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PREFACE 

"This study is concerned with the aspects of data flow 

architecture. Asurvey of the·data flow architecture proposed 

by Dennis and Misunas is presented. A survey is made of the. 

semantic gap in the classical von Neumann architecture. 

Methods to represent high-level languages 6oncipts in data 

flow base language are presente"d.. .l!:~isting semantic gap in 

the data flaw architecture is studied and methods to 

overcome this gap are discu~sed. 
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CHAPTER I 

INTRODUCTION 

A. Introduction 

The short history of computing as a science is unique 

in its unp~rall~led rate of technolosical growth. In 

response to this, the demand for greater levels. of computing 

power has risen as rapidly:. Anticipating the continuation 

of this trend, research in the area of parallel computation 

seeks to achi~ve high perform~nce by manipulating programs 

to exploit the patallelism i~herent in many problems. 

It is well known ·that LSI technology is capable of 

economically producing.large numbers of similar, small and 

complex devices. rt· is equally clear that use of LSI 

technology has not ·yet provided a breakthrough in the 

computing power available in a single system. Rather, the 

best that has been accomplished is simple reduction in the 

physical size of all familiar sys~ems. 

Many computing_syste~s h~ve departed from conventional 

computer organizations ·to improve capability for concurrent 

execution. A class of such processors belong to the 

category of SIMD (SinBle Instruction Multiple Data) 

machines. For instance, 

represented by 11.LIAC IV, 

there are array 

associative processors 

t 

processors 

like the 



STARAN, and vector processors such as CDC STAR 100. These 

processors perform well only when the computation can be 

expressed in program and data structures which are easily 

mapped onto the particular machine structures. Array 

processors require that data structures be mapped onto a 

fixed structure imposed by the physical arrangement of the 

processors, such as a two-dimensional array. Associative 

processors require that data structures be linear lists of 

words so that associative operations ·on parts of these words 

can be efficient. For vector processors, data structures 

must be in the form of one-dimensional arrays to allow 

pipelining of operations on successive array elements. 

Furthermore, programs must exhibit a high degree of locality 

of reference such that a significant amount of data 

structure movement is not ne~essary during the execution. 

There are concurrent processors that belong to the 

category of MIMD (Multiple Instruction Multiple Data) 

machine. A typical realization of this form of machines is 

based on multiple processor and shared multiple memory 

organization. The predominant problem of these processors 

is that the srstem performance is based on the assumption of 

locality of reference achieved by a programmers explicit 

partitioning of a computation. Furthermore, because the 

semantics of the_ languages supported by these systems are 

based on the notion of sequential execution and operations 

which have side-effects, concurrency is achieved through 

careful analysis of programs to prevent possible deadlocks 
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and bottlenecks in memory references. 

A number of inadequacies may be noted with currently 

proposed 

including: 

and operational multi-processor computers, 

1. the poor utilization of program parallelism by the 

architecture,· 

2. an incompatibility in the way that these 

architectures and their programming languages 

represent· pa~allelism, 

3. the d"ifficul ty of 'programming the computers using 

conventional languages. 

When a closer examination is made of multi-microprocessor 

systems, it is ~o~sible to· identify three problem areas in 

their design: 

1. the possible :conteniion of concurrerit ptocesses for 

the physical resources (processors, memories, input­

output) of the .co-puter, 

2. the difficulty of partitioning the programs to be 

executed so as to maximize the utilization of the 

resources provided~ 

3. the need to supply mechanisms so that concurrent 

processes may interact to communicate data and 

synchronize their operation. 

The conventional approach to multi-microprocessor 

systems is to base their design on extensions to ·the 

inherently sequential 11 control flow" or von Neumann concept 

of a stored program computer. This organization, however, 
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may be inapplicable for multiprocessor computers. This 

design has some architectural deficiencies which were 

studied by Myers :28: in 1978. These problems contribute in 

a phenomenon known as the semantic gap. The semantic gap 

shows the difference between the concepts in computer 

architecture and high-level languages and causes software 

unreliability, performance problems, excessive program size, 

and compiler complexity. 

Two particularly troublesome attributes of the von 

Neumann model are sequential control and memory cells. 

Sequential control is troublesome since it prohibits the 

asychronous behavior and distributed control that is 

essential to a multiprocessor. It also burdens the 

programmer with the need·to explicitly specify exactly where 

concurrency may occur. The concept of a memory cell, alone 

with the idea of assigning a value, presents a difficulty 

since its existence forces the programmer to consider not 

only what value is being computed, but also where that value 

is to be kept. 

An alternative organization, namely, dataflow, exists. 

In this organization: 

1. an instruction executes when and only when all 

operands needed f'or that instruction becor.10 

available; 

2. instructions, at whatever level they might exist, 

are purely functional and produce·no side effects. 

Data flow computation is therefore 11 d11ta driven" as opposed 
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to "control d·ri ven" as exemplified by the conventional von 

Neumann machines. A data flow program may be represented as 

a directed graph with certain restrictions on 

interconnections between node~. The nodes of the graph 

represent instructions a~d the directed arcs represent path~ 

for operands •. · Data flow language is - asynchronous except 

when synchronization is explicitly specified, and in which 

values are the subject of computation rather than the 

locations where those values are kept (i.e., n6 memory 

addresses). An asynchronous language assumes computations 

are unrelated, and thus concurrent, unless otherwise 

specified. The absence of memory cells ensures that only 

simple control mechanisms are· needed to consider access to 

data, since race_~ to i•store" data never occur. Such a 

semantic basis should work .w.ell with a machine composed of 

many asynchronous coope·rating processors. 

This report dicusses the basic concepts of 

architecture propo·sed by Dennis l 11 , 1 2, 1 3, 14 J. 

includes a study of problems that occur in von 

architectures known as semantic gap [28]. 

data flow 

It also 

t~eurnann 

~hen the 

representation of high-level language concepts in data flow 

base language are s~udied and coded. Also the semantic 

problems in this architecture are dicussed. r1 inally, two 

application processes, Discrete Fourier Transform, and SIN 

function are studied and coded in data flow base language. 
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B. Literature Review 

The theoretical basis for the data flow architecture 

was established during the 1960s. In 1975, a preliminary 

architecture for a basic da~a flow architecture was proposed 

by Derinis [12]; this machine executes programs coded in data 

flow base language pr.oposed also by Dennis [ 1 3]. 

Information flow in the Dennis architecture is done through 

packet communication features piesented in 1975 [14J. 

Misunas exte~ded this model to make it suitable for handling 

data structures [24, 26j and published a- performance 

analysis of the machine (25J. In 1977, Arvind and Gostelow 

proposed a data flow architecture (6j, and both a high-level 

data flow progr.amming language and a base machine language 

[5, 7j. Mir~nker:[23] presented a method to implement 

procedures on a clas$ of data flow processors; and Rumbaugh 

[30] presented a detail~d data flow multi-procgssor. 

In 1978, a ~tructure ~recessing facility for data flow 

computers was proposed by Ackerman [1 ]; and an asynchronous 

programming language and computing machine was presented by 

Arvind, Gostelowi and Plouffe (5]. Davis proposed a 

recursively structured data-drive~ machine called DDM1 (Data 

Driven Machine if 1 ) ( 10]. Design of an arithmetic processor 

compatible with a data flow compu~er was proposed by Feridum 

[17J in 1978. An architecture for a loosely-coupled 

parallel processor was presented by Keller, Lindstrom, and 

Patil [ 21 ] . Software for a data flow computer proposed by 

Arvind was developed by Thomas Lj4J. Additional research 
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was conducted Manchester University'.by Treleaven [36J. 

ln 1979, a high-level language [2J, an intermediate 

form [22], and a machine language set were devised for the 

N. l. ~ data flow architecture; the Manchester data flo.w 

architecture · was improved l 1 6 , H3J; and the Texas 

Instruments research group proposed and built th·e first 

coI)lputer.using the data flow concepts [ 1 9, 20, ,2j. 

In 1980, a data flow architecture with tagged tokens 

was proposed by Arvind, Kathail, and Pingali [4J. Safety 

and optimization transformations of data flow programs was 

studied by Montz [27). 

analyzed by Ruth [31 }. 

Semantics of data-driven loops was 

Thomas [34] presented a performance 

·analysis of two classes of data flow computing systems. 



CHAPTER II 

BASIC BACKGROUND FOR THE EXISTENCE 

OF .SEMANTIC GAP 

In 1978, Myers [28] proposed .a new approach to the 

study and design-of compu~er archit~cture~ in his book. The 

main premise of Myers book is that the architectures of most 

computing systems have not been . designed according .to the 

computational and structural needs of high-level languages. 

·Rather than taking a global look at system functions and 

its hardware/ software tradeoff, most architects have based 

their designs on tradition and the bottom-up view of 

"minimize the cost of hardware and let the programmers solve 

all the difficult problems''·· Most of .the shortcomings 

caused are attributable to ·a phenomenon known as the 

semantic gap. 

A. Semantic Gap 

The semantic gap is a measure of ~he difference between 

the concepts in the high-level languages and the concepts in 

the computer architecture. Most current syst~ms have an 

undesireably large sem~ntic gap in that the objects and 

operations reflected in their architectures are rarely 

closely rel~ted to the objects and operations provided in 

8 



9 

the programming languages and used with them. This se6antic 

gap contributes to software unreliability, · performance 

problems, excessive program size, and compiler complexity,_ 

all of which contribute negatively to the economics of data 

processing. 

To understand the p~esence of the semanti~ gap, the 

major and heavily used concepts in high-level languages 

(PL/I, COBOL, FORTRAN) and~ comput~r architecture can be 

picked up and the relationship bcitween the two can be 

studied. As an example, we analyze PL/I and the IBM S/370. 

The example is not PL/I oriented, however, since most or all 

the PL/I concepts discussed also exist in such languages as 

COBOL, FORTRAN, and ALGOL. Neither is the example S/370 

oriented; the S/370 was selected because it is 

representative of most conventional architectures. 

The following is a list of a few major and heavily used 

concepts in PL/I (or any other language for that matter). 

The question for each is determining to what S/370 (or most 

other architectures for that matter) concepts it is related. 

A.1. Arrays 

The array is the most frequently used language data 

structure. ·PL/I ·provides such concepts as multidimensional 

arrays, performing opere.tions on entire arrays, referencing 

cross-sections ( sub-arriiys within ·arrays), and, the option 

of, ensuring that subscripts do not fall beyond the bounds 

of the array dimensions. The question is, what S/370 
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concepts directly. relate to these concepts? the answer is, 

very few. The only architectural concept that seems 

indirectly related in a primitive way is the concept of 

index registers. This means that it is left to the compiler 

to create the widely used concept of an array out of the 

rather distant S/370 instruction set. 

A.2. Structures 

A second frequently ~sed data concept i~ the structure, 

a collection of heterogen.eous. data elements (also known as a 

record in so~~ programming l~nguages). One finds absolutely 

riothing in the S/j70 that is related to structures and 

·operations performed on structures. 

A.). Procedures 

The basic program structure in PL/Ii~ the procedure 

(subroutine). A procedure call entails saving the state of 

the calling procedure, dynamically allocating and 

initializing local st6rage for the called procedure, 

transmitting arguments, and beginning execution of the 

called procedure. One finds next to nothing_in the S/j70 

that corresponds to these concepts. One exception is the. 

branch-and-link instruction, but this contributes so little 

to the procedure-chll operation .. c~ 0 of many instructions 

that must be executed) that its absence would never be 

missed (the compiler could just as easily generate two 

instructions,· load-address and branch-register, in its 
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place)~ 

A.4. Data Representation 

PL/I has decimal and binary fixed-point data 

repres~ntations (integer,fraction). The S/j70 has n6ne, but 

it does have decimal and· binary integer representations out 

of which the compiler must create the fixed-point concept. 

PL/I decimal numbers can· contain anywhere from 1 to 15 

digits, but the S/370 c~n only re~~esent decimal numbers 

with an odd number· of digits .. PL/I binary numbers can 

contain anywhere from 1 to. 31 bin·ary digits, but the S/370 

provides for only binary numbers of 15 or 31 digits. PL/I 

floating-point numbers can be declared as having 1 to 5, 
digits of signific~nce, but these must be mapped into one of 

three fixed-size S/370 repre~entations. 

This discussion could be continued indefinitely by 

looking at other PL/I concepts such as 

block structures,· controlle~- storage 

concept), generic · procedure rialls, 

string processing, 

(a push-down stack 

program-tracing 

functions, and automatic data conversion, but by now there 

is an understanding of the. semantic gap between high-level 

-language concepts and current computer architectures. The 

cause of large semantic gaps is more difficul~ to discover, 

but the usual causes are bottom-up system design and the 

computer architects lack of knowledge and appreciation of 

programming languages, what programs do~ what programmers 

do, the difficulty of program debugging, and the causes and 
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consequences of s9ftware errors. 

Uiven the existence of this large semantic gap, tha 

next step is to discuss some of its consequences. 

B. Consequences Of Semantic Gap 

B.1. Software Unreliabiliti 

The se.mantic. gap. is a significant contributer to 

software unreliability in the sense that a large set of 
.. 

programming .errors that theoretically could be prevented or 

detected by the computing system are not prevented or 

detected in current systems. A few examples suffic . 

One common programming error that arises under a large 

variety of circumstances is a reference to a variable that 

has an undefined or unset value. This error is not detected 

by most current systems; since execution continues using 

some unpredic~able value, th~ error is difficult to debug. 

Although some instances of the error could be detected at 

compilation time by doing a flow analysis of the program, in 

general it cannot be detected until execution time. Since 

conventional machines have no way of distinguishing a 

defined variable from an.undefined one, the arbhitects have, 

in effect, deferred the problem to the· compiler writer. The· 

compiler writer finds no easy and efficient solution to the 

problem; thus he or she .defers the problem to the 

application programmer. 

Some compilers have attempted to solve the problem, but 

the solution has turned out to be complicated, inefficient, 



and not foolproof. For instance, 

compiler initializes all character 

FE characters and all fixed-point 

1 3 

IBM's PL/I Checkout 

strings with· hexadecimal 

binary numbers with the 

smallest negative number and then checks for these values 

whenever these variables are referenced. However, 

does this add overhead (execution time and storage), 

not only 

but it 

can cause "errors" to be detected in correct programs and 

does not cover all data. 

A second com~on error is jefer~ncing an array element 

where one of the subscripts falls beyond the bounds of the 

corresponding· dimension. · Again, since the conventional 

machine does not recognize the structure array, the problem 

is deferred to the compiler writer. The compiler writers 

see no easy solutton, thus the problem is ignored or the 

decision is left to the application programmer by making the 

check optional. 

As an example of the overhead ·of this software check, 

IBM s PL/I optimizin~ compiler. normally generates 17 machine 

instructions (occupying 62 bytes of storage) for the 

statement 

. C(i,.j) = A(i,j) + B(i,j); 

when A,B, and Care arrays of fixed-binary elements of 

identical size. If the optional SUBSCRIPTRAhGE check is 

enabled, the comp_iler generates 75 machine instructions (274 

bytes), and 5'7 of these instructions would be executed if 

the subscripts were within the array bounds. 
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B.2. Performance Problems 

The large semantic gap also leads to significant 

performance problems because of the large number of 

instructions ~hat must be· generated by the compiler to 

implement the language concepts out of the rather primitive 

machine~instruction repertoire. This has a negative effect 

on perfdrmance because it increases the amount of 

information that must be transmitted between storage and the 

processor, and this.has been found to be a good first-order 

measure in comparing the perforoance of different machines. 

Since this effect is not widely understood, it js 

worthwhile to look at a simple example. Assume that we wish 

to add two 100 by 100 element fixed-binary PL/I arrays 

together. Hopefully we would write this as A=A+B; (writing 

nested DO loops to accomplish this is much more 

inefficient). IB~ s S/j70 optimizing compiler generates 

efficient object. code for this statern~nt: six instructions 

followed by a loop of rour instructions executed 10,000 

times. The number of )2-bit words that must move between 

memory and the processor is 40,004 (the instruction; the 

firs~ six instructions fit into foui words, and the loop 

body occupies four words) plus 30,00:, (two data fetches and 

one store for the element plus a few additional fetches) , 

for a total of 70,007. 

Although this example applies only to array operations, 

one can find analogous examples in the exce~sive number of 

instructions generated to implement almost every 
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programming-language concept on a conventional architecture. 

B.3. Excessive Program Size 

The large semantic gap affects program size in the same 

way. For instance, it was seen earlier that it takes.62 

bytes of storage to represent the statement 

C(i,j) = A(i,j) + B(i,j) 

if no subscript checking is dqne and 274 bytes if subscript 

checking is desired •. In addition to being a problem itself, 

excessive program size i~ another. contributing factor to 

system performance problems (e~g., in a virtual storage 

system, by increasing the programs, working-set sizes and 

thus increasing th~ number o_f page faults incurred). 

B.4. Compiler Complexity 

From the previous two points, 

semantic gap on compilers·· should 

the effect of the large 

be obvious; the code-

generation portion of ~~mpilers must be extremely complex to 

generate code that bridges the semantic gap as efficiently 

as possible. 

C. A Critique of the Conventional 

von·Neum~nn Architecture 

The basic reason for· the existence of the large 

semantic gap in current systems is that ·most· architectures 

are simply modifications of the von Neumann architectur~ 
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derived in the 1940s. This is not to imply that the von 

Neumann architecture was not a stroke of genius when it was 

developed. iiowever, the world has changed tremendously since 

the 1940s. The feasibility of even constructing electronic 

computers ~as still in doubt at that time, and hardware 

costs and reliability . were. of· . utmost concern; thus the 

motivation was to design as primi~ive a processor as 

possible. Also, factors that are taken for granted today, 

such as high~lev~l programming languages and the 

sophisticatlon and critic~l nature of. most computing 

applicRtions, were not even ~nvisioned at that time. 

It is col'!lmon today to talk of a class of machines as 

von Neumann machines and to say that most current machines 

belong to this class. A·von Neumann machine is said to have 

these properties: 

1. A single sequential memory. A p~ogr~m and its data 

are stored in a single· memory and the memory is referenced 

with sequential (0,1,2, ... ) . addresses. 

~. A linear memory. The memory is one-dimensional, that 

is, it has the appearance of a vector of words (or bytes). 

3. No explicit ·distinction between ins~ructions and 

data. One can, for instance, treat an instruction as data ( 

e.g., modify it), add an instruction to a data word, or 

branch to a data word and execute it as if its bits 

represent an instruction. 

4. Meaning is not an inherent part of data. There is 

nothing, for·instance, that explicitly distinguishes a set 
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of bits representing a floating-point number from a set of 

bits representing a character string. Rather, ·the meaning 

of data is assigned by program logic. If a machine fetches a. 

floating-point add instruction, it assumes that the operands 

represent floating-point numbers and performs a floating­

point addition with the 6perands. Hence one can perform a 

floating-point addition on two operands that actually 

represent.a chatacter string or an address. 

Although the von Neumann architecture was a reasonable 

design for the first-stored-program computer, it is alien to 

the executiori of programs written in high-level laneuages. 

Internal structures of data in high-level languages are 

distinguished from von Neumann machines by the following: 

1. Storage, . as represented in high-level languages, 

consists of a set of discrete named variables. With the 

exclusion of certain questionable language constructs (e.g., 

the FORTRAN COMMON area) there is no concept of one variable 

being "next" to another variable. There is no reason to 

believe that the variables in one subroutine are located in 

the same storage device as the variables in another 

subroutine. In short, the concept ·of a single sequential 

storage bears little resemblence to the concept of storage 

in programming l~nguages. 

