HIGH-LEVEL LANGUAGE COLCEPTS
IN DATA FLOW ARCHITECTURE

By

-TARANEH BARADARAN-SEYED
A\
Bachelor of Science

Aryamehr University of Technology
‘Tehran, lran

1976

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the degree of
MASTEL OF GCIBNCYE
" December, 1981

8,

<

NOMA &3
Q;J\ SZ#
UNIVERSITY

LIBRARY

" HIGH-LEVEL LANGUAGE CONCEPTS
IN DATA FLOW ARCHITECTURE

Thesis Approved:

vt SLaoke,
2 5 gt S

w/

raduate College

ii

10935

&
G
1

PREFACE

'This study is concefﬁed'with the aspects of data_flow
architectufeQ Aéurvey of the'data flow architecture proposed
by Dennis'and Misgnas_is pfesqnted. A survéy is made of the.
semantic .gap in the classical ‘von Neumann -'architecture.
Methods.to repreéent nigh-level languages concepts in data
flow base language are presénted.; EXistihg semantic gap in
" the data fléw Aarchitecture 'is studied and methods to
overcome this gap are discussed.

I wish to thank my advisor, Dr. Donald Fisher, for his
in§aluab1e guidance; éssistance, and eqcouragement
throughout this study.AAlso I express my appreciation to the
other committee ﬁémbers,.Dr.'G. E. Hedrick and Dr. J. R.
Philips, for their assistanée and encouragement. Pinally, I
. express my gratitude to my parénts Mr. and Mrs. Baradaran-
Seyed, and my husband, Bijan Karimi, for their support,

patience, and encouragement.

iii

TABLE OF CONTENTS

Chapter | ' | _ Pége
I. INTRODUCTION R I I I e e eeeen 1

A. Introduct1on cee s e e e s e e s esee e e nseene 1

B. therature ‘Review ... ccven. et e enesns 6

II. BASIC BACKGROUND FOR THE EXISTENCE OF

SEMANTIC GAP e e tees et 5
A, Semantic GED cetvsertocrsrsatactoscsscaans 8
A.1. Arrays ...ocv... et receones i e e g
A.2. Btructures ..eiiiiiiiirieiiiianann 10
A%, Proceduresceeeeeennsnennnnoans 10
A.4. Data Representation Cerecaens "
B. Consequences of the Semantic Gap ¢eeve... 12
B.1. boftware Unreliability «eceeecannn 12
B.2. Performance Problemscceveuen. 14
- B.%. Excessive Program Size ...cieecon. 15
B.4. Compiler CompleXity coeeeiveveesnn 15
C. A Critique of the Conventional von Neumann
Architectureciiiiiiiii it 15
D. Uther Undesireable Features of Classical
Architecture «.ec.... R T 19
D.1. Binary (Base Two) Arithmetic 19
D.2. Fixed Size Storage Wordsoe.. 21
b.3. Registers ..iieseeiereensennnnennns 27
ITI. BASIC bALKGROUdD FOR DATA FPLOW +ievveeveenens cea. 24
A. Architecture of Parallel Systems 24
B. The Data Flow Approacheveeesess e 27
C. The Data Flow Language e b e eane e 29
Col. Elements coveeeeeesesnnncsnonnsoes 51
C.2. StrUCTUTES «teeveceonososnasonnnnss 44
C.3. Data Flow Procedure :
Representation ... vt 40
IV. ARCHITECTURE OF “HE DATA FLOW PROCESSOR «evveen.. 45
A. Introduction «i.eeeeeeriienenonnonees eee e 45
B. Instruction Processingceieveeeenens 45
B.1. Instruction Representation 47
B.2. Network Structureccceieeiane 52
C. Structure Handling ...oeveeeeecennns e 54
C.1. Simple SETUCtUresS .cevevcescsnceaan 5%

iv

Chapter : . Page

C.2. Extension to More Compléx
BEtruUCtUres vt ieenreasrnnancas

V. IMPLEMENTATION OF HIGH-LEVEL LAKGUAGE CONCEPIS
IN DATA FLOW ARCHITECTURE AND EXISTING SEMARTIC

6 N
A. Data Representation cecronan e
A.1. Signed Digit Number
Representation v.oviieieniesnneanns
A.2. Arithmetic Operations «...ccocvvven
A.2.a. Normalizationceeeuven
A.2.b. Addition and Subtraction ..
A.2.c. Multlpllcctlon
A.2.4d. Data %ype upe0111cat10n .
B. ‘Iterations .eeeveieeasn et et et s esenas e
B.1: Introduction sveeeeeereerececonanas
B.2. LOOpP-CONSTIUCE «eveeesvsrensnancnna
C. Data Structures .t.eeeievrioreneecconanvens
Cele ATIrAYS toeteensnceracstnsacnsacsans
C.1.a. Allocation and bHepping
C.1.b. Operations ...ecveeivecanss
C.2. Stackss.. it esesscacinesr s
Cele QUEBUBS sreitrennrtnetteennnnnnensas
D. ProceduUres ..ieeeeececceencasenssnsaocsanan
E. Semantic Gap in Data Flow Architecture
VI. TWO APPLICATIONS ceseesaann ceenes Cee e venae
A. Past Fourier Transformcecveeeeenecns
A.1. Introduction v iiiieiiinnnnans
A.2. Decimation-In-Time Algorithm
A.3. Data Flow Representation of
- the DFT Algorithmc.0c00000n.
A.4. Description ot the Program
A.4.1. Loop-control ...civvecunnnn
A.4.2. Butterfly ..o
A.4.%., Phase Constant Queue
A.4.4. Phase Factor Generaution ...
A.5. Program Performance Analysis
B. SIN Function .veeeesiniienceansnnoencecenaa
V11l. SUMMARY, CONCLUSLONS, AND FULULKE WORK veveeeneeons
BIBLLIOGRAPHY cteneeresrsnanans et e e ettt et
APPENDIX tieieeierorennnnns et eeaerr s eaens Cereecieanen

LIST OF FIGURES

vi

Figure Page
1. Actors of the Data Flow Language i, 3D
2. Links of the Data Flow Languageeceeeeencsassons 52
5. An Example of Two Structures Sharing a _

Common Substructurecccveveenn eree et ee e 56
4. Operation of the CONSTRUCT Actor .ee.ev... EREERRRRE %58
5. Operation of the SELECT Actor ciieeiveerencecncnacas 48
6. OperationAof the APPEND ACtOr civevcerrevenncansanes %29

7. Operation of the DELETE ACHOT «veveenrennrnnreneenes 39
8. Operation of the APPLY and RETURN ACtOrS «.e.eee.... 41
9. Data Flow Representation of a Simple Procedﬁre 43

10. Organization of the Instruction Processing

section of the,data Tlow Processor .eeeeeveeneeans 46

11. Format of Fields in an Instruction Celloieevunns 48

12. Use of the Distribution Instruction AP 50

12. Structure of a Receiver .ieiiiiiiiiiinenienitiennnnnns 51

14. Btructure of the Arbitration and

Distribution Networks e et rteeerc et e 5%

15. Organization of the Data Flow Processor with

Structure Processing Capability .eeeeeereeieeannns 56
16. Memory Representatlon of the Structure of
Figure 3 «.iveeivennn R R R R 58

17. SBigned Digit Addition .eeeieerirenerineeencncnnncenons 70

18. Machine Hepresentation-of HUumbers toeceeveesseeecncses)

19. Parallel Signed Digit Addereeeeeeeceecns et 81

Figure , Page

20.

21.

26.

27.

28.

29.

31.

32

34.
35.

36 ..

Double Digit Parallel Adder Modified for

Byte-level Computation ...eeeeineeieeestiieeaennns 82
Signed Digit Multiplication .cvieeeieeiineiicannann, 85
Two Procedures for Signed Digit Multiplication 87
Error ValuesS c.iceeeseenscscesn e e e s e et e e e e 89
Data Flow Actors Used to Represénf ffaTo) o} 93%
Representation of a Single DO Loop in Data Flow

Base Languageccoiiieeiiiiannn e teeetet s eaens 95
Represehtation of a Nesfed DO loop iﬁ Data Flow

Base Languageccviiieiiiana., N
Data Flow Code to Perfo'rm SIN veieieniineniennnnas 99
Two Forms to Kepresent a Two-dimensional Array 10%
Representation of A(16)';}.................; 107
Representation of B(B,B) e ee e ean 109
Codes to Access/Modify an lndividual Elemenf

Of ATTAY A teiieteiieieenrnattoasscannoscecsannosnns 117
Data Flow Code to Perform A(2,%)=2%B(*,%) vevveennn. 115
Data Flow Code t§ Perform O "7
Stack Allocation Methods e e cereeaes 119
PUSH/POP into/from Stack seseeveeeetneronnoneononans 121
Data ¥low Codes to Perform PUSH and POP |
~Operations ...ceve... e e o et esecetsesoncnosenare s 122
Stack Constructed Using lon-linear Concepts 124
Structures Produced by a Segquence of Insertions

and Deletions lnto and From Queue Q «viiicvenenass 126
Expanded Structure ProéeSéing UNIt evivennnneennnnns 1%5

Flow Graph of the Decimation-in-time Decomposition
of an s-point DIy Computationceeceveenenaanan 144

Flow Graph of a 2-point DPT e e 144

vii

Figure : ' ' Page

42.

44.

45.

46.

47.
48.

49.
50.

51.

52.
53.

Flow Graph of Complete Decimation—in—time
Decomposition of an 8-point D¥T Computation 147

Flow Graph of Basic Butterfly Computation «......... 147

Flow Graph of &-point DFT Using the Butteriiy _
Computation of Figure 4% (eeeiieiiiescrtocsacansas 151

Rearrangement of Figuré 44 Having the Same

Geometry for Each Stage cieeeveeecsenees e ce o151
The kEight-point, Constant Geometry,

Decimated—-in-time DFT R R TR T PP 15%
Iterative Data Flow Program for 8-point DFi 154
Alternative Data Flow Program for the 8-point

DFT Computation c.eeeieeeerensneeeaoseccocaansonasoas 162
Generation Of POWETS OFf X eeeeeeeerneesenocnennaennns 171
Coefficient Generation Ceeesesedacnnnnan 172

Computation of Four Consecutive Terms of

the Taylor Series ceiieeereerersncssasossecnssansos 1735
Computation Analysis of SIN Programc.ceceeevan 174
Computation Analysis of Controlled SIN Program 175

viii

CHAPTER I
INTRODUCTIOCN
A. Introduction

The éhort history of co@puting as a ~science is unigue
in its unpgralléled rate of technoldgical growth. In
response to this, the demand for greater levels. of computing
- power has riéen_as rapidlj; Antiéipating the continuation
of this trend, research in the area of parallel computation
seeks to achieve high perfbrmance by manipulating programs
to exploit the pafallélism‘inherent in many problems.

It is well known'thatA LSI technology 1is capable of
economicaily producing_lafge numbers of similar, small and
complex devices. It is equally clear that use of LSI
technology has not ‘yet provided a breakthrough in the
computing power available in a single systen. Rgther, the
best that has been accompliéhéd is simple reduction in the
physiéal size of &ll familiar éystems. |

Many compu£ing.systems have departed from conventional
computer organizations to improve capability for concurrent
execution. A class of such processors belong to the
category of SIMD (Single Instruction HMultiple Data)
machines. Fof instance, there are array processors

represented by 1LLIAC IV, associative processors 1like the
1

2
STARAN, and vector processors such as CDC STAR 100. These
processors perform well only when the computation can Dbe
expressed in program and data structures which are easily
mapped onto the particular machine structures. Array
processors require that data structures be mapped onto a
fixed structure imposed by the physical arrangement of the
processors, - such as a two—dimensioﬁal array. Associative
processors require that data structures be linear 1lists of
words so that associative operations on parts of these words
can be effidient. For wvector processors, data structures
must be in the form of one;dimensional arrays to allow
pipelining of ~operations on successive array elements.
Furthermore, programs must exhibit a high degree.of locality
of reference Such. that a significant amount of data
structure movement is not necessary during the eiecution.
There are boncurrent processors that ©belong to the
category of MIMD (Mﬁlfiple Instruction HMultiple Data)
machine. A typical realizatioh of this form of machiﬁes is
based on nultiple -proéessor and shared mnmultiple memory
organization. The predominant problem of these processors
is that the syétém performance is.based oh the assumption of
locality of reference achieved by a programmers explicit
partitioning of a computation. Furthermore, because the
semantics of the languages supported by these systems are
based on the. notion of sequential execution and operations
which have side-effects, éoncurrency is achieved through

careful analysis of programs to preveﬁt possible deadlocks

and bottlenecks in memory references.

A number of inadequacies may be noted with currently
prdposed and operational multi-processor computers,
including:

1. the poor utilizatibn of program parallelism by the

architecture, |

2. an 'iﬁcompatibility~ in the wa& that these
architectures and their programm;ng languages
represent parallelism,

3. the difficulty of programming the computers using
conventional languagés. | .

When a closef examination is made of multi-microprocessor
systems, it is~pbsSible to identify three problem areas in
their design:

1. the possib1e contention of concurrent processes for
the physiéal'resources (processors, memories, input-
output) of thévcdmputer,

2. the difficulty of partitioning the programs to be
executed sd as to maximize the utilization of the
resources provided,

the need to supply mechanisms so that concurrent

N

| processes may intéract “to communicate data and
synchronize their operation.

The coﬁventionalt approachv to: multi-micreprocessor

systems 1is to Dbase their design on extensions to the

inherently.sequential "control flow" or von Neumann concept

of a stored program computer. This organization, however,

4
may be inapplicable for multiprocessor computers. " This
design has some architectural deficiencies which were
studied by Myers :28: in 1978. These problems contribute in
a phenomenon known as the semantic gap. The semantic gup
shows the difference Dbetween the concepts in computer
architecture and high-level languages and causes software
unreliability, performance problems,‘excessive program size,
and compiler complexity.

Two particularly troublesome attributes of the von
Neumann moael are .sequential control and memory cells.
Sequential control is troublesome since it prohibits the
asychronous Behavior and distributed control that 1is
essential to a multiprocessor. It also Burdens the
programmer with the need'to'explicitly specify exactly where
concurrency may occur. The concept of a memory.cell, along
with the idea of assigning a value, presents a difficulty
since its existence forces the programmer to consider not
only what value is béing Computed, but also where that‘value
is to be kept. :

An alternative organization, namely, dataflow, exists.
In this organization: | |

1. an instruction executes when and only when all

operands needed for that instruction becomne

available;

N

instructions, at whatever level they might exist,
are purely functional and produce no side effects.

Data flow computation is therefore "data driven" as opposed

5
to "control driven" as exemplified by the conventional von
Neumann machines. A data flow program may be represented as
a directed graph with certain restrictions on
interconnections Dbetween nodes. The nodes of the graph
represent instructions and the directed arcs represent pafhs
for operands;n Data flow language.is -asynchronous except
when synchronization is ekplicitly specified, and in which
values are the subject of 'computation rather than the

locations where those values are kept (i.e., no memory

addresses). An asynchronous language assumes computations
are unrelated, and thus concurrent, unless otherwise
specified. The absence of memory cells ensures that only

simple control mechanisms are needed to consider access to
data, since races to “sfore" data never occur. such a
semantic basis should work well with a machine.composed of
many asynchronous cooperating processors.

This report dicusses the basic concepts of data flow
architecture proposed by Dennis [11, 12, 13, 14]. If also
includes a study of problens that occur 1in von Neumann
architectures known as semantic gap [28]. Then the
repfesentation of high-level languageA concepts in data flow
base language are studied and coded. Also the semantic
problems in fhis architecture are dicussed. Finally, two
application processes, Discrete Fourier Transform, and SIN

function are studied and coded in data flow base language.

B. Literature Review

The theoretical basis for the data flow architecture
was established during the 1960s. In 1975, a preliminary
architecfure for a basic data flow architecture was proposed
by Dennis [12]; this machine executes programs coded in data
flow base language V proposed also by Dennis [13].
Information flow in the Dennis »architecturé'is done through
packet cémmunication features Apresented in 1975 [14].
Misunas extended this model to make it suitable fér handling
data -structures {24, 26] and publishéd a. performance
- analysis of the machine [25]. In 1977, Arvind and Gostelow
proposed a dataiflow architecture [6], and both a high-level
data flow prognamming language and a base machine language
(5, 71J. Miranker [23] presented a method to implement
procedures on a class of data flow processors; and Rumbaugh
[30] presented a defailed datéAflow multi-procsssor.

In 1978, a Structﬁre ?rocessing facility for data flow
computers was proposed‘by Ackerman [1]; and an asynchronous
programming language and computing machine was presented by
Arvind, Gostelow, and ?loﬁffe [5]. Davis proposed a
recursiQely‘éffuctured,data—driven-machine called DDM1 (Data
Driven Machine %1) [10]. Design of an arithmetic processor
compatible with a data flow computer was proposed by Feridum
V[17J in 1978; An architecture for a loosely-coupled
parallel processor was presented by Keller, Lindstrom, and
Patil [21]. Software for a data flow computer proposed by

Arvind was developed by Thomas |%4]. Additional research

was conducted Hanchester University by fTreleaven [36].

ln 1979, a high-level language [2], an intermediate
form [22)}, and a machine language set were devised for the -
M.l.? data flow architecture; the Manchester data flow
architecturé' was improved L16, 18]; and the Texas
Instruments research g:oué froposed and built the first
computer .using the-datalflpw concepts [19, 20, %2].

In 1980, a daté floﬁ-architecfure with tagged tokens
was proposed by Arvind, Kathail, énd Pinguli [4]. Safety
and -optimization transformations of data flow programs was
studied by lontz [27]. Semantics of data-driven loops was
analyzed by Ruth [31}. Thomas [%4] presented a performance

“analysis of two claéses of data flow computing systems.

CHAPTER II

BASIC BACKGROUND FOR THE EXISTENCE

OF SEMANTIC GAP

In 1978, HMyers [28] proposed a new approach to the
study and design of compufer archiféctures in his book. The
main premise of kyers book is that the architectures of most
computing systems have not been designed according to the
éomputational and structural needs of high-level languages.
"Rather than -taking a global lodk at system functions and
its hardwuare/ software tra&éoff, most érchitects have based
their designs on tradition and the bottom-up view of
"minimize the cost of hardware and let the programmers solve
all the difficult problems™. Most of the shortcomings
caused are attributable to 'a phenomenon known as the

semantic gap.

Iy

A. Semantic Gap

The semantic gap is a measure of the difference between
thg concepts in the high-level languages and thevconcepts in
the computer architectvure. Fost current systems have an
undesireably large semahtic gap in that the objects and
" operations reflected 1in their architectures are rarely

closely related to the objects and operations provided in

8

9
the programming languages and used with them. This semantic
gap contributes to software unreliability, "performance
problems, excessive program size, and compiler complexity,
all of which contribute negatively +to the economics of data
processing.. -

To understand the presence of the semantic gap, the
major and heavily used aconcepts in high-level languages
(PL/I, COBOL? .FORTRAN) and a computer architecture can be
picked up and the relationship Dbetween tﬁe two can Dbe
studied. As an example, we analyze PL/IAand the IBM 8/370.
The example ie not PL/I oriented, however, since most or.all
the PL/I conceﬁts discussed also exist in such languages as
COBOL, PFORTRAN, and ALGOL. Neither 1is the eiample S/370
oriented; the .S/37O wag selected because it is
representative of most'conventional architecturee.

The following is a list of a few major and heavily used
concepts in PL/I (or aﬁy other language for that matter).
The question for each is determining to what S/370 (of most

other architectures for that matter) concepts it is related.
A.1. Arrays

The array 1s the most frequently wused language data
structure. PL/I provides such concepts as multidimensional
arrays, performing oper=ztions on entire arrays, referencing
cross-sections (sub-arrays within arrays), and, the option
of, ensuring that subscripfs do not fall beyond the bounds

of +the array dimensions. The question 1is, what 8/370

10
concepts directly.relafe to these coéncepts? the answer is,
very few. | The only architecfural concept that seens
indirectly related in a primitive way is the concept of
index registers. This.means that it is left to the compiler
.to create the widely used concept of an array out of the

rather distant S/3%70 ihstruction set.

ﬁ.g. Structures

A second fréqﬁentlyiuSed data concept is the structure,
a collection of heterogeneoﬁs.data elements (also known as a
record in some programminéilénguages). One finds absolutely
nothing in the $/%70 thét'is ‘related to structures and

‘operations performed on structures.

A.%. Procedures

The basic program structure in PL/I is the procedure
(subroutine). A procedure call entails saving the state of
the calling pfocedure, dynamically allocating and
initializing 1local - storage for the called procedure,
transmitting arguments, and beginning execution of +the
called procedure. One finds next to nothing in the S/%70
that.corresponds to these concepts. . One exception 1is the
branch-and-link instrucﬁion, buf:this contributes so little
to the procedure-call operatioh .cme of nmany instructions
that must be Aexecuted) that 1its absence would never be
" missed (the compiler could just as easily generate two

instructions,. load-address and branch-register, in its

11
place).

ﬁ.ﬁ. Data Representation

PL/I has decimal and binary fixed-point data
representations (integer,fraction). The $S/%70 has none, but
it does have decimal and binary integer representations out
of which the compiler must create the fixed-point concept.
PL/I decimal numbers can 'contain anywhere from 1 to 15
digits, but the S/370 cah only represent decimal numbers
with an odd number - of digits. . PL/I binary numbers can
contain anywhere from 1 to 31 Dbinary digits, but the $/370
.provides for oﬁly binary numbers of 15 or %1 digits. PL/I
floating-point numbers can be declared as having 1 to 53
digits of significance, but these must be mapped into one of
three fixed-size S/370'repre$entations. .

This discuséion could be continued indefinitely by
looking at other PL/I concepfs such as string processing,
block structures, controlled storage (2 push-down ~stack
concept), genericr'vprocedure calls, program-tracing
functions, and automatic data conversion, but by now there
is an understanding of the semantic gép, between high-level
~language concépts and current computer architectures. The
cause df large semantic gaps 1is more difficult to discover,
but the wusual causes ~are bottom-up systenm design and the
computer architects lack of knoWledge and appreciation of
programming languages, whaf programs do, what progrumners

do, the difficulty of program debugging , and the causes and

12
consequences of software errors.

