3



TABLE 13

ENZYME CONTENT OF VARIOUS COMPONENTS'

LDH-P G—6—P—D Aldolase AChEase NaOase

EXPERIMENT A:

RBC Ghosts G 0.655 
mp O.D./min

11.49 
mp. O.D./min

4.23 2.292

EDTA Extr. Residue 
(E6R)

G 0 0 2.90 
pH p/min

0.698 mM 
FeCN/min

EXPERIMENT B:

EDTA Supernate #1 70.56
mu/min

0 6.03
mp/min

0.52 
pH p/min

0.090 mM
FeCN/min

#2 0 0 0 0.38 0.102

#3 0 0 0 1.68 0.209

#4 0 0 0 0 0.220

#5 0 0 0 0 0.250

#6 0 0 0 0 0.435

00M

O.D. X lO^/min/mg protein.
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ceptor) oxidoreductase (NaOase), are both present in substantial amounts.

Amino acid analysis of RBC ghosts is reported in Table 14. The 

two major amino acids are glutamic acid and leucine. Although less abun

dant, aspartic acid, serine, alanine and glycine are also major amino 

acids. The other amino acids are equally distributed except for minor 

quantities of tyrosine and histidine. The presence of both galactosamine 

and glucosamine can be shown by amino acid analysis.

Photomicrographs of RBC ghosts are given in Figures 3, 4, and 5. 

At the lower magnification of 10,000X and 30,OOOX, the ghosts have the 

same basic physical shape and appearance as normal erythrocytes which 

have not been hemolyzed. The membrane itself seems to be intact with no 

sites of rupture. At the highest magnification the membrane is again 

found to be intact, having smooth outer surface and a fuzzy inner sur

face, but a trilaminar structure cannot be seen.

Solubilization of RBC Ghosts 

Five different agents were compared for their effectiveness in 

solubilizing RBC ghost proteins. The results obtained at three different 

concentrations of each agent are given in Figure 6. The most effective 

agent was the anionic detergent, sodium dodecyl sulphate (SDS), which 

solubilizes 98% of the protein at a concentration of 0.5% (w/v). At the 

same concentration sodium deoxycholate, a bile salt detergent, solubil

izes slightly over 70%, Triton X-100, a nonionic detergent, almost 55%, 

and Cetavlon, a cationic detergent, less than 5% of the total protein.

The dissociating agent, guanidinium hydrochloride, at 6 M concentration 

solubilizes slightly less than 80% of the protein.

The effectiveness of SDS as a solubilizing agent was demonstrated
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TABLE 14

AMINO ACID ANALYSIS OF GHOSTS AND RESIDUE^

Ghosts Residue

Lysine 61.2 45.5

Histidine 32.4 23.7

Arginine 61.3 46.4

Aspartic acid 87.4 81.0

Threonine 53.8 60.5

Serine 82.7 91.2

Glutamic acid 137.2 121.9

Proline 65.1 76.0

Glycine 71.2 82.8

Alanine 79.9 76.2

Valine 53.0 61.5

Methionine - -

Isoleucine 39.5 43.5

Leucine 104.7 110.5

Tyrosine 29.2 22.7

Phenylalanine 41.6 58.1

Galactosamine 10.0 17.4

Glucosamine 10.3 25.8

^Values are given as 
1000 moles of the total amino

the moles of 
acids in the

the individual amino acid per 
sample.



85

4 -  4,: . '
?

■i-
- \ >■

4
.Î"

. # # # # #

" ' ' .̂. -» '1' -< J-' - ' ; "'-

Figure 3. Electron photomicrographs of human erythrocyte ghosts 
and EDTA-extracted residue.

Suspensions of human erythrocyte ghosts (upper picture) and
EDTA-extracted residue (lower picture) were prepared as described under
Results and photographed at 10,000X magnification.
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Figure 4. Electron photomicrographs of human erythrocyte ghosts 
and EDTA-extracted residue.

Suspensions of human erythrocyte ghosts (upper picture) and
EDTA-extracted residue (lower picture) were prepared as described under
Results and photographed at 30,000X magnification.
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Figure 5. Electron photomicrographs of human erythrocyte ghosts 
and EDTA-extracted residue.

Suspensions of human erythrocyte ghosts (upper picture) and
EDTA-extracted residue (lower picture) were prepared as described under
Results and photographed at 300,000x magnification.
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100 SODIUM DODECYL 
SULFATE

SODIUM DEOXYCHOLATE

GUANIDINIUM HCL

TRITON X-100

CETAVLON

2M 4M 6M GUANIDINIUM HCL

6 . i  .2 .3 .4 .5 .6 .7 .8 .9 1.0
PERCENT CONCENTRATION OF DETERGENT

Figure 6. Solubilization of RBC ghosts with various agents.

The upper scale on the abscissa is for the concentration of 
guanidinium hydrochloride only. The lower scale is for the concentra
tion of all detergents. No value is given for Cetavlon at 1% concentra
tion because quantitation was technically not possible.
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in a series of experiments in which RBC ghosts were solubilized at var

ious SDS concentrations (0.075%, 0.1%, 0.5%, 1.0%) and fractionated by 

Sepharose 43 gel filtration with elution using an SDS buffer system at 

the same SDS concentration as that used for solubilization. As shown in 

Figures 7 and 8, very little protein was eluted at either 0.075% or 0.1% 

SDS concentration, whether measured as O.D. 2 3 0  Lowry protein. How

ever, in Figures 9 and 10, three distinct protein peaks can ben seen for 

the 0.5% and 1.0% SDS concentrations, respectively, and there appears to 

be little difference between the two figures. Thus, an SDS concentra

tion of 0.5% is necessary for solubilizing the ghost proteins before gel 

filtration. This finding was confirmed in a study, the results of which 

are shown in Figure 11. The pellet remaining after solubilization at 

0.1% SDS concentration was resuspended in 1.0% SDS and applied to a 

Sepharose 43 column with elution by a 1.0% SDS buffer system. Major pro

tein peaks are demonstrated by both O.D. 2 3 0  Lowry protein measure

ments. These gel filtration data agree with the results presented in 

Figure 6. Consequently, SDS was used to solubilize RBC membrane proteins 

before analytical studies.

Gel Filtration of Solubilized Ghosts 

Fractionation of the RBC membrane proteins was performed by gel 

filtration on Sepharose 4B gel as previously described. The proteins are 

separated into three major fractions as shown in Figure 12 and no protein 

elutes at the void volume. The peaks are designated as Fraction I (Fl), 

Fraction II (FIl) and Fraction III (Fill), starting with the least re

tarded fraction (Fl) and ending with the most retarded fraction (Fill). 

After combining the tubes from each of the three fractions and concen-
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Figure 7. Gel filtration of RBC ghost supernate at 0.075% SDS concentration.

The solubilization technique with SDS is described in Methods. The supernate from the proced
ure was applied to a Sepharose 48 gel column (2.5x90 cm) which had been equilibrated with 0.075% SDS in 
0.05 M Tris HCl (pH 7.6). The material was eluted with the same SDS buffer system at 37®C with a flow 
rate of 10-20 ml per hour. Individual fractions were collected containing approximately 4 ml per tube. 
The optical absorption of every tube was measured at 280 nm. The protein (Lowry method) and total phos
phorus contents were measured in every third tube. The scale for the O.D.280 and Lowry protein is on 
the left ordinate and the scale for the phosphorus is on the right ordinate.
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Figure 8. Gel filtration of RBC ghost supernate at 0.1% SDS concentration.
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The solubilization procedure is described in Methods. The conditions for fractionation are
the same as those described under Figure 7, except that the SDS concentration was 0.1% throughout the
experiment.
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The solubilization procedure is described in Methods. The conditions for fractionation are
the same as those described under Figure 7, except that the SDS concentration was 0.5% throughout the
experiment.
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The solubilization procedure is described in Methods. The conditions for fractionation are
the same as those described under Figure 7, except that the SDS concentration was 1.0% throughout the
experiment.
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Figure 11. Gel filtration of RBC ghost residue from the 0.1% SDS concentration experiment.

The residue remaining after solubilization at 0.1% SDS concentration was completed solubilized
at a final 1.0% SDS concentration and applied to the Sepharose 4B. Otherwise the conditions were the
same as described under Figure 7.
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Figure 12. Sepharose 40 gel filtration of SDS-solubilized RBC ghosts.

Intact RBC ghosts were solubilized at a final SDS concentration of about 3%, incubated at 37°C
for 30-60 minutes, and applied to a Sepharose 4B gel column. The material was eluted at 37°C with 0.1%
SDS in 0.05 M Iris HCl buffer (oH 7.6) and was monitored by measuring the absorbance at 280 nm only.
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trating the protein by ultrafiltration, each fraction was rechromato

graphed on Sepharose 4B as shown in Figures 13, 14, and 15. Each frac

tion elutes as a single peak at its appropriate elution volume, except 

for the small amount of protein which is usually found in the void vol

ume.

The Sephadex G-200 was also used to rechromatograph the indivi

dual fractions. The column was eluted with 0.05 M Tris buffer only in 

the absence of SDS. The results for Fractions I, II, and III are shown 

in Figures 16, 17, and 18, respectively. The use of Sephadex G-200 did 

not improve the protein separation. FI eluted as a single peak at the 

void volume as did most of the proteins of Fractions II and III. Appar

ently, the molecular weight limit for exclusion by Sephadex G-200 was not 

high enough to allow all RBC membrane proteins to be retarded for separ

ation. The possibility existed that the membrane proteins were not sep

arated by Sephadex G-200 because SDS was absent. However, as shown in 

Figure 19 elution of the proteins in the presence of SDS did not result 

in an improved separation of proteins. Consequently, for fractionation 

of solubilized ghost protein, Sepharose 4B in the presence of SDS is 

superior to the Sephadex G-200, either in the presence or absence of SDS.

