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Abstract 

Heating, ventilating, and air conditioning (HVAC) systems are the largest 

consumer of electricity in buildings. The HVAC system is complex in terms of 

components that make them up and their different time scales. The inefficient operation 

of HVAC system leads to unreasonable electricity consumption during peak periods, 

which is accompanied by high cost of electricity use.  The dynamic changes in building 

demand, contributions from exogenous inputs such as solar radiation and ambient 

temperature, and phenomenon such as radiative delays, thermal storage, internal mass 

etc. are some of the current challenges in buildings systems operation. Due to dynamic 

and thermal coupling between the conditioned building and HVAC systems 

components, optimal control is difficult to achieve.  

In a multi-zone building, multiple thermal interactions among the different 

thermal zones and the effects on electricity demand and cost are not well understood, 

due to lack of fundamental knowledge.  The existing strategies for electricity demand 

and cost control do not consider the dynamics of building construction and multi-zone 

interactions in their formulation. As a result, existing demand and electricity 

minimization strategies are not consistent in their conclusions. Meanwhile, multi-zone 

interactions and building dynamics play a crucial role in the overall electricity demand, 

cost, and load profiles due to the dependency of states of each individual zone on the 

thermal characteristics and states of the adjacent zones. The objective of this research is 

to understand multi-zone and equipment interactions in buildings energy systems, in 

order to minimize electricity cost. This is the first research to integrate building 

dynamics into controller formulation and design through the use of a physically 



xviii 

representative thermal model that captures important phenomenon of building load and 

cooling coil operations.   

The intellectual contribution of this research is the understanding of multiple-

zone interactions in buildings to aid in effective decision making regarding the 

operational states of HVAC equipment that minimizes overall electricity cost. Other 

original contributions are identification of critical thermal zones in a multi-zone 

building, extension of the R-C thermal network approach for transient modeling of 

cooling coils, identification of new methods (near constant cooling and temperature 

recovery/optimal start) for minimizing buildings electricity demand and cost, 

downsizing of heating system size based on passive thermal storage properties of 

building construction, and demonstration of the electricity cost savings capabilities in 

air handling units operations through the use of Model predictive control (MPC) 

methods. This is the first research to demonstrate predictive control that utilizes 

building dynamics through the use of models that represent the building physically and 

captures important phenomenon e.g. radiative delays and thermal storage. Therefore, it 

provides opportunities to strategically maximize curtailment potentials and human 

comfort through optimization, and contributes to knowledge through the development 

of step by step approach to achieve system-wide optimal operation of the air handling 

unit, based on consideration of time of use electricity tariff.  Therefore, the developed 

framework in this dissertation is useful for smart grid integration, and for building 

modelers in the areas of fault detection and diagnosis (FDD) and control. As such, the 

developed framework is very promising for existing and future building automation 

system (BAS) and emerging technologies in the building sector.   
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Chapter 1: Introduction 

This chapter introduces the overall function of the Heating, Ventilating, and Air-

conditioning (HVAC) System and the background information to building load 

calculations. It also includes the state of the art and current challenges with building 

energy systems operation and modeling. It concludes with the overview and objectives 

of this research.  

1.1 Background 

 The United States Green Building Council data (USGBC 2011) shows that 

buildings account for 65% of electricity consumption in the United States. This trend is 

observed for most countries of the world, where buildings account for up to 40% of 

electricity use. A study by Daum and Morel (2010) revealed that commercial buildings 

are responsible for 18.4% of total primary energy used in the USA. Globally, buildings 

are responsible for up to 21% of greenhouse gas emissions. The building heating and 

cooling needs are usually provided by HVAC systems, whose overall function is to 

compensate for the building load in order to provide thermal comfort.  

 The primary aim of buildings energy systems is to satisfy thermal comfort 

requirements, using electricity and energy in the most efficient way. Modern buildings 

have numerous sustainability requirements. Sustainable building systems operation 

require energy consumption to be minimized and building services be carried out in the 

most sustainable way to ensure adequate indoor climate and healthy conditions for 

occupants. This presents a dilemma due to competing social, economic, and 

environmental goals (e.g. as shown in Figure 1.1).   
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Figure 1.1: Some competing sustainability uses for modern buildings 

According to Elton (2010), up to 30% of building energy is used inefficiently or 

unnecessarily. The reasons for excessive energy consumed in buildings include failure 

to operate as intended, inappropriate monitory and control strategy, wrong sizing of the 

HVAC system, and lack of understanding of dynamic thermal loads and interactions. 

This has led to the widespread development and implementation of regulations and 

national policies to encourage or mandate reduced building energy consumption. 

Meanwhile, the dynamic nature of temperature, weather, internal heat gains, and 

occupancy schedules, alongside their interactions with the thermal characteristic of 

building construction continue to provide challenges for optimal operation of HVAC 

systems. 

1.2 Heating, Ventilating, and Air-conditioning (HVAC) Systems 

 HVAC systems configurations vary considerably based on how they are set up, 

and the components that make them up. Figure 1.2 shows the schematic of typical 
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HVAC systems in a central plant. It is an example of a central plant, with one chiller 

serving multiple air handling units (AHU). Fans, pumps, and compressors are some of 

the electricity users. The functions of the components are described as follows: Boilers 

produce hot water or steam for distribution to the working space. The hot water is 

distributed through hot water pipes to radiators, or passed over heating coils as part of a 

ventilation system. The cooling equipment provides chilled water for pumping to 

cooling coils. Through the ventilation system, the treated air is then blown over the 

cooling coils into the space to be cooled. 

 

Figure 1.2: Schematic of a Central HVAC system (Source: http://energy-

models.com/hvac-centrifugal-chillers) 

A refrigeration cycle exists in the chiller, and the heat rejection is usually done 

via a cooling tower or condenser. Pumps are used to circulate the hot and chilled water 

to the required areas in the building. Fans are used to circulate the conditioned air for 

distribution to the controlled space. Exhaust fans extract stale air via separate ducts, and 

expels them outside. Controls in the building set the operational state of equipment (e.g. 

http://energy-models.com/hvac-centrifugal-chillers
http://energy-models.com/hvac-centrifugal-chillers
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on or off) and adjust variables such as the flow rates (air and water), desired 

temperatures and pressures, to ensure that the components work together in an efficient 

manner. The dynamic thermal interaction, under the influence of occupant behavior and 

outdoor climate, between building structure and HVAC system is very difficult to 

predict. This, in practice, results in non-optimal performance of the building system or 

malfunctioning of components. 

A main component of the HVAC system is the Air handling Unit (AHU), which 

is shown in Figure 1.3. The AHU provides and delivers conditioned air to the building, 

in order to maintain the desired temperature and humidity within the building. The main 

elements of the air handling unit are the coils (heating and cooling) and fans (supply 

and return). This system is usually applied in buildings with multiplicity of zones such 

as offices, schools, universities, laboratories, and hospitals. For efficient operation, the 

HVAC equipment should be suitable for the particular location and application, 

properly sized, accessible for easy maintenance, and have a simple arrangement, since 

ductwork and piping make up a significant part of the HVAC system.   
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Figure 1.3: Air Handling Unit (Branesky, 2012) 

Due to the complexity of HVAC systems, one of the current challenges is how 

to understand and predict the behavior of the system, given the interdependence and 

interactions among different components. Figure 1.4 shows some of the thermal 

interactions in a multiple zone building served by a single Air handling unit. These 

thermal zones interact with each other but also compete for available cooling/heating 

from the HVAC system. The thermal zones retain their individual characteristics but 

also function as part of the integrated building system with multiple coupling and 

interactions among the different zones and the HVAC equipment.  
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Figure 1.4: Some of the thermal interactions in multi-zone buildings 

With increasing number of buildings, thermal zones, and air handling units, 

effective decision making becomes increasingly difficult due to varying schedules and 

occupancies, building orientation, multiple interactions, and different thermal response 

of the thermal zones. These multiple interactions have not been factored into existing 

strategies for demand control and electricity minimization due to lack of fundamental 

knowledge. The existing strategies are based on rule of thumb, without consideration 

for building dynamics and multi-zone interactions in the controller design. For efficient 

operation of the HVAC system, multi-zone and equipment interactions need to be 

factored into the HVAC control algorithm for local and supervisory control 

(determination of zone set points and distribution of cooling/heating for the entire 

building). 

Heat Heat 
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1.3 Research Objectives 

The objective of this research is to understand multi-zone and equipment interactions in 

a multi-zone building, in order to minimize electricity cost. The research integrates 

concepts from electrical engineering and controls into mechanical engineering to aid in 

compromised decision making that leads to minimized electricity cost for buildings 

energy systems.  

In recent years, majority of research on optimizing building operation have 

focused on minimizing total electricity and energy use. However, due to dynamic load 

changes in building and increasing demand on grid electricity, attention has now shifted 

from minimizing total electricity consumption to minimizing peak demand and 

consequently the total cost of electricity. Electricity suppliers have introduced time-of-

day pricing such that peak electricity is very expensive to consumers, as a means of 

controlling demand when the grid is near capacity. A study found that a 1% decline in 

peak demand would lead to 3.9% monetary savings (Spees and Lave 2007). Figure 1.5 

shows typical summer period index price of electricity that was adopted by TXU in 

2006 in Dallas TX which reflects the dynamic utility rate.  As could be seen, electricity 

charges during peak hours could be as much as ten (10) times that during off-peak 

hours. 

There are lots of on-going developments on hardware infrastructure for smart 

grid and integrated smart building design (Edison Foundation, 2012). This has opened 

more opportunities and increased relevance for research of this nature that is capable of 

generating grid commands which can be utilized to minimize peak demand.  
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Figure 1.5: Typical Electricity Index Price for Summer Season 

 

Currently, the building sector‘s electricity demand targets can be achieved by 

using today‘s and future technologies to significantly reduce the electricity needed by 

residential and commercial buildings to perform the same services. Current demand 

response control is primarily focused on curtailment.  Curtailment is the response to a 

utility's contractual incentive that results in a load reduction, either by limiting device 

demand or by raising room temperature set points. Occupants may experience loss of 

comfort during the curtailment period.  In general, due to the complexity of HVAC 

systems, the magnitude and duration of the curtailment are estimated by rule of thumb 

with consideration of occupants‘ tolerance. The current state-of-the-art provides 

opportunities to strategically maximize curtailment potentials and human comfort 

through optimization. Additionally, there have been very limited studies on curtailment 

with due consideration to buildings and HVAC systems dynamic response. While there 

are several common sense and rule of thumb approaches to minimizing building 

electricity demand and use, most of them are not consistent in their conclusions and 
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there are no clearly laid out procedures and guidelines for their adoption and 

application. Such methods have not been feasible thus far due to the lack of 

fundamental knowledge.  

Therefore, there exists lots of methodical, knowledge, and theoretical gaps in the 

aspect of optimizing operation of building systems. As such, new knowledge and 

methods are required to understand and determine the operational and optimal 

configuration and operation of building systems components which will lead to their 

minimal electricity costs. Currently, there is no model that adequately represents the lag 

time cooling load and incident solar radiation on wall surfaces. No model that includes 

both the building and AHU with all of its details. In addition, most of the works are 

Single Input Single Ouput (SISO) models, manipulated with PI and other classical 

controllers. This research expands and extends the application of the lumped thermal 

network approach to Variable Air Volume (VAV) systems of an AHU in a multi-zone 

office building. In addition, due to the limitations of current HVAC control and 

optimization protocols to handle high order differential equation, over-simplified 

regression-based models have been used. This research contributes to the solution of the 

optimization problem by using thermal, airflow, and analytical dynamics model that is 

calibrated and improved using short-period measurement data. The research questions 

are: 

RQ1: How to understand and accurately predict multi-zone interactions in 

buildings for demand control purposes? 
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Hypotheses 

H1: Zone temperatures for individual zones in a multi-zone building can be treated 

differently, instead of equally in traditional building operations 

New knowledge 

 Understanding of thermal interactions among multiple thermal zones in any new 

or existing buildings 

 Understanding of interactions between multiple thermal zones and HVAC 

equipment to assist in efficient operation of the HVAC equipment 

RQ2: How to utilize multi-zone thermal interaction for cost and energy-efficient 

operation of the HVAC equipment? 

Hypotheses 

H2: Individual zones in a multi-zone building require different strategies for electricity 

minimization rather than one strategy applying to all zones as in demand response (DR) 

literature 

New knowledge 

 New electricity minimization methods for multiple thermal zones in any new or 

existing building 

 Understanding and determination of near-optima precooling hours for certain 

thermal zones 

While there have been several studies on the minimization of electricity demand 

and cost in buildings, answers to these questions are not available in today‘s literature. 

The academic and research experience of the researcher on control systems, buildings 

heat transfer, computational fluid dynamics, and thermal model development will be 
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applied to fill in the identified knowledge gap. The research will focus on the following 

thrust areas: 

T1: Identify suitable thermal models that may be used to carry out fundamental study of 

building thermal interactions 

T2: Identify relevant parameters to accurately model the building load, fans, and 

cooling coils in air handling units. Create computationally efficient methods to estimate 

the parameters.   

T3: Develop and validate the integrated system model for AHU and building load, as a 

proof of concept. 

T4: Investigate methods for minimizing building electricity cost, using appropriate 

control methods 

T5: Develop framework to study multi-zone interactions and minimize electricity cost 

T6: Validate the developed methods using case studies of typical AHU in a multi-zone 

building. 

The above tasks will be carried out through the use of a cyber-physical system 

(using building dynamics) which serves to integrate physical sensor measurement with 

thermal and mathematical model for real-time control of HVAC system operation. The 

model is deduced from fundamental heat transfer and energy conservation laws, and the 

model parameters were estimated from measured data.  
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1.4 Research Overview 

Figure 1.6 is the research flowchart showing the entire process and interaction 

between the different objectives. 
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Figure 1.6: Research flowchart 
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The task in this dissertation will be demonstrated using case study of a typical 

AHU (with focus on air mixing, fans, cooling coil, and building load operations) 

serving multiple thermal zones in an office building. For the minimization of building 

electricity demand and cost, a model predictive approach will be adopted, as it is 

essential for dynamic load response and control, understanding and optimizing load 

profiles and distributions, and for climate-responsive design.  

 

The dissertation is laid out in the following order: 

Chapter 1:  Introduction: This chapter introduces the overall function of the 

Heating, Ventilating, and Air-conditioning (HVAC) System and the background 

information to building load calculations. It concludes with research objectives, 

overview, and summary of the contributions of this dissertation. 

Chapter 2:  Literature Review: This chapter describes the state of the art and 

current challenges involved with electricity minimization in multi-zone buildings. It 

concludes with research gaps identified from critical review of literature.  

Chapter 3:  HVAC Components Model Development: From the critical review of 

literature in Chapter 2, existing fan, cooling coil, and building load models were 

reviewed. This chapter describes the selected thermal and airflow models used in this 

dissertation as well as the parameter estimation techniques, and solution methods 

adopted.  

Chapter4:  HVAC Components Model Validation: This chapter validates the 

building load, fan-motor and cooling coil model. The validation was done for a case 

study multi-zone building, which was used as proof of concept. The validation was 
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essential to establish that the level of accuracy of these predictive models is appropriate 

for control purposes.  

Chapter 5:  Development and Validation of Framework for Minimizing 

Buildings Electricity Demand and Cost: This chapter described the framework used 

to investigate methods for minimizing buildings electricity demand and cost. The 

establishment of accuracy levels of the system predictive models (earlier in Chapter 4) 

enabled the study of multi-zone interactions and minimization of electricity cost via 

application of suitable predictive control methods. The demonstration of the framework 

for a case study multi-zone building reveals some interesting findings and results which 

are discussed in this chapter.  

Chapter 6:  Step by Step Summary of Minimization Framework: This chapter 

summarizes the steps involved in electricity demand and cost minimization, as an 

overview of the developed framework. 

Chapter 7  Original Contributions to knowledge/Research: This chapter 

highlights the original contributions of this research and the new knowledge generated.  

Chapter 8:  Conclusions and Future Work 

1.5 Thesis Contributions 

 The intellectual contribution of this research is the understanding of multiple-

zone interactions in buildings to aid in effective decision making regarding the 

operational states of HVAC equipment that minimizes the overall electricity cost. The 

overall contributions of this research may be summarized as follows 

 Understanding of multi-zone thermal interactions in buildings 



15 

 Understanding of stability issues involved in thermal modeling of building load 

and cooling coil 

 Investigation of methods for filling missing gaps in solar radiation data 

 Study of thermal characteristics of building construction 

 Understanding of passive thermal storage capabilities of building construction 

for appropriate sizing of HVAC equipment 

 Extension of the R-C thermal network approach for transient modeling of 

cooling coils 

 Identification of new methods (near constant cooling and temperature 

recovery/optimal start) for minimizing buildings electricity demand and cost. 

 A demonstration of the electricity cost savings capabilities in air handling units 

operations through the use of Model predictive control (MPC) strategies, 

integrated with the thermal network models of building load and cooling coil 

model. 

 Scalability and further applications of the developed approaches to smart grid 

technology. 

In the next chapter, the start of the art and current challenges with HVAC system 

control will be discussed, leading to identification of research gaps.  

 

 

 

 

 



16 

Chapter 2: Literature Review 

Building systems operations are mainly challenged by dynamic load changes, 

particularly for large commercial buildings. Unlike lighting and plug loads, the HVAC 

system load is variable. There are different states in which a HVAC system can operate 

while in heating or cooling mode. These are float, hold, heat, and cool. When floating, 

the HVAC system is turned off, and the temperature drifts to lower or higher values, 

depending on the season. In the ‗hold‘ state, the system keeps the temperature at a fixed 

value.  Heating/cooling mode implies part-load (for example, running at 2/3rd capacity) 

or full load, where the system runs at 100% capacity. Inappropriate control strategy and 

faulty equipment always lead to deficiencies in building systems operation. The 

dynamic changes in building load also impose additional challenges which make fault 

detection, diagnosis, and control of HVAC systems difficult. 

2.1 State of the Art and Current Challenges 

 The building geometry and HVAC configuration constitute basic input for 

building performance simulation. Generally, the calculation of heating and cooling 

loads in building require the following information about the building envelope:   

-Architectural plans  

-Building orientation and location  

-External/Internal shading, ground reflectance etc.  

- Construction materials of walls, roofs, partitions, windows, ceilings, insulating 

materials and thicknesses  

-Amount of glass, type and shading on windows. 
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Challenges imposed by building information could be particularly huge for 

buildings with limited or unreliable information about the composition of walls and 

fenestration.   Similarly, Obtaining the most accurate and reliable data within limited 

time is a challenge often faced by practicing HVAC engineers, since calculated load can 

only be as accurate as the input data for the simulation.   

There have been several studies on minimizing building electricity demand and 

consumption. Most of these strategies have focused on the HVAC system and lighting 

for improvements in energy efficiency (Westphalen and Koszalinski 1999; Agarwal et. 

Al 2011; Delaney et. al 2009; Erickson et. al 2009; Lu et. al, 2010) because they both 

account for more than 2/3rd of the total electricity use and have the highest potential for 

operational cost savings. Load-shifting strategies for attenuating the peak load have 

included natural and mixed mode ventilation, curtailment, pre-cooling, temperature 

recovery or optimal start, and model based control (Armstrong et. al, 2006, Keeney et. 

al, 1997, Seem et. al 1989, BCA 2010). Ventilation strategies involve the use of natural 

ventilation as an important strategy towards reducing energy demand on a building 

since natural ventilation requires less energy use compared to air-conditioning (BCA 

2010). The mixed mode ventilation involves the use of mechanical ventilation only 

when necessary. It has been found suitable for spaces such as multi-purpose halls, 

classrooms and even hospital wards. Curtailment is another strategy for reducing 

building electricity use, particularly in periods of peak demand, which is extremely 

costly from a grid perspective. Curtailment is the response to a utility contractual 

incentive that results in a reduction in electrical demand, either by chiller control or by 

adjusting room temperature set points (Armstrong et. al 2006). Curtailment control is 
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addressed in a number of papers with focus on incentives but consequences such as 

indoor conditions are not rigorously studied through methodological approach and 

building transient thermal response (Haves and Gu 2001; Goldman et. al 2002; Kintner-

Meyer et. al 2003; Xing 2004). Temperature recovery refers to the optimal operation of 

HVAC and other building systems components to restore comfort conditions shortly 

before the start of occupied periods. In heating mode, starting recovery at the last 

possible moment leads to the maximum electricity and energy savings. Optimal start 

requires a transient thermal response model which is not embedded in most HVAC 

controls where traditionally simplistic models have been used (Seem et. al 1989). More 

realistic models such as transfer function and step response models (Seem et. al 1989, 

Armstrong et. al 1992) can lead to more reliable control. A long-recognized way of 

minimizing building systems energy use is model-based control which measures the 

important disturbances and estimate their effect on the thermal response of the building 

(Armstrong et. al 2006). Model-based control helps better regulate temperatures in the 

presence of disturbances of ambient, solar radiation, and internal heat gains. The most 

difficult, but potentially most effective, building electricity reduction measure requires 

control functions that anticipate curtailment and increase cooling capacity during this 

pre-curtailment period (Armstrong et. al 2006). Night pre-cooling has been used for this 

purpose. A few studies on precooling have used simplified analysis, as well as forward 

simulation, to show annual savings of up to 50% in mechanical cooling energy input. 

However, there have been few successful experimental demonstrations of significant 

pre-cooling and curtailment benefits in real buildings (Keeney and Braun 1997, Braun 

et. al 2001, Ruud et. al 1990). Likewise, the literature dealing with pre-cooling is rich in 
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context but it is not consistent in its conclusions because of the uncertainties in building 

thermal response and the severe thermal capacity and storage limitation constraints 

(Braun et. al 2001, Ruud et. al 1990, Braun and Chaturvedi 2002). Predictive optimal 

control offers many advantages, in light of dynamic and thermal coupling between 

building system components. One of the benefits is substantial energy and electricity 

savings. However, it is very difficult to achieve optimality because of system 

complexity.    

2.2 Building Load Models 

 As illustrated in Figure 2.1, the input to thermal models consists of HVAC 

systems and components, building geometry, internal loads, weather data, operating 

strategies and schedules, and other parameters. The building load is defined as the rate 

at which heat must be removed (or added to) to the building to maintain the desired 

temperature. It is the rate at which heat is instantaneously removed from (or added to) 

the zone air by convection. Building load calculations are important to determine the 

appropriate size of HVAC equipment that is necessary to provide needed heating and 

cooling under normal and extreme weather conditions. There were very few building 

load calculation methods in the U. S., prior to 1945. Building load calculation methods 

such as the sol-air temperature, decrement factors, and thermal RC network model were 

all developed after 1946 (Mao et. al 2013). The first edition of American Society of 

Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) handbook was 

published in 1967, and it adopted the peak load calculation methods in existence at the 

time. Major advances in building load calculations have since taken place, but their 

applications have been very limited by available data. 
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Figure 2.1: Input to Thermal Models 

  

Energy performance simulation programs have been used to predict and study 

energy performance. Numerous of such tools are available today with differences in 

their underlying equations, applicability, graphical user interface, and thermodynamic 

model. All internal heat gains transferred from building envelope and internal heat gains 

such as occupants, lights and equipment to an indoor environment is converted into 

cooling load through radiation and convection. The convective portion is added to room 

air by natural or forced convection, as an instantaneous load, without a time delay. 

However, the radiative portion is first absorbed by surfaces of the room, and later 

dissipated over time, with some lag and attenuation effects, which makes cooling load 

calculations inherently complicated. 
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Common methods used to measure building energy include use of black box 

models, or whole building simulation software such as EnergyPlus ( DOE 2010), 

BLAST (Jacobon 1986), or e-Quest (DoE 2010), and through the use of physics based 

models (Wetter 2006, Goyal et. al 2011). In EnergyPlus Model, the basis for the zone 

and air system integration is to formulate energy balances for the zone air and solve the 

resulting ordinary differential equations using a predictor-corrector approach. The 

formulation of the solution scheme starts with a heat balance on the zone air as shown 

in Equation (2.1): 

  

   
  

 ∑ ̇ 

   

   

 ∑     (      )  

         

   

∑     (      )         (     )

      

   

  ̇                                                                (   ) 

Where 

∑ ̇ 

   

   

                                  

∑     (      )

         

   

                                                 

      (     )   Heat transfer due to infiltration of outside air 

∑     (      )

      

   

                                           

 ̇                          ̇     (       ) 



22 

  

   
  

                           

                      

                          

EnergyPlus uses three solution algorithms (Eulers‘ method, 

3
rd

OrderBackwardDifference, and integrated solution method) for the zone air heat 

balance. The load on the zone is used as a starting point to give demand to the air 

system, such that the simulation of the air system provides the actual supply capability, 

and the zone temperature is adjusted if necessary. This is referred to as 

Predictor/Corrector process. EnergyPlus uses the ‗Internal Mass‘ object to describe 

furniture surface area and thermal mass. Transient heat conduction through building 

elements such as walls, roofs, floors, etc. is done using conduction transfer functions. 

The applicability of whole building software (such as EnergyPlus) is very limited since 

they require detailed information about the construction materials and physical features 

of the building. In most cases, these details are not available, and the reliability of the 

simulation results depends heavily on that information. Additionally, whole-building 

softwares were not designed for control purposes. Black box models are limited by the 

huge amount of training data needed. Lots of accuracy may be lost when the model is 

applied for operating conditions that are outside of the training data (Wang and Xu 

2006, Xu 2005). Other approaches involve the use of statistical models such as the 

autoregressive integrated moving average (ARIMA) for modeling building energy 

consumption (e.g. Javed et. al 2012, and Song et al 2013.). Statistical models are 

generally the simplest models, and are easy to formulate and interpret. Because they are 
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purely regression based, they do not physically represent the dynamics and thermal 

characteristics of the building system.  

2.2.1 Review of Building Load Calculation Methods 

Lots of researchers have studied building performance and load calculations. 

There are myriad of methods used for estimation and prediction of cooling and heating 

loads in buildings. Pang et. al (2012) developed a framework for real-time assessment 

of building performance. The simulation-based framework allowed the real-time 

comparison of buildings‘ actual and expected performance. However, the method is 

limited by the need to update several factors and variables at every time-step. The 

updated variables include HVAC operational schedules, weather data, and control set 

points. Causone et. al (2010) implemented the Heat Balance method and the Radiant 

Time Series (RTS) method calculation procedure. These procedures are described in 

ASHRAE handbook of Fundamentals (ASHRAE 2005). The models need lots of data 

for calibration to accurately predict and reflect system performance. Braga et. al. (2013) 

proposed a statistical model for estimation of building load and energy consumption 

profile during a cycle, e.g. one week. The model monitored and controlled energy 

consumption patterns. Feng et. al (2013) used EnergyPlus for comparison of cooling 

load differences between radiant and air systems. Factors studied include level of 

insulation, internal heat gains, solar exposure, and thermal mass effects. Xuemei et. al. 

(2010) developed a forecast algorithm for cooling load using Support Vector Machine 

(SVM) model. SVM is a machine learning technique, and the model parameters were 

determined from measured data. Chen et. al. (2014) likewise accessed the effect of 

internal heat gains from appliances on real-time and historical buildings energy use. 
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This was achieved through separate measurements of plug loads, building loads, and 

lighting loads using energy meters and sensors. Duanmu et. al. (2013) assumed certain 

linear relationship exists between the cooling load components and important variables 

(such as temperature difference between room and outdoor air), and applied the Hourly 

Cooling Load Factor Method (HCLFM), for estimation and forecast of cooling load in 

buildings. Schiavon et. al (2011) implemented a calculation procedure for cooling loads 

in underfloor air distribution (UFAD) systems. Regression methods were developed to 

convert cooling loads of overhead mixing systems to UFAD systems. The method is 

deemed suitable for design cooling load only. 

A major concern in cooling load calculations is the development of a 

representative model which is suitable to capture the dynamics of the system. The 

phenomenon of interest includes the thermal delays caused by the building envelope 

and internal mass effects. In that regard, the thermal network approach has been widely 

applied. It utilizes resistors and capacitors to represent the conduction and thermal 

storage effect of building constructions. The thermal network model (also commonly 

known as Resistances and Capacitances model) is known to provide robust and accurate 

estimates of building load as compared with measured data. Over the years, there have 

been several improvements in the thermal network model, but the three resistances and 

two capacitances (3R2C) representation is widely used for modeling transient heat 

transfer in building envelopes (Wang and Xu 2015; Mckinley and Alleyne 2008).  Other 

recent versions of the thermal network model include the 3R4C and 4R5C by Fraisse et. 

al (2011). The thermal network model has been widely applied for modeling of thermal 
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coupling of building elements, and for comparison of thermal zone aggregated methods 

(Dobbs and Hency 2012; Dobbs and Hency 2012, Sourbron et. al 2009). 

The thermal network model represents the building thermal and internal mass 

using lumped resistors and capacitors. The envelope Resistance and Capacitance (RC) 

parameters may be found from properties of building construction, or from measured 

data. The RC parameters of internal mass are estimated by optimization procedure 

which minimizes the difference between the actual building load and the model-

predicted building load. As such, the optimization procedure avoids the lengthy training 

and calibration process which is inevitable when using other models. The lumped 

approach also compensates for errors in the input parameters, since any associated 

uncertainties are lumped in the RC parameters. The RC parameters have been 

traditionally estimated by genetic algorithm, and solved numerically using Runge-Kutta 

or other classical methods (Xu 2005, Ogunsola and Song 2013, Ogunsola et. al, 2014).  

2.2.2 Advances in RC Modeling Approach 

The thermal network approach has been modified and applied in different forms. 

Examples include numerical solutions and time series modeling (Ogunsola et. al, 2014). 

The numerical approach suffers from convergence and stability issues, due to the need 

for different time steps. In another study, the time series model was deduced from the 

simplified RC model. The time series model performed superior to pure statistical and 

autoregressive models, because of improved ability to track abrupt changes in control 

strategies or set-points. It is also deemed to have less sensitivity to outliers. However, 

the time series method permits only limited exploration of the thermal network model 

capabilities. This is because it relies on previous measurements of building load, 
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weather, and usage of several time-steps to forecast future loads. The needed 

measurements may be unavailable or unreliable due to sensor malfunction or data 

quality assurance issues. Most importantly, the time series model becomes increasing 

difficult to develop and optimize, with increasing building complexity. There have also 

been noticeable spikes in the cooling load prediction by the time series (Ogunsola et. al, 

2014). The general applicability of the thermal network approach has been limited by 

the identified issues.   

 The RC thermal network model has been applied for multiple scenarios and case 

studies of different building constructions and HVAC systems operation modes. Among 

several models, The RC model was deemed to be appropriate to capture the dynamics 

of building construction and HVAC components, with other advantages such as: 

(i) Its ability to physically represent the properties of building construction. This allows 

fundamental study and investigation of the thermal characteristics of different 

construction.  

(ii) Its ability to simulate varying schedules of internal loads and HVAC system 

operation.  

(iii) Its capability to investigate multiple weather and operation scenario across different 

climates, since it is simulation-based. 

(iv) Its ability to be translated to a state space representation which allows the 

determination of system stability from model parameters. The state space representation 

is also ideal for model predictive control. . 

(v) Its capability to optimizing the building heating and cooling demands in response to 

varying usage and weather conditions (e.g. ambient temperature and solar radiation).   



27 

(vi) Its capability for the simulation and representation of internal mass storage effects 

in buildings, which allows opportunities for harnessing thermal storage effects to the 

fullest. 

(vii) Its ability to simulate floats in space air temperature. 

 Multiple scenarios of HVAC system operation and strategies with light, medium, 

and heavy construction of the building envelope have been simulated using thermal 

network model (Ogunsola et. al, 2014; Ogunsola and Song 2015; Ogunsola et. al 2016). 

The studies introduced analytical and numerical solution of thermal network model and 

applied it for the analysis of passive thermal storage opportunities of building 

construction. This revealed significant opportunities for downsizing of heating system 

size based on passive thermal storage.   

2.3 Cooling Coil Transient Models 

This section focusses on transient cooling coil models. The cooling coil is an 

important component in the air handling unit. Several researchers have developed 

transient models for the cooling coil. Ye Yao et. al (2013) developed a state space 

dynamic model for water to air surface heat exchangers. The model was validated by a 

series of dynamic experiments for exit temperatures and humidities of air and water 

arising from disturbances in inlet water temperature. The governing equations and 

assumptions are shown below: 

From mass and energy equation for water passing through the coil 

 ̇     ̇                 (   ) 
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For wet condition of the coil, 
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From energy balance for the coil and fins, the following equations apply: 

Dry condition: 
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Wet condition: 
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Where   length of coil,     coefficient of heat transfer between the coil and air. 

 = length along airflow,     area of windward side,     coefficient of heat transfer 

between the coil and water,     coefficient of mass transfer,    surface temperature 

of fins,     total mass,     mean specific heat of the heat exchanger 

The efficiency of sensible heat exchange is given by: 
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To estimate the coil parameters, the following equations were used: 
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Where The empirical coefficients                   can be determined with 

experimental data, and     thickness of fin,     fin spacing,     inner diameter of 

the coil. 

Three cases were considered (Case I: Start up the chiller; Case II: sudden 

increase in water flow rate, and case III: stop the chiller). The transient response time 

was set at 1200s for all cases. The solution method involved linearization of the state 

space model about typical operating points of water and air temperatures, such that the 

disturbance values are the input to the system. The state space model predicted the 
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transient performance within average error of around 15%. However, some of the 

needed measurements and coil geometric information may not be available. 

Jin et. al (2006) extended the cooling coil unit engineering model, and used 

commissioning information to estimate model parameters by a nonlinear identification 

method. The model was deemed to capture characteristics of cooling coil unit over a 

wide range of operating range. The model is simpler than Model 1 above, because it 

requires less information about the coil geometry. There was no separation into dry and 

wet regions. The governing equations and assumptions are described in equation (2.10) 

to (2.20): 

The overall thermal resistance of the cooling coil is given by 

               
 

        
 

 

    
 

         ̇   
       ̇ 

 

         ̇   
      ̇ 

     (    ) 

Where       film coefficient of the chilled water,       heat transfer area of the 

chilled water side convection,     film coefficient of the air, and       heat transfer 

area of the air side convection,  
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Where    Velocity of air flow,     
   equivalent velocity of cooling water in the 

counter air flow velocity,    total length of the tube, and    cooling coil depth. 

From energy and mass conservation laws,  
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Where      and    are constants representing the volume of the chilled water and the 

air element in the mass and heat transfer processes in the respective flow directions. 

With assumption of linear variations in      and    together with assumption    

     , the simplified energy and mass equation becomes an ODE which is given by: 
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Where                 and   are constants to be determined from manufacturer‘s data 

or real time experimental data.  

   
 

 

 

         
    

    

            
    

    

        
    

 

    
    

    

       
 

The above equation could be further transformed to a form that requires only the 

boundary conditions as shown in equation (2.17) to (2.20): 

       ( )

  
    ̇   ( )[      ( )        (      )]

 
   ̇ ( )

 

    .
 ̇ 

 ̇   
/
 
[    ( )        ( )]                                  (    ) 

     ( )

  
    ̇ ( )[    ( )      (    )]

  
   ̇ 

 

    .
 ̇ 

 ̇   
/
 
[    ( )        ( )]                                           (    ) 



32 

Where: 
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      time interval that the water fluid element takes to transverse from inlet to outlet 

    time interval that the air fluid takes to transverse from inlet to outlet. Some of the 

coil parameters could be estimated from steady state operation, while others can only be 

estimated from transient operation. 
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;       and   are estimated from   in steady state while 

the other parameters are estimated under dynamic conditions. 

Yao et. al (2004) developed a dynamic cooling coil model and validated it using 

experiments. The governing equations and assumptions are described in equation 

s(2.21) to (2.25). 

Dynamic change in cooling water temperature 
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Dynamic change in cooling coil temperature 
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Dynamic change in air humidity 
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Dynamic change in air enthalpy 
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Heat exchange between wet air and cooling coil 

       (         )   (    ) 

Where the parameters are as defined in Yao et. al (2004). By linearizing the differential 

equations about certain operating points, the effect of perturbations of the five important 

variables (inlet air temperature, inlet air humidity, inlet water temperature, airflow rate, 

and water flow rate) under different initial conditions were simulated and analyzed.  

Zhou and Braun (2007) developed and validated a simplified transient model for 

cooling and dehumidifying coils. The model was solved using finite element method, 

and it requires some geometry information of the cooling coil. It utilizes the UA and 

NTU approach, and requires calculation of fin efficiency, air-side effectiveness, and 

water-side effectiveness. The model utilized lots of steady state performance indices 

which enables the simplification. The governing equations are described in equations 

(2.26) to (2.31):  
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In wet case, the energy equation for coil surface is given by: 
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where   
  and   

  are thermal capacitances of the water and coil material per unit length 

in the water flow direction(i.e.,      
), respectively.        Supply air temperature.  
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  is the capacitance rate of the air stream per unit length,   tube perimeter,     

airside heat transfer effectiveness,   
  and   

  are thermal resistances for heat transfer 

per unit length between the coil material and water and the air and the coil material,   
   

is air resistance for mass and heat transfer per unit length,    is the overall fin efficiency 

for heat transfer,   
  is the overall fin efficiency for both heat and mass transfer. The 

local exhaust air temperature and humidities are given by: 

              (        )      (    ) 

Wet case: 

              
 (          )         (    ) 

The most common assumptions for cooling coil models can be summarized as follows:  

1. In the process of mass and heat transfer, the thermal properties of wet air, such as 

specific heat and density are assumed constant. This helps to treat dry air and water 

vapor as non-reacting ideal gas mixture.  

2. Where there is dehumidification, the condensate is removed by gravity from the coil 

surface immediately. 

3. Lewis coefficient is constant during process of heat and mass exchange. This is 

because the mass and heat exchange between moist air and surface of the coil tubes 

arrive at a balance.  

4. The air and water are well mixed in the cross section normal to their respective flows, 

such that gradients exist only in the respective flow directions.  
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5. The humidity of saturated wet air varies in approximately linear relation with the 

temperature.  

6. Coils having more than three tube passes could be modeled as pure counterflow heat 

exchangers.  

7. Within the dry and wet regions, the chilled water temperature and humidity of moist 

air can be approximated by a linear relation.  

8. Air and water flows are steady. The velocities of water and air are uniform along 

their respective flow directions.  

9. There is negligible conduction in the direction of flow for both fluids. 

10. There is negligible energy storage within the air (Yao et. al 2013, Jin et. al 2006, 

Yao et. al 2004, Zhou and Braun 2007). 

2.4 Fan-Power Models 

There are very few studies on transient modeling of fan-motor power. Steady 

state models are commonly used, because of the fast transient of fans, which fades out 

after few seconds. Several steady state models have been proposed in literature (Nassif 

et. al 2008, Clark 1985, Stein and Hydeman 2004). These models are limited in their 

applications, by the flexibility in inputs and output variables. The ASHRAE HVAC 

toolkit fan model (Brandemuehl et. Al 1983) and simplified DOE model (DOE, 1980) 

used a third order regression model to estimate the fan power as a function of flow rate. 

The toolkit model is more detailed, as it expresses the fan performance in terms of shaft 

power and pressure rise. The common limitations to existing models are highlighted 

below:  
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HVAC Toolkit simple fan model (Brandemuehl et. Al, 1993, DOE 1980) 

It uses a third order regression model of power as a function of airflow rate and involves 

4 regression parameters 
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Where     design fan power and     design airflow rate. This model requires at 

least four different operating points and it is based on assumption of constant fan 

pressure rise and a single system curve. This makes it unsuitable for VAV systems. 

HVAC Toolkit detailed fan model (Clark 1985, Brandemuehl et. al, 1983) 

It uses a fourth order polynomial regression model of power as a function of a 

dimensionless coefficient of flow,   
 

    

                            (    ) 

                            (    ) 

Where    dimensionless pressure head, and     dimensionless fan power,   

  

      and    
   

 
. It involves the identification of 5 regression parameters. The 

application of this model is Its application is limited by the assumption of peak fan 

efficiency for all fan types. Additionally, there is no flexibility in the input variables. 

For example, fan power cannot be directly calculated from airflow rate and fan pressure 

rise. 

Nassif et. al 2014 Fan-model 

Nassif et. al (2014) used numerical analysis and interpolation techniques based on basic 

fan laws, as shown in Figure 2.2. Linear or polynomial interpolation could be used to 
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determine flow, power etc. at any desired operating points, based on measured or 

manufacturers data. 

 

Figure 2.2: Interpolation techniques for fan-model 

For example, given fan speed and airflow rate at points A2 and A2, fan speed at point 

B0, the airflow and fan-power at point B0 could be determined using interpolation as: 
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This model has lots of flexibility in choice of input and output variables. However, only 

linear interpolation method was demonstrated. However, it may require lot of 

calibration data to cover wide range of fan‘s operating points. 

Energy plus fan model (DOE 2010) 

EnergyPlus fan model uses a fourth order polynomial regression model which expresses 

fan power as a function of part load airflow ratio. 
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                                          ,  

               is the characteristic coefficient of cooling coil fan,       is the power 

consumption of cooling coil fan,        is the designed power consumption of cooling 

coil fan,       is the sum efficiency of cooling coil fan,    is the air density. This model 

is limited by its requirement of sum efficiency of fan, which varies with operating 

points. It also requires lots of training data to determine the coefficients 

 

2.5 HVAC System Control and Optimization 

Two important functions of Building Management Control (BMC) systems are 

local control and supervisory control. The local control loop ensures stability and set-

point tracking, taking into account the local process. This is usually done using 

Proportional Integral Derivative (PID) controls. Supervisory controllers coordinate and 

supervise several local controllers, and are aimed at global optimal operation of the 

HVAC system, for determination of optimized set-points.  

HVAC systems are typically controlled by Proportional Integral (PI) control 

laws (Wu et. al, 2007; Bai et. al, 2008). They have time-varying and nonlinear 

dynamics. The nonlinear control characteristics sometimes cause control performance to 

vary with operating conditions. In recent years, PID controllers are most commonly 

used for temperature control and set-points tracking (Huang and Jordan, 2011). The 
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dynamics of airflow is faster than the thermal zone dynamics. Time lags are introduced 

by the building envelope (usually of several hours magnitude), cooling and heating coils 

(usually less than 1 min), ducts and pipes (less than 10s), and by the sensors (usually 

less than 1 min) ( Kulkarni and Hong, 2004). PID controllers actions vary significantly 

with these operating conditions, and may lead to sluggish and oscillatory behaviors, due 

to tuning problems.  

Moradi et. al (2012) compared the performance of pole-placement and    

controllers for optimal control of an air-handling unit. A nonlinear MIMO model of the 

AHU was linearized around the operating points, and the state variables estimated via 

observer and regulator design.  The state space equations were solved in Laplace 

domains, and the performance of the controllers was evaluated by their ability to track 

desired set-paths. The desired tracking paths in temperature and humidity ratio were 

achieved by manipulating the supply air and chilled water flow rates. The simple (PID) 

controller results in high oscillatory behavior of the valve positions for air and water 

flow rates. However, both PID and    controllers have not been demonstrated to 

handle constraints in inputs, state variables, and outputs. Additionally, in optimal 

control, one of key aims is to optimize the desired set-points or trajectories, such that it 

results in overall minimal electricity demand and cost.  

Huang and Jordan (2011) developed a triple-mode control strategy for year-

round temperature control of VAV systems, using bilinear feedback control which 

achieves robust stability using the principle of invariant and feasible (IF) set. The model 

does not require online tuning of its parameters. The control strategy was tested using 

case study of a single zone office, with envelope, radiation, convection, and a central 
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node temperature model. The triple-mode controller was shown to outperform PID 

controllers for zone temperature tracking, under different load conditions. However, the 

triple-mode control is also limited by inability to optimally handle and integrate 

constraints into the controller design. 

