
HIGH-LEVEL LANGUAGE cm.cEPTS
IN DATA FLOW .ARCH1Ti1C2UH.E

By .

· TARANEH BARAD.ARAN.:.s·EYED
\\

Bachelor of Science

Aryamehr University of ~echnology

Tehran, Iran

1976

Submitted to· the-¥aculty of the
Graduate College of the

Oklahoma ~tate University
in partial fulfillment of

thj requirements ior
the degre.e ot·

MAl.1TEl~ OP 3Cl:b:NCE
· December,' 1981

---, 1.' ,""' . l,

l C.l "g I
e~~)..~h
C:l)r, ·~

. HIGH-LEVEL LAhGUAGB CONC1PT8

IN DATA FLOW AHCHITECTUHE

Thesis Approved:

ii

1099935

PREFACE

"This study is concerned with the aspects of data flow

architecture. Asurvey of the·data flow architecture proposed

by Dennis and Misunas is presented. A survey is made of the.

semantic gap in the classical von Neumann architecture.

Methods to represent high-level languages 6oncipts in data

flow base language are presente"d.. .l!:~isting semantic gap in

the data flaw architecture is studied and methods to

overcome this gap are discu~sed.

I wish to thank-my advisor, Dr. Donald Fisher, for his

invaluable guidance, ass.istance, and encouragement

throughout this study. Also r·express my appreciation to the

other committee m~mb~rs, pr. G. E. Hedrick and Dr. J. R.

Philips, for their assistance and encouragement. li'inally, I

. express my gratitude to my parents Mr. and Mr~. Baradaran­

Seyed, and my husband, Bijan Karimi, for their support,

patience, and·encouragemen~.

iii

TABLE OF CONTENTS

Chapter_ Page

I. 1NTRODUCTION
A.· _IntrOduct ion .. _· ·. 1
~.Literature-Review ; •..•... _........... 6

II. BASIC BACKGROUND FOR THE. EXISTENCE Olt'
SEf,1ANT-I C GAP ~ .•... • .••.••..•. · ...•.............•.

-A •. Seman_t.ic Ga:p •• · ..••••••••..••.....•.•••••
A . 1 • Arrays . ~ ...•.......•...... · ..•.....
A.2. Struc·tures ·
A.). Procedur-es ·
A.4. Data Representation ••... ~•..

B. Consequences. of' the Semantic Gap ••••••••
B.1. :Joftwartf Unreliability .••.•....•.
B. 2. Performance Problems ...•.......•.

. B.3. Excessive Program Size .••.•...••.
B~4. Compiler Complexity ~ •.•.....

C. A Critique o(.the Conventional von Neumann
Archi tectu1~e

D. Other Undesi~eable Features of Classical
Atchi tect.ure

D.1. Binary (Base T·wo) Arithmetic
D.2. Fixed Size ~torage Words .•.••.•..
D.j~ Registers•... ··~·•...

8

e
Cl
.J

10
10
11
12
12
14
1 5
1 5

1 5

1 ij
1~
21
22

III. BASIC BACKGROUND FOR DATA l!'LOW • • • • • • • • • • • • • • • • • • 24

A. Architecture of Parallel Systems••.. 24
B. The Data Flow Approach~················· 27
C. The Data l!'low Language '•................. 29

C.1. Elet1.ents ..••..................... 51
c·.2. Structures ...•............•.•.•.. ;,4
c.3. Data Flow Procedure

Representation 40

IV. ARCHIT~CTU8E OF ~SE DATA FLOW PROCESSOR ••••••••• 45

A. Introduction•.....•......••....••••. 4::i
B. Instruction Processing • • • 45

B.1. Instruction Representation•• 47
B.2. Network Structure 52

C. Si;ructure Handling ·•.... 54
C.~. Simple Structures•..... 55

iv

Chapter Page

C.2. Extension to More Complex
Structures . 65

V. IMPLEME.NTA'.i.1ION OF HIGH-LEVEL LAlsiGUAGE cmWEPTf3
IN DATA FLOW ARCilITECTURE AND EXISTING SEMANTIC
GAP • • • . . . • • . . . • . • . . • • 66

A. Data Representation••........... 66
A.1. Signed Digit Number

Rep res en "ta t ion · 6 7
A.2. Arithmetic Operations 75

A.2.a. Normalization '/5
A.2.b. Addition and 8ubtraction .. 78
A.2.c. Multiplication eo
A.2.d. Data Ty~e Specification ... 8b

B. ·Iterations b8
B.1 •· Introduction bd
B.2. Loop-cons~ruct 90

C. Data Structures ~ 100
C • 1 • Arrays • . • . . • • . . • 1 01

C .1. a. Allocation and Hi:;.pping 101
C.1.b. Operations ; 112

C • 2 . Stacks . . . • . . . • . • . . • . • • 1 1 6
C.j. Queues 125

D. Pro9edures 12'/
E. Semantic Gap in Data Flow Architecture ... 1j1

VI. TWO APPLICATIONS •••••••••••••••••••••••••••••••• 137

A. Fast Fourier Transform 137
A.1. Introduction 1j7
A.2. Decimation-In-Time Algorithm ... ~. 140
A.). Data Flow Representation of

the DFT Algorithm 150
A.4. Description of the Program 156

A,4,1. Loop-control 1~6
A.4.2. Butterfly 15G
A,4,3~ Phase Constant Queue 157
A.4.4. Phase Factor Generation ... 157

A.5. Program Performance Analysis 164
B. Slt~ li:1 unction i6'/

Vll. SUl-'INARY, COi'JCLUBlONS, Alm F'U'.::Uirn -\'JOi{K • • • • • • • • • • • 1 '16

BlBLlOGHAPHY ••. • 1 7 'd

APPJ!;NDIX •.•....•..........•..............• , ..•••.•.••• 1 82

V

LIST OF l<'IGURES

Page

1. Actors of. the Data F'low Language • . • . . • • • . . . • . . . :,2

2. Links of th~ Data Flow Language ...••.••...•.....••• 32

3. An Example of Two Structures Sharing a
Common Substructure •.•...••. ~· •.•........•.•••...• 36

4. Operation -0f th~ CONSTRUCT Actor ···~·····~•. }8

5.

6.

7.

8.

Operation.of the

Operation of the

Operation of the

Operation of·the

SELECT

APPEND

DELETE

APPLY

Actor .)8

Actor 39

Actor . :;9

and RETURli Actors 41

9. Data Flow Representatio~ of a Simple Procedure •...• 43

10. Organization of the Instruction Processing
section of the data flow processor .•...•......... 46

11. Format of Fi~lds in an lnstruction Cell ...••.•.•... 48

12. Use of the Dist_fibution Instruction ...•......•.•.•. 50

13. Structure of a Receiver ..•.....•..•..••......•..... 51

14. Structure of the Arbitration·and
Uistribution ~etworks .~ ...•..•....•........•..••. 5:5

15. Organization of the Data Flow Processor with
Structure Processing Capability 56

16. Memory Representation of the Structure of
Fi· ·3 5u 1 gu re _ •. • •••• ; ••.•••.••••••• _ • . . • . . • • . • . • . . • • • . • • u

17. Signed Digit Addition ...•..•..•...•.........•...... 70

18. Machine Representation of Numbers•....•.....•.. 1j

19. Parallel Signed Digit Adder ...•............•..•.... e1

vi

Figure Page

~O. Double Digit Parallel Adder Modified for
Byte-level Computation•....•..•...•..•.•.. 82

21. Signed Digit Multiplication •....•...•.......•.•.... 85

22. Two Procedures for Signed Digit Multiplication 87

23. Error Values 89

24. Data]'low Actors Used to Represent I!oops • • . • . . . 9j

25. Representation of a Single DO ·1oop in Data Flow
Base Language ~ . • 95

26. Hepresentation of a Nested DO loop in Data Flow
Base L~nguage " . . 9'/

27. Data Flow Code to Perform ~lN ... ·•......••...•. 99

2b. Two Forms to Hepresent a Two-dimensional Array .•.•. 10)

29, kepresentation of A(16) ~~ ..••...•..•.•.•.....•..... 107

30, Representatio~ of B(,,3) 10Y

31, Codes to Access/Modify ~n lndividual Element
of Array A . • . • . . . • . • . • . • . • •. 1 1 3

32, Data Flow Code to Perform A(2,*)=2*B(*,~) ••.•...... 115

33. Data Flow Code to Perform C=A+B 117

34. Stack Allocatiori Methods• ~•. 119

35. PUSH/POP into/from Stack ..•.•.•.•...... ,• 121

36, Data Flow Codes to Perform PUSH and POP
Operations_•.... -............................. 122

37. Stack Constructed Using Non-linear Concepts 124

58. Structures Produced by a Sequence of Insertions
and Deletions lnto an~ Prom Queue U•...••. 126

39. ~xpancted Structure ~recessing Unit• 1~5

40. Flow Graph of the Decimation-in-~ime Decomposi~ion
of an d-point UP'l Computation ~ .•..•.......... 144

41. ¥low Graph of a 2-point DFT••. ~ •.... 144

vii

Pigure Page

42. Flow Gr~ph of Complete Decimation-in-time
Decomposition of an 8-point DF'.i.1 Computation 1 47

43. Flow Graph of Basic Butterfly Computation 147

44. Plow Graph of 8-point DPT Using the Butterf~y
Computation of Figure 4j 151

45. Hearrangement of Figure 44 Having the Same
Geometry for Each Stage ..•.. ;•.• 151

46. The Eight-point, Constant Geometry,
Decimated-in-time DFT :•......... ~ 153

47. Iterative Data Flow Program for 8-point DFT 154

48. Alternative Data Flow Program for the 8-point
DF'.r Computation•................... ~ 162

49. Generation of Powers of x 171

50, Coefficient Generation ..•................. ~ .•...... 172

51. Computation of Four Consecutive Terms of
the Tay 1 or ~er i es 1 7 3

52. Computation Analysis of. SIN Program 174

53. Computation AnalysiR of Controlled SIN Program 175

viii

CHAPTER I

INTRODUCTION

A. Introduction

The short history of computing as a science is unique

in its unp~rall~led rate of technolosical growth. In

response to this, the demand for greater levels. of computing

power has risen as rapidly:. Anticipating the continuation

of this trend, research in the area of parallel computation

seeks to achi~ve high perform~nce by manipulating programs

to exploit the patallelism i~herent in many problems.

It is well known ·that LSI technology is capable of

economically producing.large numbers of similar, small and

complex devices. rt· is equally clear that use of LSI

technology has not ·yet provided a breakthrough in the

computing power available in a single system. Rather, the

best that has been accomplished is simple reduction in the

physical size of all familiar sys~ems.

Many computing_syste~s h~ve departed from conventional

computer organizations ·to improve capability for concurrent

execution. A class of such processors belong to the

category of SIMD (SinBle Instruction Multiple Data)

machines. For instance,

represented by 11.LIAC IV,

there are array

associative processors

t

processors

like the

STARAN, and vector processors such as CDC STAR 100. These

processors perform well only when the computation can be

expressed in program and data structures which are easily

mapped onto the particular machine structures. Array

processors require that data structures be mapped onto a

fixed structure imposed by the physical arrangement of the

processors, such as a two-dimensional array. Associative

processors require that data structures be linear lists of

words so that associative operations ·on parts of these words

can be efficient. For vector processors, data structures

must be in the form of one-dimensional arrays to allow

pipelining of operations on successive array elements.

Furthermore, programs must exhibit a high degree of locality

of reference such that a significant amount of data

structure movement is not ne~essary during the execution.

There are concurrent processors that belong to the

category of MIMD (Multiple Instruction Multiple Data)

machine. A typical realization of this form of machines is

based on multiple processor and shared multiple memory

organization. The predominant problem of these processors

is that the srstem performance is based on the assumption of

locality of reference achieved by a programmers explicit

partitioning of a computation. Furthermore, because the

semantics of the_ languages supported by these systems are

based on the notion of sequential execution and operations

which have side-effects, concurrency is achieved through

careful analysis of programs to prevent possible deadlocks

j

and bottlenecks in memory references.

A number of inadequacies may be noted with currently

proposed

including:

and operational multi-processor computers,

1. the poor utilization of program parallelism by the

architecture,·

2. an incompatibility in the way that these

architectures and their programming languages

represent· pa~allelism,

3. the d"ifficul ty of 'programming the computers using

conventional languages.

When a closer examination is made of multi-microprocessor

systems, it is ~o~sible to· identify three problem areas in

their design:

1. the possible :conteniion of concurrerit ptocesses for

the physical resources (processors, memories, input­

output) of the .co-puter,

2. the difficulty of partitioning the programs to be

executed so as to maximize the utilization of the

resources provided~

3. the need to supply mechanisms so that concurrent

processes may interact to communicate data and

synchronize their operation.

The conventional approach to multi-microprocessor

systems is to base their design on extensions to ·the

inherently sequential 11 control flow" or von Neumann concept

of a stored program computer. This organization, however,

4

may be inapplicable for multiprocessor computers. This

design has some architectural deficiencies which were

studied by Myers :28: in 1978. These problems contribute in

a phenomenon known as the semantic gap. The semantic gap

shows the difference between the concepts in computer

architecture and high-level languages and causes software

unreliability, performance problems, excessive program size,

and compiler complexity.

Two particularly troublesome attributes of the von

Neumann model are sequential control and memory cells.

Sequential control is troublesome since it prohibits the

asychronous behavior and distributed control that is

essential to a multiprocessor. It also burdens the

programmer with the need·to explicitly specify exactly where

concurrency may occur. The concept of a memory cell, alone

with the idea of assigning a value, presents a difficulty

since its existence forces the programmer to consider not

only what value is being computed, but also where that value

is to be kept.

An alternative organization, namely, dataflow, exists.

In this organization:

1. an instruction executes when and only when all

operands needed f'or that instruction becor.10

available;

2. instructions, at whatever level they might exist,

are purely functional and produce·no side effects.

Data flow computation is therefore 11 d11ta driven" as opposed

5

to "control d·ri ven" as exemplified by the conventional von

Neumann machines. A data flow program may be represented as

a directed graph with certain restrictions on

interconnections between node~. The nodes of the graph

represent instructions a~d the directed arcs represent path~

for operands •. · Data flow language is - asynchronous except

when synchronization is explicitly specified, and in which

values are the subject of computation rather than the

locations where those values are kept (i.e., n6 memory

addresses). An asynchronous language assumes computations

are unrelated, and thus concurrent, unless otherwise

specified. The absence of memory cells ensures that only

simple control mechanisms are· needed to consider access to

data, since race_~ to i•store" data never occur. Such a

semantic basis should work .w.ell with a machine composed of

many asynchronous coope·rating processors.

This report dicusses the basic concepts of

architecture propo·sed by Dennis l 11 , 1 2, 1 3, 14 J.

includes a study of problems that occur in von

architectures known as semantic gap [28].

data flow

It also

t~eurnann

~hen the

representation of high-level language concepts in data flow

base language are s~udied and coded. Also the semantic

problems in this architecture are dicussed. r1 inally, two

application processes, Discrete Fourier Transform, and SIN

function are studied and coded in data flow base language.

6

B. Literature Review

The theoretical basis for the data flow architecture

was established during the 1960s. In 1975, a preliminary

architecture for a basic da~a flow architecture was proposed

by Derinis [12]; this machine executes programs coded in data

flow base language pr.oposed also by Dennis [1 3].

Information flow in the Dennis architecture is done through

packet communication features piesented in 1975 [14J.

Misunas exte~ded this model to make it suitable for handling

data structures [24, 26j and published a- performance

analysis of the machine (25J. In 1977, Arvind and Gostelow

proposed a data flow architecture (6j, and both a high-level

data flow progr.amming language and a base machine language

[5, 7j. Mir~nker:[23] presented a method to implement

procedures on a clas$ of data flow processors; and Rumbaugh

[30] presented a detail~d data flow multi-procgssor.

In 1978, a ~tructure ~recessing facility for data flow

computers was proposed by Ackerman [1]; and an asynchronous

programming language and computing machine was presented by

Arvind, Gostelowi and Plouffe (5]. Davis proposed a

recursively structured data-drive~ machine called DDM1 (Data

Driven Machine if 1) (10]. Design of an arithmetic processor

compatible with a data flow compu~er was proposed by Feridum

[17J in 1978. An architecture for a loosely-coupled

parallel processor was presented by Keller, Lindstrom, and

Patil [21] . Software for a data flow computer proposed by

Arvind was developed by Thomas Lj4J. Additional research

7

was conducted Manchester University'.by Treleaven [36J.

ln 1979, a high-level language [2J, an intermediate

form [22], and a machine language set were devised for the

N. l. ~ data flow architecture; the Manchester data flo.w

architecture · was improved l 1 6 , H3J; and the Texas

Instruments research group proposed and built th·e first

coI)lputer.using the data flow concepts [1 9, 20, ,2j.

In 1980, a data flow architecture with tagged tokens

was proposed by Arvind, Kathail, and Pingali [4J. Safety

and optimization transformations of data flow programs was

studied by Montz [27).

analyzed by Ruth [31 }.

Semantics of data-driven loops was

Thomas [34] presented a performance

·analysis of two classes of data flow computing systems.

CHAPTER II

BASIC BACKGROUND FOR THE EXISTENCE

OF .SEMANTIC GAP

In 1978, Myers [28] proposed .a new approach to the

study and design-of compu~er archit~cture~ in his book. The

main premise of Myers book is that the architectures of most

computing systems have not been . designed according .to the

computational and structural needs of high-level languages.

·Rather than taking a global look at system functions and

its hardware/ software tradeoff, most architects have based

their designs on tradition and the bottom-up view of

"minimize the cost of hardware and let the programmers solve

all the difficult problems''·· Most of .the shortcomings

caused are attributable to ·a phenomenon known as the

semantic gap.

A. Semantic Gap

The semantic gap is a measure of ~he difference between

the concepts in the high-level languages and the concepts in

the computer architecture. Most current syst~ms have an

undesireably large sem~ntic gap in that the objects and

operations reflected in their architectures are rarely

closely rel~ted to the objects and operations provided in

8

9

the programming languages and used with them. This se6antic

gap contributes to software unreliability, · performance

problems, excessive program size, and compiler complexity,_

all of which contribute negatively to the economics of data

processing.

To understand the p~esence of the semanti~ gap, the

major and heavily used concepts in high-level languages

(PL/I, COBOL, FORTRAN) and~ comput~r architecture can be

picked up and the relationship bcitween the two can be

studied. As an example, we analyze PL/I and the IBM S/370.

The example is not PL/I oriented, however, since most or all

the PL/I concepts discussed also exist in such languages as

COBOL, FORTRAN, and ALGOL. Neither is the example S/370

oriented; the S/370 was selected because it is

representative of most conventional architectures.

The following is a list of a few major and heavily used

concepts in PL/I (or any other language for that matter).

The question for each is determining to what S/370 (or most

other architectures for that matter) concepts it is related.

A.1. Arrays

The array is the most frequently used language data

structure. ·PL/I ·provides such concepts as multidimensional

arrays, performing opere.tions on entire arrays, referencing

cross-sections (sub-arriiys within ·arrays), and, the option

of, ensuring that subscripts do not fall beyond the bounds

of the array dimensions. The question is, what S/370

10

concepts directly. relate to these concepts? the answer is,

very few. The only architectural concept that seems

indirectly related in a primitive way is the concept of

index registers. This means that it is left to the compiler

to create the widely used concept of an array out of the

rather distant S/370 instruction set.

A.2. Structures

A second frequently ~sed data concept i~ the structure,

a collection of heterogen.eous. data elements (also known as a

record in so~~ programming l~nguages). One finds absolutely

riothing in the S/j70 that is related to structures and

·operations performed on structures.

A.). Procedures

The basic program structure in PL/Ii~ the procedure

(subroutine). A procedure call entails saving the state of

the calling procedure, dynamically allocating and

initializing local st6rage for the called procedure,

transmitting arguments, and beginning execution of the

called procedure. One finds next to nothing_in the S/j70

that corresponds to these concepts. One exception is the.

branch-and-link instruction, but this contributes so little

to the procedure-chll operation .. c~ 0 of many instructions

that must be executed) that its absence would never be

missed (the compiler could just as easily generate two

instructions,· load-address and branch-register, in its

11

place)~

A.4. Data Representation

PL/I has decimal and binary fixed-point data

repres~ntations (integer,fraction). The S/j70 has n6ne, but

it does have decimal and· binary integer representations out

of which the compiler must create the fixed-point concept.

PL/I decimal numbers can· contain anywhere from 1 to 15

digits, but the S/370 c~n only re~~esent decimal numbers

with an odd number· of digits .. PL/I binary numbers can

contain anywhere from 1 to. 31 bin·ary digits, but the S/370

provides for only binary numbers of 15 or 31 digits. PL/I

floating-point numbers can be declared as having 1 to 5,
digits of signific~nce, but these must be mapped into one of

three fixed-size S/370 repre~entations.

This discussion could be continued indefinitely by

looking at other PL/I concepts such as

block structures,· controlle~- storage

concept), generic · procedure rialls,

string processing,

(a push-down stack

program-tracing

functions, and automatic data conversion, but by now there

is an understanding of the. semantic gap between high-level

-language concepts and current computer architectures. The

cause of large semantic gaps is more difficul~ to discover,

but the usual causes are bottom-up system design and the

computer architects lack of knowledge and appreciation of

programming languages, what programs do~ what programmers

do, the difficulty of program debugging, and the causes and

12

consequences of s9ftware errors.

Uiven the existence of this large semantic gap, tha

next step is to discuss some of its consequences.

B. Consequences Of Semantic Gap

B.1. Software Unreliabiliti

The se.mantic. gap. is a significant contributer to

software unreliability in the sense that a large set of
..

programming .errors that theoretically could be prevented or

detected by the computing system are not prevented or

detected in current systems. A few examples suffic .

One common programming error that arises under a large

variety of circumstances is a reference to a variable that

has an undefined or unset value. This error is not detected

by most current systems; since execution continues using

some unpredic~able value, th~ error is difficult to debug.