Polyacrylamide Gel Electrophoresis 

Polyacrylamide gel electropherograms of solubilized ghosts are 

given in Figures 20 and 21. In the former figure, eleven major protein 

bands are seen in the photoscan. The most rapidly migrating band is not 

a protein band, but results from the staining of the membrane lipid. In 

the latter figure, two major carbohydrate-containing bands are seen on 

the scan plus several minor bands. The major peak closer to the cathode
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Figure 13. Sepharose 4B gel filtration of fraction I.

The eluant tubes containing Fraction I as shown in Figure 12 were combined before being con
centrated by ultrafiltration. The concentrated Fraction I was re-chromatographed under the conditions
described under Figure 12.
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Figure 14. Sepharose 4B gel filtration of fraction II.

Fraction II was re-chromatographed as described in Figure 13.
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Figure 15. Sepharose 4B gel filtration of fraction III.

Fraction III was re-chromatographed as described in Figure 13.
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Figure 16. Sephadex G-200 gel filtration of fraction I.

Concentrated Fraction I obtained from Sepharose 4B gel chromatography was re-chromatographed on 
Sephadex G-200 gel. The fraction was applied to the gel and eluted with 0.05 M Iris HCl buffer (pH 7.6) 
at room temperature. The eluate was monitored for O.D.280 absorbance, protein content, and organic 
phosphorus.
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Figure 17. Sephadex G-200 gel filtration of fraction II.

Concentrated Fraction II obtained from Sepharose 4B gel chromatography was re-chromatographed 
as described under Figure 16.
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Figure 18. Sephadex G-200 gel filtration of fraction III.

Concentrated Fraction III obtained from Sepharose 4B gel chromatography was re-chromatographed
as described under Figure 16.
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Erythrocytes ghosts solubilized with SDS were chromatographed as described under Figure 12, ex
cept that Sephadex G-200 gel was used and the fractions were monitored for O.D.280 absorbance, protein 
content, and phosphorus content.



104

TOP BOTTOM

protein.
Figure 20. Polyacrylamide gel scan of RBC ghosts stained for

Intact RBC ghosts were solubilized with SDS and electrophoresed 
on a b% polyacrylamide gel as described in Methods. The gel was stained 
with Coomassie Blue dye for protein and scanned at 540 nm. The gel 
which was scanned is pictured at the top.
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Figure 21. 
carbohydrate.

Polyacrylamide gel scan of RBC ghosts stained for

Intact RBC ghosts were solubilized with SDS and electrophoresed 
on a 5% polyacrylamide gel as described in Methods. The gel was stained 
by the periodic acid-Schiff method for carbohydrate and scanned at 540 
nm. The gel which was scanned is pictured at the top.
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is the major glycoprotein and the other major peak closer to the anode 

is the lipid fraction containing glycolipids. There are four minor car

bohydrate-positive bands. Two bands migrate more slowly and two more 

rapidly than the major glycoprotein.

The fractions obtained from the Sepharose 48 column (FI, FIX, 

Fill) were electrophoresed and photographs of the gels are given in Fig

ure 22. All three of the protein fractions are heterogeneous but their 

rate of migration is compatible with their elution volume on gel filtra

tion. Some separation is obtained for the carbohydrate-positive compo

nents. FI does not contain any carbohydrate while FIX has only a single 

band at the position of the major glycoprotein. However, Fill contains 

all of the four carbohydrate-positive bands characteristic for the whole 

ghosts.

Immunology

In Table 15, under Experiment A, hemagglutination inhibition 

studies are summarized for the RBC ghosts. Both blood group A activity 

and blood group M activity which were identified in the original intact 

RBC's are present in the ghosts. The inhibition is complete for both of 

the activities within the limits of the testing system. No attempt was 

made to determine if greater inhibitory activity is present.

The immunological properties of the three major fractions sepa

rated by gel filtration (FI, FII, Fill) were studied with their corres

ponding antibodies (a-FI, a-FII, a-FIII). The results show (Figure 23) 

that FI reacts with a-FI (2 precipitin lines) and with a-FII (l precip

itin line), but not with a-FIII. FII has an almost identical pattern, 

except that the reaction between FII and a-FII is more prominent than
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Figure 22. Polyacrylamide gels of fractions from Sepharose 4B column.

Concentrated Fractions I, II, and III were electrophoresed and stained for protein and carbo
hydrate as described under Figures 20 and 21, respectively.
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Figure 23. Immunodiffusion studies on fractions I, II, III and their antibodies.

Ouchterlony double-diffusion studies were performed using concentrated fractions, from which 
SDS had been removed, in the center well and antibodies against the different fractions in the outer 
wells. Designations starting with F and a-F indicate individual fractions and their antibodies, respec
tively.
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between FII and a-FI. The reactions of Fill are also very similar to 

those of FI, except that a precipitin line forms between Fill and a-FIII. 

Attempts to demonstrate whether either the antibodies or the antigens 

are shared could not be reproduced. The only definite conclusion is that 

FI contains at least two antigens, neither of which reacts with a-FIII.

The data also suggest that Fill contains a protein which is not present 

in FI and FII.

Additional studies were performed with a-FI, a-FII, and a-FIII 

to determine by the hemagglutination inhibition technique if RBC agglut

inating activity or anti-A activity are present in the three antibody 

preparations. a-FII and a-FIII contain agglutinating antibodies against 

RBC's, although the agglutination is not inhibited by blood group A sub

stance. a-FI does not produce RBC agglutination. These findings sug

gest that a-FI reacts with internal proteins while a-FII and a-FIII re

act with external surface proteins.

Fractionation of Ghosts by Aqueous Extraction

Several aqueous systems were used to extract proteins from the 

RBC ghosts as described in the Methods section. The polyacrylamide gel 

electrophoresis patterns of proteins extracted with water at pH 7.0 are 

shown in Figure 24. The gels were obtained by electrophoresis of the 

ooncentrated protein obtained at each extraction step. The extracted 

proteins are heterogeneous with little evidence of selectivity. The very 

large proteins found after extractions 1, 2, and 3 are the only group of 

proteins which are readily identified as being removed with water.

Extraction with tétraméthylammonium bromide (TMAB) appears to 

have some selectivity and the results with this agent are summarized in
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Figure 24. Polyacrylamide gels of single supernates from water extraction of RBC ghosts.

Polyacrylamide gel electrophoresis on concentrated single supernates from each extraction of 
RBC ghosts with distilled water was performed as described under Figure 20. Abbreviations: W, distill
ed water; numbers 1-6, the number of the extraction; C, supernate from single extraction; COOM, gel 
stained with Coomassie Blue dye; PAS, gel stained with periodic acid-Schiff technique.



i l l

Figure 25. The photographs of polyacrylamide gels reveal that with the 

first TMAB extraction a heterogeneous group of proteins is removed, but 

there are predominantly two major protein groups extracted. The first 

group is represented by a high molecular weight doublet which is present 

in relatively small amounts compared to the amount of those proteins ex

tracted with water. The other protein group is also a doublet which 

falls within the middle range of molecular weights for the ghost proteins. 

Although they stain slightly with carbohydrate stains in this figure, re

peated studies reveal that these proteins do not contain a carbohydrate 

moiety. Little protein was removed from the RBC ghosts after the second 

extraction with TMAB.

Two additional aqueous systems were used to extract proteins 

from the membrane and the results are shown in Figure 26. The first sys

tem was a dilute Triton X-lOO solution. The extracted proteins are quite 

heterogeneous and include the carbohydrate-containing proteins. After 

the third extraction with this solution, no ghosts remain since they have 

been completely solubilized. The second system, a sodium chloride solu

tion, is difficult to evaluate. Almost all extractable protein is re

moved on the first extraction and is clearly heterogeneous. Satisfactory 

polyacrylamide gels could not be obtained on the extracted protein. The 

high salt concentration may have aggregated the protein into a physical 

state in which adequate separation is not possible.

The residues remaining after these repeated extractions were 

also studied with polyacrylamide gel electrophoresis and the results are 

given in Figure 27. No residue is shown for the Triton X-100 extraction, 

since the membrane was completely solubilized by the procedure. However,
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Figure 25. Polyacrylamide gels of single supernates from TMAB extraction of ghosts.

Polyacrylamide gel electrophoresis on concentrated single supernates from each extraction of 
RBC ghosts with 0.1 M tétraméthylammonium bromide (TMAB) was performed as described under Figure 20. 
Abbreviations: TM, 0.1 M TMAB; numbers 1-6, the number of the extraction; C, supernate from single ex
traction; COOM, gel stained with Coomassie Blue dye; PAS, gel stained with periodic acid-Schiff tech
nique.
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Figure 26. 
RBC ghosts.

Polyacrylamide gels of single supernates from Triton X-100 and saline extraction of

Polyacrylamide gel electrophoresis on concentrated single supernates from each extraction of 
RBC ghosts with either 0.1# Triton X-100 or 0.5 M NaCl was performed as described under Figure 20. Ab
breviations: TX, 0.1# Triton X-100; N, 0.5 M NaCl; numbers 1-3, the number of the extraction; COOM, gel
stained with Coomassie Blue dye; PAS, gel stained with periodic acid-Schiff technique.



W6R W6R 
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COOM PAS

N3R N3R 
COOM PAS

Figure 27. Polyacrylamide gels of residues after extraction with water, TMAB, or Triton X-100.

Residues of RBC ghosts extracted repeatedly with various agents were solubilized with SDS and 
electrophoresed on 5% polyacrylamide gels in the presence of 1% SDS. The gels were stained for protein 
(COOM) and carbohydrate (PAS). Abbreviations: W, after water extractions; TM, after 0.1 M TMAB extrac
tions; N, after 0.5 M NaCl extraction; number 6, number of extractions; R, residue of extracted ghosts.
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photographs of the residues after water, TMAB and sodium chloride extrac

tions are reproduced. The proteins are still quite heterogeneous with 

many bands present in all molecular weight groups. In addition, the 

phospholipid band is demonstrated by carbohydrate staining as are some 

of the protein bands.

The results of extraction studies performed with 1.0 mM sodium 

EDTA are reported in the following sections.

Fractionation of Ghost with Hypotonic 
Sodium EDTA - the Supernates

Quantitation

The initial evaluation of hypotonic EDTA extractions of RBC 

ghosts is based on the procedure described by Juliano and Rothstein (83). 

