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CHAPTER I 

INTRODUCTION 

Rapidly expanding technological fields of today have created a 

demand for new and better methods of removing heat from various types 

of equipment. These methods usually require the knowledge of the heat 

transfer properties of particular fluids and materials at high temp

eratures and pressures. This thesis has two objectives which are co

linear with the recent demands on the science of heat transfer; to 

investigate the characteristics and feasibility of a thermal syphon 

type apparatus, and to investigate the heat transfer characteristics 

or Freon .12, dichlorodifloromethane, operating near its critical l!ltate 

in the thermal syphon type of apparatus. Freon 12 is chosen al!I the 

fluid to be investigated because of its low critical temperature and 

pressure and the availability of data on its thermodynamic and: physical 

properties. 

The thermal syphon type apparatus is of interest because it 

requires no circulation pump so that it could prove or l!ignificant 

practical value in an application ~here containment or the thermodynamic 

medium i'I of prime concern. One application for the thermal l!yphon 

could be the cooling of a nuclear reactor. 

The critical region is of interest becaul!le of the high heat 

tran19fer film coefficients which may be expected in this region. A 

qualitative discussion of the critical state will verify this expectation. 
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In the regions having pressures lower than the cr i tical value , 

boiling may take place . Boiling usually origina t es wi t h t he f ormation 

of small vapor bubbles on the heat transfer surface . After t hese bubbles 

are formed they may interact vith neighboring bubbles until t hey are 

eventually dissipated into the body of the fluid s tream. The gr eater 

the surface tension the greater may be the size of the bubbles. The 

greater the size of the bubbles the leas the freedom of movement of 

these bubbles and the less the freedom of movement the smaller i s 

the rate of energy or heat transfer. 

As the critical point is approached the surface t ension decreases. 

With this decrease in surface tension smaller bubbl es whi ch dis

seminate very rapidly are formed on the heat transfer surface. At the 

critical point the surface tension becomes zero and hence a very large 

number of bubbles is formed. _These bubbles have a correspondingly 

rapid dissipation into the body of the fluid stream. Therefore , very 

high heat transfer rates may be expected in the immediate vicinity 

of the critical state. 

If a large quantity of energy is removed by the fluid stream i ts 

caloric properties will be changed appreciably so that it would not be 

possible to operate exactly at the critical poi nt. Therefore , the heat 

transfer rates near the critical state will depend, to a certain extent, 

on the total quantity of energy removed from the heat transfer surface. 

It will be seen that the theory of the thermal syphon type of 

apparatus does not predict abnormally large values of the heat transfer 

film coefficient in the critical region. This apparent paradox is in 

contrast to measured values of the film coeffi cient presented by previous 

investigators. (1), (2). However, the thermal syphon type of apparatus 



is peculiar in that the flow rate of the fluid is a direct function of 

the heat trans.fer rate. The relationships bet\leen the heat transfer 

rates and the flow rates are quite explicit and they are verified ex

perimentally in this thesis. 

3 



CHAPTER II 

PREVIOUS INVESTIGATIONS IN THE CRITICAL REGION 

Only a few investigations into the heat transfer characteristics 

of nuids operating near the critical state have been conducted. The 

el!lsential features of these investigations will be discus sed in this 

chapter. 

Dickenl!lon and Welch (1) have established the heat transfer char-

acteristics of water operating under torced convection in the critical 

and aupercritioal regions. They found that for temperatures below 660°F 

their data could be correlated by the conventional relation 

~;, ~ Q.023 ( ,~/'" &. t' ('l~ r-4 
where 

~ • heat transfer film coefficient, 

cl w: tube diameter, 

-l- thermal conductivity, 

~ • specific weight of fluid, 

LL=- average nuid velocity, 

f- "=- d)'II.B.mic viscosity, 

C,r =- specific heat · at constant pressure. 

At higher temperatures they did not establish a correlation in terms of 

dimensionless groups. Instead, they found that the best method to accu-

rately present the data was in the form of a plot of film conductance 

J. 
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~ as a function of the surface temperature of the heat transfer tube . 

The investigators felt that this method of correlation was preferable 

over a dimensionless correlat ion because of inadequat e property data 

in the critical region. 

In the plots of ~ as a function of l ~ presented by Dickenson 

and Welch the values of the film conductance increase to extremely large 

values as the critical temperature is approached. The authors present 

data for pressures of 3500 psia and 4500 psia and for both of t hese 

pressures this large increase of the film conductance i s present 

although for the 3500 psia points it i s more pronounced. For surf ace 

temperatures above 800°F Dickenson and Welch found that their data 

could be correlated vi.thin ten percent by 

~ 5l .. -C 'i -= constant :s 0.00189, 
f ~ 

where :St. is the Stanton number. In the critical region ( 650°F to 80o0 r) 

the authors found a marked decrease in the Stanton modulus by a factor of 

approximately three. 

The range of variables covered in the experiments of Dickenson and 

Welch were: 

Temperature : .. 

Mass Flow Rates : 

Heat Flux: 

220°F to l000°F 

1.6 X 106 to 2.5 X 106 lb/hr-ft2 

280,000 t o 580,000 Btu/hr-ft2 

Doughty ~nd~Drake (2) have investigated free convection heat 

transfer from a horizont al pl atinum vi.re to Freon 12 near the critical 

state. They found that in t he superheated vapor r egion away from the 

critical state their data could be correlated 'Within fifteen percent by 



the curve recommended by McAdams (3). In the critical region they found 

that the heat transfer coefficients i ncrease tenfold. Because of inad-

equate property data the authors found that a correlation in terms of 

dimensionless groups would not suff ice. For thi s reason they presented 

their results as functions of r educed volume and reduceµ pressure 

defined by: 

Lr 
reduced volume -= - -lfc. 

reduced pressure = f - -10 'J'=le - I R. • 

6 

Within three percent of the critical reduced char ge they found that 

the heat transfer film coefficient increases apparently without limit. 

This same increase occurs within a range of approximately one percent of 

the critical reduced pressure. According to the data of lbughty and 

Drake,' heat tran&fer coefficients as high as J50 Btu/hr-ft2-°F may be 

expected in the vicinity of the critical point. 

Schmidt, Eckert, and Grigull (4) investigated the heat transfer char-

acteristics of ammonia in a thermal syphon type apparatua. The t heory 

developed by the~e authors is presented in Chapter IV. Due to l ack of 

information on the properties of ammonia near the critical state the 

authors were not able to verify their theory experimentally. ' The 

essential parts of their data presentation were plots of an apparent 

thermal conductivity defined by 

- CfJ-l 
-{_ o-. = L:d: . .b A , 

where 

t = heat flow per unit time, 



..£ - one-half of the circumferential length of t he loop, 

~tb-= bulk temperature difference in the loop, 

A: inside cross 'Sectional area of the tu'be . 

A discussion of this quantity as well as t he det ails of t he 

analysis of Schmidt, Eckert, and Grigull will be given in subsequent 

chapters. 
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CHAPrER III 

DESCRIPTION OF THE TEST APPARATUS 

A test apparatus was constructed to investigate heat transfer 

characteristics of Freon 12 operating near the critical state. The 

apparatus operates on the same basic principle as the apparatus used in 

the experiments of Schmidt, Eckert, and Qrigull (4). The apparatus to be 

discussed in this chapter included several refinements over the apparatus 

or these authors. These refinements were made in order that more 

specific data could be collected and hence a better correlation of the 

data might be realized. The refinements in the apparatus were: 

1. Provisions for measuring the mass flow rate of the fluid. 

2. Provisions for heating the test section directly instead or 

wrapping it w1th heater wire. 

3. Provisions for measuring the test section wall temperatures 

so that a heat transfer film coefficient could be calculated. 

A schematic of the apparatus is shown in Figure 1. The fluid is 

heated in the test section. Due to the decrease in fluid density with 

an increase in temperature the fluid rises in the let't side of the loop. 

Similarly, the fiuid is cooled in the water heat exchanger and f'alle 

in the right side of the loop. Hence., a circulation is established 

due to the difference in temperature on each side ot' the loop. The 

principal components indicated in the schematic are: (A) the beat tranef'er 

loop proper, (B) the test section and beat transfer element, (C) the power 

supply and control, (D) the water heat exchanger and control, and 
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(E) various instrumentation facilities. Each of these components 'Will 

be described se:parately. 

