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ABSTRACT

Reduction of cupric ion, Cu(II), and nickelous ion,

N i (II), by hydrogen in aqueous sulfate solutions was studied 

in reactor tubes to complement the research at the University 

of Oklahoma in the general field of hydrometallurgy as related 

to the reduction of metal ions in aqueous solutions by 

hydrogen.

A special rocking mechanism was designed and built to 

produce agitation in the reactor tubes which were immersed in 

a hot oil bath. The extent of the reaction was followed by 

measuring the hydrogen pressure in the reactors.

Reduction of Cu(II) from aqueous 0.5 molar copper 

sulfate solutions was studied in the hydrogen partial pressure 

range from 27 atmospheres (400 psig) to 41 atmospheres (600 

psig), and a temperature range from 140°C to 170°C. Experi
mental results indicate that Cu(II) reduction is favored by 

higher hydrogen partial pressure and higher temperature. An 

apparent activation energy of 26.65 kilo calories was determined 

for the hydrogen reduction of Cu(II).
Reduction of Cu(II) from ammoniacal copper sulfate 

solutions at 150°C and 31 atmospheres (450 psig) hydrogen 

partial pressure showed that the initial rate of Cu(II)
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reduction varies with the initial NH^/CuClI) molar ratio. For 

initial NHg/Cu(II) molar ratios of 0, 1, 2 and 4, the initial 

rate decreased with NH^/Cu(II) molar ratio in the order 0 > 1 > 

4 > 2. However, reduction of Cu(II) in the absence of NH^ 

could not be carried to completion (100 percent). On the 

other hand, high initial NH^/CuClI) molar ratios had an ad

verse effect on the purity of the copper powder produced.

The effect of adding sulfuric acid to an ammoniacal 

copper sulfate solution with initial NH^/Cufll) molar ratio 

of 4 was studied at 150°C and 31 atmospheres (450 psig) initial 

hydrogen partial pressure. Small acid additions had an adverse 

effect on the rate of Cu(II) reduction, but large acid addi

tions (up to H 2 S0 ^/Cu(II) molar ratio of about two) improved 

the rate of Cu(II) reduction.

Hydrogen reduction of Ni (II) catalyzed by ferrous ion, 

Fe(II), was studied in aqueous ammoniacal nickel sulfate solu

tions. The temperature range was from 125°C to 150°C. The
VN e? c *  1 1 V * Q i T.TSa c  f r m m  9 0  l - m r ^  Q r v V l i O  Y“ o  c * ^ ^ 0 0

psig) to 24 atmospheres (500 psig), and the NHg/Ni(II) molar 

ratios ranged from one to six. At 150°C, it was found that 

for a fast rate of N i (II) reduction the best NHg/Ni(II) initial 

molar ratio was two. In solutions with initial NH 2 /Ni(II) 

molar ratio of two, the concentration of Fe(II) was found to 
have a marked effect on rate of N i (II) reduction. In solu

tions with an initial NH^/Nidl) molar ratio of six, an appa

rent activation energy of 11.27 kilocalories was determined
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for the reduction of N i (II) by hydrogen in the temperature 
range from 125°C to 150°C.
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CHAPTER I

INTRODUCTION

This work complemented the research and development 

effort being carried out at the University of Oklahoma to 

develop a continuous hydrometallurgical process for the chem

ical reduction of metal ions by hydrogen in aqueous solutions. 

Details of the continuous reduction process are given by 

Sliepcevich and Brown (37), and Neskora (22) has given a 

detailed description of the continuous reduction equipment 

along with preliminary experimental results.

Hydrogen Reduction of Metal Ions in Aqueous Solutions,
State of the Art

Habashi (11) briefly outlines historical developments 

on the reduction of metal ions by hydrogen in aqueous solu
tions. In 1859, Beketoff precipitated silver and mercury 

from aqueous solutions. Later, between 1901 and 1931, Ipa

tieff and coworkers precipitated copper, nickel, cobalt, 
lead, bismuth, arsenic, antimony, platinum and iridium from 

aqueous solutions. Between 1937 and 1959, Tronev and co

workers precipitated copper, nickel and cobalt from aqueous 

solutions of their complex salts. They showed that the
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platinum metals could be separated from one another by 

selective precipitation with hydrogen.

In recent years, hydrogen reduction of non-ferrous 

metals (notably copper, nickel and cobalt) has attracted the 

attention of several workers. Table I lists some of the 

work published on the reduction of copper and nickel ions 

by hydrogen in aqueous solutions.

Even though a substantial amount of work has been 

done on the reduction by hydrogen of metal ions in aqueous 

solutions (as attested by Table I), very little of this 

technology has found its way into the commercial scale.

Where hydrogen reduction is practiced commercially, it is 

done in batch autoclaves. To date no continuous operation 

has been reported.

Evans (8 ) indicates that until 1970 only six com

mercial installations, incorporating hydrogen reduction 

had been built; of these, two had been shut down for lack 

of feed, and a third had been abandoned when operating prob

lems could not be overcome.
Of the three commercial plants presently in operation, 

that of Sherritt Gordon Mines in Canada is by far the largest 

and most innovative. Sherritt Gordon processes sulfide ore- 
concentrate with copper, nickel and cobalt as metal values.

The finely ground mineral is leached with aqueous ammonia in 

a batch autoclave at 200°F and 115 pounds per square inch 

gauge (psig) air pressure. The leaching step extracts the



TABLE I

RECENT PUBLICATIONS ON REDUCTION OF Cu(II) AND Ni (II) 
BY HYDROGEN FROM AQUEOUS SOLUTIONS

Author Metal Réf.

1 . Schaufelberger, R. A. Cu, Ni 33
2 . Sircar, S. C . , and Wiles, D. R. Ni 36
3. Mackiw, V. N . ; Lin, W. C . ; and Kunda, W. Ni 18
4 . Kunda, W. ; Evans,- D, J, I,; and

Mackiw, V. N. Ni 15
5. Meddings, B . ; Kunda, W . ; and Mackiw,

V. N. Ni 19
6 . Evans, D. J. I. Ni, Cu 8

7. Schaufelberger, F. A . , and McCormick,
W. R. Ni 34

8 . von Hahn, E. A., and Peters, E. Cu 38
9. Dunning, W. J . , and Potter, P. E. Cu 7

1 0 . MacGregor, E. R., and Halpern, J. Cu 17
1 1 . Kunda, W. and Evans, D. J. I. Cu 14
1 2 . Roberts, E. S. Cu 29
13. Evans, D. J. I.; Romanchuk, S.; and

Mackiw, V. N. Cu 9
14. Evans, D. J. I.; Romanchuk, S.; and

Mackiw, V. N. Cu 1 0

15. Courtney, W. G . , and Schaufelberger,
F. A. Ni 6

16. Meddings, B . , and Mackiw, V. N. Ni 2 0

17. Conner, H. S. Cu 5
18. Brown, R. L. Cu 4
19. Kothari, R. H. Ni 13
2 0 Peters, E. , and von Hahn . f.. Cu 25
2 Î! Nasher, S . , and Schaufelberq ,

F. A. Cu, Ni 2 1

2 2 . Schaufelberger, F. A. Cu, 32
23. Peters, E . , and Halpern, J. Cu 23
24. Peters, E . , and Halpern, J. Cu 24
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metal values from the ore as soluble metal ammines. Subse

quently, the metal-rich solution is purified by distilling 

excess ammonia and oxidizing the sulfide impurities to sul

fates. Next, the solution is clarified, and from the clear 

solution copper is precipitated as copper-sulfide by bubbling 

hydrogen sulfide (H^S) into the solution under controlled 

conditions. The copper-free solution is next stripped of 

nickel by a hydrogen reduction step. After nickel removal, 

the solution composition is adjusted so that cobalt can be 

precipitated as the sulfide with H 2 S. The metal-free solution 

is then returned to the leaching step. Cobalt sulfide pre

cipitated with HgS is dissolved in acid, and cobalt is re

precipitated as the metal by reducing the metal ion with 

hydrogen.

The Bagdad Copper Corporation operation in Bagdad, 

Arizona, is a simpler operation than that of Sherritt Gordon. 

Bagdad buys cement-copper about 77 percent to 85 percent 

copper and leaches it with a sulfuric acid solution, after 

purifying and clarifying the pregnant solution, copper is 

precipitated from it by hydrogen reduction. The spent solu

tion is then recycled to the cement-copper leaching step.
Universal Minerals and Metals of Kansas City, Missouri, 

recovers copper from scrap by a process similar to that of 

Bagdad, but Universal must pay close attention to leach solu

tion purification and clarification because the many impuri

ties liberated from the scrap.
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Future Significance of Metal Ions Reduction by Hydrogen
in Aqueous Solutions

The potential of reducing metal ions from aqueous 

solutions by hydrogen is bound to have considerable impact 

in the next few years because;

1. Industry is being forced to recover metals from ores by 

"chemical mining" with aqueous solutions as opposed to 

traditional smelting methods. Departure from smelting 

or pyrometallurgy is being forced by government regula

tion to reduce air pollution (Rohrman and Ludwig (30) 

point out that 1 2 . 2  percent of the total sulfur dioxide 

emitted over the United States in 1966 was produced by 

metallic ore smelters).

2. The "coming of age" of hydrometallurgy and the realization 

by the metal industry of its potentials: extraction of 

metals with aqueous solutions for example does not re

quire expensive furnaces. In addition, aqueous leaching 

is often selective and leaves the bulk of the gangue 

materials unaffected.

3. In future years, the use of nuclear devices and hydraulic 

fracturing to fracture ore formations in order to allow 

percolation of leach solutions will remove the need for 

environmental destruction caused by surface mining.
4. There exists an increased need to recover metal values 

from "secondary ores" (solid waste) which are not prac

tically recovered by traditional ore processing.
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5. The possibility of recovering certain metals from leach 

solutions of sea-bottom manganese nodules exists. Present 

plans to recover metals from these nodules involve first 

making metal-chlorides by hydrochlorinating the metals at 

high temperature. The metal chlorides are then dissolved 

in water, and the metals are deposited electrolytically 

from the aqueous solution. In the electrolytic process, 

chlorine is generated which has to be converted to HCl 

for recycling to the hydrochlorinating step. By using 

hydrogen reduction of the metal chloride, HCl would be

a by-product of the metal reducing step and could be 

easily recycled.

6 . Biological leaching is receiving increased attention. In 

this type of leaching, the end solution would provide an 

excellent feed from which metals could be recovered by 
hydrogen reduction.



CHAPTER II

HYDROGEN REDUCTION OF METAL IONS IN AQUEOUS SOLUTIONS, 

THERMODYNAMIC CONSIDERATIONS

The chemical reduction of a metal ion [Me (n+) J by- 

hydrogen in an aqueous solution can be represented by

Me (n+) + ^  H 2  + ne = Me + nH^ + ne (II-l)

where Me is the metal produced by the hydrogen reduction of

the metal ion Me(n+). n is the oxidation number of the 

metal ion. ne are the electrons transfered in the reaction. 

For future reference, bear in mind that Equation II-l can be 

represented by the two half-cell reactions

Me = Me(n+) + ne (II-2)

2  Hg = nH^ + ne (II-3)

The chemical potential (y^) of the species involved 

in the reaction represented by Equation II-l is defined as

y^ = y^° + RT In a^ (II-4)

where â  ̂ is the activity of the species in solution, R is 

the universal gas constant, T the absolute temperature and

7



y^° the chemical potential of the species at a reference 

state of unit activity chosen as follows:

1. For gases, the ideal gaseous state at 1 atmosphere 

pressure.

2. For solids, the pure solid at one atmosphere pressure.

3. For aqueous solutions, the hypothetical ideal 1.0 molal 

solution in which the activity of the solute is one.

The condition for reaction-chemical-equilibrium re

quires that at constant temperature and pressure, the chemical 

potentials (or molal free-energies) of the products equals 

those of the reactants; or,

N
z = 0 (n-5)

i=l ^ 1

where the summation is taken over all species involved in 

the reaction and Y^'s are the stoichiometric coefficients of 

the reaction as written.

J-Iiy L.11C c-xi-iii J.01. unciiiiocix c y u x  Xxux x UllL liqua

tion 11-5) to the reaction represented by Equation II-l and 

then substituting for chemical potentials the definition 
given by II-4,

a

^H+ ^Me (II-6 )
If the oxidation number of the metal ion n is +2,

^ e ( 2 +) ^H 2y°Me (2+) " ^Me + &T In % °
^H+ ^Me (II-7)



Defining the chemical equilibrium constant as

K = — ^  (II-8 )
H+ Me

and combining the standard free energies of formation. Equa

tion 11-1 yields

AG° = -RT In (II-9)
Ci

where AG° is the free energy change for the reaction when 

each product and each reactant is in its standard or refer

ence state. Equation II-9,then,allows calculation of the 

chemical equilibrium constant from a knowledge of chemical 

potentials.
Equation II-7 can also be rearranged to

r « » . ^Me[p- - 2p%+ + RT in ' l̂ Ae (2+) + 1" ‘ »2 a . M e (2+)
(11-10)

where the first portion in the left side of Equation 11-10 

represents Equation II-3 and the second portion Equation II-
2. Combining reference-state chemical potentials in 11-10,

[AG- + RT in - [AG- . 2 ) + RT In = 0
a„. M e (2+)
^ (1 1 - 1 1 )

or,

*=(11-3) - “ (II-2) = 0
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where ^^( 1 1 - 2 ) the free energy changes at
reaction conditions associated with the reactions represented 

by Equations II-3 and II-2. ^^°(n- 3 ) ^*^°(II-2) the
free energy changes associated with the reactions represented 

by Equations II-2 and II-3 if the reactions are carried out 

at the reference or standard conditions.

Electrochemistry teaches that one way to determine the 

quantities and i-S by measuring the electro

motive force (emf) E of a reservible cell where in one-half- 

cell, the reaction in question is occurring, and in the other 

half-cell a reference reaction takes place. From electro

chemistry,
AG = -|n| FE (11-13)

where F is the Faraday equivalent of electric charge neces

sary to convert one gram-equivalent of reactants to products.

Substituting Equation 11-13 into Equation 11-12 and 

simplifying

®(II-3) " ^(11-2) = 0, or Ej^e/Me(2+) “ ° (H-14)

Further, from Equation 11-11 remembering that we are 

considering a metal ion with an oxidation number of + 2 ,

^^Me/Me(2+) + ?F ~ + ?F

-  F  °
. (11-15)
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where E° refers to electromotive forces measured with respect 

to some reference half-cell, normally the hydrogen half cell 

reaction (represented by Equation II-3) at 25°C with hydro

gen ions at unit activity and hydrogen gas at unit fugacity, 

in which case E° is referred to as the standard electrode 

potential.
Equations 11-14 and 11-15 are exactly analogous, but 

studied together they help to understand the thermodynamics 

of the reduction by hydrogen of metal ions.

Under reaction conditions, if > E^^/Me (2+)'
the equilibrium condition of Equation 11-14 will not be met, 

and a change must take place in the system to cancel the 

inequality in electric potentials. If in

crease at constant temperature and pressure, from the first 

portion of the left side in Equation 11-15 it can be seen 

that this requirement is only possible if (2 +) decreases 

(since a^^ is fixed by the requirement of phase equilibrium 

between the liquid solution and the solid metal); that is, 

if the concentration of metal ion in solution (ideal solu

tion at least) decreases due to the formation of metal. 
Clearly then, it follows that in order to reduce a metal ion 

by hydrogen from an aqueous solution at constant temperature 

and pressure, it is required that ^ ®Me/Me(n+)'
In theory, all those metal ions in an aqueous solution 

whose electrode potentials satisfy the inequality E^g/Me (n+)
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Er can be reduced by hydrogen. For example, cupric ion 

Cu(II), whose standard electrode potential Eq u /Cu (II)
-0.337 volts should be reduced by hydrogen at 25°C and one 

atmosphere hydrogen pressure. However, in practice the rate 

of CuClI) reduction by hydrogen at these conditions is neglig

ible. More stringent conditions must be imposed to accomplish 
a measurable rate of reduction.

