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Abstract 

Study of turbulence has been carried out for several decades due to its popularity 

and importance in many engineering disciplines. In fact, turbulence is the most 

observed flow regime in nature and industry. Due to its significantly high transport rate 

compared to laminar flow, turbulence has found great applications and impact in several 

fields and attracted lots of interest. 

Recent advancement of microfluidic devices has led to a desire to increase flow 

velocity in order to reduce length scales and time scales associated to many mixing 

processes happening within these devices, as those length scales and time scales 

associated with mixing in laminar flows are not suitable for practical applications. 

Researchers have recently employed superhydrophobic surfaces to increase volumetric 

flow rate and Reynolds numbers of flows inside these devices, hence led to great 

interest in study and application of superhydrophobic surfaces. On the other hand, 

turbulent drag force remains a great concern in many large scale applications, for i.e. 

automotive and ship building industry, as great amount of energy is consumed to 

compensate for loss of momentum. Recent studies have suggested superhydrophobic 

surfaces as a method to reduce skin-friction drag, thus reduce energy consumption. 

Though application of this type of surface in micro-scale devices has been well 

understood, the effect of such surface on the skin-friction drag in large-scale flows, such 

as turbulent flows around a ship, remains to be investigated. In this study, plane 

Poiseuille-Couette flow is simulated as a model for fluid slip over superhydrophobic 

surfaces. The purpose of the study is to explore the details of how specific slip affects 

the turbulence structure and the coherent structures in the viscous wall region and how 
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changes in these structures compare with other cases of turbulence drag reduction. The 

study also aims to provide further insights into the mechanism of turbulent drag 

reduction in cases of specified slip at the wall through study of turbulent flow statistics, 

quadrant analysis of the Reynolds stress, two-point correlations and trajectories on 

anisotropy invariant maps.    

Another great impact of turbulence in engineering is its ability to enhance 

mixing, due to its high momentum and mass transfer rate. Significant studies have been 

done in turbulent dispersion and related issues. However, we present here a case where 

the opposite happens, in which simulation results indicate that particles can separate 

near the wall of a turbulent channel flow without use of any other means, given that 

they have sufficiently different Schmidt numbers. The physical mechanism of the 

separation is understood when the interplay between convection and diffusion, as 

expressed by their characteristic time scales, is considered, leading to the determination 

of the necessary conditions for a successful separation between particles.  

Throughout my research, the combination of Direct Numerical Simulation 

(DNS) and Lagrangian Scalar Tracking (LST) has been widely used to simulate 

turbulent flow field and track trajectories of heat and mass markers traveling along with 

the flow. While this technique has proven to be of high fidelity, its computational cost 

remains a concern for many researchers. An attempt has been made herein to explore 

the form of the particles distribution, and we present the finding  that Gamma 3P 

distribution  is an appropriate probability density function (pdf) for use in predicting 

location and concentration distribution of puffs of particles with different Schmidt 

numbers (Sc) diffusing from  the wall of a channel. Estimation of parameters of the 
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Gamma 3P distribution was successfully obtained. The use of Gamma 3P distribution 

could be found in estimating particles separation at different purity criteria, as well as 

predicting diffusion of particles in the channel for other applications.   

Study of different wall-bounded shear flows at transitional regime also revealed 

the coexistence of turbulent-laminar patterns formed at an oblique angle to the flow 

direction. These patterns, however, behave differently in plane Couette flow and 

Poiseuille flow even at the same Reynolds number. This study would help shed some 

light on the mechanics of these special patterns, which prove to be important in many 

fluidic devices operating at transition regime.  
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Chapter 1. Introduction 

1.1 Turbulent Drag Reduction on Superhydrophobic Surfaces 

1.1.1  Slip Boundary Condition 

For decades of studying fluid dynamics, researchers have been using the no-slip 

boundary condition for viscous fluids, which basically states that the fluid will have 

zero velocity relative to the solid boundary. Although this boundary condition has been 

accepted almost universally as the proper boundary condition to impose at the solid-

liquid interface, its validity has been subject of debate extensively throughout the 19th 

and early 20th century by great amount of scientists (1). It is worth noticed that the no-

slip boundary condition is no more than a convenient approximation that has been 

found to hold under most normal flow conditions (2). 

The concept of a slip boundary condition was first introduced by Navier (3) and 

is shown schematically in Figure 1. In Navier’s model, the magnitude of the slip 

velocity, uo, is proportional to the magnitude of the shear rate experienced by the fluid 

at the wall 

𝑢𝑜 = 𝑏 |
𝜕𝑢

𝜕𝑦
|                                        (1.1) 

where b is the slip length. A study of gas flowing past a solid surface predicted a slip 

length on the order of the mean free path of the fluid, λ (4). Slip lengths on the same 

order were also reported in other studies. Therefore, for nearly all macroscopic flows of 

simple fluids, the slip length is so small that it can be neglected, b = O (1nm), and the 

no-slip boundary condition could be used without loss of accuracy.  
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Recent advancement in microfluidic devices has raised a desire to develop fluid-

surface parings that can achieve slip lengths on the order of micrometers rather than 

nanometers. It was proved that the volume flow rate between two infinite parallel plates 

could be significantly enhanced if and only if the slip length is on the order of the 

channel height (5). For microfluidic devices, this means that slip length must be on the 

order of micrometers, rather than nanometers. Several studies have focused on 

quantifying the magnitude of the slip length and its dependence on parameters such as 

wettability and surface roughness (6-8) 

The wettability of a surface is defined by the spreading coefficient, S = γSV – γLV 

– γLS , where γSV, γLV, and γLS are the solid-vapor, liquid-vapor and liquid-solid 

interfacial tensions, respectively (9). The solid is fully wetted by the liquid if S > 0, 

whereas for S < 0, the solid is only partially wet by the liquid, which forms a spherical 

end cap with an equilibrium contact angle defined by Young’s law as θ = cos-1[(γSV – 

γLS)/γLV]. The surface is considered hydrophilic for θ < 90o, while for those with θ ≥ 

90o, the surface is hydrophobic. Many studies have found that surface hydrophobicity 

could produce slip lengths much larger than the mean free path (10, 11). Values of slip 

lengths greater than 40 molecular diameters were reported, which were not observed on 

hydrophilic and even moderately hydrophobic surfaces with θ < 100o. However, it was 

also found that slip length larger than a few tens of nanometers cannot be achieved. 

Creating slip lengths on the order of micrometers for it to be useful in practical 

applications requires the use of Superhydrophobic surfaces (SHSs).  
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1.1.2 Superhydrophobic Surfaces (SHSs) 

A superhydrophobic surface is arbitrarily defined as a surface with a contact 

angle of higher than 150o between the surface and a drop of fluid resting on it (12). This 

type of surface has been widely observed in nature (13-15). The lotus leaf is one of the 

most well-known and studied examples of superhydrophobic and water repellent natural 

surfaces (16-19). The water droplets roll on the surface carrying away dirt and debris. 

The self-cleaning property of the hydrophobic lotus leafs is attributed to the 

hydrophobic epicuticular wax associated with the micro/nanoscale hierarchical 

architectures formed by cilium-like nanostructures on the top of the microscale papillae. 

Other plant leaves show the same behavior of lotus leaf and are also 

micro/nanotextured. The taro leaf possesses a surface texture characterized by 

micrometer elliptic protrusions uniformly distributed on the surface. 

It has been known that how a droplet of a liquid sits and rolls on a surface is 

determined by both the surface chemistry and the surface roughness or topography (16, 

20, 21). The difference between a hydrophobic surface and a superhydrophobic surface 

lies not in the surface chemistry, but in the micro- or nanoscale surface roughness. A 

flat and smooth hydrophobic surface exhibiting an equilibrium contact angle of 115o 

could be converted into a superhydrophobic surface exhibiting a contact angle greater 

than 150o by roughening it, even without altering any surface chemistry (22). Synthetic 

superhydrophobic surfaces have recently been developed that are capable of obtaining 

contact angles that approach θ ≈ 180o with little to no measurable contact-angle 

hysteresis, which makes a water drop on it unstable and move easily across the surface 

(23-25). 
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1.1.3 Slip on Superhydrophobic Surfaces – Laminar Flows 

Superhydrophobic surfaces were first tested in its ability to create larger slip 

length within laminar flows. As microfluidic devices are getting more popular, it has 

become extremely desirable to develop fluid-surface parings that could achieve slip 

lengths on the order of micrometers. This is explained as we take, for example, a 

pressure-driven flow between two infinite parallel plates separated by a distance H. If 

one of these plates support slip, the volume flow rate per unit depth is given by 

𝑞 =
𝐻3

4𝜇
(−

𝑑𝑝

𝑑𝑥
) [

1

3
+

𝑏

𝑏+𝐻
]   (1.2) 

For a given pressure gradient, dp/dx, and fluid viscosity, μ, the volume flow 

rate, or effect of shear-free air-water surface on velocity profile, would be considerably 

enhanced if the slip length is on the order of the channel height.  

Several experiments have been conducted with low Reynolds number flows over 

micro- or nano-textured surfaces, coated with Teflon or other hydrophobic materials. In 

flows over superhydrophobic surfaces, the boundary condition experienced by the fluid 

in contact with the solid is no slip; however, the air-water interfaces supported between 

the micro- or nanofeatures are shear-free. Ou and colleagues (26, 27) used a series of 

lithographically etched and silanized silicon surfaces with precisely controlled 

microsurface topology consisting of regular arrays of microposts and microridges to 

study effect of topological changes on the flow. They were able to obtain drag 

reductions greater than 40%, with slip length greater than 25μm. Gogte and colleagues 

(28) examined effects of textured superhydrophobic surfaces for both droplets moving 

down an inclined surface and an external flow near the surface (hydrofoil). They found 

evidence of appreciable drag reduction in the presence of surface texture combined with 
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superhydrophobic coating. While the highest drop velocities were achieved on surfaces 

with irregular textures and characteristic feature size of roughly 8μm, drag reduction on 

the order of 10% or higher was obtained with application of the same surface in a water 

tunnel. The authors explained the behavior as a result of reduction of the contact area 

between the surface and the fluid, which can be interpreted in terms of changing the 

macroscopic boundary condition to allow nonzero slip velocity. Another study by 

Tretheway and Meinhart (29), though performed on hydrophobic microchannel walls, 

has also found a slip length of approximately 1μm. They found that when the surface 

was hydrophilic (uncoated glass), the measured velocity profiles were consistent with 

solutions of Stokes’ equation and the well-accepted no-slip boundary condition. 

However, when the microchannel surface was coated with a 2.3 nm thick monolayer of 

hydrophobic octadecyltrichlorosilane, an apparent velocity slip was measured above the 

solid surface and was approximately 10% of the free-stream velocity. Though for a slip 

length of 1μm, slip flow is negligible for length scales greater than 1mm, but must be 

considered at the micro- and nano scales. Choi and Kim (30) engineered a 

nanostructured superhydrophobic surface that minimizes the liquid-solid contact area so 

that the liquid flows predominantly over a layer of air. The surface has demonstrated 

dramatic slip effects with a slip length of approximate 20μm for water flow and 50μm 

for 30 weight % glycerin. These studies have confirmed the existence of liquid slip over 

superhydrophobic surfaces, when most of the flows are in laminar state.  
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1.1.4 Slip on Superhydrophobic Surfaces – Turbulent Flows 

Even though effects of superhydrophobic surfaces on velocity profile of flows in 

microfluidic devices are evidence, the effect on skin-friction drag in large-scale flows is 

still unclear. Fundamentally, the superhydrophobic drag-reduction mechanism should 

be independent of whether the flow is laminar or turbulent. It is because in turbulent 

flows, there exists a thin laminar sublayer exists very near to the wall, to a height, y, in 

wall units of 𝑦+ =
𝑦

𝜈
(

𝜏𝑤

𝜌
)1/2 = 5. However, the question is that whether the influence of 

the shear-free air-water interface on the velocity profile extends into the chaotic region 

above the laminar sublayer and has dramatic effect on drag reduction.  

One of the pioneer works in studying effects of superhydrophobic surfaces in 

turbulence was that of Min and Kim (31). They performed turbulent channel flow 

simulations at a friction Reynolds number of Reτ = 180 with an arbitrary, but not 

unreasonable, slip length boundary in both parallel and perpendicular to the flow 

direction. Their results demonstrated a decrease in wall shear stress with increasing slip 

length applied parallel to the flow direction, but an increase in wall shear stress for slip 

applied perpendicular to the flow direction. This work demonstrated that flow slip at the 

surface could help achieve skin-friction drag reduction in turbulent boundary layers, at 

least in principle.  

Another DNS study was performed by Martell et al. (32, 33) in which drag 

reduction performance of syperhydrophobic surfaces in turbulent channel flow at 

friction Reynolds numbers of Reτ ≈ 180, Reτ ≈ 395 and Reτ ≈ 590 was investigated. The 

top surface of each microfeature was taken to be no slip, whereas the suspended liquid-

gas interface between the microfeatures was simulated as flat and shear-free. One side 
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of the microchannel was modeled as superhydrophobic, while the other side has a no-

slip boundary condition. Their results showed a slip velocity and drag reduction that 

increase with both the increasing microfeature spacing and surface coverage of the 

shear-free air-water interface. For the largest microfeature spacing, an average slip 

velocity over 80% of the bulk velocity was obtained, and the wall shear stress reduction 

was found to be greater than 50%. Their work provides evidence that superhydrophobic 

surfaces are capable of reducing drag in turbulent flow situations by manipulating the 

laminar sublayer. The mean velocity profile near the superhydrophobic wall continues 

to scale with the wall shear stress and the log layer is still present, but both are offset by 

a slip velocity that is primarily dependent on the microfeature spacing.  

Only a few experimental studies of superhydrophobic drag reduction in 

turbulence are available. Daniello et al. (34) performed an experiment using a 

rectangular flow cell with smooth and superhydrophobic polydimethylsiloxane (PDMS) 

walls with 30μm and 60 μm wide microridges spaced 30 μm and 60 μm apart, 

respectively. They performed pressure-drop and PIV measurements to investigate 

effects of SHSs on drag reduction in turbulent flows at 2000 < Re < 10,000, with 

transitional effects considered to persist up to Re = 3000. Effect of the 

superhydrophobic wall was not observed for low-Re experiments. This is, however, not 

unexpected for flows in laminar or transitional regime. For pressure driven flow 

between two infinite parallel plates, the volume flow rate could only be significantly 

increased if the slip length is comparable to the channel height. Based on previous 

laminar regime studies over similar superhydrophobic micro-features, the slip length 

was approximately 25 μm and independent of Reynolds number (27). In their 
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experiment, slip length at this order could produce drag reduction of approximately 1% 

only. The increase of Reynolds numbers, however, led to substantial increase in slip 

velocity along the superhydrophobic wall and drag reduction. The maximum drag 

reduction from pressure-drop measurements approached 50%, whereas slip lengths of 

80 μm were observed at the largest Reynolds number tested. This phenomena could be 

explained using analytical solutions developed by Philip (35, 36), in which the influence 

of the shear-free air-water interface on the velocity profile was shown to extend into the 

flow at a distance roughly equal to the microridge spacing. For the superhydrophobic 

surface to impact the turbulent flow, the spacing must approach the thickness of the 

viscous sublayer. As the Reynolds number is increased, the viscous sublayer thickness 

is decreased in dimensional form, thus lead to increase of impact of the 

superhydrophobic surface on the slip velocity and drag reduction. 

While the above studies showed that drag reduction can be obtained in turbulent 

flows over superhydrophobic surfaces and that slip boundary conditions are appropriate 

to use when simulating turbulent flows over SHSs, the details of how specific slip 

affects the turbulence structure and the coherent structures in the viscous wall region, 

and how changes in these structures compare with other cases of turbulence drag 

reduction need further exploration. The present work provides further insights into the 

mechanism of turbulent drag reduction in cases of specified slip at the wall. The slip is 

simulated with the use of a Poiseuille-Couette type of flow. Poiseuille-Couette flow has 

been simulated in the past (37, 38), but its use to examine the flow structure and the 

implications for drag reduction has been employed by Spencer et al. (39) for low 

Reynolds number flow. The analysis herein covers turbulent flow statistics, quadrant 
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analysis of the Reynolds stress, two-point correlations, turbulent vorticity and 

trajectories on anisotropy invariant maps. This detailed examination provides an 

understanding of the mechanism by which finite slip velocity at the wall affects flow 

structures and leads to drag reduction. 

