
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

ON THE EXISTENCE OF KAM TORI

FOR PRESYMPLECTIC VECTOR FIELDS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

SEAN MICHAEL BAUER
Norman, Oklahoma

2016



ON THE EXISTENCE OF KAM TORI
FOR PRESYMPLECTIC VECTOR FIELDS

A DISSERTATION APPROVED FOR THE
DEPARTMENT OF MATHEMATICS

BY

Dr. Nikola P. Petrov, Chair

Dr. Kevin Grasse

Dr. Alex Grigo

Dr. S. Lakshmivarahan

Dr. Christian Remling



c© Copyright by SEAN MICHAEL BAUER 2016
All rights reserved.



Dedicated to Jenny. Love.



Acknowledgements

Graduate school has comprised so much of my adult life, that it is both surreal

and a relief to be finally finished. Along the way I have had the pleasure to get to

know many great people, learn some mathematics, explore the world, and receive

the love and support of my friends and family. I would like to take the time to

thank a few specific people, but to also acknowledge the many people that helped

me in some way up until this point. I did not take the shortest possible path to

get where I am at now, but the scenery has been beautiful.

First, I would like to thank my advisor, Nikola Petrov, without whose help

this would not be possible. Nikola went above and beyond the normal role of an

advisor, meeting with me over weekends and in the evenings at my favorite coffee

shop (C&J) to make sure I finish. Over the last several years we have discussed

everything from math to physics to politics to music to life. Thank you for your

help and guidance. I can honestly say that I started out with an advisor and

ended up with a life-long friend.

I would also like to thank the members of my committee. I have learned many

interesting and useful pieces of math from each of you.

To Mom, thank you for being my biggest fan and always making sure that

I’m not hungry.

To Umma, thank you for cooking for us and helping to watch Gemma so that

iv



I could study.

To Appa, thank you for all of your support and interest in the topics that I

was studying.

To DD, thank you for being proud of me whether I accomplished anything or

not.

To Eric, thank you for buying me a bike and teaching me how to barbecue.

To Bailey, thank you for taking me out to eat at the Caf all of those times.

To John Paul, thank you for including me in your dissertation acknowledg-

ments. I hope I can return the favor some day.

To Bubba, thank you for being the world’s sweetest baby and for sleeping so

well these past several months allowing me to focus on finishing this manuscript.

And last, but most importantly, to Jenny, thank you for everything. Through-

out grad school you have been my biggest support in all respects: emotionally,

spiritually, physically (you must have woken me up hundreds of times to remind

me to fight through the tiredness and keep after it. I guess you are still trying to

make up for that Econ test in 2005...). You have bore my burdens and shared in

my joy just as much, if not more, than I have. Thank you for being right by my

side every step of the way. To you, I dedicate this dissertation.

v



Abstract

We prove the existence of a torus that is invariant with respect to the flow of a

presymplectic vector field found in a family of presymplectic vector fields. More-

over, the flow on this invariant torus is conjugate to a linear flow on a torus with

a Diophantine velocity vector. This torus is constructed by iteratively solving

functional equations using a Newton method in a space of functions by starting

from a torus that is approximately invariant. In contrast to the classical methods

of proof, this method does not assume that the system is close to integrable and

does not rely on using action-angle variables. The geometry of the problem is

used to simplify the equations that come from the Newton method. This method

of proof can be implemented into efficient numerical algorithms.
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Chapter 1

Introduction

1.1 KAM theory

1.1.1 A brief history of KAM theory

Near the end of the 19th century, Henri Poincaré discovered that the so-called

3-body problem – the problem of describing the motion of three point masses in-

teracting through Newton’s Law of Gravity – exhibits certain degree of “unsolv-

ability“. This was in sharp contrast with the view of physicists and mathemati-

cians at the time who in the preceding three centuries since Newton’s Principia

have observed exclusively regular behavior in physical systems. In mathematical

terms, “regular behavior” meant that, up to a smooth change of variables, the

temporal evolution of a physical system was given by a linear in time flow on

“invariant tori” in the phase space of the system.

A resolution of this apparent contradiction was suggested by the Russian

mathematician Andrey Kolmogorov in his famous plenary address at the Inter-

national Congress of Mathematicians held in Amsterdam in 1954 [53], reprinted
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in [1] (see also [52], reprinted in [54] and [32]). His idea was that while some of the

invariant tori are destroyed by perturbations, many invarian tori remain intact,

thereby accounting for the “regular” behavior of the system. Kolmogorov’s ideas

were developed into rigorous mathematical proofs by his student Vladimir Arnold

[6] and later by Jürgen Moser [59, 58]. The three initials of their family names

were combined to form the acronym KAM under which this circle of results is

known today.

These ideas about the behavior of trajectories played a fundamental role in

the modern understanding of the deterministic and stochastic behavior of phys-

ical systems. On the mathematical side, they have spurred a large amount of

rigorous research which is very active to this day. With the advent of comput-

ers, researchers started implementing some of the developed rigorous techniques

into practical computations. Poincaré’s discoveries and KAM-type theorems for-

ever changed the paradigms of classical physics (Aubin and Dahan Dalmedico

[8] present an interesting discussion on this topic). The fascinating history of

KAM theory is beautifully described (with a minimum of required mathematical

background) in the recent book by Dumas [32].

The relative unpopularity of KAM theory among practicing physicists is per-

haps due partially to the fact that – while the ideas and implications of KAM

theory are not difficult to understand – the rigorous proofs are long and difficult

even in their simplest versions, and have very rarely found their way to the pages

of physics books for a “general” (but still mathematically oriented) audience. A

notable exception is the book by Thirring [72]. More specialized references on the

classical KAM theory are Moser [60], Salamon [68] Chierchia [22, 23, 24], Arnold,

Kozlov, and Neishtadt [7], Broer and Sevryuk [14], de la Llave [56], Pöschel [64],

Benettin et al [12].
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The standard proofs of KAM-type theorems use the following strategy. The

equations that the unknown function should satisfy are complicated and cannot

be solved directly. Instead, one performs a sequence of transformations each

of which changes the original problem so that after each step one has better

control over the solution. The price that we have to pay for this is that we give

up some domain, so that after each step we have better control of the problem

on a smaller domain. By a judicious choice of the balance between how much

the domain is reduced at each step and how much control is gained, one can

achieve that the solution found as a limit after infinitely many steps satisfies

the original equation over a smaller but non-empty domain. Of course, if the

problem has a special structure, in the iterative procedure described above one

has to preserve the structure – for example, in KAM theory for Hamiltonian

systems one should only use symplectic transformations in order to preserve the

form of the Hamilton’s equations.

1.1.2 The parameterization method

A fruitful method for some proofs in theory of dynamical systems is the classical

graph transform method (see, e.g., [51]). In this method one constructs the

desired object (e.g., the stable manifold of a certain map) with some degree of

accuracy and then performs a sequence of transformations to make the object

closer to the desired one.

Recalling that the goal of KAM theory is to construct a transformation that

conjugates the complicated dynamics of the system to some simple dynamics on

a torus (e.g., the map on the torus is a translation by a constant amount), we

can use the graph transform method with the following purpose. Since we will be
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working with a symplectic or, more generally, presymplectic flows, let us consider

this situation. We are given a symplectic manifold P and a flow

Φt : P → P , t ≥ 0 ,

on the manifold that preserves the symplectic structure. Assume that there

exists a submanifold K of P that is invariant under time evolution. Let the

invariant submanifold K be topologically an N -dimensional torus, and assume

it has certain regularity. We want that the time evolution of the points on the

invariant submanifold K,

Φt|K : K → K , t ≥ 0 ,

can then be conjugated to a simple flow on the torus TN ,

φt : TN → TN : θ 7→ θ + tω , t ≥ 0 ,

where ω is a given constant vector whose components are rationally independent,

so that the image φt(θ), t ∈ R of any point θ ∈ TN fills TN densely. We can think

of the invariant submanifold K as the image of a map

K : TN → P , K = K(TN) ,

such that the map K conjugates the flow φt on TN to the flow Φt on the invariant

submanifold K = K(TN):

Φt ◦K = K ◦ φt .

Now the problem becomes to construct the map K. Of course, the map K
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is defined up to a constant translation on the torus, but this nonuniqueness is

natural and does not create problems.

A natural approach for constructing the conjugating map K is to try to use

the geometry and the dynamics of the system. A crucial idea in this direction is

that the tangent bundle to the invariant submanifold K is invariant with respect

to the derivative Φt ∗ of the map Φt at the point k ∈ K, i.e., that

(Φt ∗)k
(
TkK

)
= TΦt(k)K , k ∈ K .

This means that, if we choose a basis in the tangent bundle to P at each point of

the invariant submanifold K in such a way that the first N vectors are tangent

vectors to K, then in this basis the matrix representing the derivative (Φt ∗)k will

be block upper triangular at each point k ∈ K. This fact – named “automatic

reducibility” – can be used in as an ingredient in proofs as well as to simplify

numerical implementations.

1.1.3 The parameterization method in Hamiltonian dy-

namics

González, Jorba, de la Llave and Villanueva used the geometric ideas described

above in their seminal 2005 paper [26] to prove a version of the KAM theorem.

They considered a symplectic manifold P of dimension 2n and a map f : P → P

preserving the symplectic form and proved the existence of a submanifold K of

dimension n that is invariant with respect to f and such that the mapK : Tn → P

conjugates the dynamics of f on K to a translation on Tn. Their proof had an a

posteriori format, i.e., they assumed the existence of a map K0 : Tn → P that is
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only approximate, i.e., that the submanifold K0 = K0(Tn) is not invariant with

respect to the dynamics on P and that K0 is only an approximate conjugacy

between the translation on TN and the dynamics on K0. Then they showed that

under some assumptions, the map K0 can be used to start an iterative procedure

to construct maps K1, K2, . . ., with Kj : TN → P , for which the errors are

smaller, and such that in the limit of j → ∞, the maps Kj tend to the true

solution K. The iteration is a version of the Newton method for solving nonlinear

equations. This method is convenient to implement in numerical computations.

Moreover, a posteriori theorems are suitable for validation of numerical results,

that is, they can be used to produce computer assisted proof of existence of

numerical manifolds.

Another advantage of the method used in [26] is that while the original proofs

of KAM theorem relied essentially on using action-angle variables for the system,

the parameterization method of [26] does not need action-angle variables at all.

This is a big advantage because action-angle variables are often very complicated

and/or exhibit singularities.

Methods similar to the ones developed in [26] have been used by González-

Enŕıquez, Haro and de la Llave [41] to study the existence of non-twist tori in

degenerate Hamiltonian systems, and by Fontich, de la Llave and Sire [39] and

Luque and Villanueva [57] to prove the existence of lower dimensional invariant

tori that are partially hyperbolic or elliptic. Since the parameterization method

is suitable for efficient numerical implementation, it been used for this purpose

by Calleja and de la Llave [15], Huguet, de la Llave and Sire [50], Fox and Meiss

[40]. The parameterization method has been the subject of a book published

recently by Haro et al [48].
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1.2 Presymplectic geometry in physics

In modern geometric language, the evolution of an autonomous Hamiltonian sys-

tem is described as dynamics on the cotangent bundle of the configuration space

N of the system. The cotangent bundle T ∗N has a canonically defined symplectic

form Ω, i.e., a non-degenerate closed 2-form. The nondegeneracy of Ω provides an

isomorphism between the tangent and the cotangent bundles of the configuration

space of the system and is responsible for the existence and uniqueness of the

solutions of the Hamilton’s equations. In geometric language these are written

as

ιXΩ = dH .

Here X is the vector field governing the dynamics generated by the Hamiltonian

H of the system, and ιX is the contraction with X, i.e., ιXΩ := Ω(X, ·).

If the 2-form Ω is closed and of constant rank but not necessarily non-

degenerate, it is called a presymplectic form; a manifold endowed with such a

form is called a presymplectic manifold.

Perhaps the most prominent appearance of presymplectic manifolds is in

the transition from Lagrangian to Hamiltonian formalism when certain non-

degeneracy conditions are not met. In this section we briefly explain how this

happens. We will use temporary notations that are different from the notations

used in the rest of the dissertation. Let N be the configuration space of a me-

chanical system, with dimN = N , and let L : TN → R be the Lagrangian of

the system. In physics notations, L = L(q, q̇), where q = (qA) are the generalized

coordinates and q̇ = (q̇A) are the generalized velocities. The time evolution of
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the mechanical system is governed by the Euler-Lagrange equations,

∂L

∂qA
− d

dt

∂L

∂q̇A
= 0 , A = 1, 2, . . . , N . (1.1)

To make the transition to Hamiltonian formalism, one defines the generalized

momenta,

pA :=
∂L

∂q̇A
(q, q̇) , A = 1, 2, . . . , N . (1.2)

The Hamiltonian of the system, H : T ∗N → R, is defined as the Legendre

transformation of L,

H(q, p) :=

(
N∑
A=1

pAq̇
A − L(q, q̇)

)∣∣∣∣∣
q̇A=V A(q,p)

,

where the functions V A(q, p) are the generalized velocities expressed in terms of

q and p from (1.2). According to the Implicit Function Theorem, this is possible

exactly when the N ×N matrix

[
∂2L

∂q̇A ∂q̇B

]
has maximal rank.

It may well happen, however, that

rank

[
∂2L

∂q̇A ∂q̇B

]
= R < N (1.3)

– this is the case, e.g., for Lagrangians that depend linearly on some of the

velocities q̇A. Let us reorder the coordinates qA in such a way that the upper left

R × R block of

[
∂2L

∂q̇A ∂q̇B

]
is of full rank. Let us also introduce the following

notations for the indices: the lowercase roman indices take values from 1 to R,

while the lowercase greek indices run from R + 1 to N :

a, b = 1, . . . , R , α, β = R + 1, . . . , N .
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Then the rank condition (1.3) guarantees that we can express the first R velocities

q̇a in terms of coordinates q, the first R momenta pb, and the remaining (N −R)

velocities q̇β:

q̇a = V a(q, pb, q̇
β) , a = 1, . . . , R .

Substitute these expressions for q̇a into (1.2) to obtain

pA =
∂L

∂q̇A
(q, q̇) |q̇a=V a(q,pb,q̇β)

=
∂L

∂q̇A
(
q, V a(q, pb, q̇

β), q̇α
)

=: φA(q, pb, q̇
β) , A = 1, . . . , N .

(1.4)

By the way the functions V a were obtained, it is clear that φa(q, pb, q̇
β) = pa

for a = 1, . . . , N . In the remaining (N − R) relations (1.4), the functions φα,

α = R + 1, . . . , N cannot depend on q̇β (otherwise we would have been able to

express q̇β in terms of the momenta, which would violate the rank condition (1.3)).

Therefore the last (N −R) relations from (1.4) are conditions on the coordinates

and the momenta:

pα = φα(q, pb) , α = R + 1, . . . , N . (1.5)

The (N − R) relations (1.5) are called primary constraints. They are not

dynamical equations, but instead impose (N − R) conditions on the generalized

coordinates q and the generalized momenta p, so that they define a subset of the

phase space of the system; we assume that this subset is a submanifold

Γ1 := {(q, p) | pα = φα(q, pb) , α = R + 1, . . . , N}
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of dimension

dim Γ1 = 2N − (N −R) = N +R

in the 2N -dimensional phase space of the system.

The above considerations were the starting point of the development of the

theory of the so-called constrained systems, initiated by Dirac [28] (see also

Dirac’s papers [29, 30] and his book [31]) and developed by Bergmann and his

collaborators for purposes of quantization of field theories [5, 61, 13]. The book

by Sudarshan and Mukunda [69] offers an in-depth exposition of these early works

and some later developments.

Clearly, the pull-back ΩΓ1 of the original symplectic form Ω to the submanifold

Γ1 may be degenerate, so that (Γ1,ΩΓ1) is merely a presymplectic manifold.

Define the modified Hamiltonian

Hc(q, pb, q̇
β) := pAq̇

A − L(q, q̇) ,

where in the right-hand side the first R velocities q̇a are expressed from the first

R equations of the system (1.2), and the last (N −R) momenta pα are given by

the constraint equations (1.5). The Hamiltonian vector field X that determines

the evolution of the system on the manifold Γ1 should satisfy

(ιXΩΓ1 − dHc)|Γ1
= 0 . (1.6)

Since ΩΓ1 is generally presymplectic (i.e., has a nontrivial kernel), the map X 7→

ΩΓ1(X, ·) is not an isomorphism, so that the equation (1.6) may not have a

solution X (think of the completely degenerate case, when the 1-form ΩΓ1(X, ·)

is identically zero). To resolve this problem, Gotay, Nester, and Hinds [46] (see
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also Gotay and Nester [43, 45, 44] and Gotay’s Ph.D. thesis [42]) proposed the

following iterative procedure. There may exist a set of points in Γ1 – we assume

that this set is a submanifold Γ2 of Γ1 – such that the equation (1.6) restricted

to Γ2, i.e.,

(ιXΩΓ1 − dHc) ◦ j2 = 0 (1.7)

has a solution; here j2 : Γ2 ↪→ Γ1 is the natural inclusion.

Although the equation (1.7) has a solution X, it may happen that the vector

field X is not tangent to Γ2. This will imply that Γ2 is not invariant with with

respect to the time evolution, in which case the solution of (1.7) will not have any

meaning. Thus, we are forced to look for a subset Γ3 of Γ2 (again, assume that

Γ3 is a submanifold of Γ2) that is invariant with respect to the time evolution.

But when we further restrict the dynamics to Γ3, the new equation,

(ιXΩΓ1 − dHc) ◦ j3 = 0 (1.8)

(where j3 : Γ3 ↪→ Γ2 is the inclusion) may not have a solution because of the

non-trivial kernel of the presymplectic form (i.e., for the same reason for which

equation (1.6) may not have a solution).

We proceed in this manner to construct a nested sequence of submanifolds

Γ1 ⊇ Γ2 ⊇ · · · ⊇ Γk ⊇ Γk+1 ⊇ · · · .

There are three possibilities:

• either there exists some K ∈ N for which ΓK = ∅;

• or the algorithm produces a submanifold ΓK 6= ∅ with dim ΓK = 0;
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• or there exists a K at which the sequence stabilizes, i.e., ΓK = ΓK+1, and

dim ΓK 6= 0.

The first possibility means that the Hamilton equations have no solutions in

any sense. In the second case the system is consistent, but the manifold ΓK

consists of isolated points, i.e., it has no dynamics. The most interesting case is

the third one, in which we obtain completely consistent equations of motion on

the final constraint submanifold ΓK :

(ιXΩΓ1 − dHc) |ΓK = 0 .

In general, it may turn out that the pull-back of the symplectic form to the

final constraint submanifold ΓK is degenerate (in particular, nothing prevents

ΓK from being odd-dimensional). Therefore, this construction leads to dynamics

on a presymplectic manifold.