When Ej^e/Me(n+)  ̂ ^H 2 /H+' hydrogen cannot reduce the 
metal ion; thus, means must be devised to reverse the in

equality. Nickelous ion Ni (II) for example, whose ^Ni/Ni(II) 
is +0.25 cannot be reduced by hydrogen at 25°C and one atmos

phere hydrogen pressure; instead, at these conditions, nickel 

metal should liberate hydrogen from water and go into solution 

as the nickelous ion. It follows then that in order to reduce 

Ni (II) in an aqueous solution with hydrogen, conditions must 

be found at which > Ei,i/Ni(n)-

Variations of and

From the left side of Equations 11-14 and 11-15,

R T

^Me/Me(2+) ^ ^Me/Me(2+) ^ ÏF

R T  R T

®H 2 /H+ “ F~ ^H+ ^ ?F ^H 2  (H-17)

where ^Me/Me( 2 +) fixed by the reference standard state, 
and E° is specifically set equal to zero.
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At constant temperature, ĵyie/jyig (2+) vary only by
varying &Me( 2 +)' since a^^ is fixed by the condition of phase 
equilibrium and can be set equal to unity while introducing 

little error. Figure 1 shows values of snd (jj)

for nickel and copper in equilibrium with their sulfate solu

tions; these values were calculated using Equation 11-16 and 

data on activities obtained from Latimer (15) (Latimer actu

ally gives molal concentrations and activity coefficient (y^) 

data which were used to compute activities from the relation

^i ^

At constant temperature E^ can vary only by vary

ing a^_^ or a^ ; however, these activities are commonly ex

pressed by the more easily measurable quantities given by the 

relations

pH = - log a„+ = - ------  (11-18)
" 2.303

^ ^ (11-19)^ ^

where pH is defined by Equation 11-18. f is the fugacity
^ 2

of the hydrogen gas in equilibrium with the gas in solution.

P„ is the hydrogen partial pressure obtained by assuming 
* 2

that hydrogen behaves as an ideal gas.

Substituting the relations 11-18 and 11-19 into Equa
tion 11-17, and introducing values for R and F, at 25°C we
have
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= 0.05916 pH + 0.02958 log (11-20)

from which it follows that at constant temperature E , + can

vary with pH or with P„ . From the right hand side of Equa-
^ 2

tion 1 1 - 2 0 , it is evident that E is more sensitive to

variations in pH than to variations of P , since the coeffi-
2

cient of the pH term is twice the coefficient of the log P
2

term. Variation of E„ with pH and P̂ , at 25°C is shown in
2 ^ 2

Figure 1.
Figure 1 shows the greater sensitivity of E^ to

pH than to P ; the figure also gives an indication of the 
^ 2

conditions required to reduce Cu(II) and N i (II) with hydrogen

in their sulfate solutions. Cu(II) for example, at 25°C

should be reduced by hydrogen over the whole range of pH shown

and at all hydrogen partial pressures. N i (II), on the other

hand, in a one molal NiSO^ solution can only be reduced by

hydrogen at a pH above 5 if P is one atmosphere, or above
2

pH or 4 if P.. is 100 atmosoheres.
“ 2

Effect of NHg

From Figure 1 it appears that the driving force for 

reduction of N i (II) and Cu(II) increases with pH (since E^ 
increases), that is, as the solution becomes more alkaline.

In commercial practice, economics would dictate that a cheap 

reagent such as ammonia (NH^) be used to raise the pH of the 

solution. Ammonia, however, forms complexes with metal cations
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in solution which raise the potential of the metal ion. 

Bjerrum (2) describes the metal-complex formation mechanism,

2 + [Me(NH3 )] 2 +
Me + NH^ = [Me(NHo)J , K, = -- 7 — -----  (1 1 - 2 1 )

[Me^+] [NH3 ]

[MeCNHg)]^* + NH3 = [Me(NH3) 3]

[Me(NHo) n]
K_ = ------------   (1 1 - 2 2 )

[Me (NH3 ) ] [NH3 ]

[Me(NH3)x_^]2+ + NH3 = [Me(NH3)^]^^,

[Me(NH^)^]2 +
K = ----------------  (11-23)

[Me(NH3 )^_i] [NH3 ]

where the metal complex ions are formed stepwise up to x = Z ,

Z being Bjerrum's "characteristic coordination number" (number 

of first firmly and uniformly bound ligands) of the metal 

cation (Z = 4 for Cu(II) and Z = 6  for Ni (II)). K, . K.. ... K
X  ^ A

are the activity equilibrium constants (Bjerrum's consecutive 
association constants) of the reactions.

It follows then that in ammoniacal solutions 

represented by Equation 11-16 has little significance. Instead, 

a metal electrode potential which accounts for the complexing 

action of NH 3  must be considered. For a given complex, the 

metal potential (E^gy^MeCNH ) ] 2 +) is given by the sum of the
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two electrode potentials of the two stages

XNH 3  + Me^^ = [MeCNH^)^]^’*' (11-24)

where the first stage is merely the electrode potential for
the metal while the other is the electrode potential of the

2+complex [MeCNH^)^] . Bjerrum (3) and Meddings and Mackiw 

(2 0 ) note that ]2 + can be determined from the
relation

" ' ■ W ( M e ( N H 3 ) ^ ] 2 +  = RT 1" Rx <TI-25)

if can be determined from measurements of activities.

The latter authors further point out that for any given ammo

niacal metal salt solution, in which all the metal-ammine 

species are necessarily in equilibrium, there will be only 

one metal-ammine potential. The absolute value of the poten

tial will depend upon both the absolute metal concentration 

and the ratio of ammonia to metal present in the solution.

Further complications to the thermodynamic treatment 

of metal ions reduction by hydrogen in ammoniacal solutions 

arise from the fact that depending upon the initial NH^/Medl) 

molar ratio, the complex-ion composition in the reaction system 

changes as reduction proceeds. In general, reduction of the 
complex-ion by hydrogen can be represented by



18

+ Hg = Me + XNH 3  + 2H^ (11-26)

where, depending upon the value of x, three situations can 

arise :

1. If X = 2, the acid generated by the reduction (H ) should 

combine with NH^ liberated from the metal complex and the

pH will remain essentially constant (and therefore so will

2. If X < 2, as the reduction proceeds towards completion,

H"*" will be generated for which no NH^ will be available 
for neutralization; in this case the pH will decrease and 

so will Ejj down to a point where the reaction could 

stop because y^^ has become smaller than Ej^eyi4e 2 +*
3. If X > 2, as the reduction proceeds, more NH^ than H"*" will

be generated and the pH of the solution will increase (and

therefore so will E^ /h +^'

It should be noted that if x ^ 2, as the reaction 
2+prcceeds, the molar rariu is also changing which

causes variations in the composition of the metal ammine com

plexes and their potentials.

The reader should bear in mind that the treatment pre

sented above applies only to homogeneous solutions, and will 
not apply to the bulk of the work presented later, where 

ammonia addition causes formation of basic salts that precipi
tate as a solid phase.



CHAPTER III

REVIEW OF PREVIOUS WORK

Table I on page 3 lists much of the work published 

on reduction of copper and nickel ions by hydrogen in aqueous 

solutions. Although the scope of the subjects covered by 

the publications listed in Table I is vast, this chapter of 

this text will be limited to review of previous work done 

which closely relates to the subject of this investigation, 

that is, reduction by hydrogen of copper ion in aqueous copper 

sulfate solutions and nickel ion in aqueous nickel sulfate 

solutions.
Before passing to review previous work on reduction 

of Cu(II) and Ni (II) in their sulfate solutions by hydrogen, 

a general comment should be made about the mechanism of copper 

and nickel metal particles formation when the metal ion is 

reduced in aqueous solutions.
Courtney and Schaufelberger (6 ) outline two different 

mechanisms by which metal nuclei can be formed in aqueous solu

tions. In homonucleation, the metal nucleus is formed directly 

from metal atoms produced by chemical reduction in the bulk 

solution. On the other hand, in heteronucleation, the initial

19
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deposition of metal takes place on the surface of a foreign 

catalytic particle.

Cu(II) solutions homonucleate readily when H 2  is 

used as the reducing agent, and it is relatively easy to pro

duce metallic copper powder from Cu(II) solutions. On the 

other hand. N i (II) solutions are hard to homonucleate with 

H 2 , and a nucleating catalyst must be added to the solution 

to start N i (II) reduction by H 2 . Once nickel metal nuclei 

are formed by the nucleating agent, N i (II) reduction by hydro

gen proceeds smoothly on the nuclei surface by a heterogeneous 

reduction mechanism.
After the nuclei are formed, they can grow to micro

scopic metal particles through atom by atom deposition of 

metal onto the metal nuclei. Also, metal nuclei or metal 

particles can agglomerate to form large multiparticle 

agglomerates.

Precipitation of Copper by Hydrogen from Aqueous 
Copper Sulfate Solutions

Schaufelberger (33) using batch autoclaves studied 

the reduction by hydrogen of copper in weak (about 0.16 molar) 

copper sulfate aqueous solutions. The solution contained 

about 0.09 molar ferrous sulfate; also, 80 grams per liter 

of copper metal powder were loaded to the autoclaves with 

the feed solution. Among the variables and their ranges 

studied by Schaufelberger in this investigation were
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temperatures from 177°C to 232°C, hydrogen partial pressure 

from 50 psig to 600 psig, initial sulfuric acid concentration 

from 0.04 molar to 1.4 molar, and initial ammonium sulfate 

concentration from 0 molar to 1.5 molar. Some of Schaufel

berger 's findings from this work were:

1. An increase in hydrogen partial pressure increased the 

rate of copper reduction. At low hydrogen partial pres

sures the reaction was apparently controlled by the rate 

of dissolving hydrogen (that is, the reaction was mass- 

transfer limited).

2. As would be expected, the rate of copper reduction in

creased considerably with temperature.

3. Increase in initial sulfuric acid concentration (HgSO^) 

adversely affected the reaction equilibrium. Other 

variables held constant, the extent to which copper could 

be reduced from the solution decreased as the solution 

acidity increased.

ammonium sulfate concentration.

MacGregor and Halpern (17) studied reduction of Cu(II) 
by hydrogen in acidic CuSO^ solutions. Their experiments were 

carried out in a one gallon titanium-lined autoclave. Experi

mental solutions were 0.1 molar CuSO^ with concentratiions
varied from 0.05 molar to 0.3 molar. Temperature was varied 

between 150°C and 175°C, and H 2  partial pressure was set at



22

either 10 or 20 atmospheres. In addition, they ran some 

experiments with 0 . 1  or 0 . 2  molar NagSO^ added to the acidic 

CuSO^ solution.

MacGregor and Halpern (17) results were qualitatively 

the same as those obtained by Schaufelberger (33) . Their 

work, however, clarified the effect of sulfate ion (SO^ ) 

concentration on rate of Cu(II) reduction. They found that 

the efficiency of Cu(II) reduction increased with addition 

to the solution of an inert sulfate salt (NagSO^). Addition 

of NagSO^ in an amount at least as great as the initial CuSO^ 

concentration allowed complete Cu(II) reduction because the 

H"*" generated in reducing Cu(II) was tied up by SO^ as the 
hydrogen sulfate anion (HSO^ )

h '*' + SO^"" = HSO^“ (III-l)

which effectively prevented increase in acidity of the solu

tion. In addition, NagSO^ was found to increase the initial 

rate of Cu(II) reduction by increasing the concentration of 

undissociated CuSO^ in solution. Undissociated CuSO^ in solu

tion has been shown by Peters and Halpern (24) to activate 

hydrogen about six times faster than Cu(II). MacGregor and 

Halpern also found that addition of metallic-copper-powder to 
the solution did not affect the rate of reduction suggesting 

that the rate of Cu(II) reduction in acidic CuSO^ solutions 
is homogeneously determined.
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Peters and coworkers (23, 24, 25, 38) probably have 

done the largest amount of work in the study of Cu(II) reduc

tion by hydrogen in cupric-salt aqueous solutions.

von Hahn and Peters (38) studied Cu(II) reduction by 

H 2  in acidic, aqueous CuSO^ solutions. Their experimental 
equipment consisted of a 2  liter titanium-lined autoclave 

fitted with a special sampling system which allowed determina

tion of Cu(I) and Cu(II) concentrations at the reaction tem

perature. Experimental conditions were 160°C, 5 atmospheres 

H 2  partial pressure, 0.15 molar CuSO^, and a total SO^ con

centration of 1 molar (from H^SO^ and the inert salt MgSO^).

To describe the reduction kinetics of Cu(II) in aqueous 

CuSO^ solutions, von Hahn and Peters adapted the following 

mechanism which had been proposed earlier by Dunning and 
Potter (7)

J2 1

k
Cu(II) + H 2  ^ ^  CuH^ + H^ (III-2a)

-1
k_

CuH^fCu(II) ------- ►  2Cu(I) + H (III-2b)

3 +Cu(I) + H, —  gr CuH + H (III-2c)
k_3
^4 4 .CuH + Cu(II)  ►  CuH + Cu(I) (III-2d)

fast
2Cu(I) Cu + Cu(II) (III-2e)

K
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.+where CuH and CuH are reactive intermediates. From the 

above mechanism they obtained the rate equation

-d [H^] 

dt

k^[Cu(II)] ̂ [Hg]
k

[H+] + [Cu(II)]

+
kg[Cu(I)] [Cu(II) ] ̂  [H2 ]

He
^[H'^] + lCu (II)] fk_3 +[H ] + [Cu(II)]

or
d [Hg] 

dt" ^Cu(II) *Cu(I)

where and correspond to the reduction rates

due to the activation of hydrogen by cupric and cuprous ions 

respectively. von Hahn and Peters also concluded:

1 . "Rate of reduction of aqueous cupric sulfate by hydrogen 

depends, in part, on a strong first order catalytic effect 

of cuprous ions."

2 .  " I n  t h i s  r e a c t i o n  t h e  a c t i v a t i o n  o f  h y d r o g e n  b y  b o t h  t h e  

cupric and cuprous ions occurs by heterolytic splitting 

of the Hg molecule."
3. Cuprous ion appears to be 20 times more active towards 

than cupric ion (Dunning and Potter (7) estimated cuprous 

ion activity towards H 2  to be about 1 0 0  times larger than 
that of cupric ion).

4. Acidity has an adverse effect on both cuprous and cupric- 
activated reduction rates.
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Evans, Roiuanchuk and Mackiw (9) developed and piloted 

a process to produce copper-powder from sulfide copper-ore- 

concentrates. The process includes ammoniacal leach of the 

ore to extract metal values and hydrogen reduction to recover 

metallic-copper-powder. Feed to the hydrogen reduction batch 

autoclave consists of a slurry of basic cupric sulfates of 

the general formula (CuSO^)^Cu (OH)2  (where m lies between 2  and 

3) in an aqueous solution of copper triammine sulfate. During 

the reduction, numerous solid phases (including basic cupric 

sulfate, various cuprous sulfates, cupric oxide and cuprous 

oxide) may be identified in this system.

In their work Evans and coworkers studied H 2  reduc

tion of Cu(II) in a slurry with 50 grams per liter (gpl)

Cu(II) (about 0.785 molar Cu(II)). Variables studied included 

temperature (350°F to 450°F), hydrogen partial pressure (100 

psig to 500 psig), initial NH^/Cudl) molar ratio (1.6 to 3.0), 

initial (NH^)2 S 0 ^ concentration (0 gpl to 450 gpl), and addi

tion of organrc ayeuLs (amiuonxuiù polyacrylaLe) . Some of 

their more important experimental findings were

1. The rate of Cu(II) reduction decreases with increasing 

initial NHg/Cu(II) molar ratio.
2. Cu(II) reduction rate curves indicates that, apart from 

the initial 1 0  minutes of the reduction, the reaction is 

zero order with respect to unreduced Cu(II).

3. Rate of Cu(II) reduction increases with increasing initial 

(NH^)2 S 0  ̂ concentration.
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4. Higher temperatures and higher hydrogen partial pressures 

favored the rate of Cu(II) reduction.

5. Addition of ammonium polyacrylate to the reduction charge 

improved the rate of Cu(II) reduction and prevented plas

tering and plating of copper on the walls of the reduction 

autoclave. Ammonium polyacrylate also controlled the 

growth pattern of copper powder particles and inhibited 

their agglomeration during densification (reduction of 

fresh slurry in presence of copper particles produced in 

a previous charge, so that in effect, old particles grow 

and density).

Precipitation of Nickel by Hydrogen from Aqueous 
Nickel Sulfate Solutions

Solutions of NiSO^ do not homonucleate readily, and 

when they homonucleate. N i (II) reduction does not proceed to 

a considerable extent because H^ generated in reducing Ni (II) 

stops the reaction. Schaufelberger (33) , for example, showed 

that uxily 10 percent of the Ni (II) in NiSC^ solutions could 

be reduced by hydrogen before the solution became too acid 

(at a pH of about 2.0) and Ni (II) reduction stopped.
Although N i (II) does not homonucleate readily in 

NiSO^ solutions, the rate of N i (II) reduction can be increased 

if nickel metal "seeds" are added to the solution. However, 

the metal seeds do not solve the problem of the reaction stop

ping when a critical acid concentration (pH) is reached due
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to acid formation as Ni (II) is reduced. To solve the acidity 

problem, either neutralizing or buffering agents must be added 

to the solution.

Schaufelberger (32) found that addition of HgSO^ or 

(NH^)2 S 0 ^, or a combination of both to NiSO^ solutions seeded 
with nickel metal allowed reduction of N i (II) at higher acid

ities (lower pH) than was possible when HgSO^ or (NH^)2 S0  ̂

was absent. Schaufelberger's explanation for this behavior 

was that in the presence of sulfate ion, an anionic complex 

of nickel is formed which permits the reduction to continue 

at lower pH.