2. proeramm_ing languages deal with multi dimensional, 

not just linear, data types (e.g., arrays, structures, and 

lists). 

In programming languages there is a sharp 
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distinction between data a.nd instructions. In a high-level 

language, there are no concepts of executing data or 

referencing instructions as if they were data. 

4. In a high-level language, meaning is an inherent 

part of data. One does not write a PL/I program as 

DECLARE A.WORD; 

·DECLARi B WOHD• ., 

A= A "floating-point add with" B; · 

Instead one writes 

DECLARE A DECIMAL FLOAT (6); 

DECLARE B DECIMAL FLOAT (6); 

A= A+ B; 

That is, in high-level languages the meaning of the data is 

associated with the data·itself, and the operators are 

generic (i.e., the meaning of 11 +" is determined by examining 

the attributes of its operands). 

Thus the attributes of a von Neumann architecture are 

not related, and are even conttadictory, to the concepts in 

languages. Intutively, · one can observe that a von Neumann 

machine is a poor vehicle for 

language programs because 

the execution of high-level-

1. Exce~sive mapping is required. in software (i.e., by. 

th~ compiler in the form of compiler-gener~ted code) to 

match the language concepts to the von Neumann view of 

storage. This has -been referred to. as "absotbing the 

structure (of the data) into the logic of the pro~ram". 

This should be apparent to anyone who· has-examined the 
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output of a compiler; the amount of code generated by the 

compiler to map the language concepts of storage and data to 

the underlying architecture usually greatly outweighs the 

amount of problem-solving code generated. 

2~ A von Neumann machine is excessively over"eneral 

(e.g.,' one can use a word that has no currently defined 

value, address anything in storage, add a.character string 

to an instruction); since this generality fortunately is 

absent from programming languages, the -compiler (and its 

generated c6de) is left with the task. of removing the 

generality arid ensuring that it ·d6e~ not interfere with the 

definition of the language; 

3. Because the concept of storage in a von Neumann 

machine is rather primitiv-e, the operations (instruction 

set) performed by the machine are constrained to be equally 

primitive. 

D. Other Undesirable Features Of 

Classical .Architectures 

Although the von Neumann model 

the large semantic gap, there are 

archit~ctural properties o~ cuireht 

to the gap. 

D.1. Binary (Base Two) Arithmetic 

is the major cause of 

·additional undesirable 

systems that contribute 

In current. machines, binary arithmetic is treated as 

almost sacred, but it almost goes without saying that humans 
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find base-two· arithmetic quite distasteful. Since proposals 

for decimal arithmetic often evoke emotional arguments, • .L. 
l 1, 

is worth exploring the traditional arguments for and against 

decimal arithmetic. 

Two arguments may be presented in favor of decimal 

arithmetic. First, stnce todays coffiputing environment is 

highly input/output oriented and since-few, if any, people 

would consider fotcing human beings to communicate with 

computers in base-two terms, current systems w~ste an 

enormous amount of· time performing conversions between 

decimal and binary representations. ~s~cond, the fact that a 

machine represents numbers.in base-two form cannot be hidden 

completely from the humani since, for instance, most 

rational decimil f~actions are represented as infinite-digit 

base-two fractions.·· This means that finite-length base-two 

numbers are often approximations of decimal numbers, a 

source of programming difficulty, 

confusing language definitions. 

programming errors, and 

The traditional arguments against decimal arithmetic 

are that it is slower than binary arithmetic and that binary 

numbers can be stored'more compactly than decimal numbers. 

The two arguments against decimal arithmetic are 

subject to question. First, one must weigh the speed of 

arithmetic algorithms against. the overhead of converting 

decimal numbers to binary and back again~ Second, decimal 

arithmetic circuits have been devised that are competitive 

with binary circuits in terms of speed and only· slightly 
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less competi.t-i ve in terms of cost; The second argument 

(space) has some merit, but it is not insurmount~ble. 

D.2. Fixed Size Storage Words 

In an architecture ~1th 

decidirtg on the word stze Js 

tradeoff facing the architect. 

fixed-size storage words, 

most difficult probably the 

If the word size is too 

small, the maximu~ value of numbers that can be represented 

is too small, fractional (e.g.,flqating-point) numbers are 

excessively imprecise, and larger addresses are needed. On 

the other hand, larger words tend to waste storage, because 

studies of the distributions of data values in programs 

indicate that values are not uniformly distributed; they are 

heavily skewed in favor· of small values (e.g.,the values 

zero and one are common, the values in the ranges 10-20 are 

more common than values in the range 59470-59480). hence 

large words waste ~torage because their high-order bits or 

digits_are likely to be zero. 

The second pr6blem with fixed-size words is that many 

languages (e.g., PL/I and COBOL) allow the proer~Dmer to 

declafe the size· 

usually vary over 

6f ~ach variable, 

a large range 

and the possible sizes 

(e.g., a PL/I decimal 

floating-point variable can be declared as having anywhere 

from 1 to 53 man~issa.digits). If the compiler is able to 

accurately map this concept irito a fixed-size-word machine. 

Performance problems (excessive generated.code) are a likely 

consequence. If the compiler designer decides that the 
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concept of variable-size data cannot be efficiently and 

accurately mapped into fixed-size words, the underlying 

machine architecture shows through and distorts the 

language. Of course, one might ~reue that languages should 

not contain this concept,. but the argument has little 

validity. The· concept assists one in defining machine­

independ·ent. languages, allowing programs to be transferred 

from one machine t.ype to another. 

D.;. Registers-

Another concept that is alien to the concepts in 

programming languages is the presence of program-addressable 

register (e.g.,· the.concept of general-purpose registers in 

the S/370). If the machirie requires the use of registers for 

all arithmetic operations :and if the number ·of registers is 

small (both are the case in most machines), the compiler is 

left with the task 6f generating code to _manage the 

registers and optimize their use. This code is extraneous in 

that it contributes nothing toward the expression of the 

source program's logic. 

Since the 1950s, except for a few machines (e.g., some 

made by Burrou~hs Corp.), the~e h~ve been no ~dvances in the 

computer architectufes of current systems. However, there 

have been some advances in 

architectures exploiting 

operations. 

the implementation of particular 

the inherent parallelism in 

During 1970s, a new approach in computer architecture 
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was proposed -by Dennis and others [11, 12, 13, 14]; it is 

known as data flow architecture. This approach is a radical 

change from the traditional von Neumann architecture and is 

a well designed system to perform parallel processing. The 

data flow approach changed the process of selecting the 

instruction for executio~, _and consequently, other related 

concepts have been changefr as follows: 

1. Execution of instructions is based on 

readiness for execution instead of.their location in 

their 

the 

program. In this approach any instruction may be executed as 

soon as all its operands become av~ilable. 

2. There is a distinction between instruction and data. 

Instructions are located in a special memory called an 

instruction memory! constants reside in an instruction cell, 

and variables are either a _portion of the instruction cell 

or float in the architecture as results. Data may not be 

treated as instructions and vice versa. 

j. Instructiori memory contains both instructions and 

simple variables , data structures are held in a separate 

memory called structure memory. 

4. Data structures ( arrays, matrices, ..... ) are 

stored in structure me~ory as binary or n-ary trees, that 

consequently, makes most of the existing methods to 

implement and handle d~ta structures invalid. 

5. Meaning is an inherent part of data. Data items 

contains a type tag which specifies its meaning. 



CHAPTER III 

BASIC BACKGROUND FOR PATA FLOW 

A. Architectu~e of Parallel Systems 

Highly parallel computer systems have evolved in a 

manner which often· necessitat~s the ~lacing of unusual 

constraints on program and data. Parallel machines such as 

ILLIAC IV and the CDC STAR. can realize their full potential 

only for data represented in array or vector formats. 

A number of methods have been developed to exploit 

simultaneous or concurrent operation, however, the 

implementation of these techniques within a traditional von 

Neumann architecture has not utilized their potential fully. 

This applies both to the various procedures for increasing 

the performance of a single processnr and those for 

exploiting multiple processors in a computer system. 

Three techniques are currently popular for increasine 

the parall~l activity within a single processor. ~hese are: 

1. pipelining of operations, 

2. overlapped memory access, 

j. instruction lookahead. 

The pipelining of an arithmetic operation distributes 

the performance of the operation· over time rather than 

24 
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space. That· is, rather than utilizing several functional 

units of a specific type to increase the processing rate, 

one larger functional unit is employed, and the operation is 

broken into a number of smaller operations which are 

performed simultaneously upon a stream of values. Although 

the performance of a single operation can actually take 

longer in a pipelined functional unit, the fact that a large 

number of operations are being performed concurrently can 

produce a very high processing rate. 

In order to utilize the technique of pipelining fully, 

the data must be represent~d as a ve6tor; if there are gaps 

in the stream of values ~upplied to the pipeline, the 

processing rate can actually be decreased from that of a 

single conventional functional unit. Current stream-oriented 

processors as the CDC STAR and TI ASC do not have the 

capability to form data into streams, that burden must be 

born by the compiler-writer. 

Dependencies betwe~n successive instructions of a 

process complicate attempts to utilize pipelining for the 

instruction stream of a processor. For example, the 

execution of an instruction which references a memory cell 

modified by a previous instruction must await the completion 

of the previous instruction. An instruction pipeline must 

detect dependencies dynamically. When it finds a 

dependency, it must either stop accepting new instructions 

or rearrange the order of execution; 

degree of concurrency is reduced or 

in either case, the 

the pipelini becomes 
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complicated. 

The technique of overlapped memory access merely 

extends the concept of pipelining to the fetching of 

instructions from memory. If the memory of a computer is 

interleaved; that is, if the memory is divided into a number 

of sections, and the instructions and data of a program are 

di~tributed over the sections, then several items can be 

accessed simultaneously. If the instructions of a program 

are arranged so consecutive instructions·are contained in 

separate memories, then instruction. fetching can be 

pipelined, and instructions can be supplied at a ver.y fast 

rate. However a problem. arises when a conditional is 

·encountered because the SY:stem does not know which of the 

set of possible succeeding instructions to fetch until after 

the conditional has be~n executed. 

The use of instruction lookahead in-a processor allows 

the exploitation of multiple. arithmetic units by decomposing 

the instruction stream into independent elements. For 

example, consider the arithmetic expression A+B + (C*D). 

The two computations A+B and C*D can be performed 

simtiltaneously in separate functional units. The IBM 360 

model 91 and the CDC 6600 have de~eloped techniques for 

exploiting this property for short instruction sequences; 

however, once again, any branching in the program disrupts 

the flow of instructions to the functional units and 

decreases the processing capability of the architecture. 

In illustration of the problems. encountered in 
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exploiting those techniques, consider the IBM 360/91. Tho 

functional capability of the processor is 70 million 

instructions per second (MIPS). However, the instruction 

decoder can only supply instructions at a rate of 16 MIPS 

using the technique of lookahead. An average incidence of 

conditional instructions reduces the performance · of the 

processor to 6 NIPS. Thus, the processing capability of the 

architecture cannot be fully realized, and with the 

lookahead of eight instructions which is used, it is 

difficult to have an adequate instruction mix to utilize the 

multiple functional units fully. 

The methods of -structuring multiple processor systems 

· and improving the performance of a processor all have 

serious drawbacks to the full exploitation of the 

capabilities of the processors. In this regard , data flow 

approach offers attractive solutions to many of these 

problems. 

B. The Dataflow Approach 

Studies of concurrent operations within a computer 

system and of ·the representation of parallelism in a 

programming language have yielded a new form of program. 

representation, known as data flow. Execution of a data flow 

program is data-driven; tha~ is, each instruction is enabled 

for execution just when each required operand has been 

supplied by the execution of predecessor instructions. 

In order- to take advantage of the parallelism inherent 
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in an elementary data flow representation, the archi~ecture 

of the elementary data flow processor was developed by 

Dennis and Nisunas L11, 12, 13, 14, 24, 25, 26]. 

The problems of processor· switching and 

memory/processor interconnection are avoided within the data 

flow architecture by -the use of interconnection net~orks 

·which have a great deal of inherent parallelism. ~ections 

of the ·machine· cnmmunicate by means of fixed size 

information packets, 

within the rietwork 

and delays in packet transmi~sion 

do not affect the utilization of the 

hardware. The interconnection netwotks are large, but grow 

at much slower rate than a crossbar switch in conventional 

multiprocessor ~ystems and require none of the global 

control circuiiry necessarf-f6r the switch. 

The structure of ·a data flow processor· al!ows a large 

number of instructions to be active simultaneously. these 

active instructions pass through the networks concurrently 

and form streams of instructio~ for the pipelined functional 

units. 

The processor does not utilize an instructibn register 

or instruction decoder in ,the von Neumann sense; an 

instruction proeeeds on its own ~hen its operands are ready 

and delivers its rj~ults to other instructions which are 

waiting for them. 1o software operating systemis necessary 

within the architectute L24J. Processor allocation, the 

formation of instr~ctions into streams for the functional 

units, and the transfer of information between levels of 
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memory is e£ficiently accomplished by the hardware of 

machine. 

The exploitation of data dependencies in programs has 

been investigated previously, indeed, such is the goal of 

the lookahead techniques utilized in architectures such as 

the IBM 360/91 and the CDC-6600. The approach taken in the 

data flow processor differs from these approaches in that it 

utilizes. a radically different concept of cooputer 

organizations which offers attractive solutions to many of 

the problems encountered in adapting van ~eumann machines 

for parallel computation,· an ~rchitecture in which 

parallelism and concurrency ~re inherent in the structure of 

the processor. 

C~ The Data Flow Language 

The data flow language presented in this section serves 

as the base language for the architecture to be described in 

the next chapter. The semantics of the language is developed 

by Misunas. 

In order to represent the exact serial/parallel nature 

and existing in6erent instruction level parallelism of ~he 

program, the directed graph representation has been selected 

as an alternative to the traditional serial list of 

instructions. The longest path thr?ugh the graph is the 

critical path which is the ultimate limit on the speed of 

execution no matter how many parallel processors are 

available. The width of the graph represents the program 
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parallelism at that point. 

A directed graph consists of nodes that represent the 

operations to be done and links that show how results move 

from operation to operation. A directed graph node denotes 

an operation to be executed ~nd is not involved with the 

sequencing mechanism. Therefore, the internal conte~ts of a 

node (opcodes, operands, subroutine calls, etc.) are 

directed by the hardware implementation of the processor 

independent of the mechanis~s that sequences that node. A 

directed graph link denotes movement of data between nodes 

and is crucial to any sequencing mechanism based upon the 

flow of data. Therefore, links are logically pointers 

·associated with each node. 

Execution of a directed graph follows the flow of data 

through the graph (hence, data flow). No instruction can 

start execution before all of its inputs arrive; no 

instruction must wait ·after its inputs and a processor are 

available. Data flow sequencing guarantees only the.minimum 

constraints necessary to assure logically correct execution. 

As soon as an instruction can correctly execute, it is 

fl~dged re~dy for executi6~. All ready instr~ctions can be 

executed in parallel, if a sufficient number of processors. 

is available. 

As soon as a result is calculated and available, it is 

immediately forwarded to each of the succeeding instructions 

that need it. An instruction never has to fetch its operand. 

All input operands are collected into th~ body of 
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instruction before it begins execution. Therefore, there is 

no extra operand fetch time needed after instruction fetch. 

The memory accesses needed to update results are done by 

dedicated hardware in parallel with useful work. The 

pending instruction list allows the n_ext instruction fetch 

to be overlapped with execution. 

C.1. Elements 

The· data flow language is composed of two kinds of 

elements, called actors and.links. An actor of language can 

be one of the following: 

- opera·tor 

- decider 

- gate 

which are represented in Figure 1. 

Each actoi has a number of input arcs which supply 

values necessary for its execution and one output arc upon 

which results are placed. A small dot or circle represents a 

link which has one input arc upon which it receives results 

fr.o:n an actor and· a number of output arcs over which it 

dist:ri but es copies of the result to other actors (:i!'igure 2). 

Values are conveyed over the arcs of the progra~ by 

tokens which are repres~nted by large solid dot~. An actor 

with a token on each of its input arc, and no token on its 

output arc, is enabled and somtimes later will fire, 

removing the tokens from its input arcs, computing a result 



(a) operator (b) decider 

(c) T-gate (d) F-gate 

(e) MERGE (f) boolean operator 

Figure 1. Actors of ·the Data Flow Language 

(a) data link (b) control link 

Figure 2. Links of the Data Flow Language 
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using the valuen .carried by the input tokens, and 

associating the result with a token placed on its output 

arc. In a similar manner, a link is enabled when a token is 

present on·its input arc, and no token is present on any of 

its out~ut arcs. It fires by removing the token from its 

input arc and associating copies of the value carrie~ by the 

input token with tokens placed on its ou.tput arcs. The data 

flow language utilizes two types of tokens: 

- data tokens 

-'control tokens 

A data token carries· a data value which is produced by an 

·operator (Figure 1a) as a result of some arithmetic 

operation. A control token is generated at a decider 

(Figure 1b) which, when th~ decider receives a data value on 

each input arc, applies its associated · predicate and 

produces either a true-or-fal~e-valued control token on its 

output arc. 

Control tokens direct t~e flow of data tokens by means 

of either a ~-gate, }"'-gata or fvj~HGE actor O'igure 1c,d,e). A 

T-gite passes a vilue on its ·output arc if it receives the 

value true at its control input arc; the received data value. 

is discarded if false is received~ The meree actor allows a 

control value to determine which of two sources supplies a 

data value to .its output arc. If the control value false 

arrives at the control arc, 

present or next to arrive at 

the merge passes on the value 

the false-in.put arc. A value 
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present at the true-input arc is left undistributed. The 

complementary action occurs for the control value true. 

C.2. Structures 

The values conveyed by tokens over the arcs of a data 

flow program are either elementary values or structure 

values, and each value has an ·associated tag designating its 

type. The set of ele~entary values E contains 

B = '.i',I,R,Q 

where 

T = truth values 

I =·integers 

R = reals 

Q = strfngs 

A structure value in a data flow program is represented 

as an acyclic directed graph having one root node with the 

property that each node· of the graph can be reached by a 

directed path from th.e root node. Each node of the graph is 

either a structure node or an elementary node. A structure 

node serve,s as the root · nod.e for a substructure of the 

structure and consists of a set of selector-value pairs 

S = (s1,v1 ),(s2,v2), •...••..... (sn,vn) 

where: 

si ,r:: IU Q 

vi E BUS U nil 
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and si is the selector of node vi. An elementary node has no 

emanating arc; - rather, an eleoentary value is associated 

with the node. A node with no emanating arcs and no 

associated·elementary value has value nil. A structure 

value is represented by a-data token 

pointer to the node of the structure. 

carrying a unique 

In Figute j the 

and c, structure contains three ··elemen~ary values a,b, 

designated by the simple selector· L and the 

selectors R.L and R.R respectively. Structure 

compound 

node C of 

structure A is shared with structure Band is designated by 

a different selector in B than in A. 

A simple selector associated with a node can be either 

an integer or a 

(indicating left 

selector is formed 

string _consisting of letters L and R 

and right respectively). A compound 

by the concatenation of a number of 

simple selectors and specifies a path through the structure 

which can be followed by applying the si~ple selectors in 

the stated order. 

A node of the structure is accessible to a program only 

if some token carries a pointer to the node or the node can 

be· teached by a directed path from some accessible node. 