Although some instances of the error could be detected at

compilation time by doing a flow analysis of the program, in

general it cannot be detected until execution time. Since

conventional machines have no way of distinguishing a

defined variable from an.undefined one, the arbhitects have,

in effect, deferred the problem to the· compiler writer. The·

compiler writer finds no easy and efficient solution to the

problem; thus he or she .defers the problem to the

application programmer.

Some compilers have attempted to solve the problem, but

the solution has turned out to be complicated, inefficient,

and not foolproof. For instance,

compiler initializes all character

FE characters and all fixed-point

1 3

IBM's PL/I Checkout

strings with· hexadecimal

binary numbers with the

smallest negative number and then checks for these values

whenever these variables are referenced. However,

does this add overhead (execution time and storage),

not only

but it

can cause "errors" to be detected in correct programs and

does not cover all data.

A second com~on error is jefer~ncing an array element

where one of the subscripts falls beyond the bounds of the

corresponding· dimension. · Again, since the conventional

machine does not recognize the structure array, the problem

is deferred to the compiler writer. The compiler writers

see no easy solutton, thus the problem is ignored or the

decision is left to the application programmer by making the

check optional.

As an example of the overhead ·of this software check,

IBM s PL/I optimizin~ compiler. normally generates 17 machine

instructions (occupying 62 bytes of storage) for the

statement

. C(i,.j) = A(i,j) + B(i,j);

when A,B, and Care arrays of fixed-binary elements of

identical size. If the optional SUBSCRIPTRAhGE check is

enabled, the comp_iler generates 75 machine instructions (274

bytes), and 5'7 of these instructions would be executed if

the subscripts were within the array bounds.

14

B.2. Performance Problems

The large semantic gap also leads to significant

performance problems because of the large number of

instructions ~hat must be· generated by the compiler to

implement the language concepts out of the rather primitive

machine~instruction repertoire. This has a negative effect

on perfdrmance because it increases the amount of

information that must be transmitted between storage and the

processor, and this.has been found to be a good first-order

measure in comparing the perforoance of different machines.

Since this effect is not widely understood, it js

worthwhile to look at a simple example. Assume that we wish

to add two 100 by 100 element fixed-binary PL/I arrays

together. Hopefully we would write this as A=A+B; (writing

nested DO loops to accomplish this is much more

inefficient). IB~ s S/j70 optimizing compiler generates

efficient object. code for this statern~nt: six instructions

followed by a loop of rour instructions executed 10,000

times. The number of)2-bit words that must move between

memory and the processor is 40,004 (the instruction; the

firs~ six instructions fit into foui words, and the loop

body occupies four words) plus 30,00:, (two data fetches and

one store for the element plus a few additional fetches) ,

for a total of 70,007.

Although this example applies only to array operations,

one can find analogous examples in the exce~sive number of

instructions generated to implement almost every

15

programming-language concept on a conventional architecture.

B.3. Excessive Program Size

The large semantic gap affects program size in the same

way. For instance, it was seen earlier that it takes.62

bytes of storage to represent the statement

C(i,j) = A(i,j) + B(i,j)

if no subscript checking is dqne and 274 bytes if subscript

checking is desired •. In addition to being a problem itself,

excessive program size i~ another. contributing factor to

system performance problems (e~g., in a virtual storage

system, by increasing the programs, working-set sizes and

thus increasing th~ number o_f page faults incurred).

B.4. Compiler Complexity

From the previous two points,

semantic gap on compilers·· should

the effect of the large

be obvious; the code-

generation portion of ~~mpilers must be extremely complex to

generate code that bridges the semantic gap as efficiently

as possible.

C. A Critique of the Conventional

von·Neum~nn Architecture

The basic reason for· the existence of the large

semantic gap in current systems is that ·most· architectures

are simply modifications of the von Neumann architectur~

16

derived in the 1940s. This is not to imply that the von

Neumann architecture was not a stroke of genius when it was

developed. iiowever, the world has changed tremendously since

the 1940s. The feasibility of even constructing electronic

computers ~as still in doubt at that time, and hardware

costs and reliability . were. of· . utmost concern; thus the

motivation was to design as primi~ive a processor as

possible. Also, factors that are taken for granted today,

such as high~lev~l programming languages and the

sophisticatlon and critic~l nature of. most computing

applicRtions, were not even ~nvisioned at that time.

It is col'!lmon today to talk of a class of machines as

von Neumann machines and to say that most current machines

belong to this class. A·von Neumann machine is said to have

these properties:

1. A single sequential memory. A p~ogr~m and its data

are stored in a single· memory and the memory is referenced

with sequential (0,1,2, ...) . addresses.

~. A linear memory. The memory is one-dimensional, that

is, it has the appearance of a vector of words (or bytes).

3. No explicit ·distinction between ins~ructions and

data. One can, for instance, treat an instruction as data (

e.g., modify it), add an instruction to a data word, or

branch to a data word and execute it as if its bits

represent an instruction.

4. Meaning is not an inherent part of data. There is

nothing, for·instance, that explicitly distinguishes a set

1 'I

of bits representing a floating-point number from a set of

bits representing a character string. Rather, ·the meaning

of data is assigned by program logic. If a machine fetches a.

floating-point add instruction, it assumes that the operands

represent floating-point numbers and performs a floating­

point addition with the 6perands. Hence one can perform a

floating-point addition on two operands that actually

represent.a chatacter string or an address.

Although the von Neumann architecture was a reasonable

design for the first-stored-program computer, it is alien to

the executiori of programs written in high-level laneuages.

Internal structures of data in high-level languages are

distinguished from von Neumann machines by the following:

1. Storage, . as represented in high-level languages,

consists of a set of discrete named variables. With the

exclusion of certain questionable language constructs (e.g.,

the FORTRAN COMMON area) there is no concept of one variable

being "next" to another variable. There is no reason to

believe that the variables in one subroutine are located in

the same storage device as the variables in another

subroutine. In short, the concept ·of a single sequential

storage bears little resemblence to the concept of storage

in programming l~nguages.

2. proeramm_ing languages deal with multi dimensional,

not just linear, data types (e.g., arrays, structures, and

lists).

In programming languages there is a sharp

18

distinction between data a.nd instructions. In a high-level

language, there are no concepts of executing data or

referencing instructions as if they were data.

4. In a high-level language, meaning is an inherent

part of data. One does not write a PL/I program as

DECLARE A.WORD;

·DECLARi B WOHD• .,

A= A "floating-point add with" B; ·

Instead one writes

DECLARE A DECIMAL FLOAT (6);

DECLARE B DECIMAL FLOAT (6);

A= A+ B;

That is, in high-level languages the meaning of the data is

associated with the data·itself, and the operators are

generic (i.e., the meaning of 11 +" is determined by examining

the attributes of its operands).

Thus the attributes of a von Neumann architecture are

not related, and are even conttadictory, to the concepts in

languages. Intutively, · one can observe that a von Neumann

machine is a poor vehicle for

language programs because

the execution of high-level-

1. Exce~sive mapping is required. in software (i.e., by.

th~ compiler in the form of compiler-gener~ted code) to

match the language concepts to the von Neumann view of

storage. This has -been referred to. as "absotbing the

structure (of the data) into the logic of the pro~ram".

This should be apparent to anyone who· has-examined the

19

output of a compiler; the amount of code generated by the

compiler to map the language concepts of storage and data to

the underlying architecture usually greatly outweighs the

amount of problem-solving code generated.

2~ A von Neumann machine is excessively over"eneral

(e.g.,' one can use a word that has no currently defined

value, address anything in storage, add a.character string

to an instruction); since this generality fortunately is

absent from programming languages, the -compiler (and its

generated c6de) is left with the task. of removing the

generality arid ensuring that it ·d6e~ not interfere with the

definition of the language;

3. Because the concept of storage in a von Neumann

machine is rather primitiv-e, the operations (instruction

set) performed by the machine are constrained to be equally

primitive.

D. Other Undesirable Features Of

Classical .Architectures

Although the von Neumann model

the large semantic gap, there are

archit~ctural properties o~ cuireht

to the gap.

D.1. Binary (Base Two) Arithmetic

is the major cause of

·additional undesirable

systems that contribute

In current. machines, binary arithmetic is treated as

almost sacred, but it almost goes without saying that humans

20

find base-two· arithmetic quite distasteful. Since proposals

for decimal arithmetic often evoke emotional arguments, • .L.
l 1,

is worth exploring the traditional arguments for and against

decimal arithmetic.

Two arguments may be presented in favor of decimal

arithmetic. First, stnce todays coffiputing environment is

highly input/output oriented and since-few, if any, people

would consider fotcing human beings to communicate with

computers in base-two terms, current systems w~ste an

enormous amount of· time performing conversions between

decimal and binary representations. ~s~cond, the fact that a

machine represents numbers.in base-two form cannot be hidden

completely from the humani since, for instance, most

rational decimil f~actions are represented as infinite-digit

base-two fractions.·· This means that finite-length base-two

numbers are often approximations of decimal numbers, a

source of programming difficulty,

confusing language definitions.

programming errors, and

The traditional arguments against decimal arithmetic

are that it is slower than binary arithmetic and that binary

numbers can be stored'more compactly than decimal numbers.

The two arguments against decimal arithmetic are

subject to question. First, one must weigh the speed of

arithmetic algorithms against. the overhead of converting

decimal numbers to binary and back again~ Second, decimal

arithmetic circuits have been devised that are competitive

with binary circuits in terms of speed and only· slightly

21

less competi.t-i ve in terms of cost; The second argument

(space) has some merit, but it is not insurmount~ble.

D.2. Fixed Size Storage Words

In an architecture ~1th

decidirtg on the word stze Js

tradeoff facing the architect.

fixed-size storage words,

most difficult probably the

If the word size is too

small, the maximu~ value of numbers that can be represented

is too small, fractional (e.g.,flqating-point) numbers are

excessively imprecise, and larger addresses are needed. On

the other hand, larger words tend to waste storage, because

studies of the distributions of data values in programs

indicate that values are not uniformly distributed; they are

heavily skewed in favor· of small values (e.g.,the values

zero and one are common, the values in the ranges 10-20 are

more common than values in the range 59470-59480). hence

large words waste ~torage because their high-order bits or

digits_are likely to be zero.

The second pr6blem with fixed-size words is that many

languages (e.g., PL/I and COBOL) allow the proer~Dmer to

declafe the size·

usually vary over

6f ~ach variable,

a large range

and the possible sizes

(e.g., a PL/I decimal

floating-point variable can be declared as having anywhere

from 1 to 53 man~issa.digits). If the compiler is able to

accurately map this concept irito a fixed-size-word machine.

Performance problems (excessive generated.code) are a likely

consequence. If the compiler designer decides that the

22

concept of variable-size data cannot be efficiently and

accurately mapped into fixed-size words, the underlying

machine architecture shows through and distorts the

language. Of course, one might ~reue that languages should

not contain this concept,. but the argument has little

validity. The· concept assists one in defining machine­

independ·ent. languages, allowing programs to be transferred

from one machine t.ype to another.

D.;. Registers-

Another concept that is alien to the concepts in

programming languages is the presence of program-addressable

register (e.g.,· the.concept of general-purpose registers in

the S/370). If the machirie requires the use of registers for

all arithmetic operations :and if the number ·of registers is

small (both are the case in most machines), the compiler is

left with the task 6f generating code to _manage the

registers and optimize their use. This code is extraneous in

that it contributes nothing toward the expression of the

source program's logic.

Since the 1950s, except for a few machines (e.g., some

made by Burrou~hs Corp.), the~e h~ve been no ~dvances in the

computer architectufes of current systems. However, there

have been some advances in

architectures exploiting

operations.

the implementation of particular

the inherent parallelism in

During 1970s, a new approach in computer architecture

23

was proposed -by Dennis and others [11, 12, 13, 14]; it is

known as data flow architecture. This approach is a radical

change from the traditional von Neumann architecture and is

a well designed system to perform parallel processing. The

data flow approach changed the process of selecting the

instruction for executio~, _and consequently, other related

concepts have been changefr as follows:

1. Execution of instructions is based on

readiness for execution instead of.their location in

their

the

program. In this approach any instruction may be executed as

soon as all its operands become av~ilable.

2. There is a distinction between instruction and data.

Instructions are located in a special memory called an

instruction memory! constants reside in an instruction cell,

and variables are either a _portion of the instruction cell

or float in the architecture as results. Data may not be

treated as instructions and vice versa.

j. Instructiori memory contains both instructions and

simple variables , data structures are held in a separate

memory called structure memory.

4. Data structures (arrays, matrices,) are

stored in structure me~ory as binary or n-ary trees, that

consequently, makes most of the existing methods to

implement and handle d~ta structures invalid.

5. Meaning is an inherent part of data. Data items

contains a type tag which specifies its meaning.

CHAPTER III

BASIC BACKGROUND FOR PATA FLOW

A. Architectu~e of Parallel Systems

Highly parallel computer systems have evolved in a

manner which often· necessitat~s the ~lacing of unusual

constraints on program and data. Parallel machines such as

ILLIAC IV and the CDC STAR. can realize their full potential

only for data represented in array or vector formats.

A number of methods have been developed to exploit

simultaneous or concurrent operation, however, the

implementation of these techniques within a traditional von

Neumann architecture has not utilized their potential fully.

This applies both to the various procedures for increasing

the performance of a single processnr and those for

exploiting multiple processors in a computer system.

Three techniques are currently popular for increasine

the parall~l activity within a single processor. ~hese are:

1. pipelining of operations,

2. overlapped memory access,

j. instruction lookahead.

The pipelining of an arithmetic operation distributes

the performance of the operation· over time rather than

24

25

space. That· is, rather than utilizing several functional

units of a specific type to increase the processing rate,

one larger functional unit is employed, and the operation is

broken into a number of smaller operations which are

performed simultaneously upon a stream of values. Although

the performance of a single operation can actually take

longer in a pipelined functional unit, the fact that a large

number of operations are being performed concurrently can

produce a very high processing rate.

In order to utilize the technique of pipelining fully,

the data must be represent~d as a ve6tor; if there are gaps

in the stream of values ~upplied to the pipeline, the

processing rate can actually be decreased from that of a

single conventional functional unit. Current stream-oriented

processors as the CDC STAR and TI ASC do not have the

capability to form data into streams, that burden must be

born by the compiler-writer.

Dependencies betwe~n successive instructions of a

process complicate attempts to utilize pipelining for the

instruction stream of a processor. For example, the

execution of an instruction which references a memory cell

modified by a previous instruction must await the completion

of the previous instruction. An instruction pipeline must

detect dependencies dynamically. When it finds a

dependency, it must either stop accepting new instructions

or rearrange the order of execution;

degree of concurrency is reduced or

in either case, the

the pipelini becomes

26

complicated.

The technique of overlapped memory access merely

extends the concept of pipelining to the fetching of

instructions from memory. If the memory of a computer is

interleaved; that is, if the memory is divided into a number

of sections, and the instructions and data of a program are

di~tributed over the sections, then several items can be

accessed simultaneously. If the instructions of a program

are arranged so consecutive instructions·are contained in

separate memories, then instruction. fetching can be

pipelined, and instructions can be supplied at a ver.y fast

rate. However a problem. arises when a conditional is

·encountered because the SY:stem does not know which of the

set of possible succeeding instructions to fetch until after

the conditional has be~n executed.

The use of instruction lookahead in-a processor allows

the exploitation of multiple. arithmetic units by decomposing

the instruction stream into independent elements. For

example, consider the arithmetic expression A+B + (C*D).

The two computations A+B and C*D can be performed

simtiltaneously in separate functional units. The IBM 360

model 91 and the CDC 6600 have de~eloped techniques for

exploiting this property for short instruction sequences;

however, once again, any branching in the program disrupts

the flow of instructions to the functional units and

decreases the processing capability of the architecture.

In illustration of the problems. encountered in

2'1

exploiting those techniques, consider the IBM 360/91. Tho

functional capability of the processor is 70 million

instructions per second (MIPS). However, the instruction

decoder can only supply instructions at a rate of 16 MIPS

using the technique of lookahead. An average incidence of

conditional instructions reduces the performance · of the

processor to 6 NIPS. Thus, the processing capability of the

architecture cannot be fully realized, and with the

lookahead of eight instructions which is used, it is

difficult to have an adequate instruction mix to utilize the

multiple functional units fully.

The methods of -structuring multiple processor systems

· and improving the performance of a processor all have

serious drawbacks to the full exploitation of the

capabilities of the processors. In this regard , data flow

approach offers attractive solutions to many of these

problems.

B. The Dataflow Approach

Studies of concurrent operations within a computer

system and of ·the representation of parallelism in a

programming language have yielded a new form of program.

representation, known as data flow. Execution of a data flow

program is data-driven; tha~ is, each instruction is enabled

for execution just when each required operand has been

supplied by the execution of predecessor instructions.

In order- to take advantage of the parallelism inherent

28

in an elementary data flow representation, the archi~ecture

of the elementary data flow processor was developed by

Dennis and Nisunas L11, 12, 13, 14, 24, 25, 26].

The problems of processor· switching and

memory/processor interconnection are avoided within the data

flow architecture by -the use of interconnection net~orks

·which have a great deal of inherent parallelism. ~ections

of the ·machine· cnmmunicate by means of fixed size

information packets,

within the rietwork

and delays in packet transmi~sion

do not affect the utilization of the

hardware. The interconnection netwotks are large, but grow

at much slower rate than a crossbar switch in conventional

multiprocessor ~ystems and require none of the global

control circuiiry necessarf-f6r the switch.

The structure of ·a data flow processor· al!ows a large

number of instructions to be active simultaneously. these

active instructions pass through the networks concurrently

and form streams of instructio~ for the pipelined functional

units.

The processor does not utilize an instructibn register

or instruction decoder in ,the von Neumann sense; an

instruction proeeeds on its own ~hen its operands are ready

and delivers its rj~ults to other instructions which are

waiting for them. 1o software operating systemis necessary

within the architectute L24J. Processor allocation, the

formation of instr~ctions into streams for the functional

units, and the transfer of information between levels of

29

memory is e£ficiently accomplished by the hardware of

machine.

The exploitation of data dependencies in programs has

been investigated previously, indeed, such is the goal of

the lookahead techniques utilized in architectures such as

the IBM 360/91 and the CDC-6600. The approach taken in the

data flow processor differs from these approaches in that it

utilizes. a radically different concept of cooputer

organizations which offers attractive solutions to many of

the problems encountered in adapting van ~eumann machines

for parallel computation,· an ~rchitecture in which

parallelism and concurrency ~re inherent in the structure of

the processor.

C~ The Data Flow Language

The data flow language presented in this section serves

as the base language for the architecture to be described in

the next chapter. The semantics of the language is developed

by Misunas.

In order to represent the exact serial/parallel nature

and existing in6erent instruction level parallelism of ~he

program, the directed graph representation has been selected

as an alternative to the traditional serial list of

instructions. The longest path thr?ugh the graph is the

critical path which is the ultimate limit on the speed of

execution no matter how many parallel processors are

available. The width of the graph represents the program

:;o

parallelism at that point.

A directed graph consists of nodes that represent the

operations to be done and links that show how results move

from operation to operation. A directed graph node denotes

an operation to be executed ~nd is not involved with the

sequencing mechanism. Therefore, the internal conte~ts of a

node (opcodes, operands, subroutine calls, etc.) are

directed by the hardware implementation of the processor

independent of the mechanis~s that sequences that node. A

directed graph link denotes movement of data between nodes

and is crucial to any sequencing mechanism based upon the

flow of data. Therefore, links are logically pointers

·associated with each node.

Execution of a directed graph follows the flow of data

through the graph (hence, data flow). No instruction can

start execution before all of its inputs arrive; no

instruction must wait ·after its inputs and a processor are

available. Data flow sequencing guarantees only the.minimum

constraints necessary to assure logically correct execution.

As soon as an instruction can correctly execute, it is

fl~dged re~dy for executi6~. All ready instr~ctions can be

executed in parallel, if a sufficient number of processors.

is available.

As soon as a result is calculated and available, it is

immediately forwarded to each of the succeeding instructions

that need it. An instruction never has to fetch its operand.

All input operands are collected into th~ body of

;.i 1

instruction before it begins execution. Therefore, there is

no extra operand fetch time needed after instruction fetch.

The memory accesses needed to update results are done by

dedicated hardware in parallel with useful work. The

pending instruction list allows the n_ext instruction fetch

to be overlapped with execution.

C.1. Elements

The· data flow language is composed of two kinds of

elements, called actors and.links. An actor of language can

be one of the following:

- opera·tor

- decider

- gate

which are represented in Figure 1.

Each actoi has a number of input arcs which supply

values necessary for its execution and one output arc upon

which results are placed. A small dot or circle represents a

link which has one input arc upon which it receives results

fr.o:n an actor and· a number of output arcs over which it

dist:ri but es copies of the result to other actors (:i!'igure 2).

Values are conveyed over the arcs of the progra~ by

tokens which are repres~nted by large solid dot~. An actor

with a token on each of its input arc, and no token on its

output arc, is enabled and somtimes later will fire,

removing the tokens from its input arcs, computing a result

(a) operator (b) decider

(c) T-gate (d) F-gate

(e) MERGE (f) boolean operator

Figure 1. Actors of ·the Data Flow Language

(a) data link (b) control link

Figure 2. Links of the Data Flow Language

:;3

using the valuen .carried by the input tokens, and

associating the result with a token placed on its output

arc. In a similar manner, a link is enabled when a token is

present on·its input arc, and no token is present on any of

its out~ut arcs. It fires by removing the token from its

input arc and associating copies of the value carrie~ by the

input token with tokens placed on its ou.tput arcs. The data

flow language utilizes two types of tokens:

- data tokens

-'control tokens

A data token carries· a data value which is produced by an

·operator (Figure 1a) as a result of some arithmetic

operation. A control token is generated at a decider

(Figure 1b) which, when th~ decider receives a data value on

each input arc, applies its associated · predicate and

produces either a true-or-fal~e-valued control token on its

output arc.

