Fourth Floor
Oklahoma State University Library

DFSCRIP: An Implementation of a Single-pass

Algorithm for the Critical Path Method

By
Subramanian Srinivasan
Master of Engineering
Birla Institute of Technology & Science
Pilani INDIA

1973

Submitted to the Graduate Faculty of the
Department of Management
College of Business Administration
Oklahoma State University
in partial fulfillment of
the requirements for the degree of
MASTER OF BUSINESS ADMINISTRATION

JAN 1984

Name: Subramanian Srinivasan Date of Degree - May 1984
Institution: Oklahoma State University

Location: Stillwater

Title of Study: DFSCRIP: An implementation of a Single-pass

Algorithm for the Critical Path Method.

Pages in study: 60 Candidate for the Degree of

Master of Business Administration
Major Field: Business Administration

Scope and Method of Study:

The scope of this report is the development of
comparable computer programs for a new single-pass
algorithm and the conventional method for finding the
critical path in a project network and to study their
relative efficiencies.Adequate examples are used for
being able to draw conculsions about the complexities
of the algoritms.Since the nature of the study is
theoretical,the examples used are arbitrary networks
and not drawn from real life situations.

Conclusions: '

The results of the computer executions indicated that
the complexity of the new algorithm is linear,requiring
time proportional to the number of activities in the
network.However, the algorithm turned out to be slower
than expected and was only marginally faster than the
conventional algorithm.The storage requirements of the
two algorithms were also proportional to the number of
activities,but the new algorithm needed somewhat more
storage.These results led to the conclusion that both
the algorithms are of approximately equal overall
efficiencies.

DFSCRIP: An Implementation of a Single-pass

Algorithm for the Critical Path Method

Report Approved:

(iddptp 0. ook,

Advisor

ij\ FYV\M/’/

Director of Graduate Stu

(O bl

Head,Department of Management

ACKNOWLEDGEMENT

I would 1like to express my gratitude to Prof.Locks not only
for supervising this work but also for all the encouragement he
has given me during the course of my association with the
project.

I would also like to thank the Office of Business Economics
and Research for providing excellent facilities, and particularly
Kathy Bolstead for keeping the terminals warm and offering a
ready helping hand. Thanks also to my colleagues on the project
who have all contributed to this paper in some way or the other.

Finally, I would like to express my appreciation for my wife,
Maithili, who has been a tremendous support and source of

encouragement all along.

TABLE OF CONTENTS

0.0 Abstract

1.0 Introduction

2.0 CPM:The Conventional Method and Depth-first Search
3.0 Salient Features of the Computer Programs

4,0 Computer Program Outline

5.0 Instructions for Using the Computer Programs

6.0 Evaluation of Algorithms

7.0 Event Float

8.0 Large Network Example

References

Appendix - Listings. of DFSCRIP and CONCRIP Programs

10

13

19

23

27

28

36

38

DFSCRIP: AN IMPLEMENTATION OF A SINGLE-PASS

ALGORITHM FOR THE CRITICAL PATH METHOD

0.0 ABSTRACT

This paper is concerned with the development and documentation
of a computer program for a new algorithm developed by M.O.Locks
for finding the critical path. The algorithm 1is a depth-first
search that requires only one pass through the network,while the
conventionally used method requires two passes.The time complex-
ity of the algorithm is linear in the number of activities in the
network.The two methods are compared with the help of example
problems containing 25 to 300 activities.

An important feature of the computer program is modularization
that enables linking up smaller networks to Solve large problems
with relatively 1less computer storage requirements.Another fea-
ture is the construction by the program of a linked 1list for
storing information about the network.The program is written in
the PL/1 language.

Also introduced in this paper is Event Float,a measure that is

different from the other commonly known floats.