-A. The Heat Transfer Loop Proper 

10 

The heat transfer loop proper was constructed of AISI type 304 

stainless steel tubing having a 0.500-in. outside diameter and a 0.430-in. 

inside diameter. All connections were Swagelock type s tainless steel 

fittings. 

B. The Test Section and Heat Transfer Element 

The test section was also constructed of type 304 stainless steel 

tubing and was heated by passing an electric current through the tube 

itself. The details or the connections to this tube are shown in Figure 2. 

A photograph of the installed section is given in Plate I. 

The heat transfer loop was insulated 'With a one-eighth inch layer 

or asbestos tape followed by a one and one-half inch la7er of Fiberglass 

blanket. The loop was then wrapped with a layer or aluminum toil to 

reduce radiative heat loss. 

C. The Power Supply and Control 

The power supply consiated of a General Eleotrio type K testing 

tranaformer rated at eight KVA. The primary voltage was 220 volte and 

the aecondary was so arranged that tapa of 2, 4, or 8 volte oould be 

used. A General Electric type MIRS induotion voltage regulator was 

used to vary the primary voltage within approximately plus or minua 

fifty percent of the nominal value. 

D. The Water Heat Exchanger and Control 

A detail drawing of the water heat exchanger is shown in Figure 3. 

As shown, there are two sections for the cooling water flow in order that 

more precise control on this flow could be achieved. One section ie 
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controlled entirely by a manually operated one-half inch globe valve. 

The other section is controlled by a manually operated one-half inch 

globe valve connected in series with a Minneapolis-Honeywell model K930A 

motorized valve assembly. The motorized valve assembly is actuated by a 

Mf.nneapolis-Honeywell circular scale "Electronik" proportional control 

indicating potentiometer. The controller senses the out.put of a thermo

couple placed on the outside of the tube at the entrance to the test 

section and compares . ~his output with a manually adjusted set· point. 

As a result of this comparison the motorized valve is opened or closed 

to mainta.in a set point temperature at the inlet to the test section. 

A wiring diagram of this arrangement is shown in Figure 4. 

E. Various Instrum.entation Facilities 

The inatrumentation for the test apparatua will be deaoribed in 

reapeot to the tour ba.aic q,uanti tie a which were to be measured: (l) 

temperature, (2) pre11ure, (3) eleotrioal input, and {4) ooolinl water 

!'low. 

1. Temperature Instrumentation 

The tube wall temperature, !'or the teat 1eotion were obtained by 

meaaurin, the outputs ot No. )0 gage iron-conatJntan thermooouplea 

which wre 1pot-welded to the outside of' the teat section tube, The 

locations of' these thermocouples are ahown in Figure 2. Two thermocouple• 

were installed at each location, one on either side of the tube. 

During the initial testing of the apparatus the outputs of the thermo

couples on both sides of the tube were measured separately and it was 

fowid that they did not differ by more than one degree Fahrenheit. In 

the light of this minor difference only one of each of the pairs "18.S 

used for the determination of the outside wall temperature. 
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The fluid bulk temperatures were obtained at the locations shown 

in Figure 1. No mixing chambers were used since such an arrangement 

would cause an appreciable pressure drop which would in turn directly 

affect the heat transfer characteristics of the loop. The thermocouples 

used for measuring the fluid bulk temperatures were Minneapolis

Honeywell 11Megopak" type iron-constantan thermocouples sealed in a one

sixteenth inch diameter stainless steel tube. These were inserted into 

the line using a Swagelock one-half inch tee with a.n appropriate side 

fitting to seal the assembly. This arrangement is shown in Figure 5. 

Several thermocouples were inserted in the insulation surrounding 

the loop so that a check could be made on the heat loss to the environ

ment. 

16 

The differential temperature across the cooling water heat exchanger 

was measured by means of two thermopiles consisting of four junctions 

of No. 30 gage iron-constantan thermocouple wire. 

The outputs of the bulk temperature and cooling water t~ermocouples 

were measured with a Rubicon type B precision potentiometer. A Leeds and 

Northrup model 2430-A galvanometer was used in conjunction with this 

potentiometer. 

The tube wall temperatures were measured with a Minneapolis

Honeywell model 153X65 multipoint temperature recorder when the temper

atures were below 6oo°F. Above 6oo°F the Rubicon potentiometer and a 

selector switch were used. One set of the wall thermocouples was con

nected to the recorder while the other set was connected to the 

potentiometer so that either of the two methods could be used. 

All of the wall thermocouples were wrapped one and one-half turns 

around the tube to minimize any conduction errors. The thermocouples 
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were then secured in their position by wrapping them w1.th glass tape. 

2. Pressure Instrumentation 

18 

The schematic of the pressure instrumentation is shown in Figure 1. 

A Heise bourdon tube pressure gage having a scale graduated in one psi 

increments from Oto 1000 psi was used t o measure the system pressure. 

As sho'Wil in the schematic, this pressure is measured at the entrance 

to the test section. The Heise gage had a calibrat ed accuracy of 0.1% 

of the full scale reading. 

The flow rate of the fluid in the heat transfer loop was measured 

by recording the pressure drop across a calibrated venturi. A detailed 

drawing of this venturi is sho'Wil in Figure 6. The pressure drop across 

the venturi ws measured w1.th a Barton model 200 bellows type differential 

pressure gage graduated in increments of 0.2 i nches of water from zero 

to twenty inches. The accuracy of this instrument is 0.5% of the full 

scale reading. 

All pressure taps coming from the apparatus were cooled by means 

of the line coolers shown in Figure 5 to insure that the instrument 

lines were always full of liquid. 

3. Electrical Instrumentation 

Provisions were made on the control panel for i ndicating electr143al 

meters and connections for auxiliary precision meters. The details of 

these connections are shown in Figure 7, The indicating meters were 

Triplett types. The precision meters were a General Electric AC voltmeter 

type P-3, 0-15 or 0-30 volt range, accuracy-0.2%, and a General Electric 

AC ammeter type AP-9, 0-1 or 0-2 ampere range, accuracy-i%. 

Two model C universal current transformers manufactured by the 

Esterline-Angus Company were used in conjunction with the above ammeter. 
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4. Cooling Water Flow Measurement 

Cooling water f low to the water heat exchanger was measured by 

recording the time required to collect a certain quantit y of the cool ing 

water. Tpe discharge from the heat exchanger was di vert ed f rom t he drain 

to a weighing tank by means of two solenoid valves as s ho1JI1 in Figures 1 

and 4. As shown in Figure 4 electrical provis ions wer e made s o t hat when 

the flow of water to the we ighing tank was started an el ectr ic t imer w s 

started. Correspondingly, Yhen the water we again all o,.,.ed to f l ow t o t he 

drain the timer was stopped. 

The heat transfer fluid used in the thermal syphon loop w s Freon 12, 

dichlorodifloromethane, a product of the E.I. du Pont de Nemours Company, 

Inc. The speci fications as furnished by the manufacturer (5) are : 

Maximum water content, plJ!l by weight 10 

Maximum non-absorbable gas, 

percent by volume in the vapor 

Boiling point at one atmosphere pressure , OF 

Maximum boiling range, °F 

Maximum high boiling impurities, 

percent by volume 

Chloride content 

The critical constants for Freon 12 are : 

t 0 = 233.2 °F 

Pc== 596.8 psia 

V C ::: 0 o 02870 1 bm/ ftJ 

1.5 

-21.6 

0.5 

0 . 01 

None 

Front and rear views of the comple te t est apparatus are sho\lll in 

Plates II and III. 
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CHAPTER IV 

THEORY OF THE THERMAL SYPHON 

Bef ore developing the theor y f or the thermal syphon type apparatus 

it i s well t o r evi ew t he general behavi or of t he properties of a fluid 

in the vicinity of i ts criti cal point . In t hi s way, the derived 

r e l a t ionshi ps fo r the thermal syphon may be considered in their pr oper 

per s pect i ve. 

