
Fourth Floor
Oklahoma State University Library

DFSCRIP: An Implementation of a Single-pass

Algorithm for the Cri t ical Path Method

By

Subramanian Srinivasan

Master of Engineering

Birla Institute of Technology & Science

Pilani I NDIA

1973

Submitted to the Graduate Faculty of the

Department of Management

College of Business Administration

Oklahoma State University

in partial fulfillment of

the requirements for the degree of

MASTER OF BUSINESS ADMINISTRATION

JAN 1984

Name: Subramanian Srinivasan Date of Degree - May 1984

Institution: Oklahoma State University

Location: Stillwater

Title of Study: DFSCRIP: An implementation of a Single-pass

Algorithm for the Critical Path Method .

Pages 1n study: 60 Candidate for the Degree of

Master of Business Administration

Major Field: Business Administration

Scope and Method of Study:
The scope of this report is the development of
comparable computer programs for a new single-pass
algorithm and the conventional method for finding the
critical path in a project network and to study their
reiative efficiencies.Adequate examples are used for
being able to draw conculsions about the complexities
of the algoritms.Since the nature of the study is
theoretical,the examples used are arbitrary networks
and not drawn from real life situations.

Conclusions:
The results of the computer executions indicated that
the complexity of the new algorithm is linear,requiring
time proportional to the number of activities in the
network.However, the algorithm turned out to be slower
than expected and was only marginally faster than the
conventional algorithm.The storage requirements of the
two algorithms were also proportional to the number of
activities,but the new algorithm needed somewhat more
storage.These results led to the conclusion . that both
the algorithms are of approximately equal overall
efficiencies.

DFSCRIP: An Implementation of a Single-pass

Algorithm for the Critical Path Method

Report Approved:

Advisor

Director of Graduate

t of Management

ACKNOWLEDGEMENT

I would like to express my gratitude to Prof.Locks not only

for supervising this work but also for all the encouragement he

has given me during the course of my association with the

project.

I ~ould also like to than k the Office of Business Economics

and Research for providing excellent facilities, and particularly

Kathy Bolstead for keeping the terminals warm and offering a

ready helping hand. Thanks also to my colleagues on the project

who have all contributed to this paper in some way or the other.

Finally, I would .like to express my

Maithili, who has been a tremendous

encouragement all along.

appreciation for my wife,

support and source of

TABLE OF CONTENTS

0.0 Abstract 1

1.0 Introduction 2

2.0 CPM:The Conventional Method and Depth-first Search 5

3.0 Salient Features of the Computer Programs 10

4.0 Computer Program Outline 13

5.0 Instructions for Using the Computer Programs 19

6.0 Evaluation of Algorithms 23

7.0 Event Float 27

8.0 Large Network Example 28

References 36

Appendi x - Listings . of DFSCRIP and CONCRIP Programs 38

1

DFSCRIP: AN IMPLEMENTATION OF A SINGLE-PASS

ALGORITHM FOR THE CRITICAL PATH METHOD

0.0 ABSTRACT

This paper is concerned with the development and documentation

of a computer program for a new algorithm developed by M.O.Locks

for finding the critical path. The algorithm is a depth-first

search that requires only one pass through the network,while the

conventionally used method requires two passes.The time complex-

ity of the algorithm is linear in the number of activities in the

network.The two methods are compared with the help of example

problems containing 25 to 300 activities.

An important feature of the computer program is modularization

that enables linking up smaller networks t o solve large problems

with relatively less computer storage requirements.Another fea

ture is the construction by the program of a linked list for

storing information about the network.The program is written in

the PL/1 language.

Also introduced in this paper is Event Float,a measure that is

different from the other commonly known floats.

This project was supported in part by the Air Force under project
number AFOSR-82-0251

2

1.0 INTRODUCTION

1. 1 Preview of project-network analysis methods

The key to successful project execution is proper plan

ning,scheduling and control. Project Evaluation and Review Tech

nique(PERT) and Critical Path Method (CPM) are two methods that

enable these three phases to be carried out effectively.Until the

mid-fifties the bar chart,also known as the Gantt chart,was the

primamry tool available for management.In 1958 PERT

CPM identifies the sequence of activities through the network

along which no slack can be permitted if the project is to be

executed in the specified time.The crititcal path(CP) is the

longest path through the network.Though CPM and PERT are very

similar,PERT relates to probabilistic networks and originally did

not concern very much with the cost element.CPM,on the other

hand,requires that time elements be known with certainty and is

extensively used in resource allocation problems.A simple method

for cost-time trade off that is suitable for hand calculation is

described by Siemens(3) and a computational procedure based on

network flow theory has been developed by Fulkerson(4).

1.2 Backtracking and Depth-first search

Backtracking is a technique

independently over the years in

that has been derived and used

different contexts in combinato-

rial theory.A very well known application in Operations Re search

is the Branch and Bound algorithm in integer programming. A gen

eralized treatment of the properties of backtracking has been

provided by Golomb and Baumert(5).The search in backtracking pro

ceeds in a predetermined manner and everytime an end condition is

3

reached, the search backs up to a previously invest i gated state

and resumes from there.

