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Fig. 5.3. (a) Differential reflectivity (dB) at the 0.5° tilt from KTLX at 1938 UTC and 

difference in differential reflectivity between (b) M20Z and M20ZZDR at 1940 

UTC. 

Fig. 5.4. (a) Differential reflectivity (dB) at the 0.5° tilt from KTLX at 1938 UTC as 

well as mean mass diameter (mm) at the first model level above the surface for 

the ensemble mean analysis of (b) M20Z and (c) M20ZZDR at 1940 UTC. 

Reflectivity contours are overlaid on the mean mass diameter plots in 20 dBZ 

intervals. 

Fig. 5.5. (a) Differential reflectivity at the 0.5° tilt from KTLX at 1938 UTC as well as 

rain intercept parameter (mm-4, 10Log10 scale) at the first model level above the 

surface for the ensemble mean analysis of (b) M20Z and (c) M20ZZDR at 1940 

UTC. Reflectivity contours are overlaid on the intercept parameter plots in 20 

dBZ intervals. 

Fig. 5.6. Individual rain DSDs at each model grid point from the first level above 

surface for (a) M20Z and (b) M20ZZDR at 1940 UTC as well as (c) simulated 

and (d) analyzed differential reflectivity reference images from M20Z and 

M20ZZDR as plotted from the 0.5̊ tilt of KTLX with a black box indicating the 

region from which the DSDs are included.  

Fig. 5.7. As in Fig. 5.6, but for a different reference area indicated by the black box in 

(c-d). 
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Fig. 5.8. (a) Retrieved rain intercept parameter values (mm-4, 10Log10 scale) from 

KTLX observations at the 0.5 ̊ tilt as well as calculated rain intercept parameter 

values at the first model level above the surface for the ensemble mean analysis 

of (b) M20Z and (c) M20ZZDR at 1940 UTC. Reflectivity contours are overlaid 

on the intercept parameter plots in 20 dBZ intervals. Also, (d) observed 

differential reflectivity from the 0.5̊ tilt of KTLX and (e) hydrometeor 

classifications of the observations from KTLX. 

Fig. 5.9. (a) Reflectivity (dBZ) and (b) differential reflectivity (dB) at the 0.5° tilt from 

KOUN at 2246 UTC as well as from the ensemble mean analyses of (c-d) M10Z 

and (e-f) M10ZZDR at 2248 UTC. 

Fig. 5.10. (a) Reflectivity (dBZ) and (b) differential reflectivity (dB) at the 0.5° tilt from 

KOUN at 2246 UTC and the difference between the (c) analysis reflectivity and 

the observations and (d) differential reflectivity and the observations for M10Z 

and (e-f) M10ZZDR at 2248 UTC. 

Fig. 5.11. (a) Differential reflectivity (dB) at the 0.5° tilt from KTLX at 2246 UTC and 

difference in differential reflectivity between (b) M10Z and M10ZZDR at 2248 

UTC 

Fig. 5.12. (a) Reflectivity (dBZ), (b) differential reflectivity (dB), and (c) specific 

differential phase (° km-1) at the 0.5° tilt from KOUN at 2246 UTC as well as 

from the ensemble mean analyses of (d-f) M10Z and (g-i) M10ZKDP at 2248 

UTC. 

Fig. 5.13. (a) Differential reflectivity (dB) at the 0.5° tilt from KOUN at 2246 UTC as 

well as mean mass diameter (mm) at the first model level above the surface for 
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the ensemble mean analysis of (b) M10Z and (c) M10ZZDR at 2248 UTC. 

Reflectivity contours are overlaid on the mean mass diameter plots in 20 dBZ 

intervals. 

Fig. 5.14. (a) Differential reflectivity at the 0.5° tilt from KOUN at 2246 UTC as well as 

rain intercept parameter (mm-4, 10Log10 scale) at the first model level above the 

surface for the ensemble mean analysis of (b) M10Z and (c) M10ZZDR at 2248 

UTC. Reflectivity contours are overlaid on the intercept parameter plots in 20 

dBZ intervals. 

Fig. 5.15. (a) Observed specific differential phase at the 0.5° tilt from KOUN at 2246 

UTC as well as rain mixing ratio (g kg-1) at the first model level above the 

surface for the ensemble mean analysis of (b) M10Z and (c) M10ZZDR at 2248 

UTC. Reflectivity contours are overlaid on the mixing ratio plots in 20 dBZ 

intervals. 
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Abstract 
 

Accurately representing the microphysical state of precipitation using bulk 

microphysics schemes, including the hydrometeor particle size distributions (PSDs), is 

vital to improving convective-scale forecasts. In this dissertation, results will be 

presented from three related projects that combine the use of dual-polarimetric (dual-

pol) radar observations and ensemble forecast methods to evaluate and improve the 

forecast model microphysical state. The dual-pol variables provide additional 

information on hydrometeor types and their PSDs compared to reflectivity (Z) alone.  

In the first project, simulated dual-pol variables from several members of the 

2013 CAPS Storm Scale Ensemble Forecasts (SSEF) that use different microphysics 

schemes are compared to dual-pol observations. The microphysics schemes vary 

significantly and include single-moment (SM) WSM6, partially double-moment (DM) 

Thompson and WDM6, and fully DM Milbrandt and Yau and Morrison. Both a 

mesoscale convective system (MCS) and supercell case are considered due to the 

different patterns in the dual-pol variable fields unique to each case. Results show that 

the forecasts using the Morrison scheme and the Milbrandt and Yau scheme have 

patterns of high differential reflectivity (ZDR) indicative of size sorting that match 

similar patterns in the observations. The dual-pol variables also help highlight biases in 

the forecasts including the under-prediction of liquid water content and the over-

prediction of particular hydrometeor types such as graupel.  

 In the second project, probabilistic forecasts of simulated dual-pol variables are 

performed. Ensemble forecasts of a mesoscale convective system (MCS) from 9 May 

2007 are initialized from ensemble Kalman filter (EnKF) analyses using both SM and 
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DM microphysics schemes. Qualitative analysis of simulated ZDR shows that the DM 

experiment better represents the PSDs of the convective and stratiform precipitation 

regions, while the KDP fields show that the SM experiment over-forecasts liquid water 

content in the convective areas. Quantitative ensemble forecast verification methods 

using dual-pol variables are considered for the first time and reveal the challenges 

associated with evaluating dual-pol fields that have very fine-scale details.  

Finally, in the third project, dual-pol variables are assimilated using the EnKF 

and a DM microphysics scheme for two supercell cases: 10 May 2010 and 20 May 

2013. For each case, both ZDR and KDP are assimilated in separate experiments in 

addition to Z and radial velocity (Vr) and compared to a control experiment that 

assimilates only Z and Vr.  The results show that the simulated dual-pol fields in the 

analyses of the dual-pol experiments better represent documented polarimetric 

signatures, such as the ZDR arc, compared to the control experiment. Additionally, 

comparisons of model microphysical variables and mean mass diameter between the 

dual-pol and control experiments show that the dual-pol experiments have an improved 

microphysical state. For example, the mean mass diameter of raindrops in the ZDR 

experiment is increased along the ZDR arc. This work, as far as we know, represents the 

first to directly assimilate dual-pol radar observations into the convective-scale model 

for real cases. 
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Chapter 1  Introduction 
 
 
1.1 Background 

Recent advances in computer power and observations systems have led to a 

combination of both finer grid scale convection allowing model (CAM) ensemble 

forecasts and advanced data assimilation (DA) methods using weather radar 

observations. In particular, data assimilation methods that use an ensemble of forecasts, 

such as the ensemble Kalman filter (Evensen 1994; 2003), have become widely used in 

CAM assimilation studies. Ensemble forecasts allow for comparisons of diverse model 

physics settings and provide a means to gauge uncertainty in the forecast, which in turn 

is used in new DA methods such as the EnKF that require a good estimate of model 

error present for success. Developing new methods to understand and account for 

uncertainty in analyses and forecasts is of particular importance for CAMS since the 

highly non-linear processes considered lead to rapid error growth in forecasts (Lorenz 

1969).  

Previous DA and forecast studies that use reflectivity (Z) and radial velocity (Vr) 

have played a vital role in real-time forecasting. Analyzing Z can help determine the 

location and intensity of precipitation while Vr observations can directly impact the flow 

fields and improve analysis of convergence and divergence as well as mid-level rotation 

(i.e. the mesocyclone of a supercell) and low-level rotation (a strong indication of a 

tornado). These parameters have also been widely used in real case EnKF DA studies to 

analyze the behavior of storm systems and supercells as well as initialize model 

forecasts to varying success (Dowell et al. 2004; Dowell et al. 2004; Aksoy et al. 2009; 

Dowell and Wicker 2009; Lei et al. 2009; Lei et al. 2009; Aksoy et al. 2010 Dowell et 
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al. 2011; Snook et al. 2011; Dawson et al. 2012; Snook et al. 2012; Yussouf et al. 2013; 

Tanamachi et al. 2013; Wheatley et al. 2014; Snook et al. 2015; Yussouf et al. 2015). 

However, one area of particular importance in CAM DA and forecasts where these 

parameters do not contain enough information is with the cloud microphysical state. A 

good evaluation of the microphysical state of convection includes information on both 

the types of hydrometeors present and their particle size distributions (PSDs). Z alone 

cannot provide this information due to the diversity in types and sizes of hydrometeors 

present in precipitation.  

In the past few years, the WSR-88D radar network has been upgraded to dual-

polarimetric (dual-pol) capabilities, which provide several additional new measurable 

parameters besides the three traditional parameters of Z, Vr, and spectrum width that 

were previously available (ROC 2013). While there have been an increased number of 

studies involving the EnKF and dual-pol radar observations separately, the combination 

of dual-pol observations and ensemble DA and forecasts has yet to be thoroughly 

investigated. More specifically, there have only been a limited number of studies that 

have investigated the information the dual-pol observations provide for evaluating and 

improving analyses of the model microphysical state (Jung et al. 2008b, Jung et al. 

2012; Li and Mecikalski 2012; Putnam et al. 2014).  

The new dual-pol variables include differential reflectivity (ZDR), specific 

differential phase (KDP), and correlation coefficient (HV) which provide valuable 

additional information on the types and size of hydrometeors present (Bringi and 

Chandrasekar 2001). For example, ZDR, the ratio of the horizontal and vertically 

polarized waves, is indicative of the axis ratio of hydrometeors present in the radar 
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volume. For example, raindrops become more oblate as they increase in size, leading to 

a higher value in horizontal Z compared to the vertical and thus ZDR values increase. On 

the other hand, dry hail typically tumbles as it falls, and the differing orientations within 

the radar volume result in similar horizontal and vertical Z values, leading ZDR values at 

or near zero. KDP is the derivative of differential phase ΦDP, which is a measure of the 

return time between the horizontal and vertically polarized waves. The speed of the 

waves is slowed by the presence of liquid water, which for oblate raindrops decreases 

the speed of the horizontal wave compared to the vertical and increases KDP values. 

Higher values of KDP suggest a greater amount of liquid water, or rain, present as well 

as a higher rainfall rate. Finally, HV, or the co-polar correlation coefficient between the 

horizontal and vertical wave, is impacted by diversity between the hydrometeors present 

in the radar volume. For example, there is a very high amount of diversity in the melting 

layer, where hydrometeors of different sizes, shapes, and water content to ice content 

ratios are present. These regions have lower HV values compared to regions of pure 

rain.  

Specific patterns of dual-pol variable values occur in severe convection due to 

dynamical and microphysical processes, known as polarimetric signatures (Kumjian and 

Ryzhkov 2008). For example, the size-sorting of hydrometeors due to storm relative 

wind shear in the forward flank of supercells results in larger hydrometeors falling 

adjacent to the updraft while smaller hydrometeors are advected further downshear in 

the forward flank. The larger raindrops at the surface increase ZDR values, known as the 

‘ZDR’ arc. The dual-pol variables can also be used with fuzzy logic algorithms to 

classify the dominant hydrometeor types present. In combination, these variables 
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provide a detailed description of the types and sizes of hydrometeors present for 

evaluating the microphysical state of convection. While the distributions of rain and ice 

hydrometeors in the model are known based on the model microphysical state variables, 

any substantive evaluation of the model microphysical state compared to observations 

requires this additional information from the observations.  

Cloud microphysics (MP) schemes play a vital role in CAM analysis and 

forecast. In fact, while there is currently some disagreement over the use of the term 

‘convective scale’ models because of differences in opinions with regard to the scales 

that are actually resolved (Bryan et al. 2003; Lean et al. 2008; Dudhia 2011; Bryan and 

Morrison 2012; Xue et al. 2013). Regardless, the use of MP schemes without cumulus 

parameterization sets CAMs apart from lower-resolution models that require inclusion 

of cumulus parameterizations, such as Kain-Fritch (Kain and Fritsch 1993) and Betts-

Miller-Janic (BMJ, Janjic 1994). There is a wide variety of MP schemes available and 

their differences can have a significant impact on data assimilation and subsequent 

forecasts. Specifically, most MP schemes represent hydrometeor PSDs in bulk form and 

the amount of independent information predicted by the MP scheme defines the number 

of degrees of freedom associated with the PSDs that a model can represent. Single-

moment MP schemes predict only one moment of the PSD of each hydrometeor species 

while more advanced multi-moment (MM) schemes predict additional moments of the 

hydrometeor PSD, and thus are able to represent a broader spectrum of PSDs and 

microphysical processes more accurately. For instance, the size sorting of hydrometeors 

requires an adjustment in both the size and number of hydrometeors present in a 

distribution which cannot be accomplished with a SM scheme that uses a fixed intercept 



5 
 

parameter; proper representation of size sorting requires at least a double-moment (DM) 

scheme.  

The new dual-pol observations as well as advanced MP schemes available for 

use provide valuable new information and tools for evaluating and improving forecasts, 

but they are not directly connected; the model state variables associated with cloud MP 

schemes are not directly observed. The critical connection between the model 

microphysical state variables and dual-pol observations are the forward or observation 

operators that link the model state to observations. For polarimetric radar data, these are 

also known as a polarimetric radar data simulator (PRDS), which simulates the 

observed dual-pol variables based on the MP state variables as well as other important 

assumptions not predicted in the model including axis ratio relations, canting angles, 

and the interaction or scattering of the radar wave by the volume of hydrometeors 

present. Additionally, most MP schemes do not predict mixed-phase hydrometeors, so a 

melting model must be included to account for when both rain and ice hydrometeors are 

present at a similar grid point in the model. The PRDS developed by Jung et al. (Jung et 

al. 2008a) and Jung et al. (Jung et al. 2010) is used in this work because of its ability to 

represent multi-moment (i.e. more than a SM) MP schemes, as well as that it includes a 

detailed melting model and advanced T-matrix scattering calculations compared to 

other PRDSs currently available. The PRDS can be used to both evaluate the analysis 

and forecast microphysical state with dual-pol observations and serve as the forward 

operator to assimilate dual-pol observations to optimally analyze the atmospheric 

microphysical state for the improved initialization of forecasts. 
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There are several important areas and aspects to consider to advance current 

research using ensembles, advance microphysics schemes, and dual-pol variables to 

evaluate and improve the model microphysical state. The available model 

microphysical state variables have a significant impact on the simulated variables and it 

is vital that the stimulated variables are consistent with the MP scheme used in order to 

properly represent the microphysical processes and hydrometeor PSDs. Additionally, 

advanced MM MP schemes are required in order for the MP scheme processes and 

particle size distributions to represent observed polarimetric signatures and patterns 

(Kumjian and Ryzhkov 2012; Jung et al. 2012).  Therefore, the focus of this work is on 

advanced DM MP schemes in order to take advantage of the dual-pol observations 

available, particularly for assimilation. In turn, the comparisons between simulated 

variables using SM and DM schemes with dual-pol observations will reveal the 

significant advantage that a DM scheme has over a SM scheme. Finally, the EnKF 

method is chosen for assimilation since it does not require an adjoint model as in 

3DVAR or 4DVAR, which are extremely difficult to develop for ice microphysics 

schemes, and the ability to easily use non-linear and complex observation operators for 

polarimetric observations.  

1.2 Dissertation Overview 

  This dissertation seeks to investigate the information and impacts the simulation 

and assimilation of observed dual-pol parameters can provide to the ensemble analyses 

and forecasts of the model microphysical states using MM microphysics schemes. This 

includes developing new methods for comparing model assimilation and forecast results 

as well as assimilating dual-pol observations. To accomplish this goal, work was carried 
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out in several areas that combine the simulation and/or assimilation of dual-pol 

parameters with various MP schemes in ensemble forecasts and the EnKF data 

assimilation processes. The progression of studies advances the use of dual-pol 

variables in current research. The dual-pol variables are first used for evaluation of 

ensemble forecasts, then assessed in terms of their probabilistic predictions, and finally 

assimilated to improve the estimation of model microphysical state.  

In the first study to be documented in Chapter 2, dual-pol parameters are 

simulated from forecasts of a CAM ensemble produced by the Center for Analysis and 

Prediction of Storms (CAPS), the Storm Scale Ensemble Forecast (SSEF), as part of the 

NOAA Hazardous Weather Testbed (HWT) Spring Experiment (Kong 2013). The 

ensemble members differ in the use of radar DA, boundary conditions, as well as model 

physics parameterizations to asses forecast sensitivity to different model 

parameterizations. In particular, several members differ only in MP scheme and provide 

a basis to compare and contrast the MP scheme performance and sensitivities. The 

proper simulation of dual-pol parameters from various microphysics schemes has yet to 

be considered and plays a vital role in this area of research even if assimilation is not 

used. Not only will information from these simulations allow for an in depth 

comparison and potentially beneficial updates to the schemes, the simulation 

comparisons can also be used as a tool to investigate how the various microphysics 

schemes in each forecast replicate typical dual-pol parameter values and signatures by 

forecasts for choosing schemes for future dual-pol parameter assimilation work. It is 

also desirable to eventually provide new dual-pol forecast tools and both qualitative and 

quantitative methods of presenting the simulated dual-pol variables are considered. 
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These include comparing results using a fuzzy logic HCA algorithm and the fractions 

skill score (FSS). The recent upgrade of the WSR-88D network to dual-pol capabilities 

provides the widespread observations needed to evaluate the microphysical state of 

forecasts on this scale.  

 In the second study (Chapter 3), ensemble forecasts initialized from an EnKF 

analysis are performed for an MCS case using both SM and DM MP schemes. The 

spread in the ensemble provides a measure of uncertainty in order to produce 

probabilistic forecasts of dual-pol variables which can be compared with observations. 

Previous studies have considered ensemble forecast products with the EnKF (Dawson et 

al. 2012; Snook et al. 2012; Yussouf et al. 2013; Wheatley et al. 2014; Snook et al. 

2015) but have focused mainly on probabilistic forecasts of vorticity and not 

microphysics related variables. The probabilistic methods include qualitative 

assessments of probabilities thresholds as well as quantitative methods such as the 

relative operating characteristic (ROC) area under curve (AUC) score and reliability 

diagrams.  

 In the final study (Chapters 3 and 4), dual-pol observations (ZDR and KDP) are 

assimilated for the first time using the EnKF, an advanced DM ice microphysics 

scheme, and the Jung et al. (2010) observations operators which include actual T-matrix 

scattering amplitudes. A new method to pre-calculate a portion of the operator using 

look-up tables of the scattering amplitudes and PSD parameters is developed to 

assimilate the observations with the same computation expense as prior research with a 

simplified version of this operator (Jung et al. 2012). Two high impact supercell storm 

cases are considered: 10 May 2010 and 20 May 2013. Since this is a new area of 
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research, Chapter 4 contains sensitivity experiments to first narrow down the best 

model, observation, and EnKF settings. These include different EnKF model error 

treatment methods, different filtering methods of the dual-pol observations, different 

dual-pol observation errors, and different radar configurations. The analyses from the 

best experiments are investigated in Chapter 5. Particular attention is paid to the impact 

the additional dual-pol variables have on the microphysical state compared to control 

experiments. This includes such aspects as rain mean mass diameter, rain mixing ratio, 

and comparisons of the model PSDs with retrieved PSD parameters from the dual-pol 

observations.  
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Chapter 2  Simulation of Polarimetric Radar Variables and Evaluation 
of Microphysics Schemes in Ensemble Forecasts 

 
 
2.1 Introduction 

The national WSR-88D S-band weather radar network has completed its 

polarimetric upgrade, providing unprecedented polarimetric radar variable 

measurements over the CONUS (ROC 2013). The polarimetric radar variables provide 

additional information about the cloud hydrometeor types and their particle size 

distributions (PSDs) compared to reflectivity (Z), in particular information on 

hydrometeor size and diversity. They include: 1) differential reflectivity (ZDR) that is 

sensitive to hydrometeor shape and orientation; 2) specific differential phase (KDP) that 

is sensitive to rainwater content/rain rate; and 3) cross-correlation coefficient (ρhv) that 

is sensitive to diverse and mixed-phase hydrometeors (Bringi and Chandrasekar 2001). 

Common dynamical and microphysical processes lead to patterns in these variables 

which occur at specific locations and in specific circumstances within convective 

storms, referred to as polarimetric signatures (Kumjian and Ryzhkov 2008). For 

example, there is a relative ZDR maximum along the right forward flank of supercells 

due to hydrometeor size sorting, known as the ZDR arc. In mesoscale convective systems 

(MCS), high ZDR is observed on the leading edge of the convective line due to the size 

sorting of larger drops that fall ahead of the system (Park et al. 2009).  

 
 
Note: This Chapter is an extended version of our paper: Putnam, B. J., M. Xue, Y. Jung, G. Zhang, and F. 
Kong, 2016: Simulation of polarimetric radar variables from 2013 CAPS spring experiment storm scale 
ensemble forecasts and evaluation of microphysics schemes. Mon. Wea. Rev., Conditionally accepted. 
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The hydrometeor variables in microphysics (MP) schemes of numerical weather 

prediction (NWP) models are typically not directly observed. One way to evaluate the 

model prediction of hydrometeor fields and the MP parameterization schemes is to 

simulate polarimetric variables from the model output and compare them with 

observations. The model state variables, including MP variables, are connected to 

observed polarimetric fields by the so-called polarimetric radar data simulator (PRDS) 

(Jung et al. 2008a; Jung et al. 2010, hereafter JXZ10), or the observation operators in 

data assimilation terminology. These operators are derived from scattering calculations 

of polarized radar radio waves by hydrometeor particles within each radar sampling 

volume. 

Most MP schemes represent hydrometeor PSDs in bulk form using the 

simplified gamma distribution 

௫(ܦ)ܰ                                                     = ଴ܰ௫ܦ௫
ఈೣ݁(ିஃೣ஽)	,                                      (2.1) 

which defines the number of particles of hydrometeor x with diameter D in a unit 

volume (Ulbrich 1983; Milbrandt and Yau 2005a). Three free parameters govern the 

distribution: 1) the slope parameter Λ௫ ; 2) the intercept parameter ଴ܰ௫; and 3) the shape 

parameter ߙ௫. MP schemes can be broadly categorized by the number of these free 

parameters that they derive from predicted microphysical variables for each species. For 

example, mixing ratio (q) is proportional to the third PSD moment (mass) and is used to 

solve for Λ௫ . Single-moment (SM), double-moment (DM), and triple-moment (TM) 

schemes predict one, two, and three moments of the PSD and can therefore determine 

one, two or three of the PSD parameters, respectively. Parameters that are not derived 

from predicted variables are either diagnosed or set as constant. Another significant 
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feature of a given MP scheme is the number of hydrometeor species included. Five 

categories are most commonly considered in ice MP schemes: cloud water (c), cloud ice 

(i), rain water (r), snow (s), and graupel (g) or hail (h), and some but relatively few 

schemes (e.g., the Milbrandt and Yau (MY) scheme (Milbrandt and Yau 2005b)) 

include graupel and hail as separate species.  

It is important that the observation operators developed for a PRDS are 

consistent with the MP scheme used so that the simulated variables reflect the model 

microphysical state and dynamical processes. Increasing the number of model variables 

predicted (e.g., moving from a SM to a DM scheme) increases the amount of predicted 

microphysical information that can and should be used in the operators. Some schemes, 

including Thompson (Thompson et al. 2008) and WDM6 (Lim and Hong 2010) 

schemes are partially double moment, predicting a second moment for rain (number 

concentration, Ntr) but only one moment for  other  hydrometeor species. Though most 

SM and DM schemes set ߙ௫ = 0 by default, resulting in an exponential distribution, 

WDM6 uses ߙ௥ = 1 for rain and the Thompson scheme uses a combined exponential 

and gamma distribution for snow. 

Limitations of MP schemes may preclude the model from replicating certain 

polarimetric signatures and highlight microphysical state differences. Some current 

schemes, including the Thompson, WSM6 (Hong and Lim 2006), WDM6, and 

Morrison (Morrison et al. 2005; Morrison et al. 2009) schemes, contain a graupel 

category but not hail, and are unable to replicate the decrease in ZDR associated with 

large, dry hail (Kumjian and Ryzhkov 2008; Johnson et al. 2016a). Additionally, 

Wacker and Seifert (Wacker and Seifert 2001) and Milbrandt and Yau (2005a) have 
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shown that SM MP schemes cannot represent sedimentation, or size sorting, and thus a 

DM or higher order scheme is required to produce polarimetric signatures associated 

with size sorting (JXZ10; Kumjian and Ryzhkov 2012). Jung et al. (2012) demonstrated 

that the ZDR arc signature could be replicated with the DM MY scheme but not a SM 

Lin (Lin et al. 1983) scheme when the states of a supercell are estimated using a cycled 

ensemble Kalman filter. Putnam et al. (2014) showed for an MCS case that the size 

sorting of large drops and subsequent increase in ZDR in the convective line compared to 

the stratiform region could be replicated by the DM MY scheme but not the SM Lin 

scheme.  

Since the spring of 2007, the Center for Analysis and Prediction of Storms 

(CAPS) at the University of Oklahoma has been producing storm-scale ensemble 

forecasts (SSEF) for the CONUS (Kong et al. 2007; Xue et al. 2007) as part of the 

NOAA Hazardous Weather Testbed (HWT) Spring Experiment (Weiss et al. 2007; 

Clark et al. 2012). In the spring of 2013, the SSEF system had a 4 km convection-

permitting grid spacing, allowing explicit representation of convective storms (Kong 

2013).  The system used a variety of microphysics (MP) schemes among its ensemble 

members, including several that predicted two moments of some of the hydrometeor 

species within the schemes. One set of special products produced from the ensemble 

forecast output were simulated polarimetric radar variables using the PRDS developed 

at CAPS. The availability of polarimetric observations from the upgraded WSR-88D 

network and the PRDS with the ability to simulate polarimetric variables from a variety 

of microphysics schemes provided an unprecedented opportunity to compare and 
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contrast the ability of the various microphysics schemes commonly used in convective-

scale forecasts in reproducing known polarimetric signatures.     

The purpose of this paper is to document the real-time implementation of the 

PRDS, evaluate the simulated polarimetric variables and polarimetric variable forecasts 

within the SSEF system against WSR-88D polarimetric observations, and to infer 

strengths and weaknesses of MP schemes as implemented in the 2013 ensemble. Biases 

identified with the microphysics schemes can help the scheme developers to improve 

their schemes, and help the scheme users to interpret their simulation results in their 

research. As observed quantities are often more intuitive to forecasters, simulated 

polarimetric variables can be used by forecasters to monitor and nowcast severe weather 

when the association of polarimetric signatures with weather events/features is well 

recognized. Towards that end, knowledge gained on the behavior of the MP schemes 

and the PRDS can help forecasters better understand the dual-pol forecast products. 

Up to the time of this exercise, CAPS’s PRDS had mainly been used with the 

MY DM scheme (Jung et al. 2012; Putnam et al. 2014); this effort represents the first 

time that multiple DM schemes are evaluated in a common framework in terms of their 

ability to produce polarimetric radar signatures for real cases. The recent study of 

Johnson et al. (2016a) had a similar goal but it was based on a set of idealized supercell 

simulations therefore no real radar observations could be used for comparison. Since 

significant polarimetric radar signatures are relatively local and isolated within 

convective systems, simple grid-point-based evaluation scores typically applied to 

precipitation forecasts, such as the equitable threat score, are not very revealing, 

especially when different types of convective systems are mixed together (different 



15 
 

types of convective systems tend to produce different kinds of polarimetric signatures in 

different parts of the systems). Because of the many challenges facing objective 

evaluations of the forecast of polarimetric signatures, which tend to be highly localized 

and in the current forecasts contain significant biases, we choose to focus on two cases 

from the CAPS 2013 Spring Experiment only in this study: one case with MCSs and 

one case with supercells. Focusing on two cases allows us to perform more detailed 

subjective evaluations and at the same time access the objective evaluation methods and 

procedures. Such a study would provide the groundwork for future studies evaluating 

the MP and PRDS performances over the entire Spring Experiment period. 

The rest of this Chapter is organized as follows. The methodologies, including 

the general design of the CAPS SSEF, the PRDS and MP schemes used, and the quality 

control of observations, are given in section 2.2. Section 2.3 presents evaluation results 

for the MCS and supercell cases. A summary and conclusion reviewing notable trends 

in polarimetric size sorting signatures and biases in graupel and water content is given 

in section 2.4. Some challenges faced in evaluation are also noted. 

2.2 Methodology 

2.2.1 Overview of the 2013 CAPS SSEF 

The 2013 CAPS SSEF forecasts were run as part of the NOAA HWT Spring 

Experiment (Kong 2013). Official forecasts began on 6 May 2013 and continued 

through 7 June 2013. Daily 48-hour forecasts initialized at 0000 UTC were run on a 

CONUS domain using a horizontal grid spacing of 4 km with 51 vertical levels (Fig. 

2.1). Twenty nine ensemble members were run using three mesoscale NWP models: the 

WRF-ARW model (version 3.4.1, 26 members, Skamarock et al. 2008), the U.S. Navy 
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COAMPS model (2 members, Hodur 1997), and the CAPS Advanced Regional 

Prediction System (ARPS, version 5.3, 1 member, Xue et al. 2003). This paper focuses 

on the WRF-ARW members since the COAMPS and ARPS members used single-

moment microphysics schemes only.  

 
 
Fig. 2.1. Model domain for 2013 CAPS Spring Experiment storm scale ensemble 
forecasts 
 
 

The 26 WRF-ARW members varied in terms of their initial conditions (IC), 

boundary conditions (BC), and physics packages. The control member IC was obtained 

by assimilating surface, upper-air, and WSR-88D radar observations using the ARPS 

3DVAR and complex cloud analysis system (Xue et al. 2003; Gao et al. 2004; Hu et al. 

2006a,b), with the NCEP 12 km NAM (Rogers et al. 2009) 0000 UTC analysis used as 

the background, and used a BC that was obtained from the 0000 UTC NAM forecast. 

An additional 11 members used this IC and BC while 13 members used this IC and BC 

with added perturbations derived from the 2100 UTC NCEP Short-Range Ensemble 
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Forecasts (SREF, Du et al. 2006). One member was initialized from the NAM analysis 

directly. For the purpose of investigating the performance of various physics packages 

in the WRF, the subset of members which used the same IC and BC as the control 

member differed in their use of land surface, boundary layer, radiation, and 

microphysics schemes. Since MP scheme differences are the focus of this study, 

polarimetric variable simulations were performed for the control and for those members 

that differed from the control only in their choice of MP scheme (the arw_cn, arw_m20, 

arw_m21, arw_m22, and arw_m26 members) (Kong 2013). These members used the 

NOAH land surface model (Chen and Dudhia 2001) and the Mellor–Yamada–Janjic 

boundary layer scheme (MYJ, Mellor and Yamada 1982; Janjic 2002). More details on 

the MP schemes used are provided in section 2.2.3.  

