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Introduction 

An important component of plant root system development is the production of 

lateral roots originating from older, primary roots (Itoh et al., 2005). Lateral roots are 

postembryonic structures that form within primary roots and comprise the horizontal 

component of plant root systems (Tian et al., 2014).  Lateral roots are essential for 

providing plants with water, minerals such as calcium and phosphorous, and anchorage 

in environments with structurally weak and/or flooded soils (Atkinson et al., 2014). 

Developing lateral roots, similar to general root system architecture, are able to growth 

and expand in response to various factors such as nutrient concentrations in the soil, 

heterogeneity of growth media, and various biotic interactions (Hochholdinger and 

Zimmermann, 2008). Rice (Oryza sativa) is one example of a plant that generates 

numerous lateral roots from primary root tissue as part of its large, fibrous root system. 

Specifically, lateral roots typically form in primary seminal and crown root tissue and 

follow three major developmental steps: pre-initiation, initiation, and post-initiation of 

lateral root primordia (De Smet et al., 2007).  

The pre-initiation step begins in the root cap, the outermost tissue covering root 

tips which serves as a protective layer for the meristematic cells of the root apex and as a 

sensory organ that perceives environmental signals such as gravity, water, and nutrients 

to direct root growth (De Smet, 2012). During root growth, the root cap constantly 

regenerates new cell layers as superficial layers are shed due to mechanical abrasion 

experienced by roots as they elongation through growing medium such as soil. When 

dividing lateral root cap cells extend to the boundaries of the rice root elongation zone 

(Figure 1) programmed cell death (PCD) occurs and specific groups of root cap cells die 



2 

off (Xuan et al., 2016). The PCD of root cap cell groups releases pulses of auxin to 

surrounding tissues in the root elongation zone. The auxin generated during root cap cell 

PCD is locally synthesized in the root cap from the conversion of indole-3-butyric acid 

(IBA) into indole-3-acetic acid (IAA) (De Rybel et al., 2012). Auxin release signals the 

activation of an oscillating transcriptional mechanism that installs regular spacing of 

lateral roots in a similar manner to SOMBRERO transcription factor activity observed in 

Arabidopsis (Fendrych et al., 2014). These regularly spaced cells are referred to as lateral 

root founder cells (LRFCs) (Vilches-Barro and Maizel, 2015). 

After the future location of lateral root primordia is established, the initiation step 

begins with PIN3-dependent auxin reflux into xylem-pole pericycle cells in LRFC 

clusters found in developmentally young root tissues, such as maturation zone I in rice. 

Increased auxin concentration induces the nuclei of at least two xylem-pole pericycles to 

round up and migrate toward the cell wall common to the two cells (De Rybel et al., 

2010). Simultaneously, the pericycle cells swell and overlaying endodermis thins in 

response to activation of SHY2 auxin repressor proteins in the overlaying endodermis 

cells (Vermeer et al., 2014). The first anticlinal division of the pericycle cells marks the 

beginning of both the lateral root primordia, and the auxin gradient that will begin to 

extend into overlaying cells (Dubrovsky et al., 2001). 

Subsequent controlled anticlinal and periclinal cell divisions in the post-initiation 

stage give rise to the traditional dome-shape of a primordium (Dubrovsky et al., 2000). 

Further cellular divisions, combined with movement of auxin into overlaying cells by 

expressed auxin transporters lead to the elongation of the LRP through five different types 
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of maturation zone root tissues overlaying lateral root primordia: endodermis, cortex (4 

layers in rice), sclerenchyma, exodermis, and epidermis. 

Establishment of an auxin gradient in the overlaying cells an essential component 

of the auxin signaling pathway responsible for cell wall enzyme activity in plants such as 

Arabidopsis and rice during lateral root emergence (Figure 3) (Péret et al., 2009). The 

auxin responsible for signaling in lateral root emergence differs in source from the auxin 

supply required in the lateral root initiation process. Unlike lateral root initiation, which 

derives auxin from root cap cells, lateral root emergence utilizes auxin synthesized in 

shoot tissues (Bhalerao et al., 2002). It is important to note that lateral root primordia will 

eventually synthesize their own supply of auxin in their root tips, however this auxin 

source does not play a role in lateral root emergence due to observations of primordial 

auxin synthesis only occurring after full emergence past primary root tissue layers (Ljung 

et al., 2005). Auxin derived from shoot tissues typically travels through the phloem and 

diffuses out into the apoplastic spaces adjacent to plant cell walls (Robert and Friml, 

2009). Protonation of auxin in the acidic environment of the cell wall facilitates its 

movement by diffusion across cell membranes, where it then becomes ionized in the less 

acidic environment of cellular cytoplasm (Overvoorde et al., 2010). At this point, auxin 

movement out of the cell becomes limited and requires membrane transport proteins (i.e. 

auxin transporters) to control directional movement in a processed called “polar auxin 

transport” (PAT) (Petrášek and Friml, 2009). Ultimately, most auxin will accumulate in 

the root tip which serves as a major auxin sink tissue. Auxin will then cycle from the 

meristematic zone of the root tip, through the epidermis to the basal meristem, and then 
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back towards the root tip via the action of PIN-family auxin efflux transporters located in 

these cells (Clark et al., 2014). 

Utilizing a mechanism observed in Arabidopsis, and hypothesized to also exist in 

cereal grains such as rice (Smith and De Smet, 2012), auxin regulates the lateral root 

emergence process by mediating the degradation of the transcriptional repressor protein 

IAA14 through binding of the TIR1 auxin receptor component. TIR1, a type of SCF 

complex (Skp, Cullin, F-box containing complex), is thought to catalyze the 

ubiquitination of IAA14 (AUXIN-RESPONSIVE PROTEIN 14) when a sufficient 

concentration of auxin is present in the cell. Degradation of IAA14 releases its interacting 

transcription factor, ARF7 (AUXIN RESPONSE FACTOR 7), which then triggers 

expression of LAX3 (LIKE-AUX3) auxin influx transporters and PIN3 (PIN-

FORMED3) auxin efflux transporter (Péret et al., 2013). LAX3 and PIN3 auxin 

transporter expression is triggered in root cells along the lateral root emergence (LRE) 

pathway by auxin diffusing from the lateral root primordia initiation site. Auxin 

transporter expression permits auxin movement, and concentration of auxin, into a 

distinct gradient in tissues overlaying lateral root primordia to ensure expression of cell 

wall remodeling proteins such as AUXIN BINDING PROTEIN1 (ABP1) which 

modulates hemicellulose xyloglucan structure in primary cell walls (Paque et al., 2014). 

It should be noted, however, that difficulty does exist in the study of lateral root 

emergence mechanisms due to many genes expressed in both lateral root emergence and 

lateral root initiation (Vilches-Barro and Maizel, 2015). Specifically, studies which use 

mutant genes to block or inhibit lateral root initiation, such as aux1 and lax3 (Péret et al., 
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2012), may also inhibit lateral root emergence and cause difficulty in establishing 

concrete relationships. 

In addition to LAX3 and PIN3 auxin transporters, several other genes may play a 

role in auxin-induced regulation of lateral root emergence. IDA (INFLORESENCE 

DIFICIENT IN ABSCISSION), HAE (HAESA) and HSL2 (HAESA-LIKE2), previously 

identified in Arabidopsis floral organ abscission (Butenko et al., 2003), appear to induce 

cell separation of overlaying tissues during lateral root emergence (Kumpf et al., 2013). 

Specifically, IDA has been identified as a putative signaling peptide that interacts with 

the leucine-rich repeat, receptor-like kinases HAE and HSL2 present in endodermis cells 

overlaying developing lateral root primordia. Auxin from developing lateral root 

primordia induces IDA expression which is followed by signaling through HAE and 

HSL2 receptors to up-regulate cell wall remodeling genes such as XTR6 

(XYLOGLUCAN ENDOTRANSGLYCOSYLASE6), EXP17 (EXPANSIN 17), 

PGAZAT (PG LATERAL ROOT) and PGLR (PG ABSCISSION ZONE 

ARABIDOPSIS THALIANA) in cell walls of tissues overlaying lateral root primordia 

(Kumpf et al., 2013). Auxin influx, via LAX3, into overlaying cells triggers the auxin-

dependent cascade leading to the activation of ARF7, which induces expression of IDA, 

HAE and HSL2 in cells along the lateral root emergence pathway in front of lateral root 

primordia. 

As lateral root primordia development occurs deep within primary roots, 

remodeling of overlying tissue cell walls is required to accommodate growing primordia 

during LRE. Previous research involving cell wall remodeling (CWR) induced by the 

auxin signaling pathway, and IDA-peptide signaling, identified several enzymes 
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responsible for alterations in plant cell walls (Table 1). For example, xylosyltransferases 

such as XTR6 (Péret et al., 2013) and XXT1 (Cavalier et al., 2008) both synthesize 

xyloglucan, which forms a major component of hemicellulose in plant cell walls. Down-

regulation of these two genes was observed during lateral root emergence, suggesting that 

diminished hemicellulose content is required to weaken cell wall structures that may 

inhibit lateral root primordia elongation. In addition, down-regulation of the genes PRC1, 

which produces a cellulose synthase required for cellulose microfibril assembly (Fagard 

et al., 2000), and XEG113, a xyloglucan transferase required to increase cross-linking of 

extensins in the cell wall matrix (Roycewicz and Malamy, 2014),  were similarly 

observed during lateral root emergence and may also imply that a decrease in specific cell 

wall component is required for successful LRP emergence. 