 

1.2 Turbulent Dispersion 

The dispersion of particles by molecular means (i.e, Brownian motion) from the 

source in x-direction has been described earlier by Einstein (40), in which he developed 

a relation that describes dispersion of particles in term of the mean-squared 

displacement from the source in the streamwise direction: 

𝑑𝑋2̅̅ ̅̅

𝑑𝑡
= 2𝐷  (1.3) 

where D is the molecular diffusivity. Taylor (41) developed a similar relation for the 

rate of dispersion of fluid particles from a point source in homogeneous, isotropic 

turbulence: 

𝑑𝑋2̅̅ ̅̅

𝑑𝑡
= 2𝑢2̅̅ ̅ ∫ 𝑅𝐿(𝜏)𝑑𝜏

𝑡

0
  (1.4) 

where 𝑢2̅̅ ̅ is the mean-square of the x-component of the velocity of fluid particles and 

RL is the Lagrangian correlation coefficient. An important implication of Taylor’s 

equation is that the history of the particle motion affects the rate of dispersion through 

RL. At small times, the Lagrangian correlation coefficient is close to one, making the 

dispersion increases with time to the second power. At large times RL = 0, and thus the 

dispersion changes linearly with time. At large times, the dispersion rate is a constant 

given by 
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𝑑𝑋2̅̅ ̅̅

𝑑𝑡
= 2𝑢2̅̅ ̅𝜏𝐿  (1.5) 

where the Lagrangian time scale is defined as 

𝜏𝐿 = ∫ 𝑅𝐿(𝜏)𝑑𝜏
∞

0
  (1.6) 

Dispersion of heat or mass markers introduces an additional complication, as 

they could move off of the fluid particle on which they travel as a result of molecular 

diffusion. This makes the trajectory of a scalar marker in the flow field does not 

coincide with the trajectory of a fluid particle. A relation for dispersion in this case was 

developed by Saffman (42) by using a material autocorrelation function Rd
L, which 

correlates fluid velocity components along the trajectories of markers instead of fluid 

particles. The dispersion was expressed as below 

𝑋2̅̅̅̅ = 2𝑢2̅̅ ̅ ∫ (𝑡 − 𝜏)𝑅𝑑
𝐿(𝜏)𝑑𝜏

𝑡

0
+ 2𝐷𝑡                         (1.7) 

with 

𝑅𝑑
𝐿(𝜏) =

1

3

𝑉𝑖(�⃗�𝑜,𝑡𝑜)𝑉𝑖(�⃗�𝑜,𝑡𝑜+𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑢2̅̅ ̅̅     (1.8) 

where 𝑉𝑖(�⃗�𝑜 , 𝑡𝑜) is the ith component of the fluid velocity at the location �⃗�(�⃗�𝑜 , 𝑡𝑜) of a 

marker that was released at location �⃗�𝑜 at t = 0. The main difference between the 

material autocorrelation and the Lagrangian correlation is that the former correlates 

fluid velocity components along a scalar marker trajectory, instead of along the 

trajectory of fluid particles. Note that both the theories developed by Taylor and 

Saffman were for homogeneous and isotropic turbulence.  

Corrsin (43) studied line source diffusion in a homogeneous shear flow with a 

constant mean velocity gradient. The Lagrangian dispersion in the direction of the flow, 
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X, was found to be different from the dispersion in the direction of the velocity 

gradient, Y, which is described by Taylor’s analysis. It is  

𝑌 = ∫ 𝑣(𝑡1)𝑑𝑡1
𝑡

0
  (1.9) 

 𝑋 = ∫ [
𝑑𝑈

𝑑𝑦
𝑌(𝑡1) + 𝑢(𝑡1)]𝑑𝑡1

𝑡

0
 (1.10) 

where u and v are the particle velocities in the direction of the flow and in the 

direction of the velocity gradient, respectively. For large times the dispersion becomes  

𝑌2̅̅ ̅ = 2𝑣2̅̅ ̅𝜏𝑦
𝐿𝑡                          (1.11) 

𝑋2̅̅̅̅ =
2

3
(
𝑑�̅�

𝑑𝑦
)2𝑣2̅̅ ̅𝜏𝑦

𝐿𝑡3              (1.12) 

where 𝜏𝑦
𝐿 is the Lagrangian timescale in the y-direction. 

The behavior of a large number of passive scalar markers, as described by 

Taylor, Saffman and Corrsin, is fundamental to passive scalar transport using the 

Lagrangian framework. Based on Taylor’s theory, Hanratty (44) developed a method to 

study turbulent heat transfer in wall turbulence, in which he used the dispersion of heat 

particles from an infinite number of continuous line sources of heat at one wall to 

describe a hot plate and an infinite number of continuous line sinks along the other wall 

to describe a cold plate.  

 

1.3 Turbulent-Laminar patterns in Poiseuille-Couette flow 

 Turbulence transition in wall-bounded shear flows has long been an interesting 

and challenging research field. Three classis wall-bounded shear flows are plane 

Couette, plane Poiseuille, and pipe flow. Normally transition flows contain turbulent 

regions coexist with laminar regions. There exist, however, a particular regime in which 
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alternating turbulent and laminar bands coexist and are aligned next to each other. 

Prigent et al. (45, 46) discovered the existent of regular turbulent-laminar patterns in 

counter-rotating Taylor-Couette flow. It is worth noticed that observation of more 

irregular versions was made earlier by several researchers (47-51). Regular turbulent-

laminar banded patterns were also observed in experiments on plane Couete flow (45, 

46), and also in numerous simulations of plane Couette flow (52-54), of plane Poiseuille 

flow (55) and of counter-rotating Taylor-Couette flow (56-58). 

The turbulent-laminar patters observed above, especially in plane Couette flow, 

could be defined as essentially steady, spatially periodic pattern of distinct regions of 

turbulent and laminar flow emerges spontaneously from uniform turbulence near 

transition to laminar state. Their most striking features are the large wavelength and the 

oblique angle they form to the streamwise direction, as seen in Figure 1.2 in which 

simulation of plane Couette flow at transitional regime revealed the existence of such 

patterns.  

Barkley and Tuckerman (52-54) have performed several numerical simulations 

of plane Couette flow at different Reynolds numbers. They show timeseries of spanwise 

velocity at 32 equally spaced points in the z direction as the Reynolds number is 

lowered in discrete steps, as plotted in Figure 1.3. The authors defined four turbulent 

patterned regimes, which are called uniform, intermittent, periodic, and localized. In the 

uniform regime, turbulence extends across the entire domain, while in the intermittent 

regime, laminar patches randomly appear and disappear. Laminar and turbulent regions 

are found to be permanent and coexist in the periodic regime, while only a single 

turbulent region is surrounded by laminar flow in the localized regime. In this last 
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regime, the turbulent region is localized in space and the laminar region is actually 

described by the linear plane Couette profile.  

While several studies of turbulent-laminar patterns have been carried out in 

plane Couette flow and counter-rotating Taylor-Couette flow, little effort has been put 

in studying this type of patterns in Poiseuille flow. Recent direct numerical simulation 

study of Tsukahara (55) has revealed existence of turbulent – laminar patterns in 

Poiseuille flow at low Reynolds number (Re = 1400), as seen in Figure 1.4. The author 

also observed that these structures were equilibrium and self-sustained. Moreover, both 

the turbulent and laminar bands propagate with the streamwise velocity same with the 

bulk velocity and are inclined at an angle of 24o with respect to the streamwise 

direction.  

 

 

Figure 1.1 Schematic diagram of slip at a fluid-solid interface 
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Figure 1.2 Computed turbulent-laminar pattern at Re = 350 in plane Couette flow by 

Tuckerman & Barkley (52). Above is the kinetic energy at y = 0, midway between 

bounding plates at y = ± 1 which move to the right and left in the streamwise direction. 

Turbulent bands consist of streamwise streaks and vortices. The bands are oriented in 

the direction denoted by x at an angle of 24o from the streamwise direction, and are 

separated by a wavelength of 40 in the direction of the pattern wavevector, denoted by 

z.  

 

X 

Z 
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Figure 1.3 Time series of spanwise velocity at 32 points along a line in the midplane x = 

y = 0 as the Reynolds number is decreased. Results are from a numerical study of plane 

Couette flow by Tuckerman & Barkley (54) 

 

 

Figure 1.4 Turbulent-laminar patterns observed in a direct numerical simulation of 

plane Poiseuille flow by Tsukahara (55). Contour of streamwise fluctuating velocity in 

an (x,z) – plane at y/δ ≈ 0.5 for Reτ = 80. The direction of the mean flow is from left to 

right.  
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Chapter 2. Numerical Methodology 

 

2.1 Direct Numerical Simulation (DNS) 

The Direct Numerical Simulation (DNS) technique is used to solve numerically 

the Navier-Stokes equation by resolving the different spatial and temporal scales 

existing in a turbulent flow (59-62). Lyons et al. (63) used a pseudospectral algorithm to 

determine the turbulent velocity field and the results obtained have been validated with 

experiments by Gunther et al. (64). In this algorithm, the rotational form of the Navier-

Stokes equation was first made dimensionless by using the wall variables, i.e., the 

kinematic viscosity, ν, and the friction velocity, u* = (τw/ρ)1/2. The rest of the variables, 

like the length, time etc, were expressed in terms of these wall variables, and hence 

these quantities were scaled with the so-called viscous wall units. Another interesting 

case considered here was the plane Couette flow, where the walls of the channel move 

relative to each other. The algorithm of Lyons et al. was suitably modified to account 

for the wall behavior (65, 66). The fluid in both cases was considered to be an 

incompressible Newtonian fluid with constant density, constant viscosity and constant 

thermal conductivity. The assumption that the viscous heating effects and the body 

forces are negligible was also made. The mean pressure gradient acted as the driving 

force for the Poiseuille channel flow, while the motion of the channel walls in opposite 

directions (which generates a region of constant shear stress) acted as the driving force 

for flow in plane Couette flow. The streamwise component of the velocity vector at the 

channel walls, which was set to zero in Poiseuille flow due to stationary walls, is non-

zero for the case of plane Couette flow. The bottom wall moved in the negative x 
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direction, while the top wall moved in the positive x direction. The Figure 2.1and Figure 

2.2 depict the picture of turbulent Poiseuille and plane Coeutte flow, respectively. The 

general description of the DNS is universal to all the studies in this dissertation. Some 

of the specific details of each study will be described briefly in the corresponding 

Chapter. 

 

2.2 Lagrangian Scalar Tracking (LST) 

The method of stochastic tracking of heat or mass markers in a turbulent flow 

field, and the statistical post-processing of the results to obtain scalar profiles is termed 

as Lagrangian scalar tracking (LST). The passive scalar markers released into the flow 

field are assumed to be point markers with no size and mass. There are no interactions 

between the markers. Hence, the trajectory of a marker does not affect the trajectories of 

other markers, and it does not affect the flow, an assumption that is realistic for dilute 

solutions. Therefore, “passive scalar transport” is simulated. A Direct Numerical 

Simulation in conjunction with the tracking of scalar markers, LST, has been used in 

our laboratory to study scalar transfer based on direct calculations of the behavior of 

such sources (65, 67-70). The tracking algorithm of Kontomaris et al. (71) is used to 

track individual trajectories of these markers in space and time in a Lagrangian 

framework, in conjunction with the DNS. The combined DNS/LST approach has been 

previously used to study heat transfer in high Prandtl or Schmidt number fluids (72, 73). 

Discussion about the accuracy of this method and comparisons of the results with 

experimental findings can also be found in previous publications (67, 74-76). Mass 

markers are released into the flow field after the velocity field reaches steady, fully 
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developed state. If �⃗⃗�(𝑥0⃗⃗⃗⃗⃗, 𝑡) is the Lagrangian velocity of a particle that was at location 

𝑥0⃗⃗⃗⃗⃗ at time t = t0 = 0, then the position �⃗�(𝑥0⃗⃗⃗⃗⃗, 𝑡) of the marker at time t is calculated based 

on the equation 

�⃗⃗�(�⃗�0, 𝑡) =
𝜕�⃗⃗�(�⃗�0,𝑡)

𝜕𝑡
    (2.1)

  

At this point we make a basic assumption that a marker at any time has the 

velocity of the fluid particle on which it rides, which means that the relation between 

the Lagrangian velocity and the Eulerian velocity �⃗⃗⃗� is �⃗⃗�(�⃗�0, 𝑡) = �⃗⃗⃗�[�⃗�(�⃗�0, 𝑡), 𝑡]. Since 

the mass markers can move off a fluid particle due to molecular diffusion, the diffusion 

effect has been represented by adding a random walk on the marker motion after each 

simulation time step. The value of the diffusion step is estimated by a Gaussian 

distribution in each space direction with a zero mean and a standard deviation, 𝜎, 

depending on the Schmidt number, Sc, (𝜎 =  √2∆𝑡+/𝑆𝑐) where Δt+ is the time step of 

the simulation. 

Besides the common error due to discretization, the numerical error with the 

LST methodology can be caused by the number of markers considered. Papavassiliou 

and Hanratty (67) and Papavassiliou (74, 75) have addressed this issue by examining 

the statistics of marker trajectories with databases of 16,129 markers and repeating the 

calculations with the half the number of markers. They have found that results of 

acceptable accuracy can be obtained with half the number of markers. Mitrovic (77) had 

further the investigation with a set of 16,129 markers and a set of almost one order of 

magnitude larger, 145,161 markers. The study showed that the average difference in the 

statistical behavior of runs with the same Sc and different number of markers is less 
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than 1.5%. The study stated that the use of samples with an order of 104
 markers can 

provide accurate results for the generation of first order statistics. A balance between 

the computational cost that is associated with the creating of large data sets and 

acceptable accuracy of the results should be considered when employing the LST 

methodology. In each study, different Sc’s and different number of scalar markers are 

released. Also, the orientation of the release is unique to the different studies. Hence, a 

brief description of the flow and marker parameters, specific to the particular study, has 

been provided in the corresponding Chapters.  
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Figure 2.1 Plane Poiseuille flow configuration 

 

 

 

Figure 2.2 Plane Couette flow configuration 
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Chapter 3. Turbulent plane Poiseuille-Couette flow as a model for 

fluid slip over Superhydrophobic Surfaces 

 

3.1 Simulation Parameters and Procedure 

In this study, we performed direct numerical simulation of a turbulent plane 

Poiseuille-Couette flow as a model for fluid slip over superhydrophobic surfaces. The 

flow was simulated in a computational box of size 8πh x 2h x 2πh in x, y and z 

directions, respectively (h is half of the channel-height and is equal to 300, made 

dimensionless with the viscous length scale that is based on the kinematic viscosity of 

the fluid and the friction velocity, 𝑢𝜏 = √
𝜏𝑤

𝜌
, where w is the shear stress at the wall and 

is the density of the fluid). The flow was assumed to be periodic in the streamwise, x, 

and spanwise, z, directions with lengths of periodicity equal to the box size in those two 

directions. Flow of an incompressible and Newtonian fluid was simulated at Reynolds 

number of 5,700, based on half of the channel height and the mean centerline velocity. 

The computational box had a resolution of 512 x 129 x 256 in x, y, z directions (the 

resolution in Kolmogorov length scales increased from 0.06 next to the wall to 1.71 at 

the channel center). A uniform mesh was used in x and z, while a non-uniform mesh 

based on Chebyshev collocation points was used in the y direction (63). The time step in 

dimensionless viscous units was 0.15.  

In this simulation, the Navier-Stokes equations were resolved and integrated in 

time by using a pseudo-spectral fractional step method mentioned above (63). This 

algorithm has been validated in simulating plane Poiseuille flow and plane Couette flow 
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through comparisons with laboratory measurements and other DNS results at similar 

conditions (63, 64, 66).   