2.2.2 Polarimetric simulation and general experiment settings  

The PRDS originally developed for the ARPS output (Jung et al. 2008a; JXZ10) 

was adapted and applied to the WRF output with several different MP schemes. The 

PRDS calculations include only the rain, snow, graupel, and hail categories, when 

applicable. Despite the important role that cloud water and cloud ice play in 

precipitation processes, the radar returns from these hydrometeors are minimal. 

Important details of the PRDS, including the axis-ratio relation, canting angle of 

particles, the melting model, and radar scattering amplitudes, are briefly summarized 

here.  

The PRDS operators include complex scattering amplitudes calculated using the 

T-matrix method (Vivekanandan et al. 1991; Bringi and Chandrasekar 2001) for both 

rain and ice species via numerical integration over the PSDs. The raindrop axis ratio 
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decreases with diameter based on the relation in Brandes et al. (2002); this ratio is set to 

0.75 for hail, graupel, and snow. The mean canting angle for all hydrometeor types is 0° 

with a standard deviation of 0° for rain, 20° for snow, and ranging from 0° to 60° for 

hail and graupel depending on the water fraction. Since most MP schemes do not 

predict mixed-phase hydrometeors, a mixing ratio fraction of wet (melting) snow, wet 

hail, or wet graupel is considered present when rain (qr) coexists at a particular model 

grid point with snow (qs), hail (qh), or graupel (qg), creating mixed-phase mixing ratios 

denoted qrs, qrh and qrg. The water fraction model used there for the mixed phases is 

described in detail in Jung et al. (2008a), and the water fraction model used during the 

2013 CAPS Spring Experiment does not vary across the size spectrum. The density (ߩ) 

of each mixed-phase species increases as the fractional amount of rain increases and the 

dielectric constant is calculated using the Maxwell-Garnett mixing formula (Maxwell-

Garnett 1904). These variables are used in separate calculations of Zrs, Zrh, and Zrg for 

mixtures, in addition to Zr, Zs, Zg, and Zh, with the log of the sum giving the final 

simulated Z. A radar wavelength of 107 mm is used to match the WSR-88D S-band 

network. For reference, from JXZ10, Z is calculated using equation (3), ZDR from the 

quotient of (3) and (4), and KDP from (6).  

2.2.3 Spring experiment microphysics schemes 

The 2013 SSEF WRF-ARW members used 6 different MP schemes: the MY, 

Morrison, Thompson, WDM6, NSSL (Mansell 2010), and WSM6 schemes. The NSSL 

scheme has not yet been added to the PRDS because its representation of hydrometeor 

PSDs is a lot more complex than the other schemes. The original PRDS operators were 

already compatible with the WSM6 and MY schemes. The Morison scheme follows the 
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same PSD and has the same predicted moments as MY (excluding hail) so it was easily 

implemented. Modifications were required for the other schemes. The Thompson and 

WDM6 schemes predict Nt and q for rain but only predict q for the remaining categories 

as used in the PRDS (prediction of Ntr was added to the Thompson scheme subsequent 

to Thompson et al. (2008). WDM6 diagnoses ଴ܰ௦ using temperature and uses a fixed 

value for ଴ܰ௚. WDM6 also uses a fixed shape parameter of 1.0 for αr. The Thompson 

scheme has been further updated since Thompson et al. (2008) to use temperature and 

the mean volume diameter of rain to diagnose ଴ܰ௚.  

Additionally, the Thompson scheme deviates from the typical representation of 

the bulk PSD for snow. The PSD is composed of the sum of an exponential and gamma 

distribution, given as 

௦(ܦ)ܰ = 	
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where ߢ଴, ߢଵ, Λ଴, Λଵ, and ߙ௦ are constants and ܯ is a given moment of the distribution. 

The sum is used to represent the ‘super-exponential’ portion of observed snow PSDs in 

which the number of snowflakes with small diameters rapidly increases with decreasing 

size. The calculation of M is unique to the Thompson scheme and presents an additional 

challenge in the melting model. The third moment of the distribution, used to calculate 

Λ in the PSD, does not include ߩ (which is modified for the rain/snow mixed-phase 

PSD in the melting model). Developing a method to represent this PSD that must 

transition between the combined exponential and gamma snow PSD and the exponential 

rain PSD requires further study. For now, the rain/snow mixed-phase PSD is 

represented as an exponential distribution with Λ derived from the rain/snow mixing 

ratio, ݍ௥௦, and uses a typical fixed value for ଴ܰ௦ originating from the Lin (3 x 106, Lin et 



20 
 

al. 1983) scheme. Table 2.1 summarizes whether ଴ܰ and α are derived using predicted 

microphysical moments, diagnosed, or a fixed value for each hydrometeor category for 

each MP scheme.  

Scheme N0r N0s N0g N0h αr αs αg αh 
Thompson F(qr, Ntr) F(qs,T) F(qg,T) NA 0 0.6357 0 NA 

MY F(qr, Ntr) F(qs, Nts) F(qg, Ntg) F(qh, Nth) 0 0 0 0 
Morrison F(qr, Ntr) F(qs, Nts) F(qg, Ntg) NA 0 0 0 NA 
WDM6 F(qr, Ntr) F(T) 4x10

6
m

-4
 NA 1 0 0 NA 

WSM6 8x10
6 

m
-4

 F(T) 4x10
6
m

-4
 NA 0 0 0 NA 

 
Table 2.1. Reference table for which predicted model variables are used to calculate the 
intercept (N0) and shape (α) parameters for rain (r), snow (s), graupel (g), and hail (h) 
from each of the microphysics scheme considered. The values are either fixed and 
listed, or calculated as a function of mixing ratio (q), number concentration (Nt), and/or 
air temperature (T). Schemes which do not contain a given hydrometeor category are 
listed as not applicable (NA). 
 
 
2.2.4 Polarimetric radar observations 

 The upgraded WSR-88D radars provide domain-wide polarimetric observations 

which are used for comparison to the simulated variables.  Z and ZDR observations are 

filtered using a 5-point along-the-radial median filter, while KDP is calculated from 

similarly filtered differential phase (ΦDP) observations using the least squares fit method 

of Ryzhkov and Zrnic (1996). Nine range gates are used when ܼ > 40	dBZ and 25 

range gates are used for Z < 40 dBZ.  

The availability of polarimetric observations allows for extensive quality control 

of the data using fuzzy logic (Park et al. 2009). The fuzzy logic method uses ranges of 

polarimetric radar data values and weights to determine the most likely hydrometeor 

type of the observation. The Z, ZDR, ρhv, standard deviation (SD) of Z (1 km running 

average), and SD(ΦDP) (2 km running average) membership functions are used along 
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with their respective weights. The confidence vectors are not included. Additionally, the 

temperature profile and the presence of frozen hydrometeors from the forecast model 

are used to help further narrow down potential hydrometeor types before classification. 

For example, frozen categories are not considered at heights where full melting has 

occurred in the forecast and rain-associated categories are not considered above the 

freezing level. The MY forecast member was chosen since this scheme included the 

most number of hydrometeor categories and produced reasonable results. Those 

observations that are determined to be ground clutter, anomalous propagation, or 

biological scatterers are removed. This is important since SSEF forecasts begin at 0000 

UTC and short term forecasts in the late spring/early summer months will be at a time 

when observed radar blooms due to birds and insects are prominent (Lakshmanan et al. 

2007). An example of Z, ZDR, and KDP observations at an elevation angle of 0.5° before 

and after the removal of non-meteorological echoes for one of the cases evaluated in 

this study, at 0400 UTC 20 May 2013, is given in Fig. 2.2. The locations of the WSR-

88D radars used are included as black dots in Fig. 2.2a. Obvious clutter from the late 

evening radar bloom (10 pm Central Standard Time) is almost completely removed. 

Data points that are determined to be a three body scatter spike are also removed 

(Mahale et al. 2014).  
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Fig. 2.2. Mosaics of observed (a) reflectivity (dBZ), (b) differential reflectivity (dB), 
and (c) specific differential phase (° km-1) at a .5° tilt before ground clutter/biological 
scatterer removal and (d-f) after. The locations of the WSR-88D radars used are 
included as black dots in (a). 
 
 
2.3 Evaluation of simulation results  

 In this section, results for two example cases chosen from the 2013 Spring 

Experiment are evaluated. The first is a four-hour forecast initialized at 0000 UTC 20 

May 2013 for a series of MCSs. The second is a 21-hour forecast of several supercell 

thunderstorms also initialized at 0000 UTC 20 May 2013. These cases provide two 

different convective modes that contain distinct and different polarimetric signatures for 

evaluation. Additionally, the first case is a short-term forecast with sufficient lead time 

to allow for microphysical processes such as size sorting to develop while not too long 

for the storm systems originally initialized from radar data to dissipate. The divergence 
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between the ensemble of model solutions and the observations is also relatively small at 

this point. Because of the early evening initialization time, a similar situation is difficult 

to find for supercell thunderstorms, which typically dissipate or grow upscale at night. 

For these reasons, the 21-hour long forecasts valid in the afternoon of 20 May were 

chosen. It was also a point of emphasis to choose cases that had storm systems that were 

well placed so more focus could be on the differences in the polarimetric variable 

values and not storm structure and placement. For convenience, the chosen ensemble 

members (section 2.2.1) are referred to by their respective microphysics schemes: TOM 

(Thompson), MY (Milbrandt and Yau), MOR (Morrison), WDM (WDM6), and WSM 

(WSM6).  

 In this study, the forecast results are compared to the observations by creating a 

0.5° elevation mosaic of observed and simulated radar data from all WSR-88D sites 

within the domain from data in a ‘gridtilt’ format for direct comparison. The simulated 

variables are left on the model grid in the horizontal but mapped (via weighted average) 

in the vertical to the elevations or tilts of each radar using the beam pattern weighting 

function given in Xue et al. (2006). Conversely, the radar observations are interpolated 

to the model grid points in the horizontal but left on the radar elevation levels in the 

vertical. As a result, both model and radar data are transferred to a common ‘gridtilt’ 

space with respect to individual radars.  A 0.5° elevation mosaic is created by 

combining the lowest available elevation angles (0.5°) from the WSR-88D radars 

located within the domain, using the observation closest to the surface where two or 

more radars overlap. The 0.5° elevation angle is chosen and the closest-to-the-surface 

value is used because polarimetric signatures associated with hydrometeor size sorting 
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are most prevalent near the surface. This is similar to how the ‘reflectivity at lowest 

altitude’ or ‘RALA’ product is produced in the Multi-Radar Multi-Sensor (MRMS) 

system (Smith et al. 2016). A near-surface constant height mosaic will have large areas 

of missing observations because the radar beam height increases with distance. 

Additionally, vertical interpolation of radar elevation level data to a constant model 

level can have large error as the radar beam width increases with distance from the radar 

(Sun and Crook 2001). 

2.3.1 The 20 May 2013 mesoscale convective system case 

  Height falls associated with an upper level trough moving into the central plains 

and ample low level moisture led to the development of multiple areas of severe 

thunderstorms during the mid-afternoon of 19 May 2013. Over time, these clusters grew 

upscale to form several MCSs that stretched from the upper Mississippi valley south 

into Oklahoma. The most intense of these system resulted from storms initially forming 

over central Kansas that continued into eastern Iowa. At 0400 UTC 20 May this system 

exhibited the elements of a classic MCS including leading convection and trailing 

stratiform precipitation (Fritsch and Forbes 2001). Additional linear convective storms 

formed along an outflow-reinforced cold front that stretched southwestward into 

northern Oklahoma. Widespread damaging wind and hail was reported across the 

Midwest, and several tornadoes were reported in southwestern Missouri (SPC 2014b).  

2.3.1.1 Qualitative evaluation of forecasts 

 A mosaic of observed and simulated Z, ZDR, and KDP in the gridtilt format 

described at the beginning of section 2.3 is plotted in Fig. 2.3. Locations of WSR-88D 

radar sites used for both the observed and simulated variable plots are included in Fig. 
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2.3a. Overall, the observed features are well placed in the five forecasts. However, the 

intensity and structure of the forecast precipitation differ from the observations, and 

differ among the forecast members. The MY and MOR members produce more 

widespread, high Z in the convective areas (Fig. 2.3g,j) in eastern Iowa compared to the 

observations but show a decrease in intensity in the stratiform precipitation region 

further west in central Iowa. Z in WDM and WSM is lower than in MY and MOR in the 

convective areas and more closely matches the observations (Fig. 2.3m,p). However, 

the stratiform precipitation over Iowa is almost non-existent in WDM, and is 

significantly under-forecast in WSM. Lim and Hong (2010) found that WDM had low 

rain rates in the stratiform region of a 2D simulated MCS due to higher rain number 

concentrations and increased evaporation. The WSM and WDM forecasts are overall 

very similar as only warm rain processes are DM in WDM. Putnam et al. (2014) found 

that a DM MY forecast, which predicts a second moment for snow and cloud ice, better 

maintained separate convective and stratiform precipitation regions in an MCS 

compared to a SM Lin forecast due in part to improved transport of frozen 

hydrometeors between the convective towers and stratiform precipitation region. The 

TOM Z appears most reasonable in terms of both intensity and coverage (Fig. 2.3d). 

The placement and structure of convection in western Missouri and northern Oklahoma, 

and the associated Z intensity, match the observations well. However, the convective 

region in eastern Iowa is disorganized with no discrete linear convective line ahead of 

the trailing precipitation.  
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Fig. 2.3. Mosaics of observed (a) reflectivity (dBZ), (b) differential reflectivity (dB), and (c) specific differential phase (° km-1) at a 
.5° tilt 2100 UTC 20 May 2013 and simulated values at the same tilt locations from the (d-f) TOM, (g-i) MY, (j-l) MOR, (m-o) WDM, 
and (p-r) WSM forecasts. Features of interest referenced in the text are noted by arrows, numbers, and letters. Locations of WSR-88D 
sites used for both the observed and simulated variable plots are noted with black dots in (a). 
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Fig. 2.4. Mosaic of hydrometeor classification using fuzzy logic for (a) observations at a 
.5° tilt 0400 UTC 20 May 2013 as well as classification of highest simulated linear 
reflectivity at the same tilt locations for (b) TOM, (c) MY, (d) MOR, (e) WDM, and (f) 
WSM forecasts. Features of interest referenced in the text are noted by arrows. 
Locations of WSR-88D sites used for both the observed and simulated variable plots are 
noted with black dots in (a). 
 
 
 The range of Z may be due to different hydrometeors sizes, types, and water 

contents; simulated ZDR and KDP provide further insight to better differentiate the 

microphysical states of the members. Additionally, observed ZDR and KDP can be used 

to diagnose the hydrometeor categories using the fuzzy logic method described in 

section 2.2.4 (Fig. 2.4). For the forecasts, the dominant category is determined based on 

which hydrometeor type provides the majority contribution to the linear simulated Z, 

including the diagnosed mixed phase species described in section 2.2.2. If no category 

contributes at least 50% to Z, the category is considered a ‘mix’. Since the model MP 
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scheme categories do not match the Park et al. (2009) HCA categories, hail, wet 

(melting) graupel, and ‘mix’ are added to the classification list for identification when 

present in the PRDS results. Additionally, the forecast rain category does not 

differentiate between the ‘big drop’ and ‘heavy rain’ categories so all rain is combined 

into one category and wet (melting) hail from the PRDS results is considered ‘rain and 

hail’. Non-meteorological categories are not included, as they were removed during 

quality control.  

Observed ZDR is generally greater than 2.0 dB in the convective regions with a 

maximum of around 3.0 dB and is less than 2.0 dB in the stratiform regions (Fig. 2.3b). 

This matches the typical observed ZDR pattern in an MCS caused by differing rain 

PSDs; areas of convective precipitation have high ZDR due to the presence of large 

raindrops, with the maxima occurring along the leading edge of the convective line 

where the largest drops (which have the greatest terminal velocity) fall, while the 

stratiform region, which is not supported by an intense updraft, contains moderate 

precipitation with small to medium-sized raindrops and lower ZDR (Zhang et al. 2008). 

MY and MOR have the highest simulated ZDR in convective regions, comparable to the 

observations, but the coverage of these high values is more widespread (Fig. 2.3h,k). 

The widespread high ZDR matches the areas of over-forecast high Z where the presence 

of larger raindrops in intense convection would be expected. The high ZDR, along with 

very high Z, is also indicative of large oblate wet graupel, the dominant hydrometeor 

category (Fig. 2.4c-d). MY predicts hail but shows a similar high bias in wet graupel as 

MOR. The MY scheme implemented in the WRF as used in the CAPS SSEF was 

modified from Milbrandt and Yau (2005b) to include a strict minimum size threshold 
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for hail. Hail below this threshold is converted back to graupel and this threshold has 

been shown to result in forecasts that produce little, if any, hail (Van Weverberg et al. 

2012). This may explain the presence of too much graupel compared to the observations 

in this case. It should also be noted that the Morrison scheme in the WRF does have an 

option to treat dense ice as hail instead of graupel, but in the SSEF it is treated as 

graupel.  ZDR tends to increase towards the leading edge of the convective lines in 

southeastern Kansas and northeastern Oklahoma, as well as in central Missouri and 

eastern Iowa for MOR (indicated by arrows in Fig. 2.3h,k); high ZDR at the leading edge 

of convection is a commonly found polarimetric signature associated with size sorting. 

However, there are many convective areas where large drops are embedded within the 

convection and a size sorting signature is not evident. MOR has a strong size sorting 

signature in southwestern Missouri (indicated by ‘A’ in Fig. 2.3k), but this corresponds 

with low Z and weak precipitation. It is not unusual to see high ZDR in developing 

convection as size-sorting begins to occur, but this may also be a result of the drop 

breakup scheme in MOR. In MOR, the self-collection of raindrops is initiated based on 

qr. As a result, in low precipitation regions with small qr, the raindrops may easily 

increase to their maximum size and break up. These spikes in ZDR were also noted in 

Johnson et al. (2016a). 

There is a more significant difference in the microphysical state of MOR and 

MY in the stratiform precipitation region in central Iowa. There is widespread moderate 

ZDR in MOR, only 0.5 dB less than the ZDR in the convective line to the east, while ZDR 

decreases away from the leading convective lines in MY, similar to the observations. 

The distinguishing ZDR
  that differentiates the PSDs of the convective and stratiform 
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regions is more prominent in MY; this matches the findings of Putnam et al. (2014). 

Insufficient size sorting by the DM MOR forecast highlights MP scheme challenges that 

extend beyond simply adding a second moment.  

ZDR in TOM and WDM shows no clear organization based on the structure of 

the convective systems (Fig. 2.3e,n). There is little difference between ZDR in the 

convective and stratiform regions, and no clear size sorting signatures that match the 

observations. In fact, the highest ZDR in TOM is in an area of light precipitation on the 

rear side of the convective line in Western Missouri, to the north and south of the 

convection in Iowa, and in isolated light showers in Missouri (indicated by arrows in 

Fig. 2.3e). Relatively high ZDR values are often seen with developing storms like those 

in Missouri, but the remaining noted ZDR patterns do not match the observations. 

Dawson et al. (2014) found that the size-sorting of hail and graupel had a greater impact 

on low-level ZDR signatures  than the size-sorting of rain. Both TOM and WDM are 

only SM for graupel (they do not include hail) and thus there is no size-sorting of 

graupel. Despite the apparent lack of size sorting, which is one of the features tied to 

maintaining a stratiform precipitation region in Putnam et al. (2014), TOM still 

represents the coverage of the convective and stratiform precipitation regions relatively 

well. Wheatley et al. (2014) found in their real case EnKF study of an MCS that the 

Thompson scheme replicated the convective and stratiform regions well due to broad 

and intense development of snow aloft. Thompson is not DM for snow, but it does use a 

unique snow PSD and diagnostic N0s, and TOM contains stratiform coverage similar to 

that produced by the fully DM MOR and MY results. WDM also has areas where high 

ZDR is located on the rear edge of convection in northern Missouri and southern Iowa 



 

31 
 

(indicated by arrows in Fig. 2.3n). In fact, ZDR is relatively low in the most intense areas 

of convection (Z > 40 dBZ), indicating a large number of small to moderate-sized drops. 

Given that wet graupel is the dominant category present (indicated by arrows in Fig. 

2.4e), it is likely that the wet graupel that exists is small and shedding small raindrops. 

This differs from MOR and MY, which also show a significant contribution to Z from 

wet graupel but have much higher ZDR values, indicating larger wet graupel and a 

significant difference in the graupel PSDs between the schemes.  

ZDR differs more substantially between WDM and WSM compared to Z (Fig. 

2.3m-n,p-q). The ZDR maxima from the two schemes are about the same, but in WSM Z 

and ZDR have a monotonic relationship, with the highest ZDR co-located with the highest 

Z; this is because the WSM scheme with a fixed N0 is incapable of size sorting. WDM 

does not improve upon WSM, however, compared to the observations, since Z and ZDR 

do not differ between convective and stratiform precipitation regions and the size 

sorting signatures appear in the wrong locations.  The only difference between WDM 

and WSM is that WDM is DM for rain, further emphasizing the impact that the size 

sorting of graupel has on low-level rain PSDs and the associated ZDR signatures. 

 Simulated KDP is generally lower in all members compared to observations with 

values mostly less than 2.0  ̊km-1. A few more intense convective areas (Z > 50 dBZ) in 

MY and WSM have KDP higher than 2.0 ̊ km-1 (Fig. 2.3i,r) which agrees more closely 

with the observations (Fig. 2.3c). MY and MOR have similar ZDR maxima but generally 

lower KDP compared to the observations so the rain PSDs must contain a lower 

concentration of small to moderate-sized drops (Fig. 2.3c,i,l). The convective regions in 

MY, MOR, and WDM contain significant wet graupel (Fig. 2.4c-e). Low ZDR and KDP 
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are indicative of small wet graupel in WDM (Fig. 2.3n) while significantly higher ZDR 

in MY and MOR (Fig. 2.3h,k) suggests larger wet graupel but with a low water ratio. 

Low ZDR is also indicative of the lack of large raindrops in WDM due to the gamma 

distribution with a short tail in the large drop’s end. WSM has lower ZDR but similar 

KDP (Fig. 2.3f,r) compared to MY and similar ZDR but higher KDP compared to TOM, 

indicating a higher concentration of small to moderate-sized drops due to a large fixed 

N0r. A high bias in graupel compared to observations (Fig. 2.4a) could potentially 

explain low KDP (as compared to an all-rain scenario), but WSM, as well as TOM, have 

similarly low KDP values in areas of pure rain.  

Another significant difference in the forecasts compared to the observations is the 

lack of significant KDP in the stratiform precipitation region over central Iowa. Those 

members that show this trailing precipitation (TOM, MY, MOR) only have noteworthy 

KDP where Z exceeds 35 dBZ (Fig. 2.3f,i,l); the observations exhibit low (but 

consistent) KDP throughout the stratiform region (Fig. 2.3c). Although the melting layer 

differs between the forecasts, which could contaminate the KDP results, KDP is also 

lower in areas of pure rain. In MOR, ZDR is higher than observed in this area, indicating 

PSDs with a few larger raindrops and lower water content overall (Fig. 2.3k). ZDR in 

TOM and MY is closer to the observations but similarly low KDP values suggest an 

overall low bias among the DM schemes in the concentration of moderately-sized 

raindrops and their water content (Fig. 2.3f-i).  The use of a triple-moment (TM) 

microphysics scheme with an effectively variable shape parameter would provide 

greater flexibility to represent a wider range of possible PSDs, including those with a 

greater number of moderately-sized drops and higher liquid water content/rain rate.  
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2.3.1.2 Quantitative evaluation of forecasts 

 Although forecast errors at all scales continuously grow as forecast length 

increases, the error growth rate is much larger for smaller scale phenomenon (e.g., 

convective cells). Additionally, diagnostic metrics are highly sensitive to displacement 

errors for storm scale forecasts, especially for fine-scale structures, making one-to-one 

quantitative verification even more difficult. A few different methods of quantitative 

comparison that help account for these errors are considered.  

Percentile histograms of simulated Z, ZDR, and KDP are calculated over the 

domain used in Fig. 2.3 to gauge the overall distribution of values (Fig. 2.5). The 

histograms are created by first ranking all observed and simulated values individually 

and then distributing the simulated values within 10 bins representing the observed 

percentiles between 0.0 and 1.0. For reference, the observed histograms for each 

variable are provided in Fig. 2.5a-c and a black line indicating the number of observed 

values per bin is provided for all simulated results. There is a high bias in the simulated 

Z results relative to the largest observed Z values, indicative of strong convective 

precipitation, especially for MY and MOR (Fig. 2.5g,j). Qualitative comparisons 

suggested that the convective regions contained more intense precipitation over a larger 

area and that wet graupel contributed to high Z. The observed distribution peaks at 

around 35 dBZ (Fig. 2.5a), which corresponds to Z from the large region of stratiform 

precipitation in central Iowa and contributes to the number of values in the middle 

percentiles. The MOR and TOM distributions are most similar to the observations in 

this mid-range, though all forecasts have at least some low bias. MOR has a consistent 

high bias for low and high Z due to an over-forecast of precipitation coverage (Fig. 
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2.5j). Conversely, WDM has a consistent low bias at nearly all percentiles, lacking the 

stratiform precipitation and significantly under-forecasting precipitation coverage 

overall (Fig. 2.5m).  

The observed distribution of ZDR peaks around 1 dB, and extends up to 4 dB 

(Fig. 2.5b). TOM, and particularly MY and MOR, have a high bias in the higher 

percentiles due to the over-forecast east-west extent of the convective lines. MOR has a 

significant bias above the 90th percentile (Fig. 2.5k) related to the large drops in the 

stratiform region, oblate wet graupel in the convective region, and over-forecast in 

precipitation coverage overall. On the other hand, WDM and WSM have a similar low 

bias above the 50th percentile. The low bias in WSM may be related to the relatively 

high fixed N0r of 8 x 106 m-4 (Fig. 2.5q). Although WDM is DM for rain, it follows a 

similar behavior as the SM WSM, which was also noted in the qualitative evaluation.  

 The KDP histograms for the ensemble members all follow a similar trend relative 

to one another with a steadily increasing number of values up to the 90th percentile. The 

forecasts better match the observations in the mid to upper range of percentiles. There is 

a low bias in the lowest percentiles due to the lack of significant KDP in the stratiform 

regions in the forecasts. Additionally, above the 90th percentile, which represents the 

highest observed KDP values in the convective regions, there is a low bias in all 

members but MY. In general, all members have simulated KDP values lower than 

observed in both stratiform and intense convection regions due to apparent lower liquid 

water contents (TOM and WSM) and contamination by graupel (MOR and WDM).  



 

 
 

35 

 
 
Fig. 2.5. Histograms of observed (a) reflectivity (dBZ), (b) differential reflectivity (dB), and (c) specific differential phase (° km-1) 
mosaic values at a .5° tilt from Fig. 2.3 as well as percentile histograms of simulated values at the same tilt locations from the (d-f) 
TOM, (g-i) MY, (j-l) MOR, (m-o) WDM, and (p-r) WSM forecasts distributed into bins based on the observed percentiles (noted by 
the solid black line). 
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Fig. 2.6. Scatter plot of (a) observed reflectivity (dBZ) and differential reflectivity (dB) mosaic values at a .5° tilt from Fig. 2.3 as well 
as scatter plots of simulated values at the same tilt locations from the (b) TOM, (c) MY, (d) MOR, (e) WDM, and (f) WSM forecasts. 
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 Another quantitative measure to evaluate the PSDs is scatterplots of Z versus 

ZDR at a given location for the observations and forecasts (Fig. 2.6). Data points where Z 

> 5 dBZ from the Fig. 2.3 domain are considered and are categorized by dominant 

hydrometeor type using the same process as for Fig. 2.4. TOM, MY, and MOR show a 

broad overall distribution of Z and ZDR value combinations similar to the observations. 

The additional free PSD parameter in the DM scheme allows for greater flexibilities in 

the range of possible PSDs in the forecast. The high density of data points for rain in the 

observations results from the broad region of stratiform precipitation (Fig. 2.6a). TOM, 

MOR, and MY, which performed well in terms of stratiform precipitation in the 

qualitative evaluation, have a similar concentration of data points for rain. The 

distribution in MOR is shifted toward slightly higher Z and ZDR due to the widespread 

coverage of more moderate to large raindrops in the stratiform region. The large amount 

of melting ice species (snow, graupel, or a mix of both (Fig. 2.6d)) leads to the over-

forecast convective intensity in MOR based on a comparison of the hydrometeor types 

associated these values in Figs. 2.3j and 2.4d; the same is true to a lesser extent with 

MY (Fig. 2.6c). The ZDR maxima displaced from the leading edge of the convection in 

WDM results from wet snow and graupel (Fig. 2.6e, indicated by arrows in Figs. 2.3n 

and 2.4e), while that with TOM is mainly associated with rain (Fig. 2.6b, indicated by 

arrows in Figs. 2.3e and 2.4b).  

 WDM and WSM exhibit very similar distributions (Fig. 2.6e-f). There is little 

spread in the data points in WSM given the one-to-one relationship between Z and ZDR 

in a SM scheme. Again, WDM, being only DM for rain, and with a diagnostic N0s, 

exhibits the least variation compared to the more complex TOM and fully DM MOR 
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and MY. Most of the variation in both WSM and WDM is associated with the presence 

of mixed-phase precipitation where changing liquid and frozen water contents will lead 

to various Z and ZDR combinations.  

Since traditional numerical measures like root mean square error (RMSE) will 

indicate poor results when spatial errors are present, neighborhood methods have been 

developed to account for placement errors when the overall storm structure is otherwise 

good (Ebert 2008). One of these techniques, the fractions skill score (FSS, Roberts 

2008; Roberts and Lean 2008), has been considered in past studies involving the CAPS 

SSEF and is used again here (Schwartz et al. 2009a; Cintineo et al. 2014). The FSS is 

calculated by finding the fraction of forecast grid points in a neighborhood with a given 

radius that exceeds a threshold value compared to the observations. The FSS is designed 

so that as the radius for the neighborhood increases to the size of the domain the score 

will asymptote towards an ideal finite value of 1. If there is bias present in the forecast, 

then the score will be less than 1, except for relatively small scale neighborhoods 

(Mittermaier and Roberts 2010). A forecast can be considered to have measurable skill 

when: 

ܵܵܨ > 0.5 + 	ை೏೚೘ೌ೔೙
ଶ

	,																																															(2.3) 

where ܱௗ௢௠௔௜௡ is the domain-wide fraction of grid points where observations exceed 

the given threshold (Roberts and Lean 2008).  
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Fig. 2.7. Fractions skill scores for the TOM, MY, MOR, WDM, and WSM forecast 
results at increasing neighborhood radii for (a) reflectivity values exceeding 15 dBZ, (b) 
reflectivity values exceeding 40 dBZ, (c) differential reflectivity values exceeding 2.5 
dB, and (d) specific differential phase values exceeding 0.6 ° km-1 for the mosaics in 
Fig. 2.3. The black line indicates skill greater than a random forecast. 
 
 
 The FSS is calculated over the Fig. 2.3 domain for several thresholds for radii 

ranging from 0 to 200 km to account for the regional nature of MCS coverage (Fig. 

2.7). Overall precipitation coverage, including both the convective and stratiform 

regions, is assessed using a threshold of Z > 15 dBZ (Fig. 2.7a). All forecasts perform 

well at this threshold. TOM, MY, and MOR show skill with initial scores around 0.65 

that increase to around 0.9 at the 100 km radius. WDM has the worst score overall, 

averaging around 0.2 less than other members, likely due to the low precipitation 

coverage bias. When the Z threshold is increased to 40 dBZ to assess the prediction of 
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intense convective precipitation (Fig. 2.7b), there is more spread between the members, 

and all members exhibit very poor scores for small radii when large spatial errors are 

present. Interestingly, WDM has the highest score for the 100 km radius due to less 

extensive east-west coverage bias of the convective lines compared to the other 

members. WDM under-forecasts precipitation overall but matches the observations 

better in the convective regions. TOM and MY show some skill using a 100 km radius, 

but do not improve much with increased radii. MOR, which exhibits substantial high Z 

bias due to the over-forecast of intense convective precipitation, has no measurable 

skill.  

