by

DAVID GEORGE BATCRETDER

Bachelor or Saience
Aaricultrual Engineering Kansas State Univeroity

Marhattan, Kanszs 1955

Summittea to the Facmity of the Gradumbe School of the Oklahons State Unversity in partial fulfillment of the regudrements for the degree of MASTMER OF SCIENCE

May, 1962

504262

PREFACE

The work reported in this thesis was conducted as a part of State Project 802, "Development of Improved Machines and Methods for Seedbed Preparation, Planting, and Early Weed Control in Cotton Production ${ }^{\text {in }}$, of the Oklahoma Agricultural Experiment Station. One of the objectives of Project 802 has been to develop equipment that would improye the precision or accuracy of placement of seed in planting. One of the results of research on this project has been to grade acid delinted cotton seed to improve metering accuracy of the planter box. The investigations in this study were not limited to cotton seed alone, but did include acid delinted cotton seed as one of the factors. The objective of this study was to obtain basic information conceraing an experimental roll grader. Shelled peanut seed and delimted cotton seed were used.

The author $i s$ grateful to Professor Jay G. Porterfield, the thesis adwisor, for his assistance and counsel during the study and for his comments and suggestions concerning the test of this thesis.

Appreciation is also expressed to the personnel of the Oklahoma Cotton Resemrch Station at Chickssha, Oklahoma, for their cooperation in construction of the test equipment and for their assistance in conducting the tests.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. OBJECTIVES 4
III. REYIEW OF LITERATURE 6
IV. APPARATUS AND EQUTPMENT 13
V. THEORETICAI CONSIDERATIONS 2 II
VI. PROCEDURE AND DESCRIPTION OF TESTS 29
A. Preliminary Investigations 29
B. Description of the Tests 29
Acid Delinted Cotton Seed 29
Grading Accuracy 29
Timing 31
Seed Damage 32
Minor Diameter Distribution 34
Shelled Peanut Seed 34
Grading Accuracy 34
Timing 36
Seed Damage 37
WII. PRESENTATION AND ANALYSIS OF DATA 39
VIII. DISCUSEION OF RESULTS 51
IX. SUMMARY AND CONGLUSIONS 70
BLBLIOGRAPHY 73
APPENDIX 74

IIST OF TABLES

Table Page
I Grading Accuracy of Acid Delinted Cotton Seed 42
II Grading Accuracy of Shelled Peanut Seed 43
III Timing of Acid Delinted Cotton Seed 4
IV Triming of Shelled Peanut Seed 45
V Damage of Acid Delinted Cotton Seed 46
VI Damage of Shelled Peanut Seed 47
VII Leagth of Roll Comparisons for Acid Delinted Cotton Seed 48
VIII Length of Roll Comparisons for Shelled Peanut Seed 49
IX Minor Dianeter Distribution of Acid Delinted Cotton Seed 50

IIST OF FIGURES

Figure Page

1. Schematic Diagram of an Experimental Roll Grader 6
2. Schematic Diagram of a Roller Sorter for Citrus Fruit 8
3. Roll Sizer for Citrus Fruit 8
4. Schematic Diagram of Rubber Covered Grading Rolls 10
5. Roller GradermFeding Device 11
6. Schematic Diagram of the Test Roll Grader 14
7. Test Roll Grader - Top View 15
8. Test Roll Grader - Side View 15
9. Test Roll Grader - Side View 17
10. Metering Device 17
11. Force Diagram for Roll Rotation Combination Number 1 23
12. Force Diagram for Roll Rotation Combination Number 2 24
13. Force Diagram for Roll Rotation Combination Number 3 25
14. Grading Accuracy Graphs for Roll Rotation Combination 27 Number 1
15. Grading Accuracy Graphs for Roll Rotation Combination 52 Number 2
16. Grading Accuracy Graph for Roll Rotation Combination 54 Number 3
17. Schenatic Diagram of Rolls and Seed 56
18. Roll Length Graphs for Roll Rotation Combination 59
Number 1
19. Roll Length Graphs for Roll Rotation Combination 60 Number 2
20. Roll Leagth Graph for Roll Rotation Combination 61 Number 3
21. Acid Dellnted Cotton Seed Timing Graph 64
Figure Page
22. Shelled Peanut Seed Timing Graph 66
23. Minor Diameter Distribution Frequency Polygon - Acid Delinted Cotton Seed 68

GHAPTER I

INTRODUCTION

The priaciple of grading or sizing objects by means of a "go" or "no go gage has been used for maxy years. The distance between two fixed points or parallel surfaces was used as a reference to determine Whether an object was of a given size.

Thls priaciple was utilized in a series of tests using acid delinted cotton seed and shelled peanut seed for evaluation of smooth steel rolls as a grading device. Premdetermined sizes of cotton or peanut seed were run through, or over, the parallel surfaces of two rightcirculax cylinders consisting of two smooth steel rolls placed with their parallel axes at an aagle from the horizontal. The space between the rolls was used as a measuring device. One roll had a constant diameter while the second roll had four different diameters. The different diameters were of such a size that the spacing between the two rolls provided sizing possibilities for the seed to be accepted, by going between the rolls, or to be rejected, by being retained upon the roll's surfaces.

An evaluation of steel rolls as a grading device consisted of determining the grading accuracy, in percent, under certaln fixed coaditions of roll speed, roll angle, and rate of feed. The efrect of these factors at two levels each, was evaluated in a total of eight combinations for three different roll rotation combin-
atioas: (I) both rolls turning in opposite directions such that their adjacent surfaces had a tendency to lift the seed, (2) One roll turning in the same manner as above and the other roll stationary, and (3) both rolls turning in the same direction. This made twentyofour different combinations in all.

It wes hypothesized thet the rolls would grade most accurately at the lower roll speed, at the lowest angle, and that the rate of feed would heve considerable influence on grading accuracy, but that the rate of feed would not be critical until the rolls were over-fed; that is, when seeds would tead to ride up on top of the seeds that were in contact with the rolls.

It was hypothesized that the rate of feed could undoubtedly be increased a 1 imited amount with an increase in roll angle and/or roll speed. It was thought that the rate of grading would increase with a greater roll angle but that grading accuracy would decrease.

The acid delinted cotton seeds used in these tests had been selected for the tests by running the seed over an A.T. Farrel and Company Clipper Cleaner fanaing mill equipped with round hole screens. The seeds that went through the $12 / 64$ th inch round hole screen and were retained on a $11 / 64$ th inch round hole screen were then subjected to minor diameter grading by the roll grading device. The seeds that went through the roll section with a spacing of $11 / 64$ th of an inch Fere used for subsequeat roll grading tests.

The peanuts used in the tests had previously been graded by a round bole screen at shelling time and were subsequently graded to ${ }^{2}$ through a $5 / 16$ inch roll spacing on the roll grading device.

Various parameters thought to influence the performance of the
roll grading device were investigated. The parameters are presented in the next section of this report.

CHAPTER II

OBJECTIVES

The objectives of these tests were to evaluate the following parameters:
A. To determine the effect of roll speed (200 and 600 rpm), rate of feed (two levels), and roll angle (5° and 15°) on the gradIng accurecy of (1) smooth steel rolls turning opposite dirw ections such that their adjacent sides were turning upward, (2) one smooth roll turning as in (1) above and the other roll stationary, and (3) both rolls turning the same direcw tion when grading acid delinted cotton seeds.

The object of comparing the three roll rotation combinations was to gain information for future design considerations. If no differm emces in grading accuracy were found, it would be possible to have more potental roll grading area in one of the combinations. The space between the rolls was the greaing area. Increased grading capacity would be provided by adding more roll units. Multiples of the combination of rolls turaing in opposite directions would have the least gradiag area of three roll rotation combinations. The combination of one roll turning could utilize any of several stationary devices to provide a fixed spacing for grading, and would have the greatest potential ia grading area utilization. The comm bination of rolle turaing in the same direction would be intermediate
in grading area per unit of size.
B. To determine any effect on grading accuracy of smooth steel rolls due to the relative size of the product being graded. This was attempted loy conducting the same tests as in A above, but using peanuts instead of acid delinted cotton seed.
C. To determine, if posmible, the necessary length of roll section to obtain high grading accuracy under the conditions of oldectives A and B above.
D. To axrive at some relationships of the time required for cottoa and peanut seeds to travel along a twelve inch roll section at roll speeds of 200,400 , and 600 rpm and roll angles of $5^{\circ}, 10^{\circ}$, and 15° with the rolls turning (1) opposite directions, (2) one turming and one stationary, and (3) both ralls turaing the same direction.
E. To detexmine the minor diameter distribution of the acid delinted cotton seeds used in the roll grader tests.
F. To establish the percent of damage to cotton and peanut seeds used in gradiag accuracy tests caused by the meterm Ing device and the rolls at the roll speeds of 200 and 600 rpm, rates of feed (two levels), roll angles of 5° and 15° With the rolls turning (1) opposite directions, (2) owe roll twining and one stationary, and (3) both rolls turning the same direction.

REVIEW OF LITERATURE

A review of literature pertaining to roll grading research provided very little information. There was, however, considerable evidence of commercial use of rolls for sizing or grading of many products.

Preliminary work with roll grading of acid delinted cotton seeds was initiated in 1957 by Schroeder, et al (1). Two rolls were placed with parallel axes at an angle of 6° as shown in Figure 1. One roll TOP VIEW

Figure 1. Schematic diagram of an experimental roll grader for grading acid delinted cotton seed.
had a constant diameter along its length while the other roll had different diameters at one foot intervals along its axis. The spacing between the rolls (varied by the different diameters) was such that the smaller seeds would be graded out at the upper end (feed end), and at subsequent spacings incressingly larger seeds would be sized. The spacings were such that seeds could be graded to size in steps of $1 / 64$ th inches. The rolls accomplished their grading on the basis of minor diameter of the seed. No formal test data was included. It was reported, however, that a similar machine was used to separate seeds of other types, besides delinted cotton seed, into minor diameter classes. The machine appeared to have possibilities for a wide application for size distribution studies of most types of agricultural seeds. While no commercial value of sizing of cotton seeds (or other types of seeds) was evident, the machine appeared to be an excellent device for measuring minimum diameter because of its high reproducibility and precision.

Roll grading of citrus fruits was reported by Henderson (2). The roll sorters were fast, accurste, and cause little damage to fruit. The fruit, in some cases, was fed across the axis of the rolls, while the rolls conveyed the produce by rotating all in the same direction. The rolls, as shown in Figure 2, were rotating counter-clockwise. The fruit was continuously rotated so that each individual piece had an opportunity to register its minimum dimension with the spacing of the rolls. In most sorters the spacing between rolls, or sections of rolls, increased progressively so that the various sizes of fruit were graded.

Citrus Fruit Sorter

Figure 2. A schematic diagram of a roller sorter (sizer) for citrus fruit.

Another source concerning citrus fruit grading provided additional information as to the machinery available for sizing of citrus fruit (3). Mention was made in this trade bulletin of roll sizers having lengths of 20 to 45 feet with 6 to 8 sizing rolls (see Figure 3) which provides 7 to 9 sizes of fruit. This sizing method differed

LEFT END VIEW
FRONT VIEW
Figure 3. Roll Sizer for orange, grapefruit, or tangerines (roll-toconveying belt spacing easily adjusted for different fruit sizes).
from that reported by Henderson (2) in that the fruit moved parallel to the axis of the rolls. The sizers were manufactured to handle oramges, grapefruit, or tangerines by a quick adjustment of the roll spacing.

The fruit was supported by the grading rolls and a flat belt. The belt coaveyed the fruit along as it ran parallel to the roll axis. The spacing between the rolls and the belt increased in size with euch successive roll, due to the smaller roll diameter encountered. This provided a means of sizing fruit; the smaller fruit was graded first. Size adjustment was made by moving the rolls closer to the belt or farther away.

Another fruit grading or sizing machine using rolls for fruit sizing was found in trade literature (4). This machine conveyed the fruit along the roll axis with a soft rubber belt as in the previous sizer just described. This machine differed in that the size adjustmeat was made by changing sleeves on the master shaft, providing four sizes of apples or peaches.