As mentioned above, to achieve complete Ni (II) reduc

tion in NiSO^ solutions either a neutralizing or a buffering 

agent must be added to stop acid formation. Schaufelberger 

(33) and Kothari (13) using ammonium acetate as buffer could 

reduce all the N i (II) in NiSO^ solutions. However, Kothari 

reports that the bulk of the nickel product was sheet metal

When N i (II) is reduced in an ammoniacal solution with 

initial NH^/Nidl) molar ratio greater than 2.0, the acid gen

erated in reducing Ni (II) presents no problem because the H+ 

is neutralized immediately.

Most of the work on reduction of N i (II) by hydrogen 
in ammoniacal solutions has come from workers (Schaufelberger, 

Mackiw, Lin, Kunda and Courtney) who were involved in develop

ment of the Sherritt Gordon Mines process. At Sherritt Gordon
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sulfide ore concentrate is leached with an ammoniacal solu

tion, and the Ni (II) is then reduced with II2  in the ammoniacal 

solution.

Courtney and Schaufelberger (6 ), using a 3 liter 

titanium-lined autoclave, studied nucléation of Ni (11) by 

nucleating catalysts in heavily buffered, ammoniacal NiSO^ 

solutions. These workers also studied N i (II) reduction in 

solutions seeded with Ni metal. To study nucléation of the 

Ni (II) - H 2  reduction, they used a solution containing (gpl)

22 NiSO^, 110 (NH^)2 S0 ^, and 6.1 NH^. Hydrogen partial pres

sure was 600 psig and the temperature range was between 150°C 

and 2 00°C. Their work showed that for FeSO^, Na 2 S and CrSO^ 

the catalytic effectiveness in nucleating the N i (II) - H 2  

reduction decreased from CrSO^ to Na 2 S to FeSO^. Although 

reproducibility of their work was limited to 50 percent, 

they made the following conclusions:

1. Efficient nucléation required a very high level of agita-
! /-\r> T -n +-V»o 1 1 rm*î H

2. "Nucléation of the Ni (II) - H 2  reaction usually seems to 

involve a mixed salt of Ni (II) and the reducing agent with 

only transient effectiveness, and the elucidation of the 

nucleating mechanism will be difficult."
3. When FeSO^ is used as nucleating catalyst, apparently a 

Fe(II) - N i (II) hydroxide or sulfate is involved in nucle

ating the N i (II) - H 2  reaction.
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4. Nucléation was drastically affected by how the sequence 

of events (time of catalyst addition and hydrogen injec

tion, heating, agitation) were varied before the final 

reaction conditions were attained.

In their work on N i (II) reduction using nickel metal 

seed, Courtney and Schaufelberger (6 ) used solutions of 0.14 

molar nickel sulfate with NH^/Nifll) initial molar ratios 

between 2 and 9, (NH^)2 S0 ^ concentrations from 0.6 molar to 

1.8 molar and granular nickel seed of either 50 or 100 grams 

per liter. The temperature range was between 150°C and 175°C, 

and the hydrogen partial pressure range was between 50 psig 

and 600 psig. In this work they arrived at the rate expression

P 1 / 2

= A • tCNHj) - " " - 5 )

for the initial rate of N i (II) reduction, where A is a tempera

ture dependent constant which includes kinetic and thermodyn

amic factors, f(NHg) is an undetermined function of the NH^ 

concentration and the NHg/Ni(II) molar ratio, [(NH^) 2 S0 ^] is

the ammonium sulfate concentration, and P„ is the hydrogen
" 2

partial pressure.
Some of Schaufelberger (32) findings on reducing 

Ni (II) from ammoniacal NiSO^ solutions buffered with (NH^)2 S0  ̂

and using nickel metal as seed were:

1. The presence of some (NH^)2 S0 ^ is helpful and prevents 

the formation of solid nickel hydroxide.
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2. Optimum rate of reduction is obtained for solutions having 

an initial NH^/NiClI) molar ratio of two; further, a dense 

nickel powder is produced.

3. At high initial NH^/Nidl) molar ratios (4 or more) or 

high concentrations of (NH^)2 S0 ^ ( 2  molar), the reduced 

nickel had a tendency to plate on the autoclave walls.

Mackiw, Lin and Kunda (18) using a one gallon auto

clave did experimental work on the Sherritt Gordon process to 

recover nickel from ammoniacal NiSO^ solutions. In this pro

cess, ferrous sulfate is used as a nucleating catalyst in the 

first batch of a seven batch cycle; subsequent batches of 

solution feed are reduced using as seed the nickel produced 

in the previous batch. Among Mackiw, Lin, and Kunda findings 

were :
1. Addition of FeSO^ to an ammoniacal (NH^/NiClI) molar ratio 

of two) NiSO^ solution not only catalyzed the reduction

of nickel by hydrogen, but it also resulted in the produc-
a 'tTérx'r^yr -f'î rs a  a n /4 a  4  ̂a  Q  f  DT" " r o H n o i  TTirT

following batches) powder.

2. Using FeSO^ as catalyst, the apparent activation energy 

for reducing Ni (II) from ammoniacal solutions (NH^/Nidl) 
molar ratio of 2.0) varied between 13.7 kcal at 300°F to 

350°F to 6.5 kcal at 350°F to 400°F.
3. Addition of (NH^)2 S0 ^ to a reaction batch using FeSO^ as 

catalyst was found to retard the reaction.
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4. Reduction of N i (II) proceeds to completion only when the 

NHg/Ni(II) molar ratio is in the range of about 1.5 to 

2.5.



CHAPTER IV 

EXPERIMENTAL EQUIPMENT

The basic experimental equipment consisted of a hot 

oil bath with a rocking mechanism for "reactor-tubes."

Following is a description of the equipment which is somewhat 

unique to the purpose of this investigation.

Reactors

Figure 2 shows a schematic drawing of the "tube- 

reactors" used to perform the experiments. Reactor parts 

are listed in Table II (Appendix A ) . The reactor "valve-heads" 

were manufactured to specification by Autoclave Engineers,

Inc., Erie, Pennsylvania. Bottom-caps, nuts and ferrules 

were standard parts manufactured by Crawford Fitting Company. 

Solon, Ohio.
Reactor bodies were cut from standard 316 stainless 

steel tubing 3/4" outside diameter by 0.049" wall thickness.
The length of the reactor bodies was determined experimentally. 

Prior to the start of the experimental work, visual inspection 

of mixing patterns in transparent prototype reactors indica

ted that for a given reactor liquid load (liquid load, as a 

percentage of the reactor volume), a minium reactor length

32
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was required to accomplish good mixing of the gas and liquid 

phases. The poor mixing observed in the transparent proto

type reactors was later confirmed experimentally, as it was 

found that for set experimental conditions, the rate of reac

tion increased with reactor-body length up to a point where 

further increase in reactor-body length yielded no improvement 

in rate of reaction (that is, the reaction was no longer mass 

transfer limited).

Hot Oil Bath

Figure 3 shows a schematic drawing of the hot oil 

bath and its related equipment. The oil-holding tank itself, 

was a circular steel tank 32" inside diameter and 24" deep.

The tank was insulated with 2" of calcium silicate insulation. 

Heating oil was Terrestic 85, a heat transfer oil provided 
by Esso Research and Engineering, Bayton, Texas. Heat was 

supplied by two electric-resistance cable heaters rated at 

3,700 watts and manufactured by Emerson Electric Company, 

Pittsburgh, Pennsylvania. Temperature could be controlled 

within ± 1°C by a Pyro-vane temperature indicator-controller 

(TIC) manufactured by the Honeywell corporation, Minneapolis, 
Minnesota.

Rocking Mechanism 

To "rock" the reactors, a rocking mechanism was in

stalled in the oil bath. Power to the rocking mechanism was 

provided by a 3/4 horsepower electric gear-motor with
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drive-shaft speed of 60 revolutions per minute. The electric 
motor's drive-shaft was coupled to a secondary drive-shaft by 

a drive-chain and reducing gears that set the sneed of the 

secondary drive-shaft at 30 revolutions per minute. The 

secondary drive-shaft was in turn connected to the mechanism's 

rocking arm by a one-half inch steel rod which had rod-end 

bearings at each end. The rod-end bearings at each end of 

the steel rod permitted connecting the rod to the secondary 

drive-shaft and to the rocking arm. This arrangement allowed 

the secondary drive shaft end of the connecting rod to rotate 

through 360 degrees, while the rocking arm end made a for

ward and a backward motion through a 150 degree arc. In 

effect then, the reactors were rocked 60 times per minute.

The rocking arm of the mechanism had a swivel-joint 

which allowed inserting or removing the reactor-holders out 

of the hot oil as desired. Compression-clamps were used to 

attach the reactors to the reactor holders.
The hot oil bath was enclosed in a metal huud. Fuiries 

given off by the hot oil were exhausted from the hood by a 

fan driven by an explosion-proof electric motor.

Auxiliary Equipment 

Figure 4 shows a schematic drawing of some of the 

auxiliary equipment. Auxiliary equipment included hydrogen 
and nitrogen cylinders, pressure regulators, a calibrated 

pressure gauge, and a circuit of 1/8” 316 stainless steel
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tubing and valves that allowed loading hydrogen to the 
reactors.

In Figure 4 the portion of the hydrogen loading cir

cuit that is enclosed by the dashed lines was used to dis

charge hydrogen from the reactors at the end of an experiment. 

The internal volume of this portion of the circuit was known.

It included the internal volume of the pressure gauge's 

Bourdon tube, the internal volume of the 1/8" tubing leading 

from the pressure gauge to valve A and to the reactor, and 

the internal volume of the reactor-head-valve from the 1 / 8 " 

tubing connection to the valve's stem-seat. See Appendix B 

for details on internal volume calibration procedure and for 

internal volume calibration curve. Knowledge of the internal 

volume of this portion of the circuit allowed back-calculation 

of the pressure inside the reactor before it was opened.

Additional equipment consisted of laboratory glassware, 

reagent grade chemicals and analytical equipment.



CHAPTER V

EXPERIMENTAL PROCEDURE

Basically, the experimental procedure consisted of 

four steps:

1. Loading liquids to reactors.

2. Loading hydrogen.
3. Immersion of reactors in the hot oil bath for the desired 

length of reaction.
4. Unloading reactors and product analysis.

Preparing Feed for the Reactors 

To load liquid solutions into the reactors, the 

"valve-heads" were closed and the bottom-caps removed. The 

reactors were turned np-side-down and solutions loaded through 

the bottom opening. After the liquids were loaded the bottom 

opening was closed by replacing the bottom-cap.

Loading solutions of NiSO^ or CuSO^ presented no 

problem and the solutions were merely pipeted into the 

reactors.
Loading charges that contained several solutes (metal- 

salt and ammonia, for example) required more attention. Cer

tain combinations of ammonia and the metal salts formed solid
39
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basic-salts which precipitated out of solution. In this 

case, homogeneous solutions of one or more solute were charged 

independently into the reactors to make up the final charge. 

When the final charge was made up with more than one solution, 

they were well shaken after closing the reactors to insure 
good mixing and were then allowed to reach room temperature.

In most cases the final volume of the liquid charge 

was 25 milliliters (except the runs of copper with ammonia 

when the liquid charge was 30 milliliters) at room tempera

ture. The homogeneous solutions were prepared so that when 

they were mixed in the reactors, the combined solutions would 

meet the experimental requirements as to relative and absolute 

solute concentrations.

Loading CuSO^, NH^ and

Charges which contained NH^ and CuSO^ were prepared 

by two different procedures. When the initial NH^/CuSO^ molar 

ratio in the charge was four or more, a standard aqueous solu

tion of NHg and CuSO^ was loaded since aqueous solutions of 

NHg and CuSO^ with NH^/CuSO^ molar ratio of four or more are 

homogeneous and no basic salts precipitate out of them. How

ever, if the initial NH^/CuSO^ molar ratio of the charge was 

less than four, the charge was made up with two different 
solutions: one, an NH^ solution, and the other a CuSO^
solution.
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For charges that contained in addition to CuSO^

and NHg, the acid was loaded last after NH^ and CuSO^ had been 

loaded by the procedure described above.

Loading NiSO^, NH^ and FeSO^

Charges of experiments with NiSO^ were prepared from 

two homogeneous solutions. One solution contained NiSO^ and 

FeSO^ as solutes, and the other was an NH^ solution.

Loading Hydrogen

Hydrogen was added after the liquids were loaded. To 
add hydrogen, the reactors were first purged with H 2  by pres

surizing to 100 psig and then releasing the pressure. Next, 

the reactors were loaded with H 2  to a pressure which had been 

calculated to give the initial hydrogen partial pressure at 

the reaction temperature. In calculating the required hydro

gen loading pressures, account was taken of gas phase compres

sion due to expansion of the liquid phase (water expansion 

data from Perry's (1)) caused by heating the solution from 

ambient temperature to reaction temperature. Appendix C 

shows the procedure used to determine hydrogen loading 

pressures.

Operating the Oil Bath 

When the oil bath had attained the desired reaction 
temperature, the reactors were placed on the rocking mechanism 
and immersed in the hot oil. The rocking motion was started
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w i t h i n  f i v e  s e c o n d s  a f t e r  i m m e r s i o n .  F i v e  s e c o n d s  b e f o r e  

t h e  d e s i r e d  t i m e  o f  i m m e r s i o n  h a d  l a p s e d ,  t h e  r o c k i n n  m e c h a n i s m  

w a s  s t o p p e d ,  t h e  r e a c t o r s  w e r e  r e m o v e d  f r o m  t h e  o i l  b a t h  a n d  

w e r e  q u i c k l y  im m e r s e d  i n  i c e  w a t e r  t o  s t o p  t h e  r e a c t i o n .

After 2 to 5 minutes, the reactors were taken out of the ice 

water and allowed to reach room temperature before opening.

Figure 5 shows typical temperature curves for reactor 

heat-up when reactors were immersed in the hot oil bath, and 

reactor cool-down curves when the reactors were immersed in 

ice water. Curves in Figure 5 were obtained by inserting a 

bayonet thermocouple in the center of a reactor and simulating 

the experimental procedure. Temperature curves show that it 

took approximately 2  minutes for the reactors to heat up from 

room temperature to reaction temperature and approximately 
the same time to cool-down from reaction temperature to room 

temperature.

Analyzing Reactor Charge

After taking them out of the cool bath, the reactors 

were allowed to reach room temperature. When the reactors 

had reached room temperature, they were connected to the 

unloading circuit enclosed by the dashed lines in Figure 4. 
Next, the reactors were opened to measure final reactor pres

sure. Final reactor pressure and ambient temperature were 

recorded to determine the amount of hydrogen left in the 

reactors. After releasing the reactor pressure, the reactors
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were disconnected from the unloading circuit and the bottom 

cap was removed in order to collect the reaction products. 

Reactor products were collected in sample bottles for wet 

methods of analysis. In most cases the solid and liquid 

phases of the products were separated immediately by filtering 

the products out of the reactor.

Determining Hydrogen Consumed

The hydrogen consumed in a reactor proved the most 

reliable procedure for determining the amount of metal ion 

in the charge that had been reduced. Of necessity, this pro

cedure required the assumption that all hydrogen consumed had 

been used in reducing the metal ion from its divalent state 

to the elemental state. Data used to determine hydrogen con

sumption included calibrated volumes of the pressure gauge, 

connections and reactors (see Appendix B ) , metal ion concen

tration and volume of the liquid load, and the initial and 

final reactor pressures with their corresponding room 

temperatures.

Appendix D gives details of how the amount of metal 

ion reduced was determined by calculating the hydrogen con

sumption in a reactor. Several comments must be made about 

assumptions made in the computer program (shown in Appendix D) 

used to calculated the hydrogen consumption in a reactor:

1. The vapor pressure of the liquid load was always assumed 
to be equal to the vapor pressure of water. This assump

tion was necessary because vapor pressure data for the
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aqueous solutions was not available. This assumption 

should not introduce grave error in calculations of 

ammonia-free solutions. However, in the cases where NH^ 

was present, it can be expected that a larger error is 

introduced; nevertheless, ammonia and the metal ions 

formed solid basic salts which should not increase the 

vapor pressure of water. The NH^ which did not precipi

tate as a basic salt was tied up by the metal ions in 

solution in the form of ammine complexes, so that little 

NHg was free in solution to elevate considerably the 

vapor pressure of the solution. Bjerrum (3) has shown 

that 1 molar aqueous Ni (II) solutions with NHg/Ni(II) 

molar ratio of 4 contain only 0.10 molar free ammonia.