The t r ends of t he proper ties of a flui d near the critical s t a t e 

a r e: 

~ 
t ( ~ u-J -
u- oT 1" 

C = 1' ( ~~ )'f 00 

viscosi t y becomes indeterminate , 

thermal conduct i vi t y becomes indetermi nate , 

surface t ension - ----'I-- 0 0 

The hypot hes i s that t he viscosity and thermal conduct vity become 

i ndeterminat e i.s taken i n cons iderat i on of the gener a l i zed correl a tions 

for the se propert i es a s pr es ented by Comings and Egly (6) a nd Comings 

and Nathan (7) . In these generalized correlati ons t he vi scosit y and 

t hermal conducti vity may change by one hundr ed percent across the 

cr itical re gion. This is anal ogous t o the change that t akes place acr oss 

t he saturati on region f r om the saturated l i qui d to t he satura t ed vapor. 
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The effe ct of t he above trends on the operati ng characteristics of 

the thermal syphon will be discus sed i n subs equent paragraphs. 

The original development of t he theory fo r the thermal syphon was 

given by Schmi dt, Eckert , and Grigull (4). The initial development here 

follows closel y t hei r method of attack . An expansion of the theory of 

t hese a uthors 'will be given in t he latter sections of t he analytical 

development . 

A schema.tic diagram of the thermal syphon is shown in Figure 8. 

The dri ving pressure due to the diffe r ence in flu d density on each side 

of t he l oop is 

where 

~= verti cal distance betwe en center of tes t sect i on and 

center of heat exchanger, 

O = specif i c weight of the fluid i> 

'tm= mean specifi c we ight of fluid evaluated at the arithmetic 

mea n bulk temperature in the t hermal syphon l oop , 

IV-1 

~me mean volume coeff i cient of expansion evaluated at the arith

metic mean bulk t emperature . 

The heat absorbed by the f l uid is given by 

IV- 2 

or 

IV-3 
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Schematic of Thermal Syphon 
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wher e 

total heat added in the heating s ection per unit t ime, 

weight rate of flow of flui d i n t he thermal syphon, 

s pecifi c heat a t cons t ant pressure, 

i ns i de cross sectional area of the tube, 

u.. == mean fluid velocity . 

An apparent thermal conductivi ty may be defined by 

IV-4 

where J.. is one-half t he circumferential length of the heat transfer 

l oop. Then 

IV-5 

The pressure differ ent i al due t o t he difference i n fluid density 

i s balanced by t~e fric t i onal pressure l oss. The f r i ctional pressure loss 

may take one of two forms . For laminar flow 

) 

wher e 

)J---==- dynamic viscos i t y evaluated at t he arithmetic mean bulk 

temperature. 

For turbulent flow the Bla si us l aw 

IV-6 

IV-7 

is r ecommended (8) , where i i s the gravitational constant. In either case 

a dimensionles s ratio of --fe..~/"l may be formed, where -k., i s the thermal 

conductivity evaluated at the arithmet ic mean bulk t emper ature. 
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For the turbulent case 

IV- 8 

IV-9 

and 

IV-10 

so that 

IV-11 

Combining equations IV-10 and IV- llp 

IV-12 

where 

Ar =~= Prandtl number 

and 

t 3 1. 
_, <a@MCl,t..bcl ~ff\ 

6rb r'a, C Grashof number evaluated at the bulk 

t emperature differ ence. 

In the l ami nar case the expression which is equi val ent to 

equation IV-12 i s 

"t = ~4 (6~b) (Pr- J (~/J) . IV-13 
-

Equations IV- 1 and IV~2 may be used to extend the a nal ys is of 

Schmidt, Eckert, and Grigull to a formulation f or t he heat transfer f ilm 

coefficient i n the heat ed section . This coefficient is defined by 



where 

A&.-= '1T' cl;_ l-t _ surface area of the heat transfer surface, 

.Qt= length of the t est sect i on tube . 

For the turbulent case the pres sure balance gives 

t. v._&.. -) '.14 u.!" l 
0. '316 ( ~ ~Vvi ¥ -= 6" '( m ~t b ~ vY' , 

Solving f or t he bulk t emperature diffe r ence the r elation 
r_'6,.,., u.&. \- V4 -2 

_ 0.~ I~ \ )J- ) t.1..l 
- '} ct.}~ ~ 

i s obtained. Correspondingly , 
_j') ) - '/4 _ o, a 1eo ( ¥?-tA..cx. u..,, ,l 

i - td_~~M • 

Hence , and expression f or t he heat t ransfer film coeff icient may be 

written as - '/ 
4 

-ft_= 0,:, I lo ( ~ ~ ~ ) u.'"'). 'i"' A', l.\.. c.,f 

d' &. 6' ~ rYI AJ., .6-t f 

29 

IV- 14 

IV-15 

IV-16 

IV-17 

IV-18 

IV-19 

IV-20 
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Introducing Gr-+ = -' 

~= 

- 'J+ 3 3 ( )' Mu_ & ) ll
3 ~~ J_ C:e 

_o_. o_,9 __ r_G_v-_f __ ,,,u-_ z __ ( ~J ( ~) . IV- 21 

This expression may be fur t her s i mplified by the introduction of the 

Nusselt, Prandtl , and Reynolds numbers so that 

11
/ 4 -

1 (.J.. ) ( cl) ~u. = O . Oi 9 (Re) (Pv) ( 6 q) it 1 , 

where 

~u..= ~-=- Nus selt number , 

Ke=-'t1t~ ~ Reynolds number o 

For the laminar case ~ 

(c,4-J?· .l = ';I' 'f:' m l>lb ~ m 

and 

so that 

~4r u! cf lA~ 
0- = ell '} ~m 

and 

CP4 µ., ,2' C.f i At 

ct,z 'a'~ ... ~ A .A Atf 

) 

IV-22 

IV-23 

IV-24 

IV- 25 

IV- 26 
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This express ion reduces t o 

IV-27 

which may be simplified by the i ntroduction of dimensionles s groups . 

The resulting simplified expression is 

IV- 28 

According to the above theory the apparent t hermal conductivity 

should become very large as the critical state i s a ppr oa ched. This was 

verified by Schmidt, Eckert, and Grigull (4 ). An experimental verification 

for Freon 12 will be presented in t his thesiso 

The trend of the heat transfer fil.m coef.ficient as t he critical 

state i s approached is not so clear. Si nce the heat transfer f i lm 
C 

coefficient is a .function of the rati o ~ : a nd both the specific hea t 

and the volume coefficient of expansion become extremely large in the 

immediate vicinity of the critical point, an analysis of the behavior 

of the film coefficient must involve a comparison of the rates of change 

of these two propertie s a s the critical state is approached. The property 

data is not sufficiently accurate to make this comparisono Theref or e, a s 

in many cases, the probl em reduces to one which must be sol ved by 

experimentation. 

A few statements regarding the general val idi t y of the relationships 

developed in this chapter are in order . The pr i mary a ssumpt ions involved 

in the derivations presented above are : 

a. The loop is composed of a smooth tube so that the frictional 

pressure drop may be evalua ted with one of the expressions given .. 

b. The ther mal syphon effect may be descri bed in terms of mean 
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property values . 

Assumption (a) s e ems entirely proper. A possible modi f i cation is 

that which would be necessary t o account f or t he pressur e l os s in 

f i ttings or flow measur ing equipment . This t ype of modi fi cat ion would 

probably take the f orm of a subs titution of an equivalent l ength for 

pressure drop in place of the phys ical length of the heat transf er l oop . 

Hence, for a particular thermal syphon loop, t his modif i ca tion would 

change only the constant term in the expression. 

Assumption (b) is a necessity if one is to predict t he behavior of 

t he thermal syphon in terms of dimensionless parameters . It i s convenient 

to evaluate mean property values at the arithmetic mean bulk t empera ture . 

This evaluation assumes that the properties fol lo1,1 a l inear var i ation 

in the region in question. Of course, this is not ent i r ely correct bu t 

in the region near the critical state t he bulk temperat ure difference 

for a given heat input is small so t hat a linear relationship may be 

assumed. In the superheat region away from the critical state the bulk 

temperature difference would be l arger but in this region the property 

values are very nearly linear so that the assumption s till seems valid . 

The overall validity of both (a) and (b) nmst be verified experi

mantally. This verification will be descri~d in the chapters to f ollow•. 



CHAPTER V 

EXPERIMENTAL PROCEDURE 

Before begi nni ng the experiments the ent i re apparatus was char ged 

to 900 psia with compressed air and all owed t o stand for three days. No 

variations i n pressure were observed other than those which could be 

attributed to changes in room temperature. I t was therefore concl uded 

t hat the appar a tus was a i rtight. 

