AN APPLICATION OF BUSINESS BUDGETING:

 LINEAR PRCGRAMOTNG APFROACHBy
YOULISE RU
Bachelor of Science Chenf Kung University
Tainan, Tajwan 1974

Submitted to the Graduate Faculty of College of Business Aaministration CKlahoma State University
in partial fulfillmont of the requiroments for the Degree of MASTER OT EJSTMESE ASJTMISTRATICN
May, 1981

Institution: Oklahoma State University Location: Stillwater, Oklahoma Title of Study: AN APPLICATICN OF BUSINESS BUDGETING:

LINEAR PROGRAMMING APPROACH
Paces in the Study: 63
Candidate for Degree of Master of Business Administration

Major Field: Business Administration
Purpose of Study: Some form of budefeting is an absolute necessity for the financial planning of business firms. Traditionally the budget is built alone functional lines. Historically this planning process took place in several stages which entailed several loops. This made the finding of an optimal master plan a very difficult task. These difficulties have led to the realization that in order to develop an optimal master plan we must develop the functional budgets simultaneously instead of developing them in successive stems. It appears that linear programming concepts can be applied to obtain a simultaneous optimal solution to the oudecting problems.

Findings and Conclusions: The technique of linear programming makes it possible to optimize the firm's profit objective under constraints on sales, production capacity, purchases, financing, physical facilities, corporate goals, etc. and derive a series of budgets very quickly. This paper has demonstrated that it is feasible to apply linear programming to generate the firm's financial control budgets and financial statements.

ADVISER'S APPROVAL

AN AFPICATION OP BUSINESS BUDGTEAG:
 IINEAR PRCGRAMVING APDRCACH

Report Approved:

ACKNOWLDDGMFNT

I wish to express my sincere appreciation to Di. Harry A. Comeckey for his patience, help, and suggestion on this paper and throuchout my experience in the MBA program. I rould also like to thank my wife and my son for their understanding and confjdence over the last two years in Taiwan. I am groatly appreciative of their willingnese to make sacrijeces on my behalf in order that I could accomplish my Coal.

Finally, I wish to express my deepest appreciation to my parents for their support and encouracement throughout my college careor and to my brothers, without whose help, I would have nover entered, nor completed, the MBA profram. This wori is dodicatod to them.

TABLE OF COivTENTS
Chapter Page
I. INTPCDUCTIOA 1
II. RBEDARCH MTHODOLCGY 10
Linear Proeramming Model 10
Problem Identification 12
Data Collection 17
Drata Analysis and Model Forrulation • 24
III. PROBIEA SCLUTICH AXD MNALYSIS 35
Analysis of Computer Solution 35
Sonsitivity fnalysis. 36
Generation of Budgets 39
IV. SUMPARY AND CCACHUSIOA 48
BIBIICGRAPIY 51
APPRNDIX 1 - MESK PRIROOUT. 54
APPMOIX 2 - SIMPISX FMJTOLT 61

LIST OF TABLES

Table Page

1. Classiffcation of Fixed Cost Budget 14
2. Demand of the Products. 17
3. Required Products Capacity and Toatal Available Capocity. 18
4. Ending Inventory and Beginning Inventory 18
5. Usage and Raw Naterial Inventories; 19
6. The Variable Costs of Products 20
7. Fixed Cost Budgots. 22
8. Cach :!orksheet. 27
9. For Keypunching of the Inputs Cards 32
10. Initial Tableau 34
11. Sales Budget 39
12. Production and Inventory Budeet 40
13. Budceted Raw Material Purchase 41
14. Cash Budeet 42
15. Projected Income Statement 43
16. Projected Salarics Sheet 45

LIST OF FIGURES

Figure Page
I. Effectiveness of Operating Buaget Process 3
2. Traditional Budgeting Process 6
3. Plannine Process. 9

CHAPTER I

IMTRODUCTION

Budgetine is a process of resource allocation. The process may be appied within any revenue ooneratine entity, Whother it is a proprietorship or a corporation, profit or nonprofit, manufacturing or service organization. Operating budeets allocate the current revenue stream senerated by the normel. flow of goods and services, and canital budcets rodictribute the total rosources of an entity in a manner that maximizes total revenue over the long term planing horizon. Cne, therofore, could conclucie that the budectary concent is an intoreral part of organizational manacoment, whothor it is fjnancial rasnrinc for e emall firm or for the laree cormoration. Brighan (2f) thinks the orocess of budeotine is an irextricable nert of the art of management. Some form of bucretine is today an abolutely necessary tool for the financing rammine of tusinese firms. Danks and various public inctitutions mach chornol funds, guarantee, and rrovide other types of financial assistance to business firms, recari a well functionine budretary system as a necescary precondition for their positive decisions.

Budgeting can provide valuable guides to both hjeg levol executives and midde manarement personnel (18). Hell formulated and effectively developed budgets make subordinates amare that ton manamont has a reaidstic understanding of the nature of operations in the business firm. Such a bueget can be an important cormunciation link between too management and the divisional personnel whom they guide. Eusiness operations in today's economic environment are complex and are subject to heavy competitive pressures. In such an environment, many kinds of chanees take place. The rate of growth of the economy as a whole fluctuates and these fluctuations affect different industries in a number of different vays. If a firm plans ahead, the budect and control process can provide manacement with a better basis for understanding the firm's operation in relation to faster reactions to developine events, thus increasing the firms's ability to perform effectively.

Raloh L. Benke Jr (2) thinks the effective operating budect process of todey is three dimensional (Fieure I). The first dimersion is the use of budgets as a plannine device; the second is the use of the budget as a feedback device to insure that the employees of the orcanization are adhering to the plan, and the third is behavioral considerations. He thinke thet the effective operating budget is one that devises plans in a manner that brings about a commitment of the employees to the success of the plan
and establishes feedback that oncouraces the continuation of the commjtment.

Figure 1.
Effectiveness Cf Operatine Budget Frocess

Source: Utilizing Operating Budgets For Maximum Effectiveness, Managerial Planning, Ralph L. Benke, Jr, 1977, pp. 33

If the behavioral implications dimonsion is icnored, Ealph I. Denke ir (2) thinks that one or all of the following problems may occur:

1. Budgets, as a plaming devico, will not be as effective as they could be.
2. Reports comparing actual performance to budgeted performance will not accuratoly reflect the extent to which plens aro beine accomplished by departmente of creanization.
3. The budgete may not be prexaned or utjilized in a manner that motivates employess to take actions. that are in the best interest of the oreanization.
4. In oxtrorc instances, irmronon preperation or uiilization of budgets may cause severe irtornal probleres, such as depressed morale, that affects the overall well-being of the oreanization.