Other cell wall remodeling enzymes have been identified that destabilize or 

degrade specific cell wall components. For example, up-regulation of CEL3/GH9B3 

(Lewis et al., 2013) and EXP17 (Sato and Miura, 2011) both weaken cell wall structures 

by either degrading cellulose directly (CEL3/GH9B3), or reducing the cross-linking 

between cellulose microfibrils to destabilize their position in the cell wall matrix 

(EXP17). In addition, several enzymes appear to target pectin (e.g. homogalacturonan), 

another significant structural component of the cell wall, to destabilize the cell wall matrix 

to permit deformation of cells contacting emerging lateral root primordia. AIR3 (Vilches-

Barro and Maizel, 2015), PGLR and PGAZAT (Kumpf et al., 2013) genes yield enzyme 

products that either act as subtilisin-like serine proteases that degrade homogalacturonan 

by enabling de-methyl esterification of the pectin backbone and subsequent cleavage by 
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polygalacturonases (AIR3), or directly serve as polygalacturonases which hydrolyze the 

bonds between residues in homogalacturonan (PGLR and PGAZAT). 

The cell wall itself is a distinguishing feature of plant cells and is critical to the 

successful development and reproduction of plants. Plant cell walls are commonly 

divided into two types: primary and secondary. The primary cell wall consists of a rigid 

layer of complex polysaccharides on the outer surface of the plasma membrane that 

encases the entire plant cell and changes little after initial synthesis. The secondary cell 

wall forms underneath the primary cell wall after it has ceased developing and provides 

additional structural support to plant cells. Unlike primary walls, secondary walls 

continue to form after the plant cell has ceased expanding and typically exhibit different 

component ratios than primary cell walls. For instance, secondary cell walls found in 

xylem and sclerenchyma tissue typically contain significantly more lignin than primary 

cell walls and serve as strong support structures to ensure proper water transport and 

maintain overall plant form, respectively. 

The primary cell wall is further described according to two distinct classes of cell 

wall matrix contents: Type-I and Type-II. Dicotyledonous and non-graminaceous 

monocotyledonous plants possess Type-I cell walls which are characterize as interlinking 

matrices of xyloglucan and cellulose microfibrils in a hydrated pectin polymer network 

(Carpita, 1996). Graminaceous monocotyledonous plants, such as rice, possess Type-II 

cell walls that possess hemicellulose, feruloyated arabinoxylans, and mixed-linkage 

glucans (1,3; 1,4)-β-D-glucan) as major components with minor quantities of 

xyloglucans, pectic polysaccharides, and arabinogalactan proteins (Vega-Sánchez et al., 

2013) 
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Remodeling of primary cell wall components is known to occur in overlaying Zea 

mays and Arabidopsis root tissues during LRE, but is poorly described in many cereal 

grains such as Oryza sativa. Rice primary wall, similar to other grasses, are characterized 

by the significant abundance of hemicellulosic polysaccharides, glucuronoarabinoxylans 

and mixed-linkage glucans, with relatively minor proportions of xyloglucans, pectic 

polysaccharides, and structural proteins such as arabinogalactan (Pattathil et al., 2015). 

By contrast, other components such as lignin are located in secondary cell walls that form 

after primary cell wall development.  Modification of these cell wall matrix constituents 

may influence the properties of the wall matrix such as tensile strength, recalcitrance to 

enzymatic digestion and proper root elongation (Tenhaken, 2014).  

Pectin, a relatively minor primary wall component, is subject to modification in 

the form of de-methyl esterification of homogalacturonan (Ochoa-Villarreal et al., 2012). 

Homogalacturonan (HG) itself is the most abundant pectic polysaccharide, constituting 

~65% of total pectin in both Type I (dicots) and Type II (commelinoid monocots) plant 

cell walls. Homogalacturonan consists of a linear α-1,4-linked galacturonic acid (GalA) 

homopolymer with a typical degree of polymerization of ∼100 (Mohnen, 2008). During 

cell wall synthesis, the homogalacturonan backbone structure is produced in a highly 

methyl-esterified form from cellular Golgi complex, with methyl-esterification occurring 

on C2-C3 and C6 GalA residue carbons (Figure 4) (Ridley et al., 2001). Activity from 

pectinesterases cleave methyl ester bonds later in cell wall development, yielding 

epitopes of de-methyl esterified pectin homopolymers that play significant roles in overall 

primary wall integrity (Arancibia and Motsenbocker, 2006). 
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HG methyl-esterification directly influences structural interactions in plant tissues 

such as cell wall matrix stability. A “Loosening Model” of primary cell wall alteration 

suggests that de-methyl esterification enhances the vulnerability of the HG backbone 

structure to degradation by polygalacturonase enzyme activity – resulting in pectin 

degradation and a subsequent loss of cell wall matrix structural integrity. 

Understanding the developmental changes experienced by cell walls overlaying 

lateral root primordia can have significant impacts on agricultural research and 

development, including: expanded knowledge of cereal grain root system development, 

potential for increases in root system volume, and identification of molecular targets to 

modify rice cell wall recalcitrance, leading to improvement of rice feedstock digestibility 

for biofuel production. 

To better understand developmental changes during rice LRE, 

immunohistochemical studies were performed on sectioned root tissue from rice root 

seedlings. Antibody binding patterns from these results identified epitopes of primary cell 

wall components that appear to be modified in cells near the primordium during LRE. 

Further testing with enzymatic assays illuminated the potential chemical interactions 

between select cell wall components during lateral root emergence. In addition, 

groundwork for future relative gene expression and transcriptome analysis of tissues 

subject to cell wall matrix alterations was initiated with the development of an optimized 

laser capture microdissection protocol for rice root tissue.  
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Figure 1 - Rice crown root developmental regions and tissues. 

(A) Schematic representation of rice crown roots consisting of eight developmental 

regions (Sato et al., 2010). (B) Schematic representation of a rice root cross sections with 

lateral root primordium (L) and six distinct tissue layers (Péret et al., 2013). (C) Cross 

sections of rice root tissue layers with lateral root primordium (top) and without 

primordium (bottom).  Images are micrographs of false-colored signals (inverted-gray 

LUT value) of native cell wall autofluorescence. Ep – epidermis; Ex – exodermis; S – 

sclerenchyma; C4 – 4th cortical layer; C3 – 3rd cortical layer; C2 – 2nd cortical layer; C1 

– 1st cortical layer; En – endodermis; P – pericycle; St – stele (vascular tissues). Bars = 

20 µm  
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Figure 2 - Developmental stages of lateral root emergence in rice  

(I) Rice lateral root emergence (LRE) begins with lateral root primordia (L) initiating in 

the crown root pericycle layer and elongating towards the endodermis, which is identified 

as Stage I due to limitations in identifying earlier stages. (II-IV) Stage II-IV LRE is 

denoted by the primordia apex encountering the each of the four cortical cell layers found 

in maturation zone developmental tissue. (V) Stage V LRE in a brief stage observed 

during primordia contact with the sclerenchyma layer. (VI) Stage VI LRE is observed 

during primordia contact with the exodermis. LRE later than Stage 6 is not recorded due 

to occasional absence or damage to epidermal layer in tissue sections. Images are 

micrographs of false-colored signals from native cell wall autofluorescence (cyan). Bars 

= 20 µm. 
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Figure 1 - Hypothesized regulation of lateral root emergence in root tissues 

(A) Lateral root formation and elongation relies on an elaborate auxin signaling pathway 

regulated by an auxin response factors, signaling protein and auxin transporters which 

function to create an auxin gradient in cells immediately overlaying developing lateral 

root primordia. (B) Comparison of Arabidopsis thaliana and rice tissue layers suggests 

the hypothesized LRE model in Arabidopsis will be similar to the uncharacterized LRE 

model of rice. (Reproduced with permission from (Péret et al., 2013) and (Swarup et al., 

2008)). 
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Figure 2 - Structure of homogalacturonan 

As the backbone structure of most pectic polysaccharides, homogalacturonan consists of 

linear polymers comprised of 1→4 linked α-d-GalpA residues. Some of the carboxylates 

of the GalpA residues are esterified with methanol. The GalpA residues may also be 

esterified with acetic acid at C2 and C3. Image usage under Creative Commons License 

3.0. (Ochoa-Villarreal et al., 2012).  
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Figure 3 - “Loosening Model” of primary cell wall destabilization 

(A) Homogalacturonan is synthesized in the cellular Golgi and transported to the primary 

cell walls in a highly methyl-esterified form with multiple methyl groups (yellow) 

substituted to the D-galacturonic acid backbone (red) which is covalently linked to 

hemicellulose polymers (blue). (B) After de-methyl esterification occurs calcium ions 

(Ca2+) bind to adjacent homogalacturonan strands with exposed carboxylate ions, forming 

an “egg-box” cross-linking structure that strengthens the cell wall matrix. (C) 

Degradation of the homogalacturonan backbone occurs due to polygalacturonase activity 

permitted by cross-linking structures. Loss of homogalacturonan creates instability in 

hemicellulose structures, and changes alignment of cellulose microfibrils (brown) in the 

primary cell wall matrix. Overall structure of the cell wall matrix weakens and become 

increasingly malleable to mechanical stress. 
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Chapter 1: Microscopic evaluation of primary cell wall polysaccharide 

alterations during lateral root emergence in Oryza sativa 

 

1-1 Background 

Cell walls are important support structures synthesized during mitotic division of 

plant cells and are typically characterized as tough, rigid matrix formations comprised of 

various cell wall polymers and proteins. Plant cells may possess two types of cell walls: 

primary and secondary. The primary cell wall does not significantly alter composition or 

physical dimensions after initial synthesis, except in specific types of plant development 

such as seed shattering (Christiansen et al., 2002), leaf abscission (Agustí et al., 2009), 

floral organ abscission (Aalen et al., 2013), and fruit ripening (Goulao and Oliveira, 

2008). These developmental events typically entail an alteration of select cell wall 

components in order to weaken overall primary cell wall structure. Secondary cell walls, 

by contrast, are formed after maturation of primary cell walls and may continue 

synthesizing cell wall matrix components, such as lignin and cellulose, to provide 

additional mechanical strength to plant cell walls (Cosgrove and Jarvis, 2012). Many 

dynamic changes to primary cell wall structure are often found to be due to alterations in 

pectic polysaccharide composition and localization within the cell wall matrix (Abasolo 

et al., 2009). 