Such situations occur in classical electromagnetic theory (see Sec. VI of [46]),

in the description of relativistic particles (Hanson, Regge and Teitelboim [47],

Sundermeyer [70, Ch. VII]), gauge fields, and generally in systems whose La-

grangians exhibits local symmetries – see, e.g., the books by Sundermeyer [70, 71],

Henneaux and Teitelboim [49], Rothe and Rothe [65], the review of Wipf [74],

and the philosophical essay of Earman [35]. The above considerations are only

the beginning of a long and complicated story which is still unfolding – the book

by Henneaux and Teitelboim [49], published more than 20 years ago, has more

than 500 pages.

The so-called Dirac brackets developed in connection with constrained dy-

namics are a standard tool in dealing with constrained systems (see, e.g., the

book by Cushman and Bates [25]).
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Presymplectic geometry is related to several topics of interest for physicists

and mathematicians: equivalence between Lagrangian and Hamiltonian formalisms

for constrained systems [18, 11, 10], canonical transformations in presymplectic

systems [17, 19], reduction of presymplectic manifolds [27, 37, 36, 63, 3], geomet-

ric approach to maximum principles [9], geometric optics [21, 20, 33, 34].

1.3 Goal of the dissertation

The parameterization method for proving KAM theorems [26] has been employed

in several contexts, some of which were mentioned at the end of Section 1.1.3.

Alishah and de la Llave [4] used this method to prove a KAM theorem for presym-

plectic systems, when the degeneracy of the presymplectic form causes some prob-

lems. They considered a family {fλ} of presymplectic maps, i.e., such that each

map fλ from the family preserves the presymplectic form. For such a family they

found a value λ̄ of the parameter λ and an embedding K from a torus to the

presymplectic manifold such that

fλ̄ ◦K = K ◦ Tω

where Tω : θ 7→ θ + ω is translation on the torus by a Diophantine vector ω (see

Definition 2.9).

The main goal of this dissertation is to prove a KAM theorem for a family {Vλ}

of presymplectic vector fields on an exact presymplectic manifold. In more detail,

let us consider an exact presymplectic manifold (P ,Ω) of dimension d+2n, where

the kernel of the presymplectic form Ω is d-dimensional; we take P ∼= Td×T ∗Tn,

where the kernel of Ω coincides with the first d dimensions. Our goal is to find
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a value λ̄ of the parameter λ and an embedding K : Td+n → P such that the

submanifold K := K(Td+n) is invariant with respect to the flow Φt of the vector

field Vλ̄, and K conjugates the flow Φt to the linear flow on Td+n,

φt : Td+n → Td+n : θ 7→ θ + tω , t ≥ 0 , (1.9)

i.e.,

Φt ◦K = K ◦ φt , t ≥ 0 . (1.10)

We can write (1.10) in infinitesimal form by differentiating (1.10) with respect

to t and setting t = 0: we obtain that the vector field Vλ̄ at the point K(θ)

should equal the directional derivative ∂ωK in the direction of the vector ω ≡

ωθ ∈ TθTd+n, i.e.,

Vλ̄,K(θ) = ∂ωK(θ) . (1.11)

Here we have used the notation

∂ωK(θ) := (K∗)θ ωθ ∈ TK(θ)P ,

where we consider the constant vector ω as a tangent vector to Td+n at the point

θ ∈ Td+n. Since we consider Td × T ∗Tn as a model of P , we can think of K as

a function with values in Td × T ∗Tn, and can assume that there exists a natural

basis at TpP at each point p ∈ P , namely, the basis coming from the coordinates

in P ∼= Td × T ∗Tn. With this understanding, we think of (1.11) as an equality

between two column vectors.

The common thread throughout the dissertation will be the geometry of the

system and its relation with the dynamics of the presymplectic vector fields. A
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central role in the construction of K is played by “automatic reducibility” [26]

(mentioned in Section 1.1.2), i.e., the fact that one can use the invariance of the

tangent bundle to K with respect to the flow of the presymplectic vector field

to construct a special basis in which the equations can be solved simply (see the

construction of the corrections ε0 and ∆0 below). Another fact that helps us

recognize the “big” and “small” parts of certain expressions is that the invariant

torus K is an isotropic submanifold (i.e., that the pull-back of the presymplectic

form Ω on K vanishes identically). We found the following interesting quotations

related to this fact. On page 45 of his classic 1973 monograph [60], Moser writes

Actually, more than asserted in Theorem 2.7 can be proven. It turns

out that the differential form
n∑

k=1

dyk ∧ dxk vanishes identically on the

tori (3.11), and one calls manifolds with this property and of maximal

dimension Lagrange manifolds.

In this quotation, Theorem 2.7 is (as Moser calls it) the Kolmogorov-Arnold

Theorem, and the tori (3.11) are the invariant tori whose existence is proved in

the KAM theorem. On page 584 of their monograph [1], Abraham and Marsden

write

Moser [1973a] states that the invariant tori are Lagrangian subman-

ifolds [. . .]. This fact can probably be exploited, although to our

knowledge it has not been.

The fact that the invariant torus K is isotropic and of a maximum dimension

(i.e., Lagrangian in the symplectic case) has been used at a crucial point of the

proof in the paper by de la Llave et al [26], and is also a vital part of our proof.

We return to the construction of the parameter λ̄ and the embedding K for

which we use the strategy proposed in [26]. Suppose that we are given a value
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λ0 of the parameter λ and a map K0 : Td+n → P such that the flow Φ0,t of the

vector field Vλ0 is approximately conjugate to the linear flow (1.9) on Td+n. Let

e0(θ) := Vλ0,K0(θ) − ∂ωK0(θ) (1.12)

be the error. If the pair (λ0, K0) were a true solution, then e0 would be identically

zero. We want to construct a more accurate solution (λ1, K1), for which the error

e1(θ) := Vλ1,K1(θ) − ∂ωK1(θ) (1.13)

would be quadratically small, i.e.,

‖e1‖ ≤ C ‖e0‖2 (1.14)

(to simplify this explanation, at the moment we ignore the question of choice of

norms). To this end, we set

λ1 := λ0 + ε0 , K1(θ) := K0(θ) + ∆0(θ) . (1.15)

and look for the “small” corrections ε0 ∈ Rd+2n and ∆0 : Td+n → P to the

parameter λ0 and the embedding K0, respectively.

The corrections ε0 and ∆0 must satisfy a variational equation which is a linear

equation with respect to ε0 and ∆0. This equation, however, is difficult to solve,

so we use the geometry of the system. To understand the geometry, let us go

back to the pair (λ̄, K). It is clear that the tangent bundle TK to the invariant

submanifold K = K(Td+n) is an invariant subbundle of the tangent bundle TP

to the manifold P . We can use this fact to construct a special basis in TK(θ)P at
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each point K(θ) ∈ K. Namely, we can choose the first (d+n) basis vectors to be

tangent to K, and the remaining n basis vectors to be transversal to K. Then the

span of the first (d + n) basis vectors will be invariant under the flow Φt of the

vector field Vλ̄. Then the matrix of Φt in this basis will be block upper triangular,

with the top left (d+ n)× (d+ n) block corresponding to the transformation of

the tangent bundle of K.

Using these geometric ideas, we can rewrite the equation for the corrections

ε0 and ∆0 in the special basis, in which the equation looks simpler up to small

corrections. We show that these corrections are small and can be ignored, and

then we solve the resulting equation to find ε0 and ∆0. Having found ε0 and

∆0, we construct λ1 and ∆1 according to (1.15), so that the new error, e1 (1.13),

is quadratically small in comparison with the old one, e0 (1.12), i.e., (1.14) is

satisfied. This comes with a price – the functions K0 and K1 should be defined

on a domain that is the torus Td+n “thickened” in complex direction, i.e., each

angle θα is a complex number with |Im θα| ≤ ρ (see the definition of the thickened

domain in (2.12)). The new function, K1 is defined on a domain Td+n
ρ1

that is

smaller than the domain Td+n
ρ0

of K0, i.e., ρ0 > ρ1.

We apply the above construction of (λ1, K1) iteratively. Namely, we construct

a series of pairs (λj, Kj) such that the errors ej (constructed analogously to (1.12)

and (1.13)) satisfy

‖ej+1‖ρj+1
≤ C ‖ej‖2

ρj
,

where ‖ ‖ρj stands for the supremum norm on Td+n
ρj

. Since the functions Kj are

defined on domains Td+n
ρj

that decrease with j, we have to make sure that the

decreasing sequence

ρ0 > ρ1 > ρ2 > · · ·

17



has a non-zero limit, ρ∞ := lim
j→∞

ρj, so that the function

K∞ := lim
j→∞

Kj

is defined on a nonempty domain Td+n
ρ∞ . To achieve this, one has to carefully

choose the balance between how much domain is given up and how much control

over the norms is gained; this procedure was introduced in the classic papers by

Moser [59, 58].

1.4 Plan of the exposition

In Chapter 2 we define the concepts needed and state the main theorem. In

Section 2.1 we introduce exact presymplectic manifolds and presymplectic vec-

tor fields and give several conditions for presymplecticity of a vector field. We

also discuss some issues related to constructing a symplectic manifold out of a

presymplectic one by modding out the kernel of Ω. In Section 2.2 we collect

several definitions and state an important result by Rüssmann that is used later.

In Section 2.3 we set up the problem, introduce notations for the coordinates,

and give a complete statement of our main result, Theorem 2.12.

In Chapter 3 we discuss the geometry of the problem, assuming that we know

a true solution K : Td+n → P satisfying (1.10). After giving some definitions in

Section 3.1, we prove in Section 3.2 that an invariant torus is isotropic. Section 3.3

is devoted to the construction of an adapted basis in the linear spaces TK(θ)P for

each K(θ) ∈ K (i.e., a basis of (TP)|K) with the special property that the first

(d + n) vectors in it span TK(θ)K and writing the presymplecticity condition on

the vector field Vλ in this adapted basis. In Section 3.4 we construct a matrix
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Mθ of change of basis from an arbitrary basis in TK(θ)P to the adapted basis. We

also derive a representation of (DVK(θ) − ∂ω)Mθ which will be useful in solving

the linearized equation in Section 4.3 and find expressions for M−1
θ .

Chapter 4 is devoted to computing the approximate solutions (λj, Kj) from

the initial approximation (λ0, K0). For an approximate solution K0, the torus

K0 = K0(Td+n) is not an isotropic submanifold of P , but the norm of the pull-

back of the presymplectic form Ω to K0 is small and can be bounded above by

the norm of the error; we derive these bounds in Section 4.1. In Section 4.2 we

derive the variational equation whose solutions are the corrections ε0 and ∆0 to

λ0 and K0 (recall (1.15)). We use the adapted basis constructed in Section 3.3

to identify the “big” and the “small” parts of the coefficients in the variational

equation. We ignore the “small” parts to write a simplified version of the varia-

tional equation in which the terms that were ignored are the same order as the

terms that were neglected in the derivation of the variational equation (so that

ignoring the “small” terms does not contribute to the leading order of the error).

We solve the resulting equation, thus finding the corrections ε0 and ∆0 to the

parameter λ0 and the embedding K0.

Having shown how to correct (λ0, K0) to construct a better approximation

(λ1, K1), we apply this procedure iteratively to construct a sequence of approxi-

mations

(λ0, K0) 7→ (λ1, K1) 7→ (λ2, K2) 7→ (λ3, K3) 7→ · · ·

whose limit (λ∞, K∞) is the desired solution (λ̄, K) satisfying (1.10). This iter-

ative construction should be done carefully so that the domain of the limiting

embedding K∞ is non-empty. This is performed in Chapter 5.
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Chapter 2

Preliminaries and General Setup

In this chapter, we will introduce the definitions and notations for our setup.

In particular, we will define presymplectic manifolds, presymplectic vector fields,

Diophantine vectors, and describe the classes of functions and norms that we

will be using. We will also see that there exists a canonical symplectic manifold

obtained from the presymplectic manifold given by modding out by the kernel of

the presymplectic form. We introduce coordinates adapted to the geometry of the

problem, and give a precise statement of the main theorem of this dissertation.

2.1 Exact presymplectic manifolds

The systems that we will be considering are presymplectic vector fields on exact

presymplectic manifolds.

Definition 2.1. A presymplectic manifold is a pair (P ,Ω), where P is a

manifold of any (finite) dimension and Ω ∈ Ω2(P) is a closed 2-form with con-

stant rank. If Ω is exact, i.e., if Ω = dτ for some τ ∈ Ω1(P), then we say that

(P ,Ω) is an exact presymplectic manifold.
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Throughout this dissertation, we will always assume that

dimP = d+ 2n , rank Ω = 2n . (2.1)

Most of the time we will consider the specific exact presymplectic manifold

P := Td × T ∗Tn ∼= Td × Tn × Rn (2.2)

with an exact presymplectic form Ω of rank 2n whose kernel is coincides with

the d-dimentional torus, Td. We will assume that the manifold Td × T ∗Tn is

endowed with an Euclidean structure, so that we can identify two-forms with

linear operators and abstract tangent vectors with column vectors. This will be

useful for doing analysis in later chapters. Choosing Td × T ∗Tn as a model for a

general presymplectic manifold is a natural choice employed by many researchers

in the field.

Despite the specific choice (2.2) of the structure of the exact presymplectic

manifold P , we will use general differential-geometric ideas as an inspiration. In

Section 2.1.2 we will discuss some general differential-geometric aspects of the

problem at hand without using the specific structure of P given by (2.2).

One important way in which a presymplectic manifold differs from a symplec-

tic manifold is that a symplectic manifold must be even dimensional, whereas a

presymplectic manifold could be of even or odd dimension. If the rank of Ω is

equal to the dimension of P (and dimP is even), then the manifold is actually a

symplectic manifold.
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2.1.1 Presymplectic vector fields

Given a presymplectic manifold P , we will consider a certain class of vector fields

on P . In the definition below, X(P) stands for the vector fields on P , L is the

Lie Derivative, and ι is the interior product, i.e., the contraction of a form with

a vector field.

Definition 2.2. Let V ∈ X(P) be a vector field on P and

Φt : P → P

be the time-t flow of V . The vector field V is said to be presymplectic if its

flow Φt preserves the presymplectic structure on P, i.e. if

Φ∗t Ω = Ω ∀ t ∈ R .

The following proposition gives several equivalent conditions for a vector field

to be presymplectic.

Proposition 2.3. Let (P ,Ω) be a presymplectic manifold, and V ∈ X(P). Then

the following conditions are equivalent:

(a) V is a presymplectic vector field;

(b) the Lie derivative of the presymplectic form along V vanishes:

LV Ω = 0 ; (2.3)

(c) the 1-form ιV Ω is closed.
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Proof. The fact that (a) implies (b) follows directly from the definition of a Lie

derivative:

LV Ω = lim
t→0

Φ∗tΩ− Ω

t
.

To see that (b) implies (a), notice that

Φ∗t (LV Ω) = Φ∗t

(
lim
s→0

Φ∗sΩ− Ω

s

)
= lim

s→0

Φ∗t+sΩ− Φ∗tΩ

s
=

d

ds
(Φ∗sΩ)

∣∣∣
s=t

.

This observation implies that, if LV Ω = 0, then Φ∗tΩ is constant for all t, hence

Φ∗tΩ = Φ∗0Ω = Ω .

To show that (b) and (c) are equivalent, we use Cartan’s magic formula and

the closedness of Ω:

LV Ω = ιV dΩ + d(ιV Ω) = d(ιV Ω) .

We will be interested in families of vector fields, {Vλ}, where λ is a parameter

in Rm for some m which is usually equal to dimP . Considering families of vector

fields instead of just a single vector field means that we will be looking for a

particular value of the parameter λ, say λ̄, for which the vector field Vλ̄ from

the family {Vλ} has an invariant torus. In other words, in the course of our

computations we will need to adjust the parameter λ to a value λ̄ for which our

problem has a solution. This is a commonly used technical procedure (see, e.g.,

[26, 38, 4, 16]) that will allow us to have a more relaxed set of non-degeneracy

conditions. We will often suppress the subscript λ to help make formulae more
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visually pleasing, especially when the value of the parameter λ does not change.

2.1.2 Foliation induced by ker Ω

In this section we consider more general questions related to the geometry of

presymplectic manifolds. Since in our proof we will work only in the case when

P has the concrete form given in (2.2), this subsection is mostly of theoretical

interest.

For any p ∈ P , the presymplectic form

Ωp : TpP × TpP → R

is an antisymmetric bilinear mapping, and its kernel is defined as

ker Ωp := {Wp ∈ TpP | ιWpΩp = 0}

= {Wp ∈ TpP | Ωp(Wp, Up) = 0 ∀Up ∈ TpP} ⊆ TpP .

Since Ω is of constant rank 2n and dimP = d + 2n (recall (2.1)), the collection

of subspaces ker Ωp for all p ∈ P forms a differentiable distribution of constant

rank d, i.e.,

dim ker Ωp = d , p ∈ P ,

which we denote by ker Ω. Let Xker Ω(P) stand for the set of all smooth vector

fields on P whose value at each point p ∈ P lies in ker Ωp:

Xker Ω(P) := {W ∈ X(P) | ιWΩ = 0}

= {W ∈ X(P) | Wp ∈ ker Ωp ∀ p ∈ P} .
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One of the important immediate consequences from the fact that Ω is presym-

plectic is that its kernel is a completely integrable distribution. To prove this

result, we will need the classical Frobenius Theorem, proved in the books of

Warner [73, Theorem 1.60], Abraham and Marsden [2, Section 4.4], Rudolph and

Schmidt [66, Section 3.5], and Libermann and Marle [55, Appendix 3], among

many others; Libermann and Marle give a very detailed discussion.

Theorem 2.4 (Frobenius). On a manifold M, let F be a differentiable distri-

bution of constant rank. Then F is completely integrable if and only if for every

pair (U, V ) of differentiable sections of F , defined on the same open subset of

M, [U, V ] is a differentiable section of F .

Lemma 2.5. If Ω is a presymplectic form, the distribution ker Ω is completely

integrable.

Proof. Let U, V ∈ Xker Ω(P) and let W ∈ X(P) be an arbitrary vector field on P .

From the closedness of Ω and the explicit formula for exterior derivatives we

obtain

0 = (dΩ)(U, V,W )

= U(Ω(V,W ))− V (Ω(U,W )) +W (Ω(U, V ))

− Ω([U, V ],W ) + Ω([U,W ], V )− Ω([V,W ], U)

= −Ω([U, V ],W ) ,

hence [U, V ] ∈ Xker Ω(P). The integrability of ker Ω follows directly from this

observation and the Frobenius Theorem.

Lemma 2.5 implies that the manifold P has a foliation with d-dimensional
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leaves such that the tangent space to the leaf through a point p ∈ P is the

subspace ker Ωp of TpP . Clearly, even if a distribution is completely integrable,

the leaves of the resulting foliation might not form a manifold. To formulate a

condition that guarantees that the leaves of the foliation form a manifold we need

the following definition (reproduced from [55, Sec. 4.3.3 of Appendix 3]).