This report wil not discuss the above three dimensional questions but vill erphasize how to employ the lincor proeramming model to extend many of the elements of the convertional bucisetire process into e sirpio straightfoward set of algebraic formulas.

Traditionally the budect is built alone functional lines. A typical procedure is to develop sales, inventory, proauction, purchasine, cash, and capital expenditure, as
well as research and cevelormert kudeets which are then assembled into a master buaget together with tre projected financial statements (17).

Many authors state that the sales budect must be tokon as a starting point and the othor buagets must be adusted to it. Figure 2 represents a comon budcetine procedure where we start with the sales buceot ari rove to production, purchasing, and cash budgets. The sales budget is first developed on the basis of demand data by the use of a sales forecasting model. The sales budget and the befinnirg balance of the finished products are then usod to develop the production budget. The capacity required by the planned production is compared to the available capacity. If the available capacity exceeds the required capacity or is equal to it, we can consider the production budget to be final and can move to the next functional budget. If the available capacity is less than the required capacity, we must return to the sales budget and leave out enough products to bring the required capacity to the level of the available capacity. When the sales and production buggets are asjusted to each other, we can prepare the budgets for the service departments. Futhermore, we can take the planned production and expand it into parts and raw material requirements. The fabricatine parts and raw materials required for production and the beginning

Figure 2

Traditional Dudgeting Process

Source: Journal of Business, Cheng Kung University, 1977 Veikko Jasskelainen, pp. 37
balance of fabricating parts and raw materials are then used to develop the required purchases of fabricating parts and raw materials. When we add these purchases to the supplies needed by the various production and service departments, we can develop the purchasing budget.

Starting from the initial balances reported in the firm's financial statements and taking into account the effects of sales, production, service department, and purchasing budgets as well as from capital expenditure and research and development budgets, we can figure out the financing needs for the period. The finencing requirements are then compared to the available financing. If the available financing does not cover the needs, we must return to the sales budeet and revise it by excluding products which tie up a considerable amount of funds in relation to their contribution. Then we must revise the remaining functional budgets to bring them in line with the revised sales budget. Figure 2 ascumes that the capital budget as well as the research and development budget have been developed independently of the other functional budgets. A possible way to reduce the required financirg is to decrease the planned investmerts in capital ascets, or to make cuts in the R\&D budget. Another possibility is to decrease the planned ending balances of finished products, parts, and raw materials. When the functional plans have been adjusted to the
available financing, we can finally compute the projected income statement and projected balance sheet. If the planned profit is not satisfactory in relation to the capital employed in operations, we must return to some functional budget, revise it to improve the profit position, and then go through a chain of revisions in other functional budgets. This makes the finding of an optimal master plan very difficult. However, as shown in Figure 3 , the technique of linear programming makes it possible to optimize the firm's profit objective under constraints on sales, production capacity, purchases, financing, utilization of personnel, physical facilities, corporate goals, etc., and derive a budget very quickly. Further, it is interesting to note that there is no starting point specified in Figure 3 since all inputs are consiciered simultaneously. In this paper, the linear programming concept is applied to solve the firm's budgeting problems, and therefore produces a cash budect, production budeet, purchase budget, projected income statement, and a projected balance sheet simultaneously rather than developing them in successive steps.

Figure 3

Plannine Process

Source: A Computer Model Aprroach to Budgeting, Manacement Accounting, June, R. C. Murphy, 1975, pr. 34

RESEARCH MPTHODOLOGY

Linear Programming Model

The basic problem of linear programming, determining the ontimal value of a linear function subject to linear constraints, has been successfully applied to several areas of economic activity. Oil refinery operations is the largest single field of application. It is of great interest to top manacement, not only because of its precise results, but also because of its applicability to many problems of varying complexity.

The calculations needed in lincar programming are very simple but for more roalistic problems they have to be performed so many times that it is very tedious to do them by hand or desk calculator. However, all calculations can be performed on a computer which can handle problems of a size which could not be solved othervise.

Essentielly, linear programmine provides a means of selecting from a set of variables, according to cost, contribution or the like, in order to most effectively achieve a certain goal or objective. In applying linear programming to a problem, it is necessary to state the
relationchin between the arsociated verjable in a set of linear equatuons. Therefore, the general linear procraming formulation model can be shown as follows:

$$
\begin{array}{ll}
\text { Max. } & \sum_{j-1}^{n} C_{j} X_{j} \\
\text { Subject to } & \sum_{j-1}^{n} a_{i j} X, \\
\text { With } & \\
& \\
&
\end{array}
$$

Additionally, it should be emphacizod that the linear programing model presented above can have other forms. Usually, it is assumed that the $b_{i} \geq 0$, but in some instances it may be desirable to allow $b_{i} \leq 0$, for some i. Although the problem presented above was formulated as a profit maximization, it creates no ne: complications to minimize the objoctive function 2 . Furthermore, the constraints need not be of the form, ' less than or equal to' (\leq), but insteas con be of the form, 'Ereater than or equal to' $(\stackrel{\perp}{\prime})$, or they con be strict ' equalities' (=).

Problem Identification

TEinan-Paints Incorporated, menufactures paints for both inductrial uses and home painting in Taiwan. There are a large number of different shades of color and quality. There are two product groups, industrial paints and house paints. One unit of both paints is composed of ten gallons which is the minimum order size. The best sales season is spring and early summer. It is now the middle of April and the planning of operations for May is in process. The marketing manacement estimates that the firm can sell during the month of May, at most 3,600 units of industrial paints and 2,000 units of house paints. The sales price, f.o.b. at the factory, is 4,50 per unit for industrial paints. The normal terms of payment call for a 50 per cent payment on delivery and the remainder during the following month. The sales price of house paints is somewhat hicher, $\$ 600$ per unit, but on other hand, the financing requirements for this product are much heavier for it is sold on one month credit.

On the basis of the operations in April, the production manager estimates that the ending inventory for the month will be 600 units for industrial paints (INVENI). The peak sales season is in May and the stocks may be
reduced during the month. The ending inventory for May is, therefore, only 360 units. The ending inventory for house paints (INVENH) for the month of April is 200 units. Since the season for house paints is June, the management requires the May ending balance to be at least 400 units. Work in process is assumed to remain at a constant level during the planning period.

The standard use of raw material is 2 units for each unit of industrial paint and 3 units for a unit of house paint. The beginning balance of raw material is 400 units. The raw material inventory is at an abnormally low level. For this reason, the manaeement wants to increase it by the end of lay. The required ending balance is 750 units. The standard price of raw material is 3140 per unit. The terms of payment are 75 per cent down and the rest one month later.