The ghosts are extracted first with 1.0 mM sodium EDTA solution followed 

by a second extraction with a dilute base (either sodium hydroxide at 

pH 11.0 or ammonium hydroxide at pH 10.5). The average of triplicate 

determinations of the proteins and phospholipids removed by this proced

ure are presented in Figure 28. Approximately 55% of the protein is ex

tracted by the EDTA-sodium hydroxide extraction sequence. No phospho

lipid is obtained with the EDTA solution, but approximately one-fourth 

is removed by the NaOH extraction.

Because the possibility existed that the type of base might be 

important, the experiment was repeated comparing sodium hydroxide (pH 

11.0) and ammonium hydroxide (pH 10.5). The data for quadruplicate de

terminations are given in Figure 29. Both procedures resulted in an al

most identical (50%) removal of the protein. However, ammonium hydroxide 

extracts approximately 5% more of the total phospholipid than does sodium
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Figure 28. Quantitation of aqueous extraction.

The column on the left shows the percentages of the total pro
tein removed by sequential extractions with EDTA and dilute sodium hy
droxide (pH 11.0) and the amount of protein remaining with the residue 
after extraction. The column on the right shows the equivalent values 
for the percentage of organic phosphorus. Note that no organic phos
phorus was removed by EDTA extraction in this experiment.
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Figure 29. Quantitation of extraction with different bases.

The two columns on the left give the results for sequential 
EDIA-base extractions using sodium hydroxide (pH 11.0). The columns on 
the right give the results for equivalent extractions using ammonium hy
droxide (pH 10.5). Note that ammonium hydroxide produced a five per cent 
greater extraction of organic phosphorus than did sodium hydroxide ex
traction.
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hydroxide.

Since sodium hydroxide appears to remove less phospholipid than 

ammonium hydroxide, the extractions with EDTA and sodium hydroxide were 

more carefully evaluated. As shewn in Figure 30, the incubation time 

has little effect upon the EDTA extraction of either pnospnolipid or pro

tein. This contrasts with the sodium hydroxide extraction as shown in 

Figure 31. The removal of protein and phospholipid increases until about 

40 minutes, after which little change is noted.

Since the extractions with sodium hydroxide resulted in the sol

ubilization of more phospholipid than that witn EDTA, the effects or re

peated extractions with hypotonic EDTA as the only solvent were evalu

ated. In Figure 32 the first two extractions with EDTA solution are 

shown to remove approximately 25% of the protein in the ghost or residue 

(EIR). Thereafter, the amount removed falls off rapidly until less than 

5% of the remaining protein is extracted with the fifth and sixth extrac

tions. The data for phosphorus follow the same pattern, although in this 

experiment no correction was made for the presence of inorganic phos

phate. Part of the change in the phosphorus content may have been the 

result of the removal of inorganic phosphate present in the buffer used 

for ghost preparation.

The experiment was repeated with two major changes. The first 

was to correct the value for the total phosphorus for the presence of in

organic phosphate. The second was to combine the material which was ex

tracted at each step in order that a cumulative percentage of original 

RBC ghost protein and organic phosphorus removed could be calculated.

The data for the percentages of protein and organic phosphorus as well
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Figure 30. The effects of incubation time upon solubilization of ghost proteins.

Time of incubation of ghosts in the EDTA solution is shown on the abscissa. The per cent of 
protein or organic phosphorus solubilized is shown on the ordinate.
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Figure 31. Effects of time upon sodium hydroxide extractions of ghost proteins.

The erythrocyte ghosts which had already been incubated with hypotonic EDTA for 60 minutes 
were incubated with sodium hydroxide (pH 11.0) for intervals up to 60 minutes. The percentages of pro
teins and organic phosphorus released are sho'wn on the ordinate.
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Figure 32. Protein and phospholipid removal with repeated EDTA extractions.

The amount of protein and phospholipid removed with each EDTA extraction is prevented as the 
percentage found in the supernatant. The percentage which is shown for each extraction represents the 
percentage solubilized based on the starting material for each step. For example, the second extraction 
removed approximately 25 per cent of the protein which remained after the first extraction with EDTA.
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as the phospholipid;protein ratio of each residue are given in Figure 33. 

The first three EDTA extractions remove about 54% of the total membrane 

protein. Only 3% more of the total protein is extracted by the last 

three steps. Approximately 30% of the total organic phosphorus is ob

tained from the first two steps with an additional 4% in the subsequent 

four steps. The phospholipid;protein ratio of the residue after each 

extraction initially rose before falling to about the starting value 

after six extractions. This disagreement with the protein and organic 

phosphorus data cannot be explained and may result from an inability to 

correct for the presence of inorganic phosphate ions.

Equivalent results were obtained in a control experiment using 

distilled water (pH 7.0), rather than hypotonic sodium EDTA, to extract 

proteins from RBC ghosts. The first three water extractions remove 49.4% 

of the ghost protein. The final three steps remove an additional 10.6% 

for a total water-extractable protein of 60.0%. The amount of organic 

phosphorus removed was not determined.

Composition of Supernates

The material obtained with repeated EDTA extractions accounts 

for about 57% of the total membrane protein and about 34% of the total 

membrane organic phosphorus. Enzymatic activity present in the extracted 

proteins is shown in Table 13 under Experiment B. Glycolytic enzymes 

still present in the RBC ghosts are completely removed with the initial 

EDTA extraction. Lactic dehydrogenase and aldolase activity are found 

in the initial supernate but not in any of the subsequent supernates.

This is different from the data obtained for the membrane-associated en

zymes. Acetylcholinesterase (AChEase) activity is found only in the
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Figure 33. Protein and phospholipid removal with repeated EDTA 
extractions.

The protein and phospholipid removed at each step were combined 
so that the percentages solubilized are presented on a cumulative basis. 
For example, approximately 55 per cent of the original erythrocyte ghost 
protein was removed by 5 extractions with hypotonic EDTA.
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first three supernates. The level of NADH oxidoreductase (NaOase) activ

ity increases in the supernate with each extraction. The data for AChEase 

are compatible with a loss of organic phosphorus during the extraction 

procedure. There is no explanation for the peculiar findings obtained 

for the NaOase enzyme.

Polyacrylamide Gel Electrophoresis 

The protein-stained polyacrylamide gel electropherogram of the 

combined supernates from six EDTA extractions is shown in Figure 34.

The extracted proteins can be divided into three major molecular weight 

groups. The first group consists primarily of a doublet of two large 

proteins which are better demonstrated when smaller amounts of protein 

are applied. The second group (next largest in size) is composed of four 

sharp peaks. Five minor peaks of lowest molecular weight form the third 

group. No quantitation of the percentage of protein in each major group 

is possible. As demonstrated in Figure 35, little carbohydrate-contain

ing protein is present in the supernates from six extractions.

The protein pattern of the combined supernates for each of the 

first five extractions is similar to the pattern obtained for the six 

combined EDTA supernates. In Figure 36, the combined supernates from 

the first through the fifth extractions are shown to have similar pro

tein patterns, except for the combined supernate from five extractions, 

which was contaminated with residue.

The polyacrylamide gel electrophoresis of individual EDTA ex

traction steps is presented in Figure 37. As expected from the data on 

quantitation, most of the protein is removed in the first three steps. 

Although the protein is heterogeneous, there does appear to be a slight
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Figure 34. 
stained for protein.

Polyacrylamide gel scan of combined supernate (E6S)

Concentrated supernatants from six extractions were combined 
and concentrated before electrophoresis and staining for protein as de
scribed under Figure 20.
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Figure 35. Polyacrylamide gel scan of combined supernate (E6S) stained for carbohydrate.

Combined supernatants from six extractions were combined and concentrated before electrophore
sis and staining for carbohydrate as described under Figure 21.
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Figure 36. Polyacrylamide gel of combined supernates from EDTA extractions of RBC ghosts.

Polyacrylamide gel electrophoresis on concentrated single supernates from each extraction of 
RBC ghosts with hypotonic EDTA was performed as described under Figure 20. Abbreviations: E, hypotonic
EDTA; numbers 1-6, the number of the extraction; S, combined supernatant from designated extractions; 
COOM, gel stained with Coomassie Blue dye; PAS, gel stained by periodic acid-Schiff technique.
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Figure 37. Polyacrylamide gels of single supernates from hypotonie EDTA extraction of RBC

Polyacrylamide gel electrophoresis on concentrated single supernates from each extraction of 
RBC ghosts with hypotonie EDTA was performed as described under Figure 20. Abbreviations: E, hypotonic
EDTA; numbers 1-6, the number of the extraction; C, supernate from single extraction; COOM, gel stained 
with Coomassie Blue dye; PAS, gel stained by periodic acid-Schiff technique.
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difference in the molecular weight groups obtained with each extraction. 

The first EDTA step removes a small amount of high molecular weight pro

tein with a substantial number of lower molecular weight proteins. The 

second EDTA step extracts the most heterogeneous group of proteins as 

large amounts of both high and low molecular weight proteins are present. 

The third EDTA step appears to be most selective, removing primarily 

high molecular weight proteins. The fourth, fifth, and sixth steps take 

out only small quantities of nigh molecular weight proteins. Little 

carbohydrate-containing protein is removed by the six EDTA extraction 

steps.

Immunology

The individual EDTA supernates were tested for their blood group 

activity by hemagglutination inhibition and the results are given in 

Table 1 5  under Experiment B. Significant blood group A activity is pres

ent in the first two EDTA supernates with slightly less activity present 

in the third. No group A activity is found in the last three supernates. 

A slightly different result is obtained for blood group M activity where 

only minimal activity is present in the first three supernates and none 

in the last three supernates. Both blood group A and blood group M ac

tivity are still present in the extracted residue.