Pectins are structurally complex, highly soluble components in the cell wall, 

making up ≤10% of the primary wall of grasses and other commelinoid plants (Scheller 

et al., 2007).  Pectins are a covalently linked galacturonic acid (GalA) rich cell wall 

polysaccharide family (Albersheim et al., 1996; Mohnen, 2008) consisting of three 
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different types of polysaccharide domains: homogalacturonan (HG), rhamnogalacturonan 

I (RG-I) and rhamnogalacturonan II (RG-II). Homogalacturonan forms the backbone of 

most pectic polysaccharides as a linear chain of 1,4 linked α-D- galacturonic acid residues 

that comprises ~65% of pectin (Mohnen, 2008). Rhamnogalacturonan I is a branched 

polymer consisting of a backbone of a repeating disaccharide of [ - 4)-α-D-galacturonic 

acid- (1,2)-α-L-rhamnose-(1- ] with side chains predominantly comprising 

arabinofuranosyl and galactopyranosyl residues and representing 20-35% of total cell 

wall pectin (Ridley et al., 2001). Rhamnogalacturonan-II, the most structurally complex 

pectin, consists of a backbone of linear 1,4-linked α-D-GalA residues, with four different 

side chains consisting of 12 unique glycosyl residues linked to more than 20 different 

linkages and representing only about 10-15% of the pectin (O'Neill et al., 2004). 

The homogalacturonan backbone is known to be altered during cell wall 

remodeling and may serve as an measure of developmental events in plant tissues (Wolf 

et al., 2009).The primary mechanism of pectin alteration appears to be caused by the de-

methyl esterification of the homogalacturonan backbone structure and subsequent 

changes in covalent bonding interactions between other cell wall matrix components. 

Initially, de-methyl esterification of homogalacturonan exposes carboxylate groups on 

the pectin backbone structure to ionic bonding with calcium ions (Ca2+) already present 

in the cell wall (Kader and Lindberg, 2010). Four oxygen atoms from exposed carboxyl 

groups on two adjacent HG polymer will then form ionic bonds with a single calcium ion 

to create a polymer cross-linking structure referred to as the “egg-box model” (Plazinski, 

2011). The structure egg-box model results in the tight packing of HG polymers and the 

ability to bind at least four molecules of water for calcium ion bound, resulting in 
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subsequent pectin gelling often observed in plant primary cell walls (Braccini and Pérez, 

2001). The egg-box model is also suspected to permit crosslinking to hemicellulose 

components, such as xyloglucan, leading to the pectin gel matrix complementing the role 

cellulose-xyloglucan complexes in maintaining primary wall integrity (Caffall and 

Mohnen, 2009). 

On the other hand, the presence of de-methyl esterified homogalacturonan within 

the egg-box structures induces pectin-hydrolyzing enzyme activity in the form of 

polygalacturonase and pectin/pectate lyases (Wolf et al., 2009). Increased 

polygalacturonase activity within cell walls is theorized to disrupt pectin matrix structure 

and induce alterations in plant cell dimensions, similar to changes in stigma and style 

structure during pollen tube development in plants such as Larix decidua (Rafińska et al., 

2014). The contradictory nature of a strong pectin egg-box structure leading to subsequent 

pectin hydrolysis activity supports assumptions of the dynamic primary cell wall 

components that are remodeled depending on developmental requirement within plant 

tissues and/or exposure to outside, abiotic factors (Willats et al., 2006). In addition, 

changes in calcium-mediated HG crosslinking often contribute to changes in cell wall 

properties during plant development (Willats et al., 2001). The parallel or antiparallel 

arrangement of cross-linked HG polymers is known to be a significant source of cell wall 

tensile strength (Caffall and Mohnen, 2009). 

In the current study, a combination of immunolabeling, enzymatic treatment and 

structured illumination microscopy of rice root tissue cross sections provided significant 

compositional information regarding the various tissue layers overlaying rice lateral root 

primordia that develop after preliminary lateral root initiation. Alterations in cell wall 
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matrix components, such as hemicellulose and pectin, were examined in order to shed 

light on the possible interactions of different primary wall polymers. Data from the 

current study was used to evaluate previously reported models of primary cell wall 

remodeling and apply them to explain cellular accommodation of growing LRP in 

developmentally mature rice root tissues. 
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1-2 Methods 

Plant growth conditions and developmental staging 

Developing seedlings of rice (Oryza sativa cv. Dongjin) were grown under 

fluorescent lighting in a 25oC incubator. Rice were harvested from sealed petri dishes six 

days after initial seed germination in ½ strength Murashige and Skoog (MS) media, pH 

6.5.  Seedlings were harvested based on the presence of 2-3 crown roots, and no emerged 

lateral roots in maturation zone tissues. 

 

Root tissue harvesting and sectioning 

 Crown root sections were cut from six-day old seedlings in deionized water under 

a standard dissection microscope. Unfixed crown root sections from maturation zones I 

& II were cut into 1 cm sections prior to embedding in 3.5% agarose blocks (Henry et al., 

2016). Approximately 5-6 root segments were embedded in each agarose block prior to 

sectioning on Vibratome-1000 (Ted Pella, Inc.) at 50 µm thickness. 

 

Immunolabeling of root cross sections 

Agarose-embedded root sections were chosen based on the presence of lateral root 

primordia. 3-6 rice root sections were placed in a 1.5 mL Eppendorf tube. Samples were 

washed for ten minutes, three times, in 10 mM Tris-Buffer Saline solution with 0.1% 

Tween-20 (TBST). Approximately 250 µL of cell-wall specific monoclonal antibody, 

diluted either 1/10 or 1/20 strength in 1X TBST buffer, was placed in each sample tube 

and followed with a 12 hour incubation period at 4 oC. After the incubation period, 

samples washed again with 10 mM TBST buffer. Diluted goat secondary antibody 
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(1/500) conjugated to Alexa Fluor™ 647 fluorophore was added to the samples based 

upon the requirements of the primary antibodies (Table 2). Sections were washed a final 

3 times in 10 mM TBST, prior mounting in miowol mounting media between two Golden 

Seal® No. 0 coverslips. Autofluorescence of the root tissue was imaged with a 40X dry 

objective on a Zeiss ApoTome structured illuminated microscope under an 488 nm 

excitation wavelength, while 633 nm excitation was used for secondary antibodies 

conjugated to Alexa Fluor ® 647. 

 

Enzymatic Treatments 

 

Rice root sections (50 µm) were incubated for two hours at 25oC using reagents 

from the Novozyme Cellulosic Ethanol Enzyme Kit. Enzyme concentrations were created 

using the following maximum suggested % w/w according to the manufacturer 

recommendations: Cellulase complex (NS22086) = 5%, Xylanase (NS22083) = 0.25%, 

β-glucosidase (NS22118) = 0.6%, and Enzyme complex (NS22119) = 0.4%. Pectin lyase 

(AN2569) and pectin methyl esterase (AN3390) enzymes, donated by the Mort Lab of 

Oklahoma State University, were diluted 1/10 in deionized water to concentrations of 

0.062 U/mL and 0.011 U/mL, respectively. Lichenase (10 U/mL) was also separately 

incubated with samples for 2 hours at room temperature. 

  

Image Rendering 

Image rendering was performed using ImageJ (NIH, Bethesda). Fluorescence images for 

native autofluorescence and fluorophore-conjugated secondary antibody were processed 

with either a Gaussian Blur plugin (low pass filter) to increase standard deviation of pixel 
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distribution and smooth image appearance, or an UnsharpMask plugin (high pass filter) 

to rescale blurry images and sharpen visual quality. Fluorescence images for their 

respective channels (secondary antibody fluorophore, or native autofluorescence) were 

combined into z-series stacks and normalized to the standard mean intensity of each stack 

using the Bleach Correction plugin (EMBL Heidelberg). The following lookup table 

(LUT) values were chosen to improve visual clarity of antibody binding patterns of 

immunolabeling and enzyme treatment images: magenta (Alexa Fluor® 647 fluorophore) 

and green (cell wall native autofluorescence). 

  



26 

1-3 Results 

Autofluorescence of rice crown root tissue sections during lateral root emergence 

Rice root tissue cross sections demonstrate autofluorescence in the green-blue 

wavelengths of the visible light spectrum upon exposure to ultraviolet excitation. 