Depth-first search(DFS) is a graph theroy technique that was

introduced by Hopcroft and Tarjan and subsequently elaborated

upon by Tarjan(6). The rule governing the search is such that

the search always proceeds towards the terminal.Backing up occurs

when the terminal is reached and thus backtracking is always a

part of DFS.Tarjan's treatment of DFS is general with respect to

the type of graph it deals with.

1.3 Berztiss' work in DFS

In connection with directed graphs,of which a project activity

network is an example,Berztiss has broken up the DFS tree into

atomic units(7). Each atomic tree represents an event and all

its successors. Berztiss has used this atomic approach to store

information about the network in 'arc' and 'node ' tables.In the

node table each event is viewed as the starting event of an

activity and a set of data is stored from that perspective.In the

arc table information pertaining to each activity is stored. The

atomic trees are integrated into a larger K-tree representing the

network. Correspondingly,the initial arc and node table are

reconstructed to obtain the data storage structure in terms of a

final node and arc table.

Some of the advantages claimed by Berztiss are the ability to

use standard tree traversal algorithms and the ability to write

the algorithm clearly in a non-recursive manner.In this report

the more direct approach used by Tarjan is followed and the data

storage structure appears to be much simpler and to require

lesser data entry effort.

1.4 Applications of DFS

4

DFS has innumerable applications in graph theory.Tarjan and

Hopcroft have used DFS to determine planarity and isomorphism of

graphs. DFS has been applied to find system reliability by Sat

yanaryana(B). This paper has resulted from implementing on the

computer an algorithm developed by Locks for establishing the

critical path(9). A comparison of the merits of 20 commercially

available software programs for executing CPM has been carried

out by Mahler and Smith(lO).

1.5 A New Float Measure

Associated with the critical path method are the calculation

of various float measures.There are four generally known floats -

Total Float,Free Float,Independent Float and Safety Float(ll).All

these float measures are activity oriented and they specify ihe

slack that can be permitted in an activity under various limiting

conditions.An event oriented float,introduced by Locks(9),is

describ.ed in this paper.

5

2.0 CPM:THE CONVENTIONAL METHOD AND DEPTH-FIRST SEARCH

In this section the conventional method is reviewed briefly

and then DFS,as applied to a project network,is described in

detail.

2.1 The conventional method

The conventional method requires one pass 1n each direction

through the network to find the critical path.In the forward pass

the earliest start time(ES) for all the activities are calculated

and in the backward pass the latest finish time(LF).The earliest

occurrence time(EET) for an event is the ES of all activities

succeeding it and the latest occurrence time(LET) is the LF of

all the preceding activities.The critical path is the sequence of

activities connecting a critical sequence of events which all

have their EET and LET equal.There are innumerable texts describ

ing the method but a recent one with a number of references is by

Phillips and Garcia-Diaz(l2).

2.2 DFS applied to CPM

The application of DFS to determine the critical path in a

project network ,as develped by Locks,is described here.

2.2.1 The rooted search tree

In the process of conducting the DFS a rooted tree equivalent

of the original network is constructed.The edges in the tree and

the activites in the network have a one to one correspon

dence.That is,each edge represents one and only one activity.The

nodes,on the other hand,are partial events in the sense that each

node represents the completion of only one activity preceding

it.The tree is constructed by adding an edge and a node at the

6

end of that edge for each activity explored.If a set of

activities start from one event then the corresponding set of

edges also start from the same node.

2.2.2 The search rule

The search starts from the root of the tree which corresponds

to the starting event on the network.Exploration is governed by

the rule that at every stage in the search,the next event to

resume search from is the most recently reached event which still

has unexplored activities starting from it.The most recent event

is necessarily the furthest down the network in the direction of

the pass.Thus the search proceeds quickly downwards,reaching the

terminal event.Then backing up to the last event reached, explo

ration continues downwards till the terminal or an already vis

ited event is encountered.The search tends to proceed along the

network rather than across it.

2.2.3 An example by backward search

DPS can be conducted in either direction,from the starting

event or from the ending event.The network in Figure 1 is used as

an example to describe DPS.The backward search is employed rather

than the forward search for certain explanational convenience.

The DPS search tree for this network is shown in Figure 2.Node 1

on the tree represents event ?.Activities 5-7 and 6-7 terminate

at 7 and correspondingly nodes 2 and 3 are added on the tree.The

last event reached was 6.Further search from there leads to

events 3 and 4.Nodes 4 and 5 represent these events.Proceeding

from 4 event 1 is reached.Node 6 is added to represent event

l.The last event reached with unexplored activities is 3.Events 1

and 4 are reached from 3 and are represented by nodes 7 and 8.

Figure 1 -Example Network Figure 2 - DFS Tree for Network
in Figure 1

7

Further search continues from event 5 resulting in nodes 9,10 and

11.Since each activity is explored exactly once, the tree con-

tains n edges and n+l nodes,where n is the number of activities.