In order to model a channel wall with specified slip, Poiseuille-Couette flow was 

simulated as a model of controlled slip boundary conditions applied on the channel 

walls. In this type of flow, along with a constant pressure gradient, the top wall of the 

channel was set to move in the positive streamwise direction (flow direction), while the 

bottom wall moved with an equal velocity but in the opposite direction. Relative 

velocities between the two channel walls were equal to 1, 2 and 4 viscous wall units. 

Based on the Galilean invariance of the Navier-Stokes equations, by subtracting the 

velocity at the bottom wall from the channel velocity field, one obtains the velocity 

field for the case in which the bottom wall is stationary and the top wall moves in the 

positive x-direction with velocity equal to the relative velocity between the two walls. 

This approach corresponds to a fixed slip velocity in the streamwise direction applied as 

a boundary condition at the top wall, and represents the use of a superhydrophobic 

surface as the top wall. The mean shear rate at the wall is then determined by the 

numerical solution of the flow equations. The application of different slip velocities at 

the top wall is equivalent to choosing different surfaces with a different degree of 

superhydrophobicity, for example when the spacing between the microscale ridges 

etched on the wall changes. 

The numerical procedure used was similar to that followed in Spencer et al. (39) 

for a Reynolds number half of what is presented herein. The first run of the Poiseuille-

Couette flow was initiated using a turbulent velocity field obtained from a fully 

developed, stationary-state Poiseuille flow simulation. The stationary state of the flow 
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was determined by comparing second order statistics, Reynolds stress and turbulent 

kinetic energy production averaged over a period of 2,000 viscous time units. Each 

simulation was run for 4,000 viscous time units to obtain stationary state, and then for 

another 4,000 time units to obtain enough data for analysis. Each simulation was used 

as the initial condition for the next simulation at higher relative wall velocity. The 

turbulence statistics presented from now on are averages over 4,200 dimensionless time 

units. 

 

3.2 Results and discussion 

3.2.1 Turbulent flow statistics 

Data obtained by the simulations were analyzed in detail. The flow was 

characterized by the calculation of standard statistical quantities, like the turbulence 

intensities and the production of turbulence kinetic energy, and the differences from 

case to case were documented and presented in this section. Our results point out that 

shear stress at the moving wall is reduced, while it increases at the stationary wall, when 

compared to ordinary Poiseuille flow. All the results are then normalized with the 

friction velocity at the bottom (stationary) wall. Such normalization with the largest 

friction stress has been adopted in prior works (37-39, 78, 79). In their analysis of 

experimental data for flow through a channel with walls of different roughness, 

Hanjalic & Launder  (78) scaled intensities by the wall friction velocity at the 

roughened wall. The shear stress was higher close to that wall than close to the smooth 

wall. Kuroda & Kasagi (79) also normalized their computational results by the shear 

stress at the stationary wall for plane Poiseuille-Couette flow.   
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The mean velocity profile for the case of Poiseuille flow, which employs zero 

slip as the boundary condition, in the half channel height is plotted in Figure 3.1 and is 

compared with other published data. In the viscous sublayer, the law of the wall U+ = y+ 

is clearly observed, while a logarithmic relation U+ = 2.6lny+ + 4.5 is shown in the log-

law region (note that a superscript + is used to denote dimensionless variables, and U+ is 

the mean streamwise velocity). This relation is comparable to the relation U+ = 2.5lny+ 

+ 5.5 presented by Kim et al. (59) for a lower Reynolds number. One can see that our 

data match pretty well with the previous work of Gunther et al. (64), and with results of 

Nakabayashi et al. (37) for y+ from 10 to 140 (note that Reτ is the friction Reynolds 

number, and is defined based on the friction velocity and half of the channel height in 

viscous wall units). 

In Figure 3.2 we plot the mean velocity profile in the channel with slip boundary 

condition at the top wall. This wall is at y+/d+ = 0, with d+ being the channel height (d+ 

= 2h+), and Us
+ is the slip velocity applied at the top wall. One sees that the use of a slip 

boundary condition at the top wall has little to no effect on the velocity profile close to 

the bottom wall. However, close to the top wall, the mean velocity is increased with the 

peak location shifted towards the moving wall. This trend was also observed in the 

work of Kuroda & Kasagi (79), as is also shown in Fig. 2. Note that the peak velocity in 

the data of Kuroda & Kasagi is pretty close to the moving wall due to extremely high 

wall velocity (12.2 in viscous wall units) used in that work (corresponding to a high 

value of γ, which is defined as the ratio of the Couette over the Poiseuille Reynolds 

number as introduced in (38): 𝛾 =  
𝑈𝑠

+

𝑈𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒
+ ). 
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Figure 3.3 is a presentation of the Reynolds stress profile in the channel (u+ and 

v+ stand for the fluctuating velocities in the streamwise and vertical directions, 

respectively). A decrease in the maximum values of the Reynolds stress close to the 

moving wall is seen as the slip velocity is increased. This decrease of Reynolds stress 

has also been observed in previous studies (39, 80). Due to the decrease of shear stress 

at the top wall, one would expect a change in the y-position at which the total stress and 

the Reynolds stress become zero. Indeed, the shift in the location of zero stress is 

clearly observed in the figure. In the case of no wall movement, good agreement 

between our data and those of Thurlow & Klewicki (38) and Gunther et al. (64) is 

observed and presented. Note that Reynolds stress values of Thurlow & Klewicki are 

lower than our data due to their lower Poiseuille flow Reynolds number (7,500) 

compared to ours (11,400). 

The root mean squared (rms) of the turbulent velocity fluctuations in all three 

directions is plotted in Figure 3.4. It should be noticed that in all cases the maximum 

rms of the velocity fluctuations in the region close to the moving wall decreases 

significantly, especially in the normal and spanwise directions. This indicates that the 

effect of slip velocity at the wall is to decrease turbulent intensity. One can find similar 

trends in Min & Kim (31) and Spencer et al. (39). On the other wall, turbulence 

intensities in the normal and spanwise directions increase slightly, when Us
+ increases. 

Such behavior can be explained as a result of the increasing Couette character of the 

flow as Us
+ increases, since Couette flow produces higher turbulence intensity 

compared to Poiseuille flow, mostly in the y and z directions (39, 66).  
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The effect of the moving wall on the production of the turbulent kinetic energy 

(TKE), defined as (𝑢𝑣)̅̅ ̅̅ ̅̅ +dU+/dy+, is clearly observed in Figure 3.5. Close to the moving 

wall, the maximum production is significantly decreased to about half of its original 

value, as the slip velocity increases to 4. The location at which this maximum 

production occurs remains unchanged, when it is scaled with the channel height. This 

location, however, would be shifted away from the wall when scaled with the friction 

velocity at the stationary wall (i.e., it is shifted from 10.9 wall units in Poiseuille flow to 

14.0 wall units away from the moving wall for Us
+ = 4). This trend has also been 

reported in a previous drag reduction study with polymer solution (81). 

With the increase of the mean velocity in the channel and the decrease of 

Reynolds stress, turbulence intensities and turbulent kinetic energy production, it is 

reasonable to expect that drag reduction is present. Drag reduction is defined as 

𝐷𝑅 = 1 −
𝜏𝑤

𝜏𝑤𝑜 
      (3.1) 

where the stress at the wall for Poiseuille flow with the same pressure drop as the 

Poiseuille-Couette flow is designated as 𝜏𝑤𝑜 . In this work, data are normalized with the 

shear stress at the bottom wall. As a result, the shear stress at the top wall is -1.000, -

0.924, -0.859, and -0.734 for Us
+ = 0, 1, 2, and 4, respectively. The shear stress at the 

bottom wall, after normalization, is 1 in all cases.  

Values of drag reduction are plotted in Figure 3.6. These values are compared 

with results from the  relationship of Fukagata et al.(82), who suggested that the 

following equation relates the slip length with drag reduction 

𝑙𝑥
+ =

1−𝑢𝜏
+

(𝑢𝜏
+)

2 (
1

𝜅
𝑙𝑛𝑅𝑒𝜏0 + 𝐹) −

1

𝜅𝑢𝜏
+ 𝑙𝑛𝑢𝜏

+  (3.2) 
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with 𝜅 = 0.41; 𝐹 = 3.2. The superscript + indicates that scaling with the friction 

velocity and corresponding wall units at the stationary wall is applied, as noted 

previously. The data are in good qualitative agreement with  the above prediction, and 

they are comparable to drag reduction results obtained  with the use of a polymer 

solution (81). 

 

3.2.2 Two-point velocity correlation coefficients 

The picture that emerges up to now about the effects of the streamwise slip 

velocity on the turbulence is that the profiles of the mean velocity and the mean 

Reynolds stress are modified and their maximum and zero, respectively, are shifted in 

the case of Poiseuille-Couette flow. This finding is not new – it is in agreement with 

prior published work. At the same time, turbulence intensities are weaker as the slip 

velocity increases, leading to drag reduction. However, what does this mean for the near 

wall coherent structures, and what are the changes in the flow events that contribute to 

decreasing the mean Reynolds stress are the questions that need to be explored. The 

modification of the Eulerian length scales of the near wall structures can be quantified 

by examining the two-point correlation coefficients. 

We define the two-point streamwise fluctuating velocity correlation coefficient 

with streamwise separation Ru+u+(δ) ׀x+ as 

𝑅𝑢+𝑢+(𝛿)׀𝑥+ =
<𝑢+(𝑥+=0)𝑢+(𝑥+=𝛿)>

<(𝑢+)2(𝑥+=0)>
   (3.3) 

Note that the symbol <á n> indicates average over all the grid points in the xz 

plane. Similar definitions are applied for the two-point normal fluctuating velocity 

correlation coefficient with streamwise separation Rv+v+(δ)׀x+. The streamwise and 
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normal fluctuating velocity correlation coefficients with spanwise separation, 

Ru+u+(δ)׀z+  and Rv+v+(δ)׀z+, respectively, are also defined in a similar manner. 

Due to the assumption of periodicity in the streamwise and spanwise directions, 

and symmetry across the center-plane of the channel, one needs to plot only one-fourth 

of the Poiseuille channel. On the other hand, half of the channel needs to be shown for 

the cases with moving walls. Figure 3.7 is a plot of values of Ru+u+(δ)׀x+ for the two 

cases that are mostly different (Poiseuille flow and Us
+ = 4) in the xy plane. The 

correlation was calculated at the last reported time step in each simulation sequence. 

Note that due to normalizing with the shear stress at the bottom (stationary) wall, the 

values of the box size in x, y, and z in dimensionless units are multiplied by a factor 

larger than 1. In both cases, it is observed that the length scale associated with the 

correlation coefficient increases with the distance from the wall in the viscous sublayer. 

Moreover, the length scale increases with Us
+. Specifically, the streamwise distance at 

which the two-point correlation coefficient reaches zero close to wall in Poiseuille flow 

is approximately 1350, but increases to around 1600 in the case of Us
+ = 4. If we define 

a macroscopic length scale by using the zero contour line, at the vertical position close 

to the moving wall at which turbulent kinetic energy production reaches its maximum 

(see Figure 3.5), we find this scale to be 1365 for Poiseuille flow, but close to 1645 in 

case of Us
+ = 4.  

With spanwise separation, it is also found that the length scale increases with the 

distance from the wall, and the macroscopic length scale increases with Us
+. The 

correlation coefficients with spanwise separation for the streamwise and normal 

fluctuating velocities are plotted in Figure 3.8 and Figure 3.9. Again, one should note 



29 

the changes in nondimensional values of the box size in y and z dimensions. In Figure 

3.10 and Figure 3.11 an increase in the length scale in the spanwise direction can be 

seen, when using the zero contour lines that appear in Figure 3.8 and Figure 3.9 to 

define this length scale.  

These findings for the correlation coefficient in x and z directions, along with the 

decrease of turbulent intensities, suggest that the near-wall eddies become longer in the 

streamwise direction, thicker in the spanwise direction, and also weaker close to the 

wall with the specified slip in the streamwise direction. Similar changes have been 

reported in Spencer et al.(39) for Poiseuille-Couette flow, who found an increase in the 

integral length scale in the streamwise direction. More importantly, similar changes 

have been observed in the case of turbulence drag reduction with the use of polymers. 

Housiadas & Beris (83) found wider eddies in the spanwise direction, and Stone et 

al.(80) observed larger length scales in the buffer layer. Due to these changes, eddies 

would be less effective in transferring momentum from the viscous sublayer to the outer 

region of the flow and vice versa. 

 

3.2.3 Reynolds stress analysis by quadrants 

Modifications of the mean Reynolds stress profile and a change in the distance 

from the wall at which the mean Reynolds stress crosses zero are expected, since there 

are changes in the mean viscous shear of a channel with a wall exhibiting streamwise 

slip. The ones among the Reynolds stress-generating coherent structures that are 

modified can be revealed with further analysis. In the previous section, it was 

documented that, in general, the near wall eddies tend to become longer and weaker. A 
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quadrant analysis of the Reynolds stresses can further differentiate whether this 

observation applies equally to all coherent structures, or whether a selective change in 

flow events occurs that affects in different ways the flow structures that are involved in 

the momentum exchange between the outer and the inner regions of the flow.     

Four different Reynolds stress quadrants can be defined based on the sign of the 

streamwise and normal fluctuating velocities. Quadrants 1 and 3 contain x and y 

fluctuating velocities with the same sign (either both positive or both negative), while 

quadrants 2 and 4 have x and y fluctuating velocities with opposite signs (note that 

quadrant 2 has positive normal fluctuating velocities, while quadrant 4 contains 

negative ones). The relative contribution of each quadrant to the total Reynolds stress 

can be represented in terms of a fractional contribution, which is defined as 

𝑄𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑖 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
|𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑠𝑡𝑟𝑒𝑠𝑠 𝑜𝑓 𝑄𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑖|

∑ |𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑠𝑡𝑟𝑒𝑠𝑠 𝑜𝑓 𝑄𝑢𝑎𝑑𝑟𝑎𝑛𝑡 𝑖|4
𝑖=1

  (3.4) 

The most significant changes in fractional contribution values occur in quadrants 

1 and 3 and are plotted in Fig. 12. It is observed that in the region close to the top wall 

(wall with specified slip velocity), the contribution of quadrant 1 is decreased, while 

that of quadrant 3 clearly increases as the slip velocity increases. This finding could be 

represented in terms of the change of fluid movement relative to the wall, as illustrated 

in the inset sketches. The plane represents the top wall, and the decrease (or increase) of 

the size of an arrow implies the decrease (or increase) of fluid movement in the 

direction of the arrow. One sees that as the slip velocity at the top wall increases, the 

amount of fluid moving faster than the mean flow and moving toward the top wall 

(corresponding to fluid in quadrant 1) decreases, while the fluid that moves slower than 

the mean flow and moves away from the top wall (corresponding to fluid in quadrant 3) 
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increases. If we define sweep events as fluid structures moving faster than the mean 

flow and moving fluid towards the wall region, and ejection (or burst) events as those 

structures that move slower than the mean velocity and carry fluid away from the wall 

(Lombardi et al. (84)), then it is obvious that as the slip velocity gets higher, sweep 

events are weakened and ejections happen more often.  

This indicates that not only the length scales close to the channel wall are 

modified (as discussed in the previous section), but also the exchange of momentum 

between the outer region of the flow and the inner region of the flow close to the wall 

with velocity slip is modulated relative to the no-slip case. There is a reduction of 

transport of momentum from the outer flow toward the wall. 

 

3.2.4 Vorticity magnitude and kinetic energy dissipation rate 

In this section we investigate the changes in the vorticity and the effects of the 

slip on the relative magnitude of the different components of the vorticity. Based on the 

previously described findings about weakened turbulence intensity and the weakening 

of the sweep events, it is expected that the fluctuating vorticity magnitude is reduced as 

well. The question that is posed is whether this expected vorticity magnitude reduction 

occurs because of disproportionate changes in one component of the vorticity.  

Vorticity magnitude (W) of the fluctuating velocity is plotted in Figure 3.13. In 

all cases, the magnitude of vorticity at the region close to the moving wall decreases 

dramatically, while it remains almost unchanged at the other wall. The decrease is up to 

30% in the case with Us
+ = 4 compared to the Poiseuille flow case, as it drops from 0.38 

to 0.27. This result is consistent with the decrease of Reynolds stress in the viscous 
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sublayer that we observed, since vortices in the flow direction generated at the wall are 

mostly responsible for creating the Reynolds stresses in the viscous wall layer (85). 