Given the existence of this 'large semantic gap, the

next step is to discuss some of its consequences.

B. Consequences 0f Semantic Gap

B.1. Software Unreliability

m

The sementic, gap..is a significant contributer to
software wunreliability in the sense. thet a large set of
programming errors that theoretically could be prevented or
detected by the computing system are not prevented or
detected in current systems. A few examples suffic

One common progfamming error that arises under a large
variety of cireumstances is a reference to a variable that
has an undefined or unset value. This error is not detected
by most current sysfe@s; - since execution continues using
some unpredictable value, the error is difficult to debug.
Although some instances of the error could be detected at
compilation time by doing a flow analysis of the program, in
general it cannot be detected until execution +time. Since
conventional machines have no way of distinguishing a
defined variablerfrom an undefined one, the architects have,
in effect, deferred_the problem to the compiler writer. The
compiler writer finds no easy and efficient solution to the
problem; thus he or she .defers +the problem to the
~application programmer. |
Some compilers have attempted to solve the problem, but

the solution has turned out to be complicafed,. inefficient,

13
and not foolproof. For instance, IBM’s PL/I Checkout
compiler initializes all character strings with hexadecimal
FE characters and all fixed-point ©binary numbers with the
smallest negative number and then checks for these values
whenever these'variables are‘referenced. However, not only
does this add overhead (eXecution time and storage), but it
can cause "errors" to be defected in correct programs and
does not cover ail data.

A second cbmmon error is referéncing an array element
where one of the subscripts falls beyond.tﬁe bounds of the
corresponding dimension. Again, since the conventional
machine does not recognize the structure array, the problem
is deferred to the compiler writer. The compiler writers
see no easy solution, thus the problem is ignored or the
decision is left to the application programmer b& nmaking the
check optional.

As an example of the overhead of this software check,
IBM s PL/I optimizing compiler normally generates 17 méchine
instructions (occupjing 62f'bytes of storage) for the
statement

c(1,3) = A(1,3) + B(1,3);
when A,B, and C are arrays of fixed—binarj elements of
identical size. If +the optional SUBSCRIPTRAKGE éheck is
enabled, the compiler g¢enerates 75 machine instructions (274
bytes), and 57 of these instructions would be executed if

the subscripts were within the array bounds.

14

E.g. Performance Problems

The 1large semantic gap also leads to significant
performance problems because of the large nunber of
instructibns that must Dbe ' generated by the compiler to
implemeht the lanéuage concepts 6ut of the rather primitive
machine-instruction repértoire. This has &a negative effect
on performance because | it 1increases the amount of
informatibn that must be transmitted between storage and the
processor, and this”has been found to be a good first-order
measure in comparing the performance of different machines.

Since this effect is not widely understood, it is
worthwhile to look at a simple exémple. Assume that we wish
to add two 1QO by 100 element fixed—binary PL/I arrays
together. Hopefully_we woﬁld write this as A=A+B; (writing
nested DO 1loops | to accomplish this is -much more
inefficient). IBM s S/%70 optimizing compiler generates
efficient object(code for +this statemént: six instructions
followed by a loop of four instructions executed 10,000
times. The number of 52—bit' words that must mnove between
memory and the processor is 40,004 (the instruction; the
first six inStructioﬁs fit into four words, and the loop
body occﬁpies féur words) plus 30,003 (tﬁo data fetches and
one store for the elemenf plus a few additional fetches),
for a total of 70,007.

Although this example applies only to array operations,
one can find aﬁalogous examples in the excessive number of

instructions generated to implement almost every

15

programming-language concept on a conventional architecture.

B.%. Excessive Program Size

The large semantic gap affects program size in the same
way. For instance, it was seen earlier that it takes 62

bytes of storage to represent the statement
©c(i,3) = A(1,3) + B(1,3)

if no subscriptbchécking is doﬁe and 274lbytés if subscript
checking is desired.- In addition to being a problen itself,
excessive proéram size ig another -contributing factor +to
system performance probleﬁs '(elg., in a virtual storage
system, Dby increasing the programs, working—sét sizes and

thus increasing the number of page faults incurred).

B.4. Compiler Complexity

From the previous two points, " the effect of the large
semantic gap on compilené':should be obvious; +the .code—
generation portion of}¢Qﬁpilers must be extremely complex to
generate code that bridgés the semantic gap as efficiently

as possible.

C. A Critique of the Conventional

von Neumann Architecture

The basic reason for - the existence of the large
semantic gap in current systems is that most architectures

are simply modifications of the von Keumann architecture

16
derived in the 1940s. This ié not 1to imply that the von
Neumann architecture was not a strbke of genius when it was
developed. nowever, the world has changed tremendously since
the 1940s. The feasibility of even constructing electronic
computers was still in doubt at that time, and hardware
costs and reliability .were. of :utmostr concern; fhus the
motivation was to design as primitive a ©processor as
possible. . Also,b factors £hat are taken for granted today,
such as highflevql programming languages and the
sophistication and critical nature of most computing
applications, were not even enQisionea ét that time.

. It is common today to talk of a class of machines as
‘von Neumann machineé and to say that most current machines
belong to this class. A von Neumann maéhine is sald to have
these properties:

1. A single sequential memory. A program and its data
are stored in‘ a single memory and the memory is referenced
with sequential (0,1,2,..,)vvaddresses.

2. A linear memnory. The memory is one-dimensional, that
is, it has the appearance of a vector of words (or bytes).

%, No eXpliéit‘distinction between instructions and
data. bﬁé can, for instance, treat aﬁ.instructiqn as data (
e.g., modify it), add an instruction to a data word, or
branch +to avdata word and execute it as if 1its Dbits
represent an iﬁstruction.

4. Meaning is not an inherent part of data. There is

nothing, for instance, that explicitly distinguishes a set

17
of bits representing a floating-point number from a set of
bits representing a character string. Hathér, "the meaning
of data is assigned by program logic. If a machine fetches a
floating-point add instruction, it assumes that the operands
represent floating-point nuﬁbers and performs a floatihg-
point addition with the operands. Hence one can perform a
floating-point additionv on two operands that actually
represent a charaéter string or an address.

Although thé Qon Neumann architecture was a reasonable
design for the first stored-program computer, it is alien to
the execution of programé written in high-level languages.
Internal structures of data in high-level languages are
distinguished from von Neumann machines by the féllowing:

1. OStorage, as repfesénted in high-level languages,
consists of a set of discrete named variables; With the
exclusion of certain questionable language constructs (e;g.,
the FORTRAN COMMON area) there is no concept of one variable
being "next" +to another Qariable. There 1is no reaéon to
believe that the variables in one subroutine are located in
the same storage device as the variables in another
subroutine. In short, the concept'of a single sequential
storage bears little resemﬁlence to the concept of storage
in programming languages.

2. programming languages deal with multidimensional,
not just linear, data types (e.g., arrays, structures, and
lists). |

-

5 In programming languages there is ~a sharp

18
distinction between data and instructions. 1In a high-level
language, there are no concepfs of executing data or
referencing instructions as if they were data.

4. In a high-level language, meaning is an inherent
part of data. One does not write a PL/I program as

DECLARE A WOKD;

'DECLARE B WORD;

A = A."floating—point add with" B;
Instead one writes | _

DECLARE A DECIMAL FLOAT (6);

DECLARE B DECIMAL FLOAT (6);
A = A+ B;
"That is, in high—lével languages the meaning of the data is
associated with the data;itself, and the operators are
generic (i.e., the méaning.df "+" is determined by examining
the attributes of its operands).

Thus thé attributes of a von Neumann architecture are
not related, and are éven contradictory, to the concepts in
languages. Intutively;-ione can observe that a von Neumann
machine is a poor vehicie for the execution of high-level-
Tanguage progréms because

1. Excessive mapping is required in software (i.e., by.
the compiler in fhe form of compiler—generated code) to
match the language concepts to the von Neumann view of
storage. This has Been referred to. as "absorbidg the
 structure (of the data) into the logic of +the program".

This should be apparent to anyone who ' has -examined the

19
output of a compiler; the amount of code generated by the
compiler to map the language concepts of storage and data to
the underlying architecture usually gregtly outweighs the
amount of problem-solving code generated.

2f A ‘véh Neumann machine is excessively overceneral
(e.ge, oﬁe can use a word that has no currently defined
value, address anything in storage, add a character string
to an instruction); since this géneralityA fortunatély is
absent ffom ‘programming languages, Athe.coﬁpiler (and its
generated code) is left ~ with the task of removing the
generality and ensuring that it -does not interfere with the
definition of the languagé;’

3. Becaﬁse the concept of storage in a von Neumann
machine is rather primitige,‘ the operations ﬂinstruction

set) performed by the machine are constrained to be equally

primitive.

D. Other Undesirable Features Of

Classical Architectures

“Although the von Neumann model 1is the major cause of
the large semantic gap, there are additional undesirable
architectural properties of current systems that contribute

to the gap.

D.1. Binary (Base Two) Arithmetic

In current . machines, binary arithmetic is treated as

almost sacred, but it almost goes without saying that humans

20
find base~two arithmetic quite distaétéful. Since proﬁosals
for decimal arithmetic often evoke emotionai arguments, it
is worth exploring the traditional arguments for and against
decimal arithmetic.

Two =arguments may be presented in favor of decimal
arithmetic. AFirst, sinéé todays qomputing environment is
highly input/output oriented and since few, 1if any, ©people
would consider forcing human beings fo communicate with
computers in base-two terms, current systems waste an
enormous amount of - timérlperforming conversions between
decimal and binary represénfations. “Second, the fact that a
machine represents numbers;ih base—two form cannot be hidden
completely from_the human, since, for insténce, most

rational decimal fractions are represented as infinite-digit

base-two fractions. ' ThisAmeans that finite-length base-two
numbers are often approximations of decimal numbers, a
source of programming difficulty, bprogramming errors, and

confusing language definitions.

The traditionai arguments against decimal arithmetic
are that it is slower than binary'arithmetic and that binary
numbers can be stored more CQmpactly than decimal numbers.

The +two arguments against decimal arithmetic are
subject to qﬁestion. Pirst, one must weigh the‘speed of
arithmetic algorithms against the overhead of converting
decimal numbers to binary and back again. Second, decimal
arithmetic circuits havé been devised that are competitive

with binary circuits in terms of speed and only'slightly

21
less competitive in terms of cost. The second argument

(space) has some merit, but it is not insurmountable.

D.2. Fixed Size Storage Words

In an aréhitecture..ﬁithz fixed-size storage words,
deciding on the word siie_ié ;prpbably the most difficult
tradeoff‘ facing the archiﬁeét, If the word size is too
small, the maximum value of numbers that can be represented
is too small, fréctional (e.g.,flpatingépoint) numbers are
excessively imprecise, and largér addresses are needed. On
the other hand, larger words tend to waste storage, because
studies of the‘.distribufions of data values in programs
indicate that values are not uniformly distributéd; they are
heavily skewed in favor df small values (e.g.,the values
zero and one are cémmOn, fhe values in the rangés 10-20 are
more common than values in the range 59470-59480). Hence
large words wastev storage beéause their high-order Dbits or
digits are likely to be zero. |

The second prbbiém with fixed—size words is that many
languages (e.g., PL/I and COBOL) allow the prograumer to
deglarefthe size of each variable,"ahd the possible sizes
usually Qary over a 1large range (e.g., a PL/I decimal
floating-point variable can beldeclared as having anywhere
from 1 to 53% mantissa,digits). If the compiler 1s able to
accurately maﬁ fhis concépt into a fixed-size-word machine.
Performance problems (exceséive generated code) are a likely

consequence. If the conpiler desigﬁer decides that the

22
concept of variable-size data cannot be efficiently and
accurately mapped into fixed-size words, the underlying
machine architecture shows through and distorts the
language. 0f course, one might argue that languages should
not contain this concept;f but the argument has 1little
validity. The concept assists one 1in defining machine-
indepehdent languages, allbWiﬁg programs to be transferred

from one machine type to another.
D.3. Registers:

Anothéf. concept that 1is alien to the .concepts in
programming languages is the presence of program-addressable
register (e.g., the'concept of general-purpose registers in
the S/370). If.the machihe“requires the use of registers for
all arithmetic operations:énd if +the number of registers is
small (both are the case in most machines), the coﬁpiler is
left with the task Ofr generating ~code to manage the
regisfers and optimize their use. This code is extraneous in
that it contributesAnothing toward the expression of the
source program’s logic.

Since the 1950s, except for a few machines (e.g., some
made by Bﬁrroughs Corp.), there have been no advances in the
computef architectures of current systems. However, there
have been some advances in the implementation of particular
architectures exploiting the inherent parallelism in
operations.

During 1970s, a new approach in computer architecture

2%
was proposed by Dennis and others [11, 12, 1%, 14]; it is
known as data flow architecture. This approéch is a radical
change from the traditional von Neumann architecture and is
a well designed system to perform parallel processing. The
data <flow approach changed the process of selecting the
instrucfion for execution;-ﬁénd consequently, other related
concepts have been'changed'as-follows:-

1. Execution of instructions is Dbased on their
readiness for execution instead of their 1location in the
program. ln.this approacﬁbany instruction may be executed as
soon as all its operands become available.

2. There is a distinction between instruction and data.
Instructions -are located in a special memory- called &an
instruction memory, constants'reside in an instruction cell,
and variables are either a portion of the instfuction cell
or float 1in the architectufe as results. Data may not be
treated as instructions and vice versa.

5. Instruction"memory contains both instructiohs and
simple variables , 'data structures are held 1in & separate
memory called structure memory.

4. Data structures (arrays, Vmétrices, ce...) are
stored in structure memory as binary or n-ary trees, that
consequently, makes most of the existing mefhods to
implement and handle data sfructures invalid.

5. Meaning is an inherént part of data. Data itenms

contains a type tag which specifies its meaning.

CHAPTER III
BASIC BACKGROUND FOR DATA FLOW
A. Architecture of Parallel Systens

Higﬂly parailel computer systems have evolved in a
manner which often” necessitates the"placing of unusual
constraints on program and data. Parallel machines such as
. ILLIAC IV and the CDC STAR can reéliie their full potential
only for datavrepresented in array or vector formats.

A number of methods héve been developed to exploit
simultaneous or 'chcurrent operation, however, the
implementation of thése techniques within a traditional von
Neumann architecture has not utilized their potential fully.
This applies both to the various procedures for increasing
the performance of a single process~r and those for
exploiting multiple processors in & computer systen.

Three technigues are currently popular for increasing

the parallel activity within a single procéssor. These are:

1. pipelining of operations,
2. overlapped memory access,

4. instruction lookahead.

The pipelining of an arithmetic operation distributes

the performance of the operation- over time rather than
24

re o=

9]
space. That = is, rather than utilizing several funcfional
units of a specific type to increase the processing rate,
one larger functional unit is employed, and the operation is
broken into a number of smaller operations which are
performed simultaneously upon a stream of values. Althoﬁgh
the performance of a single operation can actually take
longer in a pipelined functional unit, fhe fact that a large
number of operations are Dbeing performed concurrently can
produce a very high processing rate.

In order to utiiize the technique of pipelining fully,
the data mus£>be representéd as a vector; 1if there are gaps
;n the stream of values suppiiéd to the pipeline, the
processing rate can actually be decreased fro@ that of a
single conventional funcfiphal unit. Current stream-oriented
processors as the CDC STAR and TI ASC do nat have the
capability to form data into streams, that Dburden must be
born by the compiler-writer.

Depéndencies between successive instructions .of a
process complicate éttempts to wutilize pipelining for the
instruction stream of a processor. For example, the
execution of an instruction which references a mnmenory cell
modified by a previous instruction must await the completion
of the previbus instruction. An instruction pipeline must
detect dependencies dynamically. When it finds a
dependency, it must either stop accepting new instructions
or rearrange the order oflexecution; in either case, the

degree of concurrency is reduced or the pipeline becomes

26
complicated.

The technique of overlappéd memory access merely
extends the concept of pipelining to +the fetching of
instructions from memory. If the memory of a computer is
interleaved; that is, if the memory is divided into a number
of sections, and the inStruétions and data of a prSgram are
distributed over fhe sections; then several items can be
accessed simultaneously. If the iﬁstructions of a progran
are arranged so consecutive instructions are contained in
separate menories, then instruction. fetching can be
pipelined, and instructionétcan be supplied at a very fast
rate. However a problemv arises when a conditional 1is
'encounteredvbecéuse' the sjétem does not know which of the
set of possible succeeding instructions to fetch until after
the conditional has'beén egecuted.

The use of‘instruction lookahead 1in.a processor allows
the exploitation of muitiple‘arithmetic units by decomposing
the instruction streaﬁ .into independent elements. For
example, consider the drithmetic expression A+B + (GC*D).
The two computations A+B and C*¥D can be performéd
simultaheously in separate functional units. The IBM 360
model 91 énd the CDC 6600 have developed techniques for
exploiting this property for short instruction. sequences;
however, once again, anyrbranching in the program disrupts
the flow of instructions to +the functional units and
" decreases the processing capability of the architecture.

In 1illustration of the problems encountered in

2'7
exploiting these techniques, consider the IBM 360/91. The
functional capability of the .proéessor is 70 million
instructions per second (MIPS). However, the instruction
decoder can only supply instructions at a rate of 16 MIPS
using the technique of lookahead. An average incidence of
conditional instructions reduces the performancel of the
processor to 6 MIPS. Thus, the processing capability of the
architecture cannot be fully realized, and with the
lookahead of eight= instructions which is wused, it 1is
difficult to have an adequate instruction mix to utilize the
multiple functional units fully.

The methdds of structuring mﬁltiple processor systenms
"and improving- the performance of a processor all have
serious drawbacks to ﬁhe full exploitation of the
capabilities of the processors. In this regard , data flow
approach offers attractiye solutions to many of these

problems.
B. The Dataflow Approach

vtudies of concurrent operations within a computér
system and of "the representation of parallelism in a
programming language.havé 'yielded a new form of program.
representation, kndwn as-data flow. Execution of a data flow
program is data-driven; that is, each instruction is enabled
for execution just when. eaéh required.operand has Dbeen

" supplied by the execution of predecessor instructions.

In order to take advantage of the parallelism inherent

28
in an elementary data flow representation, the architecture
of the elementary data flow processor was developed by
Dennis and Hisunas {11, 12, 13, 14, 24, 25, 26].

The problems of processor’ switching and
memory/processor interconnection are avoided within the data
flow architecture by -the use of interconnection networks
‘which have a great deal of inherent parallelism. Sections
of the - machine communiéate by means of fixed. size
information packets{ and delays 1in .packet transmission
within the network do not affect the utilization of the
hardware. The interconnection networks are 1arge, but grow
at much slower rate than a crossbar switch in conventional
multiprocessor 'systems and require none of the global
control circuifry necessaryifbr the switch.

The structure of -a data flow processor allows a large
number of instructions to be active simultaneously. These
active instructions pass'through the networks concurrently
and fofmvstreams of instruction for the pipelined functional
units.

The processor does not wutilize an instruction register
or instruction decodéf in .the von Neumann sensé; an
instruction proceeds on its own when its operands are ready
and delivers its results to other instructions which are
waiting for them. ho.software operatingvsysteﬁis necessary
within the éfchitecturé L24j.'» ProcésSor allocation, the
formation of instructigns into streams for ~the functional

units, and the transfer of information between levels of

29
memory is efficiently accomplished by the hardwafe of
machine.

The exploitation of data dependencies in programs has
been investigated previously, indeed, such is the goal of
the lookahead techniques utilized in architectures such as
the 1BM 360/9ﬁ and the CDC-6600. | The approach taken in the
data flow proéessor différs from these approaches in that it
utilizes a radically different cdncept of conputer
organizationé whiéh offers attractive solutions to many of
the problems- encountered in adapting von Neumann machines
for parallel computation, - an architecture in which
parallelism and concurrency are inherent in the structure of

the processor.
C. The Data Flow Language

The data flow language presented in this section serves
as the base language for the architecture to be described in
the next chapter. The semantics of the language is devéloped
by Misﬁnas.

In order to represent the exact serial/parallel nature
and existing inherent instruction levél parallelism of the
program, the directed graph representation has been selected
as an alternative to the traditional serial llist of
instructions. The 1longest path through the graph is the
critical path which is the ultimate 1imit on the speed of
execution no matter how | many parallél processors are

available. The width of the graph répresents the program

50
parallelism at that point.

A directed graph éonsists of nodes that represent the
operations to be done and links that show how results move
from operation to operation. A directed graph node denotes
an operation to be executed and is not involved with the
sequencing mechanism. Therefore, the internal contéhts of a
node (opcodes, operands, subroutine calls, etc.) are
directed by‘the hardwaré implementation of the processor
independent of the mechanisms that sequences that node. A
directed gréph link denotes hovemeht of dafa between nodes
and is crucial to any sequencing mechanism based upon the
flow of data. Thereforé, iinks are logically pointers
"associated with each node.

Execution of'a directéd graph follows the flow of data
througn the graph (hence, data flow). Mo instruction can
start execution before all of its inputs affive; no
instruction mﬁst wait "after its inputs and a processor are
available. Data flow sequencing guarantees only the.minimum
constraints necessary to assure logically correct execution.
As soon as an instruction can correctly execute, 1t 1is
flagged ready for execution. All ready instructions can be
executed in parallel, if a sufficieht number of Processors .
is available. |

As soon as a result is calculated and available, it is
immediately féfwapded to eacn of the succeeding instructions
" that need it. An instruction never has to fetch its operand.

All 1input operands are collected into the body of

21
instruction before it begins execution. Therefore, there is
no extra operand fetch time needed after instruction fetch.
The memory aécesses needed to update results are done by
dedicated hardware in parallel with wuseful work. The

pending instruction 1list allows the next instruction fetch

to be overlapped with execution.
C.1. Elements

The: data flow language is couwposed of two kinds of
elements, called actors and links. An actdr of language can

be one of the'following:

- operator
- decider

- gate

which are represented in Figure 1.