Definition 2.6. A foliation on a differentiable manifold P is said to be simple if

there exists a surjective submersion πQ of P onto another differentiable manifold

Q such that, for every point p in P, the leaf that passes through p is the closed

submanifold
(
πQ
)−1

(πQ(p)). The manifold Q may then be identified with the set

of leaves of the foliation, and the distribution tangent to the leaves is ker
(
πQ∗
)
,

where πQ∗ stands for the derivative of the map πQ.

The proposition below (adapted from [55, Section III.7]) states that the man-

ifold Q carries a natural symplectic structure.

Proposition 2.7. Let (P ,Ω) be a presymplectic manifold with rank Ω = 2n.

Assume that the foliation defined by the completely integrable distribution ker Ω

of TP is simple.

Let Q be the manifold of the leaves of this foliation, and

πQ : P → Q (2.4)

be the canonical projection. Then there exists a unique symplectic form Ω̃ ∈

Ω2(Q) on the manifold Q such that

(πQ)∗Ω̃ = Ω . (2.5)

Definition 2.8. The symplectic manifold (Q, Ω̃) constructed in Proposition 2.7
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is called the reduced symplectic manifold associated with the presymplectic

manifold (P ,Ω).

For the remainder of the dissertation, we will always assume that the foliation

induced by ker Ω is simple and, therefore, the collection of leaves is a manifold Q.

Clearly, this assumption is satisfied in the particular case (2.2) of main interest

for us. It would be interesting to investigate the case when this condition is not

met.

2.1.3 Matrix representation of Ω and Ω̃

Since the kernel of the symplectic form Ω in the presymplectic manifold P (2.2)

is assumed to coincide with Td, the collection of leaves,

Q = P/ ker Ω = T ∗Tn , (2.6)

is a symplectic manifold with symplectic form Ω̃ given by (2.5). Since we assume

the existence of Euclidean structure on P (recall (2.2)), we can identify a 2-form

with a linear operator. Let

Jp : TpP → TpP , p ∈ P

be the linear operator corresponding to the presymplectic form Ω on P at p ∈ P ,

which is defined by

〈Up, JpWp〉Rd+2n = Ωp(Up,Wp) , Up,Wp ∈ TpP ∼= Rd+2n , p ∈ P , (2.7)
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where 〈·, ·〉Rd+2n is the Euclidean inner product on Rd+2n. Similarly, let

J̃q : TqQ → TqQ , q ∈ Q

be the linear operator corresponding to the symplectic form Ω̃ on TqQ at q ∈ Q,

defined by

〈
Ũq, J̃qW̃q

〉
R2n

= Ω̃q

(
Ũq, W̃q

)
, ξ̃, η̃ ∈ TqQ ∼= R2n , q ∈ Q , (2.8)

where 〈·, ·〉R2n is the Euclidean inner product on R2n.

Since Ω̃ is a symplectic form, it is clear that J̃q is a linear isomorphism for

any q ∈ Q. On the other hand, Jp has a d-dimensional kernel. If we choose a

basis for TpP ∼= Rd×R2n such that the first d vectors form a basis of Rd, and the

other 2n vectors form a basis of R2n, then we can write Jp in a matrix form as

Jp =

 0 0

0 J̃πQ(p)

 . (2.9)

We will not make a notational distinction between an operator and its matrix.

Clearly, the antisymmetry of Ω and Ω̃ imply the antisymmetry of Jp and J̃q:

J>p = −Jp , J̃ >q = −J̃q .

Although Jp is not invertible, we will use the notation J−1
p for the Moore-
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Penrose pseudoinverse for Jp:

J−1
p :=

 0 0

0 J̃−1
πQ(p)

 ; (2.10)

with this definition we have

Jp J
−1
p =

 0 0

0 I2n

 .

2.2 Miscellaneous definitions and results

In this section we collect several definitions and results that will be needed later.

2.2.1 Diophantine vectors

Diophantine numbers hold a special role in mathematics. These numbers are

(necessarily) irrational, but in some sense they are “more irrational” than some

other irrational numbers. The properties of these numbers help to overcome the

problem of “small divisors” and thus to solve a certain linear differential equation

on the torus (as in Proposition 2.11 below).

Definition 2.9. For γ > 0 and σ ≥ d+ n− 1, the set of all ω ∈ Rd+n satisfying

the condition

|ω · k| ≥ γ

|k|σ
∀ k ∈ Zd+n \ {0} (2.11)

will be called the set of Diophantine vectors and will be denoted by D(γ, σ).

Diophantine vectors are abundant, being of full measure (in the Lebesgue

sense). For an in-depth look at the properties of Diophantine numbers see, e.g.,
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Niven’s book [62].

2.2.2 Function spaces

For any ρ > 0, we define the torus “thickened” into the complex direction,

Td+n
ρ := {θ ∈ Cd+n/Zd+n | |Im θα| ≤ ρ, α = 1, 2, . . . , d+ n} . (2.12)

Let | | stand for the supremum norm on Rm or Cm (for any m). Given ρ > 0, we

define the set of functions Wρ as follows:

Wρ :=
{
K : Td+n

ρ → P | (a) K is real analytic on the interior of Td+n
ρ ,

(b) K is continuous on the boundary of Td+n
ρ , and

(c) K is periodic of period 1 in all of its arguments
}
.

(2.13)

Define a norm on Wρ by

‖K‖ρ = sup
θ∈Td+nρ

|K(θ)| .

With the above definitions, (Wρ , ‖ ‖ρ) is a Banach space.

We will use also the following norms: for analytic functions g with bounded

derivatives in a complex domain B and for ` ∈ N,

|g|C`,B := sup
0≤|k|≤`

sup
z∈B

∣∣Dkg(z)
∣∣ . (2.14)

where k is a multiindex.

The following bound is an easy application of the Cauchy integral formula.

30



Proposition 2.10. For K ∈ Wρ and 0 < δ < ρ, the following inequality holds:

‖DK‖ρ−δ ≤ Cδ−1 ‖K‖ρ . (2.15)

From the estimate (2.15) we can see that in order to get an estimate on the

derivative DK, we must shrink the width of the thickened torus from ρ to ρ− δ.

If we select a very small δ > 0, then δ−1 is large and we have lost some control

over the tightness of the bound. On the other hand, if δ is large, then we have a

tight bound in a small domain. Choosing an appropriate δ will play an important

role in the convergence of the iterative method.

2.2.3 Rüssmann’s result

The main reason for us to consider the set D(γ, σ) ⊂ Rd+n is because of the

following proposition by Rüssmann [67].

Proposition 2.11. Let ω =
[
ω1 ω2 · · · ωd+n

]> ∈ D(γ, σ) and let the function

h : Td+n → P be analytic on Td+n
ρ and have zero average. Then for any 0 < δ < ρ,

the differential equation

∂ωv = h ,

where

∂ω := ω1 ∂

∂θ1
+ · · ·+ ωd+n ∂

∂θd+n

is the directional derivative in the direction of ω, has a unique average zero solu-

tion v : Td+n → P which is analytic in Td+n
ρ−δ .

Moreover, the solution v satisfies the estimate

‖v‖ρ−δ < Cγ−1δ−σ ‖h‖ρ , (2.16)
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where C is a constant depending only on d, n, and σ.

2.3 Setting up the problem

In this section we describe briefly the general setup of the problem, introduce

some notations, and state our main result (Theorem 2.12).

2.3.1 General setup

Let Vλ ∈ X(P) be a (d + 2n)-parameter family of presymplectic vector fields on

the exact presymplectic manifold P . The goal is to construct a torus in P that

is invariant with respect to the flow of the vector field Vλ for some value λ̄ of the

parameter λ and, moreover, such that the flow of Vλ̄ on this invariant torus be

conjugate to a translation on Td+n by a Diophantine vector ω. More specifically,

let Td+n := Rd+n/Zd+n be the (d+ n)-dimensional torus, and

K : Td+n → P (2.17)

be a smooth embedding. We want that the torus

K := K(Td+n) ⊆ P (2.18)

(of dimension d+n) be invariant with respect to the flow Φt of the presymplectic

vector field Vλ̄, and, moreover, that the flow Φt of the vector field Vλ̄ be conjugate

to the linear flow φt along the constant Diophantine vector ω ∈ Rd+n:

K(φt(θ)) = Φt(K(θ)) ∀ t ∈ R , ∀ θ ∈ Td+n , (2.19)
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where

φt : Td+n → Td+n : θ 7→ θ + tω . (2.20)

When we write an argument of K, we always think of it as an element of Td+n,

without writing this explicitly (i.e., when writing θ+ tω, we assume that we have

taken only the fractional parts of each component of θ + tω).

We can express the relation (2.19) by saying that the diagram

Td+n K - P

Td+n

φt

?
K - P

Φt

?

is commutative.

Taking a derivative with respect to t of both sides of (2.19) and setting t = 0,

we obtain that (2.19) implies

K∗ θ ωθ = Vλ̄,K(θ) ∀ θ ∈ Td+n . (2.21)

Here Vλ̄,K(θ) ∈ TK(θ)K ⊆ TK(θ)P is the value of the vector field Vλ̄ at the point

K(θ) ∈ K ⊆ P , ωθ ∈ TθTd+n is the Diophantine vector ω considered as an element

of the tangent space TθTd+n (which is naturally isomorphic to Rd+n), and

K∗ θ : TθTd+n → TK(θ)K ⊆ TK(θ)P

is the derivative of the map K (2.17) at the point θ ∈ Td+n. Hereafter, we usually

write the arguments as subscripts.
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2.3.2 Notations for the coordinates

Instead of the differential-geometric notations used in (2.21), we will normally use

matrix notations, and will write the arguments as subscripts. In these notations

the equality (2.21) reads

DKθ ω = Vλ̄,K(θ) (2.22)

(where ω is considered as a constant column vector) or, using ∂ω for directional

derivative in the direction of ω,

∂ωKθ = Vλ̄,K(θ) .

In (2.22), DKθ stands for the matrix

DKθ =
[
(DKθ)

A
α)
]

=

[
∂KA

∂θα
(θ)

]
∈ Md+2n,d+n(R) .

Hereafter we use the following notations for the indices: capital roman letters

stand for the coordinates in P , while lowercase letters from the beginning of the

greek alphabet index the coordinates in Td+n:

A,B, . . . = 1, 2, . . . , d+ 2n , α, β, . . . = 1, 2, . . . , d+ n . (2.23)

Writing P as Td × T ∗Tn as in (2.2), we divide the coordinates x =
(
xA
)

in two

groups: x = (xµ) parameterize Td (the first d coordinates in P), while x̃ = (x̃i)

parameterize T ∗Tn (the last 2n coordinates in P):

x =
(
xA
)

= (x, x̃) =
(
xµ, x̃i

)
, µ = 1, 2, . . . , d , i = 1, 2, . . . , 2n . (2.24)
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These notations are collected in Table 2.1 below.

Coordinates Range of indices Remark

x =
(
xA
)

A,B = 1, 2, . . . , d+ 2n Coordinates in P ∼= Td × T ∗Tn

x = (xµ) µ, ν = 1, 2, . . . , d Coordinates in Td (the first d in P)

x̃ = (x̃i) i, j = 1, 2, . . . , 2n Coordinates in T ∗Tn (the last 2n in P)

θ = (θα) α, β = 1, 2, . . . , d+ n Coordinates in Td+n

Table 2.1: Notations for indices and coordinates.

2.3.3 The presymplecticity condition in matrix notations

In this section we will use the notations introduced above to write down the

condition for a vector field to be presymplectic. The parameter λ plays no role

here, so we omit it.

Using the explicit expression for the Lie derivative of a 2-form,

(LV Ω)(U,W ) = LV
(
Ω(U,W )

)
− Ω (LVU,W )− Ω (U,LVW )

(where U, V,W ∈ X(P)), and the fact that the Lie derivative of a vector field is

the commutator

(LVU)A = [V, U ]A =
d+2n∑
A=1

(
∂UA

∂xB
V B − ∂V A

∂xB
UB

)
,

we obtain

(LV Ω)(U,W ) =
d+2n∑

A,B,C=1

UA

(
∂ΩAB

∂xC
V C +

∂V C

∂xA
ΩCB + ΩAC

∂V C

∂xB

)
WB .
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Using the operator J =
(
JAB

)
introduced in (2.7), we have

Ω(U,W ) = 〈U, JW 〉 = U>JW =
d+2n∑
A,B=1

UAJ
A
BW

B ,

so we can rewrite the above identity as

(LV Ω)(U,W ) =
d+2n∑

A,B,C=1

UA

(
∂JAB
∂xC

V C +
∂V C

∂xA
JCB + JAC

∂V C

∂xB

)
WB

=
d+2n∑

A,B,C=1

UA

(
∂JAB
∂xC

V C +
(
(DV )>

)A
C J

C
B + JAC (DV )CB

)
WB

=
d+2n∑

A,B,C=1

UA

(
(DJ)V + (DV )> J + J DV

)A
BW

B .

Here we lowered an index of a vector to signify transposition (which is the same as

contracting the vector with the Euclidean metric tensor), and used the notations

(DV )CB =
∂V C

∂xB
,

(
(DV )>

)A
C =

∂V C

∂xA
,

and (
(DJ)V

)A
B :=

d+2n∑
C=1

∂JAB
∂xC

V C . (2.25)

Therefore in matrix notations the condition (2.3) for the vector field V to be

presymplectic becomes

(DJ)V + (DV )> J + J DV = 0 . (2.26)

2.3.4 Statement of the main theorem

Here we finally give a complete statement of the main theorem in this dissertation.
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Theorem 2.12. Assume that:

1) ω ∈ D(γ, σ) is a Diophantine vector;

2) P = Td × T ∗Tn;

3) Ω is an exact presymplectic form on P of rank 2n such that the kernel of Ω

coincides with the first d directions;

4) {Vλ} is a (d+ 2n)-parameter family of presymplectic vector fields on P;

5) K0 : Td+n → P is an embedding belonging to the class Wρ0 (2.13);

6) the value λ0 of the parameter λ is such that the pair (λ0, K0) is non-

degenerate in the sense of Definition 4.6;

7) each vector field from the family {Vλ} can be holomorphically extended to

some complex neighborhood Br of K0(Td+n
ρ ), where

Br :=
{
z ∈ Cd+2n | ∃θ ∈ Td+n

ρ0
such that |z −K0(θ)| < r

}
, (2.27)

for some r > 0 and such that |Vλ|C2,Br is finite.

Define the error function as

e0,θ := Vλ,K0(θ) − ∂ωK0,θ .

Then there exists a constant c > 0 depending on d, n, σ, ρ0, ‖DK0‖ρ0, r, |Vλ|C2,Br ,∥∥∥∥∂Vλ∂λ

∣∣∣
λ=λ0
◦K0

∥∥∥∥
ρ0

, and
∣∣{avg (Λ0)}−1

∣∣, such that if

0 < δ0 < max
{

1,
ρ0

12

}
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and the error e0 satisfies the condition

‖e0‖ρ0 ≤ min
{
γ4δ4σ

0 , crγ2δ2σ
0 ‖e0‖ρ0

}
,

then there exists a mapping K ∈ Wρ0−6δ0 and a vector λ̄ ∈ Rd+2n such that

Vλ̄,K(θ) = ∂ωKθ .

Moreover, the following inequalities are satisfied:

‖K −K0‖ρ0−6δ0
<

1

c
γ2δ−2σ

0 ‖e0‖ρ0∣∣λ̄− λ0

∣∣ < 1

c
γ2δ−2σ

0 ‖e0‖ρ0 .
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Chapter 3

True Solutions

In this chapter we will introduce the concept of an invariant torus – i.e., a true

solution of the problem – and will prove some results for invariant tori. We will

discuss in detail the geometry of an invariant torus, will develop some geometric

ideas, and perform some calculations that will be useful for the construction of

invariant tori in the following chapters.

In particular, we will introduce a special basis in the tangent space to the

presymplectic manifold near the invariant torus that will utilize the geometry

and the dynamics of the problem. This basis will be an important tool because

the equations that need to be solved in order to find the invariant torus have a

simpler form in this basis.

3.1 Invariant tori

We start with the definition of an invariant torus and then discuss the equations

that will need to be solved in order to find an invariant torus.

Definition 3.1. Let Vλ ∈ X(P) be a (d+ 2n)-parameter family of presymplectic
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vector fields on the exact presymplectic manifold P. If for some value λ̄ of the

parameter λ there exists an embedding

K : Td+n → P ,

such that

Vλ̄,K(θ) = ∂ωKθ :=
d+n∑
α=1

∂Kθ

∂θα
ωα (3.1)

and ω ∈ Rd+n is a Diophantine vector, we call K an invariant torus or a true

solution.

In (3.1), we think of the vector ω ∈ Rd+n and the family {Vλ} of presymplectic

vector fields as given, while the special value λ̄ of the parameter λ, as well as K

are unknown. We may also refer to the image K (2.18) of Td+n under K as an

invariant torus.

In this chapter, we are concerned only with true solutions, but it seems ap-

propriate to define the notion of approximate solution immediately after we have

defined a true solution; we provide the formal definition in Chapter 4. Notice

that we can write (3.1) as

Vλ̄,K(θ) − ∂ωKθ = 0 .

If the difference Vλ̄ ,K(θ) − ∂ωKθ is non-zero but is small in some norm, then we

will call such K an approximate solution.

If K satisfies (3.1), then for the flow Φt of the vector field Vλ̄, we have that

Φt(Kθ) = Kφt(θ) = Kθ+tω ∈ K , (3.2)
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thus the embedded torus K (2.18) is invariant under the flow of Vλ̄. This is the

reason for calling a solution of (3.1) an invariant torus. However, this terminology

is somewhat of a misnomer. We are actually requiring more than being merely

invariant; we are requiring that the motion on K be quasi-periodic and ω be

Diophantine (Definition 2.9). We will call such a solution a KAM torus. Before

we give the definition of quasi-periodic, first recall what it means for a vector to

be independent over the rationals.

Definition 3.2. A vector ω ∈ Rm with ω = (ω1, . . . , ωm) is said to be indepen-

dent over the rationals if for ki ∈ Q, such that ω1k1 + · · ·+ ωmkm = 0, then

ki = 0 for all i.

Definition 3.3. The motion on an invariant torus K is said to be quasi-periodic

if the dymanics can be conjugated to to a linear flow on a torus with frequency

vector ω that is independent over the rationals.

Remark 1. As noted in [56], the existence of a quasi-periodic solution leads to the

existence of an embedded torus that is invariant under the action of Φt. However

if we have an embedded torus that is invariant under the action of Φt, it need

not come from a quasi-periodic solution because the motion could be different

from an irrational rotation. In this dissertation, when we say invariant torus, we

really mean the image of a quasi-periodic solution with Diophantine frequencies.

Remark 2. All Diophantine vectors are independent over the rationals, but the

converse is not true.