This project was supported in part by the Air Force under project
number AFOSR-82-0251

1.0 INTRODUCTION
1.1 Preview of project-network analysis methods

The key to successful project execution 1is proper plan-
ning,scheduling and control. Project Evaluation and Review Tech-
nigque (PERT) and Critical Path Method (CPM) are two methods that
enable these three phases to be carried out effectively.Until the
mid-fifties the bar chart,also known as the Gantt chart,was the
primamry tool available for management.In 1958 PERT

CPM identifies the sequence of activities through the network
along which no slack can be permitted if the project is to be
executed in the specified time.The crititcal path(CP) 1is the
longest path through the network.Though CPM and PERT are very
similar ,PERT relates to probabilistic networks and originally did
not concern very much with the cost element.CPM,on the other
hand,requires that time elements be known with certainty and is
extensively used in resource allocation problems.A simple method
for cost-time trade off that is suitable for hand calculation is
described by Siemens(3) and a computational procedure based on
network flow theory has been developed by Fulkerson(4).
1.2 Backtracking and Depth-first search

Backtracking is a technique that has been derived and used
independently over the years in different contexts in combinato-
rial theory.A very well known application in Operations Research
is the Branch and Bound algorithm in integer programming. A gen-
eralized treatment of the properties of backtracking has been
provided by Golomb and Baumert(5).The search in backtracking pro-

ceeds in a predetermined manner and everytime an end condition is

3
reached, the search backs up to a previously investigated state
and resumes from there.

Depth-first search(DFS) 1is a graph theroy technigue that was
introduced by Hopcroft and Tarjan and subsequently elaborated
upon by Tarjan(6). The rule governing the search 1is such that
the search always proceeds towards the terminal.Backing up occurs
when the terminal is reached and thus backtracking is always a
part of DFS.Tarjan's treatment of DFS 1is general with respect to
the type of graph it deals with.

1.3 Berztiss' work in DFS

In connection with directed graphs,of which a project activity
network is an example,Berztiss has broken up the DFS tree into
atomic units(7). Each atomic tree represents an event and all
its successors. Berztiss has used this atomic approach to store
information about the network in 'arc' and 'node' tables.In the
node table each event is viewed as the starting event of an
activity and a set of data is stored from that perspective.In the
arc table informatioq pertaining to each activity is stored. The
atomic trees are integrated into a larger K-tree representing the
network. Correspondingly,the initial arc and node table are
reconstructed to obtain the data storage structure in terms of a
final node and arc table.

Some of the advantages claimed by Berztiss are the ability to
use standard tree traversal algorithms and the ability to write
the algorithm clearly in a non-recursive manner.In this report
the more direct approach used by Tarjan is followed and the data

storage structure appears to be much simpler and to require

lesser data entry effort.
1.4 Applications of DFS

DFS has innumerable applications in graph theory.Tarjan and
Hopcroft have used DFS to determine planarity and isomorphism of
graphs. DFS has been applied to find system reliability by Sat-
yanaryana(8). This paper has resulted from implementing on the
computer an algorithm developed by Locks for establishing the
critical path(9). A comparison of the merits of 20 commercially
available software programs for executing CPM has been carried
out by Mahler and Smith(10).
1.5 A New Float Measure

Associated with the critical path method are the calculation
of various float measures.There are four generally known floats -
Total Float,Free Float,Independent Float and Safety Float(1l).All
these float measures are activity oriented and they specify the
slack that can be permitted in an activity under various limiting
conditions.An event oriented float,introduced by Locks(9),is

described in this paper.

2.0 CPM:THE CONVENTIONAL METHOD AND DEPTH-FIRST SEARCH

In this section the conventional method is reviewed briefly
and then DFS,as applied to a project network,is described in
detail.
2.1 The conventional method

The conventional method requires one pass in each direction
through the network to find the critical path.In the forward pass
the earliest start time(ES) for all the activities are calculated
and in the backward pass the latest finish time(LF).The earliest
occurrence time(EET) for an event is the ES of all activities
succeeding it and the latest occurrence time(LET) 1is the LF of
all the preceding activities.The critical path is the sequence of
activities connecting a critical sequence of events which all
have their EET and LET equal.There are innumerable texts describ-
ing the method but a recent one with a number of references is by
Phillips and Garcia-Diaz(12).
2.2 DFS applied to CPM

The application of DFS to determine the critical path in a
project network ,as develped by Locks,is described here.
2.2.1 The rooted search tree

In the process of conducting the DFS a rooted tree equivalent
of the original network is constructed.The edges in the tree and
the activites 1in the network have a one to one correspon-
dence.That is,each edge represents one and only one activity.The
nodes,on the other hand,are partial events in the sense that each
node represents the completion of only dne activity preceding

it.The tree is constructed by adding an edge and a node at the

6
end of that edge for each activity explored.If a set of
activities start from one event then the corresponding set of
edges also start from the same node.

