BY

CHIANG-CHIEN HO
Bachelor of Commerce Chung-Yuan University Chungli: Taiwan
Republic of China
Finance and Accounting
1977

Submitted to the Graduate Faculty of the College of Business Administration Ohlahoma State University in partial fulfillment of the requirements for the Degree of MASTERS OF BUSINESS ADMINISTRATION July, 1981

Abstract

ames: Chiang-Chien Ho Date of Degree: July s 1981 nstitution: Oklahoma State University ocation: Stillwater, Oklahoma itle of Study: LENGTH OF SAMPLE PERIOD AND OPTIMAL PORTFOLIOS. ages in Study: 43 Candidate for Degree of Masters of Business Administration ajor Field: Finance cope and Method of Study: This study is designed to examine the effect of length of sample period on the selection of optimal portfolios which are derived by using the historical records as the sources of data. The major data are the $S \& P(500)$ Index and the prices of twentyfive securities which are selected from the 500 Largest Industries in 1980 ranked by FORTUNE. The sample periods in this study range from two years (1979-1930) to twenty years (1961-1980). The major models for the selection of optimal portfolios are the single index model and the constant correlation coefficient model. Also, the regression analysis methods are used for determining the significance of time effects on the selection of optimal portfolios. indings and Conclusions: In general, there is no relationship between the length of the sample period and astimated security characteristics under the single index model and the constant correlation coefficient model. Moreover, the length of the sample period does not affact the composition of optimal portfolio.

JVISER'S APPROVAL

LENGTH OF SAMPLE PERIOD AND OPTIMAL PORTFOLIOS

REPORT APPROVED:

TABLE OF CONTENTS

hapter Page
I. INTRODUCTION 1
II. REVIEW OF LITERATURE 5
III. NETHODOLOGY 12
A. Sample and Data 12
B. The Single Index Model and Construction of Optimal Portfolios 14
C. The Constant Correlation Coefficient Model and Construction of Optimal Portfolios 19
D. The Examination in the Effect of the Length of Sample Period on Optimal Portfolio 21
IV. RESULTS 23
A. Estimated Variables 23
B. Optimal Portfolios 25C. The Relatiohship between the Length ofSample Period and Estimated Variables31
D. The Relationship between the Length of Sample Period and Optimal Portfolio 35
V. SUMMARY AND CONCLUSIONS 41
IBLIOGRAPHY
PPENDICES

LIST OF TABLES

able Page
1 Sample Periods 13
2 Estimated Variables 24
3 Optimal Portfolio under the Single Index Model (Short Selling Allowed) 26
4 Optimal Portfolio under the Constant Correlation Coefficient Model (Short Selling Allowed) 27
5 Optimal Portfolio under the Single Index Model (Short Selling Not Allowed) 28
6 Optimal Portfolio under the Constant Correlation Coefficient Model (Short Selling Not Allowed) 29
7 Expected Returms on Optimal Portfolios 30
8 Regression Analysis-Sample Period vs. Mean Return 32
9 Regression Analysis-Sample Period vs. Beta 33
LO Regression Analysis-Sample Period vs. Residual Error 34
11 Regression Analysis-Sample Period vs. Expected Return on Optimal Portfolio (SIM and SSA) 37
. 2 Regression Analysis-Sample Period vs. Expected Return on Optimal Portfolio (SIM and SSNA) 38
. 3 Regression Analysis-Sample Period vs. Expected Return on Optimal Portfolio (CCCM and SSA) 39
. 4 Regression Analysis-Sample Period vs. Expected Return on Optimal Portfolio (CCCM and SSNA) 40* SIM=Single Index Model SSA=Short Selling AllowedCCCM=Const. Corr. Coef. Model SSNA=Short Selling NctAllowed

CHAPTER I

INTRODUCTION

A portfolio is a set of securities that belong to an avestor. The investor's goal is to obtain the highest reurn for a given level of risk. He tries to accomplish this jal by using the tools of portfolio management. Portfolio magement consists of the following steps (see, e.g., Smith .)):

1. Portfolio planning, which includes specifications of le investor's wealth and attitudes toward risks and the ;tablishment of investment criteria;
2. Investment analysis, which includes economic, indusial, and security analysis;
3. Portfolio selection, which includes selection models d criteria to determine the optimal portfolio;
4. Portfolio evaluation, which includes performance meatrement and performance comparison;
5. Revision of portfolio.
is study will concern the problems associated with the ird of these steps--portfolio selection.

Modern portfolio-selection theory dates from Marko-
itz's (2)(3) pioneering articles published in 1952 and his ubsequent books. Expanded from Markowitz's theory, a large mount of theories and modeles were developed. But almost very approach to portfolio selection utilizes, more or less, he historical records of stock prices and dividends as the ases for forecasts. These historical data thus become the nportant sources of information in the portfolio-selection cocess. But there are some problems involved when an anayst is trying to apply the moderm portfolio theory for the election of optimal portfolios. The major problems menLoned by Elton, Gruber and Manfred (4)(5) are:

1. The difficulty in accurately estimating the types of mput data necessary;
2. The time and cost necessary to generate efficient ortfolios (solve the quadratic-programming problems); and
3. When analysts use the historical records such as stock iices and market indexes to determine the optimal portfolios Ider different models, the preper length of the sample peril is hard to determine because its effect on the optimal irtfolio is unknown and may lead to erroneous results.

This study focusses on the third problem--that is, te effect of the sample period on the solection of optimal rtfolios. The basic data required for this study are stock 'ices of securities and Standard and Poor's(500) Index from

NYSE Daily Stock Prices Report. First, we use random-sampling procedures to selec twenty five companies from the 500 Largest Industries in 1980 ranked by FORTUNE (6) and assume that they are the securities included in the optimal portfolios. In order to get more data to test the effects of sample period on the seclection of optimal portfolios, we estimate the variables such as mean return, standard deviation, etc. of the twenty five selected securities in different sample periods which range from two years (1979-1980) to twenty years (1961-1980). Then under two different models with the option of short selling, we derive a set of optimal portfolios in each sample period. At the end of this study, we use the regression analysis methods to exanine the relationship between length of sample period and sptimal portfolio and the significance of this relationship.

The main models applied for the selection of optimal portfolios are the single index model developed by Sharpe (7) and the constant correlation coefficient model developきd by Elton and Gruber (5). In both models, the simple ariterion developed by Mao (8) is also used to decide which securities should be included in the optimal portfolios with the option of short selling. And the conditions applied Eor determining the optimality of portfolios were developed วy Lintner (9) and Kuhn-Tucker (10).

The reasons to apply the single index model and the
constant correlation coefficient model for the selection of optimal portfolios are: 1) The types of input data are easy to determine; 2) All the necessary variables can be easily computed by the SAS (Statistical Analysis System) package, 3) These two models can provide more accurate results than those from the linear programming approximations and those from the quadratic programming models.

This study will begin in Chapter II with a review of literature concerned with portfolio selection. Chapter III will discuss the methodology utilized in the examination of effect of length of sample period on the selection of optinal portfolios. The results will be covered in Chapter IV. Thapter V will show the conclusions of this study.

CHAPTER II

REVIEW OF LITERATURE

Abstract

Risk is "the uncertainty of future outcomes" or "the progability of an adverse outcome." Almost any kind of investment involves different degrees of risk. One basic assumption of portfolio theory is that any investor wishes to maximize the returns from his investments. In order to adquately deal with such an assumption, certain ground rules must be laid. The first of these is that the portfolio being considered by an individual should include all of his assets and liabilities. Not just stocks or even just marketable securities, but also such items as cars, houses, coins, etc., should be included. We also normally așsume that investors are risk averse, and it appears to be a reasonably accurate generalization. Any rational investor would prefer a higher return to a lesser return; unfortunately, a higher return normally involves a higher degree of risk and, as a result, an investor is continually faced with a compromise. Therefore, the continuous decision-making to derive the "optimal" trade-off between the expected return and expected risk become the "core" of the portfolio theory.

The pioneering article on portfolio selection was that of Markowitz (3), who provided the basic theoretical framework for the subsequent developments in portfolio-selection theory. Undoubtedly, his work gave us an "insight" and pronoted later studies in this field. Therefore, we will use some space here to introduce Markowitz's model. Markowitz's nodel is based on several assumptions regarding investor behavior:

1. Investors consider each investment alternative as being represented by a probability distribution of expected returns over several holding periods.
2. Individuals estimate risk on the basis of the variability of expected returns.
3. Investors base decisions solely on ecpected return and risk, i.e., their utility curves are a function of expected return and variance (or standard deviation) of returns only.
4. For a given risk level, investors prefer higher returns to lower returns. Similarly, for a given level of expected return, investors prefer less risk to more risk.

Under above assumptions, a single asset or portfolio of assets is considered to be "efficient" if no other assets or portfolio of assets offers higher expected return with the same (or lower) risk or lower risk with the same (or higher) expected return. In order to derive the set of ef-
ficient portfolios, he developed the following formulae:

$$
\begin{array}{ll}
E=\sum_{i=1}^{n} X_{i} R_{i} & \sum_{i=1}^{n} X_{i}=1 \\
V \sum_{i=1}^{n} \sum_{j=1}^{n} X_{i} X_{j} \sigma_{i j} &
\end{array}
$$

where

$$
\begin{aligned}
& \sigma_{i j}=\text { correlation coefficient of security } i, j \\
& X_{i}=\text { relative amount invested in security } i \\
& E=\text { expected return from portfolio } \\
& V=\text { variance of portfolio } \\
& R_{i}=\text { expected return on security } i
\end{aligned}
$$

The maximum returm portfolio and minimum variance portfolio became the "end points" of the efficient frontier. The optimal portfolio is the efficient portfolio with the highest utility, This will be found at the point of tangency between the efficient frontier and the curve with the highest possible utility for a given investor.