Production is carried out in the mixing and packing departments. Both products go through both departments. The mixine of ray materials requires 2.5 standard labor hours for industrial naints and 3 standard labor hours for house paint per unit of product. The packing operation standard time is 0.2 hours per unit of product for both product groups. The total mixine capacity is 13,000 hours (PRODCAN) and the total packing capacity (PRODCAP) is l, 200 hours in May.

TABLE 1

CLASETFICATION OF FIWD COST BUDCQ:

Administrative Expenses:

Insurence	20,000
Miscellanecue general expenses	60,000
Total administrative exponses	$\$ 80,000$

Sales Expenses:

Depreciction-storo ecuiruort 300
Poprecietion-ielivery couirrert 700
Ecprecietiorabutiane
Acvertićre
180,000
Store eunrlíce
Niscellaneoue
60,000
Total sales expenses
20, ©c

Production Expenses:
Depreciatior-equipment 25,000
Depreciation-factory building
Povertousc oypence
Repairs and maintenonce
Insurance
Miscellaneous expenses
Total production expenses
Total fixed overnced

Depreciatior-equipment	25,000
Depreciation-factory buildine	5,000
Poverhousc eypense	70,000
Repairs anc maintenance	50,000
Insurance	10,000
Miscellaneous expences	30,000
Total production expenses	

3267,500

Direct races and associated variable overhead costs are $\$ 12$ per staneard labor hour in the mixing ciepertmont and $\$ 8$ por standard lador hour in the packing department. The firm uses a variable standard cost system where only the
variable costs are considered to be product costs. The controller has prepared a variable overhead cost budeet for May . Fixed costs are subdivided into depreciation and other fixed costs. About 80 per cent of other fixed cost must be paid in cash during tho planning period. The remainder is paid in the followine month. The classification of fixed cost is shown in Tacle l.

The beginning balance as of the fjrst of liay is given below. The accounts receivable balance is the result of sales in April and it can all be collected durine Vay.

Beginnine Balance Sheet

Cash	\$ 280,000	Accounts Payable	
Accounts Receivable	1,875,000	Raw Naterial	䓪 1,020,000
Finished Product		liages	18,650
Industrial Paints	186,960	Fiyed Expenses	96,000
House Paints	91,520	Income Tax	150,000
\%ork in Frocess	117,100	Bank Loans	1,000,000
Paw Saterial	56,000	Share Canital	1,200,000
Fixed Ascet	1,260,000	Undistributea Profit	381,930
	\$ $3,866,=80$		\$3,866,580

Raw materials have been purchosed in April in accordance with nommal paymot tomms. No changes are expected in the work force. This implies that the balence of accruod wages remoins at a constant level over the period. Accrued fived exponses and income taxes shown in the beginning balance must be paid in lay.

Eyisting bank loans muet be amortized to the total of $\$ 400,000$ during May. If the firm needs additional financing in May, it may take a new loan. Who Ioan can be any amount up to the limit of 600,000 . Existing loans and the new loan carry an interest of 12 per cent annually. New funds can we obtaned from 30 day notes with interest payable in advance. Ir the projoctec income statement, we will cbeerve only the interest for the first morth. There are no dividend payments during May. The same is truc for now capital cxponditures. The cash balance at the end of April is hegror than ucual. Tho treasurer estimates that a closing balance of $\hat{B}^{\mathbf{B}} 150,000$ covers the minirum safety requirements at the end cf lay.

> Data Collection

There are two product groups, industrial paints and house paints. The marketing managoment has analyzed the demand conditions and has come to the conclusion that the upper limits of the sales of the two products are as shown in Table 2. The table shows also the estimated sales price. The two products are not substitutes.

TABLE 2

DFMAND OF THE PRODUCTS

Froduct Selling Price, $\#$ Nnit	Selling Possibilities Units	
I	$\$ 450$	3,600
H	$\$ 600$	2,000

Table 3 delineates the required plant canacity for each product and also sinows available capacity.

TABLE 3

REQUIRED PRODUCTS CAPACITY AHD TOTAL AVAILABLE, CAFACITY

Department	Required Canacity h Mnit Froduct Product	Avaijable Canacity Hours	
Mixing	2.5	3.0	13,000
Packing	0.2	0.2	1,200

TABLE 4 EHDING IEVGRORY AMD BEGIMTNG INTENTCRY

Product	Production	Desired Endine Invontory Units	Beginning Invontory Units
I	PI	360	600

Table 4 presents the inventory budget of finished products. The required ending inventory must be based on the subjective estimates of management.

Table 5 shows the beginning balances and desired ending balances of raw materials and the standard costs of raw matorials. These costs will be employed to develop the purchasing and cash budeets as well as the projected income statement. It is clear that the existence of a standard cost system is a factor which greatly simplifies the data collection work of budget models.

TABLE 5
USAGF AND RAW MATERIAL INVENTORIES

$\begin{gathered} \text { RAV } \\ \text { ATERIAL } \end{gathered}$	USACE, UNIT, UIIIT OF PRODÚCT	TOTAL AMOUHT USED	$\begin{aligned} & \text { DESIRED } \\ & \text { EIVING BALATCE } \end{aligned}$	BEGINIMG BALAKCE	FRICE 㯰 NNIT
R	2	2 PI	200	375	\$ 140
	3	3 HH	200	375	\$ 140

TABLE 6
THE VARIABIE COSTS OR PRODUCTS

Cost Item	Product I	Product H
Direct Materials		
2 units oi material F a ${ }^{\text {\% }} 140$	280.0	
3 units of material R a $\mathrm{il}^{4} 40$		420.0
Direct \#ages and Variable Costs		
2.5 hours in mixing ậl?	30.0	
0.2 hours in nacking asi	1.6	
3.0 hours in mixing a ${ }^{\text {W }} 12$		36.0
0.2 hours in racking a ${ }^{\text {a }} 8$		1.6
TOMAL VARIABIF CCSTS, $3 /$ Unit	31].6	457.6

Table 6 presents the cost structure of the two products. This firm uses a variable standard cost system where only the variable costs are considerer to be product costs. The costs for direct material must be consistent with the raw material usace. The variable costs and direct wages of the firm
are also shown in l'able 6.
From the becinning balance sheet, we know that the beginning balance of cash and accounts receivable are adequate for the financing of operations. The dollar figures for inventory balances must again be consistent with the physical quantities presented in earlier tables. The beginning balances of raw materials in Table 5 have been multiplied by the standard prices of raw materials. Similarly, the beginning balances of finished products in Table 4 have been multiplied by the standard costs of Table 6. We know that work in process remains at the level of the beginning balance during the period of the problem and therefore, we show only a dollar figure. This allows us to simplify the model, in that we can establish the relationship between the final products and the raw materials directly without having to set up another set of relationships between work in process and the final products.