Upon completion of an execution step of a program any nodes 

of a structure made inaccessible by that step are deleted 

together with any emanating branches. 

In order. to generate and perform 

structure values, a number of new actors 

Structures are created through use of the 

operations upon 

must be defined. 

CONSTRUCT actor 
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L R L R 

L R 

c1 cb 
Figure 3. An Example of Two Structures Sharing 

a Commom Substructure 
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(Figure 4). ~he. actor accepts an:elementary or structure 

value from each input and places on its output a structure 

containing the input values as components. Each input is 

labeled with the selector. in the new structure to be 

associated with the value arriving on that input. 

A value is retrieved from a structure by a SELiCT actor 

(Figure 5). The value in the input structure designated by 

the selector ar~ument is placed on the output of the actor. 

The result can b~ either an elementary v~lue or a structure 

value. If the argument of ·the actor is a multiple selector, 

the actor produces on its output the value at the end -of the 

path designated by the multiple selector. The action of the 

actor is undefined if the irip~t structure does not contain 

the specified selector(s). 

Structure values in a data flow program are not 

modified; rather, new structure values are created which are 

modifications of the OTiginal values, while the original 

values are preserved. The APPEND and DELETE actors provide 

the means of creating these new structure values. 

The structure produced by the firing of an APPEND actor 

is a version of ~he input structure which contains a new or 

modified component (Figure 6). If the. specified node of the. 

input structure has a select6r corresponding to the selector 

argument of the actor, the value designated by that selector 

in the new structure is the input value. Otherwise the 

specified selector-value pair is added to the node of the 

new structure. ldentical elements of the- input and output 
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Figure 4° Operation of the CONSTRUCT Actor 
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Figure 5. Operation of the SELECT Actor 
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structures are shared between the two structures. 

In a similar manner, the structure appearing on the 

output arc of a DBLETi actor is a version of the input 

structure in which the specified node contains one fewer 

component O'igure 7). The specified node in the new 

structure is missing the seiector-value pair designated by 

the selector argument. As with the APPEND actor, identical 

elements are shared between the input and output structures. 

c.3. Data Flow Procedure Representation 

Procedures of the language are ~epresented as acyclic 

directed graphs in a manner which is very attractive from 

both a semantic viewpoint and an implementation viewpoint. A 

data flow procedure is a data flow program with a single 

input arc over which the _argument arrives and a single 

output arc upon which result is placed. The body of a 

procedure is represented as a data structure, and the 

procedure is referenced by a token carrying a pointer to the 

structured representation.· Every procedure in the language 

is determinate that is, the same result is produced by every 

activation of the procedure which receives the same input 

values. 

To provide for ~rocedure activation and termination, 

the APPLY and RE~URN actors are introduced into the data 

flow language. The operation of these actors is shown in 

Figure 8. The APPLY actor receives two inputs, a procedure 

and an argument, which may be either an elementary· value or 
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\ I 
APPLY ~. APPLY· 

RETURN 

\ I -~ \I~ 
APPLY , 

A~ 

• 

Figure 8. Operation of the APPLY an~ RETURN Actors 
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a structure -value. Upon firing,· the actor creates an 

argument structure of the argument and the deitination for 

the result of the application, and this argument structure 

is given to the procedure as input. If no instruction 

follows the APPLY actor in the program, the value designated 

by the ·destination selector in the argument structure passed 

to the procedure is nil. Upon completion of the execution 

of the procedure, the result is sent to the specified 

destination by a RETURN actor within.the procedure body. 

The data flow representation of the following simple 

procedure is shown in Figure 9~ 

P: procedure(x) 

if X ( 5 

end P 

2 then return x 

else return x 

When the procedure of Figure 9 is applied, it receives on 

its input arc a structure c6ntaining two elements. The first 

element, designated by the selector arg, is the argument x 

0£· the procedure. The second element, dest, is the 

destination address for the result. The procedure shown in 

Figure 9 has been called with the argument 5 and the 

destination D. 

The first operations performed by the procedure are 

select operations which send the argument to the procedure 

bocty and the destination address to the return inst~uctions: 
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SELECT dest SELECT arg· 

RETURN RETURN 

Figure 9. Data Flow Representation of a Simple Procedure 
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The procedure body tests the argument to see if it is less 

than five. If so, it is squared, and the resulting value is 

returned. If the argument is ereater than or equal to five, 

the original value is returned. 

Many simultaneous acti~atioris .of a data flow procedure 

may exist as a result of concurrent or recursive 

application. In order to avoid _the possibility of 

interaction between tokens from separate activations, a new 

copy of a procedure is created for each activation, the 

argument structure is transmitted to the n~w copy, and after 

a result is returned, the copy is discaided. 

Basic definitions of elements of the data flow language 

were described ·in this chapter. The complete data flow 

architecture, internal _instruction representation and 

structure operations are discussed in Chapter IV; 



CHAPTLH IV 

AHCHITiCTURE OF T~B DATA FLOW PROCESSOR 

A.· Introduction 

The data flow processor described in this chapter is 

designed to directly' execute programs expressed in the data 

flow laneu8:ge presented in Chapter III. The structure of the 

processor is presented in two stages. The first section of 

the chapter discuqses the representation of instructions 

within the processor and the execution of individual 

instructions representing operators and deciders of a 

program. The ne~t section extends the description to 

include the processing of structures. 

B~ Instruction Processing 

The instructions of a data flow program are stored and 

executed in the instruction processing section of the 

processor (Figtire 10). Instructions awaiting execution are 

6ontained in the instruction memory. Upon becoming ready 

fo~ execution, an instruction enters the arbitration network 

and is conveyed by the arbitration network to the correct 

operation or decision unit. The results of an operation are 

distributed to the desired destination instructions by a 

distribution networki Similarly, the results of a· decision 
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Figure 10. Organization of the Instruction Processing Section of 
the Data Flow Processor 
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are distributed by a control unit. 

B.1. Instruction Representation 

The instructions of a program being executed are stored 

in the instruction memory of the processor. The instruction 

memory contains a number -Of instruction cells, each holding 

one instruction of the data flow program. Each instruction 

cell consists of a number of registers, say five (Finure 11) 

and holds the instruction in the specified format together 

with spaces for receiving its operands. An instruction cell 

is designated by an identifier which specifies a path to 

that cell through the distribution and control networks. 

Bach instruction corresponds to an operator, a decider, 

or a boolean oper~tor of a data flow program. The first 

register of an instruction -0ell holds an instruction which 

encodes in its operation code the function to be performed; 

that is, the type of actor represented by cell. The 

register specifies in its· destination field the cell 

identifier of an instruction· which is to receive one copy of 

the result. 

Bac'h other register o"f th_e cell can hold either a data 

operand, a boolean operand and one destination, or two 

destinations. A registef can'·i1~0 be empty, indicating that 

it is not used by the instruction currently occupying the 

cell. The use of the register is indicated by a USB CODE in 

the first field of the register. If four data operands are 

used in an instruction, only one destination· can be 
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C 

C 

ontains a data operand 
ontains a boolean operand and 

a destination 
contains two destinations 
not used by this instruction 

Figure 11. Format of Fields in an Instruction Cell 
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specified, and that destination must be a distribution 

instruction (Figure 12) if more than one destination is 

desired for the result. 

A register containing the components designated by an 

operand selector in an instruct~on consists of two parts, a 

gating code g1 ,g2 and either a data receiver v1 or a control 

receiver c1. The gating codes permit representation of gate 

actors -that control the reception of operand values by the 

operator or decider represented by the instruction cell. 

The meaning of the code values are as follows: 

code value 

no 

true 

false 

canst 

meaning 

the associated operand is not gated 

an_ operand value is accepted by arrival of 

a true cont~ol value; discarded by arrival 

of a false control value 

an operand value is accepted by arrival of 

a false control value; discarded by arrival 

of a t~ue value 

the operand is a constant value 

The str~cture of a data or control receiver (Figure 13) 

provides space to receive a data or boolean value, and two 

flag fields in which the ·arrival of data and control values 

is recorded. The gate flag is changed from off to true or 

false by a true or false control value. The value flag i~ 

changed from off to on by a data or boolean value according 
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Figure 12. Use of the Distribution Instruction 
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·· gate flag 

value (data or boolean) 
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true 
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no value received 
value received 

no control nalue received 
true control value received 
false control value received 

Figure 13. Structure of a Receiver 
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to the type of receiver. 

B.2. Network Structures 

To connect the instruction cells of the memory to the 

operation and decision units, a network, called the 

arbitration network, provides a path from each instruction 

cell to each operation· or decision unit. Operation and 

decision packets are transmitted from-instruction cells into 

the arbitratioi network. ~he network is c~pable of accepting 

many packets simultanously and delivers each packet to the 

correct Functional Unit. 

Upon receiving an operation packet, an operation unit 

·performs the function specified by the operation code on the 

operands of the packet and produces a data packet for each 

destination specified in the instruction. A distribution 

network concurrently accepts data packets.from the operation 

units and, using the destination address of each packet, 

delivers it to the specified instruction cell. Similarly, 

the control packets produced by a decision unit are sent to 

the control network for delivery to the designated 

instruction cells. 

A simplified structure of the arbitration and 

distribution networks is presented in ~igure 14. The 

networks are composed of three types of units. An 

arbitration unit passes packets arriving at- its input ports 

one-at-a-time to its output port, using a round-robin 

discipline to-resolve any conflicts. A switch .unit passes a 
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controlled by 

some property of the packet. In the arbitration network this 

property is the operation code, whereas in the distribution 

network , the switch units are controlled by the destination 

address. A buffer unit stores a packet until the succeeding 

switch or arbitration unit is ready to accept it. 

C. Structure Handling 

The physical representation of a structure within a 

computer system may be viewed in several different ways. One 

extreme involves implementing the structure as ·it is 

represented in the data flow model~ that is, as an acyclic 

directed graph in which each node is either a structure node 

or an elementary node. In such an implementation, each node 

of the graph occupies a:number of storage locations within 

the processor. The location(s) containing a structure node 

hold the identifiers of .the locations containing nodes which 

are successors of that node. The location representing an 

elementary node holds an elementary value. The nodes of a 

structure represented in' this fashion may be scattered 

throughout the memory iOf the processor~ Alternatively, all 

elementary values of a structure may be stored together in a. 

grpup of locations. The first few locations of the group 

then contain a mapping function which allows one to find the 

location of a specific element within the group. This method 

is often used for the representation of arrays within a 

conventional computer system. 



~he first approach has the problem that the storage of 

a structure in such a manner can occupy a great deal of 

space within the memory. Not only must the data be stored, 

but a large number of structure nodes and associated 

pointers must also be located within the memory. Accessing 

an elementary value in a graph can take a long time as a 

path is followed over the arcs of the graph to the desired 

node. On the other hand, a single structure represented by 

the second approach occupies much less room, but the 

representation of several structures in such a manner can be 

very expensive in terms df space ·since components of a 

structure cannot be shared as they can in the graph 

approach. It would seem that perhaps a combination of these 

two methods could be efficiently utilized; that is, a 

structure representation in which each node of the structure 

is a small block of data. 

C.1. Simple Structures 

The storage of structures and the execution of the 

structure actors occurs in a separate structure processing 

section within the data flow processor. The structure 

processing section consists of. a structure 

and a structure memory and· attend~nt 

operation unit 

arbitration and 

distribution networks. This section of the processor is 

viewed as an operation unit by the instruction memory; that 

is, packets specifying structure operations are sent to the 

section, and data packets are returned. The organi~ation ot 
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the data flow processor with the addition of the structure 

processing capability is shown in Figure 15. 

Packets specifying structure operations are received by 

the structure memory and the structure operation unit. 

Instructions which require the creation of new structure 

nodes are processed by the structure operation unit. The 

unit controls the performance of the instruction specified 

in each operation packet through instruction packets sent to 

the s·tructure memo~y , an4 sends as dat-a packets the 

identifiers of the resulting structures to the instruction 

processing section. All _structure. operations other than the 

allocation of a new node· ar.e · _performed within the structure 

memory. 

To illustrate the operation of the structure processing 

section of the processor, in ·this eection we shall limit our 

consideration to structur~s represented as binary trees. A 

selector of such a structure can have one.of two values, L 

(left) and R (righ~). 

A node of a structure is contained in a two register 

cell known as a structure cell and designated by a cell 

ideritifier. The two ·registsrs of the cell coijtain the left 

and right components of t~e structure, respectively; and. 

hepce no selector need ~o be stored in a register. ~he 

first field of a register is a USE CODE which indicates 

whether the ite~ stored in the secon~· field is the 

identifier of another cell or an elementary value or the 

register is empty. A memory representation of the simple 
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structure of Pigure j is presented in Figure 16. 

The structure memory is composed of a number of 

structure cells in a manner similar to the way the 

instruction memory is formed of a number of instruction 

cells. Each structure cell is capable ·of holding one node of 

a structure, and the identifier of .the cell specifies a path 

through the distribution network to the cell. 7he structure 

memory ~eceives instruction packets from the instruction 

memory and the structure operation unit commanding a 

specific strbcture cell to execute some structure operation 

upon the node located in the cell. 

Each structure cell within the structure memory is 

capable of performing one· of two operations upon the 

structure node contained. in the cell. The possible 

operations are: 

1. S~LECT. Upon ~eceipt of an instruction packet 

specifying a select operation 

r 
' SELECT dest 
< 
I s 
I 
~ 

a structure cell follows one of two procedures, controlled 

by whether sis.a simple or componnd selector. 

a. Ifs is a ·simple selector, the content c of the 

register designated by sis used to form a data 

packet 

1-~ dest 
I 

C 
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which is presented to the arbitration network for 

transmission to the instruction processing section 

of the .processor. 

b. Ifs is a compound selector s1s2 •... sn, the content 

B of the register designated by s1 is the identifier 

of some other structure cell and is used to form the 

2. 

instruction packet 

B 

i SELBCT · dest 'i 
! s2 ..... sn 
'-

which is present~d to the arbitration network for 

transmission to the input distribution network of 

the st~ucture memory. The process is then repeated 

with the selector s2 at structure cell B. 

ALTER. The receipt of an ALTER instruction 

(· y ... 
I 

' 

ALTER 

' s ', ·, f 
I 
I 

j' X ! 
i 

! I I . 
\.. b .) 

.:ndicates that the structure cell· is to contain a 

copy of the node B with the component of B 

designated by the selectors set to x. Pirst, a 

copy of node Bis retrieved from ihe memory. Once 

the copy of B is present in the Cell, the value· 

contained in the register designated by the sele~tor 
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sis chaneed to x, and the use code of the register 

is set to the apprripriate value (elem, struc, or 

empty), designated by the tag of x, and the result 

is linked to Y. 

The format of an instructibn packet received at the 

input distribution network of the structure memory differs 

from the format of an operation packet transmitted to a 

functional unit of the structure operation unit due to the 

fact that the. operation code of an instruction packet does 

not control the switching within the distribution network; 

rather, the cell identifier is used· to direct an instruction 

packet toward the correct. structure cell. Hence, an 

instruction pa~ket in the distribution network has the 

following format 

A 

i 

where A is the identifier of some structure cell in the 

structure memory and i specifies one of the two operations 

which can be performed by a structure·cell and contain the 

necessary operands. 

Packets· containing instr~qtions that desi"nate 

structure operatio~s are {rans~itted to the structure 

processing section of the processor from the· instruction 

memory. A packet specifying a select instruction is 

transmitted directly to the structure memory as an 

instruction 

representing 

packet. 

the other 

Structure 

structure 

operation packets 

instructions are 
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transmitted to the structure operation·unit. The necessity 

of processing each operation packet within the structure 

operation unit is due to the required allocation of one or 

more free structure cells for the execution of each 

instruction with the exception of the select instruction. 

The structure operation unit performs the allocation of a 

free Cell simply by accepting the identifier of a cell over 

the unid port in structure operation unit. 

~6w that we have considered ·the operation of a 

structure cell within the structure memory, we can describe 

the execution of each of the remaining structure actors 

merely by listing the procedure followed by the structure 

operation unit in processing the instruction. }'or the 

purposes of this discussion, it is assumed that all 

selectors are simple selectors. 

A CONSTRUCT instruction 

r CONS':(RUCT dest 

{ s 1 : A 

I s2: y 
. '- .I 

specifies that a new node is to be created with components A 

and Y, designated by the selectors s1 and s2. '£he 

instruction is implemented by the structure operation unit 

as a number of ALTBH operations in the following manner: 

1. Accept an identifier B from the unid port. 

2. Transmit to the structure memoiy the instruction 

packets 
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6:5 

I 
,. ') 
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r 
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l s1 

r 

and < s2 " I I 

i 
I 
i 

A 

I 
y I 

! 
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l '-

transferring the values A and Y to the correct 

registers of B. 

3. Transmit t9 the instruction proc~ssing section the 

data packet: 
r ~ 
. dest 1 

i . ( 
I. B I 
l . ) 

An operation p~cket containing an APPEND instruction is 

the following format: 
,. 

l ' APPEND dest 
i 
I I I 

~ 
s 

r l X 

A J 
wheres is the selector of the element·-in structure cell A 

which is to be ieplaced by x in the new structure. ~he 

procedure foilowed by the structure operation unit to 

execute the instruction·is·as follows: 

1. Accept an identifier B from the unid port. 

2. Transmit the instruction packet 

f B 

I ALTER 

' s I 
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I X : 
I I 

! I 

L A j 

to the structure memory to copy node A into cell B 

and change the component of B designated by the 

selector s to·· x. 

3. 1ransmit to .the instruction processing section the 

data packet: 
' ; 

dest 
;· 

B ) 

An operation packet specifying a DELETE instruction 

J 
DELETE dest 

.., 
; 

·S ,.. 
' 

I 
I A L _; . 

is processed in a si~ilar manner: 

1. Accept an identifier B from the unid port. 

2. Transmit the instruction packe~ 

r 
' B 

ALTER I 
I 
i 

<( .s ' { 

0 

. A I 

' 
to the· structure memory, indicating that the use 

code of the.register designated bys in cell Bis to 

be set to ENPTY. 

3. Transmit the data packet 
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to the instruction processing section. 

C.2. ~xtension to More Complex Structures 
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The extension of the described techniques for the 

implementation of data structures to larger and more complex 

structures is straightforward. In order to implement 

structures with a fixed maxi~um nu~ber of arcs emanating 

from each node, the size of a structure cell is increased to 

accomodate the new node .Size. The use of arbitrary (to a 

fixed maximum size) integers or character strings as 

selectors can be accomodated through the addition of a 

selector field to each register. A structure cell must then 

have the capability to choose from the node contained in the 

cell an item whose selector matches a specified selector. 

These extensions allow the representation of fairly powerful 

structures. A further extension to allow a node to have 

arbitrary number of emanating arcs introduces a great deal 

of complexity since it might be necessary to use several 

cells to hold the identifiers of all cells which contain 

successors of the node. To avoid this complexity, a node of 

a structure in the data flow processor is of fixed size, and 

each arc emanating from the node has a fixed size selector 

associated with it. 



CHAPTER V 

IMPLEMENTATION OF HIGH-LEVEL LANGUAGE· 

CONCEPTS. IN DATA FLOW ARCHITECTURE 

AND ~XISTING SEMANTIC GAP 

A. Data Representation· 

Data representation and arithmetic processing of a 

~ighly parallel, asynchronous data flow computer should be 

designed in a manner qompatible with the architecture of the 

computer. The data flow within the· processor occurs in terms 

of packet flow. Packet format consists of a group of bytes 

(8 bit ~ach) travelling sequentially a~ong byte-width 

channels. Hence, a. convenient way to manipulate or examine 

these packets is to provide byte-serial operation units 

[ 17]. 

