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PREFACE 

This work is devoted to calculations of some rare decay processes. 

We have studied the decay zO + ggy and the vector current contri­

bution to zO + ggg for massive quarks in the loop. We have found an 

interesting coherence effect which results in the zO + ggy and zO + ggg 

decay widths being sensitive functions of the top quark mass. 

We have explored an alternative to the standard models for the 

decays 0 + - + -n + e e and n + µ µ By postulating a once-subtracted 

dispersion relation for the amplitude, with the subtraction constant 

fixed to be small, we have achieved excellent agreement with the 

existing experimental data for these decays. 

Finally, we have examined the radiative correction problem in the 

decay 0 + -n + e e Y • Contrary to expectations, we have found the two-

photon-exchange contribution to be non-negligible, with important 

consequences for the measurements of the rr 0 form-factor slope. 
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enjoyable collaborations. I also wish to thank my colleague, Dr. Morten 
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her excellent typing. Last but not least, I wish to express my deep 

appreciation to my mother, Gertrude E. Tupper, to whom this thesis is 

dedicated, for her love, understanding and support through the years. 
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CHAPTER I 

INTRODUCTION 

During the last decade high-energy electron-positron storage rings 

have come to occupy an important role in elementary particle physics as 

a proving ground for quantum chromodynamics (QCD) 1 , the SU(3) gauge 

theory2 of the strong interactions. The principal reason for the 

special importance of e+e- colliders is that the leptons do not 

participate in the strong interactions while e+e- annihilation is well 

understood within quantum electrodynamics, so allowing for a clean study 

of the hadronic decays of the virtual photon, with the photon "mass" 

adjustable by tuning the e+e- beam energy. The measurements of 

+- +- +-R = cr(e e + hadrons)/cr(e e +µµ)showing the need for color, the 

discovery of the charmed quark, the detailed studies of J/~ and 

upsilon spectroscopy and the studies of three-jet events demonstrating 

the existence of the gluon, are a few of the triumphs that have been 

achieved3 • 

The future of e+e- machines, however, is in doubt, largely due to 

the rapid rise of synchrotron radiation losses with increasing energy 

and fixed ring size, resulting in prohibitive trade offs between 

construction and operating costs4 • Although this problem may eventually 

be bypassed through the innovation of the single-pass linear collider5 , 

there is still one heyday to be had before such a technological leap is 

required: resonance production of the Z0 intermediate vector boson. The 

1 



Z0 is the netural partner to thew± weak bosons which mediate S decay; 

its mass and couplings are predicted within the enormously successful 

Weinberg-Salam-Glashow (W-S-G) SU(2) x U(l) model of electro-weak 

interactions6 , and have been essentially confirmed in Z0 production 

experiments at the CERN pp collider7 • Indeed, the W-S-G model has now 

come to be commonly accepted on the same footing as QED. 

0 + -By tuning to the narrow Z resonance, the new e e machines LEP at 

CERN4 and SLC at SLAC5 will allow for copious production of the Z0 and 

extensive examination of its hadronic decay modes. Although the decay 

zO + qqg is of most immediate interest as a measure of the QCD coupling 

constant a the proposed luminosity L = 1032 cm-2 s-l for LEP 
s 

corresponds to some 1.5 x 105 qq events per day, so that one may 

contemplate studies of rare decay modes, in particular zO + ggy 

and zO + ggg. These latter decays, which occur through a quark loop, 

2 

have previously been examined in an approximation where all quark masses 

are set to zero8 • In the W-S-G model the cancellation of axial 

anomalies necessitates the existence of the top quark, but does not fix 

its mass9 • Since the as yet unobserved top quark may well have a mass 

not too far from that of the Z0 , the massless quark approximation may be 

invalid; thus in Chapter II we shall study the decays zO + ggy and 

zO + ggg for massive quarks in the loop10 • 

While the prospect of doing physics at new energy scales is always 

exciting, there remain interesting problems belonging to what is often 

described as the "intermediate energy" regime. An example in this 

regard is the rare decay rro + e+e­ Although the direct decay 

rrO + e+e- was first discussed by Dre11 11 some twenty five years ago, 

it is only within the last six years that any experimental data has been 



3 

accumulated12 ; moreover, the existing data points to a TIO+ e+e-

branching ratio far larger than may be explained by the conventional 

models for this decay. The basic elements of these models were laid 

down far in advance of the experimental observations and have acquired a 

certain rigidity with the passage of time. Unlike the standard SU(3) x 

SU(2) x U(l) theory in the perturbative region, where well defined 

calculational rules apply, the construction of phenomenological models 

for 0 + -TI + e e allows some latitude in defining the computational 

scheme. This problem is taken up in Chapter III where we examine what 

may be accomplished by relaxing one's theoretical prejudices and extend 

our ideas to the decays 
+- +-13 n + µ µ and n + e e 

Interest in the decay 0 + -TI + e e y has an even longer history, it 

having been first discussed by Dalitz 14 in 1951. In this case there has 

been a wealth of data but a paucity of insight into the problems 

presented by the experimental measurements. At issue is the TIO 'charge 

radius', more commonly referred to as the form-factor-slope aTI; as aTI 

is expected to represent a small effect in the Daliz plot, order a 

radiative corrections become important. Unfortunately the majority of 

experiments were performed before there was any serious treatment of the 

radiative correction problem. While the so called one-photon-exchange 

corrections were finally understood in a series of papers in the years 

1971-72 15 , it was still expected that the two-photon-exchange 

corrections, while contribute to the same order in a, should be 

small. In Chapter IV we will study in detail the question of whether 

the two-photon-exchange corrections are in fact small or instead 

represent a significant effect 16 • 

A summary of our results and some concluding remarks are given in 



Chapter V. In order to not over burden the text, many of the longer 

and/or more tedious derivations have been consigned to a series of 

appendicies. The notation and conventions of Bjorken and Drell's 

"Relativistic Quantum Mechanics" 17 has been followed throughout. 

4 
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CHAPTER II 

Z0 DECAY INTO TWO GLUONS AND A PHOTON 

FOR MASSIVE QUARKS 

A. Introduction 

The study of the Z0 boson through its decays into two and three 

jets is of immediate interest due to the fact that the new electron-

positron colliders will be able to produce a substantial number of Z0 's 

in the near future 1• 

The rare decays zO + ggy and zO + ggg offer an interesting way of 

testing the standard model of electroweak and strong interactions in 

higher-order perturbation theory. The differential as well as the total 

decay rates for these processes have been calculated via the box graph, 

with all the quark masses in the loop set to zero2 , 3 • 

In this paper, we extend these calculations by including the 

dependence on the quark masses. We shall mainly concentrate on the 

process zO + ggy, because the axial-vector coupling is not involved; 

for the process zO + ggg we shall report on the vector part only. 

Our analysis shows that for a single quark flavor the total decay 

rate does not change substantially except near the limit P = (2 m I 
q 

IM )2 + 1 c· 1 h h h 1d f d · Z 1.e., c ose tote t res o or pro uc1ng qq pair). As ex-

pected, we also find a discontinuity in slope of the decay rate at the 

point p = 1. 

The single-and double-differential rates we found to be more 

7 



sensitive to the quark masses. A useful approximation, enabling us to 

study the quark-mass dependence of various functions, as well as 

reducing the computational time, has been found by setting all the five 

quark masses (up to the bottom) equal to mu and by treating the top 

quark mass mt as a free parameter. 

B. Details of the Calculations 

To investigate the decay zO + ggy we only have to consider the 

box diagrams shown in Figure 1. Owing to the symmetry in the color 

indices (Tr[TaTb] = l/2 6 ab) only the vector couplings of the Z0 to 

q.q. have to be included. For the other decay zO + ggg (see Figure 2) 
l. l. 

the axial-vector couplings also contribute. In the limit of vanishing 

quark masses this was not the case, since the axial-vector contribution 

within each doublet would cancel. Since the contribution from the 

vector and axial-vector parts add incoherently we can establish a lower 

bound on the rate for zO + ggg. 

The general derivation of the double-differential decay rate has 

been elegantly described in reference 3, before the m + 0 limit was 
q 

taken, so we only quote the results; after averaging over the initial 

spins and summing over the helicities one obtains: 

8 

iF 
dxdy 

(2-1) 

We have of course normalized against the total hadronic decay width: 

r = E r(zo +q.q.) 
o I 1.1. 

(2-2) 



q 

zo 
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q 

Figure 1. Feynman Diagrams for the Decay 
zo-+ ggy 
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and we have also introduced a factor of 1/2! since we are below the 

color threshold. Here Qi is the electric charge of quark i 

and Cggy = 8 is a color factor. ai and bi are the usual vector and 

axial-vector couplings of Z0 to qiqi. 

1 
= bt = - bb = 2 

x and y are the usual scaling variables x = 2Ea/Mz and y = 2 Eb/Mz• 

The function of d2F/dxdy is given by 

:::y =~{I M+++(x,y,z)l 2 + (x - y) + (x + z) + I M-++(x,y,z)j 2} 

where 

{y(l-y) I (1) 12 z(l-z) I (1) · ) 12 8 x(l-x) EA++(x,y,z) + x(l-x) EA++(x,z,y + 

(1-y)(l-z) (1) (l)* 
- 2 x(l-x) Re[EA++(x,y,z)EA++ (x,z,y)] + 

I (2) 12} + EA+/x,y,z) 

and, as usual , 

X + y + Z = 2 

(2-3) 

(2-4) 

(2-5) 
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Whereas in the limit of vanishing quark masses the Ei.!lcx,y,z) where 

real and comparatively simple functions of the scaling variables, in the 

case of massive quarks they are given by the coherent sum 

(i) 1 
EA++(x,y,z) = ,. 

1,., a.Q. 
1 1 

over the complex helicity amplitudes4 Ei!I (r,s,t) as functions of 

the modified Moller-Mandelstam variables3 r, sand t satisfying 

r + s + t -µ ;;, 0 
1 

(i) 
The expressions for EA++ (r,s,t) are given in Appendix A, where we 

also exhibit the functions B(r), T(r) and I 0 (r,s,y 1) on which they 

depend, in terms of elementary and dilogarithmic5 functions. In 

(2-6) 

(2-7) 

Appendix B we derive various expansions for B(r), T(r) and I 0 (r,s,µ 1), 

finally, in Appendix C, these expansions are used to prove that 

. 2 
jMA++(x,y,z)j is free of any infrared or collinear (x + 0 or x + 1) 

type singularities. This is in contrast to the massless case where 

d2F/dxdy behaves as ln2(z) [ln2(1-z)] for Z + 0 [Z + l] and is due to 

the parameter P. which cuts off the logarithmic behavior near the edges 
1 

of the phase space. 

C. Results for a Single-Quark Contribution 

As noted above d2F/dxdy is free of any infrared or collinear 

singularities so we can safely integrate numerically the single 

differential rate dF/dx and the total F(p) as a function of P. For 

p + 0 we should reproduce the answer3 F(O) ~ 80. The other limit, 
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p + 1, corresponds to closing the channel for the real decay zO + qq. 

A plot of F(p) versus Ip (p < 1) is exhibited in Figure 3 - it shows 

a very small rise up top~ 0.1 and as we reach P + 1 the limited phase 

space cuts F(p) severely. At P = 1 the value of Fis roughly one-third 

of F(O). Figure 4 shows the behavior of F(p) for p > 1. For p values 

between 10 and 100 it approaches the asymptotic expression (see Appendix 

D) 

4352 1 
F(p) = 30375 4 

p 
(2-8) 

Asp approaches 1 from above, this approximation fails badly, roughly 

by two orders of magnitude. When the two curves are matched at p=l we 

find a discontinuity in the slope. This of course is expected since for 

p > 1 the amplitudes are real functions while for 1 ~ p ~ 0 they have 

an imaginary part. A similar discontinuity was seen before by De 

Tollis4 in the photon-photon scattering process. 

For p ~ 1 our results for F(p) are in agreement with Baier et 

D. Results for the Total Contribution: 

Dependence on the Mass of the Top Quark 

To obtain the total rate for zO + ggy one has to take into account 

the coherent contribution of all six quarks in the loop in Figure 1. In 

most of the region of the phase space E~ (r,s,t) tends to be much 

larger than 
(i) 

E-++(r,s,t). Also, 
(i) 

EA++(r,s,t) only deviates from its 

value for p + 0 by about 10% even for the bottom quark, and except near 

the edges of the phase space. Anyway the contribution to F(p) is small 
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there due to the cutoff effect of p. 

We then found it reasonable to use just one pi= pµ for i = u, d, 

s, c and b. The top quark mass is treated separately and we have used 

it as a free parameter. To obtain the vector part for zO + ggg 

need make the replacements aiQi + ai in Eqns. (2-1) and (2-6), and 

Cggy/2! + Cggg/3! in Eqn. (2-1) where the three-gluon color factor is 

Cggg = 10/3. A plot of F(pt) for zO + ggy as well as the vector part 

for zO + ggg is shown in Figure S. For small pt the value 

F(o) ~ 80 is obtained. For Pt= 1 only five quarks should contribute 

and F goes down to about 70% for the zO + ggy decay and up to about 

200% in the other case. The behavior of F(pt) can qualitatively be 

(i) 
understood by looking at the interference patterns in EA++ (r,s,t). 

For the process zO + ggy all the coupings aiQi are positive. Also, 

E(i) ( ) · i · f h h f 1 A++ r,s,t is negat vein most o t e p ase space or arge 

arguments, which is to say small pi. However, if pi becomes large 

16 

like pt the amplitude changes sign, thus introducing destructive 

interference. For the process zO + ggg the opposite is the case. Here 

the couplings are only ai and so alternate sign. Since at is positive, 

a positive value of EA++ will increa·se the total amplitude. 