Studies of drag reduction with a polymer solution have also indicated a suppression of 

vortices (80, 81). 

An analysis of different components of vorticity is conducted and presented in 

Figure 3.14, in which the root mean squared values of vorticity in the x, y, and z 

directions are presented. A significant decrease of vorticity magnitude in all three 

directions at the region close to the moving wall is observed.  

From Figure 3.14, one may see that the vorticity of the fluctuating velocity in 

the direction normal to the channel walls is relatively small compared to that in the 

streamwise and spanwise directions. In the near wall region, the z-vorticity dominates 

over the other two, while in the region far away from the wall, the vorticity in the 

streamwise direction is dominant. Further study reveals that the vertical location at 

which the mean square of fluctuating vorticity in the x and z directions are equal is 

shifted away from the wall when the slip velocity at the top wall increases, as shown in 

Figure 3.15. As the slip velocity at the wall is increased, the domination of the spanwise 

vorticity over the other two vorticity components expands farther into the center region 

of the channel. In other words, vortices in the streamwise direction are suppressed more 

than those in the spanwise direction.  

Following the reduction of TKE production we may expect that the dissipation 

of the TKE would decrease as well. The dissipation rate could be expressed as 

휀 = 𝜈(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)

𝜕𝑢𝑗

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 𝜈(

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑗

𝜕𝑥𝑖

𝜕𝑢𝑗

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
    (3.5) 
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in which the first cross-multiplying term in the right hand side stands for the anisotropic 

dissipation rate, and the second represents the isotropic rate. Values of the dissipation 

rate, as a summation of both isotropic and anisotropic components, are presented in 

Figure 3.16. Corresponding to the decrease of the vorticity magnitude at the region 

close to the moving wall, the dissipation rate also shows a dramatic drop in this region, 

while it remains almost the same close to the bottom wall.  

 

3.2.5 Anisotropic turbulence and mechanism of drag reduction over 

superhydrophobic surfaces 

The observations described up to now represent phenomenological differences 

between the turbulence close to a wall with streamwise slip and a wall with zero slip. In 

order to investigate the reason for these differences, the effects of wall movement on the 

anisotropy of turbulence are examined through the calculation of the invariants of the 

Reynolds stress anisotropy tensor within the Lumley triangle (86). It is convenient to 

define here the anisotropy tensor using the notation below: 

𝑎𝑖𝑗 =
𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅

𝑞2
−

1

3
𝛿𝑖𝑗        (3.6) 

where subscripts i,j designate the direction of the velocity fluctuations and ij is the 

Kronecker delta. The scalar invariants of the Reynolds stress anisotropy tensor are as 

follows (note that repeated indices imply summation): 

IIa = aijaji  IIIa = aijajkaki     (3.7) 

Figure 3.17 is a plot of the second and third scalar invariants within the Lumley 

triangle. The two curves in the triangle represent axisymmetric turbulence. Turbulence 
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strained by axisymmetric expansion corresponds to the right curve, while the left curve 

indicates turbulence strained by axisymmetric contraction. The straight line corresponds 

to two-component turbulence, which is observed in the near wall region. The two corner 

points, one at the right and one at the left hand side of the map, indicate the limiting 

states of turbulence that correspond to one-component turbulence and two-component 

isotropic turbulence, respectively. It is obvious that close to the wall moving in the x 

direction, the movement of the wall (corresponding to slip velocity) has forced 

turbulence in this region to tend toward the limiting state located at the right corner 

point of the triangle. In this limiting state, turbulence satisfies not only the two-

component limit but also axisymmetry at large and small scales (87). In the opposite 

side, close to the other wall, one can observe turbulence moving away from this limiting 

state, but not significantly. This trend, opposite to the behavior close to the moving 

wall, is consistent with the trends that we found and discussed when examining the 

second order statistics, and may be explained due to the relative strength of the Couette 

effect discussed earlier. 

This finding, that turbulence close to the moving wall tends towards the limiting 

one-component state and thus will satisfy both the two-component limit and 

axisymmetry at large and small scales (87), is further confirmed by comparison of 

streamwise turbulence intensity with turbulence intensity in the other two directions, as 

plotted in Figure 3.18. It is obvious that the domination of streamwise intensity over the 

intensity in the other two directions is enhanced as the slip velocity increases. The x 

direction is therefore the axis of symmetry close to the wall, i.e., small scale turbulence 

is locally invariant to rotation around the x axis.  
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Since turbulence (at small scales) close to the wall is locally axisymmetric, then 

it must satisfy the following kinematic constraints imposed by local axisymmetry (88) 

(
𝜕𝑛𝑢

𝜕𝑦𝑛)
2̅̅ ̅̅ ̅̅ ̅̅ ̅

= (
𝜕𝑛𝑢

𝜕𝑧𝑛)
2̅̅ ̅̅ ̅̅ ̅̅ ̅
  

(
𝜕𝑛𝑣

𝜕𝑦𝑛
)

2̅̅ ̅̅ ̅̅ ̅̅ ̅
= (

𝜕𝑛𝑤

𝜕𝑧𝑛
)

2̅̅ ̅̅ ̅̅ ̅̅ ̅
          (3.8) 

(
𝜕𝑛𝑣

𝜕𝑧𝑛
)

2̅̅ ̅̅ ̅̅ ̅̅
= (

𝜕𝑛𝑤

𝜕𝑦𝑛
)

2̅̅ ̅̅ ̅̅ ̅̅ ̅
  

A Taylor series expansion of the instantaneous fluctuating velocity in the near-

wall region (y 0, given that y is the direction normal to the wall) which satisfies the 

continuity equation 
𝜕𝑢𝑖

𝜕𝑥𝑖
= 0 is (89) 

𝑢 = 𝑎1𝑦 + 𝑎2𝑦2 + ⋯ 

𝑣 =               𝑏2𝑦2 + ⋯ 

𝑤 = 𝑐1𝑦 + 𝑐2𝑦2 + ⋯ 

Jovanovic & Hillerbrand (87) have shown that by inserting the above series 

expansion into the kinematic constraints above, all coefficients ai, bi and ci must vanish. 

This is equivalent to a significant suppression of small scale turbulence in the near-wall 

region, leading to laminarization and significant drag reduction.  

The specification, therefore, of a streamwise slip has forced turbulence close to 

the wall to tend towards the one-component limit, leading to suppression of turbulence 

at small scales and drag reduction. This explanation is also supported by the drag 

reduction by polymers study of Dimitropoulos et al. (90), who showed the transition of 

wall turbulence towards the one-component limit as higher levels of drag reduction 

were obtained with a polymer solution, and of Tamano et al.(91)who observed a 

suppression of conventional turbulence near solid surfaces in a polymer solution. 
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Figure 3.1 Mean streamwise velocity with no slip boundary condition (GWPH: 

data points from Gunther et al.(64); NKK: data points from Nakabayashi et 

al.(37), dashed lines: law of the wall) 
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Figure 3.2 Mean velocity profile in Poiseuille and Poiseuille-Couette flow with 

Us
+ = 1, 2 and 4 (KK: data from Kuroda & Kasagi (79)). The inset figure to the 

right includes results for different ratio of the Couette over the Poiseuille 

Reynolds number, denoted as γ (γ =  
Us

+

Ucenterline
+ ). 
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Figure 3.3 Reynolds stress profile in Poiseuille and in Poiseuille-Couette flow 

with Us
+ = 1, 2, and 4 (GWPH: data points from Gunther et al. (64); TK: data 

points from Thurlow & Klewicki (38)) 
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Figure 3.4 Root mean squared velocity fluctuations for the Poiseuille-Couette 

simulations: (a) Streamwise velocity; (b) Normal velocity; (c) Spanwise velocity 

(GWPH: data points from Gunther et al.(64); NKK: data points from Nakabayashi 

et al.(37); TK: data points from Thurlow & Klewicki (38)). 
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Figure 3.5 Turbulent kinetic energy production in Poiseuille and Poiseuille-

Couette flow with Us
+ = 1, 2 and 4 (GWPH: data points from Gunther et al.(64); 

NKK: data points from Nakabayashi et al.(37)) 
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Figure 3.6 Drag reduction obtained in Poiseuille-Couette flow with different 

values of Us
+ (FKK: theoretical prediction of Fukagata et al. (82)) 
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a) 

 

 

b) 

 

Figure 3.7 Two-point correlation coefficient with streamwise separation for the 

streamwise fluctuating velocity in (a) Poiseuille, and (b) Poiseuille-Couette flow 

with Us
+= 4 
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a) 

 

b) 

 

Figure 3.8 Two-point correlation coefficient with spanwise separation for the 

streamwise fluctuating velocity in (a) Poiseuille and (b) Poiseuille-Couette flow 

with Us
+ = 4 
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a) 

 

b) 

 

Figure 3.9 Two-point correlation coefficient with spanwise separation for the 

normal fluctuating velocity in (a) Poiseuille and (b) Poiseuille-Couette flow with 

Us+ = 4 
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Figure 3.10 Two-point correlation coefficient with spanwise separation for the 

streamwise fluctuating velocity in Poiseuille and Poiseuille-Couette flow with 

Us+ = 4. This is calculated at the y-location of the maximum turbulent kinetic 

energy production.  It is seen that there is an increase of the length scale in the 

spanwise direction, designated by the point of zero-crossing of the correlation 

coefficient.   

 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

   0

   4R
v

+
v+

z
+

U
s

+

 

Figure 3.11 Two-point correlation coefficient with spanwise separation for the 

normal fluctuating velocity in Poiseuille and Poiseuille-Couette flow with Us
+ = 4. 

This is calculated at the y-location of the maximum turbulent kinetic energy 

production.  It is seen that there is an increase of the length scale in the spanwise 

direction, designated by the point of zero-crossing of the correlation coefficient.   
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Figure 3.12. Fractional contribution of Reynolds stress of (a) quadrant 1 and (b) 

quadrant 3 
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Figure 3.13. Vorticity magnitude in the Poiseuille and Poiseuille-Couette flow 

with Us
+ = 1, 2, and 4 
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Figure 3.14. Root mean square of fluctuating vorticity in (a) x-direction, (b) y-direction, 

(c) z-direction in Poiseuille and Poiseuille-Couette flow with Us
+ = 1, 2, and 4. 
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Figure 3.15. Ratio of the streamwise and spanwise fluctuating vorticity components 

over the total fluctuating vorticity. (𝑊𝑥
2 and 𝑊𝑧

2 are the mean square of the streamwise 

and spanwise fluctuating vorticity, respectively, and 𝑊2is the mean square of the 

fluctuating vorticity vector.) 
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Figure 3.16. Total dissipation rate in Poiseuille and Poiseuille-Couette flow with Us
+ = 

1, 2 and 4. 
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Figure 3.17. The Lumley triangle on the plane of the invariants II and III of the 

Reynolds stress anisotropy tensor: (a) Points close to the moving wall; (b) Points close 

to the stationary wall. The inset figures focus on the location of zero crossing of the 

Reynolds stress 
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Figure 3.18. Ratio of turbulence intensity in the streamwise direction over intensity in 

(a) the normal direction, and (b) the spanwise direction. The ratio increases with an 

increase of the slip velocity. 
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Chapter 4. Flow-induced Separation in Wall Turbulence 

 

4.1 Introduction 

Separation of particles in a flow field is important in many processes, such as 

biological analysis, environmental assessment and food processing. As the number and 

applications of microfluidic devices increase, different separation techniques, both 

passive and active, have been employed not only in the laboratory but also in industry. 

While passive techniques only rely on the flow field and device geometry, active 

techniques utilize effects of external fields for better performance (92). Some popular 

passive techniques are pinched flow fractionation (PFF) (93-95), inertia and dean flow 

fractionation (96, 97), membrane-based methods (98-102), and hydrodynamic filtration 

(103, 104). Active techniques could use electric fields (105-108), centrifugal forces 

(109, 110), or different types of external field as in field-flow fractionation (111-114).  

In most of these cases, the flows are at rather low Reynolds number. On the 

other side, separation of particles in turbulence has not been explored. Instead, particle 

transport related issues have been investigated with a focus on turbulent mixing (115-

117) and particle dispersion (118-123). This is because the fluctuating velocity in 

turbulence usually leads to rapid mixing, instead of separation. In this work we present 

the opposite, the case where particles can be separated in turbulence without using any 

means other than the turbulent flow field.  

 

4.2 Simulation parameters and procedure 

A numerical method that involves a combined direct numerical simulation 

(DNS) of the flow field and Lagrangian scalar tracking (LST) of mass markers is used. 
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The pseudo-spectral DNS algorithm documented by Lyons et al. (63), and validated 

with experiments by Gunther et al. (64) is implemented. All variables are made 

dimensionless using the friction velocity, u*, and the kinematic viscosity of the fluid, ν, 

namely, the viscous wall units. The dimensions of the computational box are 4πh x 2h x 

2πh in the streamwise, x, normal, y, and spanwise, z, directions, respectively, where h = 

300 is the half channel height. The computational box is meshed with 256 x 129 x 256 

grid points in the x, y and z directions. The Reynolds number based on the mean 

centerline velocity and half of the channel height is 5,700. The channel is simulated as 

infinitely long in x and z and with periodic boundary conditions with periodicity lengths 

of 4πh and 2πh, respectively. No-slip and no-penetration boundary conditions are 

imposed at the rigid channel walls. The fluid flowing in the channel is an 

incompressible Newtonian fluid with constant density and viscosity. 

Scalar markers that represent mass particles are released into the flow field. 

These markers are passive and do not affect the flow field, which is realistic for dilute 

solutions. The tracking algorithm of Kontomaris et al. (71) is used to track individual 

trajectories of these markers in space and time in a Lagrangian framework, in 

conjunction with the DNS. The combined DNS/LST approach has been previously used 

to study heat transfer in high Prandtl or Schmidt number fluids (72, 73). Discussion 

about the accuracy of this method and comparisons of the results with experimental 

findings can also be found in previous publications (67, 74-76). 

Mass markers are released into the flow field after the velocity field reaches 

steady, fully developed state. If �⃗⃗�(𝑥0⃗⃗⃗⃗⃗, 𝑡) is the Lagrangian velocity of a particle that was 
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at location 𝑥0⃗⃗⃗⃗⃗ at time t = t0 = 0, then the position �⃗�(𝑥0⃗⃗⃗⃗⃗, 𝑡) of the marker at time t is 

calculated based on the equation 

�⃗⃗�(�⃗�0, 𝑡) =
𝜕�⃗⃗�(�⃗�0,𝑡)

𝜕𝑡
    (4.1)

  

At this point we make a basic assumption that a marker at any time has the 

velocity of the fluid particle on which it rides, which means that the relation between 

the Lagrangian velocity and the Eulerian velocity �⃗⃗⃗� is �⃗⃗�(�⃗�0, 𝑡) = �⃗⃗⃗�[�⃗�(�⃗�0, 𝑡), 𝑡]. Since 

the mass markers can move off a fluid particle due to molecular diffusion, the diffusion 

effect has been represented by adding a random walk on the marker motion after each 

simulation time step. The value of the diffusion step is estimated by a Gaussian 

distribution in each space direction with a zero mean and a standard deviation, 𝜎, 

depending on the Schmidt number, Sc, (𝜎 =  √2∆𝑡+/𝑆𝑐) where Δt+ is the time step of 

the simulation. Multiple values of Sc are examined (Sc = 0.1, 0.7, 6, 20, 50, 100, 200, 

500, 1000, 2400, 7500, 15000, 30000, 40000, and 50000) representing different 

substances. For each Sc, 10000 markers are released instantaneously at the entrance of 

the computational box (x = 0). The markers are distributed with uniform spacing 

(2πh/10000) from a line in the spanwise direction. To study the effect of the vertical 

position of release, markers are also released at different elevated locations, yo = 0, 1, 2, 

4, 5, 7, 9, 11, 13, 14, 15 wall units away from the bottom wall. 