3.2 Invariant tori are isotropic

Notational convention for this chapter. In the rest of this chapter we will
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work with true solutions, which exist only for the value λ̄ of the parameter λ in

the family of presymplectic vector fields {Vλ}. Since in this chapter the parameter

λ will always be equal to λ̄, we will not write the subscript λ in the notation of

the vector field, i.e., we set

V := Vλ̄ .

We start this section with a definition.

Definition 3.4. An invariant (in the sense of Definition 3.1) torus, K = K(Td+n),

in the exact presymplectic manifold P is said to be isotropic if the pull-back,

K∗Ω ∈ Ω2(Td+n), of the presymplectic form Ω ∈ Ω2(P) to the torus Td+n van-

ishes identically.

In Lemma 3.5 below we will prove that an invariant torus is isotropic. Similar

results for maps are well-known for the case of submanifolds invariant with respect

to symplectic or presymplectic maps (see, e.g., [26, Section 4, Lemma 1] or [4,

Lemma 2.5]; our proof follows the same idea). The fact that the invariant torus

is isotropic is crucial in the proof of Lemma 4.2 which, in turn, is essential for

the bounds we will need to solve the linearized equation in Section 4.3.

Similarly to the linear operators Jp and J̃q (introduced in (2.7) and (2.8))

that represents the presymplectic form Ω on P and symplectic form Ω̃ on Q, we

introduce the linear operator

Lθ : TθTd+n → TθTd+n
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as the matrix representation of the pull-back (K∗Ω)θ:

〈ηθ, Lθ ζθ〉Rd+n = (K∗Ω)θ (ηθ, ζθ) , ηθ, ζθ ∈ TθTd+n . (3.3)

We have

(K∗Ω)θ (ηθ, ζθ) = ΩK(θ) (K∗θ ηθ, K∗θ ζθ)

=
〈
DKθ ηθ, JK(θ)DKθ ζθ

〉
Rd+n

=
(
DKθ ηθ

)>
JK(θ)DKθ ζθ

= η>θ DK
>
θ JK(θ)DKθ ζθ

= 〈ηθ, DK>θ JK(θ)DKθ ζθ〉Rd+n ,

which yields the following explicit expression for the matrix elements of Lθ:

Lθ = DK>θ JK(θ)DKθ ∈ Md+n,d+n(R) . (3.4)

Lemma 3.5. Let P be an exact presymplectic manifold with presymplectic form Ω ∈

Ω2(P), V ∈ X(P) be a presymplectic vector field on P, and let K : Td+n → P

be a true solution. Then the pull-back K∗Ω of the exact presymplectic form Ω to

Td+n and, hence, its matrix representation Lθ, vanish identically. This implies

that the invariant torus K (2.18) is an isotropic submanifold of P.

Proof. We will prove the lemma in two steps: first we will use the exactness of

Ω to show that the average (over Td+n) of each matrix element of L is zero, and

then will use the ergodicity of the flow θ 7→ θ + tω on Td+n to demonstrate that

K∗Ω and, therefore, L, are constant on Td+n.
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Since the presymplectic form Ω is exact, there exists a 1-form τ ∈ Ω1(P) such

that

Ω = dτ .

Due to the commutativity of the exterior derivative with pull-backs,

K∗Ω = K∗ (dτ) = d (K∗τ) . (3.5)

If

τK(θ) =
d+2n∑
A=1

τA(K(θ)) dxA ,

then the pull-back K∗τ ∈ Ω1(Td+n) is given by

(K∗τ)θ =
d+n∑
α=1

Cα(θ) dθα ,

where

Cα(θ) =
d+2n∑
A=1

τA(K(θ))
∂KA

∂θα
(θ) .

The matrix representation of the pull-back (K∗Ω)θ is then

(Lθ)
α
β =

∂Cα
∂θβ

(θ)− ∂Cβ
∂θα

(θ) .

Because of the periodicity of the functions Cα : Td+n → R,

avg

(
∂Cα
∂θβ

)
=

∫
Td+n

∂Cα
∂θβ

(θ) dθ1 dθ2 · · · dθd+n

=

∫
Td+n−1

(∫
T1

∂Cα
∂θβ

(θ) dθβ
)

dθ1 dθ2 · · · dθβ−1 dθβ+1 dθd+n

= 0 ,

(3.6)
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which shows that the average of each matrix element of Lθ is identically zero

on Td+n, so that

avg (L) = 0 , avg (K∗Ω) = 0 . (3.7)

Now we will prove that L and K∗Ω are constant on Td+n. Restrict the target

space of the map K (2.17) from P to the image K of K, to obtain the diffeomor-

phism

K|Td+n→K : Td+n → K . (3.8)

Since the manifold K is invariant with respect to the flow of the vector field

V ∈ X(P), at the points of K the vector field is tangent to K. Therefore, the

restriction of the vector field V to K can be considered as a section of the tangent

bundle of K; let us denote this new vector field by V |K ∈ X(K). Because of the

same reasons, the Lie derivative with respect to V has a natural restriction to

sections of any tensor power of the tangent and cotangent bundles of K. The

pull-back of V |K by the diffeomorphism (3.8) is

K∗V := (K|Td+n→K)−1
∗ (V |K) ∈ X(Rd+n) .

If we consider the constant ω ∈ Rd+n as a tangent vector ωθ ∈ Tθ(Td+n), then

the pull-back of VK(θ) = K∗θ ωθ ∈ TK(θ)K is

(K∗V )θ =
[
(K|Td+n→K)−1]

∗K(θ)
VK(θ)

=
[
(K|Td+n→K)−1]

∗K(θ)
K∗θ ωθ

=
[
(K|Td+n→K)−1 ◦K

]
∗θ ωθ

= ωθ ∈ Tθ(Td+n) .
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Then the well-known property of the Lie derivative [2, Proposition 2.2.19]

K∗ LV Ω = LK∗V K∗Ω

becomes

K∗ LV Ω = LωK∗Ω

(in the last two equations, it is understood that all objects and operations were

restricted to K). Since the vector field V is presymplectic, LV Ω = 0, which

implies that the pull-back K∗Ω ∈ Ω2(Td+n) of the presymplectic form to the

torus Td+n is constant on the orbits of the flow θ 7→ θ + tω, t ∈ R. But since ω

is Diophantine, this flow is ergodic on Td+n, therefore K∗Ω is constant on Td+n:

K∗Ω = const , L = const . (3.9)

Putting together (3.7) and (3.9), we obtain the desired result.

3.3 Construction and properties of an adapted

basis of TK(θ)P

In this section we will construct a special basis of TK(θ)P at any point K(θ) ∈ K

of the invariant torus. Our construction will utilize the geometric structure of

the problem.
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3.3.1 Adapted coordinates in Td+n and a basis of TK(θ)K

We start the construction by recalling that, by Definition 3.1, the tangent bundle

TK of the invariant torus K is the push-forward of the tangent bundle TTd+n of

the torus Td+n under the derivative K∗ of the embedding K:

TK(θ)K = K∗θ
(
TθTd+n

)
.

Therefore, every vector in TK(θ)K has the form K∗θ ηθ for some ηθ ∈ TθTd+n. In

matrix notations, K∗θ ηθ is written as DKθ ηθ, where the components, ηαθ , of a

vector

ηθ =
d+n∑
α=1

(
∂

∂θα

)
θ

ηαθ

are written as a column vector of dimension d+ n:

ηθ =
[
η1
θ η

2
θ · · · ηd+n

θ

]>
. (3.10)

The vectors

{(
∂

∂θ1

)
θ

, . . . ,

(
∂

∂θd+n

)
θ

}
form a basis of TθTd+n, hence the

vectors {
K∗θ

(
∂

∂θ1

)
θ

, . . . , K∗θ

(
∂

∂θd+n

)
θ

}
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form a basis of TK(θ)K. We have

K∗θ ηθ =
d+n∑
α=1

K∗θ

(
∂

∂θα

)
θ

ηαθ

=
d+n∑
α=1

{
d+2n∑
A=1

(
∂

∂xA

)
K(θ)

∂KA

∂θα
(θ)

}
ηαθ

=
d+2n∑
A=1

(
∂

∂xA

)
K(θ)

(
d+n∑
α=1

∂KA

∂θα
(θ) ηαθ

)

=
d+2n∑
A=1

(
∂

∂xA

)
K(θ)

(K∗θ ηθ)
A .

(3.11)

If we write ηθ as a column vector of dimension (d+ n) as in (3.10), and K∗θηθ as

a column vector of dimension (d+ 2n),

K∗θηθ =
[
(K∗θηθ)

1 (K∗θηθ)
2 · · · (K∗θηθ)

d+2n
]>

,

then (3.11) implies that

(K∗θ ηθ)
A =

d+n∑
α=1

∂KA

∂θα
(θ) ηαθ ,

which can be written in the form

(K∗θ ηθ)
1

(K∗θ ηθ)
2

...

(K∗θ ηθ)
d+2n


=

d+n∑
α=1



∂K1
θ

∂θα

∂K2
θ

∂θα

...

∂Kd+2n
θ

∂θα


ηαθ . (3.12)

Therefore, we can think of the column vectors in the right-hand side of (3.12) as
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vectors in TK(θ)K, and since for each ηθ ∈ TθTd+n, K∗θ ηθ can be expressed as a

superposition as in (3.12), these column vectors form a basis of TK(θ)K. Since

the column vectors in the right-hand side of (3.12) are the (d+n) columns of the

matrix of the derivative DKθ of the map K,

DKθ =
[
(DKθ)

A
α

]
=

[
∂KA

∂θα
(θ)

]
∈ Md+2n,d+n(R) , (3.13)

we will use the matrix DKθ in the construction of a special basis for TK(θ)K.

Now we will extend this construction in order to adapt our basis to the kernel

of the presymplectic form Ω. Recalling that, according to Lemma 3.5, K is an

isotropic manifold of dimension (d + n), we see that the integrable distribution

ker Ω restricted to K must be a subbundle of the tangent bundle to K:

(ker Ω) |K ⊆ TK ,

i.e.,

ker ΩK(θ) ⊆ TK(θ)K ∀K(θ) ∈ K .

Now recall that, by our choice of P (2.2), the first d coordinates in P = Td×T ∗Tn

correspond to the kernel of the presymplectic form Ω.

These geometric considerations motivate the following construction. Reorder

the coordinates θα, α = 1, . . . , d+ n, in Td+n in such a way that the rank of the

d× d submatrix in the upper left corner of the matrix DKθ has full rank (this is

always possible because DKθ ∈ Md+2n,d+n(R) is of full rank). Then necessarily

the n×n submatrix in the lower right corner of DKθ will also be of full rank. Since

the first d coordinates in P are along the kernel of Ω, this choice of coordinates

in Td+n guarantees that the span of the last n columns of DKθ, thought of as
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vectors in TK(θ)K, span an n-dimensional subspace of TK(θ)K that is transversal

to ker ΩK(θ) in TK(θ)K.

We now introduce notations that will reflect this construction. Let
∂K•θ
∂θα

be

the αth column of DKθ:

∂K•θ
∂θα

:=



∂K1
θ

∂θα

∂K2
θ

∂θα

...

∂Kd+2n
θ

∂θα


∈ Md+2n,1(R) , α = 1, . . . , d+ n .

The bullet (•) stands for the whole allowed range of coordinates. Denote the first

d such columns by (Zθ)
•
µ, and the remaining n columns by (Xθ)

•
a:

(Zθ)
•
µ :=

∂K•θ
∂θµ

, µ = 1, . . . , d ,

(Xθ)
•
a :=

∂K•θ
∂θd+a

, a = 1, . . . , n .

Because of the choice of the coordinates in Td+n, the n-dimensional subspace

span {(Xθ)
•

1, . . . , (Xθ)
•
n} ⊆ TK(θ)K

is transversal in TK(θ)K both to the span of the vectors (Zθ)
•

1, . . . , (Zθ)
•
d (which

is d-dimensional) and to the d-dimensional subspace ker ΩK(θ), i.e.,

span {(Xθ)
•

1, . . . , (Xθ)
•
n} ⊕ span {(Zθ)•1, . . . , (Zθ)•d} = TK(θ)K ,

span {(Xθ)
•

1, . . . , (Xθ)
•
n} ∩ span {(Zθ)•1, . . . , (Zθ)•d} = {0} ,

(3.14)
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and

span {(Xθ)
•

1, . . . , (Xθ)
•
n} ⊕ ker ΩK(θ) = TK(θ)K ,

span {(Xθ)
•

1, . . . , (Xθ)
•
n} ∩ ker ΩK(θ) = {0} .

We stack the vectors (Zθ)
•

1, . . . , (Zθ)
•
d together to form the matrix

Zθ := [(Zθ)
•

1 . . . (Zθ)
•
d] ∈ Md+2n,d(R) , (3.15)

and do the same with the vectors (Xθ)
•

1, . . . , (Xθ)
•
n to construct the matrix

Xθ := [(Xθ)
•

1 . . . (Xθ)
•
n] ∈ Md+2n,n(R) . (3.16)

With these notations, the derivative DKθ (3.13) of the map K can be written as

DKθ = [Zθ Xθ ] = [ (Zθ)
•

1 · · · (Zθ)
•
d (Xθ)

•
1 · · · (Xθ)

•
n ] . (3.17)

Now we will also introduce convenient notations for the coordinates x =
(
xA
)
,

A = 1, . . . , d + 2n, in P (2.2). We denote the first d coordinates by putting an

underscore, and the rest of the coordinates by putting a tilde:

x =
(
xA
)

= (x, x̃) =
(
xµ, x̃ i

)
, µ = 1, . . . , d , i = 1, . . . , 2n .

In more detail,

x = (xµ) =
(
x1, . . . , xd

)
=
(
x1, . . . xd

)
,

x̃ = (x̃i) =
(
x̃ 1, . . . , x̃ 2n

)
=
(
xd+1, . . . xd+2n

)
.
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This notation is compatible with the notation introduced in (2.24), but now its

meaning is more clear.

We will also widely use the underscore and tilde notations in matrices with

d+ 2n rows – the underscore for the first d rows, and the tilde for the remaining

2n rows. In particular, the derivative of K (3.17) will be written as

DKθ = [Zθ Xθ] =

 Zθ Xθ

Z̃θ X̃θ

 , (3.18)

where

Zθ ∈ Md,d(R) , Xθ ∈ Md,n(R) ,

Z̃θ ∈ M2n,d(R) , X̃θ ∈ M2n,n(R) .

(3.19)

3.3.2 Adapted basis of TK(θ)P

To construct a geometrically natural basis of TK(θ)P , we need n more vectors that

are linearly independent from (Zθ)
•
µ and (Xθ)

•
a and should span the complement

of TK(θ)K in TK(θ)P . Since these new vectors, together with the n vectors (Xθ)
•
a,

should form a basis of the tangent space TK(θ)Q to the symplectic manifold Q

(2.6), it is natural to use the symplectic form Ω̃ onQ, whose matrix representation

is given by the antisymmetric non-degenerate matrix J̃K(θ) defined in (2.8). Before

constructing these new vectors, we emphasize that, strictly speaking, instead

of J̃K(θ) we should write J̃πQ(K(θ)), where πQ (2.4) is the projection from the

presymplectic manifold P onto the (abstract) symplectic manifold Q. However,

we will use the shorter notation J̃K(θ) – which emphasizes the fact that we work

with concrete geometric objects rather than with abstract objects defined on
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factormanifolds.

Clearly, there are many ways to choose the new n vectors, but we will make a

special choice such that they, together with the vectors (Xθ)
•
a, form a symplectic

basis of TQ if we “mod out” the kernel of the presymplectic form. To achieve

this, we will use the Gramian matrix of the vectors (Xθ)
•

1, . . . , (Xθ)
•
n, i.e., the

matrix of the inner products of these vectors with respect to the Euclidean inner

product on T ∗Tn. The Gramian of the vectors (Xθ)
•

1, . . . , (Xθ)
•
n can be written

as the matrix X>θ Xθ ∈ Mn,n(R). Since the vectors (Xθ)
•

1, . . . , (Xθ)
•
n are lin-

early independent, the rank of their Gramian is n. This allows us to define the

(symmetric) matrix

Rθ :=
(
X̃>θ X̃θ

)−1

∈ Mn,n(R) . (3.20)

Define the matrices

Ỹθ := J̃−1
K(θ) X̃θ Rθ ∈ M2n,n(R) , (3.21)

and

Yθ :=

 0

Ỹθ

 =

 0

J̃−1
K(θ) X̃θ Rθ

 ∈ Md+2n,n(R) ; (3.22)

in our notations for the components, Y θ = 0 (recall (3.18)). Since the matrices

J̃−1
K(θ), X̃θ, and Rθ are all of rank n, Ỹθ is also of maximal rank:

rank Ỹθ = n .

Similarly to (3.15) and (3.16), we think of the n columns of Yθ as column vectors

of dimension (d+ 2n):

Yθ =:
[
(Yθ)

•
1 · · · (Yθ)

•
n

]
,
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where

(Yθ)
•
a =

[
(Yθ)

1
a (Yθ)

2
a · · · (Yθ)

d+2n
a

]> ∈ Md+2n,1(R) , a = 1, . . . , n .

We think of (Yθ)
•
a as vectors in TK(θ)P . With the definitions (2.7), (2.8),

(2.9), (3.20), (3.21), and (3.22), we obtain

ΩK(θ)

(
(Xθ)

•
a, (Yθ)

•
b

)
=
〈
(Xθ)

•
a, JK(θ) (Yθ)

•
b

〉
Rd+2n

= ((Xθ)
•
a)
> JK(θ) (Yθ)

•
b

=


 Xθ

X̃θ


•

a


>  0 0

0 J̃K(θ)


 0

J̃−1
K(θ) X̃θ Rθ


•

b

=
[
X>θ X̃>θ

]a
•

 0

X̃θ Rθ


•

b

= (X̃>θ X̃θRθ)ab = (In)ab = δab ,

(3.23)

where In is the unit n× n matrix, and δab is Kronecker’s symbol. Therefore, the

vectors (Xθ)
•
a and (Yθ)

•
b form a symplectic basis of TK(θ)Q ∼= (TK(θ)P)/ ker ΩK(θ).