Bach actor has 'a number of input arcs which supply
valueé necessary for its execution and one output arc upon
which results are pléced.'A small dot or circle represents a
link which has one input arc wupon which it receives results
from an actor and a number of output arcs over which it
distributes'copies of the result to other actofs (Figure 2).

Vaiues are conveyed over the arcs of the program by
tokens which are represented by large solid dotﬁ. An actor
with a token on each of its input arc, and no token on its
output arc, is enabled and somtimes latgr will fire,

removing the tokens from its input arcs, computing a result

pr

H

(a) operator (b) decider
(c) T-gate _ .- (d) F-gate

(e) MERGE (f) boolean operator

Figure 1. Actors of the Data Flow lLanguage

A

(a) data link (b) control link

Figure 2. Links of the Data Flow Language

53
using the values {carried by the input tokens, and
associlating the result with a tdken placed on 1its output
arc. In a similar manner, a4 link is enabled when a token is
present on‘its input arc, and no token is present on any of
its output arcs. It fires by removing the token from its
input arc and associating,copies‘of the value carriéd by the

input token with tokens placed on its output arcs. The data

flow language utilizes two types of tokens:

- data tokens

- control tokens

A data token carries a data value which is produced by an
"operator (Figure 1a) as a result of some arithmetic
operation. A control token 1s generated at a decider
(Figure 1b) which, when thé decider receives a data value on
each input arc, apblies 'its associated ' predicate and
produces eithér a true-or-false-valued control token on its
output arc.

Control tokens dihéct the flow of data tokens by means
of either a T-gate, F-gata or NERGE actor (Figure 1c,d,e).-A
T-gate paéses a value on ité'output arc if it receives the
value true at its control input arc; the received data value
is discarded if faise is fecéived; The merge actor allows a
control value to determine which of two sources supplies a
data value to .its output arc. If the control value false
~arrives at the control arc, the merge passes on the value

present or next to arrive at the false-input arc. A value

34
present at the true-~-input arc is left undistributed.. The

complementary action occurs for the control value true.

E'E' Structures

The values conveyed by tokens over the arcs of a déta
flow program are either eleméntary values or structure
values, and each value has an associated tag designating its

type. The set of elementary values E contains

E T,I,R,Q
where | V
T = truth values
I =-integers

R = reals

Q = strings

A structure value in a data flow program is represented
as an acyclic directed graph having one root node with the
property that each node of the graph can be reached. by a
directed path from the root node. Each node of the graph is
either a structure node or an elsmentary node. A structure
node serves as the root node for # substructure of the

structure and consists of a set of selector-value pairs

S = (s1,v1),(s2,v2),eteeveeeva.(sn,vn)
where:
si= IUQ

vie EUSUnil

35
and si is the selector of node vi. An elementary node has no
emanating arc; - rather, an eleméntary value 1is associated
with the node. A node with no emanating arcs and no
assocliated elementary value has value nil. A structure
value 1is represented by a data token carrying a unique
pointer +to the node ofl the structure. 1n Figufe % the
structure confains three *elementéry values a,b, and c,
designated by' the simple selector: L and the compound
selectors R.L and RTR réspecti?ely. Stfucture node C of
structure A is shared with structure B and is designated by
a different selector in B than in A.

A simple_selector associated with a node can be either
"an integer or a 'string consisting of 1letters L and R
(indicating 1left and right respectively). A compound
selector 1is formed Dby the concatenation of a number of
simple selectors and specifies a path through the structure
which can be'followed.by applying the simple selectors in
the stated order..

A node of the structure is accessible to a program only
if some token carries a pointer to the node or the node can
be reached by a directed path from some accessible node.
Upoh éompletibn of an execution step of a program any nodes .
of a structure made inaccessible by that step are deleted
together with any émanating branches.

In -order . t§ generate and perform operations upon
- structure values, a number of new actors must be defined.

Structures are created through use of the CONBSTRUCT actor

-

R
\TY/
|
R
Figure 3. An Example of Two Structures Sharlng
a Commom Substructure

36

o~

>'f
(Pigure 4). The actor accepts an elementary or structure
value from each input and places.on its output a structure
containing the input values as components. Each input is
labeled with the selectpr. in the new structure to be
associated with the value arriving on that input.

A value is retrieved from a structure by a SELECT actor
(Figure 5). The value in the input structure designated by
the selector argument‘is'placed on the output of the actor.
The result can be:eipher.an elemenfafy value or a structure
value. If the argument df'the actor 1is a multipie selector,
the actor produces on its'bufput the value at the end -of the
bath designated by the multiple selector. The action of the
"actor is undefined if the input structure does not contain
the specified selector(s). |

Structure vélues in a data flow program are not
modified; rather, new structure values are created which are
modifications.of the originai values, while +the original
values are preserved. The APPEND and DELETE actors provide
the means of creating these new structure values.

The structure produced by the firing of an APPEND actor
is a version of the input'fstructure which contains a new or
modified component (Figure 6). If the specified néde of the
input structure has a selector corfesponding to the selector
argument of the actor, the value designated by that selector
in the new structure is the input value. Otherwise the
- specified selector-value pair is added to the node of the

new structure:. ldentical elements of the input and output

o8

=

é o , g .RUCTy’
CONSTRUCT _ ! ’ | CONSTR %~

SELECT s | . S X

bd "8 ;

Figure 5. Operation of the SELECT Actor

SELECT s

39

= /

APPEND s (b I APPEND s

b6 IV

y Z

olo

Figure 6. Operation of the APPEND Actor

~ b
® O

Pigure 7. Operation of the DELETE Actor

40
structures are shared between the two structures.

In a similar manner, the structure appeafing on the
output arc of a DELETE actor is a version of the input
structure in which the specified node contains one fewer
component (Figure 7). The specified node in the new
structure is missing the selector—vglue pair designated by
the selector argument. As with the APPEND actor, identical

elements.are shared between the inpﬁt and output structures.

C.3. Data Flow Procedure Representation

Procedurés of +the language are represented as acyclic
directed graphs 1in a manher} which is very attractive from
both a semantic viewpoint and an implementation Qiewpoint. A
data flow procedure is a data flow program with a single
input arc over thich the argument arrives aﬁd a single
output arc upon which resﬁlt is placed. %The body of a
procedure 1is represented as a data structure, and the
procedure is referenced by a token carrying a pointer fo the
structured representation. Every procedure in the language
is determinate that is, the same ;esult is produced by every
activation of the procedure which receives the same input
values. |

To provide for procedure = activation and termination,
the APPLY and RETURN actors are introduced into the data
flow language. The operation of these actors is shown in
Pigure 8. The APPLY actdr feceives two inputs, é procedure

and an argument, which may be either an elementary value or

41

APPLY

APPLY | é |

Figure 8. Operation of the APPLY and RETURN Actors

42
a structure .value. Upon firing, the actor creates an
argument structure of the argument and the destination for
the result of the application, and this argument structure
is given to the procedure as input. If no 1instruction
follows the APPLY actor in the program, the value designafed
by the destination selector in the argument structure passed
to the procedure is nil. Upon completion 6f the execution
of the pfocedure, the result is senﬁ to the specified
destination by a RETURN actor within the procedure body.
The data flow representation .of the following simple

procedure is.shown in Pigure 9:

P: procedure(x)
if x < 5
then r..-eturn x2
else return x

end P

When the procedure. of Figure 9 is applied, it recei&es on
its input arc a struéture containing two elements. The first
element, designated by thé selector arg, 1is the argument x
of - the - procedure. The second elemént, dest, is the
destination address for the result. The procedure shown in
Figure 9 has been called with +the argument 5 and the
destination D.

The first operations performed by the procedure are

select operations which send the argument to the procedure

body and the destination address to the return instructions.

arg . dest

SELECT dest SEIECT arg

RETURN : RETURN

Figure 9. Data Flow Representation of a Simple Procedure

44
The procedure body tests the argument to see if it is less
than five. If so, it is squared, and the resulting value is
returned. If the argument is greater than or equal to five,
the original value is returned.

Many simultaneous activations of a data flow procedure
may exist as a result of concurrent or recursive
application. In order .to avoid the . possibility of
interactidn between tokens from separate activations, .a new
copy of a procedurea is created for each activation, the
argument structure is transmitted to the new copy, and after
a result is returned, the'cépy'is discarded. ‘

Basic definitions of elemenfs of the data flow language
were described 1in this chéptér. The complete data flow
architecture, . internal .instruction representation and

structure operations’are discussed in Chapter 1IV.

CHAPTER IV
ARCHITECTURE OF THE DATA FLOW PROCESSOR
A. Introduction

The data flow processor describéd in this chapter is
designed to directly execute programs _expréssed in the data
flow language presented in Chapter III. The structure of the
processor is presented in two stages. The first secfion of

the chapter discussés the representation of instructions
within the processor and the execution of individual
instructions representing operators and deciders of a
program. The next section extends the description +to

include the processing of structures.
‘B. -Instruction Processing

The instructions of a data flow program'are stored and
executed in the instruction processing section of the
processor (Figure 10). Instructions awaiting execution are
contained in the instruction memory.' Upon becoming ready'
for execution, an instruction enters the arbitration network
and is conveyed by the arbitration network to the correct
' operation or decision unit. The results of an operation are
distributed to the desired destination instructions by =
distribution network: Similarly, the results of a' decision

45

46

operation
Bperation < packets
Units
Decision
control Units
packets
y
data : decision
' . Control 4
packets Network packets'
\
instruction >
cell O
Distribution Instruction Arbitration
7| Network Memory Network
o Instruction ' >
“ecell. n-1

Figure 10. Organization of the Instruction Processing Section of
the Data Flow Processor

47

are distributed by a control unit.

B.1. Instruction Representation

The instructions of a program being executed are stored
in the instruction memory of the processor. The instruction
memory contains a number .of instruction cells, each holding
one instructioh of the,data' flow program. Xach instruction
cell consists of a. number of registers, say five (Pieure 11)
and holds the instruction in the'spécified format together
with spaces for receiving its operands. An instruction cell
is designated Dby an idenfifier which specifies a path to
that cell through the distribution and control networks.

Each instruction corresponds to an 0perator; a decider,
or a Dboolean operator of a data flow progran. The first
register of an 1instruction cell holds an instrﬁction which
encodes in its operation'code the function to be performed;
that 1is, the type‘ of actor repfesented by cell. The
register specifies in its destination field theA cell
identifier of an insfruction'which is to receive one copy of
the result.

Each other register of the céll éan hold either a data
dperand, a boolean operund and one destination, or two
destinations. A register can also be empty, indicating that
it is not used by the instruction currently occupying the
cell. The use of the register is indicated by a USE CODE in
the first field of the regiéter. If four data operands are

used 1in an instruction, only one destination can be

operation code destination
data g 1 vi
boll g2 cl destination
dest destination destination
empty
data
bool
Use code
dest
empty

contains a data operand
contains a boolean operand and
a destination

contains two destinations

not used by this instruction

'Figure 11. Format of Fields in an Instruction Cell

48

49
specified, and that destinétion must be a distribution
instruction (Figure 12) if nmore than one'destination is
desired for the result.

A register containing the components designated by an
operand selector in an instruction.consists of two parts,' a
gating code gl1,g2 and either a data ;eceiver vl or a control
receiver ct. The gating codes permit representation of gate
actors -that control the reception of operand values by the
opefator' or décider fepresented by the instruction cell.

The meaning of the code values are as follows:

- code value meaning
no the associated operand is not gated
true an_opefand value is accepted by arrival of

a true control value; discarded by arrival

of a false control value

false an operand value is accepted by arrival of

a false control value; discarded by arrival

of a true value
const the operand is a constant value

The structure of a data or controlrrecéiver (Figure 1%)
provides space to receive a data ror boolean value, =and two
flag fields in which the‘érrival of data and control values
is recorded. The gate flag is changed from'off to true or
false by a true or false control value. The value flag is

changed from off to on by a data or boolean value according

50

t

inst opl op2 op3 or4 dest -
| I T !
inst opl dl a7

SRC

Figure 12. Use of the Distribution Instruction

value (data or boolean)

off no value received
on- value received

L value flag

off no control nalue received
true true control value received
false false control value received

——= "Bate flag

Pigure 13. Structure of a Receiver

52

to the type of receiver.

§.g. Network Structures

70 connect the instruction cells of the memory to the
operation and decision -units, a network, called the
arbitration network, provideé a path from each instruction
cell +to each operation - or decision unit. Operation and
decision packets are transmitted from-instruction cells into
the arbitration'network. The-netwbrk is capable of accepting
many packets simultanously and delivers each packet to the
correct Functional Unit.

Upon receiving an bperation packet, an operation unit
"performs the function specified by the operation code on the
operands of the packet and produces a data packet for each
destination specified inithe instruction. A distribution
network concurrently accepts data packets.from the operation
units and, ﬁsing the déstination address of each packet,
delivers it to the specified instruction cell. Similarly,
the control packets produced by a decision unit are sent to
the control network for delivery to the designatéd
instruction cells.

A | simplifiéd structure of the arbitration and
distribution networks 1is presented in Figuré 14. The
networks are composed of three types of units. An
arbitfation unit passes packets arriving at- its input ports
" one-at-a-time to .its output port, using a round-robin

discipline %0 resolve any conflicts. A switch unit passes a

5%

—_— " :

: hrbysibuf | Wi - +jard 0
from ' ,: pTD to
instruction(. —> > Functional
cells i] Units

—> . ardb - -
¢ prb}sbuf |2s wi. - s Brb m-1
e > J

(a) Arbitration Network

- . Register
—1 " [> { ¢ 0
' 0 SWie ’ arb W . to
from . : '—’ ? S Memory
.Operation < . Register
Units . _ —> —> Units
m-1 —%E —] - jard 7l Register

(b) Distribution Network

Figure 14. Structure of the Arbitration and Distribution
Networks

54
packet at its input. to one of itsioutputs, controlled by
some property of the packet. In tﬁe arbitration network this
. property is the operation code, wheréas in the distribution
network , the switch units are controlled by the destination
address. A buffer unit stores a packet until the succeeding

switch or arbitration unit.is ready to accept it.
C. BStructure Handling

The physical rgpresentation. of a structure within a
computer system may be viewed in several differeﬁt ways. One
extreme involves impleménting' the structure as it is
fepresented in the data flow model, that is, as an acyclic
"directed graph in whicﬁ each node is either a structure node
or an elementary node. In such an implementation, each node
of the graph occupies élnumber of"storage locations within
the processor. The 1ocation(sjl containing & structure node
hold the idenfifiers‘of,fhe locations containing nodes which
are successors of that node. The location representing an
elementary node holds 'an_elementary value. The nodes of a
structure repfesénted\ in” this fashioﬁ' may be scattered
thrdugﬁout the memoryfof the proceéSor; -Alternatively, all
elementary values of a structure may be'sthed tqgether in a.
group of iocatiohs. The first few locations of the group
then contain a mapping function which allowé.one to find the
location of a specific element within the group. This method
is often used for the representation of .arrays within a

conventional computer system.

55

The first approach has the problem that the storége of

a structure in such a manner can occupy a gréat deal of
space within the memory. Not only must the data be stored,
but a 1large number of structure nodes and associated
pointers must also be located within the memory. Accessing
an elementary value in a graph can take a long time as a
path is followed over.the arcs of the graph to the desired
node. »On the other hand, a single structure represented by
the second approach occupies much less roomn, but the
representation of several structures in such a manner can be
very expensive in terms of space since components of a
structure cannot be shared as they can 1n the graph
approach. It would seem that perhaps a combination of these
two methods could be effiéiéntly. utilized; that is, a
. structure representation in which each node of tﬁe structure

is a small block of data.

C.1. Simple Structures

The storagé of structures and the execution of the
structure actors occurs in a separate structure processing
section wifhin the data flow proceésor. The structure
processing section consists of ‘a structure operation unit
and a structure memory and - attendantb arbitraﬁion and
distribution networks. This section of the processor is
viewed as an operaﬁioh unit by the instruction memory; that
is, ©packets specifying strﬁcture operations are sent to the

section, and data packets are returned. The organization ot

56

Operation
Units
Decision »
conﬁrgl Units
. packets
dat; + decision
packets o Control '\ packets
Network
) operation
. \ i packets
Distribution . Instruction : Arbitration
. . Network

Network , Memory .

\ /
instruction
packets

daziets . Ooperation
pa instruction packets
packets
Arbitration ; Ait;gcture glitrigutlon
Network . emory etwor
instruction
‘operation packets
packets :
. Structure
_>' . Operation
Unit
' unid

Figure 15. Organization of the Data Flow Processor With

T

Structure Processing Capability

57
the data flow processor with the addition of the structure
processing capability is shown in.Figure 15.

Packets specifying structure operations are received by
the structure mnmemory and the structure operation unit.
Instructions .which require the creation of new structure‘
nodes are processed by the structure operation uﬁit. The
unit controls the performance of fhe instruction specified
in each operation packet through instruction packets sent to
the Struétqre memory »and sends as data packets the
identifiers of the resulting structures to theAinstruction
processing section. AllistrﬁCtﬁre.operations other than the
éllocation of a new ndde' ane perf6rmed within the strucfure
‘memory. .

To illustrate the opefafion of thé structure processing
section of the processor, in this section we shall limit our
consideration to structures representéd as binary trees. A
selector of sﬁch a structﬁre can have one of two values, 1L
(left) and R (right).

A node of a structure is contaihed in a two register
cell known as é structure cell and designated by a cell
ideﬁtifier. The two'registers of the céll contain the left
and right components of the structure, respectively; and.
hence no éeleétOr need 1o bérstored in a register. The
first field of a register is a USE CODE which indicates
whether the itenm -étdfédr in the second field is the
identifier of another cell or an elemehtary value or the

register is enmpty. A memory representation of +the simple

Cell & Cell B
elem a elem d
struc Y . struc ¥
Cell Y
elem b
elem c

Figure 16. Memory Representation of the Structure of
Figure 3

58

59
structure of Figureiﬁ is presented in Figure 16.

The structure memory 1is composed of a number of
structure cells in a manner similar to the way the
instruction memory is formed of a number of instruction
cells. Each structure cell is capable of holding one node of
a structure, and the identifier of the cell specifies a path
through the distribution nétwork'to the cell. The stfucture
memory receives instruction packets from the instrﬁction
mémOry and the structure operation unit commanding a
specific structure céll 0 execute some structure operation
upon the node located in_the cell. .

Each structure cell within the structure memory 1is
capable of performing one of two operations wupon the
structure node contained in the cell. The possible
operations are: |

1. SELECT. Upon receipt of an instruction packet

specifying a select operation
']
; SELECT dest -
| s '
a structure cell follows one of two procedures, controlled
by whether s is.a simple or compound.seleétor.
a. If s 1is a -'simple selector, the content ¢ of the

register designated by s is used to form a2 data

packet
Id B
! dest

C

-

60
which is presented to the arbitration network for
transmission to the instruction processing section
of the .processor.

If s is a compound selector si1s2....sn, the content

B of the register designated by st is the identifier

of some other structure cell and is used to form the
instruction packetr

~ 5 1

- i

SELECT - dest }

I |

~

s2.‘l..sn

which is preSented to thé arbitration network for
transmission to the input distribution network of
the structure memory. The process is then repeated
with the selector s2 at structure cell B.

ALTER. The receipt of an ALTER instruction

ALTER

X

}
| . .
L B J

-*ndicates that _the structure cell is to contain =

copy of the node B with +the component of B
designated by ther selector s set té X. First, a
copy of node B is retrieved from the memory. Once
the copy of B 1is present in the Cell, the value

contained in the register designated by the selector

P

o1
s is changed to x,. and the use code of the register
is set to the appropriate value (elem, struec, or
empty), designated by the tag ofvx, and the result
is linked to Y. |

The format of an instruction packet received at the
input distribution nétwork of-the structure memory differs

from the format of an operation packet +transmitted to a

functional unit or +the structure operation unit due to the

fact'that thé_ bperation code of an instruction packet does
not control the switching within the distribution network;

rather, the cell identifier is used to direct aﬁ instruction
lpacket toward the céfrect.Aét:ucture cell. Hence, an
instruction packet in the distribution network has the

following format

where A 1is the identifier of some.structure cell in the
structure memory and 1 specifies ohé of the two operations
which can be :performed by a structure cell and contain the
necessary‘operands.

Packets = containing instructions__ that desirnate
structure operétions are traﬁsmitted to the structure
processing ségtion of the processor from the - instruction
memory . A packet spécifying .a select instruction is
transmitted directly _.to the structure memory as an
instruction ﬁacket. Structure operation packets

representing the other ‘structure instructions ‘are

62
transmitted to the structure operation unit. The necéssity
of processing each operation packet within the structure
operation unit is due to the required allocation of one or
more free structure cells for the execution of each
instruction with the exception of the select instruction.
The structure operatidn ﬁnit performs the allocation of a
free Cell simply by acéepting the iéentifier of a cell over
the unid port in structﬁre operation unit.

Now that we have ‘cdnsidered' ‘the operation of a
structure cell within the structure memory, we can describe
the execution of each of the remaining structure actors
merely by 1listing the procedure followed by the stiructure
operétion unit in processing the instruction; For +the
purposes of this discussion, it 1is assumed that all
selectors are simple selectors. |

A CONSTRUCT instruction

['CONSTRUCT dest
{ st: A
l s2: Y

specifieS'thaf a new hode is to be creéted with components A
and Y, designated by the selectors 51 and s2. The
instruction is implemented by the structure operation unit
as a nunmber of ALTER operatlbns in the following manner:

1. Accept an identifier B from the unid‘port.

2. Transmit +to the sfructure memory the instruction

packets

I {f 5

| ALTER | ALTER

ﬂ s1 f and {82 >
|

i A Y i

g ;

L 0 J Y _

transferring the values A and Y to the correct
registers of B..