The critical path is now obtained by traversing the tree.The

EET for event 4 is {EET(l)+ duration of 1-4},which is just

c,EET(l} being O. EET(3} is given by max{EET(l)+ duration 1-3,

EET(4}+ duration 4-3}, which is max{b, c+f}.Going up the

tree,EET(6)= max{EET(3)+ duration 3-6,EET(4) +duration 4-6}.Thus

EET(6}= max{g+ max{b,c+f} ,c+h}.Likewise traversing up the left

side of the tree we obtain EET(5} as max{EET(3}+ dur ation 3-5,

EET(2)+duration 2-5}.EET(2) is a.Finally, EET(7)=max{EET(5}+

duration 5-7, EET(6)+ duration 6-7}.Proceeding from the leaves to

the root all these expressions can be evaluated and EET(7) gives

the project time.

8

2.2.4 Retracing

Each sequence of edges on the tree is a partial path.The crit

ical path is the longest path from the root to any leaf corre

sponding to the starting event l.The process of comparison at

each node to find the EET of the corresponding event also enables

to identify the edge to be followed for the longest partial

path.For example at node 1 if EET(5)+duration 5-7 is greater than

EET(6)+duration 6-7 then the longest path is along edge 7-5.With

this information available for every event ,it is easy to trace

the critical path starting from the root.If a node is a leaf,then

a jump is to be made.Due to the backtracking procedure corre

sponding to each event there can be only one node which is not a

leaf,the one corresponding to the first visit to that event. A

jump is then to be made to this node and the tracing continued.In

Figure 2 node 5 corresponds to the first v i sit to event 4.Hence

'if this happens to be on the critical path,a jump would have to

be made node 5 whenever a leaf corresponding to event 4 is

encountered.If 1-4-3-5-7 were the critical path,then the path

would be traced along nodes 1-2-(10-4)-(8-5)-6.

2.2.5 Direction of Pass and Event times

An interesting consequence of the nature of DFS is that during

the forward pa ss we obtain the LETs and during the backward pass

the EETs. This is because once a path from any event to the ter

minal is established, that path is never traversed again.The

length of that path is fixed right at the first traversal.On the

other hand,any number of paths to that event from the source can

be established until the search is completed.Thus,in the forward

9

pass the longest paths from intermediate events to the ending

event is obtained and in the backward pass,the longest path from

the starting event to intermediate events.

10

3.0 SALIENT FEATURES OF THE COMPUTER PROGRAMS

Two important features have been incorporated in t he computer

programs.

3.1 Modularization

The most important user friendly feature of the computer pro

grams is their ability to integrate modular networks into a

supernetwork.Large, complex projects may be made up of smaller

independent projects.Solving the entire project as a single prob

lem would require proportionately high computer storage require-

ments.With the modularization

dependent only upon the size

feature,the storage required is

of the largest module. Problems

with 25,50,100 and 300 activities, presented in sectionB.O, have

been integrated and the complete problem,with 475 activi

ties,required only 76 kbytes,the same memory required by the 300

activity problem.However, in order to be able to use the feature

it must be possible to break up larger network into smaller mod

ules,each with one starting and one ending event.This may not be

possible with all networks.

The concept of modules has been known in a different form as a

'Hammock'. A Hammock , or a Surnmary,activity is a single activi t y

that represents a section of a network. PREMIS(l3) calculates the

duration of the Hammock activity when the extreme events of a

section are specified. The programs in this report performs the

reverse function,they integrate the Hammock activities into big

ger networks.

3.2 Representation of network data

The first step in implementing the computer program is to

11

arrive at a suitable method of representing the network.The

simplest way to do this be to use an NxN matrix,N being the num

ber of events.Entry in row k and coloumn j represents the dura

tion of activity k-j.However,the resulting matrix would be very

sparse,resulting in unnecessary use of

search.A simple, linked list form of

in this paper.Ashbrook and Zinn(l4)

memory and time consuming

data storage has been used

have described another form

of linked list but their method requires identifying the activi

ties by numbers.The additional work may not be warranted for the

type of network this paper is concerned with.

3.2.1 Linked list

For each event in the network information about all immedi

ately succeeding activities are stored in a data structure con

structed by the program and referred to here as a 'card' .The

cards are identified by a serial number and contain three

fields.One field contains the succeeding event, another contains

the duration of the corresponding activity,and the third field is

a pointer that contains the serial number of the next card on the

list.For each event there is a 'header' which contains a pointer.

All cards pertaining to one predecessor event are linked linearly

and the whole chain is linked to the header.The last card in the

chain is identified by a O in its pointer field.Figure 3 shows a

small network and the linked list for it.

As the input data is read cards are drawn(in serial order) and

written in and linked up.To identify the successor activities

of,say,event 3, the pointer field of header 3 is read. The 4 in

that field implies that the first card on the linked list is

12

4.The 5 in the pointer field of 4 leads to card 5.The O in card 5

implies that there are no other activities starting from event 3.

a

d

HEADER CARD
levent,link

I/ I 1-~-~ I 12 I a ·12 f---12 ! JI b Io I
12133--1314 I e 10 I
I 3 143--~ 4 12 I C 15 t---15 14 Id IO l

Figure 3 - Example for Linked List Construction

3.2.2 Bi-directional list

The list explained above is adequate if only the forward pass

is to be made.For a reverse pass lists for all preceding activi

ties for each event is required.The header then contains two

pointers,the backward pointer identifies the f i rst ca rd on the

predecessor list.Both lists are are constructed simultaneously as

the input data is read.