The arithmetic processing unit 

arithmetic which uses algorithms 

properties: 

uses signed. digit 

with the following 

1. The operation can begin before the operands are 

availab.le in compJ..ete form, 

2. The first result -digits are ·produced (most 

significant first) after a certain number of result 

digits are available. 

For example, in the addition operation, the most significant 

66 



67 

result dieit is available after thP f:rst operand digits 

arrive. This is made possible by the property of Signed 

Digit arithmetic that limits carry propagation to adjacent 

digits. As a result, the processor accepts bytes of input, 

and produces output bytes, consistent with the structure of 

data packets in the data flow computer. Pipelining allows a 

high byte processing rate. 

A~1. Signed. Digit Number Hepresentatidn 

Various options for number 

available for fast arithmetic.· 

representations are 

Conventional number 

representation such as ·2s complement are such that for an 

arbitrary base~, 

chosen from the 

each digit of a number can haver values, 

digit- set (0,1, ... ,r-1). 'fhese 

representations have ·the property that carries generated by 

the summation of digits can propagate from right to loft 

along the whole number, e~i., 999+1 = 1000. This property 

limits digit-by-digit. computations to representations where 

the least significant digit is available first; otherwise 

the result can only' be obtained as a ~hole. 

lets consider the operatic~ ( 986j + 0199·) 

For example, 

1. two digits at a·time, 

right to ·1eft 

63 + 99 = 62 

98 + 01 = .99 

100 62 

result available 

2. two digits at a time 

left to right 

98 + 01 - 99 

63 + ·99 = · 1 62 

10062 

result available 
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in parts as a whole 

The arithmetic processor designed for data flow computer is 

a byte-level pipelined processor with on-line properties 

i.e., a processor that would receive operands as bytes and 

output the result$ also as bytes, in both cases most 

significant byte first. Such algorithms exists for Signed 

Digit number representation. 

A signed digit number system ia a redundant system, 

i.e., each nµmber cari have more than one representation. For 

a chosen baser, this can be achieved by allowing each digit 

to assume more than r .values. For example, a symmetric digit 

set of 2r-1 elements -a, ... ,-1 ,0,1 , ... a where a=r-1. This 

representation .is called maximally redundant, and it is the 

largest possible digit set for the chosen base. For example, 

for base 8 arithmetic, the maximally redundant signed digit 

set is S = -7, ... ,-1 ,0,1 , ... ,7, while the conventional 

digit ·set is A= 0,1,.· .. ,7. Hence ·A is a subset of S. 

Using the digit set S, redundancy can be shown: 

0.6432 = 0.7432 = 0.744b 
8 8 8 

Characteristics-of signed digit numbers are as follows: 

1. A signed di~it nuCTber Xis represented by n+rn+1 

digits x (i=-n,~ .. ,o, ... ,rn) 
i 

r=integer base, 

2. X = 0 if and only if all x =0, 
i 

m -i 
and X =Lx. r where 

-n 1 

j. 8ign(X) = Sign of the most significant digit, and 
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4. Inverse o.f X, i.e. -X is:obtained by changing the 

sign of each x in X. 
i 

Since fixed format floating-point operations are 

used, representation of the number X can be redefined as 
-i 

consistine of m dieits x (i=1 ,2, ... ·tm) so that 
m 

X=LX r. 
1 i 
point 

i 
This way there are no digits to the left of the radix 

t~o~ definitions for para1lel addi'tion and subtraction are 

given as follows: 

1. Addition of digits z ,y is· parall~l if 
i i 

a. Sum digits is a function of only z , y and the 
i i i 

transfer digit t from the (i+1)th position -on the 
. . i . 

right (:Pigu.re 17),_ i.e., s = f(z ,Y ,t ). 
i i i i 

b. The ·transfer ·digit t is a function of z and 
i+1 

y only. 
i+1 

2. Subtraction is done· by .negating the subtrahend 

according to property (4) above and then adding, so 

-that z -y =Z +y. . 
i i i .. i 

The transfer digit . t is the carry generated when the 
i 

digits are added. Sirice rtegative sums can be used, there 

can be negative carry as well. 

(T,0,1) as values. 

Therefore, t can assume 
i 

Interim sum digit, w, is defin~d t6 be a subsum such 
i 

that: 

z + y = rt . ·+ w ( 1 ) 
i i i-1 i 

and sum digit 

s = w + t (2) 
i i i 
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Figure 17. Signed Digit Addition 
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Since t = (T,0,1) and since 8 must also be in the 
i i 

same digit set as z and y (namely s < r) , the w < r-1 
i i i i 

because otherwise (w +t )" will not be in the digit set s. 
i i 

For example, using r=8, lw I < 
i . 

r-1 = 8-1 =7 

fort =1 and for unallowed value w =7, 
i i 

s =t +w =7+1=10 
i i i 

which is clearly not in S 

So far nothing has been said about the base limit, 

however because of t~e restriction on fw I, it can be seen 
i 

that r=2 is not allowed. For base 2, 

lw I < r-1 =1 · 
i 

If fw l=O, then there is not- to satisfy z +y =1=2t (from 
i 

Eq. 1 ) • Therefore, 
i 

signed 
i i i 

digit representation and 

algorithms are valid for r)2. 

Advantages of using Sined Digit number representation 

are as follows: 

1. Carry propagation chains in a conventional number 

representation are eliminated because s. is a 
~ 

function of adjacent digits. Since there is no 

operand width carry, addition and subtraction time 

is independent of operand precision. 

2. Most significant digits can be available before 

least significant. ones and they can be processed 

further befor~ an operation ends. Hence computations 

can begin before all of the· dig~ts are available, 

and therefore digit level pipelining is possible fo~ 

arithmetic operations using sined digit number 
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representatiQn. 

Disadvantages of using signed digit number 

representation are as follows: 

1. ~he adders are more complicated and therefore 

' require more ·hardware than for example 2s complement 

adders. 

2. Nachine representations of numbers are larger than 

in conventional machines because of the digit set 

ch6sen, which requires an extra.sign bit for each 

digit. 

For the arithmetic pr6c~ssor designed for data flow 

computer, base-8, fixed format, floating-point, sined digit 

representation is used. The digit set chosen is maximally 

redundant and consists of 15 integers 

(-7, ... ,-1,0, 1, ... ,7). ·· ·Machine representation is chosen as 

16s complement base-8 binary form where each digit occupies 

4 bi ts (Figure 18) The-refore two digits from an 8-bi t byte 

and the purpose of the·design is ·,to acheive a byte-level 

pipelined, "two-digit-at-a-time'' arithmetic processor. 

As in a11· floating-point numbers, an exponent and 

mantissa are required. A sign bit for the whole number is 

not necessary: the sfgn of the numb.er is the sign of the 

mo~t significant digit of the mantissa. 

represented by a binary byte (8-bit): 

~he exponent is 

one bit is the 

exponent sign and sevin bits form the exponent, · giving an 
+127 · +114 

exponent range of S- (approximately 5 x 10- ). Larger 



73 

Given base-8 Signed Digit set 

s (7, ... ,T,0,1, ••• ,7) 

possible machine representation (16s complement) 

0 0000 

1 0001 I 1111 
-

~ 0010 2 1110 

'J 0011 3 1101 

4 0100 4 1100 

5 0101 3 101-1 

6 0110 6 1010· 
-

7 0111 7 1001 

Floating-point number representation 

number .7346 E+2J 

exponent o[~ . 
· ~ :;.a value 

sign 

. mantissa 0111 001111001010 

Figure 18. Machine Bepresentation of Numbers 
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exponents can be. obtained by the addition of uore bytes as 

required. Conventional binary representation is used for the 

exponent because it makes exponent manipulations such as 

overflow ahd underflow detection easier. The format for the 

mantissa is ~elected as 4. digits or 2 bytes. The small 

number of digits is for clarity; increasing the precision 

does not change the structure of the processor. 

Various operations result in either an error or in 

other special conditions e.g. exponent overflow, divide by 

zero, etc. When these are detected, they can be either 

handled through an error routine, or be unreported and 

indicated as a special result ·value (operand). Since the aim 

is to design ·a fast processor, error routines are not 

appropriate due to the fact that in a pipelined asynchronous 

system, it is hard to. find means to report the error. 

therefore, various speqi_al operands are defiried 

± or.> (infinity for overflow cases) 

±~ (O+~:rnd 0- for underflow cases) 

E (error, for indefinite cases) 

These operands can be represented~by special exponents 

and·s~nce these Bxponent~ are processed first, unnecessary 

operations can be discovered early. ·For example, for base-8. 
+120 

number formQt, one can limit the ~xponent range to 8 • In 
+121 121 

this case 8 would be overflow, while 8- be underflow. 

To the remaining 12 possibilities, the following Values may 

be assigned 

exp·.- ±123 := .±.. oo 



exp:= +125 := +e 

exp:= 127 := E 

When a special operand is detected, 
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the normal 

operation is not completed, rather a special operand is 

selected and sent out as a result. For example let N be a 

normal operand, then: 

+E - N = -N 

E * (-oo )=B 

0 - (-oo) = + 

o I (+oo)= o 
This method is used in the CDC 6600. 

Special operands can also be used or created in case of 

overflow occuring after an operation. In such cases the 

sign of the special operand is chosen to be the sign of the 

over or underflow result. 

A.2. Arithmetic operations 

In this section normalization, addition-subtraction and 

multiplication algorithms used in an arithmetic processor 

for a data flow computer are described. 

A.2.a. Normalization. In floating-point arithmetic, 

normalization is basically the adjustment of a result to a 

speqified format. A normalized number is such that the most 

significant digit of its mantissa is non-zero, i.e., for 

mantissa m and baser, 

-1 
r < 1ml < 1 

An exceptio~ to this rule is the zero mantissa (the number 

0) ~ 
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Usually in machine arithmeti~ involving conventional 

number representation, the result is ready as a whole and 

the normalization is done as follows: 

1. lf· there is mantissa ov~rflow then right shift.the 

mantissa digit; increment the exponent, check for 

overflow. If there is no overflow ~ack the 

exponent and mantissa according to the.format. 

2. If the most significant 

non-zero, then pack 

according to the format. 

digit of the mantissa is 

the exponent and mantissa 

3. If the most significant digit of the mantissa is 

zero then left shift the mantissa, decrement the 

exponent, 

underflow, 

repeat until 

zero or the 

check for· underflow. If there is no 

check the new most significant digit; 

eithet the most significant digit is 

exponent underflows. · Then pack the 

exponent and mantissa. 

before normalization. 

The zero.case is detected 

In the arithmetic processor designed for a data flow 

computer, the result is not available as a whole. Rather, 

digits are available one-by-one (in the ~dd~r-subtracter) 

and two digits at-a-time (in the multiplier). Since the most. 

significant digits arrive first, this does not change the 

above algorithm, except that no shifting is done. For 

example given .result 1 .87J4 B+72 in an on-line addition­

subtraction operation~ 

.1 E+73 · mantissa overflow, increment exponent 
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. 18 E+73 

. 187 .E+73 

.1873 E+73 done; exponent and mantissa packed 

As seen above, normalizing involves also the 

construction of the mantissa according to the format. In 

some cases, exponent overflow or underflow may occur during 

such operation. In .the overflow case, ±oO is sent out 

according to the sign of the mantissa overflow digit. lf 

there is underflow, then all result digits have to be 

examined for the sign until a non-zero digit is found; then 

+e is sent out according to the sign of' this digit. 1',o r 

example let ~+100 be overflow and E-100 be underflow, then: 

·r. 7344 £+99 .17344 E100 negative overflow 

therefore result -----~!9> - 00 

.000345 r.;.:..~8-:> ~00345 B-99 

~ .0;45 E-100 underflow 

therefore result ____ .,.._. + E 

Unfortunately all zero results cannot be detected 

easily in a digit-by-digit environment and therefore can 

cause unnecessary normalizing ~peFations. 

method of handling these is to: 

The proposed 

1. Provide mechanisms to check operands pre-operation 

to discov~r zero-result cases, ~.g. U+O, 10*0, and 

2. Continue normalizing post-operation until the last 

result digit is produced. In this case a zero 

exponent and zero mantissa can be packed and sent. 
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For case 1, 789*0 = 0 can be detected before the operation 

is performed. For addition and subtraction, there can be 

pre-operation detection of all zero operands only, i.e. O+O. 

A.2,b, Addition and Subtraction: . Signed digit addition 

and subtraction has been described previbusly, What follows 

is an algorithmic description. 

Given operands Zand Y, signed digit addition is done 

at two levels. First 

w + rt - z + y 
i i-1 i i 

where z and y are ith digits df Zand y respectively ( i 
i i 

digits right of the radix point, t is the transfer digit 
i-1 

and w is the interim sum digit). 
i 
The second level produces the ith sum digit: 

s = w +;t 
i i i 

Since lw I < r-1, a value for lwmaxl, the lareest magnitude, 
i 

has to be selected, In this design,· wmax is chosen to be 

r-2. ~ow a stepwise ~escription of addition can be made: 

,. 
2. 

Add z to y to obtain X 
' 

i.e. X =Z +y . 
i i i i i 1· 

Generate the transfer digit t using s and 
i i 

where wmax < r-1. 

-a. If x > wmax, there is positive carry; i.e. 
i 

t =1 • 
i-1 

wmax 

b. If -wmax < x < wmax, then there is no carry; i.e. 

t =0. 
i-1 . 

i 

c. If x <-wmax, then there is negativ~ carry; 
i 

ti-1 =-1. 
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j. Obtain ith inter i1:1 sum digit w : 
i 

w = X - rt 
i i i-1 

4, 1''inally, compute ith sum digit: 

s = w + t 
i i i 

Figure 1 9 summarai zes the above. · It . should be noted 

that usinft this algorithm, given ith operand digits\ and 

~' ith sum digit si is produced when ti is available, 

is to say when (i+1)st digits are available. Once 

which 

s 
i 

is 

produced, it can be used up in ·another process before s 
i 

is available. Initially w is zero so that carry produced by 
0 

the first most significant digits and indicates 

overflow; i.e. if s0 t= O,· · then there is no overflow. 

Subtraction is done by negating the subtrahertd. 

In the adder-subtracter, bytes will be produced. ~ince 

a byte is two digits,-a two aigit para~lel adder can be used 

as shown in Fieure 20. · Only variation is the ex~ension of 

the transfer digit of A2 to B1 to enable sequential byte-

level addition. Computation sequence is indicated next to 

each port in Figure 20, For example let lwmaxl < 6, also 

let the digit set be maximally r~dundant , given Z = .651] 

and Y = 0,4714 the sum is: 

1. 6 + 4 = 12 w =0 
0 

t =1 
0 

w =~ 
1 

s s 
0 

1 
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2. 5 + 7 = "2" 
t = 0 2 

1 
w = "2" 

2 

3. 1 + T = o 

t = 0 2 
·2 

w = 0 
3-

4. ;i + 4 = 7 

t, = T 
3 

w = 
4 

t = 0 1 
4 

RESULT 0.6513 + 0.4714 = 1 .2211 

A.2.c. Multiplication. An efficient algorithm for 

signed digit multiplication is used in design. Following is 

a description of the algorithm 

Operands·are defined as 

m -i 
X =L x r 

1 i 
and 

m -i 
Y =LY r 

. 1 i 

As explained previously; this representation has no digits 

to the left of the radix point. 

Let X and Y be the j-digit ~epresentation of X and Y 
j j . 

respectively. In other words, let 

j -i -j j -i -j 
X =[: x r = X + x r and Y =L y. r = Y + y r 

j 1 i j-1 j j 1 i j-1 j 

In an on-line environment, X and Y are considered as the 
j j 



z2 Y2 

I 

' ' I ' 

A1 A2 

to W1 t1· w2 

wo=O 

I I ' I 1/ 1 1 

Bo Bi 

I I I 

Let K digit position to ~he right of the radix point 

Ak : zk+yk-~ 

if ~ > wmax ~- tk_1=1 

if -wmax < ~ < wmax ==+ tk-i,;;; 0 

if \ < -wmax ====- k-i = -1 

Figure 19. Parallel Signed Digit Adder 
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t 2 

' 

B2 

' 



m z1 @ Y1 § z2 ~ . 
A1 A2 

§ w1 § to § WO @ 0 
-.... 

I 

B1 B2 

~ S1 S2 so 
so 

Note O shows input or output at a given porl 

Figure 20. Double Digit Parallel Adder Modified for 
Byte~level Computation 
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Y2 

t1 
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available parts of X and Y respectively on the jth step. Now 

the partial product 

X Y = (X + x 
j j j-1 j 

-j 
r ) (Y +y 

j-1 j 

-j 
r ) 

-j -2j -j 
= X y 

~-1 j-1 
+ X y r + x y r + x Y r 

j-1 j j j j j-1 

= X y 
j-1 j-1 

-j 
+ r ( X y + 

j . j 
y X ) 

j-1 j . 

Defining P to be the scaled partial product, i.e. 
j j 

P = X Yr , then 
j j j 

p = p 
j j-1 

+ X y + y X 
j j j-1 j 

(3) 

(4) 

from Eq.3 abov~. Using this and the fact that P0 = 0, the 

desired result can be obtained by · 

n 
P = X.Y.r 

n 
(5) 

This algorithm can be. used for non-redundant numbers 

where the result digi'ts are available least significant 

first in order to cope with carry propagation requirements. 

Since the interest is on-line computation, a new algorithm 

can be derived for Signed Dieit ~ultiplication with the on-

line property, where_ input and outputs are obtained most 

significant digit first. 

Using the symmetric and maximally redundant digit set 

S, the following new algorithm can be written using Equation 

( 4) : 



W = r(W · - d ) + X y 
j j-1 j-1 j j 

where digits d are in S, and 
j 

d = Sign (W ) * t1w .1-j+ 
j j . J 

+ y X 
j-1 j 

1/2 

The result of multiplication can be expressed as. 

-n n -i 
XY = r ( W ~ d ) + L d r 

n n ·1 · i 

( 6) 

In order to meet the restrictio~ that d be in S, the 

operand bounds are limited so that for maximal redundency, 

IXIIYI < 1/4 

Figure 21 illustrates the ·algorithm. 

What has bee~ described sb far is a digit-at-a-time 

multiplication algorithm.· For the design proposed for data 

flow computer, a two-digit-at-a-time algorithm is required 

and this can be made .. possible by slightly modifying Eq. (6). 

Since digits arrive as p~irs, .partial operands are redefined 

as follows: 

j -2i · -2j 
X =LX r = X· + r X and 

j 1 i j-1 j 

j 2· ·-2j. - l 
y =L_Y r = y + r /,y 

j 1 j j-1. j 

Using the sµme derivation method as before, 

algorithm is defined as follows: 

w 
j 

2 
= r (W -d ) + X y + Y· x 

j-1 j-1 j j j-1 j 
.and 

the new 



I ~ ~1 I x2 I xJ 11· • • L I xj-i I ~,j I 
X. 

J 

Y. 1 J-

) 

I Y1 I Y2 I YJ · I \···~.____,_.___-yj-1 y. 
J 

op2 

opJ 

Sign w .. · Llw.l+! J 
J . J . 

r(w .-d .) 
J J 

] 1igure 21 • Signed Digit Multiplication 
OJ 
\J1 
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-n .n -2i 
XY = r ( W -d ) + 2 .. _ d r 

n n 1 i 

The new algorithm produces d s that are digit pairs 

where each 'digit is in~. Operand bounds still apply, i.e. 