The first item on the liabilities side of the balance sheet, the accounts payable balance resulting from raw material purchases, must be paid during the period. Accrued wages in the amount of $\$ 18,650$ must also be paid. However, the work force is kept on an even level and accrued salaries and wages will therefore, also remain constant from period to period. For this reason the beginning balance of
\$ 18,650 also represents the ending balance. Accrued income tax must all be paid in the planning period. The existing bank loan will require two payments during the period, interest in the amount of $\$ 10,000$, and the amortization of $\$ 400,000$. These payments must be made regardless of other plans. The shareholders' capital remains unchanged during the period. There are no dividend payments during May. 'l'he same is true for new capital expenditures. The fixed cost shown in Table 7 are subdivided into depreciation and other fixed costs. This table is derived from Table 1.

TABLE 7
FIXED COST BUDGETS

Fixod Selling Expense
Depreciation
Other
Fixed Administration Expense
Depreciation

$$
\frac{80,000}{} \$ 80,000
$$

1,500
Other
260,000
Fixed Manufacturing Expense
Depreciation
30,000
Other
$\underline{160,000} \$ 190,000$

Table 7 also shows the fixed selling, administration and manufacturing expenses. About 80 per cent of the other fixed cost must be paid in cash during the planning period. The remainder is paid in the following month.

Apart from the data presented in the previous tables, we need additional information for the development of the model. The beginning balance of accounts receivable will be collected during the period. According to the prevailing terms of payment, 50 per cent of sales of products are collected during the planning period and the remainder during the folloving month. The beginning balance of accounts payable for raw material is paid in full during the period. The purchase of raw materials, $2 R$, involves a payment of 75 per cent during the same period and the rest one month later. The minimum safety requirement is estimated to be $\$ 150,000$ by the treasurer. New loans can be taken in any desired amount which must not exceed the limit of $\$ 600,000$. The note is secured by the firm's accounts receivable. The loan interest rate is 12 per cent annually and is payable in advance. Finally it is assumed that no capital expenditures are made during the planning period.

Data Analysis and Model Formulation

The first step in the procedure is formulation of a budget model on the basis of the preceding data. Since this company uses a variable standard cost system, fixed overhead is excluded from the cost of products and is regarded as an expense immediately. The firm's objective is to maximize the difference between the sales revenue and various costs. In this problem, we must consider variable selling, manufacturing and financing costs. The objective function can be presented as follows:

Objective Function
(1) Max. $Z=$

$$
(450-311.6) Y I+(600-457.6)-R
$$

The objective, Z, now stands for the difference between the sales revenue and all variable costs, i.e., the variable, YI, represents the sales of industrial paints, YH, the sales of house paints, and, R, the interest expense for the period. The sales price of the industrial product is $\$ 450$ per unit. The manufacturing costs are \$ 311.60 .

The objective is to be achieved subject to various constrajnts. First of all, we must observe the estimated maximum demand for both products which was presented in Table 2:
$\begin{aligned} \text { (2) YI } & \leq 3600 \\ Y H & \leq 2000\end{aligned}$

The constraints require that sales of both products must be less than or equal to the estimated maximum demand of the respective product.

Finished Goods Inventory Constraints

The sales and production of each product must be related via constraints which take the becinning and ending balances of finished prociucts into account. We let the variables, $P I$ and $P H$ represent the production of the two products. Cbserving the data presented in Table 5, we can formulate the constraints:

$$
\text { (3) } \quad \begin{aligned}
600+P I & \leq Y I+360 \\
200+P H & \leq Y H+400
\end{aligned}
$$

The first constraint states that the befinning balance of industrial paints, 600 units, plus its production, PI, must be greater than or equal to the sales, YI, and reguired ending balance, 360 units. The second constraint is interpreted in an analocous manner.

Maximum Canacity Constraints

The constraint relating the capacity required in the production to available canacity is formulated on the basis of Table 3:

$$
\begin{array}{lll}
\text { (4) } 2.5 \mathrm{PI}+3 \mathrm{PH} & \leq 13000 \\
0.2 \mathrm{PI}+0.2 \mathrm{PH} & \leq 1200
\end{array}
$$

Raw Iaterials Inventory Constreints

The beginning balence of raw material, R, plus the amount purchased during the neriod, must be greater than or equal to the amount used in production and the required ending balance:
(5) $400+2 R \geq 2 P I+3 P H+750$

The constraint is interpreted that the beginning balance of raw material, 400 units, plus the purchase for the period, $2 R$, is creater than or equal to 2 PI , plus 3 PH , plus the required ending balance of 750 units.

Cash Constraints

TABLE 8
CASH WORKSHEET

Available funds
$\begin{array}{lll}\text { Beginning cash balance } & \$ 280,000 & \\ \text { Accounts receivable balance } & 1,875,000 & \$ 2,155,000\end{array}$
Less fixed cash expenditures
Raw materials
Fixed expense
Accrued income tax
\$ 1,020,000

Existing loans
Amortization
$\$ 400,000$
Interest 10,000 410,000
Fixed costs
Sales \$64,000
Administration 208,000
Manufacturing 128,000 1400,000
Excess of reccipts over expenditures 96,000
150,000

Minimum ending cash balance
Net cash expenditure

$2,076,000$
$\$ 79,000$
150,000
$\$ \quad 71,000$

The cash constraints require that the beginning cash balance plus cash receipts from various sources must be greater than or equal to various cash expenditures plus the required minimum ending balance. The sum of the beginning cash balance and the accounts receivable balance is available for the financing of operations. From this, we must deduct the payment for accounts payable, accrued income taxes, amortization of existing bank loans, as well as interest on the outstanding balance, and the fixed expenses payable in cash, as shown in Table 8.