For the top quark mass of mt= 20 GeV we obtain7 

r(z 0 + ggy) = 
r 

0 

and 

. -6 
1.8 X 10 

rczo + ggg) ) o.8 x 10-s 
r 

0 

(2-9) 

(2-10) 
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In Figure 6 we also show the double differential function d2F/dxdy 

normalized against F(pt) compared to the massless case. Although the 

shape has changed we still have the symmetries about x 

satisfied. Finally, in Figure 7 we have displayed the single -

differential function dF/dx and compared it with the massless case. For 

small x they give the same answer, while for x + 1, dF(pt)/dx tends to 

a finite value and dF(o)/dx goes like ln2(1-x). 

E. Remarks 

(a) As noted above we have assumed that we are below the color 

threshold, the gluon jets then being indistinguishable. Above the color 

threshold the results for zO + ggy and zO + ggg should be multiplied by 

2! and 3! respectively. The agreement with the results of Baier et al6 

is thus obtained. 

(b The plot of the function F(p) versus Ip (see Figure 3) is 

identical in shape to a similar plot exhibited by Baier et a16 • However 

we found a discontinuity in the slope of F(p) at p = 1. 

(c) We have seen that for the process zO + ggg that the rate in-

creases by nearly a factor of 3 for a reasonable top quark mass. Since 

the axial-vector couplings bi also alternate sign this would suggest 

that the axial-vector part could give a sizable contribution, thus 

perhaps lifting the rate even further. 
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CHAPTER III 

nO AND n DECAYS INTO LEPTON PAIRS 

A. Introduction 

Recently, better experimental data have become available for the 

rare decays of the neutral pseudoscalar mesons into lepton pairs, which 

we denote by P + ££; for the decay O + - 1 n + e e , Mischke et al. have 

reported the branching ratio 

-7 (1.8 ± 0.6) X 10 (3-1) 

which is compatible with the earlier observation by Fischer et al. 2 , 

In the case of the decay 

al. 3 gives 

+ -r(n + µ µ )/f(n + all) 

(3-2) 

+ -n + µ µ , a new measurement by Djhelyadin et 

-6 
(6.5 ± 2.1) X 10 (3-3) 

which is two standard deviations below the older result by Hyams et 

4 al . , 

(3-4) 

22 
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These res·ults are of considerable interest since the decay P + Jlfl is 

thought to be dominated by a two-photon intermediate state [Fig. 8(a)] 

which probes the pseudoscalar electromagnetic structure at large 

virtual-photon mass. 5 Indeed, this configuration saturates the 

absorptive part of the 1r 0 + e+e- amplitude and dominates the absorptive 

part for n + µ+µ-, from which the model-independent unitarity bounds6 

0 + - O -8 f(1r + e e )/f(1r +all)) 4.7 x 10 (3-5) 

+ - -6 r(n + µ µ )/r(n + all) ) 4.1 x 10 (3-6) 

are determined. 

In the limit of a pointltke P(q) + y(k 1) + y(k2) interaction, the 

dispersive part of the P + ifl decay amplitude is logarithmically 

divergent when expressed as an unsubtracted dispersion relation5 or 

Feynman integra16 , so that the sensitivity of the branching ratio to the 

pseudoscalar-meson structure is expressed by the introduction of a form 

2 2 2 
factor f(k 1 , k2 , q) at this vertex. A constraint upon the 

parametrization off is provided by the form-factor slope, ap, which is 

defined as 

2 a 2 2 I Ill..~- f (k, O, m) 2 
.I:' ak2 P k = o 

(3-7) 

This quantity is measured in the decay P + ifly; Djhelyadin et al8 find 

both ~ and their 
+ -n + µ µ branching ratio to be in fair agreement with 
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the vector-meson-dominance model for f advocated by Quigg and Jackson7 • 

In contrast, this same model seriously underestimated both an, as 

measured by Fischer et a!: 9 , and the 0 + -
n + e e branching ratio quoted 

above, while modifications to the model suggested by Q.C.D. asymptotic 

behavior do nothing to alter this circumstance10 • Similarly, the 

single-particle-propagator model for f, first proposed by Berman and 

Geffen6 , and, more recently, discussed in the context of Q.C.D. by 

11 O + -Bergstrom , gives an uncomfortably small n + e e branching ratio 

both when a is taken as an input, and when a is fixed by Q.C.D. 
TI TI 

asymptotics. Pratap and Smith12 have calculated fin a nucleon-loop 

model; when some errors in their work are corrected13 , this model gives 

+ - 0 + -n + µ µ and n + e e branching ratios which are two standard 

deviations above and below, respectively, the latest experimental 

values, together with values for an and an which are 1-2 orders of 

magnitude smaller than recent observations8 , 9 allow. Furthermore, when 

the nucleon loop is replaced by a sum over quark loops, as in the work 

of Ametller et al: 13 , all of these models agree on the prediction 

while the predicted n +µ+µ-branching ratios range from near the 

unitarity limit for the single-particle-propagator model up to 

6.2 x 10-6 for the quark-loop model. 

(3-8) 

Since the contributions of neutral currents 14 and massive Higgs 

bosons 15 are expected to be small, the disagreement between theory and 

h = 0 + e+e- d · bl experiment forte " ecay constitutes a serious pro em. 

Bergstrom11 has advanced this discrepancy as a possible indication of 

25 



new interactions; however, before invoking anomalous couplings we feel 

that it is important to critically examine the assumption, implicit in 

the models discussed above, that the P + ii amplitude is described by an 

unsubtracted dispersion relation. 

B. Notation and the Weak Current Contribution 

We define the matrix element for the decay P + yy by16 

where the form factor f obeys 

( 2 k 2 q2) f k2 , 1 , 

2 f(O,O,m ) 
p 

l 

2 2 2 
f(kl , k2 , q ) , 

(3-9) 

(3-lOa) 

(3-lOb) 

We also define the invariant matrix element for P(q) + 1(P+) + i(P_) by 

(3-11) 

Apart from an overall factor, K(q 2) is the effective coupling of P to 

the ii pair; the factor of mi in Eqn. (3-11) is required by helicity 

conservation which forbids the decay of Pinto a massless fermion-anti-

fermion pair. Using the identity 

26 
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µVa/3 
E E 

µvpcr (3-12) 

Eqn. (3-9) gives 

(3-13) 

for P + YY, while for P + ii a simple trace calculation results in 

(3-14) 

Eqns. (3-13) and (3-14), together with the well known phase space 17 for 

1 + 2 + 3 , allow us to write the P + ii partial width as 

(3-15) 

For (m1/mp) << 1 Eqn. (3-15) reduces to the expression given by Drell5 • 

As noted above the standard assumption is that K(q 2) satisfies an 

unsubtracted dispersion relation in q2 : 

Re __ . K(q2 ) = l_ f~ ~ Im K(t) 
7T O 2 

t-q 
(3-16) 

To lowest order in the electromagnetic coupling and to all orders in the 

strong interaction, Im K(q2 ) can be written as (see Appendix E) 

2 Im K( q ) (3-17a) 
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where the two-photon contribution is 

2 n 1-S 2 
Im Kyy(q) = S ln (l+S) f (O,O,q) (3-17b) 

s [l -

2 
m 1 

4 ....L1 /2 
2 

q 
(3-17c) 

and the sum runs over all real hadronic intermediate states. We note 

that if only the two-photon part of Eqn. (3-17a) is retained and we set 

Re K(q 2) = 0 in Eqn. (3-15), then we reproduce the unitarity bounds 

given in Eqns. (3-5) and (3-6). Eqn. (3-16) is rendered plausable by 

noting that the model form factors mentioned above yield sufficient 

conditions upon f(O,O,q 2) and the remaining terms in Eqn. (3-17a) such 

that ImK( 00 ) = 0 so the dispersion integral converges; this is 

explicitly demonstrated in Appendix E for the simple vector meson 

dominance model. Simple convergence, however, is not an a priori 

guarantee that Eqn. (3-16) is the proper representation of the physical 

amplitude; we may, for example, consider a once-subtracted dispersion 

relation for K(q2): 

2 Re K( q ) 
2 

K (0) + _g__ J00 dt Im K(t) 
p 1T O t(t-q2) 

There then remains the problem of fixing the subtraction constant 

Kp(O). Clearly the choice 

K (0) = .!_ J00 E!_ Im K(t) 
p 1T O t 

(3-18) 
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merely reduces Eqn. (3-18) to Eqn. (3-16) so we must look beyond the 

electromagnetic interactions in ascribing a value and a physical 

significance to Kp(O). 

Let us recall that the bulk of low energy weak interaction 

phenomenology is well described by the effective current-current 

Lagrangian density18 

G =--
2/ 2 

Here G is the Fermi constant, 

J >,. 
fl 

is the leptonic current and the hadronic current is 

J >,. 
h 

( .\. 'F .\. 
F4 + 1 5 

F 5 - i F 5>..) cos 6c + 
1 2 

F 5.\. 
4 

(3-19a) 

(3-19b) 

(3-19c) 

(3-19d) 

where 6c is the Cabibbo angle. The 
.\. 5.\. 

F. and F. form, respectively, 
1 1 

vector and axial-vector octet representations of SU(3). The current 

algebra hypothesis rests on the postulate that the leptonic charges 

1 f 3 o 
W fl+ = 2 d X J ,R_, (3-20) 
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(3-20b) 

and hadronic charges 

1 f 3 o 
Wh+ = 2 d X Jh' (3-20c) 

(3-20d) 

satisfy the same equal time commutation relations: 

(3-2la) 

(3-2lb) 

where 

(3-22a) 

1 f 3 o 
Wh3 = 2 d X Jh3 (3-22b) 

with 

(3-23a) 
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(1 1 . 26 ) ( A _ F SA) 13 26 ( A - 2 sin c F3 3 + ""z' sin c F8 

- sin6c cos6c (FA - FSA) 
6 6 (3-23b) 

If we take this postulate seriously, then we are led to introducing a 

new interaction term 

L' G ( t A J A t) = U2 J 3 A J 3 + 3 J 3A ' 

J A 
3 

(3-23c) 

(3-23d) 

and thus, with Eqn. (3-19a) describing the charged current interactions, 

Eqn. (3-23c) describes the neutral current interactions. This cannot be 

quite correct since strangeness changing neutral currents, as 

represented by the third term in Eqn. (3-23b), are not observed19 at 

order G; this does not, however, affect our basic argument that L', 

which has nonvanishing matrix elements between P and tt, should set the 

scale for P + tt at q2 = O. The corresponding Feynman diagram is shown 

in Fig. 8(b). To lowest order in G 

so we set 

m 

~e(P_)[i Ys( 4~) Fn me Kn(O)] ve(P+) 
n 



m 
~ (P )[i y5 (4a)F _1: K (O)]v (P) 

µ - 1r n m n µ + 
n 

(3-24b) 

The matrix elements of the vector current vanish by parity; for the 1rO 

we take20 

i f >,. 
7T q 

and use the anomalous PCAC (partial conservation of axial-vector 

current) relation 

7T o a µv aS + -4 E 0 F F 
7T ].1\Jaµ 

which allows us to write 

F 

m 7T I 2 
7T q 0 

Similarly 

a 
7Tf 

7T 

Noting that the charge matrix 

(3-24c) 

(3-24d) 

(3-24e) 
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where the A, are the usual SU(3) matricies, obeys 
l 

we also write 

so 

F 
mnl g2 0 

n 

1 a 
- T3 irT 

n 

Finally, consistent with the SU(3) relation21 

F F 
(.....!.)(-21)-l 13 
m m 

1T n 

Eqns. (3-24a) through (3-24f) then yield 

1 1 2 Z1rf 2 
- 72 (1 - 2 sin 6c)(--fJ G 

3 2 21Tf 2 
. 6 (--lT] - ill sin c a G 

Now, G 93 MeV and cos6c ~ 0.97 so 
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(3-24f) 

(3-25a) 

(3-25b) 



K (0) °' - 0 .SO 
7T 

K (0) °' - 0.046 
n 

(3-26a) 

(3-26b) 

Although K (0) and K (0) are numerically small, Eqn. (3-18), together 
n n 

with these choices for Kp(O), has powerful implications for ReK(mp2 ) as 

we shall now see. 

C. Electromagnetic Contributions 

We may immediately note two interesting properties of the 

representation for ReK(q2) given by Eqns. (3-18), (3-25a) and (3-25b): 

first, the dispersion integral exists for f(O,O,q 2) = 1 and 

Im ~( q2 ) = 0 corresponding to point like P. Second, for ~ 2 > q2 the 

contribution of the intermediate state x to the dispersion integral is, 

quite apparently, suppressed by a factor of q2/mx2 • We can thus set 

f(O,O,q 2) = 1 and obtain the leading approximation 

Re K(m2 ) 
p 

where 

°' K (0) + Re K (m2 ) 
p yy p 

[Im K ( t)] 2 yy 
f(O,O,q ) l 

The integral for Re K (q2 ) is evaluated in Appendix F; with yy 
2 

q 
2 

m the result is 
p 

2 l l 2 1-So 1-So n2 
Re K ( m ) = a--[-2 ln ( l+a ) - 2<li ( 1 +a ) + 6 J , 

yy p µ 0 µ 0 µ 0 

(3-27 a) 

(3-27b) 
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t3 
0 

Here 

4>(x) 

[l -

2 
m 1 

4 _!] /2 
2 

m 
p 

fx dt ln (1 + t) 
0 t 

is the Spence function 22 • It should be noted that the leading 

logarithm-squared behavior of Re K(mp2) is typica16,lO,ll, what 

distinguishes our model from previous ones is the absence of 

(3-27 c) 

(3-27d) 

unsuppressed terms of the type ln(m Q, I mx) which always reduce the value 

of Re K(mp2). 