3.2.3 Savings in memory

When both lists are constructed there will be 2M cards,M being

the number of activities.For N events there will be· N head--

ers.With 4 elements in each card and 3 elements in each header,a

total of 4M+3N elements are required.If M=2N then less ~han 20N

elements are required.Except in very small problems this is very

much smaller than 2 N .The other major advantage is that the

search for information is limited to small lists and avoids

unnecessary scanning.

13

4.0 COMPUTER PROGRAM OUTLINE

This section briefly describes the DFSCRIP(Depth First Search

for CRitical Path) computer program.The CONCRIP(CONventional

method for CRitical Path) program has been written on a very sim-

ilar basis, requiring an identical input data,

described here as it is already well known.

but is not

The programs have been writ t en in PL/1 language.The major advan-

tages of PL/1 is the feasibility of using structured variables in

which a number of variables can be grouped together under a com

mon name.This facility is extremely useful in creating the linked

list and the tree structure.The second advantage,though minor,is

the ability to identify modules by names rather than numbers.

4.1 DFSCRIP

The main procedure is named DFSCRIP and has 6 internal proce

dures.The main procedure reads the names of the modules and the

number of events in each module and invokes the procedure

'SEARCH' .SEARCH has three functions.First it reads the input data

and constructs the linked list. Then it calls two internal pro

cedures 'BUILD TREE' and 'CRITICAL PATH' to execute DFS.Another

procedure,'CP_ROUTE' ,is invoked to trace the critical path.The

third section calculates the various float values.

BUILD TREE constructs the tree structure without calculating

the event times,the tree configuration being independent of the

activity times. There are two arguments to this procedure,a node

and the event it represents.The procedure goes through the linked

list and for each successor event it creates a node at the next

level,a child, and records the relationship between the nodes.The

14

procedure is recursive so that it proceeds down the network by

itself.Thus,if the procedure is called by specifying the starting

event and the root,the entire DFS tree is constructed.

CRITICAL PATH then calculates the event times by traversing

the tree. For a node specified as its argument it identifies the

successor events and their event times and then ma kes the appro

priate calculations.Since calculations are to be carried out

upwards through the tree,the procedure has been made recur

sive.For each event the successor event that results in the

greatest partial path is recorded.The event time is output as an

argument.A third argument specifies the direction of the search.

CP ROUTE traces the longest path(s) from the event specified

as its argument to the terminal. If the event specified is the

starting event,then the critical path is obtained.

Two other procedures are used in constructing the linked

list.TRACE identifies the last card in the linked list for the

event argument specified.IDENTIFY provides a numerical identifi

cation for modules refer.red to by a name.Though the use~ speci

fies an alpha-numeric name for the modules,the computer assigns a

number for each module for internal identification.When a module

name is encountered,a proper connection has to be made.

Flow charts for the DFSCRIP ,SEARCH ,BUILD_TREE and

CRITICALPATH procedures are presented in the following pages.Flow

charts for the other three are omitted because they are very sim

ple procedures,just tracing small sequences of numbers. Complete

listings of the programs for the two algorithms are provided in

the appendix.

Flow chart for DFSCRIP

START

M - 1

·· rea
MODULE (M) NAME
and TOTAL EVENTS
in module M

call
SEARCH

M = M-

Yes

1.

START

initialize all
EVENT TIMES and
HEADER LINKS
to O

construct
Linked List;
L=l for
forward pass

set FLAGS of

all events
to O

Flow chart for SEARCH

SOURCE=l for
forward search(L=l)
SOURCE=TOTAL EVENTS
for backward search

C=l
N=SOURCE

call
BUI LDT REE (N ,C)
CRITICALPATH;
L=L-1

No

y s ' ,

call
CP_ROUTE

calculate
FLOATS

16

Flow chart f or BUILD_TREE(E, N) RECURSIVE

START

successor E'
of E

create new
node G=C-1;

relate N
and C

get next
successor E'
of E

create new
node C=C-1;
relate N,C
and C-1

Yes

Yes

Yes

for each
successor E'
at appropri
ate node C

set
FLAG(E)
=l

set
EVENT TIME
of E=O

17

Flow chart for CRITICALPATH(N,EVENT TIME,LINK) RECURSIVE

START

ca
CRITIC ALP AT
for each
child N' of
N

EVENT TIME (E) =
max EVENT TIME (E •)
- duration EE'
SUCCESSOR(E) = E 1

corresponding to
max.

E NT
TIME (E)
= 0

18

19

5.0 INSTRUCTIONS FOR USING THE COMPUTER PROGRAMS

Both the computer programs DFSCRIP and CONCRIP perform the

same functions.Input and output data format are absolutely iden

tical except in one small detail in the output printout.Both pro

grams can integrate modules into supernetworks.

5.1 Inputting Data

All data can be entered in free format.That is,the entries

need not be made in specific fields.Only, they must be separated

by a comma or atleast one blank.The programs provide for identif

ying modules by any alpha-numeric character.