One other type of roll grader for food processing was found in the ifterature revien. This particular roll design was used for siming potatoes and onions. Several sources were found: one was a report of research on sorting of potatoes by W. J. West (5). The gradiug device comaisted of a series of specially constructed rubber rolls. The surface of these rolls may most nearly be described as an ellipsoid of revolution. Each shaft has several of the rubber covered rolls movated along its longitudinal axis. Two or more of these shafts placed side by side fomed a series of holes (size of hole varied with shaft spacing and roller spacing on the shaft).

Two sizes of the ellipsoid sections were used to provide three grades or sizes of potatoes. AII rolls were turned in the same direction to move the ungraded produce along to the next section. The grading was reported to be efficient so long as the feeding rate was not too high; when too high, some of the potatoes sizes were carried into the next section. An even flow of potatoes was maintained over the sorter, provided the feed conveyor was kept full. If feeding was interrupted and the feed conveyor allowed to become empty, some potatoes remained on the grader and merely rolled around and around without forward travel. These potatoes, if left on the grader for a time, were damaged by the rolls. A schematic diagram of the rolls is shown in Figure 4.

Figure 4. A schematic diagram of rubber covered grading rolls (a top view).

Another source having to do with a machine with similar rolls, differed somewhat by having expanding rolls (6). The ellipsoid sections were mounted on shafts, as in the previous machine. The shafts were different in that they were automatically adjusted in their relative spacing with the next shaft by precision machined
rotating spirals. The shafts were mounted as a part of a "slattype" of conveyor (the shafts replacing the conventional slats). By means of the rotating spirals, the shafts were adjustably spaced to allow for four sizes of potatoes or onions. The spacing increased in size as the conveyor moved the produce along the sizing machine .

An automatic set screw feeding device made use of a small roll grader to orient the various types of set screws and to reject misfits (7). Two rolls made of high quality hardened steel were rotated slowly in opposite directions as shown in Figure 5. The rolls were fed by a feeding device that fed the setscrews onto the rolls in a single file. The setscrews passed along the trough formed by the rolls to a point where matching grooves in the rolls allow the

Figure 5. Roller grader-feeding device for setscrews and other parts - (springs, tapered units, etc.).
setscrev to drop into feed tubes with the heavy point ends down. The rolls automatically iaspected the setscrews' diameter and rejected misfits. Users of the feeding and orlenting device reported productIon increases from 300 pieces to over 2100 pieces per hour.

Another source reported a similar device that differed by using a pair of tapered rolls to automatically feed such parts as tapered units (fountain peo caps), springs, inserts, and other components having a variable dimension along a given axis (8). Two motor-driven, counterwrotating rolls, aligned parallel to each other, contained a slight taper at one end. The gap between the rolls was arranged so that the parts traweled along the roll surface uatil they reached the wedge-shaped gaj created by the taper. The end of the unit being metered, that had the smaller dimenaion, then proceeded through the wedge first.

The mechanism hamoled a wide range of sizes and shapes. Changeover from one size to another was rapidly accomplished simply by adustivg the angle between the rollers. Completely cylindrical rolls could be ased, the reguired wedge belng established by a slight dyergence of their axea. Grooving one roll facilitated feeding patis at comtrolled and high advance rates. Grooving both rolls permited the leeding device to knale Tmshaped parts.

The roll grader under test was built at the Oklahoma Cotton Research Station. The rolls were made of coldsrolled steel shafting and cut to the selected size in a. lathe. One roll had a constant diameter along its length for three feet plus a dropoout length of smaller diameter. The other roll had three sections, each one foot in length, but of different diameters, plus a fourth section that Was much mmaller to provide for a positive dropout area (See Figure 6). The rolls were mounted with their axes parallel. The roll axes were spaced such that in the first one foot section no seed could drop through. This section was provided as a linemup area for the seeds. Efficient grading required that the seed be in contact with the rolls: the line-up area had a definite tendency to place the seeds in single file ready for grading.

Figure 7 shows an overchead view of the rolls. Only a portion of the linemup area was visible as the metering device was in the way. The second one foot section was the first area for grading and was painted black (for the picture) to clearly define this particular area. All of the seed used for the tests had previously been graded on the round hole clipper cleaner and had been fun through this second one foot roll section. All of the seed should have gone through this area during the test. The seed that did go through, when converted to a percent of the total. represented the percent of grado ing accuracy.

Experimental Rolls

Figure 6. A Schematic diagram showing a top view of the roll grader used in grading accuracy tests, seed damage tests, seed timing tests, and length of roll tests. The smooth roll used in the peanut tests was smaller in diameter than was the roll used in the cotton seed tests. This was to allow different spacings between the rolls as indicated by the information given above.

Figure 7. A top view of the roll grader.

Figure 8. A side view of the roll grader showing drives and the catch pan. Note the one horizontal drive chain which drives the rolls.

The third one foot roll section was used as an additional measure of roll length necessary to contain the seeds under the test conditions. The fourth roll section, approximately six inches in length, was provided as a positive dropout area.

Two $\frac{1}{4} \mathrm{hp}$ Graham variable speed drive units were used for the driving mechanism in these tests. Figure 8 shows the drives used for the test of two rolls turning in opposite directions such that their adjacent surfaces traveled upward. The left roll, as shown, was driven by the variable speed unit and, in turn, drove the right roll through a spur gear. The lower drive unit was used to drive the metering device at a constant speed of 56 rpm . The upper drive unit was used to vary the speed of the rolls (200,400 , or 600 rpm) as specified by the randomization in the test designo

Figure 8 is also the set-up used for driving the test involving one roll turning and one roll stationary with one exception. The spur gear on the right roll was removed so as to not turn this roll when the tests involving one roll turning-one roll stationary were conducted.

Figure 9 illustrates the setoup used to drive both rolls in the same direction. The spur gear on the right roll was removed and a sprocket was placed on the end of the shaft. The outer chain, as shown in Figure 4, drove the left roll in a counter-clockwise direction at the same time that the inner chain drove the right roll in a countermclockwise direction; both were driven at the same speed.

Figures 8 and 9 show a side view of the catch-pan used in the peanut groading tests while Figure 7 shows a top view of the catchpan (note the onewinch increments in the pan)。 The onewinch incre-

Figure 9. A side view of the roll greder which differs from figure 8 by heving two horizontel drive chains to drive the grading rolls.

Figure 10. A top view of the metering device used to feed the roll grader. Peanut planter plates are shown.
menti are baffle plates that extend to the bottom slide. Each compartmeat was separate from the mext. The cutch-pan provided a means of deternining the percent or grading that occuxred at each succesmive one-inch increment. The bottom of the chtah pan consisted of a movible slide to empy each uait.

The catch-pat wed in the scid delintad cothon seed grading accuracy test had batwe plates each one-half inch apart but, otherWise wns line the catbmpa shown $2 n$ Fifures 7 aud 8. This provided Wentyolow iadividusi "cellsi per owe foot of roil section in which to cathin the cortom ared sis graded.

Figure 10 shows a top wiew of the meterivg device wsed in feedo Hig seeds to the roll section during the testu, Figure 9 shows a side wiev of the metrring device. The platur box used wns a cole, Duples pianter sox.

The plates cowsisted of a roght and a lett hand plate as can be seen by Figure 10. The celly on the plates (delnted cotton seed and peant seed were opped right or lert depending upon direction of rotation ai the plate. The right hand plate turned conmerclockuise aru the left haw plate turaed clockvise. The plates pere incineed from the horimontal at mproximaty 45° with portion or. the lower ciscuateremee ruaning through the seed supgly. The capped cells picked ap sacd wher et the bottom positou and caried It to top powition where the cell wes sxpoged to the aropmout hole . Seed ejection from the cell fixe primarily due to gravity and to a Iesger degree due to centring rowce. The pletes were opexated at a consturt wred or 25 mpm

The rates of feed for the acla delinted cotton seed were varied as to low, medium, and high by using planter plates manufactured for meterilag sorghum seeds. The lowest rate of feed was metered by oae 8 cell piate. the 8 cell plate mettrad at the rate of approximately 2.7 pounds of delinted cottom seed per hour. Only the 16 cell plate was used for the medium rate and it metered approximately 4.8 pounds of delinted cotton seed per hour. The highest rate, for the cotton metreirg, was the combiation of both plates (8 and 16), and they metered sygrerimntely 7.9 pounds per hour.

For peant seed tasts only two feed rates were used and, in this case, the low rate of feed was provided by a 16 cell peanut plate that metered approximately l7ol pounde of peanuts per hour. The high rate or teed comisted or two 16 cell plates. Together they metered approximately 32.1 powns of pesauts per hour.

The average werght of the scid delinted Parrott cotton sead was approximetely ol0 grams and the average welght or the shelled Argeutioe peant seed was aproximety 30 groms. The mimimum deneter of the peant seeds, da determinet by the roll spacing of $5 / 16$ inches, was 1.82 times as Large as was the minimum diameter of

Colulatione cuccuaix the relative gixe or the minor diametnr of the delinted cotton seca to the relly used in gradiag (average of the two rolla dismeters) findated thet the cotton seed's minimum diametar res mproxtnabely 13% as big as that oir the rolla. Calcula tions for the peanit secds showed that the peanuts' miaimu diameter Wes ayproximaty 26% of that of the rolls (avermge of both rolls).

All treatments conceraing grading accuracy for delinted cotton seed were conducted for a seed metering period of five minutes as detcrmined by stop wich: two minutes were used for peanuts.

The secds caught in the catchopan incremeats were weighed separately on a gram acale to the closest ol gram and were recorded separately.

The demged seede in the testid designed to evaluate seed damage Were piched out by hand arter careful observation. Their weights Fre recorod according to the roll section that the damage occurred so that "percentage of dmmger could be caleviated.

The deantied cotton seeds used in determioing the minor dameter distribution wre measured with a micrometer to the nearest . 001 inch. A randomy seluctea group of seods wes used for these evaluations.

CHAPTER V

THEORETICAL CONSIDERATIONS

Theoretical consideration, thought to have application for these tests, would include the effects of the frictional forces and the physical relationships of the size of the seed-toograding rollso The following discussion is presented to inform the reader of these important considerations.

Figure 11 is a diagram of the forces acting in a vertical plane upon the seed in the roll rotation combination of rolls turning in opposite directions. The seed was under gravitational pull; this force was being resisted by the normal forces and the tangential (frictional) forces. Frictional forces were limited by the normal force, the surface conditions of the sliding surfaces, and the type of material in contact. The frictional force was expressed by the following formula:

$$
f=\mu n
$$

Wheres $\quad f=$ frictional force
$\mu=$ coefficient of friction
$n=n o m a l$ force (perpendicular to contacting surfaces)
When a seed was small enough to go through the grading space between the rolls, and did go through, the normal force became zero, the froictional force became zero, and the force of gravity had no resisting force. In actual practice the seed may bounce from side to side between the roll surfaces, tending to slow the grading action It was found, at high roll speed, that some of
the seeds were thrown out of the rolls. It was hypothesized that the seeds were not registering their minimum diameter and were "shot" out of the grading area.

Figure 12 showe a condition where the frictiomal forces tending to lift or hold the seeds were not mecesamily uniformly applied. The frictional force (Fti) had tendency to lift one side of the seed and to turn the seed in a clockise direction. The irictiomal Porce asmociated with the stationary roll (F2) had a teadency to prevent the seed from falling through the gradiag area. The frictional forces were Iimited by the acmal forces and the surface cenditions. The seede probably would have a tendency to rotate as the forces Ft 1 and $F 2$ would not likely be equal. Sliding froction is generally considered to lese tham static friction, therefore, Ft 1 would probebly be leas than $F 2$ and the seed would be apt to rotate counterclockwise.

Figure 13 is a force diagram for the seed as affected by the roll rotaion cambination maber 3 (rolis turaing in the same direction). The taxgeatial fore from esch roll actsto twa the seed clockwise.

Figure It is a schematic diagram showing the grading roils, roll qwecing, sua a theoretical seed in contact with the rolla. Ino suribed between the roll mufaces is airele having a diameter equal to the rollotionroll spacing. The radii of the roll, seed, and the arcle inccribed betweew the roll surfaces combine to form a right trisugle with a 90° magle and two acute angles, A and B. The tangent to the growing roil ot the seef-toroll contact point makea an aigle B^{1} equad to angle B (measuring angle B^{1} from the horizowtal).