For a 0.1 molar NHg aqueous solution, the data of Scatchard 

and coworkers (31) shows that at 150°C the vapor pressure 

of the solution is about 82 psia, while that of water at 

150°C is 69 psia. This 13 pound per inch square differ
ence in vapor pressure of the solution would only intro

duce a 6.5 percent error in determining the partial pressure 

of hydrogen, if the partial pressure of hydrogen is around 

2 00 psi. To justify this assumption further, it should be 

mentioned that Bjerrum's (3) measurements were made in 

heavily buffered solutions which prevented precipitation 

of solid basic salts; consequently higher free NH^ concen

trations were present than in this work where solid basic- 

salts precipitated out of solution, thereby lowering
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the concentration of free ammonia in solution.

2. The computer program output gives two figures for percent 

metal ion conversion: one (H2C0NV) is based on the hydro

gen consumed as calculated from raw data; the other 

(ADH2C0NV) takes account of hydrogen which would be in 

the liquid solution at 75°C (data of hydrogen solubility 

in water of Pray and coworkers (27)) , Although ADH2C0NV 

was calculated, in the treatment of data in Chapter VI 

H2C0NV was used to discuss the results because this 

figure was found to agree better with the results obtained 

by wet methods of analysis (see Appendix E).

Analysis by Wet Methods

Wet methods of analysis were used during the initial 

stages of this work. However, wet methods of analysis were 

abandoned (and instead the hydrogen consumption determination 

described above was used to determine the amount of non-reduced 

metal in the charge) when work in reducing the metal ions 

from ammoniacal solutions was started. Addition of ammonia 

to the metal-salt solutions formed ammine complexes in solution, 

and basic-salts which precipitated out of the solution, so 

that the charge would become a slurry, and the solution no 

longer represented the non-reduced metal in the charge. Fur

ther, when ammonia was present in the charge, it was impossible 

to obtain a meaningful sample (by agitating the products 

before sampling) of the slurry products because the sample
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would contain solid basic salts and reduced metal which would 

be determined as non-reduced metal by the wet analysis methods.

The wet methods of analysis used on various occasions 

(to check hydrogen consumption calculations, and purity of 

solid products) were:
1 . lodometric titration to analyze for copper.

2. Precipitation with dim.ethylglyoxime, and titration with 

EDTA (ethylene diamine tetra-acetic acid) to analyze 

for nickel.

Details of the wet methods of analysis are given in 

Appendix F.

Analysis of Solids

Solids were analyzed by x-ray diffraction in the 

Norelco x-ray machine of the School of Geology. See Appendix 

F for details.

Cleaning The Reactors 

After the charge was removed from the reactors, the 

reactors were filled with nitric acid and were left overnight 

to remove all traces of metal (nickel or copper). After the 

acid leach, the reactors were scrubbed with a detergent solu

tion, rinsed well and dried. This careful cleaning procedure 

was necessary to avoid reaction inhibition or catalysis by 

foreign matter which could have gotten into the reactors.



CHAPTER VI 

EXPERIMENTAL RESULTS AND DISCUSSION

The experimental results for the reduction of copper 

from copper sulfate solutions both in the presence and ab

sence of ammonia and the iron catalyzed reduction of nickel 
from ammoniacal nickel sulfate solutions will be presented 

in this chapter.

Reduction of Cu(II) from Aqueous Copper Sulfate Solutions

Reduction of Cu(II) from CuSO^ solutions is of 

interest because CuSO^ solutions result when copper oxide ores 

are leached with sulfuric acid.
Figure 6  shows the effect of initial hydrogen partial 

pj-cssure in reducing Cu(II) from a 0.5 molar CuSO^ solution 

at 150.0°C; it also shows how the hydrogen partial pressure 
in the reactors vary with time as Cu(II) is reduced. Two 

observations can be made from the Cu(II) reduction curves 

of Figure 6  :

1. At the beginning of the reaction there appears to be an 

induction period before the reaction starts. This induc

tion period can probably be attributed to two factors: 

one, the time required for the reactors to reach reaction

48
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temperature; the other, the time required for hydrogen to 

go into solution. However, a similar induction period was 

noted in the work of Dunning and Potter (7).

2. Hydrogen partial pressure has a definite effect on the

rate of Cu(II) reduction by affecting the solubility 

in the liquid solution.

Figure 7 was obtained from the data shown in Figure 5. 

The data for each Cu(II) reduction curve in Figure 6  was

fitted with a fourth degree polynomial (see least squares 
program in Appendix G). The resulting polynomials were then 

solved for t^ygr the time required for 50 percent Cu(II) re

duction. The reciprocals of t^yg times 100 (represented by 

^ti/ 2  ̂ were taken as a measure of the rate constants and used 
to plot the lines of Figure 7. Figure 7 shows that the rate 

of Cu(II) reduction varied with pressure to approximately 

the 0 . 8 8  power of the initial hydrogen partial pressure and 

a slightly lower power of the hydrogen partial pressure at 

tl/ 2 ' tne value tor the dependency of Cu(II) reduction (Lo 
approximately the 0.9 power of obtained in this work is

lower than the value of 1.0 obtained by Peters and Halpern 

(2 3) in the cupric perchlorate system, which has become the 

accepted value. This discrepancy on pressure dependency can 

be attributed to two factors:

1. In the present work, P„ fell as the reaction proceeded
* 2

thereby slowing the rate of Cu(II) reduction by lowering 

the amount of hydrogen in solution. Peters and Halpern
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(23) on the other hand, could maintain constant P„ in

%2
their autoclave and therefore also a constant hydrogen 

concentration in solution.

2. Probably more important is the fact that Peters and Hal

pern worked with dilute solutions (0 . 1  molar cupric per

chlorate) whose acidity did not increase significantly 

as reduction proceeded, while in this work the acidity of 

the solution increased rapidly to a limiting value where 

reduction of Cu(II) could no longer continue. The varia

tion of pH with time in this work is shown in Figure 8  to 

illustrate this point.

Figure 9 shows the effect of temperature on the hydro

gen reduction of Cu(II) from 0.5 molar CuSO^ under 500 psig 

initial hydrogen partial pressure. Figure 10 is an Arrhenius 

plot obtained from half time (t^y^) measurements from the 

Cu(II) reduction curves of Figure 9.

The activation energy of 26.65 kilocalories for the 

activation of by Cvt(tt) obtained in this work is larger 

than the value of 22.4 kilocalories obtained by von Hahn and 

Peters (3 8 ) and the 24 kilocalories measured by Dunning and 

Potter (7). This discrepancy is probably due to the ability 

of these workers to measure Cu(II) concentrations at reaction 

temperatures. As noted in Chapter III, the experimental auto

clave of von Hahn and Peters had a special sampling device 

which allowed taking samples at reaction temperature and deter

mining Cu(II) and Cu(I) concentrations. Dunning and Potter 

(7 ) on the other hand carried their experiments in glass
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tubes which permitted measuring the Cu(II) concentration at 

reaction temperature with a spectrophotometer. In this work, 

however, the reactors had to be cooled down before Cu(II) con
centrations could be measured, because at reaction temperature 

while the reactors were "capped" and immersed in the oil bath, 

it was not possible to obtain a sample of the liquid phase.

The above explanation for the difference in energy of activa

tions measured is somewhat supported by the work of Peters 

and Halpern (23) who obtained an activation energy of 26.6 

kilocalories for the activation of hydrogen by Cu(II) in 

perchlorate solutions by measuring Cu(II) concentrations at 

room temperature.

The effect of increased acidity on CuClI) reduction 
from CuSO^ solutions was not studied because it seemed unim

portant for the purpose of this work. Thermodynamic considera

tions in Chapter II indicate that metal ion reduction is 

favored by low acidities; in addition, the corrosivity of 

acidic media dictate that acid concentrations should be 
kept low. Similarly, the effect of Cu(II) concentrations was 

not studied because in industrial applications, Cu(II) con

centrations are somewhat fixed by the leaching conditions.

Reduction of Cu(II) in Ammoniacal CUSO 4  Solutions

Since leaching copper sulfide ores with ammoniacal 

solutions (and as noted in Chapter I is practiced by Sherritt 

Gordon Mines to provide feed solution for their hydrogen
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reduction autoclaves) offers certain advantages (negligible 

corrosion problems and selectivity, since iron oxide ores arc 

not leached), an important aspect of this program was to in

vestigate what effect different amounts of NH^ (as NH^OH) 

have in the reduction by hydrogen of metal ions in ammoniacal 

solutions.
Figure 11 shows that the rate of Cu(II) reduction (as 

represented by the slope of the curves shown in Figure 11) 

varies with initial NH^/Cudl) molar ratio; it also shows 

that NHg slows down the rate of Cu(Il) reduction, since at 

all initial NH^/Cu(II) molar ratios shown, the rate of Cu(II) 

reduction (slope of the curves) is lower when NH^ is present 

than when NHg is absent.
From Figure 11 three observations can be made:

1. The initial rate of Cu(II) reduction for NH^-free solu
tions is considerably faster than when ammonia is present.

2. The adverse effect of ammonia is not straightforward 
since the nh-/CuSO^ molar ratio of 2  gives a slower rate 

than the NH^/CuSO^ molar ratios of 1 and 4. This behavior 

is probably due to the formation of basic salts when 

ammonia is added to the CuSO^ solution. As NHg is added 

to make the solution with NHg/Cu(II) molar ratio of 1, 

basic salts start to precipitate. Further addition of 
NH^ to NH^/Cudl) molar ratio of 2 increases the amount

of basic salts formed. As more ammonia is added (above 

NH^/Cudl) molar ratio of 2), the amount of basic salts
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starts to decrease by going into solution until, at 

NH^/Cu(II) molar ratio of 4 almost all solids have gone 

back into solution.

3. Addition of NH^ appears to change the reduction mechanism. 

Note in Figure 11 that when NH^ is absent, the rate of 

reduction varies and is dependent on the Cu(II) in solu

tion, while when NH^ is present the rate of reduction is 

constant and independent of the concentration of unreduced 

Cu(II) in the charge. The change in reduction mechanism 

is probably due to a combination of basic solids formation 

and Cu(II) ammine complexes formation when NH^ is added. 

Peters and Halpern (24) have shown that reduction of Cu(II) 

complexed with nitrogen containing compounds is slower 

than reduction of uncomplexed Cu(II). The data compiled 

by Sillen and Kartell (35) also show that the solubility 

product constant of some of the basic salts formed by NH^ 

i in hrcnchantite and cupric hydroxide) is of the 

« ). o~ 10 to in At 2F^c By combining these two 

refultr with the results shown in Figure 11, it can be 

suggested that in presence of NH^, the rate of Cu(II) re

duction is determined by the concentration of uncomplexed 

Cu(II) in solution, and that in turn the concentration 

of uncomplexed Cu(II) in solution is maintained essen

tially constant at a value determined by the solubility 

of the basic salts and the dissociation of the Cu(II) 
ammine complexes.
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Figure 12 shows pH curves for the same reduction 

curves of Figure 11. As can be seen in Figure 12, the pll of 

the NH^-free solution decreases rapidly (in turn slowing up 

the rate of Cu(II) reduction due to acid formation) to a limit

ing value, while the pH of solutions containing NH^ decrease 

slowly except for the NHg/Cu(II) molar ratio of 1. This fig

ure shows that the slow rate of Cu(II) reduction in the pres

ence of NHg is not due to high acid concentrations, but rather 

due to the formation of the solids and complexes mentioned 

above.

The implications of Figures 11 and 12 for the develop

ment of a tubular reactor to reduce Cu(II) continuously are 

obvious; it would be desirable to take advantage of the high 

initial reduction rate of NH^-free solutions (as indicated by 

the slope of the NH^-free curve of Figure 11 at low residence 

times), but, at some point in the reactor, NH^ should be added 

(assuming the flow in the reactor is upwards-plug-flow, at 

that point in the reactor where the acid generated by reducing 

Cu(II) in the lower portions of the reactor has caused the 

rate of Cu(II) reduction to slow down) to neutralize the acid 

generated in the lower portion of the reactor and maintain an 

appropriate pH and therefore a high reduction rate throughout 

the reactor.

Figure 13 shows how the rate of Cu(II) reduction 

(dCu(II)/dt, from measurement of curve slope) for the NH^- 

free curve of Figure 11 varies with the pH of the reactor
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charge. Figure 13 shows that in NH^-free solutions, the rate 

of Cu(II) reduction falls rapidly when the pH of the reactor 

charge is below 0.6. This result should indicate that to re

duce Cu(II) from CuSO^ solutions in a continuous tubular 

reactor, NH^ should be added at that point in the tubular 

reactor where the pH has fallen to about 0.6 due to the acid 

generated by Cu(II) reduction in the upstream portion of the 

reactor.

Figure 14 shows the effect of NH^ on the rate of 

CU(II) reduction. The value of the rate of Cu(II) reduction 

(dCu(II)/dt) shown in Figure 14 for Cu(II) reduction in the 

presence of NH^, is the value of the slope of the straight 

lines shown in Figure 11. The value of dCu(II)/dt shown in 

Figure 14 for the rate of Cu(II) reduction in NH^-free solu

tions is the value of dCu(II)/dt given at t^y^ (25 percent 

Cu(II) reduced) by a fourth order polynomial that fits the data 

for the NHg-free curve shown in Figure 11. Figure 14 shows 

the magnituae of rhe decrease in initial rate of Cu(II) reduc

tion (where the rate at t^y^ is taken to represent the initial 

rate in NH^-free solutions) caused by NH^ additions, and shows 
that in the continuous tubular reactor it would be advantageous 

to start Cu(II) reduction in NH^-free solutions.

Effect of Adding H 2 SO 4  to Ammoniacal CUSO 4  Solutions

While operating the continuous reduction process, 

using ammoniacal copper sulfate feed, D. R. Neskora (22) found
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that additions of HgSO^ to the ammoniacal feed solution re

duced reactor plugging problems and improved product quality. 

These results directed this work to an investigation of the 

effect on Cu(II) reduction of HgSO^ additions to ammoniacal 

solutions.

Figure 15 shows the effect of adding to an

ammoniacal copper sulfate solution. Reaction conditions were 

150°C, 450 psig initial partial pressure and a standard 
solution of NHg and CuSO^ with an NH^/CuSO^ molar ratio of 4 

to which different amounts of sulfuric acid were added. From 

Figure 15 it can be seen that small additions of HgSO^ (up to 

about 0.5 M/1) have an adverse effect on the rate of Cu(II) 

reduction, but further increases in H^SO^ concentration (up 

to about 1.0 M/1 increases the rate of Cu(II) reduc

tion. Finally, the rate of Cu(II) reduction falls again as 

the HgSO^ concentration is increased further. The dashed 

curve in Figure 15 represents conditions where the amount of 

Il2 C0  ̂ added would juot neutralize the NH^ initially in the 

CuSO^ - NHg feed solution)and theoretically the molar ratio 

of NH^/CuSO^ would be zero); this dashed line was obtained by 
interpolating between the curves of 0.74 and 0.95 M/1 H 2 S 0 ^.

From the present work no explanation can be given for 

the decrease in rate of Cu(II) reduction with small H^SO^ 

additions (up to 0.53 M/1). At higher acid additions, the 

rate of Cu(II) reduction increases because the Cu(II) ammine
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Figure 15. Effect of H 2 SO 4 Additions on Reduction of 
Cu(II) from Ammoniacal CUSO 4 Solutions.



67
complexes are broken up by the acid so that NH^-free Cu(II) 

that can be readily reduced exist in the solution. However, 

when the acid additions are high (above say, that required 

for complete NH^ neutralization) as reduction proceeds, the 

rate of reduction slows down because of increased acidity as 

is evident from the pH curves of Figure 16.
Figure 17 compares the dashed line obtained from 

Figure 15 with the curve for reduction of Cu(II) in NH^-free 

CuSO^ solutions of Figure 11. As the dashed line of Figure 

17 indicates, the presence of NH^ and Il2 S0 ^ in the neutral 

charge enhanced the rate of Cu(II) reduction and allowed the 

recuction of a higher percentage of Cu(II) than when NH^ and 

H^SO^ were absent. This behavior can be explained if it is 

accepted that NH^ and HgSO^ formed (NH^jgSO^, which has been 

shown by Evans and i "kers (9) to enhance the rate of 

Cu(II) reduction :on solutions.

The imp^ ,  ̂ these resu^’ (and particularly
■HhriQç o  f  J_OT^Tno‘n+' a 't'UÎDU.X —

for continuously ■' ,.ng Cu(II) from ammoniacal CuSO^ solu

tions, is that the ammoniacal solution should be neutralized 

with H^SO^ up to a level wh _e the molar ratio of NH^/CuSO^ 
is around zero.

Figure 18 shows the effect of reaction temperature 

on the rate of Cu(II) reduction from ammoniacal CuSO^ solu

tions which had been neutralized with H^SO^ to a final NH^/ 

CuSO^ molar ratio of 1 (dashed lines) and 0 (solid lines).
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Figure 18 illustrates the necessity to neutralize the NH^ 

completely in the ammoniacal solution in order to take ad

vantage of the kinetics. At 175°C for 90 percent C u (11) re

duction in the reactor, complete neutralization of NII^, as 

opposed to only partial neutralization to an NH^/CuSO^ molar 

ratio of 1 , would mean over 1 0 0  percent increase in reactor 

throughput. The advantage of complete neutralization is 

greater at lower temperatures as indicated by the curves at 

125°C. Note that at 100°C no reduction is evident as indi

cated by the circles in the abscissa.