Although by definition Re Kyy(O) = 0, for the physical masses 

Re K (m2 ) )) K (O). 
yy p p 

Using Eqns. (3-15) and (3-26a) through (3-27d), 

our model predicts the approximate branching ratios 

0 + -r(1r + e e ) 
f(1rD+ all) 

r(n+ / µ-) "' 
r(n+ all) 

"' 
-7 

2.0 X 10 

-6 
6 .1 X 10 

(3-28a) 

(3-28b) 

which are in excellent agreement with the latest experimental values 

cited above. We may ask, however, whether these results are 

significantly altered by the terms neglected in Eqn. (3-27a). To 

address this question, as well as to make contact with the form-factor 

slope data, let us consider a simple vector-meson-dominance model7 for 

f. In such a model the matrix element for P + YY is given by 
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2 
m 

[- i e ...::!..... e ] [­
f la. 

V 

2 
m 

i e ; e 2 13 ] [ -i 
V , 

e 2 f £ k Pk cr 
vv µvpcr 1 2 

(m 2_ k 2)(m 2_ k 2) 
V 2 V 2 

Comparing Eqn. (3-29) to Eqn. (3-9), we set 

so 

F 
= ___£ 

m 
p 

2 2 2 
f(kl ,k2 ,q ) 

m 
V 

4 

(m 2_ k 2)(m 2_ k 2) 
V 1 V 2 

We note that Eqn. (3-30) has the features f(O,O,q 2) 

a 
p 

2 
m 

= ___£_ 
2 

m 
V 

;\µ_ k 13k \)/ 2 
g 2 2 mv 

2 2 ] 

(3-29) 

(3-30) 

1 and 

(3-31) 

by the definition of Eqn. (3-7). In our model the exact expression for 

Re K(mp2) is then 

Re K(m 2 ) 
p 

K (0) + Re K (m2 ) + Re K (m2 ) + Re K (m2 ) 
P Y'Y p Yv p vv p 

2 
where Re Kyy(mp) is as before and 

(3-32a) 
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2 

K (m 2 ) 
m dt Re __p_ j"" Im K (t) - 2 2 yv p 1T vv m t(t-m ) 

V p 
2 

K (m 2 ) 
m dt Re = _E_ t Im K (t) vv p 

1T 4m 2 2 vv t(t-m ) 
V p 

The imaginary parts of K and K are determined in Appendix E while yv vv 

the real parts are evaluated in Appendix F; using Eqn. (3-31) and 

putting q2 = m 2 the results are p 

00 
2 

mp 1 m 
Re K (m 2) a E (a )n[2 C (l)ln C-;- 7a) + C (2)] + 0(-t-) 

YV p p n=o p n 2 

Re K 
vv 

0 
For n 

(m 2) - 4 0 
p 

a 
o=~ 

p 4-a 
p 

C (1) 
n 

n 

00 

E (-o )n C (3) 
p n=O p n 

2 

C (2) 2[3(n+2) 2 - l] 
n 

C (3) 
n 

1 n+2 1 
- E 
n+2 r=l 2n + 5 - 2r 

ImK (m 2 ) 
vv p 

O, a < 1 
p 

1 p 

2 m 
+ oc-y) 

4m vv 

+ - 9 
+ e e , using the Fischer et al value 

m 
V 

a = 0.10, we find 
1T 

(3-32b) 

(3-32c) 

(3-32d) 

(3-32e) 

(3-32f) 

(3-32g) 

(3-32h) 

Re K (m 2 ) = 63.8, Re K (m 2 ) = 0.52 and 
YY n Yv n 

Re K (m 2) = - 0.07 so the vv 1T 

prediction of Eqn. (3-28a) is unchanged. A more substantial effect is 

seen for n + µ+µ-; Djhelyadin et al give a = 0.582 which yields 
n 
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Re K (m 2) = 7.30, Re K (m 2 ) = 1.28 and Re K (m 2 ) = -0.40. Our yy n yv n vv n 

prediction for + -n + µ µ in the simple vector-meson-dominance model is 

thus 

r(n + /µ-) 
r(n + all) 

-6 
7 .1 X 10 (3-33) 

which represents a 16% enhancement over Eqn. (3-28b) due to vector-meson 

effects. 

Only a large upper limit23 

+ -
r(n + e e) < 3 x 10-4 
r(n + all) 

presently exists for the decay 

+ -
r(n + e e) ~ 1.7 x 10-9 
r(n + all) 

+ -n + e e ; the unitarity bound is 

2 
Once again using an= 0.582, we have Re Kyy(mn) = 99.06, 

(3-34) 

(3-35) 

Re K (m 2 ) = 3.74 and Re K (m 2 ) 
nv n vv n 

- 0.40. Our model thus predicts 

+ -r(n + e e ) 
r(n + all) 

-8 1.1 X 10 (3-36) 

Although small, it is not inconceivable for such a branching ratio to be 

observed. 

D. Remarks 

(a) As we have shown, the existing P + it data can be accomodated 

by a model with a two-photon intermediate state dominating if a 
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subtraction is made at q2 = O, with the subtraction constant small. 

This is not to say, however, that our particular choice of fixing the 

subtraction constant via the weak neutral current necessarily represents 

the underlying physics but rather that the physics does seem to single 

out Eqn. (3-18) with K (0) "' O. 
p 

In this regard it is amusing to note 

that Eqn. (3-16) and the static quark model yields11 

Re K(m 2) 
p 

with the property Re K(O) = O. 

(b) It should be cautioned that, although in agreement with one 

I 2 o + -another, the Mischke et al. and Fischer et al- results for n + e e 

are not without uncertainties since the former suffers from background 

subtraction problems while the latter is based on a singularly small 

number of events. 

(c) We wish to emphasize that although we have explicitly evaluated 

branching ratios for a point-like P and for a simple vector-meson-

dominance model we do not particularly advocate either; our model 

consists not in the choice of the form factor but instead in the 

definition of the physical amplitude given by Eqns. (3-18), (3-25a) and 

(3-25b). Indeed, due to the suppression of higher mass intermediate 

states noted above, we expect Eqn. (3-28a) to hold independent of the 

choice for f(k12, k22 , q2). 
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CHAPTER IV 

TWO-PHOTON EXCHANGE EFFECT IN RADIATIVE 

CORRELATIONS TO 0 - + TI +yee 

A. Introduction 

The rare decay 

(4-1) 

has been a subject of theoretical and experimental interest for many 

years. While the earliest calculations1 of the internal-conversion 

coefficient 

0 - + f(TI +Yee) 
P - f(TIO + yy) (4-2) 

were based upon a pointlike TIO(p 1) + y(k 1) + y(k 2) interaction applied 

to the lowest-order contribution [Fig. 9(a)], the continuing interest in 

this decay derives from the fact that, in general, this interaction 

involves a form factor f(k12 , k22, p12), normalized to 

f(O,O,m 2 ) = 1, which contains information about the TIO electro­TI 

magnetic structure. As first emphasized by Berman and Geffen2, the 

decay TIO - + (p 1) + Y(k) + e (p 2) + e (p 3) allows a study of this form 

factor via the lowest-order differential distribution 
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dpo 2a (l-x) 3 [l + __§_][l _ fJ1/21f(x)l2 
dx = 3TI x 2x x . (4-3a) 

where 

(4-3b) 

S - (2 m /m ) 2 and f(x) = f(x mTI 2 , O, m 2). e TI TI 

The form factor f(x) is usually discussed in terms of its linear 

expansion 

f(x) "" 1 + a X TI (4-3c) 

Theoretically, the form-factor slope aTI is expected to be small and 

positive, with most models3 giving predictions near the intuitive 

estimate 
2 

a ""(m /m) = 0.03. TI TI P· 
On the other hand the first three 

experiments 4- 6 to determine a from the x distribution reported large TI 

negative values. Apparently this conundrum may be traced to an 

unappreciated subtlety in Joseph 1 s 7 treatment of radiative corrections, 

as applied to the experimental analysis. Neglecting the identity 

between decay and bremsstrahlung photons, the one-photon-exchange 

contribution 0 - + TI + y + Y* + y + e + e to the decay in Eqn. (4-1) can be 

generally expressed as 8 

(4-4) 

where TI(q 2) is the spectral function for the photon propagator. Using 

the second-order function TI( 2)(q2 ) in Eqn. (4-4) yields p , while the 
0 
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integrand reproduces Eqn. (4-3a) ford p /dx upon the replacement 
0 

z + x. However when this is extended to computing PRI' the 

0 ( ) . . ( 4 ) ( 2 ) . R f 7 11 d . a correction top, using TI q , as in e. , a irect 
0 

correlation between z and xis lost due to an implicit integration over 

I inner bremsstrahlung, so that d PR /dx cannot be obtained from the 

integrand by the same simple substitution9 • The effect of this 

distinction between z and xis best seen by noting that the 

O(a) corrections to diagram (a) of Fig. 9 have been explicitly 

calculated by Mikaelian and Smith10 , with the result that d pR1 /dx is 

negative over most of the range of x, rather than positive as Joseph 

asserts. Employing Ref. lO's corrections in the analysis, a recent 

experiment by Fischer et al. 11 has determined the values 

0.10 ± 0.03 (4-5a) 

including radiative corrections and 

0.05 ± 0.03 (4-Sb) 

omitting radiative corrections. It is perhaps worth observing that this 

radiative-corrected value is in agreement with the result of Ref. 6, 

a = 0.11 ± 0.07, based upon the total rate, where Eqn. (4-4) can be 
TI 

safely applied. 

One interesting aspect of the radiative-correction calculations in 

Refs. 7 through 10 is the omission of the two-photon-exchange 

contribution TIO+ Y* + Y* + y + e- + e+ given by diagrams (b), (c) and 

(d) of Fig. 9. One may immediately note that these graphs are obtained 

'4 5 



46 

from rr 0 + Y* + Y* + e-e+ by the insertion of a bremsstrahlung photon on 

the electron line. 0 - + This close connection with rr + e e has fostered 

their neglect in the hope that these diagrams share the latters (m /m) 
e rr 

suppression factor8 , 10 • Although as noted by Joseph7 such a factor does 

appear in the soft-photon limit, x + 1, because the lowest-order contri-

but ion is O(w) in the photon energy one must generally consider not 

only the -1 
pole terms, but also all terms up to order (w/m) = w 

rr 

(l-x)/2. Indeed, as we shall see, the 
-1 w terms in the interference of 

diagrams (b) and (c) with diagram (a) of Fig. 9 identically vanish. 

Since the argument for suppression of two-photon exchange fails, it 

is necessary to determine the size of this contribution. The general 

evaluation of the intereference of diagrams (b), (c) and (d) with 

diagram (a) of Fig. 9 is rendered intractable by the fact that, as we 

have noted in Chapter 3, several models for f(k12 , k22 , p12) exist, each 

requiring a separate calculation. In addition, we also saw in Chapter 3 

h f d h .,,.o + e-e+ 1 d that t ere exist two ways o efining t e .. amp itu e, which 

enters as a subgraph in diagrams (b) and (c) of Fig. 9, so doubling the 

task. Both of these problems can, however, be dealt with by noting that 

me appears through the dimensionless combination -5 
$ = 5.7 X 10 , SO 

that the massless limit, m + O, should serve as an excellent 
e 

approximation. Moreover, in this limit, the counter term corresponding 

to the subracted dispersion relation of Chapter 3 vanishes since it is 

defined for on-shell fermions and therefore is proportional to me. An 

additional advantage is that, in the absence of counter terms, the total 

two-photon-exchange contribution must exist for a pointlike rr 0• Thus 

by setting the electron mass to zero and approximating the form factor 

f(O, O, m 2) = 1 we may obtain rr 
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expressions valid up to terms of order a'IT in the form-factor slope ·and 

for x, (1-x) >>S, independent of any assumptions. 

B. Notation 

Following Mikaelian and Smith10 , we define the matrix element for 

the decay of a pointlike 'ITO into two photons by 

where Fis a dimensionless coupling constant, so that in the 

frame 

m 2 
f('ITO + yy) =-'ITIF' 641T I 

We also define the invariant matrix element for 'ITO(p1 ) + y(k) 

+ e-(p2) + e+(p3) by 

(4-6a) 

'ITO rest 

(4-6b) 

(4-6c) 

In evaluating the square of Mfi we employ the Mandelstam variables 

2 
(p2 + 

2 r = (pl - k) P3) (4-7a) 

(p -
2 (k + 2 

s = p2) P3) 1 
(4-7b) 

(p -
2 (k + 2 

t P3) p2) 1 
(4-7c) 



48 

r + s + t (4-7d) 

for me= O. Ultimately we seek distributions in x, defined in Eqn. 

(4-3b), and 

y 
2 pl • (p3- Pz) 

m/ (1-x) 
(4-8) 

At intermediate stages, however, it is advantageous to use the fact that 

x, y and pas defined in Eqn. (4-2) are Lorentz invariants and so work 

in the n° rest frame where we may employ the scaling variables 

2w (4-9a) xl =-m 
1T 

2E 2 
(4-9b) x2 =--m 

1T 

2E 3 
(4-9c) x3 =--m 

1T 

xl + x2 + X3 2 (4-9d) 

The variable sets (x1 , x2 , x3), (r,s,t) and (x,y) are related by 

1 - X r (4-lOa) =--= X 
1 2 

m 
1T 

s 1 (4-lOb) 1 - X = - = - (1-x)(l+y) 2 2 2 
m 

1T 

t 1 (4-lOc) 1 - X3 = - = - (1-x)(l-y) 
2 2 

m 
IT 



Thus, for example, the lowest-order contribution 

Eqn. (4-6c) with 

K -

which yields 

M(O) is given by 
fi 

( 4-lla) 

(4-llb) 

= _ (~)2 jF/2 paµ a$ v A v A r VA) 
m r EµvpaPl KE Aa$Pl K (p3 P2 + P2 P3 - 2 g 

1T 

so, using 

(4-12a) 

(4-12b) 

we obtain 

(~) 2 1Fl 2 [r(m 2- r) 2 - 2 rs t] m r 1T 
1T 

/iFj 2 2 .. [x - 2(1-x2 )(1-x3 )] 
( l-x1) 1 
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(4-13) 



Similarly, working in the nO rest frame and denoting them + 0 limit by 
e 

"A" the phase space integral is readily evaluated: 

Noting that the Jacobian for (x2 , x3 ) + (x,y) is 

we thus have 

(4-14) 

Eqns. (4-13) and (4-14) give the double-differential distribution in 

lowest order as 

(4-15a) 

and, integrating over y, 

50 
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dpo 2a. (l-x) 3 
dx = 3TI X 

(4-15b) 

for the single differential distribution. 