ROLL ARRANGEMENT NUMBER 2

Fighre 11. A force diagram of a secd or an object being graded with roll. s turning in opposite directions.

ROLL ARRANGEMENT NUMBER 2

Figure 12. A force diagram of a seed or an object beiag graded with one roll turaing and - He roll stationary.

ROLL ARRANGEMENT NUMBER 3

W \% weight of seed

Fa (1 or 2) a normal force for rolls or 2
Ft (1 or 2) : tangertial force due to rotation of roll 1 or 2 (friction)

Figure 13. A force diagram of a seed or an object beisg graded with the rolls turuteg in the same direction.

Therefore, if the measure of angle A was known, angle B^{l} would be equal to 90° = angle A. Angle B^{l} is complementary to Angle A.

A test was conducted to determine the "angle of friction" for delinted Parrott cottor seed and shelled Argentine peant seed. The test was based upon the hypothesis that the angle of inclination of a surface wpot which a seed would start to slide depended upon the coefficient of ixletion. It was further hypothesized that a seed in combact with a steel roll would react in the same manner as Would a seed in coatact with a flat steel surface that was positioned at the same angle as a tangent to the contact poind of the steel roll and seed. This was based upon the assumption that the steel roll and ilat theel surperee had the same steel-tomseed coefficients of friction. A plat surface of cold rolled steel was buraished with a plece of tine carborundum cloth for this determination. Appendix Data Sheet XXIV gives a tabulation of the resulta. The average of the trials indicated am angle B^{1} of 23.04° for delinted cotton seed and an angle B^{1} of 20.68° for shelled peamut seeds with no seed coat (typical for the grading accuracy tegts). These values indicated a coefricient of friction (B tan angle B^{1}) of .4253 for delinted Pariott cotbor seed and. 3775 for shelled Argentiae peanut seeds (with no seed coat).

This information indicated that the point of contact of the delimed cotton seed to the grading roll muth be sto angle A $\left(90^{\circ}-\mathrm{B}^{\text {I }}\right.$) of 66.96° or less, otherwise the seed would be Ilfted by the roll out of the gradiug area. The peanut seed must contact the grading roll at an angle A of 69.32° or lessgior the same reason.

GRADING ROLL a SEED RELATIONSHIP

> Wherer Rr * Radius of smelleat roll
> Rs : Radius of seed to be graded
> ris e Racink of wherdes object
> (ow meed) that qid go
> Dotreen tha ralis
> Angle $A=$ The angle between a ilye compecting the centers of the

> the certer of the smallest roll and the center of the seed to be greded
> Argle $\quad=$ Angle $B^{1} \leftrightarrows 90^{\circ}$ - Angle A
 subject to gradreg certaim physices sew relatwonshipa are given by the above trignometrit suacto on

This would indicate, that due to the lower coefficient of friction for the peamut seeds, that the peanut seed could contact 2.36° higher on the grading rolls than the cotton seeds and still not be carried up and out of the grading area. The differing ceefficiente of friction for the two seed types were responsible for the aifferences in the theoritical limitiag value of Angle A for the two seed types.

Actual test conditions can be compared to the theoretical limitiog conditions (based upon their coefficients of friction). The following calculations are based upon the equation of Figure 14. The Rs values were obtained from the largest minnimum seed diameters found in 400 randomly chosen seeds (Bibliography reference 10).

The equation of Figure 14 states:
$\operatorname{Cos} A=\frac{R r+r 8}{R t+R s}$

For delinted Parrott cotton seed
$\operatorname{Rr}=1.2812 / 2=0.6406$
$\mathrm{rs}=0.1719 / 2=0.08595$
$R_{B}=0.2230 / 2=0.1150$
$\cos \mathrm{A}=\frac{0.6406+0.08595}{0.6406+0.1150}=0.96603$
Angle A (cotton) $=14.98^{\circ}$

For shelled Argentine peanut seed
$\operatorname{Rr}=1.0000 / 2=0.5000$
$r s=0.3125 / 2=0.15625$
$\operatorname{Rs} \cdot 0.3330 / 2=0.1665$
$\cos A=\frac{0.5000+0.15625}{0.5000+0.16650}=0.98462$
Angle A (peamuts) $=10.06^{\circ}$

These calculations approximste actual roll grading conditions. The Rs walues used for these calculations were based upon larger minimum diameter seed than were nsed in the grading accuracy testis. The freds used in the grading accuracy tests were of such a size that Rs (Radius of the seed) wes equal to or less than rs (radius of the roll spacing).

CHAPTER VI

PROCEDURE AND DESCRIPYION OF TESTS

A. Preliminary Investigation

Visual observations were made to determine a roll speed range that would give results showing differences in grading accuracy.

The metering device (Cole planter box) was operated at various shaft speeds and under different plate combinations to arrive at an observed upper rate of feed that would tend to over-feed the grading rolls, particularly so at the low angle and low roll speeds.

Various roll angle settings were tried in order to select the angle setting that would provide information on grading accuracy.

The observations and findings of these preliminary trials were used to set up the conditions of the tests and are described under the description of the testso
B. Description of the Tests

Acid Delinted Cotton Seed

- Grading Accuracy Tests

Acid delinted cotton seeds of the Parrott variety were used for grading accuracy tests. The seeds for all grading accuracy tests were first graded on the basis of major diameter
on the clipper Cleaner fanning mill through a $12 / 64$ th of an inch round hole screen, but were retained on the next smaller screen having $11 / 64$ th of an inch round holes. The seeds were subsequently run through the roll grader section spaced at $11 / 64$ th of an inch. Only the seeds that went through the $11 / 64$ th of an inch roll spacing section were used for the test involving acid delinted seed.

An additional moasurement was made during the grading accuracy tests. The catch-pan below the roll sections was divided into onehalf inch increments such that measurements could be made as to the length of roll section necessary to accurately grade the seed. In the one foot roll section spaced 11/64th of an inch apart, there were twenty-four catch pans and in the entire length of the rolls there were a total of 49 categories. The weights of the seed in each onehalf inch increment were individually recorded for each test condition of the various roll rotstion combinations.

Test No. 1 - This test involved the use of two rolls turning in opposite directions, such that their adjacent surfaces were turning upward and away from the seed drop-out area.

Test No. 2 - This test differed from Test No. 1 by having only one roll turning, such that the surface adjacent to the other roll (stationary) was turning upward.

Test No. 3 - In this test both rolls were turning in the same direction.

Test conditions for the above three tests were identical. The statistical design was of a $2 \times 2 \times 2$ factorial arrangement of eight treatments in a randomized block design having four replications. The factors involved were as follows:

1	200 rpm
2	600 rpm
3	200 rpm
4	600 rpm
5	200 rpm
6	600 rpm
7	200 rmm
8	600 rpm

8 Cell Plate
8 Cell Plate
8 Cell Plate
8 Cell Plate
$8 \& 16$ Cell Plates
8 \& 16 Cell Plates
8 \& 16 Cell Plates
8 \& 16 Cell Plates
5°
5°
15°
15°
5°
5°
15°
15°

- Timing Tests

It we felt that insomation perteiniag to the length of time requirea for seede to trawel along the one foot roll section might be of value io calculations for future Eesigns. The acid delinted cottor seeds used in these tests were selected on the basis that thedy minot diameters wewe too large to allow the seed to go through the 11/64eh of an inch roll spacuag.

Whe tests were conducted on the basis of roll speed and roll angle wider the test couditions an follows:

Treatneat No.
Roll Speed Roll Angle

1
2
3
4
5
6
7
8
9

200 rpm
200 rmm
200 rm
400 rgm
400 rm
400 rpm
600 rmm
600 rmm
600 mpm
5°
10°
15°
5°
10°
15°
50
50
10°
25°

The test conditions were dantical for test Mumber I-T (Both rollsotumprg in opposite directrons), 2-T (one poll turaing and one roll statyonary), and 3ow (Both rows turaing the same airection). Rate of feed vas not a factor in the timing tests. The three tests were
of a 3×3 factorial arrangement of the nine treatments in a randomized block destgn having four replications.

The seeds were placed by hand on the upper roll section. The stop watch was zuerted as the seeds entered the roll section spaced at 11/64the inches. After the sead had traveled the one foot length, the watch was gtopped sed the time was recorded. Four seeds were used, one at a time, to get a better estimate of the time required for the geacs to travel the one foot distance. The average time of the four seade whs the basis for the analysis for each test condition.

- Seed Damage Tefts

In conductiag the grading eceracy tests, using acid delinted Parrott cotbor gexd, there appeared to be some damage to the seed in the fom of the seed coat having been cracked and knocked off. There had been some widence that the acid delinted Parrott cotton seed used may not have had the acid (used in the delinting process) prom peryy mewtrelized.

It was thought that the damage that was occurring ia roll gradfrag might te due eatirely to a dxyixg out of the seed coat (postitly related to exeen acid, making them brittle and subject to damage. Therefore, acid delinted Acala 44 seed was used in these tests to evaluate the dange cased ia the roll gradiug tests. Mo seed Camage test was conducted involving the rolls turaing in opposite divectons as 20 dmage was observec during grading accuracy tests. It was felt that thia roll sotation combination would probably exert the least pressure on the seeds as the rolls merely supported the weight of the seed.

The selected seed, graded to over 11/64ths inches on the round hole screen and through $11 / 64$ ths inches on the roll grader was very carefully ewmined visually for damaged seed. The cracked seed and broken seed were removed from the sample to be used.

Three tests were designed to evaluate any damage. Damage tests Fere of the roll rotation combinations (1) rolls tarming the same drection, and (2) one roll turming and one roll stationary, and of the (3) meteridg device damage.

Mre length of rwa for each treatmeat in tests 1 and 2 was five minutes. The seeds were caught in three categories according to each one foot roll section and the final dropoout area. The total weight of seed in each category was individually recorded; the damaged seeda were determined by visual inspection and were removed, weighed, and their welght recorded. The amalysis, however, was based upon the total damage (converted to percent) that ocourred for each test coadisiot.

The test conditions for the fing two seed damage tests were as follows:

Theatmert No. Roll Speed Roll Argle Rate of Feed

1	200 rgm	5°	8 Cell Plate
2	600 rpm	5°	8 Cell Plate
3	200 rpm	15°	8 Cell Plate
4	600 rgm	15°	8 Cell Plate
5	200 rgm	5°	16 Cell Plate
6	600 rpm	5°	16 Cell Plate
7	200 rpm	15°	16 Cell Plate
8	600 rpm	15°	16 Cell Plate

The test consisted of exht treatnemts itu a 2×2 x 2 factorial arragenent in a randonized block desigu having four replications.

Test Kumber 3 concermed the damage that nay have been caused by
the metering Cevice (Cole, Duplex planter box). The length of run for this test was for a one minute period for each test condition. The test invalved three rates of feed, in a randomized block design having twelve replications. The test comditions were as given below.

Treatmeat Number Rate of Feed
1
2
3

> 8 Cell Plate
> 16 Cell Plate
> $8 \& 16$ Cell Plates

The Felght of the seed metered in a one minute period was recorded, the seed was visually checked for damaged seed, weighed, and their weight recorded. The amalysis was based upor the damaged seed converted to percemt.

Minor Diameter Distribution of the Acid Delinted Parrott Cotton Seed used for Grading Accuracy Tests

The rivor diameter of the seed used for the grading accuracy test wes carefully measured with a micrometers. Twenty-five lots of four seeds each were raxdomy selected for this study. The minor diameters were recorded to the closest .001 inches. The statistics of standar deviation, mean, mode, and range were calculated as well as the frequemey dibtribution (zee Figure 23 and Table IX).

Shelled Peanut Seed
Gractiag Accuracy Tests

Shelled peanuts of the Argentine variety were used for a series of testm. Grading accuracy tests were conducted under the same test condtrions as used in the acid delinted cotton seed tests for the
purpose of determining if relative size affected grading accuracy. It was necessary to make two changes, however, in the set up. One change was to have owe inch increments in the catch-pans instead of the onemalf inch increments as used in the cotton seed tests. This was due to the larger size of the peanut seed and the difficulty encountered in getting the seed out of the catch pan. The other change was that of replacing the smooth steel roll used in the cotton tests with a roll that was smaller in diameter to give the proper spacing of $5 / 15$ inches between the rolns (see Figure 6 for exact dimensions). Wae eeds had been previonsly graded by a round hole screen at shelling time. The peanut seeds were run through the one foot roll section spaced at, $5 / 16$ inches. Any of the seeds that went on into the next section, spaced at $3 / 8$ inches, were not used in the peanut grading aceuracy tests (mone of the larger seedg were retained for the timing tests). The seeds that wert through the $5 / 16$ ths of an inch roll spaciag provided a waiform lot of seed for the grading accuracy tests.