Immunodiffusion data are given in Figure 38. None of the EDTA 

supernates react with antibodies produced against Fill. Supernates from 

the first three extractions share an antigen which reacts with both anti- 

Fraction 1 (a-Fl) and anti-Fraction II (a-Fll). In addition, a-FlI con

tains an antibody which reacts with an antigen shared by the supernates 

from the third, fourth and fifth EDTA extractions. Since the two immuno-



130

BLOOD GROUP ACTIVITY

TABLE 15 

OF GHOSTS, RESIDUE AND SUPERNATES

Antigens A Activity M Activity

EXPERIMENT A:

RBC ghosts 7 T+ 4 T+

Residue (E6R) 7 T+ 4 T+

EXPERIMENT B:

EIC 6 T+ 2 T

E2C 6 T t 2 T

ESC 4 T 1 T

E4C 1 T 0

E5C 0 0

E6C 0 0

Residue (E6R) 6 T+ 4 T+

The letter I designates the number of tube dilutions which were 
inhibited by the given component. A plus following the letter I indi
cates that the component was not tested at greater dilutions and its 
ability to inhibit might have been more potent.
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Figure 38. Immunodiffusion studies on individual EDTA supernates.

Ouchterlony double-diffusion studies were performed using concentrated individual EDTA super
nates in the outer wells and antibodies against Sepharose 4B fractions (Fractions 1, 11, 111) in the 
center wells. Designations starting with capital F indicate the individual fractions, while those 
starting with a small a indicate the antibodies.
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precipitin lines with a-FII are shared by different EDTA supernates, 

a-FII must contain antibodies to at least two different proteins ex

tracted by the hypotonic EDTA solution. The supernates do not react 

with antibodies prepared against glycoprotein-containing fractions, such 

as a-FIII. The immunodiffusion data support the results of polyacryl

amide gel electrophoresis which demonstrate that little or no glycopro

tein is extracted with EDTA solutions.

Fractionation of Ghosts with Hypotonic 
Sodium EDTA - the Residues

Composition

The residue after multiple EDTA extractions was extensively 

studied and data on its composition are given in Table 12. The protein 

accounts for only one-third of the total residue weight while the two 

lipid components, phospholipid and cholesterol, constitute over one-half 

of the weight. The carbohydrate content of the residue is substantially 

increased over that of the whole ghosts. The effect of EDTA extraction 

on the composition is best shown by comparing the ratios of the various 

components to the protein component in RBC ghosts and residue. The phos- 

pholipid;protein and cholesterol;protein ratios of residue are about 1.6 

and 1.4 times greater than the corresponding values for RBC ghosts. The 

change is even more marked in the carbohydrate:protein ratio which doubles 

after extraction.

The changes in composition of individual sugars suggest that 

some carbohydrate may be lost during extraction in a selective manner.

The glucose content increases while the content of mannose, fucose and 

galactosamine decreases. When these data are compared on the basis of
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carbohydrate:protein ratio, the selectivity of extraction is again shown. 

Major increases in galactose, glucose, glucosamine and sialic acid are 

found. Only mannose and fucose decrease relative to the amount of pro

tein. Since glycolipids were not measured in the EDTA supernates, it is 

not known whether the change in carbohydrate composition should be attri

buted to the loss of glycolipid or glycoprotein.

The enzyme content of the residue is given in Table 13 under 

Experiment A. No glycolytic enzyme activity remains in the residue. 

However, both AChEase and NaOase activities are present. The activities 

are lower than those in the RBC ghosts. A loss of these two enzyme ac

tivities into the EDTA extraction supernates does occur, although a 

change in enzyme conformation within the membrane might be an alternate 

explanation.

Amino acid analysis of the final EDTA residue is shown in Table 

14. The content of basic amino acids (lysine, histidine, arginine) as 

well as the content of aspartic acid, glutamic acid and tyrosine are sub

stantially reduced by the extraction procedure. In contrast to that 

change, the hydrophobic amino acids (valine, leucine, proline) as well 

as phenylalanine, glycine, serine, and threonine are increased. The in

crease in hexosamine content is caused by a relatively greater increase 

in glucosamine than galactosamine.

Electron microscopy reveals that major physical changes take 

place during the extraction process as shown in Figure 3. At lower mag

nifications the extracted residue consists of numerous microvesicles 

possessing a continuous, intact membrane. At the highest magnification, 

the typical trilaminar appearance of biological membranes is seen, al
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though the inner fuzzy coat found on RBC ghost membranes is absent. This 

change from the large, biconcave leaflets of RBC ghosts to many micro

vesicles is produced by the repeated EDTA extractions, since no physical 

manipulation (e.g., ultrasonication) of RBC ghosts was performed during 

the extraction procedure.

Gel Filtration of Solubilized Residue 

Fractionation of the extracted residue was carried out by gel 

filtration on Sepharose 4B gel in the presence of SDS and the elution 

pattern is presented in Figure 39. The solubilized residue is separated 

into three major fractions called A, B, and C. Fraction A (F-A) is re

tarded the least and Fraction C (F-C) the most. The elution volumes for 

Fractions A, B, and C are about the same as those for Fractions I, II, 

and III of the RBC ghost. However, the peak for F-A is substantially 

smaller than that for Fraction I and the separation between Fractions B 

and C is better than between Fractions II and III. Rechromatography of 

Fractions A, B, and C is given in Figures 40, 41, and 42, respectively. 

Each fraction elutes at the appropriate volume, although a smaller amount 

of protein is present. Also, a larger void volume peak is produced than 

with rechromatography of Fractions I, II, and III. Gel filtration with 

Sephadex G-200 gel in the presence of SDS is not adequate for separation 

of the proteins as shown in Figure 43.

Polyacrylamide Gel Electrophoresis 

Polyacrylamide gel electrophoresis was performed on the residues 

remaining after each successive extraction. Photographs of the gels 

stained for protein and carbohydrate are shown in Figure 44. With each
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Figure 39. Sepharose 40 gel filtration of SDS-solubilized residue (E6R).

Extracted residue was solubilized and fractionated as described under Figure 12. The column 
was monitored for 0.0.280» protein, phosphorus, and carbohydrate.
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Figure 40. Sepharose 4B gel filtration of fraction A.

The eluant tubes containing Fraction A as shown in Figure 39 were combined and then concen
trated by ultrafiltration. The concentrated Fraction A was re-chromatographed as described under Figure
12.
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Figure 41. Sepharose 43 gel filtration of fraction B.

The eluant tubes containing Fraction B as shown in Figure 39 were combined and then concen
trated by ultrafiltration. The concentrated Fraction B was re-chromatographed as described under Figure
12.
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Figure 42. Sepharose 48 gel filtration of fraction C.

The eluant tubes containing Fraction C as shown in Figure 39 were combined and then concen
trated by ultrafiltration. The concentrated Fraction C was re-chromatographed as described under Figure
12.
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Figure 43. Sephadex G-200 filtration of SDS-solubilized residue (E6R).

Residue was solubilized and chromatographed as described under Figure 19 in the presence of
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Figure 44. Polyacrylamide gels of residues remaining after repeated EOT A extractions.

Polyacrylamide gel electrophoresis on SDS-solubilized residues remaining after each extraction 
with EDTA was performed as described under Figure 20. Abbreviations: E, hypotonic EDTA; numbers 1-6,
the number of the extraction; R, residue remaining after extraction; COOM, gel stained with Coomassie 
Blue dye; PAS, gel stained with periodic acid-Schiff technique.
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additional extraction a progressive decrease in the number of protein 

bands is readily seen. There is no change in the number of carbohydrate- 

stained bands. In particular, the high molecular weight proteins are re

duced by each extraction. The protein and glycoprotein patterns of res

idue after six extractions are more clearly shown in Figures 45 and 46. 

Six protein groups, one of which is a doublet, remain after the EDTA ex

tractions. These protein groups are designated as CM-1 through CM-6, 

starting with the largest proteins as CM-1 to indicate their staining 

with Coomassie Blue. Four major carbohydrate bands are present, of which 

one is glycolipid and three are glycoproteins.

Polyacrylamide gel electrophoresis of the individual fractions 

A, B, and C is shown in Figure 47. Fraction A consists primarily of the 

large CM-1 proteins with some CM-2 proteins. Fraction B consists almost 

exclusively of CM-2 and CM-3 proteins. Fraction C contains no CM-1 pro

teins, a small amount of CM-2 and CM-3 proteins, and essentially all of 

CM-4, CM-5, and CJ4-6. The three glycoproteins (named GL-1 to GL-3) are 

found predominantly in Fraction C, although a small amount of the largest 

glycoprotein (GL-l) is also found in Fraction B.

Immunology

Hemagglutination inhbition studies for blood group activities 

in the residue are reported in Table 15. In both experiments A and B, 

the residue contained blood group A and M activities equivalent to that 

found in RBC ghosts.

Immunodiffusion studies indicate that at least two major pro

teins are present in the EDTA residue as shown in Figure 48. Under A 

and B, the residue (E6R) is seen to react with both a-FII and a-E6R (an
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Figure 45. Polyacrylamide gel scan of residue (E6R) stained 
for protein.

SDS-solubilized residue (E6R) was electrophoresed, stained, and 
scanned as described under Figure 20.
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Figure 21.

Figure 46. Polyacrylamide gel scan of residue (E6R) stained for carbohydrate. 

SDS-solubilized residue (E6R) was electrophoresed, stained, and scanned as described under
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Figure 47. Polyacrylamide gels of fractions from Sepharose 4B column.

Concentrated Fractions A, B, and C were electrophoresed and stained for protein and carbohy
drate as described under Figures 20 and 21.
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Figure 48. Immunodiffusion studies on residue (E6R) against various antibodies.

Ouchterlony double-diffusion studies were carried out using residue (E6R) against various anti
bodies. In the left figure, the residue was tested against antibodies to Fractions I, II, and III. In 
the central figure, the residue was tested with antibodies against residue (E6R), Fraction C, and the 
major glycoprotein (GLI). In the right figure, the activity of the antibody against the major glyco
protein was tested against residue, Fraction C, and Fraction III.
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antibody against the intact residue), but not with a-GL-1 (an antibody 

against the major glycoprotein of the residue). Under C, a-GL-1 reacts 

with component shared by Fill and F-C, but not with E6R. The probable 

explanation is that a soluble protein diffuses from the intact residue 

to react with a-FII and a-F-C, while a different protein remains assoc

iated with the lipid of the residue, which must be solubilized before a 

precipitin reaction can occur. The lipid-associated protein is probably 

the major glycoprotein since it was used to stimulate the production of 

a-GL-1 and is present in both Fill and F-C.