Wu et. al (2005) developed a PI controller, coupled with a frequency converter, 

for airflow control of ventilation units. The dynamic simulations were carried out by 

integrating an airflow plant model with a PI controller in SIMULINK. The resulting 

model was tested under two different loading conditions, which correspond to different 

objectives in thermal comfort.   Some important parameters were identified through 

experiments and analysis of a constant airflow control scheme.  

Bai et. al (2008) developed a self-tuning PI controller and applied it for control 

of HVAC system operation in a test room. The method involves online estimation of the 

air-conditioning system parameters, and the application of a self-tuning controller to 

calculate the control signal, based on predicted error and estimated values. Due to delay 

effects of the air-conditioning process, a smith-predictor algorithm was used for time 

delay compensation. The predictor-based self-tuning PI controller achieved better 

performance over adaptive PI controllers in handling effects from load disturbances and 

set-point variations.  

Zaheer-Uddin and Zheng (2000) explored optimal control strategies for HVAC 

systems operation. They take night-setback, start-up, and energy price discounts into 

consideration. The algorithm, which was based on gradient search method, was used to 

solve the multi-stage optimization problem. The model was tested on two 

environmental zones, with VAV heating (VAVH) system. The resulting zone 
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temperatures are given based on determined optimal mass flow rates and temperatures 

for both air and water supply.  Results show that implementation of variable set-points 

will lead to energy savings in buildings.  

Kulkarni and Hong (2004) implemented energy optimal control for a residential 

space with a gas furnace, by modeling sensible heat transfer. A PI controller was 

developed from a dynamic simulation of the building and control system, and 

implemented in MATLAB/SIMULINK. The building system was modeled in state 

space, using a thermal network model. The state space representation facilitates the 

implementation of an optimal controller (Qi and Deng, 2009). The proportional 

controller was compared with a two-position control, which is the commonly used 

control method for residential buildings in the United States. Results show that the 

optimal proportional control has advantage over the conventional two-position control 

in terms of thermal comfort. There were no significance differences in energy 

consumption between the two schemes.  

Qi and Deng (2009) developed a multivariable Multi-Input Multi-Output 

(MIMO) control strategy for simultaneous control of indoor air and humidity. The 

sensible balance equations of an experimental DX A/C system in a conditioned space, 

was linearized and written as a state-space representation. The Linear Quadratic 

Gaussian (LQG) technique was used to design the MIMO controller. The MIMO 

controller generates two control signals for the compressor and supply fan speed 

simultaneously. This was shown to have advantage over on-off or SISO control strategy 

in terms of sensitivity and disturbance rejection.  
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Ginestet and Marchio (2010) studied the control tuning of a simplified VAV 

system. They investigated air quality management associated with control of outdoor air 

flow rates. Several model based control, optimal control, and classical methods were 

compared in terms of set point and disturbance rejection, their need to be written as a 

state space model, and previous applications in literature. The chosen model was tested 

for pollutant rate modeling in a conference room.  

Yuan and Perez (2006) developed a model predictive control strategy for 

temperature control in a single-duct VAV system. The controller‘s performance was 

evaluated by conducting simulation-based experiments under four typical weather 

conditions. The study identified several problems with conventional control, such as the 

inability to maintain unit level ventilation control due to fluctuating occupancy and 

cooling loads of multiple zones. Over-ventilation and under-ventilation may occur 

simultaneously in different zones. The model predictive controller is seen as a multiple 

zone control method to control temperature and ventilation in real-time. It was shown to 

be capable of handling limitations in inputs and outputs explicitly, because the 

constraints are embedded in the control strategy. The MPC is also capable of being 

tuned intuitively, such that the effect of model parameters can be easily understood 

(Yuan and Perez, 2006). A single MPC controller can be used for single zone, or 

multiple zones control. 

2.5.1 Summary of HVAC Systems Control Methods 

Tables 2.1a, 2.1b, and 2.1c compare the most common methods that have been 

used for HVAC systems control (modified from Afram and Janabi-Sharifi, 2014).  It 

shows the description of the control method and limitations to current HVAC systems 
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application. Of all the methods shown in Table 2.1, the model predictive controller 

(MPC) is a preferred choice for HVAC systems control because it leverages on the use 

of a predictive model, handles constraints systematically and optimally by embedding 

the requirements into controller design, and optimizes system operation irrespective of 

the time scale (slow, medium, or fast dynamics) of the system. The MPC controller is 

able to control the system at both the supervisory and local control levels.  The main 

limitation of the MPC is the requirement of very accurate predictive dynamic models.  

Table 2.1a: Comparison of HVAC Systems Control Methods (Hard Control) 

Control 

Methods 

Description Limitations 

Gain 

Scheduling 

PID 

Different set of gains 

applied to a nonlinear 

system divided into 

piecewise linear regions 

Inability to handle time varying 

constraints and disturbances 

(Tahersima et. al, 2010; Pal and Mudi 

2008) 

Nonlinear 

Control 

Uses a control law to drive 

a nonlinear system toward 

a stable state 

Requires complex mathematical 

analysis for the identification of stable 

states  

(Moradi et. al, 2011; Hodgson 2010) 

Robust 

Control 

Designs a controller that 

works well with time 

varying disturbances 

Require specification of additional 

parameters which could be impractical 

to integrate in HVAC systems 

(Anderson et. al 2008, Al-Assadi et. al 

2004, Greensfelder et. al 2011, Dong 

2010, Nishiguuchi et. al 2010) 

Optimal 

Control 

Solves an optimization 

problem to minimize a cost 

function 

Model 

Predictive 

Control 

Predictive optimal control 

with disturbance rejection, 

constraint handling, and 

slow-moving dynamics 

integrated into controller 

design 

It requires accurate predictive model. 

(Elliott 2008, Katipamula 2006). 
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Table 2.1b: Comparison of HVAC Control Methods (Soft and Hybrid Control) 

Control 

Methods 

Examples Description Limitations 

Soft 

Control 

Fuzzy Logic 

Control actions 

are implemented 

in the form of if-

then statements 

Requires extensive knowledge of 

systems operations and states 

Neural 

Network 

Trained using 

performance data, 

to fit a nonlinear 

mathematical 

model 

It‘s a completely black box 

approach. Training data must cover 

a wide range of operating 

conditions. 

Hybrid 

Control 

Adaptive 

Fuzzy, Fuzzy 

PID etc 

It‘s a fusion of 

hard and soft 

control 

Inherits problems associated with 

soft and hard control methods, 

such as requiring large amounts of 

data, or problems with controller 

tuning 

 

Table 2.1c: Comparison of HVAC Systems Control Methods (Classical) 

Control 

Methods 

Examples Description Limitations 

Classical 

Control 

ON/OFF 

Regulates a given 

process between 

upper and lower 

thresholds 

Unable to control time delay 

due to thermal inertia. Displays 

large swings in controlled 

states 

P, PI, PID 

Modulates a control 

variable to achieve 

control using error 

dynamics 

Controller tuning is 

cumbersome. Operating 

conditions should not vary 

widely from tuning conditions 

 

It is also able to handle varying constraints, which are typical of those in HVAC 

systems operation where different constraints of temperatures, flow rates, etc. are 

specified based on occupancy, or time of use. The suitability of MPC for this research is 



45 

further discussed in Section 5.1. The different areas where MPC has been applied to 

HVAC systems control are shown in Table 2.2.  

Table 2.2: Applications of MPC in HVAC System Control  

Studies Application Models used and limitations 

He et. al 2005 Temperature 

control 

Fuzzy model. Neglects zone interactions 

and does not represent building dynamics 

Kalogirou 1998,  

Soteris and 

Kalogirou 2000 

Energy 

consumption 

Artificial neural networks (ANN). Does not 

represent building dynamics 

Jan et. al 2011 Energy savings Resistance model only. Neglects interzone 

thermal storage. 

Shengwei and 

Xinqiao 2000 

Energy 

consumption and 

cost 

TRNSYS and genetic algorithm (neglects 

zone interactions) 

Bourhan et. al 

2004 

Zone temperature Capacitance model only (assumes similar 

effect of different wall orientations on the 

zone temperature. Single zone) 

Oldewurtela et. al 

2012, Lehmann 

et. al 2010, 

Oldewurtela et. al 

2010 

Zone temperature RC model. Single zone approach. Identical 

boundary conditions on partitions, which 

ignores the influence of neighboring zones. 

Neglects internal mass effects 

Ma et. al 2012 Demand 

reduction 

ARX model (using EnergyPlus with 

Buildings control virtual testbed (BCVTB) 

as middle ware) 

Karlsson and 

Hagentoft 2011 

Heating supply Heat balance model. Single zone approach. 

Privara et. al 

2011 

Zone temperature State space model. No opportunity to 

observe or understand thermal couplings 

and interactions 

Huang 2011 Zone temperature Heat balance model. Does not represent 

building construction physically. Thermal 

interactions neglected 

Yuan and Perez 

2006 

Zone temperature 

and ventilation 

Heat balance model. Single zone approach. 

Thermal interactions neglected 

Xu and Li 2006 Zone temperature CARIMA model 

Xi et. al 2007 Temperature, fan 

speed, and chilled 

water valve 

Support Vector Regression. Unable to 

capture dynamics of building construction 

and multizone interactions. 
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None of these studies considered multi-zone interactions and dynamics using a 

physically representative thermal model of building load and cooling coil in the 

controller design. Additionally, most of the applications are for zone temperature 

control 

2.5.2 Strategies for minimizing building demand 

According to Li and Wang (2012), thermal storage is one of the most promising 

ways for improving energy storage and energy use in buildings. It can help to balance 

daily, weekly, and seasonal energy demands (IREA 2013). There are also other claims 

that passive thermal storage can compensate for extra investment on building insulation 

(Schnieders and Hermelink 2006). There are active and passive thermal storage 

strategies. The active strategies involve improvements to the HVAC system operation, 

while passive strategies involve improving the building envelope, which serves as the 

interface between the indoor and outdoor environment.  

The building envelope helps to moderate and control the fluctuations in the 

indoor environment, depending on its thermal characteristics, and the outdoor 

conditions. Fenestration components such as walls, roofs, windows, thermal insulation, 

and external shading devices make up the building envelope. These high capacity 

materials are capable of absorbing and progressively releasing radiation. They 

constitute the thermal mass. The mechanism of absorbing and releasing heat at a later 

time helps in the control and moderation of the indoor temperature, which is reflected in 

shift of peak building load (Henze et. al 2005). Diurnal variation in ambient temperature 

should exceed 10K (18F) for effective utilization of thermal mass.  
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Other mechanisms for optimal control of building load and electricity profile 

have been exercised in literature. Morgan and Krarti (2010) developed a simulation 

environment to implement various control strategies such as predictive optimal control. 

By allowing the zone temperature to drift during unoccupied periods, the energy use 

profile of the HVAC system was modeled and compared with actual data.   

Henze et. al (2005) focused on nighttime pre-cooling as a means for peak load 

reduction. By utilizing active and passive building storage, constrained by thermal 

comfort requirements, the study optimized HVAC system operation, and minimized 

building operation costs. The thermal storage components of the control problem were 

solved using quasi-Newton method and dynamic programming. The study identified 

lots of improvement opportunities for thermal storage and peak load reduction potential.  

Braun et. al (2002) identified potentials for reducing building operating costs as 

including demand reduction, ventilation with cool nighttime air, pre-cooling, and 

improved mechanical efficiency. Associated savings are strongly dependent on weather 

conditions, occupancy schedules, utility rates, and building thermal characteristics.  

Snyder and Newell (1990) developed a lumped capacitance model to determine 

least cooling cost strategies using effective building characteristics for a medium-sized 

building. The most influential parameters on whole-building cost savings were 

identified using a fractional factorial analysis (FFA). The four most influential factors 

on the cost savings were identified as part-load performance, thermal mass level, 

internal load density, and equipment efficiency. The analysis revealed that thermal 

characteristics of building construction have a significant impact on the energy use and 

load profile. Savings of 18% were realized in cooling cost by sub-cooling the thermal 
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mass before the peak utility rate period, which helps to shift portions of the peak 

cooling to off-peak period.  

Yang and Li (2008) developed a mathematical model to study the effects of 

night ventilation and thermal mass on the cooling load in buildings. Their model 

considered the thermal capacity and resistance of building construction and indoor air. 

In another study (Goyal et. al 2011), additional thermal mass led to energy and cooling 

cost savings of 18-20% over the base case. These reductions uncover further 

opportunities for downsizing the HVAC system size, which helps to offset initial 

investment on additional insulation. Another study involved the use of EnergyPlus for 

simulation of different building constructions in cold climate. Results show that the 

distribution and orientation of thermal mass in the building envelope led to negligible 

savings for high-rise buildings.  

From the critical review of literature, the following research gaps have been 

identified: 

 Lack of fundamental understanding  and consideration of multi-zone thermal 

interactions in predictive control of buildings energy systems 

 Lack of understanding of interactions between HVAC components and the different 

zones in a multi-zone building 

 Lack of sufficiently accurate (or limited applications) of physics-based transient 

model that captures important buildings phenomenon such as radiative delays and 

internal mass effects 

 Lack of understanding of applicability/limitations of the thermal network model for 

buildings heat transfer 
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 Lack of electricity minimization strategies that utilize buildings dynamics (Existing 

electricity minimization strategies do not leverage on multi-zone interactions. Also, 

they are not consistent in their conclusions) 

This research seeks to fill the identified gaps through generation of new 

knowledge and original contributions which include: 

 Demonstration of predictive control that utilizes building dynamics, represents the 

building physically, and captures important phenomenon e.g. multi-zone 

interactions, radiative delays etc. 

 Understanding of thermal interactions among multiple thermal zones in any new or 

existing buildings 

 Understanding of thermal characteristics of building constructions 

 Understanding of interactions between multiple thermal zones and HVAC 

equipment to assist in efficient operation of the HVAC equipment 

 Understanding of appropriate electricity minimization strategies for multiple 

thermal zones in any new or existing building 

 Method to determine near -optima precooling hours for certain thermal zones 

To achieve the above, accurate thermal models of building load and cooling coil as well 

as airflow model of fan-power are required. Most of the existing thermal models are not 

suitable for this research, due to their lack of consideration of building dynamics. The 

next chapter discusses the selected models in this dissertation, and the solution method 

adopted.  
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Chapter 3: HVAC Components Model Description 

This chapter describes the thermal and airflow models used for the HVAC 

components in this dissertation. The models of interest are the building load, fan- motor, 

and cooling coil models respectively. This chapter also describes the solution and 

parameter estimation methods adopted. New information presented in this section 

includes the stability analysis of the thermal network model, and further application of 

the thermal network approach to transient modeling of cooling coil, using both 

temperature and enthalpy based methods.  

3.1 Building Load Model 

Snyder and Newell (1990) and Yang and Li (2008) utilized the thermal network 

model in their studies. Their models fall under the general class of Resistance-

Capacitance (R-C) model, which has been widely used for building performance 

simulation (Dobbs and Hency 2012, Schmidt and Johannesson 2004, Sourtron et. al 

2009, Radecki and Hencey 2012, Bueno et. al 2012, Lombard and Mathews 1992, 

Lombard and Mathews 1999, Xu 2005). This section discusses the dynamics and 

capabilities of the R-C model for building load and cooling coil modeling. 

  The R-C model was chosen because of it suitability to capture dynamics of 

building load, while also representing characteristics of building construction 

physically. The utilization of physical and thermal characteristics of building 

construction in the formulation leads to a thermal model which reliably and accurately 

depict phenomenon such as internal mass, radiative delays, flexible schedules, multiple 

scenarios of HVAC system operation etc.   In addition, the thermal network 

representation enables linearization and representation in state space, investigation of 
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system stability, and integration with other building components such as the cooling 

coil and fan-motor models. The thermal network model also enables the use of short-

term measurements to estimate and optimize model parameters. The state space 

representation is perfect for predictive optimal control and for exploration of further 

opportunities related to near-optimal operation of HVAC system components.  

With the R-C model, the heat balance equation can be generated from limited 

information about the physical and thermal characteristics of building construction. 

Solution methods adopted for the R-C model have included autoregressive, time series, 

numerical, and, recently, analytical. The important capabilities of R-C model which 

justifies its suitability for this research could be summarized as follows: 

(i) Capability to physically represent the properties of building construction. This allows 

for fundamental study and investigation of thermal characteristics of different building 

components (including windows, walls, roofs, partitions, etc) and constructions (light, 

medium, and heavy construction). 

(ii) Capability to extend and utilize the R-C representation for other HVAC components 

such as the cooling coil and fan-motor model, hence enabling seamless integration of air 

handling unit components.  

(iii) Capability to simulate different HVAC system schedules, set points, and multiple 

scenarios of HVAC system operation across different climates. 

(iv) Capability to estimate model parameters from limited measurement data, and study 

the system dynamics from the model parameters. 

(v) Capability to optimize system operation in response to varying weather, ambient 

temperature, and occupancy schedules.   
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(vi) Capability to handle soft and hard constraints due to control and equipment 

limitations. 

(vii) Capability to provide unit-level information at thermal zones where metering 

information may not be available due to limited numbers of sensors. 

(iix) Capability to simulate internal mass, thereby harnessing thermal storage 

capabilities appropriately. This may aid in peak cooling load reduction, which offers 

significant potential for energy and electricity use in buildings.  

(ix) Capability to simulate floats in space air temperature, when HVAC system is not in 

operation. This is useful to evaluate worst case conditions due to night setback or other 

control strategies. 

A typical R-C representation for a thermal zone with one exterior wall is shown in 

Figure 3.1.  

 

Figure 3.1: R-C Thermal model, showing sol-air temperature and HVAC system 

input. 

The variables are defined as: 

TsE = solar air temperature on exterior wall 

Tamb= ambient temperature 

Tin= zone temperature 

Rwin = windows thermal resistance 
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Re1, Re2, and Re3 = thermal resistances of exterior wall 

Rint = thermal resistance of internal mass 

Cw = thermal capacitance of exterior wall 

Cin = thermal capacitance of room air 

Cint= thermal capacitance of internal mass 

Qconv= convective portion of internal heat gains 

Qsys= rate at which heat is added to (or extracted from) the system 

Qr= sum of radiative fraction of internal heat gain and transmitted radiation from 

windows to the zone.  

The following simplifying assumptions are commonly made in order to enable the 

derivation and expression of sensible heat balance equation for the nodal temperatures 

in the thermal network model:  

● Well mixed zone air: The whole indoor circulated air volume is assumed to be at 

a uniform temperature, which is represented by the zone temperature node. 

● Convective heat transfer coefficient: A constant heat transfer coefficient is 

assumed on wall surfaces, such that the effect of varying wind velocity may be 

neglected. Likewise, this leads to constant values of convective thermal resistances on 

exterior and interior surface of walls. 

● Positive Pressure: Conditioned spaces are assumed to be adequately pressurized, 

relative to their surroundings, such that infiltration does not create additional cooling or 

heating loads in the conditioned space.  

● Adiabatic surfaces: Ceilings and floors are considered adiabatic, particularly 

when they separate thermal zones that are similarly conditioned.  
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● Other phenomenon: Long wave radiative exchanges between interior surfaces, 

multiple reflections, and other complex phenomenon are described by the lumped 

internal thermal mass components of the R-C model.   

The above assumptions have been well established in literature, and are frequently 

made to simplify the thermal network model [Lombard and Mathews (1992); Ogunsola 

et. al (2014); Ogunsola and Song (2015), Ogunsola and Song (2014), Ogunsola et. al 

(2016)]. The heat balance equation at each temperature node is given in Equation (3.1)  
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  = temperature of the  th node.  

  = thermal capacitance of node  . 

 = total number of connected temperature branches (including ambient, sol-air, and 

neighbor nodal temperatures) to node  . 

  = temperature of the  th branch, connected to node  . 

 = total number of heat flux branches (such as convection, radiation, and heat 

extraction or addition rate) impressed on node  .  

  = heat flux of the  th branch connected to node    This term includes internal heat 

gains such as    and       which are impressed on internal mass and zone temperature 

nodes respectively.    also includes the heating or cooling rate of a device (    ).  

     applies to zone temperature nodes only, as shown in Figure 3.1     

  = resistance of the branch between    and   .  

 Typical inputs to the R-C model are as shown in Table 3.1 below: 
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Table 3.1: Typical inputs to R-C model 

Input Description 

Weather This includes ambient temperature and solar radiation data for 

the particular location being studied. Where available, actual 

radiation data is used during simulation. Otherwise, the 

ASHRAE clear sky model was used to generate solar radiation 

data.  

Occupancy 

Schedule 

Occupancy schedules are the times that occupants are physically 

present in the thermal zone. This is important because it 

determines usage and temperature set-points which influences 

the building load profile. Occupied periods for office building 

are typically weekdays from 8am – 5pm.  

Internal loads Internal loads are heat generated within the building. They come 

from lighting, computers, office equipment, and people 

HVAC 

System 

The HVAC system operates to maintain thermal comfort within 

the conditioned space. It compensates for the building heating or 

cooling loads. 

Building 

Construction 

Information 

The thermal characteristics of building construction determine 

the temperature fluctuations and thermal delay of radiative heat 

gains.  

 

Outputs from the R-C building load model may include interior and exterior surface 

temperature of walls, zone temperatures, heating or cooling loads, and other thermal 

variables of interest. The R- C model representation may be extended to buildings with 
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multiple zones, as is typical of office buildings. Figure 3.2a shows a building with two 

thermal zones. The R-C network representation is shown in Figure 3.2b. Note that some 

of the nodal temperatures were not shown in the schematic due to space limitations.  

3.2 Fan-Motor Model 

The modeling of airflow dynamics has not been quite developed in HVAC 

literature. No comprehensive dynamic model exists for the fan-motor model. The 

transient response of the fan-motor subsystem is usually in the order of seconds, which 

is much shorter than the other HVAC components. For example, the transient regimes 

of building loads may be up to 5000 times that of fan-motor subsystem. Due to this, the 

use of steady state and regression models for airflow dynamics has been justified. 

Although fan-motor draws large current during the transient regime, the peak demand is 

very short-lived, and not reflected in the electricity bill. In addition, most utilities 

manage load at 5minutes to 1 hour interval and responses at the fast time scale of fan 

operation are not presently considered. It also happens very fast, that it is not captured 

by most building automation system (BAS). Therefore, this section focuses on the use 

of a steady state fan model, which requires very limited fan operation data to simulate 

fan performance. A description of suitable transient fan model using a state space 

approach is available in Appendix A. The flowchart shown in Figure 3.3 summarizes 

the steady state fan model used in this dissertation.  
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Figure 3.2a: Office Building with 2 Thermal Zones 

 

 

Figure 3.2b: R-C Model Representation for Building shown in Figure 3.2a 
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Figure 3.3: Summary of Fan Power Model 

Start 

Step 1: Given 𝑄(𝑐𝑓𝑚) and  

Fan Static Pressure (𝑃𝑠) 

𝑁𝑖𝑛𝑒𝑤   
𝑃𝑠

𝑃𝑖
𝑁𝑖 

𝑊𝑖𝑛𝑒𝑤  (
𝑃𝑠

𝑃𝑖
)
   

𝑊𝑖 

𝑄𝑖𝑛𝑒𝑤   
𝑃𝑠

𝑃𝑖
𝑄𝑖 

Step 2: Load Fan operation data 

Step 3: Apply fan laws to get fan 

predicted performance at Ps for all 𝑖’𝑠 

 

Fan operation/ 

manufacture 

data 

(Qi, Pi, Wi, 

Ni), 𝑖 >   

Step 4: Determine the two closest 

𝑄𝑖𝑛𝑒𝑤to the given 𝑄  Remove duplicates. 

Step 5: Determine the desired fan speed 

and power by interpolation 

 

Step 6: Output the fan speed 

(N) and fan input power (W) 

End 
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  ,   ,   , and    represent flow (CFM), static pressure, fan input power, and fan speed 

respectively. The fan‘s static pressure is reset by total airflow rate, and the calibration 

results are shown in Appendix B. 

3.3 Cooling Coil Dynamic Model 

  Most of the available cooling coil dynamic models require detailed information 

about the cooling coil geometry. These details are mostly unavailable.  

Additionally, cooling coil manufacturer‘s data only cover limited range of 

temperature and flow rates.  Lumped models serve such a good purpose of simulating 

operation of the cooling coil unit with good degrees of accuracy. The cooling coil 

model in this dissertation was deduced from lumped parameters approach, such that 

with limited operation data, the cooling coil modeling parameters could be deduced, and 

the operation predicted with high degrees of accuracy. Depending on the given thermal 

resistance, the heat transfer from the chilled water to the air may be written as Equation 

(3.16) or (3.17): 
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The subscript ‗ ‘ denotes enthalpy based thermal resistances of the chilled water and air 

respectively.  According to the Dittus-Boelter correlation, the relationship between the 

nusselt number and convection coefficient may be represented as Equation (3.18):  
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This correlation is valid for turbulent, internal flows, which is the case for water flow in 

cooling coil. Additionally, typical range of Prandtl number for water flows are 0.7-1.0 

which lies completely in the range of validity of the Dittus-Boelter correlation. As such, 

the Dittus-Boelter correlation is applicable to water flow in the cooling coil.  The UA 

value for water side of the cooling coil may be expressed as in Equation (3.19): 
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where the velocity,   can be expressed as     ̇   . Inserting this into Equation 

(3.19) yields: 

   (                
         ) ̇      ̇      (    ) 

   is the constant-pressure specific heat of the flowing fluid.  

   is the conductivity of the flowing fluid. 

  is density of the flowing fluid.  

  is viscosity of the flowing fluid. 

  is a characteristic length of the problem. For pipe flow,     where   is the pipe 

diameter,    is a characteristic velocity of the problem. For pipe flow,     ̅ where  ̅ is 

the mean velocity. The expression in bracket could be lumped into the constant    such 

that the     values for water can be represented as shown in Equation (3.21)  

(  )         ̇   
     (    ) 
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For airflow in the cooling coil, the applicable correlation is Zukauskas correlation for 

external flow in tube banks with staggered tube elements. This is mostly the case for 

airflow in HVAC cooling coils. The Zukauskas correlation for external flow in tube 

banks with staggered geometry is given by: 

         
     (    ) 

Where:  

                                    

                                      and 

                            >       

The airflow rates for the case study cooling coil happened to have Reynolds number in 

the range                  for which the Zukauskas correlation suggests 

exponent         However, when the Zukauskas relation was applied for the cooling 

coil in this dissertation, it didn‘t give good prediction. It was also unable to capture any 

of the fluctuations in the leaving air temperature. Therefore, other approaches were 

considered. The first approach was to include the exponent   as one of the cooling coil 

parameters to estimate. To achieve this, the UA value for the air side was assumed to 

vary with airflow to the power of  , where   was constrained to (   ). Using that 

approach, the value of   was estimated based on objective of minimizing the errors in 

predicted leaving air and water temperature. Using genetic algorithm, the exponent was 

estimated to be   0.76 and it gave a better prediction than the Zukauskas relation. It was 

also able to capture some trends in the leaving air temperature. However, in quest to 

improve the model accuracy and develop a cooling coil model with the least possible 

number of estimated parameters, a second approach was considered. This involved 
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fixing the value of   and estimating the other coil parameters which are discussed later. 

Values of   from 0.6 to 0.9 in 0.02 increments were considered. The value of       

gave similar prediction as        for the training data but best prediction for the 

validation data. This is also consistent with literature where       has been used for 

turbulent flows. Therefore, the UA value of air in this dissertation was assumed to vary 

with airflow rate by the relation: 

(  )         ̇   
     (    ) 

By combining the equations for airside and water side    values, the expression for 

thermal resistance becomes:  
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From mass and energy conservation, the dynamic change of air and water 

temperature in an infinitesimal volume can be represented using temperature or 

enthalpy approach. The temperature based approach is based on the approximation of 

enthalpy change of air by the specific heat and temperature difference. The assumption 

has been widely applied in literature.  The governing equations are:   

Using temperature approach:   
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Using enthalpy approach for the air, the airside energy balance may be written as:  
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where      and      represent the volume of the chilled water and the air element in the 

mass and heat transfer processes in their respective flow directions. Approximating 

    ,     ,     , and      by a linear equation implies that the instantaneous values of 

these variables along the coil can be expressed as: 
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Taking the first derivations of these equations, we obtain  

     

  
 

             

 
  
     

  
 

             

 
  
     

  
 

             

 
  

Therefore, substituting the above gradients from Equation (3.30) into the mass and 

energy conservation equations give: 

For temperature based approach: 
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Which can also be written in terms of temperature differences as: 
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For enthalpy based approach, the airside equation is:  
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Which may also be written in terms of enthalpy differences as: 
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The cooling coil model could then be represented using a two-node thermal network 

model, as shown in Figures 3.4 to 3.7 

 

Figure 3.4: Thermal network model for cooling coil, temperature approach 

 

Figure 3.5: Thermal network model for cooling coil, enthalpy approach 

This is a three resistance, two capacitance (3R2C) model representation. The 

resistance values are variable since they are dependent on air and water flow rates. They 

are, thus, represented using a variable resistor (as indicated by the arrow). The thermal 

capacitances are constant. The network representation can be further simplified as 

shown in Figures 3.5 and 3.6:  
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Figure 3.6: Simplified thermal model for cooling coil, temperature approach 

 

Figure 3.7: Simplified thermal model for cooling coil, enthalpy approach 
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The  ’  and  ’  are coefficients to be determined from manufacturer or operation data. 

Only four (4) parameters need to be identified. Tables 3.2 and 3.3 show the thermal 

interactions among the leaving and entering temperatures.  

Table 3.2: Cooling coil thermal interactions, temperature based approach 

Variables                             
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Table 3.3: Cooling coil thermal interactions, enthalpy based approach 

Variables                             
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3.4 Solution Method 

 The thermal network model representation for the building load and cooling coil 

may be represented as an inhomogeneous system of ordinary differential equations. In 

state space representation, this can be re-written as:  

 ̇                        (    ) 

where   is the state (or system) matrix and   is the input matrix of dimensions     

and    , respectively.   is the number of inputs to each model while   represents the 

number of state variables. Depending on the output of interest, these may be presented 

as a multiple input multiple output (MIMO) system. 

  (

       

   
       

)        (

       

   
       

)          (    ) 

The cooling load, for example, may be represented as: 

               (    ) 

For the building load model, the matrices   and   are time-invariant matrices whose 

entries are functions of the R-C parameters. For the cooling coil model, the matrices   

and   are variable, because their entries are functions of the flow rates. As a first order 

differential equation, the general solution to Equation (3.40) is given by: 
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           ∫   (     )  ( )  
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where the exponential matrix of    (   ) is defined by the power series 
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  is the time step, and   is the identity matrix, having the same dimensions as  .  

3.4.1 Time series solution 

 Depending on the distribution of  ( ), the computational effort required to 

evaluate the integral may be minimal or significant. In order to simplify the convolution 

integral, inputs between time   and     can be modeled by a piecewise, continuous, 

linear function as: 

 ( )     
(   )

 
(       )       (    ) 

This approach was first utilized by Seem et. al (1985). In their study, the concept was 

applied to building envelope components only. In other studies, the concept was used to 

model solar radiation absorbed by vegetation (Knyazikhin et. al). Other functions (such 

as trigonometry) may be used to model the input between two different time-steps. In 

this research, the concept of piecewise continuity was extended to include solar 

radiation, convection, and radiative fraction of internal loads, which are all inputs to the 

building load model.  The ramp function is more appropriate to represent gradually 

changing variables. It is function of choice to represent ambient temperature, solar 

radiation, flow rates, and other HVAC variables which have similar behaviors. Plug 

loads are mostly step functions in reality, but the assumption of piecewise continuity 

merely substitutes the ramp input in the time step interval where the step change occurs. 

This is expected to have minimal influence on the model accuracy, and the output of the 
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time series will not significantly deviate from measured data. The deviation is 

considered to have a small impact, because it only occurs during the small interval 

when the plug load is enabled. Substituting Equation (3.45) into Equation (3.43) gives 

            ∫    (     )  *   
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By changing variable                                        
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Seem et al. (1985) described the steps for integrating the two integrals. The solution to 

the first integral is 
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and the solution to the second integral is 
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Substituting these into Equation (3.47) yields 
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where 
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Equation (3.52) relates the state at time     to the state at time,    and the inputs at the 

times    and    . Using the forward shift operator, defined by          to relate the 

states to previous input, Equation (3.50) can be written as 
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(    )   (         )            (    ) 
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Substituting Equation (3.52) into Equation (3.42) yields 

        , (    )  (         )      -      (    ) 

Equation (3.53) then relates the output from the system to the inputs, and the 

intermediate nodal temperatures are already lumped into the formulation. The 

expression (    )   could be simplified further, based on the definition of a matrix 

inverse, as shown in Equation (3.54).  
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With further simplification and manipulation, the expression for the cooling load 

reduces to:  
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where 
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      (     )                                                                               (    ) 

Equation (3.56) relates current outputs to time series of current and past inputs and time 

series of past outputs. The value of  , which determines the required number of past 

values, is equal to the smaller of the number of nodal temperatures in the thermal 

network and the rank of matrix   . With multiple (or increased number of) zones, the 

number of states increase linearly, and so is the required number of past values. 

Therefore, the time series solution is limited by the computational effort required and by 
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unavailability of sufficient past values of inputs and outputs.  Case study results of time-

series solution are shown in Appendix C. 

3.4.2 Integrated solution method 

 At any instant, the stability of the system depends on the eigenvalues of the 

system matrix,  . This is applicable to both building load and cooling coil models. The 

building load model is unique, in that,    , that is, the input matrix must include the 

heat flux sources in addition to ambient and sol-air temperature inputs. To derive an 

integrated solution method to the state variables in the thermal network model, re-

consider Equation (3.46):            ∫   (     ) 0   
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  )1      

The expression is valid for any initial condition,  . If the initial conditions at time  =0 

are known, then the solution becomes 
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To obtain the integrated solution, the exponential matrix     and the 

convolution integral ∫   (   ) 0   
( )

 
(     )1   

 

 
 need to be evaluated.  

According to Cleve and Loan (2003), common approaches used to evaluate the 

exponential matrix include taylor series, laplace, ordinary differential equation, and 

matrix decomposition  The matrix decomposition method utilizes the asymptotic 

stability property (which is necessary for the convergence of the matrix exponential) to 

evaluate the exponential matrix. It is based on similarity transformation (which uses the 

eigenvectors of the matrix) of the form: 

                       (    ) 
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Note that this does not diagonalize the matrix A; instead it represents it as products of a 

diagonal matrix D of eigenvalues and a full matrix V whose columns are the 

corresponding eigenvectors (from        ). By substituting Equation (3.58), the 

power series definition of     simplifies to:   

                (    ) 

Where the eigenvectors of   form the columns of  , i.e., 

  ,  | |  -                                         (    )  

                   (           )        (    ) 

provided that   is nonsingular, the exponential matrix of    may be expressed as 

     (    (           ))    (    ) 

This expresses the exponential matrix of A as explicit function of the eigenvectors and 

eigenvalues. Substituting Equation (3.62) into (3.57) yields: 
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Which is explicit relationship between the states (temperatures) of the different 

thermal zones in a building and the eigenvalues of the R-C state matrix, as well as 

inputs such as heating/cooling rates, ambient, solar radiation, internal heat gains etc. 

The integrated solution method (for building load model) has been applied in Ogunsola 

and Song (2014, 2015, 2016) for investigation of building passive thermal storage, and 

for prediction of building load in multi-zone buildings. It requires only the initial 

conditions of temperatures and values of the current inputs. This is advantageous over 

numerical solution, time series, and other approaches. For example, the heat extraction 
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or addition rate of a device may be determined as a function of desired zone 

temperature and the heat gains or loss within the building.  

3.5 Stability Analysis 

In the solution methods described above, one of the concerns is the feasible region of 

model parameters that assure asymptotic stability of the state matrix for all time steps. 

The time series and numerical solution methods are more prone to erroneous results if 

unreasonable time steps are used. For the integrated solution, stability analysis is crucial 

in order to understand the limitations and applicability. For the integrated solution 

method to be suitable,  

i. The full matrix of eigenvectors of A must be non-singular, and 

ii. The exponential matrix must converge, i.e. A must be asymptotically stable 

(since     (    (           ))   ). 

In this section, it is desirable to investigate the stability of the R-C thermal 

network and ascertain conditions under which the matrix inversion approach will be 

suitable. For the building load and cooling coil model, a careful analysis of the 

differential equation,
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some important properties of the generalized R-C state matrix. It is: 

(i) A square matrix with negative diagonal entries (from the diagonal terms  
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   /  ), and 

(ii) The sum of each row    

To illustrate, consider an example R-C state matrix of dimensions      
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The identified features of the R-C state matrix imply that:  

(i)                (    ) 

(ii) ∑     
     
               (    ) 

The identified features hold for all feasible, finite R-C parameter set ( >    >  ). 

These identified features of the R-C state matrix correspond to diagonal dominance, 

defined as follows: A square matrix of order   with entries     which 

are real or complex is said to be diagonally dominant if: 

|   |  ∑ |   |      (    )

 

       

 

i.e., if for every row of the matrix, the magnitude of the diagonal entry in a row is larger 

than or equal to the sum of the magnitudes of all the other (non-diagonal) entries in that 

row. If the equality holds for at least one row of the matrix, the matrix is said to be 

weakly diagonally dominant. A matrix is said to be strictly diagonally dominant if: 

|   | > ∑ |   |      (    )

 

       

 

i.e., if for every row of the matrix, the magnitude of the diagonal entry in a row is larger 

than the sum of the magnitudes of all the other (non-diagonal) entries in that row. If 

an irreducible matrix is weakly diagonally dominant, but is strictly diagonally dominant 

in at least one row (or column), then the matrix is irreducibly diagonally dominant 

(Poole, 2014). 
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The index(es) at which the inequality row-sum (i.e. ∑     
     
       ) occurs correspond 

to exterior nodes with resistor connections to ambient or solar-air temperature in the 

thermal network model of building load. For the cooling coil model, this corresponds to 

the leaving chilled water and leaving air temperature nodes respectively.  

Case 1: Internal Zones with adiabatic assumptions 

If there are no ambient or external temperature connections in the building under study 

(e.g. internal zones or group of internal zones with adiabatic assumptions), the R-C state 

matrix has only two (2) features 

(i)                (    ) 

(ii) ∑     
     
               (    ) 

In that case, the R-C state matrix is singular (since sum of each row =0), and the system 

may be unstable or marginally stable. The implication is that modeling of internal 

thermal zones with such assumptions may lead to instability, and the matrix inversion 

solution method will not be suitable. Temperatures may not converge, or lead to 

unreasonable  values.  

Case 2: Exterior Zones 

With connections to ambient or solar-air temperature, ∑     
     
        holds for at least 

one value of           (   ).  

With connection to ambient or solar-air temperature on all nodes, ∑     
     
        holds 

for all values of           (   ). 
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Case 3: Cooling Coil 

The cooling coil temperature nodes have resistor connections to entering water and air 

temperatures. Therefore, ∑     
     
        holds for all values of           (   ). 

The Gershgorin circle and the Levy-Desplanques theorems apply to diagonally 

dominant matrices as follows: 

(i) A strictly diagonally dominant matrix (or an irreducibly diagonally dominant 

matrix) is non-singular (Horn and Johnson 1999; Mackiw, 1995; Horn and Johnson, 

1985). That an     strictly diagonally dominant matrix is nonsingular could be traced 

back to Levy (1881) and Des-planques (1887). This theorem is equivalent to 

Gerschgorin‘s Theorem which is similarly the case that any     irreducibly 

diagonally dominant matrix being nonsingular is equivalent to Taussky‘s Theorem 

(Varga and Gillis, 1963).  

Proof: 

Suppose the matrix A is singular. Then, there exists a non-zero vector   (       ) 

such that       Let    be the element of   such that |  |  |  | for all          

since   is a nonzero vector by definition. Then,  

∑       

 

                ∑     

   

 

Thus, by the triangle inequality: 

|   ||  |  ∑|   ||  |

   

 ∑|   ||  |

   

 

Since    is non-zero, dividing by |  | gives: 
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|   |  ∑|   |

   

 

Which contradicts the strict diagonal dominance definition above. This is a proof by 

contradiction.  

(ii) Every eigenvalue of matrix     satisfies: 

|     |  ∑|   |          *       +

   

 

Proof: 

Suppose that   is an eigenvalue of the matrix  . Then      is singular.  The matrix 

     is strictly diagonally dominant if |     | > ∑ |   |       for every  . If      is 

strictly diagonally dominant, then it is non-singular, and as a result,   is not an 

eigenvalue. If   is an eigenvalue, then |     |  ∑ |   |       must hold. This shows 

that every eigenvalue of the matrix A must be within a distance   of     for some  . As 

a result of this and other Gershgorin‘s theorems, ranges for eigenvalues can be found 

(Brakken-thal, 2007). They lead to the following theorems: 

(iii) If a matrix is strictly diagonally dominant and all its diagonal elements are 

positive, then the real parts of its eigenvalues are positive (positive definitiveness). If all 

its diagonal elements are negative, then the real parts of its eigenvalues are negative 

(negative definitiveness) (Mckenzie 1960, Argyros and Szidarovszky, 1993, Varga, 

2009; and Cvetković and Nedović, 2009). 

Implication:  

(i) If all temperature nodes are connected to ambient or sol-air temperature, then the R-

C state matrix is strictly diagonally dominant and asymptotically stable.  
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(ii) For the R-C thermal network of building load, if there is at least one internal node, 

then the R-C state matrix is weakly diagonally dominant. It is much more challenging to 

prove that a weakly diagonally dominant R-C state matrix is irreducible. However, the 

stability could be assured by introducing a dummy resistance and dummy ambient into 

the thermal network at internal nodes. The dummy ambient is set to zero vector, so that 

it has no influence on the forced response, while the dummy resistance is lumped into 

the estimation process, or assigned a value that is several orders of magnitudes larger 

than the estimated R values. This implies that the introduced R has little or no influence 

on the natural response (due to insignificant contribution, i.e.   (  )). Additionally, 

the impact of the dummy resistance fades off with time step (from    ).  The 

introductions of the dummy variables make the R-C state matrix strictly diagonal, 

hence, non-singular and asymptotically stable. In such instance, the R-C parameter 

domain could be unconstrained, and the integrated solution will converge for any time-

steps.  

(iii) The R-C thermal model of cooling coil is strictly diagonally dominant; hence, it is 

asymptotically stable.  

These are all as a direct consequence of the Gershgorin circle and the Levy-

Desplanques theorems. 

Since the integrated solution method involves computation of the eigenvalues 

and eigenvectors, it provides additional information about the dynamics of the system. 

For example, it enables the investigation of system stability without solving the 

governing differential equations. The dependence of the solution on matrix inverse, 

eigenvector, and matrix exponential reveals further information about the transient 



78 

behavior of the system. Asymptotic stability implies that all eigenvalues of the state 

matrix must lie in the open left hand plane for the system to eventually be driven by 

forcing inputs, rather than by initial conditions. This also implies observability and 

controllability of the system, and the existence of unique eigenvectors and matrix 

inverse. From assumption of piecewise continuity (Eq. 3.45) and the evaluation of the 

matrix exponential (Eq. 3.61), an explicit solution of all nodal temperatures is 

obtainable. Using the state transition matrix and the input matrix, the solution at a 

current (or future) time step is dependent on the value from a previous time step, inputs 

from the previous and current steps, and the elapsed time between the two time steps. 