Control tokens direct t~e flow of data tokens by means

of either a ~-gate, }"'-gata or fvj~HGE actor O'igure 1c,d,e). A

T-gite passes a vilue on its ·output arc if it receives the

value true at its control input arc; the received data value.

is discarded if false is received~ The meree actor allows a

control value to determine which of two sources supplies a

data value to .its output arc. If the control value false

arrives at the control arc,

present or next to arrive at

the merge passes on the value

the false-in.put arc. A value

)4

present at the true-input arc is left undistributed. The

complementary action occurs for the control value true.

C.2. Structures

The values conveyed by tokens over the arcs of a data

flow program are either elementary values or structure

values, and each value has an ·associated tag designating its

type. The set of ele~entary values E contains

B = '.i',I,R,Q

where

T = truth values

I =·integers

R = reals

Q = strfngs

A structure value in a data flow program is represented

as an acyclic directed graph having one root node with the

property that each node· of the graph can be reached by a

directed path from th.e root node. Each node of the graph is

either a structure node or an elementary node. A structure

node serve,s as the root · nod.e for a substructure of the

structure and consists of a set of selector-value pairs

S = (s1,v1),(s2,v2), •...••..... (sn,vn)

where:

si ,r:: IU Q

vi E BUS U nil

35

and si is the selector of node vi. An elementary node has no

emanating arc; - rather, an eleoentary value is associated

with the node. A node with no emanating arcs and no

associated·elementary value has value nil. A structure

value is represented by a-data token

pointer to the node of the structure.

carrying a unique

In Figute j the

and c, structure contains three ··elemen~ary values a,b,

designated by the simple selector· L and the

selectors R.L and R.R respectively. Structure

compound

node C of

structure A is shared with structure Band is designated by

a different selector in B than in A.

A simple selector associated with a node can be either

an integer or a

(indicating left

selector is formed

string _consisting of letters L and R

and right respectively). A compound

by the concatenation of a number of

simple selectors and specifies a path through the structure

which can be followed by applying the si~ple selectors in

the stated order.

A node of the structure is accessible to a program only

if some token carries a pointer to the node or the node can

be· teached by a directed path from some accessible node.

Upon completion of an execution step of a program any nodes

of a structure made inaccessible by that step are deleted

together with any emanating branches.

In order. to generate and perform

structure values, a number of new actors

Structures are created through use of the

operations upon

must be defined.

CONSTRUCT actor

36

L R L R

L R

c1 cb
Figure 3. An Example of Two Structures Sharing

a Commom Substructure

37

(Figure 4). ~he. actor accepts an:elementary or structure

value from each input and places on its output a structure

containing the input values as components. Each input is

labeled with the selector. in the new structure to be

associated with the value arriving on that input.

A value is retrieved from a structure by a SELiCT actor

(Figure 5). The value in the input structure designated by

the selector ar~ument is placed on the output of the actor.

The result can b~ either an elementary v~lue or a structure

value. If the argument of ·the actor is a multiple selector,

the actor produces on its output the value at the end -of the

path designated by the multiple selector. The action of the

actor is undefined if the irip~t structure does not contain

the specified selector(s).

Structure values in a data flow program are not

modified; rather, new structure values are created which are

modifications of the OTiginal values, while the original

values are preserved. The APPEND and DELETE actors provide

the means of creating these new structure values.

The structure produced by the firing of an APPEND actor

is a version of ~he input structure which contains a new or

modified component (Figure 6). If the. specified node of the.

input structure has a select6r corresponding to the selector

argument of the actor, the value designated by that selector

in the new structure is the input value. Otherwise the

specified selector-value pair is added to the node of the

new structure. ldentical elements of the- input and output

CONSTRUCT

l

SELECT s

l

\ I
X Y­
CONSTRUCT .

:,a

X y

cb J.
a b

cb ~
Figure 4° Operation of the CONSTRUCT Actor

A l A

.!--i ~
s X SELECT s s X

cb cb I ~ c6 81
i

Figure 5. Operation of the SELECT Actor

Figure • 6 Operation

\ I
APPEND s

B A

r!.
s. ~·~ ~ y •

cb cb
. APPEND Actor of the

·~

xx~
Jl

:Pigure 7. Operation DELETE Act?r of the

40

structures are shared between the two structures.

In a similar manner, the structure appearing on the

output arc of a DBLETi actor is a version of the input

structure in which the specified node contains one fewer

component O'igure 7). The specified node in the new

structure is missing the seiector-value pair designated by

the selector argument. As with the APPEND actor, identical

elements are shared between the input and output structures.

c.3. Data Flow Procedure Representation

Procedures of the language are ~epresented as acyclic

directed graphs in a manner which is very attractive from

both a semantic viewpoint and an implementation viewpoint. A

data flow procedure is a data flow program with a single

input arc over which the _argument arrives and a single

output arc upon which result is placed. The body of a

procedure is represented as a data structure, and the

procedure is referenced by a token carrying a pointer to the

structured representation.· Every procedure in the language

is determinate that is, the same result is produced by every

activation of the procedure which receives the same input

values.

To provide for ~rocedure activation and termination,

the APPLY and RE~URN actors are introduced into the data

flow language. The operation of these actors is shown in

Figure 8. The APPLY actor receives two inputs, a procedure

and an argument, which may be either an elementary· value or

41

\ I
APPLY ~. APPLY·

RETURN

\ I -~ \I~
APPLY ,

A~

•

Figure 8. Operation of the APPLY an~ RETURN Actors

42

a structure -value. Upon firing,· the actor creates an

argument structure of the argument and the deitination for

the result of the application, and this argument structure

is given to the procedure as input. If no instruction

follows the APPLY actor in the program, the value designated

by the ·destination selector in the argument structure passed

to the procedure is nil. Upon completion of the execution

of the procedure, the result is sent to the specified

destination by a RETURN actor within.the procedure body.

The data flow representation of the following simple

procedure is shown in Figure 9~

P: procedure(x)

if X (5

end P

2 then return x

else return x

When the procedure of Figure 9 is applied, it receives on

its input arc a structure c6ntaining two elements. The first

element, designated by the selector arg, is the argument x

0£· the procedure. The second element, dest, is the

destination address for the result. The procedure shown in

Figure 9 has been called with the argument 5 and the

destination D.

The first operations performed by the procedure are

select operations which send the argument to the procedure

bocty and the destination address to the return inst~uctions:

43

SELECT dest SELECT arg·

RETURN RETURN

Figure 9. Data Flow Representation of a Simple Procedure

44

The procedure body tests the argument to see if it is less

than five. If so, it is squared, and the resulting value is

returned. If the argument is ereater than or equal to five,

the original value is returned.

Many simultaneous acti~atioris .of a data flow procedure

may exist as a result of concurrent or recursive

application. In order to avoid _the possibility of

interaction between tokens from separate activations, a new

copy of a procedure is created for each activation, the

argument structure is transmitted to the n~w copy, and after

a result is returned, the copy is discaided.

Basic definitions of elements of the data flow language

were described ·in this chapter. The complete data flow

architecture, internal _instruction representation and

structure operations are discussed in Chapter IV;

CHAPTLH IV

AHCHITiCTURE OF T~B DATA FLOW PROCESSOR

A.· Introduction

The data flow processor described in this chapter is

designed to directly' execute programs expressed in the data

flow laneu8:ge presented in Chapter III. The structure of the

processor is presented in two stages. The first section of

the chapter discuqses the representation of instructions

within the processor and the execution of individual

instructions representing operators and deciders of a

program. The ne~t section extends the description to

include the processing of structures.

B~ Instruction Processing

The instructions of a data flow program are stored and

executed in the instruction processing section of the

processor (Figtire 10). Instructions awaiting execution are

6ontained in the instruction memory. Upon becoming ready

fo~ execution, an instruction enters the arbitration network

and is conveyed by the arbitration network to the correct

operation or decision unit. The results of an operation are

distributed to the desired destination instructions by a

distribution networki Similarly, the results of a· decision

45

data
packets

Operation
Units

Distribution
Network

-control
packets

"Control
Network

. . . .

instruction
cell 0

Instruction
Memory

Instruction
cell. n-1

operation
packets

Decision
Units

46

decision
packets

Arbi traiion
Ne~wor.1e

Figure 10. Organization of the Instruction Processing Section of
the Data Flow Processor

47

are distributed by a control unit.

B.1. Instruction Representation

The instructions of a program being executed are stored

in the instruction memory of the processor. The instruction

memory contains a number -Of instruction cells, each holding

one instruction of the data flow program. Each instruction

cell consists of a number of registers, say five (Finure 11)

and holds the instruction in the specified format together

with spaces for receiving its operands. An instruction cell

is designated by an identifier which specifies a path to

that cell through the distribution and control networks.

Bach instruction corresponds to an operator, a decider,

or a boolean oper~tor of a data flow program. The first

register of an instruction -0ell holds an instruction which

encodes in its operation code the function to be performed;

that is, the type of actor represented by cell. The

register specifies in its· destination field the cell

identifier of an instruction· which is to receive one copy of

the result.

Bac'h other register o"f th_e cell can hold either a data

operand, a boolean operand and one destination, or two

destinations. A registef can'·i1~0 be empty, indicating that

it is not used by the instruction currently occupying the

cell. The use of the register is indicated by a USB CODE in

the first field of the register. If four data operands are

used in an instruction, only one destination· can be

operation code I destination

data g1 v1

boll g2 c1 destination

dest destination destination

empty

r--

data
bool

Use code I l dest
empty

48

C

C

ontains a data operand
ontains a boolean operand and

a destination
contains two destinations
not used by this instruction

Figure 11. Format of Fields in an Instruction Cell

49

specified, and that destination must be a distribution

instruction (Figure 12) if more than one destination is

desired for the result.

A register containing the components designated by an

operand selector in an instruct~on consists of two parts, a

gating code g1 ,g2 and either a data receiver v1 or a control

receiver c1. The gating codes permit representation of gate

actors -that control the reception of operand values by the

operator or decider represented by the instruction cell.

The meaning of the code values are as follows:

code value

no

true

false

canst

meaning

the associated operand is not gated

an_ operand value is accepted by arrival of

a true cont~ol value; discarded by arrival

of a false control value

an operand value is accepted by arrival of

a false control value; discarded by arrival

of a t~ue value

the operand is a constant value

The str~cture of a data or control receiver (Figure 13)

provides space to receive a data or boolean value, and two

flag fields in which the ·arrival of data and control values

is recorded. The gate flag is changed from off to true or

false by a true or false control value. The value flag i~

changed from off to on by a data or boolean value according

50

!
I . I I

inst op1 op2 op3 oP4 dest

~ I I
E0 03 8 e

inst op1 d1 d7

~·~
Figure 12. Use of the Distribution Instruction

•

·value flag

·· gate flag

value (data or boolean)

off
on

off
true
false

no value received
value received

no control nalue received
true control value received
false control value received

Figure 13. Structure of a Receiver

51

to the type of receiver.

B.2. Network Structures

To connect the instruction cells of the memory to the

operation and decision units, a network, called the

arbitration network, provides a path from each instruction

cell to each operation· or decision unit. Operation and

decision packets are transmitted from-instruction cells into

the arbitratioi network. ~he network is c~pable of accepting

many packets simultanously and delivers each packet to the

correct Functional Unit.

Upon receiving an operation packet, an operation unit

·performs the function specified by the operation code on the

operands of the packet and produces a data packet for each

destination specified in the instruction. A distribution

network concurrently accepts data packets.from the operation

units and, using the destination address of each packet,

delivers it to the specified instruction cell. Similarly,

the control packets produced by a decision unit are sent to

the control network for delivery to the designated

instruction cells.

A simplified structure of the arbitration and

distribution networks is presented in ~igure 14. The

networks are composed of three types of units. An

arbitration unit passes packets arriving at- its input ports

one-at-a-time to its output port, using a round-robin

discipline to-resolve any conflicts. A switch .unit passes a

from
instruction
cells

from
.Operation
Units

0

m-1

(a) Arbitration Network

0

•

m-1-4r ,--, :J~
~ ~

(b) Distribution Network

{
Register

m-1

to
Functional
Units

to
Memory
Register
Units

Figure 14. Structure of the Arbitration and Distribution
Networks

packet at its input.to one of its·outputs,

54

controlled by

some property of the packet. In the arbitration network this

property is the operation code, whereas in the distribution

network , the switch units are controlled by the destination

address. A buffer unit stores a packet until the succeeding

switch or arbitration unit is ready to accept it.

C. Structure Handling

The physical representation of a structure within a

computer system may be viewed in several different ways. One

extreme involves implementing the structure as ·it is

represented in the data flow model~ that is, as an acyclic

directed graph in which each node is either a structure node

or an elementary node. In such an implementation, each node

of the graph occupies a:number of storage locations within

the processor. The location(s) containing a structure node

hold the identifiers of .the locations containing nodes which

are successors of that node. The location representing an

elementary node holds an elementary value. The nodes of a

structure represented in' this fashion may be scattered

throughout the memory iOf the processor~ Alternatively, all

elementary values of a structure may be stored together in a.

grpup of locations. The first few locations of the group

then contain a mapping function which allows one to find the

location of a specific element within the group. This method

is often used for the representation of arrays within a

conventional computer system.

~he first approach has the problem that the storage of

a structure in such a manner can occupy a great deal of

space within the memory. Not only must the data be stored,

but a large number of structure nodes and associated

pointers must also be located within the memory. Accessing

an elementary value in a graph can take a long time as a

path is followed over the arcs of the graph to the desired

node. On the other hand, a single structure represented by

the second approach occupies much less room, but the

representation of several structures in such a manner can be

very expensive in terms df space ·since components of a

structure cannot be shared as they can in the graph

approach. It would seem that perhaps a combination of these

two methods could be efficiently utilized; that is, a

structure representation in which each node of the structure

is a small block of data.

C.1. Simple Structures

The storage of structures and the execution of the

structure actors occurs in a separate structure processing

section within the data flow processor. The structure

processing section consists of. a structure

and a structure memory and· attend~nt

operation unit

arbitration and

distribution networks. This section of the processor is

viewed as an operation unit by the instruction memory; that

is, packets specifying structure operations are sent to the

section, and data packets are returned. The organi~ation ot

data
packets

Distribution
Network

data
packets

operation
packets

•

contr~l PilC es

Control
Network

....

Instruction
Memory

;instruction
packets

Structure
Memory

Structure
Operation
Unit

unid

.
•

Operation
Units

Decision
Units

decision
packets

operation
packets

instruction
packets

operation
packets

Distribution
Network

instruction
packets

Figure 15. Organization of the Data Flow Processor With
Structure Processing Capability

56

57

the data flow processor with the addition of the structure

processing capability is shown in Figure 15.

Packets specifying structure operations are received by

the structure memory and the structure operation unit.

Instructions which require the creation of new structure

nodes are processed by the structure operation unit. The

unit controls the performance of the instruction specified

in each operation packet through instruction packets sent to

the s·tructure memo~y , an4 sends as dat-a packets the

identifiers of the resulting structures to the instruction

processing section. All _structure. operations other than the

allocation of a new node· ar.e · _performed within the structure

memory.

To illustrate the operation of the structure processing

section of the processor, in ·this eection we shall limit our

consideration to structur~s represented as binary trees. A

selector of such a structure can have one.of two values, L

(left) and R (righ~).

A node of a structure is contained in a two register

cell known as a structure cell and designated by a cell

ideritifier. The two ·registsrs of the cell coijtain the left

and right components of t~e structure, respectively; and.

hepce no selector need ~o be stored in a register. ~he

first field of a register is a USE CODE which indicates

whether the ite~ stored in the secon~· field is the

identifier of another cell or an elementary value or the

register is empty. A memory representation of the simple

Cell. A Cell B

elem a

st rue y st rue Y

Cell Y

elem b

elem C

Figure 16. Memory Representation of the Structure of
J.i'igure 3

58

structure of Pigure j is presented in Figure 16.

The structure memory is composed of a number of

structure cells in a manner similar to the way the

instruction memory is formed of a number of instruction

cells. Each structure cell is capable ·of holding one node of

a structure, and the identifier of .the cell specifies a path

through the distribution network to the cell. 7he structure

memory ~eceives instruction packets from the instruction

memory and the structure operation unit commanding a

specific strbcture cell to execute some structure operation

upon the node located in the cell.

Each structure cell within the structure memory is

capable of performing one· of two operations upon the

structure node contained. in the cell. The possible

operations are:

1. S~LECT. Upon ~eceipt of an instruction packet

specifying a select operation

r
' SELECT dest
<
I s
I
~

a structure cell follows one of two procedures, controlled

by whether sis.a simple or componnd selector.

a. Ifs is a ·simple selector, the content c of the

register designated by sis used to form a data

packet

1-~ dest
I

C

60

which is presented to the arbitration network for

transmission to the instruction processing section

of the .processor.

b. Ifs is a compound selector s1s2 •... sn, the content

B of the register designated by s1 is the identifier

of some other structure cell and is used to form the

2.

instruction packet

B

i SELBCT · dest 'i
! s2 sn
'-

which is present~d to the arbitration network for

transmission to the input distribution network of

the st~ucture memory. The process is then repeated

with the selector s2 at structure cell B.

ALTER. The receipt of an ALTER instruction

(· y ...
I

'

ALTER

' s ', ·, f
I
I

j' X !
i

! I I .
\.. b .)

.:ndicates that the structure cell· is to contain a

copy of the node B with the component of B

designated by the selectors set to x. Pirst, a

copy of node Bis retrieved from ihe memory. Once

the copy of B is present in the Cell, the value·

contained in the register designated by the sele~tor

61

sis chaneed to x, and the use code of the register

is set to the apprripriate value (elem, struc, or

empty), designated by the tag of x, and the result

is linked to Y.

The format of an instructibn packet received at the

input distribution network of the structure memory differs

from the format of an operation packet transmitted to a

functional unit of the structure operation unit due to the

fact that the. operation code of an instruction packet does

not control the switching within the distribution network;

rather, the cell identifier is used· to direct an instruction

packet toward the correct. structure cell. Hence, an

instruction pa~ket in the distribution network has the

following format

A

i

where A is the identifier of some structure cell in the

structure memory and i specifies one of the two operations

which can be performed by a structure·cell and contain the

necessary operands.

Packets· containing instr~qtions that desi"nate

structure operatio~s are {rans~itted to the structure

processing section of the processor from the· instruction

memory. A packet specifying a select instruction is

transmitted directly to the structure memory as an

instruction

representing

packet.

the other

Structure

structure

operation packets

instructions are

62

transmitted to the structure operation·unit. The necessity

of processing each operation packet within the structure

operation unit is due to the required allocation of one or

more free structure cells for the execution of each

instruction with the exception of the select instruction.

The structure operation unit performs the allocation of a

free Cell simply by accepting the identifier of a cell over

the unid port in structure operation unit.

~6w that we have considered ·the operation of a

structure cell within the structure memory, we can describe

the execution of each of the remaining structure actors

merely by listing the procedure followed by the structure

operation unit in processing the instruction. }'or the

purposes of this discussion, it is assumed that all

selectors are simple selectors.

A CONSTRUCT instruction

r CONS':(RUCT dest

{ s 1 : A

I s2: y
. '- .I

specifies that a new node is to be created with components A

and Y, designated by the selectors s1 and s2. '£he

instruction is implemented by the structure operation unit

as a number of ALTBH operations in the following manner:

1. Accept an identifier B from the unid port.

2. Transmit to the structure memoiy the instruction

packets

of

6:5

I
,. ')

B

r
B . !

A1T.l!:H ALT.l!;R I

l s1

r

and < s2 " I I

i
I
i

A

I
y I

!
i 0) ! 0 !

l '-

transferring the values A and Y to the correct

registers of B.

3. Transmit t9 the instruction proc~ssing section the

data packet:
r ~
. dest 1

i . (
I. B I
l .)

An operation p~cket containing an APPEND instruction is

the following format:
,.

l ' APPEND dest
i
I I I

~
s

r l X

A J
wheres is the selector of the element·-in structure cell A

which is to be ieplaced by x in the new structure. ~he

procedure foilowed by the structure operation unit to

execute the instruction·is·as follows:

1. Accept an identifier B from the unid port.

2. Transmit the instruction packet

f B

I ALTER

' s I

64

I X :
I I

! I

L A j

to the structure memory to copy node A into cell B

and change the component of B designated by the

selector s to·· x.

3. 1ransmit to .the instruction processing section the

data packet:
' ;

dest
;·

B)

An operation packet specifying a DELETE instruction

J
DELETE dest

..,
;

·S ,..
'

I
I A L _; .

is processed in a si~ilar manner:

1. Accept an identifier B from the unid port.

2. Transmit the instruction packe~

r
' B

ALTER I
I
i

<(.s ' {

0

. A I

'
to the· structure memory, indicating that the use

code of the.register designated bys in cell Bis to

be set to ENPTY.

3. Transmit the data packet

f dest 1
L B _I

to the instruction processing section.

C.2. ~xtension to More Complex Structures

65

The extension of the described techniques for the

implementation of data structures to larger and more complex

structures is straightforward. In order to implement

structures with a fixed maxi~um nu~ber of arcs emanating

from each node, the size of a structure cell is increased to

accomodate the new node .Size. The use of arbitrary (to a

fixed maximum size) integers or character strings as

selectors can be accomodated through the addition of a

selector field to each register. A structure cell must then

have the capability to choose from the node contained in the

cell an item whose selector matches a specified selector.

These extensions allow the representation of fairly powerful

structures. A further extension to allow a node to have

arbitrary number of emanating arcs introduces a great deal

of complexity since it might be necessary to use several

cells to hold the identifiers of all cells which contain

successors of the node. To avoid this complexity, a node of

a structure in the data flow processor is of fixed size, and

each arc emanating from the node has a fixed size selector

associated with it.

CHAPTER V

IMPLEMENTATION OF HIGH-LEVEL LANGUAGE·

CONCEPTS. IN DATA FLOW ARCHITECTURE

AND ~XISTING SEMANTIC GAP

A. Data Representation·

Data representation and arithmetic processing of a

~ighly parallel, asynchronous data flow computer should be

designed in a manner qompatible with the architecture of the

computer. The data flow within the· processor occurs in terms

of packet flow. Packet format consists of a group of bytes

(8 bit ~ach) travelling sequentially a~ong byte-width

channels. Hence, a. convenient way to manipulate or examine

these packets is to provide byte-serial operation units

[17].