Characterization of Individual Peptides 

The six protein bands (CM-1 to CM-6) and the three glycoprotein 

bands (GL-1 to GL-3) were removed as described under Methods and analyzed 

for their amino acid content. The results of those analyses based on 

the relative proportions of the various amino acids to glutamic acid are 

presented in Table 16. The amino acid content varies between the differ

ent Coomassie-positive bands and between the carbohydrate-positive bands. 

However, the amino acid content is somewhat similar between GL-1 and 

CM-3, GL-2 and CM-4, and GL-3 and CM-5. The proteins with similar amino 

acid composition migrate about the same distance during electrophoresis. 

However, the carbohydrate-positive bands contain hexosamines which are 

not demonstrable in the Coomassie-positive bands.



TABLE 16 

SUMMARY OF AMINO ACID ANALYSIS

Ghosts EDTA
Residue GL-1 GL-2 GL-3 CM-1 CM-2 CM-3 CM-4 CM-5 CM-6

Glutamic 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Glue NH2 7.5 21.2 12.4 16.5 Tr 0 0 0 0 0
Gal NH2 7.3 14.3 38.0 Tr Tr 0 0 0 0 0
Lysine 44.6 37.3 N.D. 34.7 55.8 55.9 18.3 0 Tr 63.8
Histidine 23.6 19.5 N.D. 10.7 28.3 25.7 11.0 0 0 ?
Aspartic 63.7 66.4 62.0 71.1 87.4 77.1 43.2 74.1 62.3 89.4
Threonine 39.2 49.6 52.4 59.1 77.5 37.6 40.5 62.4 50.0 70.2
Serine 60.2 74.8 70.4 76.0 96.2 81.7 73.1 98.8 103.8 97.9
Proline 47.4 62.4 61.5 61.2 37.4 48.6 59.8 62.4 59.4 51.0
Glycine 51.9 67.9 77.6 102.5 112.4 90.8 49.8 94.1 90.7 112.8
Alanine 58.2 62.5 68.1 92.1 106.2 69.7 44.2 94.1 83.9 95.7
Valine 38.6 50.4 47.3 51.2 62.7 40.4 41.2 51.8 52.4 74.5
Methionine 0 0 13.1 0 19.8 0 4.0 12.9 6.6 10.6
Isoleucine 28.8 35.7 31.0 50 57.9 19.3 23.9 43.5 45.5 36.2
Leucine 76.3 90.6 86.5 91 88.5 77.9 77.1 92.9 91.8 72.3
Tyrosine 21.3 18.6 16.3 16.9 29.6 Tr 13.0 14.1 35.8 17.0
Phenylalanine 30.3 47.6 28.2 27.8 34.4 Tr 28.6 29.4 54.7 31.9
Arginine 44.7 38.1 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.

■ -J



CHAPTER V

DISCUSSION

Isolation and Characterization of 
Erythrocyte Ghosts

The compositional studies on intact erythrocyte ghosts reported 

in Table 12 are similar to previously published work. They agree most 

closely with the work reported by Rosenberg and Guidotti in 1968 (18). 

They found a slightly higher content of protein and a slightly lower con

tent of lipid, whereas the carbohydrate content was almost identical. 

Blumenfeld in 1968 (36) also reported a higher protein and a lower lipid 

content, apparently due to a smaller amount of cholesterol. The value 

for carbohydrate content agreed with this study. Poulik also in 1968 

(34) reported similar values, although the data were not complete. The 

carbohydrate and phospholipid values were about the same but the protein 

content was lower.

The content of individual sugars did not agree as well with 

previous results. The percentages of the individual neutral sugars and 

of sialic acid, but not of the hexosamine, were similar to those reported 

by Winzler in 1969 (35). Winzler found twice as much galactosamine as 

glucosamine, whereas we found equal amounts to be present. When our 

values for percentages of neutral sugars, hexosamines, and sialic acid 

were compared with those of Blumenfeld (36), Rosenberg and Guidotti (18),

148



149

and Poulik (34), only minor differences were found. However, when the 

comparison was made on a microgram of carbohydrate per milligram of pro

tein basis, little agreement was found, suggesting that variable amounts 

of protein were present in the starting membrane materials. Sialic acid, 

which is bound to membrane protein, showed the least variation.

The data in Table 13 indicate that both acetylcholinesterase 

(AChEase) and NADH;(acceptor) oxidoreductase (NaOase) activities are 

present in the ghost. The presence of small amount of glycolytic enzyme 

activity is not surprising since its removal may not be complete during 

RBC ghost preparation. Mitchell £t â . (100) found AChEase activity to 

be comparable in both RBC ghosts and whole cell hemolysates, whereas they 

found almost none of the whole cell aldolase activity still present in 

ghosts. The osmolarity of the buffer used to prepare the ghosts had a 

small effect upon the AChEase activity, whereas pH had essentially no 

effect. Lauf and Poulik in 1968 (101) compared the AChEase activity in 

the human red cell before and after hemolysis and found that the RBC 

ghost retained 94% of the enzyme's activity. Bramley et in 1971 

(102) studied the effect of osmolarity on AChEase activity and also found 

che enzyme to be present in the membrane of the RBC ghost. Thus, the 

RBC ghosts used for the present studies on membrane protein composition 

contained the enzyme activities expected for RBC ghosts prepared by hypo

tonic hemolysis.

The amino acid composition of RBC ghosts reported in Table 14 

also agrees with previous studies (Bakerman and Wasemiller, 1967 (33); 

Rosenberg and Guidotti, 1968 (18); Winzler, 1969 (35); Blumenfeld, 1968 

(36)). However, for specific amino acids there were substantial differ
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ences compared with previous studies. The basic amino acids, lysine, 

histidine and arginine were substantially higher than previous values, 

while the non-polar amino acids valine, isoleucine and leucine were sub

stantially lower. The major amino acids previously found (glutamic acid, 

leucine, aspartic acid, serine, alanine) were the same as reported in 

this study.

The erythrocyte ghosts after preparation by hypotonic hemolysis 

showed an intact membrane structure and a fuzzy coat lining the inner 

surface of the ghost membrane. This electron photomicrographic appear

ance is in close agreement with the findings of Nicolson et _al. (103) 

and Harris (104).

Solubilization.of Erythrocyte Ghosts

Despite a limited amount of earlier data, comparisons can be 

made between these data and the scattered reports available on different 

solubilizing agents. The excellent solubilization obtained with sodium 

dodecyl sulfate (SDS), which at 0.5% concentration solubilized over 9 ^  

and at 1% concentration over 99% of the protein, has previously been re

ported to be an effective agent. Bakerman and Wasemiller in 1967 (33) 

found that 91.8% of the ghost protein could be solubilized at 0.5% SDS 

concentration. Working with lipid-extracted ghost protein Rosenberg and 

Guidotti in 1968 (18) were able to solubilize 9 ^  of the ghost protein 

with a 1% SDS solution. In 1972, Juliano solubilized 100% of the ghost 

protein at a 3% SDS concentration. These data leave little doubt that 

SDS is an effective solubilizing agent for RBC ghost proteins.

The other agents evaluated in this study have not been as con

sistently effective as SDS for solubilizing ghost proteins. The 70%
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solubilization at 0.5% sodium deoxycholate concentration does not agree 

with the 54.6% solubilization at the same concentration reported by 

Bakerman and Wasemiller (33). However, 85% solubility at 1% concentra

tion agrees with the data of Philippot (106) who was able to obtain a 

maximal solubilization in the range of 75% to 95%. The data on guanid

inium hydrochloride showed even greater variability. The 50% solubility 

at a 4 molar concentration in this study was obtained by Bakerman and 

Wasemiller (33) at a 1.5 molar concentration. The 80% solubilization at 

a 6 molar concentration achieved in this study contrasted with 58% solu

bility at the same concentration reported by Juliano (105). A minimal 

amount of data is available on Triton X-100, although it is shown to be 

an effective agent in this study. Rosenberg and Guidotti in 1968 (18) 

found Triton did not solubilize lipid-extracted protein. The lack of 

data probably results from difficulties with protein quantitation caused 

by Triton interaction with reagents for protein assay. Complete solu

bilization of the membrane has been reported with this agent, but it was 

performed without quantitation.

The organic solvent systems reported to be effective for solu

bilizing erythrocyte membrane proteins were not evaluated in this study 

because of the great variability reported in the literature. The orig

inal approach described by Maddy in 1966 indicated that 90 to 95% of the 

protein could be solubilized by a butanol-water system. This contrasts 

sharply with the 15.3% reported by Bakerman and Wasemiller (33) and the 

20 to 35% by Poulik (34). The reasons for variability in solubilization 

will be discussed later in this paper.

Although no specific quantitative studies have been performed
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by combining SDS solubilization and gel chromatography as carried out in 

this study, several reports have suggested that SDS is adequate for solu

bilization before gel filtration. The use of SDS as part of a gel fil

tration system will be discussed at length in the following section.

Gel Filtration of Erythrocyte Ghosts 

The three major fractions obtained by gel filtration on a Sepha

rose 4B column eluted with 0.1% SDS have not been reported previously, 

perhaps because conditions for performing the chromatography have varied 

greatly from one study to another. Bakerman and Wasemiller (33), using 

Bio-Gel P-300, were able to separate the SDS solubilized membrane into 

only two peaks. The most similar data to these three fractions were re

ported by Rosenberg and Guidotti (18) using lipid-extracted membrane 

protein solubilized in SDS. They obtained three fractions, but the 

first appeared at the void vol'jme and the second peak was equivalent to 

fraction I. The third peak corresponded to a combination of fractions 

II and III reported in this study. However, rechromatography resulted 

in a single peak and may not actually correspond to combined fractions 

II and III. In 1971, Gitler (107) found five fractions by gel chroma

tography on A% Agarose columns in the presence of Brij 36T, a non-ionic 

detergent. The middle three peaks were equivalent to fractions I, II, 

and III. The first peak was at the void volume, and the last peak is 

similar to a peak found in this study when deteriorated ghosts were used 

for chromatography. In 1972, Kobylka et (54) reported a somewhat 

similar pattern for Sepharose 4B chromatography with 1% SDS for elution. 