The building load is expressed as the HVAC system output required to achieve the 

measured temperature for the period of investigation.  

 

3.6 Parameter Estimation 

 Accuracy of the RC thermal model depends largely on accurate estimation of the 

model parameters. For the building load model, the model parameters are broadly 

classified as envelope and internal mass components. Estimating the value of these 

parameters require a nonlinear optimization process. These parameters have been 

estimated in several ways. The envelope RC parameters may be estimated directly from 

the construction material, or from the thermal characteristics of the building 

construction in frequency domain. The internal mass parameters are more challenging 

to estimate, since the physical properties of components such as carpets, furniture, and 

other radiation absorbing surfaces within the indoor environment are not readily 

available.  
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The parameter search region of RC values and the training data used have 

significant effects on the performance of the thermal network model in post-training or 

calibration period. Effective and adequate estimation of the RC parameters require 

fundamental understanding of the physical limitations and thermal characteristics of 

building construction. For example, generalized unconstrained optimization search of 

RC parameters using near-constant zone temperatures or thermal loads tend to detect 

local or global optimas at high C values. Physically, this corresponds to envelope 

construction with extremely high density and/or specific heat, and/or thicknesses. In 

reality, such building constructions are not feasible due to cost, comfort, and materials 

constraints. Extremely high C values imply large time constants such that the effect of 

ambient temperature on zone temperature is filtered out, almost completely. In that 

case, the swings in indoor temperature are severely regulated. Additional consequences 

are that the zone temperature becomes less sensitive to the internal loads and HVAC 

cooling rate, because the absorbed radiations by the high thermal capacitance get 

released very slowly.   Similarly, the high C values perform poorly for winter 

validation, where temperature fluctuations are not captured by the model, due to the 

high C values. Similarly, extremely low C values lead to significant fluctuations in 

temperature and building loads, due to almost direct coupling between ambient and 

room temperature. Therefore, the optimized values determined by unconstrained search 

may not be feasible in reality. The approach adopted in this dissertation is to limit the 

parameter search range of R-C values based on physical properties of typical light, 

medium, and heavy construction. The due consideration for physical constraints and 

limitations of building construction is one of the advantages of the R-C approach, in 
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that the building construction and properties are physically represented. The typical 

properties of light, medium, and heavy construction materials are shown in Tables 3.4 

to 3.6 below. 

Table 3.4: Exterior Wall Composition for Heavy Construction 

 

 (mm) 
  

(W/mK) 

  

(kg/m^3) 

   

(J/KgK) 

Resistance 

(m^2.K/W) 

M01 100mm brick 101.6 0.89 1920 790  

M15 200mm heavyweight 

concrete 

203.2 1.95 2240 900  

I02 50mm insulation 50.8 0.03 43 1210  

F04 Wall air space  - - - - 0.15 

G01a 19mm gypsum 19 0.16 800 43  

Table 3.5: Exterior Wall for Medium Construction 

 

 (mm)  (W/mK)  (kg/m^3)   (J/KgK) 

M01 100mm brick 101.6 0.89 1920 790 

I02 50mm insulation 50.8 0.03 43 1210 

G01a 19mm gypsum 19 0.16 800 43 

 

Table 3.6 Exterior Wall for Light Construction 

   (mm)  (W/mK)  (kg/m^3)   (J/KgK) 

Wood Siding-1 9 0.14 530 900 

Fiberglass quilt 66 0.04 12 840 

Plasterboard-1 12 0.16 950 840 
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The common parameter estimation methods (such as sequential quadratic programming, 

conjugate gradient, and conventional nonlinear least square minimization) require the 

user to specify initial guesses, and in most cases, this determines the convergence speed. 

Additionally, most of these solvers tend to find local minimas near the starting point 

X0. There are several optimization solvers, with different characteristics. The most 

common solvers and their characteristics are shown in Table 3.7 below: The 

applicability and reliability of the optimized values depend on the desired solution and 

the nature of objectives and constraints.  

In this dissertation, a genetic algorithm (combined with pattern search) was 

mostly used, because it doesn‘t require initial guesses to jump start the parameter 

estimation. It could be used when the task does not require an absolute minimum, and it 

may be combined with other optimization methods such as pattern search. For the 

cooling coil model, the parameters were estimated using a combination of genetic 

algorithm and particle swarm optimization. Genetic algorithm has been used for 

estimation of internal mass parameters for office buildings with light, medium, and 

heavy construction of the building envelope (Ogunsola and Song 2014, 2015). Results 

from genetic algorithm may then be used as initial guess into the solvers which have 

proof of convergence. The parameters are estimated by minimizing the difference 

between the models predicted outputs, and the measured output (e.g. cooling loads or 

exit temperature of cooling coil). 

3.7 Summary 

 The various models utilized in this dissertation are summarized in Table 3.8 
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Table 3.7: Solver Characteristics 

Solver Nature of Convergence N
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GlobalSearch Fast convergence to 

local optima for smooth 

problems. 

 √   √     

MultiStart Fast convergence to 

local optima for smooth 

problems. 

 √ √ √ √ √    

Patternsearch Proven convergence to 

local optimum, slower 

than gradient-based 

solvers. 

√  √ √      

Particleswarm No convergence proof. √ √ √ √  √ √ √  

Genetic 

Algorithm  

No convergence proof. √ √ √ √  √ √ √ √ 

Simul anneal 

bnd 

Proven to converge to 

global optimum for 

bounded problems with 

very slow cooling 

schedule. 

√   √  √    

fmincon, fminun

c, fseminf, lsqcu

rvefit, lsqnonlin 

Proven quadratic 

convergence to local 

optima for smooth 

problems 

  √ √      

fminsearch No convergence proof  √  √ √     √ 
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Table 3.8: Summary of models utilized in this dissertation 

Schematic & 

Description 

Approach Parameters Contributions 

 
Dynamic 

Building load 

model 

Thermal network 

approach. 

Based on 

fundamental heat 

transfer.  

Estimated using 

optimization 

techniques. 

Determined from 

actual measurements. 

The parameters are 

constrained, based on 

physical 

characteristic of 

building 

constructions. 

Stability analysis. 

Parameter domain 

estimation. 

Solution 

approach. 

Extended 

application of 

thermal network 

model 

 
Cooling coil 

transient 

model 

Thermal network 

approach (with 

variable R‘s and 

C‘s). Based on 

energy balance. 

 

The parameters are 

flow dependent. They 

are estimated from 

actual measurements. 

They represent heat 

capacities of cooled 

air and chilled water 

respectively.  

New thermal 

network approach 

to transient 

cooling coil 

modeling. Use of 

flow dependent 

resistances and 

capacitances (RC) 

 
Fan-motor 

model 

Steady state 

model, based on 

fan laws. 

Assumption of 

similar fan power 

consumption 

under similar 

operating flow 

and static 

pressure 

conditions. 

Actual fan power 

determined by 

interpolation. 

Parameters not 

explicitly defined, 

because similarity 

laws are used.  

Using measured 

fan data to predict 

fan-power and 

speed with good 

accuracy.  
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Chapter 4: HVAC Components Model Validation 

 This chapter validates the component models described in Chapter 3. As a proof 

of concept, a multi-zone building which is a section of the Engineering Laboratory (EL) 

building at the University of Oklahoma was used as a case study. The validation is 

essential to understand the level of accuracy of the different models of building load, 

cooling coil, and fan-power for both cooling and heating season operation, and their 

suitability for predictive control in multi-zone buildings. The validation also gauged the 

level of accuracy of the variable R-C cooling coil model, which was newly developed in 

this study. Figure 4.1 shows the layout of the EL- building. It is made up of seven (7) 

thermal zones, and served by a single duct, variable air volume (VAV), air handling 

unit (AHU). The colors indicate how the different thermal zones are grouped. The case 

study air handling unit and some of its associated sensors are shown in Figure 4.2.  

The building load, cooling coil, and fan-power modeling procedures described 

in the preceding chapter are tested and validated in this section. The building load 

model is validated at both single and multiple thermal zones level. For the single zone 

case study, the purpose was to capture the dynamics and variations at the zone level. 

Reasonably high model accuracy at the zone level could then easily be extended to the 

case of buildings with multiple thermal zones. To evaluate the accuracy of the different 

models, the Mean Error (ME), Mean Absolute Error (MAE), Mean Biased Error 

(MBE), and Coefficient of Variance of the Root Mean Square Error (CVRMSE) are 

used. MBE and CVRMSE are most commonly used to validate forecast models 

(Ramanathan 1995).  
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Figure 4.1: Layout of Case Study Building 

 

Figure 4.2: Case Study Air Handling Unit 

Any single error indices provide only one projection of the model errors, and therefore 

only emphasize a certain aspect of the accuracy. In this dissertation, a combination of 
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error indices was used to evaluate the performance of the models, to adequate 

comparison of performance. This practice is highly recommended in literature (Chai 

and Draxler 2014). The formulas for the different errors are given in Equations (4.1) to 

(4.3): 
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  where   

    is the estimated value by the model,    is the 

measured (or actual) value, and   is the number of data points. Typical acceptable 

calibration tolerances for simulations are MBE values of   10% and CVRMSE values 

of   30% (DoE 2008). 

4.1 Building Load Validation 

The building load model was validated for cases of single thermal zone, and 

multiple zones in a VAV system. The single zone case study (Section 4.2) simulates the 

cooling load and heat extraction (or addition) rate required to maintain a given 

temperature. While the multiple zone case study (Section 4.3) simulates the room 

temperature, given a heat extraction or addition rate. The predicted room temperatures 

and cooling loads are compared with measurement in terms of the error indices (ME, 

MAE, MBE, and CVRMSE) 
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4.2 Single Zone Case Study - Thermal Zone F 

The first case study is that of a single thermal zone. Thermal Zone F, in Figure 

4.1 was used. It has adjacent rooms on both sides, and exposure to ambient temperature 

on the west facing wall. The selected zone is a good candidate because it has its 

individual thermostat and sensors, which can measure all the variables needed for 

building load estimation. The needed measurements are outside air temperature, solar 

radiation, zone temperature, and the cooling (or heating rate) from the HVAC system. 

The zone temperature and heat extraction rate (or addition rate, as the case may be) are 

obtained from the Building Automation System (BAS). The sensors are deemed to be 

reasonably accurate, without any data integrity issues. For the single zone case study, 

time steps of 1 hour were used for the building load simulation.  

4.2.1 Assumptions 

Though the simulated zone is part of a larger building, it was assumed that 

adjacent spaces are similarly conditioned, such that the single zone could be treated as a 

stand-alone room with negligible thermal interaction with adjacent thermal zones. The 

assumption is expected to have insignificant influence on the building load predictions, 

since the adjacent zones have similar occupancy schedules and set points. Only heat 

transfer through the west exposed wall was considered. All other surfaces were within 

the single zone were treated as adiabatic. The RC model representation of the single 

zone is shown in Fig. 4.3.  
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Figure 4.3: RC model representation of the single zone 

The inputs to the model include envelope and internal load components, which 

have been shown to have significant influence on the temperature and building load. 

The windows are treated as pure thermal resistances, since they have negligible storage 

capabilities as compared with walls and other envelope components.  The transmitted 

solar radiation through the windows directly reaches two virtual internal nodes. The 

additional thermal mass within the building, such as the floor/ceiling, furniture, carpets 

etc. is considered by lumping them into the 2R2C model, with the capacitances (Cint‘s) 

and resistances (Rint‘s) trained and determined using physical characteristic of the 

construction (See Ogunsola and Song 2012). The RC parameters and variables shown in 

Figure 4.3 are categorized as follows: 

R-C Parameters 

Rwin - the windows thermal resistance 

Cw- thermal capacitance of wall 

Rint- thermal resistance of internal mass 

Cint – thermal capacitance of internal mass 

Cin- indoor air thermal capacitance 

Variables 
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The input  to the model include TsW, Tamb, Qconv, Qsys1, Qr1, and Qr2. A 

brief description of key variables is given below: 

    and    :  Outside and inside surface temperature of the building envelope 

      and      :  Virtual temperatures of internal mass nodes  

        Zone Temperature 

        Solar-air temperature on west-facing wall 

         Ambient temperature 

     :    System input (+ve for heating, and –ve for cooling). It is 100% 

convective.  

              This is the total solar radiation incident on the internal mass node. 

It is made up of transmitted solar radiation from windows and radiative part of the 

internal heat gains.  

     :   This is the convective part of the internal load.  For the single zone case 

study, the internal loads were assumed to split equally into convection and radiation 

heat gains. This implies that 50% of the internal heat gain becomes cooling load 

instantaneously, while the remaining 50% is radiated, to be released at a later time. The 

internal load (equipment and people) density of 25 W/m
2 

was assumed for occupied 

hours. An internal load density of 5 W/ m
2 

was assumed for unoccupied hours. 

ASHRAE/IES 90.1-2010 standards recommend 16.15–32.3 W/m
2
 for offices and 

institutional buildings. The assumed values are within this range.  

As shown in Figure 4.3, the thermal network representation of the single zone 

involves 6 resistances and 5 capacitances. Training (measurement) data are needed to 

determine the R-C parameters that minimize the error between temperature and building 
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load predicted by the model, and the actual values.  The number of parameters to 

estimate depends on available information. Since the volume of the room is known, the 

indoor capacitance,     which is derived from the air mass within the occupied space, is 

a known parameter. Typical medium construction materials for windows in a medium 

type office were assumed. The assumed compositions of partitions and floor are shown 

in Appendix.  

The R-C properties of other supporting structural components are assumed to be 

lumped into the estimated RC parameters. The thermal capacitances of envelope and 

internal mass nodes are generally assumed to be equal (i.e.       =       ). The above 

simplifying assumptions reduce the number of parameters to be estimated to 7, i.e. 5 

resistances (   ,    ,    ,        and       ) and 2 capacitances (   and      =      ). 

Typical meteorological year weather data (version 3) was used in this study. As a model 

calibration process however, the weather data was modified by replacing the ambient 

temperature, solar radiation, and wind speeds with actual measured data for Norman, 

Oklahoma, obtained from Mesonet. The material of building construction is a required 

input in EnergyPlus, a whole building simulation software. A medium construction, 

according to ASHRAE classification, was assumed for the office building. The RC 

thermal model accuracy was evaluated by comparing the temperature and building load 

results with EnergyPlus and measured data. 

4.2.2 Parameter estimation 

To estimate the parameters, there are several possible approaches. Some of the 

estimation approaches are shown in Table 4.1. 
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Table 4.1: Different estimation scenarios for the R-C parameters 

 Scenario Parameters 

Fixed 

Parameters estimated Assumed Values 

1 5R2C None (   ,    ,    , 

           ,    and      ) 

- 

2 4R2C     (   ,    ,            ,    

and      ) 

Given outside air 

convection 

coefficient 

3 3R2C     and     (   ,            ,    and 

     ) 

Given outside and 

inside convection 

coefficient 

4 2R2C    ,    , and 

    

(           ,    and      ) Given outside and 

inside convection 

coefficient, and 

medium 

construction 

The first scenario involves estimation of all 7 R-C parameters. The other 

scenarios involve further assumptions about convection coefficients, and construction 

information. Flexibility in choice of estimation scenario, and possibility to deduce the 

model parameters from building usage information is one of the limitations of whole 

building software like EnergyPlus. From limited information and measured data, 

feasible R-C parameters can be deduced for all the scenarios indicated in Table 4.1.  

For this case study, 3 days of measurement data were used for the training 

period (summer: July 1-3, 2013 and winter: January 1-3, 2013). The model was 

validated using 10 days in both summer and winter seasons (summer: July 22-31, 2013 

and winter: January 21-30, 2013). Since both summer and winter data were used for 

training period, two solution options are possible:  
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(i) Estimation of R-C parameters of Table 4.1 from cooling season data. This is 

followed by validation of the model performance (in terms of zone temperature 

and building load prediction accuracies) for both cooling and heating season.  

(ii) Estimation of R-C parameters of Table 4.1 from heating season data. This is 

followed by validation of the model performance (in terms of zone temperature 

and building load prediction accuracies) for both cooling and heating season.  

Estimation of the R-C parameters using both cooling and heating season data is 

critical to ensure the selection of most accurate, robust, and representative R-C values 

for the thermal zone. The training periods were selected to be those corresponding to 

typical building operation in cooling and heating seasons respectively. The R-C 

parameter combination with the best model accuracy (in terms of error indices and 

coefficients of fit) was chosen.  

4.2.3 Modeling equations 

The differential equations for the thermal network model shown in Figure 4.3 

could be written as shown in Equations 4.4 to 4.8:   

Outside surface temperature node 
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The set of differential equations could be represented in state space as shown in 

Equation 4.9.  

 ̇              (   ) 

The states are the temperatures (2 wall temperatures, 2 virtual temperatures to 

account for internal mass, and 1 room temperature), the inputs are ambient, solar-air 

temperature, radiation, and system heating or cooling rate.   is a     matrix of 

constant coefficients.   is a matrix of dimension    , since there are 5 temperature 

nodes.   is of dimension    , and   is a     matrix, since there are 5 inputs. A 

summary of the nodal and adjacent temperatures is presented in Table   2 
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Table 4.2:  Summary of the nodal and adjacent temperatures 

Type Nodal 

Temperature 

Adjacent 

Temperature 

Branches 

Thermal 

Capacitance 

Heat Flux 

Branches 

Room 

Temperature 

       ,      , and 

     
               

External Wall 
       ,     

   
 

       ,     

Internal Mass 
           ,               

                      

 

4.2.4 Results 

The temperature and building load results of the thermal network model is 

compared with EnergyPlus predictions and measured data in this section. The results for 

cooling season and heating season validation are shown in Tables 4.3 and 4.4 

respectively. The four cases shown in Tables 4.3 and 4.4 correspond to  

(i) RC parameters estimated using cooling season training data and validated for 

another period in the cooling season (Table 4.3). 

(ii) RC parameters estimated using heating season training data and validated for 

the cooling season (Table 4.3).  

(iii) RC parameters estimated using cooling season training data and validated for 

the heating season (Table 4.4). 

(iv) RC parameters estimated using heating season training data and validated for 

another period in the heating season (Table 4.4). 

Tables 4.3 and 4.4 compare the accuracy of the RC model and EnergyPlus with 

measured values in terms of well-established error indices. The values asterisked in 

Tables 4.3 and 4.4 are those with least error and highest correlation to the measured 
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cooling load.  The comparison of performance across different training and validation 

seasons aid in selection of most appropriate RC scenario for year-round prediction of 

building load, based on acceptable calibration tolerances. 

Table 4.3: Comparison of error indices for Cooling Season Validation 

Training 

Season Scenario 

ME 

(W) 

MBE 

(%) 
CVRM

SE (%) 

ME 

(W) 
MBE 

(%) 
CVRMSE 

(%) 

Cooling 5R2C 6.02 4.984 36.33 

23.73 -0.86* 58.36 

4R2C 4.54 4.854 36.93 

3R2C 3.79 3.447 28.94 

2R2C -3.33* 4.137 17.27* 

Heating 5R2C 6.5 6.752 41.61 

4R2C 11.08 8.501 47.99 

3R2C 37.08 1.469 43.98 

2R2C 16.06 4.023 43.89 

 

Table 4.4: Comparison of error indices for Heating Season Validation 

Training 

Season Scenario 

ME 

(W) 

MBE 

(%) 
CVRM

SE (%) 

ME 

(W) 
MBE 

(%) 
CVRMSE 

(%) 

Cooling 5R2C 65.57 73.67 -149.27 

97.95 111.46 -232.17 

4R2C 67.51 75.03 -155.38 

3R2C 35.63 38.45 -115.96 

2R2C 8.17* 6.67* -95.88* 

Heating 5R2C 29.37 -33.28 322.73 

4R2C 40.75 -70.63 345.13 

3R2C 66.05 -145.10 346.16 

2R2C 8.86 -40.97 313.64 

As could be seen in Table 4.3, cooling season training data generally gives 

better accuracies for building load prediction than heating season training data. This 

may partly be due to the near-constant zone temperatures recorded in the cooling 

season, because this is favorable for simulation and parameter estimation purposes. 

Among the different RC estimation methods, the 2R2C parameters estimated using 

cooling season data perform superior to the other scenarios for both the cooling and 
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heating seasons. Overall, most of the RC parameters scenario demonstrated better 

accuracy as compared with EnergyPlus. EnergyPlus has been validated for different 

scenarios (DoE 2010), and it is not the intention to re-validate the software. However, 

as could be seen in Tables 4.3 and 4.4, due to lack of parameter estimation methods, 

EnergyPlus results may be unreliable when building construction information is limited 

or not available. The 2R2C scenario is seen to pass both validation criteria of 

MBE<10% and CVRMSE<30% for the cooling season. However, all of the other RC 

scenarios and EnergyPlus did not meet these criteria. This implies that the RC model is 

more suitable for cooling season than the heating season, for the case study. Overall, the 

2R2C was selected as the appropriate RC scenario to represent the studied thermal zone.   

The 2R2C scenario was then used to test the overall effectiveness through 

comparison with EnergyPlus and measured data from the 2012 summer season and the 

2014 winter season. The periods of testing are deliberately selected to be disjointed in 

order to ascertain the robustness of the 2R2C. Figures 4.4 to 4.6 show results of the 

building loads and zone as they compare with measurements and EnergyPlus.  

 

Figure 4.4: Comparison of building load for the cooling season. 
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Figure 4.5: Comparison of building load for heating season. 

 

Figure 4.6: Comparison of zone temperatures for heating season 

As shown in Figure 4.4, both the EnergyPlus and 2R2C models are observed to 

trend the cooling load, but there are occasional under-predictions. Meanwhile, the 2R2C 

captured many fluctuations in the cooling load which were not captured by EnergyPlus. 

With only 3 days training data, an accurate building load forecast was made for 10 days 

in the cooling season. The temperature trajectory for both 2R2C and EnergyPlus shows 

satisfaction of zone temperature within errors of less than +/-0.05 °C and is therefore 

not presented here. The integrated solution has eliminated the issues of noticeable and 
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unwanted spikes that were observed after using the time series model (Ogunsola et. al 

2014). The RC model is also seen to consistently track the cooling load for both 

occupied and unoccupied hours. Comparison of the building load for the heating season 

is shown in Figure. 4.5. The validation period both heating and cooling modes, as 

indicated by the positive and negative values on the building load axis. The RC model is 

seen to generally track the building load patterns even where there is switch from 

heating to cooling, and vice versa. With only 3 days of training data, reasonably 

accurate building load estimation was made for up to 10 days in this heating season. 

Occasional spikes are noted in the 2R2C model predictions as noted in Figure 4.5, but 

they die out gradually. EnergyPlus simulation of the building load is also shown in 

Figure 4.5. Figure 4.6 shows the measured room temperature, RC predicted zone 

temperature, EnergyPlus predicted zone temperature, and ambient temperature. Figure 

4.6 explains the reason for the switch from heating to cooling, which is consistent with 

the ambient temperature crossing below and above the room temperature, respectively. 

It also shows how the RC and EnergyPlus predicted temperature trends well with the 

measured room temperature. The computational expense of the RC model is mainly due 

to the parameter estimation, which is done mostly using Genetic Algorithm, particle 

swarm optimization, or global search. On a desktop computer with core i3, 1.7 GHz 

processor, 4 GB RAM, and 500 GB hard disk drive, the parameter estimation takes 

between 45 minutes and 1hr depending on convergence tolerances. Once the RC 

parameters are estimated, the simulation requires little computational effort. Hourly 

simulation of building load for a 1-week period takes less than 1minute to complete on 

a desktop computer with above configuration. This is quite large when compared with 
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EnergyPlus (which uses <0.9s). However, the RC computation time for each time-step 

is within reasonable range of value that is appropriate for control purposes.  

4.3 Multiple Zone Case Study 

For the multiple zone case, the Engineering laboratory building at the University 

of Oklahoma was used. As shown in Figure 4.1, there are seven thermal zones.  Similar 

modeling assumptions made for the single zone case (Section 4.2.1) are also applicable. 

However, for the multi-zone case study, the thermal interactions of adjacent zones are 

considered during the estimation of the R-C parameters. The following sections discuss 

the thermal model representation and interactions between the different temperature 

nodes. For the multiple zone case, time steps of 1 minute were used for the simulation. 

Table 4.5 shows how the thermal zones are grouped, the exposures, and their 

interactions with adjacent zones. 

Table 4.5: Thermal Zone Grouping and Interactions 

Thermal 

Zone 
Rooms 

Exposures 

to ambient 

Adjacent Zones 

(interactions) 

A 114 North, West C and D 

B 100, 102, 109, 111, 113 North C , D, and G 

C 108, 110, 112 North A, B, and D 

D Corridor West A, B, C, E, F, G 

E 119 South, West D and F 

F 118 West D and E 

G 115 West B and D 

 

4.3.1 Thermal zone A 

The thermal interactions between the zone temperature node, envelope, and 

internal mass are shown in Figure 4.7 and Tables 4.6 to 4.7. For clarity, the partitions‘ 

RC parameters are not fully shown in the representation  
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Figure 4.7: Thermal network representation for Zone A 
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Table 4.6: State space matrix for Thermal Zone A (      is the cooling load) 
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Table 4.7: Input matrix for Thermal Zone A 
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0 0  
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0 0 1 0 0 

Note: X values are the R-C parameters. Partitions involve sets of 3R2C  

 

4.3.2 Thermal zone B 

The thermal interactions between the zone temperature node, envelope, and 

internal mass are shown in Figure 4.8 and Tables 4.8 to 4.9. For clarity, the partitions‘ 

RC parameters are not fully shown in the representation.  
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Figure 4.8: Thermal network representation for Zone B 
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Table 4.8: State space matrix for Thermal Zone B (      is the cooling load) 
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Table 4.9: Input matrix for Thermal Zone B 

Zone 

B 

                       

      

    
 

   

             

            

  
 

            

  
 

     

       
 

   

   
  

 

   
 

  

       

    
 

0 1 0 0 

Note: X values are the R-C parameters. Partitions involve sets of 3R2C for each 

adjacent thermal zone. 
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4.3.3 Thermal zone C 

The thermal interactions between the zone temperature node, envelope, and 

internal mass are shown in Figure 4.9 and Tables 4.10 to 4.11. For clarity, the 

partitions‘ RC parameters are not fully shown in the representation.  

Tin2

R
w

in
/6

Tamb

X9

Qr

Qr

x8

TsN

Zone 

C

Tin

T2

T1

T3

T4

X1

X2

X3

X4

X5

X6

X7

Qconv

Qsys
Partitions 3R2C Zones 

A,B,D

 

Figure 4.9: Thermal network representation for Zone C 
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Table 4.10: State space matrix for Thermal Zone C (      is the cooling load) 
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Table 4.11: Input matrix for Thermal Zone C 

Zone C                        

      

    
 

0 0 0 

             

            

  
 

            

  
 

     

       
 

   

   
  

 

   
 

  

       

    
 

0 1 0 0 

Note: X values are the R-C parameters. Partitions involve sets of 3R2C for each 

adjacent thermal zone. 
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4.3.4 Thermal zone D 

The thermal interactions between the zone temperature node, envelope, and 

internal mass are shown in Figure 4.10 and Tables 4.12 to 4.13. For clarity, the 

partitions‘ RC parameters are not fully shown in the representation.  
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Figure 4.10: Thermal network representation for Zone D 
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Table 4.12: State space matrix for Thermal Zone D (      is the cooling load) 
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Table 4.13: Input matrix for Thermal Zone D 

Zone D                   

    

    
 

0 0 0 

           

          

  
 

          

  
 

       

   
  

 

   
 

  

      0 1 0 0 

Note: X values are the R-C parameters. Partitions involve sets of 3R2C for each 

adjacent thermal zone. 
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4.3.5 Thermal zone E 

The thermal interactions between the zone temperature node, envelope, and 

internal mass are shown in Figure 4.11 and Tables 4.14 to 4.15. For clarity, the 

partitions‘ RC parameters are not fully shown in the representation.  
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Figure 4.11: Thermal network representation for Zone E 
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Table 4.14: State space matrix for Thermal Zone E (      is the cooling load) 
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Table 4.15: Input matrix for Thermal Zone E 

Zone E                            
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   0 0 0 0    

   
 

     

       
 

 0  

   
  

 

   
 

0 

       

    
 

0 0   0 0 

Note: X values are the R-C parameters. Partitions involve sets of 3R2C for each 

adjacent thermal zone. 

4.3.6 Thermal zone F 

The thermal interactions between the zone temperature node, envelope, and 

internal mass are shown in Figure 4.12 and Tables 4.16 to 4.17. For clarity, the 

partitions‘ RC parameters are not fully shown in the representation.  

Table 4.16: Input matrix for Thermal Zone F 
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Figure 4.12: Thermal network representation for Zone F 
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Table 4.17: State space matrix for Thermal Zone F (      is the cooling load) 
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Note: X values are the R-C parameters. Partitions involve sets of 3R2C for each 

adjacent thermal zone. 
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4.3.7 Thermal zone G 

The thermal interactions between the zone temperature node, envelope, and 

internal mass are shown in Figure 4.13 and Tables 4.18 to 4.19. For clarity, the 

partitions‘ RC parameters are not fully shown in the representation.  
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Figure 4.13: Thermal network representation for Zone G 
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Table 4.18: State space matrix for Thermal Zone G (      is the cooling load) 
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Table 4.19: Input matrix for Thermal Zone G 

Zone G                        
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Note: X values are the R-C parameters. Partitions involve sets of 3R2C for each 

adjacent thermal zone. 
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4.4 Results 

 This section presents results of the thermal network prediction of zone 

temperature as compared with measurements. The measurement periods were randomly 

selected to cover summer (August and September) operations. The building load model 

was also validated for winter operation, and the results are presented below.  

Figures 4.14, 4.15 and 4.16 shows predicted zone temperature for thermal Zone 

A for August 2015, September 2015, and February 2016 respectively. It could be seen 

that the predicted room temperature agrees and trends well with the measured value 

(MBE and CVRMSE both less than 3.5%), despite the fluctuations in ambient 

temperature. Particularly, the fluctuations in zone temperature were well captured by 

the thermal model for both summer and winter cases.  

 

Figure 4.14: Room Temperature predictions for Zone A – August 2015 

(ME =   -0.0664 , MAE =  0.1554 , MBE=  -0.2845%, CVRMSE=  1.1516%) 
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Figure 4.15: Room Temperature predictions for Zone A – August 2015 

(ME =   -0.5395 , MAE =  0.5424 , MBE=  -2.3107%, CVRMSE = 2.6848%) 

 

Figure 4.16: Room Temperature predictions for Zone A – February 2016 

(ME =   -0.5362 , MAE =0.5645 , MBE=  -2.4337%, CVRMSE=   3.3993) 
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4.16. This observation is in agreement with previous results for a single thermal zone 

which was presented in Section 4.2.4. 

Figure 4.17 shows the predicted room temperature of thermal Zone B for August 

2015.  The room temperature predicted by the model trends well with the measured 

value, but the error was slightly higher (CVRMSE=4.1%) than the values for Thermal 

Zone A.  

 

Figure 4.17: Room Temperature predictions for Zone B – August 2015 

(ME = -0.7353 , MAE =    0.7353 , MBE= -3.3508%, CVRMSE = 4.1193%) 
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rooms that make up Zone B may differ by a few degrees, based on their thermal 

interactions with adjacent thermal zones. Despite the issues above, the thermal network 

model predicted the temperature with less than 4.2% MBE and CVRMSE. This is very 

acceptable for minute-by-minute simulation. Figure 4.18 show the predicted room 

temperature of thermal Zone C for August 2015.   

 

Figure 4.18: Room Temperature predictions for Zone C – August 2015 

(ME = -0.4296 , MAE = 0.4296 , MBE = -1.9281%, CVRMSE= 3.0054%) 
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internal loads may have contributed to the consistent under-prediction. If a slightly 

higher internal load density was assumed, the predicted temperature would be higher.  

 Figures 4.19, 4.20 and 4.21 show predicted zone temperature of thermal 

Zone D for August 2015, September 2015, and February 2016 respectively. The thermal 

network model demonstrated very good predictions and accuracy for Thermal Zone D. 

Both summer and winter validations show MBE and CVRMSE of less than 2.6%. It is 

interesting to see that the temperature predictions for February 2016 capture all the 

fluctuations in zone temperature for the entire simulation period. This demonstrates that 

the thermal network model could also have very good accuracy for winter period. The 

difference between this thermal zone and others is its lack of direct coupling to ambient 

through windows. Figure 4.22 show predicted zone temperature of thermal Zone E for 

August 2015. As shown in Figure 4.22, the thermal network model predictions are near-

perfect for the entire simulation period, with MBE of < 1%.  Figure 4.23 shows 

predicted zone temperature of thermal Zone F for August 2015. As shown in Figure 

4.23, the thermal network model temperature predictions are within 2.3% CVRMSE as 

compared with the measured room temperature. Thermal Zone F was the single zone 

case study of Section 4.2, where the cooling load CVRMSE was about 14%. 
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Figure 4.19: Room Temperature predictions for Zone D – August 2015 

(ME =   -0.1279 , MAE = 0.1788 , MBE=   -0.5623%, CVRMSE =   2.2789%) 

 

Figure 4.20: Room Temperature predictions for Zone D – August 2015 

(ME =  -0.3843 , MAE = 0.3855 , MBE=  -1.7152%, CVRMSE = 2.8902%) 
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Figure 4.21: Room Temperature predictions for Zone D – February 2016 

(ME =    0.1853 , MAE =    0.2873 , MBE = 0.8355%, CVRMSE =   2.5207%) 

 

Figure 4.22: Room Temperature predictions for Zone E – August 2015 

(ME =   -0.1219 , MAE = 0.1818 , MBE = -0.5483%, CVRMSE =2.3161%) 
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Figure 4.23: Room Temperature predictions for Zone F – August 2015 

(ME =0.2336 , MAE =0.4070 , MBE =1.1362%, CVRMSE = 2.2974%) 
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Figure 4.24: Room Temperature predictions for Zone G – August 2015 

(ME =-0.0417 , MAE =0.0452 , MBE=-0.1788%, CVRMSE=0.2268%) 

 

Figure 4.25: Room Temperature predictions for Zone G – February 2016 

(ME = 0.4219 , MAE =    0.4550 , MBE =   1.9036%, CVRMSE= 3.2431%) 
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and F. However, the CVRMSE was less than 3.3% for both summer (August 2015) and 

winter (February 2016) validation.   

4.4.1 Summary of cooling load results 

Table 4.20 shows summary of the temperature results for the different thermal 

zones and cases considered. As could be seen, the temperature is predicted accurately 

within a consistent error of less than 4.2% for both summer and winter cases. The few 

winter cases were used as a proof of concept to see how the thermal network model 

performs for winter season. This study focuses on the summer operation. 

Table 4.20: Summary of Temperature results for all thermal zones 

 Summer - August 2015 Winter - February 2016 

Thermal 

Zones 

ME 

( ) 

MAE 

( ) 

MBE 

(%) 

CV 

RMSE 

(%) 

ME  

( ) 

MAE 

( ) 

MBE 

(%) 

CV 

RMSE 

(%) 

A -0.066 0.155 -0.285 1.15 -0.536 0.565 -2.434 3.400 

B -0.735 0.735 -3.351 4.12 - - - - 

C -0.430 0.430 -1.928 3.01 - - - - 

D -0.128 0.179 -0.562 2.28 0.185 0.287 0.836 2.521 

E -0.035 0.200 -0.158 2.33 - - - - 

F -0.403 0.439 -1.958 3.395 - - - - 

G -0.231 0.231 -0.989 2.269 0.422 0.455 1.904 3.243 

Overall, the thermal model predictions are generally more accurate for summer 

period operation.  Similarly, the thermal model performed better for unoccupied period 

temperature and cooling load simulations, due to near accurate assumption of internal 

load profiles and occupancy. Therefore, a common source of model error could be in 

the assumed occupancy schedules and internal loads. Though typical office schedule 

was assumed, and the internal load density was selected based on ASHRAE 

recommendations for office and institutional buildings, the actual occupancy and 

internal load profiles may differ from the assumed values. This may have contributed to 
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the slight under-prediction of temperature which was observed for most thermal zones, 

particularly during peak periods.  

4.5 Fan-motor model Validation 

 This section presents the results of fan power and speed predicted by the 

chosen fan model, as compared with actual measurement. The case study fan is a 3HP 

forward curved fan. The inputs to the steady state fan model are the airflow and fan 

static head. The fan static pressure is reset based on total flow rate. The comparison of 

model predicted static pressure, and the measured value is shown in Appendix B. The 

training period data included random fan power, airflow, speed, and fan static head for 

June to July 2015. The data covered different ranges of operation of airflow and static 

heads. The validation period covered operating periods from August 2015 to February 

2016. The results are shown in Figures 4.26 to 4.37. The predicted fan input power and 

speed trends well with the measured values, although there are occasional spikes in the 

predicted values. The fan input power profile varied greatly between months, as shown 

in Figures 4.26 to 4.37.  
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Figure 4.26: Predicted vs Measured Fan Input Power - August 2015 

 

Figure 4.27: Predicted vs Measured Fan Speed - August 2015 
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Figure 4.28: Predicted vs Measured Fan Input Power - September 2015 

 

Figure 4.29: Predicted vs Measured Fan Speed - September 2015 
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Figure 4.30: Predicted vs Measured Fan Input Power - October 2015 

 

Figure 4.31: Predicted vs Measured Fan Speed - October 2015 
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Figure 4.32: Predicted vs Measured Fan Input Power - November 2015 

 

Figure 4.33: Predicted vs Measured Fan Speed - November 2015 
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Figure 4.34: Predicted vs Measured Fan Input Power - December 2015 

 

Figure 4.35: Predicted vs Measured Fan Speed - December 2015 
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Figure 4.36: Predicted vs Measured Fan Input Power – February 2016 

 

Figure 4.37: Predicted vs Measured Fan Speed – February 2016 
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4.5.1 Summary of fan input power predictions 

Table 4.21 shows summary of the fan power predictions for the different month. 

As shown in Table 4.21, the steady state fan model was able to accurately estimate the 

fan input power to within 2.5% MBE. The cubic relationship between fan power and 

airflow implies that errors in the airflow calculation would get magnified. The highest 

error was observed for September prediction when the fan operated with the highest 

input power and at higher fan speeds as compared to the other months.  

Table 4.21: Summary of fan-power predictions vs measurement 

Validation 

month ME (kW) MAE(kW) MBE (%) 

CVRMSE 

(%) 

August 2015 -0.007 0.024 0.890 3.976 

September 2015 -0.009 0.047 0.979 6.344 

October 2015 0.002 0.019 0.350 3.888 

November 2015 0.012 0.028 1.649 4.765 

December 2015 0.006 0.025 0.760 4.411 

February 2016 0.018 0.032 2.432 5.371 

 

4.5.2 Summary of fan speed predictions 

 The steady state fan model estimated the fan speed to within 1.4% CVRMSE. 

The high accuracy was very consistent across the different months simulated. The high 

accuracy in the fan speed predictions is due to direct correlation between airflow and 

speed.  
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Table 4.22: Summary of fan-speed predictions vs measurement 

Validation month ME (%) MAE (%) MBE (%) 

CVRMSE  

(%) 

August 2015 0.013 0.669 0.017 1.096 

September 2015 -0.008 0.647 0.010 1.075 

October 2015 0.043 0.600 0.063 1.110 

November 2015 -0.072  0.648 0.100 1.143 

December 2015 -0.219 0.746 -0.301 1.276 

February 2016 0.075 0.810 0.103 1.403 

 

4.6 Cooling Coil Validation 

 Figures 4.38 to 4.41 show the predicted leaving water and air temperatures vs 

measured values for Summer of 2015 (August and September).  

 

Figure 4.38: Supply air temperature vs measurement – August 2015 
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Figure 4.39: Chilled water return temperature vs measurement – August 2015 

 

Figure 4.40: Supply air temperature vs measurement – September 2015 

100 200 300 400 500 600 700 800
51

52

53

54

55

56

57

Time (mins)

T
e
m

p
e
ra

tu
re

 (
F

)

Chilled water return temperature - August 2015

 

 

Simulated

Measured

100 200 300 400 500 600 700 800
51

52

53

54

55

56

57
Supply air temperature - September 2015

Time (mins)

T
e
m

p
e
ra

tu
re

 (
F

)

 

 

Simulated

Measured



136 

As shown in Figures 4.38 and 4.40, the cooling coil model is more accurate in 

predicting the leaving air temperature than the leaving water temperature. The model 

was unable to capture the fluctuations in the leaving air temperature, but the predicted 

values were within 0.4F relative to the measured value for the entire validation season. 

The fluctuations might be caused by oscillations due to PID controller actions. 

 

Figure 4.41: Chilled water return temperature vs measurement – September 2015 

As shown in Figure 4.41, the model could not trend with the spikes in leaving 

water temperature for the September 2015 validation case. The fluctuations might be 

similarly caused by oscillations due to PID controller actions. However, the overall 

mean absolute error is less than 1F, and that degree of accuracy is sufficient for the 
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4.6.1 Summary of cooling coil predictions – leaving air temperature 

 Table 4.23 shows summary of the leaving air temperature results for August and 

September 2015. As could be seen, the leaving air temperature was predicted accurately 

within 0.4F mean absolute error.  

Table 4.23: Summary of predicted leaving air temperature vs measurement 

Validation month ME (F) MAE (F) MBE (%) 

CVRMSE  

(%) 

August 2015 0.011 0.402 0.020 1.062 

September 2015 0.043 0.323 0.080 0.743 

 

4.6.2 Summary of cooling coil predictions – leaving water temperature 

 Table 4.24 shows summary of the leaving water temperature results for August 

and September 2015. As could be seen, the leaving water temperature was predicted 

within 0.9F mean absolute error.  

 

Table 4.24: Summary of predicted leaving water temperature vs measurement 

Validation month ME (F) MAE (F) MBE (%) 

CVRMSE  

(%) 

August 2015 0.359 0.791 0.666 2.412 

September 2015 0.124 0.896 0.233 2.222 
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Chapter 5: Development and Validation of Framework for Minimizing 

Buildings Electricity Demand and Cost 

 Having established the level of accuracy of the air handling unit components in 

Chapter 4, this chapter describes the framework for integrating the component models 

together, in order to minimize electricity demand and cost. To achieve this, a crucial 

requirement is a model-based predictive control (MPC) framework which seamlessly 

integrates with the dynamic model and utilizes limited sensor information to make 

informed decision about optimal control sequence. MPC is relatively new, but has been 

adopted and applied in the HVAC field. Some of the areas of application include but is 

not limited to weather predictions and indoor climate control (Oldewurtel et. al 2010), 

temperature control (Wallace et. al, 2012), ventilation control (Yuan and Perez, 2006), 

air quality (Ginestet and Marchio, 2010), energy (Parisio et. al, 2014). MPC has 

received particular attention, since it naturally accounts for the factors of weather and 

occupancy, constraints on thermal comfort, and embedded uncertainties, while 

achieving systemic integration of the many variables and factors involved. MPC adopts 

performance indices that are similar to linear quadratic regulator (LQR) strategies. 

Optimizations with classical control and H-1 or H-infinity norms are complex in their 

implementation, and they do not embed the constraints into their formulation. 