2.2.2 The search rule

The search starts from the root of the tree which corresponds
to the starting event on the network.Exploration is governed by
the rule that at every stage 1in the search,the next = event to
resume search from is the most recently reached event which still
has unexplored activities starting from it.The most recent event
is necessarily the furthest down the network in the direction of
the pass.Thus the search proceeds quickly downwards,reaching the
terminal event.Then backing up to the last event reached, explo-
ration continues downwards till the terminal or an already vis-
ited event is encountered.The search tends to proceed aloné the
network rather than across it.
2.2.3 An example by backward search

DFS can be conducted in either direction,from the starting
event or from the ending event.The network in Figure 1 is used as
an example to describe DFS.The backward search is employed rather
than the forward search for certain explanational convenience.
The DFS search tree for this network 1is shown in Figure 2.Node 1
on the tree represents event 7.Activities 5-7 and 6-7 terminate
at 7 and correspondingly nodes 2 and 3 are added on the tree.The
last event reached was 6.Further search from there leads to
events 3 and 4.Nodes 4 and 5 represent these events.Proceeding
from 4 event 1 1is reached.Node 6 is added to represent event

1.The last event reached with unexplored activities is 3.Events 1

and 4 are reached from 3 and are represented by nodes 7 and 8.

Figure 1 -Example Network Figure 2 - DFS Tree for Network
in Figure 1

Further search continues from event 5 resulting in nodes 9,10 and
11.Since each activity 1is explored exactly once, the tree con-
tains n edges and n+l nodes,where n is the number of activities.
The critical path 1is now obtained by traversing the tree.The
EET for event 4 1is {EET(l)+ duration of 1-4},which is just
c,EET(1) being 0. EET(3) 1is given by max{EET(1l)+ duration 1-3,
EET(4)+ duration 4-3}, which is max{b, c+f}.Going up the
tree,EET(6)= max{EET(3)+ duration 3—6,2ET(4) +duration 4-6}.Thus
EET(6)= max{g+ max{b,c+f} ,c+h}.Likewise traversing up the left
side of the tree we obtain EET(5) as max{EET(3)+ duration 3-5,
EET(2)+duration 2-5}.EET(2) is a.Finally, EET(7)=max{EET(5)+
duration 5-7, EET(6)+ duration 6-7}.Proceeding from the leaves to
the root all these expressions can be evaluated and EET(7) gives

the project time.

2.2.4 Retracing

Each sequence of edges on the tree is a partial path.The crit-
ical path is the longest path from the root to any leaf corre-
sponding to the starting event 1.The process of comparison at
each node to find the EET of the corresponding event also enables
to identify the edge to be followed for the longest partial
path.For example at node 1 if EET(5)+duration 5-7 is greater than
EET(6)+duration 6-7 then the longest path is along edge 7-5.With
this information available for every event ,it is easy to trace
the critical path starting from the root.If a node is a leaf,then
a jump 1is to be made.Due to the backtracking procedure corre-
sponding to each event there can be only one node which is not a
leaf,the one corresponding to the first visit to that event. A
jump is then to be made to this node and the tracing continued.In
Figure 2 node 5 corresponds to the first visit to event 4.Hence
'if this happens to be on the critical path,a jump would have to
be made node 5 whenever a leaf corresponding to event 4 is
encountered.If 1-4-3-5-7 were the critical path,then the path
would be traced along nodes 1-2-(10-4)-(8-5)-6.
2.2.5 Direction of Pass and Event times

An interesting consequence of the nature of DFS is that during
the forward pass we obtain the LETs and during the backward pass
the EETs. This is because once a path from any event to the ter-
minal is established, that path is never traversed again.The
length of that path is fixed right at the first traversal.On the
other hand,any number of paths to that event from the source can

be established until the search is completed.Thus,in the forward

9
pass the longest paths from intermediate events to the ending
event is obtained and in the backward pass,the longest path from

the starting event to intermediate events.

10
3.0 SALIENT FEATURES OF THE COMPUTER PROGRAMS

Two important features have been incorporated in the computer
programs.