The arithmetic processing unit

arithmetic which uses algorithms

properties:

uses signed. digit

with the following

1. The operation can begin before the operands are

availab.le in compJ..ete form,

2. The first result -digits are ·produced (most

significant first) after a certain number of result

digits are available.

For example, in the addition operation, the most significant

66

67

result dieit is available after thP f:rst operand digits

arrive. This is made possible by the property of Signed

Digit arithmetic that limits carry propagation to adjacent

digits. As a result, the processor accepts bytes of input,

and produces output bytes, consistent with the structure of

data packets in the data flow computer. Pipelining allows a

high byte processing rate.

A~1. Signed. Digit Number Hepresentatidn

Various options for number

available for fast arithmetic.·

representations are

Conventional number

representation such as ·2s complement are such that for an

arbitrary base~,

chosen from the

each digit of a number can haver values,

digit- set (0,1, ... ,r-1). 'fhese

representations have ·the property that carries generated by

the summation of digits can propagate from right to loft

along the whole number, e~i., 999+1 = 1000. This property

limits digit-by-digit. computations to representations where

the least significant digit is available first; otherwise

the result can only' be obtained as a ~hole.

lets consider the operatic~ (986j + 0199·)

For example,

1. two digits at a·time,

right to ·1eft

63 + 99 = 62

98 + 01 = .99

100 62

result available

2. two digits at a time

left to right

98 + 01 - 99

63 + ·99 = · 1 62

10062

result available

68

in parts as a whole

The arithmetic processor designed for data flow computer is

a byte-level pipelined processor with on-line properties

i.e., a processor that would receive operands as bytes and

output the result$ also as bytes, in both cases most

significant byte first. Such algorithms exists for Signed

Digit number representation.

A signed digit number system ia a redundant system,

i.e., each nµmber cari have more than one representation. For

a chosen baser, this can be achieved by allowing each digit

to assume more than r .values. For example, a symmetric digit

set of 2r-1 elements -a, ... ,-1 ,0,1 , ... a where a=r-1. This

representation .is called maximally redundant, and it is the

largest possible digit set for the chosen base. For example,

for base 8 arithmetic, the maximally redundant signed digit

set is S = -7, ... ,-1 ,0,1 , ... ,7, while the conventional

digit ·set is A= 0,1,.· .. ,7. Hence ·A is a subset of S.

Using the digit set S, redundancy can be shown:

0.6432 = 0.7432 = 0.744b
8 8 8

Characteristics-of signed digit numbers are as follows:

1. A signed di~it nuCTber Xis represented by n+rn+1

digits x (i=-n,~ .. ,o, ... ,rn)
i

r=integer base,

2. X = 0 if and only if all x =0,
i

m -i
and X =Lx. r where

-n 1

j. 8ign(X) = Sign of the most significant digit, and

69

4. Inverse o.f X, i.e. -X is:obtained by changing the

sign of each x in X.
i

Since fixed format floating-point operations are

used, representation of the number X can be redefined as
-i

consistine of m dieits x (i=1 ,2, ... ·tm) so that
m

X=LX r.
1 i
point

i
This way there are no digits to the left of the radix

t~o~ definitions for para1lel addi'tion and subtraction are

given as follows:

1. Addition of digits z ,y is· parall~l if
i i

a. Sum digits is a function of only z , y and the
i i i

transfer digit t from the (i+1)th position -on the
. . i .

right (:Pigu.re 17),_ i.e., s = f(z ,Y ,t).
i i i i

b. The ·transfer ·digit t is a function of z and
i+1

y only.
i+1

2. Subtraction is done· by .negating the subtrahend

according to property (4) above and then adding, so

-that z -y =Z +y. .
i i i .. i

The transfer digit . t is the carry generated when the
i

digits are added. Sirice rtegative sums can be used, there

can be negative carry as well.

(T,0,1) as values.

Therefore, t can assume
i

Interim sum digit, w, is defin~d t6 be a subsum such
i

that:

z + y = rt . ·+ w (1)
i i i-1 i

and sum digit

s = w + t (2)
i i i

Y. 1 l.-

Figure 17. Signed Digit Addition

70

z

y

71

Since t = (T,0,1) and since 8 must also be in the
i i

same digit set as z and y (namely s < r) , the w < r-1
i i i i

because otherwise (w +t)" will not be in the digit set s.
i i

For example, using r=8, lw I <
i .

r-1 = 8-1 =7

fort =1 and for unallowed value w =7,
i i

s =t +w =7+1=10
i i i

which is clearly not in S

So far nothing has been said about the base limit,

however because of t~e restriction on fw I, it can be seen
i

that r=2 is not allowed. For base 2,

lw I < r-1 =1 ·
i

If fw l=O, then there is not- to satisfy z +y =1=2t (from
i

Eq. 1) • Therefore,
i

signed
i i i

digit representation and

algorithms are valid for r)2.

Advantages of using Sined Digit number representation

are as follows:

1. Carry propagation chains in a conventional number

representation are eliminated because s. is a
~

function of adjacent digits. Since there is no

operand width carry, addition and subtraction time

is independent of operand precision.

2. Most significant digits can be available before

least significant. ones and they can be processed

further befor~ an operation ends. Hence computations

can begin before all of the· dig~ts are available,

and therefore digit level pipelining is possible fo~

arithmetic operations using sined digit number

72

representatiQn.

Disadvantages of using signed digit number

representation are as follows:

1. ~he adders are more complicated and therefore

' require more ·hardware than for example 2s complement

adders.

2. Nachine representations of numbers are larger than

in conventional machines because of the digit set

ch6sen, which requires an extra.sign bit for each

digit.

For the arithmetic pr6c~ssor designed for data flow

computer, base-8, fixed format, floating-point, sined digit

representation is used. The digit set chosen is maximally

redundant and consists of 15 integers

(-7, ... ,-1,0, 1, ... ,7). ·· ·Machine representation is chosen as

16s complement base-8 binary form where each digit occupies

4 bi ts (Figure 18) The-refore two digits from an 8-bi t byte

and the purpose of the·design is ·,to acheive a byte-level

pipelined, "two-digit-at-a-time'' arithmetic processor.

As in a11· floating-point numbers, an exponent and

mantissa are required. A sign bit for the whole number is

not necessary: the sfgn of the numb.er is the sign of the

mo~t significant digit of the mantissa.

represented by a binary byte (8-bit):

~he exponent is

one bit is the

exponent sign and sevin bits form the exponent, · giving an
+127 · +114

exponent range of S- (approximately 5 x 10-). Larger

73

Given base-8 Signed Digit set

s (7, ... ,T,0,1, ••• ,7)

possible machine representation (16s complement)

0 0000

1 0001 I 1111
-

~ 0010 2 1110

'J 0011 3 1101

4 0100 4 1100

5 0101 3 101-1

6 0110 6 1010·
-

7 0111 7 1001

Floating-point number representation

number .7346 E+2J

exponent o[~ .
· ~ :;.a value

sign

. mantissa 0111 001111001010

Figure 18. Machine Bepresentation of Numbers

74

exponents can be. obtained by the addition of uore bytes as

required. Conventional binary representation is used for the

exponent because it makes exponent manipulations such as

overflow ahd underflow detection easier. The format for the

mantissa is ~elected as 4. digits or 2 bytes. The small

number of digits is for clarity; increasing the precision

does not change the structure of the processor.

Various operations result in either an error or in

other special conditions e.g. exponent overflow, divide by

zero, etc. When these are detected, they can be either

handled through an error routine, or be unreported and

indicated as a special result ·value (operand). Since the aim

is to design ·a fast processor, error routines are not

appropriate due to the fact that in a pipelined asynchronous

system, it is hard to. find means to report the error.

therefore, various speqi_al operands are defiried

± or.> (infinity for overflow cases)

±~ (O+~:rnd 0- for underflow cases)

E (error, for indefinite cases)

These operands can be represented~by special exponents

and·s~nce these Bxponent~ are processed first, unnecessary

operations can be discovered early. ·For example, for base-8.
+120

number formQt, one can limit the ~xponent range to 8 • In
+121 121

this case 8 would be overflow, while 8- be underflow.

To the remaining 12 possibilities, the following Values may

be assigned

exp·.- ±123 := .±.. oo

exp:= +125 := +e

exp:= 127 := E

When a special operand is detected,

75

the normal

operation is not completed, rather a special operand is

selected and sent out as a result. For example let N be a

normal operand, then:

+E - N = -N

E * (-oo)=B

0 - (-oo) = +

o I (+oo)= o
This method is used in the CDC 6600.

Special operands can also be used or created in case of

overflow occuring after an operation. In such cases the

sign of the special operand is chosen to be the sign of the

over or underflow result.

A.2. Arithmetic operations

In this section normalization, addition-subtraction and

multiplication algorithms used in an arithmetic processor

for a data flow computer are described.

A.2.a. Normalization. In floating-point arithmetic,

normalization is basically the adjustment of a result to a

speqified format. A normalized number is such that the most

significant digit of its mantissa is non-zero, i.e., for

mantissa m and baser,

-1
r < 1ml < 1

An exceptio~ to this rule is the zero mantissa (the number

0) ~

76

Usually in machine arithmeti~ involving conventional

number representation, the result is ready as a whole and

the normalization is done as follows:

1. lf· there is mantissa ov~rflow then right shift.the

mantissa digit; increment the exponent, check for

overflow. If there is no overflow ~ack the

exponent and mantissa according to the.format.

2. If the most significant

non-zero, then pack

according to the format.

digit of the mantissa is

the exponent and mantissa

3. If the most significant digit of the mantissa is

zero then left shift the mantissa, decrement the

exponent,

underflow,

repeat until

zero or the

check for· underflow. If there is no

check the new most significant digit;

eithet the most significant digit is

exponent underflows. · Then pack the

exponent and mantissa.

before normalization.

The zero.case is detected

In the arithmetic processor designed for a data flow

computer, the result is not available as a whole. Rather,

digits are available one-by-one (in the ~dd~r-subtracter)

and two digits at-a-time (in the multiplier). Since the most.

significant digits arrive first, this does not change the

above algorithm, except that no shifting is done. For

example given .result 1 .87J4 B+72 in an on-line addition­

subtraction operation~

.1 E+73 · mantissa overflow, increment exponent

T7

. 18 E+73

. 187 .E+73

.1873 E+73 done; exponent and mantissa packed

As seen above, normalizing involves also the

construction of the mantissa according to the format. In

some cases, exponent overflow or underflow may occur during

such operation. In .the overflow case, ±oO is sent out

according to the sign of the mantissa overflow digit. lf

there is underflow, then all result digits have to be

examined for the sign until a non-zero digit is found; then

+e is sent out according to the sign of' this digit. 1',o r

example let ~+100 be overflow and E-100 be underflow, then:

·r. 7344 £+99 .17344 E100 negative overflow

therefore result -----~!9> - 00

.000345 r.;.:..~8-:> ~00345 B-99

~ .0;45 E-100 underflow

therefore result ____ .,.._. + E

Unfortunately all zero results cannot be detected

easily in a digit-by-digit environment and therefore can

cause unnecessary normalizing ~peFations.

method of handling these is to:

The proposed

1. Provide mechanisms to check operands pre-operation

to discov~r zero-result cases, ~.g. U+O, 10*0, and

2. Continue normalizing post-operation until the last

result digit is produced. In this case a zero

exponent and zero mantissa can be packed and sent.

78

For case 1, 789*0 = 0 can be detected before the operation

is performed. For addition and subtraction, there can be

pre-operation detection of all zero operands only, i.e. O+O.

A.2,b, Addition and Subtraction: . Signed digit addition

and subtraction has been described previbusly, What follows

is an algorithmic description.

Given operands Zand Y, signed digit addition is done

at two levels. First

w + rt - z + y
i i-1 i i

where z and y are ith digits df Zand y respectively (i
i i

digits right of the radix point, t is the transfer digit
i-1

and w is the interim sum digit).
i
The second level produces the ith sum digit:

s = w +;t
i i i

Since lw I < r-1, a value for lwmaxl, the lareest magnitude,
i

has to be selected, In this design,· wmax is chosen to be

r-2. ~ow a stepwise ~escription of addition can be made:

,.
2.

Add z to y to obtain X
'

i.e. X =Z +y .
i i i i i 1·

Generate the transfer digit t using s and
i i

where wmax < r-1.

-a. If x > wmax, there is positive carry; i.e.
i

t =1 •
i-1

wmax

b. If -wmax < x < wmax, then there is no carry; i.e.

t =0.
i-1 .

i

c. If x <-wmax, then there is negativ~ carry;
i

ti-1 =-1.

79

j. Obtain ith inter i1:1 sum digit w :
i

w = X - rt
i i i-1

4, 1''inally, compute ith sum digit:

s = w + t
i i i

Figure 1 9 summarai zes the above. · It . should be noted

that usinft this algorithm, given ith operand digits\ and

~' ith sum digit si is produced when ti is available,

is to say when (i+1)st digits are available. Once

which

s
i

is

produced, it can be used up in ·another process before s
i

is available. Initially w is zero so that carry produced by
0

the first most significant digits and indicates

overflow; i.e. if s0 t= O,· · then there is no overflow.

Subtraction is done by negating the subtrahertd.

In the adder-subtracter, bytes will be produced. ~ince

a byte is two digits,-a two aigit para~lel adder can be used

as shown in Fieure 20. · Only variation is the ex~ension of

the transfer digit of A2 to B1 to enable sequential byte-

level addition. Computation sequence is indicated next to

each port in Figure 20, For example let lwmaxl < 6, also

let the digit set be maximally r~dundant , given Z = .651]

and Y = 0,4714 the sum is:

1. 6 + 4 = 12 w =0
0

t =1
0

w =~
1

s s
0

1

80

2. 5 + 7 = "2"
t = 0 2

1
w = "2"

2

3. 1 + T = o

t = 0 2
·2

w = 0
3-

4. ;i + 4 = 7

t, = T
3

w =
4

t = 0 1
4

RESULT 0.6513 + 0.4714 = 1 .2211

A.2.c. Multiplication. An efficient algorithm for

signed digit multiplication is used in design. Following is

a description of the algorithm

Operands·are defined as

m -i
X =L x r

1 i
and

m -i
Y =LY r

. 1 i

As explained previously; this representation has no digits

to the left of the radix point.

Let X and Y be the j-digit ~epresentation of X and Y
j j .

respectively. In other words, let

j -i -j j -i -j
X =[: x r = X + x r and Y =L y. r = Y + y r

j 1 i j-1 j j 1 i j-1 j

In an on-line environment, X and Y are considered as the
j j

z2 Y2

I

' ' I '

A1 A2

to W1 t1· w2

wo=O

I I ' I 1/ 1 1

Bo Bi

I I I

Let K digit position to ~he right of the radix point

Ak : zk+yk-~

if ~ > wmax ~- tk_1=1

if -wmax < ~ < wmax ==+ tk-i,;;; 0

if \ < -wmax ====- k-i = -1

Figure 19. Parallel Signed Digit Adder

81

t 2

'

B2

'

m z1 @ Y1 § z2 ~ .
A1 A2

§ w1 § to § WO @ 0
-....

I

B1 B2

~ S1 S2 so
so

Note O shows input or output at a given porl

Figure 20. Double Digit Parallel Adder Modified for
Byte~level Computation

82

Y2

t1

bj

available parts of X and Y respectively on the jth step. Now

the partial product

X Y = (X + x
j j j-1 j

-j
r) (Y +y

j-1 j

-j
r)

-j -2j -j
= X y

~-1 j-1
+ X y r + x y r + x Y r

j-1 j j j j j-1

= X y
j-1 j-1

-j
+ r (X y +

j . j
y X)

j-1 j .

Defining P to be the scaled partial product, i.e.
j j

P = X Yr , then
j j j

p = p
j j-1

+ X y + y X
j j j-1 j

(3)

(4)

from Eq.3 abov~. Using this and the fact that P0 = 0, the

desired result can be obtained by ·

n
P = X.Y.r

n
(5)

This algorithm can be. used for non-redundant numbers

where the result digi'ts are available least significant

first in order to cope with carry propagation requirements.

Since the interest is on-line computation, a new algorithm

can be derived for Signed Dieit ~ultiplication with the on-

line property, where_ input and outputs are obtained most

significant digit first.

Using the symmetric and maximally redundant digit set

S, the following new algorithm can be written using Equation

(4) :

W = r(W · - d) + X y
j j-1 j-1 j j

where digits d are in S, and
j

d = Sign (W) * t1w .1-j+
j j . J

+ y X
j-1 j

1/2

The result of multiplication can be expressed as.

-n n -i
XY = r (W ~ d) + L d r

n n ·1 · i

(6)

In order to meet the restrictio~ that d be in S, the

operand bounds are limited so that for maximal redundency,

IXIIYI < 1/4

Figure 21 illustrates the ·algorithm.

What has bee~ described sb far is a digit-at-a-time

multiplication algorithm.· For the design proposed for data

flow computer, a two-digit-at-a-time algorithm is required

and this can be made .. possible by slightly modifying Eq. (6).

Since digits arrive as p~irs, .partial operands are redefined

as follows:

j -2i · -2j
X =LX r = X· + r X and

j 1 i j-1 j

j 2· ·-2j. - l
y =L_Y r = y + r /,y

j 1 j j-1. j

Using the sµme derivation method as before,

algorithm is defined as follows:

w
j

2
= r (W -d) + X y + Y· x

j-1 j-1 j j j-1 j
.and

the new

I ~ ~1 I x2 I xJ 11· • • L I xj-i I ~,j I
X.

J

Y. 1 J-

)

I Y1 I Y2 I YJ · I \···~.____,_.___-yj-1 y.
J

op2

opJ

Sign w .. · Llw.l+! J
J . J .

r(w .-d .)
J J

] 1igure 21 • Signed Digit Multiplication
OJ
\J1

86

-n .n -2i
XY = r (W -d) + 2 .. _ d r

n n 1 i

The new algorithm produces d s that are digit pairs

where each 'digit is in~. Operand bounds still apply, i.e.

IXI III < 1/4. Signed digit multiplication procedures using

single and double digits is ·shown in Figure 22.

A.2.E_. Data Type Specification .. The data flow computer

supports are boolean, integer, and real data types. It is

obvious why these types were chosen as the basic data types

for data flow computer. Boolean values are required for

control, and both integer and real data types are needed for

performing practical computations.

Multiple precision and complex data types are not

allowed because of storage· limitations in the instruction

cell, Their infrequent use, and their requirements for a

more complicated processing unit. Character operands are

not permitted because they typically occur in character

strings, which should be handled by Strµcture Processor and

kept in structure memory.

Boolean values will be represente~ in one byte,

integers and reals in four bytes. The first byte of each

representation contains an .error bit. If the error bit is

on, the error value is specified in the first byte. If the

error bit is off, the operand is a standard boolean,

integer, or real value.

Since there is no control flow to interrupt in data

flow programs, proerammine errors are handled by generating

let X = 0.02510 and Y ~ 0.12910

j X, ,yj X. Y. 1 X.y. Y. 1x. SUM w. d. 10(w.:-d.) J -J J- J J J- J . J J J J

0 e 0 .o .o .o • o .o o • 0 o.

1 0 1 .o .o .o • o .o o . 0 o.

2 2 2 • 02 .1 .04 .2 .24 0.24 0 2.4

3 5 9 .025 .12 .225 .6 .825 . 3.225 3

w3-dfo.225

result can be obtained as digit pairs, i.e. by d1 ,d2,d3and (w3-d3)

therefore, X.Y = 0.003225

(a) Signed Digit Multiplication Using Single Digits

-j x. y. X. Y. 1 Xjyj Y. 1x. SUM w. d. 100(w.-d.) J J J J- J- J J J J J
6 00 00 .o .o o.o o.o o.o 00~ 00 00
1 02 24 .02 .oo 0.48 o.oo o.48 00.48 00 48.
2 34 63 .0234 .24 1.4742 8.16 9.6342 57.6342 58

result, X.Y~0.0058365~

(b) Signed Digit Multiplication Using Double Digits

Figure 22. Two Procedures for Signed Digit Multi.plication

special error values. The error values are:

boolean undefined

integer

real

undefined

positive/neg~tive overflow

unknown

zero~divide-

undefined

positive/negative overflo~

positive/negative underflow

unknown·

zero-divide

88

The element "undefined" results when operand values are not

in the domiin of an operator. The elements

"positive/negative overflow" denote values, positive or

negative, too large to be represented in the representation

of the type used. The element "unknown" indicates the result

of a computation that has exceeded the capacity of the

implementation, but whose true value is not known to be out

of range. The elements "positive/negative underflow "

denotes non-zer9 values, p~sitive or negative, tbo small to

be represented in the re-presentation of data type. A table

of error values-is represented in.Figure 2J.

B. · Iterations

B.1. Introduction

Before discussing iteration (loop) st~uctures it is

89

VALUE NAME

1000 0010 unknown

1000 0011 undef'ined

1001 1100 positive-overf'low

1000 1100 negative-overf'low

1001 0100 positive-underf'low

1000 0100 negative-underf'low

1000 0001 zero-divide

Figure 23. Error values

90

useful to establish. some terrninolo~y. By the term loop in

high-level languages we mean a control construct which

somehow enumerates a set of values for a loop-index or a

loop-condition. and which· performs a. fixed sequence of

statements (its body), . once for each value of loop-index or

until the loop-condition is not satisfied.

A loop may contain one or more loops within its body.

The inner loops are said to be nested within the outer

(enclosing) loop and the structure as a·whole is called a

nested loop structure. £ach enclosure defines a different

level of the nested loop structure. The degenerate case of

a nested loop structure, where there is no loop in the body

· of the outer loop, is•. called a single-level loop, since

there is only one loop level.

B.2. Loop-construct

A loop-construct consists of some initialization code,

a body which may be_ex~cu~ed several times, and some exit

code. ~here ·ar-e different loop-constructs in high-level

languages (PL/I, FORTHAN, COBOL). Execution of a program

loo~ in. high~level languages is controlled by the DO

statement. Differe~~ DO statements existing in PL/I are the.

major concern of this 1:1tudy.