Before proceeding, let us briefly consider our earlier remark 

-1 concerning the vanishing interference of thew terms from two-photon 

exchange with the lowest order; 
-1 

w pole terms arise from external line 

emission only so, using the free partical Dirac equation and noting that 

the residue of the 
-1 

w poles in diagrams (b) and (c) of Fig. 9 is just 

0 - + then + e e amplitude we have, following the conventions of Chapter 3, 

in the soft photon limit and for a general form factor. On the other 

hand, apart from a factor of 2 
f(O,r,mn ), Eqn. (4-lla) is the correct 

expression for Then, using Eqn. (4-6c), we observe 

that the interference of the w-l terms with the lowest order contains 

the factor 

by the property 

0 

of Y 5 • 

Returning to the issue at hand, in the m + 0/pointlike nO 
e 



approximation the two-photon-exchange contribution M~fy) may again be 

expressed in the form of Eqn. (4-6c) with 

(4-16a) 

.,Cb) µ\/ 1 µ 1 \) 

A YA 
P1- V3 y V3- ~ y (4-16b) 

,< c) µv A yµ 1 \) 1 y YA 112- ~ 12- Fl1 
(4-16c) 

(d)µ \) yµ 1 y 1 y \) 

y A p - , A ¢ - ¢ - i 2 1 3 
(4-16d) 

Here the super-scripts (b), (c) and (d) refer to the corresponding 

graphs in Fig. 9. In turn, Eqns. (4-16a) through (4-16d) contribute an 

O(a2) interference term 

b.(2y - ly) ( 4-17) 

Using Eqns. (4-6c), (4-lla) and (4-16a) through (4-16d) we 

see that Eqn. (4-17) can be expressed as 

b.(2y - ly) 
2 

2 Re{l(~/iFi 2 if~ __ l --
r Il1,r (2n)4 t2(t- pl)2 

n(b;t,pl,P2,p3) n(c;t,p1,P2,P3) 
[ 2 + 2 + 

t(p 3- t) s(p 2- t) 
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( 4-18a) 

(4-18b) 

(4-18c) 

( 4-18d) 

where we have defined 

(4-19) 

Eqns. (4-18b) through (4-18d) are evaluated in Appendix G, with the 

result that 



where the n(i;2,p 1,p 2 ,p3) are explicitly given in Eqns. (G-3), (G-6) and 

(G-7) for i = 1, 2 and 3 respectively. Noting that the loop integrals 

are at most logarithmically divergent so that a shift 2 + p1 - 2 is 

freely allowed, we see that 6(2y - ly) may also be expressed as 

6(2y - ly) ~ (ma) 2 jFj 2 Re[J(r,s,t) + J(r,t,s)] (4-20a) 
TI 

J(r,s,t) 

n(2;2,p1,P2,P3) n(3;2,p1,P2,P3) 
+ ------------ + 2 21 

(pl-2)2(p2-2)2(pl-p3-2)2 (p2-2) (pl-p3-2) 
(4-20b) 

C. Reduction of 6(2y - ly) to 

Parametric Integrals 

Let us combine the denominators appearing in J(r,s,t) using the 

general parametric formula 

(4-2la) 

J dp(n) (4-2lb) 

We first have 

2! f dp {3). [(2 - \ )2 - dl (t))-3 (4-22a) 
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with 

d()- 2 !l2 - 1 t = mn Y1 - 1 

similarly 

-ty -!l2 
1 3 

[ (m 2 ) ] t Yl - Yl t Yl + n - s - r Yz 

and 
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(4-22b) 

(4-22c) 

[fl - fl ) 2- d (t)J-3 (4-23a) 
3 3 

(4-23b) 

(4-23c) 

(4-24a) 



Shifting loop variables we then obtain J(r,s,t) as 

J(r,s,t) 

+ i(4n) 2 (3!) J dp(4).j d4t 
( 2n) 4 

Since the denominators in Eqn. (4-25) are symmetric under t + - t 

we may use 

to write 
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(4-24b) 

(4-24c) 

(4-25) 

(4-26) 

(4-27) 



The Nj(i;r,s,t) are evaluated in Appendix H; using Eqns. (4-25), (4-27), 

(H-1) and (H-3) we have the divergent part of J(r,s,t) as 

while Eqns. (4-25), (4-27), (H-2), (H-4), (H-5), and (H-6) give 

2 
ri(4n) 2(3!) Jdp(4).J ~ 

( 2n) 4 

Now, using a further parametric formula 

a-m_ b-m = m[b-a] J 1 dz[a(l-z) + bz]-m-l 
0 

we observe that 

2 d4R. 2 3[dl (t) - dl (s)] 
-r(t-s)i(4n) (3!)fdp(3).f~dz f 4 R. [ 2 4 + 

(2n) [R. -d1 (t)(l-z)-d1(s)z] 

(4-28a) 

(4-28b) 

(4-29) 
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+ (4-30) 
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Eqn. (4-30) is finite by power counting so, carrying out the loop 

integral followed by the z integral 

(4-31) 

Carrying out the loop integrals in Eqn. (4-28b) and noting that 

we also obtain 

-2rst jdp(4). (4-3lb) 

Transforming to the scaling variables, 

(4-32a) 



59 

(4-32b) 

and 

so, using Eqns. (4-20a) and (4-3la) through (4-32b) we at last have 

~(2y-ly) expressable in the form 

(4-33a) 

(4-33b) 

(4-33c) 

(4-33d) 



D. Results for the Two-Photon-Exchange 

Contribution 

The parametric integrals defining r 1(x1,x2 ,x3) and 

r 2(x1,x2 ,x3) are evaluated in Appendix I and Appendix J, 

respectively; Eqns. (4-33b), (I-7) and (J-12) give 

where 

G(u,v) 

and 

Li2(x) = - Jx E.!. ln(l-t) 
0 t 

is the dilogarithm function12 • We note that I(x1,x2 ,x3 ) is 

free of mass singularities and imaginary parts in accord with the 

conjectured connection between these quantities 13 • 

(4-34a) 

(4-34b) 

(4-34c) 

Transforming to the variables (x,y), Eqns. (4-14), (4-15a), (4-33a) 

and (4-34a) allow us to write the two-photon-exchange contribution to 

the double-differential distribution in the form 
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i 
a Po 1 a 2 2 { 1 2 2 2 l +y - (-)G(x x ) -- - -(-) (1-x) l + -4(1-y ) [1r + .R-n ( )] + 
1T +' - dxdy 4 1T 1-y 

(4-35a) 

where 

1 - ~ (1-x)(l±y) (4-35b) 

Observing that the radiative correction function 

II 
cS (x,y) (4-36) 

is negative definite and symmetric under y + -y, in Table I we give 

II numerical values for - cS (x,y). 

The single differential distribution is given by 

i II 
1 PR 

J_l dy dxdy 

With the change of variable y 2z -1 several of the integrals are 

trivial and we have 

2 
a 2 1T 

- ir[.R-n (1-x) - 6 ] 
dp 

0 

dx 
a 2 2 7 2 5 1-x (-) (1-x) [- - - - - (-)£n(l-x)] + 
1T 4 27 9 X 

61 



TABLE I 

(II) . . -o (x,y) Given 1n Percent for a ~ange of Values of x and y 

X y o.oo 0.10 0.20 0.30 0.40 a.so 0.60 0.70 0.80 0.90 0.95 

0.01 0.0146 0.0146 0.0146 0.0146 0.0147 0.0149 0.0152 0.0157 0.0168 0.0191 0.0217 
0.02 0.0295 0.0~95 0.0295 0.0295 0.0297 0.0300 0.0306 0.0318 0.0339 0.0385 0.0438 
0.03 0.0447 0.0446 0.0446 0.0447 0.0449 0~0454 0.0463 0.0480 0.0513 0.0582 0.0663 
0.04 0.0601 0.0601 0.0601 0.0601 0.0604 0.0610 0.0623 0.0646 0.0690 0.0783 0.0891 
o.os 0.0758 0.0758 0.0758 0.0758 0.0762 0.0770 0.0786 0.0815 0.0870 0.0987 0.112 
0.06 0.0918 0.0918 0.0918 0.0918 0.0922 0.0932 0.0951 0.0987 0.105 0.120 0.136 
0.07 0.108 0.108 0.108 0.108 0.109 0.110 0.112 0.116 0.124 0.141 0.160 
0.08 0.125 0.125 0.125 0.125 0.125 0.127 0.129 0.134 0.143 0.162 0.185 
0.09 0.142 0.142 0.142 0.142 0.142 0.144 0.147 0.152 0.162 0.184 0.210 
0.10 0.159 0.159 0.159 0.159 0.160 0.161 0.165 0.171 0.182 0.206 0.235 
0.15 0.251 0.251 0.250 0.251 0.252 0.254 0.259 0.269 0.286 0.325 0.369 
0.20 0.352 0.352 0.352 0.352 0.353 0.357 0.364 o. 377 0.402 0.455 0.517 
0.25 0.466 0.466 0.465 0.465 0.467 0.471 0.481 0.498 0.530 0.600 0.682 
0.30 0.594 0.593 0.593 0.593 0.595 0.600 0.612 0.633 0.674 0.762 0.865 
0.35 0.739 0.738 0.738 0.737 0.740 0.746 0.760 0.786 0.836 0.945 1.07 
0.40 0.905 0.904 0.903 0.903 0.905 0.913 0.930 o. 961 1.02 1.15 1.31 
0.45 1.10 1.10 1.10 1.10 1.10 1.11 1.13 1.16 1. 24 1.39 1. 58 
o.so 1.32 1.32 1.32 1.32 1.32 1.33 1.36 1.40 1.49 1.68 1.90 
0.55 1.60 1.59 1.59 1.59 1. 59 1.60 1.63 . 1.68 1. 79 2.01 2.27 
0.60 1.93 1.93 1.92 1.92 1.92 1.93 1.96 2.03 2.15 2.42 2.73 
0.65 2.34 2.34 2.34 2.33 2.33 2,35 2.38 2.46 2.60 2.92 3.30 
0.70 2.88 2.88 2.87 2.87 2.87 2.88 2.92 3.01 3.18 3.57 4.03 
0.75 3.61 3.61 3.60 3.59 3.59 3.60 3.65 3.76 3.97 4.44 5.01 
0.80 4.67 4.67 4.66 4.64 4.63 4.65 4. 71 4.84 5.10 5.70 6.42 
0.85 6.38 6.37 6.35 6.32 6.31 6.32 6.39 6.56 6.90 7.70 8.67 
0.90 9.62 9.61 9.57 9.52 9.49 9.49 9.58 9.81 10.3 11.5 12.9 
0.95 18.8 18.8 18.7 18.5 18.4 18.4 18.5 18.9 19.9 22.l 24.8 

er, 
N 
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+ (.2:.) 2(1-x) 2 f 1 dz z(l-z)in(z)tn(l-z) + 1T 0 

3 
- (.2:.) 2 (l-x) f1 dz[(l-2z + 2z2 )[2 L. 2(1-(1-x)z) + in(z)tn(l-z)]] (4-37) 

1T X O l 

where d P /dx is given in Eqn. (4-15b). The remaining integrals may be 
0 

carried out using the formula given in Appendix K; then, after some 

simplifications, Eqn. (4-37) yields 

a. 2 dp o 2 a. 2 2 5 1T 2 2 
-("i")tn (1-x) dx - 3 (TI) (1-x) [2 + ""c; + (l-x) [tn(l-x)-1]] + 

2 2 2 1T2 
- - (~) [2x + 3(1-x)][~ - L ( )] 3 1T 6 i2 X 

(4-38) 

In Fig. 10 we show the radiative radiative correction function 

dp II dp 
( R )/(~o) 

- dx dx (4-39) 

for 0.1 ~ x ~ 0.9. It is readily observed that the two-photon-exchange 

contribution is non-negligible, particularly for large x where 

II 
(d PR /dx) falls to zero more slowly than ( dp /dx). 

0 
A crude 

estimate of the effect of this contribution on the determination of a 1T 

can be obtained by writing 

dp 
exp 
dx 

A 

dp 
- ( 0 ) (1 + 2a 0 x) dx 1T (4-40a) 
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dp 
exp (1-or(x)) 

dx 

dp 

- ( d~) (1 + 2a;x) 

dp 

or 

exp (1-ol(x) - oII(x)) 
dx 

II 
a 

1f 

A 

dp 

- ( d~)(l + 2a;1x) 

(4-40b) 

(4-.40c) 

(4-40d) 

Using the values 11 a0 = 0.05 ± 0.03 and a1 = 0.10 ± 0.03 as input we 
1f 1f 

find for the one-photon-plus two-photon-exchange corrected value 

II O 12 +0.05 
arr • -0 .04 (4-41) 

with 0.1 ( x ~ 0.8, consistent with the cuts made in Ref. 11. We 

emphasize that Eqn. (4-41) is merely an estimate; a precise 

determination of II 
arr requires a reanalysis of the experimental data. 

E. Remarks 

(a) We have derived our analytical expressions for the two-photon-

exchange contribution in the expectation that future experiments will 

show a to be small such that terms of order a may be ignored. 
1f 1f 

Should such experiments confirm a value of a as large as Eqn. (4-41) 
1f 

indicates, calculation of the model dependent O(a) corrections to our 
1f 

expressions will become important. 