Martin (11), basen on Markowitz's E-V model, developed the quadratic programming for the portfolio selection. In his study, he used a real-world investment problem to formulate his model:

$$
\operatorname{Min}_{X_{i}}\left[\theta=V+\lambda_{1}\left(\sum_{i=1}^{n} X_{i} R_{i}-E\right)+\lambda_{2}\left(\sum_{i=1}^{n} X_{i}-1\right)\right]
$$

Then did the partial derivatives $\partial \theta / \partial X_{i}$ and solved the e-
quations with $E=\sum_{i=1}^{n} X_{i} R_{i}$ and $\sum_{i=1}^{n} X_{i}=1$. At the practical level, the formulation of precise probability beliefs about securities under consideration entails problems. Almost, any real-world applications of this theory would include a large number of securities. The cost of necessary clerical, processing, and analytical activities required in such an undertaking would preclude individuals and even large institutional investors from using this model.

There is little quwstion that the most significant and most popular developments in portfolio-selection theory since the Markowitz's mean-variance approach have been the diagonal model (also called single index model) introduced by Sharpe (7). The major characteristic of the diagonal nodel is the assumption that the returns of various securities are related only through common relationships with a basic underlying factor. Sharpe proposed the following model of the return from a risky security:

$$
\begin{aligned}
& R_{i}=A_{i}+B_{i}+C_{i} \quad(i=1, \ldots, n) \\
& I=A_{n+1}+C_{n+1}
\end{aligned}
$$

where R_{i} is the return on a risky security i, A_{n+1} and the A_{i} are constants, and C_{n+1} and C_{i} are random variables with expected values of zero and variances Q_{n+1} and Q_{i}, respectively, and the covariances between C_{i} and C_{j} are zero for all values of i and $j(i \neq j)$.

Helliwell and Mao (12) discussed the problems about uilding the simple criterion for selection of optimal portolios. Before them, Latane and Young (13) tested four crieria: 1) the mean of all portfolios, 2) market elasticiy, 3) pure-risk yield, and 4) expected value of securiy as the ranking rules to find out the optimal portfolios. atane and Young's conclusion solved the problem: If one's ptimal portfolio does not include all available securities, ow many securities should it include? Then, Evans and Arher (14), using the method of simulation, solved the prolem: Given that N securities are in the optimal portfolio, hich n of the available securities are to be included?

Finally, in 1970, Mao (8) assumed that the pairwise orrelation coefficient of all securities was a constant and sed Lintner's (9) conclusions as the conditions of optimaity of portfolios to form a formula for the calculation of he number of securities to be included in the optimal port'olio. He also suggested a simple criterion-- $\mu_{i} / b_{i}-$ - for electing the proper securities into optimal portfolios here μ_{i} is the expected return of security i and b_{i} (Beta) s an index of the nondiversifiable risk of security i.

Another important study is from Treynor and Black (15) he main viewpoint in their study is that of an individual nvestor who is attempting to trade profitably on the dif'erence between his expectations and those of a monolithic
arket so large in relation to his own trading that market rices are unaffected by it. They also ignored the costs f buying and selling so that they could treat the portfolio election problem as a single-period problem (implicitly asuming a one-period utility function as given), in the traition of Markowitz, Sharpe, and others. The conclusions of heir study are abridged as follows:

1. It is useful in balancing portfolios to distiguish etween two sources of risk: market, or systematic risk on he one hand, and appraisal, or insurable risk on the other. n general, it is not correct to assume that optimal balancng leads wither to negligible levels of appraisal risk or o negligible levels of market risk.
2. The overall portfolio can usually be improved by takng a long or short position in the market as a whole.
3. The rate at which the portfolio earns risk premium epends only on the total amount of market risk undertaken nd is independent of the size of the investor's equity and f the composition of his active portfolio.
4. Optimal selection in the active portfolio depends only n appraisal risk and appraisal premiums.
5. The appraisal ratio depends only on 1) the quality of ecurity analysis and 2) how efficiently the active portolio is balanced.

Another topic discussed in Lintner's (9) and Kuhn-
ucker's (10) studies is the condition to deal with the prolem about short selling in the selection of optimal portolio. From their studies, we obtain the useful condition hich can be applied in this study.

The studies which are summarized in the preceding paagraphs are the major references for this study. All the bove studies are the important articles in the field of ortfolio selection. In addition the others are:

1. Evans' study (16) to discuss the comparison between he Fixed-Investment-Proportion-Maintenance (FIRM) strategy nd Buy-and-Hold ($\mathrm{B} \& \mathrm{H}$) strategy for portfolio management.
2. Fama's (17) Mean-Semivariance (E-S) approach for the election of portfolio.
3. Baumol (18) suggested the Expected-Gain-Confidence imit (E-L) Criterion for the selection of portfolio.
4. Roy (19) suggested the "Safety First" theory for the ortfolio management.
5. Jean (20) developed the Multidimensional-Portfolionalysis techniques for the selection of optimal portfolio.

In the next chapter, we will introduce the methodology f this study.

METHODOLOGY

(A) Sample and Data

The sample of securities comes from the 500 Largest ddustrials ranked by sales in 1980 by FORTUNE. The major surces of data are from the monthly stock prices of the venty five selected securities and the market index which, 2 this study, is the Standard and Poor's(500) Index. The onthly stock.prices and index are drawn from the close :ices and the average $S \& P(500)$ index on the last trading zy of New York Stock Exchange (NYSE) in a month.

In order to examine the effect of length of sample riod on the selection of optimal portfolios, different ample periods are taken. Table-1 shows the fourteen sample :riods.

Based on these stock prices and S\&P(500) indexes in tch period, we can derive all the estimated variables appliI in the single index model and the constant correlation efficient model for the selection of optimal portfolios. ie variables are mean return (expected return) on security, :andard deviation of return, beta coefficient, and residual

TABLE 1

Sample Periods

No.	Period	No. of Months
1	1979-1980	24
2	1978-1980	36
3	1977-1980	48
4	1976-1980	60
5	1975-1980	72
6	1974-1980	84
7	1973-1980	96
8	1972-1980	108
9	1971-1980	120
10	1969-1980	144
11	1967-1980	168
12	1965-1980	192
13	1963-1980	216
14	1961-1980	240

cror (residual risk) from the regression line which descri\#s the relationship between security and market index. All 1e computations of estimated varialbes of each stock have sen derived with the use of the computer package--SAS.

Throughout, all the figures are on the monthly basis 1d we will assume the existence of a riskless asset. This pplies that the separation theorem holds and that the instor should maximize the ratio-excess return on a portfo.o divided by the standard deviation of the portfolio. Also, rroughout this paper we will make the blanket assumption at there is at least one security in the set of all instment opportunities whose expected return is strictly eater than the return on the riskless asset.
(B) The Single Index Model and the Construction of Optimal Portfolios
(i) The Standard Single Index Model

First, we shall assume that the standard single inx model is an accurate description of reality. That is

1. $R_{i}=\alpha_{i}+\beta_{i} I+\epsilon_{i}$
2. $I=A_{n+1}+\epsilon_{n+1}$
3. $E\left(\epsilon_{n+1} \epsilon_{i}\right)=0 \quad i=1, \ldots, n ;$
4. $E\left(\epsilon_{i} \epsilon_{j}\right)=0 . \quad \therefore i=1, \ldots, n ; j=1, \ldots, n ; i \neq j$.
here $R_{i}=$ the return on security i
$I=a$ market index
$\alpha_{i}=$ the returm on security i that is independent of changes in the market index
$\beta_{i}=$ a measure of the responsiveness of security i to changes in the market index (beta)
$\epsilon_{i}=$ variable with a mean of zero and variance (residual risk)
$\sigma_{m}^{2}=$ the variance of the market index

The last two equations characterize the approximation \because the standard single index model to the variance-covariance ructure. The assumption implied by these equations is that te only joint movement between securities comes about betuse of a common response to a market index.
(ii) The Optimal Portfolio with Short Selling

The optimal portfolio in the single index model is e portfolio with the highest excess return to standard deation (θ). That is

$$
\operatorname{Max} \quad \theta=\frac{\bar{R}_{p}-R_{f}}{\sigma_{p}}
$$

$d \quad \bar{R}_{p:}={ }_{i=1}^{n} X_{i}\left(\bar{R}_{i}-R_{f}\right)+R_{f}$

$$
\sigma_{p}=\left(\sum_{i=1}^{n} x_{i}^{2} \beta_{i}^{2} \sigma_{m}^{2}+\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} \beta_{i} \beta_{j}+\sum_{i=1}^{n} x_{i}^{2} \cdot \sigma_{\epsilon_{i}}^{\dot{2}}\right)^{1 / 2}
$$

$$
\text { here } \begin{aligned}
R_{f}= & \text { the riskless lending-borrowing rate } \\
X_{i}= & \text { the relative weightw we place on each security (} \\
& X_{i}>0 \text { for a long position, } X<0 \text { for a short posi- } \\
& \text { tion) } \\
R_{p}= & \text { return of the portfolio }\left(\bar{R}_{p}\right. \text { is the expected va- } \\
& \text { le of } \left.R_{p}\right) \\
\sigma_{p}= & \text { the standard deviation of the return on the port- } \\
& \text { folio. }
\end{aligned}
$$