Autofluorescence is noticeable in all tissue layers including root stele (xylem and 

phloem), pericycle, endodermis, cortical cells (four layers), sclerenchyma, exodermis, 

and epidermis. Fluorescence microscopy revealed changes in native autofluorescence 

intensity of sclerenchyma tissue layers overlaying lateral root primordia (LRP) during 

three developmental stages of lateral root emergence (LRE) (Figure 1.1). Reduced 

fluorescence was directly observed in 4-5 contiguous sclerenchyma cells walls apical to 

the lateral root primordium emergence pathway. Changes in fluorescence signal may 

suggest a decrease or alteration of phenolic compounds including ferulic acid, p-coumaric 

acid and/or lignin,  all of which fluoresce when exposed to ultraviolet light (Harris and 

Hartley, 1976). 

 

Immunofluorescent labelling of crown root tissue sections 

Initial antibody screening investigated the presence of select cell wall components 

in rice root tissues by evaluating changes in fluorescence signal in cells near lateral root 

primordia. Evaluation of fluorescence signal due to antibody binding was classified under 

one of three types: no signal, no change in signal compared to rice root tissue areas not 

overlaying a lateral root primordium, and localized increase in signal near lateral root 

primordium. 
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Antibody labeling of select cell wall component epitopes demonstrated no 

changes in fluorescent signals in tissues overlaying emerging lateral root primordia 

(Figure 1.2). Antibodies for de-methyl esterified homogalacturonan with greater than four 

degrees of polymerization (CCRC-M38) (Figure 1.3), methyl-esterified 

homogalacturonan at least five residues long (CCRC-M130) (Figure 1.4), 

rhamnogalacturonan I backbone structure (CCRC-M14) (Figure 1.5), and arabinoxylan 

(LM11) indicated strong localization in cortical tissue layer cells throughout the entire 

rice root cross section with the exception of LM11, which displayed strong antibody 

binding in lateral root primordia and all xylem tissue of the rice root stele (Figure 1.6). 

These results were confirmed in root section replicates demonstrating Stage III-IV lateral 

root emergence. 

Unique antibody binding patterns were observed for six antibodies targeting 

major cell wall components (Figure 1.7). Treatment with INRA-COU1 (Tranquet et al., 

2009) for free para-coumaric acid and para-coumarate esters (Figure 1.8) and  CCRC-

M100 for xyloglucan epitope, XXXG, (Figure 1.9) revealed increased fluorescent 

antibody binding signals in exodermis, sclerenchyma and cortical tissue cells overlaying 

lateral root primordia. Increased signal was observed at between 1-4 cell files in advance 

of the lateral root primordia apex during Stage III-V lateral root emergence for each 

antibody.  

LM19 for de-methyl esterified homogalacturonan (Figure 1.10), JIM5 (Figure 

1.11) and CCRC-M34 for partially de-methyl esterified homogalacturonan (Figure 1.12), 

and LM20 for methyl-esterified homogalacturonan (Figure 1.13) revealed no change in 

antibody binding signal in all cortical tissues observed during Stage I-VI lateral root 
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emergence. However, 20-50 µm wide sclerenchyma and exodermis cells sections 

overlaying lateral root primordia displayed increased signal intensity compared to other 

sections of the rice root tissue during Stage I-VI LRE. The presence of antibody binding 

signals was detected up to 6 cell files away from the lateral root primordia apex at Stage 

I, implying that some form of signaling mechanism is revealing or synthesizing epitopes 

for specific cell wall components far in advance of the lateral root primordia. 

 

LM19 localization pattern alteration during enzymatic treatments 

Evaluation of the antibody binding pattern for de-methyl esterified 

homogalacturonan (LM19) was conducted utilizing a series of eight enzyme treatments: 

enzyme complex mixture, cellulase complex mixture, xylanase, pectin lyase, 

pectinesterase, sodium carbonate (pH 11.4), β-glucosidase (Figure 1.14). The objective 

of these treatments was to determine the influence of selective cell wall component 

removal on the availability of the LM19 epitope, and suggest possible dependencies 

between de-methyl esterified pectin and major cell wall components such as cellulose and 

hemicellulose.  

Positive control treatment with sodium carbonate (pH 11.4) displayed no 

significant alterations to the LM19 binding pattern. Sodium carbonate treatment served 

as a positive control in the enzyme assay experiments due to reported enhancement of de-

methyl esterified homogalacturonan availability via cleavage of methyl-ester bonds and 

excision of methyl groups from the backbone structure (Hervé et al., 2011). The resulting 

binding pattern observed from the sodium carbonate treatment verified the proper activity 
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of the LM19 antibody, and served as a useful comparison when evaluating potential 

binding pattern changes between different enzyme treatments. 

Negative control treatments using enzyme complex enzymes and pectin lyase 

treatments both yielded predictable results with a loss of LM19 binding pattern in 

sclerenchyma and exodermis due to degradation of all major cell wall components by 

assorted enzyme complex enzymes, or targeted hydrolysis of the homogalacturonan 

backbone structure (pectin lyase), which removes epitope structures needed for LM19 

binding (Jia et al., 2009). An absence of signal intensity in all cells overlaying lateral root 

primordia as well as diminished fluorescence signal in the primordia. Due to the natural 

autofluorescence of lateral root primordia overlapping the emission wavelength of the 

Alexa Fluor® 647 secondary antibody fluorophore, changes in lateral root primordia 

signal intensity may imply alteration of the LM19 binding epitope and/or degradation of 

naturally autofluorescent cell wall components. 

Treatment with cellulase complex mixture and xylanase, resulted in the severe 

reduction, and possible elimination, of antibody binding signals in sclerenchyma and 

exodermis cells at least two tissue layers in front of lateral root primordia during Stage V 

lateral root emergence. Treatment with cellulase enzymes in the cellulase complex 

mixture was used to determine if the cleavage of 1,4-β-D-glucosidic linkages in the 

cellulose microfibrils of the cell wall would render the antibody binding epitope 

unrecognizable, possibly through the shifting of cell wall matric component alignments 

which is hypothesized to occur when such an important cell wall polymer is removed. 

The endoxylanase enzyme contained within the xylanase treatment was used to evaluate 

the effect of hydrolytic degradation of hemicellulose, via cleavage of linear β-1,4-xylan 
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polysaccharides into D-xylose (Zverlov et al., 2005), on the ability of LM19 to bind to 

its pectin epitope and provide support to a possible relationship between hemicellulose 

and pectin during lateral root emergence. 

Treatment of rice tissue sections with β-glucosidase and lichenase served as a 

method to investigate the potential relationship between LM19 binding and cleavage of 

cellobiose, a disaccharide of glucose that is found in cellulose (Teugjas and Väljamäe, 

2013), and mixed linkage glucans, a major component of rice cell walls (Xue and Fry, 

2012), respectively. The standard LM19 fluorescent signal was observed for both enzyme 

treatments in overlaying exodermis and sclerenchyma tissues 1-2 cell layers in advance 

of developing LRP, and in cortical, endodermis and stele phloem tissues throughout the 

rice root cross-section. 
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1-4 Discussion 

Localization of primary cell wall epitopes revealed by immunofluorescent labelling 

The current study sought to evaluate three possible models of cell wall 

deformation during lateral root emergence in order to explain changes experienced by 

cells overlaying lateral root primordia. To this end, we created three models of rice lateral 

root emergence to propose the following changes to cell wall components: (i) general 

degradation of all major cell wall components in tissues overlaying LRP, (ii) synthesis of 

new cell wall components that alter the compositional ratio of the cell wall matrix and 

(iii) remodeling and modification of select cell wall components during LRE.  

In the current study, fluorescence microscopy revealed changes in native 

autofluorescence of rice root tissues which may support Model I. Reduction of 

fluorescence signal intensity of sclerenchyma tissue layers overlaying lateral root 

primordia (LRP) during three lateral root emergence (LRE) developmental stages (Figure 

1.1) suggests the possibility of general cell wall degradation. Previous literature partially 

supports this hypothesis due to the known fluorescence of phenolic cell wall compounds 

such as ferulic acid, p-coumaric acid and/or lignin when exposed to ultraviolet light 

(Harris and Hartley, 1976). Degradation of lignin in rice root tissues is also implied in the 

antibody binding signal for free para-coumaric acid and para-coumarate esters (INRA-

COU1). Incubation with INRA-COU1 antibody revealed increase fluorescence signals in 

cortical, sclerenchyma and exodermis cells overlaying lateral root primordia in multiple 

stages of development (Figure 1.2), potentially suggests the degradation of lignin. 

However, the presence of unbound p-coumaric acid or p-coumarate esters in front of 

developing lateral root primordia may also imply other possibilities: partial degradation 
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of lignin cross-linking enabling primary antibody binding to released p-coumaric acid, 

alteration to lignin structure enable binding of p-coumaric acids/esters, or removal of 

another cell wall component(s) that unmasks the antibody binding site. 