3. Transmit to the instruction brocessing section the
data packet: | |

(dest }
S

e~ —t

B,
An operation packet containing an APPhND instruction is
of the following format

APPEND dest |
]

where s is the selector of the element in structure cell A
which is to be replaced by x in the new structure. The
prodedufe followed by +the structure operation unit to
executé the instructioﬁ’iSjas follows:

1. Aécept an identifier Bbfroﬁ the unid porf.

2. Transﬁit the instruction packet

h]

B i
% ALTER

<] f
H

b4

e
=3
| \—

to the structure memory to copy node A 1into cell B
and change the component of B designated by the
selector s t65x;

3. Transmit to the instruction processing section the
data packet:

~

dest

P
~

B
An operation packet specifying a DELETE instruction

b

DELETE dest

s >
' .. t
; .
L A
is processed in a similar manner:

1. Accept an identifier B from the unid port.

2. Transmit the instruction packet

s >
o |
|
oA
to the structure memory, indicating that the use

code of the register designated by 8 in cell B is to
be set to ENPTY. '

5. Transmit the data packet

b
[dest !
)
L B |

to the instruction processing section.

C.2. btxtension to More Complex Structures

The extension of the described techniques for the
implementation of data strﬁctures to larger and more complex
structures is straightforward. In order to implement
sfructures with a fixed maximum number of arcs emanating
from each node, the size of a structure cell is.increased to
accomodate the new node,size.' The wuse of arbitrary (to a
fixed maximum size) integers or character strings as
selectors can be accomodated through the addition of a
selector field to each register. A structure cell must then
have the capability to choose from the node contéined in the
cell an item whose selector matches a specified selector.
Thése extensions allqw the representation of fairly powerful
structures. A further extension to allow a node to have
arbitrary number of 'emanating arcs introduces a great deal
of complexity since it might be necessary to wuse several
cells to hold the identifiers of ali cells which contain
successors of the node. ATo avoid this complexity, a node of
a structure in the dafa flow processbr is of fixed size, and
each arc emanating from'thé node has a fixed size selector

associated with it.

CHAPTER V

IMPLEMENTATION OF HIGH-LEVEL LANGUAGE
CONCEPTS'IN DATA FLOW ARCHITECTURE
AND BXISTING SEMANTIC GAP

A. Data Representation

Dafa repfesentation and arithmetic processing of a
highly parallel, asynchronous data Iflow computer shsuld be
_designed in a manner.qompatible with the srchitecture of the
computer. The data flow within the - processor occurs in terms
of packet flow. Packet format consists of a group of bytes
(8 bit each) travelling sequentially along byte-width
channels. Hence, a convenient way to manipulate or examine
these packets is +to .provide byte—seriai operation units
[17]. |

The arithnétic 'processing unit uses signed digiﬁ
arithmetic which ﬁSes algorithms with the following
properties: 2

1. The operation can begin before the operands are
available in complete form,

2. The first resnit digits are produced (most
significant first) after a certain number of result
digits are available.

Fon example, in the addition operation, tne most significant

66

67
result digit 1is available after the first operand digits
arrive. This 1is made possible by the property of Signed
Digit arithmetic that limits carry propagation to adjacent
digits. As a result, the processor accepts bytes of input,
and produces output bytes{r consistent with the structure of
data packets in the data flow computer. Pipelining allows a

high byte processing rate.

A1, Signed Digit Number Representation

Various options for number representations are
availéble for fast arithmetic. Conventibnal number
representation such as 2s complement are such that for an
arbitrary base r, each digit of a number can have r values,
chosen from the digit~ set - (0,1,...,r=1). These
representations have the property' that carries generated by
the summation of digits can propagate from right to left
along the whole number, elg., 999+f = 1000. This property
limits.digit—by—digit'computations to representations where
the least significant digit is available first; otherwise
the result can only be obtained as a whole. For example,

lets consider the operation (986% + 0199)

1. two digits at a time, 2. two digits at a time
| fight to left - left to right
63 + 99 = 1 62 '98+o1; 99
98 + 01 = 99 63 + 99 =1 62
100 62 | . 10062

result available result available

68

in parts as a whole

The arithmetic processor designed for data flow computer is
a byte-level pipelined processor with on-line properties
i.e., a processor that would receive operands as bytes and
output thé .results also as bytes,' in both cases 'most
significant byte first. Such algorithms exists for Signed
Digit number represeﬁtétion. |

A signed digit number system is a redundant systen,
i.e., each number can have more than oné representation. For
a chosen base r, this can be achieved by allowing each digit
- to assume more than r,vaiues..For éxample, a symnetric digit
set of 2r-1 elements —a,...;—1;0,1,...a where a=r-1. This
representation is called maximally redundant, and it is the
largest possible digit set for the chosen base. Eor example,
for base 8 arithmetic, .the maximally redundant signed digit
set is S = —7,...,—1,0;1,...,7,' while +the conventional
digit set is A = 0;1,.}.,7. Hence A is a subset of S.
Using the digit set S, redundancy can be shown:

0.6432. = 0.7432 = 0.7446

8 : 8 8

Characteristics: of signed digit numbers afe as follows:

1..A signed digit number X is represented by n+mf1
digits X (i=—n,;.};0,...,m) and X '=§fix. ;1 where
r=intege; base, B

2. %X = 0 if and only if all x =0,

i
5. 8ign(X) = Sign of the most significant digit, and

69
4. Inverse of X, i.e. =X 1s obtained by changing the

sign of each x 1in X.
i
Since fixed format floating-point operations are

used, representation of the number X can be redefined as

m -i

consisting of m digits x (i=1,2,...,m) so that Xéz:x r.
' ' i S : 1 i

This way there are no digits to the left of the radix point

Now definitions for parallel addition and subtraction are
gjven as follows:

1. Addition of digits z ,y is parallel if
’ i i
a. Sum digit s 1s a function of only z , y and the
i ' i i
transfer digit t from the (i+1)th position .on the

i

right (Figure 17), i.e., s = f(z ,y ,t).

. S i i 1
b. The transfer digit t is a function of z and
I | i+
y only. '
i+ . . E

2. Subtraction 1is done- by .negating the subtrahend

according to property (4) above and then adding, so

that z -y =z +y .
i i i-1i° '
The transfer digit -t 1is the carry generated when the
i
digits are added. Since negative sums can be used, there

can be negative carry as well. Therefore, t can assume
. i
(1,0,1) as values.
Interim sum digit, w , 1is defined to be a subsum such
that:

z +y =Tt *f‘w‘ : | (1)

8 =w + t : (2)

1-1 Yy Yie1

Yie2

Figure 17. Signed Digit Addition

70

71

Since t' = (1,0,1) and since s must also be in the
same digit sét as z and y (namely s? < r), thé w < r-i
because otherwise (;.+t.)‘;ill not be in the digit lset S.
For ekample, using ri8,1|w.l < r-t = 8-1 =7
for t‘=1 and for unalléwéd.value w.=7,
s.=t_iw.=7+1=10 which is clearly ;ot in S
i i i

So far nothing has been said about the base 1limit,
howeVer because of thke restriction on |{w {, it can be seen
i
that r=2 is not allowed. For base 2,

fw | < r-1=1"
i :

If lw_l:O, then therebiS'no f; to satisfy z +y =1=2% (from
Eq.1)% Therefore, .signedl digit représe;tatio; and
algorithms are valid for r>2.

Advantages of using Sined Digit number representation

are as follows:

1. Carry propagétion chains in a conventional number
representation are eliminated because S: is a
function of adjacent digits. SBince there is no
operand width carry, addition and subtraction time
is independent of operand precision.

2. Most significant digits can be available Dbefore
least significantAones and they can be processed
further béforeian operation ends. Hence computations
can begin befdre all of the digits are available,
and therefore digit level pipeiining is possible for

arithmetic operations using sined digit number

T2
representation.

Disadvantages of using ' signed digit number
representation are as follows:

1. The adders are more complicated and therefore

require more hardware than for example 25 complement
adders. .

2. HMachine representations'-of nunbers are larger than
in conventionai machines because of the digit set
chosen, whiqh requires an extra sign bit for each
digit.

Por the arithmetic processor designed for data flow
éomputer, base-8 , fiied format, floating-point, sined digit
‘representation is uéed. The digit set chosen is maximally
redundant and coﬁsists | of 15 integers
(-7,¢4¢4,-1,0,1,...,7). "~ Machine representation is chosen as
16s complement base-8 binary fofﬁ where each digit occupies
4 bits (Figure 18) Therefore two ‘digits from an 8-bit byte
and the purpose of vthé‘@esign is .to acheive a byte-level
pipelined, "two-digit-at-a-time" arithmetic processor.

As 1in all~ fléatiﬁg—point numbers, an exponent ahd

mantissa are required. A sign bit for the whole number is

not necessary: the sign of the number is the sign of the
most significant digit of the mantissa. VThe exponent is
represented by a Dbinary byte (8-bit): ‘one bit is the

exponent sign and seven bits form the expdnent, "giving an

. +127 L +114 .
~exponent range of 8 (approximately 5 x 10). Larger

Given base-8 Signed Digit set
S (7,---,‘1",0,1,---}?)

possible machine representatioh (16s complemenf)

0 0000 _
1 0001 1 1111
» 0010 2 1110

'3 0011 3 1101
4 0100 b 1100
5 0101 5 1014
6 0110 6 1010
2 0111 7 1001

Floating-point number representation

number .7BEE E+23
exponent 00010111
L——> value
sign
. mantissa : 0111 0011 1100 1010

Figure 18. Machine Represéntation of Humbers

13

74
exponents can be . obtained by the addition of nore bytes as
required. Conventional binury repfesentation is used for the
exponent Dbecause it mukes exponent manipulations such as
overflow and underflow detection easier. The format for the
nantissa is selectedAaS 4 digits or 2 Dbytes. The smalf
number of digits 1is for clarity; increasing the ﬁrecision
does not change the structure of the processor.

Various operations result in either an error or in
other special condit@ons e.g. 'GXbonent overflow, divide by
zero, etc. when these are detected, they can be either
handled through an error'routine, or be unreported and
indicated es a special result value (operand). Since the aim
"is to design a fast-processor, error routines are not
appropriate due to thevfact that in a pipelined asynchronous

system, it is hard to. find means to report the error.

therefore, various special operands are defined

j;oé (infinity for overflow cases)
+ € (6"and ¢ for underflow cases)
B (error, - for indefinite cases)

These operands can be represented “by special exponents
and since these exponents are processed first, unnecessary

operations can be discovered early. -For example, for base-8.
D 7 y :

+120
number format, onc can limit the exponent range to 8 . In
. +121 ~121
this case 8 would be overflow, while 8 be underflow.

To the remaining 12 possibilities, the following values may
"~ be assigned

exp 1= +12% 1= + oo

15

exp = +125 = t¢
exp := i27 = E
When a special operand is detected, the normal
operation is not completed, rather a special operand is
selected and sent out as é result. For example let N be a
normal operand, then:
+€ - N = =N 0 = (~00) = +
E * (~o00)=k "0/ (+0°)=0

This method is used in the CDC 6600.

' 8pecial operands can also be used or created in case of
overflow occuring after an operation. In such cases the
sign of_the special operand is chosen to be the gsign of the

over or underflow result.

A.2. Arithmetic operations

In this section normalization, addition-subtraction and
multiplication algorithms wused in an arithmetic processor

for a data flow computer are described.

A.2.a. Normalization. In floating-point arithmetic,

normalization is basically the adjustment of a result to a
specified format. A normalized number is such that the most
significant digit of its mantissa is non-zero, i.e., for
mantissa m and base r,

-1
r < |m| < 1

An exception to this rule is the zero mantissa (the number

0).

76

Usually in machine arithmetic involving conventional
numnber representation, the resuls is ready as a whole and
the normalization is done as follows:

1. 1f there is mantissa-ovérflpw then right shift the
méntissa 1 digit; increment ﬁhe,exponent, check for
overtflow. If there 1is no overflow , ﬁack the
exponent and mantissa aécordingAto tﬁe,format.

2. If the most significant digit of +the mantissa 1is
non-zero, then pack fhe exponent and mantissa
according to theAformat. | |

5. If the .most signifiéant‘ digit of the mantissa 1is
zZero then. left shift +the mantissa, decrement the
exponent, . check for underflow. If there is no
underflow, check the new most significant digit;
repeat until eithér the most significant digit is
zero or the exéoncnt underflows. °~ Then pack the
exponent and mantissa. The zero case 1s detected
before normalization.

In the arithmetic processor designed for a data flow
computer, the result is not avéilable as a whoie. Rather,
digits are available one-by-one (in the adder-subtracter)
and two digits at-a-time (in the multiplier). Since the most
significant digits arrive first, this does not change the
above algorithm, except that no shiffing is done. For
example given result 1.8754 B+72 in an on-line addition-

subtraction operation:

1 E+73 - mantissa overflow, increment exponent

.18 - E+73
187 E+73
1873 E+73 done; exponent and mantissa packed
As seen above, normalizing involves also the

construction of the mantissa according to the format. In

some cases, exponent overflow or underflow may occur during

such operation. In the overflow case, + o0 is sent out
according to”the sign of the mantissa overflow digit. 1f
there 1is underflow, then all result digits have to be

examined for the sign until a non-zero digit is found; then
+¢ is sent out according to the sign of this digit. For

example let £+100 be overflow and E-100 be underflow, then:

T.7344 E+99 .17%44 E100 negative overflow
therefore result ———>» - o0
.000345 E-98 —> .00345 £-99
—> .0%4%5 ®-100 underflow

therefore result ———» +¢

Unfortunately éil zero results cannot be detected
easily 1in a digit-by-digit environment and therefore can
cause unnecessary normalizing:opefations. The proposed
method of handling these is to:

1. Provide mechaniéms to check operands pre-operation

to discover zero-result cases, e.g. U+0, 10%¥0, and

2. Continue normalizing post-operation until the last

result digit is pfoduced. In this case a zero

exponent and zero mantissa can be packed and sent.

78
For case 1, 7T89*%0 = O can be detected before the operation
is performed. For addition and subtraction, there can be

pre-operation detection of all zero operands only, i.e. 0+0.

A.2.b. Addition and Subtraction. . Signed digit addition

and subtraction has been described previously. What follows
is an algorithmic description.

Given operands Z and Y, signed digit'addition is done
at two le&els. Firstv ‘

w +rt =z + ¥y
i i-1 i i

where z and y are ith digits of Z and Y respebtively (i

i i , S

digits right of the radix point, t is the transfer digit
, : i-1

and w 1is the interim sum digit).

1 .
The second level produces the ith sum digit:

s =w +'1t .
i i b

Since |Jw | < r-1, a value for IWmax{, the largest magnitude,
i .
has to be selected. In this design, wmax is chosen to be

r-2. Now a stepwise description of addition can be made:

1. Add z to y +to obtain x , i.e. x =z +y .
i i : i R S G
2. Generate the transfer digit t wusing s and wnax
' i i
where wmax < r-1t.

‘a. 1f x > wmax, there is positive carry; 1i.e.
i .
t =1.
i-1
b. If -wmax < x < wmax, then there is no carry; i.e.
i .
% =0.
i-1. ,
c. If x <-wmax, then there is negative carry;
i B
ti‘l ==1.

5. Obtain ith interim sum digit w :
i

4. Finally, compute ith sum digit:

Figure 19 Summaraizes the aone.' It should Dbe noted
that usin<~ this algorithM, given 1th operand digits % and
N ith sum digit S, ;s produced when._ti is available, which
is to say when (i+1)st digits are available. Once si is
produced, 1t qan be used up in -another procéss before %

is available. Initially w_ is 'zero so that carry produced by

0
the first most significant;digits z and y1 indicates
6verflow; i.e. if SO# O, - then there 1is no overflow.
Subtraction is done by-negating the subtraheﬁd.

In the adder—subtracter;'bytes will be produced. Since
a byte is two digits, a two aigit parallel adder can be used
as shown in Figure 205 ‘Only variation is +the extension of
the transfer digit of.A2 to B1 to enable sequential byte-
level addition. Computation sequence is indicated next to
each port in Figure 20. For example let |wmax]| < 6, also

let the digit set be maximally redundant , given Z = .651%
and Y = 0.4777 the sum is :

w -
n

80

t =0 2
1
W= 2
2
5.1+ T =0
t =0 7
5
w =0
3,
4. 35 +4 =7
t. =T T
%
w o= 1
4
t =0 1
4

RESULT : 0.651% + 0.4714 = 1.2271

A.2.c. Multiplication. An efficient algorithm for

signed digit multiplication is used in design. Following is
a description of the algorithm
Operands "are defined as

-i -1

m i
X=) x r - and Y =z::y r
11 ' i
As explained previously, this representation hés no digits
to the left of the radix point.

Let X and Y be the j-digit representation of X and Y
| | _
respectively. In other words, let

J -1 -J J -1 =J
X=yxr =X +xr - and Y= yr =Y +yr
jv i =t 3 jv o1 J-1 J

In an on-line environment, X and Y are considered as the

3 3

e —

je=———N
N

%
N

WO= 0

81

Let X digit position to the right of the radix point
Ak P oYX 4
if X > wmax = tk_1=1
if -wmax <‘ X, < Whax =» tk—1= 0

if ’f¢< -Wmax => fk—1= -1

B : sk- wk+ tk

FPigure 19. Parallel Signed Digit Adder

y3 !
%1 Y1) Y1 Z2 Y2
A1 . A2
W
| Wy to 2(1 Yo 'ti
0 "o
AT AN >
By By
3 s
Sq 2 S
0
Note : shows input or output at a given port

Flgure 20. Double Digit Parallel Adder Modified for
Byte-level Computatlon

82

8
available parts of X and Y respectively on the jth step. Now

the partial product

=1 =1 -1 id j 31
-J o o
=X Y +r (Xy + Y x) - (3)
-1 -1 - J.J =1 3. '
Defining P to be the scaled partial product, i.e.
P g
P=XYr , then
g3 3

P =P +XY +Y x o (4)
R ES I R B S
from Eq.3 above. Using this and the fact that PO = 0, +the
desired result can be obtained by ‘ | |

n
P = X.Y.r : (5)

This algorithm can be used for non-redundant numbers
where the fésult digits are availablé least significant
first in order to cope with carry propagation requirements.
Since the interest is on-line cdmputation, a new algorithm
can be derived for Signed Digit multiplication with the on-
line prdperty, whére.input and outputs are obtained most
significant digit firét. |

Using the symmetric and maximally redundant digit set
S, the following new algorithm can be written.using Equation

(4):

&4
VW =r(W -d)+Xy +Y x - (6)
J J-1 J-1 JJ =13

where digits d are in 8, and
J

d = Sign (W) * tiw |J+ 1/2
J b J '

The result of multiplication can be expressed as.

In order to meet the restriction that 4@ Dbe in S, +the

operand bounds are limited so that for maximal redundency,
IXHYl < 1/4

Figure 21 illustrates the'algorithm.

What has been described' so far 1is a digit-at-a-time
multiplication algorithm. For the design propoéed_for data
flow computer, a two—digit—at—a—time algorithm is required
and this can be made».pbssible by SIightly nodifying Eq.(6).
Since digits arrive as pairs, .partial operands are redéfined

as follows:

X s xr =X +r x and

Using the same derivation method as before, the new
algorithm is defined as follows:
2 .
W =1 (W -4) + Xy +Y¥ x .and
] -1 31 i3

¥

op2
op3

Sign Wy o *I_ijl+—21— _]
r(wj—dj)

Figure 21. Signed Digit Multiplication

68

86

-1 =21

XY=r (W-d)+) dr

n n T i
The new algorithm produces d s that are digit pairs
where each 'digit is in S. Operand bounds still apply, i.e.

IX}1Y] < 1/4. Signed digit multiplication procedures using

single and double digits is shown in Figure 22.

A.2.d. Data Type Specification.¥ The data flow computer
supports are boolean, integer, and éeal_data types. It is
obvious why these types wefe chosen as the basic data types
foridata flow computer. iBoolean values are required for
control, and both integer and real data types are needéd for
~performing practical.computations.

Multiple precision and complex data +types are not
allowed because of storage - limitations in +the instruction
cell, Theif infrequent use, and their rquirements for a
more complicated processing unit. Charécter operands are
not permitted because ;they typically occur in character
strings, which should be handled by Structure Processor and
kept in structure memory.

~ Boolean values rwill be representedv in one byte,
integers and reals 1in four bytes. The first byte of each
fepresentation‘contains an error bit. | If the error bit is
on, the error value'is spécified in the first byte. If the
error bit 1is off, the operand 1is a standard boolean,
A_integer, or reél value.
Since there 1is no control flow to interrupt in data

flow programs, programming errors are handled by generating

w N o Cae

result can be obtained as digit pairs, i.e. by d

O N = O

let X = 0.025,, and Y = 0.12910'

500 Y X5 Yy
.0 .0 .0 .0
0 .0 .0 .0
02 .1 04 L2
025 .12 .225 .6

therefore, X.Y = 0.003225

x. SUM W, d,
J J
.0 0. 0
.0 0. 0
24 0.26 O
.825 3.225 3
Wy=1570.225
129215

87

10(w.-d,
(wyma;)

and (w3—d3)

(a) Signed Digit Multiplication Using Single Digits

00 00
02 24
34 63

[ACIE N)

let X = 0.023410- and Y = 0.246310

X. Y. X.y. Y. .x. SuM . a.
J J-1 373 J-17J "3 J

.0 .0 . 0.0 0.0 0.0 00, 00

.02 .00 0.48 '0.00
0234 .24 1.4742 8.16

result , X.Y=0.00583658

0.48 00.48 00

9.6342 57.6342 58

w2—d2= 0.3658

00(w.-d.
1 (WJ dJ)

00
48,

(b) Signed Digit Multiplication Using Double Digits

Figure 22. Two Procedures for Signed Digit Multiplication

88
special error values. The error values are:
boolean _ undefined
integer _ undefined
positive/negative overflow
unknown
zero;divide-
real __ undefined
positive/hegetive-overflow
pos;tive/negative underflow
unknown o
zero—divide.
The element "undefined" results when operand values are not
in the domain of an operator. The elements
"positive/negaﬁive overflow" denote values, positive or
negative, too large'to Be represented in the representation
of the type used. The element "unkhownﬁ indicates the result
of a computation that has exceeded‘.the capacity of +the
implementation,: bﬁt whose:true value isinot known to be out
of range. The elements "positive/ﬁegetive underflow "
denotes non—zere values, positive or negative, too small to
be represented in the representation of dafa type. A table

of error values is represented in Figure 23.
‘B. Iterations

. g.l. Introduction

Before diseussing iteration (loop) structures it is

VALUE

1000
1000
1001
1000
1001
1000
1000

0010
0011
1100
1100
0100
0100
0001

89

. NAME

unknown

undefined
positive-overflow
negative-overflow
posifive—underflow
negaﬂive—underflow

zero-divide

Figure 23:. Error values

go
useful to establish - some terminology. By the +term loop in
high-level languages we mean a. control construct which
somehow enumerates a set - of values for a loop-index or a
loop-condition. and Which 'performs a . fixed sequence of
statements (its body),”.once for each value of loop index or
until the loop-conditioh is not satisfied.
A loop may contain one or more loops -within its body.
The 1inner loops 'are said fO' be nested within the outer
(enclosing) 1loop anq the structure as a whole 1is called a
nested loop structure. -Ea¢h; enclosure defines‘a different
level of the nested lobpvsﬁructure. The degenerate case of
a nested loop structure, where there is no loop in the body
“of the outer loop,. is - called a_eingle—level loop, since

there is only one loop level.