Iron Catalyzed Reduction of Ni (II) by Hydrogen in 
Ammoniacal Nickel Sulfate Solutions

Attempts were made to reduce Ni (II) from NiSO^ solu

tions with little success. Use of ammonium acetate and 

ammonia to buffer the reaction helped the kinetics slightly, 

but the product obtained was mostly nickel sheet that adhered 

to the reactor walls and was difficult to remove. The slow 

kinetics (4-1/2 hours to reduce about 90 percent of the 

N i (II) in a 0.45 molar NiSO^ solution at 150°C and about
300 psig P initial) and the kind of product formed indicated 

^ 2

that this type of solution feed would not be amenable to 

continuous reduction.

Discussion with D. R. Neskora (22) about the nucleat

ing catalyst that should be used to reduce N i (II) led to a 

trial run using ferrous sulfate as the nucleating catalyst 

(the same catalyst used by Sherritt Gordon Mines in their
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commercial operation to reduce Ni (II) from ammoniacal leach 

solutions and also used by Kothari (13) in some exploratory 

experiments), The nickel product from this run was a spher

ical, free-flowing nickel powder which did not adhere to the 

reactor walls. With this result, it was decided to obtain 

more information on recovering nickel from ammoniacal NiSO^ 

solutions using FeSO^ as the nucleating catalyst.

Effect of Initial NH^/NiSOa Molar Ratio

Figure 19 shows the effect of initial NH^/NiSO^ molar 

ratio on rate of Ni (II) reduction when 0.5 grams per liter 

Fe(II) (from FeSO^) is used as the nucleating catalyst.

From Figure 19, it is evident that at low (one) ini

tial NHg/NiSO^ molar ratios, the rate of Ni (II) reduction by 

hydrogen is negligible. As the initial NHg/Ni(II) molar ratio 

is increased to two, the rate of reduction becomes very fast, 

but as the initial N H 2 /Ni(II) molar ratio is further increased, 

the rate of reduction decreases. The effect of ammonia in 

this system is difficult to explain, because in addition to 
ammine complex and solid basic salt formation the role of Fe(II) 

as nucleating catalyst must be accounted for. However, a pos

sible explanation for the high rates of Ni (II) reduction at 

NHg/Ni(II) initial molar ratio of two can be borrowed from 
Meddings and Mackiw (19) who show that in homogeneous ammonia

cal nickel solutions, the greatest driving force -

E„. /„■++ ) for Ni (II) reduction by hydrogen exists atNi/Ni^^ammine
NH^yNi(II) molar ratio of two.
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Figure 19. Effect of NH3/NiS04 Molar Ratio on Reduction
of Ni (II) from Ammoniacal NiSO^ Solutions.
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The results of Figure 19 indicate that to reduce 

Ni (II) from ammoniacal solutions, using iron as the catalyst, 

in a continuous reactor, the NHg/Ni(II) initial molar ratio 

should be maintained around two.

Effect of Fe(II) Concentration on N i (II) Reduction

Figure 20 shows the effect on Ni (II) reduction of 

varying the Fe(II) concentration in the reactor charge. The 

reactor charge was 0.5 molar NiSO^ with an initial NH^/NiSO^ 

molar ratio of two. The initial hydrogen partial pressure 

was 500 psig and the temperature was 150°C. Figure 20 shows 

that the Fe(II) concentration has a marked effect on the 

rate of N i (II) reduction; further, it shows that under the 

conditions of the experiments, there is a critical Fe(II) 

concentration (between 0.25 gpl and 0.5 gpl) below which the 

rate of N i (II) reduction would be too slow for commercial 

practice. It also appears that the relative concentrations 

of Fe(II) and N i (II) in the charge play an important role 

on how fast Ni (II) can be reduced. Mackiw and coworkers (18) 

operating at similar conditions to the experiments outlined 

above, but with a Ni (II) concentration of 1.9 molar, did not 

get an appreciable rate of N i (II) reduction until after about 

80 minutes at reduction temperature even though their Fe(II) 

concentration was 0.5 gpl. Further, during the present work 

an experiment was conducted with somewhat similar conditions 

as above (NH^/Nidl) molar ratio of 6 , but remember from
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Figure 19 this high NH^/Ni(II) molar ratio should retard the 

rate of N i (II) reduction) but with a Ni (II) concentration of
0.2 molar; in this case, 0.2 gpl Fe(II) yielded a substantial 

rate of reduction after 5 minutes.

Effect of Temperature

Figure 21 shows the effect of temperature on the 

iron catalyzed reduction of N i (II) by hydrogen in an ammonia

cal solution. Initially, the reactor charge was 0.5 molar 

NiSO^, 0.5 gram per liter Fe(II) and NH^/NiSO^ molar ratio 

of six. Initial hydrogen partial pressure was 400 psig.

Figure 22 shows an Arrhenius plot obtained from half- 

time measurements of the curves in Figure 21. At these con

ditions, an apparent activation energy of 11.3 kilocalories 

was obtained for the reduction of Ni (II) by hydrogen in the 

temperature range from 125°C to 150°C. No previous report 

for the activation energy of N i (II) reduction from ammoniacal 

solutions with NH^/Nidl) molar ratio of 6 has been made; 

however, the value of 11.3 kilocalories obtained in the pres

ent work is close to the value of 13.7 kcal obtained by 

Mackiw and coworkers (18) for the reduction of Ni (II) from 

ammoniacal solutions with NH^/Ni(II) molar ratio of 2.0 in 

the temperature range from 200°F (149°C) to 350°F (177°C).

Effect of Initial Hydrogen Partial Pressure

Figure 23 shows the effect of initial H 2  partial pres
sure on the rate of Ni (II) reduction. Experimental conditions



77

90

80

oa:
LU
Q_

Q
LUcu3Q

70

60  -

50  _

40

30

20

10

1 1

H? RE D U C T I ON  OF N i ( I I )  ' 
n q MniflD Micn/i 
0 . 5  g / l  Fe^( 11 )
4 0 0  P S I G  P h 2 i n i t i a l  
N H g / N i  ( I I )  I N I T I A L  MOLAR-  

R A T I Q  OF 6 
T E MP E RA T URE S :
□  1 2 5 ° C

A 135°c
V  1 4 5 ° C

O 150°C 
______ 1

8 12 16  20 
T I M E  I N O I L  B A T H ,  MI N

24

Figure 21. Effect of Temperature on N i (II) Reduction from
Ammoniacal NiSO^ Solutions.



CM

4->

4

. 2

11.27 KCAL
.0

8

6

4

1 . 2
2.38 2. 42 2.44 2.46 2 . 48 2 . 50 2 .52

1 / T  X 103,

Figure 22. Arrhenius Plot for Ni (II) Reduction frojr Armr.oniacal Solutions 
with NF^/Nidl) Initial Molar Ratio of Six.

CO



79

90

80

o
oc

Q
LiJO
Z3
Q
l_Ll
o:

70

60

50

40

30

20

10

REDUCTI ON OF N i ( I I )

0 . 5  MOLAR N i S O i  
0 . 5  g / l  F e ( I I )
N H g / N i  MOLAR R A T I O  =

I N I T I A L  PH-

A  3 0 0  P S I G  

O  4 0 0  P S I G

□  5 0 0  P S I G

 L
4 6 8

T I ME  I N  O I L  B A T H ,  MI N
10

Figure 23 Effect of Hydrogen Partial Pressure on 
Ni (II) Reduction from Ammoniacal NiSO^ 
Solutions.



80

were a solution of 0.5 molar NiSO^ with 0.5 gpl Fe(II), 150°C 

and an NH^/Ni(II) molar ratio of two. Initial hydrogen par

tial pressure varied between 300 psig and 500 psig.

The way in which the rate of Ni (II) reduction varies 

with H 2  partial pressure is puzzling. Figure 23 shows that 

low P favor high initial rate of Ni (II) reduction; however, 
this high initial rate could not be maintained probably because 

the hydrogen partial pressure (in the reactors with lower 

initial hydrogen partial pressures) drops to a level where the 

reaction becomes mass transfer limited (see Figure 24 for 

hydrogen partial pressures). The results of Figure 23 indi

cate that apparently the hydrogen partial pressure has a 

definite effect on the Fe(II) - Ni (II) complex which Courtney 

and Schaufelberger (6 ) hypothesized as being responsible for 

nucleating the Ni - H 2  reaction.
Figure 25 shows the dependency of the "initial rate" 

of N i (II) reduction (represented here by t^^^) on the initial 

hydrogen partial pressure; a similar dependence is obtained 

on at t^y^. The result presented here for the hydrogen

partial pressure effect (Rate = P„^’^) is different from that
^2

presented by other workers, notably Mackiw and coworkers

(17) and Meddings and Mackiw (19) who found that the rate of

reduction varied linearly with pressure. However, neither of

these authors studied the effect of P„ when Fe(II) was used
^ 2

as the nucleating catalyst. Instead, they used nickel metal 
powder to catalyze the Ni (II) reduction.
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To operate a continuous tubular reactor, the results 

for N i (II) reduction presented in the previous pages suggest 

the following:

1. The temperature should be maintained at the highest 

practical value.

2. A minimum Fe(II) concentration is required to maintain 

rapid rates of Ni (II) reduction,

3. A compromise must be reached between the low hydrogen 

partial pressures at which the reaction would be mass- 

transfer limited and a P at which the initial rate of 

N i (II) reduction would be too slow.

4. Optimization of these parameters should be determined by 

actual runs using a continuous tubular reactor and econo

mic considerations.

Nature of the Metal Produced 

In all cases, the metal produced in this work was (Cu 

or Ni) metal powder. Below is given a short discussion of 

the nature of the powders produced.

Powders from Reduction of Cu(II) in CuSO  ̂ Solutions

The purity of the copper powders produced varied 

markedly with the pH of the reactor charge. Highly pure 

powders (at least three mines) could be obtained from solu

tions of CuSO^ alone and from ammoniacal CuSO^ solutions to 

which enough sulfuric acid had been added to neutralize essen

tially all the NHg. These powders however, were prone to air
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oxidation and care had to be exercised in washing and drying 
them to prevent oxidation.

As the pH of the charge increased tabove a pH of about 

4), copper oxides coprecipitated with copper metal. First, 

at pH's immediately above 4, CUgO would coprecipitate as an 
impurity; as the pH was further increased, the amount of 

Cu^O precipitated increased, and in addition CuO appeared as 

an impurity. Finally, if the pH was high enough (about 8 ), 

essentially only CuO precipitated.

Figures 26 and 27 show typical copper powder precipi
tated from acidic solutions. Figure 26 shows the particles 

present in the reactors after 15 minutes in the hot oil bath 

and Figure 27 shows the particles present in the reactor after 

30 minutes in the hot oil bath. Comparison of the size of the 

particles shown in Figures 26 and 27 show that the particles 

increased in size with time. This increase in particle size 

is probably due to agglomeration of the particles caused by 
the dynamics of the rocking mechanism. Tt was found that if 

the particles were left rocking in the oil bath, less and 

less "particles" would be left in the reactor until, after a 

few hours, only a big spherical particle was left.

Powders from Reduction of N i (II) in NiSO^ Solutions

The purity of the nickel powders produced varied 

with the length of reaction (and extent of total N i (II) re
duced) . For lengths of reaction for which less than



85

#
%

â&

Figure 26. Typical Copper Powder from 0.5 Molar CUSO4
Solution After 15_Minutes at 150°C and
400 psig Initial . Magnification 200 x.
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Figure 27. Typical Copper Powder from 0.5 Molar CUSO4
Solution After 30_Minutes at 150.0°C and
400 psig Initial Pg . Magnification 200 x.
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approximately 70 percent of the N i (II) in the charge had been 

reduced, a fine (see Figure 28) nickel-looking powder would 

be obtained. This fine powder would test 100 percent nickel 

by x-ray diffraction, but would show impurities (apparently 

amorphous) by wet methods of analysis. When more than about 

85 percent of the Ni (II) in the reactor charge had been re

duced, the powder had attained a fairly spherical shape and 

was quite uniform in size (see Figure 29). in addition, 

this spherical powder was highly pure (more than two nines 

nickel), and contrary to the behavior of copper, nickel 

powders would not agglomerate into a single mass with extended 
periods of agitation.
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Figure 28. Typical Nickel powder from Ammoniacal 0.5 Molar

NiS04 Solution After 9 Minutes at 145.0°C and
400 psig Initial Py . Magnification 200 x.
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Figure 29. Typical Nickel Powder from Ammoniacal 0.5 Molar 
NiS 0 4  Solution After 15 Minutes at 145.0°C and
400.Ô psig Initial PH. Magnification 200 x.



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

Several conclusions and recommendations can be drawn 

from this work.

Conclusions

1. The experimental equipment used in this work proved to be 

versatile and practical to obtain data in exploratory- 

developmental work. However, to make fundamental mechan

istic studies the reactors have the disadvantage that 

they cannot be sampled at reaction temperatures, and the 

pressure cannot be kept constant throughout the reaction 

period.

2. In aeneral agreement with previous wouk, it was found 

that ammonia retards the initial rate of Cu(II) reduction 
in aqueous copper sulfate solutions; however, ammonia is 

required to carry the reduction to completion.

3. Neutralization of ammoniacal copper sulfate solutions 

with sulfuric acid improved both, the rate of Cu(II) re

duction and product quality. Best results were obtained 

when approximately all NH^ had been neutralized.
90
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4. Addition of ammonia to CuSO^ solutions appears to shift 

the Cu(II) reduction mechanism from one being kinetically 

limited to a mechanism being mass transfer limited.

5. Reduction of N i (II) catalyzed by Fe(II) from ammoniacal 

NiSO^ solutions was best in solutions with NH^/Nidl) 

molar ratios of two. For N i (II) reduction in solutions 

with NH^/NiClI) molar ratio of two, there appears to be 

a critical Fe(II) concentration below which no Ni (II) 

reduction occurs.

6 . Very uniform (spherical) and highly pure (> 99 percent) 

nickel powders can be obtained by reducing N i (II) with 

hydrogen from ammoniacal NiSO^ solutions using Fe(II)

as catalyst. However, to obtain the highly pure powders 

it is required that at least 85 percent of the N i (II) 

in the charge be reduced.

Recommendations

1. For optimum continuous reduction of acidic CuSO^ leach 

solutions, reduction should be started with the raw 

solution provided it is not very acidic; and then, at 

some point in the reactor, NH^ should be added to main

tain the high reduction rates. An experimental program 

using a continuous tubular reactor is needed to verify 

this recommendation.
2. For continuous reduction of ammoniacal CuSO^ solutions, 

the ammoniacal solutions should be neutralized with HgSO^ 

before feeding them to the reactor.
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Nickel reduction from ammoniacal solutions in the con

tinuous reactor should be carried out at NH^/Ni(II) molar 

ratio of two. In order to produce a uniform and highly 

pure nickel powder an experimental program using the con

tinuous reactor should be started to determine the resi

dence times required in the continuous reactor to obtain 

the high quality product and to determine the lowest 

Fe(II) concentration which will give an economic rate of 

reduction.
The mechanism of Fe(II) in nucleating the Ni (11) - 

reaction is of interest. To study the mechanism, an 

experimental set-up similar to Dunning and Potter's (7) 

is recommended. The reaction would be followed with a 

spectrophotometer and carried out in thick-wall glass 

tubes (which would limit the P to about fifty psig) to 

which Fe(II) could be injected from an attached reservoir.



NOMENCLATURE 

a chemical activity

Cu(II) cupric ion in solution

0  electron

E electromotive force or electrode potential of a

reversible cell 

f partial fugacity

F Faraday equivalent of electric charge necessary to

convert one gram-equivalent of reactants to products 

(96,496 coulombs)

G molal free energy

hydrogen ion in solution 

H 2  hydrogen as a gas or in solution

k rate constant

K equilibrium constant in term of activities

Me metal in its elemental solid state

M e , . metal ion in solution with an oxidation number n+(n+)
N i (II) nickelous ion in solution

P partial pressure

R universal gas constant, 1.987 calories/gr-mole-°K

T absolute temperature

93
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Greek Letters

Y activity coefficient

A change or finite differential

p chemical potential

V stoichiometric coefficient in a reaction 

Subscripts

i any of the chemical species involved in a reaction

Hg/H^ refers to the half-cell reaction H 2  = 2 H^ + 2 e

Me/Me(2+) refers to the half-cell reaction Me = 2Me + 2e 

tl/2 time required to reduce 50 percent of the metal ion
in solution, minutes 

t^y^ time required to reduce 25 percent of the metal ion

in solution, minutes

Superscripts

° refers to some standard or reference state
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APPENDIX A

PARTS LIST FOR REACTORS

TABLE II
PARTS LIST FOR REACTORS

Item No. Description Material

1 Valve body 316 stainless steel
2 Bottom washer 304 stainless steel
3 Packing asbestos-graphi to
4 Spacer 416 stainless s tec]
5 Insert AMPCO (bronze- aluminum alloy)
6 Gland nut 416 stainless steel
7 Stem assembly 316 stainless steel
8 Handle aluminum
9 Set screw steel

1 0 Front ferrule 316 stainless steel
1 1 Back ferrule 316 stainless steel
1 2 Universa-Lok nut 316 stainless steel
13 Reactor body 316 stainless steel
14 Bottom cap 316 stainless C  -jhciO 2

15 Pipe to tubing adapter
(1/4") 316 stainless steel

LOO



APPENDIX B

CALIBRATION OF VOLUME OF PRESSURE GAUGE 

AND CONNECTIONS

The volume of the Bourdon tube of the pressure gauge

and of the tubing connecting the gauge to the reactors was

calibrated as follows:
1. A reactor with a known volume of 55.90 cubic centimeters 

was connected to the tubing and gauge (see Figure 4).