The program requires the data pertaining to each module to be

entered first, followed by the data for the supernetwork.Examples

of input data for some largle modules and supernetwork are pre

sented in section 8.1

5.1.1 Module Data

The data concerning a module is divided into two sec

tions.First,there is a header card containing the name of the

module and the number of events in the module.The name can con

tain a maximum of 15 characters, alphabets,numbers or other sym

bols including blanks.The name is entered first within single

quotes(').The second section consists of 'event activity'

cards.For each event there is one card with the event number fol

lowed by each successor event and the corresponding activity

duration. If necessary continuation cards may be used,without

any special characters to identify them.The end of the entries of

successor events and times is indicated by entering a O. There

wil l be successor even t list for each event except the finishing

20

event.Dummy activities are entered like other activities with a

time of 0.

5.1.1.l An Example

II /8

. /7

Figure 4 - Example for Module Data Input

For the network in Figure 4 data is to be entered as follows;

'simple assembly' 4

1 2 11 3 17 0

2 , 4 18 0

3 4 33 2 0 0

The job has been called Simple Assembly and has 4 events.From the

second card we infer that event 1 is succeeded by event 2 with

duration of activity 1-2 equal to 11,and by event 3 with duration

of activity 1-3 equal to 17.It may be noted that 3-2 is a dummy

activity.

5.1.2 Supernetwork Data

Data entry is identical to that for modules.However,the name

MUST be entered as PROJECT.Further,since the critical path of the

modules is not known,the activity times must be replaced by the

module names.

5.1.2.1 Example for Module I ntegration

Simple
Assembly

(a)

Additio

21

(b)

Figure 5 - Example for Int egrated Network Data Input

The supernetwork in Figure Sa has two modules , Simple Assembly

in Figure 4 and another module, Addition, shown in Figure Sb . The

data input in thi~ case would start with the 4 lines of data

given in section 5.1.1.1 for Simple Assembly followed by the data

for the other module and integrated network as given below.

'Addition' 3

1 2 16 3 8 0

2 3 3 0

'Project' 3

1 2 'Simple Assembly' O

2 3 'Addition' 0

In each module and in the supernetwork the events must be num

bered consecutively f rom 1 without any missing numbers.

5.1.3 Single Module Networks

If the problem has only one module,then data entry is done as

in section 5.1.1 except that the name must be entered as PROJECT.

5 . 2 Output Information

The output information is quite obviously under-

stood.However,in the two programs there is a small difference in

the ma nner in which the critical path is printed.CONCRIP prints

out all critical events in ~umerical order. DFSCRIP prints out

22

the correct sequence of events along the crit i cal path. In the

case of multiple paths,DFSCRIP starts again from the event at

which multiple paths are encountered.For example,in Module 1 in

section 8.0 there are two critical paths l - 4-3-2-5-9-12-13-15 and

1-4-8-7-11-10- 13-15.Multiplicity occurs at event 4 and the sec

ond sequence is printed starting from 4 as l-4-3-2-5-9-12-13-15-

4-8-7-ll-10-13-15.

5.3 Limits on the Size of Problems

The 300 activity problem presented in section 8.0 required

about 76 kbytes of computer memory.It has not been possible to

calculate or observe the core requirements for large problems.

However, the computer statistics provided in section 6.3 show

that on a ma inframe computer with severa l million bytes of memory

the size of the problem that can be attempted would be practi

cally unlimited.

In the case of modular networks the size of the problem that

ca n be handled is dependent upon the size of the largest mod

ule.This program has been .written to handle upto 50 modules.

23

6.0 EVALUATION OF ALGORITHMS

The basis for comparing two algorithms are the execution times

and the computer core space required by them.

run on an IBM 3081D system.

The programs were

6.1 Time complexity of DFSCRIP

Time is required for building the linked list and for execut-

ing the search.DFSCRIP requires the construction of only t he for

ward linked list.Consider a problem with M activities and N

events.Further,let a and b be the times taken by the computer for

making an addition and a comparison operation respectively.For

the data storage M cards are to be linked up and written in

requiring a time of kM,where k is a constant of proportionality.

Each activity is explored once,requiring one · addition operation

and one comparison operation to find the correct ES.The total

time taken for these two operations is M(a+c). a and c can be

considered equal and the total time taken is then (k+2a)M, which

is of linear order in M.

6.2 Time Complexity of CONCRIP

The conventional algorithm

backward list also and the time

requires the construction of a

taken for data storage is 2kM.

Each activity is explored once,but two passes are required by the

algorithm . Further,a subtraction is required for finding the

slacks at the events . The total time consumed by the algori thm is

then 4aM+2kM+aN. Generally N is somewhat smaller than Mand,

therefore, the time taken is slightly less than (2 k+5a) M.

6.3 DFSCRIP vs CONCRIP

Both algorithms are linear complexity and DFSCRIP appears to

24

be theoretically superior. However,the actual time taken by a

program is also dependent upon the number of 'book keeping' opera

tions.In the case of CONCRIP these operations are merely testing

of flag s to check if an event has been visited or not. A lot of

more time is required by DFSCRIP in the process of building the

tree structure.The actual execution times ta ken by the programs

have been plotted as functions of the number of activities in

Figure 6. Expectations of linear relationships are confirmed by

the plots and DFSCRIP is found to be marginally faster.