B.2. Loop-construct

A loop—cbnstrﬁCp epnsists of some initialization code,
a body which may be_executed several times, and some exit
code. There are 'differenf loop-constructs in high-level
languages~(PL/i, FORTRAN, iCOBOL). | Execufion of a progrem
loop in _high—ievei lahgﬁages is controlled by the DO
statement. Different DO statements ex1st1ng in PL/I are the
major concern of thls study

One of the PL/I DO statements has the follow1ng format:

TO exp-2 BY exp-3 1

DO index-var = exp-1y¢

LBY exp-3 TO ekp—Z;{

91

statement

END

in which a 1loop-index designated by "index-var" is usgd to
control the number of iterations. | Loop—index initially
contains the 'cémputed vélue for,_"exp;f". After- each
iteration‘ the value of 1loop-index 1is adjusted by the
computed value of "exp-3" and éompared with the computed
value of "exp-2". The decision to éontinué or terminate the
" iteration is based on the result of this comparison.

An example of this DO statement is as follows:

DO I=1 TO %0 BY 2;
VOL=%.1416 * I%x%2;
PRINT VOL;

END

This code ségment may be. expressed in a lower-language

notation as:

I=1
LOOP: VOL=I%3.1416
 VOL=VOL*1
PRINT VOL
I=I+2

IF (1 <.31) GO TO LOOP

Using this notation the different segments of the loop-

92
construct can be easily distinguished. Generally, this PO
format wuses a loop-index with a specified initial value
(i.e., 1) which is incremented by an incremental value (a
signed integer) after each iteration and compared with the
final value (i.e., jQ). If the <final value is reached the
loop is terminated and contrél value is passed to the next
instruction in the program logic, otherwise, the new value
of the "loop—indéx is conveyed to ~ the body of thev lodp for
further computations:

To transfer both the initial and ad justed values of the
loop-~index to the body of the loop, a MERGE gate may be
used, in which the false input receives the initial value of
the loop-index (since éll control values are initially
false), and the true input receives the adjusted value of
the index (Pigure 24a). |

After each iteration the value of the loop-index 1is
ad justed by the incremehtal value. ihis segment of loop-
construct may be represented in data flow base language
using an actor (Figure 24b).

Fiﬁally, the new value of the loop-index should be

compared with the final 'value. - This segnment may be
represented bY-a decider gate, " which current and final
values of the loop-index are 1i%s inputs (Figure 24c). The

comparison operator may be one of the following:

< <

> ~>

93

adjusted 7 initial incremental’ 0ld value of

value of value ot value loop-index.

loop-index loop-index

) ._' | (v)

final value of adjusted value of

loop-index loop~index

comparison

operator

(c)

Figure 24. Data Flow Actors Used to Represent Loops

94

{= >=

The result of the comparison is a control value (true or
false) which'Specifieé’the'étatus of theAloop (terminated or
not). The control token is then conveyed to the MERGE gate.
Note that +the comparison operator should be selected such
that the resulfihg true vélue of the control token could
cause thé continuétion of the loop. A copy of the control
token is sent to the instruction immediately following the
loop—constfuct in the progréﬁ’logic. A cbmplete data flow
. code corresprnding to the prdgram'segment discussed before
is shown in Figure 25. o |

A more eldborate examplé.of an indexed nested 1loop

construct is presented in:the foilowing program segment:

DO I=1 TO 11 BY 2;
M=I**2; |
DO J=30"T0 1 BY -1;
K=H*J**241;
PRINT K;
END;
END;

This PL/I nested loop-construct may be expressed in a lower-

language notation as follows:

I=1
Jd=30

95

(-

S

Flgure 25. Representation of a 'Single DO Loop in Data
Flow Base Language

96

LCOPO M=I*I
LOOP1 K=[M*J

K=K*J

K=K+1

PRINT K

Jd=d-1

IF (J_>= 1) GU TO LOOP1

I=I+2

IF (I <= 11) G0 TO LOOPO

The.corresponding data“fléw-code is represented in Figure
26. .' | '

There ié anothér form of DO statement in PL/I which
instead of using a 1loop-index to specify the number of
iterations uses an expression whose vélue can be converted
to a truth value and as long as its valge is true +the
iteration is continued; This form of the'loop—construct has

the following format:

DO WHILE (expression);

statement;

vvvvvvv

The following code segment is an example of the DO WHILE

- form of the lodp—construct in PL/I:

/* This program computes and prints SIN(x) for a

97

NS

Figure 26. Representation of a Nested DO—Loop in Data’
Flow Base Language

T

given x with 8 digits of accuracy.

S1N=0; I=1; FACT=1; TERM=X;
DO WHILE (TERM > 1.0 E-9);
SIN=SIN+TERMN;

PACT=FACT* (I+1)*(I+2);
PERM=(TERM*X**2) /PACT; |

I=If2j

- END;

PRINT S8IN;

he loop-construct may be expressed in

- language notation as:

LOOP:

QUT:

SIN=1-
I=1

FACT=1

TEih=X |

I¥ (DERM > 1.0E-6) GO 70 out
SIN=SIN+TERH -

I=I+1

FACT=FACT*I

I=I+1 |

FACT=FACT*I

TERH=TERH*X

TERM=TERM*X

TERM=TERM/PACT

GO TO LOOP

PRINT OSIN

a

98
*/

lower-level

99

SIN

Figure 27. Dé.ta Flow Code to Perform

100
The corresponding data flow code 1is represented in Figure

27.
C. Data Structufes"

In this section some basic data structures are studied
on the implementation level in two +types of computer
architectures, caonventional ‘von Neumann and data flow. On
the logical lével; a data structuré is a set of priﬁitive
data elements and otber data structures, together with a set
of structural relations among its components.

Difference in implementation of data struétures in two
different architectures arise from the difference in logical
structure of the memories. In conventional von Neumann
architectures ﬁemory is sequential, ‘one dimensional block
with the appearance of a vector. -The_ only'data structures
that may be implemented directly in these architectures are
iinear lists. Strﬁctural-rélations in other data structures
are implemented Dby compilers using basic properties of
logical memory, and as it was discussqd before, this mapping
is one of the reasons of existing of the semantic gap.

The data flow architecture proposed by Dennis uses
binary tree representation as the basic logical stfucfure of
the stfucture MEmory .- Since fhe basic logical view of
memory 1in this architeéture is different <from the von
Neumann architecture, all mapping procedures of data
structures should be changed or modified to cope with the

new logical view of memory.

101
In the following sections the major and widely-used
data structures in high—level. languages _are exanmined
carefully. The mapping procedures used in compilers written
for von Neumann architectures are represented, and new
procedures to map data structures onto data flow structure
memory are propoeed. The data structures which ére major
concern of this study:
_ arrays
_ stacks

__ Queues
C.1. Arrays

An array 'is a collection of elements of some fixed
type, laid out in a k-dimensional reetangular structure. A
measure of the distance ealong the structure is called an
index, or subscript, and the elements are found at integer
points from some loﬁer linit to sehe upper limit. An
element of an array is named by giving the name of the array

and the value of its index.

. g.l,é. Allocation And Mapping. In conventional von

Neumann architectures , if the size of the array is known at
eompile time,'then it is expedient to-implement the array as
a block of consecutive .words in nmemory. If 1t takes k
memory units to store each data element, then A(i), the ith

element of the'array A begins in location

BASE + k*(i-LOW)

102

where LOW ié the lower bound on the subscript and BAGBE IS
the lowest numbered memory unit allocated to the array, that
is, BASE is the location of A(LOW). A compiler recieves the
following information from array descriptor in high-level
program:

the data type (i.e., one-dimensional érray)

the element type (i.é.,integer, real,

or charécter)'

the number of memory units per element

the lower limit on subscript range, and

the upper limit on subscript range

In the case where everyfhing is of fixed size, all of
this information is available in the symbol table at compile
time. Thus the compiler can generate a referénce to any
element of an array by determining its offset from the base

of the array.

A two dimensional array is normally stored in one of
the two forms, either row-major (row-by4r6w) or column major
(column-by-column). FORTRAN wuses column-major form; PL/I
uses row-major form. Figure 28 shéws the implementation of a
2x% array called A in (a) row-major form and (b) column-
major form.

In the case of a two-dimensional array stored in row-
major form, with 1lower limit of 1 in each dimension, the

location for A(i,j) can be calculated by the formula:

10%

LOCATION ARRAY ELEMENT

BASE A(1,1)
BASE +1 - A(1,2)
BASE + 2 A(1,3)
BASE +3 A(2,1)
BASE + 4 A(2,2)
BASE + 5 . A(2,3)

(a) Row-major Form

- LOCATION ' ARRAY ELEMENT

BASE A(1,1)
BASE + 1 A(2,1)
BASE +2 - A(1,2)
BASE + 3 A(2,2)
BASE + 4 - A(1,3)
BASE + 5 A(2,3)

(v) Column-major Form

Figure 28. Two Forms to Represent a Two
Dimentional Array

104
BASE + k*((i-1)*r + j-1)

where k 1s the number of memory units per element and r is
the number of elements per row. In column-major form the

formula is:
BASE + k*((j-1)%*c + i-1)

where ¢ is the number of elements per column.

Row-or column-major forms may be generalized +to many
dimensions and to arraysl &ith.a lower bound of subscript
other than 1. The generaliiation qf row-major form is to
store the elements in such a ﬁay' that, as we scan down the
block of storage, : the rightmost subscripts appéar to vary
fastest. Column major form ,generalizes to the opposite
arrangement, with the leftmost sﬁbscripts varying fastest.

In the data flow architecture a binary tree is the
basic logical representation of structures and other data
structures must be mapped by compiler to a binary tree. To
implement a data structure in data flbw base language, the
compiler should map ifs descriptor to a (pointer,selector)
pair. An array 1is declared in a high-level language by a
(name,dimehsion) pair. An array namé may be directly used
to create a pointer +to the_root of the associated binary
tree. The dimensions of the array may be used to realize the
length of the selector which identifies individual elements
of the array. In the case of one-dimensional arrays, a
binary representation of the index may be used as a

selector, interpreting Os as left and 1s as right with

105
slight modification in index. For example consider the array
declared as A(16). First A may be used as a unique pointer

to the root of binary tree representation

Then the number of bifé'fequired fo represent 16 different
indices (4) specifies . the number of elements in the
selector. The fdllowing aigorithm generalizes the:mapping
algorithm for one—di@ensional arrays:

__ create a pointer tb an allocated cell

using the name of the array
_ find v such that
v-1 ' A v
2 < dimension of array <= 2

Then v 1is the number of élements in the selectors used to
reference the array. To reference each individual element of

the array, 1its index is first decremented by one and then
its binary repreSentafiqn is used as a selector. The mapping

algorithm may be generaliied as follows:

decrement index by 1

convert indéi tqla v-bit binary_number '

use binary repreéentafion of thé ihdex as ‘a

selector (interpréting Os as left and 1s as

right)

~ For exanmple references to the elements of array A may be

shown as:

106

array element selector
A1) " LLLL
A(2) LLLR
A(3) | ‘ LIRL
A(15) : RRRL
A(18) - RRRR

The complete structure of the array A is shown in figure 29.

| Multidimensional arrays may be mapped using the above
procedure with some modifications. The name of thé array
~may still be gsed. 53 a. pointer to the root node of +the
binary tree. In this case, the concatenation of indices may
be used as a selector. .The allocation algorithm nay be

represented as follows:

__create a pointer to an allocated cell
using the name of the array
_ find v and w such that

v-1 g : v
2 . < first dimension of the array < 2

w-1 : : ,
2 < second dimension of the array < 2

W

Then v+w is the number of elements used in the selectors to
reference the array. For example, array B(3,3) 1is pointed
" by a pointer B, and two bits 1s assigned to represent each

index. The mapping algorithm may be represented as follows:

107

108

decrement first index by 1

decrement second index by 1

convert indices to binary

concatenate binary representation of the indices to
form the selector (interpreting Os as left and 1s as
right)

L o)

use the selector and pointer B to address the element

Note that the concatenation procedure determines the
allocation type. If row index represénted.first, the
- allocation 1is row-major;- otherwise it is colunn-major.

References to array B in row-major form is as follows:

array element B selector
B(1,1) . LL LL
B(1,2) . ' LL LR
B(3,2) | RL LR
B(3%,3). RL RL

The complete stfucture of array B is shown in figure 30.
Some high—ievel. program@ing languages like PL/I allow
zero or negative indiceSa:ilf the index range- starts with
zero the first step of thé mapping élgorithm (decrementing
index by 1) is eliminated. If iﬁdex range starts with a
negative integér the index should bpe decremented by the

starting value of the index. Let array A be declared as:

10g

110
del A(m:n)
where m and n are signed integers, then the allocation

algorithm may be generalized as follows:

__use the name of the array as a poiter to
the root node
__ compute n-m+!1 and find v such that

v-1 oy
2 < n-m+1 <= 2

_ represent any reference to the array A by v bits
Similarly the mapping algorithm may be generalized as

follows:

_ decrement index by m
__convert index to a v-bit binary number
__ use converted binary number as a selector to

reference the elements of the array

The allocation and mapping of the multidimensional arrays
may be genéfalized by few modifications. Let +the two-
dimensional array B be declared as follows:.

del B(m:ﬁ;p:q) |
Where m,n,p, and'q'are signed intégers, then the allocation

algorithm may be generalized as follows:

__ use the name of the array as a pointer to the
root node

__ compute ﬁ—m and g-p and find v and w such that

11

v-1 , ' w—-1 W
2 < n-m+1 <= 2 P4 < g-p+1 <= 2

_ represent any reference to the array B in v+w bits
Similarly +the mapping algorithm may be generalized as

follows:

__ decrement first index by n

_ decrement second index by p

_ convert first index to a v-bit binary number
_ convert second index to a w-bit binary number

_ concatenate two numbers to form the selector

Although the proposed mapping function for
multidimensional arrays is the.eésiest method, 1t is not the
best. Wwhen the index ranges are not actual powers of 2, the
depth of the binéryrtree grows nore than it. is required to
represent ull elements of +the array. Consider the érray
A(3,17), wusing the concatenation method 7 bits (2 for rows
and % for columns) are required to represent‘the selector
and the tree will grow up to 7 levels. Lowever, A containns
only 51 elements that may be represented in 6 1eyels. To
reduce the depth of the tree, a2 nmathematical function_may'be
used to map the indices +to the range of product of +the
subscript rangeé. .Assuﬁe array A declared ss A(m,n), then

element A(i,j) may be selected by the selector
binary equivalent of ((i-1)*n+j-1)

This method needs 4 aritnmetic operations to map an index to

the corresponding selector. The concatenation method uses

112
only two simple mathematical operations (subtractions).
Since speed is the major goal in the design of the data flow

architecture, the first approach seems more attractive.

C.1.b. Operations. The array operations normally

consist of accessing and/or modifying an individual element
or a specific group of elements of an array and may Dbe

categorized as follows:

accessing/modifying an individual element -
acceséing/modifying a specific row or column of a
matrix - |
_ accessing/modifyiné the whole array

Methods of mapping the individual elements of an array
have Dbeen diséussed preViously, Accessing an individual
element fdllows the previoﬁsly described methods; converting
indices to a proper selector, and using that to reference
the element. The SELECT actor is used as a basic operator to
activate architectures étrﬁcture handiing mechanism to fetch
and transfer réferenced'element. For éxample, the data flow
code segment shown in Figure 31a is used +to reference A(i).
Individual'elements may be modified wusing the ALTER basic
operator which modifies an individuai element designated by
a specific selector to the given value, the result 1is
another structure. For example, to modify the value of A(i)
to 5, the data flow code segment shown in Figure 31b is
used. Since modifying element(s) of an array includes

accessing too, only the modify algorithms a&nd the associated

112
only two simple mathematical operations (subtractions).
Since speed is the major goal in the design of the data flow

architecture, the first approach seems more attractive.

C.1.b. Operations. The array operations normally

consist of accessing and/or modifying an individual element
or a specific group of -elements of an array and may be

categorized as follows: = ‘

_ accessing/modifying an individual element
_ acceséing/modifying a speéific row or column of a
matrix o | .

_ accessing/modifyiﬁg'the whole array

Methods of mapping the_individual elements of an array
have Dbeen diséussed previously.-. Accessing an individual
element follows the previously described methods; converting
indices to a proper sélector, and using that to reference
the element. The .SELECT actor is used as a basic operator to
activate architecfufes.strﬁcture handling mechanism to fetch
and transfer referenced element. For example, the data flow
code segment shown in Figﬁre 31a is used to reference A(i).
Individual elements may be modified using the ALTER basic
operator which modifies an individual element designated by
a specific selector to the given value, the result is
another structure. For exémple, to modify the value of A(i)
to 9, the data flow code segment shown in Figure 31b is
used. Since modifying element(s) of an array includes

accessing too, only the modify algorithms &nd the associated

113

convert

to a
selector

A1)

" (a) Access A(i)

to &g
selector

(b) Modify A(i)

Figure 31. Codes to Access/Modify an Individual
Element of Array A

114
code segmenﬁs are represented in next sections.

Some programming languages allow reference to a
specific group of items (a row or column). A reference to a
special row or COlumn of an array may be done by keeping one
of the indices fixed and changing the other index from the
lower limit of +the corresponding di@ension up to the upper
limit of that. For example, "consider the array. A declared
as A(4,6), theﬁ a'reference as A(Z;’) is interpreted as a
reference to all elements of the second row and A(¥*,3)is
interpreted as a reference to all elements of the third
column. The following code segment represents an example of

this type of array reference:

del A(3,6),B(4,6)

A(2,%)=2%B(*,3%)

This process may be represented in detail as

i=1 »
loop: A(2,i)=2%B(%,i)
i=i+1

if (i<7) go to loop

The corresponding data flow éodeAis shown in PFigure 32.
Reference to the whole array i1s possible in some high-
level programming languages by using the name of the array

without any index. Consider the following code segment:

decl A(3,4),B(3,4),C(3,4)

115

selector

_ALTER

FPigure %2. Data Flow Code to Perform A(2,*)=2*B(*,3)

116

C=A+3B

In the above program, the statement C=A+B is equivalent to

the following code segment

i=1, j=1

loop: C(i,j)=A(i,j)+B(i,])
J=j+1
if (Jj<5) go to loop
j=1 |
i=1i+1

if (i<4) go to loop
The corresponding data fldw'code is shown in Figure %3.
g.g. Stacks

Stack is a sequence 6f items, which is permitted tc
grow only by special disciplines for adding and removing
items at its éndpoinfs. As the name staék suggests, 1t is
conventional to think of the items in a stack as being piled
on top of one another, with the most recently inserted item
at the top and the léast recently inséfted iten at the

bottom. Deleting thertopmost item is often called popping

the stack, and inserting a new item on thé'top is often
called pushing the 1itvem onto the stack. There are two
different wethods to implement a stack; linear

implementation, in which stack is treated as a sequential

list of items together with a pointer (stack pointer) which

Figure 33.’ Data Flow Code to Perform C=A+B

Lil

118
poeints to the topmost element = of stack and linked
representation, in which elemenfs of stack are linked to

each other. Figure %4 represents these methods.

Since' in data - flow architecture, basic structure
representation is the binary tree, stacks should be mapped
onto a binary tree. = To manipulate a stack, two pieces of

information are required. First a pointer to the top of the
stack, second a method to update the pointer so that it
always points to the most recently inserted item. The
structure representing thé stéck is always pointed by a
pointer say S. Stack manipulation may be performed using
éequential stack manipulation rules, that is, 1initializing
"stack pointer to éero, ingrementing it by 1 after any
insertion (PUSH) , and decrementing By 1 before any deletion
(POP). Using this method the nuheric value of the stack
pointer may TDpe used ‘as a selector tb select the topmost
element. The value of the stack pbinter should be saved
either together with pointer § (pointer to the root of the
structure) or in root node of the structure (by adding one
more field to the root). Assume that thefstack pointer is
kept together with the .pointer 3, then for stack P,

structure pointer looks like

P

1 “j§:4>§§ root node

stack pointer

As previously discussecd, the initial value .of the stack

119

bottom stack .

pointer r) top
L Th
stack ()
pointer . j
—Z = top (U
=
—)
Q A | bottom

Linear Representation Linked Representation

Figure 34. Stack Allocation Methods

120
pointer may be set .to zero. The dimension of the stack
(maximum number of elements in sfack) specifies the length
of the selector. For example, when the "~dimension 1is
specified as 16, the maximum length of‘stack pointer would
be 4 elements varying from 0000 to'1111 (interpreting Os as
left and is as right). Uéihg these assumptions élgorithm

for pushing an item into- stack is as follows:

_ convert stack pointer to a selector
__ APPEND the topmost item using the selector

increment stack pointer by 1

For example, lets stack P with maximum length of 16 be
"empty, then inserfing'items a,b,é,d,e into stack produces
the structure represented in Figure 35a.