(b) The two-photon-exchange contribution to 0 + -
1r +Yee affects 

not only the determination of a but also the measurement of the 

Q + - I 
1f + e e branching ratio as it changes the invariant mass (m vx) 

1f 
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distribution in the region x - 1. The feature that (dpRII/dx) is 

negative definite suggests that the 0 + -
TI + e e branching ratio may be 

larger than recent experiments 14 indicate, so increasing the 

disagreement between the standard models and the experiments that was 

discussed in Chapter III. 
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CHAPTER V 

SUMMARY AND CONCLUDING REMARKS 

In this work we have considered several rare decay processes 

belonging to the high-energy and intermediate-energy regimes. 

In Chapter II we examined the decay zO + ggy and the contribution 

of the vector part to zO + ggg. We found that although the amplitudes 

varied insignificantly from their massless values for quark masses up to 

the bottom quark, due to a coherence effect the total decay rates for 

zO + ggy and the vector part of zO + ggg showed a dramatic dependence on 

top quark masses in the range O ~mt~ m2 • 

GeV we obtained the branching ratio 

f(zO + ggy) 
r 

0 

-6 
1.8 X 10 

and the lower bound 

r(zo + ggg) -s 
I' ;;. 0.8 X 10 

0 

For a top quark mass of 20 

where r is the Z0 total hadronic width. As we noted there, the same 
0 

coherence effect may result in a sizeable axial-vector contribution, so 

raising the prospects for observing this decay mode. 

In Chapter III we studied the rare decays 0 + - + -rr + e e and n + µ µ • 

After extensively discussing the existing experimental and theoretical 
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situation for these decays, we demonstrated that by relaxing the usual 

predilection for an unsubtracted dispersion relation in describing the 

amplitude, and instead choosing a once-subtracted dispersion relation 

with a small subtraction constant, excellent agreement with the 

experiments could be achieved. The leading model independent estimates 

+ -
+ e e) -7 
+ all) ~ 2.0 X 10 

and 

+ -
r(n + µ µ) ~ 
f(n + all) 

-6 
6.1 X 10 

were also shown to be quite stable against the inclusion of model 

dependent form factor effects. Working in a simple vector meson 

dominance model for the form factor we found that the 0 + -
TI + e e 
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prediction is unchanged, while the 
+ -n + µ µ branching ratio is enhanced 

by 16%. Within this same model we also predicted the as yet unobserved 

+ -n + e e decay to have a branching ratio 

+ -r(n + e e) 
f(n + all) 

-8 
1.1 X 10 

In Chapter IV we examined the radiative correction problem for the 

decay 0 + -
TI + e e y. We first discussed how the anomalous results of the 

early experiments studying the TIO form factor could be understood in 

terms of a mistreatment of the one-photon-exchange corrections to the 

Dalitz-pair spectrum. We then pointed out that the usual argument for 

suppression of the two-photon-exchange correction fails, and exhibited a 



complete calculation of the two-photon-exchange contribution in the 

approximations of a pointlike TIO and vanishing electron mass. In this 

manner we arrived at leading model independent analytical expressions 

for the two-photon-exchange radiative correction functions. We found 

this correction to be important, with an extimated 20% or so effect on 

the determination of the TIO form-factor slope. 

We wish to close with one final comment: although the prospect of 

doing physics at the frontiers of new energy scales is exciting, 

problems of the sort explored in Chapters II and III should enjoy not 

less but more attention for the plaguing difficulties and discrepancies 

they present. Indeed, it is often in the attempt to resolve such 

problems that we are forced to abandon our preconceptions and so begin 

on the road to deeper understanding. 
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APPENDIX A 

THE EXPRESSIONS FOR 

Let 

u1 u + µ1, u = r,s,t 

The helicity amplitudes are given by: 

A(l) 
E+++(r,s,t) 

4µ t 
_ l!_ + {- 4st - _l_ + 12_} B(s) + {~ _ l!} B(t) + 

s 1 rs 1 s 1 2 s 1 r t 1 

(A-1) 

4µlt 4µlt 2µ1 2µ1 1 1 
+ {- -- + -- + - - -} B(-µ ) + {- - -} T(r) + rs 1 s 1 2 s 1 t 1 1 r t 

+ {2(s-t) _ 4st _ 3 _ 2t _ 1 _ 1 _ l} T(s) + 
r 2 s 1 2 r s t 

r s 1 

+ {2(s-t) _ 4st + __ l _ l} T(t) + 
r r2 t 1 r 

+ { - 2(s-t) 4st 3 1 st 1 l} + - + -- - -- + - + - + - T(-µl) + r 2 s 1 t 1 2 r t 
r s 1 

+ { _ 2(s-t) + 4st _ l. + 2_ + I} ( ) 
r 2 t r s 1o s,t,µl ' 

r 

{l. - l}[T(r) + T(s) + T(t) - T(-µ 1)] + 
t r 
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(A-2a) 
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(A-2b) 

i~(r,s,t).= {48 + ~}B(s) + {~ + l!_}B(t) + {4µ1 + 2µ1 + 2µl}B(-µ) + 
r s 1 r t 1 r s 1 t 1 1 

{ 1 1 l} { 4st 2rl r 3} + - - - - - - T( r) + - - + - + - - - T( s) + 
r s t r2 r s 1 t r 

2r 2r r 
+ {- 4st +-1 +-r __ l}T(t) + {4st __ l __ l + 

r2 r st 1 r r2 r st 

1 1 3} + - + - + - T( -µ ) + s 1 t 1 r 1 

81 1 tl 1 + {-..! - - + -} I ( r s µ ) + {~ - - + -} I ( r t µ ) + 
rs rt rs o ' ' 1 rt rs rt o ' ' 1 

4st 2rl rl 5 1 
+ {- - - - - + - +-}I (s t µ ) 2 r st r st o ' ' 1 

(A-2c) 
r 

and 

{ 1 1 1} - 2 + - - - - - - [T(r) + T(s) + T(t) - T(-µ )] + 
r s t 1 

+ {l + .....!..}r (r,s,µ 1) + {l + -t1}r (r,t,µ 1) + t rs o s r o 

+ {l + .....!..t}r (s,t,µ 1) 
r s o 

(A-2d) 

The functions B(r), T(r) and I 0 (r,s, µ1) appearing in Eqns. 

(A-2a) through (A-2d) are defined by 

1 fl 2 B(r) = 2 0 dy ln(l - r(l-y )), (A-3a) 



T(r) f l dv 2 
~ ln(l-r(l-y )) 

0 2 , 
1-y 

F(r,a) = f 1 dy ln(l-r(l-y2 )) 
0 2 2 

a - y 

where 

a = (1 + __£_) 112 
rs 

For r > 1, B(r), T(r) and F(r,a) are explicitly given by 

-1 1T b(r) cosh (Ir) - 1 - i 2 b(r), 

T(r) = Re[l ln (b(r)+l)J 2 - i 1T cosh-1(/r) 
2 b(r)-1 

-1 2 [cosh Cir)] 
2 

1T 

4 

+ i 21Ta ln (a-b(r)) 
a+b(r) 

i 1T 
-1 cosh (Ir), 
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(A-3b) 

(A-3c) 

(A-3d) 

(A-3e) 

(A-4a) 

(A-4b) 

(A-4c) 



Here 1i2(x) is the dilog-function, defined as 

and 

b(r) 

Jx dt 
- - ln(l-t) 

0 t 

00 

I: 
n=l 

n 

\ ' lxl < 1 
n 
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(A-5) 

(A-6) 

Note that for x > 1, 1i2(x) has an imaginary part, however by employ-

ing Euler's relation 

2 
1f 

1i2(x) + 1i2(1-x) = ~ - ln(x)ln(l-x) 

we can make the real part in Eqn. (A-4c) explicit: 

F(r,a) = 2al{ln (l+b(r)) ln (a+b(r)) 
1-b(r) a-b(r) 

- i 1f ln (a+b(r)) + 
a-b(r) 

(A-7) 

+ 11·2 (b(r)-1) + 11·2 (l+b(r)) - 11·2 (l+b(r)) + 
a+b(r) b(r)-a a+b(r) 

1-b(r) } 
- 1 i2 (a-b(r)) 'r > 1 (A-8) 

The functional forms of B(r), T(r) and F(r,a) for r ,.;; 1 can be 

obtained from those for r > 1 by b(r) + i d(r) where 

d(r) cl - i) i;z 
r 

(A.:...9) 



We easily have 

B(r) d(r) {i + i cosh-1(1r)} - 1 

-1 d(r) sin (Ir) - 1 

T(r) 

-1 2 
- [sin Cir)] 

Defining 

2 2 M(r) = la + d (r) 

a 
cos(6(r)) = M(r) 

we obtain, using Eqns. (A-4c) and (A-5) 

F(r,a) = 2a1 {1n(r(a2 + d2(r))) ln (a+l) - L ( a+l e-iB(r)) + 
a-1 i2 M(r) 

(A-lOa) 

(A-lOb) 

(A-lla) 

(A-llb) 

a-1 -i6(r) _ 1 ( a+l i6(r)) 1 ( a-1 i6(r)} 
+ 1 i2(M(r) e ) i2 M(r) e + i2 M(r) e 

co 

2! {1n(r(a2 + ct2(r))) ln (:~i) - 2 L -t (M(;~)ncos(n6(r)) + 
n=l n 

co 

+ 2 
l a-1 n 

L ~ (M(r)) cos(n6(r)) 
n=l n 

or 
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a-1 } + Li2 (M( r)), 8 ( r)) , r ,s;; 1 (A-12) 

where Li2(x,8), the real part of the dilogarithm of complex argument, 

is defined by 

- .!. fx dt ln(l-2t cos8 + t 2) 
2 0 t 

ca n 
X 

I; Z COS ( n8 ) X < 1 
n=l n 

(A-13) 



Appendix B 

Expansions for B(r), T(r) and I 0 (r,s,µ 1) 

Here we will derive expansions for B(r), T(r), and I 0 (r,s,µ 1 ) by 

appealing directly to the defining integrals, Eqns. (A-3a) through (A-

3d). 

First consider B(r) and T(r); for r < l; making a change of 

variable y cos 6 in Eqns. (A-3a) and (A-3b), and expanding the 

logarithm: 

B(r) 

T(r) 

1f 
"" n -

1 E .E._ f 2de [sin(6)] 2n + 1 
2 n=l n o 

00 

1 
2 E 

n=l 

rn (2n)!! 
n (2n+l)!! 

1f 
oo n -

- E .E._ J2 d6 [sin(6)J 2n - 1 
n=l n o 

- r -
; rn (2n-2) ! ! 

n (2n-l) ! ! 
n=2 

Explicitly 

B(r) 

T(r) r 2 8 3 . 4 - {r + 3 + 45 r } + O(r ) , r « 1 
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(B-la) 

(B-lb) 

(B-2a) 

(B-2b) 



78 

Now consider the combination 

[T(r) - T(-µ 1)] - 2r[B(r) - B(-µ 1)] 

for r + - µ1 ;using Eqns. (A-3a) and (A-3b) we see that 

{_j_ T(r) ~ 2 r _j_ B(r)}/ 
dr . dr r= -µ 1 

- J1 dy = -1 
0 

so 

[T(r) - T(-µ 1)] - 2r[B(r) - B(-µ 1)] (B-3) 

By examination of Eqns. (A-3a), 

(A-3c) through (A-3e), and (B-la) we readily observe that 

(B-4a) 

(B-4b) 

Now consider I 0 (r,s,µ 1) fort+ O; evidently 
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by virtue of Eqn. (A-3e). From Eqns. (A-3b) through (A-3d) we have 

Again making the change of variable y = cos 6 and expanding the 

logarithm, from Eqn. (A-3d) we obtain for r < 1 

1T 

[a! F(r,a)]ja=l ;2 00 n (2n-4)!! 2 
d6 

e + 2 r: r r sin (2n-3) ! ! 0 n=2 n 

1T 

;2 00 

(2n-2)!! 
2 

de + r; rn{..!. + _l_} = r (2n-1) ! ! 0 sin e n n-1 n=2 

Comparing to Eqns. (B-la) and (B-lb) we see that 

1T 

[a! F(r,a)]ja=l = r{2 J2 ~e 6 - 1} - T(r) - 2r B(r) o sin 

In this form we can relax the condition r < 1; then noting that for 

t = 0 

r + s + µ 1 0 

we have 

[-33 I (r,s,t)]j 1 a o a= 
-[T(r) + T(s) - T(-µ 1)] + 

and thus 
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(B-5) 

- r~ {r[B(r) - B(-µ 1)] + s[B(s) - B(-µ 1)]} + O(t 2), t << 1 

Finally, let us consider I 0 (r,s,µ 1 ) for r, s, t and -µ 1 + 0. For 

clarity we first evaluate F(u, /1 + 1/~) where ~/u is order l; again we 

proceed from Eqn. (A-3d) with a change of variable y = cos e but now 

expanding both the logarithm and the denominator: 

1T 

F(u, /1 + lh) 
00 00 m n -

= - ~ E E (-l)m ~ J2 de [sin(8)] 2(m+n) + 1 

m=O n=l n ° 
00 00 m n 

= _ r " ". (-l)m ~ un . (2m+2n) !! < 1 ~ ~ ~ (2m+2n+l)!!; ~' u 
m=O n=l 

(B-6) 

If r,s,t,-µ 1 a 1/p, p >> 1, with~= rs/t we have 

F(r,a) 

so, using Eqns. (2-7) and (A~3c), 

= j" rs - 1~ rst - 1~ rs µ1 + O(p - 4 ) (B-7) 



Appendix C 

Proof Of Finiteness For 1Mx++(x,y,z)l 2 

In this appendix we will prove that IMX++(x,y,z)/ 2 is free of any 

infrared or collinear (x + 0 or x + 1) singulariti.es; in terms of the 

modified Mollet-Mandelstam variables these singularities are associated 

with r + -µ 1 and r ~ 0 respectively. The proof consists of demonstrat­

ing that (i) the Ef,!l (r,s,t) are individually .finite functions, (ii) 

h(l) h(l) 
that EX++ (-µ 1 ,0,0) = O, and (iii) that EX++ (o,s,t) is a symmetric 

function of sand t. Note that this last condition suffices since it 

follows that the leading singular terms in IMx++(x,y,z)/ 2 reduce to 

y(l-y) + z(l-z) _ 2 (1-y)(l-z) }/ (1) . 12 
x(l-x) x(l-x) x(l-x) EX++(l,y,z) 

{ (1-y) 
X 

<1-z) } I <1) 12 + x EX++ (l,y,z) 

I (1) ,2 
EX++ (l,y,z) 

where we have used Eqn. (2-5). Note also that the proof omits,the ex-

ceptional case P = 1 for which the derivatives of B(r), T(r) and F(r,a) 

with respect tor are undefined when r = -µ 1 • 

h(2) 
We being with the simplest case, E_++(r,s,t) as given in Eqn. (A-2d), 

which we may alternately write in the form 
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_ 2 _ {T(r) + T(s) + T(t)} + 
r s t 

(C-1) 

where we have defined 

(C-2) 

Now, by Eqn. (B-lb) we immediately see that the T(r)/r type terms are 

finite for r + O. For the I 0 (r,s,µ 1)/rs type terms we have, by Eqns. 