Figure 7 shows the core requirements for the two programs as

functions of the number of actitivities.These are also close to

being linear.But the conventional method requires very few vari

ables to be stored in the process of the search.The tree struc

ture in DFS resulted in about 65% greater core requirement.This

difference in the two algorithms can be reduced to about 25% by

writing the algorithm non-recursively, but that would result in

the execution time increasing by 10% over that of the recursive

procedure.

In conclusion, both algorithms are observed to be of equal

overall efficiency.

~~

:j:;:t;:~ __ ; ·--
- - ·--

~- . ·-- · -· - -1-- 1- -
1-.------

- ... - . ·--· __ · . · .. --- - -
- -- ~ - --·-·· --- --·· --•··· - · - ·- -

···-
~ -

I .---~-;__.~-----+-_c..~

·--· - - ··--· - --
- - -,--. - -- - -- I--- .

--'-'-: ,___: ,-.. i - ==
-- :== -~~ ~~: ~-- ·:~~ ~:. :~ ~~ ~:~ .:~ ~;l;.: ..

--

-- ----

---~-
....:.-;-- : '"-_;;,_:lt-_---t---t -~ ,-- -+---+--1-----1

-- -~1¥ ·- --· --- - t--- - ---~ -= ::--1--·-
1-~~1--i~ -
.,.. - ·-- -----

--- -----·
·---:---:I- ,_ ,_

--
,-

-1-- -,--r ----i
- - --r----I-

t- ·-· ·-+- - -+---1--- +---

:===f------+--

--o--- -

~ ·--.-+ =--~ ' . . ~

--

- - -~i--- :----:-f-- ~ .

---1---,--_.f---_· -- - --r--- ~

... ...

.. .

-,-,.

. '

, , 1 ,
'

--~

~~- 1---

...+-:--r v,---__:-

=
I, .

le'- t, I ._ .-. -:;_.,...,--

~ .. f--

,___

--~

-, __ -- ------1- , -.... ~---· ··1--···=-- , _1~-- ------ - -- ---···· ---1 - -:: ·::: - ---- -- ----- I--- ~...:.. · - ··==::::t:-=--
:-...::-:_: ::r:: : .: ;::·:· =: :·.: :.-:::~ ~:-.:: ~:r:::=·~ :-.. :- : : : : :~:: ·: :-::f:: :-'._ ?:-:.: . .=::: ·::-:: -~-:. ~==-===---= --~-'-_ ==~=-==--:-r-~--==-

..._.......i._-.1._...L_

25

- ------- -- ' .. ---·· ·::.:- ::·..::: ::_:..::

... -1 ·
·· ···
--- - · 1 · ... -· -·- ... -· -· · · -· ···

. : : : I:~ .:
I -

,_
·I·
"i. :

. , .. " .

.

. . . ··1 ·

::::-~ ~.:.:.: ~-:1=::::: ~-:._:: .:....::-~-:- : <k ::: >~q:: ::_ ~-::::~J::: : ·: : :.. :_I : :-:-::i:x~ :_:.:::._ .:~=4== :::..=!= := 2 =-~==-..: :: :~-::l.::::
- --, ~~~ --= =-·-: ~f::~: : =!=-~-- f-- ~ - ·-

--
- -- -·--
,_

--

- ·

- ·

·-· ·-I--"- ·- \

·-1-

- ·

. :-~ ..;.>,.-: .

- __ , __ -
---. ·-

·-1--·~·~·---·+-t- ~-, ~-:=

----- - 1-- - . ..J - -- --1- --- 1-
-- t=_ __ ~--- . -:: - ·:. -1 ·== .. -= _-:-=::r..:--.:.-1---- - - ··- - . . ·-· - --.. ·--+-

·-

., ,_

---· -- -- - · ·- --f-·

~ - . . -'---. · · ---y-:- +,.;.,-:- ~-:-r"::!==:::l1-:::·=· :±·:t1--=·=J:;::::::· :I:== 1---- -+--+-"'->-1---~-+~ -l-......+;-! ~ '1 - .- +fl..;_~r--:-:- ~ : .. .;...
-- --:--

. . 1-'---'--'-t----

' : tl.ll"l +t+ .. '.

·-· -- ----
· ·-

--f-;LL

:..:_;so
-'-'-'
.-:-"v.'.l

-:--'." : : ·l . : I •

·-····-r.,,
~~ =-= =--=r= :~ ~;~ :r~

:•>Jt :~~-:-~ ~:.::<:=::J:: - l : ·:·~~~=·;:=t·:~:--.-~---:LJ=~~~ . ~::..:. .:-.-: >. ·;<j"~-
== ~~~ '. ... :· ::_:..;· ~~;-;.: :,-=t'=f~:~~~:~ ::: :: : . -::·:: :::·; ~~::- ~:i~. :?~;=+:~ :- ·:-~ ::.~ ~-•--~~-== ~: d-:-:~:

!
I
I

- ·--- ~.- ·- - ---- ----
···----Y-- ..