 A ZDR threshold of 2.5 dB is chosen to assess convective regions in the 

observations where the largest drops are present, specifically the maxima seen with the 

polarimetric signatures associated with size sorting on the leading edges of convective 

lines (Fig. 2.7c). Scores are generally poor; the only skillful forecasts are TOM, which 

shows skill at a 100 km radius, and MY, which shows skill at a 150 km radius. This 

result indicates the coverage and intensity of significant ZDR in TOM in convective 

regions is closest to the observations without over-forecasting large drops overall within 

the stratiform region. However, the qualitative evaluation in section 2.3.1.1 showed ZDR 

in TOM is displaced and large radii neighborhoods miss these fine-scale details. MOR 

is likely negatively impacted by the high ZDR coverage bias in the stratiform region and 

greater east-west extent of convective regions. WDM and WSM are biased towards 

small hydrometeor sizes.  

 Similarly to ZDR, a threshold of 0.6  ̊ km-1 for KDP is chosen to highlight the 

convective cores where higher liquid water content is present (Fig. 2.7d). The KDP 
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maximum is generally lower in all members than in the observations and skill scores at 

higher thresholds will be very poor. All members have skill for radii greater than 50 km 

(Fig. 2.7d). Thus, convective regions with high KDP are relatively well placed, with the 

caveat that graupel contamination may affect the upper range of these values. The better 

FSS scores for KDP compared to ZDR are likely due to the more direct linkage between 

high liquid water content and intense convection while ZDR patterns associated with size 

sorting are not co-located with Z maxima. ZDR provides a more stringent assessment of 

microphysical processes and states.  

 Since the range of simulated polarimetric variable values in each forecast may 

not match the overall range of the observations, the FSS scores are calculated again for 

the same thresholds using percentiles (Fig. 2.8). The percentile value in the observations 

consistent with each numeric threshold is used as the threshold to assess the forecast 

percentile values. This method normalizes the scores for those forecasts which do not 

produce values as high as the observations, as in the ZDR values for WDM and WSM. 

The scores for Z > 15 dBZ and KDP > 0.6 ̊ km-1 are very similar to the previous results. 

However, the new scores are improved significantly for the Z > 40 dBZ convective 

assessment and ZDR > 2.5 dB which are more affected by maximum value biases.  More 

specifically, those forecast members that showed no skill without using percentiles 

(MOR for Z > 40 dB; TOM, WDM, and WSM for ZDR > 2.5 dB) now show skill at 

higher radii when using percentiles. The most significant improvement is in WDM and 

WSM; these members have a low bias compared to the other members for high ZDR 

values. The percentile calculations show the highest ZDR values from WDM and WSM 

forecasts are well placed compared to the observations but underestimated in value. 



 

42 
 

Future quantitative assessment methods of polarimetric variables may need to take into 

account maximum and minimum value biases.  

 
 

Fig. 2.8. As in Fig. 2.7, but with the FSS scores calculated based on percentile values 
relative to the observations. 
 
 
2.3.2 The 20 May 2013 supercell case 

 Several supercell thunderstorms developed along a stationary cold front and dry 

line across the southern plains early afternoon 20 May 2013, the most intense of which 

occurred over central and southern Oklahoma. Dewpoints in the low 70s (F) and 5000 J 

kg-1 of CAPE combined with winds in excess of 50 kts at 500 hPa associated with an 

upper level trough to create a volatile severe weather environment. The most intense 

storm, which produced an EF-5 tornado, formed near the dry line/cold front intersection 
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as the cold front stalled shortly before 2000 UTC. The tornado killed 24 people and 

caused over 1 billion dollars in damage across the southern Oklahoma City metropolitan 

area (NWS 2014). Additional tornadoes were reported across Oklahoma as well as 

widespread large hail reports over southern Oklahoma (SPC 2014a).  

2.3.2.1 Qualitative evaluation of forecasts 

 Mosaics of 0.5 ̊ tilt observed and simulated Z, ZDR, and KDP for all members at 

2100 UTC (Fig. 2.9) as well as hydrometeor classifications using the same process in 

section 2.3.1.1 (Fig. 2.10) are evaluated. Locations of WSR-88D radar sites within the 

domain used to create the observed and simulated variable mosaics are included in Figs. 

2.9a and 2.10a. The placement and coverage of forecast convection are worse than in 

the MCS case due to the longer forecast lead time, the isolated nature of discrete 

supercell storms, and that storm development is not directly influenced by assimilated 

radar data at the initial condition time.  The Z patterns for the southern Oklahoma 

storms in MY and MOR (indicated by ‘A’ in Fig. 2.9g,j) both exhibit classic supercell 

structure with a hook-echo/rear flank downdraft, indicative of the presence of a 

mesocyclone. It should be noted that the structures are rather large compared to the 

observations; this is often seen in forecasts using a 4 km grid spacing (Lean et al. 2008, 

Johnson et al. 2013). TOM, WDM, and WSM have a line of cells that are smaller and 

low-precipitation in comparison but have supercell characteristics (Fig. 2.9d,m,p). For 

reference, a plot of the Spring Experiment hourly max updraft helicity product (Kain et 

al. 2008; Kong 2013) for 2100 UTC is included (Fig. 2.11); the high values greater than 

150 m2 s-2 for the southern Oklahoma storm in all members are indicative of a 

mesocyclone (indicated by arrows in Fig. 2.11). As in the MCS case, WDM under-
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forecasts the precipitation coverage, while MOR forecasts the most intense 

precipitation. Z in the observations (Fig. 2.9a) generally peaks at a higher value (Z > 50 

dBZ) than in the model forecasts; MOR is most similar to the observations. However, 

the high Z in MOR is due to the presence of wet graupel (Fig. 2.10d), while high Z 

observations are mostly due to rain and hail. There is spurious convection in the 

northwest corner of the domain in all members.  

  The observed ZDR is generally higher on the right (southeastern) edge of the 

forward flanks of the observed cells (Fig. 2.9b), exhibiting a distinctive ZDR arc. ZDR is 

lower in the center of the forward flanks of the central Oklahoma storms, possibly due 

to a hail-induced ZDR hole, but the hydrometeor classification algorithm identifies little 

hail (Fig. 2.10a). The lower ZDR is associated with higher KDP (Fig. 2.9c), indicating 

moderately-sized drops and a high rain rate. ZDR increases along the right forward flank 

of the dominant southern Oklahoma storm in MOR, MY, and to a lesser extent in WDM 

(indicated by arrows in Fig. 2.9h,k,n), while other convective cells are less organized 

and don’t show this signature. The forecasts also don’t show quite the same degree of 

increase in ZDR between the center and right forward flanks as in the observations. As in 

the MCS case, there is a bias toward large drops and oblate, wet graupel in MOR (Fig. 

2.10d). There is wet graupel in MOR, MY,  and WDM along the right forward flank 

(indicated by arrows in Fig. 2.9c-e); Dawson et al. (2014) showed that the size sorting 

of melting hail and graupel had a substantial impact on the model representation of the 

ZDR arc. MOR shows the highest ZDR farther downwind the forward flank than the 

extent of the wet graupel, consistent with Dawson et al. (2014; see their Fig. 17). Wet 

graupel is present along the entire right forward flank in MY and WDM, and the 
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maximum ZDR is not located along the immediate edge. Dawson et al. (2014) also found 

hail better replicated the observed coverage and intensity of the ZDR arc compared to 

graupel which can lead to an over-extensive forward flank, as seen in this case.  

 TOM and WSM did not exhibit the same ZDR pattern as the observations (Fig. 

2.9e,q). There is a one-to-one relationship in WSM where high ZDR occurs with high Z 

in the center of the cells.  Similar to the MCS case, a relative ZDR maximum occurs 

along the edges of smaller cells with less intense precipitation TOM, MOR, and WDM. 

This occurs in the southwest portion of the domain for MOR and TOM, in northwest 

Oklahoma for MOR, and in central Oklahoma for TOM and WDM (indicated by 1, 2, 

and 3 in Fig. 2.9e,k,n, respectively). As noted for the MCS case, high ZDR is sometimes 

associated with aggressive size sorting in developing convection. The drop breakup 

scheme in MOR may have also contributed to the spikes in ZDR values associated with 

weak precipitation in that case. The ZDR in TOM appears particularly misplaced; there is 

a large area of ZDR exceeding 2.5 dB that occurs between the more intense precipitation 

associated with the storm cells. The PSDs in this region are heavily weighted toward a 

few large drops given the low Z. Compared to MY and MOR, TOM, WSM, and WDM 

are not DM for graupel, which was noted to have an impact on size sorting in 

supercells. 
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Fig. 2.9. Mosaics of observed (a) reflectivity (dBZ), (b) differential reflectivity (dB), and (c) specific differential phase (° km-1) at a .5° 
tilt 2100 UTC 20 May 2013 and simulated values at the same tilt locations from the (d-f) TOM, (g-i) MY, (j-l) MOR, (m-o) WDM, 
and (p-r) WSM forecasts. Features of interest referenced in the text are noted by arrows, numbers, and letters. Locations of WSR-88D 
sites used for both the observed and simulated variable plots are noted with black dots in (a). 
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Fig. 2.10. Mosaic of hydrometeor classification using fuzzy logic for (a) observations at 
a .5° tilt 2100 UTC 20 May 2013 as well as classification of highest simulated linear 
reflectivity at the same tilt locations for (b) TOM, (c) MY, (d) MOR, (e) WDM, and (f) 
WSM forecasts. Features of interest referenced in the text are noted by arrows. 
Locations of WSR-88D sites used for both the observed and simulated variable plots are 
noted with black dots in (a). 
 
 

 
 

Fig. 2.11. 2D plots of maximum updraft helicity (m2 s-2) at 2100 UTC 20 May 2013 for 
(a) TOM, (b) MY, (c) MOR, (d) WDM, and (e) WSM. Features of interest referenced in 
the text are noted by arrows. 
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 KDP is under-forecast in all members compared to the observations. The 

observations peak above 3.0 ̊ km-1 (Fig. 2.9c), while only TOM has a maximum above 

1.75 ̊ km-1 (Fig. 2.9f).  Of note, the highest KDP values are not co-located with the 

highest ZDR values in the southern Oklahoma storm in MY and MOR (Fig. 2.9i,l). KDP 

has a relative maximum in the center of the storm but decreases in the right forward 

flank where ZDR is higher, another indication that size sorting has resulted in a few large 

raindrops in the ZDR arc compared to elsewhere in the forward flank. Although there is 

some graupel present in the forecast that may contaminate the KDP results, particularly 

in MOR, most of the forecast convection is classified as pure rain, suggesting liquid 

water content is under-forecast overall.  

2.3.2.2 Quantitative evaluation of forecasts 

 As in Section 2.3.1.2, percentile histograms (Fig. 2.12) and FSSs (Fig. 2.13) are 

considered for quantitative evaluation. Both are calculated over a sub-domain that 

focuses on the line of supercells that extends from southeast Kansas to northwest Texas. 

The MY and MOR histograms show an over-forecast of precipitation coverage (Fig. 

2.12g,j); this over-forecast is present but  confined to lower percentiles in TOM and 

WSM (Fig. 2.12d,p). Given this circumstance, the mostly even distribution of intensities 

in the observations (Fig. 2.12a) is matched relatively well by these members. The WDM 

precipitation coverage is under-forecast so substantially that the Z distribution is lower 

than the observations for all percentiles (Fig. 2.12m).  
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Fig. 2.12. Histograms of observed (a) reflectivity (dBZ), (b) differential reflectivity (dB), and (c) specific differential phase (° km-1) 
mosaic values at a .5° tilt from Fig. 2.9 as well as percentile histograms of simulated values at the same tilt locations from the (d-f) 
TOM, (g-i) MY, (j-l) MOR, (m-o) WDM, and (p-r) WSM forecasts distributed into bins based on the observed percentiles (noted by 
the solid black line). 
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Fig. 2.13. Fractions skill scores for the TOM, MY, MOR, WDM, and WSM forecast results at increasing neighborhood radii for (a) 
reflectivity values exceeding 15 dBZ, (b) differential reflectivity values exceeding 2.5 dB, and (c) specific differential phase values 
exceeding 0.4 ° km-1 for the mosaics in Fig. 2.9. The black line indicates skill greater than a random forecast. 
 
 

 
 

Fig. 2.14. As in Fig. 2.13, but with the FSS scores calculated based on percentile values relative to the observations. 
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 There is a high bias in the amount of ZDR values due to the greater precipitation 

coverage in TOM, MY, and MOR. ZDR in MY actually has a relatively even distribution 

compared to the observations with the caveat that the over-forecast of precipitation 

coverage leads to a higher number of values overall (Fig. 2.12h). After considering the 

grid scale, simulated ZDR in MY represents the varying degree of maximum raindrop 

size in the rain PSD well. MOR has a significant peak at the 70th percentile (Fig. 2.12k), 

corresponding to the widespread ZDR around 2.5 dB and greater in the central forward 

flank regions where wet graupel is present (Fig. 2.10d). ZDR in WSM, for all but the 

lowest percentiles, is lower than the observations compared to TOM, MOR, and MY 

(Fig. 2.12q); this is expected given the fixed intercept parameters used in this SM 

scheme. ZDR in WDM has a significant low bias (Fig. 2.12n) due to small raindrops and 

small, wet graupel in precipitation under-forecast in coverage and intensity.  

 In the KDP distributions, all members but WDM have a similar number of values 

compared to the observations for low KDP percentiles, but their distributions quickly 

decrease for the higher percentiles (Fig. 2.12f,i,l,r). Similarity between the model and 

observed distributions for low KDP is somewhat misleading; forecast KDP is too low in 

regions of heavy precipitation and insignificant in light precipitation, where low KDP is 

seen in the observations. All forecast members appear to have generally lower liquid 

water contents than the observations in pure rain areas.  

 The FSS is calculated for radii only up to 100 km due to the more localized 

nature of the supercell case. All members show some skill for radii of 20-40 km or more 

for a Z threshold of 15 dBZ (Fig. 2.13a). WSM and TOM have noticeably higher scores 

than the other members because the precipitation coverage is more similar to the 
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observations; precipitation coverage is over-forecast in MY and MOR and under-

forecast in WDM. The qualitative evaluation showed more realistic Z and ZDR patterns 

in MY and MOR compared to WSM and TOM but the size of the supercells in the 

former cases was notably larger. Members generally show no skill for ZDR (Fig. 2.13b). 

The KDP threshold (Fig. 2.13c) is decreased slightly compared to the MCS case since 

the simulated values are lower overall (.4 ̊ km-1 instead of .6 ̊ km-1). MY and WSM, as 

in the MCS case, have the best skill for KDP for large radii (> 60 km), but these scores 

are not high (< .7). Issues of grid-scale and storm placement leave many quantitative 

challenges for the simulated polarimetric variables, especially in terms of ZDR patterns 

for a supercell case.  

 Fig. 2.14 replicates the FSS calculations for Fig. 2.13 using percentile values. As 

in the MCS case, those forecasts with very poor scores for ZDR > 2.5 dB due to lower 

maximum values than the observations (WDM and WSM) show significant 

improvement. However, all forecasts still show little to no skill overall. The spatial 

extent and coverage of ZDR signatures for the supercell case appear more difficult to 

match than the MCS case. Unlike the MCS case, the KDP scores are also improved for 

all members. The histograms for each case show that the distribution of KDP values is a 

better match in the MCS case than for the supercell case where there is a greater low 

bias in KDP values. The use of percentiles helps better match the observed and forecast 

distributions for comparison so that all but WDM show at least some skill at the larger 

radii values. It is clear the poor KDP scores when percentiles aren’t used are due to the 

low bias of values in the forecast.  
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2.4 Summary and conclusions 

  Polarimetric variables are simulated from the CAPS spring experiment storm 

scale ensemble forecasts (SSEF) for evaluation of both single-moment (SM) and 

double-moment (DM) model microphysics (MP) schemes. An existing polarimetric 

radar data simulator (PRDS, Jung et al. 2008a; Jung et al. 2010) is modified to add 

several new MP schemes including Thompson (TOM), Morrison (MOR), and WDM6 

(WDM); Milbrandt and Yau (MY) and WSM6 (WSM) were already included. Careful 

attention is paid in the simulation to the hydrometer types and particle size distributions 

(PSDs) of each scheme to properly represent the forecast microphysical state. Two 

cases are considered: a 4-hour forecast for a series of mesoscale convective systems 

(MCS) from 20 May 2013 and a 21-hour forecast of supercell thunderstorms from the 

20 May 2013 Oklahoma tornado outbreak. Simulated reflectivity (Z), differential 

reflectivity (ZDR), and specific differential phase (KDP) from a single ensemble member 

forecast using each scheme with otherwise similar model settings are compared to 

observations from the recently upgraded WSR-88D radar network.  

  ZDR in MOR and MY in the supercell case, as well as classification of the 

hydrometeors present, produce results consistent with Dawson et al. (2014), which 

demonstrated the role that the size sorting of graupel plays in the formation of the ZDR 

arc. The other schemes examined are not DM for graupel and do not show this pattern. 

In addition, the two schemes that best represent polarimetric size sorting signatures 

(MY and MOR) also show better coverage of stratiform precipitation compared to the 

SM WSM scheme. TOM, only DM for rain with a unique snow PSD and diagnostic N0s, 

shows incorrect size sorting signatures but still represents the stratiform precipitation 
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region well. Qualitative and quantitative evaluation shows that WDM, despite being 

DM for rain, has a similar one-to-one relationship between Z and ZDR as WSM and no 

stratiform precipitation development.  The other DM schemes include more complex 

diagnostic equations (TOM) or are fully DM (MY and MOR), demonstrating that size 

sorting of hydrometeor categories in addition to rain is as important in improving the 

forecast microphysical state. TOM, MOR, and WDM all have incorrect ZDR maxima 

associated isolated, weak convection on the back side of convective lines where isolated 

large drops are not expected. 

 Notable biases are present in each scheme. Z and ZDR in the stratiform 

precipitation region of the MCS are too high in TOM, MY, and particularly MOR, 

indicating that the forecast rain PSDs contain too many large drops for stratiform rain. 

The MY, MOR, and WDM forecasts contain a large amount of wet (melting) graupel in 

convective areas, as determined by the coexistence of rain and graupel in the model, 

while the observations have a little hail but mostly rain in similar locations. MY and 

WDM also show this bias, though the coverage is not as broad. These areas of wet 

graupel contribute to more extensive intense Z compared to the observations.  MY 

includes a hail category but contains a similarly significant amount of graupel, likely 

due to a strict minimum hail size threshold in the scheme. Finally, simulated KDP values 

are lower in all members for both cases, particularly in intense convective precipitation 

regions. KDP increases with large amounts of moderate sized drops and higher liquid 

water contents, but large raindrops and graupel with a low water ratio are apparent in 

MOR and MY, while WDM and WSM have a bias toward small raindrops and graupel. 

Additionally, KDP is a measurement related to mass in a volume, and with a low-
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resolution 4 km grid the volumes will be quite large and miss more localized maxima 

that may be present.  

 There are several challenges inherent in large-domain convective-scale forecasts 

that can hamper our ability to gain information about the different microphysics 

schemes from the simulated variables.  A poor forecast of storm structure for a given 

supercell or MCS will be missing notable polarimetric value patterns. For example, 

TOM, WDM, and WSM have poor supercell structures that make ZDR arc comparisons 

more difficult. Previous studies have shown that forecasts performed using 4 km 

horizontal grid spacing may miss some fine-scale details in convection (Bryan et al. 

2003), result in larger scale structures (Lean et al. 2008, Johnson et al. 2013), and 

impede processes such as development of trailing stratiform precipitation (Bryan and 

Morrison 2012; Xue et al. 2013). Other studies that have considered simulated 

polarimetric variables use a smaller grid scale than 4 km: 2 km in Putnam et al. (2014), 

1 km in Jung et al. (2012), and 1 km in Li and Mecikalski (2012). These patterns may 

also be displaced compared to observations, making quantitative comparisons difficult.  

Forecast members show some skill in terms of the fractions skill score (FSS) for 

Z and KDP in the MCS case but higher scores require larger radii, and all forecasts 

exhibit very poor skill for ZDR in both cases. Although qualitative comparisons indicate 

that MY and MOR represent ZDR patterns relatively well, substantial spatial error leads 

to FSS scores with no skill. Normalizing the FSS using percentile values results in a 

significant improvement in skill for foreasts that do not contain simulated values as high 

as the observations. Future studies should continue to adapt these methods as forecasts 

are refined and improved before general statistics can be produced for all forecasts over 
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the Spring Experiment period. Such information could be used in the future to provide 

additional forecast products as well as serve research purposes like determining which 

MP scheme may best represent polarimetric signatures in supercells for use in dual-pol 

data assimilation experiments.  

Finally, we point out that there are also many uncertainties with the polarimetric 

radar simulator. There are various assumptions made on the water drop aspect ratio, 

canting angle of snow, hail, and graupel, and water fraction for mixed phase species. 

These are some of the aspects that still need refinement and tuning, and they can affect 

the microphysics evaluation. Dawson et al. (2014) developed an alternative water 

fraction model for the mixed phases that depends on the size spectrum. The relative 

performance of this model should be evaluated in the future.  
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Chapter 3  Probabilistic Prediction of Polarimetric Radar Variables in 
EnKF-Initialized Ensemble Forecasts of a Mesoscale Convective 

System 
 
 
3.1 Introduction 

 A major focus in recent convective scale numerical weather prediction (NWP) 

research has been improving both the forecast initial conditions and the microphysics 

parameterizations that are important for convective-scale predictions; both areas address 

major challenges identified for the Warn-on-Forecast paradigm by Stensrud et al. 

(2013). Data assimilation (DA), which is an indispensable part of convective-scale 

NWP, aims to improve the forecast initial condition by optimally combining available 

observations and a background model state to produce the best possible estimate of the 

atmospheric state. One popular DA method for convective-scale NWP is the ensemble 

Kalman filter (EnKF, Evensen 1994; 2003), which uses an ensemble of forecasts to 

estimate the background error covariance. The application of EnKF methods for the 

assimilation of radar observations has produced successful results for a variety of real 

storm cases (e.g., Dowell et al. 2004; Dowell and Wicker 2009; Lei et al. 2009; Aksoy 

et al. 2009; Aksoy et al. 2010; Dowell et al. 2011; Snook et al. 2011; Dawson et al. 

2012; Jung et al. 2012; Snook et al. 2012; Yussouf et al. 2013; Tanamachi et al. 2013; 

Putnam et al. 2014, hereafter P14; Wheatley et al. 2014; Snook et al. 2015; Yussouf et 

al. 2015). 

 
 
Note: This Chapter is an extended version of our paper: Putnam, B. J., M. Xue, Y. Jung, N. A. Snook, and 
G. Zhang, 2016: Ensemble probabilistic prediction of a mesoscale convective system and associated 
polarimetric radar variables using single-moment and double-moment microphysics schemes and EnKF 
radar data assimilation. Mon. Wea. Rev., Submitted. 
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 Additionally, microphysics parameterization (MP) schemes are used in 

convective-scale NWP models for the explicit prediction of fields describing the type 

and amount of hydrometeors present within the simulated storms. Most MP schemes 

represent the hydrometeor particle size distribution (PSD) in bulk form via the 

simplified gamma distribution: 

௫(ܦ)ܰ = ଴ܰ௫ܦ௫
ఈೣ݁(ିஃೣ஽)	,                                       (3.1) 

where ܰ(ܦ)௫ is the number of particles of hydrometeor species x with diameter D in a 

unit volume, and Λ௫ , ଴ܰ௫, and ߙ௫ are the slope, intercept, and shape parameters, 

respectively (Ulbrich 1983; Milbrandt and Yau 2005a). MP schemes are often 

characterized by the number of PSD moments that are explicitly predicted and used to 

derive the same number of PSD parameters. Single-moment schemes (SM) usually 

predict the third moment of the distribution, the hydrometeor mixing ratio (qx), while 

specifying the intercept and shape parameters; double-moment (DM) schemes also 

predict the zeroth moment, the total number concentration (Ntx), so that both the slope 

and intercept parameters can be updated. The shape parameter is specified in DM 

schemes. 

 The use of DM scheme for EnKF-based convective-scale NWP has been shown 

to improve storm structure and evolution during the analysis cycles as well as forecasts 

for both supercell and mesoscale convective system (MCS) cases. Dawson et al. (2009) 

showed that DM and triple-moment (TM) schemes produced better predictions of a 

supercell storm than a SM scheme. Xue et al. (2010) first successfully applied EnKF to 

the estimation of model states associated with a DM scheme using simulated radar 

observations of a supercell, while Jung et al. (2012) first successfully used a DM 
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scheme for EnKF radar DA for a real supercell storm. For the 8 May 2003 Moore, 

Oklahoma supercell, Yussouf et al. (2013) found that both a fully DM scheme (which 

predicts total number concentration for graupel, Ntg) as well as a semi-DM scheme 

(which diagnoses intercept parameter for graupel, N0g) produced more small graupel 

than a SM scheme; this graupel was advected farther downwind, forming a broader 

forward flank downdraft (FFD), in agreement with observations. For MCS cases, P14 

and Wheatley et al. (2014) found that DM MP schemes improved the development of 

trailing stratiform precipitation compared to a SM scheme. A dramatic increase in the 

formation and detrainment of snow and ice from the leading convective towers rearward 

over the stratiform region resulted in much broader stratiform coverage. 

 Recently, simulated dual-polarization (dual-pol) radar variables have been used 

to evaluate microphysical states estimated through data assimilation and predicted by 

convective scale models for real cases, by comparing these variables to observations 

(Jung et al. 2012; Li and Mecikalski 2012; Dawson et al. 2014; P14; Posselt et al. 2015; 

Putnam et al. 2016). The dual-pol variables contain additional information on PSDs 

over reflectivity (Z), specifically information about the size, content, and diversity of 

hydrometeors present in the radar volume. For example, differential reflectivity (ZDR) 

values are dependent on the horizontal-to-vertical axis ratio of hydrometeors; values are 

higher for large, oblate raindrops and low for dry, tumbling hail (Bringi and 

Chandrasekar 2001). Additionally, specific differential phase (KDP) is sensitive to the 

amount of liquid water the radar pulse interacts with.  

Dynamical and microphysical processes can lead to significant variation in 

hydrometeor PSDs over small spatial scales. For example, the size-sorting of 
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hydrometeors associated storm-relative wind shear in the forward flank of supercells 

leads to a significant increase in the number of large raindrops in low-level rain PSDs 

that can be identified by an increase ZDR values known as the ZDR arc (Kumjian and 

Ryzhkov 2008; Kumjian and Ryzhkov 2012; Dawson et al. 2014). This signature is 

indistinguishable in the observed Z pattern. Jung et al. (2012), in an EnKF data 

assimilation study of a supercell storm that occurred on 29 May 2004 in central 

Oklahoma, showed that using a DM MP scheme (Milbrandt and Yau 2005b) allowed 

the model to replicate observed dual-pol signatures such as the ZDR arc. P14 found that 

simulated ZDR patterns in the final EnKF analysis of an MCS produced using a DM 

scheme better represented the distribution of large, oblate raindrops in the leading 

convective line and small to medium sized raindrops in the trailing stratiform region 

compared to an analysis produced using a SM scheme. The SM analysis failed to 

capture this distinction, overestimating raindrop size in the stratiform region.  

The P14 study, which considered DM schemes and simulated dual-pol variables, 

focused exclusively on deterministic forecasts of simulated Z. The current study 

expands upon P14 by performing and examining ensemble forecasts of the 8-9 May 

2007 MCS case in terms of both Z and dual-pol radar variables. Ensemble forecasts 

offer additional benefits compared to deterministic forecasts, including the ability to 

produce probabilistic forecasts for precipitation events instead of a binary hit or miss 

forecast. Ensemble forecasts are integral to the Warn-on-Forecast vision outlined in 

Stensrud et al. (2009), providing the basis for operational probabilistic prediction of 

hazards associated with severe convection in the near future. Probabilistic forecasts help 

account for the uncertainties related to both the initial condition and the prediction 
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model (including the microphysics), so as to provide a means of measuring the level of 

confidence in the prediction.  

One of the advantages of EnKF methods is that they inherently provide an 

ensemble of analyses suitable for initializing an ensemble of forecasts (Kalnay 2002). 

Analyses from well-tuned EnKF systems provide a good representation of flow-

dependent background error that properly characterizes the analysis uncertainty (Kalnay 

et al. 2006). EnKF-initialized ensemble forecasts have been used to produce convective-

scale probabilistic forecasts in several recent studies. For tornadic storms, probabilistic 

forecasts have focused on the low-level vorticity; Dawson et al. (2012) and Yussouf et 

al. (2013; 2015; 2016) showed that the ensemble probability of vorticity exceeding 

certain thresholds predicted the observed damage paths of tornadoes well in supercell 

cases, while Snook et al. (2012; 2015) obtained similarly successful results for an MCS 

case. Snook et al. (2012; 2015) also examined and demonstrated the benefits of using 

multiple SM MP schemes in EnKF ensembles for probabilistic forecasts of Z, while 

Yussouf et al. (2016) showed the assimilation of radar data in a continuous-update-

cycle EnKF DA system provides significant improvement during the first three hours of 

probabilistic quantitative precipitation forecasts.  

 In previous convective-scale EnKF studies using DM MP schemes, little 

attention has been given to probabilistic prediction of simulated radar variables or 

quantitative probabilistic forecast skill scores, especially in terms of simulated dual-pol 

variables. Dawson et al. (2012), Yussouf et al. (2013), and Wheatley et al. (2014) 

conducted ensemble forecasts using DM MP schemes, but only examined individual 

member or ensemble mean forecasts, not probabilistic forecasts of Z. Recent studies by 
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Yussouf et al. (2015; 2016) showed promise for probabilistic prediction of radar 

variables; the authors produced probabilistic forecasts of Z exceeding 40 dBZ using the 

semi-DM Thompson (Thompson et al. 2004; Thompson et al. 2008) scheme for the 27 

May 2011 tornado outbreak and 31 May 2013 central Oklahoma supercell case that 

matched the locations of observed supercells well. However, no quantitative 

probabilistic forecast skill scores for Z were presented.  Putnam et al. (2016) simulated 

dual-pol variables from the CAPS storm-scale ensemble forecasts for Hazardous 

Weather Testbest Spring Experiment (Kong 2013) for several members that differed 

only in the use of MP schemes. The study emphasized the differences among the 

different MP schemes in their ability to simulate dual-pol radar signatures, but ensemble 

probabilistic forecasting of dual-pol radar variables was not investigated. 

In this study, we examine for an MCS case ensemble forecasts produced by a 

forecast model employing SM and DM MP schemes during the EnKF DA cycles as 

well as in the subsequent forecasts. We evaluate the probabilistic forecasting skills in 

terms of dual-pol radar variables. As far as we know, probabilistic forecasting in terms 

of the dual-pol radar variables has not been examined before, at least in formal 

literature.   

The remainder of this Chapter is organized as follows: Section 3.2 reviews the 

8-9 May 2007 MCS case and the experiment design, and briefly summarizes the 

methods used in the SM and DM ensemble forecasts. In section 3.3, we assess the skills 

of the ensemble probabilistic forecasts obtained with the SM and DM schemes. Finally, 

section 3.4 summarizes the findings. The challenges associated with probabilistic 
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forecasting and evaluation of highly localized dual-pol signatures are also discussed and 

some suggestions for future research are given.  