About the way to treat short sellings, we are followmg Lintier's (7) suggestion. This is that the short seller mys any dividends which accrue to the person who lends the took to him and gets a capital gain (or loss) which is the negative of any price appreciation. In addition the short mIller is assumed to receive interest at the riskless rate 2 both the money loaned to the owner of the borrowed stock Id the money placed in escort when the short selling is made. To find the set of X_{i}^{\prime} s which satisfy the optimality E portfolio, we define $z_{i}=\left(\bar{R}_{p}-R_{f} / \sigma_{p}^{2}\right) X_{i}$ and solve this exsession for any Z_{i}. Then we get:

$$
\begin{aligned}
& z_{i}=\frac{\beta_{i}}{\sigma_{\epsilon_{i}}^{2}}\left[\frac{\bar{R}_{i}-R_{f}}{\beta_{i}}-C\right] \\
& x_{i}=\frac{z_{i}}{\sum_{i=1}^{25}\left|z_{i}\right|}
\end{aligned}
$$

lere:

$$
c=\frac{\sigma_{m}^{2} \sum_{i=1}^{25}\left[\frac{\bar{R}_{i}-R_{f}}{\sigma_{i}^{2}} \beta_{i}\right]}{1+\sigma_{m}^{2} \sum_{i=1}^{25} \frac{\beta_{i}^{2}}{\sigma_{\epsilon_{i}}^{2}}}
$$

id $\sum_{i=1}^{25}\left|X_{i}\right|=1$ to assure that we have invested 100% of our nd. In this model we can derive a set of X_{i} 's for each mple period and use the equation mentioned at the beginIg of this section to decide the expected return on optimal rtfolio (\bar{R}_{p}).
(iii) Optimal Portfolios when Short Sales are not Allowed

If short selling is not allowed then we must introce the constraints that all $X \geqslant 0$. This requires employing e Kuhn-Tucker conditions. That is:

$$
Z_{i}=\frac{\beta_{i}}{\sigma_{\epsilon_{i}}}\left[\frac{\bar{R}_{i}-R_{f}}{\beta_{i}}-C\right]+\mu_{i}
$$

ere:

$$
Z_{i} \geqslant 0, \mu_{i} \geqslant 0, \text { and } \mu_{i} Z_{i}=0 \text { for all } i
$$

Since $\mu_{i} \geqslant 0$, including μ_{i} can only increase the value $f Z_{i}$. Thus, if Z_{i} is positive with $\mu_{i}=0$, the including of i can never make it zero. Hence, if z_{i} is positive when $i 0$, the security should be included. If $z_{i}<0$ when $\mu_{i}=0$, ositive values of μ_{i} can increase Z_{i}. However, since the roduct of μ_{i} and Z_{i} must equal zero, positive values of μ_{i} nply $Z_{i}=0$. Hence any security with $Z_{i}<0$ when $\mu_{i}=0$ must be zjected. In other words, we will reject the securities iich can not satisfy the constraint- $-X_{i} \geqslant 0$. In order to do rese selection tests, we apply Mao's(11) simple criterion. irst, let:

$$
Q=\frac{\bar{R}_{i}-R_{f}}{\beta_{i}} \quad C K=\frac{\bar{R}_{i}-R_{f}}{\beta_{i}}-C
$$

len we rank all securities with $\beta_{i}{ }^{\prime} s \geqslant 0$ by the value of Q 1 decreasing order and test CK to see whether it is less an zero. This tests will start from the first security ich has the highest $Q(i=1)$, then the first two securities $=2)$, then the first three securities ($i=3$), etc. If $i=k+1$ ich makes $C K<0$ then the tests stop and we know that the rst k securities are included in the optimal portfolio. en no more positive or zero β stocks are included, stocks th negative β 's should be tried in reverse order. Then, use the same formula in the last section to form the opnal portfolio. We repeat these procedures in each sample riod.
(C) The Constant Correlation Coefficient Model and Construction of Optimal Portfolios
(i) The Constant Correlation Coefficient Model

In this model, we assume that all pairwise correlation ,efficients are equal. While this probably does not represit the true pattern one can find in the economy, it is very .fficult to obtain a better estimate. Elsewhere (4), we ive known that this assumption produces better estimates of tture correlation coefficients than those produced from oier models. As mentioned earlier, the optimal portfolio is lat maximizes the ratio of excess return on the portfolio its standard deviation of return. Letting:

1. $\sigma_{i j}=$ covariance between security i and j
2. $\sigma_{i}^{2}=$ the variance of security i
3. $\pi=$ the correlation coefficient between any two securities
4. all other as before.
d

$$
\begin{aligned}
& \bar{R}_{p}=\sum_{i=1}^{n} x_{i}\left(\bar{R}_{i}-R_{f}\right)+R_{f} \\
& \sigma_{p}=\sum_{i=1}^{n} x_{i}^{2} \sigma_{i}^{2}+\sum_{i=1 j=1}^{n} \sum_{i}^{n} x_{i} x_{j} \sigma_{i j}
\end{aligned}
$$

(ii) The Optimal Policies when Short Sales Are Allowed

In this case, the optimal portfolio can be derive ithout restricting the sign of X_{i} and by using the followag formulae:

$$
\begin{aligned}
& z_{i}=\frac{1}{\sigma_{i}} \frac{1}{1-\pi}\left[\frac{\bar{R}_{i}-R_{f}}{\sigma_{i}}-\frac{\pi}{1-\pi+25 \pi} \sum_{j=1}^{25} \frac{\bar{R}_{i}-R_{f}}{\sigma_{j}}\right] \\
& x_{i}=\frac{Z_{i}}{\sum_{j=1}^{25}\left|z_{j}\right|}
\end{aligned}
$$

(iii) The Optimal Policies When Short Sales Are Not Allowed

Again, if short selling is not allowed, then we have 1 rely on the Kuhn-Tucker conditions. These conditions if ch maximizes θ are

1. $\bar{R}_{i}-R_{f}-Z_{i} \sigma_{i}^{2}-\sum_{\substack{j=1 \\ j \neq i}}^{n} Z_{j} \sigma_{i j}+\mu_{i}=0$
2. $Z_{i} 0, \mu_{i} 0$
3. $Z_{i} \mu_{i}=0$
living for Z_{i}, we have:

$$
\begin{aligned}
& Z_{i}=\frac{1}{1-\pi} \frac{1}{\sigma_{i}}\left[\frac{\bar{R}_{i}-R_{f}}{\sigma_{i}}-\frac{\pi}{1-\pi k \pi} \sum_{j=1}^{k} \frac{\bar{R}_{j}-R_{f}}{\sigma_{j}}\right] \\
& X_{i}=\frac{Z_{i}}{\sum_{j=1}^{k} Z_{i}}
\end{aligned}
$$

The sign of Z_{i} depends on the terms in the brackets. ince the last term in the brackets is a constant for any k f a security with a particular rate $\left(\bar{R}_{i}-R_{f}\right) / \sigma_{i}$ has a posiLve Z_{i}, then all securities with a higher ratio must also z included. Therefore, we can apply Mao's simple criterion yain to decide the securities which should be included in re optimal portfolios and then derive the desired optimal rrfolios.

After reviewing all pairwise correlation coefficients : twenty-five selected securities, we assume that the con;ant correlation coefficient is 0.4 . Throughout, the month-- riskless rate of return is also assumed to be 0.45 which : near to the present interest rate for saving accounts for I the calculations in each model.
(D) The Examination in the Effect of the Length of Sample Period on the Optimal Portfolios

From section (B) and section (C), we derive four sets optimal portfolios. Each set consists of fourteen difrent optimal portfolios for each sample period.

First, we examine the relationship between sample riod and estimated variables--mean return, beta coefficit, and residual error of each security. Second, we exaze the relationship between length of sample period and timal portfolio in each model with the option of short
elling. These examinations will be done by regression mehod and F-test.

RESULTS

(A) Estimated Variables

The major estimated variables used in the single in:x model and the constant correlation coefficient model in.ude mean or expected return on securities and on the $S \& P$;00) Index, variances of expected returns, beta coefficient, sidual errors for securities which are assumed to have a sponse to the market index, and standard deviations of serities and the $S \& P(500)$ Index. Here we define the expectreturn of security i as:

$$
\bar{R}_{i}=\left(\sum_{k=1}^{k} \frac{P_{t}-P_{t-1}}{P_{t-1}}\right) / k
$$

ere: $\bar{R}_{i}=$ expected return on security i

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{t}}=\text { stock price of security } i \text { in month } t \\
& k=\text { length of sample period }
\end{aligned}
$$

In this study, we do not consider the dividends paid any month. Also, all the estimated varjables are calcuted in fourteen sample periods. Table 2 shows the results the calculations for the'sample period 1979-1980.

TABLE 2

Estimated Variables
'eriodi 1980-1979

Company	$\bar{R}_{\text {i }}$	β_{i}	σ_{ϵ}^{2}	σ_{i}
A	0.991	0.702	86.928	9.669
B	2.217	1.214	58.458	9.327
C	5.617	1.957	57.806	11.635
D	2.242	1.303	53.200	9.827
E	1.970	1.373	38.430	8.733
F	1.425	1.272	66.927	9.839
G	-0.054	0.670	35.597	6.591
H	1.000	0.348	87.078	9.319
I	0.038	0.925	16.755	5.823
J	1.433	0.536	84.728	9.418
K	0.767	0.251	49.988	7.009
I	3.371	1.118	67.662	9.589
M	2.929	2.020	74.186	12.497
N	4.287	1.373	39.813	8.805
0	0.588	0.879	46.973	7.815
P	6.454	1.919	196.693	16.279
Q	0.913	1.214	140.781	12.843
R	4.304	1.075	39.807	7.896
S	4.863	1.277	77.090	10.335
T	1.100	1.502	69.150	10.646
U	0.242	0.658	31.443	6.255
V	-1.375	1.454	125.967	12.829
W	1.953	1.480	72.285	10.726
X	0.446	0.782	28.395	6.319
Y	0.513	0.976	26.208	6.707

(B) Optimal Portfolios

We have derived four sets of optimal portfolios. ach set consists of fourteen optimal portfolios which are com the fourteen different sample periods. In the first ase that short selling is allowed, all the twenty-five sezoted securities are assumed to be included in the optimal ortfolio. All the securities with negative X 's are those Id short. Table 3 and Table 4 are the results of the seaction of optimal portfolios for the sample period 1979180.