3.1 Modularization

The most important user friendly feature of the computer pro-
grams 1is their ability to integrate modular networks into a
supernetwork.Large, complex projects may be made up _of smaller
independent projects.Solving the entire project as a single prob-
lem would require proportionately high computer storage require-
ments.With the modularization feature,the storage required is
dependent only upon the size of the largest module. Problems
with 25,50,100 and 300 activities, presented in section8.0, have
been integrated and the complete problem,with 475 activi-
ties,required only 76 kbytes,the same memory required by the 300
activity problem.However, in order to be able to use the feature
it must be possible to break up larger network into smaller mod-
ules,each with one starting and one ending event.This may not be
possible with all networks.

The concept of modules has been known in a different form as a
'Hammock'. A Hammock, or a Summary,activity is a single activity
that represents a section of a network. PREMIS(13) calculates the
duration of the Hammock activity when the extreme events of a
section are specified. The programs in this report performs the
reverse function,they integrate the Hammock activities into big-
ger networks.

3.2 Representation of network data

The first step in implementing the computer program is to

11
arrive at a suitable method of representing the network.The
simplest way to do this be to wuse an NxN matrix,N being the num-
ber of events.Entry in row k and coloumn j represents the dura-
tion of activity k-j.However,the resulting matrix would be very
sparse,resulting in unnecessary use of memory and time consuming
search.A simple, linked list form of data storage has been used
in this paper.Ashbrook and Zinn(14) have described another form
of linked list but their method requires identifying the activi-
ties by numbers.The additional work may not be warranted for the
type of network this paper is concerned with.

3.2.1 Linked list

For each event in the network information about all immedi-
ately succeeding activities are stored in a data structure con-
structed by the program and referred to here as a 'card'.The
cards are identified by a serial number and contain three
fields.One field contains the succeeding event, another contains
the duration of the corresponding activity,and the third field is
a pointer that contains the serial number of the next card on the
list.For each event there is a 'header' which contains a pointer.
All cards pertaining to one predecessor event are linked linearly
and the whole chain is linked to the header.The last card in the
chain is identified by a 0 in 1its pointer field.Figure 3 shows a
small network and the linked list for it.

As the input data is read cards are drawn(in serial order) and
written in and linked up.To identify the successor activities
of ,say,event 3, the pointer field of header 3 is read. The 4 in

that field 1implies that the first card on the linked 1list is

12
4.The 5 in the pointer field of 4 leads to card 5.The 0 in card 5

implies that there are no other activities starting from event 3.

HEADER CARD

event |1ink successor | . X
it event time |link

[+ 12TaT23-—{2][3]6 0

213173 141€ |0
3144-+1412[cl51+-—+5]4][d]0

Figure 3 - Example for Linked List Construction

3.2.2 Bi-directional list

The list explained above is adequate 1if only the forward pass
is to be made.For a reverse pass lists for all preceding activi-
ties for each event is required.The header then contains two
pointers,the backward bointer identifies the first card on the
predecessor list.Both lists are are constructed simultaneously as
the input data is read.
3.2.3 Savings in memory

When both lists are constructed there will be 2M cards,M being
the number of activities.For N events there will be N head-
ers.With 4 elements in each card and 3 elements in each header,a
total of 4M+3N elements are required.If M=2N then less than 20N
elements are required.Except in very small problems this is very
much smaller than N’ .The other major advantage 1is that the

search for information 1is 1limited to small 1lists and avoids

unnecessary scanning.

13
4,0 COMPUTER PROGRAM OQOUTLINE

This section briefly describes the DFSCRIP(Depth First Search
for CRItical Path) computer program.The CONCRIP(CONventional
method for CRItical Path) program has been written on a very sim-
ilar basis, requiring an identical input data, but is not
described here as it is already well known,

The programs have been written in PL/1 language.The major advan-
tages of PL/1 is the feasibility of using structured variables in
which a number of variables can be grouped together under a com-
mon name.This facility is extremely useful in creating the linked
list and the tree structure.The second advantage,though minor,is
the ability to identify modules by names rather than numbers.

4,1 DFSCRIP

The main pro&edure is named DFSCRIP and has 6 internal proce-
dures.The main procedure reads the names of the modules and the
number of events in each module and 1invokes the procedure
'SEARCH' .SEARCH has three functions.First it reads the input data
and constructs the linked list. Then it calls two internal pro-
cedures 'BUILD TREE' and 'CRITICAL_PATH' to execute DFS.Another
procedure, 'CP_ROUTE',is invoked to trace the critical path.The
third section calculates the various float values.