There has been very limited (or no) application of MPC for study of multi-zone 

interactions and minimization of electricity cost in a multi-zone variable air volume 

system. This is due to unavailability of accurate predictive system models. This study is 

the first to utilize the integrated building load and cooling coil thermal network model 

in a MPC framework to aid understanding of multi-zone interactions and minimize 
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electricity cost. The thermal network models used in this study have capability to 

capture fluctuations in zone temperatures due to variations in solar radiation, ambient, 

internal equipment, schedules, occupancies etc. Application of the thermal network 

model for building load and cooling coil modeling, and establishment of the accuracy 

level of the thermal network model enabled the utilization of MPC in this study. New 

information presented in this chapter includes a flowchart showing how the MPC 

framework will be used to minimize building electricity demand and cost, identification 

of critical zones for a case study multi-zone building, study of zone interactions, and 

new methodols for minimizing buildings electricity demand and cost in a multi-zone 

building. 

 

5.1 Suitability of MPC for HVAC Systems 

MPC strategies can be applied to complex systems with many control variables, 

as it provides a systemic way of handling states and inputs constraints. These 

constraints are often encountered in different engineering applications in forms of valve 

limitations, physical constraints, plants or process operation limits, and safety 

constraints. MPC accounts for constraints via the solution to a constrained optimization 

problem which determines the predicted input optimally. The basic components of a 

model predictive controller are prediction, optimization, and receding horizon.  

There are certain characteristics of HVAC systems that make MPC the ideal 

candidate for minimizing building electricity demand and cost. Some of the 

characteristics are highlighted below:  
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 Narrow range of operation, constrained by thermal comfort requirements (e.g. 

temperature and humidity control, etc). 

 Limitations on equipment (airflow rates (CFM), water flow rates (Gallons per 

minute, GPM), fan speeds, valve commands) etc. in form of hard constraints. 

 Presence of some uncontrollable inputs (weather, ambient, occupancy, changing 

schedules, etc). 

 Presence of some unmeasured states (e.g. internal and external surface 

temperature of walls) 

 Varying dynamics responses and timescales of different components (e.g. 

medium transient from cooling coils, and slow transient from building load) 

 Radiative heat transfer delays and dynamic time of use electricity pricing, which 

implies that reducing overall electricity use does not necessarily imply lower 

cost of electricity 

 Multivariable dynamic and thermal interactions among multiple zones 

 Variable constraints for certain time-steps (e.g. different temperature limits for 

occupied and unoccupied hours) 

 Unavailability of building construction information, which calls for model 

parameter estimation techniques. Limited or unreliable data about previous 

building usage necessitate the use of reduced order models  

 MPC provides a consistent approach that will be applicable to both existing and 

new buildings 

 MPC does not require a control law 

 MPC can be used for both local and supervisory control 
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5.2 How the MPC works 

Some of the components of a model predictive controller are the prediction, 

receding horizon, modeling, performance index, degrees of freedom, constraints 

handling, and multi-variable. The general overview of the components involved in the 

MPC framework is shown in Figure 5.1 

 

Figure 5.1: Components involved in Model Predictive Control (Source: 

mathworks.com) 

 

Prediction involves the forecast of future response of the controlled plant using a 

dynamic model. For any given predicted input sequence, forward simulation of the 

dynamic model over a given prediction horizon generates the corresponding state 

predictions. Prediction is necessary for ensuring that the output does not deviate from 

the desirable trajectory. Prediction horizon should be beyond the key dynamics of the 

process. MPC embeds constraints into its algorithm from the controller formulation. 

This systematic handling of constraints ensures that the input strategies are optimized. 

MPC is able to handle multi-variable interactions, for example, between flowrates, 

temperature, pressure, etc, where changes in one input affects all of the output. PID, 

lead, lag compensators are good for SISO. They become quite difficult to implement for 

a MIMO system. MPC automatically takes the multivariable interactions into account.  
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Optimization of the dynamic system require the definition of a performance 

cost, which most often, is a function of the states and inputs. The model predictive 

controller determines a feedback law to minimize the predicted performance cost over 

the chosen horizon. The generalized performance cost is quadratic in nature, and has the 

following form: 

 ( )  ∑  (   | )  (   | )    (   | )  (   | )        (   )

 

   

 

Where   and   are positive definite matrices. Obviously,  ( ) is a function of 

the manipulated vector  ( ). Alternative performance cost is shown in Appendix D. 

The optimal input sequence required to minimize  ( ) is denoted as   ( ). The 

constraints on input and states could be included in the optimization problem, as 

appropriate constraints on  ( ). For linear systems, the MPC strategy reduces to the 

minimization of a quadratic objective, subject to linear input and state constraints. 

Receding horizon involves the input of only the first element of the optimal 

predicted input to the plant ( ( )    ( | )). At each sampling instant, the process of 

computing the optimal predicted sequence and implementing the first element is 

repeated. As such, the prediction horizon remains the same, despite future optimization. 

This approach is referred to as the receding horizon strategy. The dependence of the 

state prediction and optimal input sequence u* on the current state measurement  ( ) 

introduces feedback into the model predictive control strategy. This provides some 

degree of robustness to model uncertainty and errors. Additionally, with proper design 

of cost and constraints, the receding horizon strategy ensures that the performance of 

the closed-loop system is very similar to that of the optimal prediction.  
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Decision making requires processing time, and therefore, cannot always be 

instantaneous. Likewise, common predictive control laws are implemented in discrete 

time. Therefore, the ideal model for MPC must have a discrete representation. The 

appropriate sample rate must be chosen, in order to avoid unnecessary increase in the 

number of decision variables. The ideal recommendation is to use 10 samples within the 

settling time of the system. The model should give good long range prediction, and 

decision has to be based upon the most recent measurements. The most common models 

where the MPC has been applied are listed below: 

1. Discrete state-space models 

             (   ) 

               (   ) 

Where    disturbance estimate 

2. CARIMA models 

 ( )    ( )    ( )
  
 
 (   ) 

Where    is a zero mean random variable, and 

3. Step response models 

    ( )                        (   )  

5.3 MPC with MIMO State Space Models 

Discrete MIMO state space models are one-step ahead predictive model of the 

form in Equation (5.2) and (5.6): 

                       (       )                (   ) 
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The one-step ahead prediction can be used for n-steps ahead by solving the model 

recursively, i.e. by using      to find      etc. The pattern is shown in Equations (5.7) 

and (5.8) 

                                                  (   ) 

                        (   ) 

Where for simplicity, it is assumed that     =   

For the expressions in Equation (5.7) and (5.8), it is important to note the sample at 

which prediction is being made. A double subscript is commonly used for notation e.g. 

    |  implies a 4-step ahead prediction (   )  with prediction made at   

    |    also implies a 4-step prediction, but with prediction made at     

We can rewrite equations (5.7) and (5.8) as 

    |              |            |         |   (   ) 

    |       |       |    |   (    ) 

And the prediction can be split into known and a decision part 

    |  ,        -

 [ (       |           |            |         | )

      | ]                                                                                                 (    ) 

Where the first term of Equation (5.11) represents the known part, and the second term 

is the decision. A vector of vectors representation is commonly used to simplify and 

capture the vector of future predictions as shown below: 

[

    | 

    | 

 
    | 

]        [

    | 

    | 

 
    | 

]        



145 

 

The arrow implies that this is a vector of vectors.      indicates the first value. Arrow 

pointing to the right implies that this is a prediction. The vector of all predictions from 

     could then be represented as: 

      [

   

    

 
    

]  

[
 
 
 

   | 

    |       | 

 
       |           | ]
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      | 

]           (    ) 

Which may be represented as: 

                         (    ) 

Where    [

 
  

 
  

]         [

    
     
    

            

] depend solely on the model 

parameters and matrices. The output       could be represented as (for the case where 

   ) 

      [

  
   

 
   

]    [

  

  

 
  

]  [

     
       
    

               

] [

  | 

 
 

      | 

]   (    ) 

Which can be simplified as Equation (5.16) 

      ,       -                    (    ) 

With   [
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] 
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The advantage of above representation is that it is a compact form of the 

prediction for all horizons. The predictions separate into a known part and a part which 

can be selected and optimized. MPC framework may be summarized as shown in Table 

5.1. In this study, the MPC is geared directly to the building dynamic model and cooling 

coil model respectively. It helps to determine sequence of control actions that minimize 

cooling demand from the building and chilled water flow simultaneously. The MPC 

does not directly solve the fan model used in this study, since it is based on a steady 

state model (which has been justified because of inability to capture fan‘s fast 

transients). However, the minimized building demand is compensated for by the flow 

(and pressure) supplied by the fan. The optimization is to be considered alongside static 

pressure reset strategies that significantly save fan power.  

Table 5.1: Summary of MPC Framework 

 Steps Description 

1 Prediction Predicts performance using dynamic plant model. 

Lots of flexibility is afforded in plant model types, e.g. 

multivariable, linear, nonlinear, discrete, or continuous model.  

2 Optimization Minimize performance cost by optimizing future control 

sequences, based on current states. The approach is 

computationally more efficient that optimizing using feedback 

control laws. 

3 Receding 

Horizon 

Implement first control sequence, then move one step ahead, 

and repeat optimization. This invariably embeds feedback into 

the implementation, which reduces effect of uncertainty and 

modeling errors. 

4 Constraints 

handling 

Systematic handling of constraints by embedding it in the 

optimization. Constraints are handled optimally.  
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Figure 5.2 is a flowchart showing how the MPC framework will be used to 

minimize building electricity demand and cost.  

MPC Framework

Plant Model 

(state-space)

Lighting & 

internal 

equipment

Building dynamic 

model 

CONSTRAINTS

Cooling coil model

Optimal cooling rate
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Minimized electricity 
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Figure 5.2: MPC Framework to minimize building electricity cost and demand 
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The MPC integrates with the plant model (which is made up of buildings 

dynamic model, cooling coil model, and the fan-power model), and determines 

sequence of control actions (building cooling rate, and cooling coil flow rates) to 

minimize building electricity demand and cost over a given horizon, while satisfying 

the constraints. The methodology was applied for minimization of building electricity 

demand and cost (multiple zone case study). Results are presented and discussed in next 

section. The dotted red line in Figure 5.2 indicates that the plant model is integration of 

the building dynamic model, fan model, and the cooling coil model. The MPC utilizes 

the plant model, constraints, and electricity cost function to determine the optimal water 

flow rate for the cooling coil, optimal cooling rate for the building load, and optimal 

CFM and static pressure for the fan, based on overall goal of minimizing the electricity 

cost and demand over a specified horizon. 

To minimize building electricity cost, the objective function is written as a 

quadratic function in the water flow rate (GPM) and cooling rate, subject to constraints 

on temperatures (for thermal comfort and safety), the cooling rate, and the GPM 

(equipment limitation), with electricity tariff    (for the given time-step) applied as a 

weight factor, as shown in Equation (5.17). 

Minimize: 

 ( )  ∑   
   (   | )  (   | )    

   (   | )  (   | )

   

   

   (    ) 

Subject to:          
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Where    is constraints matrix for the states,    is the constraints on the states 

(e.g. for thermal comfort),    is constaints matrix for the manipulated variable ( ), and 

   is the constraint on the cooling rate and GPM (from equipment limitation).   is 

deduced from the cooling load function (shown in Tables 5.6 to 5.19, Chapter 5) for 

each thermal zone, and   is a specified positive definite matrix. The control sequence 

(GPM and cooling rates) which minimize the objective function (Equation 5.17) over 

the given horizon could then be determined using quadratic programming or any other 

efficient optimization method.  The step by step approach for the optimization is 

summarized in Chapter 7. 

5.4 Case Study 

To demonstrate the electricity minimization procedure developed in this study, it was 

applied to a section of the Engineering Laboratory building at the University of 

Oklahoma, for a period of 24hours in summer (August 2015). The electricity tariff 

profile used is as shown in Figure 5.3. It involves an off peak period (9pm – 7am), 

medium peak period (8am – 12pm, and 5pm -9pm), and peak period (12pm-5am). The 

tariff was deduced from U.S Energy Information Agency range of electricity data for 

commercial buildings in the state of Oklahoma. For the building load model, the 

constraints on zone temperatures are: 

     (   )           (     ) for 5pm – 8am (unoccupied period) 

       (   )           (     ) for 8am – 5pm (occupied period) 

For the cooling coil, the constraints on leaving water and air temperatures are: 

       (   )                  (   ) and 

      (   )                    (   ) 
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The constraints on water flow (GPM) and air flow rates (CFM) were specified as: 

 

Figure 5.3: Electricity Tariff for Optimization Period 

(Deduced from https://www.eia.gov/electricity/monthly/current_year/august2015.pdf) 

 

                        (   )       and 

                   (   )     

To perform the minimization, the prediction time step was specified as 1minute, 

while the control time-step was chosen to be 5 minutes. It was assumed that the price of 

electricity is known 3 hours ahead. This was deemed a suitable timeframe for the 

control system to adjust the operation of the system based on anticipated changes in 

electricity price.  
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enable the study of multi-zone interactions, and aid in identification of new methods for 

minimizing electricity cost in a multi-zone building. 

5.5.1 Cooling demand 

Figures 5.4 and 5.5 show the comparison of temperature trajectory and cooling demand 

for Thermal Zone A.  

As shown, the optimized cooling rate suggests more cooling for the first ten 

hours of the day, which leads to a lower temperature compared to the original 

temperature.  As shown in Figure 5.5, precooling this thermal zone leads to significantly 

lesser cooling demand during the peak hours, as compared to the original cooling 

profile. The original operation suggests that the air conditioning system has little or no 

intelligence to anticipate the peak ambient temperature and solar radiation. The sudden 

peak demand in cooling (during peak hours when electricity is most expensive) 

contributes to higher cost of electricity. With the optimized profile, the cooling demand 

was nearly flat throughout the day, fluctuating by approximately 200W, while the 

original operation mode fluctuates by nearly 1kW. Based on the new cooling profile, 

the reduction in peak cooling demand is more than 100%. For Thermal Zone A, the 

strategy suggested by the optimized MPC is very similar to pre-cooling strategies, 

where the building is precooled, to reduce the cooling demand at a later time. Since 

zone A thermally interacts with Zones C and D, it could be seen that the temperature 

profile of Zone C (Figures 5.8 and 5.9) has influence on the minimization strategy of 

Zone A.  
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Figure 5.4: Optimized Temperature Trajectory – Thermal Zone A 

 

Figure 5.5: Optimized Cooling Load Profile – Thermal Zone A 

Precooling is generally carried out by rule of thumb, with one of the challenges 
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optimal. In this study, the MPC demonstrated an advantage due to the determination of 

near-optimal amount of cooling, temperature profile, and precooling duration that leads 

to minimization of daily electricity cost.  

Figures 5.6 and 5.7 show the comparison of temperature trajectory and cooling 

demand for Thermal Zone B. As shown, the optimized cooling rate suggests a near 

constant (but reduced) cooling for 24 hours, which leads to slightly higher zone 

temperature compared to the original temperature.  As shown in Figure 5.6 and 5.7, 

allowing the temperature to increase slightly throughout the day leads to significantly 

less cooling demand during the peak hours. With the optimized profile, the cooling 

demand was nearly flat throughout the day, fluctuating by approximately 100W, while 

the original operation mode fluctuates by nearly 1kW. Based on the optimized cooling 

profile, the reduction in peak cooling demand is more than 100%. For Thermal Zone B, 

the strategy suggested by the optimized MPC is near-constant cooling for every hour of 

the day. This strategy is very similar to temperature set-point adjustment, where the 

zone temperature is set at the upper limit of comfort. While Zone B thermally interacts 

with zones C, D, and G, it is seen that Zone C has more thermal influence on Zone B. 

The thermal interactions between Zones B and C come into play, as the temperature of 

Zone B did not reach the upper comfort limit, despite the reduced cooling.  
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Figure 5.6: Optimized Temperature Trajectory – Thermal Zone B 

 

Figure 5.7: Optimized Cooling Load Profile – Thermal Zone B 
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MPC is precooling during the first 9 hours of the day, which leads to a lower 

temperature compared to the original temperature.  As shown in Figure 5.8, precooling 

this thermal zone leads to lower temperature as compared to the original operation. It 

also leads to significantly lower cooling demand during the peak hours, as shown in 

Figure 5.9.  Among all the zones, Zone C has the lowest temperature during occupied 

hours. It is seen to be a critical zone for this multi-zone building. Maintaining its 

temperature near the lower limit of comfort enables its surrounding zones (A, B, and D) 

to keep their temperature within the limits of comfort. The original cooling profile 

fluctuates a lot, as shown in Figure 5.9, with changes of more than 1.5kW around 9am. 

With the optimized profile, the cooling demand was nearly flat throughout the day, 

fluctuating by approximately 200W, while the original operation mode fluctuates by 

approximately 1.7kW. Based on the optimized cooling profile, the reduction in peak 

cooling demand is more than 100%. 

The strategy suggested for thermal zone C is very similar to pre-cooling 

strategies, and the associated challenges have been described earlier. However, Zone C 

was maintained at the lower limit of comfort during peak hours, contrary to existing 

strategies. This zone serves as heat sink for the other thermal zones. In this study, the 

MPC determined the optimized pre-cooling duration for Thermal Zone C, for which the 

daily electricity cost in the entire building is minimized. 
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Figure 5.8: Optimized Temperature Trajectory – Thermal Zone C 

 

Figure 5.9: Optimized Cooling Load Profile – Thermal Zone C 

Figures 5.10 and 5.11 show the comparison of temperature trajectory and 
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other thermal zones. As shown, the MPC determined that no cooling is necessary for 

this thermal zone. The optimized temperature and cooling are very similar to the 

original values. Figures 5.12 and 5.13 show the comparison of temperature trajectory 

and cooling demand for Thermal Zone E. This thermal zone interacts with Zones D and 

F. 

 

Figure 5.10: Optimized Temperature Trajectory – Thermal Zone D 
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Figure 5.11: Optimized Cooling Load Profile – Thermal Zone D 

 

Figure 5.12: Optimized Temperature Trajectory – Thermal Zone E 
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Figure 5.13: Optimized Cooling Load Profile – Thermal Zone E 
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temperature as constant like the original operation, the optimized strategy involves both 

temperature float and set-point adjustment. The set-point adjustment is based on the 

lower band of     (   ) which was specified as a constraint for the occupied hours. 

The temperature floated between 21  and 23 . The strategy is very similar to that 

applied to thermal zone E, which allowed for observation of passive thermal storage 

effects.  

Figures 5.16 and 5.17 show the comparison of temperature trajectory and 

cooling demand for Thermal Zone G. As shown in Figure 5.17, the MPC determined 

that no cooling is necessary for thermal Zone G during unoccupied hours. Therefore, 

the temperature is allowed to float during unoccupied hours. For occupied hours, the 

temperature is maintained at the upper limit, while the cooling rate is ramped up. 

Despite that, the optimized cooling rate is approximately 50% of the original. This is 

contrary to existing strategies which involves pre-cooling the building when electricity 

is cheaper and allowing temperature float during peak hours. Zone G and Zone C are 

critical zones, having temperatures maintained at the upper and lower limits of comforts 

respectively during occupied periods. All other zones have their temperature floating 

within comfort limits during occupied hours. 
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Figure 5.14: Optimized Temperature Trajectory – Thermal Zone F 

 

Figure 5.15: Optimized Cooling Load Profile – Thermal Zone F 
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Figure 5.16: Optimized Temperature Trajectory – Thermal Zone G 

 

Figure 5.17: Optimized Cooling Load Profile – Thermal Zone G 

A summary of the methods for each thermal zone is given in Table 5.2 
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Table 5.2: Summary of Optimal Cooling Strategies 

Zone Strategy Overview 

A 
Optimal 

precooling 

Optimally cool more when electricity is less 

expensive, and cool less during peak hours 

B 
Near-constant 

cooling 

Apply a near-constant cooling that reduces 

total electricity cost and peak demand 

C 

(critical 

zone) 

Optimal 

precooling to 

lower limit of 

temperature 

Optimally cool more when electricity is less 

expensive, and cool to maintain zone 

temperature at lower limit of comfort during 

peak hours 

D 
Temperature 

float 

 

Allow zone temperature to float within 

comfort limits, while cooling system is 

turned off E 

F 

Temperature 

float + set-point 

adjustment 

Adjust base temperature set-point (in this 

case, the lower limit) and allow zone 

temperature to float within comfort limits 

G 

(critical 

zone) 

Temperature 

float + optimal 

start 

Allow temperature float during off peak 

hours. Recover temperature at start of 

occupied hours and maintain upper limit of 

temperature during peak hours. 

Figure 5.18 shows the zone temperature for all the thermal zones. It could be seen that 

temperature of other zones during peak hours lie between the limits of those of zones C 

and G, which have been identified as the two critical zones.  
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Figure 5.18: Comparison of all zone temperatures 
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for the minimization of cooling demand and electricity cost.  Figure 5.19 shows 

significant savings in water flow as the peak optimized GPM is less than the least GPM 

from the original operation. The corresponding exit air and water temperatures are 

shown in Figures 5.20 and 5.21.  
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Figure 5.19: Optimized Chilled Water Flow Rates 

 

Figure 5.20: Optimized Leaving Air Temperature for Cooling Coil 
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Figure 5.21: Optimized Leaving Water Temperature for Cooling Coil 

It could be seen that the temperatures lie within the specified limits. 

5.5.2 Fan operation 

Figure 5.22 shows the optimized air flow rate for the entire building. As shown, 
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significant, particularly during occupied hours. The overall savings in fan power is more 

than 50%.  
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Figure 5.22: Optimized CFM for entire building 

 

Figure 5.23: Optimized Fan Power for the AHU 
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Figure 5.24: Optimized Fan Speed for the AHU 

Additionally, as shown in Figure 5.24, the optimized fan operation suggests a 

narrow range of fan speed, as compared with the original. The optimized fan speed is 

between 73% and 76% of full speed.  

5.5.3 Electricity cost 

Figure 5.25 shows the summary of electricity cost which includes cooling cost, 

fan operating cost, and cost of lighting. The cooling cost was determined based on 

assumed chiller efficiency of 0.75kW/ton. As shown, the total electricity cost through 

optimal operation is significantly lower than the original cost of operation.  
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Figure 5.25: Overview of Electricity Cost 

For the case study building, the savings in electricity cost is realized at every 

hour of the day, as the optimized cooling cost is consistently less than ½ of the original 

cost.  Analysis of the daily electricity cost shown in Figure 5.25 reveals total savings of 

up to $13/day in electricity cost. Further savings could be achieved through lighting 

system operation, but that was not considered in this study. 
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3R2C for walls, roofs, floors, 

partitions, and ceilings 

Represent windows using pure resistance 

2R2C for internal mass nodes 

  

Chapter 6: Step by Step Summary of Minimization Framework 

Following the successful demonstration of model predictive control for 

minimizing electricity demand and cost in Chapter 5, this chapter describes the steps 

involved in the minimization framework. New information includes summary steps to 

cooling coil modeling using the R-C thermal network model, and stability check for the 

R-C state matrix.   

6.1 Steps to Thermal Network Modeling of Building Load 

 Identify case study building and internal loads 

 Gather information about equipment limitations (e.g. temperatures, flow rates, 

pressure, speeds, etc.) 

 Understand building layout (dimensions of walls, roof, windows, etc) 

 Gather building construction materials information (if available) 

 From building layout, sketch the thermal network representation (e.g. Figure 

6.1): 

 

 

 

Figure 6.1: How to represent building components using the RC model 
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 Use 3R2C for walls, roofs, and ceilings; 2R2C for internal mass; 3R2C for 

partitions; and R for windows. 

 Connect ambient, solar-air temperature, convection input, and solar-radiation 

inputs to their respective nodes as shown in Figure 6.2. (Convection input and 

cooling/heating rates connect directly to the zone temperature node while solar 

radiation connects to internal mass nodes. Ambient connects directly to 

windows, and solar-air temperature connects to exterior surfaces of walls, roofs, 

etc). 
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temperature

Solar 
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Solar 

radiation
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load

Windows 

resistance

Cooling or 

heating rate

Zone temp

 

Figure 6.2: Connection of inputs and disturbances to the RC model 

 To assure asymptotic stability of the R-C thermal network for the building load, 

connect a dummy ambient and dummy resistance to internal nodes 

 Write the heat transfer equations for every nodal temperature, and express the 

total cooling load as the output in the state space equation.  
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    represent convection and cooling/heating rates connected to thermal zone   , 

   is total number of thermal zones, and    is total number of temperature 

nodes connected to zone   . The other variables are as previously defined. The 

contributions to the zone temperature node depicted by Equation (6.2) are as 

shown in Figure 6.3 
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Figure 6.3: Contributions to the cooling load for a typical zone 

 

 Check for stability, based on the requirement that the R-C state matrix is strictly 

diagonally dominant (i.e. sum of each row is <0, and diagonal elements are <0) 

 Gather needed data about variables such as ambient and solar radiation. 

 Gather measurement data (Building usage information for cooling or heating 

season. Cooling rate, temperature set-points, flow rates (air and water). Time 

steps may be as small as 1minute. 
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 Identify optimized RC parameter set using genetic algorithm, particle swarm 

optimization, or combined with any other solver. Constraints on envelope RC 

parameters may be based on limits set by typical light and heavy weight 

construction. The internal mass capacitances and resistances could be an order 

of magnitude higher. Some of the R‘s could be assumed based on given (or 

assumed) heat transfer coefficient on interior or exterior wall surface. 

 Validate model for another cooling or heating season by comparing predicted 

loads and temperatures with actual measurements. 

6.2 Steps to Thermal Network Modeling of Cooling Coil 

 Identify case study cooling coil 

 Gather dynamic information: entry and leaving chilled water temperatures, 

chilled water flow rate, entry and leaving air temperatures (or enthalpies), air 

flow rate, etc. Time steps should be 1minute or smaller.  

 Sketch the thermal network representation (using variable 3R2C for the coil), as 

shown in Figure 6.4 

 

Figure 6.4: Thermal network representation for cooling coil 

 Write the heat transfer equations for the chilled water outlet temperature 

(      ) and leaving air temperature (      ). Since this is an R-C thermal 

network, the dynamic equations are similar to Equation 6.1 for the building load 

model.  
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 Identify the optimized parameters (        , and   ) using genetic algorithm, 

particle swarm optimization, or any other solver.  

 Validate the model by comparing predicted exit temperatures with actual 

measurements, for given dynamic fluctuations in air and water flow rates.  

 The R-C state matrix for the 3R-2C cooling coil model is strictly diagonally 

dominant, and does not require use of dummy variables to ensure stability. 

6.3 Steps to minimizing building cooling demand 

 After the thermal network model is developed and validated for the building 

load and cooling coil models, develop an integrated dynamic state space model, 

with state space matrices (               ), where the subscript   implies that 

this is a continuous model.  

 Convert the continuous state-space model to discrete model for a given sampling 

time, and extract the new matrices (               ). Here, the subscript   

refers to ‗discrete‘ 

                   (   ) 

                   (   ) 

 Identify suitable time-steps and horizons ( ) for which the cooling demand will 

be minimized ahead.  

 From the time-steps and optimization horizon, generate the MPC model 

matrices which relate subsequent control actions, states, and outputs, to the 

current state and controls, as described by Equations (6.5) and (6.6) 

                       (   ) 
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 Write the objective function as the minimization of a quadratic function in the 

water flow rate (GPM) and cooling rate, subject to constraints on temperatures 

(for thermal comfort and safety), the cooling rate, and the GPM (equipment 

limitation).  

Minimize: 

 ( )  ∑   (   | )  (   | )    (   | )  (   | )

   

   

    (   ) 

Subject to:          

       

Where    is constraints matrix for the states,    is the constraints on the states (e.g. 

for thermal comfort),    is constaints matrix for the manipulated variable ( ), and 

   is the constraint on the cooling rate and GPM (from equipment limitation).   is 

deduced from the cooling load function (shown in Tables 5.6 to 5.19) for each 

thermal zone, and   is a specified positive definite matrix. 

 Using quadratic programming or any other efficient solver, determine the 

control actions (GPM and cooling rates) which minimize the objective function 

(Equation 6.7) over the given horizon. 
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 Apply only the first control action (    | ) to the discretized system, and 

determine the new state      and output      

 Repeat the above procedure with the prediction and control horizon shifted 

ahead one-step at a time (known as receding horizon), until the entire 

optimization period is covered, as shown in Figure 6.5.  

 

Figure 6.5: Receding horizon in MPC (Source: www.eng.ox.ac.uk)  

6.4 Steps to minimizing building electricity cost 

Electricity cost minimization requires the consideration of electricity tariff over 

the given period. To minimize the cost of electricity, the procedure is similar to cooling 

demand optimization, but with electricity tariff    (for the given time-step) applied as a 

weight on the objective function as shown in Equation (6.8). 

 ( )  ∑   
   (   | )  (   | )    

   (   | )  (   | )

   

   

   (   ) 

Subject to:          
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Chapter 7: Original Contributions to Knowledge/Research 

This chapter highlights the original contributions to knowledge/research based on 

results shown in Chapters 3 through 6. This dissertation has helped to bridge some of 

the knowledge gap in buildings energy systems operations and helped to further 

understanding of important phenomenon which are described in Sections 6.1 to 6.7 

below.   

7.1 Understanding of Stability of R-C thermal network 

Published in: Ogunsola, O.T. and Song, L., 2015. Application of a simplified 

thermal network model for real-time thermal load estimation. Energy and 

Buildings,96, pp.309-318. 

The R-C thermal network approach has been widely applied for modeling of building 

load, but the stability of the R-C thermal network has not been investigated. The 

stability issues are important to understand the applicability (and limitations) of the 

thermal network approach and for identification of feasible R-C parameter domains. 

The generalized equation for temperature nodes in a R-C thermal network is given by: 
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( ∑
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      (   ) 

where 

  = temperature of the  th node.  

  = thermal capacitance of node  . 

 = total number of connected temperature branches (including ambient, sol-air, and 

neighbor nodal temperatures) to node  . 

  = temperature of the  th branch, connected to node  . 
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 = total number of heat flux branches (such as convection, radiation, and heat 

extraction or addition rate) impressed on node  .  

  = heat flux of the  th branch connected to node    This term includes internal heat 

gains such as    and       which are impressed on internal mass and zone temperature 

nodes respectively.    also includes the heating or cooling rate of a device (    ).  

     applies to zone temperature nodes only 

The first two terms of Equation (   ) form the R-C state matrix. In understanding the 

behavior of the system, the R-C state matrix is instrumental to the study of building 

construction characteristics. It also determines the stability of the system. It could be 

observed that all diagonal entries of the R-C state matrix are negative. This is an 

important feature of stable systems, with stabilizing eigenvalues. As part of the original 

contributions of this study, certain features of the R-C state matrix were identified. 

These are: 

i. The sum of each row corresponding to internal nodes are =0. For internal nodes, 

the heat balance equation is analogous to Kirchoff‘s current law, where the 

algebraic sum of currents at a node = 0.  

ii. The sum of each row with connections to ambient (or sol-air) temperature are 

<0; Therefore, the number of connections to ambient is equal to the number of 

rows having their sums <0.  

iii. Without any connections to ambient or sol-air temperature, the R-C model will 

be, at best, marginally stable. This follows from (i) and (ii), because all rows in 

the R-C state matrix sums to zero in that case. This does not require additional 

proof.  
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iv. With R-C parameters trained using actual buildings measurements; the R-C state 

matrix may not be symmetric.  

The identified features hold for generalized R-C network model with envelope and 

internal mass components. The new findings enable the understanding of the stability of 

the R-C thermal network, and are summarized as follows: 

 Internal zones modeled using the R-C network will be unstable or marginally 

stable. This is because the sum of each row in the R-C state matrix =0 

 The generalized R-C model with a mix of exterior and interior nodes has R-C 

state matrix which is weakly diagonally dominant. The R-C state matrix must be 

irreducible for it to be non-singular and asymptotically stable. This is much 

more difficult to prove. The stability could be assured through the addition of 

dummy resistances and dummy ambient to all internal nodes. The dummy 

ambient is set to zero vector, so that it has no impact on the forced response. The 

dummy resistance is lumped into the estimation process, or given several orders 

of magnitude above the estimated R-values.  The introduction of the dummy 

variables enable the R-C state matrix to be strictly diagonally dominant, for 

which the Gershgorin circle and the Levy-Desplanques theorems apply. 

 The generalized R-C model with connections to ambient (and/or sol-air) in all 

temperature nodes has R-C state matrix which is strictly diagonally dominant. 

According to Gershgorin circle and the Levy-Desplanques theorems, the R-C 

state matrix will be non-singular, and the system is asymptotically stable. 

Unconstrained parameter search methods could be used to identify the R-C 

values.  
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 The 3R-2C model of cooling coil is strictly diagonally dominant, with negative 

diagonal elements. Hence, it is asymptotically stable.  

Significance: The above findings are important, because they identify the stability 

issues of the thermal network model, which have never been investigated. The 

identified features of the R-C thermal network enable a quick check on the R-C state 

matrix for complex buildings with several nodes and branch connections. They also 

imply that the modeling of interior zones (without the introduction of dummy ambients) 

would lead to a R-C network model, which is, best case, neutrally stable. In such 

situations, the matrix inversion solution method would not be suitable.  

7.2 Understanding of thermal characteristics of building construction  

Published in: Ogunsola, O. and Song, L., 2014, November. Investigation of 

Building Passive Thermal Storage for Optimal Heating System Design. In 

ASME 2014 International Mechanical Engineering Congress and Exposition 

(pp. V08AT10A040-V08AT10A040). American Society of Mechanical Engineers. 

The R-C parameters determine the category and classification of building construction 

(e.g. as light, medium, or heavy construction) and time scales of the building or cooling 

coil transient response. In this thesis, the R-C model was applied to further 

understanding of building construction characteristics by comparing the thermal 

response of light, medium, and heavy construction materials. The investigations include 

temperature floats study (i.e. temperature response in the absence of HVAC) as well as 

the thermal response of the building construction when HVAC system is in operation, 

for different climate classifications in the United States. Thermal responses of the 

different construction for two climate zones (Hot-humid and Cold) in the United States 
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are shown in Figures 7.1 and 7.2. The temperature responses depicted in the Figures 

offer insightful information to the behavior of the different construction. Some of the 

new findings are that: 

 For cold and very cold climates, the HVAC system should not be turned off for 

more than two hours to avoid the risk of zone temperature dropping below the 

comfort limit.   

 The heating system must be operating at full load shortly before and at the time 

of occurrence of minimum daily temperature. 

 By factoring the passive thermal storage of building construction into the design 

of heating system, the heating system could be downsized by up to 33% for 

heavy construction, 23% for medium construction, and 22% for light 

construction in a Hot-humid climate while savings of up to 18%, 12%, and 9% 

are possible for heavy, medium, and light construction respectively in a cold 

climate.  

 

Figure 7.1: Thermal Response of Building Construction-  Hot-Humid Climate 
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Figure 7.2: Thermal Response of Building Constructions- Cold Climate 

Significance: The understanding of these behaviors is important for climate-responsive 

building envelope design which is essential to appropriately size HVAC equipment and 

minimize buildings cooling or heating needs. On a global scale, these findings help in 

making appropriate choice of construction types for different climate categories. The 

construction materials used have influence on material wastes, and sustainable use of 

resources (for example, in the use of light or medium construction materials instead of 

heavy construction). 

7.3 Understanding of passive thermal storage capability of building 

construction 

Published in: Ogunsola, O., Song, L. and Wang, Y., 2016. Analysis of passive 

thermal storage opportunities for heating system design. Science and 

Technology for the Built Environment. 
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steady-state conductive heat transfer. However, due to thermal storage effect, heat 

generated in daytime may still be stored in buildings and released at a later time. Such 

assumption leads to significantly over-sized heating systems which are usually 

accompanied by high initial cost and higher cost of energy use. The above simplified 

approach has been justified because it evaluates worst case conditions that can 

reasonably occur during a heating season, when diurnal temperature variations are 

considered small enough to ignore. By allowing space air to drift to reasonably lower 

values, buildings need to be warmed up before being occupied in the morning. The 

worst case conditions might happen during warm-up or beginning of occupied hours. 

Due to thermal and internal mass effects, heat gains in buildings during daytime may 

still be stored in the walls and radiation absorbing surfaces within the building. Heat 

absorbed by the thermal mass during occupied hours could be released during 

unoccupied hours. The heat released by the thermal mass may partially (or totally) 

compensate for the space heating needs during unoccupied periods without temperature 

dropping below the set minimum. Some of the investigations carried out in this study 

include temperature float study and heating system downsizing through consideration of 

passive thermal storage characteristics of building construction.    A heavy wall 

construction was used for the building envelope. The temperature trajectory during 

floating period is mostly influenced by the envelope thermal mass, internal mass, and 

the incident outdoor conditions. As shown in Figures 7.3 and 7.4, there are varying 

behaviors across different climate classifications. For the thermal zone 1, very cold 

regions will achieve the night setback temperature within 5 h after the heating system 

was turned off. Meanwhile, hot–dry climates and marine regions will not reach the 
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setback temperature before the heat gains of the next day kicks in. By the start of 

occupancy period of the following day, typical office buildings in hot-dry climates have 

only experienced about     (    ) drop in zone temperature. The heat gains of the 

following day are sufficient to take the temperature to within     (    ) of desired 

conditions for comfort. 

 

Figure 7.3: Temperature Float for Thermal Zone 1 

(Zone 1 has north and east facing windows) 

 

 

Figure 7.4: Temperature Float for Thermal Zone 2 

(Zone 2 has only north-facing windows) 

 

 

As could be deduced from Figures 7.5 and 7.6, downsizing opportunities vary widely 

across the U.S. but generally seem to decrease from southern states to northern states. 
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North-eastern states of the U.S. have the least savings. The largest savings is noted in 

California (54%), and the least was observed for Maine (14%).  

 

Figure 7.5: Downsizing Opportunities for Thermal Zone 1 (numbers in %) 

 

Figure 7.6: Downsizing Opportunities for Thermal Zone 2 ( numbers in %) 

Overall, hotter regions are seen to have larger downsizing opportunities, as compared 

with colder regions. This implies that using the ASHRAE method for hot regions such 
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as Florida and California may lead to significantly oversized system with the margin 

greater than 40%.  The ASHRAE approximation is thus seen to be more suitable for 

colder regions, where the percentage of oversize is often less than 20%. Some of the 

new findings in this study include: 

i. The potential for equipment downsizing and energy savings in heating system 

operation is seen to increase according to climate type: Very cold region < Cold 

region < Mixed-Humid < Mixed- Dry < Hot-Humid < Marine < Hot-Dry 

Regions.  

ii. By analyzing the thermal response of the building construction for the heating 

design days, results show varying downsizing opportunities, ranging from 14% 

to 54% across the US.  

iii. For all the locations studied, there are savings on heating system size by 

considering passive thermal storage.  

iv. This study also offers insight into climate regions for which the ASHRAE 

approximation is most suitable.  

v. Additionally, reduction in heating system size implies corresponding reductions 

in electricity users such as fans and pumps. With HVAC systems accounting for 

65% of electricity used in the United States, the overall contribution is in 

sustainable energy/electricity use through efficient sizing of equipment, and 

reduction of greenhouse gases due to electricity generation. Table 7.1 gives 

overview of the climate types and the downsizing opportunities. 
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Table 7.1 : Heating System Downsizing Opportunities in the US 

Location Information Climate Description Downsizing (%) 

Station 

ID State Classification 

Climate 

Type 

ASHRAE Zone 1 Zone 2 

722230 Alabama 
Class I 

Hot-

Humid 

2A 21.0 25.0 

722740 Arizona Class I Hot-dry 2B 28.0 26.0 

723418 Arkansas 
Class II 

Hot-

Humid 

2A 26.0 27.0 

722950 California Class I Hot-dry 2B 46.0 54.0 

724769 Colorado Class II Cold 5B 27.0 26.0 

725040 Connecticut Class I Cold 5A 18.0 22.0 

724088 Delaware 
Class II 

Mixed-

Humid 

4A 27.0 30.0 

722030 Florida 
Class II 

Hot-

Humid 

2A 39.0 46.0 

747810 Georgia 
Class II 

Hot-

Humid 

2A 36.0 34.0 

726813 Idaho Class III Cold  18.0 33.0 

725314 Illinois 
Class II 

Mixed-

Humid 

4A 18.0 23.0 

724320 Indiana 
Class I 

Mixed-

Humid 

4A 16.0 28.0 

725460 Iowa Class I Cold 5A 28.0 27.0 

724504 Kansas 
Class III 

Mixed-

Humid 

4A 28.0 35.0 

724354 Kentucky 
Class III 

Mixed-

Humid 

4A 20.0 25.0 

722405 Louisiana 
Class II 

Hot-

Humid 

2A 40.0 46.0 

726060 Maine Class I Cold 6A 18.0 14.0 

745940 Maryland 
Class II 

Mixed-

Humid 

4A 17.0 15.0 

725067 Massachusetts Class II Cold 5A 21.0 30.0 

725375 Michigan Class I Cold 5A 19.0 25.0 

726575 Minnesota Class II Cold 6A 18.0 24.0 

747686 Mississippi 
Class II 

Mixed-

Humid 

4A 39.0 41.0 

723489 Missouri 
Class II 

Mixed-

Humid 

4A 28.0 30.0 

727730 Montana Class I Cold 6B 18.0 31.0 

725540 Nebraska Class II Cold 5A 23.0 30.0 

723860 Nevada 
Class I 

Hot-

Dry 

2B 44.0 50.0 

726055 New Hampshire Class II Cold 5A 25.0 30.0 

725020 New Jersey 
Class I 

Mixed-

Humid 

4A 22.0 29.0 
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723650 New Mexico 
Class I 

Mixed-

Dry 

4B 35.0 40.0 

744860 New York 
Class I 

Mixed-

Humid 

4A 30.0 34.0 

723013 North Carolina 
Class I 

Hot-

Humid 

2A 33.0 34.0 

727676 North Dakota 
Class I 

Very 

Cold 

7 27.0 35.0 

724288 Ohio Class II Cold 5A 32.0 34.0 

723575 Oklahoma 
Class II 

Mixed-

Humid 

4A 33.0 34.0 

726959 Oregon Class III Marine 5A 21.0 23.0 

724080 Pennsylvania 
Class I 

Mixed-

Humid 

4A 20.0 28.0 

725070 Rhode Island Class I Cold 5A 21.0 28.0 

722080 South Carolina 
Class I 

Hot-

Humid 

2A 41.0 42.0 

726625 South Dakota Class II Cold 5A 32.0 34.0 

723340 Tennessee 
Class I 

Mixed-

Humid 

4A 24.0 33.0 

722598 Texas 
Class II 

Hot-

Humid 

2A 34.0 41.0 

724754 Utah 
Class II 

Hot-

Dry 

2B 39.0 44.0 

726170 Vermont Class I Cold 6A 26.0 31.0 

724050 Virginia 
Class I 

Mixed-

Humid 

4A 34.0 41.0 

727938 Washington Class II Marine 4C 21.0 38.0 

724140 West Virginia 
Class I 

Mixed-

Humid 

4A 29.0 34.0 

726400 Wisconsin Class I Cold 6A 20.0 22.0 

725640 Wyoming Class I Cold 6B 19.0 26.0 

 

Significance: Results of this study suggests that the current heating device standard 

results in significantly oversized system for hot humid and hot dry regions of the U.S. 

These results are significant; with the potential of establishing a new heating device 

design standard for certain climate classifications.  

7.4 Demonstration of R-C application to cooling coil models 

(New results: To be submitted to ASHRAE Journal of Science and Technology 

for the Built Environment ) 
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The cooling coil is an important component of the air handling unit. Most available 

cooling coil model require detailed information about the coil geometry, which is not 

available. Sometimes, available information is not reliable due to aging and other 

changes in the cooling coil due to use.  This study extended the application of the R-C 

network model for transient modeling of cooling coil, through the use of flow-variable 

resistances and capacitances. The application of the R-C network to transient cooling 

coil model was illustrated using both temperature and enthalpy-based approaches.   