One of the PL/I DO statements has the following format:

I TO
exp-2 BY exp-3 1

DO index-var = exp-1

e~p-2 J
i l BY exp-) TO

statement

END

in which a loop-index designated by "index-var" is used to

control the number of iterations. Loop-ind~x initially

contains the ·computed value for "exp;....1". After· each

iteration the value of loop-index is adjusted by the

computed valµe of "exp-3" and compared with the computed

value of "exp-2". 1he decision to continue or .terminate the

iteration is based on the result of this comparison.

An example .of this DO statement is as follows:

DO 1=1 TO 30 BY 2;

VOL=j.1416 * 1**2;

PRINT VOL;

END

This code segment may be .. expressed in a lower-language

notation as:

1=1

LOOP: V01=1*3.1416

VOL=VOL*l

PRINT VOL

1=1+2

IF (1 < .31) GO TO LOOP

Using this notation the different segments of the loop-

92

construct can be easily distinguished. Generally, this DO

format

(i.e.'

uses a loop-index with a specified initial value

1) which is incremented by an incremental value (a

signed integer) after each iteration and compared with the

final value (i.e., .50). If the final vaJ.'..l.0 is reached the

loop is terminated and control value is passed to the next

instruction in the program logic, otherwise, the new value

of the loop-indei is conveyed to the·body of the loop for

further computations.

To tran~fer both the initial and adju~ted values of the

loop-index to the body of the loop, a M:ERGE gate may be

used, in which the false input receives the initial value of

the loop-index· (since all control values are initially

false), and the true input receives the adjusted value of

the index O'igure 24a).

After each iteration the value of the loop-index is

adjusted by the incremerital value. This segment of loop­

construct may be represe.nted in data -flow base language

using an actor (Figure 24b).

Finally, the new value of the loop-index· should be

compared with the final ·value.· 'l'his . segment may be

represented by-a decider gat~, ~hich current and final

values of the loop-index are its inputs (:C'igure 24c). The

comparison operator may be one of the following:

<

>

adjusted

value of

loop-index

(a)·

final value of

loop-index

initial incrementa

value of value

loop-index

(c)

(b)

old value of

loop-index.

adjusted value of

loop-index

Figure 24. Data ·Flow Actors Used to Represent Loops

94

= =
<= >=

The result of the comparison is a control value (true or

false) which ~pecifies the·status of the loop (terminated or

not).· The control token is then c·onveyed to the MERGE gate.

Note that the comparison operator should be selected such

that the ·re:sul ting true value of the control token·could

cause the continuation of the loop. A copy of the control

token is sent to the instruction immediately following the

loop-construct in the ~rogram logic. A complete data flow

code correspr.nding to the program segment discussed before

is shown in Figure 25.

A more elaborate example of an indexed nested loop

constr~ct is presented in:the following program segment:

DO I=1 TO 11 BY 2;

Ivl=I**2;

DO J:30· TO 1' BY -1;

K=f.i*J**2+1;

PRINT K;

END;

END; .

This PL/I nested loop-co.ns.truct may .be expressed in a lower­

language notation as follo~s:

1=1

J=30

95

T F

print

Figure 25. Representation of a·Single DO Loop in Data
Flow Base Language

96

LOO PO M=I*I

LOOP1 K=M*J

K=K*J

K=K+1

PRINT K

() =J-1

IF' (J >= 1) GO· TO LOOP1

1=1+2

IP (I <= 11) GO TO LOO PO

The corresponding data flow-code is represented in Figure

26.

There is another form of DO statement in PL/I which

instead of using a loop-index to specify the number of

iterations uses an expression whose value can be converted

to a truth value and as long as its value is true the

iteration is continued~ This form of the loop-construct has

the following format:

DO WHI~E (expressiori);

statement; ·

END;

The followinB code segment is an exacple of the DO WHILE

form of the loop-construct in PL/I:

/* This progr~m computes and prints SIN-(x) for a

Figure 26. Representation of a Nested DO Loop in Data·
Flow Base Language

97

given x with 8 digits of accuracy.

SlN=O; 1=1; FAGT=1; TBRM=X;

DO WHILE (TBHM > 1 .O E-9);

SIN=SIN+TBRM;

FACT=FACt*(I+1)*(1+2);

TERM=(TERM*X**2)/FACT;

l=I.+2:;

END;·

PRINT SI:N;

98

*/

The loop-construct may be expressed in a lower-level

language notation ~s:

LOOP:

SIN=1 ·

1=1

1''ACT=1

TEHi·t=X

IF (TBHM >' 1 .o~~6) GO ~o OUT

SIN=SIN+'rERM

1=1+1

1"ACT=!t1 ACT*I

I=I+1

FAG.T=PACT*I

TERH=TERM*X

TERM=TERN*X

TERM= T .l£R}1 / E' ACT

GO TO.LOOP

OUT: PRINT DIN

T F

Figure 27. Data Flow Code to Perform SIN

print

\.0
\.0

100

The corresponding dnta flow code is represented in Figure

27.

C. Data Structures

In this section some basic data structures are studied

on the implementation level in· two types of computer

architectures, conventional ·von Neumann and data flow. On

the logical level; a data structure is a set of primitive

data elements and other data structures, together with a set

of structurai relations among its components.

Difference in implementation of data structures in two

different architectures arise from the difference in logical

structure of the memories. In conventional von Neumann

architectures memory is sequential, qne dimensional block

with the appearance of a vector. The only'data structures

that may be implemented directly in these architectures are

linear lists. Structural relations in other data structures

are implemented by compilers using basic properties of

logical memory, and as it was discussed before, this mapping
.·

is one of the reasons of exfsting of the semantic· gap.

The data flow architecture proposed by Dennis uses

binary tree representation as the.basic logical structure of

the structure memoty. Since the basic logical view of

memory in this archite6ture is different from the von

~eumann architecture, all mapping procedures of data

structures should be changed or modified to cope with the

new logical view of memory.

101

In the following sections the major and widely-used

data structures in high-level languages are examined

carefully. The mapping procedures used in compilers written

for van Neumann architectures are represented, and new

procedures to map data.structures onto data flow structure

memory are proposed. The data structures which ~re major

copcern of this study:

arrays

stacks

queues

Q.1. Arrays

An array·is a collection of elements of some fixed

type, laid out in a k-dimensi6nal rectangular structure. A

measure of the distance along the structure is called an

index, or subscript, ~nd the elements are found at integer

points from some lower limit to some ~pper limit. An

element of an·array is named by giving the name of the array

and the value of its index.

c.1.a. Allocation And Mapping. In conventional von

Neumann architectures if tha size of the array is known at

compile time, then it is expedient to implement the array as

a block of consecut"ive .words in cemory. If it takes k

memory units to store each data element, then A(i), the ith

element of the array A begins in location

BASJ:: + k*(i-LOW)

102

where LOW is the lower bound on the subscript and BASE I~

the lowest numbered memory unit allocated to the array, that

is, BASE is the location of A(LOW). A compiler recieves the

following information from array descriptor in high-level

program:

the data type (i.e., one-dimensional array)

the element type (i.~.,-integer, real,

or character)

the number of memory units per element

the lower limit on subscript range, and

the upper limit on subscript range

In the case where everything is of fixed si~e, all of

this information is available in the symbol table at compile

time. Thus the compiler can generate a reference to any

element of an array by determining its offset from the base

of the array.

A two dimensional array is normally stored in one of

the two forms, either row-major (row-by~row) or column major

(column-by-column). FORTRAN uses column-major form; PL/I

uses row-major form. Figure 28 shows the i:nplementation of a

2x3 array called A in (a) row-major form· and (b) column­

major form.

In the case of

major form, with

a two-dimensional array stored in row­

lower limit of 1 in each dimension, the

location for A(i,j) can be calculated by the formula:

LOOATION

BASE

BASE -* 1

BASE+ 2

BASE + 3

BASE t 4

BASE+ 5

· LOC·a.TION

BASE

BASE+ 1

BASE+ 2

BASE+ 3
BASE+ 4
BASE+ 5

(a) Row-major Form

ARRAY ELEMENT

A(1,1)

A(1,2)

A(1,3)

A(2,1)

A(2,2)

A(2,3)

ARRAY ELEMENT

A(1,1)

A(2,1)

A(1,2)

A(2,2)

A(1,3)

A(2,3)

(b) Column-major Form

Figure 28. Two Porms to Represent a Two
Dimentional Array

104

BASE+ k*((i-1)*r + j-1)

where k is the number of memory units per element and r is

the number of elements per row. In column-major form the

formula is:

BASB + k*((j~1)*c + i-1)

where c is the number of elements per column.

Row-or column-major forms may _be generalized to many

dimensions and to arrays with a lower bound of subscript

other than 1. The generalization of row-major form is to

store the elements in such a wat that, as we scan down the

block of storage, · the rightmost subscripts appear to vary

fastest. Column major form. generalizes to the opposite

arrangement, with the leftmost subscripts varying fastest.

In the data flow architecture a binary tree is the

basic logical representation of structures and other data

structures must be mapped by compiler to a binary treew To

implement a data structure in data flow base language, the

compiler should map its descriptor to a (pointer,selector)

pair. An array is declared in· a high-level language by a

(name,dimension) pair. An array name may be directly used

to create a_pointer to the.root of the associated binary

tree. The dimensions of the array may be used to realize the

length of the selector which identifies individual elements

of the array. In the case of one-dimensional arrays,. a

binary representation of the index. may be used as a

selector, interpreting Os as left and 1s as right with

105

slight modification in index. Por eiample consider the array

declared us A(16). First A may be used as a unique pointer

to the root of binary tree representation

A ---z..-~.>l~o
Then the number of bits required to represent 16 aifferent

ind i c e-s (4) specifie~··. the riumbe~ of elements in the

selector. The followirig al~orithm gen~ralizes the mapping

algorithm for one-dimensional arrays:

create a pointer to an ~!located cell

using the name of the·array

find v such th-at

V-1· V
2 < dimension of array<= 2

Then v is the number of elements in the selectors used to

reference the array. To reference each individual element of

the array, its index -is first decremented by one and then

its binary repre~entation is used as a selector. The mapping

algorithm may be generalized as follows:

decrement index by,.

convert index to av-bit binary number.

use binary representation of the index as ·a

selector (inter~reting Os as left and 1s as

right)

Por example references to the elements of array A may be

shown as:

array e.lemP.nt

A (1)

A(2)

A(3)

A(15_)

A(16)

selector

1111

11LR

L1RL

HRRL

RHHR

106

The complete structure of the array A is shown in figure 29.

Multidimensional arrays may be mapped using the above

procedure with some modifications. The name of the array

may still be used . as a pointer to the root node of the

binary tree. In this case, the c~ncatenation of indices may

be used as a selector. -The allocation algorithm may be

represented as follows:

create· a pointe~ to an allocated cell

using the name of the array

find v and w such that

V-1 V
2 ·. < first dimension o:t:' the array·< 2

w-1 w
2 < second dimension of tne array< 2

Then v+w is the number of elements used in the selectors to

reference the array. For example, array B(3,3) is pointed

by a pointer B, and two bits is assigned to represent each

index. The mapping algorithm may be represented as follows:

A

Pigure 29. hepresentati·on

Of' A(16)

decrement first index by 1

decrement second index by 1

convert indices to binary

108

concatenate binary representation of the indices to

form the select6r (interjr~ting Os as left and 1S as

right)

use the selector and pointer B to address the element

Note that the concatenation procedure determines the

allocation type. If row index represented. first, the

allocation is row-major;· otherwise it is colu~n-major.

References to array Bin row-major form is as follows:

array element

B(1,1)

B(1,2)_.

B(3,2)

·B(3,3)-

selector

LL LL

111H

RL LH

RL RL

The complete structure of array B_is shown in figure 30.

Some high-level pr.ogrc1:mr.ifng laneuages like PL/I aJ low

zero or negative indices.· If the index range· starts with

zero the first step of the mapping al~orithm (decrementing

index by 1) is eliminated. If index range starts with a

negative intecler the index should be decremented by the­

starting value of the index. Let array A be declared as:

E·

110

dcl A(m:n)

where m and n are signed integers, then the allocation

algorithm may be generalized as follows:

use the name of the array as a poiter to

the root node

compute n-m+1 and find v such that

V-1 V

2 < ·n-m+1 <= 2

represent any reference to the array A by v bits

Similarly the mapping algorithm may be generalized as

follows:

decrement index by m

convert index to av-bit binary number

use converted binary number as a selector to

reference the elements of the array

The allocation· and mapping of the multidimensional arrays

may be generalized by few modifications. · Let the two-

dimensional array B be declared as follows:

dcl B(m:rf,p:q)

Where m,n,p, and q are signed int~gers, then the allocation

aleorithm may be gerieralized as follows:

use the name of the array as a pointer to the

root node

compute n-rn and q-p and find v and w s~ch that

1 1 1

V-1 V w-1 w
2 < n-m+1 <= 2 ~ < q-p+1 <= 2

represent any reference to ~he array Hin v+w bits

Similarly the mapping algorithm may be generalized as

follows:

decrement first index by n

decrement second index by p

convert first index to av-bit binary number

convert second index to aw-bit binary number

concatenate two numbers to form the.selector

Although the proposed mapping function for

multidimensional arrays is the easiest method, it is not the

best. When thij ·index ranges are not actual powers of 2, the

depth of the binary tree grows oore than it is required to

represent ull elements of the array. Consider the array

A(3,17), using the concatenation method 7 bits (2 for rows

and 5 for columns) are required to represent the selector

and the tree will grow up to 7 levels. however, A containns

only 51 elements that may be represented in 6 levels. To

reduce the depth of the tree, a nathenatical function may be

used to map the indices to the range of product of the

subscript ranges. Assune nrray A declared e.s A(m,n), then

element A{i,j) may bP. selected by the selector

binnry equivalent of ((i-1)*n+j-1)

This method needs 4 urithmetic operations to ~np an index to

the corresponding selector. The concatenation method uses

11 2

only two simple mathematical operations (subtractions).

Since speed is the major goal in the design of the data flow

architecture, the first approach seems more attractive.

C.1.b. Operations. The array operations normally

consist of accessing and/~r modifying an individual element

or a specific group of elements of an array and may be

categorized as follows:

accessing/mod~fying an individual element

accessing/modifying a .specific row or column of a

matrix

_ accessing/modifying the whole array

Methods of ·mapping the i~dividual elements of an array

have been discussed previously. Accessing an individual

element follows the previo~sly described methods; converting

indices to a proper selector, and using that to reference

the element. The SELECT actor is us~d ~s a basic operator to

activate architectures structure handling mechanism to fetch

and transfer referenced.element. For example, the data flow

code segment shown in lt'igure 31 a is used to reference A(i).

Individual ·elements ml;iy be.modified using the ALTER basic

operator whic~ modifies an individual elemsnt designated by

a specific selector to the given value, the result is

another structure. lt'or example, to modify the value of A(i)

to 5, the data flow code segment shown in lt'igure 31 b is

used. Since modifying element(s) of an ~rray includes

accessing too, only the modify algorithms and the associated

11 2

only two simple mathematical operations (subtractions).

Since speed is the major goal in the design of the data flow

architecture, the first approach seems more attractive.

C.1.b. Operations. The array operations normally

consist of accessing and/or modi£ying an individual element

or a specific group of elements of an array and .may be

categorized as follows:

accessing/modifying an individual element

acces~ing/modifying a specific row or column of a

matrix

accessing/modifying the whole array

Methods of mapping the individual elements of an array

have been discussed previously. Accessing an individual

element follows the previously described met~odsi converting

indices to a proper selector, and using that to reference

the element. The .SELECT actor is used ~s. a basic operator to

activate architectures structure handling mechanism to fetch

and transfer referenced element. For example, the data flow

code segment shown in FiBure 31a is used to refefence A(i).

Individual el~ments may be modified using the ALTER basic

operator which modifies an individual element designated by

a specific selector to the given value, the result is

another structure. For example, to modify the value of A(i)

to 5, the data flow code segment shown in Fi~ure 31b is

used. Since modifying element(s) of an array includes

accessing too, only the modify algorithms and the associated

i

A

\

(a) Access A(i)

A

\
ALTER

(b) Modify A(i)

Figure 31. Codes to Access/Modify an·Individual
Element of Array A

114

code segments· are represented in next sections.

Some programming languages allow reference to a

specific group of items (a row or column). A reference to a

special row or column of a~ array may be done by keeping one

of the indices fixed and changing the other index from the

lower limit of the corresponding dimension up to the upper

limit of that. For example, · con'sider the array. A declared

as A(4,6), then a ~eference as A(2,w) is interpreted as a

reference to all elements of the. second row and A(*,3)is

interpreted as a reference to all elements of the third

column. The following dpde segment r~presents an example of

this type of array reference:

dcl A(3,6),B(4,6)

A(2,*)=2*B(*,;S)

Thi~ process may be represented in detail as

i=1

loop: A(2,i)=2*B(3,i)

i=i+1

if (i<7) go to loop

The corresponding data flow code.is shown in Figure 32.

Reference to the whole array is possible in some high-

level protsramminf$ languages by using the name of the array

without any index. Conside-r the followin~ code segment:

dcl A(j,4),B(3,4),c(3,4)

T

·.ALTER

convert
to a

A selector

SELEx:JT

Figure ;,2. Data Ii'low Code to Perform A(2,*)=2*B(*,5)

115

116

C=A+B

In the above program, the statement C=A+B is equivalent to

the following code segment

i=1, j=1

loop: C(i,j)=A(i,j)+B(i,j)

j=j+1

if (j<5) go to loop

j = 1

i=i+1

if (i<4) go to loop·

The correspondi.ng data flo'W ·code is shown in :l!"'igure 33.

C.2. Stacks

Stack is a sequence of items, which is permitted to

grow only by special disciplines for adding and removing

items at its endpoints. A~ the name sta6k suggests, it is

conventional to think of the items in a stack as being piled

on top of one another,: with the most recently inserted item

at the top and the least rece~tly inserted item at the

bottom.· Deleting the topmost item is often called popping

the stack, and inserting a new item on the top is often

called pushing the i~em onto the stack. There are two

different methods to implement a stack; linear

implementation, in which stack is treated as a sequential

list of items together with a pointer (stack pointer) which

c2

c2
B

\
A

' I
c1

SELECT SELECT

C

c2 \ c1

ALTER

--Figure 33. Data Flow Code to Perform C=A+B -.J

points to the. topmost element · of stack

118

and linked

representation, in which elements of stack are linked to

each other. Figure j4 represents these methods.

Since· in data· flow architecture, basic structure

representation is the binary tree, stacks should be mapped

onto a binary tree. To manipulate a stack, two pieces of

information are required~ ¥irst a pointer to the top of the

stack, second a-method to update the pointer so that it

always points to the most recently in~erted item. The

structure representing the stack is always pointed by a

pointer say S. Stack manipulation may be performed using

sequential stack manipulation rules, that is, initializing

·stack pointer to zero, inrirementing it by 1 after any

insertion (PUSH) , and decrementing by 1 before any deletion

(POP). Using this method the numeric value of the stack

pointer may be used as a selector to select the topmost

element. The value of the stack pointe~ should be saved

either together with pofnter s (pointer to the root of the

structure) · or in root node of the structure (by adding one

more field to the root). Assume that the stack pointer is

kept together with the pointer s, then for stack P,

structure pointer looks like

p

root node

stack pointer

As previously- discussed, the initial va.lue .of the stack

11 9

I

bottom stack q ::~
7

pointer
top

stack q
pointer l·IJ

-z---=- top q I· I
•

A bottom

Linear Representation
Linked Representation

Figure 34·. Stack Allocation Methods

120

pointer may be set .to zero. ~he·dimension of the stack

(~aximum number of elements in stack) specifies the length

of the selector. Por example, when the· dimension is

specified as 16, the m~ximum length of stack pointer would

be 4 elements varying from 0000 to 1111 (interpreting Os as

left and 1s as right). Usirig these assumptions glgorithm

for pushing an item into· stack is as follows:

convert stack pointer to a selector

APPEND the topmost i tern us.ing the selector

increment stack point~r ·by 1

For example, lets stack P with· maximum length oi 16 be

· empty, then inserting items a,b,c,d,e into stack produces

the structure represented_ in Figure 35a.

Algorithm to pop an element from a stack is as follows:

decrem~nt 1 from stack pointer

convert stack pointer to a selector

SELECT the element using the selector

DELETE .the element

For·example, poping the two t6pmost elements from stack Pin

:Pigure 35a produces a structµ:re shown _in Figure 35b. Special

conditions like . over.flow .or underflow of the· stack may be

handled by checking the value of stack pointer with the

lower and upper limits of the stack boundary, i.e., zero and

15 in case of stack P. The data flow code segment to push

and pop an element is illustrated in lt'igur.e 36.

p

(a) PUSH Items a,b,c,d, and e Into Stack~

p

(b) POP items e and d from St~ck P

Figure J5. PUSH/POP into/from Stack

121

p

\

stack pointer

! 8
/

APPEND

p'

(a) Data Flow Code to Perform PUSH

stack pointer

p

122

new stack

pointer

p

SELECT
~ /

-r:m DELETE

fb)_ Data Flow Code to perfomorm POP

h ~ p' 1 . ---=-

Figure 36. Data Flow Codes to Perform PUSH and POP Operations

Selector may be constructed using another method:

initialize stack pointer to 1(R)

concatenate a L(R) to stack pointer after any PUSH

delete a ~(R) from selector before POP

123

Using this method, the structure grows on one side not like

a complete binary tree, consequently,· the depth of the tree

is higher than the previous case and search time increases

accordingly. The length of the selector is much longer in

this case but the ~elector processing routine is much

simpler. The number of memory spaces used to hold data

items and structure pointers decreases. For exrrmple, to push

items a,b,c,d,and e, selectors L,LL,111,1111, and 11111 are

used. Structure produced using this method is represented in

Figure 37.

C.j. Queues

A queue is a sequece of items which grows under special

disciplines. Items ~re added to the rear of queues and

deleted from the front, this is analogous to a waiting line.