·- ·· ·· ··-:-- ---~ ·- ----- --··

26

27

7.0 EVENT FLOAT

The concept of float can be ex tended to events as well and the

idea of Event Float has been pre sented by Locks(lO).An event is

the boundary between a set of ac tivities completed and a set of

activities to be commenced.One mi ght be interested in knowing the

slack time available between these.Event Float is defined as the

amount of slack available at an event when all preceed ing and

succeeding activities are carried out in the shortest possible

time and the total project time remains unaffected.It is numeri

cally evaluated at event x as C - {LET(x) + EET(x)} ,where C is

the critical path.Event Float can provide particularly useful

interpretation if the event separates two distinctly different

set of activities.Al l the events on the critical path have an

Event Float equal to O.

Event Float values,as well as the other floats for the example

in section 8.0 are provided in the output printout in section

8. 2.

28

8.0 Large Network Example

This section illustrates the usage of the computer program for

a large network integrated from four modules. The supernetwork for

this example is shown in Figure 8.

Module 1, illustrated in Figure 9, consists of 15 events and

25 activities. The duration of each activity ,in arbitrary time

units, is shown alongside in the diagram.

Module 2 consists of 25 events and 50 activities and is illus

trated in Figure 10.

Module 3, shown in Figure 11,

activities.

consists of 50 events and 100

Module 4, shown in Figure 12, consists of 160 events and 300

activities.

The entire problem needed .94 seconds of CPU time on the IBM

3081-D and the core required was 76 kBytes.

FIG 8 MODULE INTEGRATION EXAMPLE

1-----1MODULE 1 ---MODULE 4 --

MODULE 3

SUPERNETWORK I\:
'£)

FIG 9 LARGE NETWORK EXAMPLE

8

19

2'

MODULE I
25 ACTIVITIES

\.,J
0

MODULE 2
FIG 10 LARGE NETWORK EXAMPLE 50. ACTIVITIES

\..,J
I-'

Fl G II LARGE NETWORK EX AMPLE

MODULE 3
100 ACTIVITIES

(.1'l.
N

FIG 12 LAR GE NETi;/ORK EXAMPLE

MODULE 4
300 ACTIV ITIE S lN

{...N

34

8.1 Input Data Lis ting

In the fol low ing pages a li sting of the input data for the

entire integra tion problem is supplied. Entries for the four mod

ules are followed by the entries for the supernetwork i n the last

four lines.

35

'MODULE l' 15
1 2 2 3 0 4 9 0
2 5 83 0
3 2 6 6 11 7 17 0
4 3 1 8 20 0
5 12 6 9 22 0
6 5 45 10 100 0
7 11 65 0
8 7 19 14 3 0
9 12 35 0
10 13 1 0
11 10 49 13 0 14 33 0
12 13 7 14 8 0
13 15 19 0
14 15 2 0

'MODULE 2' 30
1 2 19 3 6 4 41 0
2 5 3 6 21 0
3 2 14 7 19 0
4 8 22 0
5 9 5 0
6 10 16 11 50 0
7 6 6 8 13 0
8 11 45 12 18 0
9 13 21 14 6 0
10 14 11 15 10 0
11 15 3 16 14 0
12 16 79 17 10 0
13 18 1 0
14 19 18 0
15 19 42 24 8 20 19 0
16 20 21 21 1 0
17 21 41 0
18 22 27 23 44 0
19 23 99 0
20 24 15 0
21 24 102 25 63 0
22 26 14 0
23 26 15 27 24 24 36 0
24 27 31 28 17 0
25 24 2 29 4 0
26 30 4 0
27 30 2 0
28 30 25 0
29 28 77 30 14 0

'MODULE 3' 50
1 2 1 3 3 4 4 5 9 0
2 6 6 7 2 0
3 7 7 8 12 9 14 0
4 9 3 0
5 9 5 10 45 0
6 11 6 12 11 0
7 12 9 13 4 0
8 13 2 14 3 0

9 14 19 21 21 15 3 0
10 15 6 16 61 0
11 17 10 0
12 17 11 18 14 0
13 18 1 19 0 0
14 19 19 20 2 21 4 0
15 22 31 0
16 22 6 23 3 0
17 24 1 25 11 0
18 25 17 26 3 27 4 19 41 0
19 27 9 28 5 0
20 28 18 0
21 28 38 29 8 22 4 0
22 29 33 30 3 0
23 30 16 31 27 0
24 32 21 0
25 32 4 33 3 26 6 0
26 33 7 34 18 0
27 34 13 41 14 35 7 0
28 35 17 36 6 0
29 36 27 37 40 0
30 37 2 44 7 38 15 0
31 30 9 38 88 0
32 39 18 33 9 0
33 39 21 40 6 0
34 40 9 41 2 0
35 41 11 42 5 0
36 42 18 43 30 0
37 36 26 43 11 44 8 0
38 44 90 0
39 45 19 0
40 45 8 46 6 0
41 46 11 47 4 0
42 41 28 47 22 48 27 0
43 48 6 49 18 0
44 49 21 0
45 50 19 0
46 50 21 0
47 50 80 0
48 47 1 50 0 0
49 48 3 50 54 0

'MODULE 4' 160
1 2 7 3 16 4 3 5 1 6 8 7 2 0
2 8 11 9 7 10 14 0
3 10 4 11 8 0
4 11 6 12 16 0
5 13 10 14 6 0
6 14 5 15 11 0
7 15 9 16 36 17 1 18 2 0
8 19 5 20 9 0
9 20 12 21 4 0
10 21 3 0
11 21 17 31 16 22 25 23 16 0
12 23 3 0