In the second case that short selling is not allowed, rejected some securities to make sure that all X 's are eater than or equal to zero. In other words, all securies included in the optimal portfolios must be held long. ble 5 and Table 6 show the results for sample period 197980. Also, Table 7 shows the expected return on optimal rtfolio in each sample period.

From Table 7, we have found that the expected return optimal portfolio in the second case that short selling not allowed are higher than those in the first case. ese differences result from the use of Mao's criterion to the selection tests in the second case. These tests have jected some securities whose expected returns are low and stable (i.e. higher variance of return) and have resulted reallocation of weithts placed on remaining securities.

TABLE 3

Optimal Portfolio Under Single Index Model (Short Selling Allowed)

Company	$\mathrm{X}_{\mathrm{i}}(\%)$
A	-0.6
B	0.9
C	8.3
D	0.7
E	-0.5
F	-1.4
G	-6.2
H	0.3
I	-15.4
J	0.7
K	0.1
I	4.0
M	0.1
N	9.4
0	-3.3
P	3.2
Q	-1.2
R	11.0
S	6.4
T	-2.8
U	-5.4
V	-4.8
W	-0.6
X	-5.6
Y	-7.2
$\Sigma\left\|X_{i}\right\|=100.0$	
2.418%	

$\bar{R}_{p}=$ expected return on optimal portfolio

TABLE 4

Optimal Portfolio Under Constant Correlation Coefficients Model
 (Short Selling Allowed)

TABLE 5

Optimal Portfolio Under Single Index Model (Short Selling Not Allowed)

Period: $1980-1979$	
Company	$X_{i}(\%)$
A	1.0
R	17.4
S	10.7
N	11.5
P	13.8
L	6.3
M	8.7
B	4.1
D	5.3
E	4.8
W	5.1
J	3.2
F	2.5
T	2.2
H	1.0
K	1.1
Q	0.9
I Xi	100.0

$$
\bar{R}_{p}=3.817 \%
$$

TABLE 6

Optimal Portfolio Under Constant Correlation Coefficients Model (Short Selling Not Allowed)

Period: $1980-1979$	
Company	$X_{i}(\%)$
R	21.8
S	12.7
N	6.5
C	19.7
L	17.7
J	8.5
H	1.8
B	0.8
D	3.5
K	3.5
M	0.6
	2.7
	$=100.0$

$$
\bar{R}_{p}=4.384 \%
$$

TABLE 7

Expected Returns on Optimal Portfolios

nit: \%

Period	Simple Index Model		Const. Corr. Coef. Model	
	Case 1	Case 2	Case 1	Case 2
780-1979	2.418	3.817	2.405	4.384
780-1978	1.894	3.170	1.958	3.694
780-1977	1.699	2.619	1.750	2.811
780-1976	1.763	3.063	1.841	3.043
380-1975	1.792	3.121	1.762	2.874
380-1974	1.752	2.485	1.755	2.534
380-1973	1.426	1.905	1.420	1.873
780-1972	1.441	1.910	1.432	1.905
380-1971	1.448	2.017	1.405	1.960
380-1969	1.078	1.324	1.073	1.325
780-1967	1.037	1.384	1.036	1.369
180-1965	1.132	1.479	1.098	1.441
180-1963	1.099	1.279	1.043	1.384
180-1961	0.958	1.248	0.950	1.305

se $1=$ Short selling is allowed.
ise $2=$ Short selling is not allowed.
(C) The Relationship between the Length of

Sample Period and Estimated Variables

By regression analysis methods, we have examined the elationship between the length of sample period and the esimated variables. In addition; we have plotted all the ctual values of each variable against their predicted popuation values. These graphs are good references for deterining whether the regression lines are fit.

Table 8 shows the regression statistics of mean reurn versus the sample period of each security. In the staistics, F Value is the ratio produced by dividing MS (Model) y MS (Error). It tests how well the model as a whole acounts for the dependent variable's behavior. If the signiicance probability, labeled PR>F, is small, it indicates ignificance. R-SQ measures how much variation in the deendent variable can be accounted for by the model. In эneral, the larger the value of $R-S Q$, the better the moछl's fit. We refer to the F Value, $R-S Q$, and $P R>F$ to deermine the relationship between mean return and the length f sample period. Not as might be expected, the regression シsults show no evidence that mean returns of security are trongly correlated with the sample period. But we find rat some securities which have stable and growing returns :e strongly correlated with sample period.

Also in Table 9 and Table 10, we do not find any po-

TABLE 8

Regression Analysis
Sample Period vs. Mean Retum

Dependent Variable: Mean Return of Security i Independent Variable: No. of Month

Company	SS.	$R-S Q$	C.V.	F-Value	$\mathrm{PR}>\mathrm{F}$
A	5.3	0.07	68	0.9	0.3622
B	4.4	0.52	57	12.9	0.0037
C	21.8	0.70	27	28.5	0.0002
D	4.7	0.66	22	23.5	0.0004
E	2.7	0.29	41	4.9	0.0464
F	13.0	0.39	30	7.7	0.0167
G	3.4	0.46	64	10.2	0.0076
H	3.0	0.36	41	6.8	0.0232
I	1.6	0.70	50	27.5	0.0002
J	1.6	0.12	37	1.6	0.2350
K	2.5	0.30	75	5.1	0.0440
L	6.2	0.28	48	4.7	0.0514
M	7.0	0.55	28	14.6	0.0024
N	12.6	0.57	31	16.2	0.0017
0	3.2	0.01	68	0.2	0.7039
P	28.2	0.65	38	22.4	0.0005
Q	6.2	0.10	708	1.3	0.2711
R	9.7	0.58	24	16.8	0.0015
S	16.3	0.63	31	20.1	0.0008
T	1.5	0.01	43	0.2	0.7056
U	1.4	0.04	43	0.6	0.4720
V	7.0	0.00	306	0.1	0.8131
W	1.7	0.44	19	9.5	0.0094
X	3.1	0.58	50	16.6	0.0016
Y	3.3	0.14	144	2.0	0.1881

TABLE 9

Regression Analysis
Sample Period vs. Beta

Dependent Variable: Beta
Independent Variable: No. of Month

Company	SS.	R-SQ	C.v.	F-Value	PR $>$ F
A	0.32	0.14	15	1.9	0.1888
B	0.21	0.48	9	10.9	0.0063
C	0.13	0.07	5	0.9	0.3529
D.	0.10	0.13	6	1.9	0.1966
E	0.12	0.12	8	1.7	0.2190
F	0.19	0.08	11	1.0	0.3420
G	0.25	0.62	10	19.5	0.0008
H	0.57	0.48	19	11.0	0.0062
I	0.20	0.31	11	5.5	0.0369
J	0.22	0.31	14	5.3	0.0394
K	0.36	0.45	21	9.8	0.0088
L	0.08	0.01	7	0.1	0.8090
M	2.17	0.42	22	8.6	0.0125
N	0.07	0.00	5	0.0	0.5714
0	0.18	0.61	8	18.9	0.0010
P	0.92	0.67	12	23.7	0.0004
Q	0.12	0.12	8	1.6	0.2242
R	0.46	0.55	9	14.7	0.0024
S	0.20	0.02	13	0.3	0.5944
T	0.53	0.23	17	3.6	0.0819
U	0.15	0.12	14	1.7	0.2214
v	0.98	0.69	13	27.1	0.0002
W	0.49	0.71	11	28.9	0.0002
X	0.46	0.45	14	9.8	0.0088
Y	0.12	0.00	9	0.0	0.9529

TABLE 10

Regression Analysis

Sample Period vs. Residual Error

Dependent Variable: Residual Error
Independent Variables No. of Month

Company	SS.	R-SQ	C.V.	F-Value	PR $>\mathrm{F}$
A	16435	0.02	30	0.2	0.6324
B	4193	0.21	32	3.3	0.0957
C	3519	0.61	13	19.0	0.0009
D	8205	0.69	21	27.1	0.0002
E	2878	0.51	23	12.6	0.0040
F	470	0.00	8	0.0	0.9919
G	6987	0.76	20	37.7	0.0001
H	2414	0.06	16	0.7	0.4155
I	3725	0.50	38	11.8	0.0049
J	2384	0.00	18	0.0	0.9615
K	3120	0.31	24	5.3	0.0403
I	1563	0.09	18	1.2	0.2904
M	5011	0.16	18	2.2	0.1603
N	2582	0.62	16	19.4	0.0009
0	1598	0.44	15	9.5	0.0095
P	12690	0.44	23	9.4	0.0098
Q	5975	0.57	14	15.7	0.0015
R	5483	0.60	20	18.1	0.0011
S	3042	0.25	19	4.0	0.0698
T	5788	0.25	25	4.1	0.0657
U	3801	0.00	27	0.1	0.7887
V	41491	0.55	24	14.7	0.0024
W	1389	0.52	13	12.8	0.0038
X	1222	0.42	20	8.7	0.0122
Y	1293	0.73	14	32.8	0.0001

sitive connection between the length of sample period and beta coefficient or residual error of security. In other words, all the results are opposite of what were expected and give no indication that a relationship between the length of sample period and each estimated variable exists.
(D) The Relationship between the Length of Sample Period and Optimal Portfolio

There are three factors that should be taken into consideration for determining the effect of the length of sample period on the optimal portfolio. These factors are:

1. The changes of securities included in the optimal portfolio. (It is not valid in the case that short selling is allowed because we have assumed that all twenty-five securities are included in the optimal portfolio.);
2. The changes of weights placed on the securities in the optimal portfolio; and
3. The changes of expected returns on the optimal portfolios.