Algorithm to pop an element from a stack is as follows:

__ decrement 1 from stack pointer
__ convert stack pointer to a selector
_ SELECT the element using the selector

__ DELETE the element

For ‘example, poping the tﬁo fdpmost elements from stack P in
Figure 35a‘prddu¢es a structure shown in Figufe 35b. Special
conditions like _oveffloﬁ,br'undefflow of the stack may be
handled by checking the value of stackr pbinter with +the
lower and uppe£ linmits of the stack boundary, i.e., zero and
" 15 in case of stack P. The data flow code segment to push

and pop an element is illustrated in }igure 36.

121

(b) POP items e and d from Stack P

Figure 35. PUSH/POP into/from Stack

122

- stack pointer

convert

to a
P selector

APPEND new stack

pointer

(a) Data Flow Code to Perform PUSH

stack pointer

cgnvgrt
segector

(b) Data Flow Code to perfomorm POP
Figure 36. Data Flow Codes to Perform PUSH and POP Operations

123

Selector may be constructed using another method:
__initialize stack pointer to L(R)
__ concatenate a L(R) to_stack-pointer after any PUSH

__ delete a L(R) from selector before POP

Using this method, the struqtgre grows on one.side not like
a_complefe binéfy tree, éoﬁsequently; the'depth 0f the tree
is higher fhan the prévious case and search time increases
accordingly. The length iof the selector is much longer in
this case Dbut the-seiector. processing routine 1is much
simpler. The number of memory'spéces used to hold data
items and structure poiﬁtérs decreases. For example, to push
items a,b,c,d,and e, selectofs L,LL;LLL,LLLL, and LLLLL are
used. Structure produced ﬁsing this method is represented in

Figure 37.
C.3. Queues

A queue'is a seéuece of items which grows'under special
disciplines. Items are édded to . the rear of queues and
deleted from the front, this is analogous to a waiting line.
Methods presented to implement a stack may be used in gueue
implementation with slight modifications.

To implement a Queue.two poihters are required to point
to the front and rear of the gqueue. These pointers may be
saved together with the pointer to the roqt of the structure
representing the queue. For a linear implementation of a

queue, both of these values may be initialized to zero. The

124

LLL LLL %

oW

Figure 37. Stachk Constructed Using Non-linear Concepts

125
value of these pointers 1is incremented/decremented by 1
after any insertion/deletion of an item to/from the queue,
and tne value is used as a selector to access the item. The
dimension of the queue is used. to realize the length of the

selector. The insertion algorithm is as follows:

_ convert Qrear to a selector
__ APPEND item to tree using the'éelectbr

__ increment Qrear by 1
The deletion algorithm is as follows:

_ convert Qfront tora selector
select item from queue using the selector
_ DELETE the item poihted to by Qfront

__increment Qfront by 1

Special conditions 1ike'onerf1ow and underflow may be
handled comparing the valﬁes of Qrear or Qfront with the
boundaries of queue. Tor example lets assume queue Q@ has at
most 8 1items, then associated selector consists of 3
identifiers. The values of eront=_and Qrear are initially

zero, then the sequence of operations:

‘insert a
insert b

insert

(@]

delete
insért d

insert e

00

Qfront Qrear

1.insert a .

0/f 2

6. insert e

- ? delete

Flgure 38. Structures Produced by a Sequence of Insertlons
and Deletions into 2nd from Queue

127

_ delete

produces structures shown in Figure 38.

The concatenation method may be wused to construct
selectors for queues, but a slight modification is required
in deletion algorithm. The deleted element may not be
actually deleted wunless the queue is reconstructed making
root node point to the Ufront and modifyinglﬁfront and Qrear
accordingly. Since these operationé take a considerable
amount of time and thie data flow computer is intended to be
as fast as possible architecture, +this method is not an

appropriate one.
D. Procedures

In sequential prograﬁming languages, the abstraction
obtained by using procedurés is a useful one. The ability
to define and call procedures is a Aéreat assest 1in a
programming language. pfocedures:

_ Permit modular design of programs,'by allowing
large tasks to be broken into smaller units.

- _ Permit economy in size of programs and in the
total programming effort, since similar computations
need be specified 6nly:once.
_ Add extensibility_to a language, since operators
can be defined in terms of procedufes, which
can thén be used as functions within expressions.

One problem arising from the introduction of procedures

is that a method of transmitting information to’ and from

128
procedures nust be defined and established.

In déta flow base language APPLY actor is used to call
a procedure. 1t has m inputs, n outputs and is labeled with
a procedure name P. The APPLY actor;when enabled to fire,
substitutes for itself a copy otf the procedure whose name
matches that of the.actor. This écﬁion takes place only if
a procedure exists with name P and the procedure has the
same number of inputs and dutputs as the actor. |

To completely uqderstand how the APPLY actor works, the.
enabling condition, the mechanism for transmitting input
values to the copied proCedure, and the return hechanism for
results must be defined. There are two alternatives:

1. The APPLY actor is enabled, as soon as its first
argument token is arrived,' It - ‘then copies the procedure (a
procedure copy 1is 'calléa an instantiatioﬁ) ‘and passes
argument tokens as they arrive. An argument 1is passed by
absorbing a token- from an input arc to the APPLY, and
placing a copy Qf;it 6nto the procedure instantiation s
corresponding input 1link s output arc. The RETURN actor
copies output values from the procedufe copy as soon as they
become avaiiable on the output links and ‘the corresponding
link to the calling program is empty. hen values from each
output iink have beén returned the copy is destroyed.

2. The APPLY actor is enabled only‘wﬁen all its
argument values have arrived and its output links are enpty.
When these two conditions are nmet, the-procedure is copied

and the argument tokens are passed. Wwhen all argument

129
tokens are availableithey are copied by the RETURN actor to
the output arcs of the APPLY éctor. The copy of the
procedure is then destroyed.

In both cases it is asgumed that the n input links are
numbered left to right, O,1,...,n-1, for both the APPLY
actor and the procedurévit invokes. The jtn link of the
APPLY is associated with therjth_ link. of the procedure it
iﬁvokes. The m’output liﬁks are .treated in a similar
fashion.

The semantics .of theA.th ’approaches to‘ procedure
activation are quite diffefént. In the first approach an
APPLY actor can be -thought ofi as replaced 1inline by the
“graph of the procedﬁre it invokes. ~In the second approach
an APPLY actor behaves éxactly; like a primitive function,
except that it may have multiple outputs and computes a
function that 1is not nécessarily in the - repertoire of
primitive functions. The‘first approach is called immediate
copy rule.(ICR), and the'sécond is called deffered copy rule
(DCR). The DCR most closely corresponds with one s idea
that a procedure 1is sqmefsort of a functional abstractioh,
whereas the ICR 1is more iike a macrd~eXpaﬁsionT The DCR has
the advantage of simplicity of implemehtationr It also lends
an additional homogeneity' to the set of actors; since its
enabling rule is that of a primitive function. iHowever, the
ICR clearly allows greater parallelism than DCR.

The ICR has one potential problem. Suppose an argument

token arrives: on the Jjth link and the execution of somne

130
procedure is initiated. Consider what happens if another
argument arrives on the jth 1link before the previously
invoked copy of +the procedure terminates. In order to be
consistent another copy of the proceduré-must be created and
this qewly arrived token muét be passed to its input. Thus
the APPLY actor must "kéep track of" an arbitrary number of
concurrently executing instantiations of the.procedure, and
this poses some serious implementation questions. If Qe can

demonstrate for every APPLY actor A that

Vo 1p-e@ic=1
0 <= i,j <= number of inputs df A
where
P(i) = numnber of tokens that have arrived on the

ith input of A

for any configuration .of a data flow program, then we can
show for any APPLY actor A of a data.flow program that at
most one instantiation:. ‘can exist at any tine, and
consequently the_state information 1is bounded. Inigeneral,
data flow brograms do ﬂot exhibit this béhavior; However,
certain large syhtactic subqlaSses'ofr data flow programs
satisfy the aboveAafc cohdition. 'Oﬁe such class is known as
well fofmed data flow programs. Besides having the above
property, a well fofmed data flow prograﬁ, when it
terminates, will be 1in its 1initial configuration. In
»particular, the .only tokens left on the arcs pf a terminated

program, will be the initial "F" tokens on the gating inputs

151
of MERGE gates of iterative loops.

A procedure implementation scheme was prop~sed Dby
Miranker [23] Dbased on ICR approach. This procedure is
rather simple, and overhead in +terms of storage, or extra
packets in the system, is almost zero.The deficiency of this
scheme for procedure implementation is that it supports a
rather primitive form of the APPLY .actor__ only one input
and one output. | Multipie input valies and multiple output
values could be encoded as structures. However, such a form
of procedure invocationv Qeuld be -undesireable because it

would limit the degree of parallelism achievable.
E. Semantic Gap in Data Flow Architecture

Data flow computer architeetﬁre proposed by Dennis is
designed to perform about 200 Megaflops (millien floating-
point operations per secbnd). Since speed was the major
goal in this deeign, architecture deficiencies leading to
semantic gap hevevnot beeﬁ'reeolved. The semantic ga? in a
data flow cohputer'and',existing solutions to reduce this
problem is studied inbthis section.

Logical memery. etrueture is one 4ef the properties of
the conventional computers which contributes in causing the
semantic gap. Incompaﬁibility of linear mehbry structure
‘with data structures presented in high~level languages cause
performance probleuws and excessive program size. Memory of
the data flow computer ie separated into two different

parts, instruction memory and structure memnory, with

different 1ogica1_stpuctures.

Instruction memory is cdmposed of fixed size
instruction cells. During execution of a data flow program
most of the nodes fire once. A large number of nodes of the
program will ﬁot fire at all if any decider is present. Thus
it would be wasteful to assign an instruction celi’to each
instruction of a procedure when the_pfocedure isvactivafed.
To solvé this préblem the instruction probessdng section of
the data flow compqter incorporates a mul£i—level memory
system such that only thé.acfive iﬁstructions of a program
occupy the instruction cells of the processér.

The wuse of a multi-level memory system within each
"section of the déta flow processor requires that the
instruction memory and structure memory act as caches for
the most active instructions and structure nodes. Yor
application of the cache principle to the.architecture, the
instruction énd. structure cells of the processor are
organized into,groﬁps of cells, known és cell blocks.

A packét desfinéd' for the instruction memory or
structure memory can no longer identify its destination by
use of a cell identifier.. The‘identifier is divided into
two parts, a majér -address'andl a minor address, each
containing a prrtion of the identifier. |

All instruction céllél having the same'major address
belong to the corresponding cell ©block. Thus, the
distribution and control networks use the major address to

direct data packets and control packets to the appropriate

1573
instruction cell ©blocks. The packet delivered to a cell
block includes the minor addresé, which serves as an
identifier for that packet within the cell block.

Although multi-level memory reduceés the size of the
active memory, it causes some implementation problemns.
Tables which are uéed to indicate ‘the status of each node
(free, engaged, and occupied), minor address of the node,
and the candidates for displaceméﬁf 5y more active nodes
occupy considerable space . and delays memory access
considerably; Node accéss and;placement algorithms becomes

very complicated and slow. .

An instruction cell in.iﬁstruction memory 1is composed
of five registers capable ofuholding at most four operands
at the same tiﬁe. ilncreasing uthe nﬁmber of registers helps
to decrease the packet'travel time through arbitration and
distribution networksvand= to save memory spaces used to
represent complete operaﬁion in mofe small cells. The
proposed instrﬁction cell "can hold at most 8 destinations.
When an inStruction requireé more destination fields, one or
more extra distribution inétructions must. be used to convey
results to all destinations. Since distribution
instructions fire only after " the completion of +the
instruction and disfribution of the result, it takes as many
distribution instructions regquired extra cycles to
distribute result. Consequently, all instructions waiting
for results must wait more extra time than required. A large

memory cell provides enough room to hold more pointers and

134
prevent the delay time. Although a larve instruction cell
solves above problems, it causes space waste for short
instructions. A variable size instruction cells may be used
as a conpromise.

Structure memory is composed ‘of structure cells. Each
structure cell is capaﬁle-of holding one node of a structure
contained in a two register cell. The two registers of the
cell contain the left and righf components .of -the structure,
respectively. This organization uses a binary tree as the
basic logical structure ef the-strueture memory.

Data structures used in highfleVel languages may not be
represented directly in thel_memory, then special mapping
functions must be used. The allocation and mappinv function
was discussed previously;ﬁ Including this packages in
software (i.e., compiler)'3increases program size and packet
travel time in a network tremendously. An alternative is to
add these capabilities to structure processing section of
the computer. . | |

By increasing the_number of structure processing units
and adding = speeial processor to' determihe the type of the
process and distributioh'-of the .instrﬁctidn anmong units,
structure processing time decreases"considerably (Figure
39). Special purpose processing units (arra&, ~stack, and
queue) perform alloeafioﬂ and mapping algorithms discussed
previously. Ring type networks of structure memories and
structure operation units increases cuncurrency specially in

operations.

135

Distribution

network
|4 !
/ y
array stack queue simple
Progessing processing processing structure
unit unit _ unit operation
1
A .
operation 1nstruction.
PR paxket patket
pLIucuare : Structure
operation
unit e moTy
Structure
operation Structure
unit
memory
Arbitration

network

Figure 39. Expanded. Structurre Processing Unit

o

150

The arithmwetic processing unit of a data flow coﬁputer
uses signed digit number representation +to perforn
arithmetic operations. Although, this representation
enables system to take advantage_of'serial properties of the
representation, the computation time is not very impressi?e.
Conmplex arithmetic-is not availéble and must be handled by a
compiler using multiple real »afithmetic operations.
Multiple—precision'arithmetic is left out and no division
algorithm is proposed.

Although data flow architécfure is a radical and
.attractive approach to computer architecture, it has some
shortcomings. The priﬁciplés - of Dennis data flow
architecture was discussed ;in fhis chapter. ﬁajor high-
level language chcepts .were coded in data flow base
language, and finally, exiéting shOftcomings weré studied.

Although speed is the major goal in this design, the
shortcomings contribute in' many ways in reducing the speed
and also creating a fOrm-of:semantic gap. In Chapter VI two
application'programs. coded in data f10w base language are

represented and a performance analysis of them are studied.

CHAPTER VI
- TWO APPLICATIONS
A. Past Fourier Transform

ﬂ'l' Introduction

The Discrete Fast Foﬁriér ‘transform plays an important
role in the analysis, the.design; ;and the implementation of
aigital signal processihg-algorifhms. One of the reasons

‘that Fourier analysis is of such wide—ranging importance in
digital signal processing is bécause;of the existence of
efficient algorithms for?éomputing .the Discrete Tourier
Transform.

The Discrete Fourier Transform (DFT) is

y-1 kn. . :
X(k) = x(n) W _ k=0;1,...,5H-1 (1)
n=0 N)
=J(2n/W) o E
where W = e . The Inverse Discrete Fourier Transform
i _ e _
(IDFY) is
| a-lo _~kn . | o
x(n) = /0 > X(k) W K : n=0,1,...,N-1 (2)
k=0 N

In equations (1) and (2) both x(n) and X(k) may be complex.
~ The expressions of Egs. (1) and (2) aiffer only in the sign
of the exponept of WN-and in a scale factor 1/N. Thus a
discussion of computation procedures fqr Eq.(1) applies with

137

138
straightforward modifications to #g.(2).

To iﬁdicate the 1inmportance of efficient computation
schenes, it is instructive to consider the direct evaluation
of the DFT eguations. Since'x(n) .mey be complex we can
write |

N-1 - kn kn
(k) =‘%;; (Re(x(n)) Re(W) - Im(x(n))»Im(W))

Iv

AT

N

kn

' ‘ S kn
+ J (Re(x(n))Im(w

W)
N

) + Im(x(n))Re(
| k=0,1,...,N-1 (%)

N

From Eq.(3) it is cleaf that for each value of k, the direct
| computation of X(k) réquires 4K real multiplications (&
complex multiplicatiéns) and 4h-2 real additions (N-1
complex additions). Singe X(k)5 must be computed for N

different values of k,>vthe direct computation of the

Discrete Fourier Transform of a sequence x(n) requires 4N
real multiplications, -.or alternatively N complex
multiplications ‘> and '-N(4N—2) real. additions or,

alternatively, N(N-1) complex additions. In addition to the
multiplications and addftidns called for by #q.(3) the
implementation of the computation of the DFT on a géneral_
purpose digitalicomputer Qr_#ith special purpose hardware of
course .requires pfévisioh!‘fbf storing and accessing the
input sequence values x{n) and values of the coefficients W&
Since the amount of accessing and storing of data in
numerical computation algorithms is generally proportional

to the number of arithmetic operations, it is generailly

139
accepted that a neaningful measure of complexity, or, of the
time required to implement a compdtational algorithm, is the
nunber of multiplications and additions required. Thus, for
the direct'computationrof the Discrete Fourier Transform, a
convenient measure of the efficiency of'the computation is
the fact that 4N .'real_multipiications and N(4H-2) real
additions are required. - Since thé number of computations,
and thus the computation time, is approximately proportional
to NZ , it is evident . that +the number of arithmetic
operations required to computé the.DFT by the diréct methods
becomes very large for iarge,vélues of N. For this reason,
éomputational procedures fhat' .reduce lthe number of
‘multiplications and'additions are.of cpnsiderable interest.

Most approaches to improve. the efficiency of the
computation of the DFT exploit one or both of the following

special properties of the quantities (w&):

k(¥-n) kn *
1. W = (W '
il N
kn k(n+N) (k+N)n '
2. W =W : = o
N N - N

' Computational algofithms thatAexploit_both the symmetry
and priodicityvof the ééquence.(wN)A -were known long before
the era of high-speed digi?altcomputation. At“thét time, any
schene that reduced hand'pqmputation by even a factor of 2
was welcomed. |

The possibility of greatly reduced computation was

generally overlooked until about 1965, when Cooley and Tukey

140
published an algorithm for the computation of the Discrete
Fourier Transform that is applicable when § 1is a composife
number; i.e., ¥ is the product of two or more integers. The
publication of this paper resulted in "the discovery of a
number of computational algorithms which have come to Dbe
known as last Pourier-Traﬁsform,'ér Simply PFP, algorithms.

The fundamental principle that all these glgofithms are
based upon is that .ofudécomposing the cdmputatidh 6f the
Discrete Fourier Trgnsforﬁ of a sequence of length N into
successively smaller Diséreté Fourier Transforms. The manner
in which this principle is'implemented leads to-a variefy of
different algorithms, 2ll with cBmparable improvements in

computational speed.

A.2. Decimation-In-Time Algbritﬁm

To acnieve the dramatic increase in efficiency to which
we have alluded, it .is necessary to decompose the D¥T
computation into_succéssivély smaller DFT computations. In
this process.ﬁe expioit both symmetry and the priodicity of

| kn -4 (2R/N)kn
the complex exponential (%q) = e

. Algorithms in
which the'deoomposition is based onﬁdecomposing the séquence
x(n), into sueccessively smaller'subséquehces; are called
Decimation—In—Time_algdrithmé; _The'pfihciple of Decimation-
In-Time is most convenientiy illustrated by considering the

special case of N an integer power of 2; i.e.,

141
Since N is an even integer, we can consider computing X(k)
by separating x(n) into two N/2-point sequences consisting
of the even-numbered points in x(n) and the odd-numbered
points in x(n). With X(k) given by
N-1 xn o '
X(k) =) x(n) W A k=0,1,...,N-1 (4)
n=0 N .
and Separating'x(n).into its éven—andeodd—numbered points we

obtain

kn o ¢ k
X(E) =9 x(n) W+ > x(n) W

P

n even N n odd A N

or with the substitution of variables n=2r for n even and

n=2r+1 for n odd,

(N/2)=1 ork (1/2)-1 (2r+1)k
X(k) = §:g x(2r) W + > . x(er+1) W
r= N. r=0 . N
(N/2)-1 ook k (N/2)-1) 2rk
= S x(2e)(w)+ W > - x(2r+1) (W) (5)
r=0 NN r=0 N
2 o |
but (WN)-_+ w&/z since : ,
2 ~-2J(2n/n) ~J2n/(K/2)
W =-¢e = e i = W .
N o | S N/2

consequently Eq.(5) can be‘writteh as

(§/2)-1" " rk k (W/2)-1 rx
x(2r):W o+ Wy
r=0 N/2 N r=0 N/2

X(k)

k
G(k) + W H(k)
N

142

#ach of +the sums.inqu.(G) is recognized as an N/2-point
DFT, the <ftirst sum Dbeing the N/2-point DFT of the even-
numbered points of the original sequence and the second
being the N/Z—point DFY of the odd-numbered points of the
original sequence. Although +the index k ranges: over KN
values, k=0,1,.4.,0~1 ,: each of Vthe sums need only be
coﬁputed fof.k betWeeﬂ 0 and K/2-1, since G(k) and H(k) are
each periodic in k with period N/2. |

After the two DFTs corresponding to the two sums in
Eq.<6) ére_computed, they afe_then-combined to yield the K-
point DFT, X(k). Figure 40 .iﬁdicates the .compﬁtation
“involved in computing X(k) according to Eq.(6) for an eight-
point sequence, 1i.e. for N=8. . »in this figure, Dbranches
entering a node are summéd to prodqbe the node variable.
When no coefficient is . indicated, the branqh transmittance
is assumed to. be one. For other branqhes; the transmittance
of a branch is an infegér.power of %q;“ Since G(k) and H(k)

are both periodic in k with period 4, theh

i1(4) = 1(0) 6(4) = 6(0)
H(5) = H(1). . G(5) = a(1)
‘11(6) ="H(2) - .G(6.).; G(2)
HT) = 1(3) . 6(1) = 6(3)

With the computation’festructured according to Eq.(8),
~ we can compare the number of multiplications and additions
required with those required for a direct computation of the

DFT. Previously we saw that for direct computation without

143
2

exploiting symmetry , Iv complex mnmultiplications and
additions were required. By comparison, £q.(6) requires the
computat;on of two N/2-point DFTs, which in turn requires
2(N/2)2 complex multiplications and approximately 2(n/2)
complex additions. Then the two HN/2-point DFTs must be
combined, requiring ﬁ coméléx multiplications corresponding
to multiplying_the second sum by WN and . then N complex
additions; corréspbnding to adding that product to the first
sum. Conseguently, ﬁhe computation of Eq.(6) for all values
of k requiers N’+2(N/2)2 of N%(N2/2). complex multiplications
and complex additions. Iﬁiis.easy-to verify tﬂat for b > 2,

N+N2/2 will be less than N?. |
Equation (o) correéponds to breaking the original w-
point computation into two H/2-point computations. If H/2
is even, as it always is:when K is equal t6 a ‘power of 2,
then we can consider computing each of the N/2-point DF?s in
Eq.(6) by breaking each 6f the sums in Eq.(6) into two
N/4-point DFTs, which would then be cdmbined to yield the
N/2-point DFTs. Thus G(k) and H(k). in Eq.(6) would Dbe

computed as indicated bélbw;

(1/2)-1 rk (K/4)-1 21k (§/4)=1 (21+1)k
G(x)=>_ glr)¥ =5~ g(2L)¥ +3 g(21+1)%
r=0 . K/2 1I=0 . n/f2 10 N/2
or
(N/4)-1 1k k (N/4)-1 1k
G(k) =) __ g(2l) W+ W 7 g(21+1) W (7)

144

6(0)

x(0) ——— | x(0)
- x(2) ——— N/2~P9int ¢y \ > bl X(1)

DA .
o oS 7

x(3)

x(1) ———— x(4)
x(3) ——— | N/2-point X(5)

«(5 | oFr i H(Z)// W\. x(6)
x(7) ———— H(?)/ W§\> x(7)

?igure 40. Flow Graph of the Decimated-In-Time Decomposition of
' an 8-point DFT Computation

x(0)

x(4)

Figure 41. Flow Graph of a 2-point DFT

145

similarly
) 5_13'__/4)-1 (1) 1k k (H/4)-1 1k
H(k) = h(21) W + W) h(21+1) W (8)
1=0 H/4 N/2 1=0 . N/4
. ‘ A 2
Note that we have used the fact that %UZ = (WN) .