3.2 Experimental case and method 

 The model, EnKF settings, and data sources used in this study are all inherited 

from P14. Two experiments are conducted using a SM and DM MP scheme, 

respectively, in which ensemble forecasts are initialized from the final EnKF analyses 

for the 8-9 May 2008 MCS.  The SM ensemble (EXP_S) and the DM ensemble 

(EXP_D) use the same configuration during the EnKF analysis period as the 

corresponding control experiments EXP_S_M_3_5/EXP_S and 

EXP_D_M_3_5/EXP_D from P14. A brief summary of the case and experiment 

settings is provided below.  

3.2.1 System overview 

 On 8 May 2007, an MCS developed in western Texas and moved to the 

northeast into southwestern and central Oklahoma during the evening hours 

(approximately 0000-0500 UTC 9 May).  During the day on 8 May, a positively-tilted 

upper level trough and seasonably warm, moist air at the surface led to the development 

of widespread convection over western Texas. The cool outflow from these storms 

helped to initiate additional convection and contributed to upscale growth over time as 

the storms became organized into a convective line. Ahead of the line, isolated supercell 

storms developed in northwest Texas and southwest Oklahoma. The developing MCS 

interacted with two of these storms, leading to the development and maintenance of a 

line end vortex (LEV) near the northern end of the MCS (P14, Schenkman et al. 2011). 

During the 0100 – 0500 UTC 9 May timeframe the system remained in the asymmetric 
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stage of MCS development, with a broad area of leading stratiform precipitation, an 

intense leading convective line, and a trailing region of stratiform precipitation (Fig. 

3.1), with term definitions based on Fritsch and Forbes (2001)). Widespread heavy rain 

was observed with this MCS, and four tornadoes were reported near the LEV (NWS 

2012). For a more detailed discussion of the development, structure, and impacts of this 

MCS, we refer the reader to P14, Schenkman et al. (2011), and Snook et al. (2011).   

 
 
Fig. 3.1. Mosaic of observed reflectivity (dBZ) from KAMA, KDYX, KFWS, KLBB, 
KTLX, and KVNX at 0200 UTC at about 2 km above ground. The locations of all 
radars assimilated are marked. Also, notable MCS features including the line end vortex 
(LEV), leading convective line, leading stratiform region, and trailing stratiform region 
are given. Reproduced from Putnam et al. (2014). 
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3.2.2 Forecast model settings 

 The forecast model used is the Advanced Regional Prediction System (ARPS, 

Xue et al. 2000; Xue et al. 2001; Xue et al. 2003). ARPS is a fully-compressible, non-

hydrostatic, three-dimensional atmospheric model suitable for convective-scale 

simulation and prediction. ARPS predicts the three-dimensional wind components 

(u,v,w), pressure (p), potential temperature (θ), water vapor mixing ratio (qv), as well as 

the mixing ratios for cloud water (qc), rain (qr), snow (qs), ice (qi), graupel (qg), and hail 

(qh) for a SM MP scheme. For a DM MP scheme, the model also predicts the 

hydrometeor number concentrations (Ntx, where x refers to individual hydrometeor 

species). Additional parameterizations used include NASA Goddard Space Flight 

Center long- and shortwave radiation, 1.5-order turbulent kinetic energy (TKE)-based 

subgrid-scale turbulence closure and convective boundary layer parameterization 

schemes, and a two-layer land surface/soil-vegetation model. More details on the model 

physics can be found in Xue et al. (2001) . The model domain used consists of 259 × 

259 grid points in the horizontal with a 2 km horizontal grid spacing and a stretched 

vertical grid using 53 vertical grid points with a minimum grid spacing of 100 m and 

average grid spacing of 500 m. The model terrain is interpolated to the 2 km grid from a 

30 arcsecond high resolution USGS dataset.  

 The full experiment consists of a 1-hour (h) spin-up period, 1-h data assimilation 

period, and a 3-h ensemble forecast. During the spin-up period, a 1-h deterministic 

forecast on the 2 km model grid is initialized from the NCEP North American 

Mesoscale Model (NAM) analysis at 0000 UTC. The 3-h NAM forecast from 0000 

UTC valid at 0300 UTC and the NAM analysis at 0600 UTC provide lateral boundary 
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conditions during the forecast. At 0100 UTC, smoothed random perturbations are added 

to the 1-h spin-up forecast (Tong and Xue 2008, Snook et al. 2011) to initialize a 40-

member ensemble for performing the EnKF data assimilation cycles. The first 

assimilation is performed at 0105 UTC and the last at 0200 UTC, with an assimilation 

cycle length of 5 minutes. Only radar data are assimilated. Further details on the data 

assimilation are given below.  Following the assimilation period, the final ensemble 

analyses are used to initialize 3-h ensemble forecasts from 0200 UTC through 0500 

UTC.  

3.2.3 Data sources 

 As in Snook et al. (2011) and P14, Level-II Z and radial velocity (Vr) data from 

five WSR-88D S-band radars in Oklahoma and Texas are assimilated. These include 

KTLX of Twin Lakes, Oklahoma City, Oklahoma, KVNX of Vance Air Force Base, 

Oklahoma, KAMA of Amarillo, Texas, KLBB of Lubbock, Texas, and KDYX of 

Abilene, Texas. Together, these five radar sites provide full coverage of the MCS 

during the DA period. KFDR (Fredrick, Oklahoma) is also located near the MCS, but 

level-II data from KFDR are unavailable during the assimilation window. Z and Vr data 

are also assimilated from four experimental X-band radars maintained by the 

Engineering Research Center (ERC) for Collaborative and Adaptive Sensing of the 

Atmosphere (CASA,  McLaughlin et al. 2009) in southwestern Oklahoma. These 

radars, KCYR (Cyril, Oklahoma); KSAO (Chickasha, Oklahoma); KLWE (Lawton, 

Oklahoma); and KRSP (Rush Springs, Oklahoma), provide additional low-level radar 

coverage over a portion of the MCS near the LEV. The National Severe Storms 
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Laboratory’s dual-pol S-band radar KOUN is used for verification. The locations of 

radars used in this study are marked in Fig. 3.1.  

 Radar observations are interpolated to the model grid horizontally, but are left at 

the height of the radar elevation scan in the vertical, following Xue et al. (2006). The 

observations are interpolated to the time of each assimilation cycle using the previous 

and subsequent volume scan. Quality control procedures, include despeckling, ground 

clutter removal, and velocity dialiasing, are applied to the radar data prior to 

assimilation. For the CASA X-band Z observations, attenuation correction is performed  

before the data are assimilated (Chandrasekar et al. 2004).  

3.2.4 Ensemble Kalman filter settings 

 The EnKF algorithm used is an implementation of the ensemble square root 

filter (EnSRF) of Whitaker and Hamill (2002). As mentioned earlier, the ensemble is 

first initialized at 0100 UTC by adding random, smoothed, Gaussian perturbations to 

the 1-h spin-up forecast. Perturbations with a standard deviation of 2 m s-1 are added to 

u, v, and w and a standard deviation of 2 K to θ (using positive values only) across the 

entire model domain. Additional perturbations with a standard deviation of .001 kg kg-1 

are added to the hydrometeor mixing ratios and water vapor but they are confined to 

regions of precipitation where Z is greater than 5 dBZ. The perturbations are smoothed 

following Tong and Xue (2008) and use a horizontal correlation length scale of 8 km 

and vertical scale of 5 km.  

  Processed Z and Vr data from the nine radars are assimilated every 5 minutes 

between 0105 UTC and 0200 UTC. This includes clear-air Z data from the WSR-88D 

radars, which Tong and Xue (2005) have shown helps to suppress development of 
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spurious convection. Clear-air data from the CASA network are not used because of 

uncertainties associated with the X-band attenuation (a Z of zero may be due to 

complete attenuation). Assimilation of Vr is limited to regions where Z > 20 dBZ. The 

radar observation operator used is that of Jung et al. (2008a), which is different from 

that used in Snook et al. (2011) and the same as that in P14. A horizontal and vertical 

covariance localization radius of 6 km is used for both Z and Vr based on the correlation 

function of Gaspari and Cohn (1999). 

 The observation error and covariance inflation methods used are the same as in 

P14. They were chosen based on preliminary experiments using various configurations. 

Radar observation error values of 5 dBZ for Z and 3 m s-1 for Vr are used. Multiplicative 

inflation (Anderson 2001) with a factor of 1.25 is applied to the prior ensemble for grid 

points where Z > 20 dBZ in order to maintain ensemble spread and produce a closer to 

optimal consistency ratio value (Dowell et al. 2004) throughout the assimilation period 

than could be achieved using lower values of observation error and other covariance 

inflation methods such as additive noise (Dowell and Wicker 2009) and relaxation to 

prior ensemble (Zhang et al. 2004).  

3.2.5 Microphysics schemes used and their configurations 

 The two control experiments differ solely in terms of the microphysics scheme 

used. EXP_S uses a combination of three different SM MP schemes. Using multiple 

MP schemes within the ensemble was shown to increase ensemble spread and improve 

root-mean-square innovation (RMSI) during the assimilation period by Snook et al. 

(2011). Of the 40 ensemble members, 16 use the Lin scheme (Lin et al. 1983), 16 use 

the WRF single-moment 6-class WSM6 scheme (Hong and Lim 2006), and 8 use the 
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simplified NWP scheme (NEM) of Schultz 1995). Fewer NEM members are included 

because NEM member forecasts did not tend to perform as well as members using the 

other SM schemes. The intercept parameter used for rain (N0r) is reduced by a factor of 

10 from the typical value of 8 x 106 m-4 to 8 x 105 m-4 , following Snook and Xue 

(2008), who found that the reduced N0r value led to a lower and more realistic 

evaporation rate and associated surface cold pool intensity.  

 The DM experiment, EXP_D, uses the Milbrandt and Yau (MY, 2005b) scheme. 

During the assimilation period, the shape parameters (α) for rain and hail vary inversely 

between 0.0 and 2.0 in 0.5 increments for each member to increase ensemble spread. 

All other hydrometeor categories use α = 0; furthermore α is set to 0 for all categories in 

the forecasts after 0200 UTC. As in Snook et al. (Snook et al. 2011) and P14, the 

graupel category of the MY scheme is turned off to more closely resemble the majority 

of members in EXP_S which did not predict graupel.  

3.3 Results of experiments 

 In this section, ensemble forecast results from EXP_S and EXP_D are 

presented. The results are divided into two parts: (1) an evaluation of the overall 

forecast quality using Z mosaics and (2) verification of simulated dual-pol variables 

against KOUN observations. Evaluations include qualitative discussion of system 

structure and feature placement, evaluation of probabilistic forecasts, as well as 

quantitative verification. We also discuss methods and challenges as they relate to dual-

pol variables.   
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Fig. 3.2. Mosaic of (a,d,g) observed reflectivity (dBZ) as in Fig. 3.1 as well as 
probability matched ensemble mean reflectivity for (b) EXP_S and (c) EXP_D at 0300 
UTC/1-h forecast, (d-f) 0400 UTC/2-h forecast, and (g-f) 0500 UTC/3-h forecast. 
 
 
3.3.1 Ensemble forecasts of radar reflectivity 

3.3.1.1 Qualitative evaluation of reflectivity mosaics 

 Ensemble forecasts of the MCS are evaluated at 1, 2, and 3-h of forecast time by 

verifying the probability matched ensemble mean (PMEM; Ebert 2001) forecasts of Z 

from EXP_S and EXP_D against mosaics of observed Z at model level 10, which is 

approximately 2 km AGL (Fig. 3.2). Model level 10 is the lowest level where complete 
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radar coverage of the MCS is available.  The mosaic of observed Z is created by 

combining observations from the five WSR-88D radars used in the assimilation, with 

observations interpolated to the model grid as discussed above in section 3.2.3. Where 

multiple radars observe a specific grid point, the highest value of Z is used in the 

mosaic. The PMEM is used instead of a regular ensemble mean because Z can vary 

greatly over small distances, leading to under-prediction of intensity and over-

prediction of areal coverage when ensemble members with even slightly-displaced 

convective features are averaged. The PMEM ranks all Z values in the domain from 

highest to lowest for both the ensemble mean and the full ensemble, then reassigns 

values from the full ensemble probability density function of Z to the grid location with 

the same rank in the ensemble mean; this process helps mitigate the aforementioned 

biases introduced by taking the ensemble mean (Ebert 2001; Clark et al. 2009).  

Unlike in P14, the simulated radar variables in the results use a different, more 

complex observation operator than was used for EnKF DA. This operator, outlined in 

Jung et al. (2010), uses a lookup table of scattering amplitudes for all hydrometeors 

calculated using the T-matrix method (Vivekanandan et al. 1991; Bringi and 

Chandrasekar 2001). The simpler operator used during EnKF DA, based on Jung et al. 

(Jung et al. 2008a), uses a fitted approximation to the T-matrix values for rain, and uses 

the Rayleigh approximation for ice species. The simpler operator is used during DA to 

reduce computational expense, while the more advanced operator is used for forecast 

verification because it allows for a more realistic comparison to observations.  

 The PMEM of Z in EXP_S contains a region of anomalously high Z (>55 dB) 

centered near the LEV (see Fig. 3.1), and there is little distinction between regions of 



 

72 
 

stratiform and convective precipitation (Fig. 3.2b,e,h). The intensity of the trailing 

stratiform precipitation is also over-forecast. On the other hand, the PMEM of Z in 

EXP_D (Fig. 3.2c,f,i) contains broader precipitation coverage in the leading stratiform 

region and a convective line with greater southern extent, though it does over-forecast 

the precipitation intensity in the leading stratiform region. The ensemble spread of Z is 

lower in EXP_D than in EXP_S (not shown); only one MP scheme is used in EXP_D, 

leading to closer agreement among members and higher ensemble mean values (Snook 

et al. 2012). These results are similar to those obtained in deterministic forecasts of this 

case in P14, where the authors found the size sorting of smaller raindrops rearward in 

the leading convective line when using a DM scheme (absent in EXP_S) led to greater 

evaporative cooling and a stronger cold pool that helped maintain a more realistic MCS 

structure. They also found that the cold pool in EXP_S is disorganized, contributing to 

the development of spurious convection near the LEV. It should be noted that neither 

EXP_S nor EXP_D predict the small clusters of storms that develop in the southeast 

and southwest portion of the domain in the observations, likely in part because this 

convection developed mostly after the DA period.   

3.3.1.2 Probabilistic forecasts for reflectivity 

 Uncertainty within the ensemble forecast due to, e.g., initial condition and 

model errors, can be considered by producing probabilistic forecasts of Z from the 

forecast ensemble. High-resolution, convection-permitting NWP forecasts are 

particularly sensitive to timing and location errors as forecast lead time increases due to 

the small spatial and temporal scales of convective storms (Lorenz 1969; Roberts 2008). 

To account for this sensitivity, we use the neighborhood ensemble probability (NEP) 
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method (Ebert 2008; Roberts and Lean 2008; Schwartz et al. 2009b), which, at each 

model grid point, produces a probabilistic forecast using a collection of nearby points in 

all ensemble members rather than relying solely on data from that single grid point in 

each member.  In this way, NEP accounts for spatial uncertainty as well as uncertainty 

conferred by the ensemble.  Appropriate specification of the neighborhood is important; 

in this study we use a circular neighborhood with a radius of 5 km, which is appropriate 

for the grid spacing used and convective features predicted (Snook et al. 2012; 2015). 

NEP is calculated for P[Z > 20 dBZ] (Fig. 3.3) and P[Z > 40 dBZ] (Fig. 3.4) at the same 

vertical level 10 as in Fig. 3.2. The 20 dBZ threshold is used to consider overall 

precipitation coverage in the MCS, including the stratiform regions, while the 40 dBZ 

threshold is chosen to focus on areas of heavy, convective precipitation. In Fig. 3.3 and 

Fig. 3.4, the observed Z contours for the corresponding threshold are also plotted.  

 
 
Fig. 3.3. Probability of reflectivity exceeding 20 dBZ at 2 km AGL for EXP_S at (a) 1 
h, (b) 2 h, and (c) 3 h forecast times and (d-f) EXP_D. The thick black line outlines 
observed reflectivity exceeding 20 dBZ. 
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 As was noted in the PMEM forecasts, the NEP forecasts of Z for EXP_D exhibit 

improved precipitation structure and feature placement compared to EXP_S. At the 20 

dBZ threshold, the region of high P[Z > 20 dBZ] in EXP_D (Fig. 3.3d-f) closely 

matches the observed region of 20+ dBZ Z, particularly in the leading stratiform region 

and leading convective line.  In particular, EXP_D predicts broad area of very high 

probability (> 0.9) that closely matches the observed leading stratiform region in terms 

of position, shape, and motion throughout the forecast period. In contrast, EXP_S (Fig. 

3.3a-c) exhibits high probability (> 0.8) for only about half of the observed region of 

20+ dBZ Z during the first two hours of the forecast, and even less in the 3-h forecast. 

EXP_S also has a substantial region of moderately high probabilities (up to 0.8) to the 

west of the MCS where no precipitation is observed.  Considering the individual SM 

microphysics schemes within EXP_S, the LIN members exhibit the best agreement with 

observations in terms of forecast coverage and intensity of Z; WSM6 members 

generally over-forecast the extent of the trailing stratiform region, while NEM members 

under-forecast the extent of both the trailing and leading stratiform regions (not shown). 

These results are consistent with those of Snook et al. (2012), which, using a similar 

ensemble with the same MP schemes, found that the RMS innovation of Lin members 

during the forecast period was lower than that of WSM6 and NEM members. In both 

EXP_D and EXP_S, low probabilities are predicted for the for the trailing stratiform 

precipitation region; overall, this region is the worst forecast portion of the MCS.  
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Fig. 3.4. Probability of reflectivity exceeding 40 dBZ at 2km agl for EXP_S at (a) 1-h, 
(b) 2-h, and (c) 3-h forecast times and (d-f) EXP_D. The thick black line outlines 
observed reflectivity exceeding 40 dBZ. 
 
 
 Although overall precipitation coverage (Z > 20 dBZ) is generally good for both 

cases, the P[Z > 40 dBZ] associated with heavier convective precipitation exhibits 

greater error. EXP_S has only a small overlap of low probabilities (0.05-0.2) with the 

observed 40 dBZ region in the 1-h forecast (Fig. 3.4a); EXP_D has greater overlap 

throughout the forecast period (Fig. 3.4d-f), but the predicted probabilities remain low. 

The convective line has a width of a few km and will be more susceptible to spatial 

error as forecast lead time increases compared to the stratiform regions, even with the 

consideration of a 5 km neighborhood. EXP_D also has higher probabilities in the 

convection near the LEV on the north end of the MCS. However, there are areas of high 

probability in the stratiform region as well, where EXP_D over-forecasts Z intensity. 

The over-forecast in intensity is in part due the height of the model grid used in Fig. 
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3.2-3.4 being close to the melting layer, where high Z occurs due to the presence of 

large, oblate, and wet hydrometeors. MP schemes thus far used with the simulator have 

shown a tendency to delay melting until warmer temperatures at lower elevations 

compared to observations due to overestimated evaporative cooling (Jung et al. 2008a). 

Because radar coverage is incomplete below this level, though, this issue is difficult to 

avoid. A modified melting model in the radar simulator that includes temperature 

information to help account for the delay is considered for future work.  

3.3.1.3 Quantitative evaluation of reflectivity forecasts 

 Qualitative evaluations based on the PMEM (Fig. 3.2) show quite skillful 

forecasts in terms of Z but there are still apparent spatial errors that would adversely 

affect quantitative skill scores. The NEP of Z > 40 dBZ used to identify the leading 

convective line indicated how small spatial error can lead to lower Z probabilities. 

When considering features with small spatial scales, scores such as the equitable threat 

score, which consider hits, misses, and false alarms in a deterministic point by point 

framework, are susceptible to a ‘double-penalty’: a forecast with even a modest spatial 

displacement in a feature not only misses the observed feature but also produces a false 

alarm because the forecast feature is not coincident with any observed feature (Ebert 

and McBride 2000; Rossa et al. 2008; Mittermaier et al. 2013).  Therefore, quantitative 

measures that consider the probability of an event within a neighborhood are 

considered.  
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Fig. 3.5. Area under the relative operating characteristic curve (AUC) for EXP_S (red 
line and shading) and EXP_D (blue line and shading) at (a) 1-h, (b) 2-h, and (c) 3-h 
forecast times at 2 km AGL for the full experiment domain and also (d-f) a subdomain 
covering Oklahoma. 
 
 
 The first metric considered is the area under the relative operating characteristic 

(ROC) curve (AUC, Mason 1982; Mason and Graham 1999). The AUC is a summary 

skill score that compares the probability of detection and the probability of false 

detection for a given event over a range of probability thresholds; in this case the event 

is Z exceeding a given threshold within a neighborhood with a 5 km radius. Possible 

AUC values range from 0.0 to 1.0, with 1.0 indicating a perfect forecast (no false 

alarms or misses). AUC values of 0.5 or below indicate that the forecast has no useful 

skill.  AUC is calculated for EXP_S and EXP_D using Z thresholds ranging from 10 

dBZ to 50 dBZ for 1, 2, and 3-h forecast times (Fig. 3.5), and a bootstrap procedure is 

used to resample the ensemble 1000 times to determine the 5th to 95th percentile range, 



 

78 
 

which is shaded. Background shading is included to indicate the areas of useful forecast 

skill (green; AUC > 0.7), low skill (yellow; 0.5 < AUC < 0.7), and no skill (red; AUC < 

0.5). Calculations are performed over the full experiment domain (Fig. 3.5a-c) as well 

as an Oklahoma subdomain positioned to cover the leading stratiform region and 

leading convective line, where both forecasts performed better compared to the trailing 

line (Fig. 3.5d-f).  

 Both experiments generally produce high AUC values, except for the very 

highest Z thresholds, associated with intense convective precipitation; confidence in 

AUC at these thresholds is low, however, because the sample size of Z exceeding these 

thresholds is quite small, and the regions in question are very small in spatial extent. 

AUC also, as expected, decreases with increasing forecast time. In general, EXP_D 

shows improvement over EXP_S in skill, especially for moderate Z thresholds 

representing the stratiform region in the later hours.  

 The AUC increases overall for both experiments when calculations are limited 

to the Oklahoma subdomain (Fig. 3.5d-f). In the 1-h forecast, AUC is similar in EXP_S 

and EXP_D, but in the 2 and 3-h forecasts, EXP_D outperforms EXP_S in terms of 

AUC at nearly all thresholds. In particular, EXP_D has an AUC value over 0.9 for 

thresholds of 20-25 dBZ throughout the forecast period over the Oklahoma subdomain 

(Fig. 3.5d-f), indicating a highly skillful forecast of general precipitation coverage of 

the leading stratiform region. EXP_D also exhibits useful skill (AUC > 0.7) for higher Z 

thresholds representing convective precipitation throughout the forecast period over the 

Oklahoma subdomain, suggesting that the poorer scores over the full domain are 

partially due to the overly quick dissipation of the trailing convective line and the 
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newly-developed convection in the southern portion of the domain, while the leading 

convective line is generally well forecast.  

 
 

Fig. 3.6. Reliability diagrams calculated for reflectivity exceeding 20 dBZ for EXP_S 
(red line) and EXP_D (blue line) at (a) 1-h, (b) 2-h, and (c) 3-h forecast times at 2 km 
AGL for the full experiment domain and also (d-f) a subdomain covering Oklahoma. 
 
 
 Reliability and sharpness diagrams are examined next. A probabilistic forecast is 

considered reliable when the probability of an event forecast to occur closely 

corresponds to the rate at which the event actually occurs (Brown 2001).  Reliability 

diagrams are calculated for P[Z > 20 dBZ] using a 5 km radius neighborhood at 1, 2, 

and 3-h forecast times (Fig. 3.6). In these reliability diagrams, perfect reliability is 

indicated by the one-to-one diagonal and the shaded region indicates a skillful forecast. 

Areas where the calculated reliability lies above the diagonal indicate that Z is under-

forecast (forecast probability is lower than the observed frequency); conversely, areas 
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below the diagonal indicate that Z is over-forecast (forecast probability is higher than 

the observed frequency). Sharpness diagrams, which are histograms of the calculated 

probability values, are shown in Fig. 3.7. An ideal forecast will have many values near 

1.0 or 0.0, distinguishing sharply between events and non-events. Calculations are again 

performed over both the full domain and Oklahoma subdomain.  

 
 
Fig. 3.7. Sharpness diagrams calculated for reflectivity exceeding 20 dBZ for EXP_S 
(red) at (a) 1-h, (b) 2-h, and (c) 3-h forecast times and (d-f) EXP_D (blue) at 2 km AGL 
for the full experiment domain and also (g-l) a subdomain covering Oklahoma. 
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 Overall, there is not much difference in the reliability of EXP_S and EXP_D 

either on the full domain or the Oklahoma subdomain. For the 1-h forecast time (Fig. 

3.6a,d), both forecasts show good reliability, with the region of Z > 20 dBZ slightly 

under-forecast in EXP_S and slightly over-forecast in EXP_D. For the 2 and 3-h 

forecast times (Fig. 3.6b,c,e,f), precipitation coverage is generally over-forecast in both 

experiments. EXP_D does show greater sharpness than EXP_S, particularly over the 

Oklahoma domain (Fig. 3.7j-l). Both experiments have a large number of probabilities 

of 0.0 that represent the large areas where precipitation is not observed, but EXP_D has 

a much higher number of points with probabilities close to 1.0 where the ensemble 

predicts precipitation with very high confidence. As indicated by the AUC (Fig. 3.5) 

and the qualitative evaluation of NEP forecasts (Fig. 3.3), this region of very high 

confidence agrees well with observations in EXP_D, outperforming EXP_S.  

3.3.2 Ensemble forecasts of polarimetric variables 

3.3.2.1 Qualitative evaluation of predicted polarimetric variables 

 The PMEM is calculated as in Fig. 3.2 for simulated Z, ZDR, and KDP as though 

the ensemble forecasts of EXP_S and EXP_D were observed by KOUN at 1-h (Fig. 

3.8), 2-h (Fig. 3.9), and 3-h (Fig. 3.10) forecast times; KOUN observations at the 

corresponding times are provided for comparison. The simulated fields are shown at the 

0.5° elevation; this choice of the lowest elevation is because dual-pol radar signatures 

tend to be the strongest at the low levels where size sorting effects (Dawson et al. 2014) 

and rain water species dominate. Also, the lower elevation is less affected by the 

melting layer. The difference in Z between the forecasts over the KOUN observing 

region is similar to the PMEM mosaics considered earlier (Fig. 3.2); EXP_D exhibits 
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improved representation of the leading convective line and better coverage of the 

stratiform region compared to EXP_S, though it somewhat overestimates intensity due 

to a low melting layer.  

 
 
Fig. 3.8. (a) Observed reflectivity (dBZ) and simulated reflectivity from (b) EXP_S and 
(c) EXP_D at 0300 UTC/1-h forecast at a 0.5° tilt from KOUN, as well as (d-f) 
differential reflectivity (dB) and (g-i) specific differential phase (°km-1). 
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Fig. 3.9. As in Fig. 3.8 but at 0400 UTC with 2-h forecast results. 
 
 

There are two notable differences between EXP_D and EXP_S in terms of their 

forecast dual-pol fields. First, the areal coverage of high ZDR values (ZDR > 2.3dB), a 

threshold that distinguishes the convective region from the stratiform region in the 

observations, is over-forecast in EXP_S. The highest ZDR values predicted by EXP_S 

are coincident with the poorly-organized region of intense convection within the system 

due to the monotonic relationship between the Z and ZDR (e.g., Fig. 3.8e). The ZDR 
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values in EXP_D (Fig. 3.8f), while slightly higher than the observations (Fig. 3.8d), still 

show a similar general distribution of high and low ZDR regions compared to the 

observations, indicating a distinct difference in maximum raindrop size between the 

convective and stratiform regions that is maintained throughout the entire forecast 

period. P14 found that these MCS features were maintained by an improved cold pool 

due to increased evaporative cooling from the advection of small raindrops rearward by 

the DM scheme.  

 
 
Fig. 3.10. As in Fig. 3.8 but at 0500 UTC with 3-h forecast results. 
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 The second notable difference is that the KDP values in EXP_S are 

unrealistically high when compared to the observations, with values peaking at nearly 

10 ° km-1, suggesting that EXP_S greatly over-forecasts liquid water content in the 

convective precipitation. By comparison, KDP in EXP_D is much closer to the 

observations. The difference in KDP values during the forecast in the current study is 

notable when compared to P14, where dual-pol variables were considered only for the 

analysis (not for forecasts). In the P14 analysis, KDP values were generally quite similar 

between SM and DM experiments, with KDP slightly underestimated compared to the 

observations due to a high hail bias. However, the ZDR patterns differ between the SM 

and DM analyses in P14 and in the forecasts of EXP_S and EXP_D in the current study. 

These differences in ZDR occur in the stratiform region. The region of non-zero KDP 

values is mainly confined to the leading convective line. The unrealistically-high KDP 

values in EXP_S occur by the first forecast hour. Rain development in the stratiform 

region of the MCS is heavily dependent on the transport of frozen hydrometeors in the 

mid and upper levels of the MCS from the convective to the stratiform region. There is 

very little hydrometeor transport from the convective line to stratiform region in the SM 

case (P14), and therefore there is a higher precipitation rate in the convective line. 

While the difference in KDP values in the convective region between the SM and DM 

experiment is less substantial in the analysis, the improved development and 

maintenance of the MCS when using the DM scheme leads to improved representation 

of ZDR and KDP fields, compared to the observations, throughout the forecast (Fig. 3.8-

Fig. 3.10).  
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Fig. 3.11. (a) Observed reflectivity (dBZ) and simulated reflectivity from (b) EXP_S 
member 14 and (c) EXP_D member 39 at 0400 UTC/2-h forecast at a 0.5° tilt from 
KOUN, as well as observed (d) and simulated (e-f) differential reflectivity (dB). 
 
 
 The patterns in the dual-pol variables that reflect microphysical processes can be 

subtle; one such pattern is increased ZDR along the leading convective line due to size 

sorting. Though the PMEM helps to alleviate some of the biases introduced by taking 

an ensemble mean, it can smear such high-detail patterns. For this reason, the best 

individual ensemble member from each experiment is examined in order to bring to 

light distinct pattern differences within the predicted dual-pol fields (Fig. 3.11). The 2-h 

forecast of EXP_S member 14 and EXP_D member 39 are chosen based upon a 

qualitative examination of the ensemble members that considers placement of system 

features, ZDR patterns, and overall value range. The best EXP_S member contains 

precipitation extending southeastward where the observations have the leading 
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convective line, but the intensity and extent is rather limited compared to the best 

EXP_D member. As expected, areas of high ZDR coincide with areas of high Z in the 

EXP_S member. In the EXP_D member, however, high ZDR values are located along 

the eastern/leading edge of the leading convective line, a pattern consistent with the 

presence of size sorting of raindrops within the convective line, with smaller raindrops 

being advected rearward in the line while larger raindrops remain.  At least physically 

such features are realistic. 