After referring to the compositions of all the optimal portfolios in each sample period, we finds.

1. No matter what sample period we choose, the securities selected for the optimal portfolios are almost the same.
2. In general, the weights placed on the securities in ;he optimal portfolio do not have significant changes when re alter sample periods.

We also regress the sample period against the expected eturn on the optimal portfolio. The results of regression itatistics are shown from Table 11 to Table 14. From above ables, it appears that there is a strong correlation between ;he length of sample period and the expected return on the ıptimal portfolio.

In addition to the preceding results, the other thing re want to mention before we draw any conclusions is the lilitations of this study. The limitations which may create ;ome deviations from our conclusions are as follows:

1. The sample size in this study is small. Therefore, 'epresentation of this sample to the population may be in:omplete.
2. The population considered in this study is narrowed ;o the 500 Largest Industries in 1980. This may limit the :ffects of diversification on optimal portfolios.
3. Only fourteen observations are available for all the egression analyses,
4. Dividends are not included in the calculation of exeected return on each security.

TABLE 11

Regression Analysis
Sample Period vs. Return on Optimal Portfolio
Single Index Model
Short Selling Permitted
General Linear Models Procedure

Dependent Variable:	\bar{R}_{p}				
Source	DF	SS.	MS.	F Value	PR > F
Model	1	1.845	1.845	54.82	0.0001
Error	12	0.404	0.034		
Corrected Total	13	2.249			

TABLE 12

Regression Analysis
Sample Period vs. Return on Optimal Portfolio Single Index Model

Short Selling Not Permitted General Linear Models Procedure

Dependent Variable: \bar{R}_{p}

Source	DF	SS.	MS.	F Value	PR $>$ F
Model	1	7.142	7.142	23.18	0.0004
Error	12	3.697	0.308		
Corrected Total	13	10.839			

TABLE 13

Regression Analysis Sample Period vs. Return on Optimal Portfolio Constant Correlation Coefficient Model
 Short Selling Permitted General Linear Models Procedure

Dependent Variable:	\bar{R}_{p}				
Source	DF	SS.	MS.	Falue	PR $>F$
Model	1	2.071	2.071	69.00	0.0001
Error	12	0.360	0.030		
Corrected Total	13	2.431			

TABLE 14

Regression Analysis Sample Period vs. Return on Optimal Portfolio Constant Correlation Coefficient Model Short Selling Not Permitted General Linear Models Procedure

Dependent Variable: \bar{R}_{p}					
Source	DF	SS.	MS.	F Value	PR $>F$
Model	1	9.476	9.476	40.04	0.000
Error	12	2.840	0.237		
Corrected Total	13	12.316			

CHAPTER V

SUMMARY AND CONCLUSIONS

This study is designed to examine the effect of the length of sample period on the optimal portfolio which is derived by utilizing the historical records as the sources of information under the single index model and the constant correlation coefficient model. Our hypothesis is that this effect will be significant. In general, the results are opposite of what we expected.

The major findings and analyses can be summarized as follows:

1. There is no significant relationship between the length of sample period and beta coefficient or residual error of security. In every sample period, the fluctuation on the beta coefficient is very little. This implies that the beta coefficient of each security tends to be constant even when the sample period of the historical records change
2. Within the twenty-five selected securities, only a few securities which possess continuous, stable and increasing rates of growth (decline) in returns (i.e, stock prices --especially in this study) show a strong relationship be-
een their return and the length of sample period. The oers whose mean return is unstable does not show any conction between the length of sample period and their mean turn.
3. In the case that short selling is allowed and all twen--five securities are assumed to be included in the optimal rtfolio, over eighty percent of the fund is found to be vested in almost the same securities with continuous, stae, and increasing rates of growth (decline) in returns in ch sample period.
4. In the case that short selling is not allowed--that , all securities cncluded in the optimal portfolio are held ng , the optimal portfolio for each sample period always nsists of the same securities with continuous, stable, and creasing rates of growth in returns.
5. The regression statictics show a strong relationship tween the expected return on optimal portfolio and the ngth of sample period.

Based on the results shown above, we have reached the llowing conclusions. First, it is clear that the effect the length of sample period on the beta coefficient or sidual error of security is not significant when we use e historicalrecords as the bases for the selection of opmal portfolio. Second, the effect of smaple period on the an return on securities vary from one security to another.

1 general, sample period does not have effect on most secuities except those with long-term growths or declines in :ices. Third, no matter what the length of sample period \geq choose it will not change much the composition of the Jtimal portfolio. Fourth, statistically, it seems that the ingth of sample period has an effect on the expected return 1 optimal portfolio. This implies that the shorter sample zriod we choose for the historical records, the higher exzted return on optimal portfolio we would derive. Actualr. this conclusion is in contradiction to the above conLusions. Why does it happen? As we mentioned before, the ?timal portfolio in each sample period always consists of de securities with long-term increasing expected return. re expected return on security is calculated on the average asis. Therefore, the most recent expected return on a sedrity always tends to be the highest one. Moreover, owing , the expected return on the optimal portfolio which is demrmined by the mean return of individual securities includi in the optimal portfolio, it appears that the optimal urtfolio which is from the shorter sample period would have Lgher expected. Yet, in essence, the higher return does ot results from the choice of shorter sample period, but rom the mean return of individual securities. Therefore, \geqslant can conclude that the effect of the length of smaple perid on the optimal portfolio is also not significant.

BIBLIOGRAPHY

- Smith, Keith V. "Needed: A Dynamic Approach to Investment Management," Financial Analysis Journal, Vol. 23. (May-June, 1967), pp. 115-127.
- Markowitz, Harry. Portfolio Selection. John T. Wiley \& Sons, Inc., New York, (1959).
- Markowitz, Harry. "Portfolio Selection," Journal of Finance, (March, 1952), pp. 77-91.
- Elton, Edwin J., Martin J. Gruber and Manfred W. Padberg. "Simple Criteria for Optimal Portfolio Selection," Joumal of Finance, Vol. 31, No. 5, (December, 1976), pp. 1341-57.
- Elton, Edwin J. and Martin J. Gruber. "Estimating the Dependence Structure of Share Prices-Implications for Portfolio Selection," Joumal of Finance, Vol. 27. No. 5. (December, 1973), pp. 1203-33.
- Worthy, Ford S. "The 500: The Fortune Directory of the Largest U,S. Industrial Corporations," FORTUNE, Vol. 103, No. 9, (May, 1981), pp. 322-349.

Sharpe, William F. "A Simplified Model for Portfolio Analysis," Management Science, (January, 1963). pp. 276-293.

- Mao, James. "Essentials for Portfolio Diversification Strategy," Journal of Finance, (December, 1970), pp. 1109-21.
- Lintner, John. "The Valuation of Risk Assets on the Se lection of Risky Investment in Stock Portfolios and Capital Budgets," The Review of Economics and Statistics, (February, 1965), pp. 13-17.
- Kuhn, H. W. and A. W. Tucker. "Nonlinear Programming," in J. Nexman ed., Proceedings of the Second.Berkeley Soymposium on Mathematical Statistics and Probability, (Berleley: University of Cal. Press 71951), pp. 481-492.

1. Martin, A. D., Jr. "Mathematical Programming of Portfolio Selection," Management Science, Vol. 1, No. 5, (January, 1955).
2. Mao, James C. and John F. Helliwell. "Investment Decision under Uncertainty," Joumal of Finance, Vol. 24, (1969), pp. 323-44.
3. Latane, Henry A. and William E. Young. "Test of Portfolio Building Rules," Journal of Finance, Vol. 24, (1969). pp. 595-612.
4. Evans John L, and Stephen H. Archer. "Diversification and the Reduction of Dispersion: An Empirical Analysis," Journal of Finance, Vol. 23, (December, 1968), pp. 761-768.
5. Treynor, Jack L. and Fischer Black. "How to Use Security Analysis to Improve Portfolio Selection," Journal of Business, Vol. 46, pp. 66-86.
6. Evans John L. "The Random Walk Hypothesis, Portfolio Analysis and the Buy-And-Hold Criterion," Journal of Financial and Quantitative Analysis, (1968), pp. 327-341.
7. Fama, Eugene F. "The Behavior of Stock Market Prices," Journal of Business, Vol. 38, No. 1, (January, 1965), pp. 34-105.
8. Baumol, W, J. "An Expected Gain-Confidence Limit Criterion for Portfolio Selection," Management Science, Vol. 10, No. 1, (Octobor, 1963). pp. 174-182.
9. Roy, A. D. "Safety First and the Holding of Assets," Econometrica, Vol. 20, No. 3, (July, 1952), pp. 431449.
O. Jean, William H. "The Extension of Portfolio Analysis to Three of More Parameters," Journal of Financial and Quantitative Analysis, Vol. 6, No. 1, (January, 1971). pp. 505-515.