The sys tem was then evacuated by connecting i t to a Cenco Hyvac 

va cuum pump oper a ting in conjunction with a small mercury di f f usion 

pump. The vacuum pump was all owed to run until an absolute pressure of 

s ixty micr ons was established in the test setup. 

The appar atus was charged with an arbitrary quant ity of f luid by 

heating t he Freon 12 supply tank so t hat t he saturation pr essure i n the 

tank was great er than the saturation pr essure corresponding to the 

temper a ture of the l oop. The t emperature of t he l oop was r oom temperatur e 

when no power wa s applied. For the room t empera tures invol ved, t he 

satura tion pressure of Freon 12 is about 85 psia. It was usually 

sufficient to heat the supply t ank to a point such that a pressure of 

100 peia was es tablished i n t he system. This i nsured t hat the system 

was charged ent i rely wi t h l i quid Freon 12. 

After the system was charged power was appl ied t o the t est section 

and a cooling water fl ow was mai ntained to est ablish a parti cular t est 

sect ion inlet temperature . Runs were made with a constant charge in the 

.3.3 
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apparat.us f'or severa1 different inlet temperatures to the test sec ion. 

The procedure was repeated for successively smaller charges by bleeding 

pa.rt. of the Freon 1.2 back into the supply tank~ For each constant 

charge in the loop different power inputs -were used Yi.th variations 1n 

t.he inlet temperature .. For a particular charge an upper limit to the 

amount. of power vhieh coul.d be applied was set by the upper pressure 

limits of the system. It vas usua.l procedure not to exceed 900 psi.a in 

the unit . Sinee tha upper pressure w<as fixed then the .factor which 

e stahl.ished the 11mit on t he energy input \las the ability of the vater 

heat exchanger to maintain a sufflciently low average temperature in 

the l oop,.. For tmich of the compressed liquid region large ener gy inputs 

were not possible since the temperature dliference between he Freon 12 

and the cooling vater w.s not 1-arge en ugh to handle the higher heat 

It. ws usually necessary to vs.it from ten to thirty :minutes for the 

apparatus to reach equilibrium on each run . Three i ndicat ions that a 

steady state had been established were used . These indications were the 

set poi nt of t he cooling water controller, the system pressure , and the 

re cor d of the wall temperatures on the temperature recorder . When all of 

these i ndications remained constant over a period of time of two to 

three minutes the apparatus was presumed to be in a s t eady state. It 

was found that the record of t he wall t emperatures was most indicative 

of an equil ibrium state. 

Once a s t eady st;ate was established in the system the various 

t emper atures and pressures were recorded. Usually, only about f ive 

minut es were required to collect all of the data for a par t i cular run . 



CHAPTER VI 

EXPERIMENTAL OBSERVATIONS 

When operating quite close to the critical state it was f ound 

that an increase in the cooling water flow over that quantity necessary 

to maintain equilibrium near the critical pressure caused a marked 

increase in the test s ection wall temperature. Al t hough t he i n~reased 

cooling water flow presents a lower fluid bulk temperature at the 

entrance to the test section, this is more than counterbalanced by the 

lower fluid flow r ate which prevails at the new bulk temperature. In 

conjunction with this phenomenon it was fowid tha t in order t o start 

the loop in operation from normal room tempera tures when charged to 

critical or supercriti.cal densities only very mild heating rates could 

be applied until the system had reached the critical pressure. Because 

of the conditions described above it was usual practice to charge the 

system to densities greater than the critical value and then bleed part 

of the fluid back into the supply tank to maintain a des i r ed pressure 

in the system. 

A rather unusual phenomenon was observed when the apparatus was 

operating in the superheated vapor region. A very slow, regular variation 

in the venturi pressure drop was observed. A total variation between the 

limits of three and five inches of water was not unusual. These 

variations were very regular and they occurred over a length of time of 

one to two mi nutes. During the occurrence of this phenomenon all of 

35 
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the conditi ons for steady sta te wer e satisfied so t ha t t he varia t ions 

could not be attributed to nonequilibrium conditions of operati on. The 

pressure drop which was recorded in the runs invol vi ng t hese variati ons 

was the average of the two limiting value s . To f ully anal yze t he 

variations in the venturi pressure drop some type of recording pressure 

instrument would have to be used . Such an instrument was not avai l able 

for these tests. 

In the experimental regions where the fluid was super heated and t he 

smaller power inputs were used, a problem in the contr ol of t he cool ng 

water was encountered. The temperature difference between t he Freon 12 

and the cooling water in this region was rather large so that onl y a 

small quantity of cooling water was requi red. At t he smal l er power inputs 

it was extremely difficult for the electronic control l er to assume a 

steady s tate position due to the fact t hat the flow control val ve was 

being control led between the closed position and a position which \ilaS 

only slightly open. In these regi ons of operation no data was collected 

when it was not possible to maintain s teady conditions without oscilla 

tions of the temperature controller. 

In the regions close to the critical state, fluctuations in pr essure 

on the order of twenty to thirty psi were observed. Accompanying these 

fluctuations was an intense vibration of t he t est apparatus . When t he 

rate of cooling water was increased so that the pressure i n the apparatus 

was reduced the fluctuations subsided. However, if t he cooling water 

flow rate was decreased or more power was applied the fluctuations 

became more severe and did not subside unti l the pressur e in the 

apparatus had risen to a value well above the critical value. In many 

instance s the pressure fluctuations did not subside until a pressure 



of 750 to 800 psia had been attained . 

The apparatus was qui te s t able and r esponded nicely t o t he modes 

of control appli ed except in t he r egions of operation described above. 

37 



CHAPTER VII 

REDUCTI ON OF DATA 

The reduction of the experimental test data is concerned with the 

de termina t ion of the heat transfer film coeffic ients ad the establislune~t 

of a suitabl e correlation of these coefficients which may be used to 

predict the resul ts of future test data . 

Two t ypes of heat transfer f ilm coefficient were calculated; a 

local film coeffic ient and an average film coeff icient defined by the 

equations: 

iv loc.cd = 
VII- 1 

and 

A ( t ~a.v3,- t b~v9 .') 
VII-2 

The calculation of the film coefficients was based on the assump-

tion that uniform heat flux was gener ted in the test section tube. On 

t he bas is of t his assumption the bulk temperature could be assumed t o 

vary l inearly from the entrance to the exit of the tube. Thie ie equiva-

l ent to stating that the speci fic heat of the f l ui d does not v ry 

apprecia bly i n this r ange . This statement is not true when appli ed t o a 

fluid operating in the critical region, However , it i s not poss ible at 

this time to delineate the detail ed behavior of the specific heat in 

t his r egion. Thus, the assumption of a linear variation i n t he bulk 

38 
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t emper ature seems a reasonable one in the light of the present pr operty 

i nformation available. 

The equation presented by Kreith and Summerfield (9) was used to 

calculate the i nside wall temperature from the :measured outside wall 

t emper a t ures. Thia equation is 

wher e 

p• 
fo:: 

2 I z 
3 . 4 13 en1 

el ectrical resistivity, 

el ect r i cal r esi s tivi ty at o°F, 

-ic,-=- thermal conductivity at ooF , 

t. = 0 outside wall temperat ure, 

t •L • i nside wall t emperature , 

/j.'Y.., -= wall t hickness, 

d.. =- temper a ture coeffic ient of electric 1 reaieti vi ty , 

(3 * temperat ure coef f i cient of thermal conductivity, 

:t • electric current . 

where 

t m • mean radial temperature, 

VII-3 

VII-4 

VII-5 
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tr -= t emperat ure as a function of radius . 

When the const ant s are eval uated equation VII-3 becomes 

~t-= o. 4G>2 48 m t: 

I
() . Cl o 2 ~ 'l + 0. 0 I '2.. l'2 " 

-'] ~ 

+ ~ .ZG:. 4-'l )(. IO VY) ( I + 5. \1 )(. \0 4 l
0 
)(1+ ~.2 .. I0 4 'C.oJ J , VI I-6 

where 

W) - VII-7 

and 

VII-8 

The temperature drop across the t ube wal l ~s computed for 

several differ ent values of the outside wall t emperature and electric 

current by means of an IBM 650 computer. The computation was performed 

f irst with t he value of the outside wall temperature i nser ted in place 

of "lm . Thenll with a value Alt calculated on t his basis t he 

calculation was repeated using as the mean radial t emperature 

VII-9 

The r esu+ts of these calculations are aho"1Il in Figure 16. The t emper-

ature drop across the w l l was al ways rounded to t he nearest degree 

Fahrenheit when calculati ng the inside tube wall temper atur e. 