IXI III < 1/4. Signed digit multiplication procedures using 

single and double digits is ·shown in Figure 22. 

A.2.E_. Data Type Specification .. The data flow computer 

supports are boolean, integer, and real data types. It is 

obvious why these types were chosen as the basic data types 

for data flow computer. Boolean values are required for 

control, and both integer and real data types are needed for 

performing practical computations. 

Multiple precision and complex data types are not 

allowed because of storage· limitations in the instruction 

cell, Their infrequent use, and their requirements for a 

more complicated processing unit. Character operands are 

not permitted because they typically occur in character 

strings, which should be handled by Strµcture Processor and 

kept in structure memory. 

Boolean values will be represente~ in one byte, 

integers and reals in four bytes. The first byte of each 

representation contains an .error bit. If the error bit is 

on, the error value is specified in the first byte. If the 

error bit is off, the operand is a standard boolean, 

integer, or real value. 

Since there is no control flow to interrupt in data 

flow programs, proerammine errors are handled by generating 



let X = 0.02510 and Y ~ 0.12910 

j X, ,yj X. Y. 1 X.y. Y. 1x. SUM w. d. 10(w.:-d.) J -J J- J J J- J . J J J J 

0 e 0 .o .o .o • o .o o • 0 o. 

1 0 1 .o .o .o • o .o o . 0 o. 

2 2 2 • 02 .1 .04 .2 .24 0.24 0 2.4 

3 5 9 .025 .12 .225 .6 .825 . 3.225 3 

w3-dfo.225 

result can be obtained as digit pairs, i.e. by d1 ,d2,d3and ( w3-d3) 

therefore, X.Y = 0.003225 

(a) Signed Digit Multiplication Using Single Digits 

-j x. y. X. Y. 1 Xjyj Y. 1x. SUM w. d. 100(w.-d.) J J J J- J- J J J J J 
6 00 00 .o .o o.o o.o o.o 00~ 00 00 
1 02 24 .02 .oo 0.48 o.oo o.48 00.48 00 48. 
2 34 63 .0234 .24 1.4742 8.16 9.6342 57.6342 58 

result, X.Y~0.0058365~ 

(b) Signed Digit Multiplication Using Double Digits 

Figure 22. Two Procedures for Signed Digit Multi.plication 



special error values. The error values are: 

boolean undefined 

integer 

real 

undefined 

positive/neg~tive overflow 

unknown 

zero~divide-

undefined 

positive/negative overflo~ 

positive/negative underflow 

unknown· 

zero-divide 
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The element "undefined" results when operand values are not 

in the domiin of an operator. The elements 

"positive/negative overflow" denote values, positive or 

negative, too large to be represented in the representation 

of the type used. The element "unknown" indicates the result 

of a computation that has exceeded the capacity of the 

implementation, but whose true value is not known to be out 

of range. The elements "positive/negative underflow " 

denotes non-zer9 values, p~sitive or negative, tbo small to 

be represented in the re-presentation of data type. A table 

of error values-is represented in.Figure 2J. 

B. · Iterations 

B.1. Introduction 

Before discussing iteration (loop) st~uctures it is 



89 

VALUE NAME 

1000 0010 unknown 

1000 0011 undef'ined 

1001 1100 positive-overf'low 

1000 1100 negative-overf'low 

1001 0100 positive-underf'low 

1000 0100 negative-underf'low 

1000 0001 zero-divide 

Figure 23. Error values 
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useful to establish. some terrninolo~y. By the term loop in 

high-level languages we mean a control construct which 

somehow enumerates a set of values for a loop-index or a 

loop-condition. and which· performs a. fixed sequence of 

statements (its body), . once for each value of loop-index or 

until the loop-condition is not satisfied. 

A loop may contain one or more loops within its body. 

The inner loops are said to be nested within the outer 

(enclosing) loop and the structure as a·whole is called a 

nested loop structure. £ach enclosure defines a different 

level of the nested loop structure. The degenerate case of 

a nested loop structure, where there is no loop in the body 

· of the outer loop, is•. called a single-level loop, since 

there is only one loop level. 

B.2. Loop-construct 

A loop-construct consists of some initialization code, 

a body which may be_ex~cu~ed several times, and some exit 

code. ~here ·ar-e different loop-constructs in high-level 

languages (PL/I, FORTHAN, COBOL). Execution of a program 

loo~ in. high~level languages is controlled by the DO 

statement. Differe~~ DO statements existing in PL/I are the. 

major concern of this 1:1tudy. 

One of the PL/I DO statements has the following format: 

I TO 
exp-2 BY exp-3 1 

DO index-var = exp-1 

e~p-2 J 
i l BY exp-) TO 



statement 

END 

in which a loop-index designated by "index-var" is used to 

control the number of iterations. Loop-ind~x initially 

contains the ·computed value for "exp;....1". After· each 

iteration the value of loop-index is adjusted by the 

computed valµe of "exp-3" and compared with the computed 

value of "exp-2". 1he decision to continue or .terminate the 

iteration is based on the result of this comparison. 

An example .of this DO statement is as follows: 

DO 1=1 TO 30 BY 2; 

VOL=j.1416 * 1**2; 

PRINT VOL; 

END 

This code segment may be .. expressed in a lower-language 

notation as: 

1=1 

LOOP: V01=1*3.1416 

VOL=VOL*l 

PRINT VOL 

1=1+2 

IF (1 < .31) GO TO LOOP 

Using this notation the different segments of the loop-
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construct can be easily distinguished. Generally, this DO 

format 

(i.e.' 

uses a loop-index with a specified initial value 

1) which is incremented by an incremental value (a 

signed integer) after each iteration and compared with the 

final value (i.e., .50). If the final vaJ.'..l.0 is reached the 

loop is terminated and control value is passed to the next 

instruction in the program logic, otherwise, the new value 

of the loop-indei is conveyed to the·body of the loop for 

further computations. 

To tran~fer both the initial and adju~ted values of the 

loop-index to the body of the loop, a M:ERGE gate may be 

used, in which the false input receives the initial value of 

the loop-index· (since all control values are initially 

false), and the true input receives the adjusted value of 

the index O'igure 24a). 

After each iteration the value of the loop-index is 

adjusted by the incremerital value. This segment of loop­

construct may be represe.nted in data -flow base language 

using an actor (Figure 24b). 

Finally, the new value of the loop-index· should be 

compared with the final ·value.· 'l'his . segment may be 

represented by-a decider gat~, ~hich current and final 

values of the loop-index are its inputs ( :C'igure 24c). The 

comparison operator may be one of the following: 

< 

> 



adjusted 

value of 

loop-index 

(a)· 

final value of 

loop-index 

initial incrementa 

value of value 

loop-index 

(c) 

(b) 

old value of 

loop-index. 

adjusted value of 

loop-index 

Figure 24. Data ·Flow Actors Used to Represent Loops 
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= = 
<= >= 

The result of the comparison is a control value (true or 

false) which ~pecifies the·status of the loop (terminated or 

not).· The control token is then c·onveyed to the MERGE gate. 

Note that the comparison operator should be selected such 

that the ·re:sul ting true value of the control token·could 

cause the continuation of the loop. A copy of the control 

token is sent to the instruction immediately following the 

loop-construct in the ~rogram logic. A complete data flow 

code correspr.nding to the program segment discussed before 

is shown in Figure 25. 

A more elaborate example of an indexed nested loop 

constr~ct is presented in:the following program segment: 

DO I=1 TO 11 BY 2; 

Ivl=I**2; 

DO J:30· TO 1' BY -1; 

K=f.i*J**2+1; 

PRINT K; 

END; 

END; . 

This PL/I nested loop-co.ns.truct may .be expressed in a lower­

language notation as follo~s: 

1=1 

J=30 
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T F 

print 

Figure 25. Representation of a·Single DO Loop in Data 
Flow Base Language 
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LOO PO M=I*I 

LOOP1 K=M*J 

K=K*J 

K=K+1 

PRINT K 

() =J-1 

IF' (J >= 1 ) GO· TO LOOP1 

1=1+2 

IP (I <= 11 ) GO TO LOO PO 

The corresponding data flow-code is represented in Figure 

26. 

There is another form of DO statement in PL/I which 

instead of using a loop-index to specify the number of 

iterations uses an expression whose value can be converted 

to a truth value and as long as its value is true the 

iteration is continued~ This form of the loop-construct has 

the following format: 

DO WHI~E (expressiori); 

statement; · 

END; 

The followinB code segment is an exacple of the DO WHILE 

form of the loop-construct in PL/I: 

/* This progr~m computes and prints SIN-(x) for a 



Figure 26. Representation of a Nested DO Loop in Data· 
Flow Base Language 
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given x with 8 digits of accuracy. 

SlN=O; 1=1; FAGT=1; TBRM=X; 

DO WHILE ( TBHM > 1 .O E-9 ); 

SIN=SIN+TBRM; 

FACT=FACt*(I+1 )*(1+2); 

TERM=(TERM*X**2)/FACT; 

l=I.+2:; 

END;· 

PRINT SI:N; 
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*/ 

The loop-construct may be expressed in a lower-level 

language notation ~s: 

LOOP: 

SIN=1 · 

1=1 

1''ACT=1 

TEHi·t=X 

IF (TBHM >' 1 .o~~6) GO ~o OUT 

SIN=SIN+'rERM 

1=1+1 

1"ACT=!t1 ACT*I 

I=I+1 

FAG.T=PACT*I 

TERH=TERM*X 

TERM=TERN*X 

TERM= T .l£R}1 / E' ACT 

GO TO.LOOP 

OUT: PRINT DIN 



T F 

Figure 27. Data Flow Code to Perform SIN 

print 

\.0 
\.0 
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The corresponding dnta flow code is represented in Figure 

27. 

C. Data Structures 

In this section some basic data structures are studied 

on the implementation level in· two types of computer 

architectures, conventional ·von Neumann and data flow. On 

the logical level; a data structure is a set of primitive 

data elements and other data structures, together with a set 

of structurai relations among its components. 

Difference in implementation of data structures in two 

different architectures arise from the difference in logical 

structure of the memories. In conventional von Neumann 

architectures memory is sequential, qne dimensional block 

with the appearance of a vector. The only'data structures 

that may be implemented directly in these architectures are 

linear lists. Structural relations in other data structures 

are implemented by compilers using basic properties of 

logical memory, and as it was discussed before, this mapping 
.· 

is one of the reasons of exfsting of the semantic· gap. 

The data flow architecture proposed by Dennis uses 

binary tree representation as the.basic logical structure of 

the structure memoty. Since the basic logical view of 

memory in this archite6ture is different from the von 

~eumann architecture, all mapping procedures of data 

structures should be changed or modified to cope with the 

new logical view of memory. 
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In the following sections the major and widely-used 

data structures in high-level languages are examined 

carefully. The mapping procedures used in compilers written 

for van Neumann architectures are represented, and new 

procedures to map data.structures onto data flow structure 

memory are proposed. The data structures which ~re major 

copcern of this study: 

arrays 

stacks 

queues 

Q.1. Arrays 

An array·is a collection of elements of some fixed 

type, laid out in a k-dimensi6nal rectangular structure. A 

measure of the distance along the structure is called an 

index, or subscript, ~nd the elements are found at integer 

points from some lower limit to some ~pper limit. An 

element of an·array is named by giving the name of the array 

and the value of its index. 

c.1.a. Allocation And Mapping. In conventional von 

Neumann architectures if tha size of the array is known at 

compile time, then it is expedient to implement the array as 

a block of consecut"ive .words in cemory. If it takes k 

memory units to store each data element, then A(i), the ith 

element of the array A begins in location 

BASJ:: + k*(i-LOW) 
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where LOW is the lower bound on the subscript and BASE I~ 

the lowest numbered memory unit allocated to the array, that 

is, BASE is the location of A(LOW). A compiler recieves the 

following information from array descriptor in high-level 

program: 

the data type (i.e., one-dimensional array) 

the element type (i.~.,-integer, real, 

or character) 

the number of memory units per element 

the lower limit on subscript range, and 

the upper limit on subscript range 

In the case where everything is of fixed si~e, all of 

this information is available in the symbol table at compile 

time. Thus the compiler can generate a reference to any 

element of an array by determining its offset from the base 

of the array. 

A two dimensional array is normally stored in one of 

the two forms, either row-major (row-by~row) or column major 

(column-by-column). FORTRAN uses column-major form; PL/I 

uses row-major form. Figure 28 shows the i:nplementation of a 

2x3 array called A in (a) row-major form· and (b) column­

major form. 

In the case of 

major form, with 

a two-dimensional array stored in row­

lower limit of 1 in each dimension, the 

location for A(i,j) can be calculated by the formula: 



LOOATION 

BASE 

BASE -* 1 

BASE+ 2 

BASE + 3 

BASE t 4 

BASE+ 5 

· LOC·a.TION 

BASE 

BASE+ 1 

BASE+ 2 

BASE+ 3 
BASE+ 4 
BASE+ 5 

(a) Row-major Form 

ARRAY ELEMENT 

A(1,1) 

A( 1,2) 

A(1,3) 

A(2,1) 

A(2,2) 

A(2,3) 

ARRAY ELEMENT 

A(1,1) 

A(2,1) 

A(1,2) 

A(2,2) 

A(1,3) 

A(2,3) 

(b) Column-major Form 

Figure 28. Two Porms to Represent a Two 
Dimentional Array 
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BASE+ k*((i-1)*r + j-1) 

where k is the number of memory units per element and r is 

the number of elements per row. In column-major form the 

formula is: 

BASB + k*((j~1)*c + i-1) 

where c is the number of elements per column. 

Row-or column-major forms may _be generalized to many 

dimensions and to arrays with a lower bound of subscript 

other than 1. The generalization of row-major form is to 

store the elements in such a wat that, as we scan down the 

block of storage, · the rightmost subscripts appear to vary 

fastest. Column major form. generalizes to the opposite 

arrangement, with the leftmost subscripts varying fastest. 

In the data flow architecture a binary tree is the 

basic logical representation of structures and other data 

structures must be mapped by compiler to a binary treew To 

implement a data structure in data flow base language, the 

compiler should map its descriptor to a (pointer,selector) 

pair. An array is declared in· a high-level language by a 

(name,dimension) pair. An array name may be directly used 

to create a_pointer to the.root of the associated binary 

tree. The dimensions of the array may be used to realize the 

length of the selector which identifies individual elements 

of the array. In the case of one-dimensional arrays,. a 

binary representation of the index. may be used as a 

selector, interpreting Os as left and 1s as right with 
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slight modification in index. Por eiample consider the array 

declared us A(16). First A may be used as a unique pointer 

to the root of binary tree representation 

A ---z..-~.>l~o 
Then the number of bits required to represent 16 aifferent 

ind i c e-s ( 4 ) specifie~··. the riumbe~ of elements in the 

selector. The followirig al~orithm gen~ralizes the mapping 

algorithm for one-dimensional arrays: 

create a pointer to an ~!located cell 

using the name of the·array 

find v such th-at 

V-1· V 
2 < dimension of array<= 2 

Then v is the number of elements in the selectors used to 

reference the array. To reference each individual element of 

the array, its index -is first decremented by one and then 

its binary repre~entation is used as a selector. The mapping 

algorithm may be generalized as follows: 

decrement index by,. 

convert index to av-bit binary number. 

use binary representation of the index as ·a 

selector (inter~reting Os as left and 1s as 

right) 

Por example references to the elements of array A may be 

shown as: 



array e.lemP.nt 

A ( 1 ) 

A(2) 

A(3) 

A(15_) 

A( 16) 

selector 

1111 

11LR 

L1RL 

HRRL 

RHHR 
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The complete structure of the array A is shown in figure 29. 

Multidimensional arrays may be mapped using the above 

procedure with some modifications. The name of the array 

may still be used . as a pointer to the root node of the 

binary tree. In this case, the c~ncatenation of indices may 

be used as a selector. -The allocation algorithm may be 

represented as follows: 

create· a pointe~ to an allocated cell 

using the name of the array 

find v and w such that 

V-1 V 
2 ·. < first dimension o:t:' the array·< 2 

w-1 w 
2 < second dimension of tne array< 2 

Then v+w is the number of elements used in the selectors to 

reference the array. For example, array B(3,3) is pointed 

by a pointer B, and two bits is assigned to represent each 

index. The mapping algorithm may be represented as follows: 



A 

Pigure 29. hepresentati·on 

Of' A(16) 



decrement first index by 1 

decrement second index by 1 

convert indices to binary 
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concatenate binary representation of the indices to 

form the select6r (interjr~ting Os as left and 1S as 

right) 

use the selector and pointer B to address the element 

Note that the concatenation procedure determines the 

allocation type. If row index represented. first, the 

allocation is row-major;· otherwise it is colu~n-major. 

References to array Bin row-major form is as follows: 

array element 

B(1,1) 

B(1,2)_. 

B(3,2) 

·B(3,3)-

selector 

LL LL 

111H 

RL LH 

RL RL 

The complete structure of array B_is shown in figure 30. 

Some high-level pr.ogrc1:mr.ifng laneuages like PL/I aJ low 

zero or negative indices.· If the index range· starts with 

zero the first step of the mapping al~orithm (decrementing 

index by 1) is eliminated. If index range starts with a 

negative intecler the index should be decremented by the­

starting value of the index. Let array A be declared as: 



E· 
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dcl A(m:n) 

where m and n are signed integers, then the allocation 

algorithm may be generalized as follows: 

use the name of the array as a poiter to 

the root node 

compute n-m+1 and find v such that 

V-1 V 

2 < ·n-m+1 <= 2 

represent any reference to the array A by v bits 

Similarly the mapping algorithm may be generalized as 

follows: 

decrement index by m 

convert index to av-bit binary number 

use converted binary number as a selector to 

reference the elements of the array 

The allocation· and mapping of the multidimensional arrays 

may be generalized by few modifications. · Let the two-

dimensional array B be declared as follows: 

dcl B(m:rf,p:q) 

Where m,n,p, and q are signed int~gers, then the allocation 

aleorithm may be gerieralized as follows: 

use the name of the array as a pointer to the 

root node 

compute n-rn and q-p and find v and w s~ch that 
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V-1 V w-1 w 
2 < n-m+1 <= 2 ~ < q-p+1 <= 2 

represent any reference to ~he array Hin v+w bits 

Similarly the mapping algorithm may be generalized as 

follows: 

decrement first index by n 

decrement second index by p 

convert first index to av-bit binary number 

convert second index to aw-bit binary number 

concatenate two numbers to form the.selector 

Although the proposed mapping function for 

multidimensional arrays is the easiest method, it is not the 

best. When thij ·index ranges are not actual powers of 2, the 

depth of the binary tree grows oore than it is required to 

represent ull elements of the array. Consider the array 

A(3,17), using the concatenation method 7 bits (2 for rows 

and 5 for columns) are required to represent the selector 

and the tree will grow up to 7 levels. however, A containns 

only 51 elements that may be represented in 6 levels. To 

reduce the depth of the tree, a nathenatical function may be 

used to map the indices to the range of product of the 

subscript ranges. Assune nrray A declared e.s A(m,n), then 

element A{i,j) may bP. selected by the selector 

binnry equivalent of ( (i-1)*n+j-1 ) 

This method needs 4 urithmetic operations to ~np an index to 

the corresponding selector. The concatenation method uses 
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only two simple mathematical operations (subtractions). 