BUILD_TREE constructs the tree structure without calculating
the event times,the tree configuration being independent of the
activity times. There are two arguments to this procedure,a node
and the event it represents.The procedure goes through the linked
list and for each successor event it creates a node at the next

level,a child, and records the relationship between the nodes.The

14
procedure is recursive so that it proceeds down the network by
itself.Thus,if the procedure is called by specifying the starting
event and the root,the entire DFS tree is constructed.

CRITICAL_PATH then calculates the event times by traversing
the tree. For a node specified as its argument it identifies the
successor events and their event times and then makes the appro-
priate calculations.Since calculations are to be carried out
upwards through the tree,the procedure has been made recur-
sive.For each event the successor event that results in the
greatest partial path is recorded.The event time is output as an
argument.A third argument specifies the direction of the search.

CP_ROUTE traces the longest path(s) from the event specified
as its argument to the terminal. If the event specified is the
starting event,then the critical path is obtained.

Two other procedures are used 1in constructing the 1linked
lis£.TRACE identifies the last card in the linked list for the
event argument specified.IDENTIFY provides a numerical identifi-
cation for modules referred to by a name.Though the user, speci-
fies an alpha-numeric name for the modules,the computer assigns a
number for each module for internal identification.When a module
name is encountered,a proper connection has to be made.

Flow charts for the DFSCRIP »SEARCH ,BUILD_TREE and
CRITICALPATH procedures are presented in the following pages.Flow
charts for the other three are omitted because they are very sim-
ple procedures,just tracing small sequences of numbers. Complete
listings of the programs for the two algorithms are provided in

the appendix.

Flow chart for DFSCRIP

(START)

“read

MODULE (M) NAME
and TOTAL EVENTS
in module M

call
SEARCH

TOODULE, NAME
‘*Project’
E;

RETURN

16
Flow chart for SEARCH

(: START__t)

initialize all
EVENT TIMES and
HEADER LINKS

to O
i
construct |
L=1 for CP_ROUTE
forward pass -

v

set FLAGS of \
all events '
to O calculate
FLOATS

Y
SOURCE=1 for
forward search(L=1)

SOURCE=TOTAL EVENTS i
for backward search HEEHES

C=1
N=SOURCE

call
BUILDTREE(N,C)
CRITICALPATH;
I=L-1

No

Yes,

Flow chart for BUILD TREE(E,N) RECURSIVE

Yes

Y

visited
l)

is
E the

. Yes
Terq}nal

set

get EVENT TIME
successor E°* of E=0

of E

Y 5

create new
node G=C-1;
relate N RETURN

and C

=

get next : Y
successor E!

UILD_TREE

for each
successor E°
at appropri-
ate node C

Y

set
: FLAG(E)
create new =
node C=C-1;
relate N,C Y
and C-1

RETURN

Flow chart for CRITICALPATH(N,EVENT TIME,LINK) RECURSIVE

(:__START i)

N
does\ Yes i

correspond to >

terminal?
EVENT
TIME(E)
=0
call
CRITICALPATH Y
for each
child N*' of
N
Y RETURN

EVENT TIME(E) =
max EVENT TIME(E®)
- duration EE' ;

SUCCESSOR(E) = E°
corresponding to
max.

RETURN

19
5.0 INSTRUCTIONS FOR USING THE COMPUTER PROGRAMS

Both the computer programs DFSCRIP and CONCRIP perform the
same functions.Input and output data format are absolutely iden-
tical except in one small detail in the output printout.Both pro-
grams can integrate modules into supernetworks.

5.1 Inputting Data

All data «can be entered in free format.That 1is,the entries
need not be made in specific fields.Only, they must be separated
by a comma or atleast one blank.The programs provide for identif-
ying modules by any alpha-numeric character.