The average wall temperature was calculated .by the trapezoidal 

VII-10 
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are the distances between the r espective 

thermocouples, and L. i s the distance between t he first and last 

thermocouple used in the cal culation. The average bulk t emperatur e wa s 

evaluat ed over this same length s o that an aver age film temperature drop 

could be calculated. The average bulk temperature used for the evaluation 

of the properties in the Reynolds, Prandtl, Grashof, and Nusselt 

number s was the arithmetic mean of t he measured entrance and exi t bulk 

temperatures . The bulk temperatures used for the calculation of the 

l ocal fi lm coefficients were evaluated at the location of t he par t icul a r 

wall temper atur e thermocouples. Values of reduced s peci fic volume and 

reduced pressure defined by 

Lr" =-

and 

were also calculat ed for the purpose of presenting the data , where 

lTl'YI= mean specific volume evaluated at arithmetic mean bulk 

temperature, 

f-= system pressure , 

4°~=- critical pressure, 

Lrc. c critical specific volume . 

It was determined that the heat loss through the insulation 

surrounding the heat transfer loop was of the order of one percent of 

the total heat flux. The heat flux used in the calculation of the heat 

transfer film coefficients was corrected for this loss. 

A summary of the test data is given in Table I. A detailed outl ine 



of the various sources of proper ty data fo r Fr eon 12 is given i n 

Appendix C. 



TABLE I 

~UMMARY OF TEST DATA 

Run Remarks PR VR t 11, I q/A Atav Re . ~n 
X 1~ (OF) coj~t (amp.) B/hr-rt2 (°F~ 

1 1.206 0.829 244.36 254.98 256 .8 15820 151 12.52 

2 1.164 1.018 245.14 255.57 262.7 16600 157 13.40 

3 1.042 1.244 235.11 _ 238.38 255.4 16030 142 15.99 

4 b 0.921 o.675 222.66 223.25 258.1 16180 195 18.49 

5 b 0.838 o.634 214.98 215.17 271.0 17420 109 18.49 

6 0.90.3 2.rn3 146.35 180.47 215.7 10460 69 1.75 

7 1.267 0.494 162.67 194.81 2os.o 9893 129 1.79E 

8 1.040 0.507 154.65 187.74 209.4 101.30 122 1.761 

9 1.194 0.499 156.05 196.04 2.35.5 12740 158 1.942 

10 1.406 0.494 163.80 206.43 244.0 14100 17.3 2.043 

11 1.58.3 0.489 169 • .33 214 .62 251.8 152.30 191 2.091 

12 b 0.601 0.513 152.86 181.09 219.0 10490 24 2.0.31 

13 0.901 0.529 168.53 200.16 213.3 10200 47 1.soe 

14 1.0.39 0.537 175.70 206. 50 206. 9 984.3 ll6 1.811 

15 1 .240 0.525 177.69 218.41 253.3 15370 176 2.1sg ,l:--
v.> 



TABLE I (Continued) 

Run Remarks PR VR thin 'ti,out I q/A fl. tavg Re 
X la4 {OF) (OF) (amp.) B/hr-ft2 (°F) 

16 1.396 0.527 183.39 228.74 273 .9 17950 206 2.371 

17 1.571 0.519 190.31 237.73 280.8 37160 219 2.42? 

18 b 0.720 0.544 171..83 197.31 214.6 10260 21 2.030 

19 b o.885 0.547 183.76 211.22 210.6 9906 32 1.845 

20 1.055 0.565 189.80 219.42 204.2 9557 110 1.804 

21 1.189 0.537 188.67 231.45 283.2 19360 200 2.423 

22 1.396 0.551 197 .41 241..68 289.8 20460 210 6. 518 

23 1.605 0.542 2o6.13 253.74 299.2 22200 236 6.193 

24 b 0.737 0.557 178.38 202.97 219.4 10500 21 12.92 

25 0.982 0.561 189.53 216.42 209.4 9948 120 7.445 

26 0.953 0.590 196.66 223.64 20?.8 9869 118 8. 668 

27 1.466 0. 547 2o6.06 240.34 240 .8 13990 170 5. 06? 

28 1.508 0.549 203.49 247.53 294.1 21440 223 6.193 

29 b o.880 0.604 203.38 222 .43 215. 8 10160 14 13 .92 

30 1 .055 0.602 21).08 233.02 206 .6 9659 105 7. 594 

31 a 1.349 0.611 221.32 250.96 252 .6 15450 158 6.804 t 



TABLE I (Continued) 

Run Remarks PR VR thin tbout I q/A A tavg Re 
(OF) (OF) (amp.) B/hr-ft2 (°F) X 104 

32 1.143 0.598 204.05 2.39.52 .314.9 2.3950 16.3 9 • .364 

.3 .3 a 1 • .365 0.611 215.11 254.85 .3.31.5 26250 195 8.24 

34 a 1. 53.3 0.624 223.38 267 .01 .333.1 27210 247 8.486 

35 1.122 0.862 228.74 244.39 202.9 9483 94 8.509 

.36 1.0.39 o. 696 219.91 2.39.49 251.7 15110 13.3 10.42 

37 1.039 0.703 215.24 247 .92 282 .2 19160 155 13 .42 

38 1.044 o.675 212.20 239.23 332.5 265.30 223 12.89 

39 a 1.223 0.664 224.91 251 . 55 286.4 20070 182 9.913 

40 a 1.421 o.699 237.46 265.41 282.9 19610 185 10 .26 

41 1.499 0.879 249.52 276.49 284.6 20340 173 12.67 

42 a 1.114 o.699 226.09 245.80 310 .2 23580 187 14.24 

43 1.303 0.810 237.53 262.89 311.2 23990 186 14.55 

44 b 0.838 0.619 206. 50 217.93 268 .6 17160 151 20.22 

45 0.947 0.691 220.93 229.88 246.6 14900 231 16 .11 

46 a 1.064 0.680 227.53 240.27 253 . 3 15320 128 · . 13.56 

47 a 1 .240 0.750 237.40 254.33 250 .7 15070 145 10.82 .f:' 
VI 



TABLE I (Continued ) 

Run Remar ks PR VR ~n ~out I q/A D. t Re_4 avg 

B/ hr-ft2 X 10 
(°F ) (OF) (amp .) (°F) 

48 1 .407 0.837 247.73 268 .68 250 .6 15120 153 10.87 

49 1.550 0.902 257.20 280 .08 244 .8 14650 158 10. 01 

50 0.854 0.631 217 . 27 217.95 253.1 15830 265 19.02 

51 0.938 0.680 226. 58 228.12 253.3 15850 227 17 .73 

52 a 1.039 0.810 233.51 238. 02 261.3 16480 142 13.92 

53 a 1 .092 0.788 237.14 244.13 260 .8 16510 146 13.53 

54 1.236 0. 936 247 .30 260.Jl 258 .1 16210 158 lJ.11 

55 1.365 1 . 088 257. JO 275. 02 256. o 16110 172 11 .95 

56 1.491 1.138 266. 55 289.23 255.8 16230 184 11.10 

57 a 1.022 o.888 230 .27 238.67 345. J 29120 266 20.50 

58 a 1.067 0.870 232.82 242 .63 345.6 29290 265 16.25 

59 a 1.047 0.893 236. 35 238 .67 206 .2 9669 93 12.89 

60 0.963 0.781 230.93 230.93 255 .0 16020 229 lJ.85 

61 a 1 . 002 0.995 234 .65 235. 63 258.4 16280 176 11.44 

62 a 1.025 1.266 236.45 238 .6/+ 258.1 16220 161+ 13.78 

63 a 1.072 0.951 240 .31 245.76 257.3 16200 171 13.09 ~ 
CJ' 



TABLE I (Continued) 