Another possibility suggested by the INRA-COU1 binding pattern is synthesis of 

free p-coumaric acid or p-coumarate esters in overlaying cell walls during lateral root 

emergence. Support for cell wall component synthesis postulated by Model II is observed 

in overlapping fluorescent signals for antibody labeling of INRA-COU1 and CCRC-

M100 (xyloglucan). Both antibody labeling treatments only demonstrated signal 

localization in cortical, sclerenchyma and exodermis root cell layers in front of emerging 

lateral roots. These results imply that synthesis of p-coumaric acid, p-coumarate esters 

and xyloglucan may be essential in enabling successful deformation of cell walls destined 

to contact lateral root primordia.  

The binding pattern of xyloglucan is particular interesting since xyloglucan is 

known to form an important part of cellulose-hemicellulose structures in primary cell 

walls. Xyloglucan typically consists of β-1,4-linked glucopyranosyl residues substituted 

with xylosyl groups at regular intervals (dos Santos et al., 2015). This structure enables 

xyloglucan to tightly associate with cellulose in both Type I and Type II plant cell walls 

(Carpita and Gibeaut, 1993). During cellulose biosynthesis the xyloglucan backbone 

structure becomes entrapped by cellulose microfibril in primary cell walls (Pauly et al., 

1999). The distribution of the antibody binding pattern may suggest synthesis of large 

amounts of xyloglucan (supporting Model II) which would prevent complete entrapment 

by cellulose microfibrils and destabilize the structure of the cellulose-hemicellulose 

cross-linking structure. As a result, xyloglucan epitopes would be available for CCRC-
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M100 binding and cell wall matrix structure would be weakened to permit cell wall 

deformation during lateral root emergence. 

However, another possibility entails degradation of xyloglucan itself, which 

would weaken the covalent and non-covalent bonds hemicellulose shares with the pectic 

polysaccharides (Abasolo et al., 2009) and lead to possible destabilization of the pectin 

matrix in primary cell walls. This type of selective degradation or modification of cell 

wall components may provide significant support for Model III. 

Previous literature suggests covalent interactions exist between xyloglucan and 

pectin (Caffall and Mohnen, 2009) in addition to known cellulose/xyloglucan binding 

structures in plant primary walls. An immunofluorescent screening of select pectin 

epitopes (Table 2) was performed to evaluate hypothesized xyloglucan-pectin 

relationships. Specifically, antibodies for two epitopes de-methyl esterified 

homogalacturonan (LM19, CCRC-M38), two epitopes of partially methyl-esterified 

homogalacturonan (JIM5 and CCRC-M34) and two epitopes of methyl-esterified 

homogalacturonan (LM20, CCRC-M130) were tested to determine if binding pattern 

overlaps with xyloglucan (CCRC-M100) could be observed. Consistent binding of 

sclerenchyma and exodermis layers in LRP-containing root cross sections were observed 

in multiple LRE developmental stages for LM19, JIM5, CCRC-M34, and LM20, which 

overlapped with previously seen patterns in CCRC-M100 and INRA-COU1. However, 

we observed that CCRC-M38 and CCRC-M130 epitopes of homogalacturonan may not 

be present in front of emerging LRP, suggesting that modification of homogalacturonan 

yields very specific residues during LRE (Table 2). 
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In addition, differing degrees of de-methyl esterification or methyl-esterification 

in homogalacturonan-targeting antibodies appear to have no impact in number or location 

of antibody labeled cells (Figure 1.15). These results imply that epitopes for LM19, JIM5, 

CCRC-M34 and LM20 exist simultaneously in cells during most stages of lateral root 

emergence, supporting the premise of a dynamic cell wall experiencing constant chemical 

remodeling activities. In addition, since the limitations of the immunofluorescent cannot 

conclusively determine is the pectin binding pattern is cause by synthesis of more pectin 

epitopes, or removal of another cell wall component “masking” the LM19, JIM5, CCRC-

M34 and LM20 epitopes, the experimental data may support both Model II and Model 

III alterations to cell wall composition. 

The high degree of fluorescent signal overlap observed between antibodies 

implies that remodeling of major cell wall components, such as cellulose, may disrupt 

cell wall matrix cross-linking and shift epitope recognition sites for pectins, xyloglucan 

and free p-coumaric acid and/or p-coumarate esters enough to enable successful primary 

antibody binding. Similarity of binding patterns supports the hypothesis of active cell 

wall remodeling, due to antibody localization mimicking expected auxin distribution 

patterns preceding developing LRP (Péret et al., 2012). A possible concentration gradient 

of auxin signaling molecules in cells preceding developing LRP is likely responsible for 

triggering cell wall remodeling enzyme synthesis at early stages of LRE (Péret et al., 

2012). This hypothesis is supported by known interactions between hemicellulose, 

cellulose, lignin and pectin, along with noticeable reduction in sclerenchyma tissue native 

autofluorescence that was observed in sample from every antibody treatment. 
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Influence of cell wall component degradation on LM19 localization pattern 

The enzymatic assay treatment displayed several alterations to the tissue 

localization pattern for normally seen in LM19 antibody binding, and implied several 

relationships that supported Model III for lateral root emergence. Specifically, the 

selective removal of cell wall components by certain enzyme treatments appeared to 

disrupt the ability of the LM19 monoclonal antibody to bind to the de-methyl esterified 

homogalacturonan epitope structure in sclerenchyma and exodermis tissue layers (Figure 

1.14). 

Removal of the LM19 binding pattern was also observed by treatment with the 

cellulase complex enzyme mixture. Treatment with cellulase enzymes in the cellulase 

complex mixture suggests that the cleavage of cellulose 1,4-β-D-glucosidic linkages 

renders the antibody binding epitope unrecognizable, and/or removes de-methyl 

esterified homogalacturonan in cell walls near lateral root primordia (LRP). This result is 

surprising since previous research reported that the cellulose-xyloglucan network of the 

primary wall is structurally independent from the pectin matrix, with removal of one 

network leaving the other components unaffected (Carpita and Gibeaut, 1993). However, 

it is known that removal of pectins in primary walls can influence the mobility of cellulose 

and xyloglucan without resulting component loss from the cell wall matrix (Iain et al., 

1990). This possibility is also suggested based on antibody binding results for CCRC-

M100 which implies liberation of xyloglucan from cross-linking interactions with 

cellulose, without necessarily altering xyloglucan chemical structure. 

In addition, xylanase treatment demonstrated a significant reduction of LM19 

binding in rice root exodermis and sclerenchyma tissue. The influence of hemicellulose 
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degradation on antibody binding of de-methyl esterified homogalacturonan is expected 

due to known covalent binding between pectins and hemicellulose components of the 

primary cell wall (Cosgrove, 2005). 

Further treatment with β-glucosidase, and lichenase enzymes implied little 

relationship between the de-methyl esterified homogalacturonan epitope of LM19 and 

cellobiose or mixed-linkage glucan (MLG) components of rice root cell walls.  Lack of 

influence of cellobiose degradation on de-methyl esterified homogalacturonan epitope 

availability may be due to the requirement of endoglucanase and exoglucanase activity 

to degrade cellulose into cellobiose residues for β-glucosidase to act upon. Another 

possibility is that direct binding between cellulose and pectins does not occur, and instead 

relies on another component (i.e. hemicellulose) to bind them into a functional cell wall 

matrix. The interaction of MLGs with cellulose, hemicellulose and pectin in primary cell 

walls is unknown, despite reported correlation of high MLGs content with active cell 

growth and cellular expansion (Vogel, 2008). As a result, no influence on the LM19 de-

methyl esterified homogalacturonan epitope may occur, despite a possible increase of 

MLGs themselves in cells undergoing other remodeling during LRE. 

Overall enzyme binding results, along with antibody labeling data, supports both 

Model II (synthesis of cell wall components in cells overlaying LRP) and Model III 

(selective component degradation) activities during lateral root emergence. Furthermore, 

these hypothetical models, in addition to experimental results, support a “Loosening 

Model” of lateral root emergence which suggests cellulose-hemicellulose-pectin 

interactions provide a stable cell wall matrix that is gradually disrupted via de-methyl 

esterification of homogalacturonan, and subsequent polygalacturonase activity, prior to 
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contact with emerging lateral root primordia (Figure 1.16). Removal of cellulose and 

hemicellulose (xylan) from the cell wall apparently leads to the degradation of de-methyl 

esterified homogalacturonan epitopes, or prevents homogalacturonan modification from 

even occurring by degrading the backbone structures itself. 

Experimental data also provides support for the “Loss of Cellular Adhesion 

Model” of primary cell wall destabilization during lateral root emergence (Figure 1.17). 

Specifically, enzymatic degradation of homogalacturonan with pectin lyase and 

pectinesterase, combined with data demonstrating localized primary antibody labeling of 

sclerenchyma and exodermis tissues in specific homogalacturonan epitopes, suggests that 

de-methyl esterification of pectin is necessary to destabilize the pectin matrix in middle 

lamella and permit separation of adjacent cells in order to accommodate LRP emerging 

through rice root tissues. Similar mechanisms have been described in plants that 

experience softening and separation of cell walls, such as ripening fruit (Wakabayashi et 

al., 2003). In addition, support for polygalacturonase activity in the “Loss of Cellular 

Adhesion Model” has been described in a recent report on cellular separation during 

abscission of floral organs in Arabidopsis (Aalen et al., 2013). 