 

Figure 7.7: Thermal network model for cooling coil, temperature approach 

 

Figure 7.8: Thermal network model for cooling coil, enthalpy approach 

The R-C representation enables the investigation of the time scale (e.g. time 

constants) as well as thermal capacities of the cooling coil unit, from short-term usage 

data. The demonstration of a flow-variable R-C network model for the cooling coil 

enhances compatibility with (and enables seamless integration of) the building load 

model, the chiller model, and the cooling coil model (as shown in Figure 7.9)  
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Figure 7.9: Integration of Building load and Cooling Coil Models 

As such, existing control methods could be used for control and minimization of overall 

electricity cost, energy use, and other objectives as set by the researcher.  

Significance: The integration of the building load and cooling coil model helped to 

simultaneously study the thermal responses of building and cooling coil, despite the 

differences in their time scales. This has helped to overcome some of the difficulties in 
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integration of the building load with the cooling coil model. One of the new findings is 

that the R-C state matrix for the 3R-2C cooling coil model is strictly diagonally 

dominant, and does not require use of dummy variables to ensure stability. 

 

7.5 Understanding of multiple-zone interactions 

(New results: To be submitted to ASHRAE Journal of Science and Technology 

for the Built Environment) 

The purpose of thermal zoning in buildings is to group rooms that have similar loads 

and usage profiles, for the purposes of control. Such areas or zones could therefore be 

controlled by a single thermostat. Multiple zone interactions imply that cooling/heating 

needs in a particular zone is dependent on the states of the other zones. In a multi-zone 

building, the individual zones retain their thermal characteristics, but thermally interact 

with one another and compete for the available cooling/heating from the HVAC system. 

Therefore, the use of single zone modeling ignores important interactions among 

multiple thermal zones. The diversity of schedules, set-points, occupancy, usage, 

building orientation, and construction materials among multiple zones make the near-

optima distribution of available cooling challenging. The study and understanding of 

multi-zone thermal interactions play a crucial role in efficient and intelligent operation 

of the HVAC equipment. 

To study and understand multi-zone interactions, a multi-zone building with a variable 

air volume air handling unit was used as a case study. The case study building was also 

used as proof of concept that the R-C thermal model accurately predicts zone 

temperatures to between 0.16C (0.29F) and 0.7C (1.26F) mean absolute error (using 
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1min time-steps). The simulation results are shown in Chapter 5. The R-C thermal 

model requires short term data of actual building measurement to accurately predict 

temperatures and loads. No additional sensors are required, beyond the standard. The 

overall accuracy means that it could be adapted and applied for multiple control 

purposes (e.g. temperature and building load control) and fault diagnosis in any type of 

building.  

Fundamental understanding of thermal zone interactions is critical to the minimization 

of overall electricity use in buildings, which is critical to achieving sustainable energy 

future. Integration of the plant model of building load, fans, and cooling coil enabled 

the study and understanding of different zone interactions. The approach is extendable 

to any type of system with producer-consumer relationship (such as multiple AHUs in a 

building, multiple buildings in a plant, or multiple buildings in a grid-network). Going 

by current state of knowledge, similar minimization strategies are generically applied to 

multiple thermal zones in a building. This study has led to interesting findings which 

have not been depicted in literature. Some of the new findings are: 

i. In a multiple zone building, individual zones require different minimization 

strategies, based on their thermal characteristics, orientation/exposure to 

ambient, and their inter-relationship with other zones. Therefore, the generic 

application of existing minimization strategies to all zones in a multiple zone 

building may not be effective.  

ii. In a multi-zone building, some of the thermal zones may serve as heat sink (as 

shown in Figures  7.10 to 7.13), and require cooling during on-peak hours, in 

order to achieve overall minimized electricity cost of entire building, due to their 
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thermal interaction with other zones. In the example study of 7 thermal zones, 2 

of the zones were determined to be critical zones which required the above 

strategy.  

 

Figure 7.10: Optimized Temperature Trajectory – Thermal Zone G 

 

Figure 7.11: Optimized Cooling Load Profile – Thermal Zone G 
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Figure 7.12: Optimized Temperature Trajectory – Thermal Zone C 

 

Figure 7.13: Optimized Cooling Load Profile – Thermal Zone C 
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fans, and cooling coil model enabled use of control algorithms to determine 

near-optima precooling hours for thermal zones requiring such strategies.  

iv. This study identified some new strategies for minimizing electricity cost in a 

multiple zone building as shown in Table 7.2: 

Table 7.2: New strategies for minimizing electricity cost in a multi-zone buildings 

Strategy Description 

Near-constant cooling 
Apply a near-constant cooling that reduces total 

electricity cost and peak demand 

Temperature float + 

optimal start 

Allow temperature float during off peak hours. Recover 

temperature at start of occupied hours and maintain 

upper limit.  

Optimal precooling to 

lower limit of 

temperature 

Optimally cool more when electricity is less expensive, 

and cool to maintain zone temperature at lower limit of 

comfort during peak hours 

 

v. The consideration of multi-zone interactions will lead to near-optima 

distribution of loads among complex network of interacting thermal zones 

served by one or more air handling units 

7.6 Investigation of methods for filling missing gaps in Solar Radiation 

Published in: Ogunsola, O. T., & Song, L. (2014). Restoration of long-term 

missing gaps in solar radiation. Energy and Buildings, 82, 580-591. 

Solar radiation is an important climatic variable and widely used in building 

performance monitoring and analysis. However, due to sensor malfunction, data 

transmission problems, and quality assurance issues, there are often short-term or long-

term missing data on solar radiation. These gaps are challenging for building 

performance monitoring and control. This study examined and compared three different 
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approaches, namely, singular spectrum analysis (SSA), statistically adjusted solar 

radiation (SASR), and the temperature-based approach (TBA), for restoring missing 

gaps (of up to 30 days) in solar radiation data. The limitations and merits of each 

method are summarized in the Tables 7.3 and 7.4.  

Table 7.3: Limitations and merits of the SSA, TBA, and SASR methods 

Method Limitations Merits 

SSA -Needs sufficient data points (10 days data in 

this study), to capture trend and oscillatory 

components. No existing method to determine 

the required number of data points 

-Accuracy dependent on proper choice of 

window length. Window length is often selected 

randomly or by rule of thumb. No generally 

acceptable rule for window length 

-In reconstructing missing gaps, the number of 

Eigen components to retain is often selected 

randomly, in order to filter out noise 

components 

-Independent of other climate variables 

-Able to identify trends, oscillations, and 

noise 

-Has highest accuracy for smaller gap 

lengths 

-There is no need to perform any time 

shift 

-There is no need to decompose daily 

solar radiation into hourly values 

-With proper choice of parameters, 

could be applied directly to fill missing 

data in total daily radiation as well 

TBA -Dependent on dry-bulb temperature 

-Time shift has to be performed when 

information about sunrise and sunset time is 

available 

-There is risk of losing some accuracy through 

decomposition of daily total radiation into 

hourly values 

-The length of existing data (dry-bulb 

temperature) required is equal to the number of 

days of missing data 

-Has very consistent level of accuracy 

for every gap length 

-Has highest accuracy for gap lengths 

greater than 10 days 

-Useful where solar radiation is reported 

as daily summations 

SASR -Dependent on dry-bulb temperature 

-Because of the statistical adjustment, there is 

risk of overcompensation during clear sky 

months 

-There is no procedure to determine the number 

of sufficient data to determine the statistical 

relationship between the ASHRAE clear sky 

model and the degree of over-prediction 

-Accuracy is generally lower for non-clear sky 

locations 

-The length of existing data (dry-bulb 

temperature) required is equal to the number of 

days of missing data 

-Not robust, therefore gives inconsistent results 

for different climate 

-SASR is model-based and statistically 

derived from the ACSM 

-There is no need to perform time shift 

-There is no need to decompose daily 

solar radiation into hourly values 

-It is the only method (among the three 

approaches) that is suitable for 

decomposing the total radiation into 

diffuse and direct components 
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Table 7.4: Recommended approach for different gap lengths. 

 Gap length 

Climate type 1–2 days 2–5 days 5–15 days 10–25 

days 

>25 

days 

Mixed-humid SSA SSA, TBA TBA 

Dry SSA SSA, TBA, SASR TBA, SASR 

The approach could be extended to other climate types in continental US states. TBA 

method relies on the use of dry bulb temperature to estimate missing gaps in daily 

radiation. The SASR method was developed as one of the standard procedures of the 

ASHRAE 1413 research project (Hu et. al, 2014). This study introduced the use of SSA 

for filling missing gaps in solar radiation. SSA incorporates elements from a wide range 

of mathematical fields including classical time series analysis, multivariate statistics and 

geometry, dynamical systems, as well as signal processing. The study concluded by 

recommending appropriate methods for different gap lengths in solar radiation data, 

using case studies of two climates (mixed-humid, and dry).  

 

Some of the findings are: 

- SSA is the most suitable for shorter gap lengths of 5 days and smaller.  

- TBA is the most suitable for larger gap lengths. 

- SASR is seen to have very good agreement for locations with lots of clear sky 

days. 

- The  accuracy of SSA decreases with increasing gap length, but accuracies of 

TBA and SASR are less sensitive to gap length, since they are model-based.  
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- The appropriate method depends on other factors such as length of existing data, 

availability of reliable dry bulb temperature data and climate of the location. 

7.7 Further Applications of Model Predictive Control 

There has been very limited (or no) application of MPC for study of multi-zone 

interactions and minimization of electricity cost in a multi-zone variable air volume 

system, using the thermal network model. This is due to gaps in knowledge of important 

building phenomenon such as radiative delays and dynamic load changes due to solar 

radiation, ambient and internal load fluctuations. The unavailability of sufficiently 

accurate dynamic predictive model for building load and HVAC systems components 

have also limited the use of MPC. Most researchers use over-simplified regression 

models in form of ARIMA or time-series, without considering the dynamics of the 

building and HVAC components. The use of the accurate thermal network model in this 

study enabled the utilization of building dynamics in the MPC to achieve minimization 

objectives of choice, as determined by the researcher. Establishment of the accuracy 

level of the thermal network model enabled the utilization of MPC. Integration of the 

plant model of building load, fans, and cooling coil with the MPC opened up 

opportunities to study different zone interactions. This is the first research to 

demonstrate predictive control that utilizes building dynamics through the use of 

models that represent the building physically and captures important phenomenon e.g. 

radiative delays, thermal storage, multi-zone interactions etc. 

 

 

 



199 

Chapter 8: Conclusions and Future Work 

The intellectual contribution of this dissertation is the understanding of multi-

zone thermal interactions in buildings through the application of thermal models of 

building load and cooling coil (Sections 3.1, 3.2, 3.3, 5.5 and 7.5). This led to 

development and validation of methods for minimizing buildings electricity demand 

and cost at the air handling unit level (Section 5.1 – 5.3). It involved the development 

and validation of accurate and integrated dynamic thermal and airflow models for real-

time building load prediction, cooling coil performance, and fan system operation, all of 

which are essential for the minimization of building electricity use at the air handling 

unit level. The developed models are part of a cyber-physical system (since they are 

physical based and deduced from fundamental study of building dynamics) which 

serves to integrate physical sensor measurement with thermal and mathematical model 

for real-time optimization and control of HVAC system operation. Further, all the 

developed models have been validated for actual air handling units components, with 

mean percentage errors  generally <3% (Section 4.4, 4.5, and 4.6). 

Through this research, the applicability of the thermal network approach of heat 

transfer has been expanded significantly, in areas such as the sizing of heating system 

(Section 7.3, and Ogunsola et. al, 2016), real-time forecast of cooling load (Section 4.3 -

4.4; Ogunsola et. al 2014, Ogunsola and Song 2015), understanding of fundamental 

characteristics of building construction from thermal modeling (Section 7.2; Ogunsola 

and Song 2015), application of variable R-C network for cooling coil model (Section 

3.3, 4.6, and 7.4), study of passive thermal storage (Section 7.3 and Ogunsola et. al 

2016), parameter estimation and identification for thermal model (Section 3.6; 
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Ogunsola and Song, 2014; Ogunsola and Song, 2013), identification of stability criteria 

for the thermal network model (Section 3.5 and 7.1; Ogunsola and Song, 2014), 

understanding of multi-zone thermal interactions (Section 5.5 and 7.5), and 

identification of multiple methods for minimization of electricity cost in a multi-zone 

building (Section 5.5 and 7.5).  

This dissertation introduced the formulation, integrated solution, and validation 

of the simplified thermal network model of building load and cooling coil, using case 

study of multiple zones in a variable air volume system (Section 3.3 and 3.4). This 

research also identified certain features of the state matrix for building load and cooling 

coil, and conditions under which their thermal network models will be asymptotically 

stable (Section 3.5). The thermal network of cooling coil is asymptotically stable, since 

it is strictly diagonally dominant, with negative diagonal elements. The understanding 

of the stability issues assured the observability and controllability of the system while 

also eliminating concerns about invertibility of the state matrices for the thermal model, 

which is a necessary condition for all nodal temperatures and heat flux to remain 

bounded.  

This research also contributes to knowledge in the development of step by step 

approach that may be followed to achieve system-wide optimal operation of the air 

handling unit, based on consideration of time of use electricity tariff (Section 6.1 to 

6.4). Limited sensors information was utilized to develop accurate models in this study, 

and this overcomes the limitations posed by need for detailed data required by whole-

building software models. The application of model predictive control framework led to 

identification of further minimization methods for multiple zones in a building, based 
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on individual cooling needs and thermal interactions with other zones (Section 5.1 to 

5.5). Results showed that the simultaneous application of a generic optimization 

methodology to all the zones in a building may not be effective, due to uncontrollable 

inter-zone thermal interactions (Section 5.5.1). The summary contributions of this 

dissertation are as follows: 

 Understanding of multi-zone thermal interactions in buildings (Section 5.5 

and 7.5): This research has led to the understanding that zone temperatures in 

different thermal zones in a multi-zone building can be treated differently. This 

is because certain zones have more favorable thermal characteristics, which 

enables them to serve as critical zones, absorbing excess heat from surrounding 

zones. Such zones play a crucial role in the overall electricity demand and cost 

for a multi-zone building. This understanding has led to acceptance of the 

research hypotheses H1 (Section 1.3) that Zone temperatures for individual 

zones in a multi-zone building can be treated differently, instead of equally as in 

traditional building operations. This has helped to answer the research question 

RQ1 by showing that multi-zone thermal interactions can be observed through 

the use of representative physics-based models of building load and cooling coil 

when the dynamics of the different thermal zones and the HVAC equipment are 

integrated into controller design. 

 Understanding of stability issues involved in thermal modeling of building 

load and cooling coil (Section 3.5, Section 7.1): The thermal network model of 

building load has been widely used for load and temperature forecast, but the 

stability has never been investigated. The stability is critical to understand 
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feasible parameter domains for which the thermal network model will remain 

asymptotically stable, in order to physically represent actual building 

phenomenon. This research has led to understanding of conditions under which 

the thermal network model of building load will be asymptotically stable 

(Section 3.5). As a direct consequence of the stability analysis, it is seen that 

flow-variable R-C model for cooling coil will always be asymptotically stable. 

The conditions are valid for every finite R-C combination. 

 Understanding of thermal characteristics of building construction (Section 

7.2 and Ogunsola and Song 2014): This research has led to understanding of the 

temperature floats and thermal response of different construction materials in 

different climates. The understanding of these behaviors is important for 

climate-responsive building envelope design which is essential to appropriately 

size HVAC equipment, minimize buildings cooling or heating needs, and select 

appropriate construction material for different climate classifications. 

 Understanding of passive thermal storage capabilities of building 

construction for appropriate sizing of HVAC equipment (Section 7.3 and 

Ogunsola et. al 2016): This research has led to identification of downsizing 

potentials and opportunities for heating system size reduction across different 

climates in the United States, based on passive thermal storage capability of 

building construction. The findings show that current heating device standard 

results in significantly oversized heating system for hot-humid and hot-dry 

regions of the U.S. Consideration of building dynamics and passive thermal 
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storage capabilities of building construction in heating system sizing have 

potential to save between 14% and 54% in heating system size.  

 Extension of the R-C thermal network approach to transient modeling of 

cooling coils (Section 3.3, 4.6 and 7.4): This research extended the application 

of the thermal network model to the transient modeling of cooling coil, through 

the use of flow-variable resistances and capacitances. The approach was 

illustrated for both temperature and enthalpy-based approaches. The 

representation enables us to identify coil parameter from limited data, 

understand the timescales of the cooling coil, and integrate the cooling coil 

model to the building load model. This integration enabled the optimization of 

model predictive approach for the   simultaneously optimization of building 

demand and cooling coil operation despite their different their time scales.  

 Identification of new methods for minimizing buildings electricity demand 

and cost (Section 5.5 and 7.7): This research has led to the identification of new 

methods for minimizing electricity demand and cost in a multi-zone building. 

The identified methods have not been depicted in literature, and they do not 

follow conventional curtailment strategies. For example, one of the thermal 

zones requires continuous cooling and maintenance of zone temperature at the 

lower limit during peak hours. This is contrary to existing methods in literature, 

but the adoption of the method led to overall minimized electricity demand and 

cost for the entire multi-zone building. This also supports the research 

hypotheses H2 (Section 1.3) that Individual zones in a multi-zone building 



204 

require different strategies for electricity minimization rather than one strategy 

applying to all zones as in demand response (DR) literature 

 A demonstration of the electricity cost savings capabilities in air handling 

units operations: This was demonstrated through the use of Model predictive 

control (MPC) strategies, integrated with the thermal network models of 

building load and cooling coil model (Section 5.5 and 7.7): This research has led 

to understanding of methods for minimizing electricity demand and cost in a 

multi-zone building. Results show that different thermal zone may require 

different minimization approach in order to minimize the overall electricity 

demand and cost among all thermal zones. This has led to acceptance of the 

research hypotheses H2 (Section 1.3) that Individual zones in a multi-zone 

building require different strategies for electricity minimization rather than one 

strategy applying to all zones as in demand response (DR) literature 

 

8.1 Broader Impact 

While the methods developed in this dissertation have been validated using 

typical air handling unit in a multi-zone building, the optimization approach could be 

generalized and extended to multiple air handling units, in a multi-zone building. 

Accuracies of building load modeling have been demonstrated at both single zone and 

multi-zone level. Additional thermal model capabilities that have been explored in this 

study include investigation of multiple HVAC scenarios, simulation of temperature 

fluctuations, simulation of both heating and cooling, and flexibility in the choice of 

thermal model parameters for estimation. These capabilities present cost-effective 
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solutions and opportunities for fault detection and diagnosis, control, and cost savings in 

buildings systems operation. The approaches developed in this dissertation could also 

be extended to other HVAC systems components such as pumps (chilled water pump, 

condenser water pump) and cooling tower fans for the optimization of water side 

equipment and operation. The thermal network approach of building load could be 

applied to any type of building, though the network connections get complicated with 

building complexity. The understanding of multi-zone interactions may be extended to 

study of supply-demand, producer-consumer systems or any other types of systems 

where subsystems compete for resources with other subsystems, but retain their 

individual characteristics e.g. that shown in Figure 8.1.   

 

Figure 8.1: Smart Grid Integration 

(Source: http://www.examiner.com/article/smart-grid-initiatives-future-of-power-grid-

superhighway) 

This is very useful for smart-grid architecture and integration, which is currently 

one of the emerging technologies. The new knowledge from this study, extended to 

http://www.examiner.com/article/smart-grid-initiatives-future-of-power-grid-superhighway
http://www.examiner.com/article/smart-grid-initiatives-future-of-power-grid-superhighway
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multiple buildings, could assist in demand management and generation of grid-

commands, for smart and intelligent operation of grid networks  

 

8.2 Limitations 

Some of the limitations in this study include the practicability and real-time 

deployment of the developed methods, given the current computational limitations in 

buildings automation system. Other limitations stem from the assumption of static 

occupancy and internal load profiles for the simulated thermal zones. This study also 

did not consider the associated controls for valves and dampers, which are necessary for 

the system to successfully implement the suggested control actions and sequences. 

However, the opportunity to study multi-zone thermal interactions and the requirement 

of limited measurement data to accurately capture building systems dynamics make the 

developed methods in this dissertation promising for existing and future building 

automation system.  

8.3 Future work 

How to design critical thermal zones in any multi-zone building?  

This research determined two zones in a multi-zone building to be critical zones. The 

zones were maintained at upper and lower comfort limits of temperature during peak 

periods. These zones were deemed instrumental to overall minimization of electricity 

demand and cost for the multi-zone building. Further studies are needed to identify and 

describe these critical zones for any given multi-zone building.  
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Water side equipment modeling and optimization 

The approach in this dissertation was demonstrated for air handling units‘ components, 

using assumed chiller efficiency. Integration of water side equipment (chillers, and 

cooling towers) into the dynamic modeling and optimization is essential for 

minimization of electricity demand and cost in a central plant. 

Optimization of lighting operation 

Inefficient operation of the lighting subsystem is one of the reasons for unnecessary 

electricity use in buildings. This study only considered air handling unit components. 

Research into lighting system operation may uncover further methods and opportunities 

for minimizing electricity cost in a multi-zone building.  

Effects of noise and uncertainty 

Further studies should consider noise and uncertainty in the observation and dynamics. 

The basic time-invariant stochastic control problem with linear dynamics has state 

dynamics given by: 

 (   )    ( )    ( )     ( )              (   ) 

 ( )    ( )     ( )     (   ) 

Where  ( ) is the disturbance and  ( ), the measurement noise. For the R-C thermal 

network,  ( ) may also represent the exogenous (uncontrollable) inputs acting on the 

envelope (solar radiation, internal gains, etc.), or process noise. The MPC framework 

used in this study may be extended to optimize the stochastic control problem, i.e. to 

find a control policy that satisfies the state and control constraints, to minimize a certain 

objective. The stochastic process may be written as  (   )    ( )  ,      - [
 ( )
 ( )

] 
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such that some of the solution methods described in this study may be used. The 

prediction model for the system will be: 

 (     | )    (   | )  ,      - [
 (   | )
 (   | )

]               (   ) 

The prediction horizon should be chosen large enough to capture the periodicity of the 

exogenous factors, and the state vectors could be estimated using Kalman filters or 

other methods. Since the R-C network is stable, small perturbations are expected to 

have marginal impact on the system response. 
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Appendix A: Fan Dynamic Model 

Considering the dynamic performance of fan-motor will enhance opportunities 

to identify and save electricity cost, particularly where there are demand charges on 

electricity. The fan-motor model equations in this section were modified from 

ASHRAE Research Project RP- 738 which provides reference guide for dynamic 

models of HVAC Equipment. The dynamics of the electric motor could be represented 

using Equations (A.1) and (A.2) 
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As may be seen, the differential equation is nonlinear in the motor speed. The torque 

applied to the fan shaft is provided by the armature current. It overcomes the inertia and 

friction forces. The first fan law is used to algebraically model the fan, as shown in 

Equation (A.3) below: 
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The system could now be represented in state space as Equation (A.6):  
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Jacobian linearization of the nonlinear ODE yields Equations (A.7) to (A.12) 
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    the linearized system could be transformed to state space representation, and solved 

using the analytical solution method described for the building load in previous section. 

Figure A.1 and A.2 compares the transient performance of the nonlinear system (solved 

numerically) with that of the linearized system (solved using state space methods). As 

could be seen, the linearized systems behavior is very similar to the nonlinear system.  

 

Figure A.1: Transient fan motor speed 
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Figure A.2: Transient fan-motor power 

The above system can be translated to a thermal network model, where the nodes are 

the motor speed, and armature currents respectively.  
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Appendix B: Fan Static Pressure Reset 

 
Figure B.1: Fan Static Pressure Reset – July 2015 

(ME = -0.0078in; MAE = 0.0266in; MBE_pcnt = -0.6083%; CVRMSE = 2.6401%) 

 
Figure B.2: Fan Static Pressure Reset – August 2015 

(ME = 2.1081e-05; MAE = 0.0454; MBE = 0.0014%; CVRMSE= 3.3887%) 
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Appendix C: Results of Time-Series Solution Method 

The baseline comparisons were carried out on a thermal zone in an office building, 

which is usually conditioned by an AHU.  One thermal zone was chosen to capture the 

dynamics and variations at the zone level. If needed, reasonably high model accuracy at the 

zone level could easily be extended to multi-zone buildings, but the computation time would be 

increased.  

The input matrix (U) includes ambient air temperature, sol-air temperature, and 

radiative and convective parts of the internal heat gain.  For simplicity, only the surface facing 

west is exposed to ambient and solar radiation while other surfaces are treated as interior 

adiabatic surfaces, with no exposure to sun or wind. Other than the weather data used to 

calculate ambient and sol-air temperatures, the internal load from equipment, people and lights 

are also needed.  In addition, the convective-radiative split is needed to determine the amount of 

internal heat gain that becomes cooling load instantaneously. Therefore, the following 

simulation conditions are defined as baseline conditions in order to obtain the inputs needed for 

Matrix U: 

• Ambient and solar radiation values from TMY2 data of Oklahoma City in EnergyPlus.  

The run period is chosen to be representative of one month of cooling season.   

• Use of 50% of nameplate rating for the plug loads. Most office equipment includes a 

nameplate rating showing the total power consumption. For most common equipment 

such as printers and computers, the actual power consumption ranges from 14% to 36% 

of the nameplate ratings [20].  In this study, we chose 50% as a worst case scenario. 

• Internal load (equipment and people) density of 2.67W/ft^2 for occupied hours (9am-

5pm). This is within the recommended range by ASHRAE/IES 90.1-2010 standards 

(1.5-3.0W/ft^2) for office and some institutional buildings. An internal load density of 

0.5W/ft^2 was used for unoccupied hours. 
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• 30%-70% Convective-Radiative Split for internal load.  This implies that 30% of 

internal heat gain is convection and 70% is thermal radiation. The higher the convection 

portion of a heat gain, the faster the heat gain can be converted into a cooling load. The 

original recommendation by ASHRAE was a 30%-70% convective-radiative split. 

Updated experimental results for equipment and other internal heat gain recommend 

20%-80% for radiative fraction and 80%-20% for the convective fraction of equipment 

[21-22]. A 30%-70% split is more appropriate for lighting and occupant load [23], and 

it is chosen in this study.   

The window-to-wall ratio (WWR) on the exposed surface is approximately 37% because 

ASHRAE 90.1-2010 standard allows up to 40% WWR.  For ease of comparing the nodal 

temperatures T1 and T2 with outside and inside surface temperature in EnergyPlus, the 3R2C 

parameters of building envelope are calculated from the wall construction as: 
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                                           where                  are the thickness, conductivity, 

density, and specific heat of the ith wall layer.           are the convective heat transfer 

coefficient on the outside and inside surface, respectively.   is the total number of wall layers.  

Using training data of one month in EnergyPlus, the 2R2C parameters of internal mass are 

found using the genetic algorithm [24] by minimizing the errors between the cooling load 

predicted by the RC model and EnergyPlus. Table 1 shows the R-C values for obtained for 

light, medium, and heavy wall construction used in this study. 
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Table C.1:  RC parameters for light, medium, and heavy Walls. 

Parameter Light Wall Medium Wall Heavy Wall 

R1 (m^2K/W) 0.012 0.012 0.012 

C2 (J/(m^2K)) 1504.5 16294.4 58701.3 

R3 (m^2K/W) 0.370 0.430 0.451 

C4 (J/(m^2K)) 1504.5 16294.4 58701.3 

R5 (m^2K/W) 0.025 0.025 0.025 

R6 (m^2K/W) 0.026 0.012 0.033 

C7 (J/(m^2K)) 275568.3 937302.1 603839.5 

R8 (m^2K/W) 0.050 0.085 0.507 

C9 (J/(m^2K)) 261992.6 250971.0 456829.6 

Rwin (m^2K/W) 0.149 0.149 0.149 

 

Results 

The figures below show the cooling load comparisons between the simplified time-

series model and EnergyPlus for light, medium, and heavy construction under the baseline 

conditions.  The mean absolute percentage error (MAPE) is a reliable measure of accuracy for 

constructing fitted time series values as applied to trend estimation.  

In comparison with EnergyPlus, MAPE values of 6.70%, 5.54%, and 6.31% were obtained for 

light, medium, and heavy wall construction, respectively.  
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Figure C.1: Cooling load for light construction. 

 

Figure C.2: Cooling load for medium construction. 
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Figure C.3: Cooling load for heavy construction 
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Appendix D: Alternative MPC Performance Cost 

 

Subject to: 

 

The control action sent to the plant is u(k)=u(k–1)+Δu(k|k)*. In this case, Δu(k|k)* is 

the first element of the optimal sequence. 
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Appendix E: Selected Publications 

ANALYSIS OF PASSIVE THERMAL STORAGE OPPORTUNITIES FOR OPTIMAL 

HEATING SYSTEM DESIGN 

Ogunsola, O., Song, L., & Wang, Y. (2015). Analysis of passive thermal storage opportunities for heating 

system design. Science and Technology for the Built Environment, (just-accepted), 00-00. 

 

ABSTRACT 

Heating and cooling load calculations are critical to size Heating, Ventilation and Air conditioning 

(HVAC) systems and determine energy use of their operations. The ASHRAE recommended heating load 

calculation model is most commonly used for heating load calculations. It adopts a simplified approach 

by considering only steady-state conductive heat transfer. However, due to thermal storage effect, heat 

generated in daytime may still be stored in buildings and released at a later time. Such assumption leads 

to significantly over-sized heating systems which are usually accompanied by high initial cost and higher 

cost of energy use. This study therefore examines the thermal response and passive storage characteristic 

of heavy construction for typical office building in continental US states. By allowing space air to drift to 

reasonably lower values, buildings need to be warmed up before being occupied in the morning. The 

worst case conditions might happen during warm-up or beginning of occupied hours. This paper 

evaluates the optimal size of heating system which satisfies thermal comfort while taking advantage of 

passive thermal storage. Results show varying downsizing opportunities ranging from 14% to 54% across 

the US. These results have the potential of establishing new heating device design standards for certain 

climate classifications. 

 

1 INTRODUCTION 

 The primary aim of building energy system is to satisfy thermal comfort requirements. However, 

recent studies revealed that about 30% of energy consumed in buildings is used inefficiently or 

unnecessarily (Energy Star, 2008). This is because excessive energy is consumed when HVAC systems 

fail to operate as intended, often due to several factors such as inappropriate monitoring and control 

strategy, lack of understanding of the dynamics of thermal loads, and system complexity. For efficient 

operation, the heating and cooling equipment should be properly sized, suitable for the particular location 

and application, and accessible for easy maintenance.  Meanwhile, the complex dynamics of temperature 

and weather fluctuation, thermal characteristics of building construction, internal heat gains, and major 

changes in occupancy schedules continue to provide challenge for HVAC systems design and control.  

 Building peak load calculations are necessary for the determination of appropriate size of HVAC 

equipment which will provide adequate heating and cooling under extreme weather conditions. Prior to 

1945, there were few peak load calculation methods. In the U.S., most of the methods used today were 

implemented after 1946, for example sol-air temperatures, decrement factors and the use of a thermal RC 

network (Mao et. al 2013). The first edition of ASHRAE Handbook appeared in 1967, and it adopted the 

existing peak load calculation methods. Since 1970, there have been major advances in peak cooling load 

calculations but peak heat load methods have not quite changed. Today, the widely adopted ASHRAE 

Model (ASHRAE, 2009) for heating system design uses a simplified approach to estimate the heating 

requirement for typical buildings, based on the following assumptions:  

 Heat losses are considered to be instantaneous, and essentially conductive, therefore thermal storage 

effects of building structure or content is ignored 

 Construction material is thermally homogeneous 

 No solar effect (at night or on cloudy, winter days) 

 Lights, and appliances have no offsetting effect 

 The system is sized for design conditions, which represents the worst case scenario (ASHRAE, 2009) 

 The above simplified approach has been justified because it evaluates worst case conditions that can 

reasonably occur during a heating season, when diurnal temperature variations are considered small 

enough to ignore.  However, the assumptions often lead to over-sizing of the heating system because it 
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ignores the thermal storage capabilities of building construction. Due to thermal and internal mass effects, 

heat gains in buildings during daytime may still be stored in the walls and radiation absorbing surfaces 

within the building. Heat absorbed by the thermal mass during occupied hours could be released during 

unoccupied hours. The heat released by the thermal mass may partially (or totally) compensate for the 

space heating needs during unoccupied periods without temperature dropping below the set minimum.   

To save running costs, the temperature may be allowed to drift to a reasonably low value during 

unoccupied periods (often called night setback). The building would then need to be warmed up before 

the start of occupied period. Due to weather phenomenon, the peak demand (which determines the 

heating system size) is usually recorded between midnight and the start of occupied period. Both passive 

thermal storage and amount of heating depend strongly on the characteristics of the building construction. 

To harness the passive thermal storage and simultaneously determine the right amount of heating needed 

to warm up the building requires an optimization process. This subject area was studied by Ogunsola and 

Song (2014) for two climate regions in the US but is now being investigated for all climate classifications 

in U.S continental states.  

 Therefore, the aim of this paper is to apply the thermal network model for a building with heavy wall 

construction, in order to optimize the size of the heating system, for all climate zones in continental U.S. 

states. By investigating the influence of the building construction on heating system capacity and 

operation, the possibility of harnessing building passive thermal storage for optimal sizing of heating 

system is investigated and discussed. Typical thermal zones in an office building with heavy construction 

of the building envelope are used to illustrate the concept.  

 

2 LITERATURE REVIEW  

 The building envelope is the interface between the indoor and outdoor environment. It determines 

and controls the fluctuations in the indoor environment, based on its thermal characteristics, and the 

transient outdoor conditions. Components such as windows, walls, roofs, thermal insulation, external 

shading devices, and other fenestration components make up the building envelope. On the other hand, 

thermal mass are the high capacity materials which are capable of absorbing and releasing heat at a later 

time. By absorbing and progressively releasing heat, thermal mass helps in the regulation of indoor 

temperature. 

 According to Li and Wang (2012), thermal storage is one of the most promising and sustainable ways 

for improving energy storage in buildings. Passive strategies involve improvements to the building 

envelope while active strategies are those seeking improvements to the HVAC systems.  

 According to Henze et. al (2005), there has been little improvement in thermal storage and peak load 

reduction potential compared to energy conversion. In their study, the focus was on nighttime pre-

cooling. By utilizing both active and passive building thermal storage, under constraints of thermal 

comfort, and optimal HVAC system operation, the study minimized building operating costs. Braun et al 

(2002) optimized cost of heating by control of passive thermal storage and applied the concept to the 

Energy Resource Station (ERS), Iowa Energy Center, United States. The temperature was allowed to 

float between 15°C (59F) and 30°C (86F) during unoccupied periods. The zone temperature was fixed at 

22°C (71.6F) during occupied periods. The passive thermal storage capability of the ERS was simulated 

and solved using quasi-Newton method.  The study demonstrated capability of thermal mass for load 

shifting, with the potential greatest for interior zones. However, as a lightweight structure with significant 

coupling to ambient and exterior, the ERS was deemed an unsuitable building to fully explore building 

thermal mass capability. Snyder and Newell (1990) developed a lumped capacitance model to determine 

least cost cooling strategies using effective building characteristics derived from a medium-sized 

building. Cooling cost savings of 18% were realized. From their analysis, thermal characteristics of 

building construction can have a significant impact on the load profile and energy use. Yang and Li 

(2008) mathematically modeled the effects of thermal mass and night ventilation on cooling load. The 

simulation model considered the thermal resistance and capacitance of the building construction and 

room air. Brown (1990) studied different office building thermal designs and two different insulation 

levels (R10 and R20) and analyzed their energy performance using DOE 2.1C (Department of Energy 

2.1C) energy simulation code. It was concluded that additional thermal mass led to energy savings of 18-
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20% over the base case of R10 light construction. Through these reductions, the HVAC system could be 

downsized, thereby offsetting the initial investment on the additional thermal mass.  

 In a previous study, a time series model was deduced from the R-C model and used to estimate 

thermal load of a building in real-time (Ogunsola et. al, 2014). Multiple scenarios of building 

construction, HVAC system operation and strategies have been simulated using the R-C model. Ogunsola 

and Song (2014), Ogunsola et. al (2014), and Ogunsola and Song (2015) introduced numerical and 

analytical solution of the RC thermal model and demonstrated opportunities for downsizing heating 

system capacity based on passive thermal storage. The RC model was determined to be an appropriate 

model for this study based on the following criteria:  

(i) Capability to represent physical properties of building construction in order to investigate the thermal 

characteristics of different construction. 

(ii) Capability to simulate internal loads and different HVAC system schedules. 

(iii) Simulation based, in order to investigate multiple scenario of operation across different climates. 

(iv) Ability to determine the system stability from thermal model parameters. 

(v) Capability to optimize heating system output in response to ambient temperature and solar radiation.  

(vi) Capability to simulate internal mass, thereby harnessing the thermal storage effort to the fullest. 

(vii) Capability to simulate floats in space air temperature. 

Using case study of two (2) US climates, heavy construction was found to have the largest savings in 

heating system size, based on its better passive thermal storage capability and moderating effects on 

temperature swings. The objective of this paper is to extend the method developed by Ogunsola and Song 

(2014, 2015) to cover all continental US states with the overall goal of identifying further downsizing 

opportunities and investigating situations under which the ASHRAE approximation is most suitable for 

heating system design.  

3 METHODOLOGY 

The R-C thermal model with envelope and internal mass components for a single exterior wall is 

shown in Figure. 1. The variables are as defined in the nomenclature. The solar air temperature concept 

was used.   

ToE

Rwin1

TiE
TsE

Qconv+Qsys

Re1 Re2 Re3
Tin

Cw Cw Cint

Rint2

Cin

Rint1

Cint

Tamb

Tint2 Tint1

Qr1 Qr1

Fig. 1: 

R-C Thermal model, showing sol-air temperature and HVAC system input. 

To derive a sensible heat balance equation for the R-C model, the following simplifying assumptions are 

made: 

 The zone air is well mixed; therefore the whole indoor circulated air volume is at a uniform 

temperature.  

 The effect of varying wind velocity on external wall convection coefficients is not considered. 

Hence, a constant heat transfer coefficient is assumed in this study. 
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 The space is pressurized so infiltration does not create additional heating load in the conditioned 

space. 

 The floor surface is considered adiabatic. 

 The long wave radiation exchanges between internal surfaces and multiple reflections are 

described by the lumped internal thermal R-C model. 

The above assumptions are commonly made to simplify the R-C model [Ogunsola and Song (2014); 

Lombard and Mathews (1992); Ogunsola et. al (2014); Ogunsola and Song (2015)]. The governing 

equations found by heat balance at each node are given in Equation (1): 
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where  

  = temperature of the  th node.  

  = thermal capacitance of node  . 

 = total number of temperature branches (e.g., ambient, sol-air temperature, and neighbor nodal 

temperatures) connected to node  . 

  = temperature of the  th branch, connected to node  . 

 = total number of heat flux branches (such as convection, radiation, and system input) connected to node 

 .  

  = heat flux of the  th branch connected to node    This term is made up of internal heat gains such as 

   and       which are impressed on internal mass and zone temperature nodes respectively. It also 

includes the heating or cooling supplied by a device (    ), which applies only to zone temperature 

nodes, as shown in Figure 1.    

  = resistance of the branch between    and   .  

Equation (1) represents an inhomogeneous system of ordinary differential equations. In state space 

representation, it can be re-written as:  

 ̇                       ( ) 

where   is the state (or system) matrix and   is the input matrix of dimensions     and    , 

respectively, as shown in Equation (3).  

  (

       

   
       

)        (

       

   
       

)         (3) 

The matrices   and   are time-invariant matrices whose entries are functions of the R-C parameters. 

  ,           -
  are the nodal temperatures, and   [        ]

 
  is the input matrix, which 

includes heat gains, ambient temperatures, and sol-air temperatures on opaque surfaces. The stability of 

the system depends on the eigenvalue characteristics of the system matrix,  . In general,    , that is, 

the input matrix must include not only the heat flux sources but also ambient and sol-temperature inputs. 

Equation (2) is a system of first order differential equations with constant coefficients, and the solution is 

given by: 

           ∫   (     )  ( )  
   

 

     ( ) 

where the exponential matrix of   is defined by the power series 

         
    

  
 

    

  
   

    

  
         ( ) 

  is the identity matrix of the same dimensions as  , and   is the time step. As developed by Seem et al. 

(1989), inputs between time   and     can be modeled by a continuous, piecewise linear function as: 
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Meanwhile, the input between time   and     could easily be modeled using other functions (such 

as sine or cosine for ambient or solar radiation) if they are deemed more appropriate or when longer time 

steps are used. Substituting Equation (6) into Equation (4) gives 

           ∫   (     ) *   
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If conditions are known at time,  =0, then the solution becomes 

         ∫   (   ) *   
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(     )+   
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To obtain the analytical solution, the exponential matrix     and the convolution integral 

∫   (   ) 0   
( )

 
(     )1   

 

 
 need to be evaluated. There are several approaches used to evaluate 

the matrix exponential. These include polynomial methods, Taylor series, inverse Laplace, matrix 

decomposition, and the ordinary differential equation method (Cleve and Loan, 2003). In this study, the 

matrix decomposition method is adapted because it is based on similarity transformation of the form: 

               ( ) 

such that the power series definition of     becomes  

                (  ) 

The usual approach is to take   as the matrix whose columns are the eigenvectors of  , i.e., 

    ,  | |  -                                       (  )  

     diag           (           )    (  ) 

As long as V is nonsingular, the matrix exponential of    is expressed as 

     (    (           ))       (  ) 

The analytical solution was applied in Ogunsola and Song (2014, 2015) where it was used for the optimal 

sizing of the heating system for certain U.S. locations and for building load prediction of actual building. 

The symbolic solution to nodal temperatures from Equations (8) through (13) requires the heat extraction 

rate of a heating device, among other inputs. From the analytical solution, the heat extraction rate may be 

represented as a function of desired temperature and heat gains/loss within the building. In this study, the 

objective is to minimize the heating system size (i.e. minimize peak heating required) for two typical 

thermal zones.   

The optimization problem is defined as: 

Minimize:  

      .(             )   

 
/   .     ( )       ( )  ( )/          (  ) 

With respect to:      ( )           ( ) (       ) (     ) ,   

subject to:        ( )       ( )         ( );       ( )   ;  

Optimization variables:      ( )           ( ) (       ) (     ) 

Where        ( ) is the heating supplied by the heating device to zone   at hour  . The constraint on      

implies that only heating mode is considered.  

  = hour of the day; 

  Period of optimization (in hours). In this study,   is chosen to be 48 hours.  

     ( ) = Room temperature of zone   at hour  .  

       ( ) = minimum allowable zone temperature at hour  . It is specified as     (   ) for 

unoccupied hours and        (   ) for occupied hours (9am – 5pm).  
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       ( ) = maximum allowable zone temperature at hour  . It is specified as      (   ) when 

heating system is in operation, otherwise as    (     ). This is throttling allowance due to 

contributions from thermal mass, solar radiation, ambient temperature, or internal heat gains.  

 ( ) = vector of uncontrolled variables that affect the peak heating required at hour  . They include 

weather and internal heat gains.  Braun (1990) worked on a very similar optimization problem involving 

the optimal control of building thermal storage for reducing peak electricity demand and energy costs. 