The separation between fraction II and fraction III was not as good as 

we achieved, but a slight separation was present. Also in 1972, Carraway
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and Shin (108) solubilized ghost protein from which lipid had previously 

been removed and separated the proteins on Sepharose 4B in the presence 

of SDS. Three fractions were obtained with a different configuration 

than in this study, primarily due to the presence of a much larger frac

tion II peak. Gwynne and Tanford (l09) reported on the use of Sepharose 

4B to separate the different proteins. A very large fraction I peak was 

obtained but the fraction II and fraction III peaks were much smaller.

All of the protein was retarded except for a very small void volume peak. 

It is important to note that the protein solubilized by guanidinium hy

drochloride represented only 60% of the total membrane protein. Thus, 

gel filtration on the gel Sepharose 4B in the presence of SDS appears to 

be a satisfactory technique for separating proteins into their major 

molecular weight classes. Failure to perform the procedure in the pres

ence of SDS will result in a single peak at the void volume as shown by 

Green in 1967 (62). Most of the separations reported in the literature 

have not been as good as those obtained in this study. The difference 

is probably the result of variation in the conditions used for gel fil

tration.

As with this study, gels with lower exclusion limits, such as 

Sephadex G-200, have not been effective for gel filtration of ghost pro

teins. Poulik (34), using Sephadex G-200, was not able to obtain any 

peak other than the void volume. Lenard (50) used Sephadex G-200 in the 

presence of SDS to fractionate the ghost proteins. Most of the protein 

came off either at or closely adjacent to the void volume as was found 

here. No separation of the proteins into different molecular weight 

classes was possible. Blumenfeld ^  (57) used Sephadex G-200 to



154

separate water soluble proteins in an aqueous pyridine system. Again 

the bulk of the protein eluted either with or immediately adjacent to 

the void volume. Triplett et (llO) found all of the protein in the 

void volume using a Bio-Gel P-100 column eluted with 1% sodium sulphate. 

Therefore, it would appear that gels with exclusion limits lower than 

those of Sepharose 4B are not adequate for separation of ghost proteins 

by gel filtration.

Electrophoretic and Immiunologic Characterization 
of Erythrocyte Ghosts

More studies on the characterization of membrane proteins have 

been based on the use of polyacrylamide gel electrophoresis than any 

other single method. Comparing the results obtained in those studies 

with this study is difficult because of the many variations in technique. 

This study, based on the use of a 5% polyacrylamide gel with a buffer 

system containing relatively high concentrations of SDS and p-mercapto- 

ethanol, permitted the identification of 11 major protein bands and three 

carbohydrate bands. The multiple bands obtained by polyacrylamide gel 

electrophoresis have been reported many times in the past. Rosenberg 

and Guidotti (l8) using an SDS system with a 10% gel obtained anywhere 

from 15 to 25 protein bands. Lenard (50) reported 14 bands stained with 

Coomassie Blue, of which four appeared to be major components. In addi

tion, he found two major carbohydrate bands, one of which was associated 

with a glycolipid fraction. Several other protein bands stained lightly 

for carbohydrate, but the number was not specified. Trayer et ad. (Ill) 

in 1971 also found multiple bands using an SDS polyacrylamide gel system. 

Although there were some variations from one blood donor to another, they
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found a total of 17 different bands, of which three were major compo

nents. Two of the major components had a very high molecular weight, 

while the other major component had a molecular weight in the middle 

range of the membrane proteins. Fairbanks et in 1971 (52), by SDS 

polyacrylamide gel electrophoresis, found six major protein components 

and three major glycoproteins. The major glycoprotein band was noted to 

migrate to the same area as their major components III and IV, which is 

similar to the results obtained in this study. Kobylka e_t a]̂. (54) com

pared several different animal species and found multiple proteins in 

the erythrocyte membrane of all species including the human. Nine major 

protein bands could be identified on a cm gel. When a long (13 cm) 5% 

polyacrylamide gel was used to study human erythrocyte membranes, 11 

major components could be distinguished. That number agrees exactly 

with the number found in this study and the patterns obtained by gel 

scanning are quite similar. However, their study was different in that 

only one glycoprotein could be found. In 1972, Hamagachi and Cleve 

(112), comparing several mammalian species, found over 20 different pro

tein components with similar molecular weights in all species studied. 

They found only one major glycoprotein, although other minor bands also 

stained for carbohydrates. Consequently, on the basis of previous work 

and of this study, many different protein bands are present in the human 

erythrocyte ghost. Depending upon the individual investigator's inter

pretation, somewhere between six and seventeen bands are important com

ponents. In addition, at least one major glycoprotein is present and, 

perhaps, as many as three. Because of the complex nature of the protein 

components, consistent separation of the individual proteins does not
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appear to be possible by polyacrylamide gel electrophoresis of all RBC 

membrane proteins.

Hemagglutination inhibition studies demonstrating the presence 

of blood group A and M activity in the RBC ghost are in agreement with 

previous data. Although not reported in the Results chapter on a weight 

basis, comparison of blood group A and blood group M activities on a 

weight basis agreed well with results reported by Poulik in 1968 (34). 

Testing only for blood group A activity, Whittemore ^  ad. (64) always 

found at least a six-tube difference between the test and control assays. 

Thus, blood group activities in the RBC ghosts reported in this study 

are comparable quantitatively to previous reports.

Data on fractions I, II, and III and their reactions with cor

responding antibodies has not been previously reported. In fact, almost 

no data on the immunochemistry of human erythrocyte ghost proteins are 

available, except where specific antigenic components, such as blood 

group M, have been studied. Howe et al. (113) studied the antibodies 

produced against both a total hemolysate (obtained by hemoiyzing packed 

red cells) and the residue of the hemolysate which remained after cen

trifugation. Besides hemoglobin they found at least 12 antigenic compo

nents, five of which were identified as enzymes. In addition, virus re

ceptor activity as well as blood group A, M, and N activities could be 

demonstrated. Howe and Lee in 1969 (114) studied not only the antigenic 

components of the total hemolysate and post-hemolytic residue, but also 

the components of hemoglobin-free erythrocyte ghosts and purified virus 

receptor substance. Lyophilization with subsequent aqueous extraction 

separated the hemoglobin-free ghost material into an insoluble fraction
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and a minor soluble fraction. The soluble fraction contained at least 

four proteins, while the insoluble fraction contained the virus receptor 

substance. No further characterization of the insoluble fraction was 

possible. Thus, immunochemical identification of the various protein 

components of the erythrocyte ghost remains an area in which only tenta

tive efforts have been made.

Fractionation of Erythrocyte Ghosts by Aqueous Extraction 
Soluble Fractions ("Supernate")

To evaluate the effects of aqueous extraction on human erythro

cyte ghosts, various agents in aqueous solution were used to remove pro

teins from ghosts. As discussed in Results, the proteins removed by the 

different techniques were quite heterogeneous, although one agent did 

show some specificity. Distilled water has been shown to extract protein 

from hemoglobin-free erythrocyte ghosts, such as the work of Lauf and 

Poulik (lOl) who, using urea-mercaptoethanol starch gel electrophoresis, 

found a heterogeneous group of high molecular weight proteins. In con

trast to that, Harris (115) in 1969 could demonstrate only one major pro

tein by polyacrylamide gel electrophoresis after water extraction. Nei

ther system included SDS in the buffer, so aggregation may have produced 

the variation. Tétraméthylammonium bromide at 0.1 molar concentration 

was used by Reynolds and Trayer (86) to solubilize over 905̂  of the RBC 

ghost protein. SDS-polyacrylamide gel electrophoresis of the solubilized 

material produced a pattern of protein bands identical to the results ob

tained with intact ghosts solubilized in SDS. This finding contrasts 

sharply with this study, in which a highly selective removal of two pro

tein bands was found. The difference probably results from the use of
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different techniques for solubilizing the ghost proteins. Triton X-100 

was evaluated in this study because it was used in the method of Mazia 

and Ruby (41) for the preparation of hemoglobin-free RBC ghosts. The 

use of this agent could lead to partial solubilization of ghost proteins 

during preparation of RBC ghosts. In fact, a study by Hamaguchi and 

Cleve (1 1 2 ) demonstrated that ghosts prepared by the method of Mazia 

and Ruby contained fewer proteins than ghosts prepared by the method of 

Dodge et (32). Finally, the heterogeneous protein pattern obtained 

with extraction of ghosts by hypertonic sodium chloride solutions is in 

sharp contrast with the results obtained by other workers. Fairbanks 

et al. (52) removed approximately 4% of the membrane protein as a single 

protein called component VI with hypertonic saline. Carraway and Shin 

(108) also were able to extract a single protein which they called com

ponent VIII. Technical differences between this study and the cited 

works are not enough to explain the variable results. The number and 

type of proteins which can be extracted with hypertonic sodium chloride 

remain to be determined.

As discussed, the proteins which can be extracted into aqueous 

media from RBC ghosts vary with the agent used. Data in this study on 

extraction with hypotonic sodium EDTA followed by extraction with a di

lute base agree with the results obtained by Juliano and Rothstein (83) 

who extracted approximately one-half of the ghost protein with the same 

procedure. Earlier work by this same group (Hoogeveen ^  al_. (84)) demon

strated that hypotonic base solutions followed by hypotonic EDTA (which 

reverses the previous sequence) extracted approximately 47% of the pro

tein. Other reports on the use of hypotonic EDTA have shown less con
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sistent results. Marches! et _al. (45) extracted protein from the ghost 

membrane with low ionic-strength aqueous solutions containing EDTA but 

did not quantitate the amount of protein. Reynolds and Trayer (86) were 

able to solubilize 89^ of the human RBC ghost proteins in a 5 millimolar 

EDTA solution after 96 hours. Prolonging incubation caused larger amounts 

of phospholipids to be associated with the solubilized protein. Juliano 

et al. (56) demonstrated that changes in pH altered the amount of protein 

extracted into 1 millimolar EDTA solution. The yield increased from 5% 

at pH 7.0 to 45% at pH 12.0. The value of about 2 ^  at pH 9.5 agrees 

with the results of this study.