3.3.2.2 Probabilistic forecasts of polarimetric variables 

 In section 3.3.1.2, probabilistic forecasts were used to evaluate the ensemble 

forecast precipitation coverage of stratiform and convective precipitation, based on 20 

and 40 dBZ Z thresholds, respectively. A distinct variation in the ZDR values also 

occurs, with ZDR increasing where larger raindrops are present along the leading edge of 

the convective line. To evaluate how well the two experiments forecast the high ZDR 

signatures, the probability of ZDR > 2.3 dB at the 1, 2, and 3-h forecast time is calculated 

(Fig. 3.12). The threshold of ZDR = 2.3 dB is chosen based on the observed values in this 

case (Fig. 3.8d, 3.9d, 3.10d), and the observed ZDR = 2.3 dB contour is shown as a thick 

black line. EXP_S has a broad expanse of relatively high probability of ZDR > 2.3 dB 

over the stratiform region, a result consistent with the overall pattern of ZDR in Fig. 3.8e, 

3.9e, and 3.10e. This region of high P[ZDR > 2.3 dB] is significantly displaced from the 

observed leading convective line. In EXP_D, there is some overlap of low to moderate 

probabilities of ZDR > 2.3 dB with the observed 2.3 dB contour in the 1-h forecast, and 

some overlap of low probabilities at the 2 and 3-h forecasts. Though the regions of 

moderate P[ZDR > 2.3 dB] in EXP_D do not exactly match the observed region of high 
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ZDR, the geographic distribution of higher probability follows a north-northwest to 

south-southeast orientation, similar to the observed leading convective line, and 

substantially improved compared to the more circular pattern found in EXP_S. The 

EXP_D probabilistic forecast of ZDR thus has greater practical value, indicating 

moderate probability of an arc of larger raindrops relatively near the observed leading 

convective line, correctly indicating the existence and general direction of motion of 

leading convection in the MCS within the ensemble forecast.  

 
 
Fig. 3.12. Probability of differential reflectivity exceeding 2.3 dB at a 0.5° tilt for 
EXP_S at (a) 1-h, (b) 2-h, and (c) 3-h forecast times and for (d-f) EXP_D. 
 
 
3.3.2.3 Quantitative verification of polarimetric variables 

 The same concerns for how small spatial errors can affect quantitative skill 

scores of Z discussed in section 3.3.1.3 are even greater when considering skill scores 

for predicted dual-pol variables. Dual-pol signatures follow patterns associated with 
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microphysical processes that occur at very small scales, such as the size-sorting of 

raindrops along the leading convective line. With this potential limitation in mind, the 

AUC is calculated for ZDR (0.0 to 2.7 dB) and KDP (0.0 to 1.5 ° km-1) for the 1, 2, and 3-

h forecasts (Fig. 3.13) using a 5 km neighborhood radius as was done in Fig. 3.5 for Z. 

Both experiments have similar, skillful AUC values for predicting ZDR at thresholds of 

0.0 to 1.0 dB (Fig. 3.13a-c). For higher thresholds, the AUC for EXP_S indicates very 

poor skill, while EXP_D still produces a skillful forecast. AUC for ZDR is better in 

EXP_D due to the lower ZDR values throughout the leading stratiform region, which 

agree much more closely with observations than the forecast of EXP_S. The ZDR 

associated with the leading convective line also has a good overlap with observed 

values in EXP_D. EXP_S outperforms EXP_D for the considered thresholds of KDP due 

to erroneous broader coverage in EXP_S that overlaps the observations and the 

displacement error in EXP_D. KDP coverage is significantly less than either Z or ZDR; 

AUC is particularly sensitive to the probability of detection and therefore EXP_D 

scores are poorer. Additionally, the significant high bias in KDP in EXP_S is not 

accounted for at these thresholds chosen based on observed values; the AUC threshold 

limit is set to 1.5 ° km-1 because few observations exceed this value. KDP is poorer 

qualitatively in comparison to EXP_D, but limitations in the quantitative scores used 

lead to poor and misleading results.   
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Fig. 3.13. Area under the relative operating characteristic curve (AUC) for differential 
reflectivity (dB) for EXP_S (red line and shading) and EXP_D (blue line and shading) 
at (a) 1-h, (b) 2-h, and (c) 3-h forecast times at a 0.5° tilt as well as for (d-f) specific 
differential phase (° km-1). 
 
 
 Due to the large impact of spatial error on the quantitative skill scores for the 

dual-pol variables, other quantitative methods of evaluation not reliant on location are 

useful. Domain-wide histograms of the simulated dual-pol variables can be used to 

identify significant biases in the forecast. Histograms of the simulated values from all 

members of EXP_S and EXP_D as well as the observed values are plotted in Fig. 3.14. 

The values from EXP_S and EXP_D are normalized by the size of the ensemble for 

comparison to the observations. For observed Z, values associated with the widespread 

stratiform precipitation lead to a peak between about 30 to 35 dBZ throughout the 

experiment period (Fig. 3.14a-c). The EXP_D ensemble forecast Z values match the 

observed distribution in this range better than EXP_S during the first two forecast 
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hours. Both experiments over-forecast the geographic extent of the convective 

precipitation, and over-forecast the intensity of Z in part due to the influence of the 

melting layer, leading to a higher number of Z > 50 dBZ values compared to the 

observations, though this high bias is slightly greater in EXP_S than in EXP_D for 

forecast hours one and two.  

 
 
Fig. 3.14. Histograms of observed (black) KOUN and simulated reflectivity (dBZ) 
values from EXP_S (red) and EXP_D (blue) at (a) 0300, (b) 0400, and (c) 0500 UTC at 
a 0.5° tilt as well as (d-f) observed and simulated differential reflectivity (dB) values 
and (g-i) observed and simulated specific differential phase (° km-1) values. The values 
in EXP_S and EXP_D are normalized by the size of each ensemble. 
 
 
 Differences between EXP_S and EXP_D are readily apparent in histograms of 

the predicted dual-pol values (Fig. 3.14d-i). Observed ZDR values (Fig. 3.14d-f) peak at 

about 1.0 to 1.5 dB due to the broad coverage of moderately-sized raindrops in the 
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leading stratiform region. EXP_D over-forecasts the coverage of the leading stratiform 

precipitation, leading to an overall high-bias in the ZDR histogram, and slightly over-

forecasts the location of the histogram peak in ZDR values, but the overall histogram 

pattern is similar to that of the observations. EXP_S, on the other hand, has a uniform 

distribution of ZDR values throughout the forecast period, with no evidence of the peak 

seen in the observations and in EXP_D, due to the lack of broad coverage of stratiform 

precipitation in EXP_S. EXP_S also has a larger number of very high values (ZDR > 

3.0dB) resulting from the unorganized region of intense convection in the center of the 

system. Relatively little bias is noted in the KDP histograms for EXP_D, producing 

histograms similar to that produced by to the dual-pol observations (Fig. 3.14g-i). 

EXP_S over-forecasts the total coverage of non-zero KDP values, again suggesting a 

high-bias in liquid water content overall compared to the observations. This substantial 

high-bias in liquid water content in convective precipitation skews EXP_S towards high 

values, with grid volumes exhibiting KDP > 3.0 ° km-1, particularly in the 1-hour 

forecast (Fig. 3.14g).  

3.4 Summary and conclusions 

 Ensemble forecasts initialized from cycled EnKF ensemble analyses are 

produced for a mesoscale convective system (MCS) that occurred over Oklahoma and 

northern Texas on 8-9 May 2007 using single-moment (SM, Lin et al. 1983) and 

double-moment (DM) microphysics (Milbrandt and Yau 2005b) schemes. Qualitative 

and quantitative probabilistic methods are used to examine the MCS structure and 

precipitation distribution for the SM (EXP_S) and DM (EXP_D) experiments. 

Additionally, predicted dual-polarization (dual-pol) radar variables and their 
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probabilistic forecasts are also evaluated against available dual-pol radar observations, 

and discussed in connection with model predicted microphysical states and structures. 

The current study expands on the work of Putnam et al. (2014) which focused on the 

EnKF data assimilation and the deterministic forecasting aspects of the same two 

experiments that used SM and DM microphysics schemes, respectively. This paper 

focuses on ensemble probabilistic forecasting of reflectivity and the simulated dual-pol 

radar variables associated with the 8-9 May 2007 MCS. 

 EXP_ D produces a very good qualitative and quantitative prediction of the both 

the overall precipitation coverage of the system (considering a threshold region of Z > 

20 dBZ). EXP_S under-forecasts the leading stratiform precipitation and produces a 

large, poorly-organized region of convection rather than an organized leading 

convective line. EXP_D has higher forecast skill, measured in terms of the area under 

the relative operating characteristic curve (AUC), for 2 and 3-h forecasts of the 

stratiform precipitation and leading convective line comprising the northern portion of 

the MCS. EXP_D also provides ensemble forecasts with greater sharpness, as well as 

one in which the highest precipitation probabilities match regions of observed 

precipitation at a higher frequency.  

 EXP_D better represents the microphysics-related features in the MCS 

throughout the forecast period. This is notable in terms of ZDR values, where the dual-

moment ensemble forecast shows a clear distinction between the convective and 

stratiform precipitation regions, similar to that seen in the final EnKF analysis in 

Putnam et al. (2014), which continues throughout the forecast period. Additionally, 

EXP_D implies more realistic liquid water content in the convective region than 
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EXP_S, where unrealistically high KDP values suggest the liquid water content has been 

over-forecast, associated with the unorganized system structure and precipitation 

development in the forecasts.  

Producing meaningful probabilistic forecasts for dual-polarization (dual-pol 

variables proves challenging. Dual-pol signatures are often produced by physical 

processes within convective systems with very small spatial scales; scales of less than a 

few kilometers often. These small-scale structures are smeared when probabilistic 

forecasts are generated using neighborhood-methods or a probability-matched ensemble 

mean. When individual ensemble members are examined, though, EXP_D shows 

superior predicted dual-pol fields compared to EXP_S, producing a notable arc of high 

ZDR along the leading convective line in the MCS, resulting from size-sorting as smaller 

raindrops are advected rearward in the line while large raindrops fall faster along the 

leading edge. Such size-sorting processes are not represented in EXP_S, where ZDR 

shows a monotonic relationship with Z. Probabilistic forecasts of ZDR for EXP_D, while 

not particularly accurate in matching the location of the observations, still indicate the 

presence of this arc of large raindrops along the leading convective line and the general 

direction and speed of motion of the line. 

 This is the first study to consider explicit ensemble-based probabilistic 

forecasting of simulated dual-pol radar variables, and it highlights several challenges for 

future work. Even on high resolution grids capable of resolving microphysical patterns 

that occur on small spatial scales, quantitative verification scores for dual-pol signatures 

that usually have very small spatial scales (even compared to convective storms) suffer 

from a double penalty: forecasts of precipitation variables not only miss the location of 
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the observations (a ‘miss’), but also occur in a nearby location where the event was not 

observed (a ‘false alarm’). Some probabilistic neighborhood-based metrics are used in 

this case, including the AUC, to help account for spatial errors, but the distance and 

orientation of patterns in the simulated variables still presents a challenge when using 

such methods. Scores for dual-pol variables, specifically KDP, are poorer as the 

threshold considered increases, despite the neighborhood radius of 5 km used, due to 

both the small spatial scale of the patterns being considered and discrepancy in the 

range of forecast values versus observed values. Although using a larger neighborhood 

may alleviate to a larger extent the effect of spatial error, the probabilistic forecasts 

produced using progressively larger neighborhood radii will be more and more 

smoothed, losing the resolution necessary to capture small-scale features and negating 

their intended purpose.  Additional methods of quantitatively evaluating dual-pol 

variables include histograms, which can provide information on general biases without 

considering spatial error. In such histograms produced for this case, high biases in the 

number of large drops and overall liquid water content, as suggested by the high biases 

in predicted KDP values, are identified in EXP_S, likely due to the representation of 

convective precipitation within EXP_S. Possible future quantitative verification 

methods for dual-pol fields include object-based methods (e.g. Davis et al. 2006, 

Johnson et al. 2013, Zhu et al. 2015) that match similar storm features in observations to 

those in the forecasts to better compare dual-pol variable patterns; this, and other 

forecast evaluation methods for dual-pol fields, remains a promising area for future 

research endeavors. More studies evaluating and improving microphysics 
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parameterizations and the dual-pol radar simulators are also needed (e.g., Johnson et al. 

2016b; Putnam et al. 2016).  
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Chapter 4  Assimilation of Polarimetric Radar Data using EnKF: 
Experiment Setup and Sensitivity Testing 

 
 
4.1 Introduction  

Convective storms feature complex cloud microphysical and dynamical 

processes that interact with one another to lead to a diverse microphysical state, or the 

variation of different hydrometeor types and their particle size distributions (PSDs). For 

example, small raindrop evaporation in connective downdrafts increases the transport 

and intensity of colder air to the surface and has a significant effect on the surface cold 

pool (Snook and Xue 2008). In a reverse example, storm relative wind shear leads to the 

size sorting of hydrometeors, where larger hydrometeors fall closer to the updraft of a 

supercell while smaller hydrometeors are advected further outward in the forward flank 

(Kumjian and Ryzhkov 2012; Dawson et al. 2014). It is these highly non-linear chaotic 

processes and complex microphysical states that contribute to fast error growth in 

convection allowing model (CAM) forecasts, even when there are only slight deviations 

in the initial model state compared to the atmospheric state (Lorenz 1969; Larson et al. 

2005; Wang et al. 2012). Data assimilation, or optimally combining a background 

model state with available observations, is used to best replicate the state of these 

convective storms for analysis and forecast initialization (Kalnay 2002). However, 

observations of the microphysical state of convective storms used for assimilation have 

thus far been limited to one parameter, reflectivity (Z).  It is vital that we increase the 

amount of observed information during data assimilation as new meteorological 

observation systems become available, including the use of dual-polarimetric (dual-pol) 

radar observations, to improve the model microphysical state. 
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 Dual-pol radars provide additional observations of the atmospheric 

microphysical state compared to Z alone, which is mainly a bulk representation of the 

number and size of the combination of hydrometeors present. The additional dual-pol 

parameters include differential reflectivity (ZDR), which provides information on the 

axis ratio of hydrometeors, and specific differential phase (KDP), which provides 

information on the liquid water content of hydrometeors (Bringi and Chandrasekar 

2001). In addition, specific combinations and patterns of these parameters can be used 

to identify the known important microphysical and dynamical processes in convective 

storms, known as polarimetric signatures (Kumjian and Ryzhkov 2008). For example, 

the ZDR arc signature seen in the forward flank of supercells is indicative of the 

aforementioned hydrometeor size sorting due to storm-relative wind shear (Kumjian 

and Ryzhkov 2008; Kumjian and Ryzhkov 2012; Dawson et al. 2014 Dawson et al. 

2014) . Another signature, the KDP foot, is a region of increased precipitation rate near 

the surface due to melting hail shedding rain drops and may serve as an indicator of the 

location of the forward flank downdraft (FFD) (Romine et al. 2008; Crowe et al. 2012).  

The recent dual-pol upgrade of the national WSR-88D radar network provides CONUS-

wide coverage of dual-pol observations (ROC 2013), which had previously been limited 

to a few experimental and mobile radars.  These vital dual-pol parameters are now 

consistently available nationwide for both research and future operational assimilation 

purposes with CAMs.   

 The assimilation and forecast performance of a CAM in terms of representing a 

wide variety of atmospheric microphysical states important microphysical processes is 

inherently tied to the cloud microphysics scheme used. Most microphysics schemes 
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currently used represent the PSDs of hydrometeors in bulk form with the gamma 

distribution  

௫(ܦ)ܰ = ଴ܰ௫ܦ௫
ఔೣ(ଵାఈೣ)ିଵ݁(ି(ஃೣ஽)ഌೣ)	,                               (4.1) 

where ܰ(ܦ)௫ is the number of hydrometeors of category x with diameter D in a unit 

volume (Ulbrich 1983; Milbrandt and Yau 2005a). The distribution includes four free 

parameters: 1) the slope parameter Λ௫ ; 2) the intercept parameter ଴ܰ௫; 3) the dispersion 

parameter ߙ௫, also referred to as the shape parameter; and 4) the dispersion parameter 

௫ߥ ௫. Most schemes assumeߥ = 1 for most hydrometeor categories and the distribution 

simplifies to  

௫(ܦ)ܰ = ଴ܰ௫ܦ௫
ఈೣ݁(ିஃೣ஽)	.                                         (4.2) 

Microphysics schemes are classified by the number of these free parameters they update 

based on microphysical state variables predicted in the model. A single-moment (SM) 

scheme predicts mixing ratio (q) and updates Λ௫ , a double-moment (DM) scheme also 

predicts number concentration (Nt) and updates ଴ܰ௫, while a tripe-moment (TM) 

scheme also predicts radar reflectivity (z) and updates ߙ௫. Previous studies have shown 

that CAMs require advanced multi-moment microphysics schemes (i.e. at least DM) to 

replicate microphysical processes like sedimentation (size-sorting, Wacker and Seifert 

2001; Milbrandt and Yau 2005a) and the associated dual-pol signatures (Jung et al. 

2010; Kumjian and Ryzhkov 2012). In fact, Jung et al. (Jung et al. 2010) demonstrated 

in simulations of dual-pol variables with a SM and DM MP scheme that the SM MP 

scheme could not replicate several signatures, including the ZDR arc and mid-level ZDR 

ring. Other signatures which were apparent in the SM scheme simulations were often 

unrealistic, including the underestimation of KDP values in the KDP foot.  
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Because dual-pol observations are indirect measurements, and due to the bulk 

representation of hydrometeor PSDs in most convective-scale models, forward 

operators are required to connect the observations to the model microphysical state 

variables. A polarimetric radar data (PRD) simulator is used to connect the model 

microphysical state variables to dual-pol observations and can be used as the forward 

operator in assimilation experiments. Since the values of the polarimetric variables are 

by definition impacted significantly by how the radar wave scatters in both the 

horizontal and vertical direction, it is important that the form and assumptions of the 

PRD simulator operator best replicate the interaction of the radar wave with the 

hydrometeors of all sizes and physical states.  

Li and Mecikalski (Li and Mecikalski 2012) developed a PRDS with operators 

based on derived relations between ZH, ZDR, and KDP from Bringi and Chandresekar 

(Bringi and Chandrasekar 2001), but only provide relations for rain for a SM MP 

scheme and include several assumptions. Jung et al. (2008a) developed a more 

advanced set of operators for a SM MP scheme that included direct relations of the 

polarimetric variables and the model microphysical state variables, an axis-ratio relation 

for raindrops, a melting model, and radar wave scattering amplitude function fitted to 

the T-matrix method for rain and the Rayleigh approximation for ice hydrometeors. Xue 

et al. (Xue et al. 2010) and Jung et al. (Jung et al. 2010) expanded on these operators by 

adding the ability to use MM MP schemes and include look-up tables of actual T-matrix 

scattering amplitudes for all hydrometeors. Pfeifer et al. (2008) also developed a PRDS 

called SynPolRad which includes T-matrix scattering amplitude in the operator 

calculations. However, their calculation for the dielectric constant represents melting 
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hydrometeors as water coated with ice, while the dielectric constant calculation in the 

Jung et al. (2008a) melting model represents melting hydrometeors as ice coated with 

water which will have a significant impact on the simulated variables. The dielectric 

constant for water is significantly greater than ice and increases simulated Z. This 

matches the observed Z increase associated with melting hydrometeors because melting 

begins on the hydrometeor surface and the water coated melting hydrometeor appears as 

a large raindrop. SynPolRad also does not include an operator for KDP.  

 The ensemble Kalman filter (EnKF, Evensen 1994; Evensen 2003) is 

particularly well suited for the assimilation of polarimetric variables due to these highly 

non-linear operators and multi-moment microphysics schemes required to take better 

advantage of the additional polarimetric variable information. The EnKF has been 

successful in previous convective scale assimilation studies with multi-moment 

microphysics schemes for real data cases (Jung et al. 2012; Yussouf et al. 2013; Putnam 

et al. 2014; Wheatley et al. 2014; Yussouf et al. 2015; Snook et al. 2016). The EnKF 

approximates the background model error through the flow-dependent error covariance 

between ensemble members and does not require an adjoint model as in 3DVAR and 

4DVAR. The adjoint model is particularly difficult to develop for non-linear 

observation operators and MM schemes which include ice hydrometeors. The EnKF is 

also advantageous for MM schemes because forward operators for radar variables can 

be used to directly update the model microphysical state variables. Additionally, the 

cross-covariances between model state variables in the ensemble update state variables 

that are updated by observations via the forward operators (Snyder and Zhang 2003).  
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One concern with the EnKF is that updating the numerous microphysical state 

variables in a MM MP scheme is a significantly underconstrained problem when relying 

on only two independent observations (Z and Vr). For example, in a DM scheme, there 

are as many as 12 state variables; 6 hydrometeor categories each with a q and Nt. 

However, Xue et al. (2010) showed encouraging results in the ability of the EnKF to 

update 10 state variables associated with a DM Milbrandt and Yau (Milbrandt and Yau 

2005b) MP scheme in the presence of model error. The assimilation of additional dual-

pol variables will aid in providing additional independent information to update all the 

numerous microphysical state variables.  

Previous research for the assimilation of polarimetric variables is very limited – 

in both OSSE and observed experiments - and has not included the advanced operators 

and microphysics schemes required to take the best advantage of the additional dual-pol 

information as possible. Jung et al. (Jung et al. 2008b) assimilated ZDR, reflectivity 

difference (ZDP), and KDP in addition to Z and Vr in an EnKF OSSE experiment using 

the forward operators developed in Jung et al. (Jung et al. 2008a). Analyses with the 

additional dual-pol variables improved the root mean square errors (RMSEs) of the 

microphysical state variables as well as all other model variables. However, this study 

used the SM Lin (Lin et al. 1983) scheme and forward operators that use fitted T-matrix 

scattering amplitudes for rain. Li and Mecikalski (Li and Mecikalski 2012) assimilated 

both ZDR and KDP, in addition to Z and Vr, for both a mesoscale convective system 

(MCS) and isolated convective storm case. The results showed that forecasts initialized 

with the additional dual-pol variables provided a positive impact on short-term forecasts 

in terms of both storm structure and location. However, the study uses a warm-rain SM 
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Kessler (Kessler 1969) MP scheme along with the 3DVAR DA method that only 

updates qr via very simple Z equations, such as from Kessler (Kessler 1969). 

Additionally, the results are focused on comparing intensity, structure, and location of Z 

and not evaluating the analyzed microphysical state with the dual-pol observations, 

including polarimetric signatures that are representative of important atmospheric 

microphysical processes. Between these studies, it is clear that the impact of dual-pol 

observations for a real data assimilation experiment on the microphysical state has not 

been investigated. The impact these new dual-pol observations have on the model state 

must first be understood before the observations can be used to help initialize 

convective-scale forecasts. 

 The purpose of this chapter is to examine for the first time the impact that 

assimilating dual-pol parameters has on EnKF-analyzed supercell storms for real data 

cases while using a fully DM ice microphysics scheme and advanced polarimetric 

forward operators. Two high impact tornadic supercell cases from 10 May 2010 and 20 

May 2013 are chosen to assess the robustness of the results across multiple cases. A 

new method to pre-calculate a portion of the forward operator is developed to use the 

advanced Jung et al. (Jung et al. 2010) operators so that the calculated T-matrix 

scattering amplitudes for all hydrometeors can be utilized for the first time during 

assimilation without increasing the assimilation time.  The advanced operators have 

been used with a real case for model MP scheme verification (Putnam et al. 2016), but 

assimilation experiments have not yet been conducted due to the previous 

computational expense.  Specific goals include verifying the assimilated dual-pol 

observations and evaluating the model microphysical state through comparisons of 
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raindrop size with dual-pol observations, changes in the PSDs between experiments, 

and comparisons with retrieved PSD parameters using the dual-pol observations. 

Additionally, several sensitivity tests run during the experiment are presented as a 

template to help guide future research in real case dual-pol assimilation.  

The remainder of this Chapter contains the following sections. Section 4.2 

contains a meteorological overview of the supercell cases considered. In section 4.3, the 

background model, microphysics scheme, and the new look-up table observation 

operators are described for control experiments assimilating Z, Z and ZDR, and Z and 

KDP. Section 4.4 contains sensitivity test results which vary such aspects as the EnKF 

model error treatment methods, radar filtering procedure, observations errors, and 

configuration of radars assimilated. The best results from section 4.4 will be analyzed in 

Chapter 5.  

4.2 Overview of case studies  

4.2.1 The 20 May 2013 New Castle-Moore, OK tornadic supercell case 

 On 20 May 2013 an outbreak of tornadoes occurred across the southern Plains. 

Most notably, one supercell storm over central Oklahoma produced a violent tornado 

that tracked across the southern Oklahoma City metropolitan area during the mid-

afternoon hours (SPC 2016b). At 1800 UTC 20 May, an upper level low pressure 

system was in place over the north-central United States with a large region of strong, 

southwesterly flow at 500 mb extending southward to the southern plains, providing 

significant deep shear for rotating updrafts (Fig. 4.1a). At the surface, a cold front 

trailed from an associated surface low in the Northern Plains southward into Oklahoma, 

with a dryline intersecting the front just to the west of Oklahoma City. A broad and 
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extremely moist warm sector existed ahead of this cold front/dry line intersection with 

widespread mixed layer CAPE values greater than 3000 J kg-1 (Fig 4.1b). Widespread 

storms began to develop after 1800 UTC, with one such storm developing just to the 

southwest of Oklahoma City. This storm produced a tornado that began shortly before 

2000 UTC and remained on the ground for over 40 minutes, tracking from New Castle 

to Moore. The tornado was rated EF5 after causing widespread catastrophic damage 

across Moore with a total cost of several billion dollars (Burgess et al. 2014). For more 

information on this case, the reader is referred to Burgess et al. (2014), Zhang et al. 

(2015), and Kurdzo et al. (2015). This case occurred after the dual-pol upgrade of all 

WSR-88D network radars and was in close proximity to KTLX providing more than 

adequate coverage of dual-pol observations.  

4.2.2 The 10 May 2010 Moore-Harrah, OK and Norman-Pink, OK tornadic 
supercells case 
 
An intense outbreak of tornadoes occurred across Oklahoma on 10 May 2010, including 

multiple violent tornadoes within the Oklahoma City metropolitan area. A seasonably 

strong short-wave trough advanced eastward over the southern plains during the 

morning, leading to rapid surface cyclogenesis and an impressive northward advance of 

highly unstable air over Oklahoma. At about 230 UTC 10 May, a 994 mb surface low 

was located over southern Kansas with a southeastward oriented warm front extending 

over central Oklahoma and a southward oriented dryline over western Oklahoma 

followed closely by a southeastward advancing cold front (Fig. 4.2a).  
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Fig. 4.1. (a) 500 mb wind barbs, wind fields (colorfill, 20 knot interval), height contours 
(60-dam interval), and air temperature (red dashed lines, 2 ° C intervals) as well as (b)  
Mixed layer CAPE (red contours) and CIN (colorfill) (J kg-1) analyses from the Storm 
Prediction Center (SPC) at 2000 UTC 20 May 2013.  
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Fig. 4.2. (a) 2100 UTC 10 May 2010 and (b) 0000 UTC 11 May 2010 Storm Prediction 
Center surface analyses. Note the marked locations of the warm front, dryline, cold 
front, and surface low. 
 
 

Supercell storms initiated rather early over northern Oklahoma and southern 

Kansas with the first tornados occurring around 1900 UTC (SPC 2016a). By 0000 UTC, 

the dryline had advanced to the I-35 corridor and multiple supercell storms rapidly 

developed ahead of it just to the west of Oklahoma City (Fig. 4.2b). Two storms that 

tracked over the southern portions of the metropolitan area in very close proximity to 

one another both produced multiple tornadoes, including two violent tornadoes (Fig. 

4.3, NWS 2016). The first violent tornado began at 2220 UTC near Moore and tracked 

northeastward for 30 minutes before lifting near Harrah (tornado ‘I1’ in Fig 4.3). This 

was quickly followed by a tornado that developed in south Norman and tracked 

northeastward for nearly 30 minutes and dissipated near Pink (tornado ‘J1’ in Fig. 4.3). 

At approximately 2245 UTC, the northern Moore storm split and the right, more 

southern split quickly produced a third strong tornado just west of Shawnee (tornado 

‘L1’ in Fig 4.3). Amazingly, this group of storms produced several additional low 
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intensity tornadoes during this time frame. The storms were observed by the National 

Severe Storm Laboratory’s dual-pol S-band experimental and research radar, KOUN, 

located in north Norman, as well as the nearby WSR-88D radar KTLX. Additional 

observational overviews of this case include Palmer et al. (2011) and  Bodine et al. 

(2013).  

 
 
Fig. 4.3. Norman Weather Service Office tornado damage survey paths from 10 May 
2010 tornado outbreak. 
 
 
4.3 Method 

 In this section, the general model and MP scheme experiment settings, radar 

data, and observation operator information for the control experiments are introduced. 

For the 20 May 2013 case, the experiment configuration is inherited from Snook et al. 

(2016), while in the 10 May 2010 case the configuration is designed similarly to Jung et 

al. (2012). For simplicity, the 10 May 2010 case will be referred to as ‘M10’ and the 20 
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May 2013 case as ‘M20’. Including different cases with different configuration settings 

will increase the reliability of our findings. The forecast model and general EnKF 

configuration settings for the experiments from both cases are discussed in sections 

4.3.1 and 4.3.2 while section 4.3.3 contains further details on the dual-pol variable 

assimilation. Further details on the radar data processing are given in section 4.4.4 and 

an explanation of the observation operators is given in 4.4.5.  

4.3.1 Prediction model and microphysics scheme 

For this study, we have used the Advanced Regional Prediction System forecast 

model (ARPS, Xue et al. 2000; Xue et al. 2001; Xue et al. 2003). Briefly, ARPS is a 

three-dimensional, fully-compressible, non-hydrostatic, convection allowing model. 

The state variables predicted include the three-dimensional wind components (u,v,w), 

pressure (p), potential temperature (θ), and water vapor mixing ratio (qv), as well as 

microphysical state variables determined by the MP scheme to be described later. Solar 

radiation is parameterized using the National Aeronautics and Space Administration 

(NASA) Goddard Space Flight Center long- and shortwave radiation scheme while 

Sub-grid scale turbulence is parameterized with a 1.5-order turbulent kinetic energy 

(TKE) scheme. The soil model includes two layers with parameterized surface fluxes 

for sensible and latent heat as well as moisture. Additional details on the model physics 

parameterizations are given is Xue et al. (2001).  

The Milbrandt and Yau (Milbrandt and Yau 2005b) DM MP scheme is used. In 

addition to the previous state variables, the scheme incudes the prediction of mixing 

ratios for cloud water (qc), ice (qi), rain (qr), snow (qs), graupel (qg), and hail (qh) as well 

as their respective number concentrations (Ntc, Nti, Ntr, Nts, Ntg, and Nth). For M10, the 
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prediction of graupel is not included. The additional predicted state variables for 

graupel were found not to have a significant impact on the storm evolution in Jung et al. 

(Jung et al. 2012). However, the prediction of graupel is included for M20 case to 

remain consistent with Snook et al. (2016) and provide an additional contrast between 

the experiments.  

4.3.2 Experiment configuration and EnKF settings 

4.3.2.1 20 May 2013 experiment configuration  

The M20 configuration is inherited from Snook et al. (2016); the details on this 

configuration are summarized here. The model grid is 603 x 653 grid points in the 

horizontal with a stretched vertical grid consisting of 63 levels with a minimum spacing 

at the surface of 50 m and average spacing of 425 m. The grid spacing is 500 m in order 

to resolve the highly detailed processes that contribute to the highly localized 

presentation of polarimetric patterns and signatures.  The terrain for the grid is 

interpolated from USGS with a resolution of 30 seconds of arc. For reference, the 

experiment domain and observations of the storms of interest near Moore, OK are 

plotted in Fig. 4.4.  