For the eightépoinf, DFT that we have been wusing as an
iliustration, the compptation has been reduced to a
computation of twﬁ—poiﬁt DFfs. fThe two-point DFT of; for
example x(0) and x(4) isrdepicted in Pigure 41. A complete
flow graph for computatiohipf the eight-point DFT is shown
in Figure 42. '

For the more generai case with N a power of 2 greater
than 3, we would procééaf by decomposing the li/4-point
transforms in Eq.(7) and (é)tiﬁto.N/B—point transforms, and
continue until left'with.énly two—ﬁoiht tfansforms. This
requires v stages of computation, where v = log (N).
Previously we found»thét ih the origihal.decomposition of an
N-point transform into‘twa'ﬁ/Z-point transforms, the number
of complex _multiplicationé. and additions required was
N+2(N/2)2 .. When the N/2;point tfansforms are deconposed
into N/4-point transforms, then the factor of (N/2f is
replaced by N/2. + 2(N/4)2 ; so the overall computation then
requireé N + N <+ 4(&/412 cqmplex multiplications and
additions. If N = év, this can be donélat mosf v = log (N)
times, so that aftef carrying out this decomposition as many
times as possible the number of complex multiplications and

additions is equal to N log (k).

146

It is useful to note that each stage of the compufation
takes a set of N complex numbers and transforms them into
another set of N complex numbers. When implementing the
computation we can imagine the “use of 1two arrays of
(complex) stbrége fegiétérs, one for array being compufed
and one for the data being used in the computation. ¥We shall
denote the sequence of complex. numbers resulting from the
mth stage of computation as Xm (1), where 1=O,1,...,N—1-
and m=1,2,...,V. Purthermore, for convenience, let us
define the set of input samples as X0 (1). We can think of
Xm (1) as the input array and Xm+1 (1) as the output array

for the (m+1)th stage of computations; +thus for the case of

N=8,
X0 (0) = x(0)
X0 (1) = x(4)
X0 (2) = x(2)
X0 (3) = x(6)
X0 (4) = x(1)
X0 (5) = x(5)
X0 (6) = x(3)
X0 (7) = x(7)

Using this notation 'and ordering, it can be seen that the
basic computation is shown as Figufé 4%. The equations
represented by this flow g;aph are of thé form

| r

Xm+1 (p) = Xm (p) + W Xm (q)
iv

147

x(0)
x(1)

- x(0)

< '//Z///g X(1)
x(6) 5 i X(3)
TSISOSSs o

S SN ®

)

U
N
o
—
. W\
y
R
x(5) . i Wh; x(5)
L= N
P , \\\\Q&L

x(7) =" - = X(7)

"Figure 42. Flow Graph of Compltete Decimated-In-Time
Decomposition of an 8-point DFT

Xm(p) .

X (q)

~W(14N/2)
"N

Pigure 43. Flow Graph of Basic Butterfly
Computation

148

(r+i/2)
Xm+1 (q) = Xm (p) + W Xm (q) (9)
N

Because of the appearance of the flow graph, this

computation is‘refferedAto as butterfly computation.
Equation (9) suggests a means of feducing the number of

nultiplications by a factor of-2.-Tq see this we note that

N/2 ~J(2n/n) .ii/2 ~Jn

W = e » = e = =1
' N o
5o that the equations (9) becomes

r

Xm+1 (p) = Xm Kp) +‘W Xm (q)

N

Xm+1 (q)

m (p) - ¥ Xm (a) (10)
Sincé there are N/2 "bufterfliesﬁsper stage and 1log (N)
stages, the total number_of nultiplications required is
(N/2) log (XN). Using the new .appréach the flow graph of
8-point DFT is illustrated in Figure 4. |

In order that computafion may be done in place using a
single array we note that.ihput data must be stored in non-
sequential ordér. In facﬁ'the order in which the input data
are stored is in bit-reversed order. fo see what is meant by
this terwinology; | wé note that for the eight-point flow
graph, three binary digits are required to index through the
data. 1If we write ﬁhe indices in binary.form; we obtain the

set of equations

X0 (OOO;

= x(000)
X0 (001) = x(100)
X0 (010) = x(010)

149

X0 (011) x(110)

X0 (100) x(001)

1]

X0 (101) x(101)

X0 (110) = x(011)

X0 (111) = x(111)

If (n2,n1,n0) is the binary represéntation of fhe_index of
sequeﬁcé~x(h), then the sequence value x(h2 nl n0) is stored
in the array position XO(qO nl n2). That is, in determining
the position of x(n2 nTznG)'.-inithe input array, we must
reverse the order of the bits of the index n.

In realizing the computatibns, it is clearly necessary
to access elements of infermediate'arrays in non-sequential
order. Thus, for greater. computational speed, the complex
numbers must be stored in random access menmory. ¥or example,
to compute the first array from the input array, the inputs
to each Dbutterfly computation are adjacent node variables
which are thought of as being stored in ad jacent storage
locations. In computing tﬁe second intermediate array from
the first, thé inputs to a butterfly ére separated by two
storage locations, and in computing the third array from the
second, the inputs to a butterfly computation are separated
by four storage locations. ~If N 1is larger = than 8, the
separation Dbetween bﬁtterfly iﬁputs_is 8 for the fourth
stage, 16 for the fifth stage, etc. The separation in the
last (vth) stage is H/2.

A rearrangement of the flow graph, that is particularly

useful when random access memory is not available is shown

150
in Figure 45. This flow graph represent the Decimation-in-
Time algorithm. .Note fifst that in +this flow graph the
input 1is again 1in bit-reversed order and the output in
normal order. The important feature of this flow graph is
that the geometry is -identical for each stage; only the
branch transmiténces change from stage to stage. This makes

it possible to access_daﬁa'sequentially.

A.3. Data Flow Representation

of the DFT Algorithm

The general fofm of DFT algorithm may be described as
follows: let U(m,k) be the kth component of the vector of
values computed by the mth stage of the computation. Then
B(m,q) the qth butterfly of sfage:m computes

: | ' e(m,q)
U(m,q) = U{(m-1,2q) + U(m-1,2q+1) W (11)

' (n-1) . e(m,q)
U(m,q+2) = U(m=-1,2q) - U(m~-1,2q+1) W (12)

where the exponent e(m,q) of each phase factor is given by

_ n-m } n-n
e(m,q) = 2. quo (q, 2) (13)

and :
n-1

0 < g« 2

O <m<n

n = log (W)

‘The symbol "quo" denotes the function quo(i,j) which yields

the integer quotient of i divided by j. The input values for

stage one are related to the data samples by

151

x(0) - x(0)
(1) Wﬁ ;:::::igsz::j - -\\\\\//’//t Z/f.x(l)
x(2) . WI; .><>,g \\// x(2)
«6) — >_f<f WN /\\i g Mﬂs)
x(1) R __ — O
. >§< N _/XX\ixm
O IO~ G WIAN $
N =l AN N
x(7) > : 7 i x(7)
Figure 44. Flow Graph of 84poiﬁt DFTiUsing the Butterfly
Computation of Figure 45.
x(0) - — . 'o X(0)
x(4) —X il < i <X x(1)
PN SN SN g
D% 4 N SN
(6) ——= 55 R S\ 2
(1) "’/\-"‘50/.‘%0/\ ()
I\ X '
x(5) N 0‘/ N\ .‘,/ N\ N\ X(5)
x(3) - l\ - l\ ; \ X(6)
x(7) éN WN : N X(7)

Figure 45. Rearrangement of Figure 44 Having the Same

Geometry for Lkach Stage

152

U(0,k) = x(i). . where i = rev (k)

in which "rev" is the operation on integers such that the n-
bit binary representation of i is the reverse of the n-bit

representation of k. The output values are
£(k) = U(n,k) o 0 <k <2

Uéing new ltéi‘minoiogy the eight-point, constant geometry
decimated-in-time is shown in Figure 46.

The goal is to take maximum advantage of parallelism in
repfesenting the FFT as a data flow program, but since each
actor will take space in thé machine representation, Qe dont
_want to use a larger program than necessary to exploit
concurrency. Since each stage of the computation uses values
computed by the preceeding stage, 1t is appropriate to write
the program as an n-cycle iteration in which the body

. . (n-1)
consists of the 2

butterflies 'comprising one stage of
computation writtén dut explicitly. The form of the
corresponding data flow program is showﬁ;in Figure 47 for
the eight;pdintvcase. This 1is fairly easy Dbecause the
constanf geometronfF the computation over all stages makes
it possibie to use a fixed routing of values from the
butputs of the bufterflieS'to their iﬁpufs where they becone
operands for the next”cycle. Generating the phase factors
for each butterfly, hoﬁevér presents a problem. The usual

technique is to use a table lookup in a table of powers of

W, but our present data flow language includes no suitable

Figure 46. The Eight-point, Constant Geometry, Decimated-In-Time
DFT

¢al

phase constant queué

Uzg-1

loop control phase factor generation

Figure 47. Iterative Data Flow Program for EBight-point
DFT '

I
1
buttexrfly '
' *

147!

155
mechanism. Instead, the factor W(m,q) used for butterfly q
in stage m may be computed from the factor W(m-1,q) used for
the previous stage by a simple rule derived as follows: +the
exponents of W for W(m,q) and'w(m-ﬁ,q) are |

n-m n-mn
e(m,q) = 2 quo (g,2) .

n-m+1 n-m+1
e(m-1,q) = 2 quo (q, 2)
then
e(m,q) = e(m-1,q)_+ e(m,q) - e(m-1,q)

' n-m ‘ n—-m A n-m+1
e(m-1,q) + 2 (quo (q,2) - 2 quo(g,2))
\ .

T(m,q)

Careful study of the factor T(m,q) réveals that

¢ | n-m
0 if rem (q, 2) is even -

T(m,q)=

- © n-m _
1 if rem (g, 2) is odd

.

Thus T(m,q) is the,(n%m)th; bit in binéfy representation of
q. Let bit(r,q) be a primitive function that yieldes the

rth bit of q. Then we have
e

S N

|if bit(n-m,q) =1 |

S '] ' !

W(m,q) = W(m-1,q) x 4. (n—m) ' ?
then W else 1} -

L | J

The initial value of the phase factor for the gqth butterfly
is

e(1,q) (n-1) (n-1)
W(l,q) = W ‘where e(1,q)=2 quo(qg,?2)

=(1 + JO)
The computation of the phase factors W(m,q) is performed by
the sections of data flow program labelled "phase factor

generation" and "phase constant queue".

A.4. Description of the Progrém

The data flow program consists of four copies of the
code shown previously. Each copy performs one of the
butterflies (0,1,2,3) in stage m, and consists of four

sections:

A.4.1. Loop Control. This section controls the number

of iterations (3 in this case) and computes the (n-m) which
wil be used to recognize +the (n-m)th bit of q in the
computation of W(m,q). Two control values CLt and CL2 will

be produced and distributed in this section:

p
True if m<3 (more iterations)

CL1 =J
False if m>3 (no more iterations)

N
7

i
—

True if ((nfm)th bt of q)
CL2 =/
0

Palse if ((n-m)th bit of q)
. .

"A.4.2. Butterfly. This section computes U(q) and U(q+
n-1 n-1
2) (f(q) and f(q+2) at the end of program) using U(2q)

and U(2g+t) (x rev(2q) and x rev(2é+1) initially) and

W(m,q) produced by phase factor generation section according

157
to the following equations:

e(m,q)
U(m,q) = U(m-1,q) + U(m-1,2q+1) W

n-1 ‘ e(m’q)
U(m,q+2) = U(m=1,2q) - U(m—1,2q+1) W

A.ﬁ.é. Phase Constant Queue. 'This section operates a

queue like structure. The phase constant queue consists of
th}ee diétribution cells which afe .linked té simulate a
circular queﬁe. The fronf hode of stfuctgfe always contains
Wx*(2%¥(n-m)) which will be used in the computation of

Ww(m,q) in phase factor generation section.

A.4.4. Phase Factor Generation. Phase factor W(m,q) will

" be computed in this section usin the following equations:

n—m
[5 2
if bit(n-m,q)=1 then W
W{m,q) = W(m-1,q) x{ R >

else 1

Loop Control Section.

CL1 (initially false)

bit

CL1 CL2
! —(T <

M=1
LOOP: N-M=5-k
IF M>% THEN GO TO OdT
IF bit ‘a-#i,&) = 1 THEN "CLe = 'True'"

ELSE "CL2

'False'"
CELSE "CL1 = 'True'™ |

=i+

GO TO LOOP

oUT: "CL1 = 'False'"

159

Butterfly Section.

rev

CL (T — | F T)-oLL

+

Uq UQ+2n—J
- f - - f .n-1 %7
q . Tq+2 _
Sty v
c1= "false", a= xrev (2q), b= xrev (2q+1)
DO WHILE (ct = "true)
U(q) = a + b*W(m,q)

U(q+2**(n-1) = a - b*W(m,q)
a= U(2q)
b= U(2g+1)

end

Phase Constant Queue

CL2 CL2
CL2 = 'faise'
a = W¥¥q
b = W¥*¥*2
c = W*¥4

IF (CL2 is activated) THEN
temp
a

C

temp

160

161

Using queﬁe structure t6 produce W (phase constant)
is the best approach for small values of N, but when N is
large, which normally is very large in FFT probléms, it
tends to be very spaqe—c;nsuming and uneconomicél. The
alternative’approéch takes advantage of the fact that phase
constant of stage m is the square root of .the phase constant
in stage m-1. This approach which spénds more execution time

but much less space is shown in Figure 48.

" N2 4
W =

d

1nitially false

complei :

SQRT

Figure 48. Alternative Data Flow Program for the 8-point
DFT : -

291

Phase Factor Generation Section

initially false

W(m-1,q) = W¥¥0 = 1+JC

W(m—-1 ,Q_)

LOOP: IF (CL2 = 'false') THEN W(m,q)

Ay 57

BLSE W(m,q)

W(m-1,q) *
WEk(2%%(n—n))
@0 T0 LOOP

A.5. Program -Performance Analysis

Virect computation of the Discrete ast Fourier
Transform on a sequential computer may be performed using

the following program:

time spend

K=0
(1 DO WHILE (K < N)
[3 N=0, F=(2% /H)*K
1 DO WHILE (n < N) |
N(6N+4) ¢ 6N+4 { 4 X(k)=X(k)+x(n)*(e**(0,-F*n))
1 | n=n+1 .
END
g _ 1 3 k=k+1
L END

total time spend = N*(6H+4) = ON*¥2 + 4%n
for N=8, total time spend = 416

Note : assignment and initialization statements are

considered no time statements

165

Computation . of. the Fast Fourier Transform using
Decimation-in-Time algorithm consists of two segments, first
is a segment to rearrange the 1input array, second 1is the

segment to-compute the values of X.

time spend
i=0 |
1 DO WHILE (i<N)

k=1, j=0, 1=i

1 - DO WHILE (k<p+1)
N+N(10logN+1) < 10légﬂ < T - | l=k/2**(k—1)—2*(i/2**k)
1 el
] k=k+1
% D END
O X(9)=x(1)
; 1 i=i+1 '

END

The second segment of program is as follows:

time spend

logN+1logN(5N+2)+2< 5N ¢

n

pPi=2%3.14/N, i=1

- DO WHILE (i<p+1)

| k=07 mp=p-i

DO WHILE (k<(K/2+1)
“. t=2**mp*(k/2**mp)
wpa=(cos(pi*t),
—sin(pi*t)*X(2%k+1))
X(E)QX(Z*k)+wpq
X (k+2%* (N=1)) =X (2%k) -wpq
;END

Coi=id

END

total time spend = 15Hlogh + 2N + %logh + 2

for N=8, total time spend

= 587

160

167
Using data flow progran represented, the flow of

information may be shown by the following table:’

step# parallel processes

UV | p0, 60, %0, u0,ul
| :c.1 ,c2,pl
c3,cH5,p2
wl,w2,w3,c4,p0
w4,cd,p1

w5;c1 |

u2,chH

uj,ud

W 0O 1 oo U~ W

ub,ud,u7,us

After 9 cycles the first set‘of results is ready then:
time spend-for computations in one stage = 9

total time spend =3x9=27
B. SIN Function

Trigonometric functions ére the most widely used
arithmetic functions. ‘Some numerical methods to compute
these functions are inherently parallel and may be easily
converted into parallel probedures. In this section Taylor

series representation of SIi function is studied and

programmed in data flow base language.
Taylor series for SIN function is as

1 3 5 7
X X X X

SIN(X) = == = == 4 = = = 4+ i (14)
: 11! 51 51 7!

mach term in the seri is independenfufrqm others and may be

conmputed separately, but independent computationlof each

term turns to be very inefficient.

A carefﬁl study of the terms of the series réveals a
special relationship between the two consécutive terms. If
nth.term is represented by T(n), then

T(n+1) = = T(n) * ((n+1)*¥(n+2)) . (15)
A data flow code segment using this property is shown in
"Pigure 27. Using fhis direcf approach, computation of each
term requires 6 operations; then for N terms the number of
arithmetic operations is 6MN.

In a multiprocessor environment, more than one term can
be computed at the same time. The new approach that is
presented in this section involves +the computation of 4
terms sinultaneously, using the relationship between the
terms of the Taylor series. FPirst, divide the terms of the
series into the groups of 4 terms, then each term may be
represented by T(n,m), where n=0,1,...,N/4, and m=0,1,2,3.
If the denominator of each term is representedl by D(n,m),
then the relationship between +the first denominator of a

group and the last denominator of the preceeding group is as

" follows:

D(n+1,0).= D(n,3) * (8(n+1)) * (8(n+1)+1) . (16)

169
and the relationship between the denominator of +the first
term of a group and the others is as:

D(n,m) = D(n,0) * (8(n+1)+2m)*(8(n+1)+20+1)
| m=1,2,3% (17)

If denominétors Qf'the terms of a group 1is stored in an

array, F say, then F should initially contain (11, 31, 51,
7). The values of the denominators of each group may be
computed using Eq.s (16) and (17). The numerator of each

term in nth gfoup is the prdduct of the numerator of the
corresponding term in (n-1)st group aﬁd x . Using the facts
represented above, a data flow code segment is ﬁritten which
is illustrated in Figures 49, 50, 51.

The first 'step in computation of the SIN function is
the generation' of thé first 4 powers of x and x§ . This
segment 1is performed only once at the Dbéginning of the
process and takes 5 cycles, is represented in Figure 49.

Generating the denominatdrs'of each term using the last
denominator of the prévious_group is done by a code segment
represented in Figure 50. The process of generating and
adding the terms of a group and making the decision whether
to continue or terminate the process is represented in
Figure 51. Each section of the code segment is labelled by
a letter and eachIStep is 1lzbelled by a number to clarify
the analysis of the process, for example, in program
analysis tables, instructions are specified by code segment
label at the top of the table and associated step under that

colunn.

170

Two different methods to process this code segmeﬁt are
analyzed and results are shown in Figures 52 and 53. In the
first method the process is not controlled and the values of
the powers of x are transmitted +to the next section as soon
as they are géneratedf Pigure 52 shows that using this
method, 4:,consécufive terms of the Taylor series are
calculated in‘jo_cy¢les. In the second mefhod the powers of
X are not trénsmitted to the destinations before all powers
are calculated. In this controlled method, .for the first 3
cycles processor utilization is not efficient, but the
execution of 4 term groups takes only 7T cycles. Using this
method TN/4 cycles are required to compute N terms, which is
obviously 1less than 6N cycies in the direét approach
solution. The maximuﬁ number.of parallel processes in one
cycle 1is 12, whieh determines the minimum. number of

processors to achieve the TN/4 execution time.

w X5 vx

Figure 49. Generation of Powers of x

7

VL1

[\

W

|

i

~ FPigure 50. Coefficient Generation

cLl

M3

. cz
SIN x

Figure 51. Computation of Four Consecutive Terms of Taylor Series

Ll

step #

jurs

W ®©® 3 N\ & WD

W NN DN NN NN N R R R R R
O 0 O~ O\ &FWDNPMFFHF OVWVMO~NNOWMEEWDND = O

31

Figure 52. Computation Analysis of SIN Program

£0
fi

£

2.