       (and hence, the objective function,  ) is not explicit in the zone temperature, weather, and internal 

heat gains, as explained in Equations (2) to (4). Therefore, the optimal heating system size was estimated 

using Genetic Algorithm (Mitchell 1997). Since      ( ) and       ( ) are the optimization variables, the 

Genetic algorithm modifies their values iteratively to achieve the minimum value of   that satisfies the 

constraints.  Genetic Algorithm differs from classical, derivative-based optimization algorithm because it 

generates a population of points at each iteration. It selects the next population by computation using a 

random number generator (MathWorks 2015).  

 

4 HEATING OUTDOOR DESIGN DAY TEMPERATURE PROFILE 

ASHRAE heating design outdoor air temperature represents a one-time worst case condition 

which can reasonably occur during winter season. In order to understand and investigate the opportunities 

for downsizing the heating system through transient heat transfer analysis, it is necessary to perform 

simulation for a period of time.  The current ASHRAE heating design outdoor air temperature (at 99% or 

99.6% annual cumulative occurrence frequency) represents a single measurement and it is not sufficient 

information to derive the temperature profile.  For example, there is no information about the hour of the 

day at which the lowest temperature is recorded. There is also no information about the peak temperature 

recorded during the design day. Therefore, further information is required to generate temperature profile 

for the design day. This section discusses the needed inputs, assumptions, and data sources used to 

generate temperature profile for the heating design day in this study.  

The design temperature used in this study is the lower of the 99.6% dry bulb temperature from 

TMY3 and ASHRAE design condition. The peak temperature for the design day and hour at which the 

design temperature occurs was determined using a similar approach used for ASHRAE cooling load 

calculations. For cooling load calculations, the outdoor temperature was assumed to vary in an 

approximately sinusoidal fashion according to Equation (15) 

        (  )    (  ) 

Where: 

  = cooling design dry bulb temperature, F or   

DR= daily range, F or   

   = fraction of daily range. 

In this study, the hourly outdoor temperature was assumed to also vary in an approximately 

sinusoidal fashion, with the outdoor temperature given by Equation (16): 

           (  )    (  ) 

Where: 

    = heating design dry bulb temperature, F or   

   = daily range for heating design day,   or   

  =     =fraction of daily range for heating design day. 

The assumptions and methods used for some of the input in this study are shown in Table 1. 

 

Table 1: Inputs, assumptions, and data source 

Inputs Method or assumption Data Source or further 

information 

Heating Design 

Temperature (    ) 

The smaller of 99.6% ASHRAE 

design and 99.6% TMY3 data 

ASHRAE and TMY3 

Daily Range (   ) Average daily range for the design 

month, deduced from TMY3 data 

TMY3 

fraction of daily range 

(  ) 

Sinusoidal waveform fraction, 

generated as         such that 

ASHRAE 
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the minimum temperature occurs at 

night, and maximum occurs during 

daytime.  

Time of occurrence of 

maximum temperature 

(    ) 

The most frequent hour at which 

maximum temperature is recorded 

for the design month, deduced from 

TMY3 data. If more than one hour 

fulfills this, the average is taken. 

TMY3 

Design day temperature 

profile 

Generated as sinusoidal waveform 

with peak temperature and minimum 

temperature occurring during 

daytime and night, based on the daily 

range fraction,   . Table 2 shows the 

values of    used in this study  

           (  ) 

 

 

Table 2: Fraction of the Daily Range,   . (Deduced from McQuiston and Spitler, 1992) 

Time, 

hr 

Fraction Time, 

hr 

Fraction Time, 

hr 

Fraction Time, 

hr 

Fraction 

1 0.13 7 0.07 13 0.89 19 0.66 

2 0.08 8 0.16 14 0.97 20 0.53 

3 0.04 9 0.29 15 1.00 21 0.42 

4 0.01 10 0.34 16 0.97 22 0.32 

5 0.00 11 0.61 17 0.90 23 0.24 

6 0.02 12 0.77 18 0.79 24 0.18 

 

Thus, the heating design day temperature profile was generated as sinusoidal waveform.  In addition, for 

transient heat transfer calculation, the previous day temperature has remaining thermal impacts and thus 

we assume two consecutive days (up to 48 hours) have the same winter design day profile, similar to 

ASHRAE cooling load calculation procedure. 

 

5  CASE STUDY 

The study focused on most climatic zones in the U.S.  The locations are chosen randomly, to 

represent all climate classifications according to ASHRAE, Building America Climate (DoE, 2014) and 

International Energy Conservation Code (ICC, 2012). The studied locations, climate types, and design 

temperature values are shown in Figure 2 and Appendix. Table 3 shows the conversion between the 

various classifications.  
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Fig. 2: Map of USA showing studied locations 

 

The thermal dynamics of the building are modeled using Resistance-Capacitance (R-C) model, 

which has proved to be a simplified, yet robust model for estimation and analysis of heating and cooling 

loads in buildings [Ogunsola et. al (2014), Lombard and Mathews (1992), Ogunbiyi et. al 2013, Ogunsola 

and Song (2015), and Ogunbiyi (2014)]. 

Table 3: Relationship between Building America and IECC climate classifications 

Building America ASHRAE and IECC 

Subarctic Zone 8 (only found in Alaska) 

Very Cold Zone 7 

Cold Zones 5 and 6 

Mixed-Humid 4A and 3A counties above warm-humid line 

Mixed-Dry Zone 4B 

Hot-Humid 2A and 3A counties below warm-humid line 

Hot-Dry Zone 3B 

Marine All counties with a ―C‖ moisture regime 

  

Two typical thermal zones (shown in Figure 3) were modeled in this study; Thermal zone 1 is a corner 

location with 2 windows (one facing north, and the other facing east). Thermal zone 2 has only one 

window, facing north. The window-to-wall ratio (WWR) on those surfaces is 30%. ASHRAE 90.1-2010 

standard allows up to 40% WWR (ASHRAE 2010).   Both thermal zones 1 and 2 represent typical 

orientations in office building. The floors are assumed to be adiabatic for both zones. The composition of 

the heavy construction was taken from ASHRAE Handbook of Fundamentals (ASHRAE 2009). Hourly 

temperature and solar radiation values were obtained from Typical Meteorological Year, Version 3 

(TMY3) weather data (DoE 2013) and ASHRAE Clear Sky Model (ASHRAE 2009) respectively. The 

ASHRAE Clear Sky model was used to decompose incident solar radiation from TMY3 data into direct, 

diffuse, and reflected components for the different wall orientations. Table 4 shows the composition of 

the heavy wall construction used in this study. The heavy wall construction was taken from Table 21 of 

ASHRAE Handbook of Fundamentals 2009, which shows some representative constructions for light, 

medium, and heavy exterior wall. The additional thermal mass within the building, such as the 

floor/ceiling (see construction materials in Appendix), furniture, carpets etc. is considered by lumping 

them into the 2R2C model, with the capacitances (Cint‘s) and resistances (Rint‘s) trained and determined 

using physical characteristic of the construction (See Ogunsola and Song 2012, Wang and Xu 2006). 
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Separately, the partition is represented by 3R2C. The composition of floor and partitions are shown in 

Appendix.  

 
Fig. 3: The Modeled Office Building 

Table 4: Heavy Wall Construction 

 

  

(  ) 
(  ) 

 (    ) 
(𝑩   𝒉𝒇 𝑭) 

  (     ) 
(   𝒇  ) 

   (     ) 

(𝑩     𝑭) 

Resistance 

(     ) 
(𝒇  𝑭𝒉 𝑩  ) 

M01 brick 

101.6 

(4) 0.89 (0.51) 1920 (119.86) 790 (0.189) 

 

M15 

concrete 

203.2 

(8) 1.95 (1.13) 2240 (139.84) 900 (0.215) 

 

I02 

insulation 

50.8 

(2) 0.03 (0.017) 43 (2.68) 1210 (0.287) 

 

F04 air 

resistance - - - - 

0.15 (0.852) 

G01a 

gypsum 

19 

(0.75) 0.16 (0.092) 800 (49.94) 43 (0.01) 

 

 

 The RC model representation of the building is shown in Figure 4. The inputs to the model include 

both envelope and internal load components.       denotes virtual temperature of internal mass nodes. 

     and      are room temperature of Zone 1 and 2 respectively.     and     are temperature of internal 

partition separating the two zones.    = Thermal capacitance of internal partition.      is system output 

(+ve for heating, and –ve for cooling). It is treated as 100% convective in this study.    is resistance of 

internal partition.    is average of the sum of transmitted solar radiation from windows, and radiative part 

of internal load for the particular zone.       is convective part of internal load. In this study, the 

assumed split is 50% convection and 50% radiation. This implies that 50% of internal heat gains is added 

to the air stream instantaneously, while the remaining 50% is radiated. Note that only 2 external walls are 

shown in Figure 4. There are additional walls on south and north respectively, but these are not shown in 

the schematic representation due to space limitations.  

N E 
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4: R-C Model Representation for the Building 

For the selected office building, there are 4 roof temperatures, 12 exterior wall temperatures (2 

temperature nodes for each exterior wall), 2 internal partitions temperatures, and 4 virtual temperatures to 

account for internal mass, and 2 room temperatures. In total, there are 24 differential equations. The 

inputs are ambient, 5 sol-air temperature (one for horizontal surface, and 4 for the different orientation of 

vertical surface), 1 convection input (assumed same for both thermal zones), 2 radiation input (different 

for the thermal zones due to additional window in zone 1), and 2 system output (since the demand of each 

zone is different). The sets of differential equation can be expressed in state space as in Equation (3), 

Where   is a       matrix of constant coefficients.   is a vector of dimension     , since there are 

24 temperature nodes. 𝑩 is of dimension      , and   is a      vector, since there are 10 inputs. 

The coefficients of the state matrices   and 𝑩 are defined by the R‘s and C‘s of the building construction 

materials and the amount of internal mass.  

 

5.1 Simulation conditions of the R-C model 

 The following simulation conditions are defined as baseline conditions in order to obtain the inputs 

needed for Matrix U: 

• Ambient and solar radiation values from TMY3 and ASHRAE design conditions for the selected 

locations.  The run period is chosen to be the two consecutive design days.    

• Use of 35% of nameplate rating for the plug loads. Most office equipment includes a nameplate 

rating showing the total power consumption. For most common equipment such as printers and 

computers, the actual power consumption ranges from 14% to 36% of the nameplate ratings (Hosni 

and Beck, 2010).   

• Internal load (equipment and people) density of          (            ) for occupied hours 

(9am-5pm). This is within the recommended range by ASHRAE/IES 90.1-2010 standards for office 

and some institutional buildings. An internal load density of 5.4      was used for unoccupied 

hours.  
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The R-C model provides useful and quality information about the system dynamics and thermal 

characteristic of building construction because it represents the system physically. By analyzing the R-C 

model and investigating the thermal response of the heavy construction, the influence of thermal 

characteristics of the building construction on the heating system design and operation are discussed.  

The simulation was carried out under two scenarios: 

1. Without HVAC system operation: This enabled the study of temperature floats, and comparison 

of heating needs among different climates. The floating mode is essential for the identification of 

climates with least heating needs, or potential for heating device to be eliminated. If thermal 

comfort requirements are nearly met during floating mode for a certain location, then such 

locations offer very high potential for heating needs to be met through smarter energy use, rather 

than by use of heating device.  

2. With HVAC system operation:  This involves the simulation of heating needs, based on comfort 

conditions, defined as:  

 )   °  (   )        °  (     )   (Temperature limits for the thermal zone during 

unoccupied periods). The lowest temperature allowable was specified as   °  (   )  This is 

within ASHRAE 90.1 recommended heating night setback temperature of        (   ) for 

residential and non-residential conditioned spaces. The highest temperature allowable during 

unoccupied periods is specified as   °  (     ). 
b)     °  (   )          ° (     ) from 9am to 5pm (Temperature maintained around 

  °  (     ) for occupied hours).  Therefore, the highest temperature allowable during 

occupied periods was also specified as   °  (     ). 
The peak heating load determines the heating system size. In this study, the optimal heating 

system was estimated using Genetic Algorithm (Mitchell 1997), with the objective to minimize the 

heating system size, subject to comfort conditions (a) and (b). 

 The study concludes by presenting the results of the optimal size of the heating system for all the 

locations. The determined equipment size is compared with ASHRAE method. In this study, the heating 

system output was moderated to satisfy the constraints on temperature. The heating system was sized 

based on the largest heating output predicted during the heating season. The downsizing opportunity was 

expressed as percent savings over the ASHRAE method, as shown in Equation (17).   

           
                –            

               

                        (  ) 

6 RESULTS 

6.1 Temperature Floats 

Results of temperature floats for the two thermal zones are shown in Figures 5 and 6. For the temperature 

float study, the heating system was turned off at 5PM (which marks the start of the plot in Figures 5 and 

6) and remained off the entire time. The purpose was to investigate how long it takes for the temperature 

to reach the setback temperature of 55F. Additionally, the prolonged hour was used to check if the heat 

gains of the following day will be sufficient to take the temperature within comfort limits during occupied 

hours. 

Temperature floats was studied after the heating system was shut down, and with minimum effects from 

lighting and appliances. The temperature trajectory is then mostly influenced by the envelope thermal 

mass, internal mass, and the incident outdoor conditions. As shown in Figure 5, there are varying 

behaviors across different climate. For the thermal zone 1, very cold regions will achieve the night 

setback temperature within 5 hours after the heating system was turned off. Meanwhile, hot-dry climates 

and marine regions will not reach the setback temperature before the heat gains of the next day kicks in. 
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Fig. 5: Temperature Float for Thermal Zone 1 

By the start of occupancy period of the following day, typical office buildings in hot-dry 

climates have only experienced about     (    ) drop in zone temperature. The heat gains of the 

following day are sufficient to take the temperature to within     (    ) of desired conditions for 

comfort. 

 

Fig. 6: Temperature Float for Thermal Zone 2 

As shown in Figure 6, the temperature floats of thermal zone 2 are very similar to that of zone 1. 

However, it takes a much longer time for the temperature to reach the night setback setpoint of 

    (   )  Very cold regions will not reach the setback temperature until 2am, which is twice as long as 

the time it takes for zone 1. For thermal zone 2, four (4) climates will not reach the setback temperature 

before heat gain of the next day kicks in, as shown by increase in zone temperature between 7am and 

5pm of the second (2
nd

) day. Generally, the temperature drops observed for zone 2 are much smaller than 

those of zone 1. Only   (    ) drop was observed for typical building in hot-dry climate. The heat gains 

of the next day takes the zone temperature to within     (    ) of desired comfort conditions for 

occupied periods. Note that thermal zone 2 is more representative of typical office buildings, with 

approximately 30% WWR on one exposed surface.  

 

6.2 Heating System Down-Sizing 

Figures 7 to 10 shows sample 2-days ambient and temperature profiles for four climate 

classifications (very cold, mixed-humid, mixed-dry, and marine) as well as the required heating to 

achieve the desired temperature. The plots cover days before and on the design day. (Note that, the design 

day profile was assumed for both days). As shown in Figures 7 to 10, all climate regions offer opportunity 

for floats in temperature, which may translate to huge energy savings during unoccupied hours. Due to 

very low temperature in very cold regions (Figure 7), zone temperature quickly reaches the specified 
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lower limit, therefore requiring that the heating system be turned on, to prevent temperature from 

dropping any further. On the other hand, though marine regions are much suitable candidate for 

temperature recovery, as shown in Figure 10, in order to optimize the heating system sizing, which allows 

the required room air temperature at the room occupied hour, the heating system is on at the same time as 

in the very cold regions. The mixed-humid and mixed-dry regions (Figures 8 and 9) have moderate 

temperature response and floats, which follows similar pattern but the heat capacity needed is observed 

between very cold region and marine region.  

 

 
Fig. 7: Temperature Profile for Very Cold Region

 
Fig. 8: Temperature Profile for Mixed Humid Region 
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Fig. 9: Temperature Profile for Mixed Dry Region 

 

 
Fig. 10: Temperature Profile for Marine Region 

For all cases considered, thermal zone 1 is seen to have lower temperatures as compared with thermal 

zone 2, since it loses heat to ambient through two windows as opposed to thermal zone 2 which has only 

one window. Heating results show that the heating system must be operating at full load shortly before 

and at the time of occurrence of minimum daily temperature for all the cases considered. As expected, 

zone 1 has higher heating needs than zone 2.      

Figures 11 and 12 show the downsizing opportunities for thermal zones 1 and 2 respectively. As could be 

deduced from Figures 11 and 12, downsizing opportunities vary widely across the U.S. but generally 

seem to decrease from southern states to northern states. North-eastern states of the U.S. have the least 

savings. The largest savings is noted in California (54%), and the least was observed for Maine (14%). 

Overall, hotter regions are seen to have larger downsizing opportunities, as compared with colder regions. 

This is expected, due to the favorable temperature and solar radiation profile for very hot regions. This 

implies that using the ASHRAE method for hot regions such as Florida and California may lead to 

significantly oversized system with the margin greater than 40%.  The ASHRAE approximation is thus 

seen to be more suitable for colder regions, where the percentage of oversize is often less than 20%.  

 



243 

 
Fig. 11: Downsizing Opportunities for Thermal Zone 1 (all numbers in %) 

 

 
Fig. 12: Downsizing Opportunities for Thermal Zone 2 ( all numbers in %) 

 

CONCLUSION 

A typical two thermal zones with heavy construction of the building envelope were investigated in this 

study. The thermal and internal mass characteristics of building constructions have significant influence 

on heating system operation and size for the different locations considered in this study. Passive thermal 

storage also offers opportunities for energy savings during heating system operation. Once the desired 

temperature is reached, the heating system could be turned off in a typical building with heavy 

construction. The heavy constructions save energy during floating periods, by moderating swings in 

temperature. The potential for energy savings in heating system operation is seen to increase according to 

climate type: Very cold region < Cold region < Mixed-Humid < Mixed- Dry < Hot-Humid < Marine < 

Hot-Dry Regions. By analyzing the thermal response of the building construction for the heating design 

days, results show varying downsizing opportunities, ranging from 14% to 54% across the US. Overall, 
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the savings on heating system size is highest for California, which is classified as a hot-dry region and 

least for Maine, which is a cold region according to ASHRAE classifications. For all the locations 

studied, there are savings on heating system size by considering passive thermal storage. This study also 

offers insight into climate regions for which the ASHRAE approximation is most suitable. Results of this 

study suggests that the current heating device standard results in significantly oversized system for hot 

humid and hot dry regions of the U.S. These results are significant; with the potential of establishing a 

new heating device design standard for certain climate classifications.  

 

NOMENCLATURE 

 :   Solar radiation absorptivity (dimensionless) 

      Thermal capacitance of room air (   ) (     ) 

       Thermal capacitance of internal mass (   ) (     ) 

     Thermal capacitance of internal wall or partition (   ) (     ) 

     Specific heat (     ) (        ) 

     Thermal capacitance of exterior wall (   ) (     ) 

     hour of day 

 :  Global solar irradiance (    ) (         ) 

    Peak heating rate for the building ( ) (     ) 

 :   Thermal conductivity (    ) (        ) 

    Period of optimization (hrs) 

       System extraction or heating rate ( ) (     )  

        Convective part of internal load ( ) (     ) 

     Half of the sum of radiative components from internal load and windows ( ) (     ) 

    Vector of uncontrollable variables (weather, internal heat gains, etc)  

     Thermal Resistance of external wall (     ) (          ) 

      Thermal Resistance of internal mass (     ) (          ) 

     Thermal Resistance of internal partition (     ) (          ) 

     Thermal Resistance of roof (     ) (          ) 

       Windows resistance (     ) (          ) 

       Ambient temperature (°  )( ) 

     Inside surface temperature of east wall (° ) ( ) 

     Inside surface temperature of roof (° ) ( ) 

     Inside surface temperature of west wall (° ) ( ) 

     Room temperature (° ) ( ) 

    : Internal mass temperature (°  )( ) 

     Outside surface temperature of east wall (° ) ( ) 

     Outside surface temperature of roof (° ) ( ) 
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     Outside surface temperature of west wall (° ) ( ) 

     Temperature of partition (° ) ( ) 

     Sol-air temperature of East facing wall (° ) ( ) 

      Sol-air temperature of roof (° ) ( ) 

      Sol-air temperature of West facing wall (° ) ( ) 

      Extra infrared radiation due to difference between the external air and apparent sky 

temperature  
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Appendix 1:  Studied Locations and Climate Classification 

S/N Station_ID Location City Name 

Climate 

Type 

ASHRAE 

1 722230 Alabama Mobile Regional AP Hot-Humid 2A 

http://www.mathworks.com/discovery/genetic-algorithm.html
http://www.mathworks.com/discovery/genetic-algorithm.html
http://apps1.eere.energy.gov/buildings/energyplus/
http://apps1.eere.energy.gov/buildings/energyplus/weatherdata_about.cfm%20Accessed%20October%202013
http://apps1.eere.energy.gov/buildings/energyplus/weatherdata_about.cfm%20Accessed%20October%202013
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2 722740 Arizona 

Tucson International 

AP 

Hot-dry 2B 

3 723418 Arkansas 

Texarkana Webb 

Field 

Hot-Humid 2A 

4 722950 California Los Angeles Intl Arpt Hot-dry 2B 

5 724769 Colorado Fort Collins (AWOS) Cold 5B 

6 725040 Connecticut 

Bridgeport Sikorsky 

Memorial 

Cold 5A 

7 724088 Delaware 
Dover AFB 

Mixed-

Humid 

4A 

8 722030 Florida 

West Palm Beach Intl 

Arpt 

Hot-Humid 2A 

9 747810 Georgia 

Moody 

AFB/Valdosta 

Hot-Humid 2A 

10 726813 Idaho Caldwell (AWOS) Cold  

11 725314 Illinois 
Cahokia/St. Louis 

Mixed-

Humid 

4A 

12 724320 Indiana 

Evansville Regional 

AP 

Mixed-

Humid 

4A 

13 725460 Iowa Des Moines Intl AP Cold 5A 

14 724504 Kansas 
Wichita/Col. Jabara 

Mixed-

Humid 

4A 

15 724354 Kentucky 
Somerset (AWOS) 

Mixed-

Humid 

4A 

16 722405 Louisiana 

Lafayette Regional 

AP 

Hot-Humid 2A 

17 726060 Maine Portland Intl Jetport Cold 6A 

18 745940 Maryland 
Andrews AFB 

Mixed-

Humid 

4A 

19 725067 Massachusetts Barnstable Muni Boa Cold 5A 

20 725375 Michigan Detroit City Airport Cold 5A 

21 726575 Minnesota Minneapolis/Crystal Cold 6A 

22 747686 Mississippi 
Keesler AFB 

Mixed-

Humid 

4A 

23 723489 Missouri 

Cape Girardeau 

Municipal AP 

Mixed-

Humid 

4A 

24 727730 Montana 

Missoula 

International AP 

Cold 6B 

25 725540 Nebraska Bellevue Offutt AFB Cold 5A 

26 723860 Nevada 

Las Vegas McCarran 

Intl AP 

Hot-Dry 2B 

27 726055 New Hampshire Pease Intl Tradepor Cold 5A 

28 725020 New Jersey 

Newark International 

Arpt 

Mixed-

Humid 

4A 

29 723650 New Mexico 

Albuquerque Intl 

Arpt  

Mixed-Dry 4B 

30 744860 New York 

New York J F 

Kennedy Int'l Ar 

Mixed-

Humid 

4A 

31 723013 North Carolina 

Wilmington 

International Arpt 

Hot-Humid 2A 
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32 727676 North Dakota Minot Faa AP Very Cold 7 

33 724288 Ohio Ohio State University Cold 5A 

34 723575 Oklahoma 
Lawton Municipal 

Mixed-

Humid 

4A 

35 726959 Oregon Aurora State Marine 5A 

36 724080 Pennsylvania 

Philadelphia 

International AP 

Mixed-

Humid 

4A 

37 725070 Rhode Island 

Providence T F 

Green State Ar 

Cold 5A 

38 722080 South Carolina Charleston Intl Arpt Hot-Humid 2A 

39 726625 South Dakota Ellsworth AFB Cold 5A 

40 723340 Tennessee 

Memphis 

International AP 

Mixed-

Humid 

4A 

41 722598 Texas Dallas/Addison Arpt Hot-Humid 2A 

42 724754 Utah 

Saint George 

(AWOS) 

Hot-Dry 2B 

43 726170 Vermont 

Burlington 

International AP 

Cold 6A 

44 724050 Virginia 

Washington Dc 

Reagan AP 

Mixed-

Humid 

4A 

45 727938 Washington Tacoma Narrows Marine 4C 

46 724140 West Virginia 

Charleston Yeager 

Arpt 

Mixed-

Humid 

4A 

47 726400 Wisconsin 

Milwaukee Mitchell 

Intl AP 

Cold 6A 

48 725640 Wyoming 

Cheyenne Municipal 

Arpt 

Cold 6B 

Reference: DoE (2010). Guide to determining climate regions by county. Available at: 

http://apps1.eere.energy.gov/buildings/publications/pdfs/building_america/ba_climateguide_7_1.pdf 

 

Appendix 2: Heating Design Temperatures (ASHRAE vs TMY3) 

Station 

ID 

Location City Name ASHRAE 

99.6% 

design 

temperature 

TMY3 

99.6% 

design 

temperature 

Value 

Used  

722230 Alabama Mobile Regional AP -2.8 -5.6 TMY3 

722740 Arizona Tucson International AP -0.2 -2.2 TMY3 

723418 Arkansas Texarkana Webb Field -5.8 -6.6 TMY3 

722950 California Los Angeles Intl Arpt 6.9 6.1 TMY3 

724769 Colorado Fort Collins (AWOS) -17.7 -26.6 TMY3 

725040 Connecticut Bridgeport Sikorsky 

Memorial 

-11.8 -18.3 TMY3 

724088 Delaware Dover AFB -10.1 -14 TMY3 

722030 Florida West Palm Beach Intl 

Arpt 

6.8 5.4 TMY3 

747810 Georgia Moody AFB/Valdosta -1.2 -8 TMY3 

726813 Idaho Caldwell (AWOS) -11.3 -7 ASHR

AE 

http://apps1.eere.energy.gov/buildings/publications/pdfs/building_america/ba_climateguide_7_1.pdf
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725314 Illinois Cahokia/St. Louis -12.5 -14.4 TMY3 

724320 Indiana Evansville Regional AP -14.7 -13.3 ASHR

AE 

725460 Iowa Des Moines Intl AP -21.6 -21.1 ASHR

AE 

724504 Kansas Wichita/Col. Jabara -14 -11 ASHR

AE 

724354 Kentucky Somerset (AWOS) -10.2 -14.3 TMY3 

722405 Louisiana Lafayette Regional AP -1.9 -1.1 ASHR

AE 

726060 Maine Portland Intl Jetport -18 -23.3 TMY3 

745940 Maryland Andrews AFB -10.1 -12 TMY3 

725067 Massachusetts Barnstable Muni Boa -12.5 -8 ASHR

AE 

725375 Michigan Detroit City Airport -15.5 -16.7 TMY3 

726575 Minnesota Minneapolis/Crystal -22.6 -27 TMY3 

747686 Mississippi Keesler AFB -0.9 -4 TMY3 

723489 Missouri Cape Girardeau 

Municipal AP 

-13.7 -19 TMY3 

727730 Montana Missoula International 

AP 

-21.1 -15 ASHR

AE 

725540 Nebraska Bellevue Offutt AFB -19.6 -23 TMY3 

723860 Nevada Las Vegas McCarran Intl 

AP 

-0.8 1.1 ASHR

AE 

726055 New 

Hampshire 

Pease Intl Tradepor -16.3 -15.6 ASHR

AE 

725020 New Jersey Newark International 

Arpt 

-11.6 -17.8 TMY3 

723650 New Mexico Albuquerque, new 

mexico 

-7.9 -7.8 ASHR

AE 

744860 New York New York J F Kennedy 

Int'l Ar 

-10.7 -11.7 TMY3 

723013 North 

Carolina 

Wilmington International 

Arpt 

-4.5 -3.9 ASHR

AE 

727676 North Dakota Minot Faa AP -28.8 -28.2 ASHR

AE 

724288 Ohio Ohio State Universi -14 -21 TMY3 

723575 Oklahoma Lawton Municipal -7.8 -8 TMY3 

726959 Oregon Aurora State -2.5 -3 TMY3 

724080 Pennsylvania Philadelphia International 

AP 

-10.8 -13.3 TMY3 

725070 Rhode Island Providence T F Green 

State Ar 

-13.8 -14.4 TMY3 

722080 South 

Carolina 

Charleston Intl Arpt -2.8 -4.4 TMY3 

726625 South Dakota Ellsworth AFB -22.9 -26 TMY3 

723340 Tennessee Memphis International 

AP 

-8.3 -11.7 TMY3 

722598 Texas Dallas/Addison Arpt* -5.8 -8 TMY3 

724754 Utah Saint George (AWOS) -2.9 -3 TMY3 
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726170 Vermont Burlington International 

AP 

-22.4 -26.7 TMY3 

724050 Virginia Washington Dc Reagan 

AP 

-8.7 -11.3 TMY3 

727938 Washington Tacoma Narrows -1.4 0 ASHR

AE 

724140 West Virginia Charleston Yeager Arpt -13 -23.9 TMY3 

726400 Wisconsin Milwaukee Mitchell Intl 

AP 

-20 -23.9 TMY3 

725640 Wyoming Cheyenne Municipal Arpt -21.3 -22.2 TMY3 

 

Appendix 3: Floor composition 

 

  

(  ) 
(  ) 

  

(    ) 

(𝑩   𝒉𝒇 𝑭) 

  (     ) 
(   𝒇  ) 

    
(     ) 

(𝑩     𝑭) 

Resistance 

(     ) 
(𝒇  𝑭𝒉 
𝑩  ) 

M11 100mm 

lightweight 

concrete 

101.6 

(4) 
0.53 (0.304) 1280 (79.91) 840 (0.201)  

F05 Ceiling 

air space 
- - - - 0.18 (1.022) 

F16 Acoustic 

tile 

19.1 

(0.75) 
0.06 (0.034) 368 (22.97) 590 (0.141)  

 

Appendix 4: Composition of Partitions 

 

 (  ) 
(  ) 

 (    ) 
(𝑩   𝒉𝒇 𝑭) 

  (     ) 
(   𝒇  ) 

   (     ) 

(𝑩     𝑭) 

Resistance 

(     ) 
(𝒇  𝑭𝒉 𝑩  ) 

G01a 

19mm 

gypsum 

19 

(0.75) 0.16 (0.092) 800 (49.94) 43 (0.01) 

 

F04 Wall 

air space 

resistance 

- - - - 0.15 (0.852) 

G01a 

19mm 

gypsum 

19 

(0.75) 0.16 (0.092) 800 (49.94) 43 (0.01) 
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APPLICATION OF A SIMPLIFIED THERMAL NETWORK MODEL FOR REAL-TIME 

THERMAL LOAD ESTIMATION 

Ogunsola, O.T. and Song, L., 2015. Application of a simplified thermal network model for real-time 

thermal load estimation. Energy and Buildings, 96, pp.309-318. 

Abstract 

Heating and cooling loads are the major reasons for energy use in buildings. Buildings are usually subject 

to schedules and set-points which are not optimized in response to the dynamic weather conditions, 

internal loads, and occupancy patterns. The thermal network model has been widely applied for real-time 

building load estimation, which is crucial for optimizing the operation of the HVAC system. However, 

there has been limited exploration of the capabilities of the thermal network model due to constraints 

imposed by the solution method adopted. In this paper, the exponential matrix method was adopted to 

simplify the state space equations and solve the thermal network model analytically.  This enhances the 

applications of a simplified thermal network model for investigation of multiple scenarios of HVAC 

system operations and equipment sizing, and for more accurate estimation of heating and cooling loads. 

This study also proves that the analytical solution method is asymptotically stable regardless of time step. 

A typical office was used as a case study and the predicted building loads are compared with measured 

data and numerical results from EnergyPlus. For the case study, the model demonstrated better accuracy 

and is seen to be robust for thermal load estimation for cooling season.  

Keywords:  Cooling Load; RC model; Building Envelope; Internal Mass; EnergyPlus;  

 

 

1 Introduction 

The overall function of an HVAC (Heating, Ventilation and Air Conditioning) system is to compensate 

for building load in order to provide thermal comfort. The building load is the rate at which heat must be 

extracted from (or delivered to) the building to maintain the desired set-point, i.e., the rate at which heat 

is convected from (or to) the zone air. According to a study by Daum and Morel [1], buildings consumed 

40% of total primary energy in the USA in 2008, with commercial buildings holding a share of 18.4%. 

Globally, around 40% of primary energy consumed in buildings is used for HVAC. It is not surprising 

that regulations and national policies are being developed and implemented to encourage or mandate 

reduced building energy consumption or prescribe increases in efficiency for relevant building 

components, such as building envelope elements, HVAC systems and equipment, and lightning 

equipment.  

Buildings are usually subject to absorption and delayed release of radiation, thermal mass effects, 

infiltration, dynamic internal schedules and other phenomena which are either difficult to model or not 

accounted for by most models. Likewise, plant and building set-points often follow prescribed schedules 

which are not optimized in response to dynamic conditions, weather, internal loads, occupancy patterns, 

and so on. These conditions make building load calculations and optimization challenging. Since 

buildings account for significant portions of global electricity and energy use, real-time control and 

forecasts of the building load are important to minimize building electricity use and energy consumption. 

Oldewurtel et Al. [2] predict a 5% delivered energy consumption increase in the building sector by 2035 

if building technology from 2009 is used. Therefore, research in energy conservation in the building 

sector is highly important and accurate forecasting of dynamic building load is essential from a control, 

environment, and energy standpoint.   

There have been several studies on building performance and load calculations. Pang et al. [3] developed 

a simulation-based framework for real-time building performance assessment. The framework allowed 

for a comparison of a building‘s actual performance and expected performance in real-time. However, 

several factors and variables such as HVAC operational schedules, control set-points, and weather data, 

e.g., solar radiation, relative humidity, wind speed, and direction, have to be updated at each time step. 



252 

Causone et al. [4] developed a calculation procedure for cooling loads using the Heat Balance method and 

the Radiant Time Series (RTS) method, which are well described in the ASHRAE Handbook of 

Fundamentals [5]. These models need calibration to accurately reflect system performance. Braga et al. 

[6] developed a statistical process to model and estimate the energy consumption profile of a building 

during a cycle, e.g., one week. The statistical model was used to monitor and control energy consumption 

patterns. Using EnergyPlus, Feng et al. [7] compared the cooling load differences between radiant and air 

systems under the influence of factors such as level of insulation, thermal mass effects, internal heat 

gains, and solar exposure of floors and ceilings.  Chen et al. [8] also assessed the effects of appliance 

level on real-time and historical energy use in buildings by separate measurements of the appliance plug 

loads, heating and cooling loads, and lighting loads through the use of energy meters and proxy sensors. 

Xuemei et al. [9] developed an algorithm for forecasting the cooling load, using a support vector machine 

(SVM) model, a machine learning technique whose parameters are determined from measured data. 

Duanmu et al. [10] developed the Hourly Cooling Load Factor Method (HCLFM) for cooling load 

prediction. The method assumes certain linear relationships between the cooling load components and 

variables such as temperature and enthalpy differences between indoor and outdoor air. Schiavon et al. 

[11] developed a calculation method for cooling loads in underfloor air distribution (UFAD) systems. 

Using EnergyPlus simulations, regression methods were developed to transform cooling loads from 

traditional overhead mixing systems to UFAD systems. However, the method is only suitable for design 

cooling load estimation. 

The thermal network model of Resistances and Capacitances (RC) model is commonly used to describe 

the thermal delays caused by a building envelope and internal thermal mass effects, and provides robust 

and accurate estimates of the cooling load based on measured data. Although there have been many 

improvements in the RC model over the years, the three resistances and two capacitances (3R2C) 

arrangement is widely used for modeling transient heat transfer in building envelopes [12,13].  More 

recent versions of the RC models are 3R4C and 4R5C by Fraisse [14]. The RC model has also been used 

to investigate thermal coupling among building elements, estimate the cooling load for thermally 

activated building construction, and compare thermal zone aggregated methods [15-17].  

The RC model represents the building envelope and internal mass using lumped capacitors and resistors, 

as developed by Xu [18]. The envelope RC parameters are usually found using theoretical properties of 

the building construction in frequency domain, or from construction materials. The internal mass RC 

parameters are determined by minimizing the differences between the building loads calculated using the 

model and the actual building loads. This avoids the lengthy calibration process which is necessary in 

other models, and compensates for errors in the input parameters of the model. The RC parameters have 

been traditionally estimated using a genetic algorithm and by solving the integrated RC model 

numerically using Runge-Kutta methods or other classical methods [18, 19]. In a recent study [20], a time 

series model was deduced from the simplified RC model. Compared with pure statistical models, such as 

autoregressive models, the time series was deemed superior because it has less sensitivity to outliers and 

the ability to track sudden input changes such as abrupt air temperature drop or sudden changes in control 

strategy. However, current solution methods such as the time series and numerical solutions permit 

limited exploration of the capabilities of the thermal network model. For example, numerical solutions 

suffer from stability and convergence issues, which are often caused by the need to consider different 

time steps. For the time series, the previous four (or more) time intervals are needed as inputs. The 

needed measurements are sometimes unavailable or unreliable due to sensor malfunction or data quality 

assurance issues. Similarly, in previous RC model studies, there are no documented methods on the 

search space for the best fit of the internal mass parameters, particularly when the envelope and internal 

mass components are decoupled. Unreasonable initial guesses and/or bounds could lead to slow 

convergence. There have also been noticeable spikes in the cooling load prediction by the time series 

[20]. The identified issues with the current solution methods limit the general applicability of the thermal 

network model.  

Therefore, the aim of this study is to solve the simplified RC thermal model using an analytical solution 

method and to apply the model to a typical office building. This model requires fewer inputs, depends 

only on initial (or any previous) time step data and current conditions, is capable of simulating floats in 

temperature for investigating thermal storage opportunities or for simply comparing several HVAC 
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systems operation modes, and is consistent. This study also aims to investigate and ascertain the 

unconditional and asymptotic stability of the thermal network model for all feasible values of envelope 

and internal mass parameters by applying stability criteria to its resulting state space model.  Latent load 

prediction is not included since latent heat gain instantaneously converts to latent cooling without a time 

delay. 

The paper begins with a general description of the analytical solution to the simplified RC model, after 

which the stability of the thermal network model is investigated. The stability analysis is crucial and 

needed because of concerns about the feasible search region of the envelope and internal mass parameters 

that cause the model to become unstable. Satisfaction of asymptotic stability is highly important for the 

thermal model to correctly depict the physical and thermal behavior of the building system, since 

temperatures and heat fluxes are expected to remain bounded at all times. The RC model is then tested on 

a case study of an office, and compared with field measurements and simulation results from EnergyPlus. 

Various scenarios of parameter estimation are investigated, with the goal of choosing the most accurate 

and representative parameter set for forecasting the building load. Finally, the RC thermal model is 

validated for both the heating and cooling season in order to demonstrate the robustness and suitability of 

the model for different building system operation modes and scenarios. The paper concludes with a 

comparison of the RC model with EnergyPlus and actual building load measurements in terms of error 

indices such as the mean error, mean absolute error, and root mean square error. 

 

2 Analytical Solution of the RC Model 

In previous studies, the RC model was solved numerically, using time-series, unscented Kalman filtering, 

or other advanced methods [12, 18, 19, 21]. In this study, in order to eliminate the numerical calculation 

for solving the integrated RC model and to reduce the inputs needed for the time-series solution, the RC 

model is solved analytically using state space methods. The analytical solution gives the exact solution to 

the governing differential equations for the lumped model.  

The RC thermal model with envelope and internal mass components is shown in Fig. 1. The variables are 

as defined in the nomenclature. The solar air temperature,          is the combined effect of solar 

radiation and ambient temperature on the outside surface of the wall [22]. This concept is only suitable 

for opaque surfaces such as walls and roofs. Therefore, it is only applied to the outside wall and roof. 

         is defined in Eq. (1): 

              
       

  

       ( ) 

where the variables       and      are as defined in the nomenclature. The thermal radiation correction 

term,        , is usually approximated as being 4.4°C for horizontal surfaces and 0°C for vertical 

surfaces [22].  

The sol-air temperature varies for different wall orientations due to variations in the incident solar 

radiation. To derive a sensible heat balance equation for the RC model, the following simplifying 

assumptions are made: 

 The zone air is well mixed; therefore the whole indoor circulated air volume is at a uniform 

temperature.  

 The effect of varying wind velocity on external wall convection coefficients is not considered. 

Hence, a constant heat transfer coefficient is assumed in this study. 

 The space is pressurized so infiltration does not create additional heating load in the conditioned 

space. 

 The floor surface is considered adiabatic. 
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 The long wave radiation exchanges between internal surfaces and multiple reflections are 

described by the lumped internal thermal RC model. 

 Heat is transferred between ambient and the thermal zone only through the exposed west wall. 

All other surfaces are treated as adiabatic. 

The above assumptions are commonly made to simplify the RC model [12, 18]. The governing equations 

found by heat balance at each node are given in Eq. (2): 
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∑  

 

   

  ( ) 

where  

  = temperature of the  th node.  

  = thermal capacitance of node   

 = total number of temperature branches (e.g., ambient, sol-air temperature, and neighbor nodal 

temperatures) connected to node   

  = temperature of the  th branch, connected to node  . 

 = total number of heat flux branches (such as convection, radiation, and system input) connected to node 

 .  

  = heat flux of the  th branch connected to node    

  = resistance of the branch between    and   .  

Eq. (2) represents an inhomogeneous system of ordinary differential equations. In state space 

representation, it can be re-written as:  

 ̇                       ( ) 

where   is the state (or system) matrix and   is the input matrix of dimensions     and    , 

respectively, as shown in Eq. (4).  

  (

       

   
       

)        (

       

   
       

)                     (4) 

The matrices   and   are time-invariant matrices whose entries are functions of the RC parameters. 

  ,          -
  are the nodal temperatures, and   [        ]

 
  is the input matrix, which includes 

heat gains, ambient temperatures, and sol-air temperatures on opaque surfaces. The stability of the system 

depends on the eigenvalue characteristics of the system matrix,  . In general,    , that is, the input 

matrix must include not only the heat flux sources but also ambient and sol-temperature inputs. Eq. (3) is 

a system of first order differential equations with constant coefficients, and the solution is given by: 

           ∫   (     )  ( )  
   

 

                                                                  ( ) 

where the exponential matrix of   is defined by the power series 
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  is the identity matrix of the same dimensions as  , and   is the time step. As developed by Seem et al. 