Quantitative studies have been performed on other aqueous sol

vents for both single and repeated extractions. Lauf and Poulik (lOl) 

extracted 12% of the protein from ghosts with a single exposure to dis

tilled water at pH 7.1, although a rather large amount of lipid phospho

rus was also removed. Hamaguchi and Cleve (87) removed a total of 42.8% 

of the ghost protein with a range of 48.1% to 52.2% by repeated extrac

tions with distilled water. Maddy and Kelley (85) used dilute acetic 

acid to extract proteins and obtained from 30 to 40% of the ghost protein 

with three extractions. Therefore, we conclude that substantial amounts 

(approximately 50%) of the ghost protein can be removed by extraction 

with hypotonic aqueous systems. Variations in the amount removed can re

sult from alterations in pH, osmolarity, time of incubation, and many 

other factors.

Compositional studies on the EDTA extracted material reported 

in this study are compatible with previous reports. Hoogeveen et al.

(84) found primarily protein with little lipid was removed by their sys-
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tern. Although the amount was small compared to the insoluble residue, A 

and B antigenic activity could be demonstrated in their soluble frac

tions. The same workers found no acetylcholinesterase activity in the 

supernates but total recovery was only 34%, all of which was in the res

idue. Other enzymes have been demonstrated in the EDTA extracts, includ

ing glyceraldhyde-3-phosphate dehydrogenase (Tanner and Gray, (79)), the 

only definitely identified protein of the erythrocyte ghost up to the 

present time.

Multiple protein bands were found to be extractable by hypotonic 

sodium EDTA in this study but the results reported in the literature have 

been less consistent. Hoogeveen et al̂. (84), Reynolds and Trayer (86), 

Hamaguchi and Cleve (112), and Maddy and Kelly (85) all found that mul

tiple protein bands were removed from the RBC ghost by repeated aqueous 

extractions. The extracted proteins had the same range of molecular 

weights as the proteins of the complete erythrocyte ghost. The many 

protein bands found by these authors contrast sharply with the data of 

other workers who could remove only high molecular weight proteins with 

hypotonic EDTA. Marchesi et (45), Juliano et al. (56), and Fairbanks 

et al. (52) reported that only two very large proreins were identifiaoie 

in EDTA extracts. The variation in results is difficult to explain ex

cept as the result of variation in technique. It is of interest that 

Trayer et (ill) repeated the technique of Marchesi et al. (45) as it 

was published and found that multiple proteins were removed by the pro

cedure. One can conclude, therefore, that extraction of the erythrocyte 

ghost with hypotonic EDTA solutions removes a large number of different 

proteins, in particular the high molecular weight protein components.
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These proteins have the same molecular weight range as the proteins of 

the intact erythrocyte ghost, but do not contain any glycoproteins. The 

significance of these proteins as a part of the erythrocyte ghost pro

teins will be discussed later in the text.

Little information is available on the immunologic identifica

tion of the EDTA extractable ghost proteins. Hoogeveen £t al_. (84) 

found that blood group A and B activity was removed by aqueous extrac

tion, but over 8(% of the total activity remained with the residue. The 

only purified or partially purified protein used to stimulate the pro

duction of antibodies has been "spectrin" by Marchesi et al. (45). A 

precipitating antibody was produced but the evidence presented as demon

strating its specificity was inconclusive. Consequently, immunochemical 

study of aqueous soluble ghost proteins has been superficial at best and 

offers no definitive information about the different protein components.

Fractionation of Erythrocyte Ghosts by Aqueous Extraction 
Insoluble Fraction ("Residue")

Compositional studies on the residue remaining after repeated 

aqueous extractions with hypotonic EDTA solutions is not available since 

this particular approach previously nas not been reported. Studies in

volving the use of various aqueous systems to extract the red cell ghosts 

have provided only a limited amount of information about the residue 

after aqueous extraction. For example, Rega et aĴ. (47) found that there 

was a difference in carbohydrate composition between the supernatant and 

the residue obtained by washing red cell ghosts with distilled water. 

However, a difference between their study and this study is that more 

sialic acid was present in the supernate than in the residue. Blumenfeld
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(36) found approximately equal amounts of protein in the supernate ob

tained by aqueous pyridine extraction and in the insoluble residue. In 

addition, the residue contained most of the organic phosphorus and cho

lesterol as did the residue in this study. However, a major difference 

was that she found all of the sialic acid in the supernate rather than in 

the residue. Lauf and Poulik (lOl), using a triple wash of the RBC ghost 

with distilled water, noted a partitioning of the sialic acid and phos

phorus in the residue after the multiple treatments. Hoogeveen et al.

(84) also found the lipid and sialic acid in the aqueous insoluble resi

due. In fact, their sialic acid values of 30 micrograms per milligram 

of protein and 49.2 micrograms per milligram of protein for the RBC 

ghosts and extracted residue, respectively, are essentially the same 

values as were obtained in this study for the same substrates. Similar 

results, although quantitatively less, were also reported in 1971 by 

Juliano and Rothstein (83) as well as Steck et al_. (53) with the use of 

fewer washes of the RBC ghosts than were used in this study. Limber 

et al. (116), using 5 successive washes with distilled water followed by 

homogenization, found only a slight decrease in protein concentration 

compared with the ghosts and essentially no change in phospholipid and 

carbohydrate composition. One can conclude that the changes in membrane 

composition produced by repeated washings with hypotonic aqueous systems 

in this study are similar to previous studies using aqueous systems with

out homogenization. The ability to obtain consistent protein and lipid 

compositions for the residue after aqueous extraction suggests that the 

final composition may result from a specific characteristic of the RBC 

membrane.
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The retention of acetylcholinesterase activity in the residue 

remaining after repeated aqueous extractions has previously been noted 

by several workers (Hoogeveen et (84), Lauf and Poulik (lOl), 

Hamaguchi and Cleve (87), Heller and Hanahan (76), Bramley et (102)). 

The other enzyme, NADH;(acceptor) oxidoreductase, retained in the resi

due after extraction has been less well studied. Zamudio et (77) 

found that exposure of RBC ghosts to solutions of progressively lower 

osmolarity increased the enzyme activity per milligram of protein. Our 

failure to demonstrate an increase in enzyme activity probably resulted 

from loss of enzyme protein at each extraction step. Complete absence 

of glycolytic and hexose monophosphate shunt enzymes in the residue was 

expected since the glycolytic enzymes are soluble components of the cyto

plasm. Thus, two enzymes, acetylcholinesterase and NADH:(acceptor) ox

idoreductase, previously reported to be associated with erythrocyte 

ghosts, were also found to be present in the residue after repeated ex

tractions with aqueous solvents.

A limited amount of information is available on the amino acid 

composition of aqueous-extracted erythrocyte ghosts. Blumenfeld (36) 

found the amino acid composition for both her starting RBC ghosts and 

the insoluble protein remaining after aqueous pyridine extraction to be 

similar to our results for RBC ghosts and residue, respectively. In ad

dition, the hexosamine content was almost identical to our data for 

ghosts. The values for the starting membranes in our study may have 

been a result of the fact that a total of six washes was used to remove 

hemoglobin before exhaustive dialysis against distilled water to remove 

inorganic phosphate. A substantial amount of membrane protein may have
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been lost as a result of the very extensive preparation of the RBC ghost. 

The amino acid composition found for the glycoproteins as reported by the 

same group of workers (Blumenfeld (36); Blumenfeld et al. (57); 

Zvilichovsky et (58)) was substantially different than the amino 

acid composition of our extracted residue, especially for threonine, 

serine, and glutamic acid. One can conclude, therefore, that the EDTA- 

extracted residue has a substantially different amino acid composition 

than the major glycoproteins, which constitute the major group of resi

due proteins. Other major proteins must be present in the residue in 

order for a difference in the amino acid compositions for the residue 

and the major glycoproteins to be found.

The conversion of erythrocyte ghosts from a biconcave disc to 

multiple small vesicles has been reported by many different authors.

Dodge et (32) in their study on hypotonic lysis of erythrocyte ghosts, 

clearly demonstrated that a reduction in the osmolarity of the lysing 

solution to 0 imOsm resulted in the formation of microvesicles. Reynolds 

and Trayer (86) found that 5 millimolar EDTA was capable of producing 

the same physical change. Loss of protein from the inner surface of the 

membrane during this process was demonstrated by Nicolson ^  jil. in 1971 

(103). The electron photomicrographic changes reported in this study 

are compatible with what has previously been found.

No gel filtration data are avilable on the proteins and phos

pholipids of EDTA-extracted residue. Rosenberg and Guidotti (49) removed 

52^ of the protein of the ghost by sequential extractions with 1 mM so

dium EDTA containing 50 mM p-mercaptoethanol and 0.8 M sodium chloride. 

The remaining protein was freed of lipid by ethanol-ether extraction
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and solubilized in SDS. The delipidized protein was fractionated on a 

Sephadex G-200 column in the presence of 1% SDS, by which three major 

and two minor protein peaks were found. This is substantially different 

from our results using Sephadex G-200 where very little separation into 

different protein groups could be obtained. Gel filtration data using 

Sepharose 4B for the EDTA-extracted ghost residue has not been previously 

reported.

The proteins remaining with the residue after repeated aqueous 

extraction of erythrocyte ghosts have been more difficult to identify. 