From the Cash Worksheet, (Table 8), we know that the excess of receipts over expenditures is $\$ 79,000$. The amount of new loans taken is given by the variable, V. The policy of this company is to maintain the desired cash amount of $\$ 150,000$, thus at end of May, we will see cash balances are \$ 150,000. In this application, there are two sources of variable cash receipts, i.e., sales and the proceeds from new loans. The variable cash expenditures are caused by raw material purchases and direct wages and variable overhead of manufacturing. "e get the following constraint:
(6) $(0.5)(450) Y I+79,000+V \geq 150,00+0.75(1,40) \mathrm{ZR}$ $+31.6 \mathrm{PI}+37.6 \mathrm{PH}$ $+(0.01) \mathrm{V}$

Fifty per cent of the YI sales revenue is collected in the same period in which the sales take place. The variable, YI, represents the number of units sold and the sales price is $\$ 450$. Therefore, the sales revenue of industrial paints is 450 YI , and the cash collections are (0.5) 450 YI . No cash collections are taken on house paints, since it is sold on one period credit. The variable, $Z R$, represents the unit of raw material, R, purchased. 75 per cent of these purchases must be paid during the same period. It follows that (0.75) 140 ZR represents the cash expenditures resulting from the purchases of raw material, ZR. The direct wages and variable manufacturing costs of the products are $\$ 31.60$ and $\$ 37.60$, respectively. The total amount of cash payments resulting from the production is therefore, 31.6 PI - 37. 6 PH . The interest expense on new loans is O.01 V , since the loan will only be outstanding for one month and interest is payable in advance.

The firm can improve its cash position by taking new loans if this is desirable. However, the creditors have stipulated a limit of $\$ 600,000$. This is taken into account by the following constraint:

$$
\text { (7) } V \quad \leq 600,000
$$

Interest Expenses Constraint

Finally, we need a constraint to compute the interest expenses which were deducted from the contribution in the objective function:
(8) $R=0.01 V+10,000$

This equation implies that new loans and existing loans require the payment of interest of l per cent per period. We have formulated the constraint so that the variable, R, representes the sum of the interest of new and existing loans ($\$ 10,000=\$ 1,000,000 \times 0.01$) .

All variables must be non-negative:
(9) $\mathrm{YI}, \mathrm{YH}, \mathrm{PI}, \mathrm{PH}, \mathrm{ZR}, \mathrm{V}, \mathrm{R} \geq 0$

Linear Program Presentation Model

This problem has ten constraints in addition to the non-negativity constraint to maximize (l) subject to the constraints (2) to (9). Rearranging the constraints,
we get the following model:

Maximize $Z=138.4 Y I-142.4 Y H \quad-R$

Subject to

and
$\mathrm{YI}, \mathrm{YH}, \mathrm{FI}, \mathrm{FH}, \mathrm{ZR}, \mathrm{V}, \mathrm{R} \geq 0$

Where

$$
\begin{aligned}
& Y I=\text { sales of industrial paints } \\
& Y H=\text { sales of house paints } \\
& \mathrm{PI}=\text { production of industrial paints } \\
& \mathrm{PH}=\text { production of house paints }
\end{aligned}
$$

```
ZR = nurchases of raw material
    V = amount of new loans
    R = interest of new loans and existing loans
```

TABLE 9
FOR KRYPUNCHING OF THE IMPUT CARDS

	YI	YH	PI	PH	2R	V	R	PHS
COHTPIB	1.38 .4	142.4					-1	
SALPSI	1							3,600
SALESH		1						2,000
IRVEin	1.		-1					240
PRODCAK			2.5	3				13,000
PRODCAP			0.2	0.2				1,200
LCAI:						1		600,000
IN VERH		-1		1				200
RA:			-2	-. 3	1			350
CASH	225		-31.6	-37.6	-105	0.99		71,000
INTMRTST						-0.01	1	10,000

We can solve this problem using the simplex algorithm by hand or computer. We also can use the IBM computerized package (MPSX) to obtain a solution. The first step is to convert the constraint set to a set of strict equalities. When the constraint is ' less than or equal to ' inequality, it is necessary to add a slack variable, (S_{i}), and rewrite it as an equality. When the constraint is an equality, it is not possible to add a slack variable. However, it is handled by use of an artifical variable (A_{j}). Unlike a slack or surplus variable, an artifical variable has no physical meaning. It is basically a dummy variable that is employed to allow the simple and rapid generation of an initial basic solution. When the constraint is ' greater than or equal to ' inequality, it is handled by using a surplus variable, $\left(S_{j}\right)$, and again we introduce an artifical variable, $\left(\mathbf{A}_{j}\right)$, to rowrite it as the equalty.

Now we can construct an initial simplex, as shown in Table 10.

INITIAL, TABIJFAI


```
Analysis of Computer Solution
```

The ontimal solution of this application is presented in Appendix l. From the computer printouts, we can observe that the procram added a slack variable where appropriate and that the slack variables are now in the optimal solution. The value of slack variables is the difference between the following figures:

> ACTIVITY UFPER LIMIT

SALESH	1,174	2,000
PRODCAN	12,522	13,000
PRODCAP	947	1,200

Unutilized sales of house paints are the difference between the upper limit on demand, 2,000 units, and actual planned sales, l, 174 units, or 826 units. The upper limit of total mixing capacity and total packing capacity do not effectively bind the optimal solution. Consequently, the
slack variable associated with these two constraints is also at a positive level. By deducting the figure in the ACTIVITY column on the PRODCAM and PRODCAP row from the figure in the UPPFR LIMIT column on the same row, we can see that unutilized mixing capacity and packing lines exist in the optimal solution. We can now list the optimal program:

Sales	Production
$Y \mathrm{I}=3,600$ units	$P I=3,360$ units
$Y \mathrm{H}=1,174$ units	$\mathrm{PH}=1,374$ units
New Loans	Raw Materials
$V=\$ 600,00$	$2 \mathrm{R}=11,192$ units
Interest	
$\mathrm{R}=\$ 16,000$	

Sensitivity Analysis

From the MPSX printouts in Appendix 1 , we obtain the following list:

LOWER LIMIT UPPER LIMIT

SALESI	NONE	3,600
SALESH	NONE	2,000
INVENI	NONE	240
PRODCAM	NONE	13,000
PRODCAP	NONE	1,200
LOAN	NONE	600,000
INVENH	200	NONE
RAW	350	NONE
CASH	71,000	NONE
INTFREST	10,000	10,000

Algebraically, LOWER LIMTT means the lowest value the activity can attain and still be feasible and UPPER LIMIT means the highest value the activity can attain and still be feasible. For example, the value of LOAN in the following figures:

LOWER LIMIT UPPER LIMIT

LOAN NONE 600,000
it indicates that the new loan can be taken between 0 and 600,000 and the solution will remain feasible. It is termed a feasible solution for the linear programing model if any
set of variables (ie, YI, YH, PI, ...) satisfies the constraint set and the non-negativity restrictions. Cbviously, there are infinite solutions within the feasible solution space.