We will write (3.23) symbolically as

ΩK(θ) (Xθ, Yθ) = X>θ JK(θ) Yθ = X̃>θ J̃K(θ) Ỹθ = In . (3.24)

The equality (3.23) implies that the vectors (Yθ)
•
a are linearly independent

from the vectors (Zθ)
•
µ and (Xθ)

•
a, so that all these (d+2n) vectors form a basis
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of TK(θ)P :

span
{{

(Zθ)
•
µ

}d
µ=1

,
{

(Xθ)
•
a

}n
a=1

,
{

(Yθ)
•
a

}n
a=1

}
= TK(θ)P . (3.25)

The basis of (TP)|K consisting of the vector fields Z•µ, X•a, and Y •a is convenient

for several reasons:

(a) the vector fields Z•µ and X•a are a basis of the subbundle TK ⊆ TP which

is invariant with respect to the flow Φt of the vector field V , which implies

that in the basis Z•µ, X•a, Y
•
a, the matrix of the transformation Φt will

be upper block triangular, with the lower left 2n× d block being zero;

(b) since the invariant torus K is an isotropic submanifold as we proved in

Lemma 3.5, if the two arguments of ΩK(θ) are vectors from TK(θ)K, the

result is zero:

Ω
(
Z•µ, Z

•
ν

)
= 0 ,

Ω
(
Z•µ, X

•
a

)
= 0 ,

Ω
(
X•a, X

•
b

)
= 0 ,

for all µ, ν = 1, . . . , d, and all a, b = 1, . . . , n;

(c) the vector fields X̃•a and Ỹ •b form a symplectic basis of (TQ)|K, with

respect to the symplectic form Ω̃ (cf. (3.23)).

Below we summarize the properties of the basis of TK(θ)P constructed above,

using matrix notations as in (3.24) (which will be more convenient for calcula-
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tions):

Z>θ JK(θ)Zθ = Z̃>θ J̃K(θ)Z̃θ = 0 ,

Z>θ JK(θ)Xθ = Z̃>θ J̃K(θ)X̃θ = 0 ,

Z>θ JK(θ)Yθ = Z̃>θ J̃K(θ)Ỹθ = Z̃>θ X̃θRθ ,

X>θ JK(θ)Xθ = X̃>θ J̃K(θ)X̃θ = 0 ,

X>θ JK(θ)Yθ = X̃>θ J̃K(θ)Ỹθ = In ,

Y >θ JK(θ)Yθ = Ỹ >θ J̃K(θ)Ỹθ = −RθX̃
>
θ J̃
−1
K(θ)X̃θRθ .

(3.26)

The fact that J and J̃ are antisymmetric implies automatically that

X>θ JK(θ)Zθ = X̃>θ J̃K(θ)Z̃θ = 0 ,

Y >θ JK(θ)Zθ = Ỹ >θ J̃K(θ)Z̃θ = −RθX̃
>
θ Z̃θ ,

Y >θ JK(θ)Xθ = Ỹ >θ J̃K(θ)X̃θ = −In .

3.3.3 Presymplecticity of V at K in adapted coordinates

In this section we will rewrite the presymplecticity condition (2.3) (written in

matrix form in (2.26)) in the adapted coordinates introduced above. In the

adapted basis we write the vectors from TK(θ)P , K(θ) ∈ K, in the form

Uθ =

 U θ

Ũθ

 ∈ Md+2n,1(R) ,

with U θ ∈ Md,1(R), Ũθ ∈ M2n,1(R).

Let V ∈ X(P) be a presymplectic vector field, and let DVK(θ) be its derivative
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at a point K(θ) ∈ K. We introduce the notation

DVK(θ) =:


∂V

∂x

∂V

∂x̃

∂Ṽ

∂x

∂Ṽ

∂x̃


K(θ)

where the subscript K(θ) means that all partial derivatives in the right-hand side

are evaluated at the point K(θ) ∈ K, and

[
∂V

∂x

]
=

[
∂V µ

∂xν

]
=

[
∂V µ

∂xν

]
∈ Md,d(R) , µ, ν = 1, . . . , d ,[

∂V

∂x̃

]
=

[
∂V µ

∂x̃i

]
=

[
∂V µ

∂xd+i

]
∈ Md,2n(R) , µ = 1, . . . , d , i = 1, . . . , 2n ,[

∂Ṽ

∂x

]
=

[
∂Ṽ i

∂xµ

]
=

[
∂V d+i

∂xµ

]
∈ M2n,d(R) , i = 1, . . . , 2n , µ = 1, . . . , d ,

[
∂Ṽ

∂x̃

]
=

[
∂Ṽ i

∂x̃j

]
=

[
∂V d+i

∂xd+j

]
∈ Md,d(R) , i, j = 1, . . . , 2n .

Using these notations, we can write the presymplecticity condition (2.26) in

adapted coordinates as

 0 0

0 (DJ̃)K(θ)VK(θ)

+


∂V

∂x

∂V

∂x̃

∂Ṽ

∂x

∂Ṽ

∂x̃


>

K(θ)

 0 0

0 J̃K(θ)



+

 0 0

0 J̃K(θ)



∂V

∂x

∂V

∂x̃

∂Ṽ

∂x

∂Ṽ

∂x̃


K(θ)

= 0 ,
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which can be rewritten as


0

[
∂Ṽ

∂x

]>
J̃

J̃

[
∂Ṽ

∂x

]
(DJ̃)V +

[
∂Ṽ

∂x̃

]>
J̃ + J̃

[
∂Ṽ

∂x̃

]

K(θ)

= 0 . (3.27)

The antisymmetry of J̃K(θ) implies that

[
∂Ṽ

∂x

]>
K(θ)

J̃K(θ) = −

J̃K(θ)

[
∂Ṽ

∂x

]
K(θ)

> ,

so that the off-diagonal entries of the matrix in (3.27) yield the condition

J̃K(θ)

[
∂Ṽ

∂x

]
K(θ)

= 0 .

Since J̃K(θ) is an invertible matrix, multiplying this identity on the right by J̃−1
K(θ),

we obtain the following consequence of the presymplecticity of the vector field V :

[
∂Ṽ

∂x

]
K(θ)

= 0 .

The condition coming from the lower right corner of the matrix in (3.27) reads

(DJ̃)K(θ)VK(θ) +

[
∂Ṽ

∂x̃

]>
K(θ)

J̃K(θ) + J̃K(θ)

[
∂Ṽ

∂x̃

]
K(θ)

= 0 . (3.28)

Note that the matrix

[∂Ṽ
∂x̃

]>
K(θ)

J̃K(θ) + J̃K(θ)

[
∂Ṽ

∂x̃

]
K(θ)

 is antisymmetric
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because it is the difference between the matrix J̃K(θ)

[
∂Ṽ

∂x̃

]
K(θ)

and its transposed,

which in turn follows from the antisymmetry of J̃K(θ):

J̃K(θ)

[
∂Ṽ

∂x̃

]
K(θ)

> =

[
∂Ṽ

∂x̃

]>
K(θ)

J̃>K(θ) = −

[
∂Ṽ

∂x̃

]>
K(θ)

J̃K(θ) .

The antisymmetry of the matrix

[∂Ṽ
∂x̃

]>
K(θ)

J̃p + J̃K(θ)

[
∂Ṽ

∂x̃

]
K(θ)

 is consistent

with the anti-symmetry of the term (DJ̃)K(θ)VK(θ) in (3.28).

To summarize, we obtained that the presymplecticity of the vector field V

implies that the matrix DVK(θ) is block upper triangular:

DVK(θ) =


∂V

∂x

∂V

∂x̃

0
∂Ṽ

∂x̃


K(θ)

, (3.29)

and its component

[
∂Ṽ

∂x̃

]
K(θ)

satisfies (3.28).

3.4 Change of basis matrix Mθ: definition

The adapted basis {(Zθ)•µ}dµ=1, {(Xθ)
•
a}na=1, {(Yθ)•a}na=1 of TK(θ)P constructed

in Section 3.3 has properties that are very useful for our analysis. Given an

arbitrary column vector Uθ, considered as an element of TK(θ)P , we can find its

components in the adapted basis as follows. Define the change of basis matrix
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Mθ of all vectors from the adapted basis, written as column vectors:

Mθ := [DKθ Yθ] = [Zθ Xθ Yθ] =

 Zθ Xθ 0

Z̃θ X̃θ Ỹθ

 ∈ Md+2n,d+2n(R) . (3.30)

Then the vector Uθ can be written as a superposition of the vectors from the

adapted basis as follows:

Uθ = Mθ ξθ

=
d∑

µ=1

(Zθ)
•
µ ξ

µ
θ +

n∑
a=1

(Xθ)
•
a ξ

d+a
θ +

n∑
a=1

(Yθ)
•
a ξ

d+n+a
θ .

(3.31)

In the adapted basis, if we write the (d+2n) components of the vector ξθ as three

blocks of length d, n, and n, as in the representation (3.31), then the vectors from

TK(θ)K have the form ξθ = [∗ ∗ 0]>, where the stars represent numbers that are

generally non-zero.

3.5 Change of basis matrix Mθ: computations

In this section we will perform some computations related to the change of basis

matrix Mθ (3.30), which will be needed in Chapter 4.

Differentiating the invariance condition (3.1), we obtain

DVK(θ) DKθ = ∂ωDKθ . (3.32)

This, together with the definition (3.30) of Mθ, gives us

(DVK(θ) − ∂ω)Mθ =

[
0 0 (DVK(θ) − ∂ω)Yθ

]
,
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Our first goal is to find an explicit expression for (DVK(θ) − ∂ω)Yθ. To this end

we have to compute

(DVK(θ) − ∂ω)Yθ =


∂V

∂x

∂V

∂x̃

0
∂Ṽ

∂x̃


K(θ)

 0

Ỹθ

−
 0

∂ωỸθ



=



[
∂V

∂x̃

]
K(θ)

Ỹθ[
∂Ṽ

∂x̃

]
K(θ)

Ỹθ − ∂ωỸθ

 .

The computation of (DVK(θ)−∂ω)Mθ is performed in Sections 3.5.1–3.5.2, and

in Section 3.5.3 we represent this expression in a special form. In Section 3.5.4

we derive a factorization of Mθ and use it to compute M−1
θ . In Section 3.5.5

we write down other factorizations of Mθ and M−1
θ which will be useful in our

analysis in the next chapter.

3.5.1 Computing ∂ωỸθ

We break this calculation into several parts.

(a) By the Leibniz rule,

∂ωỸθ = ∂ω

(
J̃−1
K(θ)X̃θRθ

)
= ∂ω

(
J̃−1
K(θ)

)
X̃θRθ + J̃−1

K(θ)∂ω
(
X̃θ

)
Rθ + J̃−1

K(θ)X̃θ∂ωRθ .

(b) Using the invariance condition (3.1) and the presymplecticity condition (3.28),
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we obtain

∂ω
(
J̃K(θ)

)
= (DJ̃)K(θ) ∂ωKθ

= (DJ̃)K(θ) VK(θ)

= −

J̃K(θ)

[
∂Ṽ

∂x̃

]
K(θ)

+

[
∂Ṽ

∂x̃

]>
K(θ)

J̃K(θ)

 .

This, together with the elementary identity

0 = ∂ω
(
I2n

)
= ∂ω

(
J̃−1
K(θ)J̃K(θ)

)
= ∂ω

(
J̃−1
K(θ)

)
J̃K(θ) + J̃−1

K(θ)∂ω
(
J̃K(θ)

)
,

yields

∂ω
(
J̃−1
K(θ)

)
= −J̃−1

K(θ)∂ω
(
J̃K(θ)

)
J̃−1
K(θ)

=

[
∂Ṽ

∂x̃

]
K(θ)

J̃−1
K(θ) + J̃−1

K(θ)

[
∂Ṽ

∂x̃

]>
K(θ)

.

(3.33)

(c) From the invariance identity (3.32), written in components as


∂V

∂x

∂V

∂x̃

0
∂Ṽ

∂x̃


K(θ)

 Zθ Xθ

Z̃θ X̃θ

 =

 ∂ωZθ ∂ωXθ

∂ωZ̃θ ∂ωX̃θ



(recall (3.29)), we obtain

∂ωX̃θ =

[
∂Ṽ

∂x̃

]
K(θ)

X̃θ . (3.34)
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(d) From the definition (3.20) of Rθ and the expression for ∂ωX̃θ we have

0 = ∂ω
(
I2n

)
= ∂ω

(
RθX̃

>
θ X̃θ

)
= ∂ω

(
Rθ

)
X̃>θ X̃θ +Rθ∂ω

(
X̃>θ
)
X̃θ +RθX̃

>
θ ∂ωX̃θ

= ∂ω
(
Rθ

)
R−1
θ +Rθ

(
∂ωX̃θ

)>
X̃θ +RθX̃

>
θ ∂ωX̃θ

= ∂ω
(
Rθ

)
R−1
θ + 2RθX̃

>
θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θ ,

where

[
∂Ṽ

∂x̃

]sym

K(θ)

stands for the symmetrization of the matrix

[
∂Ṽ

∂x̃

]
K(θ)

:

[
∂Ṽ

∂x̃

]sym

K(θ)

:=
1

2

[∂Ṽ
∂x̃

]
K(θ)

+

[
∂Ṽ

∂x̃

]>
K(θ)

 . (3.35)

This yields

∂ωRθ = −2RθX̃
>
θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ . (3.36)
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(e) Putting everything together:

∂ωỸθ = ∂ω

(
J̃−1
K(θ)X̃θRθ

)
= ∂ω

(
J̃−1
K(θ)

)
X̃θRθ + J̃−1

K(θ)∂ω
(
X̃θ

)
Rθ + J̃−1

K(θ)X̃θ∂ωRθ

=

[∂Ṽ
∂x̃

]
K(θ)

J̃−1
K(θ) + J̃−1

K(θ)

[
∂Ṽ

∂x̃

]>
K(θ)

 X̃θRθ

+ J̃−1
K(θ)

[
∂Ṽ

∂x̃

]
K(θ)

X̃θRθ

− 2J̃−1
K(θ)X̃θRθX̃

>
θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ .

Recalling the definition (3.21) of Ỹθ and introducing the operator

Π̃θ := I2n − X̃θRθX̃
>
θ : R2n → R2n , (3.37)

we rewrite this as

∂ωỸθ =

[
∂Ṽ

∂x̃

]
K(θ)

Ỹθ + 2J̃−1
K(θ)Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ . (3.38)

Some properties of the operator Π̃θ are collected in Section 3.5.2.
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3.5.2 Computing
(
DVK(θ) − ∂ω

)
Mθ

Using the expression (3.38) for ∂ωỸθ, we obtain

(
DVK(θ) − ∂ω

)
Mθ =

(
DVK(θ) − ∂ω

) 0 0 0

0 0 Ỹθ



=


0 0

[
∂V

∂x̃

]
K(θ)

Ỹθ

0 0

[
∂Ṽ

∂x̃

]
K(θ)

Ỹθ − ∂ωỸθ



=


0 0

[
∂V

∂x̃

]
K(θ)

Ỹθ

0 0 −2J̃−1
K(θ)Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ

 .

(3.39)

Below we collect several observations about the operators Π̃θ (3.37) and

J̃−1
K(θ)Π̃θJ̃K(θ) = I2n − ỸθX̃>θ J̃K(θ) ,

which follow easily from the definitions (3.20) and (3.21) of Rθ and Ỹθ, and the

properties (3.26) of the adapted basis:

• Π̃θ is symmetric,

Π̃>θ =
(
I2n − X̃θRθX̃

>
θ

)>
= Π̃θ ;
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• both Π̃θ and J̃−1
K(θ)Π̃θJ̃K(θ) are idempotent:

Π̃2
θ = Π̃θ ,

(
J̃−1
K(θ)Π̃θJ̃K(θ)

)2

= J̃−1
K(θ)Π̃θJ̃K(θ) ;

• the n columns of the matrix X̃θ are in the kernel of Π̃θ:

Π̃θX̃θ = X̃θ − X̃θRθX̃
>
θ X̃θ = X̃θ − X̃θ = 0 ;

• the n columns of X̃θ are eigenvectors of J̃−1
K(θ)Π̃θJ̃K(θ) with eigenvalue 1,

while the n columns of Ỹθ are in the kernel of J̃−1
K(θ)Π̃θJ̃K(θ):

J̃−1
K(θ)Π̃θJ̃K(θ) X̃θ = X̃θ , J̃−1

K(θ)Π̃θJ̃K(θ) Ỹθ = 0 ; (3.40)

• the properties (3.40) mean that J̃−1
K(θ)Π̃θJ̃K(θ) and

(
I2n − J̃−1

K(θ)Π̃θJ̃K(θ)

)
are

projection operators corresponding to the splitting of the 2n-dimensional

space TK(θ)Q into two n-dimensional subspaces – one spanned by the columns

of X̃θ (which is the intersection of TK(θ)Q and ker ΩK(θ)), and a second one

spanned by the columns of Ỹθ:

TK(θ)Q = span
{(
X̃θ

)•
a

}n
a=1
⊕ span

{(
Ỹθ
)•
a

}n
a=1

.

3.5.3 Computing Cθ

Having computed (DVK(θ) − ∂ω)Mθ, we will rewrite it in the form

(DVK(θ) − ∂ω)Mθ = MθCθ , (3.41)
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with

Cθ =


0 0 Tθ

0 0 Sθ

0 0 Uθ

 . (3.42)

This representation of (DVK(θ) − ∂ω)Mθ plays a crucial role in Chapter 4. In the

rest of this section we will compute the matrices Tθ, Sθ, and Uθ explicitly.

Comparing

MθCθ =

 Zθ Xθ 0

Z̃θ X̃θ Ỹθ




0 0 Tθ

0 0 Sθ

0 0 Uθ



=

 0 0 ZθTθ +XθSθ

0 0 Z̃θTθ + X̃θSθ + ỸθUθ


with the expression (3.39) for (DVK(θ) − ∂ω)Mθ, we see that the matrices Tθ, Sθ,

and Uθ should satisfy the equations

ZθTθ +XθSθ =

[
∂V

∂x̃

]
K(θ)

J̃−1
K(θ)X̃θRθ (3.43)

Z̃θTθ + X̃θSθ + ỸθUθ = −2J̃−1
K(θ)Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ . (3.44)

Multiplying (3.44) separately by Z̃>θ J̃K(θ), X̃
>
θ J̃K(θ), and Ỹ >θ J̃K(θ) on the left and
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using (3.26) and the definition of Rθ (3.20), we obtain

Z̃>θ X̃θRθUθ = −2Z̃>θ Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ (3.45)

Uθ = −2X̃>θ Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ (3.46)

−RθX̃
>
θ Z̃θTθ − Sθ −RθX̃

>
θ J̃
−1
K(θ)X̃θRθUθ = −2Ỹ >θ Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ . (3.47)

Recalling that X̃>θ Π̃θ = 0, we see from (3.46) that

Uθ = 0 .

From (3.47) we express Sθ in terms of Tθ:

Sθ = 2Ỹ >θ Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ −RθX̃
>
θ Z̃θTθ .

Substitute this in (3.43):

ZθTθ +Xθ

2Ỹ >θ Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ −RθX̃
>
θ Z̃θTθ

 =

[
∂V

∂x̃

]
K(θ)

J̃−1
K(θ)X̃θRθ

to obtain

(
Zθ −XθRθX̃

>
θ Z̃θ

)
Tθ =

[∂V
∂x̃

]
K(θ)

J̃−1
K(θ) − 2XθỸ

>
θ Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

 X̃θRθ .
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Finally,

Tθ = Z −1
θ

[∂V
∂x̃

]
K(θ)

Ỹθ − 2XθỸ
>
θ Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ

 , (3.48)

where we have set

Z θ := Zθ −XθRθX̃
>
θ Z̃θ = Zθ +XθỸ

>
θ J̃K(θ)Z̃θ ∈ Md,d(R) . (3.49)

The geometric meaning of Z θ will become transparent after seeing the derivation

of equation (3.53) below.