Grading aceuracy tests were designed with the same test conditions as fin the cotton seed tests in a $2 \times 2 \times 2$ factorial arramgemert of two levels of roll mped, roll angle, and rate of feed. A randomized block destign havimg four replications was used. Boll rotation combinations used were (1) both rolls turning in opposite directions zuch that their adacent surfaces turned upward and (2) one roll turning as ia (1) abowe and the other roll stationary. The test involving the roll rotation combination of both rolls turning the same direction was abandoned because of excesgive peant seed
damage (nearly 38% in one case). The length of run for each test treatment was two minutes.

Test conditions for both test (1) and (2) above were identical and were as follows:

Treatment Mumber Roll Speed Roll Angle Rate of Feed

1	200 rpm	5°	16 Cell Plate
2	600 rpm	15°	16 Cell Plate
3	200 rpm	5°	16 Cell Plate
4	600 rpm	15°	16 Cell Plate
5	200 rpm	5°	Two -16 Cell Plates
6	600 rpm	15°	Two -16 Cell Plates
7	200 rpm	5°	Two -16 Cell Plates
8	600 rpm	15°	Two -16 Cell Plates

The weight of the seed as graded and caught in each successive one inch increment of the catch-pan was individually recorded. The weight was recorded to the nearest 0.01 gram. A measure of the rem quired length of roll section for adequate grading was thus afforded.

As in the cotton seed tests, all peanuts should have gone through the roll section spaced at 5/16 inches. Based upon the total weight of seeds metered in a two minute period, the seeds that actually were graded in the proper roll spacing were converted to percent for the analysiso

Shelled Peanut Timing Test

Four peanut seeds that were too large to go through the $5 / 16$ inch roll section were placed by hand, one at a time, on the upper roll section (above the roll sections spaced $5 / 16$ inches apart). When each seed entered the $5 / 16$ inch spacing roll section a stop watch was started; when the seed had traveled the one foot length the watch was stopped and the time wes then recorded. The average
of the time for the four seeds was used as the basis of the analysis for each test condition.

Test conditions were identical for the three roll rotation combinations of (1) rolls turning in opposite directions, (2) one roll turning and ome roll stationary, and (3) both rolls turaing the same direction. The test conditions were as follows:

Treetment Mumber	Roll Speed	Roll Angle
1	200 rpm	5°
2	200 rpm	10°
3	200 rpm	15°
4	400 rpm	5°
5	400 rpm	10°
6	600 rpm	15°
7	600 rpm	5°
8	600 rpm	10°
9	600 rom	15°

Peanut Damage Tests

At the same time as the peanuts were weighed for the grading accuracy tests the damaged seeds were removed and their weight recorded. Thewefore the design and randomization of treatments for the peamot damage testa were identical to the grading aceuracy tests. Daneges to the peanut seads were based upon splyts and broken seeds.

Test condiflons fox peanut damage tests were as follows:

Treatment Number	Roll Spece	Roll Angle	Rate of Feed
1	200 rpm	5°	16 Cell Plate
2	600 mpm	15°	16 Cell Plate
3	200 xpm	5°	16 Cell Plate
4	600 mpm	15°	-16 Cell Plate
5	200 mpm	5°	Two-16 Cell Plates
6	600 mpm	15°	Two-16 Cell Plates
7	200 mpm	5°	Two-16 Cell Plates
8	600 mpm	15°	Two-16 Cell Plates

These conditons of the test were of a $2 \times 2 \times 2$ factorial arrangement in a randomiged block design with four replications. The roll rotation combiations were used under these test conditions made up two tests: (1) rolls turning in opposite directions, and (2) one roll turning and one roll stationary. A third test was abandoned due to excessive peanth damage (up to 38% damage in one case). The test that was abandoned consisted of a roll rotation combination having both rolls turwing in the same direction. The action of the rolls on the peanut had a tendeney to rotate the peanut which apparentiy caused excessive damage.

The peanut damage test that was actually conducted consisted of determinitg the damage caused by the metering device (a Cole, Duplex plater box). The peants were metered at two rates - (1) using one 16 cell plate and (2) using two 16 cell plates. The test design wes that of completely randomized design having twelve replications.

PRESEITTATION AND ANALYSIS OF DATA

The analyses of the data presented are, for the most part, in the form of Duncan's Multiple Range Test (9). The Multiple Range tests are for a significance at the 5% level. The original test data and analysis of variance tables are presented in the appendix.

The values given in the following tables represent the means of the observations in the test being presented. They are the average of at least four replications, and up to twelve replications. The values given io the following tables are presented in the form of graphs for ease of interpretation of Chapter VIII, Discussion of Results.

The rates of feed used for the bests were designated as low, medium, and high, for ease of presentation in place of their actual designation as 8 cell plate (low rate - 2:7\#/hour) 16 cell plate (medium rate - $4.8 \# / h o u r)_{2}$ and 8 and 16 cell plate (high rate 7.9\#/hour) for the acid delinted cotton seed tests. In the case of the peanut seed tests the 16 cell plate was the low rate (17.1\#/hour) and two 16 cell plates were designated as the high rate (32.1\#/hour).

Table I is a presentation of the results of three acid delinted cotton seed grading aceuracy tests as affected by roll speed, roll angle, and rate of feed. The tests differ only in the roll rotation combinations: (1) both rolls turning in opposite directions, (2) one roll turning and one roll stationary, and (3) both rolls
turning in the same direction.
Table II is the result of the peanut grading accuracy tests with the treatments of roll speed, roll angle, and rate of feed as variables in each of two tests: (I) both rolls turning in opposite directions and (2) one roll tuming and one roll stationary.

Tables III and IV are presentations of the results of timing tests for acid delinted cotton seeds and shelled peanut seeds, respectively。 The tables present the results of three tests ${ }_{8}$ each conducted with the same treatments, (roll speed and roll angle) each at three levelsa The tests were concerned with different roll rotas tion combinations: (1) rolls turning in opposite directions, (2) one roll turning and one roll stationary, and (3) both rolls turning the same direction.

Table V gives the results of the damage (percent) to cotton seeds due to roll speed, roll angle, and rate of feed (each at two levels in three tests): (I) both rolls turning in the same direction, (2) one roll turning and one roll stationary, and (3) metering device damage.

Table VI presents the results of three tests designed to evaluate the damage to the peanuts. Two of the tests are concerned with damage caused by roll speed, roll angle and rate of feed (each at two levels) in the roll axrangement of (1) - both rolls turning in the opposite directions and (2) - one roll burning and one roll stationary. The third test evaluates damage caused by the metering device using two levels of feed rate。

Tables VII and VIII are the results of the length of roll investio
gations for cotton and peanut seeds, respectively. The data are presented on the basis of one-half inch increments of roll section length (for cotton) required to have graded $10 \%, 50 \%, 75 \%$, or 90% of the seed (at a particular combination of test conditions). The peanut results are besed apon one inch increments of roll lengtho For certain combinations of roll speed, roll angle, and rate of feed there was no data available because not all one foot roll sections graded even as mach as 50% of the seed.

Toble IX presents the results of the random sampling of the acid delinted Parrott cotton seed used for the grading accuracy tests. The frequency distribution of the minor diameter of the seed is given.

TABLE I

GRADING ACCURACY OF ACID DELINTED COTTON SEED Grading Accuracy - (Percent)

TABLE II
GRADING AGGURACY OF SHELIED PEANUT SEED Grading Accuracy - (Percent)

Test Noa 3总
Rolls Turning in Same Direction

FTest abandoned due to excessive seed damage.

TABLE III
TIMING OF ACID BELINTED GOTHON SEED
Time To Travel One Foot - (Seconds)

TABLE IV
TIMING OF SHEILED PEANUT SEED
Tine To Travel One Foot - (Seconds)

*Converted from original time (in minutes) to seconds.

TABLE V

DAMAGE OF ACID DELINTED COTTON SEED Damage - (Percent)

	Rate of Feed	Medo	Low	High
Test No. 3	Treato No.	2	1	3
Metering Box				
Damage		0.649	0714	.749

TABLE VI
DAMAGE OF SHELLED PEANUT SEED
Damage - (Percent)

Test No. 3	Rate of Feed Treat. No.	$\begin{gathered} \text { High } \\ 2 \end{gathered}$	Low
Metering Box			
Damage		. 28	39

TABLE VII

LENGTH OF ROLL COMPARISONS FOR ACID DELINTED COTTON SEED

 Percent Seed Graded by Increments of Roll Length(Table Values are Percent)

Test $100 \cdot 7$	Rete of Feed Roll Angle Bolt Speed Treato No	Low				High			
		$5{ }^{\circ}$		15°		5°		15°	
		200	600	200	600	200	600	200	600
		1	2	3	4	5	6	7	8
Rolls Fuming in Roll Length									
Opposite Directions	Inches								
	$0-1$	72.96	26.97	10.67	.10	73.65	30.48	8.28	.05
	$1-2$	19.14	24.56	52.50	3.90	18.25	25.31	57.17	3.59
	2-6	6.86	23.61	31.64	43.93	6.85	23.62	29.99	47.92
	$6-12$. 69	10.65	3.63	19.05	0.59	9.44	3.19	18.24
	$0-12$	99.65	$85-79$	98.44	66.98	99.34	88.85	98.63	69.80
Test Mo. 2									
One Roll Turning									
One Roll Stationary	$0-1$	47.27	34.81	30.65	9.06	48.31	32.01	29.88	13.46
	$1-2$	11.72	13.09	18.59	17.27	15048	15.16	19.07	16.81
	2-6	6.83	11.48	13.25	18.33	7.40	13.36	13.19	17.87
	$6-12$	8.26	5.64	4.58	8.95	6.49	5.57	4.90	. 8.23
	$0-12$	74.08	65.02	67.07	53.61	77.68	66.20	67.04	56.37
Test NO. 3									
Rolls Tirning in									
Same Direction	0-1	35.14	2.29	12.26	- 21	27.91	1.65	12.26	. 37
,	$1-2$	14.84	3.25	14.08	.94	16.07	2.88	14077	. 83
	$2-6$	17.13	11.27	21.10	3.43	20.56	8.87	24.68	4.60
	$6-12$	9.46	10.82	12.16	5.82	10.97	10.28	14.82	6.39
	$0-12$	76.57	27.63	59.60	10.40	75.51	23.68	66.53	12.19

TABLE VIII

IENGTA OF ROIL COMPARISONS FOR SHELIED PEANOT SEED Percent Seed Graded by Increments of Roll Length (Table Values are Percent)

NTest abandoned due to excessive seed damsge.

TABLE IX
MINOR DIAMETER DISTRIBUTION OF AGID DELINTED COTTON SEED I/
Minor Diameter - (Inches)

Class Bounderies	Class Midpoint	Frequency (f) $2 /$	Relative Frequency- $(f / n) 3 /$	$\begin{gathered} \text { Cumalative Frequency } \\ \left(\mathrm{C}_{0} F_{0}\right) \text { / } \end{gathered}$
.1275-.1325	. 130	2	. 02	2
. $1325-.1375$. 135	3	.03	5
-1375-01425	. 140	3	.03	8
.1425-. 1475	.145	6	. 06	14
. 1475 - 0.1525	. 150	8	. 08	22
. $1525-.1575$. 155	24	. 24	46
.1575-.1625	. 160	18.	. 18	64
. $1625-.1675$. 165	22	. 22	86
. 1675 - 1725	. 170	14	. 14	100

1/ From 100 randomly chosen acid delinted Parrott cotton seeds that had been graded to over 11/64 inches major diameter with a round hole screen and subsequently graded to through $11 / 64$ inches in minor diameter on a roll grader. (See data sheet XXIII in appendix).
2) Frequency (f) is the number of seeds that were in a particulax class boundaryo
$3 / \mathrm{n}=100$ seeds $_{s} \mathrm{f} / \mathrm{n}=$ Frequency $/(\mathrm{n}=100)$ 。
4/ Cumblative Frequency - $\left(C_{0} F_{0}\right)$ is the sumation of successive f valueso

DISCUSSION OF RESULTS

The discussion of the results will primarily be based upon Figures 15 through 23. The graphs (Figures) were plotted from data given in Tables I through IX. The plotted points were the means of several observations (replication).