Run Remarks PR VR t °h1n tbout I q/A 6. t x~o4 avg 
(OF) {°F) (8lllp . ) B/hr-ft2 (°F) 

64 1.223 1.088 251.55 263.15 252.2 15500 179 12.09 

65 1.323 1.235 261.42 280.12 249.8 15480 190 10.74 

66 a 1.022 1.382 234.62 241.45 314.4 25140 275 15.66 

67 1.030 1.476 237.69 254 .49 270 .4 18130 220 12.48 

68 1.081 1.598 242.53 264.23 271 . 8 18210 212 14.87 

69 1.131 1.643 247.43 274.13 271.2 18220 210 14.56 

70 1.173 1.583 252 .60 283.25 269.6 18060 214 13.32 

71 1.216 1.674 256.45 291.33 269.9 18110 217 13.13 

72 1.072 1.903 257.83 268.03 266.7 17590 191 11.97 

73 1.014 2.073 254 .75 260 .64 267.2 17560 184 12.04 

74 1 .131 1.903 267 .99 283.28 264.6 17410 204 11.92 

75 1 .230 1.674 271.03 293.45 262.7 17230 208 11.82 

76 1.039 1 .833 248.38 258 .18 281.6 20080 241 13.36 

77 1.097 1.733 252. 27 267.66 281.6 19980 241 12.78 

78 1.032 2.073 244.03 280.21 254.9 16150 224 12.88 

79 1.081 2.037 250.67 294.36 255.7 16300 210 13.59 t 



TABLE I (Continued) 

Run Remar ks PR VR ~n t bout I q/A 6tavg Re_4 
(OF) (°F) (amp .) B/ hr- f t 2 (OF) 

X 10 

80 1.151 2.013 26o.90 313.39 255 .0 16140 205 13.27 

81 1 .278 1.924 280.28 345.32 251.5 15930 200 12.52 

82 1.064 2.453 253.84 342.70 253 .6 15930 217 13.70 

BJ 1 .089 2.436 259.30 354 .76 253.1 15850 224 14.27 

84 a 1.064 0.815 227.36 243. 54 354.2 30820 279 18.99 

85 a 1.168 o.879 234.72 257.30 353.9 30780 265 16.25 

86 1 .508 1.006 254.03 289.23 348.8 30410 285 14.00 

87 1.424 1.006 248.91 285.34 379 .7 36320 317 17.21 

88 a 1.141 0.862 235.99 255.28 384.8 36390 293 18.26 

89 1.267 0.904 241.45 267. 73 38).2 36280 315 18 .12 

90 1.367 1.201 253.94 287. 53 378.4 35590 326 17.27 

91 1.121 1.018 242.10 254,75 338.9 27650 236 18 .15 

92 1.lll+ 1.018 239.46 255.47 378.4 35340 289 19.61 

93 1.245 1.235 249.03 274.23 374.4 34950 303 17.28 

94 1.429 1.088 262.37 298.71 367 .7 34310 352 14,45 

95 1.045 1.733 241.48 259.30 369.J 34190 384 16.34 +' 
00 



TABLE I (Continued ) 

Run Remar ks PR VR tC>in t I q/A !:::,. t avg Re bout 
X 104 

(@r) (OF) (amp.) B/hr- ft2 (°F ) 

96 1.168 1.576 251.68 283 .19 366.9 33900 387 16. 03 

97 1.295 1.445 260 . 73 301.95 369.0 33940 326 14 .93 

98 1 .432 1.445 272 .37 326.17 368.6 33850 324 14 .70 

99 1.055 1.957 242 .63 282.34 364 .5 32910 325 15.06 

100 1.159 1 .873 253.48 306 .75 363.2 32780 305 16.18 

101 1 .282 1.768 264. 59 333 .72 363 .2 33050 302 14.84 

102 1.035 2.137 239.46 294 . 53 401 . 6 40820 364 17.72 

103 1.144 1. 990 249.23 320.58 399.2 40230 348 17.51 

104 1.295 1.863 264. 39 356.79 391 .2 39240 356 15.99 

105 1 . 347 1. 968 270.44 366.82 389.9 38940 362 15.24 

106 1.047 2. 277 240.47 318.03 366.4 33700 325 16.56 

107 1.156 2.163 253 . 97 353 .00 366.4 33480 305 16.18 

108 1.238 2.086 263.51 371.30 360.8 33060 311 17.93 

109 1.315 2.013 271.00 393:. 53 358.4 32730 315 15.36 

110 1.055 2.561 240 .?3 368.42 401.6 41160 341 18.44 

lll 1.151 2.489 252 .73 409. 51 402.4 41370 306 19.89 ~ 

'° 



Run Remarks PR 

J,.12 1.055 

113 1.156 

114 1.064 

115 1 .029 

ll6 l.019 

117 Ll56 

118 1.474 

TABLE I (Conti nued ) 

VR t 
bin 

t bo·ut 
I q/A htavg 

(OF) (of) (amp .) B/hr-ft2 (OF) 

20765 244.10 401.17 362.1 32900 JOB 

20599 259.46 435.62 357.0 32320 334 

3.110 243.87 486.34 412 .0 446'70 387 

0.781 222.33 238.80 267.8 1'7550 173 

0.730 218 .41 238.02 300.2 22040 216 

0.675 222 .85 249.03 333.9 27010 260 

0.725 239.07 275.18 34606 29500 277 

Remarks: 

a P.roperty values particularly in doubt in this region . 

b Boiling took place i n some part of t he t est section. 

Re ~4 
X 10 

17.81 

16.42 

20 .26 

11 .89 

13.10 

11.54 

14.01 

V1 
0 



CHAPTER VI II 

TEST RESULTS AND CORRELATION OF DATA 

In Chapter rl a theoretical analysi s of t he thermal syphon was 

pr esented . The expres sion der i ved t o r epresent the behavior of the 

heat transf er f ilm coef ficient f or the condit i ons of turbulent flow 

was 

rl-22 

The values of the constant factors for the particular test loop are: 

109.3-in. 

25.25-in. 

0.430-in. 

37.0-in. 

vlhen these values are inserted i n equation IV-22 the predicted 

correlation for the particular test loop is obtained as 

Nu.~ l6r-f) 
'( Pr-) 

(Re\ 11/4-. 
= 0 , 00391 ) IV-22a 

One would expect the experimental data t o f oll ow the f orm of this 

equation. Figures 9, 10 1 and 11 show tha t this expect a tion i s justified. 

For the regions where £!n ( I the correlation 
Lrc. 

,"-lu.') (6rf) (o \2 '~
9 

VIII-1 
~ (Pr') - o, ooo 5Co f'..e) 

L;m 
is obtained . For the re gions where > I 

lfc. 
the relation 

51 
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VIII-2 

i s obt ained. Figure 11 shows a comparison of these two expressions 

wi t h the analytically predicted correlation. The two different 

correlati ons dependi ng on the value of the reduced specific volume may 

be justified on the basis that the viscosity changes abruptly across the 

criti cal region . The correlations do not change so abruptly. This may 

be expl ained by the fact that most of the i nf luence of the viscosity i n 

the dimensionless correla tion is canceled out. This cancellation is 

caused by t he art i f i cial way in which all but the one-fourth power of 

the viscosit y originally i n the Bl asius law is entered in the relationship 

to make it dimensionless . As a matter of fact, the thermal conductivi ty 

is a l so artif i ci a l l y ins er t ed into t he equation. 

The sca t ter of data and the conflicting values of the slopes and 

constant t erms of the correla t ions a s compared with the analytically 

predicted values may be easily a t tri buted to the uncertainty of the 

property values used . I ndeed, wi th the l arge uncertainties of t he prop-

erties in the cri t i cal and supercritical regions i t is r emarkable tha t 

the correlation of the data was as successful as s hown i n the f igures. 

It is possibl e t ha t t he constant term in t he correlation must be 

determined by using an equival ent l ength for pressure drop through the 

loop and fi t tings ins t ead of t he physical circumferent ial lengt h. 

f h f -l.J"""' > I The scatter o data in the cor rel at ion fort e regions o 
lf1:-

may be partly attributed t o the slow oscillatory phenomenon in the flow 

rate a s described on page 35 . 