In this problem, we are seeking to allocate quantities of resources to maximize profit. Observe in the optimal tableau in Appendix 2 , that the $C_{j}-Z_{j}$ values for $C_{1}-Z_{1}=0$ and $C_{2}-Z_{2}=0$. These values are the marginal values, or opportunity costs, associated with the product PI and PH. The fact that the opportunity costs are zero for both real products, indicate that we are producing as much of each one as is possible, given our resource constraints. Observe in the optimal tableau in Appendix 2 , that the $C_{j}-Z_{j}$ values for $S_{1}, S_{3}, S_{6}, S_{7}, S_{8}, S_{9}$ are 131.69, 97.59, 0.389, 142.4, 42.4, 0.4 , respectively. These values are the marginal values, or opportunity costs, of YI, INVENI, LOAN, INVENH, RAM and CASH, respectively. For example, we can say that the value of these marginal values indicate that the contribution value will decrease by $\$ 231.69$ if the availability of YI sales is reduced by one unit from its present 3,600 units. The marginal value of a resource can also be thought of as the change that occurs in the objective function as a result of utilizing an incremental unit of that resource.

Since the main emphasis of this paper is the application of linear programming to the budgeting process, we now
turn to this topic.

Generation of Budgets

Taking the computer output, the model, and the underlying data, we can now formulate the budgets for the various functions of the firm as well as the projected financial statements. All of the firm's budgets will be compatible since they are derived from the optimal solution.

Sales, Production and Purchase Budeots

The sales budget can be developed by taking the values of YI and YH in the optimal solution.

TABLE 11
SALES BUDGET

	Industrial Faints			Home Paints		
	Price	Units	\$	Price	Units	\$
Sales	\$450.00	3,600	1,620,000	\$600.00	1,174	704,400
Cost of Sales	\$311.60	3,600	1,121,760	\$457.60	1,174	537,222
Contribution			498,240			167,178

The production and inventory bucigets can be derived by taking the optimal values of the variables, YI, YH, PI, and FH. We can also develop the budget for raw material purchases on the basis of the prociuction variables, $F I$ and $F H$, and variable for raw material purchases, ZR.

TABLE 12

PRODUCTIOA AND INVENTORY BUDGET IN UNITS

	Industrial Paints	Home Paints
Desired Ending Inventory	360	400
Plus: Sales	$Y I=3,600$	$\mathrm{Y}_{\mathrm{H}}=1,174$
Total Requirements	3,960	1,574
Less: Berinning Inventory	600	200
Required Production	$\mathrm{PI}=3,360$	$P H=1,374$

TABLE 13
BUDGETED RAW MATRRIAL PURCHASE IN UNITS

	Raw Materials
Desired Ending Inventory	750
Plus: Production Requirements	$2 \mathrm{PI}=6,720$
Total Requirements	$3 \mathrm{FH}=\mathbf{4 , 1 2 2}$
Less: Beginning Balance	$\mathbf{1 1 , 5 9 2}$
Required Purchase	$\mathrm{ZR}=\overline{11,192}$

$\underline{\text { Cash Budget }}$

A cash budect can be constructed with the help of terms that appear in constraint 6. We know that the ending balance of cash is the required minimum amount of \$ 150,000, so new loans are included in the optimal solution. Since the loan taken during the period involves interest expenses, which reduce the value of the objective function, the solution will include new loans only to the minimum possible amount. Excessive cash would appear in the model only in the case where no new loans are needed. We can set

TABLE 14

CASH BUDGRT

Berinning Cash			\$280,000
Cash Receipts			
Fixed			
Accounts receivable balance		1,875,000	
Variables			
Sales			
I: $(0.5)(450) \mathrm{YI}=(0.5)(450)(3,600)$	810,000		
H: $(0)(600) Y \mathrm{H}=(0)(600)(1,174)$	0	810,000	
New loans		600,000	3,285,000
Funds Available			4,565,000
Cash Bxnenditures			
Fixed			
Accounts nayable			
Raw materials	1,020,000		
Fixed expense	96,000		
Income tax	150,000	1.266,000	
Fxistine loans			
Amortization	4,00,000		
Interest	16,000	4:16,000	
Fixed exrcrice (Fom Table 7)		400,000	
Variable			
Production			
I : $(31.6) D I=(31.6)(3,360)$	106,176		
$\mathrm{H}:(37.6) \mathrm{FH}=(37.6)(1,374)$	51,662		
Purchase			
$(0.75)(140) 2 R=(0.75)(140)(11,192)$	1,175,160	1,332,998	3,414,998
Ending Cash Balance			\$150,002

up a cash budget starting from the beginning cash balance, addine to it the various cash receipts and deducting from it the various cesh exnendituros on Table 14.

Projected Income Statement

TABLE 15

PROJECTED INCOME STATEMENT

Sales
Less: Standard Cost of Sales
Contributior
Less: Interest Expense
The value of Objective Function
Iess: Fixed Costs(From Table 7)
Sales $\quad 80,000$
Administration 267,500
Vanufacturine 190,000
Profit Eefore $T_{a x}$
Less: Incone Tax (50\%)
Net Cperating Profit

$$
\begin{array}{r}
\$ 2,324,400 \\
1,658,982 \\
\hline 665,4] .8 \\
\hline \quad=16,000 \\
\hline 649,418
\end{array}
$$

$$
\begin{array}{r}
537,500 \\
\hline 111,918 \\
55,959 \\
\hline \$ 55,959 \\
\hline
\end{array}
$$

The projected income statement can be drawn up by beginning with the contribution of the sales budget and deducting from it interest expenses and the fixed cost budgets. The fixed costs are given in Table 7. The optimal value of variable R gives the total interest expenses for both the existing and new loans.