OBJECTIVE A = GRADING ACCURACY

Figures 15,16 , and 17 were from grading accuracy tests involving the roll rotation combinations of (1) one roll turning in opposite directions - Figure 15, (2) one roll turning and one roll stationary - Figure 16, and (3) both rolls turning the same direction. The data has been plotted in three combinations for comparison of various attributes.

Roils Turning in Opposite Directions

The grading accuracy graphs for the delinted cotton seed are shown in Figure 15 at the top of the page with the peanut results plotted at the bottom of the page. It was noted that the grading accuracy was consistently reduced for both seed types by higher roll speed, or by a combinatioa of high roll speed and a steep roll angle. This was as would be expected as the faster roll speed, the steeper roll angle, or a combination of both, decreased the leagth of time the seeds were on the roll grading section. Therefore,

GRADING ACCURACY TEST

ROLLS TURNING IN OPPOSITE DIRECTIONS

Cotton Seed Grading Accuracy Test

Peanut Seed Grading Accuracy Test

Figure 15. Grading accuracy tests involviag the roll rotao tion combination of rolls turning in opposite direction (cotton seed grading accuracy test results at the top and peanut seed grading. accuracy test results at the bottom of the page).
the seeds actually. had less opportunity to have been graded. The roll angle had less influence on grading accuracy than did roll speed. This was due to the fact that the steepest angle used in this test (15°) was mot steep enough to allow the gravitational force" component, parallel to the roll axis, to overcome frictional forces tending to retard the movement of the seed down the roll.

There were no significant differences in grading accuracy for the cotton or peamut seeds due to the rate of feed. There was a consistent treat toward higher grading accuracy at the high rate of feed. This was considered to be due to the fact that the high meteriag rate caused seed to pile up and as they came in contact with the roll grading area the seeds on top would tend to force the bottom seeds through the open space.

The adverse effect of a high roll speed and a steep angle were not as pronounced for peanut seed as compared to the cottonseed. It was concluded that this was due to a lower coefficient of friction for the peanut seed (as compared to that of the delinted cotton seed). There was very little difference in grading accuracy between the deliated cotton seed and the shelled peanut seed at the low roll speeds and low roll angle, in this case the grading accuracy was relatively high.

One Roll Turning and One Roll statiomary

Figure 16 is a graph showimg the results of grading accuracy tests involving a roll rotation combination of one roll turning and one roll stationary for delinted cotton seed and shelled peanut seed.

GRADING ACCURACY TESTS

ONE ROLL TURNING ${ }_{g}$ ONE ROLL STATIONARY Cotton Seed Grading Accuraey Test

Peanut Seed Greding Accuracy Test

Figure 16o Grading accurey test: involving the roll rotation combination of one roll turning one roll stationary Cotton seed grading sceuracy test results are at the top of the page and peanut seed grading accuracy tests results are at the botton of the page.

This graph indicated that the steeper roll angle had about the same influence on grading accuracy that the higher roll speed does．The grading accuracy for the delinted cotton seed had been materially reduced when compared to the roll arrangement of Figure 15．The grading accuracy for the peanut seed did not seem to have been changed much from the peanut results of Figure 15。 Again the differences between the two seed types were assumed to be associated with their coefficients of frictiono

The higher rate of feed had a definite tendency to have a higher grading accuracy than did the low rate of feedo This held true，as in Figure 15，for both types of seed．The excess of seeds was thought to force some of the seeds through fiester．

The roll speed of 200 rpm for the peanut seeds had an accuracy approaching 100% regardless of the rate of feed or roll angle．

Rolls Turning in the Same Direction

Figure 17 is a graph showing the results of the delinted cotton seed test involving a roll rotation combination of rolls turning in the same direction（the peanut seed test of the same treatments was abandoned）。 In this particular roll combination the graph showed that the steeper angle（150）materially reduced the grading accuracy，particularly when associated with the higher roll speed（ 600 rpm ）。 Rate of feed had less influence than did roll speed or roll angle．The high rate of feed had a tendency（not significant）to have higher grading accuracy when associated with the steeper angle $\left(15^{\circ}\right)$ than did the slow rate of feed．This was

GRADING ACCURACY TEST

ROLLS TURNTMG THE SAME DIREGTION Cotwon Seed Griding Accurmey Test

Figure 17 . Greding accurey tests results for acid delinted cotton seed involving \& roll rotation combinge tion of tw rolls turaing in same direction.
thought to be associated with the increased physical contact of seed upon seed that would not occur at the lower feed rate.

This particular roll rotation combination appeared to be the most sexsitibe of the roll combinations to the adverse effect of increased roll angle and speed: The lowest grading accuracy for any treatmeat in all roll combiaations occurred in this particular test (10.38\% as compared to 53.62% for the lowest in another roll arrangement test.

OBJECRIVE B - EFFECT OF RELATIVE SEED SIZE

The effect of the relative seed size on grading accuracy was related to the contact point of the seed with the roll surface. As seed size increased the seed contacted the roll surface at points closer and closer to the top of the roll (under conditions of fixed roll size and roll spaciag).

It was concluded from the information obtained that the peanut seeds should have a higher grading accuracy for two reasons. One reason advanced was the lower coefficient of friction (. 3775 compared to .4253) and the second reason was based upon the lower angle of contact of the peanut seed with the roll surface (Angle A peanuts $=10.06^{\circ}$ compared to 14.98° for delinted cotton seed). Theoretical calculations indicated that the peanut contact point was within $59.26^{\circ}\left(69.32^{\circ}=10.06^{\circ}\right)$ of reaching the limiting point. The cotton seed contact point was within $51.98^{\circ}\left(66.96^{\circ}-14.98^{\circ}\right)$ of the limiting point. Therefore, the cotton seed contact point with the roll was 7.28° closer to the limiting condition than was the peanut seed.

The relative seed size would be important under conditions of fixed roll size and roll spacing. However, the seed size was not critical in this study due to the changes in roll size and roll spacing。

OBJECTIVE C - GRADING ROLL LENGTH

Figures 18, 19, and 20 are plotted from data given in Tables VII and VIII (Table VII concerns delinted cotton seed and Table VIII concerns shelled peanut seed).

The lengths of roll section as plotted were arbitrarily selected at 0 to 1 inch, 1 to 2 inches, 2 to 6 inches, and 6 to 12 inches to present a relative idea of the effect of roll length increments on grading percent. The total length of each section (0-12) indicated precisely the total percent of the seed graded in twelve inches of roll length. The increments of roll length must be compared on the abscissa scale starting at the extreme left (0).

For example, in Figure 18, the bottom bar of the peanut test results, one would determine that approximately 95% of the peanut seeds were graded in the first inch of roll length. The 1 to 2 inch roll segment graded 3% of the seeds, or, in other words, the first two inches of roll length had graded approximately 98% of the seeds. It would appear that each of the two final increments of roll length (2 to 6 inches and 6 to 12 inches) had each graded 1% of the peanut seeds. 100% of the seeds were graded in the 12 inch roll length. Actual plotted values for the peanat results were listed in Table VIII.

Figure 18. Graphs showing the relative amounts (\%) of seed graded in a certain roll length for various combinations or roll speed, roll angle, and rate of feed for rolls turning in opposite direction. The cotton seed results are given above and the peanut seed results are given below.

Pervent of seed Greded

Shelled Peenut Seed

Figure 190. Grephs ghowing the relative smounts (\%) of seed graded in a cextais soll length for various conbinations of roll speed, roll angle, and rate of feed for one roll turning snd one roll station axyo the cotton seed resulte are given above and the peanut resulte are given belowo

Figure 20. A greph ghowing the relative mounts (\%) of acid delinted cotton seed greded in a certain roll. length por various cominations of roll speed. roll angle, and reate of feed for rolls turning in the swme directiono

Figur 18 redutes to the roll retetion combinstion of rolls twang in oppesite direetions, Flyme 19 refere to the roll arrange ment of one roil tuming and one roll stationary, and Figure 20 refers to the roll mangenent rolls tuming in the sme direction.

Roil: Turaing in Opposite Directions

In Figure 18 some of the effecte of the differences between the delinted cotton seeds and the shelled peanut seeds were shown by the length of roll section required to have grogded the game percento age of seed. the delinted cotton seed consistently required as much
or more roll length to have graded the same percent of seeds．This was associated with the differences in their coefficients of friction as well as their roll contact angle（related to seed size，roll size， and roll spacing。

The detrimental effect of incressed roll speed was particularly noticerble for the smiller of the two seed types（delinted cotton） when associated with the rolls turning in opposite directions．This wes discussed under the effect of relative seed size and attributed to the coefficient of friction and roll contact angle．The twelve－ inch roll section graded less than 90% of the delinted cotton seed at the 600 rpm roll speed and 5° roll angle，and less than 57% of the seeds at 600 rpm and the 15° roll angle。

The peanut seed generally performed as well or better under similar test conditions then did the delinted cotton seed．Roll speed affected the required rell length but the combinition of roll speed and a steep roll angle had a more pronounced effect．The higher rate of feed contributed to \＆alightly higher percent of seed being greded at the 600 rpm roll speed and the $15^{\circ} \mathrm{roll}$ angle when compared to the low rate of feed under similar test conditions （4 percentage points）。

De Roll Turning－One Roll Stationery

Figure 19 is graph showing the results mssociated with this roll rotation combinetion．The delinted cotton seed required twelve or more inches of roll length to grade 75% of the seeds regerdiess of the roll speed，roll ngle．ox zete of feed．The
low angle and the low rpm (200) required less roll length to do a comparable percentage of grading.

Again the shelled peanuts required less roll length under similax conditions than did the delinted cotton seed to the seme job; at least 90% of the peanut seeds were graded in five inches of roll length, except for the most adverse condition of 600 rpm and 215° roll angle (under both feed rates). Under those conditions, 75\% of the peanut seeds were groded with a length of six inches for the low rate of feed and a length of five inches fox the high rate of feedo

Rolls Turning in the Same Direction

(Delinted Cotton Seed Onily)

Figure 20 is a graph of the delinted cotton seed test only. (The peanut test had too great a seed dannge and was abandoned). This roll rotation combination was the most exacting in terms of roll length, that is, longer lengths of roll section were required to grade compaxable quantities of cotton seed under similar test conditions. In the nost extreme cases only 10 percent to 12 percent of the seed conveyed over the twelve inch roll section wes graded. ($600 \mathrm{rpm}_{9} 25^{\circ}$, and both rotes of feed) o The high rate of feed for the 600 rpm and 15° angle graded slightly more seed than did the low rate of feed (2 percentage points).

OBJECTIVE D - SEED TRAVEL TTME

Figuxe 21 is z graph showing the relationship of length of seed travel time for the various treatments involving delinted

Figure 2l. A grimp showing the effect of various combinations of roll speed and roll angle of the length of time required for geld delinted Parrott cotton seeds to travel mong twelve inch section of roll grader.
cotton seed. Figure 22 shows the similar test results associated with shelled peanut seeds.

No apparent, striking differences were shown between the delinted cotton seed timing results and the shelled peanut tests as seen by comparing Figure 21 with 22. There was a definite trend shown, in that the delinted cotton seeds, generally speaking, required more time to travel the twelve inch length of roll section. There were twentyoseven possible comparisons for the cotton and peanut seeds in the three roll arrangement timing tests with nine identical treatments. There were only three out of the twenty seven comparisons where the peanut seeds took more time than the cotton seeds did. It was concluded that differences were due to their respective coefficients of friction. Under similar test conditions the trend was generally the same for the two seed types. The 5° roll angle took the most time, but the time required decreased with an increase in roll speed. This relationship held true for the 10° and the 15° roll angles, also. The 15° roll angle took lest time than did the 10° roll angle. The plotted points for each roll rotation combination generally followed the equation $Y=a+b x+c x^{2}$. The one exception was the roll rotation combination of rolle, turaing 1a opposite direction for the peanut timing test at the 10° angle. This particular combination seemed to follow a linear relationship of the general equation of $Y=a \nmid b x$ (equations for some of the curves were calculated but were thought to be of no general value as they apply only to these test conditions).