Methods presented to implement a stack may be used in queue

implementation with sligh~_modifications.

To implement a queue two pointers are required to point

to the front and rear of-the queue. These pointers may be

saved together with the pointer to the root of the structure

representj~~ the queue. For a linear implementation of a

queue, both of these values may be initialized to zero. The

124

z
LLL LLL

-~

Figure 37. Stachk Constructed Using Non-linear Concepts

125

value of these pointers is incremented/decremented by

after any insertion/deletion of an item to/from the queue,

and the value is used as a selector to access the iten. The

dimension of the queue is used to realize the length of the

selector. The insertion algorithm is as follows:

convert Qrear to a selector

APPEND item to tree using the· selector

increment Qrear by

The deletion algorithm is as follows:

convert Qfront to a selector

select i~em from queue using the selector

DELtTE the item pointed to by Qfront

increment Qfront by

Special conditions like overflow and underflow may be

handled comparing the values of Qrear · or Qfront with the

boundaries of queue.]'or_ example lets assume queue Q has at

most 8 items, then associated selector consists of 3

identifiers. The values of Qfront ·. and Qrear are initially

zero, then the s~qu~nce of operations:

·insert a

insert b

insert c

d~lete

insert d

insert e

126

1.insert a 2. insert b

Q

0

). insert c 4, delete

Q

1 2 4

G
5. insert d 6. insert e

7. delete

Figure 38. Structures Produced by a Sequence of Insertions
and Deletions into and from Queue

127

delete

produces structures shown in Figure 38.

The concatenation method may be used to construct

selectors for queues, but a slight modification is required

in deletion algorithm. The deleted element ma~ not be

actually deleted unless the queue is _reconstructed making

root node point to the·Qftont and modifying Qfront and Qrear

accordingly. Since these operations take a considerable

amount of time and the data flow computer is intended to be

as fast as possible architectu!e, this method is not an

appropriate one.

D. Procedures

In sequential programming languages, the abstraction

obtained by using procedures is a useful one. The ability

to define and call procedures is a great assest in a

programming language. procedures:

Permit modular design of programs, by allowing

large tasks to be broken into smaller units.

Permit economy in size of programs and in the

total ptogramming effort, since similar.computations

need be specified 6nl~ once.

Add extensibility to a language, since operators

can be defined in terms of procedures, which

can then be used as functions within expressions.

One problem arising from the introduction of procedures

is that a method of transmitting information to· and from

128

procedures must be defined und established.

In data flow base language APPLY actor is used to call

a procedure. It has m inputs, n outputs and is labeled with

a procedure name P. The APPLY actor when enabled to fire,

substitutes for itself a copy of the procedure whose name

matches that of the actor. This action takes place only if

a procedure exists with name P and the· pr.ocedure has the

same number of inputs and dutputs as the actor.

To completely understand how the APPLY actor works, the

enabling condition, the ~echanism for transmitting input

values to the copied procedure, and the return mechanism for

results must be defined. There are two alternatives:

1. The APPLY actor is enabled, as soon as its first

argument token is arrived. It· then copies the procedure (a

procedure copy is ·called an instantiation) ·and passes

argument tokens as they arrive. An argument is passed by

absorbing a token from an input arc to the APPLY, and

placing a copy of.~t onto the procedure instantiation s

corresponding input links output arc. ~he HETUHN actor

copies output value~ from the procedure copy as sbon as they

become available on the output links and the corresponding

link to the calling Program is em~ty. When values from each

output link have be~n returned the copy is destroyed.

2. The APPLY actor is enabled only when all its

argument values have arrived and its output links are empty.

When these two conditions are met, the procedure is copied

and tho argument tokens are passed. When all argument

129

tokens are available.they are copied by the HETUHN actor to

the output arcs of the APPLY actor. The copy of the

procedure is then destroyed.

In both cases .it is assumed that then input links are

numbered left to right, 0,1 ,··~,n-1, for both the APPLY

actor and the procedure it invokes. The jth link of the

APPLY is associated with the jth. link.of the procedure it

invokes.

fashion .

The m output links are .treated in a similar

. The semantics of the two

activation are quite different.

APPLY actor can be ·thought of

a~proaches to procedure

·In the first approach an

as replaced inline by the

·graph of the procedure it invokes. In the second approach

an APPLY actor behaves exactly like a primitive function,

except that it. may have multiple outputs and computes a

function that is not necessarily in the · repertoire of

primitive functions. The first approach is called immediate

copy rule (ICR), and the·second is called deffered copy rule

(DCR). The DCH most closely corresponds with one s idea

that a procedure is some ·~ort of a functional abstraction,

wheteas the ICH iS more like a macro·e~pansion. The DCR has

the advantage of simplicity of implementation .. It also lends

an additional hom9geneity t6 the set of actors, since its

enabling rule is that -of· a primitive fu~1ction. rfowever, the

ICR clearly allows greater parallelism than DCR.

The ICR has one potential problem. Suppose an argument

token arrives· on the jth link and the execution of some

130

procedure is initiated. Consider what happens if another

argument arrives on the jth link before the previously

invoked copy of the procedure terminates. In order to be

consistent another copy' of' the procedure· must be created and

this newly arrived token oust be passed to its input. Thus

the APPLY actor must "keep track of" an arbitrary number of

concurrently executing instantiations of the.procedure, and

this poses some serious implementation questions. If we can

demonstrate for ever~ APPLY aqtor A that

V (i,j) IP(i)-P{j)I<= 1

0 <= i,j <= number of inpu~s of A

where

P(i) = number of tokens that have arrived on the

ith input of· A

for any configuration of a data flow program, then we can

show for any APPLY actor A of a data flow program that at

most one instantiation · ~an exist at any time, and

consequently the .state information is bounded. In general,

' data flow programs do not exhibit this behavior~ However,

certain large sy~tactic subclasses of data flow programs

satisfy the above arc condition. One such· class is known as

well formed data· flow programs. Besides having the above

property, a well formed data flow prograo, when it

terminates, will be in its initial configuration. In

particular, the .only tokens left on the arcs of a terminated

program, will_be the initial "F" tokens on the gating inputs

1,1

of MEHGt gates of iterative loops.

A procedure implementation scheme was ~ropnsed by

Miranker [23] based on ICR approach. This procedure is

rather simple, and overhead in terms of storage, or extra

packets in the system, is almost zero The deficiency of this

scheme for procedure implementation is that it supports a

rather primitive form of the.APPLY actor only one input

and one output. Multiple input values and multiple output

values could be encoded as structures. However, such a form

of procedure invocation would be undesireable because it

would limit the degree 0£ parallelism achievable.

E. Semantic Ga~ ·in Data Flow Architectu~e

Data flow co~puter architecture proposed by Dennis is

designed to perform about 200 Megaflops (million floating-

point operations per se~ond). Since speed was the major

goal in this design, ·architecture deficiencies leading to

semantic gap have not been r~solved. The semantic gap in a

data flow computer and existing solutions to reduce this

problem is studied in this section.

Logical memory structure is one of the properties of

the conventional computers which contfibutes in causinu the . 0

semantic gap~ Incompatibility of lin.ear rnem·ory structure

·with data structures presented in high-level languages cause

performance probleus and excessive program size. Memory of

the data flow computer is separated into two different

parts, instruction memory and structure memory, with

132

different logical.str.uctures.

Instruction memory is composed of fixed size

instruction cells. During execution of a data flow program

most of the nodes fire once. A. laige number of nodes of the

program will not fire at all if any decider is present. Thus

it would be wasteful t·o assign· an 'instruction cell" to each

instruction of a procedure: when the_procedure is activated.

To solve this problem the instruction p·roc·ess1.ng section of

the data flow computer incorporates a multi-level memory

system such that only the active instructions of a program

occupy the instruction cells of the processor.

The use of a multi-level memory system within each

. section of the data flow proces.sor requires that the

instruction memory and s~ructure memdry act as caches for

the most active instructions and structure nodes. For

application of the cache principle to the-architecture, the

instruction and ~tructure cells of the processor are

organized into groups of cells, known as cell blocks.

A pa_cket destined · for the instruction memory or

structure memory· can no longer identify its destination by

use ·of a cell identifier. The identifier i~ divided into

two parts, a major ·address·and a minor address,

containing a pnrtion of the identifi~r~

each

All instruction cells having the same major address

belong to the corresponding cell block. Thus, the

distribution and control networks use the major address to

direct data packets and control. packets to the appropriate

13:;

instruction cell blocks. ~he packet delivered to a cell

block includes the minor address, which serves as an

identifier for that packet within the cell block.

Al though multi-level r.1emory reduces the size of the

activ~ memory, it causes some. implementation

Tables which are used to indicate '.the status of

problems.

each.node

(free, engaged, and occupted)~ minor address of the node,

~nd the oantlidatis for displacement by more active nodes

occupy considerable space and delays memory access

considerably. Node access and placement algorithms becomes

very complicated and slow.

An instruction cell in instruction memory is composed

of five registers capable of holding at most four operands

at the same time. lncreasing the number of registers helps

to decrease the packet tr~vel time through arbftration and

distribution networks and· to save memory spaces used to

represent complete operation in more small cells. The

proposed instr~ction cell· can hold at most 8 destinations.

When an in~truction requires more destination fields, one or

more extra distribution instructions must be used to convey

results to · all destinations. Since distribution

instructions fire only after the completion of the

instruction and distribution of the result, it takes as many

rlistribution instructions required extra cycles to

distribute result. Consequently, all instructions waiting

for results must wait more extra time than re~uired. A large

memory cell provides enough room to hold more pointers .and

prevent the delay time.

solves above problems,

1 34

Although a lar 0 e instruction cell

it causes space waste for short

instructions. A variable size instruction cells may be used_

as a compromise.

Structure memory is composed ·ot structure cells. B~ch

structure cell is capable of holding one node of _a structure

contained in a two register cell. The two registers of the

cell contain the left and right components of the structure,

respectively. This organization us~s a binary tree as the

basic logical structure of the structure memory.

Data structures used in high-level languages may not be

represented directly in the memory, then special mapping

functions must be used. The allocation and mappin° function

was discussed pr~viously~ Including this packages in

software (i.e., compiler) increases program size and packet

travel time in a network tremendously. An alternative is to

add these capabilities to· structure processing section of

the computer. _

By increasing the number of structure processing units

and adding a special processor to determine the type of the

process and distribution of the instructi6n among units,

structure processing time decreases conside--rably (Pigure

39). Special purpose processing units (array, stack, and

queue) perform allodatioi and mapping algorithms discussed

previously. Ring type networks of structure memories and

structure operation units increases cuncurrency specially in

operations.

Structure
operation

unit

Structure
operation

unit

array
Pro2essing
unlv

network

stack
processing
,unit

operation
paxket

queue
processing
unit

instruction
packet ,-~~~~~~

Stn1cture

memory

Structure

memory

Figure 39. Expanded.Structurre Processing Unit

135

136

The arithmetic processing unit of a data flow computer

uses signed digit number representation to perform

arithmetic operations. Although, this representation

enables system to .take advantag~. of ·ser_ia.l properties of the

representation, the computation time is not very impressive.

Complex arithmetic·is not available and must be handled by a

compiler using multiple

Multiple-precision·arithmetic

algorithm is proposed.

real arithmetic

is left out and

operations.

no division

Although data .flow architecture is a radical and

attractive approach

shortcomings. The

to computet architecture,

principles· of Dennis

·it has some

data flow

architecture was discussed in this chapter. Major high­

level language c~ncepts. were coded in data flow base

language, and finally, existing shortcomings were studied.

Although speed is the major goal in this design, the

shortcomings contribute in many ways i~ reducing the speed

and also creating a fdrm of semantic gap. In Chapter VI two

application·programs coded in data flow base language are

represen_ted and a performance analysis of. t'hem are studied.

CHAPTER VI

TWO APPLICATIONS

A. Fast· Fourier Transform

A.1. Introduction

The Discrete J:t'ast 1''ouri.er transform plays an important

role in the analysis, the design, and the implementation of

digital signal processing ~lgo~ithms. One of the reasons

that Fourier analysis is of such wide-ranging importance in

digital signal processing is because of the existence of ...
efficient algorithms for.computing the Discrete Fourier

Transform.

The Discrete Fourier Transform (DFT) is

N-1 kn
X(k) =): x(n) W k=O; 1, ••• ,N-1 (1)

n:::;0 N

· -J (2n/ri)
wher:e W = e The Inv~rse Discrete Fourier Transform

i~
(IDPT) is

ii-1 -kn
.. x (n) = 1 / N >.-· - X (k) Vi

k°=-0 N
n=0,1, ••. ,N-1 (2)

In equations (1) and (2) b~th x(n) and X(k) may be complex.

The expressions of Eqs. (1) and (2) differ only in the sign

of the exponent of WN and in a scale factor 1/N. Thus a

discussion of computrition procedures for Bq.(1) ap~lies with

137

138

straightforward CTodifications t6 iq.(2).

To indicate the importance of efficient computation

schemes, it is instructive to consider the direct evaluation

of the DFT equatio~s. 8ince x(n) .may be complex we can

write

N-1

X(k) = t:::~ kn kn
(Re(x(n)) Re(W) - Im(x(~)) Im(W))

N .N

·kn
+ J (Re(x(n))Im(W)

N

kn
+ Im(x(n))Re(W))

N
k=0,1, ••. ,N-1 (3)

From Eq.(3) it is clear that foi each value of k, the direct

computation of X(k) requires 41 feal multiplications (N

complex multiplications) and 41-2 real additions (~-1

complex additions). Sinae X(k.); · must be computed for N

different values of k, .the direct comptitatton of the

Discrete F'ourier Transf·orm of a sequence x(n) requires 4N

N 2 complex real multiplications, or alter~atively
..

multiplications and · N(4N-2) real. additions or,

alternatively, N(N-1) cooplex additions. In addition to the

multiplications and additions called for by ~q.(3) the

implementatibri of the comptitation of the DFT on a general-

purpose digital·comput~r o~ with ~pecial purpose hardware of

course requires provision, ·for storing and ~cccssing the

input sequence values x (rt} :;rand values of the coei'fi ci ents W.
N

Since the amount of accessinB and storing bf data in

numerical computation algorithms is generally proportional

to the number of arithmetic operations, it is generally

accepted that a meaningful measure of complexity, or, of the

time required to implement a computational algorithm, is the

number of multiplications and additions required. Thus, for

the direct·computation of the Discrete Fourier Transform, a

convenient measure of the efficiency of the computation is

the fact that 4N . · real m,ul tiplications and N(4N-2) real

ad~itions are required. · Since the number of computations,

and thus the computation time, is approximately proportional

to
... 2
H it is evident .that the number of arithmetic

operations required to comptit~ thi DFT by the direct methods

becomes very large for large .. values of N. For this ~eason,.

computational procedures· that· reduce the number of

multiplications and additipns are of considerable interest.

Most approaches to improve the efficiency of the

computation of the DFT expioit one or. both of the following

special properties of the quantities (\\i):

2.

w
u

k(N-n) kn*
= (W)·

N

kn k(n+N) (k+N)n
== w w = w

N N N

Computational algorithms that exploit both the symmetry

~nd priodici ty of the sequE,nce. (w) . _were known long before
. N

the era of high-speed digi~al computation. At'~hat time, any

scheme that reduced hand computation by even a factor of 2

was welcomed.

The possibility of greatly reduced computation was

generally overlooked until about 1965, when Cooley and Tukey

140

published an algorithm for the computation of the Discrete

Fourier Transform that is applicable when N is a composite

number; i.e.,~ is the product of two or more integers. The

publication of this paper resulted in the discovery of a

number of computational algorithns which have come to be

known as Past Fourier Transform, or simply PFT, algorithms.

The fundamental principle that all these algorithms are

based upon is that of d~composini the computation of the

Discrete Fourier Transform of a sequence of length N into

successively smaller Di~crete Fourier Transforms. The manner

in which this principle ~s implemented leads to a variety of

different algorithms,

computational speed.

all with comparable improvements in

. '
A.2. Decimation-In-Time Algorithm

To achieve the dramatic increase in efficiency to which

we have alluded, it is necessary to decompose the DPT

computation into. succ~ssively smaller DFT computations. In

this process we exploit both symmetry and the priodicity of
kn -j(2rt/N)kn

the complex exponential (W) = e Algorithms in
N

which the decomposition is based on decomposing the sequence

x(n), into successively smaller.subsequences, are called

Decimation-In-Time ~lgorithrns; .. The principle of Decimation­

In-Time is most conveniently illustrated by considering the

special case of Nan integer power of 2; i.e.,

V
N = 2

141

Since N is an even integer, we can consider computing X(k)

by separating x(n) into two N/2-point sequences consisting

of the even-numbered points in x(n) and the odd-numbered

points in x(n). With X(k) given by

N-1 kn
X(k) =) x(n) W , k=O, 1, ... ,N-1 (4)

n=O :N

and $eparating x(n) into its ~ven-and-odd-numbered points we

obtain

X(k) =L n even

kn + ~- · x (n) kn x(n) .w) W
N n-aad N

of with the substitution of variabl~s n=2r for n even and

n=2r+1 for n odd,

but

(N/2)-1 2rk (N/2)-1 (2r+1)k
X(k) = >r--O x(2r) W + z= · .. x(2r+1) W

N. r=O N

2rk k (N/2)-1
= L x (2r) (w·) + w

N. N r=O

2
(W) .+ W since

N N/2
2 -2J(2R/n) ~J2n/(S/2)

W = e = e
N

(N/2)-1 L.
r=O

- w .
N/2

2rk
x(2r+1) (W)

N

consequently_Eq~(5) can be· wr~tten as

(rl/2)-1 · rk
X(k) = L .x(2r)'W +

r=O N/2

k
= G(k) + W H(k)

!-I

k w '
N

o~ 12)-1
L
r=O

rk
x(2r+1) W

H/2

(5)

(o)

142

iach of the sums in.Bq.{G) is r-ecognized as an N/2-point

DFT, the first sum being the N/2-point DFT of th~ even-

numbered ~oints of the original sequence and the second

being the l'i/2-point DP'.r of the odd;..n'urilbered points of the

original sequence. Al ~hough the index k ranges·. over N

values, k=O, 1, ••• ,1~-1 , each of the sums need only be

computed fork between O and N/2-1, since G{k) and H(k) are

each periodic ink with period N/2.

After the two DFTs corresponding to the two sums in

Eq.(6) are computed, they ar~ then combined to yield the N-

point DFT, X(k). Figure· 40 indicates the computation

involved in computing X(k) ac6rirding to Eq.(6) for an eight-

point sequence, i.e. for N=8. .. In this figure, branches
. ~··

entering a node are summed to prod~ce the node variable.

When no coefficient is. indicated, the branch transmittance

is assumed to. be one. For ·other branc~es, the transmittance

of a branch is an integer power of W ~- Since G(k) and H(k)
N

are both periodic ink with period 4, then

H(4) . - lf(0) G(4) = G(O)

H(5) ·= H(1) .· G(5) = G (1)

H(6) = ·u(2) · G(6.) · = G(2)

H(7) =· H(3) G(7) = G(3)·

With the computation testructured according to Eq.{6),

we can compare the number of multiplications and additions

required with those required for a direct computation of the

DFT. Previously we ·saw that for direct computation without

143

exploiting symmetry
2

l~ complex ~ultiplications and

additions were required. By comparison, Bq.(6) requires the

computat~on of two N/2-point DF7s, which in turn requires
2

2(N/2) complex multiplication~ and· approximately 2(N/2)

complex additions. Then the two N/2-point DFTs must be

combined, requiring N CQm.ple:X mul t.iplications corresponding

to multiplying the second sum by W and. then N
N

complex

additions~ corr~sponding to adding that produ~t to ths first

sum. Consequently, the computation of Eq.(6) for all values
. 2 . · 2

of k requiers ~+2(N/2) or N+.(N /2) complex multiplications

and complex additions. It.is easy ·to verify that for~> 2,
2 2

N+N /2 will be less than N ..

Bquation (6) corresponds to breaking the original N-

point computation into two N/2-poirit cozputations. If N/2

is even, as it alw~ys is ,when N is equal t6 a·power of 2,

then we can consider computing each of the N/2-point DFTs in

Eq.(6) by breaking each of the sums in Eq.(6) into two

N/4-point DFTs, which would then be combined to yield the

N/2-point DFTs ·. Thus G(k) and H(k) in Eq.(6) would be

computed as indicated below~

(~/2)-1 rk (N/4)-1 21k (N/4)-1 (21+1)k

or

G(k)=) . g(r)W =L°~ g(21)~ +I:_· g(2:I.+1)w
r=O · N/2 1=0 : N/2 1=0 · N/2

(N/4)-1
G(k) = L g(21.)

1=0

lk k (N/4)-1
w + w C g(21+1 >

i.i/4 N/2 1=0

lk
w

N/4
(7)

144

x(O)

- x(2)

x(4)

x(6)

N/2-point

i----G(.... o,__) ----~-----. x(o)

1----.~-----...,-----=~---r--~ X(1)

DFT

x(1) ·

x(J) N/2-point H

xC5) DFT

x(7) H

Figure 40. Flow Graph 9f the Decimated-In-Time
an 8-point UFT Computation

x(O)

x(4)
2

w ·= -1

Figure 41. Flow Graph of a 2-point DFT

7
WN

x(4)

X(5)

x(6)

X(7)

Decomposition of

similarly

H(k)
(N/4)-1 lk k (N/4)-1

= f=o h(21) w + w ---
N/4 N/2)1=0

Note· that we have used the fact that WN/2

lk
h(21+1) W

N/4

2
= (W)

N

145

(8)

For the eight-point DFT that we have been usine ·as an

illustration, the computation has been reduced to a

computation of two-point DFTs. ~he two-point DFT of, f0r

example x(O) and x(4) is depicted in Figure 41. A complete

flow graph f6r computatibn:~f the eight-point DFT is shown

in Ii'igure 42.

For the more general case with ·Na power of 2 greater
, , I •

than 3, we would proceed_-·. by de-composing the N/ 4-point

transforms in Eq.(7) and (8) i~to:N/S~point transforms, and

continue until left.wit~ ~nly two-point tr~nsforms. This

requires v stages of computation, where v = log (N).