[23], inputs between time   and     can be modeled by a continuous, piecewise linear function as: 

 ( )     
(   )

 
(       )                                                               ( ) 

A function or curve is piecewise continuous if it is continuous on all points except for a few 

discontinuities which are finite. In previous studies [23], the concept of piece-wise continuity was applied 

only to the building envelope. In this paper, the concept is extended to include solar radiation and the 

convection term in order to take the 2R2C into account. The concept of piecewise continuity was 

similarly used for solar radiation absorbed by vegetation [24]. The convection term in the input is 

predominately from plug loads, which are mostly step functions in reality. For a uniform expression, a 

piecewise continuous assumption is also made for the convection term.  As a result, the assumption 

substitutes a step input in the time intervals when the step change occurs with a ramp input, and could 

cause the output of the time series to deviate from reality. However, the deviation is considered to have a 

small impact on the model accuracy because it only occurs in the time interval when the plug load is 

enabled, and the convection term takes a smaller percentage of the total plug load compared with the 

radiation term.  Meanwhile, the input between time   and     could easily be modeled using other 

functions (such as sine or cosine for ambient or solar radiation) if they are deemed more appropriate or 

when longer time steps are used. Substituting Eq. (7) into Eq. (5) gives 
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If conditions are known at time,  =0, then the solution becomes 
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To obtain the analytical solution, the exponential matrix     and the convolution integral 

∫   (   ) 0   
( )

 
(     )1   

 

 
 need to be evaluated. There are several approaches used to evaluate 

the matrix exponential. These include polynomial methods, Taylor series, inverse Laplace, matrix 

decomposition, and the ordinary differential equation method [25]. In this study, the matrix 

decomposition method is adapted because it is based on similarity transformation of the form: 

                                                                                                        (  ) 

such that the power series definition of     becomes  

                                                                                                         (  ) 

The usual approach is to take   as the matrix whose columns are the eigenvectors of  , i.e., 

    ,  | |  -                                                                             (  )  

     diag           (           )                                                                           (  ) 

As long as V is nonsingular, the matrix exponential of    is expressed as 

     (    (           ))                                                                                       (  ) 
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The analytical solution was tested in [26] where it was used for the optimal sizing of the heating system 

through investigation of building passive thermal storage. The conditions for non-singularity of   are 

discussed in the next section.  

3 Feasibility analysis of the analytical solution method  

Accuracy of the RC thermal model depends strongly on accurate estimation of the model parameters, 

which are broadly classified as envelope and internal mass components. These parameters have been 

estimated in several ways. The internal mass parameters are more challenging to estimate, since the 

physical properties of components such as furniture, carpets, and other surfaces that are capable of 

absorbing radiation within the indoor environment are not readily available. When information on 

building construction is available, the most common methods to evaluate the envelope parameters are 

direct calculation from construction material, use of average values of the RC, and optimization 

techniques. These methods are described in more detail by Ogunsola and Song [27]. In previous studies, 

the internal mass parameters were found using a genetic algorithm, by minimizing the differences 

between the cooling loads estimated using the model and the measured cooling loads. A genetic 

algorithm has been mostly used because it doesn‘t require an initial guess. However, there have been 

concerns about the identification of a feasible search region that assures asymptotic stability of the 

thermal model for every time-step, particularly when using numerical solutions or the time-series model. 

Therefore, the stability analysis is critical for the analytical solution which is dependent on the non-

singularity of the eigenvector as well as the nature of the eigenvalues. In this section, it is desired to prove 

that based on some observed properties of the state matrix, the eigenvector, V, is always non-singular.  

Analysis of Eq. (2) reveals important properties of the system matrix  : It is a square matrix with sum of 

each row <=0, and with at least one row satisfying the inequality. We proceed to prove that the following 

conditions hold about the stability of any square matrix:    

“A square matrix is asymptotically stable if its principal diagonal entries are <0 and sum of each row 

<=0 (or sum of each columns <=0), with at least one row or column satisfying the inequality. It can be 

inferred that such a matrix is non-singular, that is, the determinant is not equal to zero”.  

To illustrate, consider a     matrix,   [

             

             

    
            

]   Applying the criteria defined above 

implies that the matrix A is asymptotically stable when 

(iii) Every entry on the principal diagonal is less than zero, i.e.,                       . All 

other entries are real and positive. 

(iv)                                                           . 

(v) At least one of the expressions in (2) satisfies the inequality (<0). 

To illustrate this for the thermal network model, consider a three-node model shown in Fig. 2. 

The resulting state matrix is   
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   which can be written as 
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  . Also note 

that sum of each row is equal to zero, except for the first row where      
 

    
  . Since     

               we can write                      where   >  . The characteristics 

equation becomes as shown in Eq. (15):  
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     (         )   (                  )      =0    (15) 

Note that all coefficients are positive, which is a necessary condition for the eigenvalues to be negative. 

The constant term (    ) is the determinant, which implies that the matrix becomes singular only if 

    . However,   >   as defined, so the three-node model is non-singular. When the characteristics 

equation is solved symbolically in MATLAB, it shows that the eigenvalues are negative. Larger matrices 

which satisfy the conditions in (1) to (3) have been tested, too, and the same conclusions are made about 

the non-singularity and stability of the matrices. As the matrix becomes larger, the symbolic computation 

becomes overwhelming. However, the symbolic solution can be avoided by assuming random values for 

the entries of the matrix, provided the diagonal entries, rows, and columns satisfy the conditions stated in 

(1) to (3). This was done for matrices of different sizes, and the results confirmed the asymptotic stability 

and invertibility properties.  

An important observation is that the state space representation of the governing equations permits the 

investigation of the stability without necessarily solving the governing differential equations. The 

analytical solution relies on evaluation of the inverse, eigenvector, and exponential of the state space 

matrix. Asymptotic stability implies that all eigenvalues of the state matrix must lie in the open left hand 

plane for the system to be eventually driven by the forcing inputs, rather than by initial conditions. This 

also implies observability and controllability of the system, and the existence of unique eigenvectors and 

inverse. Therefore, establishing the asymptotic stability of the thermal network model is sufficient to 

prove the non-singularity of the eigenvector, as well as the fact that the devised analytical solution 

method will be suitable for all scenarios and time steps. From assumption of piecewise continuity (Eq. 7) 

and the evaluation of the matrix exponential (Eq. 9), an analytical solution of all temperature and heat 

flux is obtainable. Using the state transition matrix and the input matrix, the solution at a current (or 

future) time step is dependent on the value from a previous time step, inputs from the previous and 

current steps, and the elapsed time between the two time steps. The building load is expressed as the 

HVAC system output required to achieve the measured temperature for the period of investigation.  

4 Case Study 

The procedures described in the preceding section are tested and validated using a case study of a typical 

office. The selected room is a thermal zone in an office building situated at the University of Oklahoma. 

One thermal zone was chosen to capture the dynamics and variations at the zone level. Reasonably high 

model accuracy at the zone level could easily be extended to multi-zone buildings. The needed input 

includes ambient air temperature, internal heat gains, and solar radiation. The studied building is shown 

in Fig. 3. The focus in this study is the middle (highlighted) thermal zone, which has adjacent zones on 

both sides and exposure to ambient temperature on the westside. The selected zone is a good candidate 

because it has its own thermostat and sensors, which can measure all the variables needed for building 

load estimation. The needed measurements are obtained from the BAS and the sensors are deemed to be 

functioning properly and reasonably accurate enough to prevent any data integrity issues. As shown in 

Fig. 3, the simulated zone is part of a larger building. However, in this study, we assume that the adjacent 

spaces are similarly conditioned and therefore the studied zone is treated as a single, stand-alone room, 

with negligible thermal influence from the adjacent zones. This assumption is expected to have minimal 

influence on the prediction, since all neighboring zones have similar occupancy schedules and set points. 

The RC model representation of the building is shown in Fig. 4. 

The windows are treated as single thermal resistance (without thermal mass), through which the solar 

radiation directly reaches two virtual internal nodes. The inputs to the model include envelope and 

internal load components, which have significant influence on the temperature and load profile of the 

building. The RC parameters are denoted using the resistor and capacitor symbols in the thermal network, 

and include parameters such as the windows resistance (Rwin), the envelope parameters (e.g., Re2 and 

Cw), and the internal mass parameters (such as the Rint1 and Cint). The unknown nodal temperatures are 

ToE, TiE, Tint1, Tint1, and Tin. The input to the model include TsW, Tamb, Qconv, Qsys1, Qr1, and 

Qr2. A brief description of key variables is given below: 

    and    :  Temperature of building envelope (outside surface, and inside surface) 
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      and      :   Virtual temperatures of internal mass nodes  

        Zone Temperature 

        Solar-air temperature on west-facing wall 

         Ambient temperature 

     :  System input (+ve for heating, and –ve for cooling). It is 100% convective.  

              Average of the sum of transmitted solar radiation from windows, and radiative 

part of the internal load for the particular zone.  

     :   Convective part of the internal load.  In this study, the assumed split is 50% convection and 50% 

radiation. This implies that 50% of the internal heat gain is added to the air stream instantaneously, while 

the remaining 50% is radiated.  

Internal load (equipment and people) density of 25 W/m
2 

for occupied hours (9 am–5 pm). This is within 

the recommended range by ASHRAE/IES 90.1-2010 standards (16.15–32.3 W/m
2
) for office and some 

institutional buildings. An internal load density of 5 W/m2was used for unoccupied hours. 

As shown in Fig. 1, there are 6 resistances and 5 capacitances. Training data are needed to determine the 

RC parameters that optimally represent the building physically and also match the temperature and 

building load. The indoor capacitance,     is derived from the air mass within the occupied space, and 

hence is a known parameter. The window resistance and building envelope are assumed to be from a 

typical office (as shown in Tables 1 and 2) due to limited information about the building construction. For 

readability, the assumed composition of partitions, roof/ceiling, and floor are shown in Appendix. The 

RC properties of other supporting structural components are assumed to be lumped into the estimated RC 

parameters. The capacitances       and       are generally assumed to be equal [12, 18]. The above 

assumptions reduce the unknown parameters to 5 resistances (   ,    ,    ,        and       ) and 2 

capacitances (   and      =      ). For this situation, there are several possible implementations. The 

scenarios investigated in this study are shown in Table 3. The first scenario involves estimation of all 7 

parameters. The other scenarios involve fixing certain known parameter(s), e.g., by assuming values for 

the outside and inside convection resistances through construction documents for the building envelope or 

by selecting typical medium construction for this case due to the lack of design documents. Typical 

medium wall construction was chosen because of limited and unavailability of building construction 

information for the studied zone. This is one of the limitations of whole simulation software like 

EnergyPlus, when the construction information is not available. Using the RC thermal model, feasible 

building parameters can be deduced from limited information and measured data. The likely known 

parameters are mostly the thermal resistances of the building envelope (   ,    , and    ). The different 

scenarios investigated are summarized in Table 3. 

The optimal RC parameters are usually estimated by matching the building load and temperature 

predicted by the RC model to the measured data. In this study, 3 days of training data (summer: July 1-3, 

2013 and winter: January 1-3, 2013) are used to determine the RC parameters and 10 days of data 

(summer: July 22-31, 2013 and winter: January 21-30, 2013) are used for validation. Two solution 

options are proposed. The first method involved estimation of the RC parameters of each scenario in 

Table 3 using the cooling season, after which time the model is validated for both the heating and cooling 

season. Under the second option, the RC parameters of each scenario will be estimated from actual data 

recorded during heating season, and validated by comparing the predicted temperature and building load 

results with measured values for both the heating and cooling seasons. This is to ensure selection of the 

most accurate, robust, and representative values of the RC parameters for the building under 

consideration. Estimation periods are selected based on typical building occupancy and operation in 

cooling and heating seasons, respectively. The RC combination that offers the best fit with measured 

data, based on    value and error indices such as the mean error (ME), mean bias error (MBE) and 

coefficient of variation of root mean square error (CVRMSE), will be chosen. 
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Applying Eq. (2) to the five-node model in Fig. 4 yields the following equations:  
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For the selected thermal zone, there are 2 wall temperatures, 2 virtual temperatures to account for internal 

mass, and 1 room temperature. In total, there are 5 differential equations. The inputs are 1 ambient, 1 sol-

air temperature, 1 convection, 1 radiation, and 1 system input (which could be heating or cooling). The 

sets of differential equations can be expressed in state space where   is a     matrix of constant 

coefficients.   is a matrix of dimension    , since there are 5 temperature nodes.   is of dimension 

   , and   is a     matrix, since there are 5 inputs. A summary of the nodal and adjacent 

temperatures is presented in Table 4.  

From the measured data for the cooling season, it was observed that the temperature of the studied 

building was kept nearly constant at 22.2°C, which allows EnergyPlus simulation with assumption of an 

ideal HVAC system and typical office schedule internal load profile. EnergyPlus is a whole-building 

simulation software [28]. The temperature set-point was specified as 22.2°C, and through model 

calibration process, the TMY3 weather file [29] was modified by replacing the ambient, solar radiation, 

and wind speeds with the actual measured data obtained from Mesonet [30]. The material of building 

construction is a required input in EnergyPlus. A medium construction, according to ASHRAE 

classification, was assumed for the office building. The RC model was also simulated for the building, 

with the same inputs as those used for EnergyPlus, except that the RC model required significantly fewer 

variables. While the relatively constant zone temperature for cooling season permits the comparison of 

EnergyPlus and RC model results, the zone temperature recorded for the heating season fluctuated a lot 

for both test and validation periods. Because of difficulty in tuning the EnergyPlus model to follow the 

complex temperature trajectory, only the heating season results of the RC model are compared with the 

actual measured values.  

 

4.1 Evaluation Indices 

To evaluate the accuracy of the methods in accurately estimating the building load, the ME, MBE, and 

CVRMSE are used. MBE and RMSE are most commonly used to validate forecast models [31]. Any 

single error indices provide only one projection of the model errors, and therefore only emphasize a 

certain aspect of the accuracy. For reliability of performance, it is necessary to have a combination of 

error indices including, but not limited to, the RMSE and MBE [32]. Therefore, we also consider the use 

of the Mean Error, which is the difference between the mean of the actual and predicted data set. The 

formulas for the different errors are given in Eqs. (21) to (23): 
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where   
    is the estimated building load,    is the measured building load, and   is the number of data 

points. Typical acceptable calibration tolerances for hourly simulations are MBE values of   10% and 

CVRMSE values of   30% [33] 

 

4.2 Compare accuracies for different scenarios  

This section presents the temperature and building load results of the RC model as compared with the 

measured data. The periods for testing and validation are deliberately selected to be disjointed. Tables 5 

and 6 show the error indices for the different scenarios investigated. These are: 

(v) RC parameters estimated using heating season training data and validated for another period in 

the heating season. 

(vi) RC parameters estimated using heating season training data and validated for the cooling 

season.  

(vii) RC parameters estimated using cooling season training data and validated for the heating 

season. 

(viii) RC parameters estimated using cooling season training data and validated for another period in 

the cooling season. 

The values highlighted in Tables 5 and 6 are those with least error and highest correlation to the measured 

cooling load. Tables 5 and 6 compare the accuracy of the RC scenarios and EnergyPlus with well-

established error indices such as the CVRMSE. Table 5 compares how both cooling season trained and 

heating season trained RC values perform for a cooling season validation period. Table 6 compares how 

these trained RC values perform for heating season validation period. The results aid in selection of most 

appropriate RC scenario for year-round prediction of building load, based on acceptable calibration 

tolerances. As shown in Table 5, using cooling season training data generally yields better accuracies in 

predicting the building load. This could be due partly to the near-constant zone temperatures recorded in 

the cooling season, which is favorable for simulation and parameter estimation purposes. The 2R2C 

parameters estimated using cooling season data perform superior to the other scenarios for both the 

cooling and heating seasons. This superiority is also reflected in the    values, which are much higher 

when cooling season estimated parameters are used. From the error indices and tabulated    values in 

Table 5, it can be inferred that cooling season estimated RC parameters are more accurate for the 

validation period, irrespective of the season. More importantly, the 2R2C is superior to the other 

scenarios for virtually the entire validation period. Further studies are needed to fully understand why this 

is the case.  As shown in Table 6, the error indices are higher for validation in heating season. Only the 

2R2C scenario has           but the        is greater than the recommended threshold of 30%. 

All RC scenarios and EnergyPlus performed worse for heating season, but the 2R2C demonstrated better 

accuracy. Using cooling season training data generally yields better accuracies in predicting the building 

load. 
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Overall, most of the RC parameters scenario demonstrated better accuracy as compared with EnergyPlus. 

EnergyPlus has been validated for different scenarios [28], and it is not our intention to re-validate the 

software. However, as could be seen in Tables 5 and 6, due to lack of parameter estimation methods, 

EnergyPlus results may be unreliable when building construction information is limited or not available. 

The 2R2C scenario is seen to pass both validation criteria of MBE<10% and CVRMSE<30% for the 

cooling season. However, all of the other RC scenarios and EnergyPlus did not meet this criteria. This 

implies that the RC model is more suitable for cooling season than the heating season, for the case study. 

Overall, the 2R2C was selected as the appropriate RC scenario to represent the studied thermal zone.   

 

4.3 Overall comparison of RC model, EnergyPlus and measured data 

The 2R2C scenario was then used to test the overall effectiveness through comparison with EnergyPlus 

and measured data from the 2012 summer season and the 2014 winter season. The periods of testing are 

deliberately selected to be disjointed in order to ascertain the robustness of the 2R2C. Figures 5 to 7 show 

results of the building loads and zone temperatures simulated using the 2R2C as they compare with 

measurements and EnergyPlus. 

As shown in Fig. 5, both the EnergyPlus and 2R2C models are observed to trend the cooling load, but 

there are occasional under-predictions. Meanwhile, the 2R2C captured many fluctuations in the cooling 

load which were not captured by EnergyPlus. With only 3 days training data, an accurate building load 

forecast was made for 10 days in the cooling season. The temperature trajectory for both 2R2C and 

EnergyPlus shows satisfaction of zone temperature within errors of less than +/-0.05 °C and is therefore 

not presented here. The analytical solution has eliminated the issues of noticeable and unwanted spikes 

that were observed after using the time series [19]. The RC model is also seen to consistently track the 

cooling load for both occupied and unoccupied hours. Comparison of the building load for the heating 

season is shown in Fig. 6. The validation period covers simultaneous heating (-ve values) and cooling 

(+ve values), as indicated by the positive and negative values on the building load axis.  

The RC model is seen to generally track the building load patterns even where there is switch from 

heating to cooling, and vice versa. With only 3 days of training data, reasonably accurate building load 

estimation was made for up to 10 days in this heating season. Occasional spikes are noted in the 2R2C 

model predictions as noted in Fig. 6, but they die out gradually. EnergyPlus simulation of the building 

load is also shown in Fig. 6. Fig. 7 shows the measured room temperature, RC predicted zone 

temperature, EnergyPlus predicted zone temperature, and ambient temperature. Fig. 7 explains the reason 

for the switch from heating to cooling, which is consistent with the ambient temperature crossing below 

and above the room temperature, respectively. It also shows how the RC and EnergyPlus predicted 

temperature trends well with the measured room temperature. The computational expense of the RC 

model is mainly due to the parameter estimation, which is done using Genetic Algorithm and pattern 

search. On a desktop computer with core i3, 1.7 GHz processor, 4 GB RAM, and 500 GB hard disk drive, 

the parameter estimation takes between 45 minutes and 1hr. Once the RC parameters are estimated, the 

simulation requires little computational efforts. Simulation of building load for a 1-week period takes 

approximately 1minute to complete on a desktop computer with above configuration. This is quite large 

when compared with EnergyPlus (which uses 0.9s). However, the RC computation time for each time-

step is within reasonable range of value that is appropriate for control purposes.  

5 Conclusion and Recommendation 

This study introduces the formulation, analytical solution, and validation of the simplified RC model 

using a case study of a thermal zone in a typical office building. It has been proved that the analytical 

solution is asymptotically stable for all time steps, and therefore, there are no constraints on the feasible 

search region of the RC parameters. This eliminates the concerns about invertibility or stability of the 

thermal model, which is a necessary condition for all nodal temperatures to remain bounded. The RC 

parameters were estimated from training data in the heating and cooling seasons under different 

scenarios. The estimated parameters from the cooling season generated more accurate results for the 

validation period. The selected RC parameters may be deemed indicative and representative of building 



262 

thermal characteristics since they are deduced from actual building load measurements. Despite its 

requirement of significantly fewer variables and inputs, the RC model is observed to be superior to 

EnergyPlus for the cooling season due to the estimation of the RC parameters from actual building 

measurements.  The RC model is also seen to be sufficiently accurate in predicting building loads and 

zone temperatures for both summer and winter season. The thermal model capabilities explored in this 

study include investigation of multiple HVAC scenarios, simulation of temperature fluctuations, 

simulation of both heating and cooling, and flexibility in the choice of RC parameters for estimation. 

These capabilities present cost-effective solutions and opportunities for fault detection and diagnosis, 

optimized control, and energy savings. The accuracy of this model will be increased further where there 

are equipment usage data and occupancy sensors to generate the actual internal load profile for both the 

training and validation periods. Since some accuracy is lost when the model is used for predicting 

building load in heating season, the model needs to be refined further to enhance its application and 

suitability for year-round prediction of building load.  Inherent sensor uncertainties also account for some 

of the observed deviations between the measured values and the simulation results.  This model is 

proposed as a simplified but robust model which is embeddable in existing and future BAS without the 

need to install additional sensors.  

 

NOMENCLATURE 

 =density 

 = thermal conductivity, eigenvalue 

 =time 

  =supply air 

 =length 

  = indoor 

     = counter 

  =inside convective heat transfer coefficient 

  =outside convective heat transfer coefficient 

   =ambient 

 =input  

   =typical meteorological year 

 = temperature 

  =resistance-capacitance 

     window resistance 

    indoor air capacitance 

         =state space matrix 

   =ith row and jth column entry of matrix A 

   =ith row and jth column entry of matrix B 
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  = half of total radiation from windows and radiative part of internal load  

  =incident solar on outside surface 

     =convective part of internal load 

  =specific heat 

 = solar radiation absorptivity 

 = global solar irradiance 

    = extra infrared radiation due to difference between the external air and apparent sky temperature  

  = convection coefficient on the external surface. 

APPENDIX 

Table A1: Assumed Composition of Building Construction 

Exterior 

Wall 

Partitions Roof/Ceiling Floor Windows 

M01 100mm 

brick 

G01a 19mm 

gypsum 

M11 100mm 

lightweight 

concrete 

HF-C5 Clear 3mm 

I02 50mm 

insulation 

F04 Wall air 

space resistance 

F05 Ceiling air 

space resistance 

 Air 13mm 

F04 Wall air 

space 

resistance 

G01a 19mm 

gypsum 

F16 Acoustic Tile  Clear 3mm 

G01a 19mm 

gypsum 
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Fig. 7: Comparison of zone and ambient temperatures for the heating season. 
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Fig. 6: Comparison of building load for heating season. 

 

 

Fig. 7: Comparison of zone and ambient temperatures for the heating season 
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Table 1: Medium Wall Composition 

Thickness and thermal properties 

 

L(m) λ(W/mK) ρ(kg/m^3) Cp(J/KgK) 

M01 100mm brick 0.102 0.89 1920 790 

I02 50mm insulation 0.051 0.03 43 1210 

F04 Wall air space resistance 

    G01a 19mm gypsum 0.019 0.16 800 43 

 

Table 2: Window Composition 

  L(m) λ(W/mK) ρ(kg/m^3) Cp(J/KgK) R(m^2K/W) 

Clear 3mm  - -  -  - 0.003 

Air 13mm - - - - 0.003 

Clear 3mm - - - - 0.003 

 

Table 3: Different scenarios for the R-C parameters. 

Scenario Parameters Fixed Parameters estimated Assumed Values 

5R2C None (   ,    ,    ,            ,    

and      ) 

- 

4R2C     (   ,    ,            ,    and 

     ) 

outside air convection 

coefficient 

3R2C     and     (   ,            ,    and      

) 

outside and inside 

convection coefficient 

2R2C    ,    , and 

    

(           ,    and      ) outside and inside 

convection coefficient, and 

medium construction 

 

Table 4:  Summary of the nodal and adjacent temperature branches. 

Type Nodal 

Temperature 

Adjacent Temperature  

Branches 

Thermal 

Capacitance 

Heat Flux  

Branches 

Room 

Temperature 

       ,      , and      
               

External Wall 
       ,     

   
 

       ,     

Internal Mass 
           ,               
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Table 5: Comparison of error indices for Cooling Season Validation 

 

Case 

RC Predicted vs Measured EnergyPlus vs Measured 

ME 

(W) 

MBE 

(%) 
CV 

RMSE 

(%) 

   ME 

(W) 
MBE 

(%) 
CV 

RMSE 

(%) 

   

T
ra

in
in

g
 S

ea
so

n
 

C
o

o
li

n
g

 5R2C 6.02 4.984 36.331 0.7 

23.73 -0.86 58.36 0.67 

4R2C 4.54 4.854 36.936 0.7 

3R2C 3.79 3.447 28.947 0.74 

2R2C -3.33 4.137 17.271 0.87 
H

ea
ti

n
g

 5R2C 6.5 6.752 41.619 0.66 

4R2C 11.08 8.501 47.995 0.52 

3R2C 37.08 1.469 43.988 0.56 

2R2C 16.06 4.023 43.893 0.61 

 

Table 6: Comparison of error indices for Heating Season Validation 

 

Case 

RC Predicted vs Measured EnergyPlus vs Measured 

ME 

(W) 

MBE 

(%) 
CV 

RMSE 

(%) 

   ME 

(W) 
MBE 

(%) 
CV 

RMSE 

(%) 

   

T
ra

in
in

g
 S

ea
so

n
 

C
o

o
li

n
g

 5R2C 65.57 73.676 -149.27 0.74 

97.9 111.5 -232.17 0.37 

4R2C 67.51 75.039 -155.38 0.73 

3R2C 35.63 38.456 -115.96 0.83 

2R2C 8.17 6.6761 -95.88 0.88 

H
ea

ti
n

g
 5R2C 29.37 -33.288 322.73 0.66 

4R2C 40.75 -70.631 345.13 0.52 

3R2C 66.05 -145.10 346.16 0.56 

2R2C 8.86 -40.970 313.64 0.61 
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DEVELOPMENT AND VALIDATION OF A TIME-SERIES MODEL FOR REAL-TIME 

THERMAL LOAD ESTIMATION 

Ogunsola, O.T., Song, L. and Wang, G., 2014. Development and validation of a time-series model for 

real-time thermal load estimation. Energy and Buildings, 76, pp.440-449. 

ABSTRACT 

Dynamic cooling load changes caused by weather, occupants and equipment use are prevailing 

challenges for heating, ventilating and air conditioning (HVAC) system design, operation and controls. 

The thermal capacity of a building envelope delays conduction heat gains while the thermal capacity of 

the whole structure delays radiative cooling loads. These delays make cooling load calculations 

inherently complicated.  It has been challenging to accurately estimate cooling load in a building in real-

time. In this paper, a time-series cooling load model is deduced from a simplified Resistance-Capacitance 

(RC) model to provide an efficient solution with manageable computational requirements. In addition, the 

time-series model is also tested on a thermal zone in an office building, defined in EnergyPlus as a single 

zone with an ideal HVAC system.  RC parameters of building envelope and internal mass are obtained 

using theoretical characteristics of the building construction in frequency domain and EnergyPlus data, 

respectively. These are used in formulation of a time-series representation of the cooling load for three 

scenarios of light, medium, and heavy construction of a thermal zone in an office building. For all 

scenarios, cooling load with the simplified time series model is estimated within 7% mean absolute 

percentage error relative to EnergyPlus. 

 

Keywords: Cooling Load; Time Series; RC model; Building Envelope; Internal Mass; EnergyPlus; 

Robustness/Uncertainty Analysis 

 

1 Introduction and Review of R-C Models 

According to the United States Green Building Council [1], buildings are responsible for at least 40% of 

energy use in most countries of the world, and for up to 21% of greenhouse gas emissions globally.   The 

amount of energy in buildings that is used inefficiently or unnecessarily is 30 percent [2]. Deficiencies in 

building operation are caused by faulty equipment and inappropriate operation challenged by dynamic 

load changes in large commercial buildings.  Dynamic load changes also make the fault detections of 

heating, ventilating and air-conditioning (HVAC) systems difficult, because the fault-free energy baseline 

of an HVAC system is a variable unlike lights or other plugged electronic devices in buildings.   Pang et 

al [3] developed a framework for simulation based real-time whole building performance assessment that 

allows a comparison of building actual performance and expected performance in real-time. The building 

control virtual test bed (BCVTB) developed by Haves and Xu [4] was used to link EnergyPlus [5] with 

building control system for real-time data communication. The middleware allowed synchronization of 

simulation time and real time, data exchange between the simulated and actual building, and storage of 

building time series data. The method was tested on a two-storied building with floor area of 

approximately 70,000ft^2.  Using 5 days of validated data, the simulation results of the building total 

electric power agree to each other, which further demonstrate the usefulness of a dynamic simulation 

using instantaneous measured weather data. However, using this method, several factors and variables 

such as HVAC operational schedules, control setpoints, and weather data such as solar radiation, relative 

humidity, wind speed, and direction have to be updated at each time step.  Additionally, the use of 

middleware and supplementary interfaces introduce additional complexity for a building automation 

system (BAS), which is usually built on proprietary communication protocols or with only minimum 

compatibility through an open protocol such as BACnet [6].  In addition, the current BAS technology 

only allows limited computational capacity in a BAS supervisory controller.  A revolutionary 

advancement in BAS is needed for the adoption of such a method.  
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Attempts of other load estimation methods were also exercised.  Causone et al [7] developed a 

calculation procedure for cooling loads using the Heat balance method and the radiant time series 

method, with consideration of solar gains and solar radiation effects. The procedure considered the 

thermal mass of the building layers and defined two components of the cooling load as room load, and 

direct solar load. Braga et al [8] developed a statistical process to model and estimate the energy 

consumption profile of a building during a cycle, for example, a week. The statistical model was deemed 

suitable for monitoring and control of energy consumption patterns. Feng et al [9] compared cooling load 

differences between radiant and air systems with consideration given to level of insulation, thermal mass 

effects, internal heat gains, and solar exposure of floors and ceilings.  There have been a number of 

studies on the development of time series for variables affecting building load. For example, Zhanga et al 

[10] developed a time series for estimation and prediction of ambient temperature using information on 

past or forecast solar radiation. The prediction model requires the solar radiation profile of the past 12 

hours and the time delay of radiative heat gains was modeled as a parameterized Box Lucas function. 

Hokoi and Matsumoto [11] developed a statistical time series for ambient temperature and solar radiation, 

which are critical for cooling load calculations and to HVAC system operation. The stochastic time series 

was modeled using Kalman filters. Chen et al [12] also accessed the effect of appliance level on real-time 

and historical energy use in buildings by separate measurements of appliance plug load, heating and 

cooling loads, and lighting load through the use of energy meters and proxy sensors.  

 

In order to enable energy-use reduction through BAS embedded intelligence , in this paper, we propose a 

near-term solution using a simplified time-series model to predict expected building performance in real 

time with less computational and fewer inputs requirements for the determination of sensible cooling 

load. Latent load prediction is not included since latent heat gain instantaneously converts to latent 

cooling without a time delay. The time-series model is constructed based on a physical resistance-

capacitance (R-C) model, which is used effectively to describe the thermal delays caused by a building 

envelope and internal thermal mass effects.  R-C models have been used to describe the thermal delays 

caused by the envelope and internal mass effects. They have proved to provide robust and accurate 

estimates of the cooling load based on measured data [13], and have been used for a wide number of 

cases and scenarios.   

In 1985, Hassid [14] used two resistances (         )and one capacitor (C) or 2R1C as the electrical 

equivalent of a multi-layer wall (see Figure 1). The internal capacitor,     , shown in Figure 1, is a 

measure of indoor air thermal mass, and is equal to the product of air mass and specific heat.  In 1989, 

Seem et al. [15] used two node models for representation of plane walls, with three resistances (R1, R3 

and R5) and two capacitors (C2 and C4) or 3R2C as shown in Figure 2. When R3 is chosen to be equal to 

the wall resistance, T1 and T2 represent outside and inside surface temperature of the wall, respectively, 

and R1 and R5 represent outside and inside surface heat transfer resistances.   Over time, improvements 

of the R-C method have taken place, with the 3R2C arrangement now widely used for modeling of 

transient heat transfer in building envelopes [16, 17].  More recent versions of the R-C models are 3R4C 

and 4R5C by Fraisse [18].  

R-C model has been widely applied in various research and studies as well.  Goyal et al [19] applied the 

RC model for identification of multi-zone building thermal interaction model. The RC parameters of the 

convection edges were estimated through an exhaustive search to minimize a prediction error cost. Dobbs 

and Hencey [20] used the RC model to investigate thermal coupling among building elements, which 

provides insights to adjust building layout or control system design in early phase. Schmidt and 

Johannesson [21] investigated the use of optimized RC networks within macro-element modeling for 

thermally activated building construction. Dobbs and Hencey [22] applied the RC model for comparison 

of thermal zone aggregated methods. Sourbron et al [23] also demonstrated the use of RC model for 

thermally activated building systems in office buildings. The study shows the choice of model parameters 

has a large impact on the amplitude of the model output.  Radecki and Hencey [24]  estimated building 

thermal parameter of a multi-zone network using unscented Kalman filter and compared the results with 

EnergyPlus simulation data. The 1R2C network and 3R3C loop were used in the study. Using less than 2 

weeks training data, reliable 48 hour predictions of zone temperatures were made on a passive 5-room 
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model. Bueno et. al [25] developed a RC model for analysis of the interaction between the energy 

performance of buildings and the urban climate. Lombard and Mathews [26] implemented steady state 

solution of a time variable RC networking for building thermal analysis. Lombard and Mathews [27] also 

applied the RC model in a 2-port envelope model for building heat transfer. The building zone was 

represented with a single heat storage capacitance. The method was tested on a one storey commercial 

building and the results of the total sensible cooling load, and instantaneous sensible heat gain were 

compared with the commercial building example in ASHRAE Fundamentals.  

A significant progress in R-C models is the representation of building internal mass using lumped 

capacitors, as developed by Xu [ 28]. The physical properties of components such as furniture, carpets, 

and other surfaces that are capable of absorbing and releasing radiation within the indoor environment, 

are not readily available. All these components were lumped together and represented by a 2R2C network 

with two resistances (R6 and R8) and two capacitors (C7 and C9) for internal mass. As seen in Figure 3, 

two nodal temperatures, T3 and T4 are introduced by this arrangement. They are virtual temperature nodes 

used to capture internal mass effects, and thermal delay of thermal radiation of internal heat gains and 

solar radiation though windows. 

The combined 3R2C model for building envelope and the 2R2C model for building internal mass was 

developed and tested by Wang and Xu [16,28]. Figure 4 shows the combined R-C thermal network with 

3R2C for the envelope and 2R2C for the internal mass. R1, R3, R5, C2, and C4 are the 3R2C parameters of 

the building envelope. R6, R8, C7, and C9 are the 2R2C parameters of the internal mass.  Rwin is the 

window‘s resistance. Xu (2005) obtained the R-C parameters using a genetic algorithm and solved the 

integrated R-C model numerically using Runge Kutta classical methods [28]. The 3R2C parameter was 

found using theoretical characteristics of the building in frequency domain. The 2R2C parameter was 

found using the genetic algorithm by minimizing the difference between the cooling loads estimated 

using the model and the actual cooling load.  The nodal temperature and cooling load have to be solved 

numerically at each time step. 

In this paper, in order to eliminate the numerical calculation for solving the integrated 3R2C and 2R2C 

model and thus realize a BAS embedded cooling load prediction, an explicit representation of relationship 

between inputs and outputs, a time-series model is formed based on the integrated 3R2C and 2R2C, 

which requires only three input variables, solar, ambient temperature and an occupancy sensor to indicate 

internal loads.  Despite of lumping intriguingly complex heat transfer effects into time-series coefficients,  

a similar expression to auto-regressive models proposed by Javed et al. [29] and Song et al. [30], the 

time-series model is constructed based on a physical R-C model.  Consequently, a time-series model is 

superior to those auto-regressive models because the auto-regressive models are very sensitive to outliers 

and less reliable due to inability to track sudden input changes such as an abrupt ambient air temperature 

drop or sudden changes in control strategy.  

The paper is laid out by formulating a simplified R-C model for a studied thermal zone first after which a 

time-series model is deduced based on the R-C model. The time-series cooling load model is expressed 

by an explicit equation using past cooling load, as well as current and past values of independent input 

variables such as ambient temperature, solar radiation, and internal loads. The time-series model is then 

tested on a baseline case and compared with simulated cooling loads from EnergyPlus.  Finally, in order 

to understand the robustness of the time-series model, up to 10% random normal uncertainties in the input 

variables are introduced to understand the effects of such uncertainty on the accuracy of cooling load 

predictions.   

 

2 R-C Model Formulation for a Studied Thermal Zone 

In this section, a simplified R-C model shown in Figure 5 is formed. It is a special case of a thermal zone 

with only one wall surface exposed to ambient temperature and solar radiation as well as one window 

surface with single thermal resistance (without thermal mass), through which the solar radiation directly 

reaches two virtual internal nodes. All other surfaces are interior.  



274 

The effects of solar radiation and ambient temperature on the outside surface of the wall have been 

combined into one, using the concept of sol-air temperature, Tsol-air [31]. This concept is only suitable for 

opaque surfaces, such as walls. Thus, it was only applied to the wall outside surface in this study. Tsol-air is 

defined in Equation (1) : 

            
       

  

         ( ) 

where the variables       and       are as defined in the nomenclature.  

The thermal radiation correction term is usually approximated as being 7°F for horizontal surfaces and 

0°F for vertical surfaces [31].  To write the sensible heat balance equation for the R-C model, the 

following simplifying assumptions are made: 

 The zone air is well mixed, so the whole indoor circulated air volume is at a uniform 

temperature.  

 The effect of varying wind velocity on external wall convection coefficients is not considered. 

Hence, a constant heat transfer coefficient was assumed in this study. 

 The space is pressurized so infiltration does not create a cooling load in spaces. 

 The ceiling, floor, and interior surfaces are considered adiabatic. 

 The long wave radiation exchanges between internal surfaces and multiple reflections are 

described by the lumped internal thermal R-C model. 

The above assumptions have been commonly made to simplify the R-C model [13,16,28]. The governing 

equations found by heat balance at each node are: 
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With a given space temperature, the heat extracted from the space becomes a cooling load. The heat 

balance equation to calculate the sensible cooling load is: 

      (
      

  

)  (
      

  

)  (
        

    

)  (     )          ( ) 

The first two terms on the right hand side of Equation (6) are heat transfer from the envelope (i.e., the 

outer shell of the zone). In this instance, the envelope is the exterior surface that is exposed to ambient 

and solar radiation. The second term is the heat transfer by virtue of the window‘s temperature difference. 

In Figure 5,    is half of the total radiation, including the solar radiation transmitted and inwardly 

absorbed through the window, as well as the radiative part of internal heat gains. Internal heat gains are 

from people, lights, and equipment in the zone. Due to internal mass effects, radiative heat gain is first 

absorbed by walls and other surfaces within the zone, and gradually released into the room air by 

convection at a later time. Capacitors C7 and C9 are introduced to capture and represent this delay due to 

internal mass.       is the convective part of internal heat gain. This is the portion of heat gain that 

becomes the cooling load instantaneously. An AHU is in operation to accommodate the cooling load. The 

amount of AHU output is defined as the heat extraction rate.  

Since the heat extracted by an AHU is not always equivalent to the cooling load, space temperature 

fluctuates around the set point. Dynamic space temperature can be determined by node heat balance 
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equations, Equations (2) to (5), as well as the space heat balance, Equation (7), with a given heat 

extraction rate.  

   

    

  
 (

      

  

)  (
        

    

)  (
      

  

)  (     )                                    ( ) 

The simplified R-C model, as a lumped physical model, provides a means for real-time HVAC controls 

and performance monitoring.  For example, the efficient cooling load prediction given in Equation (6) 

sets a baseline to control chilled water charging or discharging to a thermal storage system, which is 

critical to maximize the operation efficiency; the room air variations under a given AHU extraction rate 

shown in Equation (7) can be used to predict the floats of the room air temperature when the AHU 

operation is constrained.  For example, under a grid integrated demand control, smart decisions on AHU 

operation can be made to minimize thermal comfort impact.  On the other hand, if the room air 

temperature is measureable, the AHU heat extraction rate can be calculated by Equation (7) as a reference 

to compare with the measured AHU heat extraction rate, which serves as an effective AHU fault 

detection index.   Despite a variety of applications of the R-C model, instantaneous cooling load 

calculation is the focus in this paper. 

 

3 Time Series Model Formulation for Cooling Load Calculation 

In order to calculate instantaneous cooling load, for the R-C model formed in Section 2, the room air 

temperature node will not be included since an ideal HVAC system (a system of sufficient capacity to 

meet its heating or cooling loads) is assumed. Thus, only four nodal temperatures are needed.  

Equations (2) to (5) are an inhomogeneous system of differential equations. In state space representation, 

Equations (2) to (5) can be re-written as:  

 ̇                         ( ) 
From equation (6), 

                        ( ) 

where                are matrices of constant coefficients whose entries are functions of the R-C 

parameters.  
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The above is a system of first order differential equations with constant coefficients, and the solution 

is given by: 
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where the exponential matrix is defined by the power series 
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where    is the identity matrix of same dimensions as   . As developed by Seem et al. [9], inputs between 

time   and     can be modeled by a continuous, piecewise linear function as 

 ( )     
(   )

 
(       )          (  ) 

A function or curve is piecewise continuous if it is continuous on all points except for few 

discontinuities which are finite. In previous studies [15], the concept of piece-wise continuity was applied 

only to the building envelope. In this paper, the concept is extended to include solar radiation and the 

convection term in order to take the 2R2C into account. The concept of piecewise continuity was 

similarly used for solar radiation absorbed by vegetation [32]. Convection term in the input is majorly 

from plug loads, which are mostly step functions in reality. For a uniform expression, a piecewise 
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continuous assumption is also made for the convection term.  As a result, the assumption substitutes a 

step input in the time intervals when the step change occurs with a ramp input and could cause the output 

of the time series to deviate from reality. However, the deviation is considered to have a small impact on 

the model accuracy because it only occurs in the time interval when the plug load is enabled, and the 

convection term takes a smaller percentage of the total plug load compared with the radiation term.  

Substituting Equation (15) into Equation (13) gives 
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By changing variable                                        
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Seem et al. [9] described the steps for integrating the two integrals. The solution to the first integral is 
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and the solution to the second integral is 
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Substituting these into Equation (17) yields 
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 Equation (20) relates the state at time     to the state at time,    and the inputs at the times    and    . 

Using the forward shift operator, defined by          to relate the states to previous input, Equation 

(20) can be written as 

(    )   (         )            (  ) 

   (    )  (         )          (  ) 

Substituting Equation (22) into Equation (9) yields 

        , (    )  (         )      -        (  ) 

Equation (23) relates the output from the system to the input, and the intermediate nodal temperatures do 

not factor into the formulation. Since the inverse of a matrix is equal to the adjunct divided by the 

determinant, the (    )   matrix can be rewritten as: 

(    )   
   

       
                

      
              

   (  ) 

By further manipulation, the equation above reduces to: 
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where 
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                [    (     )      ]                           (     )      

Equation (25) relates current outputs to time series of current and past inputs and time series of past 

outputs. The value of   depends on the dimension of the Matrix   . For the R-C model used in this study, 

 =4 since there are 4 nodal temperatures. Therefore, the current cooling load can be calculated using 

current inputs, the inputs in the previous four time intervals and the cooling load in the previous four time 

intervals.  

 

 

4 Model Comparisons Using Baseline Conditions 

In this section, the accuracy of the time-series model is investigated by comparisons with the results from 

EnergyPlus when the same baseline conditions are used as inputs to both models.   

4.1 Baseline condition definitions 

The baseline comparisons were carried out on a thermal zone in an office building, which is usually 

conditioned by an AHU.  One thermal zone was chosen to capture the dynamics and variations at the 

zone level. If needed, reasonably high model accuracy at the zone level could easily be extended to multi-

zone buildings, but the computation time would be increased.  