Figure 2l. A graph showing the effect of warious combinations of roll speed and roll angle on the length of time required for shelled Argentine peanut seedis to travel along a twelve inch section of roll grader.

OBJECTIVE E - MINOR DIAMETER OF DELINTED COTTON SEEDS

One hundred Parrott cotton seeds were selected at random from the seeds used in grading accuracy tests. Figure 23 is a frequency polygon of the minor diameter distribution as plotted from the data found in Table IX. The measured seed data was placed in Appendix Date Sheet XXIII。

The "mode" or seed size group most often represented in population was associated with the class midpoint of .155 1aches ${ }^{\frac{0}{3}}$ (. 1525 to .1575 imehes). The mean minor diameter of the one hundred seeds was .158 inches. The seeds ranged in size from .130 inches ia mioor diameter to . 171 inches in minor diameter. This was a difference of .041 inches. The median was . 159 inches. The standard deviation of the one hundred seeds was calculated to be . 010 Araches.

OBJECTIYE F - SEED DAMAGE

Tables V and VI show the delinted cotton seed and shelled peanit seed damage, respectively. These determinations were taken because of a suspected difference in damage to the seed caused in grading. Damage of the seeds did not get as high as 1% in the tests completed. The peanut tests involving the roll rotation combination of the rolls turning in the same direction was abandoned due to excessive seed damage (up to 38%).
"There were no sigaificant differences in damage to the de= linted cotton seed among the treatments. The total range from

MINOR DIAMETER DISTRIBUTION

Figure 23. A frequency polygon illustrgting the distribution of minor dimeter of the ecid delinted cotton seeds used in the grading accurey test.
the lowest to highest was .61 percentage points. There was a trend that indicated that the damage caused by grading was associated with the low rate of feed, this again could have been related to metering. The roll rotation combination of one roll turningone roll stationary generally had higher seed damage than did the combination of rolls turaing the same direction.

The peanut seed damage for the roll rotation combination of rolls turaing in opposite directions did not have a distinguishable trend even though there were significant differences. The low roll speed and low roll angle with a high rate of feed had the highest damage (there were no significant differences among all other treatments). This damage was probably higher due to the longer period of time that the seeds were in contact with the rolls.

The roll rotation combination of one roll turning-one roll stationary had the highest damage associated with the high roll speed and the steepest roll angle.

Meteriag damage was always a part of the grading damage. It is probable that the metering damage was a considerable part of the total seed damage. It was not possible to disassociate the metering damage and the roll grading damage.

CHAPTER IX

SUMMARY AND CONCLUSIONS

This investigation was conducted under certain test conditions as described in the text and the results will apply only to those conditions.

The following conclusions were arrived at in this investigation:

1. The grading accuracy was affected by the roll rotation combination, roll speed, roll angle, and, to a moch lesser degree, the rate of feed.

2o The roll rotation combination of rolls turning in opposite directions generally had a higher grading accuracy under similar test conditions than did the combination of one roll turning-one roll stationary or rolls turning the same directions. The latter combination, generally, had lower grading accuracy. bo The higher roll speed (600 rpm), or a combination of the higher roll speed and the steeper roll angle (15°) had the lower grading accuracy.
c. There were no significant differences in grading accuracy due to rate of feed. There was a trend, however, toward higher grading accuracy at the higher rate of feed.
2. The relative seed size could be an important part of grading accuracy under conditions of fixed roll size and roll spacing. Due to the changes made in roll size and roll spacing, the relative seed size was not critical in this investigation.
3. The length of roll section required to accurately grade the two types of seeds (delinted cotton seed and shelled peanut seed) varied according to the same conditions that grading accuracy did.

Generally speaking, the twelve-inch roll section was long enough only with the low roll speed when using in grading delinted cotton seed with the combination of rolls turning in opposite direction. Neither of the other two roll rotation combinations under any combination of roll speed, rate of feed, or roll angle graded as much as 80% of the seeds.

The peanuts were tested for length of roll section with two roll rotation combinations: rolls turning opposite directions and one roll turning-one roll stationary. For these two combinations, a roll section twelve inches long graded at least 85% of all possible peanut seeds under any of the test conditions used.
4. The seed travel time for a twelve inch roll section was not particularly affected by seed size except for a trend for the larger seed size to take less time. An increase in roll angle, in roll speed, or a combination of the two, resulted in a reduction of time for the seed to travel the length of the roll section.
5. The range of the minor diameter in the delinted Parrott cotton seed ranged from . 131 to . 171 inches with a mean of, 158
inches, and a standard deviation of .010 .
6. The seed damage that occurred was caused, to a great extent, by the metering device. The exception to this was that the peanuts Were so heavily damaged by the roll rotation combination of rolls turning the same direction that the test was dropped.

Further work would need to be dome with seeds that were roll graded to establish parameters of planter seed plate selection for the highest planter efficiency.

The roll grader, as used in tris test, had relatively low capacity. The highest rates of feed were approximately 6 pounds of delinted cotton seeds and 32 pounds of shelled peanut seeds per hour. This would iodicate that methods for increasing the volume of grading would need to be deyeloped for commercial application of this principle to these seeds.

BIBLIOGRAPHY

(1) Schroeder, E. W., et al, "Cotton Merchanization in Oklahoma" Unpublished Annual Report from the Oklahoma Agricultural Experiment Station, (1957) pgs. 7-12.
(2) Henderson, S. M. and R. L. Perry, Agricultural Processing Engineering, Chp. 7. John Wíley \& Sons, Inc., New York, (1955).
(3) "Citrus Sizers", Bulletin No. 2521, American Machinery Corporation, Orlando, Florida.
(4) "Lobee Peach Sizers", Trade Literature Provided by the Lobee Pump and Machinery Co., Gasport, New York.
(5) West, W. J., "Potatoe Sorters", Agricultural Engineering Record, Vol. II, Autumn 47-Summer 49. H. M. Stationery Office, London, England. For National Institute of Agr. Eng., Silsoe Bedfordshire.
(6) "Expandiag Roll Sizer", Trade Literature Provided by the Parmount Manufacturing Co., 1615 East Main St., Stockton, California.
(7) Brown, Calvin, "Automatic Setscrew Driving", Automation, April, (1957).
(8) "Wedge Shaped Gap Between Rollers Automatically Feeds Tapered $^{\text {G }}$ Parts", Design News. December 22, (1958) Pg. 26-27.
(9) Federer, Walter To, Experimental Design, Chapter 2, McMillan Co., New York, lst. Printing, (1955).
(10) Porterfield, Jay G., Unpublished Data concerning Roll Grading of Certain Agricultural Seeds, (1958).
(11) Cochran, W. G. and Gertrude M. Cox., Chapter 5 - Factorial Experiments, Experimental Designs, John Wiley \& Sons, Inc., New York, 4th. Printing (1955).
(12) Snedecor, George W., Statistical Methods, Chaps. l-3, Fourth Edition, Sixth Printing, (1955), The Iowa State College Press, Ames, Iowa.
(13) Blair, Dr. Morris M., Elementary Statistics, Chaps.5-7, Revised Edition, Henry Holt and Co., New York - (1944-52).

APPENDIX

DATA AND ANALYSIS SHEET I

Grading Accuracy of Acid Delinted Cotton Seed Test Number 1

ROLLS TURNING IN OPPOSTTEE DIRECTION
(Grading Accuracy - \%)

Trt. No.	Roll Speed	Roll Angle	$\begin{aligned} & \text { Feed } \\ & \text { Rate } \end{aligned}$	Replication			
				1	2	3	4
1	200	5°	Low	99.81	100.00	99.34	99.84
2	600	5°	Low	86.65	82.22	82.12	92.36
3	200	15°	Low	96.56	98.42	99.49	99.45
4	600	15°	Iow	65016	72.49	59.94	71.46
5	200	5°	High	98.86	99.13	99.71	99.93
6	600	5°	High	87.04	88.93	90.17	89.64
7	200	15°	High	97.90	98.03	99.17	99.67
8	600	15°	High	70.58	70.47	63.80	74.57

ANALYSIS OF VARTANCE

Source of Variation	df ${ }^{\text {ºm }}$	SS	MS	F
Total	31	5299.90		
Replication	3	73.92	24.64	3.16\%
Treatment	7	5062.21	723.17	92.71%
Rate	1	16.96	16.96	2.17
Speed	1	3584.93	3584093	459.61皆
Angles	1	796.00	796.00	102.05等
R x S	1	18.46	18.46	2.37
$5 \times \mathrm{A}$	1	645048	645.48	82.75\%
$\mathrm{R} \times \mathrm{A}$	1	. 05	.05	<1
$\mathrm{Bx} \times \mathrm{A}$	1	.33	.33	<1
Error	21	163.77	7.80	

[^0]
DATA AND ANALYSIS SHEET II

Grading Accuracy of Acid Delinted Cotton Seed
Test Number 2
ONE ROLL TURNING AND ONE ROLL STATIONARY
(Grading Accuracy $=\%$)

Trto No.	Roll Speed	Roll Angle	Feed Rate	Replication			
1	200	5°	Low	66.54	74.17	75.56	80.31
2	600	5°	Low	64032	52.84	66.20	66.76
3	200	15°	Low	71.38	55.56	68.58	73.05
4	600	15°	Low	58.70	51.81	48.26	55.71
5	200	5°	High 71.85	79.20	75.25	83.74	
6	600	5°	High	64.49	64031	68.99	67.59
7	200	15°	High	72.47	52.80	70.11	73.52
8	600	15°	High	56.12	57.17	53.45	59.08

ANALYSIS OF VARTANCE

Source of				
Wewistion	$d P^{p}$	SS	MS	F
Total	31	2529.78		
Replication	3	240.88	80.29	3.35
Treatment	7	1785073	255.10	10.65%
Rate	1	26.99	26.99	1.013
Speed	1	982.24	982.24	40.99米令
Angle	2	754018	754.18	58.19*
P \times S	2	. 46	0.46	<1
$\mathrm{R} \times \mathrm{A}$	1	2.03	2,03	<1
$S \times \mathrm{A}$	1	7.08	7.08	<1
$R \times S \times A$	1	12.75	12.75	<1
Exror	21	503.17	23.96	

Trestment Mean

DATA AND ANALYSIS SHEET III
Grading Accuracy of Acid Delinted Cotton Seed Test Number 3

ROLLS TURNING IN THE SAME BIRECTION
(Grading Accuracy - \%)

Trto Ho.	Roll Speed	Roll Angle Reate	Feplicstion				
1	200	5°	Low	76.31	84.77	71.39	73.94
2	600	5°	Low	32.08	26.46	22.31	29.30
3	200	15°	Low	71.36	59.00	39.79	68.99
4	600	15°	Low	9.98	10.26	5.68	15.62
5	200	5°	High	72.37	79.19	67.91	82.38
6	600	5°	High	34.21	14.62	17.14	28.84
7	200	15°	High	67.58	61.90	70.78	65.71
8	600	15°	High	12.34	10.68	10.15	15.65

ANALYSIS OF TARIANCE

Source of				
Total	31	23799.67		
Replication	3	452.05	150.68	3.86*
Treatment	7	22527.12	3218.16	82.37\%
Rate	1	6.31	6.31	<1
Speed	1	20912.69	20912.69	535.26 \%
Angle	1	1481.72	1481.72	37.92**
R \times S	1	28.74	28.74	<1
$\mathrm{R} \times \mathrm{A}$	1	91.16	91.16	2.33
$S \times A$	1	4009	4.09	<1
$\mathrm{R} \times \mathrm{S} \times \mathrm{A}$	1	2.47	2.41	<1
Error	21	820.50	39.07	

Standard Frror of the Treatment Mean

DATA AND ANALYSIS SHEET IV
 Grading Accuracy of Shelled Peanut Seed Test Number 1

ROLLS TURNING IN OPPOSITE DIRECTION
(Grading Accuracy - \%)