Previously we found that ih the original -~eco~position of an

N-point transform irtt6 tw~ j/2-point transforms, the number

multiplications. and additions required was of' complex
2

i'i+2(N/2) . 'vJhen tti.e N/2~point transfor~s are· decomposed

into N/4-point transforms,
2 .

. 2
then the factor of (~/2) is

replaced by N/2·+ 2(N/4) so the o~erall computation then
. . .2

requires N + N + 4{N/4} complex multiplications and
V

additions.· If N = 2 , this can be done at most v = log (N)

times, so that after carrying out this decomposition as many

times as possible the number of complex multiplications and

additions is equal to N log (N).

146

It is useful to note that each stage of the computation

takes a set of N complex numbers and transfor6s them into

another set of N complex numbers. When implementing the

computation we can imagine the use of two arrays of

(complex) storage registers, one for array being computed

and one for the data being used in the computation. We shall

denote the sequence of complex numbers resulting from the

mth stage of comp.utation as Xm (1), where 1=0, 1, ••• , H-1

and m= 1 , 2 , .•• , v • Furthermore, for convenience, let us

define the set of input samples a~ XO (1). We can think of

Xm (1) as the input array and Xm+1 ·(1) as the output array

for the (m+1)th stage of c6mputitions; thus for the case of

.N=8,

XO• (0) = x(O)

XO (1) = x(4)

XO (2) = x(2)

XO .'(3) = x(6)

XO '(4) = X (1)

XO (5) = x(5)

XO (6) = x(3)

XO (7) = x(7)

Using this n6tation and qrdering, it can be seen that the

basic computation is shown as Figure 43. The equations

represented by this flow graph are of the form

r
Xm+1 (p) = Xm (p) + 'vi .Xm (q)

x(o)

x(4)

· x(2)

x(6)

x(1).

x(5)

x(J)

x(7)

147

~--+r-~a'-~-----r..._-~~-~-~~-~ X(J)

~-,------,:,a,,-----~------=~---+iE---~-~ X(4)

X(5)

X(6)

...::;__--+,,--.~F-------'7'__,.~-----------,.--::.. X(7)

'Figure 42. Flow Graph of Compltete Decimated-In-Time
Decompositi-0n of an 8-point DFT

eF------:;;;....--___;:::. xm+1 (q)

· (r+N/2)
WN

Figure 43. Flow Graph of Basic· Butterfly
Computation

148

(r+N/2)
Xm+1 (q) = Xr.i (p) + \I Xm (q) (9)

N

Because of the appearance of the flow graph, this

computation is reffered to as butterfly computation.

Equation (9) suggests a means 6f reducing the number of

multiplications by a factor of 2. 1o see this we note that

N/2 -J (2-Jl/N) .h/2 -JJt
w = e = e = -1

. ·N
so that the equations (9) becomes

r
Xm+1 (p)_ = Xm "(p) + w Xm (q)

N
. r

Xm+1 (q) = Xm (p) - w Xm (q) (10)
M

Since there are N/2 "butterflies!' . per stage and log (N)

stages, the t.otal number of mu1 tip1ications required is

(N/2) lOB (N). Using ttle ne~ ~pproach ~he flow graph of

8-point DFT is illustrated in Fieure 44.

In order that computation may be done in place using a

single array we nqte that input data inust be stored in non­

sequential order. In fact the order in which the input data

are stored is in bit-re"ersed order. To see what is meant by

this ter~inology, we note· that for the eight-point flow

graph, thre·e binary.digits are reguired to index through the

data. If' we write the indices in binary form, we obtain the

set of equations

XO (000) = x(OOO)

XO (001) = x(100)

XO (010) = x(010)

149

XO (011) = x(110)

XO (100) = X (001)

XO (1 01) = X (1 01)

XO (110) = x(011)

XO (111) - x(t11)

If (n2, n 1 , nO) is the binary representation of the index of

sequence x(n), then the sequence value x(n2 ti1 nO} is stored

in the array position XO(nO ~1 n2) .. That is, in determining

the position of x(n2 nt hO) . in· the input array,

reverse the order of the bits of the index n.

we must

In realizing the computations, it is clearly necessary

to access elements of intermediate arrays in non-sequential

order. Thus, for greater.computational speed, the complex

numbers must be st6red in ,random access memory. For example,

to compute the first array from the input array, the inputs

to each butterfly computation are adjacent node variables

which are thought of as being stored in adjacent storage

locations. In computing the second intermediate array from

the first, the inputs to a butterfly are · separated by two

storage locations, and in computirig the third array from the

second, the inputs to a butterfly c6mputatiori are separated

by four storage locations. ' If N is larger . than 8, the

separation between butterfly inputs is 8 for the fourth

stage, 16 for the fifth stage, etc.

last (vth) stage is N/2.

The ~eparation in the

A rearrangement of the flow graph, that is particularly

useful when random access memory is not available is shown

150

in Figure 45. This flow graph represent the Decimation-in-

Time algorithm. Note first that in this flow graph the

input is again in bit-reversed order and the output in

normal order. The important feature of this flow graph is

that the geo~etry is -identi~al for each stage; only the

branch transmit~nces change fiom stage to stage. This makes

it possible to acc~ss data sequentially.

A.3. Data Flow Representation

·of the DFT Algorithm

The general form of DFT algorithm may be described as

follows: let U(m,k) be the kth compcinent o~ the ~ector of

values computed by the mth stage of the computation. Then

B(m,q) the qth butterfly of stage m computes

U(m,q) = U(m-1,~q) +
e(m,q)

U(m-1,2q+1) W (11)

(n-1) e(m,q)
U(m,q+2) = U(m-1 ,2q) - U(m-1,2q+1) W (12)

where the exponent e(m,q) of each phase factor is given by

n-m n-m
e (m, q) = 2 . q uc, .(q , 2) (1 3)

and
n-1

o· < q < 2

0 < m < n

n = log (N)

The symbol "quo" denotes the function quo Ci, j) which yields

the integer.quotient of i divided by j. The ·input values for

stage one are related to the data samples by

151

x(O)
0 X(O)

x(4)
WN

X(l)

x(2) x(2)
w:O

x(6) N ·X(J)
x(l)

0
X(4)

x(5)
WN

X(5)
WO

x(3) N
0 2·

x(?)
WN WN

X(7)

Figure 44.]'low Graph of s~point DFT Using the Butterfly
Computation bf Figure 43.

x(O) x(o)
WO 0 WO

x(4) N WN N X(l)

x(2)
0 0 . 1

x(6) WN WN WN

x(1) X(4)
2 ·2

x(5) WN WN

x(J)
WO 2 w:J

x(?) N WN N X(7)

Figure 45. Rearrangement of Figure 44 Having the Same
Geometry for ~ach 8tage

152

U(O,k) = x(i) where i = rev (k)

in which "rev" is the operation on integers such that then-

bit binary representation of i is the _reverse of then-bit

representation of k. ~he output values are

f(k) = U(n,k) 0 < k < 2

Using new ·terminology the eight-point, constant geometry

decimated-in-time is shown in Figure 46.

The goal is to take maximum advantage of parallelism in

representing the FFT as a data flow program, but since each

~ctor will take space in the machine representation, we dont

want to use a larger program than necessary to exploit

concurrency. Since each stage ~f the computation uses values

computed by-the preceeding stage, it is appropriate to write

the program as an n-cycie iteration in ~hich the body

consists of h 2(n-l) b tt fl· · ·. · t e u er 1es compr1s1ng one stage of

computation written out explicitly. The form of the

corresponding data flow program is shown.in Figure 47 for

the eight-point.case. This is fairly easy because ~he

con~tant geometry of the· computation over·a11 stages makes

it possible to use a fixed routing of values from the

outputs of the butterflies ·to their inputs where they become

op·erands for the next· cycle. Generating the.phase factors

for each butterfly, however presents a problem. The usual

technique is to use a table lookup in a table of powers of

W, but our present data flow language includes no suitable

- B..10_ - B20 ,....: ~o...
x(O) U

, U10 ,.- - - - - - -, U20 I · +
I I. I I I
I I I I

x(4) Uo1, U111 u
:""\ I / I

I I , ______ . __)
'

x(1~

x(~
I

'...._, I - - - - - - ..;. --"

x(Ji -U<JJ ,. r , C

B3.3 __ ----,
~26 ~- - - c • (;'

I
- I t (*}

I --4) l U17 i*
I - ' I I

x(-?) Uo7,0 (*)* I _ ~ - - - - - _, · I O I

' ... - ~ - - - - - - __ .., ' ___.. / .---------

Figure 46. The Eight-point, Constant Geometry, Decimated-In-Time
DFT

UJO

UJl

r-

UJ2

UJ5
....c...;..

u.37

·r
0

f1

f2

fJ

f4

f5

.r,

.. 6

f7

_..
\J1
\..N

phase constant queue

4

.. FJ<J • r u · I I ·~

n-m

loop control phase factor generation

Figure 47. Iterative Data Flow Program for Eight-point
DFT

x v(2q) xrev(2q-1)

u2q-1
I

butterfly

rq

lu .
q+2n-1

f· n-1
q+2

......
\J1
~

155

mechanism. Instead, the factor W(m,q) used for butterfly q

in stage m may be computed from the factor W(m-1,q) used for

the previous stage by a simple rule derived as follows: the

exponents of W for W(m,q) and· W(m-1,q) are

n-m n-m
e(m,q) = 2 quo (q,2)

n-m+1 n-m+1
e(m-1,q) = 2 quo (q; 2)

then

e(m,q) = e(m-1,q) + e(m~q) - e(m-1,q)

n-m n-m n-m+1
= e(m-1,q) + 2 (quo (q,2) ~ 2 quo(q,2))

Careful study of the factor T(m,q) ~eveals that

n-m
0 if rem (q, 2) is even·

T(m,q)=

n-m
if rem (q, 2) is odd

Thus T(m,q) is the .(n-m).th ·. bit in binary representation of

q. Let bit(r~_q) be a primitive function that yieldes the

rth bit of q. Then we have

if bit(n-m,q) = 1
I

W (m , q) = W' (m-1 , q) x (n-m) (."
2

then W else 1 !
}

The initial value of the phase factor for· the qth butterfly

is

e(1,q)
W(1,q) = W

(n-1) (n-1)
where e(1 ,q)=2 quo(q,2)

156

=(1 + JO)

The computation of the phase factors W(m,q) is ·performed by

the sections of data flow program labelled "phase factor

generation" and "phase constant queue".

A.4. Description of· the Program

The data flow program consists of four copies of the

code shown previously. Each copy performs one of the

butterflies (0,1 ,2,3) in stage m, and consists of four

sections:

A.4.~. Loop Control. This section controls the number

of iterations (3 in this case) and computes the (n-~) which

wil be· used to recognize the (n-m)th bit of q in the

computation of W(m,q). Two control values CL1 and C12 will

be produced and distributed in this section:

True if m<3 · (more iterations)

CL1 =
False if m>3 (no more iterations)

True if ((n-m)th bj,t of q) = 1

CL2 =
False if ((n-m)th bit of q) = 0

A.4._g_. Butterfly. This section computes U{q) and U(q+
n-1 n-1

2) (f(q) and f(q+2) at the end of program) using U(2q)

and U{2q+1) (x rev{2q) and x rev(2q+1) initially) and

W(m,q) produced by phase factor generation section according

to the following .equations:

e(m,q)
U(m,q) = U(m-1,q) + U(m-1,2q+1) W

n-1 e(m,q)
U(m,q+2) = U(m-1,2q)· - U(m-1,2q+1) W

157

A.4.3. Phase Constant Queue. This section o~erates a

queue like structure. The phase constant queue consists of

th~ee distribution cells which are linked to simulate a

circular queue. The front node of structure always contains

W**(2**(n-m}) which will ·be used in the computation of

W(rn,q) in phase factor generation section.

A.4.4. Phase Factor Genetation. Phase factor W(m,q) will

· be computed in this section usin the .following equations:

W(m,q) = W(m-1,q} x

n-m
2

if bit(n-m,q)=1 then W

else 1

Loop Control Uection.

LOOP:

M=1

N-M=j-H

IF M>j THB~ GO TO OUT

I 1'' b i t I i~ - H ' ~) =

CL! (initially false)

1r11.t:i~ "C12 = ''true'"

.t:liS~ "GL2· = 'l<'alse'"

ELSE "C.L1 = 'True'"

GO TO LOOP

OUT: "CL1 = '1''alse'"

~ :•

1 :i8

butterfly 0~ction.

X (2q+-1) rev\
CL1

f
q

F

u
q

w(l!l, q)

f n-1
q+2

F

c1= "false", a= xrev (2·q), b= xrev (2q+1)

DO WHILE (c1 = "true)

end

U(q) = a+ b*W(m,q)

U(q+2**(n-1) = a - b~W(m,q)

a= U(2q)

b= U(2q+1)

U n­
q+2

Phase Constant Queue

CL2 = 'fa.lse'

a= W**1

b = W**2

c = W**4

012 CL2

IF (CL2 is ~ctivated) THBN·

temp= a

a = C

C = b

b = temp

160

161

Using queue structure to produce W (phase constant)

is the besC approaqh for small values of N, but when N is

large, which normally is very large in PFT problems, it

tends to be very space-consuming and uneconomical. The

alternative· approach takes advantage o:f th·e fact that phase

constant of stage mis the square root of .the phase constant

in stage m-1. This a~proach which spends 66re execution time

but-much less space is shown in Figure 48.

N/2 4
w = w

initially false

Figure 48. Alternative Data Flow Program for the 8-point
DFT

xrev(2q) x~v(2q+1)

u2

-•

fq
_..
C1'
I\)

Phase Factor Generation Section

T F
initially false

T

W(m-1 ,q) = W**O = 1+JO

LOOP: IF (CL2 = 'false') ThBN W(m,q) = W(m-1 ,q)

GO '.i:O LOOP

iLSE W(m,q) = W(m-1,q) *

W**(2**(n-rn))

163

164

A.~. Progra~ ·Performance Analysis

Direct computation of the Discrete ast }'ourier

Transform on a sequential computer may be perfor~ed using

the following program:

time spend

N(6N+4) 6N+4

L

K=O

1 DO WHILE (K < N)

3 N=O, F=(2* /N)*K

4

1

1

END

DO WHILE (n < N)

X(k)=X(k)+x(n)*(e**(O,-F*n))

n=n+1

END

k=k+1

total time spend= N*(6N+4) = 6N**2 + 4*n

for N=B, total time spend= 416

.Note : assignment and initialization statements are

considered no time statements

165

Computation. of. the Fast Fourier Transform using

Decimation-in-Time algorithm consists of two segments, first

is a segment to rearrange the input array, second is the

segment to·compute the values of X.

time spe.nd

N+N (1 OlogN+1) ~ 1 OlogH

i
!

r

i=O

1 DO. WHILE, (i <N)

7

1

1

1

k=1; j=O, l=i

DO WHILE (k<p+1)

l=k/2**(k-1)-2*(i/2**k)

j=j+l

k=k+1

BND

X(j)=x(i)

i=i+1

END

The second segment of proe,ram is as follows:

time spend

logN+logN{5N+2)+2 5N

(

I

2 pi=2*j.14/N, i=1

DO WHILE (i<p+1)

4

3

k=O, mp=p-i

DO WHILE (k< (1~/2+1)

t=2**mp*(k/2**mp)

· wpq=(cos(pi*t),

.-sin(pi*t)~X(2*k+1))

1 X(k)=X(2*k)+wpq

~ X(k+2**(N-1))=X(2*k)-wpq

END

1 i=i+1

< END

total time spend = 15iHoei~ + 2N + 3logN + 2

for N=B, total time spend= ~87

166

Using data flow program represented,

1G7

the flow of

information may be shown by the following table:·

step# parallel processes

p0,c0,w0,u0,u1

2 c1,c2,p1

3 c3,c5,~2

4 w1 ,w2,w3,c4,p0

5 vt4,c0,p1

6 w5,c1

7 u2,c5

8 u:5,u4

9 u5,u6,u7,u8

After 9 cycles the first set of results is ready then:

time spend for computations in one stage= 9

total time spend =3x9=27

B. SIN Function

Trigonometric functions are the most widely used

arithmetic functions. Some numerical methodc to compute

these functions are inherently parallel and may be easily

converted into parallel procedures. In this section Taylor

series representation of Sirl function is studied and

168

programmed in datri flow base lfrngur-1ge.

Taylor series for SIN function is as
1 3 5 7

X X X X
SIH(x) = + -- + ••••.•• (14)

1 ! 3! 5! 7!

Bach term in the seri .is independent from others and may be

computed separately, but independent computation ·of each

term turns to be very inefficient.

A careful study of the terms· of the series reveals a

special relationship between the two consecutive terms. If

nth.term is represented by T(n), then

T(n+1) = - T(n) * ((n+1)*(n+2)) (1 5)

A data flow code segment using this property is shown in

· Figure 27. Using this direc~ a~proach, computation of each

term requires 6 operations; then for N terms the number of

arithmetic operations is 6N.

In a multiprocessor environment, more than one term can

be computed at the same time. The new approach that is

presented in this section involves the computation of 4

terms simultaneously, using the relationship between the

terms of the Taylor series. First, divide the terms of the

series into the groups of 4 terms, then each term may be

represented by T(n,m), where n=0,1, .•.. ,N/4, and m=0,1 ,2,3.

If the denominator of each term is represented by D(n,m),

then the relationship between the first denominator of a

group and the last denominator of the preceeding group is as

follows:

D(n+1 ,0). = D(n,3) * (8(n+1)) * (8(n+1.)+1). (16)

169

and the relationship between the denominator of the first

term of a group and the others is as:

D(n,m) = D(n,O) * (B(n+1)+2m)*(8(n+1)+2m+1)

m= 1 , 2 , 3 (1 7)

If denominators of the terms of a group is stored in an

array, F say, then 1'' should initially contain (1 ! , ')(I .
.I • ' 5 ! '

7!). The values of the denominators of each group may be

computed using Eq;s (16) and (17). The numerator of each

term in nth group is the product of the nu~erator of the

corresponding term in (n-1)st group and x. Using the facts

represented above, a data flow code segment is written which

is illustrated in Figures 49, 50, 51.

The first ·step in computation of the SIN function is

the generation of the first 4 powers of
8 x and x This

segment is performed only once at the b~ginrting of the

process and takes 5 cycles, is represented in Figure 49.

Generating the denominators of ea~h term using the last

denominator of the previous group is done by a code segment

represented in Figure 50. ~he process of generating and

adding the terms of a group and making the decision whether

to continue or terminate the process is represented in

Pigure 51. Bach section of the ~ode segment is labelled by

a letter and each ~tep is iabelled by a number to clarify

the analysis of the process, for example, in program

analysis tables, instructions are specified by code segment

label at the top of the table and associated step under that

column.

170

Two different raethods to process this code seement are

analyzed and results are shown in Figures 52 and 53. In the

first method the process is not controlled and the values of

the powers of x are transmitted to the next section as soon

as they are generated. Figure 52 shows that using this

method, 4 consecutive terms of. the Taylpr series are

calculated in 10 cycles. In the second method the powers of

x are not transmitted to the destinations before all powers

are calculated. · In this controlled ·method, .for the first 3

cycles processor utilization is not efficient, but the

execution of 4 term groups takes only 7 cycles. Using this

method 7N/4 cycles are required· to compute N terms, which is

obviously less than 6N cycles in the direct approach

solution. The ma~imum number of parallel processes in one

cycle is 12, which determines the minimum number of

processors to achieve the 7N/4 execution time.

A

(:)

1 II X

2

J XJ.

4 x5 x7 8
X

Figure 49. Generation of Powers of x

-.:
~

1 B

2

3

4 ~
5

. Fo

6"

7

8

C D E .

.r.1

~ F2

F3

Figure 50. Coefficient Generation

F

Ll-=2

_.,
-.J
I\.)

G H l

014

6

o2

Figure 51. Computation of Four Consecutive Terms of Taylor Series

SUI X

.......
-.J
\J-1

174

step H f A B C D E F G H I J K L M

1 1 1 1 1

2 2 2 2 2 2 2 2

J 3 J J J J J 1

4 4 4,5 2 1 1

5 ro 5 6 J,4 2 2 1

6 fl 6 1. 5 J,4 J,4 2

7 f2. 7 2 6 5 5 3 1

8 f.3 J,4 1 6 6 6 2

.9 5 2 1 1 J
·10 7 6 J,4. 2 2 ?,8 1

11 1 . 1 5 J,4 J,4 1 2- 1

12 2 2 2 2 2 6 5 5 3·
1J 3 . J. J J 1 6 6 6 2

14 4 1 1 3
15 fO 5 7 2 7,8
16 f1 6 1 3,4 2 1

17 f2 7 2 5 J,4 2 1

18 fJ 6 5 J,4 2

19 1 6 5 J,4" 2 1

20 1 6 5 J
21 1 6 6 2

22 1 J
23 7 7,8

24 1 . 1

25 2 2 2 2 2

26 J J J 3
27 4

28 fO 5 2

29 f1 6 J,4 2 1
. JO f2 7 5 3,4 2

31 fJ 6 5 J,4 2 1

Figure 52. Gomputation Analysis of SIN Program

175

step ti f, A B C D E F G H I J K L M

1 1

2 2

J J
4 1 1 ·1 ·1 1 1

5 2 2 2 2 2 2 2 2 2

6 .3 J J 3 J,4 J,4 J,4 J,4 1,2

7. 4 5 5 5 5 J
s-· fO 5 6 6 6 6 1,2

9 f'1 6 1 1 1 1 J
10 f2 7 7 2 2 2 7,8

11 :fJ 1 J,4 J,4 J,4 2 1 1

12 2 2 2 2 2 5 . 5 5 J,4 ·2

13 J J ·J J 6 6 6 .5 3 1

14 4 1 1 1 6 6 2

15 fO 5 2 1 J
16 f1 6 ·7 J,4 2 7,8

17 f2 7 1 5 J,4 2 1 1

18 fJ 2 2 2 2 2 6 5 J,4 2

19 J J 3 J 1 6 5 J,4 2 1

20 4 1 6 5 3
21 fO 5 2 1 6 6 2

22 1"1 6 J,4 2 1 J
23 f2 7 7 5 J,4 2 7,8 1
24 f) 1 6 5 3,4 2 1

25 2 2 2 2 2 1 6 5 J,4 2 1
26 J J J J 1 6· 5 3
27 4 1 6 6 2

28 fO 5 2 1 J
29 :fl 6. 7 J,4 2 7,8

JO f2 7 1 5 J,4 2 1

Jl fJ 2 2 2 2 2 6 5 J,4 2

J2 J J J J 1 6 5 J,4 2 1

JJ. 4 1 6 5 3 2

Figure 53. Computation Analysis of Controlled SIN Program

ChAPTEH VII

..
SUHMARY, CONCLUSI0.1:rn AHD l•'UTUHE \"/ORK

A survey of a data flow ardhitecture was presented as a

solution to many of the problems of highly para_llel computer

systems. The use of interconnection netwoiks between

sections of the processor provides an attractive approach to

the communication of information betwe~n units. Due to the

radical n;;.i.ture of arcli.i tecture, many questions range from

ones about the use of certain methodsof representation or

design choices to deep ecrnantic issues.