The experiment timeline consists of a 30 minute spin-up period followed by a 

1.5 hour assimilation window (Fig. 4.5). An initial ensemble of 40 members is obtained 

via interpolation from the 4 km regional CAPS Spring Experiment storm scale 

ensemble forecasts (SSEF, Kong 2013) at 1800 UTC 20 May 2013. The external 

boundary conditions are also interpolated from the SSEF. Random, Gaussian storm 

scale perturbations (Tong and Xue 2008), smoothed with a 2D recursive filter with a de-

correlation length scale of 6 km in the horizontal and vertical are added to u and v, using 
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a mean standard deviation of 0.5 m s-1, as well as to potential temperature () with a 

mean standard deviation of 0.5 K. A 30 minute spin-up forecast from 1830 UTC to 

1900 UTC is run prior to assimilation.  

 
 
Fig. 4.4. 20 May 2013 experiment domain and location of radars included. Observed 
reflectivity (Z, dBZ) at the 0.5 ° tilt from KTLX at 1938 UTC 20 May 2013 is included. 
 
 

 
 
Fig. 4.5. Diagram of experiment timeline including the spin-up forecast, assimilation 
window, 30 minute assessment period, and times of tornadoes from the storms of 
interest. 
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 The ensemble square root filter (EnSRF, Whitaker and Hamill 2002) is used to 

assimilate both radar and surface observations at 5 minute intervals over a 1.5 hour 

period from 1830 UTC to 2000 UTC. Two experiments are conducted, one in which Z 

and Vr are assimilated (experiment CZ, short for ‘control Z’) and one in which ZDR is 

assimilated in addition to Z and Vr (experiment CZZDR, short for ‘control Z and ZDR’). 

The names Z and ZDR are used in order to emphasize the different number of 

precipitation-related radar observations that are assimilated while noting that Vr is 

assimilated in all cases. An experiment for KDP is not included for this case because the 

observations were particularly noisy and not consistent across the storms. All variables 

in all experiments are assimilated from five WSR-88D network radars located within 

and near the domain: KDYX, KFDR, KFWS, KTLX, and KVNX (see Fig. 4.4). ZDR is 

available from all radars since this case occurred after the WSR-88D upgrade (ROC 

2013). Observations of precipitation are assimilated at every other grid point because 

initial experiments showed this increased model stability. Clear air observations are 

assimilated every 4 grid points. The volume scans for each radar are not synchronized. 

At each assimilation time, the previous volume scan closest to the assimilation time 

within the 5 minute forecast window is used. If there is no volume scan during this time, 

then the observations are not assimilated from that radar. Data greater than 5 minutes 

prior to assimilation for KDYX and KFWS is used during the initial analysis at 1830 

UTC since there were no prior cycles before this. A summary of the volume scans used 

for each radar is given in Table (4.1).  
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Assim Time (UTC) Observation Time (UTC) 

 KDYX KFDR KFWS KTLX KVNX 
183000 182126 182536 182140 182625 182726 
183500 183106 183033 183114 183118 183210 
184000  183935  183949 183957 
184500 184046 184326 184049 194338 184258 
185000  184718  184742 184901 
185500 185026 185109 185024 185133 185203 
190000  185904 185520 185953 185805 
190500 190005 190310 190017 190411 190408 
191000 190945 190714 190513 190826 190710 
191500  191131 191011 191243 191312 
192000 191925 191548 191507 191658 191928 
192500  192422 192500 192116 192230 
193000 192953 192839 192956 192949 192844 
193500 193432 193256 193452 193405 193158 
194000 193913 193713 193949 193821 193813 
194500 194356 194130 194445 194238 194440 
195000 194836 194547 194942 194655 194740 
195500 195315 195422 195439 195111 195354 
200000 195753 195838 195934 195941 195708 

 
Table 4.1. Table of radar volume start times for each assimilation cycle for the 20 May 
2013 case. 
 
 

The observation error in both experiments is 6.0 dBZ for Z and 4.0 m s-1 for Vr. 

These values follow recent assimilation experiments on this scale and are optimal based 

on our previous studies. Experiments with lower observation errors for Z were tried but 

resulted in instability in the ensemble. Clear-air Z observations are assimilated, which 

has been shown to help suppress spurious convection (Tong and Xue 2005), while Vr 

observations are assimilated when Z > 10 dBZ. The assimilation of ZDR is further 

discussed in section 4.3.3. Surface observations are assimilated from all available 

Automatic Surface Observing System (ASOS) and Automatic Weather Observing 

System (AWOS) observation sites within the domain. These observations include u, v, 
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air temperature T, dewpoint temperature TD, and air pressure p. The observation errors 

are 1.5 m s-1 for u and v, 2.0 K for T and TD, and 2.0 hpa for p. A summary of the 

observation errors is given in Table 4.2.  

 
Surface Obs Profiler Obs 

  U (ms-1) V (ms-1) T (K) TD (K) Pa (hpa) U (ms-1) V (ms-1) 

20-May 1.5 1.5 2.0 2.0 2.0 2.5 2.5 

10-May 1.5 1.5 2.0 2.0 NA 2.5 2.5 
 
Table 4.2. Table of conventional observation error values for both the 20 May 2013 and 
10 May 2010 experiments. 
 
 
 Other EnKF configuration settings include using a covariance localization radius 

for the radar observations of 3 km in both the horizontal and vertical directions using 

the correlation function of Gaspari and Cohen (Gaspari and Cohn 1999). For the surface 

observations, the horizontal radius is 500 km and the vertical radius is 6 km. To help 

account for filter divergence, we use the ‘relaxation to prior spread’ covariance inflation 

method of Whitaker and Hamill (Whitaker and Hamill 2012), with an inflation 

coefficient of 0.95. In other words, 95% of the prior spread is restored.  

4.3.2.2 10 May 2010 experiment configuration  

For the M10 case, the experiment domain is 531 x 363 in the horizontal with 53 

vertical levels. As in the M20 case, the horizontal grid spacing is 500 m and the vertical 

grid has a minimum spacing of 50 m and an average spacing of 425 m. For reference, 

the domain and storms of interest are plotted in Fig 4.6. Similar to the M20 case, there 

is an approximately 30 minute spin-up forecast from 2100 UTC to shortly after 213130 

UTC and then a 1.5 hour assimilation window (Fig. 4.7). The initial ensemble members 

are nested within a 4 km regional ARPS model ensemble nested within a 40 km North 
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American ensemble. Briefly, the North American ensemble uses a GSI-based, coupled 

EnKF-En3DVar hybrid assimilation system created for the Rapid Refresh (RAP) model 

over 0000 UTC 8 May 2010 to 2100 UTC 16 May 2010 (Pan et al. 2014). The nested 4 

km regional ensemble is initialized at 1800 UTC 10 May 2010 and has a domain size of 

443 x 483 in the horizontal with 53 vertical levels; the domain covers the CAPS 

VORTEX II domain used during the 2010 Spring Experiment (Kong 2010). The 4 km 

ensemble members are interpolated individually down to the 4 km grid from respective 

members of the 40 km ensemble, which also provide the lateral boundary conditions for 

each member. A MPI-OPEN MP hybrid parallel EnSRF system is used to assimilate 

both radar and conventional observations every hour over a 6 hour period. The model 

MP scheme is SM Lin (Lin et al. 1983) and the observation operators for radar data 

assimilation are from Jung et al. (Jung et al. 2008a). The 500 m grid ensemble members 

are interpolated down individually from 4 km ensemble analysis at 2100 UTC, 

including the terrain. Dry lateral boundary conditions for 2100, 2200, and 2300 UTC 

are also interpolated from each 4 km member to the 500 m grid. Random, Gaussian 

storm scale perturbations, smoothed using a 2D recursive filter with a de-correlation 

length scale of 6 km in the horizontal and 3 km in the vertical, are added to each 

member of the interpolated ensemble prior to the spin-up forecast. The standard 

deviation of the perturbations is 2 m s-1 for u, v, and w, 1.0K for , and .2 g kg-1 for 

water vapor (qv), cloud water mixing ratio (qc), rain water mixing ratio (qr), cloud ice 

mixing ratio (qi), snow mixing ratio (qs), and hail mixing ratio (qh). The perturbations 

for w and the hydrometeor mixing ratios are confined to within a 4 km horizontal and 2 

km vertical radius of grid points where observed radar echoes from KTLX exceed 30.0 
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dBZ to avoid initiating spurious convection. Additionally, the perturbations for  are 

positive only. 

 
 
Fig. 4.6. 10 May 2010 experiment domain and location of radars included. Observed 
reflectivity (Z, dBZ) at the 0.5 ° tilt from KOUN at 2250 UTC 10 May 2010 is included. 
 
 

 
 
Fig. 4.7. Diagram of experiment timeline including the spin-up forecast, assimilation 
window, 30 minute assessment period, and times of tornadoes from the storms of 
interest. 
 
 

Radar, surface, and profiler observations are assimilated from 213130 UTC to 

230130 UTC at 4 minute 30 second intervals. Two experiments are conducted, one 

which assimilates Z and Vr from KTLX (experiment CZ) and one which assimilates Z 
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and Vr from KTLX plus ZDR from the National Severe Storms Laboratory’s S-band 

dual-pol research radar, KOUN (experiment CZZDR). An additional experiment 

assimilating KDP from KOUN in addition to Z and Vr from KTLX is conducted based on 

the results for sensitivity testing with the control experiments. KOUN is included since 

this case occurred prior to the WSR-88d dual-pol upgrade. All radar observations are 

assimilated at every other grid point. The 4 minute 30 second intervals are used because 

the radar volumes from KTLX on this day were set to a slightly faster speed than the 

normal approximately 5 minute volume scan. The KTLX volumes for each cycle are 

chosen following the M20 case, with the closest volume started prior to the assimilation 

time used. The KOUN volume with a start time closest to the KTLX volume used at 

each assimilation time provides the dual-pol observations for each cycle. A table of the 

volume scan times used for each assimilation time is given in Table 4.3. The 

observation error is 5 dBZ for Z, 3 m s-1 for Vr. Surface observations for u, v, T, and TD 

are assimilated from all ASOS, AWOS, and Oklahoma Mesonet stations within the 

domain. The observation error is 1.5 m s-1 for u and v and 2K for T and TD. Profiler 

observations of u and v are available at 2200 UTC and assimilated at the assimilation 

time immediately following with an observation error of 2.5 m s-1. A summary of the 

observation errors for this case is included in Table 4.2.  
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Assim Time (UTC) Observation Time (UTC) 

 KTLX KOUN 
213130 212924 213043 
213600 213337 213502 
214030 213752  
214500 214218 214231 
214930 214909 214650 
215400 215323 215108 
215830 215736 215527 
220300 220151 215945 
220730 220604 220403 
221200 221017 220821 
221630 221436 221240 
222100 221850 221658 
222530 222304 222116 
223000 222717 222533 
223430 223132 222951 
223900 223545 223409 
224330 224205 223827 
224800 224627 224556 
225230 225041 225014 
225700 225453 225432 
230130 225929 225851 

 
Table 4.3. Table of radar volume start times for each assimilation cycle for the 10 May 
2010 case. 
 
 
 Additional EnKF settings for this case include a covariance localization radii for 

radar observations of 3 km in the horizontal and vertical using the Gaspari and Cohen 

(1999) correlation function. The covariance localization radii are 60 km in the 

horizontal and 6 km in the vertical for the surface observations and 800 km in the 

horizontal and 6 km in the vertical for the profiler observations. The model error 

treatment methods used for this case are a combination of relaxation to prior spread 

with an inflation coefficient of 1.0 and multiplicative inflation (Anderson 2001) with an 
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inflation factor of 1.2. Additionally, during each forecast period, the shape parameters 

of rain and hail are varied between 0.0 and 2.0 in 0.05 increments between each 

ensemble member. Varying the shape parameter in our previous experiments has been 

shown to help improve ensemble spread and the analysis (Xue et al. 2010; Jung et al. 

2012).  

4.3.3 Dual-pol observation assimilation settings  

The assimilation of the dual-pol variables is treated differently than for Z and Vr. 

First, ZDR (and KDP for M10) is assimilated after Z and Vr are analyzed. The ARPS 

EnSRF usually assimilates each variable at each grid point. For this study, Z and Vr are 

assimilated at each grid point and, after that analysis is completed, ZDR is assimilated. It 

is believed that ZDR has a greater impact on the analysis in this way. This occurs by 

default for the M10 case because the ZDR and KDP observations are assimilated from a 

second radar after Z and Vr are assimilated. Second, dual-pol observations are 

assimilated at grid points 2000 m AGL or less. This excludes observations within and 

above the melting layer for which the simulation of the dual-pol variables via the 

observation operators contains more uncertainty. This specifically applies to dry and 

wet snow, which can vary significantly in terms of size, shape, and density, factors that 

become increasingly difficult to model during melting since mixed-phase hydrometeors 

are not predicted in the model. Future studies, including a follow-up study to Johnson et 

al. (Johnson et al. 2016a), will investigate simulated dual-pol variables above the 

melting layer before they are used in assimilation studies.  

The observation error for ZDR is 0.6 dB and is approximately twice the typical 

ZDR observation error (Doviak and Zrnic 1993; Ryzhkov et al. 2005) to account for 
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errors in the observation operator. Only values of ZDR > 0.3 dB are assimilated based on 

thresholds determined in Jung et al. (2008b). The authors found through a comparison 

of simulated errors in Z and ZDR that there is no discernable independent information 

from ZDR values below this threshold due to noise. The KDP error for the M10 case is 0.3 

º km-1 and slightly lower than that used for ZDR due to a significantly higher threshold 

used for assimilation, 0.9 º km-1. KDP observations are noisier compared to ZDR  (Jung et 

al. 2008b).  

4.3.4 Radar data processing  

The presence of ground clutter and other biological scatterers has a significant 

impact on the dual-pol observations. In most cases for Z, the values of these 

observations during the daytime hours are low enough or non-existent to the point that 

they will have little impact on the analysis. However, the Zdr observations cover the full 

spectrum of typical values seen with precipitation and thus must be removed. The Park 

et al. (Park et al. 2009) hydrometeor classification algorithm (HCA) is used to classify 

and then remove observations determined to be from ground clutter or biological 

scatters. This applies to all radars in the M20 case and KOUN in the M10 case. For the 

20 May 2013 case, many ρHV values are particularly low in the convective regions, 

potentially due to non-uniform beam filling; these values are often lower than 0.8. 

Values this low typically correspond to ground clutter and biological scatterers in the 

HCA algorithm. The use of the texture parameters SD(Z) and SD(ΦDP) helps regulate 

this but some values are still wrongly classified by the algorithm. A small number of 

observed values are removed that should not be due to these anomalously low values. 

The removal of ground clutter and biological scatterers elsewhere is judged to be more 
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vital, particularly for ZDR which contains anomalously large values when clutter is 

present.  Manual ground clutter removal is performed on KTLX for the M10 case since 

it had not yet been upgraded to dual-pol capabilities.  

Additional preprocessing of the radar data includes performing automatic 

velocity dealiasing on all radars from the M20 case and KOUN from the M10 case. The 

KTLX observations from M10 require manual unfolding because the Nyquist velocity 

is not consistent throughout the radar volume. The Vr data were manually unfolded for 

this case in (Wang et al. 2016). For this study, SOLO is also used to remove ground 

clutter. A 5-point along-the-radial median filter is applied to all variables. KDP is 

calculated from filtered specific differential phase (ΦDP) using a least squares fit 

algorithm detailed in Ryzhkov and Zrnic (1996). Low precipitation (Z < 40 dBZ) echoes 

are heavily filtered with 25 range gates and heavy precipitation (ܼ > 40	dBZ) echoes 

are lightly filtered with 9 range gates. The observations are interpolated to the model 

grid in the horizontal but left at the radar tilt elevation in the vertical (Xue et al. 2006). 

Since KDP is quite noisy, a second 9-point square median filter is used on the 

interpolated observations. Finally, several bad radials from KOUN for the M10 case 

were listed as missing to avoid assimilating corrupt data.  

4.3.5 Observation operators  

Our previous studies have used the observations operators originally developed 

in Jung et al. (2008a) (eg. Jung et al. 2012, Putnam et al. 2014). These operators contain 

a melting model and raindrop axis ratio relation, and use a fitted approximation to T-

matrix scattering amplitudes for rain and the Rayleigh approximation for ice 

hydrometeors. A more advanced set of operators were developed in Jung et al. (Jung et 
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al. 2010). The improvements included an updated axis ratio for rain (Brandes et al. 

2002) that improves upon the prior relation modeling more spherical shapes. 

Additionally, full T-matrix scattering amplitudes calculated for a range of diameters for 

all hydrometeor categories were used. The new operators lead to more realistic 

simulated dual-pol values. For example, ZDR values with these operators are lower 

compared to the prior operators due to the revised axis-ratio relation for rain. Z values 

are also better approximated for large, melting hail where the scattering of the radar 

wave by hydrometeors of this size enters the Mie regime. However, due to the new axis 

ratio relation and table of scattering amplitudes, these operators require numerical 

integration over the particle size distribution that adds a significant amount of 

computational time during assimilation. 

A modified set of the observation operators from Jung et al. (Jung et al. 2010) 

has been developed to increase computational speed without sacrificing much accuracy. 

The operators require the use of look-up tables of T-matrix scattering amplitudes. To 

speed up the calculation, a portion of the calculation is computed based on ranges of 

possible PSD parameter values prior to assimilation and stored in look-up tables. 

Specifically, the tables are based on the Λ௫  (and ߙ௫) parameter of the PSD. In this 

experiment, only Λ௫  is considered since in these experiments a DM MP scheme is used 

and the ߙ௫ values are 0 for all hydrometeors during assimilation.  

As an example, the horizontal ܼ௛௛ (generally discussed as Z) observation 

operator for rain is given as:  

ܼ௛௛ = 	 ସఒర

గర|௄ೢ|మ ∫| ௔݂(ߨ)|ଶ ଴ܰ݁ି௸஽݀(4.3)                                  , ܦ  
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where Zhh is the horizontal radar reflectivity factor, λ is the wavelength of the radar, Kw 

is the dielectric factor for water, and fa(π) is the backscattering amplitude along the 

major axis (adapted from equation 3 from Jung et al. (Jung et al. 2010)). For reference, 

in Jung et al. (2008a), when a fitted approximation to the T-matrix scattering amplitudes 

is used, a power law function is used in place of | ௔݂(ߨ)|. Next, a summation over rain 

diameters from 0.04 to 7.96 mm is computed: 

ܼ௛௛ = 	 ସఒర

గర|௄ೢ|మ ଴ܰ∑ | ௔݂(ߨ)|ଶଵ଴଴
௜ୀଵ ݁ି௸஽݀ܦ	(4.4)                             . 

N0 can be calculated outside the summation because it is not dependent on diameter. 

The summation portion of the expression is pre-calculated based on Λ௥  values at 1 m-1 

increments, which for simplicity will be referred to as S(Λ௥). During assimilation, Λ௥  is 

calculated based on the model predicted qr and Ntr. Since the increment range of Λ௥  is 

known, the corresponding S(Λ௥) value can be quickly looked up from the pre-calculated 

table. If the model calculated Λ௥  value is between two Λ௥  values in the table, the 

associated S(Λ௥) values are interpolated. Pre-calculated look-up tables for this part of 

the expression are computed for all hydrometeors categories and all possible water 

fractions detailed in Jung et al. (2010) for their equations 3, 4, and 5. Although there are 

some small errors in the calculated variables using the modified operator, the 

improvement in the calculated variables using these operators compared to using the 

Jung et al. (2008a) operators is judged to be greater than any subsequent errors in the 

calculation due to the look-up tables. A more detailed example is given in Appendix 

A1.  
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4.4 Dual-pol assimilation sensitivity tests  

The EnKF assimilation of dual-pol observations is a new area of research and 

thus there is little prior information on successful EnKF configuration settings. Several 

initial tests are run that vary the settings of the initial control experiment to narrow 

down the best configuration for both cases. These include testing different model error 

treatment methods, using additional radar filtering methods, and altering the 

configuration of the radar data and observations that are assimilated.  

The results are compared by calculating the root mean square error (RMSE) for 

the ensemble mean (enmean) analysis of both the lowest radar tilt and all observed data 

points in the domain below the 2000 m AGL threshold where ZDR is assimilated during 

the 30 minute assessment period (Table 4.4 for M20, Table 4.5 for M10). For 

convenience, these will be referred to as the ‘lowest tilt domain’ and the ‘ZDR domain’. 

The RMSE is calculated for areas where the observations exceed 5.0 dBZ for Z and 0.1 

dB for ZDR. RMSE for Vr is calculated where the Z observations greater than 5.0 dBZ 

exist.  

Ideally, the best analysis will have lower error over both domains, and the 

lowest tilt domain is included because the observations nearest to the surface are where 

dual-pol signatures associated with size-sorting are most prominent. Additional 

qualitative comparisons of the features and where they may differ most from the 

observations will be considered as well. The goal is to find experiment settings that will 

lead to an analysis that best represents the values and patterns of the observed ZDR, 

particularly for the storms of interest for each case, while also not increasing error for Z 

significantly. This applies to all cases, even when ZDR is not assimilated, since it is 
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desired that the Z experiments without ZDR best replicate ZDR signatures so that the 

changes in the analysis when ZDR is assimilated can be properly compared. Simulated 

ZDR from the enmean analysis is compared to observed ZDR for experiments when ZDR is 

not assimilated. Although most attention will be paid to Z and ZDR, Vr is included for 

reference and it is still important that error in Vr is not increased significantly in any 

test.  

 
 
Table 4.4. Table of calculated average RMSEs over the assessment window period for 
both the ZDR and lowest tilt domains for the 20 May 2013 case. Blue cells indicate 
RMSEs lower than the control experiment and orange cells indicate RMSEs higher than 
the control experiment. 
  



 

126 
 

4.4.1 The 20 May 2013 tornadic supercells case 

4.4.1.1 Observation assimilation order 

The observation assimilation order in the control experiment for ZDR is chosen to 

isolate ZDR from the other traditional variables assimilated (Z and Vr). In the CZZDR, Z 

and Vr are first assimilated at every grid point and then ZDR is assimilated separately 

after. In sensitivity experiment ‘OZZDR’, Z, Vr, and ZDR are assimilated at every grid 

point in one pass.  

 
 
Fig. 4.8. Time plot of analyzed (a) Z (dBZ) and (b) ZDR (dB) RMSE values calculated 
over the ZDR domain for experiments CZZDR and OZZDR over the assessment window 
(1930 – 2000 UTC). 
 
 

The total average RMSE during the assessment period for both experiments is 

calculated compared to KTLX for the lowest tilt and ZDR domains and listed as part of 

Table 4.4. The values in OZZDR are slightly worse for analyzed Z. However, the 

analyzed values of ZDR are basically the same, showing that the analysis when ZDR is 

assimilated separately and after Z and Vr does not have any significant negative impact. 

The RMSEs for the ZDR assimilation domain at each analysis over the assessment period 
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are plotted in Fig. 4.8. There are analyses where one experiment has more error over the 

other but the average calculation shows that these roughly even out. Plots of analyzed Z 

and ZDR compared to KTLX observations at the 0.5º tilt are included in Fig. 4.9. The 

analysis time chosen to present is 1940 UTC since this is when analyzed Z and ZDR from 

both experiments have RMSEs that are similar and relatively low compared to other 

times. The domain shown only contains observations that are within the ZDR 

assimilation domain. Qualitatively, there does not appear to be a significant difference 

between the results. In fact, analyzed ZDR in OZZDR has an improved pattern in the ZDR 

arc region of the Moore storm; the decrease in ZDR immediately north of this region is 

improved compared to the observations. Ultimately, assimilating ZDR after the other 

variables is desirable, especially if it does not show any significant negative impact, 

because it keeps the experiments for this case consistent with those in the M10 case, 

since a separate radar is used for ZDR and those observations are assimilated after Z and 

Vr as well.  

4.4.1.2 Model error treatment methods 

Many methods exist to increase the spread between ensemble members, which is 

used to estimate model error, to prevent filter divergence. Filter divergence occurs when 

the filter solution begins to diverge from the observations because more weight is 

erroneously put on the background model state than the new observations. The 

relaxation to prior spread covariance inflation is used in the control experiment. 

Preliminary results show areas of weak precipitation in the forward flank of the 

analyzed storms in this case. Additional model error treatment methods are tried in 
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order to increase spread and improve the analysis fit to the observations in the low 

precipitation areas.  

 
 
Fig. 4.9. (a) Reflectivity (dBZ) and (b) differential reflectivity (dB) at the 0.5° tilt from 
KTLX at 1938 UTC as well as from the ensemble mean analyses of experiments (c-d) 
CZZDR and (e-f) OZZDR at 1940 UTC. 
 
 

First, sensitivity experiments using multiplicative covariance inflation are 

conducted (Anderson 2001), one which Z assimilates Z and Vr (experiment ‘MZ’) and 

one which assimilates Z, Vr and ZDR (experiment ‘MZZDR’). The multiplicative 

inflation is used in addition to the relaxation to prior spread inflation. The inflation 

factor is 1.2 and the inflation is only applied where Z > 20 dBZ in order to avoid 

increasing spurious precipitation. Second, sensitivity experiments with additive 
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perturbation, also referred to as additive noise, are performed; one which assimilates Z 

and Vr (experiment ‘PZ’) and one that assimilates Z, Vr, and ZDR (experiment ‘PZZDR’). 

The additive perturbations are used in addition to the relaxation to prior spread inflation 

(Dowell and Wicker 2009). Perturbations of θ at +/- 1.0 K are added in areas where 

observed Z > 10.0 dBZ in order to increase convective circulations and thus increase the 

ensemble spread in precipitation regions.  

The calculated average RMSEs over the assessment period show inconsistent 

results. Over the ZDR domain, the analyzed Z and Vr are improved in MZ, PZ, MZZDR, 

and PZZDR compared to the CZ and CZZDR cases. However, simulated ZDR in MZ and 

PZ as well as analyzed ZDR in MZDR and PZDR all have slightly higher average error 

values. Some of these values change for the lowest tilt domain. MZ and PZ both have 

slightly higher error than CZ. Analyzed Vr is improved in all cases.  

The individual RMSEs for each analysis for both domains over the assessment 

window are included in Fig. 4.10. The RMSE for Z in MZ and PZ is lower than for CZ 

for the ZDR domain at later times in the window. This is similar for the lowest tilt 

domain but the difference is nowhere near as significant for PZ, and CZ actually 

outperforms PZ early in the period. The RMSE for Z in CZZDR, MZZDR, and PZZDR 

has similar values, but with the PZDR results differing more significantly from CZZDR 

compared to MZZDR. The pattern of RMSE values for Z in CZ generally follows the 

amount temporal error between the assimilation time and the scan time for the lowest 

tilts of the KTLX volume that are assimilated at that time. In other words, when the 

assimilation time is more similar to the time of the lowest KTLX tilts, there is lower 

error in Z; The pattern in RMSE for the additional model error treatments methods 
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seems to show that they perform similar or even worse when the lowest tilt times line 

up more favorably with the assimilation time and better when there is greater temporal 

error between the lowest tilt times and assimilation time. This pattern generally follows 

for Z in CZZDR, with the caveat that the MZZDR results are more similar to CZZDR.  

The temporal pattern also follows for the simulated and analyzed ZDR RMSEs 

for CZ and CZZDR compared to their respective model error treatment method 

experiments. CZZDR outperforms PCZZDR for the ZDR domain for most times except 

around 1950 UTC, when there is a greater amount of temporal error between the lowest 

radar tilts of KTLX and the assimilation time, but outperforms PCZZDR for all times 

for the lowest tilt domain. The analyzed ZDR in MZZDR is relatively closer to CZZDR 

than PCZZDR.  

Analyzed Z and simulated ZDR from the enmean analysis for the 0.5° tilt for 

KTLX for CZ, MZ, and PZ at 1940 UTC are plotted in Fig. 4.11 and the results from 

CZZDR, MZZDR, and PZZDR are plotted in Fig. 4.12. Analyzed Z in MZ and PZ 

appears to show a slightly better fit compared to CZ in the right forward flank of the 

Moore storm. Z in CZ is overestimated to some extent in the precipitation core in the 

storm immediately north of the Moore storm compared to PZ as well. However, the 

precipitation coverage for each storm is erroneously more expansive in PZ compared to 

CZ, and this has a negative impact on the simulated ZDR. High values of ZDR extend well 

downshear in the forward flanks of the storms compared to CZ and the observations. 

Additionally, the ZDR values in CZ are more similar to the observations compared to 

MZ and PZ where these values are underestimated, particularly in PZ.  
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Fig 4.10. Time plot of analyzed Z (dBZ) RMSE values for the (a-b) ZDR domain and (b-
c) lowest tilt domain and analyzed ZDR (dB) RMSE values for the (e-f) ZDR domain and 
(g-h) lowest tilt domain calculated over the assessment window (1930 – 2000 UTC) for 
the model error treatment experiments.  
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Fig. 4.11. (a) Reflectivity (dBZ) and (b) differential reflectivity (dB) at the 0.5° tilt from 
KTLX at 1938 UTC as well as from the ensemble mean analyses of experiments (c-d) 
CZ and (e-f) MZ and (g-h) PZ at 1940 UTC. 
 
 

The analyzed ZDR in PZZDR is also lower than the observations, which is of 

particular concern because improvement should be seen since this field is analyzed 

compared to PZ. The assimilation of ZDR for MZZDR improves the analysis compared 

to MZ, but it is important to have a control that properly represents observed ZDR 

patterns in order to gauge the degree of improvement assimilating ZDR provides. The 

analyzed ZDR for MZZDR in the southeast portion of the ZDR arc of the Moore storm is 

also very noisy. The goal of the sensitivity experiments is to help improve these areas. 

Since the RMSE results show inconsistent improvements, particularly for ZDR, the 

results for this sensitivity experiment are judged to be inconclusive. The treatment 

methods appear to have a positive impact on the traditionally assimilated variables (Z 
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and Vr) compared to the ZDR values. However, there is no significant overall 

improvement quantitatively for ZDR and evaluation of the analyzed fields from a sample 

analysis shows that the analyzed ZDR patterns are better in CZZDR. In particular, 

between both RMSE calculations and qualitative evaluation, there is a negative impact 

on the low level analyzed ZDR fields in PZZDR compared to CZZDR. Further study is 

needed in this area and perhaps the temporal error can be considered when applying 

additional treatment methods.  

 
 
Fig. 4.12. (a) Reflectivity (dBZ) and (b) differential reflectivity (dB) at the 0.5° tilt from 
KTLX at 1938 UTC as well as from the ensemble mean analyses of experiments (c-d) 
CZZDR and (e-f) MZZDR and (g-h) PZZDR at 1940 UTC. 
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Fig 4.13. Time plot of analyzed Z (dBZ) RMSE values for the (a-b) ZDR domain and 
(b-c) lowest tilt domain and analyzed ZDR (dB) RMSE values for the (e-f) ZDR 
domain and (g-h) lowest tilt domain calculated over the assessment window (1930 – 
2000 UTC) for the radar configuration experiments.  
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4.4.1.3 Radar configuration 

The configuration chosen for the control experiment includes assimilating 

multiple observations from multiple radars. Specifically, with the focus on the Moore 

storm and other storms in the Oklahoma City area, there could be an oversaturation of Z 

observations assimilated since this region is covered by 3 separate radars included in 

this experiment. For testing purposes, an experiment was run with a new configuration 

of radars and observed variables. KVNX is not included since its coverage overlaps the 

KTLX coverage for the storms of interest and does not cover much of the rest of the 

domain. The coverage of KFDR overlaps the storms of interest as well, but since it also 

provides coverage for a significant portion of the domain, Vr is still assimilated. Also, 

ZDR is only assimilated from KTLX since the ZDR observations from the other radars 

will not have an effect on the storms of interest with the height limit imposed on ZDR 

observations. Finally, the grid spacing for clear air Z observations assimilated is 

lowered from every 4 grid points to every 2 grid points. This is the smallest grid spacing 

that can be used without causing instability in the model based on previous tests done 

for this case. Experiments are performed assimilating Z and Vr (radar configuration 

experiment ‘RCZ’) and assimilating Z, Vr, and ZDR (radar configuration experiment 

‘RCZZDR’).  