Future research questions will relate to why overlapping fluorescent antibody 

binding patterns were seen in tissue overlaying lateral root primordia, but no significant 

loss of fluorescent signal was detected in any previous immunofluorescent assay. A 

possible explanation is that only specific epitopes of cell wall components such as 

cellulose or hemicellulose may be removed in cells apical to emerging lateral root 

primordia. Testing new primary antibodies to cell wall components, such as LM10 for 

xylan (Chen et al.), may reveal diminished or absent binding patterns in cells near lateral 
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root primordia. Reduction in fluorescent signal may suggest alteration of hemicellulose 

epitopes during the enzymatic digestion of pectin predicted in the “Cell Wall Loosening” 

model and provide support for the hypothesized hemicellulose destabilization in the 

primary cell wall matrix. 

Another question to be answered is how to evaluate possible synthesis of cell wall 

components in rice root cell walls during LRE. Possible experimentation may involve 

immunolabeling of rice root sections from loss of function mutants for pectin 

galacturonosyltransferase (GAUTs) with antibodies for de-methyl esterified 

homogalacturonan (e.g. LM19) and methyl-esterified homogalacturonan (e.g. LM20). An 

absence or severe reduction of antibody binding in cells apical to lateral root primordia 

in sclerenchyma and exodermis tissue layers would support the hypothesis that synthesis 

of cell wall components, such as homogalacturonan, may be responsible for some 

antibody binding patterns observed in rice root tissues. These results would suggest that 

cell wall component synthesis, in addition to component modification, may occur in cells 

overlaying LRP during lateral root emergence.  
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1-5 Conclusion 

Modifications of cell wall matrix components may suggest a need for dynamic 

primary wall composition in order for cells in rice roots to accommodate newly formed 

organs. Analysis of cellular changes during lateral root emergence stages indicates 

relatively low abundance compounds such as homogalacturonan, xyloglucan and p-

coumaric acid are significantly altered in sclerenchyma and exodermis cells destined to 

physically contact elongating lateral root primordia. Enzymatic removal of select cell 

wall polysaccharides suggests potential structural interaction between cellulose, 

hemicellulose and de-methyl esterified pectic polysaccharides within the primary cell 

wall. Further research is still required to evaluate potential interactions between other 

epitopes of methyl-esterified or de-methyl esterified homogalacturonan, and rice primary 

cell wall components such as lignin, mixed-linkage glucans, and hydroxycinnamic acids. 

Determining the genetic mechanism of primary wall modification and remodeling 

during rice lateral root emergence may shed light on the regulation of cell wall matrix 

mechanical properties. For example, confirming the presence of IDA-mediated peptide 

signaling in rice root tissues could reveal a cell wall remodeling mechanism common to 

both lateral root emergence and floral abscission processes (Kumpf et al., 2013). A 

possible future experiment could then be designed to test the effects of constitutively 

overexpressing components of the IDA-HAE/HSL2 signaling module, throughout rice 

plant tissue (i.e. shoots, roots, etc.). Possible results may include significantly reduced 

cell wall recalcitrance, which would be of economic significance due to the status of rice 

as a potential biofuel feedstock (van der Weijde et al., 2013). 
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In addition, future research involving selective modification and/or decrease of 

cell wall components such as lignin, cellulose, pectins and hemicellulose may yield 

additional avenues for creating transgenic rice with reduced cell wall recalcitrance. 

Specifically, autofluorescence data implied the possibility of lignin reduction in 

sclerenchyma tissue cell walls overlaying emerging lateral root primordia. Due to the 

increased malleability of cell walls in the lateral root emergence pathway, interruption of 

the lignin biosynthesis pathway by inhibition of enzymes such as CINNAMATE 4-

HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE (C3H), and 

FERULATE 5-HYDROXYLASE (F5H) (Vanholme et al., 2010) may destabilize 

secondary cell wall structure and explain how lateral root primordia are able to distort 

strong structural tissues, such as sclerenchyma, in the root tissue. Light microscopy 

methods developed in this study may be used to confirm decrease in lignin by evaluating 

rice root sections for any loss of autofluorescent signal. 
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Figure 1.1 – Decrease of native autofluorescence during lateral root emergence in 

rice (II-IV) Native cell wall autofluorescence diminishes in sclerenchyma tissue (white 

arrows) in front of emerging lateral roots (L). Images are false-colored with red/green 

LUT table values to emphasize fluorescence intensity. Stage II, Stage III and Stage IV 

lateral root images are shown from unique crown root section. Bars = 20 µm. 
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Figure 1.2 – No change of primary antibody binding in tissues overlaying lateral 

root primordia. Sclerenchyma and exodermis tissue overlaying the emerging lateral root 

primordium (L) demonstrate no Alexa Fluor® 647 fluorescence binding pattern and 

suggest an absence of de-esterified homogalacturonan (CCRC-M38), methyl-esterified 

homogalacturonan (CCRC-M130), rhamnogalacturonan I (CCRC-M14), and 

arabinoxylan (LM11) in Stage III-IV rice lateral root emergence. Images are composite 

micrographs of false-colored signals from autofluorescence (green) and AlexaFluor647-

conjugated secondary antibody (magenta). Bar = 20 µm. 

 

  



46 

 

 

 

 

Figure 1.3 - Labeling of de-methyl esterified homogalacturonan with CCRC-38 

monoclonal antibody (II-VI) Cortical cells and emerging lateral root primordium (L) 

demonstrate the presence of de-methyl esterified homogalacturonan (degree of 

polymerization >5) across four lateral root emergence stages in rice. Images are 

composite micrographs of false-colored signals from autofluorescence (green) and 

AlexaFluor647-conjugated secondary antibody (magenta). Bar = 20 µm. 
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Figure 1.4 - Labeling of methyl-esterified homogalacturonan with CCRC-130 

monoclonal antibody (II-V) Cortical tissue adjacent to the emerging lateral root 

primordium (L) demonstrates the presence of methyl-esterified homogalacturonan across 

four lateral root emergence stages in rice. No binding pattern is observed in front of the 

lateral root primordia in sclerenchyma and exodermis layers. Images are composite 

micrographs of false-colored signals from autofluorescence (green) and AlexaFluor647-

conjugated secondary antibody (magenta). Bar = 20 µm. 
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Figure 1.5 - Labeling of rhamnogalacturonan I with CCRC-M14 monoclonal 

antibody (III, V, VI)  Cortical tissue, endodermis and pericycle layers demonstrate the 

presence of the rhamnogalacturonan I backbone structure across three lateral root 

emergence stages in rice. Sclerenchyma and exodermis tissue overlying the emerging 

lateral root primordium (L) display no secondary antibody (Alexa Fluor® 647 

fluorophore) fluorescence pattern. Images are composite micrographs of false-colored 

signals from native autofluorescence (green) and AlexaFluor647-conjugated secondary 

antibody (magenta). Bar = 20 µm. 
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Figure 1.6 - Binding pattern of rice root arabinoxylan with LM11 monoclonal 

antibody (A-C) Sclerenchyma and exodermis tissues overlying the emerging lateral root 

primordium (L) demonstrate an absence of arabinoxylan during Stage II lateral root 

emergence in rice. (D-F) LM11 binding pattern is still visible during Stage IV lateral root 

emergence stages. Images are micrographs of false-colored signals from autofluorescence 

(green) and AlexaFluor647-conjugated secondary antibody (magenta). Composite images 

(C, F) were created from overlaying green and magenta channels. Bar = 20 µm. 
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Figure 1.7 – Localization of select cell wall components in tissues overlaying the 

lateral root primordium. Schlerenchyma and exodermis tissue overlaying the emerging 

lateral root primordium (L) demonstrates the presence of free para-coumaric acid (INRA-

COU1), a xyloglucan epitope (CCRC-M100), de-methyl esterified homogalacturonan 

(LM19), partially methyl-esterified homogalacturonan (JIM5 & CCRC-M34), and 

methyl-esterified homogalacturonan (LM20) near Stage IV lateral root emergence stages 

in rice. Images are composite micrographs of false-colored signals from autofluorescence 

(green) and AlexaFluor647-conjugated secondary antibody (magenta). Bar = 20 µm. 
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Figure 1.8 - Labeling of free para-coumaric acid with INRA-COU1 (III-V) 

Sclerenchyma and exodermis tissue overlaying the emerging lateral root primordium (L) 

demonstrates the presence of free para-coumaric acid and/or para-coumarate esters across 

three lateral root emergence stages in rice. Observed developmental stages show contact 

of the lateral root primordium apex with cortical layer 3 (Stage III), cortical layer 4 (Stage 

IV), and sclerenchyma layer (Stage V) tissues. Images are composite micrographs of 

false-colored signals from autofluorescence (green) and AlexaFluor647-conjugated 

secondary antibody (magenta). Bar = 20 µm. 
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Figure 1.9 – Labeling of xyloglucan with CCRC-M100 (III-VI) Sclerenchyma and 

exodermis tissue overlaying the emerging lateral root primordium (L) demonstrates the 

presence of xyloglucan (XXXG motif) across four lateral root emergence stages in rice. 