The projected income statement is computed assuming that the federal income tax is 50 per cent and that the taxes accrued in this period are paid in the next period. It follows that we must jnclude the accrued income taxes in the liabilities of the projected balance sheet. We know that the firm may take a new loan. This loan carries an interest of 12 per cent annually with interest payable in advance. Assume that the new loan will be taken for only one month. The optimal value of the objective function can be read from computer outputs and is the difference between the total contribution and the interest statement in Table 15.
$\underline{\text { Projected Balance Sheet }}$

The beginning balance sheet, optimal solution, and the projected income statemont are utilized to develop the projected balance sheet which is given in Table 16. The ending cash balance of the cash budget also gives the cash

TABLE 16
PROJECTED BALANCE SHERT

ASSETS

Current Assets
Cash (From Tabie 14) 150,002
Account recesvable
$\begin{array}{lll}\text { I: }(0.5)(3600)(450) & 810,000 & \\ \mathrm{H}:(600)(1174) & 704,400 & 1,514,400\end{array}$
Inventory
Raw materials 105,000
Work in orocess
117,100
Finished oroducts
I: (311.6) (360) 112,176
$\mathrm{H}:(457.6)(400)$
Fixed Ascets
Beginning baiance
Depreciation

$$
\begin{array}{rrr}
\begin{array}{r}
293,216 \\
1,260,000 \\
37,500
\end{array} & 2,181,718 \\
& & \begin{array}{l}
1,222,500 \\
\hline 3,104,218 \\
\hline
\end{array}
\end{array}
$$

LIABILITIEE AND STOCHECLDRPS DOUITV
Accounts Payable
Rav material
(140)(0.25)(11192)

Accrued wages
Accrued income tax (From Table 15)
Accrued fixed exnense
(500000-400000)
Bank Loans
Becinning balance
Amortization
Nev Loans
Share Carital

391,720	
18,650	
55,959	
100,000	566,329
600,000	
600,000	$1,200,000$
	$1,200,000$

Undistributed Profit
Berinnina basance
Profit for the period

Pofit for the per-od
381,930
55,959
$\begin{array}{r}437,889 \\ 3,4,404,213 \\ \hline\end{array}$
balance of the balance sheet. The accounts receivable balance has been developed by taking the value of the variables $Y I$ and $Y H$ and multiplying these by the fraction of the sales prices that remain uncollected at the end of period.

The raw material ending balance is developed by multiplying the unit ending balances of Table 13 by their respective standard costs. The ending balance of work in process is the same as the beginning balance, since no change was assumed during the period. The ending balance of finished products is the physical inventory of Table 12 multiplied by the respective standard manufacturing costs. Fixed assets are reduced by depreciation.

Accounts payable balances are developed by multiplying the raw material purchases by that fraction of the purchase price which is not paid during the period. Accrued salaries and wages are assumed to remain at the level of the beginning balance. Accrued interest is due to the new loans. It is the value of the variable, R, in the optimal solution less $\$ 100,000$ which refers to the interest payments included in the fixed cash expenditures. The accrued income tax was calculated in the projected income statement. The accrued fixed expense is the remainder of other fixed costs which will be paid in the following month. The end of period
loan balance is computed by taking the beginning loan balance and subtracting the loan amortization payment from it and then adding the new loans taken during May. The value of variable, V, is $\$ 600,000$ in the optimal solution. Equity is increased during May by the net operating profit, \$ 55,959.

CHAPTER IV

SUMMARY AND CCNCLUSION:

In most cases, the master budget is the best practjcal approximation to a formal model of the total organization: it.'s objectives, it's inruts, and it's outnut. If the raster budeet corvos or a 'total decision model' for ton management, then decssions about stretegies for the forthcoming period may be formulated and altored during the budetary process. Traditionally, this has been a step-by-step process whereby tentative plans are Eradually revised (9). This makes the finding of an ontimal master plan very difficult, because the time recuired to ascemole tne budget is so great. However it is now feasible to take many of the elements of the convontional bucietine nrocess and convert tnom into a functional planning tool trrougn the technioue of linear programing. Nanamomert cen react cuickly to events and to revisions in preaictions of various aspects of operstions by linear programmine. This apolication makes it nossible to ontimize the firm's profit objective under constraints on sales, production capacity, purchases, finencing, utilization of personnel and physical facilities etc.

In addition to the time saving, Murphy (19) thinks that linear programming also provides the following benefits: 1. Shortening the planning cycle time. By removing the computational effort associated with budgeting, it is frequently possible to delay the start of the budgeting process until all the inputs are available. As most budget analysts are well aware, it is difficult enough to project sales for next month, much less give a monthly sales estimate for fiscal 1982 during June of 1981. Shortening the planning cycle time can, therefore, improve the quality of the basic sales forecasts because of more reliable data.
2. Continuous forecasting. By removing much of the tedium associated mith the budgeting process, it becomes feasible to continuously update the forecast of operations on a month-by-month basis throughout the fiscal year and, in some instances, extend the planning horizon of budget preparation to a second fiscal year.

In the future, much of the interaction and interdependence of decisions will be formalized in mathematical models'total models' that are sometimes called financial planning models (14). These models are mathematical statements of relationships in the organization among all of the operating
and financial activities, and of other major internal and external factors that may affect decisions. lany models are constructed and working. They are used for budgeting, for revising budeets with little incremental effort, and for comparing a varicty of decision alternatives as they affect the entire firm. The models speed the budeetary process beceuse the sensitivity of income and cash flows to various decjsions can be tested promptly via a simulation (9). Moreover, mathematical probabilitjes can be incorporated in these models, so that uncortainty can be dealt vith explicitly rather thar informally.

1. Babunakis, Michael, Budeets, Greenwood, (1976).
2. Benke, Ralph L. Jr., 'Utilizing Cperation Budgets for Maximum Effectiveness.' ', Managerial Flanning, (SeptNct 1976), pp. 33-55.
3. Charnes, A., and Cooper, W. W., Management Models and Industrial Application of Linear Proeramine, John Wiley\&Sion, 1969.
4. Demski, Joel S., ''An Accounting System Structured on A Linear Programming Nodel.' ', The Aocounting Review, (Oct 1976), pp. 701-712.
5. Driebeck, Norman J., Applied Linear Programming, Addison-Hesley, (1969).
6. Drinkwater, Devid A., 'Maneement Theory and The Budgeting Frocess.' ', Management Accounting, (June 1978).
7. Glenna, Welsch, Budeetine: Profjet Plarinine and Control, Prentice-Hall, (1971).
8. Hamiltor, "iilliam F., and Uoses, Michael A., ''An Model for Corporate Financial Flanning.'', Operation Research, (Hay/June 1973), pp. 677-692.
9. Horneren, Charles T., Introduction to Management Accounting, 4th edition, Prentice-Hall, (1978), pp. 147-178.
10. Ijiri, Yuji, Management Goals and Accourting for Control, North Holland, (1969), pp. 108-137.
11. Jaye, Strum, Introduction to Linear Programming, Holden-Day, (1972).
12. Jones, Reginald L., and Trentin, George H., Budgeting: Key to Planning and Control, ANA, (1976).
13. Larusso, Anthony C., ''The Budgeting Process: A Managerial Tool.'', Managerial Planning, (Jan/Feb 1977), pp. 34-35.
14. Locascio, Vincent R., ''Financial Flanning Models.'', Financial Executive, Vol. KL, No. 3.
1.5. Mao, James C. T., Quantitative Analysis of Financial Decision, Macmillan, (1969), pp. 69-176.
15. Markland, Robert E., Topics in Management Science, John Wiley\&Son, (1979).
16. Matz, Adolph, and Usry, Xilton F., Cost Accounting, 5th edition, South-\%estern, (1972), pp. 405-423.
17. May, Faul A., 'The Budgeting Process.'', Management Accountine, (Jan 1973), pp. 19-25.
18. Murphy, Richard C., ''A Computer Model Approach to Budgeting.'', Management Accounting, (June 1975), pp. 34-37.
19. Myers, Steward C., and Fogue, Gerald A., 'A Frogramming Approach to Corporate Financial Management.'', Journal of Finance, (Nay 1974).
20. Robicheck, A. A., Teichroew, D., and Jones, J. M., ''Optimal Short Term Financing Decision.'', Management Science, Vol: 12, (Sept 1965), po. 1-36.
21. Srinivasan, V., 'A Transhipment Model for Cash Management Decision.' ', Management Science, (June 1974), pp. 1350-1363.
22. Thie, Paul R., An Introduction to Iinear Programming and Game Theory, John WileykSons, (1979).
23. Thornton, Billy M., Mathematical Programming SystemExtended (MPS:) User's Instructions, Cklahoma State University.
24. Thornton, Billy M., Example Figures for MFSX User's Instructions, Cklahoma State University.
25. Weston, J. Fred, and Brigham, Bugene F., Managerial Finance, 6th edition, The Dryden Press, ($\overline{1978 \text {), }}$ pp. 112-137.