(2-7), (B-4b) and (B-5): 

1 2 [B(r) - B(-µ 1)], - I (r,s,µ 1) + 
rs o s+O rl 

(C-3a) 

1 I 0 (r,s,µ 1) 1 [T(r) + T(-r1) - T(-µ 1)] + 
rs t+O rr 1 

(C-3b) 

while for the G(r,s,µ 1)/t type terms: 

(C-3c) 
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+..l. [B(r) -B(-u )] +...l.[B(s) -B(-µ )] 
r 1 1 s 1 1 

(C-3d) 

where we have further used Eqns. (B-lb) and (B-5). Note that the 

limiting forms, Eqns. (C-3a) through (C-3d) are finite for r + O, and 

r + 0 
1 

and s 1 + O. Thus we see that 
A (2) · 
E-++(r,s,t) is a finite 

function of its arguments. 

Next consider "(l) E-++(r,s,t); using Eqn. (2-7) we rewrite it as 

{T(t) T(r)} { 1 1 } -t- - -r- - 2t G(r,s,µ 1) - 2r G(s,t,µ 1) + 

so, by the arguments given above, ,..E(l)( t) is clearly a finite -++ r,s, 

function of r, sand t. Now, using Eqns. (B-4b) and (C-3c) 

= {T(t) _ T(r)} _. {-l[T(r) _ T(-µ )] 
t r · r 1 1 

{2r - - [B(r) - B(-µ )] 
t 1 

2t } r [B(t) - B(-µ 1)] 

= T(t) - _l {[T(r) - T(-µ )] - 2r[B(r) - B(-µ )]} + 
t r 1 1 1 

! [T(r) + T(t) - T(-µ 1)] + 2: [B(t) - B(-µ 1)] 

Then, by Eqns. (B-lb) and (B-3) we see that 

E(l)(r O t) + - 1 - - 1 {-r} + O(t) 
-++ ' ' t+O r 1 

1 

(C-4) 
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A(l) 
Thus E-+r(-µ 1 ,0,0) = O. Finally, using Eqns. (B-lb), (B-4a) and 

(B-5): 

{T(t) } {l l -t- + 1 + t [T(s) - T(-µl)] - 2st [T(s) + 

+ ! [T(s) + T(t) - T(-µ 1)] 

= 1 + {! + ! - 2!t}[T(s) + T(t) - T(-µ 1)] + 

- ..!. [B(s) - B(-µ 1)] - ..!.[B(t) - B(-µ )] 
t s l 

so E~(o,s,t) is indeed a symmetric function of sand t. 

In examining A( 2) 
E+++(r,s,t) it is useful to first define 

E(r,s,t) - 4: [B(s) - B(-µl)] + 4~ (B(t) - B(-µl)] + 

(C-Sa) 

and 

-(2) A(2) 
E+++ (r,s,t) - E-H+ (r,s,t) - E(r,s,t) (C-Sb) 

Adding and subtracting A ( 2) 
E-+r(r,s,t), and using Eqn. (2-7), one easily 

finds 



-(2) l{ } E+++(r,s,t) = ~ 2 S[B(s) - B(-µ 1)] - [T(s) - T(-µ 1)] + 
sl 

+ ~ 1{2 t[B(t) - B(-µ 1)] - [T(t) - T(-µ 1)]} - T(~) + 
tl 
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+ (l-r1){.....!. I (r,s,µ 1) +~1 I (r,t,µ 1) +:-1. I (s,t,µ 1) + 
n o rt o ~ o 

(C-5c) 

By Eqn. (B-3), and the arguments given above, we clearly see that 

-(2) 
E+++(r,s,t) is finite. Now 

4s E(r,s,0) = - ~ [B(s) - B(-µ 1 )], 
sl 

(C-6a) 

E(r,s,t) r!o 4: [B(s) - B(-µ 1)] + 4~ [B(t) - B(-µ 1)] + 

{ 2 2 r } + - - + - [ 1 - -] [ T( s) + T( t) - T( -µ ) ] 
r r 2st · 1 

+ {- i - -3.}{s[B(s) - B(-µ )] + t[B(t) - B(-µ )]} 
r st 1 1 

or 

+ ..1_ [B(t) - B(-µ )] 
tl 1 

(C-6b) 



Eqns. (C-6a) and (C-6b) have been previously noted to be finite; thus 

A (2) 
E+++(r,s,t) is a finite function of r, sand t. 

Finally, let us examine 
A(l) 
E++l-(r,s,t); here it is useful to define 
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D(s) = ~1 + ~1~ [T(s) - T(-µ 1)] 
81 2 

(C-7a) 
81 

and 

-(1) (1) (1) 
E+l-+(r,s,t) - E++l-(r,s,t) + 2t D(s) + E-++(r,s,t) -E(r,s,t) 

+ 8 ; {2 s[B(s) - B(-µ 1 )] - [T(s) - T(-µ 1)] } + 

l {2 t [B(t) - B(-µ 1 )] - [T(t) - T(-µ 1 )] } + 
tl 

4 + - I (s,t,µ 1 ) 
S 0 

(C-7b) 

The only new feature here is D(s), however by Eqn. (B-3) one readily 

sees that D(-µ 1) is finite so i.8l(r,s,t) is a finite function of r, s 

and t. Now, by Eqns. (B-la), (B-lb), (B-4a), (B-4b) and (C-2): 

0 

From Eqn. (C-6a) we have E(-µ 1,o,o) O, and we have already shown that 



D(O) 

we have, by Eqn. (C-7b), 

A(l) A(l) 
E+++(O,s,t) = E(O,s,t) - E_++(O,s,t) + 

2t{- .!_ + _l [T(s) - T(-µ )] 
t t2 1 

2s } [B(s) - B(-µ 1)] + 
t2 

+ T(t) - T(s) + 4[B(s) - B(-µ )] - {-1 _.!_+.!..}[T(s) + 
t s 1 st t s 

+ T(t) - T(-µl)] - 2{-1 - .!_ + .!.}{s[B(s) - B(-µl)] + st t s 

+ t[B(t) - B(-µ 1)]} - l{2s[B(s) - B(-µ )]-[T(s) - T(-µ )} + 
t 1 1 
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1 2µ1 
+ 8 {2t[B(t) - B(-µ 1)] - [T(t) - T(-µ 1)]} + ~t~[B(s) - B(-µ 1)] + 

2µ µ 
+ ~ 1 [B(t) - B(-µ )] + {-1 + i}[T(s) + T(t) - T(-µ )] 

s 1 st s 1 

(1) {l 1 l} E(O,s,t) - E-++(O,s,t) + 2 + 8 + t - "st" [T(s)-+ T(t) + 

- T(-µ ) ] 2 - B(-µ )] - l_ (l+t)[B(t) - B(-µ )] (C-8) - - (l+s)[B(s) 
1 t 1 s 1 

We have already observed that 
A (1) 
E_++(o,s,t) is a symmetric function. If 

we rewrite Eqn. (C-6b) in the form 



From Eqn. (C-6a) we have E(-µ 1,o,o) 

A(l) 

O, and we have already shown that 

E-H-(-µ 1 ,o,o) = O, so with 

·D(O) 1 =--

we have, by Eqn. (C-7b), 0 as promised. Also 

EA(l)(O t) (0 ) - AE(l)(O st)+ +++ ,s, = E ,s,t -++ , , 

2t{- .!_ + - 1 [T(s) - T(-µ )] 
t t2 1 

2s } [B(s) - B(-µ 1)] + 
t2 

+ T(t) - T(s) + 4[B(s) - B(-µ )] - {_!_ - .!_ + .!_}[T(s) + 
t s 1 st t s 

+ T(t) - T(-µ )] - 2{-1 - .!_ + .!.}{s(B(s) - B(-µ )] + 1 st t s 1 

+ t[B(t) - B(-µ 1)]} - i{2s[B(s) - B(-µ 1)]-[T(s) - T(-µ 1)} + 

1 2µ1 
+ 8 {2t[B(t) - B(-µ 1)] - [T(t) - T(-µ 1)]} +~t~[B(s) - B(-µ 1)] + 

We 

we 

2µ µ 
+ - 1 [B(t) - B(-µ )] + {-1 + i}(T(s) + T(t) - T(-µ )] 

s 1 st s 1 

(1) {l 1 l} E(O,s,t) - E-H-(0,s,t) + 2 + - + - - - [T(s) + T(t) + s t st 

- T(-µ ) ] 2 - B(-µ )] - 1_ (l+t)[B(t) - B(-µ )] - - (l+s) [B(s) 
1 t 1 s 1 

have already observed that E< 1)co st) -H- , , is a symmetric function. 

rewrite Eqn. (C-6b) in the form 

(C-8) 

If 
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s(O,s,t) = - s~[T(s) + T(t) - T(-µ 1)] - ![B(s) - B(-µ 1)] + 

- !(B(t) - B(-µ )] 
s 1 

we see that s(o,st) is symmetric; thus by Eqn. (C-8) we indeed find 

~(l) 
that E+t+(o,s,t) is a symmetric function of sand t. 
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Appendix D 

Asymptotic Expression For F(p) 

In this appendix we will derive an asymptotic expression for F(p) 

as p + 00 • 

We first require asymptotic forms for "(i) 
EA-t+(r,s,t) as r, s, t and 

-µ 1 + O; these can be obtained using Eqns. (A-2a) through (A-2d) 

together with Eqns. (A-3c), (B-la), (B-lb). and (B-6) with i;; = rs/t. 

As this is more tedious than instructive we only explicitly exhibit the 

procedure for the simplest case, 
A(l) 
E--t+(r,s,t) , where we use Eqns. 

(B-2b) and (B-7): 

A(l) 
E-+++(r,s,t) 

1 1 {2 8 2 2 2 = [t - -;] 1[rs + rt + st] + rr[r (s+t) + s (r+t) + t (r+s) l + 

16 } {l l} 2 4 8 + IT rst - s + t [3 rs + 15 rst + 15 rs(r+s)l + 

{ l l} 2 4 8 + s + r [3 st + 15 rst + 15 st(s+t) l 
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12 8 
= TI s(r-t) + TI [2s(t-r)] 

4 
= - s(t-r) 1.5 

For the remaining helicity amplitudes one obtains 

and 

~(2) 4 
E-++ ( r , s , t) = - TI ( rs + rt + st) 
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(D-la) 

(D-lb) 

(D-lc) 

Now, from Eqns. (2-4) through (2-6) and the above, we have for a 

single-quark: 

2 2 
"' 8(B_)2 x (1-x) { 1 [ (1 ) + z(l-z) + 

45 4 x(l-x} y -y 
p 

- 2(1-y)(l-z)] + 1} 

(D-2a) 

and 
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2 2 - 2(1-y) (1-z) (x-z)(x-y)] + [(1-x)(l-y) + 

+ (1-x)(l-z) + (1-y)(l-z)J 2} 

This last expression can be simplified, again using Eqn. (2-5): 

3 2 3 2 2 y(l-y) (x-z) + z(l-z) (x-y) - 2(1-y) (1-z) (x-z)(x-y) 

2 2 2 2 2x(l-x)(l-y) (1-z) + (1-y) (1-z) [(x-z)(l-y) + (x-y)(l-z) + 

2 3 3 2 2 -2(1-y)(l-z)] - (1-x) [(x-z)(l-y) + (x-y)(l-z) + 2(1-y) (1-z) ] 

2 2 2{· 2 2 x(l-x)(l-y) (1-z) - (1-x) x (1-y)(l-z) - x(l-x)[(l-y) + 

+ (1-z) 2 - (1-y)(l-z)J} 

{ 2 2 2 2 2 2 x(l-x) [(1-x) (1-y) + (1-x) (1-z) + (1-y) (1-z) - (1-x)(l-y)(l-z)] 

x(l-x){[(l-x)(l-y) + (1-x)(l-z) + (i-y)(l-z)J 2 - 3(1-x)(l-y)(l-z)} 

also 

(1-x)(l-y) + (1-x)(l-z) + (1-y)(l-z) = x(l-x) + (1-y)(l-z) 

and thus 



jM-f+(x,y,z)j 2 ~ 8( 1:)
2 -i- {2[x(l-x) + (1-y)(l-z)J 2 + 

p 

- 3(1-x)(l-y)(l-z)} 

Noting that 

2 2 2 2 2 2 x (1-x) + y (1-y) + z (1-z) 