The program requires the data pertaining to each module to be
entered first, followed by the data for the supernetwork.Examples
of input data for some largle modules and supernetwork are pre-
sented in section 8.1
5.1.1 Module Data

The data concerning a module 1is divided 1into two sec-
tions.First,there is a header card containing the name of the
module and the number of events in the module.The name can con-
tain a maximum of 15 characters, alphabets,numbers or other sym-
bols including blanks.The name 1is entered first within single
quotes(').The second section consists of 'event activity'
cards.For each event there is one card with the event number fol-
lowed by each successor event and the corresponding activity
duration. If necessary continuation cards may be used,without
any special characters to identify them.The end of the entries of
successor events and times is indicated by entering a 0. There

will be successor event list for each event except the finishing

20
event.Dummy activities are entered like other activities with a

time of 0.

5.1.1.1 An Example

Figure 4 - Example for Module Data Input

For the network in Figure 4 data is to be entered as follows;
'simple assembly' , 4

1 2 11 3 17 O
2,4.18 0
3 4 33 2 0 O
The job has been called Simple Assembly and has 4 events.From the
second card we infer tﬁat event 1 1is succeeded by event 2 with
duration of activity 1-2 equal to 11,and by event 3 with duration
of activity 1-3 equal to 17.It may be noted that 3-2 is a dummy -
activity.
5.1.2 Supernetwork Data

Data entry is identical to that for modules.However,the name
MUST be entered as PROJECT.Further,since the critical path of the
modules is not known,the activity times must be replaced by the

module names.

21

5.1.2.1 Example for Module Integration

Simple | 8
(::}dﬂssembly 2 Addltlon—(::) / 3

(a) (b) 6

Figure 5 - Example for Integrated Network Data Input
The supernetwork in Figure 5a has two modules,Simple Assembly

in Figure 4 and another module, Addition, shown in Figure 5b.The

data input 1in this case would start with the 4 lines of data

given in section 5.1.1.1 for Simple Assembly followed by the data

for the other module and integrated network as given below.
'Addition' 3

l1 2 16 3 8 0

2 3 3 0

'Project' 3

1 2 'Simple Assembly' 0

2 3 'Addition' O

In each module and in the supernetwork the events must be num-
bered consecutively from 1 without any missing numbers.
5.1.3 Single Module Networks

If the problem has only one module,then data entry is done as
in section 5.1.1 except that the name must be entered as PROJECT.
5.2 Output Information

The output information is quite obviously under-
stood.However,in the two programs there is a small difference in
the manner in which the critical path 1is printed.CONCRIP prints

out all critical events in numerical order. DFSCRIP prints out

22
the correct sequence of events along the critical path. In the
case of multiple paths,DFSCRIP starts again from the event at
which multiple paths are encountered.For example,in Module 1 in
section 8.0 there are two critical paths 1-4-3-2-5-9-12-13-15 and
1-4-8-7-11-10- 13-15.Multiplicity occurs at event 4 and the sec-
ond sequence is printed starting from 4 as 1-4-3-2-5-9-12-13-15-
4=8-7=11~10-13-15;

5.3 Limits on the Size of Problems

The 300 activity problem presented in section 8.0 required
about 76 kbytes of computer memory.It has not been possible to
calculate or observe the core requirements for large problems.
However, the computer statistics provided in section 6.3 show
that on a mainframe computer with several million bytes of memory
the size of the problem that can be attempted would be practi-
cally unlimited.

In the case of modular networks the size of the problem that
can be handled is dependent upon the size of the largest mod-

ule.This program has been written to handle upto 50 modules.

23

6.0 EVALUATION OF ALGORITHMS

The basis for comparing two algorithms are the execution times
and the computer core space required by them. The programs were
run on an IBM 3081D system.
6.1 Time complexity of DFSCRIP

Time is required for building the 1linked list and for execut-
ing the search.DFSCRIP requires the construction of only the for-
ward linked list.Consider a problem with M activities and N
events.Further,let a and b be the times taken by the computer for
making an addition and a comparison operation respectively.For
the data storage M cards are to be 1linked up and written in
requiring a time of kM,where k 1is a constant of proportionality.
Each activity 1is explored once,requiring one addition operation
and one comparison operation to find the correct ES.The total
time taken for these two operations is M(a+c). a and ¢ can be
considered equal and the total time taken is then (k+2a)M, which
is of linear order in M,
6.2 Time Complexity of CONCRIP