2. The system was pressurized with hydrogen and the reactor 

closed. At this point the pressure in the reactor and 
the ambient temperature was known.

3. The pressure was released from the system (except pressure 

from the reactor). Pressure gauge read 0 psig at this 

point.

4. The hydrogen unloading system was isolated (by closing 

valve A in Figure 4) and the reactor opened. Next, the 

final reactor pressure and ambient temperature were 

recorded to calculate the gauge and connections volume 

shown in Figure 30.

5. Raw data at 21.8°C:

Reactor with 8 6  psig; upon opening, gauge read 59.0 psig.

101
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Reactor with 300 psig; upon opening, gauge read 205.0 psicj. 

Reactor with 500 psig; upon opening, gauge read 340, 0 psicj,
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APPENDIX C

PROCEDURE TO DETERMINE HYDROGEN LOADING PRESSURES

To determine the hydrogen pressure (denoted as APL(I) 

in the computer program that follows) required in each reactor 

at ambient temperature to obtain the desired hydrogen partial 

pressure at the run temperature, the following information was 

required:

1. Estimate of the ambient temperature.

2. Hot oil temperature (TRUN).

3. Initial H 2  partial pressure desired (H2PP).

4. Volume of the reactors (RXTRV(I)).

5. Volume of liquid load (LOAD).

6 . Coefficient for expansion of water (EXFAC) from TLOAD to 

TRUN. See Figure 31 for sample determination of EXFAC.

7. Base temperature (TEASE) for determining EXFAC. See

Figure 31.

8 . Vapor pressure of water (VP) at TRUN.
The above information was input as data to the compu

ter program shown on page 106. The computer output listed 

the hydrogen pressure required by each reactor at different 

ambient temperatures to obtain the desired operating Hg
104
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pressure at TRUN. A partial sample of the computer output 

is shown on page 107.
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$ j n n  / ,706 4 1 9 6 4 , K P = 2 9 ,  TIME = 50
C APL ( n  = Ri :OUIRF.r) H2 LOADI NG PRHSSURF. IN REACTOR 1
C 6 XFAC = C Ü E F F I C I  ENT FOR EXPANSI ON OF WATER DUE TO H F A I I N G
C H2 PP=l ) ESI RED I N I T I A L  M2 P A R T I A L  PRESSURE
C L'1An = V0LUMF OF L I Q U I D  LOAD IN REACTOR
C R X T R V I I ) = T O T A L  VOLUME OF REACTOR I
C Tf)ASE=l5ASF TEMPERATURE USED TO CALCULATE EXFAC
C TRUN=RUN TEMPERATURE
C VP^VAPUR PRESSURE UF WATER AT TRUN

1 REAL LOAD
2 DI MENSI ON R X T R V I I  0 I , A P L I 1 0 )
3 R E A I M S , 101 T R UN ,H 2 P P , V P
4 10 FURMATCM F 1 0 . 4 ) )
5 WR I TE I 6 , 2 0  I TRIIN
6 2 0  FORMAT I I H l , '  M2 LOADI NG PRESSURES I P S I G I  FOR RUNS A T ' . F S . l ,

1 ' DEGREES C E N T I G R A D E ' I
7 W R I T E ( 6 , 2 1 I H 2 P P
a 21 F O R M A T ! ’ A N D ' , F 6 . 1 , '  P S I G  HYDROGEN PARTI AL  PRESSURES ' I
9 W R I TE I A , 301

10 30 FORMAT I '  CAL CULATI ONS ACCOUNT FOR V A R I A T I O N  OF WATER DENSI TY
I  WITH TEMPERATURE* , / I

11 READ!  5 , 4 0 )  ( R X T R V I I  I ,1  = 1 , 1 0 )
12 4 0 FORMAT I F 1 0 . 2 )
13 L OA O= 2 5 . 0
14 TRASE=2C. O
15 TLOAD=TDASE
1 6  D E L T = 0 . 0
1 7  0 0  100 0 = 1 , 7 5
18 TLOAD= TLOAD+OELT
19 4 7 I F  I T R U M - 1 S 0 . 0 ) 4 8 , 4 9 , 4 8
2 0  4 0  WRITE I 6 , 9 9 )
21 9 9  FORMAT ( •  SOMETHING SCREWI ’ )
2 2  4 9  E X F A C = H . R 6 - 0 . 0 3 2 8 3 * ( T L D A 0 - T B A S E )
2 3 50  0 0  52 1 = 1 , 10
2 4  52 A P L ( 1 ) =  I (TL0AD4-2 7 3 . 16 ) * ( R X T R V I  I ) - L O A D » (  1 . 0  + 0 . 0 1 * E X F A C )  )

1 *  I V P f M 2 P P ) ) / ( I T R U N + 2 7 3 .  1 6 ) » I R X T R V I  I ) - L U A O ) ) - 1 4 . 6 9  6
2 5 I F I J - l  ) a o , 6 0 , 8 0
2 6  6 0  W R I T E ( 6 , 7 0 )

1 REA CT0 R4 ’ , I X ,  ' R EA CT ORS ’ , I X , 'RE AC TOR 6 ' , I X , 'REAC TOR 7 ’ , 1 X , ' RE A C T 0 R 8 •
2 , I X , ’ REACTÜR9’ , 1 X , ’ REACTORI O’ , / )

2 8  8 0  WRI TE I 6 , 9 0 ) T L O A D , I A P L I I ) , 1 = 1 , 1 0 )
2 9  9 0  F O R M A T ( F 6 . 2 , 1 X , 1 0 ( 3 X , F 6 . 2 ) )
3 0  D E L T = 0 . 2
31 10 0 CONTINUE
32 STOP
3 3  END

$ e x E c
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' V  L u n ' i i ' j r ,  P i f s s i j u F i  ( PS 101 f o r  r u n s  4 r i s o . o o F O R rrs c e n t i g r / i u c
4 N 0  S U J . O  PS I S  I IVORIIGFN P A R T I A L  PRESSURES
C A I C I I L A T I U N S  ASC HUNT F' lR V A R I A T I O N  HF WATER O t ' I S I T V  WI T H TrMPfHATUHF.

TLOAD AEACTORl REACrUR2 RtACruR3 REACrOR4 RE AC TOO 5 REAC rokh REAL TOR 7 nEACriM0 REACT0R9 Rt ACF )i
?0.00 351.45 3 51.41 351.41 351.27 351.54 351.59 351.45 351.54 351,52 351.50?0.?0 351 .72 351.68 351.69 351.54 351.81 351.86 351.72 351.81 351.79 3)1.77JJ.40 351.97 351.95 351.95 351.81 132.09 352.13 351.99 352.08 352. 06 352.0420.60 352.26 352.22 352. 22 352.08 352.35 352.40 352.26 352.35 352.34 352,31
20. eO 352.53 352.49 35 2.49 352.35 352.62 352,67 35 2. 53 352.62 352.61 35.2.5 121.00 352.83 352.76 352.76 352.62 352.89 352.94 352.80 352.89 35 2 .-T>1 352,ns21.20 3 5 3.03 353.03 353.03 352.89 35 1. 17 353.21 353.08 353.17 3 5 3.15 353,1221.40 i53.35 353.30 35 3. 30 353.17 153.44 353.48 15 1. 35 3 6 3.44 351.42 153,3921.60 353.62 353.57 353. 57 353.44 35 3.71 35 3 . 75 35 3.62 353.71 353.69 353.6621 .̂ 0 353 .8 ) 353.94 35 3.84 353.71 353. 98 354,02 3 5 3.89 363.98 353.96 353,9322.00 3 54.16 354.11 354.11 353.98 354.25 354.29 354. 16 354.25 354.23 354.2022.20 354.4 3 354.39 354.39 3 54.2 5 354.52 3 54.56 354.43 3 54.5 2 354.50 354,4722.40 354.70 354.66 35 4,66 354.52 354.79 354,34 354,70 3 34.7 9 354. 7 7 354,7522.60 3 54.9 7 3 54. 93 354.93 354.79 355.06 353,11 354.97 355.06 ,35 5.04 355.0222 .AO 355.24 355.20 355.20 355.06 355.33 355,38 355.24 3 5 5.33 355.31 355,2923.00 355.51 355.47 355,47 355.3 3 355.60 355.65 35 5. 51 355.60 3 5 5.5) 355.8623.20 355.77 355.74 355.74 3 55.6 0 355,87 355.92 355.79 355.>37 355.86 355,8323.40 356.06 356.01 356.01 355.87 356, 15 356.19 3 56.06 356.15 356.13 356.1023.60 356.3) 355.28 356,28 356.15 356.42 356.46 356.33 356.42 3 5 ->. 40 356.372 3. AO 356.6'] 3 56.55 356,55 3 56.4 2 356.49 356.73 35 ,.60 356.69 35*) ,67 356.6424.00 356.A7 356.92 356,82 357),69 356.96 357.00 15 6. 8 7 3 56.9 0 356,94 356.9124,20 35 7. 1 4 357.09 35 7.09 356,96 357,23 39 7 .27 35 7, 14 35 7.2 3 35 7. 21 357.1924 .40 357.41 357. 37 35 7. 3 7 357.23 35 7. 50 35 7. 55 367.41 3 5 7, 5 0 357.48 35 7,4624.60 357.69 357.64 35 7.64 357.50 357.77 357.82 35 7. 68 3 5 7. 7 7 357,75 35 7. 7 324. >30 35 7. 95 35 7,91 35 7.91 35 7. 7 7 358.04 358.09 35 7.95 350.04 358.03 3 5 8,0025.00 35A.2 3 358. IB 358.I A 358.04 355. 32 358.36 35 8.23 356.32 35 8.30 35>1,2725.20 35B. 50 358.45 358.45 358.32 358,59 358.63 35 8.50 3 58.5 9 358.57 358.5425.40 358. 7 7 358.72 358,72 358.59 358,86 358.90 358.77 358.80 35 8,84 358.8125.60 359.04 359.99 358.''’9 358.86 359, 1 3 359.17 35 9. 04 359. I 3 359. 11 359 ,0.82 5. AO 359. 31 359.27 359.27 359,13 359,40 35^.45 359,31 3 59.4 0 359.33 359,3626.00 359.59 359.54 359. 54 359.40 359, 7)7 359.72 359.58 3 59 .7)7 359,65 359,6326.20 359.95 359.31 359.81 359.67 359,94 359.97 15 9. 85 3 5 7.94 359.93 3 5 9.9026.40 360. I 3 360.OB 360. 08 359,94 360,22 360 ,26 360.13 300.2 2 360.20 360.I 726.60 360.4 0 360.35 360,35 360.22 36 0. 49 37)0.53 360.40 3 60,4 9 360,47 360,4426.80 3 60.6 7 360.62 360.62 360.49 360,7 6 360.80 360.67 360,76 360.74 360,7127.00 360.94 360.89 360,89 360.76 361.0 3 361 .07 360.()4 3 61.33 361.01 360,9327.20 361.21 361.17 361. 17 361.03 361. 50 3)1.35 361.21 361,30 361.23 361.252 7.40 361,49 361.44 361.44 361,30 361.57 361 .62 361.48 361.57 361.55 361,5327.60 361.75 361.71 361. 71 361.57 361.84 361.89 361.75 361.34 361 .33 361.8027. AO 362 .03 361.98 361.9 8 361.55 362. 12 362.16 37)2. 03 362.12 362. 10 362,0 72 3.00 362.JO 362.25 362.25 362,12 362.39 36 2.4 3 362. 30 362.39 362.3 7 362.3428.20 362.57 362.52 362, 52 362.39 362.66 362.70 362.57 3 62.66 362.64 362.6128.40 362.94 362.83 362,80 37)2.66 362.93 362.98 362.84 362.71 36.?, 91 362.8928. 60 363.11 363.0/ 363.0 7 362.93 363.20 361.25 3 6 u 11 36 1. 20 36.1. 19 36 1, 152A.A0 363.39 363.34 363. 34 363. 20 563.48 363.52 3o'3.39 363.4.8 36J,46 36 3.4 329.00 363.65 363.61 36 3.61 363.48 36 3. 75 361.79 3 7) 3. 6 6 3 63.7 6 363.73 363,7029.20 36 3. 93 363.fiA 363.88 363.75 364.02 364 .06 36 1.9 3 3 64.0 2 364,00 363,9729.40 364.2) 364.16 364. 16 364,02 364.29 364 .34 104.23 3 6'.. 2 9 364.27 364,2 529.60 364 ,47 564,4 3 364,43 364,2 9 164.56 .164 .61 364,4 7 3 64, 5 > J6'*. 54 364,5229.80 364.75 364.70 364,70 364,56 Jô4,8 3 164.98 37)4. 76 3 7» 4 . 8 J 364.82 364.7930.00 365.02 364.97 364,97 364.84 365.11 365,15 365.02 3 65.11 365.09 365,0630. 20 365.29 365.24 365.24 365,11 365.38 365.42 366,29 166.31 365, )(, 365.3330.40 3 7» 5 . 5 4 365.52 365,52 165.3 9 365. 65 3()5./0 16 5.57) J U 5 . 6 6 365, 63 365.6130.60 365 .9 \ 365.79 365,79 365.65 365. 92 365.97 365,83 365.9) 365.90 365,88
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APPENDIX D

DETERMINATION OF METAL ION REDUCED BY CALCULATING 

HYDROGEN CONSUMPTION

To determine the hydrogen consumed in a reactor, and 

in turn the amount of metal ion that had been reduced, the 

following information was required:
1. Reactors loading pressure and temperature (ambient).

2. Expansion coefficient of water in heating from loading 

temperature to run temperature. See Appendix E.

3. Reactors final pressure and temperature (ambient).

4. Volume of liquid load.

5. Molar concentration of metal ion in reactor charge.

6 . Total volume of reactors.

7. Run temperature.

8 . Vapor pressure of water at run temperature.