2{[x(l-x) + (1-y)(l-z)J 2 - (1-x)(l-y)(l-z)} 

we have, using Eqns. (2-3), (D-2a) and (D-2b): 

d2F 16 4 2 l { 2 2 2 dxdy ~ (~)(45) ~ [(11) + 2(3) ][x(l-x) + (1-y)(l-z)] + 
p 

2 3 } - [(11) + (3) ] (1-x)(l-y)(l-z) 

256 l { 2 = 6075 ~ 139[x(l-x) + (l-y)(x+y-1)] + 
p 

- 148(1-x)(l-y)(x+y-1)} 

Finally, F(p) is given by the integral 

l l ct 2F 
F(p) = f dx f 1 dy(~d d) 

0 -X X y 
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(D-2b) 

(D-3) 

(D-4) 
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Using Eqn. (D-3) in Eqn. (D-4) and making a change of variabley 1 - xv 

we have 

256 1 1 1 { 2 2 F(p) ~ 6075 4 J0 dx J0 x dv 139 [x(l-x) + x v(l-v)J + 
p 

- 148 x2(1-x)v(l-v)} 

256 1 { [2(3!) (4!) 4] 148} 
= 6075 4 139 (6!) + 2 (3!)(6!) + TI - (5!) 

p 

or 

256 1 { 157} 
= 6075 4 

p 

4352 1 
F(p) = 30375 4 

p 

neglecting terms of order -5 
p 

(D-5) 



APPENDIX E 

EVALUATION OF Im(K(q2) 

We proceed from the unitarity equation for the transition matrix 

elements Tfi: 

which gives 

-1 E <njTj°i2>t<nlTIP> 
n 

To order a the relevant part of <n/Tji2> is that which couples the 

22 pair to the intermediate state via two photons; thus, separating out 

the two-photon intermediate state explicitly and expressing in terms of 

invariant amplitudes we have, in the notation of Eqns. (3-9) and (3-11) 

1 
2 

E J {; 0 (p+)[(-iee2) i (iee 1 )]u 0 (p_)}t 
1 N p_-k2-m 0 N 

p0 • N 
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m d PX xp 

Here J d P denotes the integral over the phase space of the 
X 

intermediate state. Multiplying through by vt(p+)[iy5 Jut(p_) and 

summing over spins a simple trace calculation yields 

ImK(i) I k ( 2)8( 2) + I: 2 2 2 I K (q )B(q - m ), m yy q q m X X 
X 

2 *a *S >.. w 
2 2 (47T) 2 

J 
e:as>..wel e2 kl k2 

Im Kyy(q )B(q ) = f(O,O,q) I: dpyy [- 2 k • p_] 2 
q pol. I 

96 

(E-la) 

(E-lb) 

(E-lc) 

where we have factored out the 8 functions which set the intermediate 

state thresholds. 

Let us now consider 2 
ImKYY(q ); after summing over polarizations 

2 2 2 dpyy 
- 41r q f(o,o,q ) J ----­

k1. p_ 

Then, working in the ii center of momentum frame 

2 
k1 • p_ =~ (1- S cosB), 

(E-2a) 



6(92) 1 
16 1T J _1 d cos6 

so 

2 Jl d cos6 
- 1T f(o,o,q) -1 1 - S cos6 

1T 1-S 2 
= S Jln (l+/3) f(O,O,q ) 

Next let us consider the remaining contributions to 2 Im K(q) 

in the context of a simple vector-meson-dominance model for f; the 

coupling of v to the virtual photon is given by 

iem 2 

_f_v_ e,) I 2 
V k = m 

n 

and we define 

<v(k e) V(k e )ITIP(q)> = e2fvv. e:µvpoelµe2"k1Pk20 l' 1 ' 2' 2 

such that 

2 f yv 4 f vv F n 2 F n 
e - = e - = ....L. f(o o q ) = ....L. 

f 2 m ' ' m 
V f p p 

V 
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(E-2b) 

(E-3a) 

(E-3b) 

(E-3c) 

(E-3d) 



Summing over polarizations we have, for the yv intermediate state 

Again we work in the tt center of momentum frame so 

cl- m 2 ) 
V k1 • p_ = --4-- Cl-(3 cos6) 

2 C 2 2) 
mv q - mv 

k2 • p - -- =--,---Cl + (3 cos6) 
- 2 4 

2 2 
q - m 

f V 2 2 fl d p = 6Cq ~ mv) _1 d cos6 
Yv 16n l 

and then 

2 
m 

= n[l - ~]2 fl 
2 -1 d cos6 [ 1 + 1 ] 1-a cos6 l+a cos6 

= ~ [l a 

2 
m 

- ~]2 
2 

q 

q 

For the vv intermediate state, after summing over polarizations 

4n 2 f dp 
vv 

= -

and, in the center of momentum frame 

2 

2 2 
2[q - 4 m ] 

V 

2 2k1 • p - m 
- V 

m 
V 

kl • P - -2- = 

cl- 2 m 2) 
4 v (1 - ~ cos6), 

2 
m 

;\ = [l - 2 ~] [l -
2 

q 

2 

4 mv 1-1/2 
2 

q 
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(E-4) 

CE-Sa) 



2 

J d Pvv = l~~ [l -
m 1/ 

4 _v_] 2 6 
2 

q 

so 

2 
2 Im K (q) 

vv 
m -1 1 d cos6 

- ~[1 - 4 ~] A f 
q2 -l 1 - SA-1cos8 

2 
m 
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=: [l - 4 ....:!__2] tn (1-S/A) 
µ l+S/A (E-Sb) 

q 

Finally, for the simple vector meson dominance model we have the 

complete imaginary part given by the sum of Eqns. (E-2b), (E-4) and (E-

2 Sb) with f(O,O,q) = 1: 

We note that 

-2 2 2 A= 1 + O(q ), q >> 4 m 
V 

2 
m 

- ~]2 
2 

q 

and then Eqn. (E-6) is seen to yield 

2 
Im K(q) 

-2 2 2 
O(q ), q >> 4 m 

V 

Thus ImK( 00 ) 0 as promised. 

tn (l+S)e( 2_ m 2) + 
1-S q v 

(E-6) 



APPENDIX F 

EVALUATION OF THE DISPERSION INTEGRALS 

FOR Re K(g2) 

We begin with 

2 
2 = ..9..... Joo dt Re Kyy(q) rr O 2 Im K (t) 

t( t-q ) yy 

2 where Im Kyy(q) is given in Eqns. (E-2a) and (E-2b). Setting 

2 2 f(O,O,q) = 1 and making a change of variable t = 4 mt /s, the integral 

naturally divides into two parts 

Re Kyy<l) Re KO\ 2) yy q + Re K(2)( 2) 
yy q (F-la) 

K(l)( 2) 
-1 

Re - 2 Joo d s tanh 11-s 
yy q 1 2 ls-I 1-(3 -s 

(F-lb) 

-1 
Re K(2) <l) - 2 fl d s tanh 11-s 

yy 0 2 h-s 1-(3 -s 
(F-lc) 

A further change of variable, 2 2 s = 1 + (3 tan 8, in Eqn. (F-lb) gives 

(1) 2 4 J2rr -1 Re Kyy (q) = S O tan ((3 tan8)d8 
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(F-2) 

The imaginary part in Eqn. (F-2) arises as 

Li2(x) +in £n(x)8(x-l), x > 1 

Now, let us define 

1-13 
Y = 1+13 (F-3) 

and make a change of variable s 4x/(l+x) 2 in Eqn. (F-lc) so 

(l + y) fl £n(x) [~l~ + ~1-]dx 
o 1-x y-x 1-yx 

Then, integrating by parts 

_ (l+y) fl dx £n (1-yx) 
1-y O X 1-x/y 

where we have used 

f l dt - ~ £n(l-xt) 
0 t 

Li2(x) - in £n x, x > 1 

(F-4) 
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102 

Schaeffers relation allows us to express Re K~~)(q2 ) in the form 

Finally, noting that 

1r 2 1 2 
Li2 (x) + Li2(1/x) = ~ - 2 2n (x) - i 1T 2n(x), x > 1 

Eqns. (F-la), (F-4) and (F-5) yield 

2 1 1 2 2 
Re Kyy(q) = S (2 2n (y) - 2~(y) + ~] (F-6) 

where ~(x) = - Li2(-x) is the Spence function. 

Next, let us consider 

2 -- ~ J 00 dt 2 
1T Im K (q ) 

m 2 t(t-q2) YV 
V 

where I K (q 2) is given by Eqns. (E-2a) and (E-4). We are interested m yv 

in the part of Re K (q2) which does not vanish as m0 + 0 so, making a 
yv "' 

change of variable t = m 2/x and defining 
V 

2 
E = _g__ (F-7) 

2 
m 

V 

we have 

2 
Ze: fl (1-x) 

o 1-e:x 

m 
(2 2n (~) - 2n(x)]dx + 

m2 

2 
m 

0(-2-) 
2 

m 
V 

(F-8) 



For E < 1 we can express Re K (q 2) as a series by expanding the 
yv 

denominator in Eqn. (F-8): 

Re K (q 2) yv 

where 

00 

2E E 
n=O 

2 
(n+l)(n+2 )( n+3) 

( 2) f 1 2 n C = - (1-x) x ln(x)dx 
n o 

Finally, let us examine 

2 
K ( 2) = .9,_ J"° dt 2 ) Re vv q 2 2 Im K ( q 

n 4m t(t-q) vv 
V 

2 
m 

+ O(~) 
m 

V 
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(F-9) 

(F-9b) 

(F-9c) 

As with Re Kyv(q 2) we are interested in the leading part as mt+ O; in 

2 2 
this case we make a change of variable t = 4 m /(1-x) and define 

V 

(E/4) 
1 - (E/4) 

2 to obtain, using Eqns. (E-2a), (E-5a) and (E-5b) for Im K (q) vv 

3 
2 

m 

(F-10) 

4 0 f 1 x dx ln ( 1-x) 
o 1 + c5x2 l+x 

+ O(~) (F-'lla) 
4m 

V 



For o < 1 we may expand the denominator in 

2 Re K (q ) as the series vv 

2 
CIO m 

Re K ( 2) - 46 I: (-o)n c(3) + 0(-R,-) vv q n 4m 2 

with 

n=O 

1 n+2 1 
- I: 
n+2 r=l 2n-5-2r 

V 
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Eqn. (F-11) and express 

(F-llb) 



APPENDIX G 

Let us first note some useful identities: 

(G-la) 

(G-lb) 

(G-lc) 

Eqn. (G-lc) easily yields the relation 

(G-ld) 

for the tensor defined in Eqn. (4-19); further, using Eqns. (4-19b), (4-

18c) and (G-ld) we see that 

We begin with n(b;t,p 1 ,p 2 ,p3) as defined in Eqn. (4-18b); 

employing Eqns. (G-la) and (G-lb) we have 

105 

(G-2) 



106 

+ (m 2-s)(t.p3 )[(m 2-s)(m 2-t) - rm 2J + 
1T 1T 1T 1T 

or 



107 

(G-3) 

Now, n(d;t,p 1 ,p2 ,p3) as defined in Eqn. (4-18d) can be expressed 

in the form 

The term in Eqn. (G-4a) containing 
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vanishes by the antisymmetry of 
A 

E cSpcr; defining 

(G-4b) 

we also see that by Eqn. (G-lc) 

Using Eqns. (G-la) and (G-lb), we observe that 

- i 
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so, defining 

(G-4c) 

we have 

(G-5) 

Finally, let us evaluate n(2;t,p1 ,p2 ,p3 ) and n(3;t,p1 ,P2 ,p3 ) • 

Employing Eqns. (G-la) and (G-lb) once again, 

Using Eqn. (4-12a) 
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R.2 R. •P1 R..p2 

R.. p 1 
2 1 2 

- det m -(m -s) 
1T 2 1T 

R..p3 
1 2 1 
-(m -t) zr 2 1T 

- [..!.. (m Zr - st)n2 2(n )(n ) + 4 1T /'y - mlT l'v•Pz l'v•P3 

R.2 R..p2 R..p3 

pl .Jl 
1 2 1 2 

det t(mlT -s) t(mlT -t) 

R..p3 
1 0 zr 

1 2 2 1 2 - - r(m - t)R. + -(m - t)(R..p2 )(R..p3) + 
4 1r 2 1r 



111 

so 

(G-6) 

Similarly 

c ].l a 13 A p (J 
£ 13R. P3 Pz 8 cpcrR.>.p 1 K = 

µa 

c µ a 13 A P cr 
£ 13R, p 2 P3 8 8>.paR. pl K µa 

R,2 
R,. pl R. .K 

R..p2 
1 2 1 

- det - (m -s) Ir 2 1T 

1 2 1 
R..p3 - (m -t) zr 2 1T 



1 2 2 + 2 (l.K)[(mTI - t)(l.p) - (mTI - s)(t.p 3)] 

so, noting that the t 2(p 1-t) 2 terms arising from n(3;t,p1 ,p2 ,p3 ) 

cancel in Eqn. (G-5), we have 
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(G-7) 



APPENDIX H 

EVALUATION OF THE Ni(j;r,s,t) 

In this appendix we determine the quantities Ni(j;r,s,t) as defined 

by Eqn. ( 4-2 7). 