Since speed is the major goal in the design of the data flow 

architecture, the first approach seems more attractive. 

C.1.b. Operations. The array operations normally 

consist of accessing and/~r modifying an individual element 

or a specific group of elements of an array and may be 

categorized as follows: 

accessing/mod~fying an individual element 

accessing/modifying a .specific row or column of a 

matrix 

_ accessing/modifying the whole array 

Methods of ·mapping the i~dividual elements of an array 

have been discussed previously. Accessing an individual 

element follows the previo~sly described methods; converting 

indices to a proper selector, and using that to reference 

the element. The SELECT actor is us~d ~s a basic operator to 

activate architectures structure handling mechanism to fetch 

and transfer referenced.element. For example, the data flow 

code segment shown in lt'igure 31 a is used to reference A( i). 

Individual ·elements ml;iy be.modified using the ALTER basic 

operator whic~ modifies an individual elemsnt designated by 

a specific selector to the given value, the result is 

another structure. lt'or example, to modify the value of A(i) 

to 5, the data flow code segment shown in lt'igure 31 b is 

used. Since modifying element(s) of an ~rray includes 

accessing too, only the modify algorithms and the associated 



11 2 

only two simple mathematical operations (subtractions). 

Since speed is the major goal in the design of the data flow 

architecture, the first approach seems more attractive. 

C.1.b. Operations. The array operations normally 

consist of accessing and/or modi£ying an individual element 

or a specific group of elements of an array and .may be 

categorized as follows: 

accessing/modifying an individual element 

acces~ing/modifying a specific row or column of a 

matrix 

accessing/modifying the whole array 

Methods of mapping the individual elements of an array 

have been discussed previously. Accessing an individual 

element follows the previously described met~odsi converting 

indices to a proper selector, and using that to reference 

the element. The .SELECT actor is used ~s. a basic operator to 

activate architectures structure handling mechanism to fetch 

and transfer referenced element. For example, the data flow 

code segment shown in FiBure 31a is used to refefence A(i). 

Individual el~ments may be modified using the ALTER basic 

operator which modifies an individual element designated by 

a specific selector to the given value, the result is 

another structure. For example, to modify the value of A(i) 

to 5, the data flow code segment shown in Fi~ure 31b is 

used. Since modifying element(s) of an array includes 

accessing too, only the modify algorithms and the associated 



i 

A 

\ 

(a) Access A(i) 

A 

\ 
ALTER 

(b) Modify A(i) 

Figure 31. Codes to Access/Modify an·Individual 
Element of Array A 
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code segments· are represented in next sections. 

Some programming languages allow reference to a 

specific group of items (a row or column). A reference to a 

special row or column of a~ array may be done by keeping one 

of the indices fixed and changing the other index from the 

lower limit of the corresponding dimension up to the upper 

limit of that. For example, · con'sider the array. A declared 

as A(4,6), then a ~eference as A(2,w) is interpreted as a 

reference to all elements of the. second row and A(*,3)is 

interpreted as a reference to all elements of the third 

column. The following dpde segment r~presents an example of 

this type of array reference: 

dcl A(3,6),B(4,6) 

A(2,*)=2*B(*,;S) 

Thi~ process may be represented in detail as 

i=1 

loop: A(2,i)=2*B(3,i) 

i=i+1 

if (i<7) go to loop 

The corresponding data flow code.is shown in Figure 32. 

Reference to the whole array is possible in some high-

level protsramminf$ languages by using the name of the array 

without any index. Conside-r the followin~ code segment: 

dcl A(j,4),B(3,4),c(3,4) 



T 

·.ALTER 

convert 
to a 

A selector 

SELEx:JT 

Figure ;,2. Data Ii'low Code to Perform A(2,*)=2*B(*,5) 
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C=A+B 

In the above program, the statement C=A+B is equivalent to 

the following code segment 

i=1, j=1 

loop: C(i,j)=A(i,j)+B(i,j) 

j=j+1 

if (j<5) go to loop 

j = 1 

i=i+1 

if (i<4) go to loop· 

The correspondi.ng data flo'W ·code is shown in :l!"'igure 33. 

C.2. Stacks 

Stack is a sequence of items, which is permitted to 

grow only by special disciplines for adding and removing 

items at its endpoints. A~ the name sta6k suggests, it is 

conventional to think of the items in a stack as being piled 

on top of one another,: with the most recently inserted item 

at the top and the least rece~tly inserted item at the 

bottom.· Deleting the topmost item is often called popping 

the stack, and inserting a new item on the top is often 

called pushing the i~em onto the stack. There are two 

different methods to implement a stack; linear 

implementation, in which stack is treated as a sequential 

list of items together with a pointer (stack pointer) which 
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c2 
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\ 
A 
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c1 

SELECT SELECT 

C 

c2 \ c1 

ALTER 

--Figure 33. Data Flow Code to Perform C=A+B -.J 
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and linked 

representation, in which elements of stack are linked to 

each other. Figure j4 represents these methods. 

Since· in data· flow architecture, basic structure 

representation is the binary tree, stacks should be mapped 

onto a binary tree. To manipulate a stack, two pieces of 

information are required~ ¥irst a pointer to the top of the 

stack, second a-method to update the pointer so that it 

always points to the most recently in~erted item. The 

structure representing the stack is always pointed by a 

pointer say S. Stack manipulation may be performed using 

sequential stack manipulation rules, that is, initializing 

·stack pointer to zero, inrirementing it by 1 after any 

insertion (PUSH) , and decrementing by 1 before any deletion 

(POP). Using this method the numeric value of the stack 

pointer may be used as a selector to select the topmost 

element. The value of the stack pointe~ should be saved 

either together with pofnter s (pointer to the root of the 

structure) · or in root node of the structure (by adding one 

more field to the root). Assume that the stack pointer is 

kept together with the pointer s, then for stack P, 

structure pointer looks like 

p 

root node 

stack pointer 

As previously- discussed, the initial va.lue .of the stack 
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Linear Representation 
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Figure 34·. Stack Allocation Methods 
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pointer may be set .to zero. ~he·dimension of the stack 

(~aximum number of elements in stack) specifies the length 

of the selector. Por example, when the· dimension is 

specified as 16, the m~ximum length of stack pointer would 

be 4 elements varying from 0000 to 1111 (interpreting Os as 

left and 1s as right). Usirig these assumptions glgorithm 

for pushing an item into· stack is as follows: 

convert stack pointer to a selector 

APPEND the topmost i tern us.ing the selector 

increment stack point~r ·by 1 

For example, lets stack P with· maximum length oi 16 be 

· empty, then inserting items a,b,c,d,e into stack produces 

the structure represented_ in Figure 35a. 

Algorithm to pop an element from a stack is as follows: 

decrem~nt 1 from stack pointer 

convert stack pointer to a selector 

SELECT the element using the selector 

DELETE .the element 

For·example, poping the two t6pmost elements from stack Pin 

:Pigure 35a produces a structµ:re shown _in Figure 35b. Special 

conditions like . over.flow .or underflow of the· stack may be 

handled by checking the value of stack pointer with the 

lower and upper limits of the stack boundary, i.e., zero and 

15 in case of stack P. The data flow code segment to push 

and pop an element is illustrated in lt'igur.e 36. 



p 

(a) PUSH Items a,b,c,d, and e Into Stack~ 

p 

(b) POP items e and d from St~ck P 

Figure J5. PUSH/POP into/from Stack 
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Figure 36. Data Flow Codes to Perform PUSH and POP Operations 



Selector may be constructed using another method: 

initialize stack pointer to 1(R) 

concatenate a L(R) to stack pointer after any PUSH 

delete a ~(R) from selector before POP 
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Using this method, the structure grows on one side not like 

a complete binary tree, consequently,· the depth of the tree 

is higher than the previous case and search time increases 

accordingly. The length of the selector is much longer in 

this case but the ~elector processing routine is much 

simpler. The number of memory spaces used to hold data 

items and structure pointers decreases. For exrrmple, to push 

items a,b,c,d,and e, selectors L,LL,111,1111, and 11111 are 

used. Structure produced using this method is represented in 

Figure 37. 

C.j. Queues 

A queue is a sequece of items which grows under special 

disciplines. Items ~re added to the rear of queues and 

deleted from the front, this is analogous to a waiting line. 

Methods presented to implement a stack may be used in queue 

implementation with sligh~_modifications. 

To implement a queue two pointers are required to point 

to the front and rear of-the queue. These pointers may be 

saved together with the pointer to the root of the structure 

representj~~ the queue. For a linear implementation of a 

queue, both of these values may be initialized to zero. The 
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Figure 37. Stachk Constructed Using Non-linear Concepts 
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value of these pointers is incremented/decremented by 

after any insertion/deletion of an item to/from the queue, 

and the value is used as a selector to access the iten. The 

dimension of the queue is used to realize the length of the 

selector. The insertion algorithm is as follows: 

convert Qrear to a selector 

APPEND item to tree using the· selector 

increment Qrear by 

The deletion algorithm is as follows: 

convert Qfront to a selector 

select i~em from queue using the selector 

DELtTE the item pointed to by Qfront 

increment Qfront by 

Special conditions like overflow and underflow may be 

handled comparing the values of Qrear · or Qfront with the 

boundaries of queue. ]'or_ example lets assume queue Q has at 

most 8 items, then associated selector consists of 3 

identifiers. The values of Qfront ·. and Qrear are initially 

zero, then the s~qu~nce of operations: 

·insert a 

insert b 

insert c 

d~lete 

insert d 

insert e 
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1.insert a 2. insert b 

Q 

0 

). insert c 4, delete 

Q 

1 2 4 

G 
5. insert d 6. insert e 

7. delete 

Figure 38. Structures Produced by a Sequence of Insertions 
and Deletions into and from Queue 
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delete 

produces structures shown in Figure 38. 

The concatenation method may be used to construct 

selectors for queues, but a slight modification is required 

in deletion algorithm. The deleted element ma~ not be 

actually deleted unless the queue is _reconstructed making 

root node point to the·Qftont and modifying Qfront and Qrear 

accordingly. Since these operations take a considerable 

amount of time and the data flow computer is intended to be 

as fast as possible architectu!e, this method is not an 

appropriate one. 

D. Procedures 

In sequential programming languages, the abstraction 

obtained by using procedures is a useful one. The ability 

to define and call procedures is a great assest in a 

programming language. procedures: 

Permit modular design of programs, by allowing 

large tasks to be broken into smaller units. 

Permit economy in size of programs and in the 

total ptogramming effort, since similar.computations 

need be specified 6nl~ once. 

Add extensibility to a language, since operators 

can be defined in terms of procedures, which 

can then be used as functions within expressions. 

One problem arising from the introduction of procedures 

is that a method of transmitting information to· and from 
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procedures must be defined und established. 

In data flow base language APPLY actor is used to call 

a procedure. It has m inputs, n outputs and is labeled with 

a procedure name P. The APPLY actor when enabled to fire, 

substitutes for itself a copy of the procedure whose name 

matches that of the actor. This action takes place only if 

a procedure exists with name P and the· pr.ocedure has the 

same number of inputs and dutputs as the actor. 

To completely understand how the APPLY actor works, the 

enabling condition, the ~echanism for transmitting input 

values to the copied procedure, and the return mechanism for 

results must be defined. There are two alternatives: 

1. The APPLY actor is enabled, as soon as its first 

argument token is arrived. It· then copies the procedure (a 

procedure copy is ·called an instantiation) ·and passes 

argument tokens as they arrive. An argument is passed by 

absorbing a token from an input arc to the APPLY, and 

placing a copy of.~t onto the procedure instantiation s 

corresponding input links output arc. ~he HETUHN actor 

copies output value~ from the procedure copy as sbon as they 

become available on the output links and the corresponding 

link to the calling Program is em~ty. When values from each 

output link have be~n returned the copy is destroyed. 

2. The APPLY actor is enabled only when all its 

argument values have arrived and its output links are empty. 

When these two conditions are met, the procedure is copied 

and tho argument tokens are passed. When all argument 
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tokens are available.they are copied by the HETUHN actor to 

the output arcs of the APPLY actor. The copy of the 

procedure is then destroyed. 

In both cases .it is assumed that then input links are 

numbered left to right, 0,1 ,··~,n-1, for both the APPLY 

actor and the procedure it invokes. The jth link of the 

APPLY is associated with the jth. link.of the procedure it 

invokes. 

fashion . 

The m output links are .treated in a similar 

. The semantics of the two 

activation are quite different. 

APPLY actor can be ·thought of 

a~proaches to procedure 

·In the first approach an 

as replaced inline by the 

·graph of the procedure it invokes. In the second approach 

an APPLY actor behaves exactly like a primitive function, 

except that it. may have multiple outputs and computes a 

function that is not necessarily in the · repertoire of 

primitive functions. The first approach is called immediate 

copy rule (ICR), and the·second is called deffered copy rule 

(DCR). The DCH most closely corresponds with one s idea 

that a procedure is some ·~ort of a functional abstraction, 

wheteas the ICH iS more like a macro·e~pansion. The DCR has 

the advantage of simplicity of implementation .. It also lends 

an additional hom9geneity t6 the set of actors, since its 

enabling rule is that -of· a primitive fu~1ction. rfowever, the 

ICR clearly allows greater parallelism than DCR. 

The ICR has one potential problem. Suppose an argument 

token arrives· on the jth link and the execution of some 
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procedure is initiated. Consider what happens if another 

argument arrives on the jth link before the previously 

invoked copy of the procedure terminates. In order to be 

consistent another copy' of' the procedure· must be created and 

this newly arrived token oust be passed to its input. Thus 

the APPLY actor must "keep track of" an arbitrary number of 

concurrently executing instantiations of the.procedure, and 

this poses some serious implementation questions. If we can 

demonstrate for ever~ APPLY aqtor A that 

V (i,j) IP(i)-P{j)I<= 1 

0 <= i,j <= number of inpu~s of A 

where 

P(i) = number of tokens that have arrived on the 

ith input of· A 

for any configuration of a data flow program, then we can 

show for any APPLY actor A of a data flow program that at 

most one instantiation · ~an exist at any time, and 

consequently the .state information is bounded. In general, 

' data flow programs do not exhibit this behavior~ However, 

certain large sy~tactic subclasses of data flow programs 

satisfy the above arc condition. One such· class is known as 

well formed data· flow programs. Besides having the above 

property, a well formed data flow prograo, when it 

terminates, will be in its initial configuration. In 

particular, the .only tokens left on the arcs of a terminated 

program, will_be the initial "F" tokens on the gating inputs 
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of MEHGt gates of iterative loops. 

A procedure implementation scheme was ~ropnsed by 

Miranker [23] based on ICR approach. This procedure is 

rather simple, and overhead in terms of storage, or extra 

packets in the system, is almost zero The deficiency of this 

scheme for procedure implementation is that it supports a 

rather primitive form of the.APPLY actor only one input 

and one output. Multiple input values and multiple output 

values could be encoded as structures. However, such a form 

of procedure invocation would be undesireable because it 

would limit the degree 0£ parallelism achievable. 

E. Semantic Ga~ ·in Data Flow Architectu~e 

Data flow co~puter architecture proposed by Dennis is 

designed to perform about 200 Megaflops (million floating-

point operations per se~ond). Since speed was the major 

goal in this design, ·architecture deficiencies leading to 

semantic gap have not been r~solved. The semantic gap in a 

data flow computer and existing solutions to reduce this 

problem is studied in this section. 

Logical memory structure is one of the properties of 

the conventional computers which contfibutes in causinu the . 0 

semantic gap~ Incompatibility of lin.ear rnem·ory structure 

·with data structures presented in high-level languages cause 

performance probleus and excessive program size. Memory of 

the data flow computer is separated into two different 

parts, instruction memory and structure memory, with 
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different logical.str.uctures. 

Instruction memory is composed of fixed size 

instruction cells. During execution of a data flow program 

most of the nodes fire once. A. laige number of nodes of the 

program will not fire at all if any decider is present. Thus 

it would be wasteful t·o assign· an 'instruction cell" to each 

instruction of a procedure: when the_procedure is activated. 

To solve this problem the instruction p·roc·ess1.ng section of 

the data flow computer incorporates a multi-level memory 

system such that only the active instructions of a program 

occupy the instruction cells of the processor. 

The use of a multi-level memory system within each 

. section of the data flow proces.sor requires that the 

instruction memory and s~ructure memdry act as caches for 

the most active instructions and structure nodes. For 

application of the cache principle to the-architecture, the 

instruction and ~tructure cells of the processor are 

organized into groups of cells, known as cell blocks. 

A pa_cket destined · for the instruction memory or 

structure memory· can no longer identify its destination by 

use ·of a cell identifier. The identifier i~ divided into 

two parts, a major ·address·and a minor address, 

containing a pnrtion of the identifi~r~ 

each 

All instruction cells having the same major address 

belong to the corresponding cell block. Thus, the 

distribution and control networks use the major address to 

direct data packets and control. packets to the appropriate 
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instruction cell blocks. ~he packet delivered to a cell 

block includes the minor address, which serves as an 

identifier for that packet within the cell block. 

Al though multi-level r.1emory reduces the size of the 

activ~ memory, it causes some. implementation 

Tables which are used to indicate '.the status of 

problems. 

each.node 

(free, engaged, and occupted)~ minor address of the node, 

~nd the oantlidatis for displacement by more active nodes 

occupy considerable space and delays memory access 

considerably. Node access and placement algorithms becomes 

very complicated and slow. 

An instruction cell in instruction memory is composed 

of five registers capable of holding at most four operands 

at the same time. lncreasing the number of registers helps 

to decrease the packet tr~vel time through arbftration and 

distribution networks and· to save memory spaces used to 

represent complete operation in more small cells. The 

proposed instr~ction cell· can hold at most 8 destinations. 

When an in~truction requires more destination fields, one or 

more extra distribution instructions must be used to convey 

results to · all destinations. Since distribution 

instructions fire only after the completion of the 

instruction and distribution of the result, it takes as many 

rlistribution instructions required extra cycles to 

distribute result. Consequently, all instructions waiting 

for results must wait more extra time than re~uired. A large 

memory cell provides enough room to hold more pointers .and 



prevent the delay time. 

solves above problems, 

1 34 

Although a lar 0 e instruction cell 

it causes space waste for short 

instructions. A variable size instruction cells may be used_ 

as a compromise. 

Structure memory is composed ·ot structure cells. B~ch 

structure cell is capable of holding one node of _a structure 

contained in a two register cell. The two registers of the 

cell contain the left and right components of the structure, 

respectively. This organization us~s a binary tree as the 

basic logical structure of the structure memory. 

Data structures used in high-level languages may not be 

represented directly in the memory, then special mapping 

functions must be used. The allocation and mappin° function 

was discussed pr~viously~ Including this packages in 

software (i.e., compiler) increases program size and packet 

travel time in a network tremendously. An alternative is to 

add these capabilities to· structure processing section of 

the computer. _ 

By increasing the number of structure processing units 

and adding a special processor to determine the type of the 

process and distribution of the instructi6n among units, 

structure processing time decreases conside--rably (Pigure 

39). Special purpose processing units (array, stack, and 

queue) perform allodatioi and mapping algorithms discussed 

previously. Ring type networks of structure memories and 

structure operation units increases cuncurrency specially in 

operations. 
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The arithmetic processing unit of a data flow computer 

uses signed digit number representation to perform 

arithmetic operations. Although, this representation 

enables system to .take advantag~. of ·ser_ia.l properties of the 

representation, the computation time is not very impressive. 