Figure 12 shows the inadequacy of the convent i onal rela tionship 
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to predict t he behavior of the thermal syphon. Even though the con

vection phenomena which occur in the heat transfer loop are of the 

forced t ype , the flow rate and heat flux are not independent variables 

ae in most cases of fo r ced convecti on . The flow rate is an explicit 

function of t he heat flux as well aa the viscous properties of the fluid . 

This differs from the conventional case wher e the fluid flow rate is 

dependent only on the viscous character istics of the fluid. 

Figure 13 i s a plot of selected values of the apparent thermal con

ductivities. The trends of the curves i n t he supercritical region agree 

wi th the t rends presented by Schmidt, Eckert, and Grigul.l (4) . The 

boiling t r end i s s hown fo r t he subcr itical pressure. 

Fi gure 14 i s a plot of selected values or t he aver age heat transfer 

film coefficients . I n t his f i gure the influence of boi l ing at pressure• 

below the critical value i e very pronounced. For super critical pre sures 

the course of the film coefficient ourves is very near l y constant . 

Complete plots of th l ocal heat transfer film coe£f1c1ent ~ ar 

s hown i n Figure 15. Extr -me nonun1formity i n the lee l film oo f£io1ent 

val ues may be seen. However ; t here 1s a distinct patt rn to t hi s non-
lrm 

uniform behavior . For ~ .t:... I t he film coefficients inoreaae in an 

oscilla tory manner along t he l ength of the tube. The oecill tione b come 

\J"m more severe as t he crit i cal value of IJ"~ = I 
v-.,.., 

is appr oached. For ~ > l 
the oscil l ations become l ess sever e as the r egion of oper at ion is further 

removed f rom the cr itical s tate. Al so, in t he superheated vapor region 

the local f ilm coeffic i ents decrease along t he length of the tube. 
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The i ncrea se of t he film coefficient along the length of the tube 

in t he regions f or l.fW\ ..(.. I and the corresponding de crease in the regionf 
I.Jc. 

for IJ'""'.l > I indicate that the highest val ues of t he heat transfer 
Uc. 

film coeff i c ient may be expect ed in the ililmediate vicinity of the 

critical stat e . Thia fact cla r ifies the discussion on page 31 concerning 

the uncertainties involved in predicting the trends to be expected near 

the crit i cal po i nt. I n r espect to that discussion it would s eem that the 

spec i f ic heat capacit y increases at a faster rate than the volume coef-

ficient of expansion o 

The oscillatory natur e of the curves may be attributed to the r apid 

change of the pr operty values in the neighborhood of the crit i cal s tate . 

I n the r egions of Lr l"\1 < I the fi lm conditions may be close to t he 
lf c.. 

cri t i cal state even if the bulk conditions are not. As t he values of LJ~ 
V"c 

are increased the entire bulk of the fluid reaches the uns t a ble critical 

regi on and more violent oscillations persist . As the fluid progresses 

int o the superheated vapor r e gion a more stabl e situation is experienced. 

In this region t he f ilm condi t ions will be f urther. r emoved f rom t he 

critical state t han the bulk of the flu i d s i nce t he heat transfer boundary 

l ayer has a higher temperature than the bulk t emper atur e. If one considers 

the oscillations in the l ocal fi lm coeff i cient values to be the result 

of violent transit i ons i n t he hydrodynamic boundary l ayer , then it is 

eas i ly seen that t he r apid change of v scosity across the critical stat e 

explains the intimate connecti on of the oscil lations with t he cr i tical 

r egion. 

In view of the large errors which may be pres ent in the property 

values used in the calculations as well as the unstable nature of the 

cr itical state , it seems that the comparison presented in Figure 11 is 



enti r ely conducive to acceptance of the analytical expression 

(N~ l6 r-t ) 
( P r-') 

fRe\''/4 .,_ o. 00391 \ ) 

as indi ca t ive of the heat transfer characteristics of the thermal 
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syphon tested . It is presumed that there was no dissociation of the 

Fr eon 12 during the experiments . 



CHAPI'ER IX 

ANALYSIS OF EXPERIMENTAL ERRORS 

...... ... v.1."' wu.1.\.>u WC.1.:f uo ,1,1.n,.,~u1., J.u l,Ue experi:meni:.s aescr1bed above will 

be discussed in this chapter o Two errors are presented; the error s vhich 

are present because of the inherent inaccuracies of the instruments , and 

realistic estimates of the actual errors considering opera t ing condit i ons 

of the apparatus, etc. The effect that these errors may have on the final 

test data will be discussed in subsequent paragraphs o Table II gives the 

minimum error which would be present in the experimental data consid-

ering the accur acy of the instruments, and the estimated accumulative 

errors due to all experimental inaccuracies o The estimated errors pr e-

sented i n Table II are valid only f or those regions of operation which 

wer e stable. Larger errors would be present in the regions cl pse to the 

critical s t ate wher e large fluctuations in pressure were encount er ed . 

Any error in the cal culation of the difference in temperature 

across the tube wall due to the variation in wall thickness may cert ainly 

be di scounted since the differential temperatures were always r ounded 

to the nearest degr ee Fahrenheit . 

The maximum error in the heat transfer film coefficient du to 

errors i n the bulk temperature, 'W8.ll temperature, and power measur ements 

may be calculated as 

Max . Error = ( 

0 995 \ ( • 990 \ 
1 - _ l,000 ) 1.000 -1 

~ 
\ 146 J 

j X 100 : 4.12% , 
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TABLE II 

SUMMARY OF EXPERIMENTAL ERRORS 

Variabl e 

Bulk temperature 

Wall t empera ture 

System pres sure 

Venturi differential pressure 

Electri c current 

Vol t age across t est section 

Cooling wat er t emperature 
di fference 

Cooling water fl ow rate 

Tube wall diameter 

Minimum Estimated Accumulative 
Err or Error 

± 0.1 °F ± 2. 0 °F 

± 1 . 0 °F ± 3.0 °F 

± 1 psi ± 2 psi 

± 0.1-in . ~O ± 0 . 2- in. H20 

± 1/2 % ± 1 % 

± 0.03 volts ± 0.05 volts 

± 0 .1 °F ± 0.3 °F 

± 1/2 % ± 1 % 

± 0 . 0002-in . 



ssuming a f ilm temperature difference of 150vF. Of course, this error 

would be larger for the ranges where the film temperature drop was 

smal ler than this value . With the exception of three runs, the film 

temperat ure drop was always greater than 1000F. 

The assumptions involved in the derivation of the Kreith-

Summerfield equation presented on page39 were an a diabatic outer tube 

surface , a linear variation of the thermal conductivity and electrical 

r esistivity with temperature, and no axial heat flow along the tube. 

The heat l oss through the insulation was of the order of one percent so 

that the err or due to a nonadiaba.tic wall condition would be completely 

absor bed in the roundi ng of the temperature differences to the nearest 

degree Fahrenheit. As shown in Figures. 30 and 31 the second assumption 

i s fulfilled . The third as sumption must be checked . Considering two 

points along the tube a distance of three inches apart, having a 

dif ference in temperature of l00°F , the axial heat flow may be calculated 

as 

Btu/hr 

which is certainly negligible . Ther efore, it may be concluded that the 

conditions imposed on the use of the Kreith-Summ.erfield equation are 

fulfi lled .. 

In consideration of t he above discussion it is believed that the 

heat t r ansfer f ilm coefficients have been determined within an accuracy 

of plus or minus five percent. The correlations of these coeffici ents 

may involve sources of error other than the ones discussed above . These 

other error s were discussed on pages 36 and 60. 



CHAPTER X 

CONCLUSIONS AND RECOMMENDATIONS 

As stated on page 61 it appears entirely suitable to accept the 

analytical rel a t ion 

IV-22 

a s the characteristic equation of the thermal syphon apparatus. With 

t he discussions presented in Chapters VI and VIII in mind specific 

concl us i ons may be stated as f ol lows: 

1 . Very large heat transfer film coefficients of the order of 

1500 Btu/hr-ft2-°F may obtained when the conditions for boi ling ar e 

sat isfied. These coefficients are limited to the regions wher e the heat 

flux i s r ather low since at hi gh heat flux the fluid becomes superheat ed 

in the upper end of t he test s ection. 

2 . Slightly higher heat transfer film coefficients may be exper-

i enced near the critical st ate than i n t he compressed liquid or 

superheat regions. 