Trt. No.	Roll Speed	Roll Angle	Feed Rate	Replication				
1	200	5°	Low	100.00	100.00	100.00	100.00	
2	600	5°	Low	98.57	99.42	100.00	100.00	
3	200	15°	Low	99.54	97.39	99.15	99.53	
4	600	15°	Low	83.79	81.96	89.45	86.63	
5	200	5°	High	100.00	100.00	100.00	100.00.	
6	600	5°	High	99.92	99.65	99.92	99.92	
7	200	15°	High	100.00	98.66	99.19	99.53	
8	600	15°	High	88.21	82.06	89.44	95.97	

ANALYSIS OF VARTANCE

DATA AND ANALYSIS SHEET V
 Grading Accuracy of Shelled Peanut Seed Test Number 2
 ONE ROLL TURNING - ONE ROLL STATIONARY
 (Grading Accuracy o \%)

Trt. No.	Roll Speed	Roll Angle	Feed Rate	$\frac{1}{c}$ Replication				
1	200	5°	Low	100.00	100.00	100.00	100.00	
2	600	5°	Low	94.27	98.80	97.29	99.05	
3	200	15°	Low	97.53	97.55	96.51	98.62	
4	600	15°	Low	84.25	83.70	84.94	91.51	
5	200	5°	High	100.00	100.00	99.84	99.91	
6	600	5°	High	97.58	98.43	99.03	99.00	
7	200	15°	High	99.24	99.58	99.36	99.42	
8	600	15°	High	84.26	86.25	88.89	92.53	

ANALYSIS OF TARTANCE

Source of Variation	df		SS	MS	F
Total	31		959.22		
Replication	3		34.48	11.49	3.89
Treatment	7		862.89	123.27	41.79 **
Rate		1	11.64	11.64	3.94
Speed		1	363.01	363.01	123.05 ${ }^{\text {2 \% 8 }}$
Angle		1	306.65	306.65	103.95\%
R× S		1	.79	.79	<1
$\mathrm{F} \times \mathrm{A}$		1	3.47	3.47	1.18
$5 \times \mathrm{A}$		1	176.63	176.63	59.87碞
RXSXA		1	-70	.70	<1
Error	21		61.85	2.95	
Standard Error of the					
Treatment Mean	0.8588				
S x A Mean	0.6072				

DATA AND ANALYSIS SHEET VI
Timing Test of Acid Delinted Gotton Seed Number 1m？

ROLIS TURNING IN OPPOSITE DIRECTIONS
(Time - Seconds)

Trt。 NO．	Roll Speed	RoII Angle	Replication			
			1	2	3	4
1	200	5°	9.57	9.50	7.67	8.22
2	200	10°	4030	4050	3.92	4077
3	200	15°	2.42	1.85	2.35	2.67
4	400	5	4085	4.70	4017	4082
5	400	10°	2.12	2.42	1.87	2.15
6	400	15°	1.05	0.97	1． 22	1.15
7	600	5°	2.65	2.62	2.65	2.95
8	600	10°	1．20	1.27	1.30	1.32
9	600	15°	.67	． 67	.60	－ 60

ANALYSTS OP VARTAMCE

Source of Variation	$d f^{0}$	SS	MS	F
Total	35	207.5286		
Replication	3	.7117	． 2372	1.73
Treatment	8	203.5334	25.4417	185．98永
Speed	2	82.0416	41.0208	299．86\％
Angle	2	101．2472	50.6286	370．09＊㻃
Speed－Angle	4	20.2346	5.0586	36．98＊
Error	24	3.2835	.1368	
Standard Error of the				
Treatinent	0.1849			
Speed Mean	0.1068			
Angle Mean	0.1068			

DATA AND ANALYSIS SHEET VII
Timing Test of Acid Delinted Cotton Seed Number 2 - T

ONE ROLL TURNING - ONE ROLL STATIONARY (Time $=$ Seconds)

Trto No,	Roll Speed	Roll Angle	$\frac{1}{c}$ Replication			
1	200	5°	13.57	13.17	13.90	10.60
2	200	10°	6.85	4062	4055	$4 . \% 2$
3	200	15°	3.47	3.37	3.15	2.92
4	400	5°	5.70	6.02	8.47	7.27
5	400	10°	3.17	3.27	3.70	2.90
6	400	15°	1.77	1.82	2.17	1.87
7	600	5°	4.20	5.40	5.17	5.75
8	600	10°	2.80	2.32	2.20	2.47
9	600	15°	1.25	2.17	1.95	1.75

DATA AND AMALYSIS SHEET VIII
Timing Test of Acid Delinted Cotton Seed Number 3-T

ROLLS TURNING IN THE SAME DIRECTION (Time $=$ Seconds)

Trt: No.	Roll Speed	Roll Angle	Beplication			
			1	2	3	4
1	200	5°	8.55	7.27	5.92	5.77
2	200	10°	6.42	4015	3.42	4062
3	200	15°	2.75	2.75	3.02	2.12
4	400	5°	4025	4072	5.60	4040
5	400	10°	2.55	1.72	2.20	2.70
6	400	15°	1.22	1.27	I. 75	1.35
7	600	5°	5052	4.52	4017	2.57
8	600	10°	1. 55	1.97	1.80	2.37
9	600	15°	2.05	1.40	0.77	1.07

ANALYSIS OF TARIANCE

Source of Variation	dfi	SS	MS	F
Total	35	134.9719		
Replication	3	2.8684	-9561	1.59
Treatment	8	117.6465	1407058	24041**
speed	2	37.1967	18.5983	30.87%
Angle	2	78.4026	39.2013	65.07%
Speed - Angle	4	2.0472	. 5118	<1
Error	24	14.4570	. 6024	
Standard Exror of the				
Treatment Mean	0.3881			
Speed and Angle Mean	0.2240			

DATA AND ANALYSIS SHEET IX

Timing Test of Shelled Peanut Seed Number 1 - T

ROLLS TURNING IN OPPOSITE DIRECTIONS (Time - Minutes*)

Trto No.	Roll Speed	Roll Angle	Replication			
1	200	5°	.142	.135	.142	.0138
2	200	10°	.055	.060	.072	.068
3	200	15°	.032	.035	.028	.042
4	400	5°	.070	.065	.055	.070
5	400	10°	.045	.038	.032	.048
6	400	15°	.015	.017	.015	.012
7	600	5°	.035	.040	.042	.042
8	600	10°	.017	.015	.012	.015
9	600	15°	.010	.010	.010	.010

AMALYSIS OF VARTANGE

Source of Variance	df ${ }^{\circ}$	SS	MS	F
Total	35	. 0520		
Replication	3	.0001	.00003	1.50
Treatment	8	. 0513	.00641	320.50**
Speed	2	. 0207	.01035	517.50\%\%
Angle	2	.0237	.01185	592.50\%
Speed - Angle	4	.0068	.00170	85.00%
Error	24	.0006	.00002	

Standard Error of the
Treatment Mesn 0.002236
Speed and Angle Mean 0.001304

HConverted to seconds for presentation in the text.

DATA AND ANALYSIS SHEET X
 Timing Test of Shelled Peanut Seed
 Number 2－T

ONE ROLL TURNTMG－ONE ROLL STATTOMARY
（Time－skinutes）

$\begin{aligned} & \text { Tr.to } \\ & \mathrm{Na} \end{aligned}$	Roll Speed	Roll Angle	Replication			
			1	2	3	4
1	200	5°	． 252	． 202	． 208	． 138
2	200	10°	． 068	． 075	． 080	． 102
3	200	15°	.042	． 060	． 045	． 060
4	400	5°	． 102	． 108	． 122	． 105
5	400	10°	.038	${ }^{\circ} 035$	． 050	． 058
6	400	15°	． 022	． 020	． 020	．028
7	600	5°	.050	．065	.070	． 065
8	600	10°	． 022	．032	． 032	． 030
9	600	15°	． 018	．012	． 018	． 015

ANALYSTS OF TABTANCE

Source of Varoiation	df	SS	MS	F
Total	35	．114203		
Replication	3	.000124	．00004	<1
Treatment	8	． 105725	．01321	37．74＊＊＊
Speed		．035629	． 01781	50.88%
Angle		．057972	． 02899	82．83然
Speed－Angle		.012124	．00303	8066品号
Error	24	．008354	.00035	

Standard Error of the
Treatment Mean 0．00932？
Speed and Angle Mean O．005385
＊Converted to seconds for presentation in the text．

> DATA AND ANALYSIS SHEET XI
> Timing Test of Shelled Peanut Seed Number $3-T$
> ROLIS TURNING IN THE SAME DIRECTION (Tine - Minutes $\%$)

$\begin{aligned} & \text { Trt。 } \\ & \text { No. } \end{aligned}$	Roll Speed	Roll Angle	Beplication			
			1	2	3	4
1	200	5°	. 178	. 178	. 335	. 272
2	200	10°	. 050	. 128	. 102	. 125
3	200	15°	.038	.025	. 035	.030
4	400	5°	.048	. 045	.050	. 042
5	400	10°	.020	.020	.022	. 032
6	400	15°	.010	.010	. 010	.010
7	600	5°	.028	. 038	.030	. 040
8	600	10°	. 015	.010	. 015	. 020
9	600	15°	.010	.010	. 012	. 010

ANALYSIS OF VARTANCE

Source of Variation	df	SS	MS	F
Total	35	. 188012		
Replication	3	.005192	. 0017	1.54
Treatment	8	.155749	.0195	17.73\%
Speed	2	.074707	.0373	33.90\%*
Angle	2	.044228	.0221	20.09\%甚
Speed - Angle	4	0.036814	.0092	8.27×3
Error	24	.027071	.0011	

Standard Error of the
Treatment Mean
0.01658

Speed and Angle
0.009592

KConverted to seconds for presentation in the text.

DATA AND ANALYSIS SHFET XII
 Damage of Acid Delinted Cotton Seed
 Test Number 1
 ROL工S TURITIEG IN THE SAME DIRECTION
 (Damage - Percent)

$\begin{aligned} & \text { Trto } \\ & \mathrm{NO}_{\circ} \end{aligned}$	Roll Speed	RoIl Angle	Feed Rate	Replication			
				1	2		4
1	200	5°	Low	.00	. 71	. 47	I. 11
2	600	5°	Low	. 31	. 68	. 65	. 69
3	200	15°	Low	.30	.76	. 62	. 63
4	600	15°	Low	.71	. 55	. 80	.37
5	200	5°	High	. 52	. 39	.26	. 37
6	600	5°	High	. 05	. 50	. 61	. 51
7	200	15°	High	. 16	. 23	. 43	.66
8	600	15°	High	. 43	. 15	. 68	.69

ANALYSTS OF VARTANCE

Source of Verivation	df	SS	MS	F
Tbtal	31	1.8032		
Replication	3	. 4553	. 1518	2.94
Treatment	7	. 2668	.0381	<1
Feed	1	. 2312	. 2312	4049\%
Speed	1	. 0180	.0180	<1
Angle	1	.0036	.0036	<1
Feed x Speed	1	.0061	.0061	<1
Feed x Angle	1	-0003	.0003	<1
Speed x Angle	1	.0056	.0056	<1
Feed x Speed x Angle	- 1	.0020	.0020	<1
Error	21	1.0811	.0515	

DATA AND ANALYSIS SHEET XIII

Damage of Acid Delinted Cotton Seed Test Number 2

ONE ROLL TURNING - ONE ROL工 STATIONARY
(Damege - Percent)

Trt. No:	Roll Speed	Roll Angle	Feed Rate	Beplication			
1	200	5°	Low	1.46	.90	.61	.47
2	600	5°	Low	.55	1.33	.62	1.03
3	200	15°	Low	.81	2.25	.56	.29
4	600	15°	Low	.72	.34	1.01	.30
5	200	5°	High	.53	.70	.21	.39
6	600	5°	High	.84	.38	.27	.30
7	200	15°	High	.85	.70	.32	.37
8	600	15°	High	.49	.21	.27	.30