Complex arithmetic·is not available and must be handled by a 

compiler using multiple 

Multiple-precision·arithmetic 

algorithm is proposed. 

real arithmetic 

is left out and 

operations. 

no division 

Although data .flow architecture is a radical and 

attractive approach 

shortcomings. The 

to computet architecture, 

principles· of Dennis 

·it has some 

data flow 

architecture was discussed in this chapter. Major high­

level language c~ncepts. were coded in data flow base 

language, and finally, existing shortcomings were studied. 

Although speed is the major goal in this design, the 

shortcomings contribute in many ways i~ reducing the speed 

and also creating a fdrm of semantic gap. In Chapter VI two 

application·programs coded in data flow base language are 

represen_ted and a performance analysis of. t'hem are studied. 



CHAPTER VI 

TWO APPLICATIONS 

A. Fast· Fourier Transform 

A.1. Introduction 

The Discrete J:t'ast 1''ouri.er transform plays an important 

role in the analysis, the design, and the implementation of 

digital signal processing ~lgo~ithms. One of the reasons 

that Fourier analysis is of such wide-ranging importance in 

digital signal processing is because of the existence of ... 
efficient algorithms for.computing the Discrete Fourier 

Transform. 

The Discrete Fourier Transform (DFT) is 

N-1 kn 
X(k) =): x(n) W k=O; 1, ••• ,N-1 ( 1 ) 

n:::;0 N 

· -J ( 2n/ri) 
wher:e W = e The Inv~rse Discrete Fourier Transform 

i~ 
(IDPT) is 

ii-1 -kn 
.. x ( n ) = 1 / N >.-· - X ( k) Vi 

k°=-0 N 
n=0,1, ••. ,N-1 ( 2) 

In equations (1) and (2) b~th x(n) and X(k) may be complex. 

The expressions of Eqs. (1) and (2) differ only in the sign 

of the exponent of WN and in a scale factor 1/N. Thus a 

discussion of computrition procedures for Bq.(1) ap~lies with 
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straightforward CTodifications t6 iq.(2). 

To indicate the importance of efficient computation 

schemes, it is instructive to consider the direct evaluation 

of the DFT equatio~s. 8ince x(n) .may be complex we can 

write 

N-1 

X(k) = t:::~ kn kn 
(Re(x(n)) Re(W ) - Im(x(~)) Im(W )) 

N .N 

·kn 
+ J (Re(x(n))Im(W ) 

N 

kn 
+ Im(x(n))Re(W )) 

N 
k=0,1, ••. ,N-1 (3) 

From Eq.(3) it is clear that foi each value of k, the direct 

computation of X(k) requires 41 feal multiplications (N 

complex multiplications) and 41-2 real additions (~-1 

complex additions). Sinae X(k.); · must be computed for N 

different values of k, .the direct comptitatton of the 

Discrete F'ourier Transf·orm of a sequence x(n) requires 4N 

N 2 complex real multiplications, or alter~atively 
.. 

multiplications and · N(4N-2) real. additions or, 

alternatively, N(N-1) cooplex additions. In addition to the 

multiplications and additions called for by ~q.(3) the 

implementatibri of the comptitation of the DFT on a general-

purpose digital·comput~r o~ with ~pecial purpose hardware of 

course requires provision, ·for storing and ~cccssing the 

input sequence values x ( rt} :;rand values of the coei'fi ci ents W. 
N 

Since the amount of accessinB and storing bf data in 

numerical computation algorithms is generally proportional 

to the number of arithmetic operations, it is generally 



accepted that a meaningful measure of complexity, or, of the 

time required to implement a computational algorithm, is the 

number of multiplications and additions required. Thus, for 

the direct·computation of the Discrete Fourier Transform, a 

convenient measure of the efficiency of the computation is 

the fact that 4N . · real m,ul tiplications and N(4N-2) real 

ad~itions are required. · Since the number of computations, 

and thus the computation time, is approximately proportional 

to 
... 2 
H it is evident .that the number of arithmetic 

operations required to comptit~ thi DFT by the direct methods 

becomes very large for large .. values of N. For this ~eason,. 

computational procedures· that· reduce the number of 

multiplications and additipns are of considerable interest. 

Most approaches to improve the efficiency of the 

computation of the DFT expioit one or. both of the following 

special properties of the quantities ( \\i): 

2. 

w 
u 

k(N-n) kn* 
= (W )· 

N 

kn k(n+N) (k+N)n 
== w w = w 

N N N 

Computational algorithms that exploit both the symmetry 

~nd priodici ty of the sequE,nce. ( w ) . _were known long before 
. N 

the era of high-speed digi~al computation. At'~hat time, any 

scheme that reduced hand computation by even a factor of 2 

was welcomed. 

The possibility of greatly reduced computation was 

generally overlooked until about 1965, when Cooley and Tukey 
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published an algorithm for the computation of the Discrete 

Fourier Transform that is applicable when N is a composite 

number; i.e.,~ is the product of two or more integers. The 

publication of this paper resulted in the discovery of a 

number of computational algorithns which have come to be 

known as Past Fourier Transform, or simply PFT, algorithms. 

The fundamental principle that all these algorithms are 

based upon is that of d~composini the computation of the 

Discrete Fourier Transform of a sequence of length N into 

successively smaller Di~crete Fourier Transforms. The manner 

in which this principle ~s implemented leads to a variety of 

different algorithms, 

computational speed. 

all with comparable improvements in 

. ' 
A.2. Decimation-In-Time Algorithm 

To achieve the dramatic increase in efficiency to which 

we have alluded, it is necessary to decompose the DPT 

computation into. succ~ssively smaller DFT computations. In 

this process we exploit both symmetry and the priodicity of 
kn -j(2rt/N)kn 

the complex exponential (W) = e Algorithms in 
N 

which the decomposition is based on decomposing the sequence 

x(n), into successively smaller.subsequences, are called 

Decimation-In-Time ~lgorithrns; .. The principle of Decimation­

In-Time is most conveniently illustrated by considering the 

special case of Nan integer power of 2; i.e., 

V 
N = 2 
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Since N is an even integer, we can consider computing X(k) 

by separating x(n) into two N/2-point sequences consisting 

of the even-numbered points in x(n) and the odd-numbered 

points in x(n). With X(k) given by 

N-1 kn 
X(k) =) x(n) W , k=O, 1, ... ,N-1 (4) 

n=O :N 

and $eparating x(n) into its ~ven-and-odd-numbered points we 

obtain 

X(k) =L n even 

kn + ~- · x ( n) kn x(n) .w ) W 
N n-aad N 

of with the substitution of variabl~s n=2r for n even and 

n=2r+1 for n odd, 

but 

(N/2)-1 2rk (N/2)-1 (2r+1)k 
X(k) = >r--O x(2r) W + z= · .. x(2r+1) W 

N. r=O N 

2rk k (N/2)-1 
= L x ( 2r) ( w· ) + w 

N. N r=O 

2 
(W) .+ W since 

N N/2 
2 -2J(2R/n) ~J2n/(S/2) 

W = e = e 
N 

(N/2)-1 L. 
r=O 

- w . 
N/2 

2rk 
x(2r+1) (W ) 

N 

consequently_Eq~(5) can be· wr~tten as 

(rl/2)-1 · rk 
X(k) = L .x(2r)'W + 

r=O N/2 

k 
= G(k) + W H(k) 

!-I 

k w ' 
N 

o~ 12 )-1 
L 
r=O 

rk 
x(2r+1) W 

H/2 

(5) 

(o) 
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iach of the sums in.Bq.{G) is r-ecognized as an N/2-point 

DFT, the first sum being the N/2-point DFT of th~ even-

numbered ~oints of the original sequence and the second 

being the l'i/2-point DP'.r of the odd;..n'urilbered points of the 

original sequence. Al ~hough the index k ranges·. over N 

values, k=O, 1, ••• ,1~-1 , each of the sums need only be 

computed fork between O and N/2-1, since G{k) and H(k) are 

each periodic ink with period N/2. 

After the two DFTs corresponding to the two sums in 

Eq.(6) are computed, they ar~ then combined to yield the N-

point DFT, X(k). Figure· 40 indicates the computation 

involved in computing X(k) ac6rirding to Eq.(6) for an eight-

point sequence, i.e. for N=8. .. In this figure, branches 
. ~·· 

entering a node are summed to prod~ce the node variable. 

When no coefficient is. indicated, the branch transmittance 

is assumed to. be one. For ·other branc~es, the transmittance 

of a branch is an integer power of W ~- Since G(k) and H(k) 
N 

are both periodic ink with period 4, then 

H(4) . - lf( 0) G(4) = G(O) 

H(5) ·= H( 1 ) .· G(5) = G ( 1 ) 

H(6) = ·u(2) · G(6.) · = G(2) 

H(7) =· H(3) G(7) = G( 3 )· 

With the computation testructured according to Eq.{6), 

we can compare the number of multiplications and additions 

required with those required for a direct computation of the 

DFT. Previously we ·saw that for direct computation without 
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exploiting symmetry 
2 

l~ complex ~ultiplications and 

additions were required. By comparison, Bq.(6) requires the 

computat~on of two N/2-point DF7s, which in turn requires 
2 

2(N/2) complex multiplication~ and· approximately 2(N/2) 

complex additions. Then the two N/2-point DFTs must be 

combined, requiring N CQm.ple:X mul t.iplications corresponding 

to multiplying the second sum by W and. then N 
N 

complex 

additions~ corr~sponding to adding that produ~t to ths first 

sum. Consequently, the computation of Eq.(6) for all values 
. 2 . · 2 

of k requiers ~+2(N/2) or N+.(N /2) complex multiplications 

and complex additions. It.is easy ·to verify that for~> 2, 
2 2 

N+N /2 will be less than N .. 

Bquation (6) corresponds to breaking the original N-

point computation into two N/2-poirit cozputations. If N/2 

is even, as it alw~ys is ,when N is equal t6 a·power of 2, 

then we can consider computing each of the N/2-point DFTs in 

Eq.(6) by breaking each of the sums in Eq.(6) into two 

N/4-point DFTs, which would then be combined to yield the 

N/2-point DFTs ·. Thus G(k) and H(k) in Eq.(6) would be 

computed as indicated below~ 

(~/2)-1 rk (N/4)-1 21k (N/4)-1 (21+1)k 

or 

G(k)=) . g(r)W =L°~ g(21)~ +I:_· g(2:I.+1 )w 
r=O · N/2 1=0 : N/2 1=0 · N/2 

(N/4)-1 
G(k) = L g(21.) 

1=0 

lk k (N/4)-1 
w + w C g( 21+1 > 

i.i/4 N/2 1=0 

lk 
w 

N/4 
(7) 
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x(O) 

- x(2) 

x(4) 

x(6) 

N/2-point 

i----G( .... o,__) ----~-----. x( o) 

1----.~-----...,-----=~---r--~ X( 1) 

DFT 

x(1) · 

x(J) N/2-point H 

xC5) DFT 

x(7) H 

Figure 40. Flow Graph 9f the Decimated-In-Time 
an 8-point UFT Computation 

x(O) 

x(4) 
2 

w ·= -1 

Figure 41. Flow Graph of a 2-point DFT 

7 
WN 

x(4) 

X(5) 

x(6) 

X(7) 

Decomposition of 



similarly 

H(k) 
(N/4)-1 lk k (N/4)-1 

= f=o h(21) w + w ---
N/4 N/2 )1=0 

Note· that we have used the fact that WN/2 

lk 
h(21+1) W 

N/4 

2 
= (W ) 

N 
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(8) 

For the eight-point DFT that we have been usine ·as an 

illustration, the computation has been reduced to a 

computation of two-point DFTs. ~he two-point DFT of, f0r 

example x(O) and x(4) is depicted in Figure 41. A complete 

flow graph f6r computatibn:~f the eight-point DFT is shown 

in Ii'igure 42. 

For the more general case with ·Na power of 2 greater 
, , I • 

than 3, we would proceed_-·. by de-composing the N/ 4-point 

transforms in Eq.(7) and (8) i~to:N/S~point transforms, and 

continue until left.wit~ ~nly two-point tr~nsforms. This 

requires v stages of computation, where v = log (N). 

Previously we found that ih the original -~eco~position of an 

N-point transform irtt6 tw~ j/2-point transforms, the number 

multiplications. and additions required was of' complex 
2 

i'i+2(N/2) . 'vJhen tti.e N/2~point transfor~s are· decomposed 

into N/4-point transforms, 
2 . 

. 2 
then the factor of (~/2) is 

replaced by N/2·+ 2(N/4) so the o~erall computation then 
. . .2 

requires N + N + 4{N/4} complex multiplications and 
V 

additions.· If N = 2 , this can be done at most v = log (N) 

times, so that after carrying out this decomposition as many 

times as possible the number of complex multiplications and 

additions is equal to N log (N). 
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It is useful to note that each stage of the computation 

takes a set of N complex numbers and transfor6s them into 

another set of N complex numbers. When implementing the 

computation we can imagine the use of two arrays of 

(complex) storage registers, one for array being computed 

and one for the data being used in the computation. We shall 

denote the sequence of complex numbers resulting from the 

mth stage of comp.utation as Xm ( 1), where 1=0, 1, ••• , H-1 

and m= 1 , 2 , .•• , v • Furthermore, for convenience, let us 

define the set of input samples a~ XO (1). We can think of 

Xm ( 1) as the input array and Xm+1 ·( 1) as the output array 

for the (m+1 )th stage of c6mputitions; thus for the case of 

.N=8, 

XO• (0) = x(O) 

XO ( 1 ) = x(4) 

XO (2) = x(2) 

XO .'(3) = x(6) 

XO '(4) = X ( 1 ) 

XO ( 5) = x(5) 

XO (6) = x(3) 

XO (7) = x(7) 

Using this n6tation and qrdering, it can be seen that the 

basic computation is shown as Figure 43. The equations 

represented by this flow graph are of the form 

r 
Xm+1 (p) = Xm (p) + 'vi .Xm (q) 



x(o) 

x(4) 

· x(2) 

x(6) 

x(1). 

x(5) 

x(J) 

x(7) 
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~--+r-~a'-~-----r..._-~~-~-~~-~ X(J) 

~-,------,:,a,,-----~------=~---+iE---~-~ X(4) 
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X(6) 

...::;__--+,,--.~F-------'7'__,.~-----------,.--::.. X(7) 

'Figure 42. Flow Graph of Compltete Decimated-In-Time 
Decompositi-0n of an 8-point DFT 

eF------:;;;....--___;:::. xm+1 ( q) 

· (r+N/2) 
WN 

Figure 43. Flow Graph of Basic· Butterfly 
Computation 



148 

(r+N/2) 
Xm+1 (q) = Xr.i (p) + \I Xm (q) (9) 

N 

Because of the appearance of the flow graph, this 

computation is reffered to as butterfly computation. 

Equation (9) suggests a means 6f reducing the number of 

multiplications by a factor of 2. 1o see this we note that 

N/2 -J ( 2-Jl/N) .h/2 -JJt 
w = e = e = -1 

. ·N 
so that the equations (9) becomes 

r 
Xm+1 ( p )_ = Xm "( p) + w Xm (q) 

N 
. r 

Xm+1 (q) = Xm (p) - w Xm (q) ( 10) 
M 

Since there are N/2 "butterflies!' . per stage and log (N) 

stages, the t.otal number of mu1 tip1ications required is 

(N/2) lOB (N). Using ttle ne~ ~pproach ~he flow graph of 

8-point DFT is illustrated in Fieure 44. 

In order that computation may be done in place using a 

single array we nqte that input data inust be stored in non­

sequential order. In fact the order in which the input data 

are stored is in bit-re"ersed order. To see what is meant by 

this ter~inology, we note· that for the eight-point flow 

graph, thre·e binary.digits are reguired to index through the 

data. If' we write the indices in binary form, we obtain the 

set of equations 

XO (000) = x(OOO) 

XO (001) = x(100) 

XO (010) = x(010) 
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XO ( 011 ) = x(110) 

XO ( 100) = X ( 001 ) 

XO ( 1 01 ) = X ( 1 01 ) 

XO ( 110) = x(011) 

XO ( 111 ) - x(t11) 

If ( n2, n 1 , nO) is the binary representation of the index of 

sequence x(n), then the sequence value x(n2 ti1 nO} is stored 

in the array position XO(nO ~1 n2) .. That is, in determining 

the position of x(n2 nt hO) . in· the input array, 

reverse the order of the bits of the index n. 

we must 

In realizing the computations, it is clearly necessary 

to access elements of intermediate arrays in non-sequential 

order. Thus, for greater.computational speed, the complex 

numbers must be st6red in ,random access memory. For example, 

to compute the first array from the input array, the inputs 

to each butterfly computation are adjacent node variables 

which are thought of as being stored in adjacent storage 

locations. In computing the second intermediate array from 

the first, the inputs to a butterfly are · separated by two 

storage locations, and in computirig the third array from the 

second, the inputs to a butterfly c6mputatiori are separated 

by four storage locations. ' If N is larger . than 8, the 

separation between butterfly inputs is 8 for the fourth 

stage, 16 for the fifth stage, etc. 

last (vth) stage is N/2. 

The ~eparation in the 

A rearrangement of the flow graph, that is particularly 

useful when random access memory is not available is shown 
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in Figure 45. This flow graph represent the Decimation-in-

Time algorithm. Note first that in this flow graph the 

input is again in bit-reversed order and the output in 

normal order. The important feature of this flow graph is 

that the geo~etry is -identi~al for each stage; only the 

branch transmit~nces change fiom stage to stage. This makes 

it possible to acc~ss data sequentially. 

A.3. Data Flow Representation 

·of the DFT Algorithm 

The general form of DFT algorithm may be described as 

follows: let U(m,k) be the kth compcinent o~ the ~ector of 

values computed by the mth stage of the computation. Then 

B(m,q) the qth butterfly of stage m computes 

U(m,q) = U(m-1,~q) + 
e(m,q) 

U(m-1,2q+1) W ( 11 ) 

(n-1) e(m,q) 
U(m,q+2 ) = U(m-1 ,2q) - U(m-1,2q+1) W (12) 

where the exponent e(m,q) of each phase factor is given by 

n-m n-m 
e ( m, q) = 2 . q uc, .( q , 2 ) ( 1 3) 

and 
n-1 

o· < q < 2 

0 < m < n 

n = log (N) 

The symbol "quo" denotes the function quo Ci, j) which yields 

the integer.quotient of i divided by j. The ·input values for 

stage one are related to the data samples by 
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Figure 44. ]'low Graph of s~point DFT Using the Butterfly 
Computation bf Figure 43. 
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Figure 45. Rearrangement of Figure 44 Having the Same 
Geometry for ~ach 8tage 
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U(O,k) = x(i) where i = rev (k) 

in which "rev" is the operation on integers such that then-

bit binary representation of i is the _reverse of then-bit 

representation of k. ~he output values are 

f(k) = U(n,k) 0 < k < 2 

Using new ·terminology the eight-point, constant geometry 

decimated-in-time is shown in Figure 46. 