J . The trends of an apparent thermal conductivity defined by 

equation IV-6 agree with the trends presented by Schmidt , Eckert , and 

Grigu.11 (4) • 

4. The experimental data may be correlated within plus or mi nus 

twenty-five percent by the following relations: 

\N l-L) (6~J 
l 'P r'") 

(R e \::2. .9'7.) 
= C).000 5G::, ) 
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VIII-2 

5. Instabilities of operation were experienced in the vicinity 

of the critical point. These instabilities were described on page 36. 

In view of the above conclusions it is believed that the thermal 

syphon may be used as an effective method of removing heat from various 

s ources . It would be particularly valuable in an application where con-

t ainment of the heat transfer fluid is of pr imary concern as in a 

nucl ear reactor . 

Bef or e the thermal syphon principl e may be used for a practical 

appli ca t i on further experiment ation should be conducted to resolve some 

or the f ol l owing poi nts . 

a . A thor ough under standing of the s l ow oscillation phenomena 

de scribed on page 35 should be developed . This may bes t be accompli shed 

by careful experi mental measurement s wit h r e cording pr es sure instruments . 

b . A t horough analysis of the pressure drops around t he t hermal 

syphon loop should be made . This will also r equire recor ding pressure 

i nstrument ation. 

c . An i nvest i gation of the detailed pressure drop along the test 

section t ube may clarify the oscill atory nature of the heat transf er 

film coef fic i ents along t he length of the tube . 

d~ A temperature controller with a fas t er r esponse t ime vould be 

of value. 

In connection wi t h t he above recommendat ions f or future research 

it i s believed t hat a thermal syphon appar a t us should be constructed 

to inves t igate the heat transfer charact er istics of wa t er near i ts 
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critical state . This would be of def ini te inter est since wat er would 

probably be the f luid used in a pr actical application of the ther mal 

syphon principle . Also, more informat ion i s available on the t hermodynami c 

and physical properties of water than for Freon 12 so that a better 

analys is of t he experimental data should be possible. 
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APPENDIX A 

LOCAL HEAT TRANSFER Fn..M COEFFICIENTS 
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Figure 15 (f ). Local Heat Transfer Film Coefficients 
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Figure 15(k)o Local Heat Transfer Film Coefficients 
Runs 45-49, VR = Oa772 

81 

24 28 



p:,t 
) 

I 
I 
+> 
~ 

! 

+> 
s:l 
Q) 

'" 0 

'" 

200 

t:100 
(I) 
0 

0 

0 

·--+---~·------+- ----- -- - ·--L----

·--------

0 4 8 12 16 20 
Dist ance from Bottom Flange - ino 

Figure 15(1) 0 Local Heat Transfer Film Coefficients 
Runs 50-56~ VR ~ Oo872 

28 

82 



200 

0 

·---- -----4-·---·~---+---+----t 

0 4 8 16 20 
Distance from Bottom Flange - ino 

Figure 15(m)o Local Heat Transfer Fi lm Coefficients 
Runs 57-59 9 VR = Oo872 

24 28 

83 



200 

100 

0 
0 4 8 12 16 20 

Di.stance from Bottom Flange - in. 
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Figure 15(p ) . Local Heat Transfer Film Coefficients 
Runs 72-77 9 v~ = 1.853 
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APPENDIX B 

SOLUTIONS TO KREITH-SUMMERFIELD EQUATIO 
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APPENDIX C 

PROPERTIES OF FREON 12 

The thermodynamic and phys ical properties of Freon 12 were 

,ecessary for the analysis of the experimental data. The sour·ces of 

,hese properties and several estimates which were made will be descri~~c 

n this appendix. 

Eiseman, McHarness, and Martin (10) have determined the P-V-T 

nd caloric propert i es of Freon 12 and have presented a n empirical 

quation of state for t hese properties. Based on their equation of 

tate the E.I. du Pont de Nemours Company has published tables and 

har ts of these properties . 

Us i ng t he t a bula t ed values for the enthal py , the values of the 

pacif i c heat a t constant pressur e were calculated from the relation 

C-1 

he resul t s of the s e ca lculations are shown in Figures 17 and 18. 

sing the tabula ted values for t he specific volume, t he values of the 

olume coeff i c ient of expansion were calculated f r om the relation 

I ( JU- \ '-"" I ( .D. Lr ) 
u- 2i T 1~ -. lfa.v'j 61 t' 

be r esults of these calculations are shown in Figures 19 and 20. 

Lenoir (11) has presented the thermal conductivity val ue s for 

reon 12 at one atmosphere and Benning and Markwood (12 ) present the 

98 

C-2 
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t hermal conduct i vi t y for Freon 12 a t t he sat urated l iquid conditi ons. 

The thermal conduct ivity values for t he supercritical regions were 

cal culat ed on t he basis of the gener ali zed correlation of thermal 

conductivity f or gases presented by Comings and Nathan (7). The result1 

of t hese calculat ions are shown in Figure 23 . 

Markwood and Benning (13) have pr esented the viscosity for Freon : 

a t one atmosphere and f or the saturated l i quid. The viscooity for the 

supercri tical regions was calcul at ed on the basis of the generalized 

correlat ion of viscosity f or gases pr esent ed by Com·ngs and Egly (6). 

The r esults of these calculations are sho'W!l in Figure 26. 

I t must be noted that the calculations based on the generalized 

cor relations could be in error by t wenty per cent in the supercritical 

regi ons. An er r or of one hundred per cent could easily be present in 

the cr itical region. Therefore , the useful ness of these generalized 

correlations lies primaril y i n their consistency and not i n t hei r 

a ccura cy . The pr esent writer has al ways f elt t hat an estimate of this 

s ort i s bett er than nothi ng a t all. 
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VENTURI CALIBRATION 
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APPENDIX E 

THERMOCOUPLE CALIBRATIONS 
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APPENDIX F 

PROPERTIES OF AISI TYPE 304 STAINLESS STEEL 

The thermal conductivity and electrical resisti vity values f or t he 

.ISI t ype 304 s t ainless steel tubing were taken from reference (14). 

'hese values are plotted in F! gures J O and .31. 
"' 
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Figure 30 . Thermal Conductivity of AISI Type 304 Stainless Steel 
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APPENDIX G' 

SYMBOLS 

2 Area, ft . 

Surface area of heat t ransfer element, ft~ 

' \ 2 Crosse sectional area 0£, ·tupe, .f t • 

Specific heat capacity at constant pressure, Btu/l~-°F. 

A diamet er , ft . 

Inside diameter, ft. 

Outside diameter, ft. 

Gravitational constant, ft/hr2 • 

Enthalpy, Btu/1~. 

Heat transfer film coeffic ient, Btu/hr-ft2-°F. 

Electric current, amperes. 

Thermal conductivity, Btu/hr-ft-°F. 

Apparent thermal conductivity defined by equation IV-5, Btu/hr- ft-°F. 

A length, ft. 

Length of test section, ft. 

A variable defined by equation Vil-4. 

Pressure, consistent units. 

Heat flow per unit time, Btu/hr. 

A radius, ft. 

Inside radius, ft. 

Outside radius, ft. 
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w 

Temperature, °F. 

Bulk temperature, OF. 

Film temperature, °F . 

Temperature at a designated location, °F. 
. 0 

Surface t emperature, F. 

Velocity, consistent units. 

Specific volume, rt3/lb. 

Weight rate of flow, lb/hr. 

A distance, rt. 

Vertical di st ance between center of test section and center of 

heat exchanger, ft. 

ol... Temperature coefficient of electrical resis t i vity, 1/°F. 

~ Temperature coefficient of thermal conductivity, 1/°F. 

f Volume coefficient of expansion , 1/°F. 

'( Specific 'Weight, lb/rt3. 

~ Electrical resistivity, ohm-ft. 

~ Dynamic viscosity , lb/hr-ft. 

Dimensionless Groups 

6v-
1 c4..3.t.t ~ i ;z.. 

Grashot number, r· 
Nu. Nusselt number, ~~/-fe. 
Pv- Prandtl number, cf r /f.<.. 
Re. Reynolds number, YLL'Y/ 
~t. Stanton number, {.. /cf LA- t 
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Subscri pts 

b Bulk conditions. 

C Critical conditions. 

m Mean condit ions. 

f' Film conditions . 

s Surface conditions. 
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