 

4.3 Results and discussion 

4.3.1 Flow-induced separation 

With the term flow-induced separation we mean that turbulence in a flow field 

can be used for particle separation when different particles have different diffusivity. 
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Previous results in our laboratory have shown that markers with lower Sc, released at 

the channel wall, would diffuse into the flow field faster than markers with higher Sc 

(75). This effect is clearly shown in Figure 4.1, in which positions of markers with Sc of 

0.1 and 500 at different times are displayed. Both types of markers were released into 

the turbulent flow field from the bottom wall (yo = 0), at the same line (x = 0) and at the 

same time. The markers painted green are the markers with Sc = 0.1 and the crimson 

markers have Sc = 500. It is seen that the Sc = 0.1 markers form a leading cloud, while a 

trailing cloud is formed by the Sc = 500 markers. This is caused due to the differences 

in the diffusivity of the two types of particles. Low Sc markers have high molecular 

diffusivity, so they can diffuse with larger Brownian random motion jumps away from 

the near-wall region, where they can get convected by the larger turbulent velocity 

fluctuations in the y direction and by larger mean velocity in the streamwise direction. 

High Sc markers have low diffusivity and they cannot leave the region next to the 

channel wall as fast as the lower Sc markers, so they are trapped in a low velocity 

region for a long time.  

At this point, it is convenient and necessary to define an overlap region based on 

the streamwise location of the clouds of markers with the two different Sc. The overlap 

region is the region between the slowest moving marker of the leading cloud and the 

fastest moving marker of the trailing cloud. The number of markers from each cloud 

within the overlap region can be used to quantify the separation of the two clouds. In 

Figure 4.1, as time advances, a clear separation can be observed between the leading 

and the trailing clouds. Eventually, however, the trailing cloud will catch up with the 

leading cloud forming a short overlap region. This happens because at some point in 
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time several markers from the trailing, high Sc cloud, will leave the viscous sublayer 

close to the channel wall and will start moving fast due to the turbulent mean flow, 

while some of the low Sc particles will diffuse back in the viscous wall region and will 

move slower than the rest of the particles of their type.  The number of particles present 

in the overlap region reduces to zero when separation occurs, and becomes some finite 

number when the trailing cloud catches up with the leading cloud.  

(a) 

 

(b) 
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(c) 

 

Figure 4.1 Locations of markers with Sc = 0.1 (green) and 500 (crimson) at different 

times from their simultaneous release: a) t = 50; b) t = 100; c) t = 220. Clear separation 

between the two clouds is observed in panel (b), while a thin overlap region is observed. 

 

To explore the effects of Sc on particle separation, the number of markers in the 

overlap region of two clouds is shown in Figure 4.2 for several cases with different Sc. 

In all these cases, the Sc = 0.1 markers always form the leading cloud, while the trailing 

cloud is formed by markers with Sc = 0.7, 6, 50, 500 or 50000. All markers are released 

simultaneously from the channel wall, at y0 = 0. It is apparent that the two clouds with 

the largest Sc difference show the least number of markers in the overlap region for the 

longest time. As the Sc for the two clouds becomes comparable, there does not exist a 

time at which the overlap region disappears and separation does not occur. 

Markers are also released from different sources elevated away from the wall at 

locations mentioned previously. In Figure 4.3, we show the number of markers from the 

leading cloud, in (a), and trailing cloud, in (b), that are in the overlap region for markers 

with Sc = 0.1 and Sc = 2400 released at y = 0, 5 and 15. It is obvious that separation 

occurs most effectively when the markers are released from the wall.  
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Figure 4.2 Number of markers in the overlap region, Nov, when markers with Sc = 0.1 

are released simultaneously with markers of different Sc. a) Number of markers from 

the leading cloud, Sc = 0.1; b) Number of markers from the higher Sc trailing cloud. 
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Figure 4.3 Number of markers in the overlap region when markers with Sc = 0.1 and 

2400 are simultaneously released at different initial vertical positions; a) markers of the 

leading cloud; b) markers of the trailing cloud. 

 

 



58 

4.3.2 Separation Mechanism 

The question that arises now is what the mechanism behind this type of 

separation is, and whether there is any constraint for a successful separation. Herein, we 

consider the two clouds to be separated if less than 0.5% of the total number of markers 

of any cloud (leading or trailing) is present in the overlap region. It has been shown 

above that if the two Sc are too close to each other, separation would not occur. In Table 

4.1, we present the minimum value of the higher Sc for each of the lower Sc in order for 

separation to occur. To smooth out fluctuation effects in the instantaneous flow fields, 

three different simulations with different initial velocity fields were used to calculate the 

reported results, which were determined as average values from the three runs.  

The physics of why the separation occurs can be revealed when one considers 

the development of an instantaneous cloud of particles released in a turbulent flow field 

– this cloud is usually called a puff. Careful experiments have shown that there are 

different zones of development of a puff, which are distinct based on the physical 

mechanism of dispersion that is dominant in each zone (124, 125). Simulations have 

also shown that when markers are released into the flow field, they move through three 

stages: zone I, in which molecular diffusion dominates dispersion; zone II, which is a 

transition zone; and, finally, zone III, in which turbulent convection dominates 

dispersion. Within zone I there is a zone in which 95% of particle displacement happens 

because of molecular diffusion.  The average time spent by markers of different Sc in 

this first zone, , and the time at which the particles move into zone III,  , are also 

included in Table 4.1, as obtained through the following empirical equations  (75): 

Sc0.38   (4.2) 

101.2 Sc0.35   (4.3) 
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Table 4.1 Summary of cases of low and high Sc, in which separation is observed 

using the 0.5% purity criterion. The transition times τ95 and τIII are also presented. 

Low Sc 

( III ) 

0.1  

( 46 ) 

0.7  

( 90 ) 

6  

( 190 ) 

20  

( 289 ) 

50  

( 398 ) 

100  

( 507 ) 

High Sc 

( 95 ) 

100  

(48) 

500  

( 89 ) 

7500  

( 248 ) 

15000  

( 323 ) 

30000  

( 420 ) 

40000  

(468 ) 

 

The ratio Rt of the  of the low Sc over the  of the high Sc of all successful 

separation cases is related to the separation time (defined as the time at which 

separation begins, S). The correlation obtained is shown in the following equation and 

plotted in Figure 4.4 

S = a * exp(b*Rt
2)   (4.4) 

with values of the two parameters found to be a = 11, b = 2.5.  

The ratio Rt in Equation (4.4) gives information about the difference of the 

relative motion of markers with these two Sc. It is observed that separation will happen 

faster if this ratio becomes smaller. If the ratio is smaller than 1 (which happens for 

successful separation cases), it is implied that markers with lower Sc enter zone III 

before the markers with higher Sc leave zone I. Turbulent convection is the dominant 

transport mechanism in zone III – this means that the leading cloud gets accelerated by 

turbulent convection before the trailing cloud exits the molecular diffusion regime. This 

process would cause the two clouds to separate. The two cases that have this ratio 

slightly larger than 1 (1.01 and 1.08) are very close to the limit for classifying a case as 

successful separation (99.5% of the clouds are separated). For this study, where we 

defined separation as the point at which 0.5% or less of a cloud can be in the overlap 

region, the upper limit of Rt is 1.08. If the ratio gets higher, more markers with high Sc 

would leave zone I before markers with low Sc enter zone III. Because of that, more 
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high Sc markers accelerate and catch up with the low Sc markers and the needed purity 

constraint will not be satisfied.   
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Figure 4.4 Separation time as a function of the ratio Rt of the τIII of the low Sc over the 

τI of the high Sc. The solid line is Equation (4.4). 

 

Since the times for zone transitions occur as a function of Sc in Equations (4.2) 

and (4.3), the limit 1.08 of the time zones ratio can be expressed as a relationship 

between the Sc of the particle cloud pairs. In order to have separation then, it is required 

that 

 
𝑆𝑐𝐿𝑜𝑤

𝑆𝑐𝐻𝑖𝑔ℎ
≤  0.001 ∗ 𝑆𝑐𝐻𝑖𝑔ℎ

0.09    (4.5) 

Given the separation criterion of 0.5% and Equation (4.5) as a constraint for 

achieving separation, this method could be employed in practice. For example, consider 

the separation of colloidal particles (with radii between 1nm and 1µm) in water at room 
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temperature. Using the equations below (126), one can calculate the corresponding Sc 

of a particle with a given size, as 

𝐷𝐴𝐵 =
𝜅𝑇

6𝜋𝜇𝐵𝑅𝐴
     (4.6) 

𝑆𝑐 =
𝑅𝐴6𝜋𝜇𝐵𝜈

𝜅𝑇
     (4.7) 

where DAB is the diffusivity of particle A in the continuous phase B, T is the absolute 

temperature, 𝜅 is the Boltzmann constant, RA is the radius of the spherical particle A,  

is the dynamic viscosity and ν is the kinematic viscosity of the continuous phase. Since 

the Sc depends linearly on the radius, one can easily calculate the ratio of Sc, and check 

whether Equation (4.5) is satisfied.   

As an example, this method could be applied to separate viruses from red blood 

cells in normal saline 0.9% as the continuous phase. This is an example that is offered 

as a proof of concept calculation. Given that the diffusivity value of red blood cells in 

water is 10-13 (m2/s) (127), and assuming that the viscosity and density of normal saline 

are equal to those of water due to very low concentration of sodium chloride, the 

corresponding Sc of red blood cells in saline is about 107. Different types of viruses, 

with diameters  ranging from  10nm to  100nm (128), would have Sc from 23,445 to 

234,450  (for instance, the diameter of HIV virus is 100nm and the Sc is 234,450). 

Therefore, if a mixture of red blood cells and viruses is released in pulses into a flow 

field, the viruses will leave the cells behind (with the high Sc equal to 107). Using 

Equation (4.5), it is obvious that some types of viruses will not satisfy the 0.5% 

criterion for separation. Significant separation will, however, occur in the overlap 

region, and then one can achieve further separation by repeating the process several 

times.  
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4.3.3 A Model for Particle Displacement 

Einstein (40) developed the following relation for molecular dispersion in a non-

turbulent field 
𝑑𝑋2̅̅ ̅̅

𝑑𝑡
= 2𝐷, where D is the molecular diffusivity and X is the displacement 

from the source. The most influential contribution to the theory of dispersion in a 

turbulent field is Taylor’s description of the dispersion of particles from a point source 

in a homogeneous, isotropic turbulence (41). With respect to anisotropic turbulent 

flows, Batchelor (129) modified Taylor’s theory to predict the statistical behavior of a 

cloud dispersed from a source in a turbulent boundary layer. We examine here whether 

Taylor dispersion can be used to reproduce the simulation results and whether particle 

separation can be predicted based on Taylor’s and Batchelor’s models, bypassing the 

need to conduct DNS and LST.    

First, we examine the mean displacement of the particles in the streamwise and 

vertical directions. Results for selected Sc are presented in Figure 4.5. It is obvious, 

however, that differences in the mean values of streamwise displacement should not be 

used alone in predicting separation with a criterion like the 0.5% criterion used above, 

since they only represent mean positions of the clouds without any indication of the 

spread of the clouds in x.  
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Figure 4.5 Mean displacement of particles with different Sc in: a) streamwise direction; 

b) vertical direction. Data obtained from LST simulations. 

 

 

The displacement of particles in the vertical direction plays a significant role in 

determining streamwise velocity and position of a cloud. As previously described, 

particle clouds go through three different zones of development after they are released 

from a source at the wall. It appears that for every Sc the transition to zone III occurs 
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when the mean cloud distance from the wall is �̅� ≈ 30. At that point, at t = III, the 

cloud enters the zone where turbulent convection dominates the dispersion process. 

Identifying the proper dispersion mechanism in each zone would help build a model to 

predict displacement in the channel. In zone I, our earlier study found that dispersion in 

the direction of the velocity gradient, y, agrees well with the theory of Einstein and 

Taylor (75). Since molecular diffusion is the dominant mechanism in this zone, we 

propose the following model for the mean vertical displacement:  

�̅� = 𝐶 ∗ 𝑆𝑐𝑑𝑡𝑒   for t < 95   (4.8) 

The model contains the effect of molecular motion only. As previously 

discussed, the value of the diffusion step is estimated by a Gaussian distribution in each 

space direction with a zero mean and a standard deviation, 𝜎, which is proportional to 

Sc-1/2. The exponent d in Equation (4.8) can therefore be chosen to be −
1

2
. The 

coefficients C and e were then found to be 0.89 and 0.55, respectively, by fitting the 

equation with our LST data, as seen in Figure 4.6. 
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Figure 4.6 Prediction of vertical displacement in zone I: comparison between the model 

of Equation (4.8) (lines marked with open circles) and LST results (lines without any 

markings). 
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In the case of shear flow, as is the case with our channel geometry, Batchelor 

suggested that the following expression can be used to predict the average motion of 

particles  dispersing in the turbulent constant stress region (129)   

�̅� =
𝑑�̅�

𝑑𝑡
= 𝑏𝑢∗  (4.9) 

where b = 0.2 should be a universal constant according to Batchelor. This expression 

implies that particles with different Sc will have the same mean vertical velocity. 

Plotting �̅� versus time for different Sc in the log layer region (�̅� ≥ 30 or 𝑡 ≥ 𝜏𝐼𝐼𝐼) can 

be used to compare our LST data to Batchelor’s prediction, as seen in Figure 4.7. It is 

observed that particles move in the vertical direction with almost constant velocities, 

though particles with different Sc have slightly different velocities, and low Sc particles 

tend to have higher velocities initially that decreases as time increases. Because of this, 

we propose that the Batchelor constant b has values that depend on the Sc, as shown in 

Table 4.2. These values agree well with previously published results by different 

authors (130-132).   

 

Table 4.2 Batchelor’s constant b for different Sc 

Sc  b 

0.1 0.3 

0.7 0.3 

6 0.25 

20 0.2 

50 and above 0.15 
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Figure 4.7 Mean vertical displacement of particles in the log layer. Data obtained from 

LST simulation. 

 

Though diffusion mechanisms of particles in the vertical direction within zone I 

and zone III have been identified with corresponding description [Equations (4.8) and 

(4.9)], diffusion in the transition zone, starting from 95 to III, remains to be determined. 

Since the transition zone lies between zones I and III, we suggest the following 

expression to determine the vertical mean displacement for 95 < t < III, based on 

information from zones I and III: 

�̅�𝑡 = �̅�𝑡−1 + [
𝑑�̅�

𝑑𝑡 𝑡=𝜏95

+ (
𝑡−𝜏95

𝜏𝐼𝐼𝐼−𝜏95
) ∗ (𝑏 −

𝑑�̅�

𝑑𝑡 𝑡=𝜏95

)] ∗ ∆𝑡 (4.10) 

in which b is Batchelor’s constant, and t is the time step between times t and (t-1). 

Using Equations (4.8) – (4.10) as a model, the mean vertical displacement of each Sc 

particle is plotted in Figure 4.8 and compared with LST results. Since separation of 

particles happens for t < 200, only results up to t = 200 are plotted in Figure 4.8. 

Reasonable agreement between our LST data and results from this model is obtained. It 

is worth noting that Equations (4.8) – (4.10) were developed based on the theories of 
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Einstein, Taylor and Batchelor, and this agreement encourages the use of these theories 

to predict mean displacement in a direction normal to the mean flow for small times.  
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Figure 4.8 Mean vertical displacement of different Sc. Results obtained from the  LST 

data (lines without markers) and with our model based on Equations (4.8)-(4.10) are 

presented (lines marked with open circles). 

 

 

Batchelor (129) further assumed that a constant c exists such that the mean 

Lagrangian velocity of a particle cloud in the streamwise direction equals the Eulerian 

velocity located at c�̅�, this is due to the decrease of dU/dy with height in the channel. 