9. Volume of Bourdon tube and connections. See Appendix B.
The above information was supplied as data to the 

computer program that follows below. A short sample of the 

computer calculations output is shown on pages 113 and 114.
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tJ04 4 ,KP=29.T nF = 30n
c c c c c c c c c c c c c c c c c c c c c c c r . c c c c c c c c c r . c c c c c c c c r . c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c  
C AOCJN = M £ r A L  n ' l  P t n i l C E D  A C C O U N r i N r ;  Fni< I N  S d L u r i O N  c
C AL I I AP A NIA AT t M P = L  OA O I NG  PR E 1 SU P F S ANN T E M P E R A T U R E S  C
C A P P = ( ?  P A R T I A L  PRESSURE AT FUO iJF R E A C T I O N  C
C A P P I N  = U?  P A R T I A L  PRESSURE A r H E G I ' U N G  OF R E A C T I O N  C
C C I F F F . W . K ,  ROOTR,  HIJOT I ,  I ER=  ARGUMENTS NEEOEO TO USE P OLRT S ' JHROUTI NE C
C C ' l E F F ( l )  T J  CUCF F ( A)  =CGEFF I C I F U T S  I N  REDL I CH - Kv i U NG  EQ UA TI O N f )F C
C S T A T E  I N  FORM / .« »M . 0 - 2  » * 2 .  0 *  I A « ' * 2 .  Ü * P - I G * P  ) « *  2 .  0 - (  l i *  P I ) ^ Z - ( A *  P ) « «2  .  0  C
C C O N V - M E T A L  I ON REUUCEO NOT A C C O U N T I N G  FOR H 2  I N  S O L U T I O N  C
C F X F A C I I  M C O E F F I C I E N T  FOR E X P A N S I O N  OF WATER I N  REACTOR I C
C Fl . OAP ANO FTEMP = F I N A L  REACTOR PR E S S U R E S  AND T E MPERATURES C
C I - NOMMER OF r e a c t o r  B E I N G  AN A L Y S E D C
C L A S r ^ N U M T t R  0 :  R E A C T O R S  I N  RUN C
C L ' ) A T E  = DA TF  OF R J N C
C L OAO= VOL UME OF L I Q U I D  L O A D , M I L L  I H  TERS C
C L R U N - R U N  NUMRER C
C .MOLES = MOi, A»  c o n c e n t r a t i o n  OF METAL  ION I N  L I Q U I D  L O AD C
C NRUNS = NUM0ER :i f  u u n s  f o r  w h i c h  c o m p u t a t i o n s  a r e  b e i n g  m a d e  c

C PC AND TC= H Y D R O G E N ' S  C R I T I C A L  PRESSURE I P S I I  AND TEMPERATURE I K l  C
C P I L R T - S U R R  O U T t ' l -  I N  I B M  S C I E N T I F I C  SO TROUT I N F  P A C K A G E .  C
C SEE IBM P U B L I C A T I O N  NUMBER G H 2 O - 0 2 0 S - A  C
C R X T R V l  I l  = T I T A L  VOL U ME OF RF ACT UR I . M I L L  I L  I T E RS  C
C SDI .H2 I S  H2 D I S S O L V E D  I N  L O AD AT 7 5  F C
C I H A S F = B A S E  t e m p e r a t u r e  t o  C A L C U L A T E  EXFAC C
C T | m F = T I M F  tf r e a c t o r  i n  o i l  b a t h  c

C TR|JN = RUN T E M P F R A T U R E  C
C V P : V A P O R  P R E S S U R E  OF WATER AT TRUN C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCr . CCCCCCCCCCCCCCCC1 real load,holes2 'M MENS ION RXTRVI 111, ALOAVI Ml , ALOAP I 101 , A TE MP I 101 , F LDAP I 1 0 I ,I F TFMP(1 )) iCXFAC < ID I ,COEFF(', I ,WI'. I .ROJTRIBI , R03T I I 313 5 READ! 5,5INRUNS4 A FORMAT I 12 I5 00 ADD K=1,NPUNS6 WRITE(6,15I7 15 FORMAT I/7Zxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx calculations froIM HYDR I'lEN PRESSURE MFASUREMENTS XXXXXXXX X X X X XX XX XXXXXX X ' , / / IB R':AO( 5, IDILPUN.LOATF.LAST, TP UN, VP, MOLES, LOAD9 ID FORMAT I 12 , 15 , I2.4FI0 .4 I10 WRI TEI 5,20IIPU0,LDATE,LAST,TRI|N11 ?D FIPMATI • NUNUMHER ',12 ,' DATE', IS ■ LAST-= ',12,I 5X,' RUN TEMPERATURE" ' , FB . 3 I12 WRITF(6,1D1L0AD,m0LFS13 19 FORMAT IBDX.'LDAD=',F6.2,'MLS OF',F B.4, ' MOLES PER LITER',/I14 RXTRVIl 1=55.1015 RXTRVI 2 1 = 56. 1516 IX TRV I 3 1 = 56.0517 RXTRVI 41=55. DOIB RXTRVI51=56.2019 RXTRVIr1=56.2520 RXTRVI 71 =56. 1 021 RXTRVIBM56.20

2 2  P X r R V I D l = 5 6 . i n21 RXTRVI 101 = 56.1524 ThaSE = 20.’J25 WBITFI6,'.01
2 6  4 0  F IRMA T I ' P.XTRI /  ' , I X ,  ' H2IN ', 6 X ,  • I I 2 E N D', 7 X ,' SO L H2 ' , 6  X I •> P ", 4 X ,1 ' HPPP INI I I AL ' , IX, ' 1I2C0NV ' , 3X, ' ADH2C INV ' , IX, ' RXTN "IN ' ,2127 0 1 BOO L’l,LAST
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R R A D C ) , '-.3 ) I . TI Mt - :
F ' l P. M\ r (  1? , P 9 . 2 )
REAO( n o  ) ALOAP ( M  , 4TPMP(  I ) t TL l l AP I I ) , FT l :  I P H  I 
FOPYAT( 4 F 1 0 . 1 I  
AL(1AP( I ) ^ ALOAP ( I )<■ 1 4 . 6 9 3  
F LOA^ I  I ) = F L U A P ( I  1 f  1 4 . 6 9 6
i F ( r p u N - n o . o i  n o ,  112,110
W r U T | - : ( 6 , l l l )
FORMAT ( ' SOMETHI OG !^CREWl ' I 
EXFAC ( n  = fl . 6  7 6 b - 0 . U 1 2 3  3 « (  ATSMP(  r ) - T ( i A S £ )
0=^0 
M=3
P C ^ m . 1 3 3 3  
TC = 3 3 .  1
T= ATEMP( I I ^ 2 7 3 . 1 6  
P = ALOAP( I  I * 1 4 . 6 9 6
A=(  ( 0 . 4 2  7 3<‘ TC<' « ' 2.0)  /  ( PC# .  “5 ) ) «« 0 . 5 
B = ( 0 . 0 4 6 7 # T C I / ( P C # T )
C O F F F d  ) ^ - I 3 * P * # 2  . 0 # A # # 2 . 0  
C )EFF(  2 l = A # # 2 .  0 # P - (  I3#P I # # 2 .  0 - H * P  
C O F F F d  ) = - 1 . 0  
COL F F (41 = 1 . 0
CALL P' H. 3T( CI JEFF , W , M , S O O T S , i n O T !  , I E R )  
n ( I E R - 1  1 9 0 0 , 6 0 0 , 7 0 0  
W R I T E ( 6 , 6 5 0 )
F O R M A T ! / / , '  S I MET HI MG SCREWI • )
I F ( I E R - 3  1 7 6 0 , WOO, 7 30  
W R I T E ( 6 , 6 5 0 1  
W R I T ? ( 6 , 6 5 0 )
W i U T E ( 6 , f l 5 0 )
F O R M A T ! / , '  UfJAGLF TO OFTERMI OE ROOT,  THOSE ALREADY FUOND ARC ' )
WR I T E (6 , 9 5 0  )
F OR MA T! / , 5 X , 9 H R E A L  ROOT, 6 X , 12HC0MPLEX ROOT/  )
DO 9 6 0  J = l , M  
I F I R O O T K J )  1 9 6 0 ,  9 5 2 , 9 6 0  
I F ! R O O T R ! J l - l . I I 95 3 , 9 6  0 , 9 6 0  
I F I R O O T R I J 1 - 0 . 9 ) 9 6 0 , 9 6 0 , 9 5 5  
I F ( M ) 9 5 7 , 9 5 6 , 9 5 7  
Z l  = ROOTR( J  I 
GO TO 963  
Z 2 = R 0 G T R ( J )
W R I T E ! 6 , 9  7 O I R 0 O I R ( J )  , R 0 0  1 ! ( JJ 
F O R M A T ( 2 E 1 6 . 71 
I F ! O I 1 6 3 , 1 4 6 , 1 4 8  
W R I T F ( 6 , 1 4 7 I Z I  
F OR MA T ! 6 X , '  7= ' , E l l  . 4  I 
GO TO 149 
W R i r E ! 6 , 1 4 7 1 Z 2  
I F  ( N - 1 )  I ' i O , 159 , l  10
02 IN » ! ALOAP!  I 1 /  1 4 . 6 9 6 1 # ! I R X T R V I I  I - L O A O  1 / 1 0 9 0 . 0 1 /

I  I 0 . 0 1 2 0 5 # ( A T E M P ( I  I * 2 7 3 .  16 I # / I  I 
CA I C OL A T I ON  NFGLECTS VAPOR PRESSURE OF WATER AT ATEMP 
| F ! M - l l l 5 2 , 1 1 0 , 1 1 0
0=1
T = F T EMP! I  I * 2 7  3.  16 
P = F L O A P ! I  1 * 1 4 . 6 9 6  
GO TO 134
GAGEV = 25 .  5 3 9 * 0 . 0 0 0 3 4 7 # F L O A P ! I  I *0 . 0 0 0 0 3 5 0 4  ' !  ! FLOAP!  I I ) # # 2 . U )

34  160 M2EN' )= ! ( F L O A P !  1 1 / 1 4 . 6 9 6 ) # !  I KX TR VI I ) - L O A n * G A G ' - r V ) / l O O O .  01 ) / (  0 .  0W705
1 * ( F T E M P (  I 1 * 2 7 3 . 1 6  ) #72 1 - 0  AGEV/  ( 1 1 2 . 0 5 # !  F TEMP!  I 1 * 2  7 3 . 16 ) )

23
2 9 50
30
31 1 00
12
13
34 109
35 110
16 111
37 112
33 133
39
4 3
41
42
4 1
4 4 134
4 5
4 6
4 7
4 3
4 9
5 0
51 599
52 6 0 0
53 6 5 0
5 4 7 00
55 750
56 780
57 3 0 0
5 9 35 0
5 9 900
6 0 9 5 0
61
62 951
63 9 5 2
6 4 9 5 3
65 9 5 5
6 6 9 5 6
6 7
68 9 5 7
6 9 9 6 0
70 9 7 0
71 145
72 146
73 147
74
7 5 143
7 6 149
7 r 150

r

7 3 15 1
79 152
3 0
9 I
3 2
3 3 159
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C H 7 F ' n  IS 112 GAS L KFT AT ÊMO fJF « CA C T 10 , N ? G L eC T S H2 CAS I N  SOLUTION
8S A P P = ( Î 2 * H 2 E N I ) * 0 . 0 ! 1 2 0 S * ( T A U N » ? 7  3 . 1 6 I  l / ( ( R X T ( L V ( I ) - L O A O * < l . O »

l  O . O l « E X F A C ( 1 1 ) 1 / I 0 0 0 . 0 1 * I A . A 9 6 - V P  
f lh S ' U H ? =  1 0 . 0 0 l l 0 9 * A P P « L O A f )  ) / 2 , 1 A U . O
87  ■ 40.JH2 = H?f :N0»-S0LH2
8 8  A 0 C 3 N - I H 2 1 M - A Ü J . I 2 )  /  ( MOLE S* l .dAO / l O O O . O )89 C0NV3 ( H2 1N-H2EM0)/ IMULFŜ LOAI)/ 1000.01
9 0  APPI  N= 121 * M 2 I  N * 0 , 0 8  20 5 ’» ( T f t I O U 2 7  8 .  1 6 )  1 /  I ( R XT RVI  I 1 - L O A O * !  1.0» 

l  0 . 0 1 * E X F A C I l 1 1 1 /  1 0 0 0 , 0 1 ♦ 1 8 . 6 9 6 - VP
91 W R I T F I 6 ,  9 9 1  l , H 2 I M , H 2 E N O , S O U 1 2 , A P P , A P P I N , C O N V , A D C U N , T I M E
9 2  9 9  F n R M A T ( 2 X , I 2 , 7 ( 2 X , F 1 0 . 5 ) , 2 X , F 8 . 2 )
9 3  3 0 0  CONTINUE
9 4  4 0 0  CONTINUE
9 8  STOP
9 6  END

3EXEC



113

zo a
o

<r o
UJ

>

ur n ttj h-
(Y CL o fA3 X1/) LA
UJnf Oû 3C
z 3 O <ai O O<3
a nJ*a' o • - oO If' o
>I
r ti c Ioaa 3 -J oK- r o

<  oz a oo LU • CLû. or m Iluu K  II3 oU z  « f3 C
OC -1 h-'ÛX oo o

c o c
J J

* - rsj (NJ O fA O Cic O O O c O o o c o o O o o o no 1 f c f 1 c 1 3 ( ao' UJ oc UJ UJ oc fC et
U1 O h» o o O'
« t c X m irt o X fA o «J o o o
u z UJ •o O o c* o o lu

fA o o AJ sO c C:
N N o a o o rA rA O
K X T o T. te o T r . o r

C o r s Ci o O o o <. O 3
O D •  - 1 u u o U'O O  O  O  O o o o c o

«fTO

T.3
3

N N fU rv o 0O O o  o o  o  o  o o o c o1 1 k- 1 1 t 1 KO UJ UJ o u; u. rvj o U l U r II' ca o 4 4 O o o c o
/Y o ar •4 4 oc O' LA

4 m n» h- o fA. 4» o
4 -J N II _J 4) 41 4 II CDen on < O O « t cr 0 ' 4 4o U l C U l O oh- (A oc h- <A fA

O  O O O O o •o o o O C O o h-
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-0.2345733E-02 ■-0.2345703E-Û2 0.1004691E 012= 0. 1005E8 0.02320
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-3.4705585E-0;. 0. 47365,S5E-0:i O.OOOOOOOF o:i 
01 0.01141 0.00029 178.29250 437.76090 0.91017 0.88709 60.00



APPENDIX E

CONPARISON OF RESULTS BY WET METHODS OF ANALYSIS 
WITH RESULTS FROM HYDROGEN CONSUMPTION 

CALCULATIONS

Figure 32 shows a comparison of analytical results 

from wet methods of analysis and from the hydrogen consumption 

determinations described in Appendix D.

Of the two hydrogen consumption figures (H2C0NV and 

ADH2C0NV) calculated by the computer program, in general, 

H2C0NV (hydrogen consumed without adjustment for Hg dissolved 

in the liquid solution at the end of the run) gave better 

agreement with the results from wet methods of analysis.
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Figure 32. Comparison of Conversions by Wet Methods of 
Analysis and by Hydrogen Consumption 
Calculations.



APPENDIX F

ANALYSIS BY WET METHODS AND BY X-RAY DIFFRACTION

This appendix presents an abbreviated description of 

the procedures used in the wet methods of analysis and in the 

analysis of solids by x-ray diffraction.

Copper Determination Procedure 

The following procedure to determine Cu(II) in solu

tion was used (recommended by Pierce, Sawyer and Haenisch 

(26)) :

1. A sample (5 to 10 ml) was taken of the solution whose

Cu(II) content was to be determined. When solids were

analyzed, a weighed sample of the solid was first dissolved 

in nitric acid, and the whole sample used in the Cu(II) 

determination.

2. When analyzing a solid sample, a small amount of urea
(about 1  gm) was added and the sample boiled for about 1  

minute and then cooled.
3. Ammonia was added until the solution showed a deep blue 

color.

4. Acetic acid was added (about 5 ml) to buffer the solution.
117
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5. Potassium iodide (about 5 gm) was added and the sample

allowed to stand for a couple of minutes.

6 . The sample was titrated with a standard solution of sodium 

thiosulfate until the iodine color began to fade. Starch 

was added as an indicator, and then the titration with 

sodium thiosulfate was continued to the starch end point.

Determination of Nickel with DimethyIglyoxime 

One of the procedures to determine N i (II) (recommended

by Pierce, Sawyer and Haenisch (26)) was as follows:

1. Samples were taken of the solution (to contain about 20- 

30 mg of Ni (II)) or solid (which was dissolved in nitric 

acid) that was being analyzed.

2. Tartaric acid was added (10 ml of a solution of 20 gm

tartaric acid per 1 0 0  ml of water).

3. The sample was diluted to 200 ml and neutralized with NH^.

4. The sample was just acidified with HCl and warmed to

about 70°C. Then, enough dimethyIglyoxime was added to 

precipitate (as the nickel-dimethyIglyoxime complex) all 

the nickel in the sample.

5. The sample was neutralized with NH^ and digested in a

steam bath for about one hour.

6 . The sample was cooled and the nickel-dimethylglyoxime solid
complex filtered in filtering crucibles. The crucibles

were then dried in an oven at about 125°C for two hours

before weighing.
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Determination of Nickel with EDTA 

The following procedure to determine nickel with

EDTA (ethylene diamine tetraacetic acid) was described by
Homer (12);

1. Same as step 1 above.

2. Adjust the sample pH to 9 with NH^.
3. Add muroxide (purpuric acid) as indicator.

4. Titrate with EDTA to the muroxide end point.

Analysis of Solids by X-Ray Diffraction 
To analyze solids by x-ray diffraction the following

procedure was used:

1. The solid samples were dried in an oven at about 125°C 

for about 2  hours.

2. The solid samples were ground to a fine powder with a 

mortar and pestle.

3. A small portion of the solid sample was mounted in a 

sample-support, and the sample exposed to x-rays from 
the Norelco x-ray unit located in the School of Geology.

4. The x-ray pattern obtained from the x-ray unit was then 
compared with cards from the Alphabetical and Grouped 
Numerical Index of X-Ray Diffraction Data published by 

the American Society of Testing Materials.