The .conventional algorithm requires the construction of a
backward list also and the time taken for data storage 1is 2kM.
Each activity is explored once,but two passes are required by the
algorithm. Further,a subtraction 1is required for finding the
slacks at the events. The total time consumed by the algorithm is
then 4aM+2kM+aN, Generally N 1is somewhat smaller than M and,
therefore, the time taken is slightly less than (2k+5a)M.
6.3 DFSCRIP vs CONCRIP

Both algorithms are linear complexity and DFSCRIP appears to

24
be theoretically superior. However ,the actual time taken by a
program is also dependent upon the number of 'bookkeeping' opera-
tions.In the case of CONCRIP these operations are merely testing
of flags to check if an event has been visited or not. A lot of
more time is required by DFSCRIP in the process of building the
tree structure.The actual execution times taken by the programs
have been plotted as functions of the number of activities in
Figure 6. Expectations of linear relationships are confirmed by
the plots and DFSCRIP is found to be marginally faster.

Figure 7 shows the core requirements for the two programs as
functions of the number of actitivities.These are also close to
being linear.But the conventional method requires very few vari-
ables to be stored in the process of the search.The tree struc-
ture in DFS resulted in about 65% greater core requirement.This
difference in the two algorithms can be reduced to about 25% by
writing the algorithm non-recursively, but that would résult in
the execution time increasing by 10% over that of the recursive
procedure.

In conclusion, both algorithms are observed to be of equal

overall efficiency.

25

T TR TR R T R T TR B A TR LR e e e
”,H [e av it ; I PRI e dazd e aed st SRR TEHTTTHE T AL
e R eccRRaaAa At e peccengsginuyy T T e L e e e LR e TR
HHEHEH L ﬂ_.z__..“.,. HORE T OISR H] HA HHTHOS ofof g8 THHD THHEEHHT
T eI T EEE T TEE T T e T EEEE T T T T T TERR R TEr FTFETTT T E O R FEETTET T
T T e i e
I T S A
HHHEL : T B T FHTH B
L . : T L T
| _ _” | i : LR T i il
; Hi i e R it
il _ T | EHEEEE T RO b e
I il AU THHH L g

£
o
1
Fo
i -
y
[
%
b, 5l
hY
o}
1
1
T
T
I

T A _ JEFEFEFCEL 11l L R FER PR
T > = o = TF B THF IF . ;] T A HF T
. o A L i | o .
_ 1A FFFF] HYI /| n
i EERES b "] v
. B 4 !
I e AL 11, RALNE 1T T B R LR AL 11 !
f 1 1 . L 414 ENEREAREEEEENE N L1} SRS H I
m
4

I
\
.
T
+
LS §
T
T
T
i
1
1
T
I
T
=
S
S —

\
\
oy
4
iFe
od
TN
o)
o

W

Pt i N i . 2 N L] ¥ i
tll JEES 1 i s 5 Y e
il CEEEEH 1 | L i Jl iy H B

3
T
LIPSy

L] WL e e R EE L TR L T L L R R R

26

27
7.0 EVENT FLOAT
The concept of float can be extended to events as well and the
idea of Event Float has been presented by Locks(1l0).An event is
the boundary between a set of activities completed and a set of
activities to be commenced.One might be interested in knowing the
slack time available between these.Event Float is defined as the
amount of slack available at an event when all preceeding and
succeeding activities are carried out 1in the shortest possible
time and the total project time remains unaffected.It is numeri-
cally evaluated at event x as C - {LET(x) + EET(x)} ,where C is
the critical path.Event Float can provide particularly useful
interpretation if the event separates two distinctly different
set of activities.All the events on the critical path have an
Event Float equal to 0.
Event Float values,as well as the other floats for the example
in section 8.0 are provided in the output printout in section

8.2

28

8.0 Large Network Example

This section illustrates the usage of the computer program for
a large network integrated from four modules.The supernetwork for
this example is shown in Figure 8.

Module 1, 1illustrated in Figure 9, consists of 15 events and
25 activities. The duration of each activity ,in arbitrary time
units, is shown alongside in the diagram.

Module 2 consists of 25 events and 50 activities and is illus-
trated in Figure 10.

Module 3, shown in Figure 11, consists of 50 events and 100
activities.

Module 4, shown in Figure 12, consists of 160 events and 300
activities.

The entire problem needed .94 seconds of CPU time on the IBM

3081-D and the core required was 76 kBytes.

FIG 8 MODULE

M