Based on this assumption, we have the following equation 

�̅�𝑥 =
𝑑�̅�

𝑑𝑡
= [�̅�(𝑦)]𝑦=𝑐�̅�  (4.11) 

It is now necessary to determine the mean velocity in the channel. Based on our 

DNS study, the mean flow field velocity in the channel could be described as below 

y ≤ 5:  U = y 

5 < y ≤ 30: U = 4.9*ln(y) – 3 
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30 < y:  U = 2.6*ln(y) + 4.5 

 

Having information of velocity in the channel and an appropriate constant c, one 

can use Equation (4.11) to calculate �̅�𝑥, thus obtain �̅� of a particle cloud. Based on our 

LST data, c = 0.6 is the best fit, as seen in Figure 4.9, and could be used in Batchelor’s 

theory to predict mean streamwise displacement in the channel. 

At this point, it is seen that modified Taylor and Batchelor’s theories produce 

similar results to our DNS-LST method, in terms of mean displacement in x and y 

directions. A further attempt is made to determine if using mean displacement as a main 

tool could predict separation at reasonable accuracy.  However, as explained above, the 

mean displacement should not be used alone in predicting separation with high purity 

criterion. Because of turbulent velocity fluctuations the particle clouds stretch forward 

and backward. The stretching of the clouds also depends on molecular diffusion. We 

hereby define the standard deviation (STD) for the particle position in each Sc by the 

following expression 

𝑆𝑇𝐷 = (𝑥 − �̅�)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅1/2
 

in which �̅� represents mean location of the particle cloud that varies with time, and x 

indicates the location of each particle. Since no particle distribution function in x is 

available at this time, we assume that the concentration distribution in a particle cloud 

follows a normal distribution. Therefore, 99% of the particle population in the 

streamwise direction would lie within boundaries determined by adding and subtracting 

2.5 times the STD to and from the mean streamwise displacement (which is also the 

cloud mean streamwise position). In Figure 4.10, we plot calculations for two pairs of 

Sc that have been found to separate when applying the 0.5% purity criterion. For each 

Sc, the front and back boundaries of 99% of the population in the x direction are plotted 

as time increases, using �̅� and STD from the LST data. The results inticate that clouds 



69 

with Sc =0.7 and 30000 would not be able to separate from each other at any time 

earlier than 100, while that number is 512 for Sc = 6 and 7500. However, by counting 

the number of particles left in the overlap region, we found that Sc = 0.7 and 30000 

would separate from time equal to 14, while Sc = 6 and 7500 separate from time equal 

to 45. The disagreement indicates that the normal distribution is not an accurate 

approximation for the concentration distribution in x, One should rely on previously 

presented tools, i.e., Equations (4.2) – (4.5), to predict separation. However, the models 

that we developed to predict �̅� and �̅� could still be used for other applications, or to 

predict separation, if one could obtain a more accurate particle distribution function.      
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Figure 4.9 Mean streamwise displacement of different Sc: a) Sc = 0.1, b) Sc = 6, c) Sc = 

100. Results are obtained from LST data (lined without markers) and Batchelor’s model 

(lines marked with open circles). 
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Figure 4.10 Front and back boundaries of 99% of population of clouds in the 

streamwise direction, using mean displacement and normal distribution to predict the 

concentration distribution. (a) Prediction for clouds with Sc = 0.7 and 30000 and (b) 

prediction for clouds with Sc = 6 and 7500 
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Chapter 5. Probability Density Function of a puff dispersing from the 

channel wall 

 

5.1 Introduction 

One critical characteristic of turbulence is its ability to promote mixing. In fact, 

most particle transport related studies have focused on turbulent mixing (115-117, 133, 

134) and particle dispersion (118-122, 135). On an opposite direction, we reported in 

Chapter 4 the separation of particles with different Schmidt numbers that happens when 

particles are released into turbulent flow field from the same location on a channel wall 

(136). Motion of two puffs of particles with Sc numbers of 0.1 and 500, released into 

the channel from the same line source on the bottom wall, is plotted in Fig. 1 in which 

separation of the two puffs was clearly observed.  

The mechanism behind this separation could be revealed when considering the 

development of an instantaneous cloud of particles released in a turbulent flow field – 

this cloud is usually called a puff. Experiment studies have found that there are different 

zones of development of a puff, which are distinct based on the physical mechanism of 

dispersion that is dominant in each zone (137, 138) Simulations have also shown that 

when markers are released into the flow field, they move through three stages: zone I, in 

which molecular diffusion dominates dispersion; zone II, which is a transition zone; 

and, finally, zone III, in which turbulent convection dominates dispersion (75). 

Separation between two clouds of particles with different diffusivity values was found 

to happen if the cloud with higher diffusivity enters zone III before the one with lower 
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diffusivity leave zone I. Turbulent convection, which is the dominant transport 

mechanism in zone III, accelerates the leading cloud and lead to separation of the two 

clouds.  

a) 

 

b) 

 

c) 

 

Figure 5.1 Locations of markers with Sc = 0.1 (green) and 500 (crimson) at different 

times from their simultaneous release: a) t = 50; b) t = 100; c) t = 220. Clear separation 

between the two clouds was observed in panel (b), while a thin overlap region was 
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observed at x ≈ 1000 - 1200 in panel (c). (Only the bottom half of the channel is shown, 

from y = 0 to 300) 

 

 

In the aforementioned study, we used Direct Numerical Simulation (DNS) and 

Lagrangian Scalar Tracking methods (LST) to simulate the turbulent flow field and 

track the particle motion. An attempt was also made to develop a reduced order model 

that could predict the location of the puffs and estimate separation, thus  avoiding the 

need to perform DNS and LST. Batchelor’s theory was modified to predict the 

statistical behavior of a puff dispersed from a source in a turbulent boundary layer  and 

to estimate mean streamwise displacement of the puffs. While the agreement between 

Batchelor’s theory and our numerical results was reasonable, there remained a concern 

as one would need to determine the lower and upper boundaries of the puff, in order to 

determine if separation could happen.  

In this paper, we explore the form of the particles distribution and we present the 

finding  that Gamma 3P distribution  is an appropriate probability density function (pdf) 

for use in predicting location and concentration distribution of puffs of particles with 

different Schmidt numbers (Sc) diffusing from  the wall of a channel. Estimation of 

parameters of the Gamma 3P distribution was successfully obtained. The use of Gamma 

3P distribution could be found in estimating particles separation at different purity 

criteria, as well as predicting diffusion of particles in the channel for other applications.   

 



75 

5.2 Simulation parameters and procedure 

Direct Numerical Simulation (DNS) and Lagrangian Scalar Tracking (LST) of 

mass markers have been used in this research. We employed the pseudospectral DNS 

algorithm presented by Lyons (63) and validated with experiments by Gunther(64). All 

variables are made dimensionless using the friction velocity, u*, and the kinematic 

viscosity of the fluid, ν, namely, the viscous wall units. The computational box has 

dimension of 4πh x 2h x 2πh in the streamwise, x, normal, y, and spanwise, z, 

directions, respectively, with a half channel height (h) of 150. There are 128 x 129 x 

128 grid points in x, y, and z directions. Periodic boundary conditions with lengths of 

4πh and 2πh are applied to simulate an infinitely long channel in x and z directions, 

respectively. The flowing fluid is an incompressible Newtonian fluid with constant 

density and viscosity in a channel with no-slip and no-penetration boundary conditions 

imposed at the rigid channel walls.  

Passive scalar markers that do not affect the flow field were released into the 

channel to represent mass particles. The tracking algorithm of Kontomaris(71) was used 

to track individual trajectories of these markers in space and time in a Lagrangian 

framework, in conjunction with the DNS. The combined DNS/LST approach has 

previously been used in study of heat transfer in high Prandtl or Schmidt number fluids 

(69, 139). Discussion about the accuracy of this method and comparisons of the results 

with experimental findings can also be found in previous publications (67, 70, 74, 75). 

We release the mass markers into the flow field after the velocity field reaches a  

stationary state, based on DNS results. If �⃗⃗�(�⃗�𝑜 , 𝑡) is the Lagrangian velocity of a 
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particle at location �⃗�𝑜 at time t = to = 0, then the position �⃗�(�⃗�𝑜 , 𝑡) of the marker at time t 

is determined as 

�⃗⃗�(�⃗�𝑜 , 𝑡) =
𝜕�⃗�(�⃗�𝑜 , 𝑡)

𝜕𝑡
                             (5.1) 

At this point we assume that a marker at any time has the velocity of the fluid 

particle on which it rides, which means the relation between the Lagrangian velocity 

and the Eulerian velocity �⃗⃗⃗� is �⃗⃗�(�⃗�𝑜 , 𝑡) = �⃗⃗⃗�[�⃗�(�⃗�𝑜, 𝑡), 𝑡]. Molecular diffusion effects that 

could make the mass markers move off a fluid particle have been represented by adding 

a random walk on the marker motion after each simulation time step. The value of the 

diffusion step is estimated by a Gaussian distribution in each space direction with a zero 

mean and a standard deviation, σ, depending on the Schmidt number, Sc, (𝜎 =

√2∆𝑡/𝑆𝑐) where Δt is the time step of the simulation. In this study, we examined 

several values of Sc (Sc = 6, 20, 50, 100, 200, 500, 1000, 2400) representing different 

substances. 10,000 markers, initially distributed uniformly on a line located at the 

bottom wall in the spanwise direction at x=0, were released instantaneously for each Sc. 

The simulation was performed twice, and results from two realizations were used for 

averaging purpose.  

 

5.3 Results and discussion 

5.3.1 Statistical Analysis 

Lagrangian scalar tracking method was used to track the motion and record 

location of each marker. We then  created small bins in the streamwise direction, and 

used the bin locations and number of markers in each bin to determine pdf values for 
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the particle distribution in the streamwise direction at different times. The pdf value at a 

bin located at xi was calculated as in the equation below: 

𝑝𝑑𝑓(𝑥𝑖) =
𝑛(𝑥𝑖)

𝑁 ∗ 𝑏𝑖𝑛𝑠𝑖𝑧𝑒
 

in which n(xi) is the number of particles in the bin centered at xi, while N is the total 

number of particles (10,000). Due to different molecular diffusivities corresponding to 

different Sc, it was found that one shall not use the same bin size for all Sc, especially in 

the viscous wall region. Instead of that, for each Sc number, the bin size was chosen to 

be equal to σ =√2∆𝑡/𝑆𝑐, as listed in Table 5.1.  

Table 5.1 Values of bin size for different Sc numbers 

Sc σ 

6 0.18257 

20 0.10000 

50 0.06325 

100 0.04472 

200 0.03162 

500 0.02000 

1000 0.01414 

2400 0.00913 

 

We used the Kolmogorov-Smirnov (KS) statistical test, which quantifies the 

distance between the empirical distribution function of the sample and the cumulative 

distribution function of the reference distribution, to conduct goodness-of-fit test 

between different pdf models and our data. We tested 65 different common pdf models, 
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available in the EASYFIT software (version 5.6), with the KS test. The null hypothesis 

was as follows: “The empirical pdf follows the tested pdf model.” The level of 

significance, ε, was chosen to be 0.2. By choosing ε = 0.2, the acceptance of the null 

hypothesis is more rigorous than acceptance at the usual choice of ε = 0.05. Note that, in 

the KS test, the critical value of the KS statistic decreases when ε increases and that the 

null hypothesis is rejected when the critical value is smaller than that of the test statistic 

of a data sample. Thus, at a given value of the calculated test statistic, testing for the 

null hypothesis at a higher ε increases the probability of rejecting the null hypothesis. 

Such a high level of ε has been used to test null hypothesis in other published studies 

(140-142). Table 5.2 is a display of P values of different pdf models for different Sc as 

simulation time increases. The null hypothesis is rejected if the P-value is lower than 

the level of significance ε. The three pdf models listed in Table 5.2, including inverse 

Gaussian, three-parameter (3P) Gamma and three-parameter (3P) Weibull, are those 

that gave the highest P-values in the KS test. Comparing these three models, we found 

that the three-parameter Gamma distribution is the most appropriate one, not only 

because of its high P-values but also because its parameters closely relate to the 

development of a puff, as is explained in details in the next section.   
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Table 5.2 P-values obtained from 3 pdf models: a) Inverse Gaussian; b) 3P 

Gamma; c) 3P Weibull with different Sc numbers at different time. Empirical data 

from one simulation were used in this case to determine the most appropriate pdf 

model for use, as P-values do not vary much between different simulations 

a) 

t+ 6 20 50 100 200 500 1000 2400 

10 0.007 0.006 1.000 0.002 0.000 1.000 0.009 1.000 

15 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

20 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 

25 0.999 1.000 0.997 0.991 0.997 1.000 1.000 0.999 

30 0.989 0.975 0.953 0.892 0.994 0.977 0.980 0.965 

35 0.773 0.853 0.752 0.000 0.989 0.908 0.904 0.852 

40 0.737 0.582 0.724 0.800 0.985 0.803 0.708 0.799 

45 0.593 0.480 0.742 0.763 0.941 0.770 0.666 0.837 

50 0.480 0.418 0.749 0.771 0.928 0.581 0.493 0.671 

55 0.277 0.485 0.704 0.550 0.816 0.628 0.431 0.595 

60 0.113 0.449 0.420 0.458 0.569 0.492 0.381 0.404 

65 0.071 0.467 0.428 0.405 0.422 0.474 0.392 0.462 

70 0.029 0.428 0.432 0.374 0.376 0.476 0.439 0.468 

75 0.021 0.403 0.285 0.384 0.246 0.368 0.356 0.440 
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80 0.016 0.430 0.337 0.427 0.150 0.313 0.342 0.296 

85 0.005 0.615 0.358 0.437 0.124 0.208 0.281 0.259 

90 0.002 0.642 0.236 0.312 0.108 0.146 0.149 0.153 

95 0.000 0.553 0.213 0.218 0.140 0.090 0.095 0.077 

100 0.000 0.687 0.219 0.174 0.174 0.046 0.128 0.053 

 

b) 

t+ 6 20 50 100 200 500 1000 2400 

10 1.000 0.966 0.987 0.986 0.974 0.998 0.913 0.967 

15 0.995 0.993 0.935 0.858 0.940 0.850 0.962 0.864 

20 0.985 0.969 0.844 0.867 0.936 0.875 0.918 0.829 

25 0.985 0.939 0.914 0.962 0.999 0.994 0.943 0.866 

30 1.000 0.999 0.976 0.998 1.000 0.986 0.976 0.916 

35 1.000 0.998 0.984 0.000 0.990 0.927 0.951 0.924 

40 1.000 0.994 0.909 0.975 0.955 0.976 0.858 0.741 

45 1.000 0.971 0.835 0.921 0.913 0.950 0.798 0.599 

50 1.000 0.869 0.761 0.975 0.901 0.802 0.615 0.715 

55 0.913 0.683 0.924 0.985 0.977 0.767 0.549 0.815 

60 0.687 0.516 0.943 0.973 0.994 0.848 0.528 0.826 

65 0.651 0.472 0.884 0.896 0.931 0.871 0.601 0.734 

70 0.540 0.338 0.953 0.985 0.929 0.983 0.694 0.939 

75 0.419 0.373 0.961 0.987 0.959 0.948 0.724 0.817 

80 0.340 0.293 0.760 0.999 0.755 0.777 0.946 0.774 
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85 0.236 0.318 0.850 0.971 0.897 0.922 0.941 0.844 

90 0.150 0.285 0.738 0.994 0.859 0.888 0.991 0.837 

95 0.065 0.165 0.564 0.958 0.830 0.970 0.987 0.809 

100 0.033 0.081 0.423 0.972 0.900 0.957 0.998 0.669 

 

 

 

c) 

t+ 6 20 50 100 200 500 1000 2400 

10 0.912 0.688 0.707 0.697 0.695 0.820 0.604 0.642 

15 0.750 0.725 0.579 0.534 0.599 0.545 0.566 0.502 

20 0.693 0.581 0.505 0.549 0.591 0.475 0.542 0.476 

25 0.604 0.461 0.511 0.500 0.724 0.716 0.486 0.464 

30 0.830 0.761 0.563 0.719 0.725 0.667 0.522 0.506 

35 0.798 0.717 0.650 0.000 0.537 0.643 0.477 0.598 

40 0.741 0.586 0.412 0.518 0.464 0.527 0.332 0.253 

45 0.791 0.529 0.380 0.347 0.348 0.469 0.231 0.177 

50 0.719 0.402 0.294 0.392 0.335 0.238 0.169 0.261 

55 0.421 0.221 0.361 0.456 0.342 0.298 0.149 0.255 

60 0.199 0.119 0.295 0.373 0.403 0.217 0.094 0.213 

65 0.105 0.113 0.280 0.217 0.305 0.205 0.098 0.187 

70 0.085 0.064 0.379 0.320 0.393 0.340 0.136 0.202 

75 0.159 0.071 0.240 0.378 0.395 0.347 0.185 0.160 
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80 0.130 0.060 0.126 0.361 0.314 0.334 0.303 0.132 

85 0.082 0.051 0.142 0.265 0.295 0.429 0.302 0.177 

90 0.038 0.038 0.076 0.308 0.319 0.344 0.376 0.126 

95 0.037 0.014 0.071 0.345 0.264 0.376 0.335 0.128 

100 0.019 0.007 0.068 0.281 0.223 0.397 0.349 0.113 

5.3.2 Three-parameter Gamma distribution 

The probability density function f(x) and cumulative distribution function F(x) 

could be determined from three parameters of the Gamma distribution, namely α, β, and 

γ as shown below 

𝑓(𝑥) =
(𝑥 − 𝛾)𝛼 −1

𝛽𝛼 ∗ 𝛤(𝛼)
𝑒𝑥𝑝

−
𝑥−𝛾

𝛽                       𝐹(𝑥) =

𝛤𝑥−𝛾
𝛽

(𝛼)

𝛤(𝛼)
                      (5.2) 

The physical meaning of the three parameters is explained here first. The first 

two parameters, α and β, are continuous shape and scale parameters, respectively (α, β > 

0). The 3rd parameter, γ, is a continuous location parameter, which is also the lower 

boundary of the data domain. 