Substituting the expression (3.48) for Tθ into the expression for Sθ above, we

obtain

Sθ = 2Ỹ >θ Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ

−RθX̃
>
θ Z̃θZ

−1
θ

[∂V
∂x̃

]
K(θ)

J̃−1
K(θ) − 2XθỸ

>
θ Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

 X̃θRθ

= 2Ỹ >θ Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ −RθX̃
>
θ Z̃θZ

−1
θ

[
∂V

∂x̃

]
K(θ)

J̃−1
K(θ)X̃θRθ

+ 2RθX̃
>
θ Z̃θZ

−1
θ XθỸ

>
θ Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ ,

which simplifies to

Sθ = −Ỹ >θ J̃K(θ)Z̃θZ
−1
θ

[
∂V

∂x̃

]
K(θ)

Ỹθ

+ 2
(
In − Ỹ >θ J̃K(θ)Z̃θZ

−1
θ Xθ

)
Ỹ >θ Π̃θ

[
∂Ṽ

∂x̃

]sym

K(θ)

X̃θRθ .

(3.50)
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We summarize our findings in the following

Lemma 3.6. Let (P ,Ω) be an exact presymplectic manifold, V ∈ X(P) be a

presymplectic vector field, K : Td+n → P be an invariant torus in the sense of

Definition 3.1, and the matrix Mθ be defined by (3.30).

Then (
DVK(θ) − ∂ω

)
Mθ = Mθ Cθ

with

Cθ =


0 0 Tθ

0 0 Sθ

0 0 0

 ,

where Tθ and Sθ are given by (3.48) and (3.50), respectively.

3.5.4 Factorizations of Mθ and M−1
θ

In this section we use simple geometric ideas to derive a factorization of the

change of basis matrix Mθ, which will also imply a factorization and an explicit

expression for M−1
θ . The derivation will elucidate the origin of the quantity

Z θ (3.49).

One can transform Mθ (3.30) by elementary operations to give it a simpler

form. We perform this in a series of steps. Recall that

Mθ =

 Zθ Xθ 0

Z̃θ X̃θ Ỹθ

 .

• Since K : Td+n → P is an embedding and because of our construction of
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the vectors X̃θ and Ỹθ in Section 3.3,

rank
[
X̃θ Ỹθ

]
= 2n .

(In fact, the columns of the matrices X̃θ and Ỹθ form a symplectic basis of

the 2n-dimensional symplectic subspace TK(θ)Q ⊆ TK(θ)P which is a real-

ization of the factorspace TK(θ)P/ ker ΩK(θ), as explained in Section 2.1.2.)

This implies that the lower part of the matrix Mθ, namely, the matrix

[
Z̃θ X̃θ Ỹθ

]
∈ M2n,d+2n(R) ,

is of maximum rank. Hence, the d columns of the matrix Z̃θ ∈ M2n,d(R) are

linear combinations of the columns of X̃θ and Ỹθ. This fact can be written

in matrix notations as

Z̃θ = X̃θA
′
θ + Ỹ B′θ , A′θ, B

′
θ ∈ Mn,d(R) ; (3.51)

the matrices A′θ and B′θ are introduced temporarily and will be used only in

this section. Multiply (3.51) on the left by X̃>θ J̃K(θ) and use the properties

(3.26) of the adapted basis to get B′θ = 0, so that

Z̃θ = X̃θA
′
θ .

On the other hand, multiplying (3.51) on the left by Ỹ >θ J̃K(θ), we obtain

Ỹ >θ J̃K(θ)Z̃θ = Ỹ >θ J̃K(θ)X̃θA
′
θ = −InA′θ = −A′θ .
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Therefore Mθ can be written as

Mθ =

 Zθ Xθ 0

X̃θA
′
θ X̃θ Ỹθ

 , A′θ = −Ỹ >θ J̃K(θ)Z̃θ = RθX̃
>
θ Z̃θ . (3.52)

• Add the second group of n columns of Mθ (i.e., the matrix Xθ) multiplied by

−A′θ to the first group of d columns (i.e., Zθ) to eliminate the “symplectic

component” of the vector Zθ:

Mθ =

 Zθ Xθ 0

X̃θA
′
θ X̃θ Ỹθ

 ∼
 Zθ −XθA

′
θ Xθ 0

0 X̃θ Ỹθ

 .

The d×d block in the upper left corner of the matrix in the right-hand side

is exactly the expression

Z θ = Zθ −XθA
′
θ = Zθ −XθRθX̃

>
θ Z̃θ ∈ Md,d(R) ,

introduced in (3.49). The operation above is equivalent to a matrix multi-

plication:

 Z θ Xθ 0

0 X̃θ Ỹθ

 =

 Zθ Xθ 0

X̃θA
′
θ X̃θ Ỹθ




Id 0 0

−A′θ In 0

0 0 In

 . (3.53)

• Since the matrix in the left-hand side of (3.53) has full rank, its upper left

corner, Z θ ∈ Md,d(R), has full rank, so that it is invertible. Using this

block to eliminate the block Xθ ∈ Md,n(R) (i.e., the first d rows of the
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matrix Xθ), we obtain

Mθ ∼

 Z θ Xθ 0

0 X̃θ Ỹθ

 ∼
 Z θ 0 0

0 X̃θ Ỹθ

 .

In terms of matrix multiplication this can be written as

 Z θ 0 0

0 X̃θ Ỹθ

 =

 Z θ Xθ 0

0 X̃θ Ỹθ




Id −Z −1
θ Xθ 0

0 In 0

0 0 In

 .

• Finally, we have

Mθ ∼

 Z θ 0 0

0 X̃θ Ỹθ

 =

 Id 0 0

0 X̃θ Ỹθ




Z θ 0 0

0 In 0

0 0 In

 ,

which implies that

detMθ = det (Z θ) det
[
X̃θ Ỹθ

]
.

The inverse matrix of
[
X̃θ Ỹθ

]
is

[
X̃θ Ỹθ

]−1
=

 −Ỹ >θ Π̃θJ̃K(θ)

X̃>θ J̃K(θ)

 =

 −Ỹ >θ Π̃θ

X̃>θ

 J̃K(θ) .
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To summarize, we have found the factorization

 Z θ 0 0

0 X̃θ Ỹθ

 = Mθ


Id 0 0

−A′θ In 0

0 0 In




Id −Z −1

θ Xθ 0

0 In 0

0 0 In

 ,

from which we can obtain the inverse matrix of Mθ:

M−1
θ =


Id 0 0

−A′θ In 0

0 0 In




Id −Z −1

θ Xθ 0

0 In 0

0 0 In


 Z −1

θ 0

0
[
X̃θ Ỹθ

]−1



=


Id 0 0

−A′θ In 0

0 0 In




Id −Z −1

θ X 0

0 In 0

0 0 In




Z −1

θ 0

0 −Ỹ >θ Π̃θJ̃K(θ)

0 X̃>θ J̃K(θ)



=


Z −1

θ Z −1
θ XθỸ

>
θ Π̃θJ̃K(θ)

−A′θZ
−1
θ −

(
In + A′θZ

−1
θ Xθ

)
Ỹ >θ Π̃θJ̃K(θ)

0 X̃>θ J̃K(θ)

 ,

(3.54)

where Π̃θ, Z θ, and A′θ were introduced in (3.37), (3.49), and (3.52), respectively.

3.5.5 Other factorizations of Mθ and M−1
θ

Later we will use another representation of M−1
θ from the Lemma below.
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Lemma 3.7. If the (d+ 2n)× (d+ 2n) matrices Qθ and Wθ are defined by

Qθ :=


Id 0

0 X̃>0,θ

0 Ỹ >0,θ


 Id 0

0 J̃K0(θ)

 =


Id 0

0 X̃>θ J̃K(θ)

0 Ỹ >θ J̃K(θ)

 , (3.55)

Wθ =


Zθ Xθ 0

0 0 In

Ỹ >θ J̃K(θ)Z̃θ −In Ỹ >θ J̃K(θ)Ỹθ

 , (3.56)

then the following identity holds:

QθMθ = Wθ . (3.57)

This, in particular, implies that the matrix Mθ (3.30) is invertible if and only if

the matrix Wθ is invertible.

Proof. The columns of X̃θ and Ỹθ form a (symplectic) basis of R2n, which implies

that the rows of X̃>θ and Ỹ >θ form a basis of R2n. Since J̃K(θ) is an invertible

matrix (it corresponds to the symplectic form Ω̃ on Q, recall (2.6) and (2.8)), the

rows of X̃>θ J̃K(θ) and Ỹ >θ J̃K(θ) from a basis of R2n, so that the matrix Qθ given

by (3.55) is invertible. The identity (3.57) follows directly from (3.26).

An immediate consequence of Lemma 3.7 is the following factorization ofM−1
θ :

M−1
θ = W−1

θ Qθ . (3.58)
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Chapter 4

Approximate Solutions

In this section we will examine what happens when K is merely an approximate

solution as defined below. We will build off of the results in Chapter 3 for true

solutions to show that similar results still hold for approximate solutions. We

start with the definition for approximate solution.

Definition 4.1. Let P be an exact presymplectic manifold, Vλ ∈ X(P) be a (d+

2n)-parameter family of presymplectic vector fields, ω ∈ D(γ, σ) be a Diophantine

vector of dimension (d+ n), and

K0 : Td+n → P

be an embedding. For a value λ0 of the parameter λ, define the error,

e0,θ := Vλ0,K0(θ) − ∂ωK0,θ ∈ TK0(θ)P ∼= Rd+2n . (4.1)

If some appropriately defined norm of e0 is sufficiently small, then we say that

K0 is an approximate solution.
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We will usually consider e0 as a map

e0 : Td+n → Rd+2n ,

whose derivative,

De0 : Td+n → Md+2n,d+n(R) , (4.2)

is given by

De0,θ =
(
DVλ0,K0(θ) − ∂ω

)
DK0,θ ∈ Md+2n,d+n(R) . (4.3)

Note that in (4.3), DVλ0,K0(θ) stands for the derivative of the vector field Vλ0

with respect to the spatial variables x ∈ Rd+2n:

DVλ0,K0(θ) =
[(
DVλ0,K0(θ)

)A
B

]
=

 ∂V A
λ0,x

∂xB

∣∣∣∣∣
x=K0(θ)

 ∈ Md+2n,d+2n(R) .

Recall that the presymplecticity of the family Vλ imply that the matrix DVλ0,K0(θ)

is block upper triangular (3.29), and its component

[
∂Ṽλ0
∂x̃

]
K0(θ)

satisfies (3.28).

4.1 Approximately isotropic tori

In Lemma 3.5 we showed that if Kθ is a true solution (i.e., if (3.1) is satisfied),

then the invariant manifold K (2.18) is isotropic, i.e., K∗Ω = 0. The analogous

result for this chapter will be that if K0 , θ is an approximate solution, then K0 is

approximately isotropic, i.e., K∗0Ω is small.

Lemma 4.2. Let P be an exact presymplectic manifold, Vλ ∈ X(P) be a (d+2n)-

parameter family of presymplectic analytic vector fields, and K0 ∈ Wρ (2.13) be
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an approximate solution with Diophantine frequency ω ∈ D(γ, σ). Assume that

Vλ extends holomorphically to some complex neighborhood Br (2.27) of the image

of Td+n
ρ under K0, for some r > 0. Let

L0,θ : TθTd+n → TθTd+n

be the matrix representation of the pull-back (K∗0Ω)θ as in (3.3) and (3.4):

L0,θ = DK>0,θ JK0(θ) DK0,θ . (4.4)

Then there exists a constant C > 0 depending on d, n, σ, ρ, ‖DK0‖ρ, |Vλ0 |C1,Br ,

and |J |C1,Br , such that for every δ satisfying

0 < δ <
ρ

2
,

the following bound holds:

‖L0‖ρ−2δ < Cγ−1δ−(σ+1) ‖e0‖ρ . (4.5)

Proof. Consider the directional derivative of the linear operator L0,θ (4.4). Using

78



(4.3), we obtain

∂ωL0,θ = ∂ω
(
DK>0,θ JK0(θ) DK0,θ

)
= ∂ω

(
DK>0,θ

)
JK0(θ) DK0,θ +DK>0,θ ∂ω

(
JK0(θ)

)
DK0,θ +DK>0,θ JK0(θ) ∂ω

(
DK0,θ

)
=
(
DVλ0,K0(θ) DK0,θ −De0,θ

)>
JK0(θ) DK0,θ

+DK>0,θDJK0(θ)

(
Vλ0,K0(θ) − e0,θ

)
DK0,θ

+DK>0,θ JK0(θ)

(
DVλ0,K0(θ)DK0,θ −De0,θ

)
= DK>0,θ

(
DV >λ0,K0(θ) JK0(θ) +DJK0(θ) Vλ0,K0(θ) + JK0(θ) DVλ0,K0(θ)

)
DK0,θ

−
(
De>0,θ JK0(θ) DK0,θ +DK>0,θDJK0(θ) e0,θDK0,θ +DK>0,θ JK0(θ) De0,θ

)
= −

(
De>0,θ JK0(θ) DK0,θ +DK>0,θDJK0(θ) e0,θDK0,θ +DK>0,θ JK0(θ)De0,θ

)
.

In the last step we used the identity (2.26) coming from the presymplecticity

of Vλ0 . From this and the Cauchy bounds (2.15) we obtain

‖∂ωL0‖ρ−δ ≤ C1‖e0‖ρ−δ + C2‖De0‖ρ−δ ≤ Cδ−1‖e0‖ρ . (4.6)

Although K0 is only an approximate solution, the exactness of the presym-

plectic form Ω implies that the average of L0 over Td+n vanishes exactly:

avg (L0) = 0 . (4.7)

The proof of this repeats the part of the proof of Lemma 3.5 between equations

(3.4) and (3.5), with K replaced by K0. Because of (4.7), we can apply the
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Rüssmann estimate (2.16) to obtain

‖L0‖ρ−2δ ≤ Cγ−1δ−σ ‖∂ωL0‖ρ−δ ≤ Cγ−1δ−(σ+1)‖e0‖ρ ,

where in the last step we used (4.6).

4.2 Derivation of the linearized equation

Given a family of presymplectic vector fields Vλ, the implicit equation

Vλ,Kθ = ∂ωKθ

can be difficult to solve for an embedding K : Td+n → P and a value λ̄ of the

parameter that satisfies the equation for λ = λ̄. So instead of solving this equation

directly for K and λ, we will start with an approximate solution and construct

an iterative process that will produce better approximate solutions that converge

to a true solution. As a result of this iterative process we will find a sequence of

pairs (λj, Kj) that will converge to a pair (λ∞, K∞) such that

Vλ∞,K∞ = ∂ωK∞ .

Let (λ0, K0) be the initial approximate pair. Define the error e0 as in (4.1),

and assume that its norm is small. Since K0 is not a true solution, we will be

interested in constructing an improved approximate solution by adding correction
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terms to both λ0 and K0. Define the vector ε0 ∈ Rd+2n and the function

∆0 : Td+n → P

to be the correction terms for λ0 and K0, respectively, so that the pair

(λ1, K1) := (λ0 + ε0, K0 + ∆0)

is a better approximate solution, in the sense that the norm of the error

e1,θ := Vλ1,K1(θ) − ∂ωK1,θ

will be smaller than ‖e0‖.

In general, define

ej,θ := Vλj ,Kj(θ) − ∂ωKj,θ , (4.8)

and let εj and ∆j be (j + 1)st correction terms, i.e.,

λj+1 := λj + εj , Kj+1,θ := Kj,θ + ∆j,θ . (4.9)

In the iterative process we will use the Cauchy estimate (2.15) and the Rüssmann

estimate (2.16), so it is clear that the domain of the embedding Kj will shrink

as j increases. This phenomenon, called loss of domain, leads us towards a

precarious situation. Could the domain run out before the process converges?

The key idea here is that in the Newton method for solving nonlinear equations,

the errors decay quadratically, i.e.,

‖ej+1‖ < C ‖ej‖2
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for some constant C (at the moment we ignore the domains over which the norms

are taken). The quadratic convergence of the errors and a careful selection of

how much domainto give up at each step is enough to ensure that our method

converges before the domain runs out.

In the rest of this section we will derive a linear equation for the corrections

εj and ∆j. Define the operator F acting on a pair (λ,K) by

F [λ,K](θ) := Vλ,K(θ) − ∂ωKθ .

Then a true solution (λ,K) would satisfy F [λ,K](θ) = 0. With this notation,

ej,θ = F [λj, Kj](θ) .

Therefore

ej+1,θ = F [λj+1, Kj+1](θ) = F [λj + εj, Kj + ∆j](θ)

= Vλj+εj ,Kj(θ)+∆j(θ) − ∂ω
(
Kj,θ + ∆j,θ

)
= Vλj ,Kj(θ) +DVλj ,Kj(θ) ∆j,θ +

[
∂Vλ
∂λ

]
λj ,Kj(θ)

εj

− ∂ωKj,θ − ∂ω∆j,θ +O(|∆j, εj|2)

= F [λj, Kj](θ) +DVλj ,Kj(θ) ∆j,θ − ∂ω∆j,θ +

[
∂Vλ
∂λ

]
λj ,Kj(θ)

εj +O(|∆j, εj|2)

= ej,θ +DVλj ,Kj(θ) ∆j,θ − ∂ω∆j,θ +

[
∂Vλ
∂λ

]
λj ,Kj(θ)

εj +O(|∆j, εj|2) .

(4.10)
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So, if we can find εj and ∆j such that

(
DVλj ,Kj(θ) − ∂ω

)
∆j,θ = −ej,θ −

[
∂Vλ
∂λ

]
λj ,Kj(θ)

εj , (4.11)

then all of the terms that depend linearly on λj and ∆j in the right-hand side of

(4.10) will cancel out, so that only terms that are quadratic and higher powers

in λj and ∆j will remain, which will ensure that the scheme is quadratically

convergent.

The system (4.11) of (d + 2n) equations for the unknown corrections εj and

∆j to the parameter λj and the embedding Kj is a linear algebraic equation

with respect to the components of the vector εj, and a linear first-order partial

differential equation with respect to the unknown functions ∆j. Since the matrix

DVλj ,Kj(θ) ∈ Md+2n,d+2n(R) is of a general form, is not easy to solve the system

(4.11) and to obtain estimates on the size of its solution. A powerful idea that will

help us solve (4.11) is to use the underlying geometry and dynamics. We will use

the basis introduced in Section 3.3, with the help of the change of basis matrix

introduced in Section 3.4; the calculations in Section 3.5 will be very useful.

We undertake this strategy for solving (4.11) in Section 4.3.