APPENDIXA A

COMPANY NAMES AND COMPUTER PROGRAMS

```
E = - ANERIC ZNGCYANDMIC
= AVNESGELECT
    = EENCIX
    = BOEINS
    = CSS
    = FMOSNER MILCLSIC
    = CRURAMA AIRCRAFT
    = HERSHEY FEODS
    = J!Y MANIIFACTLFING
    = rimetarup
    = PLEKRA ELAER
    RCICIHICLC CHENICALS
    HELL JIL
        NGOH
        UAMSTRAME CCFP.
    = SUPEKIOR EIL
    = 1EXTRCN
    = UHILEVFR B.V
    = URITEL, IAERCMAATS & MANUF.
    = UNIVERSAL LEAT TCaAC(C
    = bHIGLiOLJL
    = XEFGX
    = NARK!T 1NTEX-S
    CENEUTE THE FORTFOLIMS AND ITS
    EXPECTEO FETURN LACIFTHE SINGLE:INEEX
    MODEL. (SHLFT SELLINE PERNIIIED)
    WBITTEA BY CHIAAG-(FIEA HO 5/30/EL
                                    vABTAELD
VAME= THE ALPHABEIS FRCM A TC Z STAND FCR THE MANE CF EACH SEGLRI-
R = IEAN PETURE CN SECLRITY I
E = EETH COEFRICIENT CF SECURITY IN
```



```
            STGUPITY I
            TGTALIGATE CF FEILFN CN COTINAL FPRTFCLIC
            = TOTAL FATE CF FCILFN CN CPTINAL FERTFCLIC
            = RELATIVE AEIGHT OF SECURITYI IN (FTIMAL PCRTFCLIC
            THE NUMDEF OF IVPLT SECURITY
            IEMPERANY VARIABL
            TEApE:O
            = TEDFPFit?Y vafiABE
02 = TENPLRARY VAFIABL
    TC1= TENPESARY VAN
    TCL = IEHPEkaRY VAFIJALL
    TCZ = TENPFRARY VANIABL
    TCF= TEMP{RARY VAN]ALL
V = STMNCARDCEASTHNTGNECFNARKET INDEX (SEP-50O)
FFR=FISK-FREERATGFFRETURN(14,25),2(14,25), (114,25)
```

 EXFECTELBETLRA LNEXTETFFCCNSTANT
 CLRRELATIGA CUEFFIGIENT NCEEL (SHOF
 SELLINC IS PEREITTEC)
 WRITIFN BY CFIANCCFIEN +C 5/3C/E1
 R \(=\) HEAN RETUGN CA SECLRITYI
 SD = SANGAROECVIAICA CF SECLRITY I CPTIMAL FCRTFCLIC
 \(A=\) TF
 \(\hat{61}=\) TENPARARY VARIABSE
 TOL = TEMPEARY VARIAGLS
 \(z_{0}=\) TEMDGRAY VARIFUE
 CR = SANUBRE EEVIAIENEF SECLRITYI
 \(R F=\) RISK-FREE KA

ary the securities
[IMENSION F(100),SD(100), Z(100), X(10C), NANE(100),CR(10C)
hRITE (6,1)
FCRMAT(iHL,4X, 1csC-1sig')
$T 61=0.0$
$A=0 . C$
${ }_{R F} \mathrm{TCR}=0.0$
$R F=C .45$
101
$C C=C^{4}$
$11^{\circ}{ }^{4} I=1 . N$
REAC(5, 10ㄹ) $A A M!(1), R(1), S[(1)$
102
110
FERNAT (AL.FE.3. i10.3)
CEATIAUE
OC $1201=1 . N$

$T C 1=T+01$
120 CCATINUE
121 DC $13 C T$

$A=A+Z(I)-C C))$
130 ÁCN̄TINUE

WRITE (6.132)
132

140 CCNTTAUE $=T C Q+$ CRTI)
140 CCNTIAUE $=$ TRE + .

```
A(F%)=心.び
    F(f:MAT(14,I4)
    WEIT[(6;1:S) YE(1),YE(I)
    FCFMAT(IHE,4X,14,1X,*-1, 1X, I4)
    FEAO(5,2C) \(1)
    FUFMAT(F7.3
    UEITE (6,40)
```



```
        i)
    OC 110, N=1, N, 104) NAVE(1,N),R(I,N),E(I,J) ,E(I,J)
        FQENJT(A1,f(.3,FE:B,FlO.3)
```



```
    CONIINUE
    WFITE(0,1?1)
```



```
        E(J=1,N', = (F(I,N)
        FGFMLJIIFO,7X,A1,GX,F6.3,4X,FE.2),
    CCHTIMLE
    OCISCl(I,j),N=((I,J)*(R(I,J)-FF)/E(I,J)
        Cl(I,j)={(IM,j)*1R(I,J)-FFF)/E(I,J
```



```
    CCNTMMUE
    C(I)=((V|I)**&)*TGI(Ij)/{(VII)**己)*TG2(I)+1)
    DC 180;j=1,
```



```
    CENTINUE
    MFITE(6,191) A(1), 2x,'=1,2x,f10.2)
    UFITF(6,102)
    FCPHAT(1FI, (X,'NAME',5X,'X',7X,'CR')
        X(I,J)=Z{I, 位, \)/AII)
            CF(I,J)= (P(INSIMRRF)&X(I,J)
            WRITE{E,1?Z) AANE(I,J),x(1,j),CR(I,J)
    CCNTINUL
    TR(1)=TCR(I) & RF
    WRITE(E.2L1})TR{J;
```


193
200

APPENDIXB

VARIABLES
\qquad R4 $A B$ \qquad AF BM \qquad 9 \qquad CM \qquad C.

| 24 | 2.418 | 3.817 | 2 |
| ---: | :--- | :--- | :--- | :--- |
| 36 | 1.894 | 3.170 | 1 |
| 48 | 1.699 | 2.619 | 1 |
| 60 | 1.763 | 3.063 | 1 |
| 72 | 1.792 | 3.121 | 1 |
| 84 | 1.752 | 2.487 | 1 |
| 95 | 1.426 | 1.907 | 1 |
| 108 | 1.441 | 1.913 | 1 |
| 120 | 1.446 | 2.017 | 1 |
| 144 | 1.078 | 1.324 | 1 |
| 168 | 1.037 | 1.384 | 1 |
| 192 | 1.132 | 1.479 | 1 |
| 216 | 1.099 | 1.279 | 1 |
| 240 | 0.958 | 1.243 | 0 |

2.405
1.958
1.750
1.841
1.762
1.755
1.420
1.432
1.405
1.073
1.036
1.093
1.043
0.950

4.384	0
3.694	0
2.811	0
3.043	0
2.874	2
2.534	2
1.973	1
1.905	0
1.960	0
1.325	0
1.369	0
1.441	0
1.344	0
1.305	0

OE EM EB
$E E$
FE
$G M$
GB
$6 E$
HM
HB
2.2421
53.200
44.635
40.191
38.035
46.308
48.337
61.207
69.315
74.471
97.011
104.623
102.270
111.892
72.954
1.970
1.364
0.625
0.773
1.726
1.312
0.546
0.639
0.998
0.517
0.792
0.918
0.739
0.575

 $1-272$
1.261 $\begin{array}{rrrr}66.927 & -0.054 & 0.670 \\ & 50.299 & 0.075 & 0.797 \\ 72.510 & -0.283 & 0.813 \\ 7 & 69.967 & 0.223 & 0.930 \\ 0 & 71.204 & 1.106 & 0.755 \\ 9 & 66.765 & 0.483 & 0.773 \\ 65 & 79.099 & 0.522 & 0.732 \\ 97 & 75.059 & 0.849 & 0.793 \\ 30 & 73.934 & 0.422 & 0.919 \\ 364 & 71.512 & 0.635 & 1.070 \\ 236 & 71.130 & 0.408 & 1.022 \\ 150 & 78.145 & 1.262 & 1.03\end{array}$

	2
3	2
3	
3	8
0	8
2	8
1	8
3	8

25
26
53
54
55
65
81
83
20
82
83
20
$k E$

7
1.000
U. 348 $2.183 \quad 1.341$ 1.843
3.049
1.041
1.299
$K H$

KH
84.728
74.889
60.470
60.494
64.438
95.927
103.296
92.724
85.500
79.701
72.493

MO $=$ Number of Months
R1 $=$ Expected Returns on Optimal Portfolios under Single Index Model (Short Selling Allowed)
R2 $=$ Expected Returns on Optimal Portfolios under Single Index Model (Short Selling Not Allowed)

R3 $=$ Expected Returns on Optimal Portfolios under Constant Correlation Coefficient Model (Short Selling Allowed)

R4 = Expected Returns on Optimal Portfolios under Constant Correlation Coefficient Model (Short Selling Not Allowed)
$A M=$ Mean Return of Company A
$\mathrm{AB}=$ Beta Coefficient of Company A
$\mathrm{AE}=$ Residual Error of Company A