As γ represents the lower boundary of our data domain, it is supposed to take 

value based on the location of the slowest moving particle in a puff. The problem now 

becomes locating the bin location that contains the slowest moving particle in a puff as 

it travels with time (for simplicity, we call the location of the center of this bin Xbmin). 

From our experience, this bin usually contains only a few particles. Unfortunately, this 

makes its location to be a random variable that varies with each simulation. In order to 

solve this problem, we decided to remove the slowest 100 particles (equivalent to 1% of 

the population) from our calculations. The bin with the slower particles now contains 
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more than just a few particles, and it could actually represent the lower boundary of our 

data domain in a more meaningful way.  

At this point, it is necessary to check if the third parameters of the Inverse 

Gaussian, 3P Gamma and 3P Weibull distributions actually take values of the Xbmin 

location. Our argument is that, as the third parameters of these pdf models represent the 

lower boundary of a domain, they should match well with the Xbmin location. This 

would also make our prediction of this third parameter more reasonable, as we could 

base on location of the slowest moving particles. In Figure 5.2, we plot the 3rd 

parameters of these pdf models and Xbmin from one of our simulations, for a few Sc, and 

it appears that only the Gamma and Weibull distributions satisfy our requirement. 

Taken into account the P-values from KS test listed in Table 5.2, the three-parameter 

Gamma distribution was chosen as our pdf model for use in predicting concentration 

distribution of a puff released from the channel wall.  

In this study, we try to predict three parameters of 3P Gamma distribution based 

on their relation to the shape and location of a puff. The following equations have 

proved to be useful in giving us an idea of how these three parameters could be 

determined by studying the puff development: 

μ – γ = α * β  (5.3) 

μ – β = mode   (5.4) 

in which μ is the mean streamwise displacement of the puff, and mode is a location 

where there are most particles at, which is the location of a peak in the pdf. Note that, 

equations (3) and (4) are correct for α, β and γ provided by EasyFit for 3P Gamma 

distribution.  
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Figure 5.2 Plotting of Xbmin and 3rd parameters from Inverse Gaussian, 3P Gamma 

and 3P Weibull distribution for one simulation. a) Sc = 6; b) Sc = 100; c) Sc = 2400 

 

Some background in particles dispersion are presented here again as that would 

be helpful for the rest of this study. Einstein (40) developed a relation that describes 

dispersion of particles in term of the mean-squared displacement from the source in the 

streamwise direction: 

𝑑𝑋2̅̅̅̅

𝑑𝑡
= 2𝐷                 (5.5) 

where D is the molecular diffusivity. Taylor (41) developed a similar relation for the 

rate of dispersion of fluid particles from a point source in homogeneous, isotropic 

turbulence: 

𝑑𝑋2̅̅̅̅

𝑑𝑡
= 2𝑢2̅̅ ̅ ∫ 𝑅𝐿(𝜏)𝑑𝜏

𝑡

0

                (5.6) 
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where 𝑢2̅̅ ̅ is the mean-square of the x-component of the velocity of fluid particles and 

RL is the Lagrangian correlation coefficient. An important implication of Taylor’s 

equation is that the history of the particle motion affects the rate of dispersion through 

RL. At small times, the Lagrangian correlation coefficient is close to one, making the 

dispersion increases with time to the second power. At large times RL = 0, and thus the 

dispersion changes linearly with time.  

Dispersion of heat or mass markers introduces an additional complication, as 

they could move off a fluid particle as a result of molecular diffusion. A relation for 

dispersion in this case was developed by Saffman (42), using a material autocorrelation 

function, which correlates fluid velocity components along the trajectories of markers 

instead of fluid particles. Corrsin (43) studied line source diffusion in a homogeneous 

shear flow with a constant mean velocity gradient. The Lagrangian dispersion in the 

direction of the flow, X, was found to be different from the dispersion in the direction of 

the velocity gradient, Y, which is described by Taylor’s analysis. It is  

𝑌 = ∫ 𝑣(𝑡1)𝑑𝑡1

𝑡

0

                    (5.7𝑎) 

 𝑋 = ∫ [
𝑑�̅�

𝑑𝑦
𝑌(𝑡1) + 𝑢(𝑡1)]𝑑𝑡1

𝑡

0
                      (5.7𝑏) 

where u and v are the particle velocities in the direction of the flow and in the direction 

of the velocity gradient, respectively. For large times the dispersion becomes  

𝑌2̅̅ ̅ = 2𝑣2̅̅ ̅𝜏𝑦
𝐿𝑡                          (5.8𝑎) 

𝑋2̅̅̅̅ =
2

3
(
𝑑�̅�

𝑑𝑦
)2𝑣2̅̅ ̅𝜏𝑦

𝐿𝑡3              (5.8𝑏) 

where 𝜏𝑦
𝐿 is the Lagrangian timescale in the y-direction. Equation (5.8b) suggests that at 

large time, the first order mean streamwise displacement X could be a function of t3/2. In 
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another study of turbulent dispersion in inhomogeneous and anisotropic turbulence, 

Papavassiliou (75) also found that for Sc between 0.7 and 50,000 , the mean streamwise 

displacement X is proportional to t3/2 for time up to the end of Zone 1. Thus, we make 

an assumption that the μ in Equation (3) and (4) could be described as a linear function 

of t3/2: μ = g*t3/2. This assumption proves to be correct as we plot μ versus t3/2 for 

different Sc in Figure 5.3a (note that only a few Sc are plotted for example). The 

coefficient g varies for each Sc, however, it was found to be a function of Sc-0.5 as seen 

in Figure 5.3b. Note that all results were obtained by taking average of 2 different 

realizations. The mean particle position at this point could be expressed as follows 

μ = 0.73 * Sc-0.5 * t1.5  (5.9) 

As we are interested in development of a puff at short time, it is reasonable to 

assume that the mode also moves at similar rate to μ. Under this assumption, we also 

plotted the mode versus t1.5 for different Sc in Figure 5.4a. It appears that the mode 

could also be described as a linear function of t3/2, with a coefficient k depending on Sc, 

as seen in Figure 5.4b. The mode position is now calculated as in Eq. (5.10).  

Mode = 0.39 * Sc-0.5 * t1.5  (5.10) 
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Figure 5.3 a) Plotting of Mean streamwise displacement versus t1.5 for different Sc 

numbers. b) The coefficient g was found to be a function of Sc-0.5 
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Figure 5.4 (a) Plotting of mode values versus t1.5 for different Sc numbers. (b) The 

coefficient k was found to be a function of Sc-0.5 
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At this stage, we need to determine value of γ by calculating Xbmin in order to 

solve equations (5.3) and (5.4). Note that at early time, some particles in this bin could 

travel into the negative streamwise direction due to effect of molecular motion in the 

viscous sub region. As this only happens at short times and does not affect much on our 

applications, we would focus on time larger than 10 only, which is the time that Xbmin 

starts taking positive values and keeps increasing.  

Based on Taylor’s analysis, the mean square displacement in x-direction 

increases with time to the second power at small times. How long this relation lasts 

could be determined by using the material timescale 𝜏𝑦
𝐿. Le (65) calculated and found 

that for particles with Sc between 0.1 and 50000, being released at a vertical location 

less than 1 viscous plus unit away from the wall, the material timescale 𝜏𝑦
𝐿 is less than 5. 

As we are interested at time larger than 10, it could be expected that Xbmin increases 

with t3/2 as in equation (5.8b). Being scaled with Sc-0.5 to represent effect of molecular 

diffusion, equation (5.11) successfully captures Xbmin, whose values would be assigned 

to γ. Note that Xbmin values were taken as average from two different simulations, and 

comparison between simulation data and model in equation (5.11) is plotted in Figure 

5.5.   

Xbmin * Sc1/2 = (0.186 * t3/2 – 8) 10 < t < 100  (5.11) 
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Figure 5.5 Scaling of Xbmin with Sc1/2 for different Sc at different times. Results were 

taken average from 2 different simulations. o : simulation results; – : line obtained from 

equation (5.11) 

 

5.3.3 Model Testing 

The Gamma 3P distribution was found as the most appropriate pdf model to 

describe the particle pdf in the streamwise direction. All the calculations above were 

obtained using average data from 2 simulations. Before applying the Gamma 3P 

distribution in other applications, we would like to test how well the calculated 

parameters perform in the goodness-of-fit test, using again the empirical distribution 

from 2 simulations. Using appropriate equations, we could calculate 3 parameters for 

each Sc number at corresponding time. We then used these parameters for 3P Gamma 

distribution on EasyFit and performed goodness-of-fit test. The results have been 

encouraging as seen in Figure 5.6, with results from Sc = 6, 200 and 1000 presented as 
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examples. One can see that in most cases, the P-values are higher than 0.2. It can also 

be seen that there are some P-values smaller than 0.2; which means the null hypothesis 

would be rejected at significance level ε = 0.2. In order to determine how big the error is 

in case the null hypothesis gets rejected, we measure and report herein the difference in 

cumulative distribution function (CDF) between the empirical data from two 

simulations and results predicted by using 3P Gamma distribution. Three examples with 

Sc = 6, 200 and 1000 are presented in Figure 5.7. Note that for each Sc, we measured 

the CDF errors at two different times: one at high P-values, and one at low P-values. By 

doing that, we could estimate the minimum and maximum CDF errors encountered by 

using the proposed pdf model. As one can see, the maximum CDF error was roughly 

5%, which gave us more confidence in applying this pdf model in other applications. 
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Figure 5.6 P-value obtained from goodness-of-fit test by using our pdf model and 

empirical data from 2 realizations; a) Sc = 6; b) Sc = 200; c) Sc = 1000 
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Figure 5.7 CDF error between using our pdf model and empirical data from 2 

realizations for different Sc number. a) Sc = 6 at t+ = 10; b) Sc = 6 at t+ = 50; c) Sc = 

200 at t+ = 20; d) Sc = 200 at t+= 50; e) Sc = 1000 at t+ = 20; f) Sc = 1000 at t+= 40 
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5.3.4 Application of the Gamma 3P distribution model 

As mentioned earlier, particle separation in turbulent channel flow is one 

application where we could apply the Gamma 3P distribution. By plotting pdf of puffs 

with different Sc at different times, one can predict if the two puffs, released from a 

channel wall, would separate from each other or not. The idea is briefly presented in 

Figure 5.8, where we plot pdf values of 2 puffs with Sc 50 and 2400, multiplied by 

corresponding bin sizes of each Sc, at t+ = 50. As particles with Sc = 50 have larger 

molecular diffusivity, they would move faster and form the leading puff, while particles 

with Sc = 2400 are left behind and form the following puff. One can see that there exists 

an “overlap” region, ranging from the tail of the leading puff to the head of the 

following puff. The number of particles of each puff in this overlap region could be 

calculated to quantify separation ability.  

We now apply the Gamma 3P distribution in predicting separation with different 

pairs of Sc number particles and compare with results obtained from the DNS-LST 

method. We report herein number of particles from both the leading and following puffs 

in the overlap region for every pair of Sc numbers. These results were obtained from 3 

different simulations at Reτ = 150 and with using Gamma 3P distribution model.  

The first pair of Sc to be tested is 6 and 2400, with number of particles from 2 

puffs in the overlap region plotted in Figure 5.9. We notice that the Gamma 3P 

distribution model predicts less particles from both the leading and following puffs in 

the overlap area, compared to results from 3 realizations. This could be explained due to 

the fact that we removed the slowest 1% particles from the tail of the leading puff, thus 

leading to a narrower overlap region. As the following puff is quite compact, this results 
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in a significant drop of the number of particles of this puff in the overlap area, as seen in 

Figure 5.9b. This effect, though, is less pronounced when we look at number of 

particles of the leading puff in the overlap region. In this specific case, one can add up 

to 100 particles of Sc = 6 into the overlap region. From our experience, separation 

usually happens when the number of particles of the leading puff in the overlap is small 

enough. This could be seen in Figure 5.9, as the following puff has a lot more particles 

in the overlap, compared to the leading puff.  Because of that, removing the slowest 1% 

particles from the tail of the leading puff does not affect much the separation prediction. 

Moreover, one may see that the 3 realizations have certain degree of random, 

uncertainty when we compare the results. Our pdf model, on the other hand, tends to 

provide average results from those 3 realizations, despite the fact that results from the 

3rd realization were not used in developing this pdf model.  
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Figure 5.8 PDF of 2 puffs of particles with Sc 50 and 2400 at t+=50. Overlap area was 

clearly observed in this case, which implies that complete separation could not happen 
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Figure 5.9 Use of Gamma 3P distribution to calculate number of particles in the overlap 

region and compare with results from DNS-LST method, pair of Sc numbers 6 and 

2400; a) number of particles of the leading puff; b) number of particles of the following 

puff. The Adjusted 3P Gamma line adds 100 more particles to the number of particles 

of the leading puff in the overlap region.   
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Another example with pair of Sc numbers 50 and 2400 is also presented here. 

As predicted in our previous study (136), separation with 99.5% purity criteria, which 

means that less than 0.5% of population of either a leading puff or following one is 

present in the overlap region, cannot happen in this case. However, separation of the 

two puffs at a certain level still happens, as we can see in Figure 5.10. It is interesting to 

see that our pdf model agrees well with 3 realizations, in terms of number of particles of 

Sc = 50 in the overlap region. As in the previous case, Gamma 3P underestimates how 

many particles of Sc = 2400 (the following puff) there are in the overlap region, 

compared to 3 realizations.  

Even though the Sc numbers used in this study are limited up to 2400, we 

believe it would be of great convenience if this pdf model could be extrapolated to 

higher Sc numbers, for t+ up to 100. Theoretically, within this time range, particles with 

Sc numbers higher than 2400 still stay in their zone 1, thus we could expect our pdf 

model to work with these Sc numbers. We applied the Gamma 3P distribution model to 

predict separation between two puffs of Sc 6 and 7500. The results are plotted in Figure 

5.11, where it is seen that our pdf model and 3 realizations give the same conclusion 

that these 2 puffs could be almost separated from each other. 
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Figure 5.10 Use of Gamma 3P distribution to calculate number of particles in the 

overlap region and compare with results from DNS-LST method, pair of Sc numbers 50 

and 2400; a) number of particles of the leading puff; b) number of particles of the 
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following puff. The Adjusted 3P Gamma line adds 100 more particles to the number of 

particles of the leading puff in the overlap region. 
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Figure 5.11 Use of Gamma 3P distribution to calculate number of particles in the 

overlap region and compare with results from DNS-LST method, pair of Sc numbers 6 

and 7500; a) number of particles of the leading puff; b) number of particles of the 
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following puff. The Adjusted 3P Gamma line adds 100 more particles to the number of 

particles of the leading puff in the overlap region. 