 The average RMSE calculations for both domains for all variables do not show 

improvement for either RCZ or RCZZDR, compared to CZ and CZZDR, with this new 

configuration (Table 4.4). The individual RMSE calculations over the assessment 

window show more rapid error growth in RCZ and RCCZDR in terms of analyzed Z, 

especially for the lower tilt domain (Fig. 4.13). As discussed in the previous section on 
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model error treatments methods, the scan times of the lower KTLX tilts assimilated 

have less temporal error during the early part of the assessment window and increase 

during the middle part. When there is greater temporal error between the KTLX 

observations and the assimilation times, there is a more significant impact on the results 

that only assimilate Z from KTLX for this area. Having the extra observations from the 

other radars appears to have a positive impact during this time period for the control 

experiments. 

 
 
Fig. 4.14. (a) Reflectivity (dBZ) and differential reflectivity (dB) at the 0.5° tilt from 
KTLX at 1934 UTC as well as from the ensemble mean analyses of experiments (c-d) 
CZ and (e-f) RCZ at 1935 UTC. 
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Fig. 4.15. (a) Reflectivity (dBZ) and (b) differential reflectivity (dB) at the 0.5° tilt from 
KTLX at 1934 UTC as well as from the ensemble mean analyses of experiments (c-d) 
CZZDR and (e-f) RCZZDR at 1935 UTC. 
 
 
 Figs. 4.14 and 4.15 contain plots of observed Z and ZDR from KTLX at the same 

0.5° tilt at 1935 UTC as well as the analyzed and simulated values of both variables for 

the pair of control and radar configuration experiments. The reduced grid spacing for 

the assimilation of clear air Z has a noticeable impact, reducing the amount of spurious 

precipitation. The analyzed values are relatively similar, though the new configuration 

experiments also show some improved areas, such as higher Z values in RCZ in 

portions of the forward flank of the Moore storm compared to CZ.  The analyzed ZDR in 

RCZZDR also appears consistently higher and a closer match to the observations in the 



 

138 
 

forward flanks for the Moore storm and the storm to its north. There are some areas 

where there is not improvement, such as overestimated simulated ZDR in the forward 

flank of the Moore storm for RCZ. Overall, the new configuration shows promise for 

improving some aspects of the analysis. However, the RMSE calculations do not show 

that RCZ and RCCZDR experiment improved upon CZ and CZDR.  

4.4.1.4 Radar observation filtering  

ZDR observations can be noisy, which can lead to instability in the analysis, and 

may also contain information on a scale smaller than the grid spacing used in the 

analysis. A 5-point median filter was used in the data for the control experiment but the 

observations are still rather noisy. An additional radar observation filtering pass is used 

in sensitivity experiments radar filter with Z, (RFZ, assimilates Z and Vr) and RFZZDR 

(assimilates Z and Vr plus ZDR). The original 5-point filter was applied to the 

observations before being interpolated to the model grid. For the additional filtering 

pass, a 9-point median filter is used on the Z and ZDR observations after they have been 

interpolated to the grid. In this way, they should be smoothed to the grid at a scale 

similar to the model analyses. Since the ZDR observations have been smoothed and there 

is less noise, one additional experiment that assimilates ZDR with a reduced observation 

error is included (radar filtering with reduced error experiment ‘RFREZZDR’). The 

error is lowered by half from 0.6 dB to 0.3 dB.  
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Fig 4.16. Time plot of analyzed Z (dBZ) RMSE values for the (a-b) ZDR domain and (b-
c) lowest tilt domain and analyzed ZDR (dB) RMSE values for the (e-f) ZDR domain and 
(g-h) lowest tilt domain calculated over the assessment window (1930 – 2000 UTC) for 
the radar filtering experiments.  
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 The RFZ and RFZZDR have improved average RMSE values compared to the 

control experiments for all values of Z and ZDR in both domains. Interestingly, RMSE 

values for Vr are slightly worse in each case. For experiment RFREZZDR, the average 

RMSE for analyzed ZDR is lower than both CZZDR and RFZZDR. However, the error 

for analyzed Z is higher than both RFZZDR for both domains and higher than CZZDR 

for the lowest tilt domain. Basically, the use of filtered radar observations improved 

both Z and ZDR in RFZZDR, while the lower ZDR error in RFREZZDR improved ZDR but 

negatively impacted Z. It is desirable to improve analyzed ZDR when ZDR is assimilated, 

but not at the expense of increasing the error in Z.  

 Plots of individual RMSE values for each analysis time during the assimilation 

window shows the use of additional radar filtering in RFZ and RFZZDR consistently 

provides improvement in all cases (Fig. 4.16). Unlike the model error treatment 

methods tested, the radar filtering does not negatively impact the simulated ZDR for RFZ 

compared to CZ and instead provides improved results. This is desirable when 

evaluating the benefits assimilating ZDR may provide an analysis when those results are 

compared. The plots also show how the improvement seen in RFZZDR and 

RFREZZDR is relatively similar compared to CZDR. There is still significant 

improvement when higher ZDR observation error is used without negatively impacting 

analyzed Z.  
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Fig. 4.17. (a) Reflectivity (dBZ) and (b) differential reflectivity (dB) at the 0.5° tilt from 
KTLX at 1938 UTC and from the ensemble mean analysis of (c-d) CZ at 1940 UTC as 
well as the filtered (e) reflectivity and (f) differential reflectivity from KTLX and the 
ensemble mean analysis of (g-h) RFZ. 
 
 
 The improvement in the radar filtering results compared to the control 

experiment can also be seen qualitatively. Results for all experiments are plotted at 

1940 UTC, which is an analysis time when the results are similar and the errors are 

relatively low, in Figs. 4.17 and 4.18. The observations for both Z and ZDR before and 

after the additional filtering are included for comparison. Analyzed Z in RFZ shows an 

improved fit with increased values in the forward flank of the Moore storm compared to 

CZ. An area of particular importance to represent is the ZDR arc in the Moore storm. In 

CZZDR, analyzed ZDR for this area is not consistent and is also very noisy, reflecting 

the difficulty of analyzing a noisy field like ZDR on the model grid. RFZZDR shows 

some significant improvement in the ZDR pattern in this area which is important for 
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eventual evaluation compared to the control experiment. The increased error in 

analyzed Z for the REREZZDR experiment can be seen in the Moore storm and the 

storm to its north, where Z values are lower compared to both RFZZDR and CZDR. 

Additionally, there the high ZDR in the forward flank of the Moore storm is very noisy 

and less consistent compared to RFZZDR. RFREZZDR does not provide an improved 

analysis in this important area while RFZZDR does.  

Overall, the results using the additional radar observation filtering are 

encouraging, specifically for dual-pol variables. One potential drawback is that some of 

the details in the observations are lost as more filtering is applied to the observations. 

However, this additional filtering results in similar patterns in the observed variables 

compared to the simulated variables so it appears that the scale of observed features 

which can be analyzed on the grid used has not been negatively affected by the 

additional filtering. Future studies that use different scales will need to continue to 

investigate filtering methods.  
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Fig. 4.18. (a) Reflectivity (dBZ) and (b) differential reflectivity (dB) at the 0.5° tilt from KTLX at 1938 UTC and from the ensemble 
mean analysis of (c-d) CZZDR at 1940 UTC as well as the filtered (e) reflectivity and (f) differential reflectivity from KTLX and the 
ensemble mean analyses of (g-h) RFZZDR and (i-j) RFREZZDR. 
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Table 4.5 Table of calculated average RMSEs over the assessment window period for 
both the ZDR and lowest tilt domains for the 10 May 2013 case. Blue cells indicate 
RMSEs lower than the control experiment and orange cells indicate RMSEs higher than 
the control experiment. 
 
 
4.4.2 The 10 May 2010 tornadic supercells case 

Similar to the M20 case, some initial sensitivity experiments are performed to 

improve on the initial control experiment. The experiments follow those for the M20 

case with a couple of exceptions. First, ZDR is already assimilated separately from Z and 

Vr because the observations come from a separate radar (KOUN) assimilated after the Z 

and Vr observations from KTLX, so no experiment that alters the assimilation order of 

the observations is included. Second, multiplicative inflation is already included in the 

control experiment so only an additive noise test is conducted for the model error 

treatment test section. Finally, this experiment only uses KTLX, as well as KOUN for 

ZDR, and therefore there is little to change about the radar configuration in a similar way 

to the radar configuration experiments developed for M20. The average RMSE 

calculations across the assessment window are repeated for this case. It should be noted 
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that the RMSE for Z and Vr are calculated against the observations KTLX and the 

RMSE for ZDR is calculated against the observations KOUN to remain consistent with 

the assimilation experiments. 

4.4.2.1 Model error treatment methods  

Additive perturbations are used in addition to the relaxation to prior spread and 

multiplicative covariance assimilation methods in experiments that assimilate Z and Vr 

(experiment ‘PZ’) and that assimilating Z, Vr, and ZDR (experiment ‘PZZDR’). Similar 

to the M20 case, perturbations of θ at +/- 1.0 K are added in areas where observed Z > 

10.0 dBZ. The average RMSEs over the assessment window for both the ZDR domain 

and low tilt domain are higher in the two perturbation experiment PZ compared to the 

control experiments except for simulated ZDR from PZ for the ZDR domain which is only 

.03 dB different than CZ (Table 4.5). In contrast to the M20 case, where additive 

perturbations showed some improvement for the traditionally assimilated variable, Z, 

particularly for the ZDR assimilation domain, in this case do not show improvement for 

PZ. Interestingly, the average RMSE of analyzed Z in PZZDR for the ZDR domain is 

lower. This appears to be related to the temporal error between the low tilts in the 

KTLX volume and the assimilation time that was noted for the M20 case. The 

perturbations help for this experiment when there is higher temporal error. However, the 

RMSEs for each individual assimilation time also show that PZ and PZZDR have 

consistently higher error compared to the control experiments for the low tilt 

experiment domain, an area of particular focus for this experiment (Fig. 4.19).  
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Fig 4.19. Time plot of analyzed Z (dBZ) RMSE values for the (a-b) ZDR domain and (b-
c) lowest tilt domain and analyzed ZDR (dB) RMSE values for the (e-f) ZDR domain and 
(g-h) lowest tilt domain calculated over the assessment window (2230 – 2301 UTC) for 
the model error treatment experiments.  
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Fig. 4.20. (a) Reflectivity (dBZ) at the 0.5° tilt from KTLX at 2246 UTC and (b) 
differential reflectivity (dB) from KOUN at 2246 UTC as well as from the ensemble 
mean analyses of experiments (c-d) CZ and (e-f) PZ at 2248 UTC. 
 
 
 Individual plots of the variables at the lowest, 0.5° tilt are included in Figs. 4.20 

and 4.21 for 2248 UTC, chosen because it is an optimal time in which the individual 

RMSE values for each experiment are similar and also relatively low in error compared 

to the rest of the assessment window. As for the error calculations, the plots of Z are 

from KTLX and the plots of ZDR are from KOUN. Analyzed Z in PZ is significantly 

higher in the core of the Norman and Moore storms (Fig. 4.20). Additionally, the far 

northeastern portion of the forward flank of the Moore storm is significantly over-

forecast. The simulated ZDR values show little deviation compared to the Z; the Z values 

remain relatively consistent throughout each storm in PZ, particularly for the forward 

flank portion furthest downshear from the updraft of each storm, while there is a much 
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more significant amount of variation in CZ. The individual RMSEs in Fig. 4.19 are 

noted to be worse for analyzed Z in CZZDR for this experiment and the values and 

patterns in Fig. 4.21 reflect that. The high Z values associated with the heaviest 

precipitation cores in the Moore and Norman storm are similarly overestimated 

compared to PZZDR; CZ improved on PZ in this area. However, the similar lack of 

significant variation noted in simulated ZDR for PZ is also seen in the analyzed ZDR for 

PZZDR. This is of particular concern because this experiment assimilates ZDR; the ZDR 

value should show variation across the storms as in the observations (Fig. 4.21). 

Overall, the additive perturbations do not appear to have a net positive affect for these 

experiments.  

 
 
Fig. 4.21. (a) Reflectivity (dBZ) at the 0.5° tilt from KTLX at 2246 UTC and (b) 
differential reflectivity (dB) from KOUN at 2246 UTC as well as from the ensemble 
mean analyses of experiments (c-d) CZZDR and (e-f) PZZDR at 2248 UTC. 
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4.4.2.2 Radar observation filtering  

 The same additional 9-point median filter applied to the Z and ZDR observations 

after they are interpolated to the model grid are used in similar experiments for this 

case. Experiment RFZ assimilates Z and Vr while experiment RFZZDR assimilates Z, 

Vr, and ZDR. An additional experiment is also conducted that assimilates ZDR with a 

reduced observation error of 0.3 dB. The domain average RMSEs for Z and ZDR both 

RFZ and RFZZDR are lower compared to the control experiments. The individual 

RMSEs calculated for RFZ and RFZZDR at each assimilation time are also consistently 

lower, or at least very similar, to the results from the control experiments (Fig. 4.22). As 

in the M20 case, experiment RFREZZDR with the reduced observation error for ZDR 

shows a similar improvement compared to CZZDR for analyzed ZDR as RFZZDR but 

has increased the RMSE values for analyzed Z.  

 The two versions of observations before and after the additional filtering as well 

as the model results are plotted in Figs. 4.23 and 4.24. The newly filtered observations 

appear to improve the analysis of patterns seen in the variables for RFZ and RFZDR. 

For example, the downshear extent of the high Z values associated with heavy 

precipitation in the forward flank of the Norman storm is improved (Fig. 4.23). This 

improvement is even greater in ZDR for RFZ and RFZDR. The ZDR values are higher 

further downshear in the forward flank for the Norman storm in both cases which is 

more similar to the observations. This is obviously important when ZDR is assimilated 

but also important for the Z experiments because, as previously mentioned, any 

improvements seen when ZDR is assimilated will be more robust if the experiments that 

only assimilate Z are consistent with the observations.  
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Fig 4.22. Time plot of analyzed Z (dBZ) RMSE values for the (a-b) ZDR domain and (b-
c) lowest tilt domain and analyzed ZDR (dB) RMSE values for the (e-f) ZDR domain and 
(g-h) lowest tilt domain calculated over the assessment window (2230 – 2301 UTC) for 
the radar filtering experiments.  
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Fig. 4.23 (a) Reflectivity (dBZ) at the 0.5° tilt from KTLX at 2246 UTC and (b) 
differential reflectivity (dB) from KOUN at 2246 UTC and from the ensemble mean 
analysis of (c-d) CZ at 2248 UTC as well as the filtered (e) reflectivity and (f) 
differential reflectivity from KTLX and KOUN and the ensemble mean analyses of (g-
h) RFZ. 
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Fig. 4.24 (a) Reflectivity (dBZ) at the 0.5° tilt from KTLX at 2246 UTC and (b) differential reflectivity (dB) from KOUN at 2246 
UTC and from the ensemble mean analysis of (c-d) CZZDR at 2248 UTC as well as the filtered (e) reflectivity and (f) differential 
reflectivity from KTLX and KOUN and the ensemble mean analyses of (g-h) RFZ and (i-j) RFREZZDR. 
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4.5 Conclusions 

Sensitivity tests are run for control experiments CZ, which assimilates Z and Vr, 

and CZZDR, which assimilates Z, Vr, and ZDR, for both the May 20 (M20) and May 10 

(M10) cases. The tests included using a different assimilation order for ZDR (M20 case), 

using additional model error treatment methods (M20 and M10 case), altering the 

configuration of which radars and which observations are assimilated (M20 case), and 

assimilating observations with additional filtering methods (M20 and M10 case). The 

focus of the experiments is to improve the analysis of Z and ZDR in the lower model 

levels where the new dual-pol assimilation experiments will assimilate ZDR observations 

and be evaluated. The results are compared by calculating the average RMSE for all 

observations during an assessment window, the last 30 minutes of the assimilation 

period, for both the domain over which ZDR is assimilated as well as the lowest radar 

tilt. Individual RMSE values and the analyzed variables plotted at the lowest radar tilt 

are also considered.  

The model error treatment methods experiments show some improvement 

compared to the control but, in general, they are inconclusive. For example, analyzed Z 

is improved in MZ and PZ compared to CZ. However, ZDR values are erroneously lower 

in the model error treatment experiments compared to the control experiments in areas 

of heavy precipitation and erroneously high in areas far downshear in the forward flank, 

particularly for PZ and PZZDR. The new radar configuration experiments, exclusive to 

the M20 case, have higher average RMSE values overall and have consistently higher 

RMSE values for each assimilation time. RC and RCZZDR have less spurious 

precipitation compared to their control counterparts, but when evaluated against 
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observations they did not show improvement. On the other hand, the radar filtering 

experiments show consistent improvement in the RMSE values as well as notable 

qualitative improvements in the patterns of the analyzed variables. Specifically, the 

values are more consistent and higher in value than the control experiments where such 

patterns exist in the observations.  

The impact of different treatment methods on the two cases differs. For the radar 

filtering experiments, the results improve upon the control experiment for both cases. 

However, for the model error treatment methods, the addition of the additive 

perturbations shows some improvement in some of the analyzed variables in PZ for the 

M20 case but generally shows no improvement in the M10 case.  

An interesting finding from the model error treatment and radar configuration 

experiments is how they appear to provide different results depending on the temporal 

error between the radar observations and the assimilation time. The model error 

treatment methods improve upon the control analyses when there is greater temporal 

error between the scan times for the lowest observed tilts in the KTLX radar volume 

and the time at which those observations are assimilated. On the other hand, in the radar 

configuration experiment, the RMSE increases when there is more temporal error, 

indicating the additional observations that are assimilated from other radars in the 

control experiment help better analyze the storm when the lower observed tilts from 

nearby KTLX are delayed compared to the assimilation time.  

A lower observation error for ZDR is used for one radar filtering experiment, but 

this results in noisier analyzed ZDR and increased the error in analyzed Z. The analyzed 

ZDR in experiment RFZZDR with the original ZDR error still has a similar fit to the 
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observations as when the reduced error was used while also fitting observed Z better. 

The model error treatment methods, specifically for the M20 case, have a positive 

impact on some values for the traditionally assimilated radar variables, Z and Vr, but 

have an overall negative impact on ZDR in the analysis whether it is assimilated or not.  

The results that are chosen for further analysis to evaluate the impact of 

assimilating the dual-pol variables in part 2 (chapter 5) are those which used the 

additional radar filtering, RFZ and RFZZDR for both cases.  The results of those 

experiments show consistent improvement for the various evaluation methods for both 

the Z and ZDR experiments. It is also clear, however, that further study of configurations 

for the assimilation of dual-pol variables is needed.  
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Chapter 5  Assimilation of Polarimetric Radar Data using EnKF: 
Evaluation of Analyses 

 
 
5.1 Introduction 

In this chapter, a more in depth investigation of the results for experiments RFZ 

and RFZZDR from Chapter 4 are presented for both cases, which were judged to 

produce the best results during sensitivity testing. For convenience, the ‘RF’ will be 

dropped from the experiment name, leaving experiments ‘Z’ and ‘ZZDR’. Since there 

are two cases, the dates are added to the experiment names to differentiate them; the 20 

May 2013 case experiments are ‘M20Z’ and ‘M20ZZDR’ and the 20 May 2010 case 

experiments are ‘M10Z’ and ‘M10ZZDR’. The experiment setup for each case included 

a 30 minute assessment window at the end of the assimilation period where results 

would be compared to observations. These windows roughly coincided with the storms 

of interest in each case maturing as well as moving within close vicinity to KTLX 

(M20) and KOUN (M10), so that assessment could take place with observations as 

close to the surface as possible. The noted storms of interest are the Moore storm for the 

M20 case and the Moore and Norman storms for the M10 case. There are also other 

nearby storms closely associated with these that will be addressed too.  

Detailed focus will be placed on one analysis from each case. This analysis is 

chosen based on the RMSE calculations for the lowest tilt from the previous section for 

both ensemble mean analysis (enmean) Z and ZDR. For the first case considered, M20, 

the RMSE for enmean Z is relatively low at 1940 UTC for both the M20Z and 

M20ZZDR experiments while the error for analyzed enmean ZDR is relatively consistent 

throughout the assessment period. Qualitative comparisons of the analyses with the 
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lowest RMSE error were considered in choosing 1940 UTC. The evaluation will first 

compare the dual-pol variables from each result to the observations. Then, different 

measurements of the PSD through drop size and parameter values will be considered to 

assess what impacts the additional assimilation of ZDR have on the estimate of the model 

microphysical state.  

5.2 The 20 May 2013 tornadic supercells case 

5.2.1 Evaluation of analyzed dual-pol variables  

The enmean analyzed Z and simulated ZDR from M20Z and analyzed Z and 

analyzed ZDR from M20ZZDR for 1940 UTC are compared to KTLX observations at 

the 0.5° tilt (Fig. 5.1). The subdomain is focused on the Moore storm of interest and the 

storm immediately to its north, which will be referred to as the OKC storm for 

convenience. The storm identities are noted in Fig. 5.1. The analyzed Z from both 

experiments is relatively similar. The Z values in both analyses are more similar to the 

observations in the OKC storm. The analyzed Z in the southeastern portion of the 

forward flank is underestimated in both cases. Sensitivity experiments conducted in 

Chapter 4 were not able to improve the analysis of these regions in any significant 

manner. Based on the Z pattern in both cases for both storms, it appears that 

precipitation is advected further downshear in the forward flank, with respect to the 

environmental wind shear (roughly oriented west-southwest to east-northeast), and 

underestimated in the region adjacent to the updraft relative to the storm motion 

(southeast portion of the forward flank), particularly for the Moore storm, which was 

moving nearly due east at this time. 
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Fig. 5.1. (a) Reflectivity and (b) differential reflectivity (dB) at the 0.5° tilt from KTLX 
at 1938 UTC as well as from the ensemble mean analyses of (c-d) M20Z and (e-f) 
M20ZZDR at 1940 UTC. 
 
 

The impact of assimilated ZDR is most noticeable for the Moore storm. 

Simulated ZDR in M20Z is lower in the ZDR arc region and higher immediately to the 

north compared to the observations. In M20ZZDR, analyzed ZDR is increased along an 

east-west oriented axis consistent with the ZDR arc in the observations. The analyzed ZDR 

values are also lower immediately to the north. In other words, the ZDR arc for the 

Moore storm is more defined when ZDR is assimilated. When combined with the OKC 

storm, the analyzed ZDR pattern in M20ZZDR distinguishes between the high ZDR values 

within the right (relative to storm motion) forward flank of both storms and the local 

minimum in between.  

The differences in analyzed Z between the model results and observations and 

simulated ZDR for M20Z and analyzed ZDR for M20ZZDR for the observations from the 
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same 0.5° KTLX tilt are plotted in Fig. 5.2. The observations are included for reference. 

The warm, orange colors indicate where the model results are higher than the 

observations and the cool, blue colors indicate where the model results are lower than 

the observations. Areas with little change relative to the observations are noted in gray. 

The Z values for both experiments are similar. The noted areas from Fig. 5.1 where Z is 

underestimated in the southeastern portion of the forward flank for both storms is 

obvious from the dark blue colors.  

 
 
Fig. 5.2. (a) Reflectivity (dBZ) and (b) differential reflectivity (dB) at the 0.5° tilt from 
KTLX at 1938 UTC and the difference between the (c) analysis reflectivity and the 
observations and (d) differential reflectivity and the observations for M20Z and (e-f) 
M20ZZDR at 1940 UTC. 
 
 

The impact of assimilating ZDR is clearly seen when comparing the ZDR 

differences between the experiments. For the Moore storm in particular, the magnitude 

of the differences between analyzed ZDR and the observations for M20ZZDR are less 

compared to M20Z. Simulated ZDR values that are too high in the central and eastern 
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portions of the forward flank of the Moore storm in M20Z are still slightly higher but 

with a lesser magnitude in M20ZZDR. ZDR values in M20Z that are too low in the 

southern portion of the forward flank where the observed ZDR arc exists are still 

somewhat lower but with a lesser magnitude in M20ZZDR. A larger portion of the 

Moore storm in M20ZZDR is within the ‘gray’ region where the differences between 

the analyzed and observed ZDR are less than 0.25 dB in magnitude.  

The fact the patterns of analyzed Z between the experiments are relatively 

similar is not insignificant. Ultimately, the goal is to provide an improved analysis of 

the observations. However, the ZDR analysis is improved which should indicate through 

investigation of the model microphysical state that the similar analyzed Z pattern in 

M20ZZDR better represents the observed microphysical state. In other words, when Z 

alone is assimilated, there are a multitude of possible combinations of PSDs that can fit 

those values of Z. However, they will be in error compared to the observations. The 

assimilation of ZDR provides additional information on the observed microphysical state 

to better replicate the observed PSDs that lead to the Z values seen. An analysis with Z 

alone that matches the observations well may provide a good fit in terms of 

precipitation coverage, but the actual microphysical state of the model may contain 

significant error compared to the observed state.  

For one last assessment of the ZDR values, the differences between M20Z and 

M20ZDR are plotted in Fig.5.3 in the same way as Fig. 5.2 but compared to each other 

rather than the observations. The ZDR observations are included for comparison. The 

differences are most apparent in the Moore storm. The ZDR analysis has higher values of 

ZDR, sometimes in significant magnitudes, along the southern edge of the forward flank 



 

161 
 

where the ZDR arc is located. Additionally, the analyzed ZDR in M20ZZDR is lower to 

the northeast of the ZDR arc where PSDs with lower maximum drop sizes and more 

small drops would be expected. This reflects the pattern of values in the ZDR 

observations. Values greater than 3.0 dB are located within the ZDR arc and decrease to 

less than 1 dB further downshear in the forward flank.  

 
 
Fig. 5.3. (a) Differential reflectivity (dB) at the 0.5° tilt from KTLX at 1938 UTC and 
difference in differential reflectivity between (b) M20Z and M20ZZDR at 1940 UTC. 
 
 
5.2.2 Evaluation of model microphysical state  

It is important to further investigate how the differences seen in the values of the 

dual-pol variables in the analyses compared to observations when ZDR is assimilated 

impact the estimate of the model microphysical state variables. A few values associated 

with the model PSDs are evaluated in this section. First, rain mean mass diameter (Dnr.) 

at model grid level 2 (first level above the surface) is plotted in Fig. 5.4. Analyzed Z 

contours at 20 dBZ intervals are overlaid on the plots. The ZDR observations from the 

0.5° KTLX tilt are included for reference. Both storms are located very close to KTX so 

the 0.5° tilt observations are close to the surface.  
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Fig. 5.4. (a) Differential reflectivity (dB) at the 0.5° tilt from KTLX at 1938 UTC as well as mean mass diameter (mm) at the first 
model level above the surface for the ensemble mean analysis of (b) M20Z and (c) M20ZZDR at 1940 UTC. Reflectivity contours are 
overlaid on the mean mass diameter plots in 20 dBZ intervals. 
 

 
 
Fig. 5.5. (a) Differential reflectivity at the 0.5° tilt from KTLX at 1938 UTC as well as rain intercept parameter (mm-4, 10Log10 scale) 
at the first model level above the surface for the ensemble mean analysis of (b) M20Z and (c) M20ZZDR at 1940 UTC. Reflectivity 
contours are overlaid on the intercept parameter plots in 20 dBZ intervals. 
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The pattern of Dnr values in M20ZZDR better reflects the observed ZDR pattern 

compared to M20Z. It is expected that PSDS associated with high ZDR values will have 

higher mean mass diameter values, and vice versa for low ZDR values. Specifically, 

there are higher mean mass diameters on the immediate southern edge of the forward 

flank of the Moore storm co-located with the ZDR arc in the observations. Additionally, 

the Dnr values are lower immediately to the north in the central and northern portions of 

the forward flank. These differences between M20Z and M20ZZDR indicate that the 

improvement in the analyzed ZDR patterns seen in section 5.2.1 in M20ZZDR is 

reflected in the model microphysical state. Also of note, the pattern of higher Dnr values 

in the OKC storm in M20ZZDR better matches areas of high ZDR in the observations 

compared to M20Z. The comparison of the ZDR values did not show as much of an 

impact in this area but it is clear that there was still a positive impact on the 

microphysical state.  

 The intercept parameter for rain N0r, one of the parameters of the rain PSD, is 

plotted for the same model grid level 2 in Fig. 5.5. Analyzed Z contours at 20 dBZ 

intervals are overlaid on the plots. The ZDR observations are again included for 

reference. It is expected that high ZDR values are associated with PSDs with lower N0r 

values, representing distributions with long tail ends and larger drops, and that low ZDR 

values are associated with PSDS with higher N0r values, representing distributions with 

a much higher number of small drops and a lower maximum drop size. The evaluation 

of ZDR values in section 5.2.1 noted that there is a local minimum in ZDR seen in the 

observations and M20ZZDR between the Moore and OKC storms between the higher 

values associated with the ZDR arc in both storms. The N0r values in M20ZZDR are 
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higher than in M20Z for this region, indicating an increase in the number of small drops 

present in the model which is expected given the low ZDR values in the observations.  

 
 
Fig. 5.6. Individual rain DSDs at each model grid point from the first level above 
surface for (a) M20Z and (b) M20ZZDR at 1940 UTC as well as (c) simulated and (d) 
analyzed differential reflectivity reference images from M20Z and M20ZZDR as 
plotted from the 0.5 ̊tilt of KTLX with a black box indicating the region from which the 
DSDs are included.  
 
 
 Individual rain DSDs at the first level above the surface (model grid level 2) 

from both experiments are plotted in Figs. 5.6 and 5.7. A subdomain is used in each 

figure to highlight separate areas of interests in the storm and a black box that outlines 

this subdomain is plotted on included simulated (M20Z) and analyzed (M20ZZDR) ZDR 

plots from Fig. 5.1 for reference. Fig. 5.6 focuses on the southern portion of the forward 

flank of the Moore storm associated with the ZDR arc and Fig. 5.7 focuses on the 
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northern portion of the forward flank of the Moore storm. The DSDs with the largest 

drop sizes present (up to 7 mm diameter) are similar (Fig. 5.6). However, there is a 

notable increase in the concentration of DSDs with larger drop sizes from the 3.0 to 4.0 

mm range to 4.0 to 5.0 mm range in M20ZZDR compared to M20Z. This region in both 

experiments appears to contain similar maximum drop sizes but there is a relative 

increase in the number of DSDs with larger drop sizes when ZDR is assimilated in 

M20ZZDR. The DSDs in Fig. 5.7 are again somewhat similar but there is a general 

increase in the N0r values in the M20ZZDR experiment. It is expected that the DSDs in 

this region would have an increased number of small drops based on the lower observed 

ZDR.  