4.3 Solving the linearized equation

4.3.1 Geometric considerations

Now we employ a geometric strategy for solving the equation (4.11) for the un-

known constants εj ∈ Rd+2n and functions ∆j : Td+n → Rd+2n. Instead of using

a general subscript j ∈ {0, 1, 2, . . .}, we will write a subscript 0 to denote the

approximate solution, and with replace 0 with j after the end of the derivation.
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We rewrite (4.11) in the form

(
DVλ0,K0(θ) − ∂ω

)
∆0,θ = −e0,θ −

[
∂Vλ
∂λ

]
λ0,K0(θ)

ε0 . (4.12)

To utilize the geometry behind equation (4.12), we introduce an adapted basis

in Rd+2n, so that instead of the unknown function ∆0 we introduce the unknown

function

ξ0 : Td+n → Rd+2n

through the linear change of basis

∆0,θ =: M0,θ ξ0,θ . (4.13)

The change of basis matrix M0,θ ∈ Md+2n,d+2n(R) is constructed similarly to the

matrix Mθ in (3.30), but by using the approximate value λ0 and the approximate

embedding K0. Namely, given an approximate invariant torus K0 (4.12), which

we treat as a map K0 : Td+n → Rd+2n, we define

 Z0,θ X0,θ

Z̃0,θ X̃0,θ

 := [Z0,θ X0,θ] := DK0,θ ∈ Md+2n,d+n(R)

as in (3.18) and (3.19), the inverse Gramian of the columns of X0,

R0,θ :=
(
X̃>0,θX̃0,θ

)−1

∈ Mn,n(R) (4.14)
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as in (3.20), the matrices Ỹ0,θ and Y0,θ,

Ỹ0,θ := J̃−1
K0(θ) X̃0,θ R0,θ ∈ M2n,n(R) , Y0,θ :=

 0

Ỹ0,θ

 ∈ Md+2n,n(R) (4.15)

as in (3.21) and (3.22), and the approximate change of basis matrix

M0,θ := [DK0,θ Y0,θ] = [Z0,θ X0,θ Y0,θ] =

 Z0,θ X0,θ 0

Z̃0,θ X̃0,θ Ỹ0,θ

 ∈ Md+2n,d+2n(R)

(4.16)

as in (3.30).

As before, we think of the column vectors (Z0,θ)
•
µ, (X0,θ)

•
a, and (Y0,θ)

•
a as

vectors in TK0(θ)P . If the map K0 is close to the true solution K, then these

vectors still form a basis of TK0(θ)P as in the true case (recall (3.25)):

span
{{

(Z0,θ)
•
µ

}d
µ=1

,
{

(X0,θ)
•
a

}n
a=1

,
{

(Y0,θ)
•
a

}n
a=1

}
= TK0(θ)P ∼= Rd+2n . (4.17)

By construction, it is also clear that the columns of Z0,θ and X0,θ span the

tangent space to the approximately invariant torus K0 := K0(Td+n):

span
{{

(Z0,θ)
•
µ

}d
µ=1

,
{

(X0,θ)
•
a

}n
a=1

}
= TK0(θ)K0 . (4.18)

Unlike the case of a true solution, however, the manifold K0 (and, therefore its

tangent bundle) is not invariant with respect to the flow of the presymplectic

vector field Vλ0 . Another fact to notice is that the kernel of the presymplectic

form at K0(θ) is generally not a subspace of the tangent space TK(θ)K0 to the

manifold K0 at the point K0(θ).
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We make the substitution (4.13) in the variational equation (4.12) and obtain

the following equation for the new unknown function ξ0,θ:

(
DVλ0,K0(θ)M0,θ − ∂ωM0,θ

)
ξ0,θ −M0,θ∂ωξ0,θ = −e0,θ −

[
∂Vλ
∂λ

]
λ0,K0(θ)

ε0 .

Assuming that the matrix M0,θ is invertible, we rewrite this as

M−1
0,θ

(
DVλ0,K0(θ)M0,θ − ∂ωM0,θ

)
ξ0,θ − ∂ωξ0,θ = −M−1

0,θ

(
e0,θ +

[
∂Vλ
∂λ

]
λ0,K0(θ)

ε0

)
(4.19)

Our immediate goal is to transform the coefficient of ξ0,θ in this equation to a

simpler form.

4.3.2 “Big” and “small” parts of the coefficients

Directly from the definition (4.16) of M0,θ, we obtain

(
DVλ0,K0(θ) − ∂ω

)
M0,θ =

[
De0,θ

(
DVλ0,K0(θ) − ∂ω

)
Y0,θ

]
.

To compute ∂ωY0,θ, one can easily modify the computations in the derivation of

the expression (3.38) for ∂ωYθ in the true solution case (Section 3.5). Here are
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some intermediate results: equations (3.33), (3.34), and (3.36) are replaced by

∂ω
(
J̃−1
K0(θ)

)
=

[
∂Ṽλ0
∂x̃

]
K0(θ)

J̃−1
K0(θ) + J̃−1

K0(θ)

[
∂Ṽλ0
∂x̃

]>
K0(θ)

+ J̃−1
K0(θ) DJ̃K0(θ) e0,θ J̃

−1
K0(θ) ,

∂ωX̃0,θ =

[
∂Ṽλ0
∂x̃

]
K0(θ)

X̃0,θ −
[
∂ẽ0,θ

∂θ

]
,

∂ωR0,θ = −2R0,θX̃
>
0,θ

[
∂Ṽλ0
∂x̃

]sym

K0(θ)

X̃0,θR0,θ

+R0,θ

{[
∂ẽ0,θ

∂θ

]>
X̃0,θ + X̃>0,θ

[
∂ẽ0,θ

∂θ

]}
R0,θ .

In the right-hand side of the first equation, DJ̃K0(θ) e0,θ stands for the 2n × 2n

matrix with entries

(
DJ̃K0(θ) e0,θ

)i
j :=

d+2n∑
A=1

∂J̃ ij
∂xA

∣∣∣∣∣
K0(θ)

eA0,θ

(compare with (2.25)), and we have temporarily introduced the notation

[
∂ẽ0,θ

∂θ

]
:=



∂ed+1
0,θ

∂θd+1
· · ·

∂ed+1
0,θ

∂θd+n

...
...

∂ed+2n
0,θ

∂θd+1
· · ·

∂ed+2n
0,θ

∂θd+n

 ∈ M2n,n(R) .
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The expression for ∂ωỸ0,θ then becomes (cf. (3.38))

∂ωỸ0,θ =

[
∂Ṽλ0
∂x̃

]
K0(θ)

Ỹθ + 2J̃−1
K0(θ)Π̃0,θ

[
∂Ṽλ0
∂x̃

]sym

K0(θ)

X̃θR0,θ

+ J̃−1
K0(θ) DJ̃K0(θ) e0,θ Ỹ0 − J̃−1

K0(θ)

[
∂ẽ0,θ

∂θ

]
R0,θ

+ Ỹ0,θ

{[
∂ẽ0,θ

∂θ

]>
X̃0,θ + X̃>0,θ

[
∂ẽ0,θ

∂θ

]}
R0,θ ,

which implies (cf. (3.39))

(
DVλ0,K0(θ) − ∂ω

)
M0,θ =

(DVλ0,K0(θ) − ∂ω
)
DK0,θ

(
DVλ0,K0(θ) − ∂ω

) 0

Ỹ0,θ




=


0 0

[
∂V λ0

∂x̃

]
K0(θ)

Ỹ0,θ

0 0 −2J̃−1
K0(θ)Π̃0,θ

[
∂Ṽλ0
∂x̃

]sym

K0(θ)

X̃θRθ

+

De0,θ

 0

E [e0](θ)


 .

(4.20)

Here we have set

E [e0](θ) := J̃−1
K0(θ) DJ̃K0(θ) e0,θ Ỹ0,θ − J̃−1

K0(θ)

[
∂ẽ0,θ

∂θ

]
R0,θ

+ Ỹ0,θ

([
∂ẽ0,θ

∂θ

]>
X̃0,θ + X̃>0,θ

[
∂ẽ0,θ

∂θ

])
R0,θ ∈ M2n,n(R) ,

(4.21)

and Π̃0,θ is defined as in (3.37), but with X̃θ and Rθ replaced by X̃0,θ and R0,θ,

respectively.

The first matrix in the right-hand side of (4.20) is the “big” contribution

(i.e., the one that does not vanish when e0 is set to 0), and the second one is the
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“error” which becomes zero when e0 is identically 0.

To rewrite the coefficient of ξ0,θ in (4.19) in a simple form, we want that

(DVλ0,K0(θ) − ∂ω)M0,θ = M0,θ (C0,θ +B0,θ) , (4.22)

where C0,θ has the form

C0,θ =


0 0 T0,θ

0 0 S0,θ

0 0 0

 , (4.23)

and B0,θ is a “small” matrix, i.e., a matrix that vanishes if e0 becomes identically

zero. The equations (4.22) and (4.23) should be compared with (3.41) and (3.42).

Now we will compute explicit expressions for T0,θ, S0,θ and B0,θ. To take care

of the “big” terms in the right-hand sides of (4.20) and (4.22), we equate the

product M0,θC0,θ (with M0,θ and C0,θ given by (4.16) and (4.23)) with the “big”

term in the right-hand side of (4.20):

 Z0,θ X0,θ 0

Z̃0,θ X̃0,θ Ỹ0,θ




0 0 T0,θ

0 0 S0,θ

0 0 0

 =


0 0

[
∂V λ0

∂x̃

]
K0(θ)

Ỹ0,θ

0 0 −2J̃−1
K0(θ)Π̃0,θ

[
∂Ṽλ0
∂x̃

]sym

K0(θ)

X̃θRθ

 .

This gives us the system

Z0,θT0,θ +X0,θS0,θ =

[
∂V λ0

∂x̃

]
K0(θ)

J̃−1
K0(θ)X̃0,θR0,θ

Z̃0,θT0,θ + X̃0,θS0,θ = −2J̃−1
K0(θ)Π̃0,θ

[
∂Ṽλ0
∂x̃

]sym

K0(θ)

X̃0,θR0,θ ,
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whose solution is (cf. (3.48) and (3.50))

T0,θ = Z −1
0,θ

[∂V λ0

∂x̃

]
K0(θ)

Ỹ0,θ − 2X0,θỸ
>

0,θΠ̃0,θ

[
∂Ṽλ0
∂x̃

]sym

K0(θ)

X̃0,θR0,θ

 ,

S0,θ = −Ỹ >0,θJ̃K0(θ)Z̃0,θZ
−1
0,θ

[
∂V λ0

∂x̃

]
K0(θ)

Ỹ0,θ

+ 2
(
In − Ỹ >0,θJ̃K0(θ)Z̃0,θZ

−1
0,θX0,θ

)
Ỹ >0,θΠ̃0,θ

[
∂Ṽλ0
∂x̃

]sym

K0(θ)

X̃0,θR0,θ ,

(4.24)

where, similarly to (3.49), we have set

Z 0,θ := Z0,θ +X0,θỸ
>

0,θJ̃K0(θ)Z̃0,θ ∈ Md,d(R) . (4.25)

Using (4.22), we can rewrite equation (4.19) in the form

(C0,θ +B0,θ) ξ0,θ − ∂ωξ0,θ = −M−1
0,θ

(
e0,θ +

[
∂Vλ
∂λ

]
λ0,K0(θ)

ε0

)
(4.26)

where C0,θ is given by (4.23) and (4.24), and B0,θ is a “small” matrix, given

(according to (4.20)) by

B0,θ = M−1
0,θ

De0,θ

 0

E [e0](θ)


 , (4.27)

with E [e0](θ) defined in (4.21).
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4.3.3 Invertibility issues

Since the rank of the (2n×2n)-matrix [X̃0,θ Ỹ0,θ] is maximal and the matrix J̃K0(θ)

is non-degenerate, the matrix

Q0,θ :=


Id 0

0 X̃>0,θ

0 Ỹ >0,θ


 Id 0

0 J̃K0(θ)

 =


Id 0

0 X̃>0,θJ̃K0(θ)

0 Ỹ >0,θJ̃K0(θ)

 ,

defined similarly to Qθ (3.55), is non-degenerate.

In the spirit of (3.56), define the matrix

W0,θ :=


Z0,θ X0,θ 0

0 0 In

Ỹ >0,θJ̃K0(θ)Z̃0,θ −In Ỹ >0,θJ̃K0(θ)Ỹ0,θ

 . (4.28)

The motivation in defining W0,θ is that it is approximately equal to Q0,θM0,θ—

indeed,

Q0,θM0,θ =


Z0,θ X0,θ 0

X̃>0,θJ̃K0(θ)Z̃0,θ X̃>0,θJ̃K0(θ)X̃0,θ In

Ỹ >0,θJ̃K0(θ)Z̃0,θ −In X̃>0,θJ̃K0(θ)Ỹ0,θ

 ,

so that

Q0,θM0,θ = W0,θ + P0,θ , (4.29)
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where the matrix

P0,θ :=


0 0 0

X̃>0,θJ̃K0(θ)Z̃0,θ X̃>0,θJ̃K0(θ)X̃0,θ 0

0 0 0

 (4.30)

is small; if K0 were a true solution, P0,θ would be zero (recall (3.57)).

Lemma 4.3. Assume that the hypotheses of Lemma 4.2 hold. Then there exists

a constant C depending on d, n, σ, ρ, ‖DK0‖ρ, |Vλ0|C1,Br , and |J |C1,Br , such that

for every δ satisfying

0 < δ <
ρ

2
,

the following bound holds:

‖W−1
0 P0‖ρ−2δ ≤ Cγ−1δ−(σ+1)‖e0‖ρ . (4.31)

Proof. Recalling the bound (4.5) on the norm of the pull-back L0,θ (4.4) of the

presymplectic form Ω to the torus K0 = K0(Td+n), we obtain

‖W−1
0 P0‖ρ−2δ ≤ C ‖P0‖ρ−2δ

≤ C1 ‖X̃>0 (J̃ ◦K0) Z̃0‖ρ−2δ + C2 ‖X̃>0 (J̃ ◦K0) X̃0‖ρ−2δ

≤ C ‖DK>0 (J̃ ◦K0)DK0‖ρ−2δ

= C ‖L0‖ρ−2δ

≤ Cγ−1δ−(σ+1) ‖e0‖ρ .
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The approximate factorization (4.29) can be used to write the inverse matrix

M−1
0,θ in a convenient form, and Lemma 4.3 yields some useful bounds:

Lemma 4.4. Assume that the hypotheses of Lemma 4.2 hold. Assume that

0 < δ <
ρ

2

and the error e0 satisfies the bound

Cγ−1δ−(σ+1)‖e0‖ρ ≤
1

2
, (4.32)

where C is the same constant as in the right-hand side of (4.31).

Then the matrix M0,θ is invertible and its inverse can be written in the form

M−1
0,θ = W−1

0,θQ0,θ +ME,θ , (4.33)

where the error term, ME,θ, is given by

ME,θ = −
(
Id+2n +W−1

0,θ P0,θ

)−1
W−1

0,θ P0,θW
−1
0,θQ0,θ , (4.34)

and satisfies the bound

‖ME‖ρ−2δ ≤ C ′γ−1δ−(σ+1)‖e0‖ρ ; (4.35)

here C ′ is a constant that depends on the same parameters as the constant C in

the right-hand side of the bound (4.31).
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Proof. From (4.29) written in the form

Q0,θM0,θ = W0,θ + P0,θ = W0,θ

(
Id+2n +W−1

0,θ P0,θ

)
,

we obtain

M−1
0,θ =

(
Id+2n +W−1

0,θ P0,θ

)−1
W−1

0,θQ0,θ .

From the definition (4.33) of ME,θ we easily obtain the explicit expression (4.34):

ME,θ = M−1
0,θ −W

−1
0,θQ0,θ

=
(
Id+2n +W−1

0,θ P0,θ

)−1
W−1

0,θQ0,θ −W−1
0,θQ0,θ

=
(
Id+2n +W−1

0,θ P0,θ

)−1 {Id+2n −
(
Id+2n +W−1

0,θ P0,θ

)}
W−1

0,θQ0,θ

= −
(
Id+2n +W−1

0,θ P0,θ

)−1
W−1

0,θ P0,θW
−1
0,θQ0,θ .

The bound (4.35) is a direct consequence of (4.31).

Remark 3. Because of the special form of W0,θ (4.28), its inverse also has a special

form, namely

W−1
0,θ =

Z −1
θ −Z −1

0,θX0,θ (W0,θ)
3

3 Z −1
0,θX0,θ

(W0,θ)
3

1 Z −1
0,θ

{
In − (W0,θ)

3
1 Z −1

0,θX0,θ

}
(W0,θ)

3
3 −In + (W0,θ)

3
1 Z −1

0,θX0,θ

0 In 0


where (W0,θ)

3
1 := Ỹ >0,θJ̃K0(θ)Z̃0,θ and (W0,θ)

3
3 := Ỹ >0,θJ̃K0(θ)Ỹ0,θ are the correspond-

ing matrix elements of W0,θ, and Z 0,θ is defined in (4.25).
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4.3.4 Bounds on the “small” parts

Recall that, in order to find an approximate solution of the linearized equation

(4.12), we changed the variable ∆0,θ to ξ0,θ by (4.13) to transform it to the

form (4.19). Then we rewrote the coefficient of ξ0,θ in (4.19) as a sum of a “big”

part, C0,θ (given by (4.23) and (4.24)), and a “small” part, B0,θ, given by (4.27).

In the Proposition below we give bounds on the “small” terms in (4.19).

Proposition 4.5. Let K0 ∈ Wρ and the error e0 be defined by (4.1). Let the pair

(λ0, K0) be non-degenerate for the family Vλ of presymplectic analytic vector fields

in the sense of Definition 4.6. If the error e0 satisfies (4.32), then the change of

variables (4.13) transforms equation (4.12) to




0 0 T0,θ

0 0 S0,θ

0 0 0

+B0,θ

 ξ0,θ − ∂ωξ0,θ = −M−1
0,θ

(
e0,θ + ∂λVλ0,K0(θ) ε0

)

= −W−1
0,θ Q0,θ e0,θ −W−1

0,θ Q0,θ

[
∂Vλ
∂λ

]
λ0,K0(θ)

ε0

−ME,θ e0,θ −ME,θ

[
∂Vλ
∂λ

]
λ0,K0(θ)

ε0 ,

(4.36)

where B0,θ is defined by (4.27), ME is given by (4.34) (and satisfies (4.33)).
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Furthermore, the following bounds hold:

‖B0‖ρ−2δ ≤ Cδ−1 ‖e0‖ρ , (4.37)

‖ME e0‖ρ−2δ ≤ Cγ−1δ−(σ+1) ‖e0‖2
ρ , (4.38)∥∥∥∥∥ME

[
∂Vλ
∂λ

∣∣∣∣
λ0

◦K0

]
ε0

∥∥∥∥∥
ρ−2δ

≤ Cγ−1δ−(σ+1)

∥∥∥∥∥ ∂Vλ∂λ

∣∣∣∣
λ0

◦K0

∥∥∥∥∥ ‖e0‖ρ |ε0| . (4.39)

Proof. Equation (4.36) follows directly from the variational equation written in

the form (4.26), where C0,θ is given by (4.23) and (4.24), B0,θ is given by (4.27),

and the representation (4.33) of M−1
0,θ is used. So we only need to derive the

bounds (4.37), (4.38), and (4.39).