Chapter 6. Turbulent-Laminar Patterns in Poiseuille-Couette flow 

 

6.1 Introduction 

The coexistence of turbulent and laminar bands in wall-bounded shear flows at 

transitional regime has been observed and studied recently by several researchers. These 

bands are defined as essentially steady, spatially periodic pattern of distinct regions of 

turbulent and laminar flow emerges spontaneously from uniform turbulence near 

transition. They could be identified with large wavelength and an oblique angle they 

form to the streamwise direction. These patterns have been observed and verified in 

recent studies, including experiments on plane Couette flow and couter-rotating Taylor-

Couette flow (45, 46), and in numerical simulations of plane Couette flow (52-54) and 

plane Poiseuille flow (55). 

The results from above studies, though confirm existence of such patterns at 

transitional regime, also reveal that those patterns occur at quite different range of 

Reynolds number in plane Couette flow and plane Poiseuille flow. In plane Couette 

flow, the periodic regime in which laminar and turbulent regions are permanent occurs 

at 310 < Re < 390 (52, 54). However, in plane Poiseuille flow, Tsukahara (55) found 

that the turbulent-laminar patterns exist at Re ≈ 1400. This could be explained due to 

higher turbulent intensity and shear rate in plane Couette flow. However, this prevails 

some problems in reality, as fluidic devices generally contain more than one type of 

flows. A ventricular assist device (VAD) shown in Figure 6.1 is a great example of this 
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case, in which pipe flow and couter-rotating Taylor-Couette flow happen at the same 

time, and the volumetric flow rate is unchanged throughout the device.  

 

Figure 6.1 A Ventricular Assist Device (VAD) prototype 

 

In this study, transition from plane Couette flow to plane Poiseuille flow at the 

same Reynolds number is examined. The objective is to study the difference in behavior 

of the turbulent-laminar patterns in plane Couette and plane Poiseuille flow, especially 

during the transition from Couette flow to Poiseuille flow. This research, though in its 

preliminary state, helps shed some light on understanding of these patterns during 

transition from one type of flow to another one.  

 

6.2 Simulation parameters and procedure 

In this study, we performed direct numerical simulation of a turbulent plane 

Couette flow and turbulent plane Poiseuille-Couette flow to investigate behavior of 

turbulent-laminar patterns as the flow goes from Couette to Poiseuille type. The flow 

was simulated in two computational boxes of sizes 30πh x 2h x 3πh with h = 80 and 

100πh x 2h x 12πh with h = 24 in x, y and z directions, respectively (h is half of the 
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channel-height and is made dimensionless with the viscous length scale that is based on 

the kinematic viscosity of the fluid and the friction velocity, 𝑢𝜏 = √
𝜏𝑤

𝜌
, where w is the 

shear stress at the wall and is the density of the fluid).  

The flow was assumed to be periodic in the streamwise, x, and spanwise, z, 

directions with lengths of periodicity equal to the box size in those two directions. Plane 

Couette flow of an incompressible and Newtonian fluid was simulated at two frictional 

Reynolds numbers of 24 and 80, corresponding to two Reynolds numbers of 323 and 

1247, based on half of the channel height and the wall velocity. For simplicity, both of 

two computational boxes had a resolution of 512 x 129 x 128 in x, y, z directions. A 

uniform mesh was used in x and z, while a non-uniform mesh based on Chebyshev 

collocation points was used in the y direction (63).  

In this simulation, the Navier-Stokes equations were resolved and integrated in 

time by using a pseudo-spectral fractional step method mentioned above (63). This 

algorithm has been validated in simulating plane Poiseuille flow and plane Couette flow 

through comparisons with laboratory measurements and other DNS results at similar 

conditions (63, 64, 66).   

In order to study difference in behavior of turbulent-laminar patterns in Couette 

flow and Poiseuille flow and how that happens, Poiseuille-Couette flow was simulated 

as a transition from plane Couette flow to plane Poiseuille flow at the same Reynolds 

number. Starting from a plane Couette flow in stationary state, the wall velocities were 

slightly reduced along with adding of pressure drop into the flow. This decreases 

Couette effect and increases Poiseuille effect, and the flow now becomes Poiseuille-

Couette flow. If this procedure is repeated for enough times, the flow would become 
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plane Poiseuille flow eventually. The turbulent-laminar patterns are examined 

throughout the process to study co-effect of Couette flow and Poiseuille flow on these 

patterns.  

In order to keep the plane Couette flow and plane Poiseuille flow at the same 

Reynolds number, we control the wall velocity Uw in the Couette flow and the mean 

centerline velocity Uc in the Poiseuille flow and keep Uw = Uc. The half channel height 

h is kept unchanged in each case, being either 24 or 80 in viscous wall units. As the wall 

velocity Uw in the Couette flow was reduced and pressure drop was added, the mean 

centerline velocity is different than zero. We denote the wall velocity and centerline 

velocity in the plane Poiseuille-Couette flow as Uw’ and Uc’, with a constraint that Uw = 

Uc = Uw’ + Uc’. A parameter R = Uc’/Uw is used to represent existence of Couette and 

Poiseuille flow in the system, with R = 0 represents plane Couette and R = 1 represents 

plane Poiseuille, while any value of R between 0 < R < 1 represents plane Poiseuille-

Couette flow.  

 

6.3 Results and discussion 

6.3.1 Results at Re = 323 (Reτ = 24) 

Simulations at three different R values (R = 0; 0.1; 0.2) were performed, and the 

stress distributions in the channel are plotted in Figure 6.2. Shear stress distributions at 

R = 0 (plane Couette flow) indicates that there exist turbulent activities in the channel, 

due to the presence of Reynolds stress. However, the flow appears to be in transitional 

state rather than in uniform turbulent regime, which is not unexpected as the Reynolds 

number is not high. As R is increased, the shear stress distribution moves toward that of 
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a plane Poiseuille flow, and one can see that the flow has laminarized itself at R = 0.2 as 

Reynolds stress has become zero.  
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c) 

 

Figure 6.2. Stress distribution in (a) plane Couette flow; Poiseuille-Couette flow with 

(b) R = 0.1; (c) R = 0.2 

 

 

Contour plot of streamwise fluctuating velocity at the midway plane y = 0 for 

the case of plane Couette flow (R=0) clearly reveals the coexistence of turbulent and 

laminar bands in the channel, as seen in Figure 6.3. This is consistent with previous 

findings (52-54) and confirm that our simulation is capable of capturing these patterns. 

These patterns are even more obvious in Figure 6.4, which shows that streamwise 

fluctuating velocity with magnitude of 6 (randomly chosen, including both positive and 

negative values) in the whole channel is well arranged into bands located at an oblique 

angle to the streamwise direction.  
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Figure 6.3. Contour plot of streamwise fluctuating velocity at midway plane y = 0 in a 

plane Couette flow (R=0). X is the streamwise direction 

 

 

Figure 6.4. Streamwise fluctuating velocity with magnitude of 6 in the Couttle channel 

flow 
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These turbulent-laminar patterns, however, fade rapidly as the flow becomes 

Poiseuille-Couette flow even at small values of R. In Figure 6.5, it is observed that 

those patterns have reduced in both quantity and magnitude at the midway plane of the 

channel as the flow becomes Poiseuille-Couette flow with R = 0.1. Snapshots of 

fluctuating velocity in streamwise and spanwise directions, shown in Figure 6.6, also 

shows the weakening of such patterns.  

 

 

Figure 6.5. Contour plot of streamwise fluctuating velocity at midway plane y = 0 in a 

plane Poiseuille-Couette flow (R=0.1). X is the streamwise direction 
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Figure 6.6. Fluctuating velocities in streamwise and spanwise direction at two random 

magnitude values at the midway plane y = 0 of a plane Couette flow (R=0) and plane 

Poiseuille-Couette flow (R=0.1) 
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The results above suggest that as the flow moves from pure Couette flow into 

Poiseuille-Couette flow at this Reynolds number, laminarization takes place rapidly and 

lead to weakening, then disappearing, of turbulent activities in the channel. This has led 

to disappearing of turbulent-laminar patterns as observed above. At R = 0.2, results in 

Figure 6.2 indicated that there would not be considerable turbulent activity in the 

channel. Thus, we believe that at R = 0.2, the flow has become laminar and there is no 

need to conduct further study at higher values of R, as the flow would eventually 

become laminar Poiseuille flow at R = 1.  

 

6.3.2 Results at Re = 1247 (Reτ = 80) 

Shear stress distribution in a channel of plane Couette flow (R=0) and 

Poiseuille-Couette flow (R=0.2; 0.5) is plotted in Figure 6.7. These results suggest that 

uniform turbulence was obtained in the plane Couette flow at this Reynolds number. As 

the flow goes from Couette to Poiseuille-Couette type, the stress distribution profile is 

also modified toward that in a plane Poiseuille flow, with Reynolds stress still exists at 

both R = 0.2 and R = 0.5.  

Plotting of streamwise fluctuating velocity at two magnitude values of 4 and 5 in 

Figure 6.8 and Figure 6.9 reveals interesting finding. High density of turbulent activities 

for R = 0 indicates that turbulence exist at this Reynolds number for plane Couette flow. 

As R increases from 0 to 0.5, it is obvious that turbulent intensity is reduced, which is 

not unexpected after studying the case at Re = 323. However, the most striking feature 

is that turbulent-laminar patterns seem to be created in a direction which forms an 

oblique angle to the streamwise direction. This is consistent with previous finding by 
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Tsukahara (55) who observed existence of turbulent-laminar bands in a Poiseuille flow 

at similar Reynolds number.  

a) 

 

b) 
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c) 

 

Figure 6.7. Shear stress distribution in (a) plane Couette flow; (b) plane Poiseuille-

Couette flow at R = 0.2; (c) plane Poiseuille-Couette flow at R = 0.5 

 

 

Figure 6.8. Streamwise fluctuating velocity with magnitude of 4 at a midway plane y = 

0 in a plane Couette flow (R=0) and plane Poiseuille-Couette flow with R = 0.5 
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Figure 6.9. Streamwise fluctuating velocity with magnitude of 5 at a midway plane y = 

0 in a plane Couette flow (R=0) and plane Poiseuille-Couette flow with R = 0.5 
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Chapter 7. Conclusions and Future work 

 

7.1 Turbulent drag reduction over Superhydrophobic Surfaces 

A significant level of drag reduction has been obtained on surfaces that are 

models of the behavior of SHSs using direct numerical simulation. Drag reduction is 

increased as the streamwise slip velocity on the channel wall increases. Certain changes 

have been observed in the flow structures. Longer, thicker, and weaker eddies appear in 

the viscous sublayer, compared to those in a flow with no slip and no drag reduction.  In 

the region close to the wall with slip, sweep events that bring fast moving fluid toward 

the wall are decreased, while ejections taking slow moving fluid away from the wall are 

enhanced, disrupting the exchange of momentum between the outer flowtoward thewall 

region. In all three directions, values of fluctuating vorticity are significantly reduced. A 

similar trend is also observed with the fluctuating velocity dissipation rate. As the slip 

velocity is increased, the region where the spanwise fluctuating vorticity is larger than 

the streamwise vorticity expands farther into the center region of the channel. 

The suppression of turbulence in the near-wall region is the result of the 

tendency of wall turbulence towards the one component limit in the Lumley triangle, in 

agreement with observations for turbulent drag reduction in other situations, most 

notably in cases of drag reduction with polymer additives. At this limiting state, a 

significant suppression of small scale turbulence can lead to rapid laminarization and 

significant drag reduction. The decrease of Reynolds stress, turbulence intensities, TKE 

production, vorticity, and dissipation rate are then consequences of this suppression. 
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7.2 Flow-induced separation in wall turbulence 

In this work, particles with different diffusivities, represented by passive 

markers with different Sc, have been found to separate from each other in turbulent 

flow, under certain conditions. Separation is observed when there are large differences 

in the particle Sc, and would occur most effectively in cases where the particles are 

released from sources on the channel wall. An analysis of the stages of development of 

puff dispersion is the explanation of the mechanism responsible for the separation. A 

correlation is derived to relate the time at which separation begins to the ratio of the 

characteristic times of development of the two clouds. This flow-induced separation can 

be applied to separate microscopic and nanoscopic particles with different sizes, and 

could be a good solution in separating very small particles especially in very dilute 

systems. A model, based on Batchelor’s extension of the Taylor dispersion theory for 

shear flows, has been developed to predict mean displacement of particles with different 

Sc in the streamwise and vertical directions with good agreement to our LST data. It 

was also found that information about the mean location is not enough to predict 

particle separation using a high purity criterion. Instead, one should rely on the 

previously presented correlation to predict separation in channels. The effect of the 

Reynolds number on flow-induced separation needs to be examined in future work. 

 

7.3 Probability density function of a puff dispersing from the channel wall 

The dispersing process of a puff of particles from the channel wall at Reτ = 150 

was closely examined to obtain a probability density function (pdf) that could predict 

location and concentration distribution of particles in the puff. The Gamma 3P 
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distribution was found as an appropriate pdf model that satisfies our requirement. 

Estimation of the three parameters of the Gamma 3P distribution was also successfully 

obtained, based on the physics behind the dispersing process of the puff from the 

channel wall. Several calculations have been carried out to demonstrate agreement 

between results predicted by the Gamma 3P distribution and results generated using 

DNS/LST approach. The use of Gamma 3P distribution could be found in estimating 

particles separation at different purify criteria, as well as predicting diffusion of 

particles in the channel for other applications without employing the more accurate but 

expensive DNS/LST method.  

 

7.4 Turbulent-Laminar patterns in transitional turbulence 

Direct Numerical Simulation of plane Couette flow, Poiseuille flow and 

Poiseuille-Couette flow has revealed coexistence of turbulent and laminar bands at 

transitional regime. These turbulent-laminar patterns are unique for their large 

wavelength and an oblique angel they form with the streamwise direction. Higher level 

of turbulent activities were observed in Couette flow, compared to Poiseuille-Couette 

and Poiseuille flow at comparable Reynolds numbers, which is not unexpected due to 

higher shear rate in Coutte flow. At Re = 323, flow in plane Couette is in transitional 

regime and consists of turbulent and laminar bands altogether. However, flow in plane 

Poiseuille and Poiseuille-Couette flow at this Reynolds number appears to be in laminar 

state and no turbulent spots were observed. At Re = 1247, flow in plane Couette is in 

turbulent state and coexistence of turbulent and laminar patterns was not observed. As 

the flow moves from Couette to Poiseuille flow and goes through stages of Poiseuille-



120 

Couette flow, turbulent intensity is reduced which lead to breaking of long coherent 

structures in streamwise direction and formation of turbulent-laminar patterns in a 

direction which forms an oblique angel to the streamwise direction.   

 

7.5 Future Work 

7.5.1 Flow-induced separation in wall turbulence 

Results reported in this study was performed at Reτ = 300. It is of great interest 

to examine effects of Reynolds number on the separation ability. It was found that the 

interplay between convection and diffusion plays an important role in this type of 

separation technique. Varying Reynolds number would significantly alter the interplay, 

thus lead to different results in separation ability. The project could be expanded to 

determine the optimum Reynolds number for separation, corresponding to a certain 

range of Sc numbers.  

 

7.5.2 Probability density function of a puff dispersing from the channel wall 

The Gamma 3P distribution was found in this study to be capable of predicting 

concentration distribution of a puff of particles dispersing from the channel wall at 

Reτ=150. All the parameters of the model were calculated based on the physics behind 

dispersion of the puff. However, the Gamma 3P distribution model was found to work 

well for short time (t+ up to 100). This study could be expanded to longer time when 

convection plays a more important role. The physics behind the dispersion would be 

different at large time, and may require use of a different pdf model. However, success 

in obtaining an appropriate pdf model at large time would help reduce computing cost 
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significantly and could help with other applications where downstream activities are 

mostly concerned. 
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