Images are composite micrographs of false-colored signals from autofluorescence (green) 

and AlexaFluor647-conjugated secondary antibody (magenta). Bar = 20 µm.  
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Figure 1.10 – Labeling of de-methyl esterified homogalacturonan with LM19 (I-VI) 

Sclerenchyma and exodermis tissue overlying the emerging lateral root primordium (L) 

demonstrate the presence of partially de-methyl esterified homogalacturonan across six 

lateral root emergence stages in rice. Images are composite micrographs of false-colored 

signals from native autofluorescence (green) and AlexaFluor647-conjugated secondary 

antibody (magenta). Bars = 20 µm. 
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Figure 1.11 – Labeling of partially de-methyl esterified homogalacturonan with 

JIM5 (I-VI) Sclerenchyma and exodermis tissue overlying the emerging lateral root 

primordium (L) demonstrate the presence of partially de-methyl esterified 

homogalacturonan across six lateral root emergence stages in rice. Images are composite 

micrographs of false-colored signals from autofluorescence (green) and AlexaFluor647-

conjugated secondary antibody (magenta). Bar = 20 µm. 
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Figure 1.12 – Labeling of partially de-methyl esterified homogalacturonan with 

CCRC-34 (I-VI)  Cortical, sclerenchyma and exodermis tissue overlying the emerging 

lateral root primordium (L) demonstrate the presence of partially de-methyl esterified 

homogalacturonan across six lateral root emergence stages in rice. Images are composite 

micrographs of false-colored signals from autofluorescence (green) and AlexaFluor647-

conjugated secondary antibody (magenta). Bar = 20 µm. 
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Figure 1.13 – Labeling of methyl-esterified homogalacturonan with LM20 (III-VI) 

Sclerenchyma and exodermis tissue overlaying the emerging lateral root primordium (L) 

demonstrates the presence of methyl-esterified homogalacturonan across four lateral root 

emergence stages in rice. Images are composite micrographs of false-colored signals from 

autofluorescence (green) and AlexaFluor647-conjugated secondary antibody (magenta). 

Bars = 20 µm. 
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Figure 1.14 – Impact of enzymatic treatment of rice root sections on labeling of de-

methyl esterified homogalacturonan by LM19. The following enzymes were incubated 

with rice root cross sections prior to labelling with LM19 monoclonal antibody: cellulose 

complex (assorted cellulose mixture), enzyme complex (assorted cell wall degradation 

enzymes, negative control), xylanase, β-glucosidase, pectin lyase, pectinesterase, 

lichenase and sodium carbonate. Removal of LM19 binding pattern by cellulase, xylanase 

and pectin enzymes suggest antibody epitope is altered by removal of pectin, cellulose 

and hemicellulose components. Images are composite micrographs of false-colored 

signals from autofluorescence (green) and AlexaFluor647-conjugated secondary 

antibody (magenta). Bar = 20 µm. 
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Figure 1.15 – Multiple degrees of methyl-esterification are present near primordia 

during lateral root emergence. Similar patterns of primary antibody binding in 

sclerenchyma and exodermis tissue overlaying the emerging lateral root primordium (L) 

suggests the presence of multiple methyl-esterified and de-methyl esterified 

homogalacturonan epitope structures during lateral root emergence in rice. Images are 

composite micrographs of false-colored signals from autofluorescence (green) and 

AlexaFluor647-conjugated secondary antibody (magenta). Bars = 20 µm. 
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Figure 1.16 – “Loosening Model” of primary cell wall destabilization during lateral 

root emergence. (A) Homogalacturonan (HG) is present in primary cell walls of root 

tissue as a highly methyl-esterified polymer with multiple methyl groups (yellow) 

substituted to a D-galacturonic acid backbone (red) covalently linked to hemicellulose 

(blue). Before and shortly after lateral root primordia (LRP) initiation the highly methyl-

esterified form of HG predominates in the primary cell walls (white arrow). (B) After de-

methyl esterification occurs, calcium ions (Ca2+) bind to adjacent homogalacturonan 

strands with exposed carboxylate ions and form an “egg-box” cross-linking structure. De-

methyl esterification of the primary cell wall HG precedes the encroaching LRP. (C) 

Degradation of homogalacturonan backbone occurs due to polygalacturonase activity 

permitted by cross-linking structure. Subsequent reduction in pectin results in unstable 

hemicellulose structure and changes the alignment of cellulose microfibrils (brown) in 

the primary cell wall matrix. Weakened cell wall is distorted to accommodate primordia 

apex. Bar = 20 µm. 
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Figure 1.17 – “Loss of Cellular Adhesion Model” of primary cell wall destabilization 

during lateral root emergence. Homogalacturonan backbone (green bars) have methyl 

groups (yellow) removed during de-methyl esterification occurring in the middle lamella 

(white) between adjacent cell walls. Calcium ions (Ca2+) form a complex between two or 

more de-methyl esterified residues on adjacent homogalacturonan chains that become 

susceptible to degradation by polygalacturonase (magenta). Resulting changes to the 

structure of the middle lamella may cause adjacent cells to be more easily separated to 

accommodate emerging lateral root primordia as they penetrate the root. 
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Chapter 2: Establishing conditions for laser-capture microdissection of 

tissue overlaying lateral root primordia 

 

2-1 Background 

 Modification of the plant cell wall matrix is a dynamic process that often results 

in localized changes within plant tissues. Previous research in Arabidopsis suggests that 

primary cell wall compositional changes are highly localized in tissues adjacent to 

developing lateral root primordia (LRP) during lateral root emergence (Péret et al., 2013). 

Defining the exact numbers and types of cells which experience remodeling is often 

visualized with histological techniques such as absorbance dye staining, immunolabeling 

of specific components and transmission electron microscopy of cell wall architecture. 

However, understanding the molecular mechanisms and gene expression behind localized 

cell wall remodeling requires techniques such as real-time quantitative PCR of candidate 

gene or whole transcriptome analysis via RNA sequencing (Chu and Corey, 2012). 

Sample selection for analysis of gene expression can be problematic due to small 

dimension, or small numbers, of cells of interest (Efroni et al., 2015). For example as few 

as 2-3 remodeled cells per tissue layer have been observed overlaying rice LRP during 

various developmental stages, thereby severely limiting relevant sample areas in root 

cross-sections (Figure 2.1). 

One technique that has been develop to harvest small quantities of tissue is laser-

capture microdissection (LCM). LCM obtains very small quantities of cells from tissue 

sections (5-50 µm thickness) by using ultraviolet laser pulses to cut samples directly from 

tissues on membrane-coated glass slides, or from the tissue itself. (Espina et al., 2007). 
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Samples of interest are then processed to extract RNA which may be prepared for RNA 

sequencing or converted into cDNA for other types of gene expression analysis. Another 

advantage of LCM lies in high-precision, automated adjustment of the cutting laser 

through a software interface linked to a confocal microscope, and enabling custom 

selection of cells of interest (Kummari et al., 2015). 

In the current study, limited numbers of rice root tissue cells were collected from 

cryopreserved cross-sections of rice roots as part of an optimized LCM harvesting 

protocol required for future gene expression analysis work. Understanding gene 

expression in highly localized areas of rice root tissues provides insight into 

developmental changes during lateral root emergence that may be obscured by bulk 

sample collection. LCM enables extremely precise tissue harvesting of several dozen, to 

single cells, found in a given developmental region of interest. RNA extracted from both 

cells localized to areas adjacent to the lateral root primordia apex, and cells on opposite 

sides of the rice root stele, could be utilized in RT-qPCR or transcriptome analysis to 

yield insight into the genetic pathway regulating the cell wall remodeling observed in 

lateral root emergence. 

Based on the literature described in the Introduction (Kumpf et al., 2013) (Péret 

et al., 2013), and our immunofluorescent data (Figure 1.7), we expect that cells overlying 

emerging lateral roots will have altered expression of auxin signaling and cell wall 

remodeling genes (Table 1) compared to cells distal from lateral root primordia. Changes 

in expression during lateral root emergence would fall into two categories: up-regulated 

and down-regulated genes. Up-regulated genes would include auxin transporters (LAX3, 

PIN3) that move auxin in a controlled gradient throughout cells overlaying lateral root 
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primordia, and remodeling genes (PGLR, PGAZAT, EXPA17, CEL3/GH9B3 and AIR3) 

that either degrade major cell wall components such as homogalacturonan (PGLR and 

PGAZAT, polygalacturonase enzymes) and cellulose (CEL3/GH9B3, cellulase enzyme) 

or modify components such as cellulose microfibril linkages (EXP17, expansin protein) 

or the de-methyl esterification of homogalacturonan (AIR3, subtilisin-like serine 

protease) to destabilize/degrade the overall cell wall matrix. Down-regulated genes would 

include biosynthesis genes (XXT1, XEG113, and PRC1) that create hemicellulose 

components such as xyloglucan (XXT1) which provide strength to cell walls in the form 

of cellulose-xyloglucan crosslinking, modify extensins (XEG113) to promote increased 

cross-linking with cellulose, or synthesize cellulose microfibrils (PRC1) required to form 

a major part of all cell wall matrices. 
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2-2 Methods 

Plant growth conditions and developmental staging 

Developing seedlings of rice (Oryza sativa L. ssp. Japonica, cv. “Dongjin”) were 

grown under fluorescent lighting in a 25oC incubator. Rice was harvested from sealed 

petri dishes six days after initial seed germination in ½ strength Murashige and Skoog 

(MS) media, pH 6.5. 

 

Root tissue harvesting and sectioning 

 Seedlings were harvested when six-day old plants developed 2-3 crown 

roots, and visible lateral roots in maturation zone tissues. Crown root sections were cut 

from seedlings in a sterile petri dish containing 3:1 ethanol and acetic acid fixative, under 

a standard dissection microscope.  