APPENDIX G

COMPUTER PROGRAM USED IN FITTING DATA TO CURVES

To fit the experimental data to curves the computer 

program shown on the next page was used. The program is 

written in "FOCAL" computer language, and the PDP- 8 -E computer 

of the School of Chemical Engineering and Materials Science 

was used to make the computations.
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C - F O C A l . , 1 9 6 0

Cil . A n p ; f  1 = 1 , N P ; n  p . m

1 . 1 M r; F .  M 1

M P . A r i ! , r ; s  X  =  F A D C <  ■. , C H )  ; F  X  = F A n C ( F M + I , T )

M F  . M 1 A I,|.T " I N I T I A L  'FAI.iif. F " ,  ! ; F  I =  1 , N j  A  'X (  I )
M 5 .  rnp F i = i , n ; f  n ( i ) = . 1 i * x ( i )
M F  . M/l F f4 = A
M F .  M F F' A = i ; n  1 C l .M; q p ~ d ; f  i =  i , n ; f  7 , ( I ) = m

M F  . 1 Cl F ç = a ; f  1 = 1 , n ; p  6 . M
M F .  î F î c A +  n -  1 ) F .  PCI, F .  A 5 ,  5 .  P F
M F  . P M F a = i ; k  i =  i , i m,*f  x ( i ) = x ( I ) - z ( d k̂ l k  I ) s 7.( I ) = M
M F .  P P (4 F . 1 M

F !•' I = 1 , l'i ; F X (  T ) =  X (  I )+?,( I ) » D (  I )
M F  . 3fl n ic'.o; I ( H - n ) F . 3 F , F . / | M , 5 . A M
M F  . 3 h s A = ? j . F  H=))I(i F .  ICI
M F  . /| Ci '4 A = M ; r ,  F .  1 0
M F  . l\ F A =  1 ; F 0  = ü +  1 ; F  I = 1 , N  F D  ( I )  =  D (  I ) / ?
M F .  A 7 T "Y,"

M F .  F M I ( M - 1 P ) F .  1 0 ; F  I = 1 , M , * T  % , X ( I )
M F  . F 3 T ! , ! , " F I T " , P ,  !
M F .  F F P - ! = i , i j p ; d  i i . m ; t  f a d c c  j  ), r , f a d c x .') - R ,  !
M F .  F M M

MiF. 0  1 c x ( I ) = x ( I ) + i x I ) ; n  i m . m ; i ( b - d ) 6 . m f J f) • l J ê 1
m . M F F H  = ) X  F  C  =  /i; F  Z ( I ) = Z ( I ) + 1 , * R
M F  . 1 M .F x (  I ) = x (  I ) - p i K i x  I ) ;  1) i M . « ; i  ( R - D ) ô .
M 6  . I F F P = D ; f  C = a ; F  Z ( I ) = Z ( I ) - 1 j P
M 6  . PC' F I ) = X (  I ) + D (  I )

I M .  M F F n=ct; F  J = l , M P ; j i  1 1 .  Cl
1 M  . 1 M c,' n = - n

1 1 .  M ' i  S " =  < (  1 ) + X (  X )  : : (  K A I I I X J + S 0 )  ) + :  (  n  )  :< (  (  p A I . ) C ( . I  +  S M  ) )  T V . f n

1 1 .  s  'I'-;: ( / |  ) : ; : ( (  l ' - ' A n c  (,I +  SI>1) )  T 3 .  M )

ll.f/,7 s w = -/+T
1 1 . 1 s ( P'ADI: (.1) - H )  : X



APPENDIX H

EXPERIMENTAL DATA

Raw experimental data are given in the following 

tables. More details (observations made while runs were in 
progress) and comments are given in University of Oklahoma 

Research Institute Data Books Numbers 1976-DB-3 and 1796-DB-4. 

available in the extractive metallurgy laboratory.

Significance of the abbreviations used in the follow

ing tables are:
Run # run number as listed in the data books

t time reactor was in oil bath, minutes

T^ ambient temperature when was loaded, °C

Tj. aTnbient temperature when residnal nnl naded .

P^ H 2  pressure in reactor when H 2  was loaded at T^, psig
P^ H 2  pressure in reactor, gauge and connections when H 2

was unloaded at T^, psig 

pH - log a at temperature at which it was measured (TpH)

TpH temperature at which pH was measured, °C

CuSO^ initial (feed) CuSO^ concentration, moles/liter

Tĵ  run temperature, °C

Pg desired initial H 2  partial pressure, psig
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NiSO^ Initial (feed) NiSO^ concentration, moles/ 1 i ter

Nil g initial (feed) Nll̂  concentration, inolos/l i I. c'r

IÎ2 S0 ^ initial (feed) n^SO^ concentration, moles/liter



T A B L E  III
DA T A  F O R  R E D U C T I O N  OF Cu(II) IN A M M O N I A C A L  A Q U E O U S  CuSO^ S O L U T I O N S

Run # CuSO^ HgSO^ T^ t T^ T^ P pH TpH

17 0.42 0.74 150.0 450.0 0 4.31 21.0
and 3.0 24.2 310.0 31.2 157.5 4.45
1.7 10.0 25.4 309.5 31.8 140.Û 3.31
m/1 30.0 26.0 309.6 32.2 100.0 1.53
N H 3  60.0 26.7 310.0 32.4 73.8 1.10

18 0.42 0.0 150.0 450.0 Q 4.42 21.0
and 3.0 27.2 310.0 31.2 154.0 4.57
0.42 10.0 27.6 309.8 31.4 147.4 4.47
m/1 30.0 27.9 310.0 32.3 127.1 3.15
N H 3  60.0 28.3 310.0 32.4 95.7 1.71

19 0.43 0.53 150.0 450.0 0 7.92 21.0
and 3.0 23.4 310.0 32.1 158.1 7.90
1.7 10.0 23.4 310.0 31.9 158.0 7.86
m/1 30.0 24.1 310.0 31.7 155.0 7.91
N H 3  60.0 23.9 310.0 31.5 145.0 7.72

20 0.42 0.95 150.0 450.0 0 1.58 21.0
and 3.0 24.4 310.0 32.2 147.0 1.75
1.7 10.0 24.6 310.0 32.1 110.0 0.98
m/1 30.0 25.2 310.0 31.6 79.4 0.76
NH^ 60.0 25.0 310.0 31.6 74.8 0.70

26 0.43 0.22 150.0 450.0 0 24.0
and 15.0 23.2 310.0 27.4 151.8 8.30
1.7 30.0 23.4 310.0 27.6 148.0 8.91
m/1 60.0 23.7 310.0 27.9 130.2 8.62
NH-,

to



T A B L E  I I I — C o n t i n u e d

Run # CuSO, HgSO^ ■R H 2
T d H Tp H

27

29

30

0.44
and
0.88
m/1
NH3
0.43
and
1.7 
m/1
NH3
0.43
and
1.7 
m/1 
NH-,

0.0 150. 0 450.0

0.63 100. 0 450. 0

0.84 100.0 450. 0

0
3.0 

10. 0
30.0
60.0
0
3.0 

10. 0 
30.0 
50. 0
0
3.0 

10. 0 
30. 0 
50. 0

24.0
24.6
24.15
24.3

23. 6  

23.8 
24.1
24. 25

24.45
24.6
24
25

310.0
310.0
309. 9
310. 0

325.0
325.0
325.0
325.0

325.3
325.3 
325.0 
325.2

28.3 
28.2 
27.7 
27. 5

28.05 
28.0 
28.3 
28 . 25

28.0 
28. 05 
28.20 
28.20

156.1 
155. 0 
153. 0 
150. 5

165. 5 
165. 0 
164.8 
165. 0

165. 3
166. 0  

166. 0  

163.5

8.83 
8.80 
8.70 
8 . 71

4
4
4
4

4,
4,
3

61
60
78
73

10
11
40

24. 0

24. 0

Ul
24. 0

31

32

0.43
and
1.7
m/1
N H 3

0.43
and
1/7
m/1

0.63 125. 0 450. 0

0. 84 125. 0 450. 0

0
3.0 

10. 0
30.0
60.0
0
3.0 

10.0
30.0
60.0

24. 0
25.4 
25.7 
26.2 
26. 25

27
27

3
9

28.0
28.25

317. 0 
317.0 
317.6
318. 3

318.2 
318.0 
318.5
318.3

31.8
32.0
32.0
32.1

31. 8
32.0 
32.05
32.1

162.6 
161. 8  

158.8 
156.3

164 . 0 
161. 3 
149. 0 
129.2

4
4,
4
4

4
2

1

1

60
61
52
51

34
70
61
16

24. 0



T A B L E  I l l - C o n t i n u e d

Run # CuSO. H^SO^ PH 2 t T . 
1

pH TpH

33 0.43
and
1.7
m / 1

N H 3

0.63 175. 0 450. 0 0

3.0 
1 0 . 0  

2 0 . 0  

40.0

24.05
24.40
24.80
25.15

365. 0 
365. 0 
364.7 
365. 0

29. 2 
29.65 
29.75 
30.05

157. 0
123.2
106.2 
99.5

3. 04 
1. 52 
1.26 
1 . 08

24. 0

34 0.43 
and
1. 7 
m / 1

N H 3

0. 84 175. 0 450.0 0

3.0
1 0 . 0

2 0 . 0

40.0

25.40
25.60 
25.80
26.60

365. 0
366.0
366.0 
365.9

29. 3 
29.45 
29.90
30. 05

129. 0 
105. 0 
103.0 
101. 3

0.92
0.70
0 . 6 8

0.62

24 . 0

35 0.41
and
1.7
m / 1

N H 3

1 . 2 0 150. 0 450.0 0

3.0 
1 0 . 0
30.0
60.0

26.5 
27.0 
27.3
27.6

314 . 0 
313.0
314. 0
315. 0

33.9
34.65
35. 0 
35.20

157.5 
117. 0 
90.0 
84.4

0.60 
0. 36 
0. 30 
0 . 2 1

24 . 0
rvjen



TABLE IV
DATA FOR REDUCTION OF Cu(II) IN AQUEOUS CuSO^ SOLUTIONS

Run # CuSO^ ^R ^ ^ 2
t Tf pH T d H

74 0.5 150. 0 400. 0 0 3.50 2 2 . 0
5.0 22.70 290.0 22.30 153. 0 1. 70

15.0 22.60 290.0 2 2 . 2 0 123. 0 0. 71
30.0 22.60 290.0 22.40 106 . 0 0.48
45. 0 22.60 290. 0 22.50 1 0 0 . 0 0. 45

75 0.5 150. 0 500.0 0 3.50 2 2 . 0
5.0 2 2 . 2 0 354. 0 2 2 . 1 0 185. 8 1.50

15. 0 2 2 . 1 0 354. 0 2 2 . 1 0 153. 0 0.60
30.0 2 2 . 0 0 354.0 22.40 138. 4 0.42

76 0.5 160. 0 500. 0 0 3. 61 15.0
5 23.70 356.0 20.4 167. 8 0. 99

1 0 23.10 355. 0 20.35 144.6 0.67
15 24.40 356.0 2 0 . 0 136. 0 0.60
25 23.40 356. 0 18.8 129.2 0.55
35 24.00 356. 0 18.3 127. 0 0.55
45 24.00 356. 0 17.4 126.5 0. 52

78 0.5 140. 0 500 . 0 0 3.40 2 0 . 0

1 0 20.5 354.8 19.0 188. 0 1.58
15 20.5 353.6 18.6 180.5 1.23
2 0 2 0 . 8 355. 3 18.5 168. 0 0. 91
30 2 0 . 0 352. 9 18.8 156. 5 0.78
45 2 0 . 0 352.1 2 0 . 6 146. 0 0. 69

tu-u



TABLE IV— Continued

Run # CuSO^ P H 2 t P .X pH TpH

79 0.5 150. 0 600. 0 0 3.60 2 0 . 0

5.0 18. 8 414. 7 20.80 219.7 1. 45
1 0 . 0 19.1 414.6 20.45 193 .4 0.84
15.0 19.0 414.7 2 0 . 1 0 181.5 0.67
25.0 18.7 414.6 19.9 0 173 . 0 0.60

80 0.5 170. 0 500. 0 0 3.60 2 0  . 0

4.0 2 0 . 0 354.9 19.65 151. 0 0.70
8 . 0 20.5 355.5 19.45 137. 0 0.58

1 2 . 0 20.4 356. 0 19.25 132.5 0.58
17.0 2 0 . 1 355. 0 19.10 128.5 0.52

tsj
00



TABLE V
DATA FOR REDUCTION OF Ni (II) IN AMMONIACAL AQUEOUS NiSO^ SOLUTIONS

Run # NiSO^ N H 3 ^R PH2 t T . 1 P± T^ Pf PH ToH

42 0.5 3.0 150.0 400.0
and
0.5 g/l 
Fe (II)

44 0.5 3.0 125.0 400.0
and
0.5 g/l 
Fe(II)

59 0.5 2.0 150.0 500.0
and
0.5 g/l 
Fe (II)

60 0.5 1.0 150.0 500.0
and
0.5 g/l 
Fe(II)

61 0.5 3.0 150.0 500.0
and
0.5 g/l 
Fe (II)

0

3.0 29.4 324.0 33.6 150. 0
10. 98 
1 0 . 2 0

30.0
1 0 . 0 29.5 324.0 33.4 137.2 10.17
15.0 29.8 324. 0 33.4 101.4 10.13

0

3.0 28. 0 327.5 31.6 171.8
1 1 . 0 1  

10.36
32.5

1 0 . 0 28.2 327.9 32. 30 156. 0 10.23
15. 0 28. 6 328.1 32.40 154. 0 10.23
25.0 28.8 328.2 32.40 134 . 0 1 0 . 2 0

0

2 . 0 25.5 368.0 29.1 176. 0
1 0 . 0

9.77
30. 0

4.0 25.8 368.0 29.8 163.0 9.81
6 , 0 25.9 368. 0 29.9 152. 0 9.86
0

2 . 0 26.6 369.1 29.2 198, 8
8.60
8.40

30.09
4.0 26.6 369.0 29.6 187.2 8.32
5.0 25.2 367. 0 28.8 166. 0 8 . 2 0

6 . 0 26.9 370. 0 29. 5 130.0 7.93
0

2 . 0 26. 0 386. 0 29. 3 198.3
11. 09 
10. 41

31. 0

4.0 26. 2 386. 0 30.5 185.0 10. 32
6  . 0 26.4 386.1 30.0 180.0 — —
8  . 0 26.6 387.0 30. 35 176. 0 10. 29

11.5 25.6 385.0 28. 80 164. 0 10.31
14. 0 25.8 385. 0 28.9 144.4 10. 30

M



TABLE V--Continued

Run # NiSO. N H 3 T r ^H 2
t P . 

1
d H TpH

62

63

64

66

67

0.5
and
0.5 g/l 
Fe(II)

0.5 150.0

0.5 
and 
1 9/1Fe(II)
0.5
and
0.25 g/1 
Fe(II)

1.0

1.0

0.5
and
0.5 g/1 
Fe(li)

0.5
and
0.5 g / 1  

Fe (II)

3.0

3.0

500. 0

150. 0 500.0

150.0 500.0

135. 0 400. 0

145. 0 400.0

0

2 . 0 27.3 366 . 0 29.6 199.1
4.0 27.5 366 . 0 30. 8 2 0 1 . 0
6 . 0 27.6 366. 0 29.7 199.2
8  . 0 27.75 366 . 2 30.0 199.0

0

2 . 0 23. 8 365 . 0 28.4 189.1
8.50 
8 . 31

3.0 24.0 365. 0 28.45 154.0 8 . 1 1

5.0 24.2 366. 0 28.80 125.0 7.48
0

3.0 23. 4 365. 0 27 .70 203.5
8.69
8.50

6 . 0 23.5 365.0 27 . 80 202.4 8.49
9.0 23.6 365. 0 28. 0 0 201. 5 8.47

1 2 . 0 23.75 365. 0 27.90 202. 3 8.47
0

3.0 23.6 311. 0 25. 35 151. 0
11. 30 
10. 54

9.0 23. 6 311. 0 25.20 146.0 10. 52
15. 0 23.65 311. 0 25.20 131. 0 10.50
2 1 . 0 23. 70 311. 0 25. 20 107 . 2 10.48

0

3.0 23.80 315. 0 25.20 153. 5
11. 30 
10.56

9.0 23.80 315 . 0 25.20 140. 0 10.50
15. 0 23.80 315. 0 25.20 1 0 1 . 0 10.47

29.0

29.0 w o

25. 0

25.0



TABLE V--Continued

Run # NiSO^ N H 3 T r ^H 2
T Pi Pf pH TpH

69 0.5 1 . 0 150. 0 400.0 0 8.87 30. 0
and 3.0 25.60 302.2 28.80 152. 0 8.76
0.5 g/1 4.5 25.80 302.0 29.60 120. 5 8.62
Fe(II) 6  . 0 25.80 302. 0 28.90 97.6 8.53

8  . 0 26 . 0 0 302.0 29. 00 91.1 8.41
70 0.5 1 . 0 150.0 300.0 0 8  . 59 30.0

and 3.0 26. 80 238.0 30.1 107. 5 8 . 31
0.5 g/1 4.5 26. 90 238.0 30.1 82.5 8 . 2 0

Fe(II) 6  . 0 26.90 238.0 30.2 6 8 . 1 8 . 1 2

8 . 0 27. 00 238.0 30.2 68.3 8.13
U )