Hoogeveen et £l. (84) demonstrated that after two aqueous extractions of 

RBG ghosts, the residue contained five protein bands of relatively low 

molecular weight compared to the proteins in the supernate. Juliano and 

Rothstein (83) found a similar loss of high molecular weight proteins 

with a retention of the lower molecular weight proteins in the residue 

after aqueous extraction. No staining for carbohydrate-containing pro

teins was carried out in either study. Similar results were found by 

Fairbanks £t al̂. (52) using warm 0.1 mM EDTA (pH 8) for removal of RBC 

ghost proteins. There was a substantial reduction in the number of bands 

as compared to the whole ghost and protein bands CM-1, CM-2, and CM-5 

(using our classification) were the most prominent protein bands. An 

extension of their work was reported by Steck (ll7) using guanidinium hy

drochloride to treat erythrocyte ghosts. Protein staining of the residue 

revealed almost complete removal of the highest molecular weight proteins 

and only one major protein band (equivalent to our CM-2 and CM-3) was 

retained after the treatment. The lower molecular weight proteins were 

not well-defined. However, he did identify the four carbohydrate peaks
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found in this study. The highest molecular weight carbohydrate band ap

peared to be identical to the major glycoprotein band of the RBC ghosts.

Limber et ad. (116) used repeated distilled water extractions 

to remove RBC ghost proteins. When the protein band patterns of ghosts 

prepared from normal RBC's and from hereditary spherocytosis RBC's were 

compared, a band designated as C was absent frequently from the ghosts 

of hereditary spherocytosis, although the finding was not consistent.

Also using a distilled water extraction, Hamaguchi and Cleve (87) found 

a reduction in the high molecular weight classes and an increase in the 

lower molecular weight classes for the residue proteins. Consequently, 

it appears to be clear that only a limited number of proteins remain 

after repeated aqueous extraction of the erythrocyte ghost. The proteins 

removed from the erythrocyte ghost during the process primarily are high 

molecular weight proteins, although all molecular weight classes of the 

ghost proteins are represented. The proteins remaining in the residue 

itself consist of at least five major proteins and three glycoproteins. 

Whether or not the bands which stain for carbohydrate also stain for pro

tein is yet to be determined.

Immunochemical data on aqueous extracted residues are sparse. 

Hoogeveen et (84) found blood group A and B activities in the resi

due but performed no other immunologic studies. Lauf and Poulik (lOl) 

demonstrated that distilled water treatment of RBC ghosts did not remove 

blood group M activity from the ghost. Both observations are consistent 

with the data reported in this study. Unfortunately, immunodiffusion has 

not been used to elucidate the nature of the various proteins which are 

in the residue. The only related study was on the glycoprotein component,
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which was shown by Howe ^  £l. (118) to be a single entity immunochemi- 

cally independent of the technique used to isolate the material. With 

the exception of that protein, the immunology of the residue proteins 

remains unexplored.

Implications

Several general conclusions can be drawn about the proteins of 

the human erythrocyte ghost. Many different proteins are present in the 

RBC ghosts when it is prepared by hypotonic lysis, the most common method 

for ghost preparation. These ghost proteins can be divided into three 

major groups by molecular weight as shown by the gel filtration data. 

Approximately one-half of the protein is aqueous soluble and is the group 

of proteins which is responsible for most of the ghost protein hetero

geneity. The other one-half, which is not aqueous soluble, is less het

erogeneous and contains almost no high molecular weight proteins. This 

group of proteins, which are intimately associated with the ghost lipid, 

seem to consist of five major proteins and three major glycoproteins. 

Enzymatic (for example, acetylcholinesterase) and immunologic (for ex

ample, blood group M) functions are associated with this protein group.

There is no evidence that lipoprotein units are found in the 

erythrocyte ghosts on the basis of this study. Much of the data support

ing the presence of lipoprotein subunits assumes that almost all of the 

protein is associated intimately with lipid. It is hard to reconcile 

that concept with the clearcut evidence that one-half of the ghost pro

tein is readily soluble in an aqueous media. The Danielli-Davson con

cept of a lipid bilayer covered on both sides with protein is difficult 

to reconcile with the aqueous removal of proteins from the ghost membrane.
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especially when the removal has been shown to occur on only one side of 

the membrane by electron microscopy. The fluid mosaic model of Singer 

is more compatible with the findings reported here as well as with data 

previously reported on the protein composition of the erythrocyte ghost.

Consequently, a classification system for the ghost proteins 

can be developed to assist in the further fractionation and character

ization of erythrocyte ghost proteins. A schema of the classification 

system is given in Figure 49. Washed human red blood cells when exposed 

to hypotonic aqueous buffer systems in the range of 20-40 ideal millios- 

molar and at the neutral pH release both hemoglobin and the cytoplasmic 

enzymes, such as pyruvate kinase. Repeated exposures will remove almost 

all of these two types of proteins. The end product of the washing pro

cedure is the erythrocyte ghost, a stable membranous structure consist

ing of lipids and protein. Exposure of RBC ghosts to hypotonic aqueous 

buffer systems containing a chelating agent, but at an osmolarity less 

than 10 ideal milliosmoles and a basic pH, extracts a different group of 

proteins which are the aqueous soluble membrane proteins and are normally 

located on the inner surface of the ghost membrane. This group of pro

teins has been designated as Group I membrane proteins and consist of 

the high molecular weight proteins called "spectrin" and multiple en

zymes which could not be removed during osmotic lysis. Two possible 

mechanisms exist to explain why these proteins are now soluble in aqueous 

media when they had previously not been soluble. The first possibility 

is that the proteins are bound to the membrane by a calcium bridge which 

can be removed by a chelating agent, thereby releasing the protein. The 

other possibility is that the process of endocytosis is involved. This



Washed RBC's

Exposure to hypotonic aqueous buffer 
system (20-40 imOsm, neutral pH)

Soluble Fraction 
Hemoglobin and 

Cytoplasmic Enzymes

 1
Ghosts

Exposure to hypotonic aqueous buffer 
system containing chelating agent 
(less than 10 imOsm, basic pH)

;------
Soluble Fraction 

Group I Membrane Proteins 
(Spectrin and Non-Lipid-Associated Enzymes)

 }
Residue O '

Exposure to miscible aqueous- 
organic solvent mixture 
(acidic pH)

Soluble Fraction 
Group II Membrane Proteins 

(Glycoproteins)

Insoluble Fraction 
Group III Membrane Proteins 
(Lipid-Associated Enzymes)

Figure 49. Classification system for erythrocyte ghost proteins.



170

process involves invagination of the outer membrane surface into the cell 

interior. During the process the membrane reseals to form an "inside- 

out" vesicle and exposes the inner surface to the external environment.

The proteins are then free to be released directly into the fluid environ

ment. Neither mechanism appears to be solely responsible for the protein 

release and a combination of the processes is probably the explanation 

for the phenomenon.

The insoluble product of the process is a residue containing the 

lipid-associated proteins which are fewer in number. These proteins can 

be further broken down by exposing the residue to miscible aqueous or

ganic solvent mixtures. This process will solubilize the membrane gly

coproteins leaving the other proteins such as the enzyme proteins in an 

insoluble lipid-protein mixture. The glycoproteins contain the blood 

group activities and are designated as Group II membrane proteins. The 

proteins still associated with the lipid are called the Group III mem

brane proteins and probably contain the enzymes intrinsic to the mem

brane, such as acetylcholinesterase and Na^, K"*" adenosine triphosphatase.

Thus, the proteins of the erythrocyte ghosts appear to fall in

to several characteristic groups based on their fractionation. However, 

these same groups also relate to specific cellular functions. The aque

ous soluble membrane proteins appear to be involved in maintaining the 

biconcave disc shape of the erythrocyte, probably through a closely 

linked enzyme system. The membrane glycoproteins are of major import

ance in that they are the immunologic markers for the erythrocyte and 

play a major role in cell recognition phenomenona. Finally, the enzymes 

which are most intimately associated with the lipid appear to play a
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major role in the transport of ions, especially cations, across the mem

brane. Much remains to be done before a complete understanding of all 

ghost proteins and their function can be defined.



CHAPTER VI

SUMMARY

The proteins of the human erythrocyte ghost were completely sol

ubilized by the addition of sodium dodecyl sulfate (SDS), an anionic de

tergent. Eleven major proteins and a variable number of minor proteins 

were found in the ghost by SDS-polyacrylamide gel electrophoresis (PAGE). 

The solubilized proteins were fractionated by gel filtration on Sepharose 

4B, using buffered 0.1% SDS for elution, and three major peaks (Fractions 

I, II, III) were obtained, indicating that three major molecular weight 

classes of proteins are present in the ghost. Each class of proteins 

was heterogeneous by PAGE, although the distance of migration for the 

major proteins of each fraction corresponded to their approximate molec

ular weights by gel filtration. Immunodiffusion studies also demonstrated 

their heterogeneity.

By repeatedly extracting ghosts with aqueous hypotonic EDTA, 

over one-half of their protein could be removed. The extracted protein 

contained proteins, which did not stain for carbohydrate, having a range 

of molecular weights the same as that for all ghost proteins. However, 

the major aqueous-soluble proteins consisted primarily of the high molec

ular weight ghost proteins. Glycolytic enzymes and blood group A activ

ity were found in this fraction. From immunodiffusion studies, these

172
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proteins were shown to elute in Fractions I and II by gel filtration.

The proteins remaining after aqueous extraction were associated 

with the ghost lipid as microvesicles. Gel filtration on Sepharose 4B 

separated these proteins into two peaks (Fractions B and G) with almost 

no high molecular weight protein (Fraction A) present. Five bands which 

stained for protein and three bands which stained for carbohydrate were 

demonstrated by PAGE. Enzyme activity (e.g., acetylcholinesterase) and 

blood group activity (e.g., blood group M) previously shown to be inti

mately associated with membrane lipid were found in this fraction. Amino 

acid analysis suggested that the five major protein bands had different 

amino acid compositions.

These findings led to the conclusion that three major protein 

groups are present in the human erythrocyte ghost. The first group 

(Group I) is water soluble, accounts for about one-half of the ghost 

protein, and contains most of the high molecular weight proteins. The 

second group (Group II) is associated with the ghost lipids and contains 

all of the protein-bound carbohydrates. The third group (Group III) is 

also associated with the ghost lipids, contains no carbohydrate, but is 

responsible for those enzymatic activities which are an integral part of 

the ghost membrane.
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