A survey of a phenomenon known as the semantic gap was

presented. The effect of the semantic gap on system

performance was discussed. semantic 6 ap which

·represents the ~ap betwedn the concepts presented in the

architecture and high-level languages concepts, contributes

to perfcr_mance problems. in .conventi_onal cpT'l.puters.

Methods to represen_t 0high-level langue.ge concepts in

data flow bas~ language -was presented. 1he data flow base

language, while appearing to be a·Seillantically elegant

method of expressing parallelism, is not yet an appropriate

one to represent high-level language co·ncepts, and is open

to further study and extensions. The language needs to be

expanded by the ~duition of such actors as "f'orP.11 11

176

construct to 8n~ble it to

processing of the Glenents of

better express

:1 structure.

1 Tl

concurrent

Also, the

l;:,.nguaee does not currently contain the capability to

express nondeterminate computations.

li'urther investigation of the use of the data flow

language is necessary. The representation of algorithms

such as }\1.st 1'1ourier Transform and SIN :function in d3.ta flow

appears very attractive (Cnapters V and VI). However, the

data flow representation -for other computations need to be

developed and examined~

The data flo~ language 'is designed to serve as the base

language of the data flow processor. The development of a

user language which can be readi_ly translated into a data

flow representation .is necessary. Much more work needs to

be done to identify concurrency in problems and to take

advantage of that throueh use of the d8.ta :flow

representation. liew actors and features must be added to

·the architecture to cope with high-level languaJes and

reduce the semantic gap.

1H.B110'-ihAPllY

1. Ackerman, \·iilli:ii.m B. "A structure processing facilitJ
for data flow computers." Laboratory For Computer
:::1cience, d.i..'.J:1, ProceeclinGs of the 1~78
internation~l conference on parallel processing,
Aug. 1978, pp. 166-172.

2~ Ackerman, William B., and Jack. D. Dennis. "VAL-- A
value-oriented algori thr'.i.ic lang,1a6e: prelin.inary
reference manual. 11 1!1.boratory }'or Computer
dcience, ~-I~T, Technical Heport d218, Jan. 1979.

3. Aoki, Donald J. "A machine language instruction set for
a data flow processor." Laboratory For Computer
Science, M.I.T, Technical ·GeLlo ;14G, Dec. 1979.

4. Arvind, Vinod Kc-:.thail, .Keshav :Pint;ali. "A d,da flow
architecture with tagged tokens." Labor:1tory For
Computer .. Science, n.r.~, Tecnnical 11·ieL10 ;f174,
Sept. 1 980.

~- Arvind, Kim P. Gostelow, and Will Plouffe. "An
asynchronous prograr:imine; lcine::;uac:e and co1.1putin6
machine." University of Cti.lifornia, lrvine,
Technical Repbrt ff114A, Dec. 1978.

6. Arv ind and Kim P. Gostelow. "Df.1 ta flow computer
urchi tecture: · rese~1.rch and goals." University of
California, Irvine, Technical Report #113, teb.
1978.

'/. Arvind and Kim P. Gostelo"w. ·"wenantics of loop
expressions in ID." UCI data-flow project, data­
flow note }11, Barch 1977.

8. Cornish, lforrill. 1".LlH~ TI datn.-flow architecture: the

9.

1 0.

power of concurrency for avionics." 'iexas
Instruments Corp., Texas, Austin, 1y79.

Cote, William F. and Richard F.
of a dQt~-uriven processing
University, MichiBan.

Hicceli. 11 '.rhe design
element." i"layne 0tate

Davis i\., L. "'.i:he architecture of i>Dr·t1:
structured data-cl riven 1a:,.chi ne. 11

Utah, UUCS-77-11 j, lipril 11j7J.

178

A recursively
l.J°ni versi ty of

1 '/9

11. Dennis, J. 13., D~:.vid I·iisun.'.-1s, ·.rnd Cl(ment K. Leung. "A
highly parallel proceusor using a· data-flow
trn.chi ne lf-!.ngua.113." i,aboratory :E'or Computer
Science, iLI.r.1:, '.L'echnical f,,e110 (134, Jan. 1':JT/.

12. Dennis, J. B., and David P. t·1isunas. "A prelir1inary
architecture for 8. basic data-flow processor."
Project rili.C, H. I.~, the second 2..nnun.l sy~aposium on
computer architecture, Jan. 1 ':)'/5, pp. 1 26-1 j2 • .

13. Dennis, J. B. "1'1irst version of fa data-flO\·l :procedure
language." ;•,irr.i!/LCS/~H-61 , Hr1.y 1975. ·

1 4. . Dennis', J. B. "b:.tcket con:nuni cation 8.r chi tecture. 11

Project MAC, ~.I.~, 1echnical heme 6150, Aug.
1 '3'/ ') •

15. Dennis, J. b. "Progru.rnminG generality, parallelisra ~nd
computer architecture." N.I.T, ·Information
Processing ~8, pp. 464-4~2~

16 . .r'a.rrel, .t.dward l:'., J>ioordin li-hani, and Philip C.
TreleavE;m. 11 A concurrent c01:rputer architecture and
a rini::; based implementation." University of
~ewcastle, Upon Tyne, England 1~7~.

17. Peridum, Arif f.'~etin. ".0esi 6 n of an on-line ~yte-level
pipelined arithmetic proc~ssor." Laboratory For
Computer Science, i'1i.I.'.:c, '.t.'echnical Uemo r,162, July
1973.

18. llopkino, Richard, Paul \·f. Rautenbach, and Philip C.
'.::'re leaven. 11 1\ co1:1puter support i n6 data-flm:,
control-flow and updateable :nemory." '.ihe
University of Newcastle, Upbn Tyne, ~ncland,
Technical h.eport J,144-, 1iJ7'J.

19. Jenson, John C. ".i3?.sic pro,:;r8.m representati"on in the
'.I:ex:::.,s Instrurnen+;. dn.+;'.l-flO'.l "test bed co:npilcr."
~exas Instruments Corp., Austin, fexas, Jan.,
1~b0.

20. Johnson, DouGla~. "Autom.3.tic. p:,.Lrti tioninG
in mul ti-proc,3ssor syste~:;s." '..:tJxas
C.:orp., Aus't,in, ·lexas, 1'://9.

of programs
Instruments

21. X:cller, Hobert L. ,. 'J~ry liincistrom, und 0t:tr1:=1s Patil. "An
architecture for a loosely-coupled parallel
processor." University of Utah, U UCd-'.{o-10':>, Oct.
1 97b.

22. Leth, Janes ~illiacs.
flo# programs."

11 i1.t1 inter-:-cdiate form for data­
Laboratory· }'or Computer Science,

180

M.I.T, rechnical Nemo ;143, ~ov.1979.

23. rHranker,Glen Seth. "I:nplc::1entation of procedures on 'J.

class of datu.-1'low l)rocesses." Laboratory 1'1or
Computer 8cience, N.l.~, proceedings of 1977
international conference on parallel proccsain~,
Aug. 1~77, pp. 77-86.

24. 1·1isunas,. David P. "A colilputer architecture for data-
flow computation." Laboratory]'or C"1c.puter
Science, B.I.T, Technical Ne~o t1UO, harch 1~78.

25. 1;lisunas, David P. 11 Performance analysis of c1ata-flow
processor. 11 k1boratory J:t'or Cor:iputer Science,
H.I.T, proceedings of the 1976 international
conference on parallel processing, Aug. 1976, pp.
100-105.

26. f.lisunas, David P. · "Structure processing in a data-flow
computer." Project {;Ac, :;'LI. T, ~echnical i:ferao
;·120 ' 1975 ti ::1, AUP,, •

27. Hontz, Lynn Barbara. "Safety and optimization
transformations of data-flow proi::;ra:ns." L:i.bor~tory
For Computer Science, h.I.T, Technical Heport
ti 240, Jan. 1 980.

28. Myres, Glenford J. Advances in computer architecture.

29.

1st Bd. New York: IbN systems research institute,
Wiley-interscience publications, 1~78.

Oppenheim, Alan V. and
signal processing.
riall Inc. , 1 975.

holand w. Schafer .
1st ~d. lie~ Jersey:

i>i 6 i tal
.Prentice-

jO. rtumbaugh, James. "A dat~:1 flow uul ti-processor. 11 l.t:JE
transactions on computers, Vol. C-26, to.2, ieo.
1 '3'77, PP. 1 30-1 4-6 .

31. Huth, Gregory H. "Data driven loops." 12.boratory }'or
Computer ~cience, M.I.T, Technical Heport #244,
Aug. 1980.

32. Saubar, \1illian. "A data-1·1ow architecture
implementation. 11 1exa:s lnstrum!:rnts Corp., Austin,
Texas, 1980.

33. Thomas, Robert Eueene. "An activity assigm:1ent scheme
for a dnta-flow computer." UCI datn.-flow project,
Note ff29, April 1978.

34. Thor.in.s, Hobert Bugene. "l'crformrrnce ,.1.naly3is . of two
classes of dt:".ta-flO\v com put int=-; systems." UC I,
Technical Report d120, Gay 1980.

1 d1

j5. Treleaven, P. C., DAvid lt. brownbridge, and Hichard P.
iiopkins. ".Lia t'.1.-ar i ven and demand driven computer
architecture." :i:he University of .Newcastle, Upon
Tyne, EnGland, 1970.

36. Trcleaven, P. C. "Principle components of a data-flow
computer." The University of Newcastle, Upon Tyne,
England, 1 97B. ·

37. Weng, Kung-sane. "An abstract implementation for a
generalized data-t'low language." Laboratory For
Computer Sciehc~, N.I.T, Technical Report d228,
Hay 1979.

APP .bi~llIX

Actor
Data flow operator

Arbitration network

Cache

Receives operation packets from
present in the r:1emory, and
appropriate operatiQn.unit.

the instruction cells,
sends them to the

Cache is a scratch pad random uccess. memory usually
ser:iiconductor type, holds th-e inforr.1.ation that are most
often required by th~ processor. Other information
about the program is kept in a slower nemory. The
information is passed to the cache, based on certain
policies whenever it is required.

Concurrent
~he occurence of t~O
time period, i.e.,
simultanously.

Control network

or more events within
two computers. or

the se..me
programs

A network which hartdles control packets. ~he network
consists of arbitration ancl distrib_ution uni ts.

Data driven
The class of data flow in which the instructions are·
execu'ted. when. all ·the o_pentnds required by the
instructi6n are r~ady~.

Data flo~ structure
Sttuctured data residing on conventional memory.

Data packets
lns~tuction cells c6ntaining data valties are known as
data packets.

Decision unit
It is a hardware unit which performs boolean operations
and gives the result in the form of control packets.

Distribution network
Receives results frocr the operation unit in the form of
data packets and places the~ in the instruction cells,
present in tho nemory.

182

When tokens are
flow graph, the
removed from the
fired.

present at the input
node is enabled and
input arcs . i . e . ,

arcs of a data
the operands :::re

the operands are

Instruction cell
The cemory, is organi~ed into instr~ction cells. Each
instruction ~ell consists of three or more registers to
hold the data and operator.

Instruction packet

Link

A packet containing· a data flow instruction ·is called
an instruction packet.

The program in elementary data flow language· is a
directed graph in which the nodes are operators. ~he
nodes are interconnected by means of links.

Locality

LSI

Working set or the working area in the memory,
i.e.,physical locality or program locality.

Abbreviation for Larg~-Scale Integeration. high-density
integrated circuits for complex logic functions.

Operation packet
Operation packet is one of the types of instruction
packet that is handl~d by the operation unit .

. Operator
Operators are the. dat~ flow instructions ..

Packet
The information, may be either data or operator, sent
from one unit to another unit in data flow machine.

Selector
Used in the rip~esentation of dati fl6w structures- an
integer ore string. ·The structure node is represented
as <selector : value>.

Side-effect
Effect of ~n .instruction on data elements which is to
be used by other.instructions.

VITA
~ -
~/

Taraneh Baradaran-Seyed

Candidate for the Degree of

Master of Science

Thesis: HIGH-LEVEL LANGUAGE CONCEPTS IN DATA FLOW
ARCHITECTURE

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Tehran, Iran, October 20, 1952.

Education: Graduated from Shirin High School, Tehran,
Iran, in June, 1970; · received Bachelor of Science
degree in Mathematics and Computing Science from
Aryamehr University of Technology in 1976;
completed requirements for the Master of Science
degree at Oklahoma State University in December,
1981.

Professional Experience: Instructor, ISIRAN Institute,
1976-79; graduate teaching assistant, Oklahoma
State University, 1979-81.

	THESIS 1981 B223H_Page_001
	THESIS 1981 B223H_Page_002
	THESIS 1981 B223H_Page_003
	THESIS 1981 B223H_Page_004
	THESIS 1981 B223H_Page_005
	THESIS 1981 B223H_Page_006
	THESIS 1981 B223H_Page_007
	THESIS 1981 B223H_Page_008
	THESIS 1981 B223H_Page_009
	THESIS 1981 B223H_Page_010
	THESIS 1981 B223H_Page_011
	THESIS 1981 B223H_Page_012
	THESIS 1981 B223H_Page_013
	THESIS 1981 B223H_Page_014
	THESIS 1981 B223H_Page_015
	THESIS 1981 B223H_Page_016
	THESIS 1981 B223H_Page_017
	THESIS 1981 B223H_Page_018
	THESIS 1981 B223H_Page_019
	THESIS 1981 B223H_Page_020
	THESIS 1981 B223H_Page_021
	THESIS 1981 B223H_Page_022
	THESIS 1981 B223H_Page_023
	THESIS 1981 B223H_Page_024
	THESIS 1981 B223H_Page_025
	THESIS 1981 B223H_Page_026
	THESIS 1981 B223H_Page_027
	THESIS 1981 B223H_Page_028
	THESIS 1981 B223H_Page_029
	THESIS 1981 B223H_Page_030
	THESIS 1981 B223H_Page_031
	THESIS 1981 B223H_Page_032
	THESIS 1981 B223H_Page_033
	THESIS 1981 B223H_Page_034
	THESIS 1981 B223H_Page_035
	THESIS 1981 B223H_Page_036
	THESIS 1981 B223H_Page_037
	THESIS 1981 B223H_Page_038
	THESIS 1981 B223H_Page_039
	THESIS 1981 B223H_Page_040
	THESIS 1981 B223H_Page_041
	THESIS 1981 B223H_Page_042
	THESIS 1981 B223H_Page_043
	THESIS 1981 B223H_Page_044
	THESIS 1981 B223H_Page_045
	THESIS 1981 B223H_Page_046
	THESIS 1981 B223H_Page_047
	THESIS 1981 B223H_Page_048
	THESIS 1981 B223H_Page_049
	THESIS 1981 B223H_Page_050
	THESIS 1981 B223H_Page_051
	THESIS 1981 B223H_Page_052
	THESIS 1981 B223H_Page_053
	THESIS 1981 B223H_Page_054
	THESIS 1981 B223H_Page_055
	THESIS 1981 B223H_Page_056
	THESIS 1981 B223H_Page_057
	THESIS 1981 B223H_Page_058
	THESIS 1981 B223H_Page_059
	THESIS 1981 B223H_Page_060
	THESIS 1981 B223H_Page_061
	THESIS 1981 B223H_Page_062
	THESIS 1981 B223H_Page_063
	THESIS 1981 B223H_Page_064
	THESIS 1981 B223H_Page_065
	THESIS 1981 B223H_Page_066
	THESIS 1981 B223H_Page_067
	THESIS 1981 B223H_Page_068
	THESIS 1981 B223H_Page_069
	THESIS 1981 B223H_Page_070
	THESIS 1981 B223H_Page_071
	THESIS 1981 B223H_Page_072
	THESIS 1981 B223H_Page_073
	THESIS 1981 B223H_Page_074
	THESIS 1981 B223H_Page_075
	THESIS 1981 B223H_Page_076
	THESIS 1981 B223H_Page_077
	THESIS 1981 B223H_Page_078
	THESIS 1981 B223H_Page_079
	THESIS 1981 B223H_Page_080
	THESIS 1981 B223H_Page_081
	THESIS 1981 B223H_Page_082
	THESIS 1981 B223H_Page_083
	THESIS 1981 B223H_Page_084
	THESIS 1981 B223H_Page_085
	THESIS 1981 B223H_Page_086
	THESIS 1981 B223H_Page_087
	THESIS 1981 B223H_Page_088
	THESIS 1981 B223H_Page_089
	THESIS 1981 B223H_Page_090
	THESIS 1981 B223H_Page_091
	THESIS 1981 B223H_Page_092
	THESIS 1981 B223H_Page_093
	THESIS 1981 B223H_Page_094
	THESIS 1981 B223H_Page_095
	THESIS 1981 B223H_Page_096
	THESIS 1981 B223H_Page_097
	THESIS 1981 B223H_Page_098
	THESIS 1981 B223H_Page_099
	THESIS 1981 B223H_Page_100
	THESIS 1981 B223H_Page_101
	THESIS 1981 B223H_Page_102
	THESIS 1981 B223H_Page_103
	THESIS 1981 B223H_Page_104
	THESIS 1981 B223H_Page_105
	THESIS 1981 B223H_Page_106
	THESIS 1981 B223H_Page_107
	THESIS 1981 B223H_Page_108
	THESIS 1981 B223H_Page_109
	THESIS 1981 B223H_Page_110
	THESIS 1981 B223H_Page_111
	THESIS 1981 B223H_Page_112
	THESIS 1981 B223H_Page_113
	THESIS 1981 B223H_Page_114
	THESIS 1981 B223H_Page_115
	THESIS 1981 B223H_Page_116
	THESIS 1981 B223H_Page_117
	THESIS 1981 B223H_Page_118
	THESIS 1981 B223H_Page_119
	THESIS 1981 B223H_Page_120
	THESIS 1981 B223H_Page_121
	THESIS 1981 B223H_Page_122
	THESIS 1981 B223H_Page_123
	THESIS 1981 B223H_Page_124
	THESIS 1981 B223H_Page_125
	THESIS 1981 B223H_Page_126
	THESIS 1981 B223H_Page_127
	THESIS 1981 B223H_Page_128
	THESIS 1981 B223H_Page_129
	THESIS 1981 B223H_Page_130
	THESIS 1981 B223H_Page_131
	THESIS 1981 B223H_Page_132
	THESIS 1981 B223H_Page_133
	THESIS 1981 B223H_Page_134
	THESIS 1981 B223H_Page_135
	THESIS 1981 B223H_Page_136
	THESIS 1981 B223H_Page_137
	THESIS 1981 B223H_Page_138
	THESIS 1981 B223H_Page_139
	THESIS 1981 B223H_Page_140
	THESIS 1981 B223H_Page_141
	THESIS 1981 B223H_Page_142
	THESIS 1981 B223H_Page_143
	THESIS 1981 B223H_Page_144
	THESIS 1981 B223H_Page_145
	THESIS 1981 B223H_Page_146
	THESIS 1981 B223H_Page_147
	THESIS 1981 B223H_Page_148
	THESIS 1981 B223H_Page_149
	THESIS 1981 B223H_Page_150
	THESIS 1981 B223H_Page_151
	THESIS 1981 B223H_Page_152
	THESIS 1981 B223H_Page_153
	THESIS 1981 B223H_Page_154
	THESIS 1981 B223H_Page_155
	THESIS 1981 B223H_Page_156
	THESIS 1981 B223H_Page_157
	THESIS 1981 B223H_Page_158
	THESIS 1981 B223H_Page_159
	THESIS 1981 B223H_Page_160
	THESIS 1981 B223H_Page_161
	THESIS 1981 B223H_Page_162
	THESIS 1981 B223H_Page_163
	THESIS 1981 B223H_Page_164
	THESIS 1981 B223H_Page_165
	THESIS 1981 B223H_Page_166
	THESIS 1981 B223H_Page_167
	THESIS 1981 B223H_Page_168
	THESIS 1981 B223H_Page_169
	THESIS 1981 B223H_Page_170
	THESIS 1981 B223H_Page_171
	THESIS 1981 B223H_Page_172
	THESIS 1981 B223H_Page_173
	THESIS 1981 B223H_Page_174
	THESIS 1981 B223H_Page_175
	THESIS 1981 B223H_Page_176
	THESIS 1981 B223H_Page_177
	THESIS 1981 B223H_Page_178
	THESIS 1981 B223H_Page_179
	THESIS 1981 B223H_Page_180
	THESIS 1981 B223H_Page_181
	THESIS 1981 B223H_Page_182
	THESIS 1981 B223H_Page_183
	THESIS 1981 B223H_Page_184
	THESIS 1981 B223H_Page_185
	THESIS 1981 B223H_Page_186
	THESIS 1981 B223H_Page_187
	THESIS 1981 B223H_Page_188
	THESIS 1981 B223H_Page_189
	THESIS 1981 B223H_Page_190
	THESIS 1981 B223H_Page_191
	THESIS 1981 B223H_Page_192
	THESIS 1981 B223H_Page_194