A P PEND IXC

OPTIMAL PORTFOIIOS
(Short Selling Allowed)
Unit:
\%

1980-1978		1980-1977		1980-1976		1980-1975		1980-1974		1980-1973		1980-1972	
Co.	X_{i}	Co.	X_{1}	Co.	X_{i}								
A	-2.7	A	-1.2	A	-2.0	A	2.2	A	-0.9	\bar{A}	0.9	A	0.1
B	-1.1	B	0.3	B	-2.1	B	-5.0				-4.7	B	-5.7
C	4.4	C	4.3	C	4.4	C	6.2	C	5.4	${ }^{\text {c }}$	5.3	C	4.7
D	2.1	D	4.5	D	3.4	D	7.9	D	5.1	D	3.6	D	3.0
E	-1.5	E	-3.1	E	-3.9	E	-0. 5	E	12.6.	E	-2.2	E	-2.2
F	4.7	F	6.5	F	-3.9	F	10.4	F	12.4 2.2	F	8.9 -1.6	F	10.4
G	-7.6	G	-8.3	G	-7.9	G	-1.0	G	2.2	G	-1.6	G	-1.5
H	-0.5	H	1.3	H	1.1	H	2.1 -12.9	H I	0.9 -15.1	I	-0.1 -11.0	H	1.1
I	-11.4	I	-9.1	I	-14.6	I	-12.9 -0.2	I	-15.1 2.2	J	-11.0 2.3	I	-8.0
J	-1.2	J	-1.1	J	-0.7	J	-0.2 2.6	K	2.2 1.3	K	2.3 -2.3	J	0.7
K	-0.?	K	-2.1	K	0.1	K	2.6 -2.7	K	1.3 -1.0	K	-2.3 3.1	K	-3.4
I	1.5	L	-1.5	I	-1.1	I	-2.7 0.2	I	1.3 -1.0 3.3	M	3.1 3.3	I	-0.4
M	2.7	M	-0.6	M	1.0	M	0.2 2.5	M	3.3 1.6	M	3.3 3.4	M	2.9
N	9.0	N	7.7	N	4.5	N	2.5	N	1.6	N	3.4	N	3.9
0	-5.6	0	-6.2	0	-1.8	0	-1.5	O	3.3	0	1.5 4.8	\bigcirc	3.2
P	3.0	P	2.8	P	3.7	P	3.2	P	2.1	Q	- 4.8	P	4.7
Q	-3.2	Q	-2.4	Q	0.1	Q	-1.3	Q	-3.6	R	-5.2	Q	-6.2
R	7.9	R	7.7	R	9.0	R	7.4	R	4.6	R	4.4 3.6	R	4.9
S	7.6	S	7.4	S	8.3	$\stackrel{S}{\text { S }}$	7.2	S	3.7	T	3.6 -1.4	S	6.3
T	-3.5	T	-2.6	T	-2.4	T	-2.7	T	0.0 -2.2	T	-1.4 -1.2	T	-1.5
U	-5.0	U	- 0.5	U	-2.0	U	0.2	U	-2.2	U	-1.2	U	0.2
V	-0.1	V	-1.0	V	-2.0	V	-3.3	V	-2.8	V	-3.3	V	-4.6
W	-0.3	W	0.9	W	2.5	W	3.0	W	4.8	*	4.3	W	4.2
K	-7.6	X	-10.0	X	-9.3	X	-3.4	X	-3.9	X	-4.9	X	-4.1
Y	-5.3	Y	-7.1	Y	-5.7	Y	-10.5	Y	-14.2	Y	-12.5	Y	-12.2
5 y	-1nn n		1 nn 0		9のn n		$1 \mathrm{nn} n$		1 n n		1 n n		1 nn n

Unit: \%

1980-1971		1980-1969		1980-1967		1980-1965		1980-1963		1980-1961	
Co.	X_{i}	Co.	X_{i}	Co,	X_{i}	Co.	X_{i}	Co.	X_{i}	Co.	X_{i}
A	-0.5	A	-0.8	A	0.4	A	-2.5	A	-3.2	A	-3.1
B	-7.3	B	-3.8	B	-4.8	B	-6.2	B	-5.5	B	-8.9
C	4.6	C	2.5	C	4.8	C	-6.2	${ }_{\text {C }}$	-5.5 0.2	C	1.0
D	4.4	D	3.4	D	2.2	D	1.5	D	-0.9	D	-0.5
E	0.0	E	-2.4	E	-1.3	E	-0.2	E	-0.9	E	-5.?
F	12.3	F	9.5	F	5.3	F	8.8	F	11.0	F	7.5
G	0.0	G	-2.1	G	-2.2	G	-0.7	G	3.6	G	3.9
H	0.4	H	-2.9	H	-2.0	H	-3.1	H	-2.1	H	-2.3
I	-7.9	I	-2.7	I	-1.6	I	-0.1	I	-2.1	I	0.3
J	-0.5	J	-2.4	J	-2.4	${ }^{1}$	-0.7	${ }_{J}$	-0.5	J	0.9
K	-3.8	K	-3.8	K	-4.6	K	-7.2	K	-7.8	K	-6.2
I	-0.1	I	4.8	\underline{L}	2.4	L	-1.7	L	-2.3	L	-1.2
M	2.4	M	1.9	M	2.6	M	2.8	M	1.5	M	2.1
N	6.0	N	3.3	N	4.1	N	6.0	N	4.3	N	5.6 -5.0
0	0.7	0	-0.6	0	0.2	0	-1.9	0	-2.5	0	-5.0
P	4.0	p	5.2	P	3.2	P	-1.9 1.9	P	-2.5	P	2.7
Q	-7.1	Q	-8.0	Q	-7.4	Q	-11.2	Q	-11.6	Q	-7.4
R	5.7	R	5.0	R	5.3	R	9.0	R	-11.0 7.0	$\stackrel{R}{\text { R }}$	5.7
S	5.4	S	6.4	S	6.9	S	5.5	$\stackrel{\text { R }}{ }$	5.3	S	5.1
T	-1.5	T	-3.3	T	-1.8	T	0.7	T	1.8 1.8	T	3.0
U	1.6	U	1.2	U	2.7	U	1.1	U	1.0 -0.0	U	-1.0
v	-5.8	V	-7.4	V	-5.6	V	-6.9	V	-7.0	V	-5.?
W	2.6	W	4.8	W	6.8	W	6.8	W	7.8	W	5.4
X	-3.3	X	0.4	X	4.3	X	2.2	X	5.7	X	6.2
Y	-12.0	Y	-11.2	Y	-15.1	\mathbf{Y}	-6.9	Y	2.9	Y	3.6
$\Sigma\left\|X_{i}\right\|$	100.0		100.0		100.0		100.0		100.0		100.0

(Short Selling Not Allowed)

1980-1978		1980-1977		1980-1976		1980-1975		1980-1974		1980-1973		1980-1972	
Co.	X_{i}	Co.	X_{i}	Co.	X_{i}	Co.	X_{i}	Co.	X_{i}	Co.	X_{i}	Co.	X_{i}
S	14.3	F.	14.6	F	17.2	F	15.9	F	22.1	F	19.1	F	17.5
N	14.0	S	16.4	R	16.3	R	12.2	C	9.5	C	9.8	S	14.3
R	12.7	N	14.4	S	17.3	C	9.6	R	9.6	P	10.3	P	10.0
F	9.4	R	14.3	C	8.5	D	13.2	D	10.4	R	9.0	C	8.8
C	7.7	C	8.1	P	8.7	S	12.6	W	10.9	M	8.1	R	8.8
P	6.3	P	6.6	N	10.3	N	8.3	M	7.6	S	9.8	M	7.7
M	6.0	D	9.5	D	9.4	P	7.1	S	9.1	W	10.4	N	8.2
D	6.3	W	4.0	W	7.4	W	8.5	P	6.0	D	7.8	W	10.1
I	5.8	H	3.7	M	4.9	A	6.6	0	8.2	I	7.9	D	7.4
E	4.3	B	4.0			H	6.2	N	6.6	N	7.8	0	7.4
B	3.8	M	1.7										
W	2.7	U	1.7										
V	1.6	L	0.7										
H	1.4	E	0.5										
Y	1.5												
J	1.0												
K	0.8												
T	0.3										:		
$\Sigma \mathrm{X}_{\mathrm{i}}$	100.0		100.0		100.0		100.0		100.0		100.0		100.0

(Nnort Neling not Ailowed)

1980-1971	1980-1969		1980-1967		1980-1965		1980-1963		1980-1961	
Co. X_{j}	Co.	x_{1}	Co.	x_{i}	Co.	x_{i}	Co.	x_{i}	Co.	x_{i}
F 18.0	F	14.3	S	14.8	R	11.1	F	8.6	F	9.2
S $\quad 13.7$	S	16.5	W	13.8	N	13.4	S	8.7	R	7.3
$\mathrm{N} \quad 12.7$	P	11.4	N	10.3	F	11.2	R	6.3	N	7.8
C $\quad 9.5$	W	12.4	F	8.6	S	12.9	N	3.0	X	9.0
$\mathrm{R} \quad 9.6$	R	7.7	C	6.4	W	14.5	W	8.7	S	7.6
P 9.9	D	8.6	R	7.1	c	7.0	X	7.6	W	8.5
D 10.4	N	9.5	P	8.2	M	7.0	P	6.2	G	6.1
M 7.1	I	8.3	X	9.6	P	7.7	G	4.7	Y	6.4
W 9.1	c	5.7			D	6.9		5.6	T	5.5
	M	5.5		6.3	X	8.3	I	7.0	P	5.8
			U	7.9				4.4	M	4.4
							T	4.4	c	3.4
							M	3.7	I	6.6
							C	3.1	J	3.1
							D	2.6	D	3.0
							U	3.2	L	2.1
							J	2.0	U	2.3
							E	2.4	H	1.1
							O	1.8 1.1	E	0.8
-		-		-						
$\Sigma \mathrm{X}_{\mathrm{i}}=100.0$		100.0		100.0		100.0		100.0		100.0