The goal is to take maximum advantage of parallelism in 

representing the FFT as a data flow program, but since each 

~ctor will take space in the machine representation, we dont 

want to use a larger program than necessary to exploit 

concurrency. Since each stage ~f the computation uses values 

computed by-the preceeding stage, it is appropriate to write 

the program as an n-cycie iteration in ~hich the body 

consists of h 2(n-l) b tt fl· · ·. · t e u er 1es compr1s1ng one stage of 

computation written out explicitly. The form of the 

corresponding data flow program is shown.in Figure 47 for 

the eight-point.case. This is fairly easy because ~he 

con~tant geometry of the· computation over·a11 stages makes 

it possible to use a fixed routing of values from the 

outputs of the butterflies ·to their inputs where they become 

op·erands for the next· cycle. Generating the.phase factors 

for each butterfly, however presents a problem. The usual 

technique is to use a table lookup in a table of powers of 

W, but our present data flow language includes no suitable 
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Figure 47. Iterative Data Flow Program for Eight-point 
DFT 
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mechanism. Instead, the factor W(m,q) used for butterfly q 

in stage m may be computed from the factor W(m-1,q) used for 

the previous stage by a simple rule derived as follows: the 

exponents of W for W(m,q) and· W(m-1,q) are 

n-m n-m 
e(m,q) = 2 quo (q,2 ) 

n-m+1 n-m+1 
e(m-1,q) = 2 quo (q; 2 ) 

then 

e(m,q) = e(m-1,q) + e(m~q) - e(m-1,q) 

n-m n-m n-m+1 
= e(m-1,q) + 2 (quo (q,2 ) ~ 2 quo(q,2 )) 

Careful study of the factor T(m,q) ~eveals that 

n-m 
0 if rem (q, 2 ) is even· 

T(m,q)= 

n-m 
if rem (q, 2 ) is odd 

Thus T(m,q) is the .(n-m).th ·. bit in binary representation of 

q. Let bit(r~_q) be a primitive function that yieldes the 

rth bit of q. Then we have 

if bit(n-m,q) = 1 
I 

W ( m , q) = W' ( m-1 , q) x (n-m) (." 
2 

then W else 1 ! 
} 

The initial value of the phase factor for· the qth butterfly 

is 

e(1,q) 
W(1,q) = W 

(n-1) (n-1) 
where e(1 ,q)=2 quo(q,2 ) 
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=(1 + JO) 

The computation of the phase factors W(m,q) is ·performed by 

the sections of data flow program labelled "phase factor 

generation" and "phase constant queue". 

A.4. Description of· the Program 

The data flow program consists of four copies of the 

code shown previously. Each copy performs one of the 

butterflies (0,1 ,2,3) in stage m, and consists of four 

sections: 

A.4.~. Loop Control. This section controls the number 

of iterations (3 in this case) and computes the (n-~) which 

wil be· used to recognize the (n-m)th bit of q in the 

computation of W(m,q). Two control values CL1 and C12 will 

be produced and distributed in this section: 

True if m<3 · (more iterations) 

CL1 = 
False if m>3 (no more iterations) 

True if ((n-m)th bj,t of q) = 1 

CL2 = 
False if ( (n-m)th bit of q) = 0 

A.4._g_. Butterfly. This section computes U{q) and U(q+ 
n-1 n-1 

2 ) (f(q) and f(q+2 ) at the end of program) using U(2q) 

and U{2q+1) (x rev{2q) and x rev(2q+1) initially) and 

W(m,q) produced by phase factor generation section according 



to the following .equations: 

e(m,q) 
U(m,q) = U(m-1,q) + U(m-1,2q+1) W 

n-1 e(m,q) 
U(m,q+2 ) = U(m-1,2q)· - U(m-1,2q+1) W 
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A.4.3. Phase Constant Queue. This section o~erates a 

queue like structure. The phase constant queue consists of 

th~ee distribution cells which are linked to simulate a 

circular queue. The front node of structure always contains 

W**(2**(n-m}) which will ·be used in the computation of 

W(rn,q) in phase factor generation section. 

A.4.4. Phase Factor Genetation. Phase factor W(m,q) will 

· be computed in this section usin the .following equations: 

W(m,q) = W(m-1,q} x 

n-m 
2 

if bit(n-m,q)=1 then W 

else 1 



Loop Control Uection. 

LOOP: 

M=1 

N-M=j-H 

IF M>j THB~ GO TO OUT 

I 1'' b i t I i~ - H ' ~ ) = 

CL! (initially false) 

1r11.t:i~ "C12 = ''true'" 

.t:liS~ "GL2· = 'l<'alse'" 

ELSE "C.L1 = 'True'" 

GO TO LOOP 

OUT: "CL1 = '1''alse'" 

~ ...... :• 

1 :i8 



butterfly 0~ction. 

X (2q+-1) rev\ 
CL1 

f 
q 

F 

u 
q 

w( l!l, q) 

f n-1 
q+2 

F 

c1= "false", a= xrev (2·q), b= xrev (2q+1) 

DO WHILE (c1 = "true) 

end 

U(q) = a+ b*W(m,q) 

U(q+2**(n-1) = a - b~W(m,q) 

a= U(2q) 

b= U(2q+1) 

U n­
q+2 



Phase Constant Queue 

CL2 = 'fa.lse' 

a= W**1 

b = W**2 

c = W**4 

012 CL2 

IF (CL2 is ~ctivated) THBN· 

temp= a 

a = C 

C = b 

b = temp 
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Using queue structure to produce W (phase constant) 

is the besC approaqh for small values of N, but when N is 

large, which normally is very large in PFT problems, it 

tends to be very space-consuming and uneconomical. The 

alternative· approach takes advantage o:f th·e fact that phase 

constant of stage mis the square root of .the phase constant 

in stage m-1. This a~proach which spends 66re execution time 

but-much less space is shown in Figure 48. 

N/2 4 
w = w 

initially false 



Figure 48. Alternative Data Flow Program for the 8-point 
DFT 

xrev(2q) x~v(2q+1) 

u2 

-• 

fq 
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Phase Factor Generation Section 

T F 
initially false 

T 

W(m-1 ,q) = W**O = 1+JO 

LOOP: IF (CL2 = 'false') ThBN W(m,q) = W(m-1 ,q) 

GO '.i:O LOOP 

iLSE W(m,q) = W(m-1,q) * 

W**(2**(n-rn)) 
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A.~. Progra~ ·Performance Analysis 

Direct computation of the Discrete ast }'ourier 

Transform on a sequential computer may be perfor~ed using 

the following program: 

time spend 

N(6N+4) 6N+4 

L 

K=O 

1 DO WHILE (K < N) 

3 N=O, F=(2* /N)*K 

4 

1 

1 

END 

DO WHILE (n < N) 

X(k)=X(k)+x(n)*(e**(O,-F*n)) 

n=n+1 

END 

k=k+1 

total time spend= N*(6N+4) = 6N**2 + 4*n 

for N=B, total time spend= 416 

.Note : assignment and initialization statements are 

considered no time statements 



165 

Computation. of. the Fast Fourier Transform using 

Decimation-in-Time algorithm consists of two segments, first 

is a segment to rearrange the input array, second is the 

segment to·compute the values of X. 

time spe.nd 

N+N ( 1 OlogN+1 ) ~ 1 OlogH 

i 
! ..... 

r 

i=O 

1 DO. WHILE, ( i <N) 

7 

1 

1 

1 

k=1; j=O, l=i 

DO WHILE (k<p+1) 

l=k/2**(k-1)-2*(i/2**k) 

j=j+l 

k=k+1 

BND 

X(j)=x(i) 

i=i+1 

END 



The second segment of proe,ram is as follows: 

time spend 

logN+logN{5N+2)+2 5N 

( 

I 

2 pi=2*j.14/N, i=1 

DO WHILE (i<p+1) 

4 

3 

k=O, mp=p-i 

DO WHILE (k< (1~/2+1) 

t=2**mp*(k/2**mp) 

· wpq=(cos(pi*t), 

.-sin(pi*t)~X(2*k+1 )) 

1 X(k)=X(2*k)+wpq 

~ X(k+2**(N-1))=X(2*k)-wpq 

END 

1 i=i+1 

< END 

total time spend = 15iHoei~ + 2N + 3logN + 2 

for N=B, total time spend= ~87 
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Using data flow program represented, 

1G7 

the flow of 

information may be shown by the following table:· 

step# parallel processes 

p0,c0,w0,u0,u1 

2 c1,c2,p1 

3 c3,c5,~2 

4 w1 ,w2,w3,c4,p0 

5 vt4,c0,p1 

6 w5,c1 

7 u2,c5 

8 u:5,u4 

9 u5,u6,u7,u8 

After 9 cycles the first set of results is ready then: 

time spend for computations in one stage= 9 

total time spend =3x9=27 

B. SIN Function 

Trigonometric functions are the most widely used 

arithmetic functions. Some numerical methodc to compute 

these functions are inherently parallel and may be easily 

converted into parallel procedures. In this section Taylor 

series representation of Sirl function is studied and 
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programmed in datri flow base lfrngur-1ge. 

Taylor series for SIN function is as 
1 3 5 7 

X X X X 
SIH(x) = + -- + ••••.•• ( 14) 

1 ! 3! 5! 7! 

Bach term in the seri .is independent from others and may be 

computed separately, but independent computation ·of each 

term turns to be very inefficient. 

A careful study of the terms· of the series reveals a 

special relationship between the two consecutive terms. If 

nth.term is represented by T(n), then 

T(n+1) = - T(n) * ((n+1 )*(n+2)) ( 1 5) 

A data flow code segment using this property is shown in 

· Figure 27. Using this direc~ a~proach, computation of each 

term requires 6 operations; then for N terms the number of 

arithmetic operations is 6N. 

In a multiprocessor environment, more than one term can 

be computed at the same time. The new approach that is 

presented in this section involves the computation of 4 

terms simultaneously, using the relationship between the 

terms of the Taylor series. First, divide the terms of the 

series into the groups of 4 terms, then each term may be 

represented by T(n,m), where n=0,1, .•.. ,N/4, and m=0,1 ,2,3. 

If the denominator of each term is represented by D(n,m), 

then the relationship between the first denominator of a 

group and the last denominator of the preceeding group is as 

follows: 

D(n+1 ,0). = D(n,3) * (8(n+1)) * (8(n+1.)+1). (16) 
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and the relationship between the denominator of the first 

term of a group and the others is as: 

D(n,m) = D(n,O) * (B(n+1)+2m)*(8(n+1)+2m+1) 

m= 1 , 2 , 3 ( 1 7 ) 

If denominators of the terms of a group is stored in an 

array, F say, then 1'' should initially contain ( 1 ! , ')( I . 
.I • ' 5 ! ' 

7!). The values of the denominators of each group may be 

computed using Eq;s (16) and (17). The numerator of each 

term in nth group is the product of the nu~erator of the 

corresponding term in (n-1)st group and x. Using the facts 

represented above, a data flow code segment is written which 

is illustrated in Figures 49, 50, 51. 

The first ·step in computation of the SIN function is 

the generation of the first 4 powers of 
8 x and x This 

segment is performed only once at the b~ginrting of the 

process and takes 5 cycles, is represented in Figure 49. 

Generating the denominators of ea~h term using the last 

denominator of the previous group is done by a code segment 

represented in Figure 50. ~he process of generating and 

adding the terms of a group and making the decision whether 

to continue or terminate the process is represented in 

Pigure 51. Bach section of the ~ode segment is labelled by 

a letter and each ~tep is iabelled by a number to clarify 

the analysis of the process, for example, in program 

analysis tables, instructions are specified by code segment 

label at the top of the table and associated step under that 

column. 
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Two different raethods to process this code seement are 

analyzed and results are shown in Figures 52 and 53. In the 

first method the process is not controlled and the values of 

the powers of x are transmitted to the next section as soon 

as they are generated. Figure 52 shows that using this 

method, 4 consecutive terms of. the Taylpr series are 

calculated in 10 cycles. In the second method the powers of 

x are not transmitted to the destinations before all powers 

are calculated. · In this controlled ·method, .for the first 3 

cycles processor utilization is not efficient, but the 

execution of 4 term groups takes only 7 cycles. Using this 

method 7N/4 cycles are required· to compute N terms, which is 

obviously less than 6N cycles in the direct approach 

solution. The ma~imum number of parallel processes in one 

cycle is 12, which determines the minimum number of 

processors to achieve the 7N/4 execution time. 
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step H f A B C D E F G H I J K L M 

1 1 1 1 1 

2 2 2 2 2 2 2 2 

J 3 J J J J J 1 

4 4 4,5 2 1 1 

5 ro 5 6 J,4 2 2 1 

6 fl 6 1. 5 J,4 J,4 2 

7 f2. 7 2 6 5 5 3 1 

8 f.3 J,4 1 6 6 6 2 

.9 5 2 1 1 J 
·10 7 6 J,4. 2 2 ?,8 1 

11 1 . 1 5 J,4 J,4 1 2- 1 

12 2 2 2 2 2 6 5 5 3· 
1J 3 . J. J J 1 6 6 6 2 

14 4 1 1 3 
15 fO 5 7 2 7,8 
16 f1 6 1 3,4 2 1 

17 f2 7 2 5 J,4 2 1 

18 fJ 6 5 J,4 2 

19 1 6 5 J,4" 2 1 

20 1 6 5 J 
21 1 6 6 2 

22 1 J 
23 7 7,8 

24 1 . 1 

25 2 2 2 2 2 

26 J J J 3 
27 4 

28 fO 5 2 

29 f1 6 J,4 2 1 
. JO f2 7 5 3,4 2 

31 fJ 6 5 J,4 2 1 

Figure 52. Gomputation Analysis of SIN Program 
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step ti f, A B C D E F G H I J K L M 

1 1 

2 2 

J J 
4 1 1 ·1 ·1 1 1 

5 2 2 2 2 2 2 2 2 2 

6 .3 J J 3 J,4 J,4 J,4 J,4 1,2 

7. 4 5 5 5 5 J 
s-· fO 5 6 6 6 6 1,2 

9 f'1 6 1 1 1 1 J 
10 f2 7 7 2 2 2 7,8 

11 :fJ 1 J,4 J,4 J,4 2 1 1 

12 2 2 2 2 2 5 . 5 5 J,4 ·2 

13 J J ·J J 6 6 6 .5 3 1 

14 4 1 1 1 6 6 2 

15 fO 5 2 1 J 
16 f1 6 ·7 J,4 2 7,8 

17 f2 7 1 5 J,4 2 1 1 

18 fJ 2 2 2 2 2 6 5 J,4 2 

19 J J 3 J 1 6 5 J,4 2 1 

20 4 1 6 5 3 
21 fO 5 2 1 6 6 2 

22 1"1 6 J,4 2 1 J 
23 f2 7 7 5 J,4 2 7,8 1 
24 f) 1 6 5 3,4 2 1 

25 2 2 2 2 2 1 6 5 J,4 2 1 
26 J J J J 1 6· 5 3 
27 4 1 6 6 2 

28 fO 5 2 1 J 
29 :fl 6. 7 J,4 2 7,8 

JO f2 7 1 5 J,4 2 1 

Jl fJ 2 2 2 2 2 6 5 J,4 2 

J2 J J J J 1 6 5 J,4 2 1 

JJ. 4 1 6 5 3 2 

Figure 53. Computation Analysis of Controlled SIN Program 



ChAPTEH VII 

.. 
SUHMARY, CONCLUSI0.1:rn AHD l•'UTUHE \"/ORK 

A survey of a data flow ardhitecture was presented as a 

solution to many of the problems of highly para_llel computer 

systems. The use of interconnection netwoiks between 

sections of the processor provides an attractive approach to 

the communication of information betwe~n units. Due to the 

radical n;;.i.ture of arcli.i tecture, many questions range from 

ones about the use of certain methodsof representation or 

design choices to deep ecrnantic issues. 

A survey of a phenomenon known as the semantic gap was 

presented. The effect of the semantic gap on system 

performance was discussed. semantic 6 ap which 

·represents the ~ap betwedn the concepts presented in the 

architecture and high-level languages concepts, contributes 

to perfcr_mance problems. in .conventi_onal cpT'l.puters. 

Methods to represen_t 0high-level langue.ge concepts in 

data flow bas~ language -was presented. 1he data flow base 

language, while appearing to be a·Seillantically elegant 

method of expressing parallelism, is not yet an appropriate 

one to represent high-level language co·ncepts, and is open 

to further study and extensions. The language needs to be 

expanded by the ~duition of such actors as "f'orP.11 11 
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construct to 8n~ble it to 

processing of the Glenents of 

better express 

:1 structure. 

1 Tl 

concurrent 

Also, the 

l;:,.nguaee does not currently contain the capability to 

express nondeterminate computations. 

li'urther investigation of the use of the data flow 

language is necessary. The representation of algorithms 

such as }\1.st 1'1ourier Transform and SIN :function in d3.ta flow 

appears very attractive (Cnapters V and VI). However, the 

data flow representation -for other computations need to be 

developed and examined~ 

The data flo~ language 'is designed to serve as the base 

language of the data flow processor. The development of a 

user language which can be readi_ly translated into a data 

flow representation .is necessary. Much more work needs to 

be done to identify concurrency in problems and to take 

advantage of that throueh use of the d8.ta :flow 

representation. liew actors and features must be added to 

·the architecture to cope with high-level languaJes and 

reduce the semantic gap. 
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APP .bi~llIX 

Actor 
Data flow operator 

Arbitration network 

Cache 

Receives operation packets from 
present in the r:1emory, and 
appropriate operatiQn.unit. 

the instruction cells, 
sends them to the 

Cache is a scratch pad random uccess. memory usually 
ser:iiconductor type, holds th-e inforr.1.ation that are most 
often required by th~ processor. Other information 
about the program is kept in a slower nemory. The 
information is passed to the cache, based on certain 
policies whenever it is required. 

Concurrent 
~he occurence of t~O 
time period, i.e., 
simultanously. 

Control network 

or more events within 
two computers. or 

the se..me 
programs 

A network which hartdles control packets. ~he network 
consists of arbitration ancl distrib_ution uni ts. 

Data driven 
The class of data flow in which the instructions are· 
execu'ted. when. all ·the o_pentnds required by the 
instructi6n are r~ady~. 

Data flo~ structure 
Sttuctured data residing on conventional memory. 

Data packets 
lns~tuction cells c6ntaining data valties are known as 
data packets. 

Decision unit 
It is a hardware unit which performs boolean operations 
and gives the result in the form of control packets. 

Distribution network 
Receives results frocr the operation unit in the form of 
data packets and places the~ in the instruction cells, 
present in tho nemory. 
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When tokens are 
flow graph, the 
removed from the 
fired. 

present at the input 
node is enabled and 
input arcs . i . e . , 

arcs of a data 
the operands :::re 

the operands are 

Instruction cell 
The cemory, is organi~ed into instr~ction cells. Each 
instruction ~ell consists of three or more registers to 
hold the data and operator. 

Instruction packet 

Link 

A packet containing· a data flow instruction ·is called 
an instruction packet. 

The program in elementary data flow language· is a 
directed graph in which the nodes are operators. ~he 
nodes are interconnected by means of links. 

Locality 

LSI 

Working set or the working area in the memory, 
i.e.,physical locality or program locality. 

Abbreviation for Larg~-Scale Integeration. high-density 
integrated circuits for complex logic functions. 

Operation packet 
Operation packet is one of the types of instruction 
packet that is handl~d by the operation unit . 

. Operator 
Operators are the. dat~ flow instructions .. 

Packet 
The information, may be either data or operator, sent 
from one unit to another unit in data flow machine. 

Selector 
Used in the rip~esentation of dati fl6w structures- an 
integer ore string. ·The structure node is represented 
as <selector : value>. 

Side-effect 
Effect of ~n .instruction on data elements which is to 
be used by other.instructions. 
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