APPENDIX 1

MPSX PRIHTOUT

$$
\text { PAGE } \quad t \quad E 1 / C T 4
$$

$$
\ldots \text {..lFEf }
$$

$$
\begin{aligned}
& \stackrel{ே}{2} \\
& \stackrel{ே}{z} \\
& \underset{\sim}{\sim} \\
& \underset{\Xi}{\Xi} \\
& \vdots \\
& \vdots
\end{aligned}
$$

	...RTV..	A 1	...ACIIVIY...	Slack ACTIVITy	$\begin{aligned} & \ldots \text { LCWER LIMIT. } \\ & \ldots \text { LPRER LINIT. } \end{aligned}$	LOMEH ACTIVITy UPFEF ACTIVITY	..UNIT CUST...	$\begin{aligned} & . \operatorname{LOHER~COST..} \\ & . . U P P E R ~ C O S T . . \end{aligned}$	LIMITING PRUCESS.
3	2ALEs\%	$n S$	1174.1.04:8	¢25.5754\%	$\begin{aligned} & \text { NCNE: } \\ & 2000.0 \mathrm{i}) 000 \end{aligned}$	$\begin{aligned} & . \operatorname{coltc} \\ & 1222.18945 \end{aligned}$	$\begin{array}{r} 138.83438- \\ 2757.34768- \end{array}$		$\begin{aligned} & \text { LCAN } \\ & \text { SALESI } \end{aligned}$
5	FFilce AlA	18	12522.C1207	477. 586?	13COO.CDCNE	$\begin{array}{r} 9 C(0.00391 \\ 12883.46367 \end{array}$	$\begin{array}{r} 48.27940- \\ 219.5225- \end{array}$		LUAN INVENI
6		$\because ?$	rite.escse	25ミ. 1) ¢C4	NCNE 120C. (CCCC	$\begin{array}{r} 306.43811 \\ 1014.51815 \end{array}$	$\begin{array}{r} 691.01172= \\ 1549.72241= \end{array}$		SALESI INVENI

APPENDIX 2

SIMPLEX PRINTCUT
nuincel pricher:

62

O.)00	$x \geq$	- C.iror	c.ero	$0 . \operatorname{crc}$	0.0 CO	-0.700	0.000	2359.999
0.000	F '	-0.0 28	- 0.003	$1 . \operatorname{ing}$	1). 250	C. $0^{0} 0$	-0.090	825.975
:38.40c	$\times 1$	-0.crs	-0.000	-n.0nn	-0.00')	-0.000	-0.000	2599.997
9.0nd	54	- -196	-0. $\mathrm{ras}^{\text {c }}$	$\cdots 1) \cdot \mathrm{CC}$	3. ¢¢ ${ }^{\text {c }}$	C.OC,	-0.000	471.408
0.060	$\stackrel{5}{5}$	-0.069	-0.0. 0	-0. $\mathrm{Cl}_{\text {c }}$	0.000	0.001	-0.000	253.199
14.3.4019		0. ${ }^{1} 3$	1). 0°	-1.1 C	-C. 28	$-\mathrm{C} . \mathrm{CCl}$	-0.000	1174.005
C.rcr	\times	? - ³). 68	-n.rno	-0.298	-0.003	-0.000	1374.005
1009	x $\times \sim$ 8	- -1. 119	O. 「5	-0. ${ }_{-0} \mathrm{C}$	0.197	-0.003	-0.900	511192.000
0.0109 -1.100	$\times 1$ \times	$-1) .006$ 1.000	-0.80 -0.80	-0.0¢00	0.650 -0.0 .90	¢.008	-0.090	559797.800 15997800
	C.J-ij	4×205 -4×05			-7957.405	$-59 \overline{9} 9.5 \mathrm{CH}$	$\begin{array}{r} -1.050 \\ -9959.000 \end{array}$	649413.100

** sulltilea is nfitill a+,

$\times 3$		3350000
5	-	- ¢ - ${ }^{\text {r }}$
x	-	こr, ar, .n¢)
4	$=$	471.98
5 \%	$=$	1.3.00
?	$=$	1174 .00\%
\times	-	17j\%.r r_{1}
X 5	-	111r,2.rno
\times ¢	$=$	
$\times 7$	-	

N

YOULISH RU
Candidate for the Degree of
Master of Business Administration

Title of Study: AN APPLICATION OF BUSINESS BUDGETING:
LINEAR PROGRAMMING APPROACH
Major Field: Business Administration
Biographical:
Personal Data: Born in Tainan, Taiwan, April 24, 1950, the son of Mr. and Mrs. Ku-Lin Ru.

Educational Data: Graduated from Tainan Second High School, Tainan, Taivan, l969; received a Bachelor of Science degree in Industrial Wanagement in June 1974 from National Cheng Kune University and completed the requirements for the Master of Business Administration degree at Cklahoma State University, Stillwater, Oklahoma in May, 1981.

Professional Experience: Production Control, Taiwan Sharp Co., Ltd, 1976-1977; Marketing Analyst, Tong Yuan Electric\&Nachinery Co., Ltd, 1977-1979.