ANALYSTS OF VARTANCE

Source of				
Vexistion	df	SS	MS	F
Total	31	5.8111		
Replication	3	1.0602	. 3534	2.37
Treatment	7	1.6162	. 2309	1.55
Feed		1.1705	1.1705	7.84*
Speed		. 1891	. 1891	1.27
Angle		.0200	.0200	<1
F X S		. 0060	.0060	<1
F $\times \mathrm{A}$.0105	. 0105	<1
$S \times \mathrm{A}$. 2048	. 2048	1.37
FxSxA		.0153	.0153	
Error	21	3.1347	. 1493	

DATA AND ANALYSIS SHEET XIV
 Damage of Acid Delinted Cotton Seed Test Number 3
 METERTIVG DEVICE
 (Damage - Percent)

Trestment (Bate of Feed)

Replication
1
2
3
4
5
$6 \quad .36$
$7 \quad .73$
$8 \quad .59$
$9 \quad .79$
10
11
12

LOW
.69
.67
1.13

1. 11
.66
.63
1.21
.00

Medium
.58
1.31
.67
1.06
.00
.59
. 33
$.64 \quad .40$
1.44
.32
.63
.22
.52
.58

1. 23
. 90
.27
High
.18
2.46
I. 28
1.07
.67

043

ANALYSTS OF VARTANCE

Source of				
Variance	df	SS	MS	F
	35	5.3713		
Total	11	3.3334	.3030	3.37
Replication	2	.0618	.0309	<1
Treatment	22	1.9761	.0898	
Error				

DATA AND ANALYSIS SHEET XV
 Damage of Shelled Peanut Seed
 Test Number 1
 ROLTS TURNTNG IN OPPOSITE DIRECTIONS
 (Damage - Percent)

Trt. NO。	Roll Speed	Roll Angle	Feed Rate	Replicstion			
				1	2	3	4
I	200	5°	Low	.24	. 52	.00	.00
2	600	5°	Low	. 32	. 18	.00	. 00
3	200	15°	Low	.00	. 00	.00	.00
4	600	15°	Low	. 17	.00	015	040
5	200	5*	Hilgh	. 62	0.45	. 05	- 51
6	600	5°	High	. 14	. 07	.08	.06
7	200	15°	High	.07	. 14	. 07	.00
8	600	15°	High	. 13	. 31	.32	. 13

ANALYSIS OF VARTANCE

Source of				
Variation	dr	SS	MS	F
Total	31	.9975		
Replication	3	. 0906	.0302	1.32
Treatment	7	0.4266	. 0609	2.66\%
Rate	1	. 0428	.0428	1.87
Speed	1	.0014	.0014	<1
Angles	1.	.0569	.0569	2.48
R X S	1	.0399	. 0399	1.74
$\mathrm{R} \times \mathrm{A}$	1	.0023	.0023	<1
S \times A	1	. 2574	. 2574	11.24
$\mathrm{R} \times \mathrm{SxA}$	1	.0259	. 0259	1.13
Error	21	. 4803	.0229	

DATA AND ANALYSIS SHEET XVI

Damage of Shelled Peanut Seed
Test Number 2
ONE ROLL TURNING - ONE ROLL STATIONARY (Damsge - Percent)

ANALYSIS OF VARTANCE

Source of Tariation	di	SS	MS	P
Total	23	1.2062		
Treatment,	1	0.0759	0.0759	1.48
Error	22	1.1303	0.0514	

DATA SHEET XVIII
Roll Grader Length Test - Acid Delinted Parrott Cotton Seed Test Number 1

ROLIS TURNING IM OPPOSITE DIREGTIONS
(Amount of Cotton Seed as Graded by Increments of Roll Section Length - Teble Values are in Percent)

Inches	Feed Rate			Loy				High	
of	Roll Angle		$5{ }^{\circ}$	15	5°	5			5°
Roll	Roll Speed	200	600	200	600	200	600	200	600
Length	Treato Ho.	1	2	3	4	5	6	7	8
0.5		25.11	0.98	075	.00	27.23	¢79	. 66	. 00
1.0		47.85	25.99	9.92	.10	46.42	29.69	7.62	. 05
1.5		12.30	16.62	35.70	. 43	10.96	16.90	37.81	. 16
2.0		6.84	7.94	16.80	3.47	7.29	8.41	19.36	3.43
2.5		2.28	4096	8.72	10.31	2.08	4.70	9.37	12.19
3.0		1.75	3.50	7.00	7.93	1.17	3.71	6.65	9.51
3.5		. 94	3.14	4042	6.40	1.30	2.79	3.91	7.22
4.0		.55	2.50	2.82	3.41	. 73	2.69	2.39	3.89
4.5		.77	3.03	2.96	4094	.63	3.38	2.80	5.16
5.0		. 52	2.68	2.11	4030	0.44	2.39	2.27	3.91
5.5		. 00	2.52	2.07	3.60	. 26	2.09	1.53	3.36
6.0		.05	1.28	1.54	3.04	.24	I.87	1.07	2.68
6.5		.14	1.72	. 97	1.53	. 14	1.74	. 79	2.57
7.0		.02	2.44	.65	2.42	. 10	1.32	.75	2.46
7.5		.10	1.57	. 36	1.73	.07	1.40	. 54	2.32
8.0		.09	. 33	. 32	1.62	.06	. 94	. 35	1.23
8.5		.16	1.41	. 28	2.60	.06	1.04	.21	2.09
9.0		.00	- 55	-29	2.12	.07	0.57	. 18	I.39
9.5		.00	1.06	. 215	1. 54	.02	057	. 16	1.26
10.0		.05	. 73	. 25	1.29	. 04	.89	.03	1.00
10.5		.00	. 43	. 12	1.32	.00	. 73	-10	1.38
11.0		.00	- 31	.07	1.17	000	. 10	.05	1.20
11.5		.06	.07	.11	1.25	. 01	.05	. 00	. 86
12.0		.07	. 03	.06	- 52	.02	.09	.03	. 48

Total Pereent $\quad 99.6585 .7998 .4466 .9899 .3488 .8598 .6369 .80$
Graded in twelve
inches of roll section

DATA SHEET XIX

Roll Grader Length Test - Acid Delinted Parrott Cotton Seed Test Number 2

ONE ROLL TURNING - ONE ROL工 STATIONARY
(Amount of Cotton Seed as Graded by Increments of Roll Section Length - Table Values are in Percent)

DATA SHEET XX

Roll Grader Length Test a Acid Delinted Parrott Cotton Seed Test Number 3

ROLIS TURNING IN THE SAME DTRECTION
(Amount of Cotton Seed as Graded by Increments of Roll Section Length - Table Values are in Percent)

DATA SHEET XXI
Roll Grader Length Test - Shelled Argentine Peanut Seed Test Number 1

ROLIS TURNING IN OPPOSITE DIRECTIONS
(Amount of Peanut Seed as Graded by Increments of Roll Section Length - Table Values are in Percent)

Inches Feed Rate of Boll Angle	5°	15°	$5{ }^{\circ}$		5°
Roll Roll Speed	200.600	200.600	200.600	200	600
Length Treato Noo	$1 \quad 2$	$3 \quad 4$	$5 \quad 6$	7	8
1	95.71480 .18	2.75 .00	59.6837 .19	9.83	. 03
2	3.3738 .15	81.954044	35.2449 .01	69.19	6.05
3	.869 .87	7.2233 .90	404611.53	15.90	38.36
4	.001 .09	3.0112 .23	.19 .96	1.94	14092
5	.00 .80	1.66 10.67	.12 .36	-86	8.95
6	.00 .40	$.62 \quad 6.87$.11.29	.56	7.23
7	$.00 \quad .32$.483 .60	008.15	-28	4013
8	.00 .18	.244031	.02 .11	. 26	3.64
9	.00 .20	. 302.84	.02 .04	. 13	2.20
10	.03 .06	.292 .93	.06 .09	-12	1.62
11	.03 .07	.19 2021	.02 .04	. 18	1.32
12	.00 .12	.181 .55	.02 .08	. 08	1.23

Total Percent $100.0099 .4498 .8985 .55100 .00 \quad 99.8599 .3389 .68$ Graded in twelve
inches of roll section

DATA SHEET XXII

Roll Grader Length Test - Shelled Argentine Peanut Seed Test Number 2*

ONE ROLL TURNING - ONE ROLL STATIONARY
(Amount of Peanut Seed as Graded by Increment of Roll Section Length - Table Values are in Percent)

Inches	Feed Rate			Low			High		
of	Roll Angle		5°	15	5°	5°		15°	
Roll	Roll Speed	200	600	200	600	200	600	200	600
Length	Treato No.	1	2	3	4	5	6	7	8
1		64.43	42.11	5.08	2.27	52.54	35.57	6.95	1.11
2		28.90	31.35	62.10	45.80	38.43	36.21	54.13	44.91
3		5.02	10.05	17.62	13.69	7.35	11.82	26.80	14.86
4		. 83	4.30	5.41	7.35	. 96	5.21	6.48	7.12
5		. 57	3.71	2.91	5.09	0.41	3.87	2.09	5088
6		0.12	2.34	1.084	3.62	. 16	2.49	1.24	3.88
7		. 1.2	1.08	. 99	3.19	.00	1.45	. 66	3.50
8		.00	.62	. 69	2.64	.02	.66	-45	2.40
9		. 00	.57	. 16	1.17	.05	- 50	-24	1.21
10		.00	. 53	. 44	. 76	. 00	-34	.17	1.27
11		.00	. 53	. 19	. 95	. 00	-26	. 15	1.09
12		. 00	. 13	. 12	. 51	.00	. 13	. 04	.73

Total Percent
$99.9997 .3297 .5586 .04 \quad 99.9298 .5199 .4087 .96$ Graded in twelve
inches of roll section.

[^1]
Minor Diameter Distribution of Acid Delinted Cotton Seed in Grading Accuracy Tests
 (Minor Diameter in Inches)

Seeds	Lot 1	Lot 2	Lot 3	Lot 4
1	.161	. 160	. 163	. 167
2	.170	. 170	. 154	-160
3	. 148	. 156	. 159	-153
4	-153	. 157	. 170	. 143
5	. 167	. 160	.153	-149
6	. 163	. 164	. 155	-157
7	. 164	. 154	. 1.61	. 154
8	. 168	. 154	. 160	. 162
9	. 164	. 159	. 165	. 130
10	. 148	. 162	. 130 **	. 166
11	. 169	. 155	. 146	. 134
12	. 169	. 160	. 153	. 158
13	. 165	. 145	. 164	.151
14	.153	. 144	. 160	. 166
15	. 150	. 165	. 170	. 168
16	.171	. 167	. 160	. 137
17	. 166	. 160	. 161	. 164
18	. 151	. 168	. 169	. 157
19	. 155	-140	. 153	. 154
20	.156	. 144	. 156	. 166
21	. 161	. 165	. 157	. 163
22	0.141	. 153	. 1.145	. 149
23	. 168	. 150	.171	. 136
24	. 164	. 160	. 154	. 170
25	.154	. 167	.140	. 165

Standard Deviation	0.010	
Mean		0.158
Median		0.159
Mode	Class-Midpoint	0.155
Range	$0.171-0.130=0.041$	

Angle of Repose of Friction*

(Seed upon a smooth flat surface of cold-rolled steel)

David George Batchelder candidate for the degree of Master of Science

Thesis: Roll Grader Sizing of Agricultural Seeds

Major: Agricultural Engineering
Biographical and Other Items:
Born: April 30, 1920 at Hiawatha, Kansas
Undergraduate Study: Highland Jr. College, Highland, Kansas, 1938-1940; Kansas State University, Manhattan, Kansas, 1940-1941 and 1953-1955.

Graduate Study: Oklahoma State University, Stillwater, Oklahoms, 1955-1962。

Experiences: Army Air Force, $1942-1945$, as an aircraft mechanic and bonber pilot; farmed from 1945-1953; student research assistant for Agricultural Engineers ing Department at Kansas State University from 1953 to 1955; and Instructor for the Agricultural Engineering Department of Oklahoma State University from 1955 up to the present (1962) (full time research in farm machinery, presently on the cotton mechanization project)

Professional Orgenizations: Associate Member of the Arnerican Society of Agricultural Engineers, Associate Member of Sigm Xis and a Member of Signa Tau.

[^0]: Standard Error
 of the Trto Mean 1.3964
 of the $5 \times A$ Mean 0.98742

[^1]: * Test Number Three, for rolls turning the same direction, was abandoned because of excessive peanut seed damage.