 
 
Fig. 5.7. As in Fig. 5.6, but for a different reference area indicated by the black box in 
(c-d).  
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 These experiments use NWP to estimate the model microphysical state. Another 

area of observational research attempts to retrieve information about the observed DSDs 

using dual-pol radar observations and known relationships between the DSD 

parameters. In one such method, introduced in Zhang et al. (2001),  Λ௥  is first found by 

creating a table of calculated ZDR values based on a range of potential Λ௥  values using a 

ZDR equation that has been modified to include calculated T-matrix scattering 

amplitudes for rain (Jung et al. 2010). The table is searched based on the observed ZDR 

value to find the closest Λ௥  used to calculate a similar ZDR value. Next, the observed Z 

value and calculated Λ௥  are used to calculate N0r. The model estimated N0r values at the 

first level above the surface for both experiments are compared to retrieved N0r values 

from the lowest 0.5º tilt from KTLX in Fig. 5.8. The observed ZDR is included for 

reference as well as the hydrometeor classifications for the observations based on the 

method of Park et al. (2009). The N0r values are only retrieved in areas that are 

identified as pure rain (the big drops, rain, and heavy rain categories). The retrieved N0r 

values are somewhat higher than the model estimated values. However, the pattern of 

increasing and decreasing values better matches the M20ZZDR experiment. Higher 

values of N0r extend out further in the northern portions of the forward flank for both 

the Moore storm and the storm to its north over Oklahoma City. This matches the 

pattern in the observations, where the relative highest values of N0r extend out in the 

northern portions of the forward flank where more smaller drops are present, compared 

to the southern portion where the ZDR arc is located. A more detailed analysis of these 

retrieved values is needed, but the initial results show an encouraging improvement in 
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the match between M20ZZDR and the observations compared to M20Z and the 

observations. 

 
 
Fig. 5.8. (a) Retrieved rain intercept parameter values (mm-4, 10Log10 scale) from 
KTLX observations at the 0.5 ̊tilt as well as calculated rain intercept parameter values at 
the first model level above the surface for the ensemble mean analysis of (b) M20Z and 
(c) M20ZZDR at 1940 UTC. Reflectivity contours are overlaid on the intercept 
parameter plots in 20 dBZ intervals. Also, (d) observed ZDR from the 0.5 ̊ tilt of KTLX 
and (e) hydrometeor classifications of the observations from KTLX. 
 
 
5.3 The 10 May 2010 tornadic supercells case 

As for the 20 May 2013 case, the radar configuration experiment results, RFZ 

and RFZZDR from chapter 4 for this 10 May 2010 case are evaluated. The ‘RF’ is 

dropped and the experiments will be referred to as ‘M10Z’ and ‘M10ZZDR’. The 

analyses from 2248 UTC are chosen for evaluation because this is the best combination 

of low RMSEs for Z and ZDR at this point.  
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5.3.1 Evaluation of analyzed dual-pol variables  

The enmean analyzed Z and simulated ZDR from M10Z and analyzed Z and 

analyzed ZDR from M10ZZDR for 2248 UTC are compared to KOUN observations of Z 

at the 0.5° tilt (Fig. 5.9). There are actually three storms at this point; there is the 

southern Norman storm, the northern Moore storm, and a right split supercell from the 

Moore storm which will be referred to as the Shawnee storm since it produced a tornado 

that occurred over the Shawnee reservoir. The analyzed Z is best for the Moore storm in 

both experiments. For the Norman storm, as in the M20 case, the right, or southern, 

portion of the forward flank has underestimated Z values compared to the observations. 

There is not the same degree of improvement in analyzed ZDR in M10ZZDR compared 

to simulated ZDR in M10Z as is seen when comparing the similar experiments in the 

M20 case. There are some areas where the analyzed ZDR in M10ZZDR shows a closer 

fit to the observations. For example, the simulated ZDR in the western part of the Moore 

storm in M10Z is too high and the analyzed ZDR values in M10ZZDR are lower. 

However, there isn’t much improvement noted with any of the maximums in the ZDR 

observations associated with the ZDR arcs in each storm. Higher values of ZDR extend 

further eastward in the Norman storm in M10ZZDR compared to M10Z, which is more 

similar to the observations, but there only a few points that are greater than 3.0 dB, 

which cover a significant area in the observations. The ZDR values for both experiments 

are also too high far downshear in the forward flank of the Moore storm. This is 

actually worse in M10ZZDR compared to M10Z for some locations in the northeastern 

portion of the forward flank.  
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Fig. 5.9. (a) Reflectivity (dBZ) and (b) differential reflectivity (dB) at the 0.5° tilt from 
KOUN at 2246 UTC as well as from the ensemble mean analyses of (c-d) M10Z and (e-
f) M10ZZDR at 2248 UTC. 
 
 

Z and ZDR difference plots between the experiments and the observations and 

ZDR difference plots between M10ZZDR and M10Z are included in Figs. 5.10 and 5.11, 

respectively. The difference plots with respect to the observations help accentuate even 

slight improvements in M10ZZDR. The magnitudes of the differences in M10ZZDR are 

noticeably lower compared to M10Z. This is most apparent for the Moore storm and 

least apparent for the Norman storm, which is not analyzed well. The magnitude of the 

difference between M10ZZDR and M10Z and the observations in the ZDR arc region are 

relatively similar. In fact, based on Fig. 5.11, large areas of ZDR in the results are very 

similar and even in areas where there are differences, these differences do not show a 

discernable pattern. The only area where there are consistent differences is far 

downshear in the forward flank of the Moore storm. The analyzed ZDR in M10ZZDR is 



 

170 
 

erroneously higher in the northeastern portion of the forward flank, but improves upon 

M10Z in the northern portion (ZDR should be low in this region based off the 

observations). The analyzed ZDR in M10ZZDR may have a somewhat improved fit to 

the observations compared to simulated ZDR in M10Z, but the notable patterns in ZDR 

that M20ZZDR appeared to capture for that case are not as apparent in this case.  

 
 
Fig. 5.10. (a) Reflectivity (dBZ) and (b) differential reflectivity (dB) at the 0.5° tilt from 
KOUN at 2246 UTC and the difference between the (c) analysis reflectivity and the 
observations and (d) differential reflectivity and the observations for M10Z and (e-f) 
M10ZZDR at 2248 UTC. 
 
 

KDP is also assimilated for the M10 case. Less attention was paid to KDP in prior 

sections because it was not assimilated for both cases. Also, KDP is more closely 

associated with high Z values compared to ZDR. Therefore, in the sensitivity 

experiments, attention was focused on ZDR since the observation patterns can differ 

significantly from Z.  Fig. 5.12 contains KOUN observations of Z, ZDR, and KDP at the 

0.5° tilt as well as enmean analyzed Z and simulated ZDR and KDP from M10Z and 

analyzed Z, simulated ZDR, and analyzed KDP from M10ZKDP for 2248 UTC.  
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Fig. 5.11. (a) Differential reflectivity (dB) at the 0.5° tilt from KTLX at 2246 UTC and 
difference in differential reflectivity between (b) M10Z and M10ZZDR at 2248 UTC. 
 
 

The impact of the assimilated KDP is significant in M10ZKDP. The observed 

KDP values are high in the center of each storm, where the heaviest precipitation and 

highest rain rates occur. The coverage and intensity of the KDP values is remarkably 

similar to the observations. The KDP values in M10ZKDP are higher than for the 

simulated KDP values in M10Z which are underestimated. However, the analyzed Z is 

overestimated in M10ZKDP. The Z values are significantly higher compared to the Z 

observations where high KDP observations are present. The coverage of precipitation on 

the forward flank of the Moore storm is also erroneously extended to the northeast. 

The ZDR values in M10ZKDP are increased compared to M10Z as well, 

indicating that model PSDS associated with the increased KDP have higher sized 

raindrops relative to the observations. The use of a fixed shape parameter or a triple-

moment scheme may prove beneficial in this case. The higher KDP values in the 

observations are normally associated with PSDs that have a significant number of 

medium size drops.  A triple-moment (TM) scheme with a variable shape parameter 

could fit PSDs that have a higher number of medium sized drops. 
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Fig. 5.12. (a) Reflectivity (dBZ), (b) differential reflectivity (dB), and (c) specific 
differential phase (° km-1) at the 0.5° tilt from KOUN at 2246 UTC as well as from the 
ensemble mean analyses of (d-f) M10Z and (g-i) M10ZKDP at 2248 UTC. 
 
 
5.3.2 Evaluation of model microphysical state  

Mean mass diameter (Dnr) at model grid level 2 (first level above the surface) in 

M10Z and M10ZZDR is plotted in Fig. 5.13. Analyzed Z contours at 20 dBZ intervals 

are overlaid on the plots. The ZDR observations at the 0.5° tilt from KOUN are included 

for reference. Dnr is lower in the western portion of the Moore storm where the ZDR 

observations indicate more medium sized drops. There was a decrease in analyzed ZDR 

in M10ZZDR noted for this location in the previous section. Additionally, Dnr is higher 
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in the southeastern portion of the Shawnee storm which corresponds to higher ZDR 

values. This improvement is not as noticeable in the plots of analyzed ZDR, so even 

though the analyzed ZDR
 in M10ZZDR does not appear to improve much compared to 

M10Z, there still has been an improvement in the model microphysical state. There are 

lower Dnr values in M10ZZDR compared to M10Z for the western portion of this storm 

as well.  

Both cases have high Dnr values along the eastern edges of the forward flanks of 

the supercells. This is an odd artifact and not expected theoretically, since smaller drops 

would be expected far downshear from the updraft, and is erroneous based on the 

observed ZDR values. Plots of N0r, included in Fig. 5.14, show that the N0r in the 

experiments is very low in these locations, likely leading to the erroneously high ZDR 

values. Overall, the patterns in the N0r values are very similar between the two cases. 

There are some noted improvements in the PSDs for M10ZZDR based on Dnr, but there 

is little improvement in the microphysical state overall for the M10ZZDR experiment 

for this M10 case compared to the corresponding experiment in the M20 case.  

Since KDP is sensitive to the amount of liquid water present in the radar volume, 

the impact on the model microphysical state should be seen in the values of rain mixing 

ratio qr. Fig 5.15 contains plots of qr for both M10Z and M10ZKDP at model grid level 

2 as well as the corresponding KDP observations from KOUN at a 0.5° tilt for reference. 

The qr values are increased significantly, roughly following the pattern of the observed 

KDP values in both location and intensity. It is clear based on the comparison of M10Z 

to the observations that the water content is lower in the model than compared to the 
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observations, but the DM scheme may not be able to fit the observed PSDs properly for 

M10ZKDP.  
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Fig. 5.13. (a) Differential reflectivity (dB) at the 0.5° tilt from KOUN at 2246 UTC as well as mean mass diameter (mm) at the first 
model level above the surface for the ensemble mean analysis of (b) M10Z and (c) M10ZZDR at 2248 UTC. Reflectivity contours are 
overlaid on the mean mass diameter plots in 20 dBZ intervals. 
 

 
 
Fig. 5.14. (a) Differential reflectivity at the 0.5° tilt from KOUN at 2246 UTC as well as rain intercept parameter (mm-4, 10Log10 
scale) at the first model level above the surface for the ensemble mean analysis of (b) M10Z and (c) M10ZZDR at 2248 UTC. 
Reflectivity contours are overlaid on the intercept parameter plots in 20 dBZ intervals. 
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Fig. 5.15. (a) Observed specific differential phase at the 0.5° tilt from KOUN at 2246 UTC as well as rain mixing ratio (g kg-1) at the 
first model level above the surface for the ensemble mean analysis of (b) M10Z and (c) M10ZZDR at 2248 UTC. Reflectivity 
contours are overlaid on the mixing ratio plots in 20 dBZ intervals. 
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5.4 Summary and conclusions  

Dual-pol observations are assimilated for the first time for real supercell cases 

using an advanced double-moment (DM) microphysics schemes and an advanced 

forward operator that includes full T-matrix scattering amplitude calculations. Two 

areas of interest from two cases are considered: Tornadic supercells that occurred east 

of Norman and Moore, OK during the 10 May 2010 tornado outbreak (M10 case) and 

the supercell that produced the EF-5 Moore tornado from 20 May 2013 (M20 case). 

There two experiments for each case, ‘Z’ which assimilates Z and Vr, and experiment 

‘ZZDR’ which assimilates ZDR in addition to Z and Vr. The configuration settings for 

these experiments were determined in Chapter 4. The M10 case also includes an 

experiment that assimilates KDP, ‘M10ZKDP’.  

 The analyzed ZDR in M20ZZDR shows a better fit to observed ZDR compared to 

M20Z. The M20ZZDR results better fit patterns of high ZDR, such as the ZDR arc, and 

regions of low ZDR further downshear in the forward flank. Perhaps more importantly, 

the analyzed Z in M20ZZDR is not significantly different compared to M20Z and the 

observations. This means the additional ZDR observations improved the model PSDs 

relative to the observed microphysical state to fit the same Z values as M20Z. This 

demonstrates the value of having additional observations of the storm microphysical 

state compared to Z alone.  Evaluation of rain mean mass diameter (Dnr) and rain 

intercept parameter (N0r) at the surface show that the additional ZDR observations have 

improved the model microphysical state. Regions where ZDR is high in the observations 

have an increased Dnr and vice versa compared to M20Z. Additionally, the N0r is higher 

for regions of low observed ZDR compared to M20Z. Also, individual plots of rain DSDs 
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from regions of observed low and high ZDR show that the intercept parameter is higher 

in M20ZZDR where observed ZDR is low and a greater number of larger drops where 

observed ZDR is high. Finally, patterns in retrieved N0r values from KTLX observations 

better match the N0r patterns in M20ZZDR even though the actual values are a bit 

higher in the retrieved values. 

 The results are not as encouraging for the M10 case. There is not much 

difference between the analyzed ZDR values in M10ZZDR compared to M10Z relative 

to the observations. While there are some noticeable improvements in both the analyzed 

dual-pol variables and evaluation of the microphysical state, these improvements are 

low in magnitude and very limited in area. More specifically, the improved patterns of 

these variables in the M20 case associated with notable features like the ZDR arc in the 

observations are not noted for the M10 case. Also, the southeastern portion of the 

forward flank of the Norman storm is predicted very poorly. 

 Experiment M10ZKDP, which assimilated KDP, shows a remarkably improved 

fit to the observations compared M10Z. However, the analyzed Z values are 

overestimated, particularly where high KDP values are present in the observations. An 

analysis of rain mixing ratio qr shows that the assimilation of KDP significantly increases 

qr. Since the analysis of Z has been erroneously increased the PSD appears to have been 

altered but not in a way that improves the model microphysical state relative to the 

observed state. The use of a TM scheme might provide a better fit for heavy 

precipitation areas where a large amount of medium sized drops are present. 
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Chapter 6 Summary and Conclusions 
 
 
6.1 Summary 

In convection allowing models (CAMs), in which model microphysics (MP) 

schemes are used, the MP schemes play a crucial role in properly representing 

microphysical processes and states. On this convective scale, even a slight deviation in 

the estimation of the model microphysical state compared to the true atmospheric 

microphysical state can quickly lead to significant error in forecasts (Lorenz 1969). 

Most model MP schemes predict a given number of microphysical hydrometeor types 

and represent their particle size distributions (PSDs) using a simplified gamma 

distribution (Ulbrich 1983). Up to three independent parameters govern this 

distribution: the slope (Λ௫), intercept ( ଴ܰ௫), and shape (ߙ௫) parameters, which are 

determined by predicted model microphysical state variables. Most current research and 

operational models use either single-moment (SM) schemes, where only Λ௫  is 

independently updated, and double-moment schemes (DM), where Λ௫  and ଴ܰ௫ are 

independently updated. Advanced data assimilation (DA) methods, such as the 

ensemble Kalman filter (EnKF), are used to optimally combine a background model 

state with observations to reduce error in the initial model microphysical state of a 

forecast.  

Weather radar currently provides the best spatial and temporal observations of 

severe, convective storms. The national WSR-88D network was recently upgraded to 

dual-polarimetric (dual-pol) capabilities which include several new parameters in 

addition to reflectivity (Z) and radial velocity (Vr). These include differential reflectivity 

(ZDR), which is sensitive to the shape of the hydrometeors in the radar volume, and 
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specific differential phase (KDP), which is sensitive on the amount of liquid water 

present in the radar volume. Simulated dual-pol variables from the model convective 

storms can be compared to the observations to provide a more thorough comparison of 

the model microphysical state, including additional details on the types of hydrometeors 

present and their PSDs. Additionally, dynamic and microphysical processes lead to 

distinct patterns of observed dual-pol parameters values, or signatures, in both supercell 

storms and mesoscale convective systems (MCS) that can be used as evidence for 

comparing these true atmospheric microphysical processes with the model performance. 

The new nation-wide observations offer an unprecedented opportunity to further 

investigate and estimate the model microphysical state, vital to improving convective 

scale forecasts, in ways not previously possible.  

The goal of this dissertation is to assess the microphysical state of multi-moment 

MP scheme forecasts as well as to improve the estimation of the microphysical state for 

forecasts of severe, convective storms through the use of simulated and observed dual-

pol variables and ensemble based methods. The use of ensembles, including for DA 

using the EnKF, provides a helpful way to compare multiple MP schemes, assess 

uncertainty in forecasts, and assimilate observations using complex and highly non-

linear observation operators and model microphysics schemes. This is accomplished 

through three separate studies that 1) compare and contrast the simulated polarimetric 

variables and signatures for an ensemble of forecasts containing multiple microphysics 

schemes, 2) produce probabilistic ensemble forecasts of dual-pol variables using multi-

moment schemes, and finally 3) assimilate dual-pol observations using the EnKF to 

improve the estimation of the model microphysical state. 
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In the first study (Chapter 2), simulated dual-pol variables from several 

members of the CAPS Storm Scale Ensemble Forecasts (SSEF) as part of the Spring 

Experiment (Kong 2013) which used different MP schemes are compared to dual-pol 

observations. This included 4-hour regional forecasts for both a mesoscale convective 

system (MCS) case from 20 May 2013 and a 21-hour regional forecast for a supercell 

case from 20 May 2013. Particular attention is paid to the types of hydrometeors in each 

scheme and how their particle size distributions are represented so that the observation 

operators used to simulate the variables best replicate the results of each scheme. Some 

schemes are fully DM (Milbrandt and Yau (MY) and Morrison (MOR)), some were 

partially DM (do not update PSD parameters for all hydrometeor types, Thompson 

(TOM) and WDM6), and one was SM (WSM6).  

The fully DM MY and MOR scheme, which are the only schemes DM for 

graupel and hail, have simulated ZDR values that represent patterns and signatures 

associated with size-sorting compared to the other schemes; Dawson et al. (2014) 

showed that the size-sorting graupel and hail are more responsible for the ZDR arc 

signature in a supercell than that of rain. The MY and MOR, which are DM for snow 

compared to the other schemes, as well as TOM, which uses an advanced PSD for 

snow, better represent the stratiform precipitation region in the MCS case. The results 

for WDM6, which differs from WSM6 only in the prediction of a second moment for 

rain, closely mirror the results of WSM6, further indicating the prediction of a second 

moment for all hydrometeor types is important for forecasting severe convection. There 

are also notable biases present in the forecasts, including the over-prediction of graupel 
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in the MY and MOR case and the under-forecast of simulated KDP values compared to 

observations, indicative of a lower liquid water content in the model.   

In the second study (Chapter 3), probabilistic forecasts are made of a MCS from 

9 May 2007 in Oklahoma using SM and DM MP schemes. These experiments are 

referred to as EXP_S and EXP_D, respectively. The results show that EXP_D better 

represents the structure of the MCS as well as the forecast microphysical state 

compared to EXP_S, particularly when considering the difference in PSDs between the 

stratiform precipitation and convective precipitation in the leading convective line.  In 

terms of Z, EXP_D produces higher probabilities of Z > 20dBZ, indicative of overall 

precipitation coverage, for both the leading convective line and stratiform precipitation 

regions of the MCS. Quantitative probabilistic skill scores show that the EXP_D 

forecast is more skillful at predicting the coverage of Z for most thresholds at two and 

three hour forecast times, particularly the lower thresholds associated with stratiform 

precipitation. The EXP_D forecast is also sharper, indicating higher confidence in the 

forecasts in predicting where precipitation occurs and does not occur.  

 Probabilistic prediction of simulated dual-pol variables ZDR and KDP show 

EXP_D produces more realistic values compared to the observations. The KDP values 

are over-forecast in EXP_S and are associated with intense, disorganized convection. 

Also, the pattern of ZDR values in the EXP_S forecast does not differentiate between the 

convective and stratiform regions. On the other hand, ZDR values in EXP_D are higher 

in the leading convective line, where size soring leads to a greater number of large rain 

drops, and lower in the stratiform region, where the precipitation is less intense and 

contains fewer large drops and more small drops. Quantitative skill scores for those 
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features that are more localized, such as the high ZDR values associated with size sorting 

along the leading convective line, as well as the more intense convection in the leading 

convective line when considering Z, have much poorer scores for both forecasts, though 

EXP_D does show some improvement overall.  

 In the final study, for the first time, the EnKF is used to assimilate dual-pol 

observations from two real cases using an advanced DM MP scheme and advanced 

forward operators that include full T-matrix scattering amplitude calculations. The 

results are preliminary in nature since this is a new area of research, but there are still 

several important findings and notable issues encountered. Two tornadic supercell cases 

are considered from 10 May 2010 (M10) and 20 May 2013 (M20) in Oklahoma.  

In the first part of the study (Chapter 4), sensitivity tests are conducted relative 

to a control experiment in order to improve the analyses in the lower model levels of the 

domain where ZDR is assimilated, as well as understand how the settings impact the 

results. In one test, different model error treatment methods are used, including 

multiplicative inflation and additive perturbations. Both treatments improve the analysis 

in terms of RMSE for the traditionally assimilated variables (Z and Vr), particularly at 

times when there is high temporal error between the time of the low level radar 

observation scans and when these observations are assimilated. However, the treatment 

methods tend to have a negative impact on the ZDR analysis. When additive 

perturbations are used, the ZDR values are underestimated compared to observations. In 

another test, radar observations are filtered on the model grid to remove noise and 

smooth the observations to the scale of the model grid. In these experiments, the RMSE 

values are improved for both analyzed Z and ZDR. Qualitative evaluation of the results 
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shows the analyses have an improved fit to the observations as well. These analyses are 

used for evaluation in part two of this study. One goal of these tests is to help improve 

the Z analysis which is underestimated in the forward flanks of several storms of 

interest. However, even after testing multiple experiment configurations, the 

precipitation intensity is still underestimated. 

The analyzed dual-pol variables and their impact on the estimation of the model 

microphysical state are evaluated compared to observations in the second part of the 

study (Chapter 5). For each case, the experiment that assimilates Z only is referred to by 

‘Z’, the experiment that assimilates ZDR in addition to Z is ‘ZZDR’, and for the M10 

case, the experiment that assimilates KDP is referred to as ‘ZKDP’.  For the 20 May 

2013 case, experiment M20ZZDR has an improved fit to observed ZDR values while 

remaining similar to MCZ in terms of the fit to the Z observations. This is important 

since the additional variables are meant to provide further information on the model 

PSDs, not negatively impact the fit to observations already assimilated. An evaluation 

of the model microphysical state shows that the raindrop mean mass diameter (Dnr) is 

increased in regions where high ZDR values are assimilated and the rain intercept 

parameter (N0r) is higher where low ZDR observations are assimilated. The results are 

much poorer in the M10 case. The analyzed ZDR is lower than the observations in the 

ZDR arc region of multiple storms. The Dnr fields in M10ZZDR only show a slight 

improvement compared to M10Z.  

In the M10ZKDP experiment, the analyzed KDP values are improved 

significantly compared to M10Z with respect to the observations, but the Z values are 

overestimated. An analysis of rain mixing ratio qr shows the liquid water content in the 
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model is significantly increased in areas where high KDP values are assimilated. The ZDR 

values are higher compared to the observations as well, indicating that the additional 

water content in the model PSDs is included in larger raindrops than the observations. 

The use of a triple-moment scheme with a variable shape parameter, which allows for 

PSDs with a peak number of drops that are medium-sized, may improve the estimate. 

 There are several challenges noted in each of the three studies, some of which 

impacted more than one of the studies. These challenges include the verification 

methods, especially quantitative. Typical quantitative methods are not useful for 

polarimetric signatures that are isolated in nature and vary greatly over a small distance. 

In the Spring Experiment project, the fractions skill score (FSS) is used because it 

considers the fraction of grid points in a neighborhood where both model and observed 

variables are above a given threshold, effectively accounting for spatial bias in a 

forecast as the neighborhood size increases. However, some of the MP schemes do not 

produce simulated dual-pol values as high as the observations. The use of percentile 

values helped somewhat improve the comparisons. This applies to the ensemble 

probabilistic forecasts as well. Probabilistic predictions of ZDR and the associated skill 

scores suffer from substantial location bias due to the highly localized nature of specific 

patterns and values of ZDR associated with microphysical and dynamical processes.  

 Another challenge is improving the analyses of experiments using dual-pol 

variables. In both cases considered in this study, portions of the analyzed Z in the 

storms are significantly underestimated. This negatively impacts the assimilation of the 

dual-pol variables in some regions, particularly for the 10 May 2010 case. Several 
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additional sensitivity experiments with different settings are attempted and all but those 

that include additional radar filtering provide no overall improvement in the analyses.  

6.2 Future work  

Both the results from our research and the challenges encountered inspire future 

work. For example, for the Spring Experiment, it is a goal to eventually extend the 

qualitative and quantitative evaluations of MP schemes over the entire Spring 

Experiment period, such that they can be used to provide forecasters with potential 

additional information on severe weather threats, such as high KDP indicative of a flash-

flooding threat, as well as provide statistically more reliable assessment on the 

performance and behaviors of MP schemes and perhaps also their weather regime 

and/or convective storm dependency. Such information can be useful to developers of 

the MP schemes for them to improve the schemes. The results can also provide 

guidance to the choice of MP schemes to use in dual-pol data assimilation studies; to 

successfully assimilate dual-pol data using direct assimilation methods, the MP schemes 

used have to be able to replicate observed polarimetric values and signatures. If a 

scheme that does not replicate certain signatures well, any improvement gained in the 

data assimilation will also be quickly lost in the forecast period. 

 Improved quantitative methods for assessing simulated and observed dual-pol 

variables must also be developed. Quantitative assessment proved challenging with 

current skill scores, including those that consider a neighborhood of values, due to the 

highly localized patterns and signatures of the variables. The Neighborhood methods 

did show some improvement, but neighborhoods with increasing size will quickly 

smear the specific patterns important to assessing the microphysical state, such as the 
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ZDR arc signatures associated with size sorting forward flank adjacent to the updraft 

supercells. If the neighborhood is too large, high values of ZDR from elsewhere in the 

supercell, or from other supercells, will indicate that certain thresholds were met but do 

not account for the location which defeats the purpose of the assessment. In the future, 

object based methods could perhaps improve scores, by associating signatures in the 

model and observations to remove location bias. The observation operators must also 

continue to be refined to improve the values simulated. This work paid specific 

attention to precipitation near the surface, and specifically rain. Values for simulated 

variables in the melting layer and for frozen precipitation showed more error compared 

to the observations.  

For dual-pol observation assimilation, the most significant question that remains 

as estimates of the microphysical state are refined is what impact these improved 

estimates will have on short-term forecasts compared to when dual-pol variables are not 

assimilated. The benefit from assimilating the additional variables and the length at 

which the benefit lasts for forecasts must be properly assessed. This includes qualitative 

and quantitative measures of how significant the impacts are and how long these 

impacts last into the forecast period. Planned future work includes launching several 

forecasts at nearby time intervals for assessment. There are also obviously many areas 

still to investigate in the analyses as well, including the covariance structures and the 

related impact on other model state variables besides the microphysical state variables. 

For example, it will be interesting to note whether the assimilation of ZDR in the ZDR arc 

region has any impact on the wind fields in the model, which are tied to the size sorting 

of hydrometeors that leads to the ZDR arc. Finally, only separate experiments to 
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assimilate ZDR and KDP were conducted. Future experiments can assimilate both 

observations and examine the impacts.  
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Appendix A  Example Calculation of Forward Operator for 
Polarimetric Radar Observation Assimilation 

 
 
 An example of the modified operators using pre-calculated look-up tables is 

presented here. The ZH calculation for rain is considered:  

              ܼ௛௛ = 	 ସఒర

గర|௄ೢ|మ |ܣ)∫ ௔݂(ߨ)|ଶ + |ܤ ௕݂(ߨ)|ଶ + ܥ2 ௔݂(ߨ) ௕݂(ߨ)∗)ܰ(ܦ)݀ܦ	,       (A1) 

where Zhh is the horizontal radar reflectivity factor, λ is the wavelength of the radar, Kw 

is the dielectric factor for water, A, B, and C, include the canting angle of rain, fa(π) is 

the backscattering amplitude along the major axis, fb(π) is the complex backscattering 

amplitude along the minor axis, fb(π)* is the complex conjugate of the backscattering 

amplitude along the minor axis, and N(D)dD is the drop size distribution for rain. For 

rain, the mean and standard deviation of the canting angle is assumed to be 0 which 

leaves a simplified expression:  

ܼ௛௛ = 	 ସఒర

గర|௄ೢ|మ ∫| ௔݂(ߨ)|ଶܰ(ܦ)݀ܦ	.                                    (A2) 

The simplified gamma form of the drop size distribution: 

଴ܰܦఈ݁ି௸஽݀ܦ	,                                                    (A3) 

 where ଴ܰ is the intercept parameter, ߙ is the shape parameter, and ߉ is the slope 

parameter, is substituted in which yields:  

ܼ௛௛ = 	 ସఒర

గర|௄ೢ|మ ∫| ௔݂(ߨ)|ଶ ଴ܰܦఈ݁ି௸஽݀ܦ	.                             (A4)  

In Jung et al. (2008a), a fitted approximation to the T-matrix scattering amplitudes is 

used, and a power law function is used in place of | ௔݂(ߨ)|. The diameters in the 

resulting expression can be combined and the expression can easily solved analytically. 

In the Jung et al (2010) case, the equation is solved numerically by a summation over a 
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range of drop diameters in the PSD and associated scattering amplitudes represented by 

| ௔݂(ߨ)|ଶ. As originally implemented, the reflectivity factor would them be computed by 

a summation over the range of possible rain diameters (100 in total):  

ܼ௛௛ = 	 ସఒర

గర|௄ೢ|మ
∑ | ௔݂(ߨ)|ଶଵ଴଴
௜ୀଵ ଴ܰܦఈ݁ି௸஽݀ܦ .                           (A5) 

This summation requires a double loop because both the drop size distribution and 

scattering amplitude are a function of diameter. A portion of this calculation is 

completed and stored ahead of time for fast access during assimilation. Since ଴ܰ is not 

dependent on diameter, it can be removed from the summation:  

ܼ௛௛ = 	 ସఒర

గర|௄ೢ|మ ଴ܰ∑ | ௔݂(ߨ)|ଶଵ଴଴
௜ୀଵ  (A6)                          . ܦఈ݁ି௸஽݀ܦ

The remaining summation is calculated and stored before assimilation. The pre-

calculated tables are based on a range of values for ߉ and ߙ. For simplicity, the 

precalcualted protion of the equation will be referred to by S, which is a function of ߉ 

and ߙ: 

ܼ௛௛ = 	 ସఒర

గర|௄ೢ|మ ଴ܰܵ(߉௜  ௜).                                         (A7)ߙ,

As an example, in this experiment, a typical value of  ߉ would be 2000.0 m-1 and a ߙ of 

0. Prior to assimilation, the S has been calculated with a lambda value of at or near 

2000.0 and stored. During assimilation, ߉ is calculated based on the predicted 

microphysical state variables rain mixing ratio qr and number concentration Ntr:  

௠߉ = 	 గఘೢே೟ೝ୻(ସ)
଺ఘೌ೔ೝ௤ೝ

భ
య	,																																																							(A8) 

where ߉௠ will stand for the ߉ calculated in the model during assimilation. The list of ߉௜ 

for which S is calculated are at a constant interval so it simply requires the calculated 
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 ௠ to be divided by the known interval to find the table index containing the associated߉

S value: 

ܼ௛௛ = 	 ସఒర

గర|௄ೢ|మ ଴ܰܵ(߉௠).                                         (A9) 

 If the calculated ߉௠ is between two of the ߉௜ list values for S, then the result used is a 

linear interpolation between S for the ߉௜ list values above and below ߉௠.  

 