(Short Selling Allowed)
Unit: \%

1980-1978		1980-1977		1980-1976		1980-1975		1980-1974		1980-1973		1980-1972	
Co.	X_{i}	Co.	x_{i}	Co.	$\mathrm{x}_{\text {i }}$	Co.	x_{1}	Co.	X_{1}	Co.	x_{1}	Co.	x_{i}
A	-3.6	A	-1.9	A	-3.2	A	2.1	A	1.4	A	0.5	A	-0.5
B	0.1	B	0.8	B	-2.3	B	-4.3	B	-1.1	B	-4.4	B	-5.8
C	4.1	c	3.8	c	4.2	C	6.0	C	5.3	c	4.7	C	4.4
${ }_{\text {E }}$	2.4	${ }_{\text {D }}$	4.3	D	3.5	D	7.9	D	5.0	D	3.1	D	3.1
$\stackrel{\text { E }}{\text { F }}$	0.2 5.2	$\underset{\mathrm{F}}{\mathrm{E}}$	-1.5	$\stackrel{\mathrm{E}}{\mathrm{F}}$	-2.9	$\stackrel{\mathrm{E}}{\mathrm{F}}$	0.9 11.4	E	1.5	E	-2.1	E	-1.5
G	-7.5	G	-8.5	G	-7.8	G	-3.7	G	0.9	G	-2.6	G	-2.5
H	-1.7	H	0.8	H	0.4	H	1.2	H	-0.7	H	-1.0	H	0.5
I	-7.4	I	-7.1	I	-0.0	I	-8.5	I	-10.1	I	-7.7	I	-7.6
J	-1.9	J	-1.7	J	-2.8	J	-2.6	J	1.1	J	2.1	J	-0.3
K	-3.2	K	-4.4	K	-3.1	K	0.4	K	-0.2	K	-3.5	K	-5.4
${ }_{\text {L }}$	1.8	\pm	-1.2	I	-0.6	I	-2.4	I	-1.8	L	3.1	L	-0.7
$\stackrel{\text { M }}{ }$	2.8	M	0.0	m	1.4	M	0.0	M	3.3	M	3.5	M	3.5
N	8.4	N	7.3	N	4.8	N	3.4	N	2.0	N	3.1	N	3.6
-	-6.?	0	-7.7	0	-3.0	0	-2.4	0	2.7	0	1.2	0	2.9
P	3.2	$\stackrel{p}{9}$	3.0	P	4.2	P	2.6	P	2.1	P	4.9	P	5.0
Q	-3.9	${ }_{8}^{\text {Q }}$	-3.1	Q	-0.2	Q	-3.1	Q	-6.2	Q	-6.5	Q	-7.1
R	7.3 8.7	R	7.1	R	9.3	R	7.6	R	4.7	R	4,1	R	4.3
T	8.7 -2.4	S	8.5 -2.0	S	9.9 -1.9	S	7.0 -1.9	S	3.5 -1.9	S	$4 \cdot 1$	S	7.4
U	-7.2	U	-0.3	U	-1.8	U	-1.9	$\stackrel{4}{4}$	-1.9	U	-2.4 -2.3	T	-2.2
v	-0.3	V	-1.6	V	-3.4	v	-5.5	V	-5.6	V	-2.3	V	-0.1
W	-0.3	w	1.0	w	2.5	w	2.8	w	4.9	w	4.3	W	4.4
X	-7.1	x	-9.7	x	-12.0	x	-2.9	X	-3.8	X	-3.9	x	-2.6
Y	-2.5	Y	-5.0	Y	-4.5	Y	-7.4	Y	-11.0	Y	-10.1	Y	-9.1
E\|x. 1	100.0		100.0		100.0		100.0		100.0		100.0		100.0

Unit: \%

1980-1971		1980-1969		1980-1967		1980-1965		1980-1963		1980-1961	
Co.	X_{1}	Co.	X_{i}								
A	-1.2	A	-0.8	A	-0.3	A	-2.1	A	-2.5	A	-4.3
B	-7.1	B	-5.4	B	-6.9	B	-8.2	B	-7.2	B	-6.7
C	4.5	C	2.3	C	3.2	C	3.2	C	1.0	C	1.3
D	4.6	D	3.8	D	3.9	D	2.3	D	-0.5	D	-0.0
E	1.1	E	-1.6	E	-0.2	E	1.3	E	-1.7	E	-3.8
F	10.0	F	7.3	F	4.3	F	5.8	F	7.1	F	7.2
G	-0.4	G	-2.8	G	-2.1	G	-0.8	G	2.3	G	3.5
H	-0.3	H	-2.6	H	-3.0	H	-3.5	H	-2.7	H	-2.8
I	-7.4	I	-2.2	I	-0.2	I	2.4	I	3.0	I	2.3
J	-1.4	J	-2.4	J	-2.6	J	-1.0	J	-1.2	J	-0.0
K	-6.4	K	-5.8	K	-8.6	K	-11.8	K	-13.5	K	-7.9
I	-0.3	I	3.6	I	1.6	L	-0.8	I	1.6	L	-1.3
M	2.6	M	2.1	M	2.6	M	2.7	M	1.2	M	1.8
N	6.1	N	4.2	N	5.3	N	7.0	N	5.9	N	5.4
0	0.3	0	-0.4	0	0.2	0	-1.1	0	-1.8	0	-5.0
P	4.4	P	5.5	P	3.7	P	2.7	P	3.5	P	2.7
Q	-7.6	Q	-8.1	Q	-7.3	Q	-9.5	Q	-9.6	Q	-6.8
R	4.5	R	3.5	R	3.5	R	-6.0	R	4.7	R	5.4
S	6.6	S	8.4	S	9.0	S	6.5	S	6.6	S	4.9
T	-2.2	T	-3.5	T	-2.0	T	0.7	T	1.6	T	2.6
U	1.7	U	1.6	U	2.8	U	0.7	U	-0.8	U	-2.1
V	-7.0	V	-7.9	V	-6.5	V	-7.1	V	-6.7	V	-7.4
W	3.0	W	5.6	W	7.5	W	7.0	W	5.7	W	5.0
X	-1.4	X	1.5	X	4.4	X	2.6	X	5.9	X	6.1
Y	-7.7	Y	-7.0	Y	-9.2	Y	-3.4	Y	2.7	Y	3.5
$\Sigma \mathrm{X}$	100.0		100.0		100.0		100.0		100.0		100.0

1980-1978		1980-1977		1980-1976		1930-1975		1980-1974		1980-1973		1980-1972	
Co.	X_{i}	Co:	X_{1}	Co.	X_{i}								
S	17.1	F	15.8	F	16.6	F	12.4	F	18.3	F	18.2	F	19.7
F	11.2	S	18.0	S	16.3	S	9.0	M	5.7	M	6.7	S	12.0
N	21.7	N	18.0	R	18.2	R	10.6	J	4.0	P	9.6	M	5.6
P	7.6	R	17.8	P	7.7	D	11.8	0	6.0	J	4.7	R	9.7
R	20.3	H	2.9	W	5.6	P	4.8	A	3.6	S	7.2	P	9.2
0	8.5	P	6.3	N	10.0	C	10.2	C	10.1	C	10.6	0	6.3
M	9.2	D	9.8	C	9.9	K	4.4	W	9.0	R	8.9	C	9.4
I	5.9	C	9.2	D	7.9	H	3.9	S	7.0	I	6.3	W	8.4
D	8.1	U	0.9	H	2.7	W	5.8	R	9.1	W	8.7	D	6.3
V	0.9	W	1.4	M	3.1	A	4.5	D	10.5	D	7.3	N	8.1
W	1.6			Q	0.8	N	6.9	G	4.6	A	1.8	H	2.3
B	2.1			U	0.6	U	1.9	P	4.8	N	6.8	J	1.6
E	2.4			K	0.6	M	2.4	H	2.3	0	3.0	U	0.8
H	0.4					E	4.4	K	3.7			A	0.4
						J	1.6	E	5.6				
						G	1.1	N	6.2				
			.			0	1.5	I	3.9				
						T	1.1	B	2.6				
						I	0.9	L	0.9				
						X	0.9						
	100.0		100.0		100.0		100.0		100.0		100.0		100.0

Unit: \%

1980-1971		1980-1969		1980-1967		1980-1965		1980-1963		1980-1961	
Co.	X_{i}	Co	X_{1}	Co.	X_{i}	Co.	X_{1}	Co.	X_{i}	Co.	X_{i}
F	20.0	S	12.7	S	10.7	F	13.1	F	14.0	F	10.8
S	9.3	F	18.8	W	10.9	W	10.1	S	7.1	R	8.8
P	7.4	P	10.2	F	9.3	S	8.2	W	11.1	G	6.2
R	10.7	W	9.7	P	5.9	R	13.7	R	10.5	W	8.8
M	4.5	L	9.8	U	5.2	N	9.9	G	5.6	S	8.4
D	8.5	R	10.3	R	10.2	M	5.2	N	6.9	X	10.8
N	11.8	D	7.2	M	5.1	C	8.9	P	4.3	N	9.9
C	9.0	M	4.1	C	9.6	P	4.2	X	10.4	T	5.4
W	6.0	N	7.2	N	8.2	D	3.8	T	3.8	Y	6.7
U	3.8	c	5.6	X	9.0	U	3.1	Y	6.4	M	4.1
0	2.6	U	2.7	D	4.7	X	6.8	M	3.4	P	5.7
H	1.8	X	1.8	I	5.5	T	2.8	I	5.6	J	2.4
E	2.2			A	2.2	I	3.1	I	3.3	C	3.1
G	1.1			0	2.7	E	2.7	C	3.7	I	5.9
L	1.4			E	0.8	J	1.5	U	1.8	D	1.7
						G	1.2	J	1.8	U	0.7
						1	1.2			L	0.5
						0	0.7				
$\Sigma x_{i}=100.0$			100.0		-100.0		100.0		100.0		100.0

VITA
Chiang-Chien Ho
Candidate for the Degree of
Master of Business Administration
port: LENGTH OF SAMPLE PERIOD AND OPTIMAL PORTFOLIOS
jor Field: Business Administration
ographical:
Personal Datar Born in Taiwan, Republic of China,February 6, 1954, the son of Wu-Ching Ho and I-Lan Sung.
Education: Graduated from Chung-Yuan University, Taiwan, China, June 1977; received the Bachelor of Commerce with a major in Business Administra- tion; completed requirements for the Master of Business Administration degree at Oklahoma State University, August, 1981.
Professional Experience: Accountant in Budgets Department of Timex Watches(Taiwan) Ltd., from March 1978 to August 1979; Sr. Personnel Clerk in Personnel Department of Philips Video Products (Taiwan) Ltd., from August 1977 to March 1978.