 

LCM Harvesting & Tissue Collection 

Rice root segments were immersed in 3:1 ethanol and acetic acid fixative overnight at 

4oC. Fixation was followed by infiltration with a graded sucrose series (10%, 15%, and 

30%) for 1 hour per concentration. Samples were mounted in OCT compound (Sakura 

Inc.) and frozen in liquid nitrogen until solid. OCT blocks were sectioned at variable 

thickness (20, 40, 60 µm) on a cryostat at -22oC. Approximately 20-30 sections were 

collected on Arcturus® PEN Membrane glass slides (Applied Biosystems) pre-chilled 

inside the cryostat. A minimum of 15-30 cells per rice cross section were harvested using 

a Zeiss Axiovert 200 confocal microscope outfitted with a P.A.L.M. Microbeam LCM 

nitrogen cutting laser (337 nm) to ensure adequate sample size for subsequent RNA 
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extraction. Samples collected with Zeiss™ AdhesiveCap 500 capture tubes and stored at 

-30oC prior to RNA extraction. 

 

RNA Extraction and Validation 

 

LCM-harvested cells were lysed and purified using a NucleoSpin® RNA XS kit. RNA 

quantity was determine with a standard curve calculation derived from RNA standards 

included in a Quant-Ti™ RiboGreen® RNA Assay Kit. Nucleic acid quality was based 

on ratio of absorbance at 260/280 nm. 
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2-3 Results and Discussion 

Harvesting Protocol and LCM Parameters 

Optimization of laser-capture microdissection protocols, and subsequent RNA 

harvesting, requires several considerations in order to establish a viable protocol. Initial 

work focused on establishment of an initial experimental flow-through (Fig. 2.2) and 

systematically adjusting relevant parameters in each step prior to preparation of a cDNA 

library, or total RNA samples, for transcriptome analysis.  

Previous research regarding LCM sample preparation suggests that 

cryopreservation is the preferred method for sample preparation, and permits researchers 

to quickly generate large quantities of preserved tissues. However, no distinct consensus 

exists regarding appropriate cryopreserved plant sectioning thickness for LCM 

application. Observation of rice root section integrity after LCM harvesting suggests that 

increasing section thickness yields improved morphology and ease of tissue layer 

identification (Figure 2.3). However, increasing thickness of tissue sections did appear to 

result in significant section loss during OCT-clearing protocol steps prior to LCM 

harvesting. Attempts to circumvent section loss by omitting OCT removal resulted in 

severe inhibition of tissue removal from PEN-membrane slides due to melted OCT media 

“gluing” the PEN membrane to the glass slide (Figure 2.4). 

 In addition to tissue preparation considerations, adjustment of LCM microscope 

setting is essential to effective harvesting of plant tissue samples. Since the coating on 

PEN-membrane glass slides must be removed to collect tissue samples, factors such as 

optimal section thickness cutting speed, cutting cycles, magnification, laser energy, and 

laser focus must all be evaluated to find ideal conditions (Table 3). The most crucial 
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setting among these results, in order of diminishing importance, are laser focus, energy 

and cutting speed. Laser focus narrows the ultraviolet laser of the confocal microscope 

onto the plane of the slide membrane, enabling sections to be excised. Laser energy is 

kept low to prevent scorching of the tissue sample, otherwise leading to heat-induced 

RNA degradation. Cutting speed must be set sufficiently high to prevent scorching, but 

slow enough to enable membrane excision via a low energy laser. Results indicate that 

optimal harvesting conditions for sclerenchyma, exodermis and epidermal tissues are 

found when 25 µm-thick samples are harvested under 10X magnification with laser 

energy 70, laser focus at 82, and cutting speed set to 1 for a minimum of five cycles (laser 

tracings). 

 

RNA quantitation of LCM-harvested samples 

Small samples of rice root tissue were collected from cross-sections of rice roots 

in order to determine the effectiveness of the optimized LCM harvesting protocol by 

measuring RNA quantity in excised samples. Results suggest RNA quantity per cells is 

similar across different rice root tissues, negating the need for different quantities of cells 

to be harvested per tissue layer. Preliminary results also indicated that relatively large 

numbers of rice root tissue cells were required to generate noticeable amounts of RNA 

(Table 4). Specifically, a minimum of 240 cells from either cortical tissues, or combined 

sclerenchyma, exodermis and epidermis tissues, was required to accumulate 9.8-14.2 

ng/µL of RNA. The quantity of RNA per cell was comparable to previously recorded 

values in plant tissues such as tomato pericarp cells, indicating acceptable levels of RNA 

extraction by published standards (Matas et al., 2011). Larger quantities of harvested cells 
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yielded greater total RNA (287.8-314.1 ng/µL), yet maintained similar quantities of RNA 

per cell (~ 0.1 ng/µL). Results suggest RNA quantity per cells is similar across different 

rice root tissues, negating the need for different quantities of cells to be harvested per 

tissue layer. 
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2-4 Conclusion 

Laser capture microdissection (LCM) is a technique by which individual cells can be 

excised from plant tissue sections while they are viewed under a confocal microscope, by 

attaching selected cells to an adhesive film and dissecting the film with a laser beam. 

Harvested cells can then provide DNA, RNA, and protein for the profiling of genomic 

characteristics and transcriptome changes, gene expression, and protein spectra from 

individual cell types (Kerk et al., 2003). LCM has tremendous application to the current 

study by permitting precise analysis of transcript changes in localized rice root tissue cell 

experiencing primary wall remodeling during lateral root emergence. Present results have 

yielded specific requirements for section thickness, OCT removal and microscope 

settings in order to optimizing LCM protocols used on rice root tissue. Results have also 

recommended approximate quantities of rice root cells needed for extraction of RNA 

similar to published standards featuring other model plants (Nakazono et al., 2003). 

Future studies will entail harvesting smaller quantities of rice root cells (<50) in 

order to evaluate the feasibility of RNA extraction from sample sizes that more accurately 

reflect regions of cell wall remodeling ahead of lateral root primordia. Ideally, cells from 

each of the eight tissue layers in the lateral root emergence pathway (endodermis, cortical 

cell layers 1-4, sclerenchyma, exodermis and epidermis) will be sampled and real-time, 

quantitative PCR (RT-qPCR) conducted to determine differences in relative expression 

of cell wall remodeling enzymes (polygalacturonase, cellulose, etc.) and cell wall 

synthesis genes (galacturonosyltransferases for pectins, galactosyltransferases for 

xyloglucan, etc.) between tissue layers. Furthermore, similar size samples will be 

harvested from tissues opposite of the rice root stele, to lateral root primordia, so a 
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comparison may be made between cells not experiencing alterations due to lateral root 

emergence, and cells in the pathway of emerging primordia 

Samples harvested as previously described will also be utilized in the 

development of an effective T7-based RNA amplification protocol from existing 

literature to provide more RNA for further transcript analysis experiments (Kube et al., 

2007). Amplified RNA processed through an RNA sequencing (RNA-seq) platform such 

as Illumina (Illumina dye sequencing) will be subject to a transcriptome analysis tin order 

to evaluate changes in the entire range of messenger RNA (mRNA) in the rice root tissue 

samples. Primary focus will include transcripts for genes expressing enzymes relevant to 

cell wall remodeling, synthesis genes specific to known cell wall components, and genes 

involved in the auxin signaling pathway or auxin transport through root tissues.  
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Figure 2.1 – Harvesting guidelines for laser-capture microdissection. (A) Harvested 

tissues will either be derived from individual tissue layers, or from groups of 

developmental similar tissue such as the sclerenchyma-exodermis-epidermis layer 

constituting the outer ring of rice root cross-sections. (B) Schematic diagram of a rice 

root cross section with lateral root primordium (L) and tissue area of interest (pink 

highlight) for harvesting with laser-capture microdissection. (C) Composite micrograph 

displaying LM19 binding pattern for de-methyl esterified homogalacturonan (yellow) and 

native autofluorescence (cyan) in a lateral root primordium-containing section. (D) LCM-

harvested rice root section displaying excised tissue overlaying the primordium (10X 

magnification). 
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Figure 2.2 – Laser capture microdissection protocol summary. Procedure for 

preparing rice root tissue sections involves histological fixation and sectioning prior 

application of sample slices onto polymer coated PEN membrane slides. Modified 

confocal microscope laser enables harvesting of individual cells, which are then treated 

to extract total RNA. After validation of RNA quality, total RNA is amplified in 

preparation for cDNA library formation or transfer of samples to an RNA-seq processing 

facility.  
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Figure 2.3 - LCM sample morphological quality impacted by section thickness (A) 

Rice root cross section at 14 µm thickness with lateral root primordia (L). (B) Cross 

section at 16 µm thickness with lateral root primordia. (C) Cross section at 20 µm 

thickness. (D) Cross section at 25 µm thickness. All images show sections on PEN 

membrane coated slides after OCT compound removal. Thicker sections demonstrate 

better preservation of the cortical cells, but specific tissue layers are harder to distinguish. 

Bright-field micrographs of all samples imaged at 10X magnification expect for (B), 40X.  

Bars = 50 µm.  
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Figure 2.4 – Influence of OCT compound removal on PEN membrane excision (A) 

Segment of OCT-cleared PEN membrane slide before and after excision of membrane. 

(B) OCT-coated segment of slide before and after attempted excision. Selected membrane 

area (green box) failed to detach from the glass slide despite multiple confocal laser 

pulses. 10X magnification. Bars = 50 µm. 
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