Combining (4.27) and (4.33), we obtain

B0,θ =
(
W−1

0,θQ0,θ +ME,θ

)De0,θ

 0

E [e0](θ)


 .

From the definition (4.21) of E [e0](θ) and the Cauchy bound (2.15),

‖E [e0]‖ρ−2δ ≤ C1 ‖e0‖ρ−2δ + C2δ
−1 ‖e0‖ρ−δ ≤ Cδ−1 ‖e0‖ρ−δ .

This, together with the bound (4.35) on ME, yields (4.37):

‖B0‖ρ−2δ ≤
(∥∥W−1

0 Q0

∥∥
ρ−2δ

+ ‖ME‖ρ−2δ

)(
‖De0‖ρ−2δ + ‖E [e0]‖ρ−2δ

)
≤
(
C1 + C2γ

−1δ−(σ+1)‖e0‖ρ
)
γ−1 ‖e0‖ρ−δ

≤ Cγ−1 ‖e0‖ρ .

The bounds (4.38) and (4.39) are direct consequences of (4.35).
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To use Newton method for finding ξ0,θ, it is enough to solve (4.36) retaining

only the “big” terms, i.e., ignoring all terms that are of higher order with respect

to the norm of the error e0. As we will show below (see (4.50)), the term ε0 is

also of order of the norm of e0. Proposition 4.5 allows us to keep only the leading

terms in (4.36) and write


0 0 T0,θ

0 0 S0,θ

0 0 0

 ξ0,θ − ∂ωξ0,θ = −W−1
0,θ Q0,θ e0,θ − Λ0,θ ε0 , (4.40)

where we have set

Λ0,θ := W−1
0,θ Q0,θ

[
∂Vλ
∂λ

]
λ0,K0(θ)

.

Introducing the notation

ξ0,θ =:


ξz

0,θ

ξx
0,θ

ξy
0,θ

 , ξz
0,θ ∈ Md,1(R) , ξx

0,θ, ξ
y
0,θ ∈ Mn,1(R) ,

we write (4.40) in the form

∂ω


ξz

0,θ

ξx
0,θ

ξy
0,θ

 = W−1
0,θ Q0,θ e0,θ + Λ0,θ ε0 +


T0,θ ξ

y
0,θ

S0,θ ξ
y
0,θ

0

 . (4.41)

Equation (4.41) has a solution if and only if the average over Td+n of its right-hand
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side is 0:

avg
(
W−1

0 Q0 e0

)
+ avg (Λ0) ε0 +


avg (T0 ξ

y
0 )

avg (S0 ξ
y
0 )

0

 = 0 . (4.42)

To satisfy the condition (4.42), we could have determined ε0 from this equation

and then substitute this value for ε0 into (4.41) to find the solution ξ0. The

problem with this strategy is that we still do not know ξy
0 . What saves the

strategy is the observation that right-hand side of the last n equations of the

system (4.41) does not involve ξy
0 , so that the last n equations of (4.41) have the

form

∂ωξ
y
0,θ =

(
W−1

0,θ Q0,θ e0,θ + Λ0,θ ε0

)y
, (4.43)

for which the solvability condition is

avg
(
W−1

0 Q0 e0

)
+ avg (Λ0) ε0 = 0 . (4.44)

In order to guarantee that we can solve (4.44) for ε0, we have to require that the

matrix multiplying ε0 is non-degenerate. To this end, we give the following

Definition 4.6. The pair (λ0, K0) is said to be non-degenerate for a (d+ 2n)-

parameter family of vector fields Vλ if the matrix

Λ0,θ := W−1
0,θQ0,θ

[
∂Vλ
∂λ

]
λ0,K0(θ)

∈ Md+2n,d+2n(R)

has a non-singular average:

rank avg (Λ0) = d+ 2n , avg (Λ0) =

∫
Td+n

Λ0,θ dθ1 · · · dθd+n . (4.45)
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We assume that the non-degeneracy condition (4.45) is satisfied, and set ε0

to be equal to the preliminary value

εprelim
0 := −{avg (Λ0)}−1 avg

(
W−1

0 Q0 e0

)
, (4.46)

which is of order of the norm of the error:

|εprelim
0 | ≤ C avg (e0) ≤ C ‖e0‖ρ . (4.47)

This choice of ε0 guarantees the existence of a solution ξy
0 of (4.43) that satisfies

the bound

‖ξy
0‖ρ−δ ≤ Cγ−1δ−σ

∥∥∥W−1
0 Q0 e0 + Λ0ε

prelim
0

∥∥∥
ρ

≤ Cγ−1δ−σ ‖e0‖ρ

(4.48)

thanks to the Rüssmann’s inequality (2.16) and the bound (4.47).

Having found ξy
0 from solving (4.43), we redefine ε0 as

ε0 := −{avg (Λ0)}−1

avg
(
W−1

0 Q0 e0

)
+


avg (T0 ξ

y
0 )

avg (S0 ξ
y
0 )

0



 (4.49)

to satisfy condition (4.42). Note that, although the value of ε0 from (4.49) differs

from the preliminary choice (4.46), the new value of ε0 will still satisfy the solv-

ability condition (4.44) so that (4.43) will still be solvable. Thanks to the bound
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(4.48), the updated value of ε0 satisfies

|ε0| ≤ C
(
‖e0‖ρ−δ + ‖ξy

0‖ρ−δ
)

≤ C
(
‖e0‖ρ + Cγ−1δ−σ ‖e0‖ρ

)
≤ Cγ−1δ−σ ‖e0‖ρ .

(4.50)

With the new value of ε0 from (4.49), we solve (4.41) to find ξ0 which, according

to the Rüssmann’s inequality (2.16) and the bound (4.50), satisfies

‖ξ0‖ρ−2δ ≤ Cγ−1δ−σ
(∥∥W−1

0 Q0 e0 + Λ0ε0

∥∥
ρ−δ + C ‖ξy

0‖ρ−δ
)

≤ Cγ−1δ−σ
(
‖e0‖ρ + |ε0|+ γ−1δ−σ ‖e0‖ρ

)
≤ Cγ−2δ−2σ ‖e0‖ρ .

(4.51)

We have just proved the following lemma:

Lemma 4.7. Assume the hypotheses of Proposition 4.5. Then there exist a func-

tion, ξ0, and a parmeter, ε0, that solve the reduced linear equation (4.40) and

satisfy the bounds (4.50) and (4.51).
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Chapter 5

Newton Method

In this chapter we will present estimates for the jth step of the iterative scheme

and show that the Newton Method generates a Cauchy sequence of approximate

solutions in a Banach space which converges to a true solution.

5.1 Improved-Step Estimates

Lemma 5.1. Assume that (λj , Kj) is an approximate solution with the same

assumptions as Proposition 4.7 such that the following holds:

rj := ‖Kj −K0‖ρj < r . (5.1)
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If ‖ej‖ρj is small enough such that Proposition 4.7 applies, then there exist a

function ∆j and a parameter εj ∈ Rd+2n such that

‖∆j‖ρj−2δj
≤ cjγ

−2δ−2σ
j ‖ej‖ρj

‖D∆j‖ρj−3δj
≤ cjγ

−2δ
−(2σ+1)
j ‖ej‖ρj

|εj| ≤ cj
∣∣avg(Λj)

−1
∣∣ ‖ej‖ρj ,

(5.2)

where cj is a constant that depends on n, d, r, ρ, |Vλj |C2,Br , ‖DKj‖ρj , ‖Rj‖ρj , and∥∥∂Vλ
∂λ

∥∥
ρj

Additionally, if

rj + cjγ
−2δ

−(2σ−1)
j ‖ej‖ρj < r , (5.3)

then

‖ej+1‖ρj+1
≤ cjγ

−4δ−4σ
j ‖ej‖2

ρj
. (5.4)

Proof. The inequalities (5.2) follow directly from Proposition 4.5, the Cauchy

inequality, and the fact that ∆j = Mj ξj.

We have defined Kj+1,θ = Kj,θ + ∆j,θ. So

‖Kj+1 −K0‖ρj+1−2δj+1
= ‖Kj + ∆j −K0‖ρj+1−2δj+1

≤ ‖Kj −K0‖ρj + ‖∆j‖ρj−2δj

≤ rj + cjγ
−2δ

−(2σ+1)
j ‖ej‖ρj ,

which is smaller than r by the assumption (5.3). This means that Kj+1 ∈ Br,

that is, our new approximate solution stays within the neighborhood where V is

holomorphically extened.

To see that (5.4) is true, recall from equation (4.10) that ξj = M−1
j ∆j was

102



found by solving (4.40). Thus,

DVλj ,Kj(θ) ∆j,θ − ∂ω∆j,θ +

[
∂Vλ
∂λ

]
λj ,Kj(θ)

εj + ej

= Mj,θ

(
Bj,θξj,θ +ME,j,θej,θ +ME,j,θ

[
∂Vλ
∂λ

∣∣∣∣
λj

◦Kj

])
,

and each term on the right hand side is quadratically small from Proposition 4.5.

This gives us the bound

∥∥∥∥∥DVλj ,Kj ∆j − ∂ω∆j +

[
∂Vλ
∂λ

]
λj ,Kj

εj + ej

∥∥∥∥∥
ρj−2δj

≤ Cγ−3δ−(3σ+1) ‖ej‖2
ρj
. (5.5)

Finally, recalling the Taylor expansion of ej+1,θ as given in (4.10) we see that

the size of the remainder term is on the order of ‖∆j‖2
ρj−2δj

. Thus we get the

estimate (5.4).

5.2 Non-degeneracy conditions

This section will show that if the error is small enough and some invertibility

conditions are met, then they will also be met at the subsequent (improved)

step.

Lemma 5.2. Assume the setup of Lemma 5.1. If

cjγ
−2δ

−(σ+1)
j ‖ej‖ρj ≤

1

2
, (5.6)

then the following are true:

1. If X̃>j X̃j is invertible, then X̃>j+1X̃j+1 is invertible.
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2. If Wj is invertible, then Wj+1 is invertible.

3. If avg(Λj) is invertible, then avg(Λj+1) is invertible.

Proof. Define

D∆j :=

 ∆j,x ∆j,x̃

∆̃j,x ∆̃j,x̃

 ,

then

DKj+1 = D (Kj + ∆j) = DKj +D∆j =

 Zj Xj

Z̃j X̃j

+

 ∆j,x ∆j,x̃

∆̃j,x ∆̃j,x̃


and

X̃j+1 = X̃j + ∆̃j,x̃ .

Therefore

X̃>j+1X̃j+1 =
(
X̃j + ∆̃j,x̃

)> (
X̃j + ∆̃j,x̃

)
= X̃>j X̃j + X̃>j ∆̃j,x̃ + ∆̃>j,x̃X̃j + ∆̃>j,x̃∆̃j,x̃

= X̃>j X̃j + Pj ,

where Pj := X̃>j ∆̃j,x̃ + ∆̃>j,x̃X̃j + ∆̃>j,x̃∆̃j,x̃.

The first term, X̃>j X̃j, is invertible by assumption, and the three terms that

make up Pj are all bounded by ∆j, which is bounded by the size of the error.

Thus, In +
(
X̃>j X̃j

)−1
Pj is invertible by the Neumann series, so

X̃>j+1X̃j+1 =
(
X̃>j X̃j

) (
In +

(
X̃>j X̃j

)−1
Pj

)

is also invertible.
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The other terms follow similar arguments and use the Neumann Series to

establish their invertibility. The key point is that we are only changing the term

by a small amount and invertiblity is an open condition.

5.3 Convergence to a true solution

In this section, we will show how close the initial approximation has to be for

our method to be iterated indefinitely and to converge to a true solution. Also,

we will get a bound on the difference between the true solution and the initial

approximation.

Lemma 5.3. Let {cj}j≥0 be the sequence of constants given above. Then for

0 < δ0 < min(ρ0/12 , 1) define:

δj := δ02−j ,

ρj := ρj−1 − 6δj−1 ,

ρ∞ := lim
j→∞

ρj ,

rj := ‖Kj −K0‖ρj ,

K∞ := lim
j→∞

Kj .

Then there exists a constant C > 0 depending on d, n, |Vλ|C2,Br , |J0|C1,Br , ‖DK0‖ρ0,

and |{avg(Λ0)}−1| such that if ‖e0‖ρ0 satisfies the conditions

C24σγ−4δ−4σ
0 ‖e0‖ρ0 ≤

1

2
, (5.7)

C

(
1 +

24σ

22σ − 1

)
γ−2δ−2σ

0 ‖e0‖ρ0 < r , (5.8)
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then the Newton Method can be successively iterated and will converge to a true

solution, (λ∞ , K∞).

Furthermore, the following bound holds:

‖K∞ −K0‖ρ0−6δ0
≤
(

22σ

22σ − 1

)
cγ−2δ−2σ

0 ‖e0‖ρ0 . (5.9)

Proof. The proof of this lemma is completely standard in KAM and follows the

details of [26]. The main point is that if (5.7) and (5.8) are true, then for all

j ≥ 0, we have the following:

rj + Cγ−2δ−2σ
j ‖ej‖ρj < r (5.10)

Cγ−2δ
−(σ+1)
j ‖ej‖ρj ≤

1

2
. (5.11)

This ensures that at each step, the improved approximate torus, Kj, stays within

Br and that the conditions are right for Mj to be inverted so that we may solve

the reduced linear equation and then change variables to get the update func-

tion ∆j. This part of the Newton Method would be the same as in [26] with little

modifiction, so in order to save the reader the headache of reading through a long

and tedious induction proof, we willl present only a few of the inequatlities and

give some general comments.
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Notice that

‖ej‖ρj ≤ Cγ−4δ−4σ
j−1 ‖ej−1‖2

ρj−1

≤ Cγ−4δ−4σ
j−1

(
Cγ−4δ−4σ

j−2 ‖ej−2‖2
ρj−2

)2

≤ . . .

≤
(
Cγ−4δ−4σ

0

)1+2+···+2j−1
(
δj−1δ

2
j−2 . . . δ

2j−1

0

)
‖e0‖2j

ρ0

=
(
Cγ−4δ−4σ

0

)2j−1 (
24σ
)20(j−1)+21(j−2)+···+2j−2(1) ‖e0‖2j

ρ0

≤
(
Cγ−4δ−4σ

0

)2j−1
24σ(2j−j) ‖e0‖2j

ρ0

≤
(
Cγ−4δ−4σ

0 24σ ‖e0‖ρ0
)2j−1

2−4σ(j−1) ‖e0‖ρ0

≤ κ2j−12−4σ(j−1) ‖e0‖ρ ,

where

κ := Cγ−4δ−4σ
0 24σ ‖e0‖ρ0 . (5.12)

Thus, we have

cjγ
−2δ

−(2σ+1)
j ‖ej‖ρj ≤

(
Cγ−2δ

−(2σ+1)
0 ‖e0‖ρ0

)
24σκ(2j−1)2−j(2σ−1)

≤ κγ2δ2σ−1
0 κ2j−12−j(2σ−1) ≤ 1

2
,
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Also, we can see that

rj = ‖Kj −K0‖ρj

≤ ‖Kj−1 + ∆j−1 −K0‖ρj−1

≤ ‖Kj−1 −K0‖ρj−1
+ cγ−2δ−2σ

j−1 ‖ej−1‖ρj−1

= rj−1 + cγ−2δ−2σ
j−1 ‖ej−1‖ρj−1

≤ . . .

≤ cγ−2δ−2σ
0 ‖e0‖ρ0 + cγ−2

j−1∑
m=1

δ−2σ
m ‖em‖ρm

≤ cγ−2δ−2σ
0 ‖e0‖ρ0 + cγ−2δ−2σ

0 κ ‖e0‖ρ0
j−1∑
m=1

22mσ2−4σ(m−1)

≤ cγ−2δ−2σ
0 ‖e0‖ρ0

(
1 + κ22σ

∞∑
m=0

2−2mσ

)

= cγ−2δ−2σ
0 ‖e0‖ρ0

(
1 + κ

24σ

22σ − 1

)
,

which is less than r because κ < 1
2
.

Thus the sequence {Kj}j≥0 forms a Cauchy sequence in a Banach space and

will converge to a true soluition K∞ = lim
j→∞

Kj.
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Finally, recalling (5.2), we obtain

‖K∞ −K0‖ρ∞ ≤
∞∑
j=0

‖K0 + ∆0 + ∆1 + ∆2 + · · · −K0‖ρ∞

≤
∞∑
j=0

‖∆j‖ρ∞

≤
∞∑
j=0

‖∆j‖ρj

≤
∞∑
j=0

Cγ−2δ−2σ
j ‖ej‖ρj

≤
∞∑
j=0

Cγ−2δ−2σ
0 22jσκ2j−12−4σ(j−1) ‖e0‖ρ

≤
∞∑
j=0

Cκ2j−12−2jσ+4σγ−2δ−2σ
0 ‖e0‖ρ .

109



Bibliography

[1] R. Abraham and J. E. Marsden. Foundations of Mechanics. Ben-
jamin/Cummings, Reading, Mass., second edition, 1978.

[2] R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, Tensor Analysis, and
Applications, volume 75 of Applied Mathematical Sciences. Springer-Verlag,
New York, second edition, 1988.

[3] L. Abrunheiro, M. Camarinha, and J. Clemente-Gallardo. Cubic polyno-
mials on Lie groups: reduction of the Hamiltonian system. J. Phys. A,
44(35):355203, 16, 2011. Corrigendum: 46(18):189501, 2, 2013.

[4] H. N. Alishah and R. de la Llave. Tracing KAM tori in presymplectic dy-
namical systems. J. Dynam. Differential Equations, 24(4):685–711, 2012.

[5] J. L. Anderson and P. G. Bergmann. Constraints in covariant field theories.
Physical Rev. (2), 83:1018–1025, 1951.

[6] V. I. Arnol′d. Proof of a theorem of A. N. Kolmogorov on the preservation
of conditionally periodic motions under a small perturbation of the Hamil-
tonian. Uspehi Mat. Nauk, 18(5 (113)):13–40, 1963.

[7] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt. Mathematical Aspects
of Classical and Celestial Mechanics, volume 3 of Encyclopaedia of Mathe-
matical Sciences. Springer-Verlag, Berlin, third edition, 2006. [Dynamical
systems. III].

[8] D. Aubin and A. Dahan Dalmedico. Writing the history of dynamical sys-
tems and chaos: longue durée and revolution, disciplines and cultures. His-
toria Math., 29(3):273–339, 2002.
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