According to Equation (22), in the simulation, the input matrix (U) in Equation (12) and state-space 

matrixes (          ) in Equation (10) need to be defined.   

The input matrix (U) includes ambient air temperature, sol-air temperature, and radiative and convective 

parts of the internal heat gain.  For simplicity, only the surface facing west is exposed to ambient and 

solar radiation while other surfaces are treated as interior adiabatic surfaces, with no exposure to sun or 

wind. Other than the weather data used to calculate ambient and sol-air temperatures, the internal load 

from equipment, people and lights are also needed.  In addition, the convective-radiative split is needed to 

determine the amount of internal heat gain that becomes cooling load instantaneously. Therefore, the 

following simulation conditions are defined as baseline conditions in order to obtain the inputs needed for 

Matrix U: 

• Ambient and solar radiation values from TMY2 data of Oklahoma City in EnergyPlus.  The run 

period is chosen to be representative of one month of cooling season.   

• Use of 50% of nameplate rating for the plug loads. Most office equipment includes a nameplate 

rating showing the total power consumption. For most common equipment such as printers and 

computers, the actual power consumption ranges from 14% to 36% of the nameplate ratings 

[33].  In this study, we chose 50% as a worst case scenario. 

• Internal load (equipment and people) density of 28.74W/m^2 for occupied hours (9am-5pm). 

This is within the recommended range by ASHRAE/IES 90.1-2010 standards (16.15-

32.3W/m^2) for office and some institutional buildings. An internal load density of 5.38W/m^2 

was used for unoccupied hours. 

• 30%-70% Convective-Radiative Split for internal load.  This implies that 30% of internal heat 

gain is convection and 70% is thermal radiation. The higher the convection portion of a heat 

gain, the faster the heat gain can be converted into a cooling load. The original recommendation 

by ASHRAE was a 30%-70% convective-radiative split. Updated experimental results for 

equipment and other internal heat gain recommend 20%-80% for radiative fraction and 80%-

20% for the convective fraction of equipment [33,34]. A 30%-70% split is more appropriate for 

lighting and occupant load [35], and it is chosen in this study.   
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State-space matrixes are defined by the R‘s and C‘s of the building construction materials and the amount 

of internal mass. In the baseline comparisons, three different scenarios of light, medium, and heavy wall 

constructions of the building envelope are assumed according to ASHRAE classifications. The wall 

compositions are shown in the Appendix.  The window-to-wall ratio (WWR) on the exposed surface is 

approximately 37% because ASHRAE 90.1-2010 standard allows up to 40% WWR.  For ease of 

comparing the nodal temperatures T1 and T2 with outside and inside surface temperature in EnergyPlus, 

the 3R2C parameters of building envelope are calculated from the wall construction as: 
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where                  are the thickness, conductivity, density, and specific heat of the ith wall 

layer.           are the convective heat transfer coefficient on the outside and inside surface, 

respectively.   is the total number of wall layers.  Using training data of one month in EnergyPlus, the 

2R2C parameters of internal mass are found using the genetic algorithm [36] by minimizing the errors 

between the cooling load predicted by the RC model and EnergyPlus. Table 1 shows the R-C values for 

obtained for light, medium, and heavy wall construction used in this study. 

 

4.2 Results 

Figures 6, 7, and 8 show the cooling load comparisons between the simplified time-series model and 

EnergyPlus for light, medium, and heavy construction under the baseline conditions.  The mean absolute 

percentage error (MAPE) is a reliable measure of accuracy for constructing fitted time series values as 

applied to trend estimation. In this paper, MAPE is defined by Equation (27). 
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where      is the actual value,       is the forecast value, and n is the number of fitted points.  

In comparison with EnergyPlus, MAPE values of 6.70%, 5.54%, and 6.31% were obtained for light, 

medium, and heavy wall construction, respectively.  

 

5 Robustness/Uncertainty Analysis 

In this section, the robustness of the time-series model in the presence of uncertainties in the input matrix 

is investigated.  The ambient temperature, solar radiation, internal load, nameplate rating, and convective-

radiative split are selected for the investigation since they are used to directly determine the input matrix 

(U).  

To introduce uncertainty in the variables mentioned, a perturbation of up to 10% Gaussian distribution is 

first introduced into the variables one at a time (OAT). Since a Gaussian normal distribution theoretically 

spreads to infinity on both tails, the empirical rule is applied to ensure that at least 99.7% of the values are 

within 10% of the mean. According to the empirical rule, a bell-shaped distribution has approximately 

68% of the values within 1 standard deviation (1 ), 95% within 2 standard deviations, and 99.7% within 

3 standard deviations of the mean. So, a Gaussian normal distribution with mean of 1 and 3 =0.1 ensures 

99.7% of the values within +/-10% of the mean. This distribution was generated using the randn function 

in Matlab. Coincidentally, 100% of the values lie within 3 standard deviations of the mean as can be seen 

in Figure 9.  

With the uncertainties in each variable, the time-series model is then re-applied for cooling load 

estimation. The variation in the cooling load introduced by variations from each input variable is 
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investigated, and then the effect of simultaneously varying all the variables on the cooling load is 

investigated.  The purpose is to investigate the sacrifice in model accuracy due to uncertainty in the input 

variables, which comes mostly from sensor or human errors. For fair and absolute comparison, the mean 

absolute percentage error was chosen as a measure of accuracy. 

 

5.1.1  Uncertainty in Nameplate Rating 

For the baseline case, 50% of nameplate rating was used in the simulation. A 10% Gaussian uncertainty 

means a spread of normal distribution between 45% of nameplate rating and 55% of nameplate rating, 

with a mean of 50%.  Significant difference in the cooling load predictions was observed by the time-

series model when compared with the results of the baseline simulation using EnergyPlus (Table 2). The 

MAPE increased from 6.70% to 11.0% for light construction, from 5.54% to 9.91% for medium 

construction, and from 6.31% to 10.0% for heavy construction.  

 

5.1.2 Uncertainty in Convective-Radiative Split 

For the baseline case, 30%-70% was used as the convective-radiative split. A 10% Gaussian uncertainty 

in the radiative fraction means a spread of normal distribution between 23%-77% convective-radiative 

split and 37%-63% convective radiative split, with a mean split of 30%-70%. Similarly, significant 

differences are observed. As shown in Table 3, the MAPE increased significantly from 6.7% to 18.2% for 

light construction, from 5.54% to 17.4% for medium construction, and from 6.31% to 16.5% for heavy 

construction.  

 

5.1.3 Uncertainty in Ambient Temperature 

A 10% Gaussian uncertainty was introduced for each hourly temperature data in the run period. The 

perturbed values were then used as input into the RC model. In reality, uncertainties in ambient 

temperature come mostly from sensor errors.  With 10% random normal uncertainty in ambient 

temperature, the MAPE increased significantly for all 3 cases of light, medium, and heavy construction as 

shown in Table 4. The MAPE significantly increased from 6.70% to 14.8% for light construction, from 

5.54% to 12.9% for medium construction, and from 6.31% to 13.3% for heavy construction. This shows 

that up to 10% uncertainty in the ambient temperature can double the MAPE error in the cooling load 

predicted by the time-series model.   

 

5.1.4 Uncertainty in Internal Load Profile 

Internal loads such as loads from people, lights and equipment in a space depend greatly on the actual 

usage of the space and the behavior of the occupants.  Typically, internal loads are represented by 

schedules in energy simulation models; the actual usage of the building, however, changes on a daily 

basis. The use of occupancy sensors to track internal load changes is becoming popular. However, the use 

of static schedules in energy performance simulation is expected to continue for a while. With a 10% 

uncertainty in the internal load profile, the MAPE significantly increased from 6.70% to 11.9% for light 

construction, from 5.54% to 10.3% for medium construction, and from 6.31% to 10.5% for heavy 

construction (Table 5). This shows that up to 10% uncertainty in the internal load can lead to MAPE of 

above 10% in all cases. However, the increase is slightly less than that introduced by uncertainty in the 

ambient temperature.  

 

5.1.5 Uncertainty in Solar Radiation 
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In most cases, solar radiation cannot be measured directly at the site. Instead, horizontal global radiation 

data from available weather stations is used, and decomposed into direct normal and diffuse solar 

radiation. Since the concept of sol-air temperature was used in the RC model, the effect of varying the 

solar radiation will translate to the model through the sol-air temperature. As shown in Table 6, a 10% 

Gaussian uncertainty in solar radiation values has no significant effect on the MAPE for the three cases of 

light, medium, and heavy construction.  

 

5.1.6 Uncertainty in the Factors Combined 

The uncertainties in cooling load contributed by the combined effects of multiple operation parameters 

are investigated. The combined effect of a 10% Gaussian uncertainty in solar radiation, ambient 

temperature, internal load, convective-radiative split, and nameplate rating as propagated to the cooling 

load is not additive. With the uncertainty in all factors combined, the MAPE of light construction 

increased from 6.70% to 27.1%, the MAPE of medium construction increased from 5.54% to 25.2%, and 

the MAPE of heavy construction increased from 6.31% to 25.1% for heavy construction (see Table 7). 

The range of uncertainties for each category is summarized in Figures 10 to 12. 

 

6 Conclusion and Recommendations 

This study introduces the formulation and robustness tests of the time series cooling load model deduced 

from the simplified R-C model. The R-C parameters of the building envelope were determined from the 

building construction while the R-C parameters of internal mass were found using the genetic algorithm. 

Three cases of building construction (light, medium, and heavy) of a thermal zone in a medium-sized 

office were simulated in EnergyPlus. The variable of interest in this study is the cooling load, but the 

model could also be used to solve for the nodal temperature and heat fluxes. With the time series 

formulation, the current and future cooling loads were estimated from the past cooling load and past and 

current values of independent variables such as ambient and room temperature, internal load, and solar 

radiation. A reasonably high degree of accuracy was obtained for the three cases considered in this paper. 

Relative to EnergyPlus, mean absolute percentage errors of 6.7%, 5.5%, and 6.4% were obtained for 

prediction of the cooling load for light, medium, and heavy construction, respectively.   

This study also contributes to the understanding of the impacts of key operation parameters and variables 

on cooling load and accuracy of the time-series model. This was achieved by introducing 10% random 

normal uncertainty in key variables such as solar radiation, ambient temperature, internal load, 

convection-radiation split, and nameplate rating. Among all factors considered, the uncertainty in ambient 

temperature and convective-radiative split were found to be the most influential on the cooling load. The 

combined effects of the uncertainties were less than the addition of individual uncertainties. Since the 

introduced uncertainty followed a Gaussian distribution, the uncertainty in cooling load prediction can be 

determined for any given confidence level, and the accuracy of the RC model investigated for different 

scenarios. The uncertainty in room temperature set point was not investigated in this study because the 

Ideal HVAC System was assumed in EnergyPlus.  

A future direction of research is to test the time series formulation on real buildings with multiple zones 

and a real HVAC system. This is currently a work in progress. There is also a need for model 

improvement, since there are occasional spikes in the cooling load predicted by the time-series.  

 

APPENDIX A  

NOMENCLATURE 

 =density 
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 = thermal conductivity 

 =time 

  =supply air 

 =length 

  = indoor 

     = counter 

  =inside convective heat transfer coefficient 

  =outside convective heat transfer coefficient 

   =ambient 

 =input  

    =typical meteorological year, version 2 

 = temperature 

  =resistance-capacitance 

     window resistance 

    indoor air capacitance 

 =area 

         =state space matrix 

   =ith row and jth column entry of matrix A 

   =ith row and jth column entry of matrix B 

  = half of total radiation from windows and radiative part of internal load  

  =incident solar on outside surface 

     =convective part of internal load 

  =specific heat 

  ̇  mass flow rate 

 = solar radiation absorptivity 

 = global solar irradiance 

    = extra infrared radiation due to difference between the external air and apparent sky temperature  

  = convection coefficient on the external surface. 
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APPENDIX B 

WALL COMPOSITION 

 

Light Wall Composition 

Thickness and thermal properties 

  L(mm) λ(W/mK) ρ(kg/m^3) Cp(J/KgK) 

Wood Siding-1 9 0.14 530 900 

Fiberglass quilt 66 0.04 12 840 

Plasterboard-1 12 0.16 950 840 

 

Table 2: Medium Wall Composition 

Thickness and thermal properties 

 

L(mm) λ(W/mK) ρ(kg/m^3) Cp(J/KgK) 

M01 100mm brick 101.6 0.89 1920 790 

I02 50mm insulation 50.8 0.03 43 1210 

F04 Wall air space resistance 

    G01a 19mm gypsum 19 0.16 800 43 

 

Table 3: Heavy Wall Composition 

Thickness and thermal properties 

  L(mm) λ(W/mK) ρ(kg/m^3) Cp(J/KgK) 

M01 100mm brick 101.6 0.89 1920 790 

M15 200mm heavyweight 

concrete 203.2 1.95 2240 900 

I02 50mm insulation 50.8 0.03 43 1210 

F04 Wall air space resistance         

G01a 19mm gypsum 19 0.16 800 43 

 

Table 4: Window Composition 

Thickness and thermal properties 

R(m^2k/W) 

Outside surface film  0.059 

Clear 6mm 0.006 

Air 3mm 0.0032 

Clear 6mm 0.006 

Inside surface film 0.121 
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FIGURE CAPTIONS 

Figure 1: 2R1C model of a multilayer wall. 

Figure 2: 3R2C model. 

Figure 3: 2R2C model for internal mass. 

Figure 4: 3R2C Building envelope and 2R2C internal mass. 

Figure 5: Simplified RC model. 
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Figure 6: Cooling load for light construction. 

Figure 7: Cooling load for medium construction. 

Figure 8: Cooling load for heavy construction 

Figure 9: Gaussian distribution with mean=1 and  =0.1/3. 

Figure 10: Effect on MAPE for light construction 

Figure 11:  Effect on MAPE for medium construction 

Figure 12: Effect on MAPE for heavy construction 
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INVESTIGATION OF BUILDING PASSIVE THERMAL STORAGE FOR OPTIMAL 

HEATING SYSTEM DESIGN 

Ogunsola, O. and Song, L., 2014, November. Investigation of Building Passive Thermal Storage for 

Optimal Heating System Design. In ASME 2014 International Mechanical Engineering Congress and 

Exposition (pp. V08AT10A040-V08AT10A040). American Society of Mechanical Engineers. 

ABSTRACT 

Heating and cooling load calculations are critical to size Heating, Ventilation and Air conditioning 

(HVAC) systems and determine energy use of their operations. The ASHRAE (2009) model, which is 

most commonly used for heating load calculations, adopts a simplified approach by considering only 

steady-state instantaneous conductive heat transfer and ignoring internal heat gains and thermal storage 

effects. Those assumptions evaluate the worst case conditions which can reasonably occur at nights when 

the outdoor air temperature is lowest and with no inputs from solar, occupants, lights, or any electronic 

devices. However, due to thermal storage effect, heat generated in daytime can be still stored in buildings. 

Such ignorance leads to significantly over-sized heating system, consequently resulting in high initial cost 

and a higher cost of energy uses. On the other hand, though heating load might not exist at nights, by 

considering passive thermal storage of buildings and allowing space air to drift to reasonably lower 

values, buildings need to be warmed up in the morning before being occupied. The worst case conditions 

might happen in the morning warm-up period, when heating is needed. This study therefore examines the 

thermal response of different constructions (heavy, medium, and light) of the building envelope and 

investigates the effect of their passive thermal storage on the size of the heating system. Results show 

tremendous opportunities for downsizing of the heating system while still maintaining thermal comfort 

requirements. As such, this paper is a fundamental study of building thermal characteristics in order to 

investigate the potentials of establishing a new heating device design standard. 

INTRODUCTION 

According to the United States Green Building Council [1], buildings account for 36% of total 

energy use, 65% of electricity consumption, 30% of raw materials use, and 12% of portable water 

consumption in the United States. Buildings are responsible for at least 40% of energy use in most 

countries of the world, and for up to 21% of greenhouse gas emissions globally.   In the United States, 

14% of total energy used in commercial buildings is attributed to heating (United States Department of 

Energy 2008 [2]). This is usually compensated by Heating, Ventilating, and Air-conditioning (HVAC) 

Systems.     

The primary aim of building energy system is to satisfy thermal comfort requirements. However, 

recent studies revealed that about 30% of energy consumed in buildings is used inefficiently or 

unnecessarily [3]. This is because excessive energy is consumed when HVAC systems fail to operate as 

intended, often due to several factors such as inappropriate monitoring and control strategy, lack of 

understanding of the dynamics of thermal loads, system complexity, and wrong sizing of heating and 

cooling system. For efficient operation, the heating and cooling equipment should be suitable for the 

particular location and application, properly sized, accessible for easy maintenance, and have a simple 

arrangement, since ductwork and piping make up a significant part of the HVAC system.  Meanwhile, the 

complex dynamics of temperature and weather fluctuation, thermal characteristics of building 

construction, internal heat gains, and major changes in occupancy schedules continue to provide 

challenge for HVAC systems design and control.  

The ASHRAE Model [5] is currently adopted for heating system design. It uses a simplified 

approach to estimate the heating requirement for typical buildings, based on the following assumptions:  

 Heat losses are considered to be instantaneous, and essentially conductive 

 Thermal storage effects of building structure or content is ignored 

 Thermal bridging effects on wall and roof conduction are greater 

 No solar effect (at night or on cloudy, winter days) 

 Heat flow is assumed to be one-dimensional and parallel. 

 Construction material is thermally homogeneous 
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 Presence of people, lights, and appliances has no offsetting effect 

 Design interior and exterior conditions [5] 

The above simplified approach has been justified because it evaluates worst case conditions that 

can reasonably occur during a heating season. However, the assumptions often lead to over-sizing of the 

heating system because it ignores the thermal storage capabilities of building construction. Due to thermal 

and internal mass effects, heat gains in buildings during daytime may still be stored in the walls and 

radiation absorbing surfaces within the building. As such, heat absorbed by the thermal mass during 

occupied hours could be released during unoccupied hours, where the temperature may be allowed to 

drift to a reasonably low value. The heat released by the thermal mass may partially (or totally) 

compensate for the space heating needs during unoccupied periods without sacrifice of thermal comfort. 

The building would often need to be warmed up before the start of occupied period. Meanwhile, the 

highest heating demand (which determines the heating system size) is recorded between midnight and 

9am. Both passive thermal storage and amount of heating depend strongly on the characteristics of the 

building construction. To simultaneously harness the passive thermal storage and determine the right 

amount of heating needed to warm up the building require an optimization process. This subject area has 

not been investigated.  

Therefore, the aim of this study is to carry out a fundamental study of building thermal 

characteristics, in order to optimize the size of the heating system. By investigating the influence of the 

building construction on heating system capacity and operation, the possibility of harnessing building 

passive thermal storage for optimal sizing of heating system is discussed. A typical office building with 3 

scenarios of light, medium, and heavy construction of the building envelope is used to illustrate the 

concept. The study focused on 2 different geographic locations namely Minneapolis- MN, and Miami- 

FL. These are two different regions according to ASHRAE climate classification: Minneapolis MN: 

Climate zone 6A (Cold-Humid) and Miami-FL: Climate Zone 1A (Very Hot – Humid). The heat and 

temperature dynamics of the building are modeled using Resistance-Capacitance (R-C) model, which has 

proved to be a simplified, yet robust model for estimation and analysis of heating and cooling loads [6]. 

The R-C model provides useful and quality information about the system dynamics and thermal 

characteristic of building construction because it represents the system physically [7]. By analyzing the 

R-C model, and investigating the thermal response of the light, medium, and heavy construction, the 

influence of thermal characteristics of the building construction on the heating system design and 

operation are discussed. The study concludes by presenting the results of the optimal size of the heating 

system for the 2 locations. The determined equipment size is compared with ASHRAE method and 

recommendations are made for future research. 

NOMENCLATURE 

    :  Internal mass temperature 

        Ambient temperature  

       Thermal Resistance of internal mass  

         Convective part of internal load   

        System extraction or heating rate  

       Thermal capacitance of room air  

      Thermal capacitance of exterior wall  

     Thermal capacitance of internal wall or partition  

        Thermal capacitance of internal mass 

        Windows resistance  

     Half of the sum of radiative components from internal load and windows  

      Thermal Resistance of internal partition 

       Sol-air temperature of roof  

      Sol-air temperature of East facing wall  

       Sol-air temperature of West facing wall  

 :   Solar radiation absorptivity (dimensionless) 

 :  Global solar irradiance (    ) 
      Extra infrared radiation due to difference between the external air and apparent sky 

temperature  
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 :   Thermal conductivity 

      Specific heat 

MNPLS: Minneapolis 

 

LITERATURE REVIEW 

According to Li and Wang [8], thermal storage is one of the most promising and sustainable 

ways for improving energy storage in buildings. Thermal energy storage can help balance daily, weekly, 

and seasonal energy demands and supply [9]. Also, there are other claims that passive thermal storage can 

compensate for the extra investment on insulation in buildings [10]. Passive strategies involve 

improvements to the building envelope while active strategies are those seeking improvements to the 

HVAC systems. The building envelope is the interface between the indoor and outdoor environment. It 

determines and controls the fluctuations in the indoor environment, based on its thermal characteristics, 

and the transient outdoor conditions. Components such as windows, walls, roofs, thermal insulation, 

external shading devices, and other fenestration components make up the building envelope. On the other 

hand, thermal mass are the high capacity materials which are capable of absorbing and releasing heat at a 

later time. By absorbing and progressively releasing heat, thermal mass helps in the regulation of indoor 

temperature. This is reflected in the shift of peak indoor load [11]. For effective thermal mass 

optimization, the diurnal variations in ambient temperature should exceed 10K (18F) [12].  

Morgan and Krarti [13] developed a simulation environment to implement various control 

strategies such as predictive optimal control. By allowing the zone temperature to drift during unoccupied 

periods, the energy use profile of the HVAC system was modeled and compared with actual data.  

According to Henze et. al [11], there has been little improvement in thermal storage and peak load 

reduction potential compared to energy conversion. In their study, the focus was on nighttime pre-

cooling. By utilizing both active and passive building thermal storage, under constraints of thermal 

comfort, and optimal HVAC system operation, the study minimized building operating costs. Braun [14] 

identified potentials for reducing building operating costs as including demand reduction, ventilation with 

cool nighttime air, pre-cooling, and improved mechanical efficiency. Braun et al [15] optimized cost of 

heating by control of passive thermal storage and applied the concept to the Energy Resource Station 

(ERS), Iowa Energy Center, United States. The temperature was allowed to float between 15°C (59F) and 

30°C (86F) during unoccupied periods. The zone temperature was fixed at 22°C (71.6F) during occupied 

periods. The passive thermal storage capability of the ERS was simulated and solved using quasi-Newton 

method.  The zone sensible cooling requirement was estimated from on-site measurements. The study 

demonstrated capability of thermal mass for load shifting, with the potential greatest for interior zones. 

However, as a lightweight structure with significant coupling to ambient and exterior, the ERS was 

deemed an unsuitable building to fully explore building thermal mass capability. Snyder and Newell [16] 

developed a lumped capacitance model to determine least cost cooling strategies using effective building 

characteristics derived from a medium-sized building. Cooling cost savings of 18% were realized. From 

their analysis, thermal characteristics of building construction can have a significant impact on the load 

profile and energy use. Yang and Li [17] mathematically modeled the effects of thermal mass and night 

ventilation on cooling load. The simulation model considered the thermal resistance and capacitance of 

the building construction and room air. In [18], additional thermal mass led to energy savings of 18-20% 

over the base case. Through these reductions, the HVAC system could be downsized, thereby offsetting 

the initial investment on the additional insulation.  

Snyder and Newell [16] and Yang and Li [17] utilized the resistance and thermal capacitance of building 

construction in their studies. Their models fall under the general class of Resistance-Capacitance (R-C) 

model, which has been widely used for building performance simulation [18-26]. The R-C model utilizes 

physical and thermal characteristics of building construction to generate the heat balance equation in the 

presence (and absence of disturbance). The R-C model is translatable to state space methods, where the 

stability can be investigated from the Eigenvalues of the state space matrix. It could also be solved using 

auto-regressive, time-series, numerical, or analytical methods. In a previous study, a time series model 

was deduced from the R-C model and used to estimate thermal load of a building in real-time [27]. 

Multiple scenarios of building construction, HVAC system operation and strategies have been simulated 
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using the R-C model. The RC model was determine to be the appropriate model for this study based on 

the following criteria:  

(i) Capability to represent physical properties of building construction in order to investigate the thermal 

characteristics of light, medium, and heavy construction 

(ii) Capability to simulate internal loads and different HVAC system schedules 

(iii) Simulation based, in order to investigate multiple scenario of operation across different climates 

(iv) Ability to determine the system stability from model parameters 

(v) Capability to optimize heating system output in response to ambient temperature, solar  

(vi) Capability to simulate internal mass, thereby harnessing the thermal storage effort to the fullest. 

(vii) Capability to simulate floats in space air temperature. 

Case Study 

A typical office building (shown in Figure 1) having multiple zones was modeled in this study. 

A rectangular shaped building was deemed appropriate for a study of this nature. The rectangular shape 

used is for near accurate determination of the solar distribution on the different surfaces, based on their 

orientation. Three (3) scenarios of building envelope with light, medium, and heavy construction were 

considered. The composition of the light, medium, and heavy construction were taken from ASHRAE 

Handbook [28]. Hourly temperature and solar radiation values were obtained from Typical 

Meteorological Year, Version 3 (TMY3) weather data [29]. Occupancy schedules and internal loads 

corresponding to typical office were applied, based on ASHRAE recommendations.  

The design temperature used in this study is the 99.6% dry bulb temperature for the studied 

locations. The peak temperature and hour at which the design temperature occurs was determined from 

statistical analysis of the TMY3 data for the design month. Design temperature profile was then generated 

as sinusoidal waveform. The optimal heating system was estimated using Genetic Algorithm [30]. As 

shown in Figure 1, the modeled office building has two thermal zones. Thermal zone 1 has 2 windows 

(one facing north, and the other facing east). Thermal zone 2 has only one window, facing north. The 

window-to-wall ratio (WWR) on the exposed surface is 30%. ASHRAE 90.1-2010 standard allows up to 

40% WWR [31].  Tables 1 to 3 show the composition of light, medium, and heavy wall construction used 

in this study.  

    
Figure 1: The Modeled Office Building 

 

 

 

N E 
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Table 1: Heavy Wall Construction 

 

 (mm)  (W/mK) 

  

(kg/m^3) 

   

(J/KgK) 

M01 brick 101.6 0.89 1920 790 

M15 

concrete 203.2 1.95 2240 900 

I02 

insulation 50.8 0.03 43 1210 

F04 air 

resistance - - - - 

G01a 

gypsum 19 0.16 800 43 

 

 

Table 2: Medium Wall Construction 

 

 (mm)  (W/mK) 
  

(kg/m^3) 
   

(J/KgK) 

M01 brick 101.6 0.89 1920 790 

I02 

insulation 50.8 0.03 43 1210 

F04 air 

resistance 

    G01a 

gypsum 19 0.16 800 43 

 

Table 3 Light Wall Construction 

  

  

(mm) 

  

(W/mK) 

  

(kg/m^3) 

   

(J/KgK) 

Wood Siding-1 9 0.14 530 900 

Fiberglass quilt 66 0.04 12 840 

Plasterboard-1 12 0.16 950 840 

 

As shown in Figure 2, the red colored variables are input to the model. They include both 

envelope and internal load components and have significant influence on the temperature and load profile 

of the building. The black colored are the R-C parameters. The blue colored are the unknown nodal 

temperatures.      denotes virtual temperature of internal mass nodes.      and     are room temperature 

of Zone 1 and 2 respectively.     and     are temperature of internal partition separating the two zones. 

   = Thermal capacitance of internal partition.      is system output (+ve for heating, and –ve for 

cooling). It is treated as 100% convective in this study.    is resistance of internal partition.    is average 

of the sum of transmitted solar radiation from windows, and radiative part of internal load for the 

particular zone.       is convective part of internal load.  In this study, the assumed split is 50% 

convection-50% radiation. This implies that 50% of internal heat gains is added to the air stream 

instantaneously, while the remaining 50% is radiated. Note that only 2 external walls are shown in Figure 

2. There are additional walls on facing south and north respectively, but they are not shown due to space 

limitations.  

The effects of solar radiation and ambient temperature on the outside surface of the wall have been 

combined into one, using the concept of sol-air temperature,    [4]. This concept is only suitable for 
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opaque surfaces, such as walls and roofs. Therefore, it was only applied to the outside wall and roof. Tsol-

air is defined in Equation (4.1): 

         
       

  

     ( ) 

where the variables       and      are as defined in the nomenclature. The thermal radiation correction 

term,        , is usually approximated as being 3.89°C (7F) for horizontal surfaces and 0°C (0F) for 

vertical surfaces [4].  The sol-air temperature varies for different wall orientation due to variations in the 

incident solar radiation. Therefore, the sol-air temperature on different orientations are distinguished in 

this study. For example,     is sol-air temperature on east facing wall while     is the sol-air temperature 

on west facing wall. 

To write the sensible heat balance equation for the R-C model, the following simplifying assumptions 

are made: 

 The zone air is well mixed; therefore the whole indoor circulated air volume is at a uniform 

temperature.  

 The effect of varying wind velocity on external wall convection coefficients is not considered. 

Hence, a constant heat transfer coefficient was assumed in this study. 

 The space is pressurized so infiltration does not create additional heating load in the conditioned 

space. 

 The floor surface is considered adiabatic 

 The long wave radiation exchanges between internal surfaces and multiple reflections are 

described by the lumped internal thermal R-C model. 

The above assumptions have been commonly made to simplify the R-C model [6,7,18,26]. The 

governing equations found by heat balance at each node are given in Equation (2): 

   
  

  
 

  

(∑
 

  

 

   

)   
 

 
(∑

 

  

  

 

   

)  
 

 
∑   

 

   

   ( ) 

Where  

  = temperature of nth node.  =total number of temperature branches connected to node  .   = 

temperature of  th branch, connected to node  ;  =total number of heat flux branches (such as 

convection, radiation, and system input) connected to node  .   = heat flux of  th branch connected to 

node       = capacitance of node  ;   = resistance of branch between    and   . 

For the selected office building, there are 4 roof temperatures, 12 exterior wall temperatures (2 

temperature nodes for each exterior wall), 2 internal wall temperatures, and 4 virtual temperatures to 

account for internal mass, and 2 room temperatures. In total, there are 24 differential equations. The 

inputs are ambient, 5 sol-air temperature (one for horizontal surface, and 4 for the different orientation of 

vertical surface), 1 convection input (assumed same for both thermal zones), 2 radiation input (different 

for the thermal zones due to additional window in zone 1), and 2 system output (since the demand of each 

zone is different). The sets of differential equation can be expressed in state space as: 

 ̇                                                              ( ) 

 

Where   is a       matrix of constant coefficients.   is a matrix of dimension     , since there are 

24 temperature nodes. 𝑩 is of dimension      , and   is a      matrix, since there are 10 inputs. 

The coefficients of the state matrices   and 𝑩 are defined by the R‘s and C‘s of the building construction 

materials and the amount of internal mass. Components such as furniture, carpets and other surfaces that 

are capable of absorbing and releasing thermal radiation within the indoor environment constitute the 

internal mass. Since their physical properties are not readily available, these components are lumped 

together and represented by two internal resistances and two internal capacitances (2R2C). The internal 

mass R-C parameters were estimated using Genetic Algorithm by matching the predicted building load 

with EnergyPlus simulation under the assumption of ideal load system. 
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Simulation conditions of the R-C model 

The following simulation conditions are defined as baseline conditions in order to obtain the inputs 

needed for Matrix U: 

• Ambient and solar radiation values from TMY3 data of Minneapolis- MN, and Miami- FL.  The run 

period is chosen to be the whole of January, which is the design month for both locations.    

• Use of 35% of nameplate rating for the plug loads. Most office equipment includes a nameplate 

rating showing the total power consumption. For most common equipment such as printers and 

computers, the actual power consumption ranges from 14% to 36% of the nameplate ratings [36].   

• Internal load (equipment and people) density of 26.9     for occupied hours (9am-5pm). This is 

within the recommended range by ASHRAE/IES 90.1-2010 standards (16.1     -32.2    ,) for 

office and some institutional buildings. An internal load density of 5.4      was used for 

unoccupied hours. 50%-50% Convective-Radiative Split for internal load.  This implies that 50% of 

internal heat gain is convection and 50% is thermal radiation. The higher the convection portion of a 

heat gain, the faster the heat gain can be converted into a cooling load. The original recommendation 

by ASHRAE was a 30%-70% convective-radiative split. Updated experimental results for equipment 

and other internal heat gain recommend 20%-80% for radiative fraction and 80%-20% for the 

convective fraction of equipment [32,33]. A moderate split of 50% convective and 50% radiative 

fraction is chosen in this study.   

The differential equations for the temperature nodes (Equation 4.6) are inhomogeneous, with the 

following matrices 

  (

          

   
            

)    [                 ]
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ToE1

Rwin1

TiE1
TsE

Qconv+Qsys

Re1,1 Re2,1 Re3,1
Tin1

Cw Cw Cp

Rp3

Cin

Rp2

Cp

Tamb

ToR1

TiR1

TsR

Rr1

Rr2

Rint2

Cr

Cr

Tp1 Tp2 Rp1
Tin2
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Cin

ToR2

TiR2
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Rwin1

Tamb

Rwin2

Tamb
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Cint
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Figure 2: R-C Model Representation for the Building 
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Where ′ denotes transpose. Equation (4) is a system of first order differential equations with constant 

coefficients, and the solution is given by: 

           ∫   (     )  ( )  
   

 

    ( ) 

 

where the exponential matrix of   is defined by the power series 

         
    

  
 

    

  
   

    

  
   ( ) 

where    is the identity matrix of same dimensions as   and   is the time step. As developed by Seem et 

al. [34], inputs between time   and     can be modeled by a continuous, piecewise linear function as 

 ( )     
(   )

 
(       )                ( ) 

A function or curve is piecewise continuous if it is continuous on all points except for few 

discontinuities which are finite. In previous studies [34], the concept of piece-wise continuity was applied 

only to the building envelope. The concept of piecewise continuity was similarly used for solar radiation 

absorbed by vegetation [35]. In this paper, the concept is extended to include solar radiation and the 

convection term in order to take the 2R2C of internal mass into account. Convection term in the input is 

majorly from plug loads, which are mostly step functions in reality. For a uniform expression, a piecewise 

continuous assumption is also made for the convection term.  As a result, the assumption substitutes a 

step input in the time intervals when the step change occurs with a ramp input and could cause the output 

of the time series to deviate from reality. However, the deviation is considered to have a small impact on 

the model accuracy because it only occurs in the time interval when the plug load is enabled, and the 
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convection term takes a smaller percentage of the total plug load compared with the radiation term.  

Substituting Equation (7) into Equation (5) gives 

           ∫   (     ) *   
(   )

 
(       )+   

   

 

 ( ) 

If conditions are known at time,  =0, then the solution becomes 

         ∫   (   ) *   
( )

 
(     )+   

 

 

  ( ) 

To obtain the analytical solution, the exponential matrix     and the convolution integral 

∫   (   ) 0   
( )

 
(     )1   

 

 
 need to be evaluated. There are several approaches used to evaluate 

the matrix exponential such as polynomial methods, Taylor series, inverse Laplace, and ordinary 

differential equation method [36]. In this study, the Matrix Decomposition Method is used. It is based on 

similarity transformation of the form  

                                                                    (  ) 
Such that the power series definition of     becomes  

                                                                     (  ) 

The usual approach is to take   as the matrix whose columns are the eigenvectors of  , i.e. 

    ,  | |  -                           (  )  

     diag(           )                                       (  ) 

Since V is nonsingular, the matrix exponential of    is expressed as 

     (    (           ))              (  ) 

The difficulty with using this approach is when the matrix does not have a complete set of 

orthogonal eigenvectors. In such situations, the matrix   is not invertible and the algorithm breaks down. 

The eigenvectors of the light, medium, and heavy construction used in this study were checked for this 

requirement. The eigenvalues of the state matrix   are also checked for asymptotic stability. From 

assumption of piecewise continuity and the evaluation of the matrix exponential, an analytical solution of 

the temperature is obtainable. The solution was symbolically evaluated in Matlab, for each time step. 

Using the state transition matrix and the input matrix, the solution at a current (or future) time step is 

dependent on the value from a previous time step, inputs from previous and current step, and the elapsed 

time between the two time steps. 

 

To generate the heating design day temperature profile, the time of occurrence of minimum 

temperature and the peak temperature need to be known. The minimum temperature is the 99.6% dry 

bulb temperature, which is given in ASHRAE Handbook [28].  In this study, the peak temperature is 

assumed to be equal to the smallest peak temperature for January, as obtained from the TMY3 data for 

the different locations. 

With information about the daily minimum, daily maximum, and the time of occurrence of the 

minimum temperature, the design day temperature profile was generated for the three different locations, 

as shown in Table 4 

 

The objective is to minimize the heating system size, subject to:  

 )                (Temperature limits for Zone 1, °C) 

 )                (Temperature limits for Zone 2, °C) 

c)           from 9am to 5pm (Zone 1 occupied hours) 

d)           from 9am to 5pm (Zone 2 occupied hours) 

where      is the room temperature of thermal zone 1, and      is the room temperature of thermal zone 

2.  
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Table 4: Temperature Profile for Design Day 

 

Location` 

Time 

of 

Min. Temperature Function (°C) 

Miami 7am            ((   )    ) 

MNPLS 5am 
              ((   )

 

  
) 

RESULTS 

In this study, the heating system output was moderated to satisfy the constraints on temperature. 

The heating system was sized based on the largest heating output recorded during the heating season. Due 

to space limitations however, only the heating system size and few days temperature results are presented 

here.  

As shown in Figures 3 to 6, the thermal responses of light, medium, and heavy construction are 

different for the studied locations. The design days are the sinusoidal part of the Figures 3 to 6 as 

indicated. The temperature responses depicted in the three figures offer insightful information to the 

behavior of the different construction. 

For Miami, temperature drift was witnessed for a couple of days, during unoccupied periods. 

This means that the HVAC system could be turned off for several hours, without the temperature 

dropping too sharply. As seen in Figures 3 and 4, the heavy construction has very strong moderating 

effect, with capability to keep the temperature around the setpoint of 22.2°C , even after the HVAC 

system is turned off. For the light construction, the temperature drops sharply (with approximately the 

same slope as the ambient) when the heating system is turned off. The setback to this is that larger 

amounts of heating are then required to bring the temperature back to the required value at the start of 

occupied period. The behavior of the medium construction is between the two extremes. The implication 

is that the light construction experiences larger heating loads, due to lower capability to store thermal 

energy. The heavy construction on the other hand, has capability to offset the heating requirement by 

gradual release of the stored thermal energy.  

For Minneapolis, temperature drift was witnessed for very few hours during unoccupied periods, 

which are mostly for the design day (see Figures 5 and 6). This means that the HVAC system could not 

be turned off for more than two hours without the temperature dropping below the lower limit. This 

situation is necessary because the ambient temperature is sub-zero for all the days during the simulation 

period. This unfavorable temperature causes the heating system to be operational for longer hours than 

what was observed for Miami. However, the behavior of heavy and medium construction is similar for 

both Miami and Minneapolis. Both have very good moderating effects on temperature swings. The 

implication is that the light construction experiences larger heating loads, due to lower capability to store 

thermal energy. The heavy construction on the other hand, has capability to offset the heating requirement 

by gradual release of the stored thermal energy.  

Results show that the heating system must be operating at full load shortly before and at the time 

of occurrence of minimum daily temperature. 
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Figure 3: Thermal Response of Miami- Zone 1 

 

Figure 4: Thermal Response of Miami- Zone 2 

 

Figure 5: Thermal Response of Minneapolis- Zone 1 
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Figure 6: Thermal Response of Minneapolis- Zone 2 

 

The resulting heating system sizes are presented and compared with the ASHRAE method, as shown in 

Figures 7 and 8.It is seen that the heavy construction has the least heating system size while light 

construction has the largest heating system size. By factoring the passive thermal storage of building 

construction into the design of heating system, the heating system could be downsized by up to 33% for 

heavy construction, 23% for medium construction, and 22% for light construction in Miami. In 

Minneapolis, savings of up to 18%, 12%, and 9% are possible for heavy, medium, and light construction 

respectively. The savings on equipment size are largest for Miami due to the favorable temperature 

pattern and design conditions.  

 

Figure 7: Heating System Size (Minneapolis) 
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Figure 8: Heating System Size (Miami) 

CONCLUSIONS 

A typical office building with two thermal zones was considered in this study. The thermal 

characteristics of building constructions have significant influence on heating system operation and size 

for the different locations considered in this study. By analyzing the thermal response of the different 

constructions for the heating season, the results show that heating is not necessary to maintain thermal 

comfort on a typical day in Miami where there are no strict temperature requirements.  From the thermal 

response to design day conditions however, heating is required for the design day in Miami. In 

Minneapolis, heating is always required to maintain thermal comfort for both typical day and design 

conditions, because the ambient temperature is sub-zero during winter. Miami which requires a smaller 

heating system has the largest savings while Minneapolis has the smallest reduction in the size of the 

heating system.  

Passive thermal storage also offers opportunities for energy savings during heating system 

operation. Once the desired temperature is reached, the heating system could be turned off in a typical 

building with heavy construction. The heavy constructions save more energy during floating and hold 

periods than during the warm up period, by moderating swings in temperature. Light and medium 

constructions save more energy during warm up periods.  

Overall, the savings on heating system size is highest for Miami, which is classified as a very 

hot-humid region and least for Minneapolis which is a cold-humid region according to ASHRAE 

classifications. For all the locations studied, there are savings on heating system size for all types of 

construction. Based on the analysis in this study, the following conclusions could be drawn: 

 

• There are tremendous opportunities for downsizing the heating system by considering passive 

thermal storage of building construction 

• The savings on heating system size is highest for heavy construction due to better thermal 

storage and moderating effects on temperature 

• The savings is higher for Miami due to favorable temperature profile for heating season. 

• A smaller sized system is also expected to generate additional savings in HVAC systems 

operating cost where efficient control strategy is adopted. 
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Appendix F: Compositions of Floor and Partitions 

Floor composition 

 

 (  ) 
(  ) 

 (    ) 
(𝑩   𝒉𝒇 𝑭) 

  (     ) 
(   𝒇  ) 

   (     ) 

(𝑩     𝑭) 

Resistance 

(     ) 
(𝒇  𝑭𝒉 
𝑩  ) 

M11 

100mm 

lightweight 

concrete 

101.6 

(4) 
0.53 (0.304) 

1280 

(79.91) 
840 (0.201)  

F05 

Ceiling air 

space 

- - - - 0.18 (1.022) 

F16 

Acoustic 

tile 

19.1 

(0.75) 
0.06 (0.034) 368 (22.97) 590 (0.141)  

 

Composition of Partitions 

 

 (  ) 
(  ) 

 (    ) 
(𝑩   𝒉𝒇 𝑭) 

  (     ) 
(   𝒇  ) 

   (     ) 

(𝑩     𝑭) 

Resistance 

(     ) 
(𝒇  𝑭𝒉 𝑩  ) 

G01a 19mm 

gypsum 

19 

(0.75) 0.16 (0.092) 800 (49.94) 43 (0.01) 
 

F04 Wall air 

space 

resistance 

- - - - 0.15 (0.852) 

G01a 19mm 

gypsum 

19 

(0.75) 0.16 (0.092) 800 (49.94) 43 (0.01) 
 

 

 