First consider n(l;i+t 1 ,p 1 ,p2,p3 ) where n(l;t,p1 ,p2 ,p3 ) is given 

in Eqn. (G-3) and £ 1 is defined in Eqn. (4-22b). Using Eqn. (4-26) we 

immediately see that 

- N1(l;r,s,t) 
2 

rt[(mn - t) + 4(t-s)] + 

- (mn 2- s)[ 1/2 (t-r)(m/- t) + rm/-1/i,m/- t)(m/- s)] 

= rt[(m 2- t) + 4(t-s)] - (m 2- s)[rt] 
n n 

3 rt(t-s) (H-1) 

Now 

2 2 
m y + 1/2 ( m - t) y3 n 1 n 
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so 

and then 

or 

- N/l;r,s,t) (H-2) 

Next consider v{3;1 + i 3 ,p1 ,p2 ,p3) with v(3;1,p1 ,p2 ,p3 ) given in 

Eqn. (G-7) and 13 defined in Eqn. (4-23b). In this case we obtain 

- N1(3;r,s,t) r(t-s) (H-3) 

Noting that 
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so 

we have 

or 



(H-4) 

Finally, consider n(2;t + t 2,p 1,p2 ,p3) where n(2;t,p1 ,p2 ,p3 ) is 

given in Eqn. (G-6) and t 2 is defined in Eqn. (4-24b). We see that 

- l/2 N l ( 2; r, s , t) = 

2 1 21 2 2 2 
r [ ( rt - mn s) - /2 r mn + /2 [ ( mn - s ) ( mn - t) - r mn ] ] + 

r [ ( rt - mn 2 s) + l/2 ( st - mn 2 r) + l!z <.mn 2 - t) 2] 

r[(rt - m 2 ) +l/2 (m 2s - rt)] 
n n 

or 

- N1(2;r,s,t) 2 
r[rt - mn s] 

Then, observing that 

(H-5) 
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so 

and thus 
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or 

N/2;r,s,t) (H-6) 



APPENDIX I 

In this appendix we shall analytically perform the multidimensional 

integrals appearing in Eqn. (4-33c). This task is rendered less 

formidable than it appears since the individual terms are finite and may 

therefore freely choose transformations which simplify the expressions. 

First consider 

Making a transformation 

y1 + u, Yz + (1-u)(l-v), y3 + (1-u)v 

f d p(3) • + f 1 (1-u)du f 1 dv 
0 0 

so that 

d(x) (1-u)(l-xv) 

where d(x) is defined in Eqn. (4-32a), we easily obtain 
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1 
1-x ) 

2 

1-x 1-x 1-x 
.R-n(-1 2) - [--2] R-n(l-x 2) + [--3]tn(l-x3) -x3 x2 x3 

Next consider 

where D(x2 .x3) is defined in Eqn. (4-32b). With a transformation 

y1 + uv, y2 + (1-u)(l-w), y3 + u(l-v), y4 + (1-u)w 

J d p(4) • + J1u(l-u)du J1dv J1dw 
0 0 0 

we have 

--,---1__,... Jl dw in ( l -x2 + x2 w ) ( ) 
(l-x1 ) o w 1-x +(1-x )w + x2 - x3 

2 3 

120 

(I-1) 



X2 XJ 
- L ( - -) - L. ( - -) } 

i2 l-x2 12 l-x3 

where 

Jx dt 
- - in(l-t) 

0 t 

By use of the relations 

X 
L.2(x) + L.2(- -1-) 

1 1 -x 

1r2 1 2 - - - - in (x) 
6 2 

1 2 - - in (1-x) 
2 

we see that Eqn. (I-2) can also be expressed as 

with 

2 
1T 

6 

The remaining integrals in Eqn. (4-33c) may be carried out 

implicitly using 
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(I-2) 

(I-3a) 

(I-3b) 

(I-3c) 



(I-4) 

Recalling that, by Eqn. (4-9d), x1 is an implicit function of x2 , x3 , 

Eqn. (I-3b) through (I-4) readily yield 

l X X X X 
-,--~ [ r--1 + - 2-J R-n( l-x2) + [i + - 3-J R-n( l-x3)] + (l-x1) x2 l-x3 x3 l-x2 

x 2+ x3 G(x2 ,x3) 

- [ l-x1 ] (l-x1 ) 

Finally, using Eqns. (4-33c), (I-1), (I-3b) and (I-5) we have 

1-x 1-x 1-x 
(x - x )[fo(--2) - [--2]fo(l-x2) + [--3]R,n(l....:x3)] + 

2 3 l-x3 x2 X3 

Noting that 

x2+ (l-x 1)(x2- x3) 

x2 (1-x3 ) 

(I-5) 

(I-6) 
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and similarly 

It is apparent that Eqn. (I-6) may be more simply expressed as 

(I-7) 



APPENDIX J 

In this appendix we evaluate the integrals in Eqn. (4-33d) for 

Iz(x1 ,x2 ,x3). This problem must be approached cautiously since the 

individual integrals in I 2(x1 ,x2 ,x3), unlike those in Eqn. (4-33c) for 

I 1(x1 ,x2 ,x3) are divergent and so undefined. An examination of Eqns. 

(4-23a) through (4-24c) shows that the y3 + 0 singularity in the first 

integral of Eqn. (4-33d) and the y1 , y4 + 0 singularity in the second 

integral of Eqn. (4-33d) have a common origin in the vanishing of both 

photon propagators; guided by this, if we make a transformation 

y1 + (1-u)v, y2 + (1-u)(l-v), y3 + u 

J dp(4) • + J1 (1-u)du J1dv 
0 0 

so 

yl+ Yz 1 d 2 J dp(4) • [ ] + J _2!. (1-u) 
Y3 o u 

we must use a transformation for 

f dp(4) • 

124 



125 

(J-1) 

with H(O;x1 ,x2 ,x3) finite. An efficient choice is 

(l-x3 )(l+v) (l-x2)(1-v) 
C , y2 + (1-u)w, y3 + (1-u)(l-w), y4 + u C 

f f l fl dv fl dp(4) • + - 2(1-x 2)(1-x3) 0 u(l-u)du _1 ~ 0 dw 

where 

in terms of which 

Using 

fl x(l-x)dx 
0 [a+bx+c(l-x)] 2 

C 

2 
(l-v) - (1-u)(l+v)w + (1-u)(l-v)(l-w)] 

C 

2 + (2a+b+c) £n [a+b] 
(b-c)2 (b-c)3 a+c 

the above transformations yields, after integrating over w, Eqn. (J-1) 

with 
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2 
(1-u) + .l L 1 dv {- (1-u) + 

u u 1 

where 

a - x1 (1-u) + u 

b(±) - x1 (1-u)y ± u 

Employing the same transformation and carrying out thew integration, 

Eqn. (I-3a) gives 

JI du J 1 dv in (-(l+v))(b(+)-av)) 
o -1 c (1-v) b(-)-av (J-3) 

Then noting that 

J 1 d {v} in (-(l+v)) 
-1 V 1 (1-v) 

(x3- x2+ x1v) x -x 
u ---2--- + (1-u)v = _2!. ( 3 2 ) 

xl xl xl 

Eqn. (J-1) through (J-3) allow us to express r2(x1 ,x2 ,x3) as 

2(1-x2)(1-x3) G(x2,x3) fl du { 2 
----,---- ---,----,-- + - ( 1-u) - 2 ( 1-u) 

2 (l-x1) o u 
xl 



X -x X -x 
+ in -2-!. ( 3 2) + l fl dv [av+ ( 3 2)u] in (b(+)-av) 

x 1 x 1 2x 1 -1 x 1 b(-)-av 

X - X 
+ _l_ fl du fl dv [av + ( 3 2)u] in (b(+)-av) 

2x 1 o u -1 x 1 b(-)-av 

We observe that the u-l singularity has vanished; the remaining 

integrand is finite at u = 0. 

Now, the integration formula 

l~ dv in (b(±)-av) 

[a+b(±)]in(a+b(±)) + [a-b(±)]in(a-b(±)) + i TI ..;.[_a -_b_(a....±....;..)""'-] - 2 , 
a a a 

f~1 vd v in (b(±)-av) 

[a+b(±)][a-b(±)] in a-b(±) + in 
2 a2 <a+b(±)) 

together with the relations 

a + b(±) 

a-b(±) 

a± b(±) 

(1-u) ( 1 -x 2) + u 

2 { ( 1 -u ) (1 -x ) 
2 

a ± b( ) + 2u 

[a+b(±)] [a-b(±)] _ b(±) 

2 a2 a 
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(J-4) 



1 xl 
.£ = --.,.- [ 1 - -] 

(l-x1 ) a a 

and some straight forward, albeit tedious, algebra yield 

X -x 
J_ll dv [av+ ( 3 2)u] in (b(+)-av) 

x1 b(-)-av 

2(1-x2 )(1-x3 ) 2 
[l + u ] in ( (1-u) ) + 

xl (l-x1 )a X U x 3u 
(1 + l=x )(l +--) 1-x 

2 3 

u(l-x2 )(l-x3) 2 2 
1 

(1-u) (l-x2)(1-x3 ) 
[l + (l-x1 )] in ( ) + 

xl (1-x2+ x2u)(l-x3+ x3 u 

X -x 
2 U [l + iTI ( 3 2)] 

xl 

The final integration may be performed with the aid of 

Jx dt - - in (1-t) 
0 t 

f l ln(t) 
- X O dt 1-xt' 

Ix .R.n[a+bt] dt = _l .R.n2(.£_ (c + ex)) __ l (be) + 
o (c+et) 2e e 2e e 

+ ..!. 1 (be - ae) _ .!.. 1 (bc-ae)· ae-bc < 0 
e i2 b(c+ex) e i2 be ' e 

After some simplifications: 
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X - X 
~l~ fl du fl dv[av + ( 3 2)u] fn(b(+)-av) 
2x 1 o u -1 x 1 b(-)-av 

(l-x2 )(1-x3) 2 x 2 x3 
x

1
2 [TI3 - 1 i2 (- l-x2) - 1 i2 (- l-x3 )] + 

( l -x2 ) (l-x3 ) 
- 2 2 [2Li2 (1-x1)+2tn(x1 )tn(l-x1) 

x 1 (l-x1 ) 

[ (1-x ) - (l-x3 )] (l-x3 )tn(l-x3 ) ( l-x2 HnO-x2 ) 
2 + 

2 
[ ] + 

xl 
X3 x2 

1 
X -x 

(1 + in ( 3 2)] 
xl xl 

(J-5) 

By use of Eqns. (I-3a) and (I-3c): 

(J-6) 

Further, Schaeffer's relation 



gives 

1-x 1-x 
3 2 + R.n(--)R-n(--) 

xl x2 xl 

or 

l-x3 l-x2 
+ fo(--) R.n(--) + h(x1 )R.n(x2 ) 

xl xl 
where we have used 

2 
1T 

Li2(x) + Li2(1-x) = ~ - R.n(x)R.n(l-x) 

Similarly: 

(J-7) 

(J-8) 

l-x2 l-x3 
+ fo(--Hn(--) + R-n(x1 Hn(x3 ) (J-9) 

xl xl 

Also, putting x = (l-x2)/x1 and y O in Schaeffer's relation we have 

(J-10) 

Thus, employing Eqns. (J-7) through (J-10) and Eqn. (I-3c) 
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+ 

Finally, observing that 

[(l-x2)-(l-x3 )J 

2 
xl 

1 

we have, using Eqns. (J-4) through (J-6) and (J-11): 
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(J-11) 

(J-12) 



APPENDIX K 

SOME SPECIAL INTEGRALS 

Herein we develop some integration formula useful in the evaluation 

of II 
d PR /dx. 

First consider 

J1 dz zn tn(z)tn(l-z), n > -1 
0 

Integrating by parts 

J1 dz zn tn(z)tn(l-z) = 
0 

~l~ fl dz[(l-z)n+l_ zn+l] tn(l-z) n > _ 1 
~1 0 z 

so 

J1 dz tn(z)tn(l-z) 
0 

n2 
2 - 6' 

J1 dz [.!.- 2]tn (1-z) 
0 Z 

J1 dz z tn(z)tn(l-z) = l/2 f 1 dz [.!. - 2]tn(l-z) 
0 0 Z 
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(K-1) 



1 2 
= 2 [2 - ~] 

and 

= .!. f 1 dz [tn(l-z) - [2 - z + 2z2]in(z)] 
3 0 z 

1 n2 1 
= 3 r2 - 6 - 161 

Now consider 

f~ dz zn Li2(1-(l-x)z), n > -1 

where 

fx dt 
- - in (1-t) 

0 t 

f l in( t) 
- X O dt 1-xt ' 

With the same trick of integrating by parts 
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n+l 
1 ( ) (1-x) fl dz z tn((l-x)z) 

n+l 1i2 x - n+l o 1-(1-x)z 

so 

. 1 
f0 dz Li2(1-(l-x)z) 

1 
Li2(x) + ln(l-x) - 1 + l-x [ln(x)tn(l-x) + Li2(x)] 

2 
tn(l-x) - 1 + l~x [~ - x Li2(x)], 

J! dz z Li2(1-(l-x)z) 

1 1 Jl 1 1 2 Li2(x) + 2 odz[z + 1-x[l - 1-(1-x)z]]ln((l-x)z) 

1 1 1 ( ) 1) + 1 ] 2 Li2(x) + 2 [2 tn 1-x - 4 Z(l-x) [tn(l-x)-1 + 

2 c-
l 1T 

+ ---2 [6 - 1 izCx)] 
2(1-x) 

;r; tn(l-x) - r] + Z(l~x) [tn(l-x)-x Li2(x) - 1) + 

2 
+ 1 [.!._ - X L1·z(x)] 

2(1-x) 2 6 

and, finally 

f l 2 
0 dz z Li2(1-(l-x)z) 
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1 1 Jl 2 z 1 (1 1 J J fo((l-x)z) J Li2 (x) + 3 o dz [ z + 1-x + 2 1-(1-x)z (1-x) 

1 1 1 1 + 1 1 1 
3 1i2(x) + -[- fn(l-x) - -] [- fo(l-x) - -] + 3 3 9 3(1-x) 2 4 

2 
+ 1 2 [fn(l-x) - l] + 1 3 [~6 - L1·2(x)J 

3(1-x) 3(1-x) 

j-[j- fn(l-x) - !J + J(~-x)[t fn(l-x) - fJ + 1 2[tn(l-x)-l] + 
3(1-x) 

X 1 1 1 2 
- -[- + ] L1.2(x) + [~ - x L1.2(x)] 

3 1-x (l-x)2 J(l-x)3 6 
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