3

£0
fi
2
£3

£0
f1
2
3

WO o=

woN

N o= N

N =

6

7,8
1

6

7,8
1

6

7,8

1

C H I 3
1
2
3 1
b5 2 1 1
6 3.4 2 2
1 5 3,43,k
2 6 5 5
3,41 6 6
‘5 2 1 1
6 3,4 2 2
15 3,434
.6 5 5
1 6 6
11
2
34 2
5 3,4 2
6 5 3,4 2
1 6 5 3.4
1 6 5
1 6
1
2
3,4 2
5 3,4 2
6 5 3,4 2

n

N

.

N

1

174

step ¥ £
1
2
3
1

-5

6
7.
8 0
9 f1
10 £2
11 £3
12

13 .

14

15 £0
16 f1
17 £2
18 £3
19 ’
20

21 £0
22 f1
23 £2
24 £3
25

26

27

28 £0
29 £1
30 f£2
31 £3
32

33.

W N = >

W

W

W

w

W -

<]

W

N &

N =

175

M

«Q
j==]
4
f
-
L—1

111 11

2 2 2 2
3,4 3,4 3,4 3,4 1,2
5 5 5 5 3
6 6 6 6 1,2
1 1 1 1 3
2 2 2 7.8 :
3,443,463, 2 1 1
5.5 5 3,4 2
6 6 6 5 3 1
1 1 1 6 6
2 i 3
- 3,4 2 7,8
5 3,4 2 1 1
6 5 3.4 2
1 6 5 3,4 2 1
1 6 5 3
2 1 6 6 2
34 2 1 3
5 3,4 2 7,8 1
6 5 3,4 2 1
1 6 5 3,4 2 1
1.6 5 3
1 6 6 2
2 1 3
3,4 2 7.8
5 34 2 1
6 5 3.4 2
1 6 5 3,4 2 1

1 6 5 3 2

Figure 53. Computation Analysis of Controlled SIN Program

CHAPTER VII
SUHMARY, CONCLUSIONS AKD FUTURE WOKK

A survey of a data fldw.ardhitecture was.presented as i
soiution to many of.the probiems of highly parallel computer
syétems.' .The use of interconnection networks between
sections of the procesSor provides an attractive approach to
the communication of infbrmatioh betweén units. Due to the
radical nszture of architecture, many questions range from
ones about the use of certain methodsof representation or
design choices to deep éemantic issues.

A survey of a phenomenon known as the semantic gap was

presented. The effect. of the semantic gap on systen

performance was discussed. The sewantic gap which

‘represents the gap betweén the conéepts presented in the
architecture and high-level lunguages concepts, contributes
to perfcrmance problems in conventional éomputers.

Methods to represent high-level 1language concepts in
data flow'basé lahguageawas presentéd.‘ The data flow base
language, while appearing to be a semantically elegant
nethod of expressing pafallelism, is not yet an appropriate
one to represent highéiével languszge concepts, and is open
to further study and exténsions. The language needs to be

expasnded by the =addition of such actors as ‘“forall"

176

17
construct to enable it +to Tvetlter express concurfent
processing of the elements of a3 structure. Also, the
language does not currently contain the capability to
express nondeterminate computations.

Further investigation of +the wuse of the data £low
language is necessary. The representation of algorithas
such as PFast Fourier Transform and SIN function in dzta flow
appears very attractive (Caapters V and VI). However, the
data flok representation for other computations need to be
developed and examined:

he data flow language is designed to serve as the base
languege of the data flow processor. The development of a
user language which can be readily translated into a data
flow representation .is necessary. Much more work needs to
be done to identify concurrency in problems and to take
advantage of that thfough use of the data flow
representation. ew actors and feafures must be added to
"the architecture to cope with high-level languages and

reduce the semantic gap.

10.

BIBLIOGKAPUY

Ackerman, Willism B. "4 structure processing facility
for data flow computero " Leboratory For Computer
Science, flela®, Proceedings of the 1973
internationzl conference on parallel processing,
Aug. 1978, pp. 165-172.

Ackerman, WVWilliam B., and Jack .B. Dennis. "VAL-~ A
value-oriented algdrithmic language: prelininary
reference manual. Laboratory Yor Computer

science, K.I.7, Technical Report #7218, Jan. 1979.
Aoki, Donald J. "A machine language instruction set for

a data flow processor.® Laboratory ror Computer

Science, M.I.T, Technical ‘liemo 7146, Dec. 1979.

Arvind, Vinod Kathail, Keshav Pingali. "A data flow

architecture with tagged token Laboratory ror
Computer. .Science, i#.I.7, ”ecnnloql remo #5174,

Sept. 1980.

Arvind, Kim P. Gostelow, and will PloufTfe. "An

asynchronous programming languuge and computing
machine." University of Cualifornia, lrvine,

Technical KReport 71144, Dec. 197S.

Arvind and Kim P. Gostelow. . "Data flow computer
architecture: - research and goals." University of
California, 1rvine, Yechnical Report 7113, reb.

1978.

Arvind and Kim P. Gostelow. Memantics of loop
expressions in ID." UCI data-tlow project, data-
flow note #11, liarch 1977.

Cornish, . iflerrill."The TI data-flow architecture: +the
power of concurrency for avionics." Texas
Instrunents Corp., Texas, rustin, 1979.

Cote, William ¥. and Richard F. HKicceli. "The design
of a data-ariven proce531né element." iayne State
University, iichigan.

Pavis A, L. "The architecture of bDil: A recursively
structured data-driven unachine." University of
Utah, UUCS-T7T7-115, april 1y73.

178

11.

12.

15.

14.

17,

18.

19.

20.

21.

179

Dennis, dJ. b., David tlisunas, =and Clenent K. Leung. "A

highly parallel procegsor using 2 duava-flow
nachine langunze " Laboratory For Computer

Science, M.I.T, Technical kemo #1%4, Jan. 1977.

Dennis, J. B., and David P. uisunas. "A prelininary
architecture for =2 basic data-flow processor."
Project iAaC, KH.I1.7, the second annual syaposium on
computer architecture, Jan. 1975, pp. 125-152.

bennis, J. B. "Pirst version of o data-flow procedure
language." HIT/LCS/Tu-61, Moy 1975.-

Dennis, J. B. "Packet ~communication architecture."
Project ®AC, w. 1.2, fHechnical ikemo ;150, Aug.

1975,

vennis, J. B. "Programming generality, parallelism and
computer architecture." M.l.%, ‘Information
Processing 58, pp. 4&4-4942.

farrel, sdward P., - Hoordin Uhani, and Pnilip C.
Treleaven. "A concurrent computer architecture and
a ring based implementation.” University of

Newcastle, Upon Tyne, kngland 1979.

Feridum, Arif ietin. "Design of an on-line byte-level
pipelined arithmetic processor." 1Llaboratory lor
Computer Science, M.1.7, Technical liemo ¥102, July

1978.

llopkins, Richard, Pzul Y. Rautenbach, =and Philip C.
Treleaven. "4 conputer supporting data-flow,
control-flow and updateable memory." The
University of Lewcastle, Upon %Tyne, England,

Technical Heport 2144, 1Y79.

Jenson, John C. “"Basic program representation in the
Texzs Instrument dnta-flow test bed compiler.”
Yexas Instruments Coruv., #aAustin, Yexas, dJan.,
19¢0. :

Johnson, VDouglas. "Automatic partitioning of programs
in multi-processor systeass." Yexas Instruusents
Corp., Austin, Yexas, 1%

Keller, Robert k., d=ry Lindstrom, und sunas Patil. "An
architecture for a loosely-coupled parallel
processor." University of Utah, UUUS-T75-105, Uct.
1978,

Leth, James Williams. "aAn inter—ediate form for data-
flow programs." Laboratory Ior Cowputer Scisnce,

(]
N

24.

26.

27 .

29.

M.1.7, Technical Memo ;714%, wov.1979.

tfiiranker,Glen Sethh. "Implementation of procedures on =
class of data-flow processes." Laboratory For
Computer Science, M.1.T, proceedings of 1977
international conference on parallel processing,
aug. 1977, pp. T1-8o.

riisunas, bavid P. "A couwputer architecture <for data-
flow computation.” Laboratory For Couputer
bcience, M.I.%, Technical Hemo #100, Marcn 1%78.

Misunas, David P. “Performance analysis of data-flow

processor." Laboratory For Conpute Science,
oI, proceedings of the 1976 international
conference on parallel processing, Aug. 1976, pp.
100-105.)

Misunas, David P.” "Structure processing in a data-flow
computer.”™ Project MAC, M.I.T, Technical iexno
129, Aue. 1975.

Montz, Lynn Barbara. "Safety and optimization
transformations of data-flow programs." Laboratory
For Computer Science, koI.T, Technical Report

#240, Jan. 1980.

Myres, Glenford J. Advances in computer architecture.
1st Bd. Kew York: 1Bl systems research institute,
Wiley-interscience publications, 1Y7&.

Oppenheim, Alan V. and Koland W. Schafer. Digital
signal processing. 1st znd. HNew Jersey: Prentice-
fiall Inc., 1975.

Rumbaugh, James. "A data flow nulti-processor." lpif
transactions on computers, Vol. C-26, ko.Z2, {ec.
1677, pp. 1586-146.

Ruth, Gregory K. "Data driven loops." ILeboratcry For

Computer science, M.I.%, Tecnnical Report 244,
Augz. 1980. : o

Saubar, - William. =~ "A data-Tlow architecture
implementation." Texas Instruments Corp., Austin,
Texas, 1980. :

Thomas, Robert Eugene. "An activity assignment schene
for a data-flow computer." UCI data-flow project,
Note #29, April 16783. :

Thomas, Robert Lugene. "Performance analysis of
classes of data-flow computing systems."
Technical Report #120, kHay 1930.

=
(@)

-

-
-

Q2 ot

N

=N

(o2

181

Treleaven, P. C., DAvid H. brownbridge, and sichard P.
Hopkins. "vata-ariven and demand driven coumputer
arcnitecture." ‘he University of Hewcastle, Upon
Tyne, kngland, 197c.

Treleaven, P. C. "Principle components of a data-flow
computer." The University of Hewcastle, Upon Tyne,
England, 1978.

Weng, XKung-song. "An abstract implementation for a

generalized . data-flow languzge." Laboratory For
Computer Science, H.I.T, Technical Report 7228,

ilay 1979.

APPELDIX

Actor
bata flow operatar

Arbitration network :

Receives operation packets from +the instruction cells,
present in the mnemory, and sends them to the
appropriate operation unit.

Cache .
Cache is a scratch pad random access memory usually
semiconductor type, holds the information that are most
often required by the processor. Other information
about the program is kept 'in a slower nenory. The
information is passed to the cache, based on certain
policies whenever it is required.

Concurrent . o
The occurence of twod or more . events within +the same
time ©period, i.e., two = ecomputers or programs
simultanously. ' : :)

Control netwvork
A network which handles control packets. ihe network
consists of arbitration and distribution units.

Data driven : _
The class of data flow in wnich the instructions are
executed when all -the operands required by tne
instruction are ready. '

Data flow structure o
Structured duata residing on conventional memory.

Data packets _ -
Instruction cells containing data values are knovn as
duta packets. '
Decision unit , o : '
It is a hardware unit which performs boolean operations
and gives the result in the form of control packets.

Distribution network _
Receives results from the operation unit in the Iorm of
data packets and places the:m 1in the instruction cells,
present in the nemory. '

182

Fired : :
hen to&ens are present at the input arcs of a data
flow grapn, the node is enabled and the operands =zre
removed from the input arcs. 1i.e., the operands are
fired. '

Instruction cell - ' ' :
The wmemory. is organized into instruction cells. Each
instruction cell consists of three or nore reﬂlgters to
hold the data qnd operator.

Instruction packet -~ _

A packet containing a data flow 1nstruct10n is called

an instruction packet. : '

The ©program in elementary data flow language "is. a
directed graph in' which the nodes are operators. <he
nodes are interconnected by means of links.

Locality _ :
WOrking set or the working area in the memory,
i.e.,physical locality or progrenm locality. -

L3I

Abbreviation for Large-Scale Integeration. Ligh-density
integrated circuits for complex logic functions.

Operation packet -
Uperation packet 1is one of the +types of instruction
packet that is handled by the operation unit.

. Operator
' Operators are the data flow 1nstruct10ns..

Packet _
The 1nformat10n, ‘may be either data or operator, sent
from one unit to another unit in data flow machine.

Selector
Used in the representatlon of data flow structures- an
integer or 2 string. he,stxucture node is represented

as <selector : value>.

Side-effect - _
bBffect of an' .instruction on data elements which is to
be used by other 1nstruct10ns.

2
VITA

' Taraneh Baradaran-Seyed
Candidate for the Degree of

Master of Science

Thesis: HIGH-LEVEL LANGUAGE CONCEPTS IN DATA FLOW
ARCHITECTURE

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Tehran, Iran, October 20, 1952.

Education: Graduated from Shirin High School, Tehran,
Iran, in June, 1970; received Bachelor of Science
degree in DMathematics and Computing Science from

Aryamehr University of Technology in

completed requirements for the Haster of Science
degree at Oklahoma State University in December,

Professional Experience: Instructor, ISIRAN Institute,

1976-79; graduate teaching assistant,
State University, 1979-81.

Oklahoma

	THESIS 1981 B223H_Page_001
	THESIS 1981 B223H_Page_002
	THESIS 1981 B223H_Page_003
	THESIS 1981 B223H_Page_004
	THESIS 1981 B223H_Page_005
	THESIS 1981 B223H_Page_006
	THESIS 1981 B223H_Page_007
	THESIS 1981 B223H_Page_008
	THESIS 1981 B223H_Page_009
	THESIS 1981 B223H_Page_010
	THESIS 1981 B223H_Page_011
	THESIS 1981 B223H_Page_012
	THESIS 1981 B223H_Page_013
	THESIS 1981 B223H_Page_014
	THESIS 1981 B223H_Page_015
	THESIS 1981 B223H_Page_016
	THESIS 1981 B223H_Page_017
	THESIS 1981 B223H_Page_018
	THESIS 1981 B223H_Page_019
	THESIS 1981 B223H_Page_020
	THESIS 1981 B223H_Page_021
	THESIS 1981 B223H_Page_022
	THESIS 1981 B223H_Page_023
	THESIS 1981 B223H_Page_024
	THESIS 1981 B223H_Page_025
	THESIS 1981 B223H_Page_026
	THESIS 1981 B223H_Page_027
	THESIS 1981 B223H_Page_028
	THESIS 1981 B223H_Page_029
	THESIS 1981 B223H_Page_030
	THESIS 1981 B223H_Page_031
	THESIS 1981 B223H_Page_032
	THESIS 1981 B223H_Page_033
	THESIS 1981 B223H_Page_034
	THESIS 1981 B223H_Page_035
	THESIS 1981 B223H_Page_036
	THESIS 1981 B223H_Page_037
	THESIS 1981 B223H_Page_038
	THESIS 1981 B223H_Page_039
	THESIS 1981 B223H_Page_040
	THESIS 1981 B223H_Page_041
	THESIS 1981 B223H_Page_042
	THESIS 1981 B223H_Page_043
	THESIS 1981 B223H_Page_044
	THESIS 1981 B223H_Page_045
	THESIS 1981 B223H_Page_046
	THESIS 1981 B223H_Page_047
	THESIS 1981 B223H_Page_048
	THESIS 1981 B223H_Page_049
	THESIS 1981 B223H_Page_050
	THESIS 1981 B223H_Page_051
	THESIS 1981 B223H_Page_052
	THESIS 1981 B223H_Page_053
	THESIS 1981 B223H_Page_054
	THESIS 1981 B223H_Page_055
	THESIS 1981 B223H_Page_056
	THESIS 1981 B223H_Page_057
	THESIS 1981 B223H_Page_058
	THESIS 1981 B223H_Page_059
	THESIS 1981 B223H_Page_060
	THESIS 1981 B223H_Page_061
	THESIS 1981 B223H_Page_062
	THESIS 1981 B223H_Page_063
	THESIS 1981 B223H_Page_064
	THESIS 1981 B223H_Page_065
	THESIS 1981 B223H_Page_066
	THESIS 1981 B223H_Page_067
	THESIS 1981 B223H_Page_068
	THESIS 1981 B223H_Page_069
	THESIS 1981 B223H_Page_070
	THESIS 1981 B223H_Page_071
	THESIS 1981 B223H_Page_072
	THESIS 1981 B223H_Page_073
	THESIS 1981 B223H_Page_074
	THESIS 1981 B223H_Page_075
	THESIS 1981 B223H_Page_076
	THESIS 1981 B223H_Page_077
	THESIS 1981 B223H_Page_078
	THESIS 1981 B223H_Page_079
	THESIS 1981 B223H_Page_080
	THESIS 1981 B223H_Page_081
	THESIS 1981 B223H_Page_082
	THESIS 1981 B223H_Page_083
	THESIS 1981 B223H_Page_084
	THESIS 1981 B223H_Page_085
	THESIS 1981 B223H_Page_086
	THESIS 1981 B223H_Page_087
	THESIS 1981 B223H_Page_088
	THESIS 1981 B223H_Page_089
	THESIS 1981 B223H_Page_090
	THESIS 1981 B223H_Page_091
	THESIS 1981 B223H_Page_092
	THESIS 1981 B223H_Page_093
	THESIS 1981 B223H_Page_094
	THESIS 1981 B223H_Page_095
	THESIS 1981 B223H_Page_096
	THESIS 1981 B223H_Page_097
	THESIS 1981 B223H_Page_098
	THESIS 1981 B223H_Page_099
	THESIS 1981 B223H_Page_100
	THESIS 1981 B223H_Page_101
	THESIS 1981 B223H_Page_102
	THESIS 1981 B223H_Page_103
	THESIS 1981 B223H_Page_104
	THESIS 1981 B223H_Page_105
	THESIS 1981 B223H_Page_106
	THESIS 1981 B223H_Page_107
	THESIS 1981 B223H_Page_108
	THESIS 1981 B223H_Page_109
	THESIS 1981 B223H_Page_110
	THESIS 1981 B223H_Page_111
	THESIS 1981 B223H_Page_112
	THESIS 1981 B223H_Page_113
	THESIS 1981 B223H_Page_114
	THESIS 1981 B223H_Page_115
	THESIS 1981 B223H_Page_116
	THESIS 1981 B223H_Page_117
	THESIS 1981 B223H_Page_118
	THESIS 1981 B223H_Page_119
	THESIS 1981 B223H_Page_120
	THESIS 1981 B223H_Page_121
	THESIS 1981 B223H_Page_122
	THESIS 1981 B223H_Page_123
	THESIS 1981 B223H_Page_124
	THESIS 1981 B223H_Page_125
	THESIS 1981 B223H_Page_126
	THESIS 1981 B223H_Page_127
	THESIS 1981 B223H_Page_128
	THESIS 1981 B223H_Page_129
	THESIS 1981 B223H_Page_130
	THESIS 1981 B223H_Page_131
	THESIS 1981 B223H_Page_132
	THESIS 1981 B223H_Page_133
	THESIS 1981 B223H_Page_134
	THESIS 1981 B223H_Page_135
	THESIS 1981 B223H_Page_136
	THESIS 1981 B223H_Page_137
	THESIS 1981 B223H_Page_138
	THESIS 1981 B223H_Page_139
	THESIS 1981 B223H_Page_140
	THESIS 1981 B223H_Page_141
	THESIS 1981 B223H_Page_142
	THESIS 1981 B223H_Page_143
	THESIS 1981 B223H_Page_144
	THESIS 1981 B223H_Page_145
	THESIS 1981 B223H_Page_146
	THESIS 1981 B223H_Page_147
	THESIS 1981 B223H_Page_148
	THESIS 1981 B223H_Page_149
	THESIS 1981 B223H_Page_150
	THESIS 1981 B223H_Page_151
	THESIS 1981 B223H_Page_152
	THESIS 1981 B223H_Page_153
	THESIS 1981 B223H_Page_154
	THESIS 1981 B223H_Page_155
	THESIS 1981 B223H_Page_156
	THESIS 1981 B223H_Page_157
	THESIS 1981 B223H_Page_158
	THESIS 1981 B223H_Page_159
	THESIS 1981 B223H_Page_160
	THESIS 1981 B223H_Page_161
	THESIS 1981 B223H_Page_162
	THESIS 1981 B223H_Page_163
	THESIS 1981 B223H_Page_164
	THESIS 1981 B223H_Page_165
	THESIS 1981 B223H_Page_166
	THESIS 1981 B223H_Page_167
	THESIS 1981 B223H_Page_168
	THESIS 1981 B223H_Page_169
	THESIS 1981 B223H_Page_170
	THESIS 1981 B223H_Page_171
	THESIS 1981 B223H_Page_172
	THESIS 1981 B223H_Page_173
	THESIS 1981 B223H_Page_174
	THESIS 1981 B223H_Page_175
	THESIS 1981 B223H_Page_176
	THESIS 1981 B223H_Page_177
	THESIS 1981 B223H_Page_178
	THESIS 1981 B223H_Page_179
	THESIS 1981 B223H_Page_180
	THESIS 1981 B223H_Page_181
	THESIS 1981 B223H_Page_182
	THESIS 1981 B223H_Page_183
	THESIS 1981 B223H_Page_184
	THESIS 1981 B223H_Page_185
	THESIS 1981 B223H_Page_186
	THESIS 1981 B223H_Page_187
	THESIS 1981 B223H_Page_188
	THESIS 1981 B223H_Page_189
	THESIS 1981 B223H_Page_190
	THESIS 1981 B223H_Page_191
	THESIS 1981 B223H_Page_192
	THESIS 1981 B223H_Page_194