36

37

13 24 4 23 9 0
14 24 1 25 18 15 0 0
15 25 6 0
16 25 8 26 13 27 14 0
17 27 7 0
18 27 8 0
19 28 16 0
20 29 1 0
21 29 12 30 25 3i 8 0
22 31 13 32 2 0
23 32 21 33 1 0
24 33 5 34 6 0
25 34 18 35 3 0
26 36 9 37 8 38 12 0
27 38 16 0
28 39 11 40 12 0
29 40 3 41 17 0
30 41 7 0
31 41 8 42 9 0
32 42 1 43 2 0
33 32 16 43 6 53 0 44 1 0
34 44 4 45 18 0
35 45 6 0
36 45 11 46 12 0
37 46 15 47 6 0
38 47 3 0
39 48 8 0
40 48 9 49 12 0
41 49 19 50 26 0
42 50 1 51 9 52 8 0
43 53 4 0
44 53 1 54 2 0
45 54 2 55 3 0
46 55 4 56 9 57 6 0
47 57 7 0
48 66 5 58 5 0
49 58 5 67 4 59 1 0
50 49 8 59 9 60 2 0
51 60 8 0
52 60 6 61 7 0
53 61 3 62 2 0
54 63 4 55 8 0
55 63 9 0
56 63 6 73 5 64 1 65 18 0
57 65 8 0
58 66 5 67 4 0
59 67 3 68 1 0
60 68 17 69 6 0
61 69 8 70 8 0
62 70 18 71 2 72 6 0
63 72 14 73 4 0
64 73 3 0
65 74 11 83 9 0
66 75 20 76 5 0

38

67 76 17 0
68 77 15 78 13 0
69 68 21 78 5 79 6 0
70 79 0 80 8 0
71 80 10 0
72 80 0 81 4 0
73 81 1 82 3 0
74 82 2 83 8 0
75 84 5 0
76 84 2 85 1 0
77 85 1 86 0 0
78 86 10 87 11 0
79 87 1 88 3 0
80 88 9 100 11 89 12 0
81 89 4 90 16 91 6 0
82 92 6 0
83 82 18 92 5 93 4 0
84 94 3 85 0 0
85 94 9 95 19 96 18 0
86 96 10 97 6 0
87 97 5 98 9 99 11 0
88 99 3 0
89 100 2 101 3 0
90 101 5 0
91 101 18 102 0 0
92 102 9 0
93 103 19 104 1 0
94 105 16 0
95 105 7 0
96 105 3 106 2 0
97 107 10 108 4 0
98 108 1 109 14 0
99 109 15 110 13 100 11 0

. 100 110 1 111 3 112 7 0
101 112 6 113 8 0
102 113 5 0
103 113 4 114 2 0
104 112 2 0
105 115 21 116 3 0
106 116 9 117 8 118 7 0
107 118 20 0
108 118 6 119 20 0
109 119 3 120 4 0
110 120 8 121 7 0
111 121 2 130 1 122 9 0
112 122 7 123 5 0
113 123 2 0
114 124 10 0
115 135 9 125 8 0
116 125 4 126 1 0
117 126 6 127 9 0
118 127 8 0
119 127 3 139 10 128 11 0
120 128 12 129 5 0

39

121 129 4 130 8 0
122 130 21 1 31 19 132 6 0
123 132 3 133 16 0
124 123 9 133 8 134 7 0
125 135 5 136 3 0
126 137 5 0
127 137 8 138 7 139 6 0
128 139 5 140 11 141 11 0
129 141 15 142 13 0
130 142 18 0
131 142 8 143 6 0
132 143 9 0
133 144 21 145 2 146 0 0
134 146 1 0
135 147 7 0
136 147 17 148 9 0
137 148 14 149 2 0
138 149 12 0
139 149 5 150 3 0
140 150 2 151 5 0
141 152 21 0
142 152 5 0
143 152 4 153 6 0
144 153 9 154 1 0
145 154 18 0
146 154 8 0
147 155 1 0
148 155 3 0
149 155 13 0
150 157 6 0
151 1 57 8 0
152 158 18 0
153 159 10 0
154 159 1 0
155 156 4 0
156 157 2 0
157 160 3 0
158 160 1 0
159 160 2 0

'PROJECT' 4
1 2 'MODULE l' 3 ' MODULE 2' 0
2 4 'MODULE 4' 0
3 2 'MODULE 3' 0
II

40

8.2 Printout of Results

Printout for the complete problem is furnished in the follow

ing pages. The results for the supernetwork are given first.The

critical path goes through events 1,3,2,4 in Figure 8.The total

project time is 1009 arbitrary time units which is the sum of the

critical path lengths for modules 2,3 and 4.The critical paths of

the four individual modules can be read from the printout.

CRITICAL PATH LENGTH

CRITICAL PATH

EVENT
1
2
3
4

PROuECT

3

1009

2 4

EVENT FLOAT
0
0
0
0

IN STMT

1
2
3

3
4
2

0
0
0

0
0
0

10 PROGRAM RETURNS FROM MAIN PROCEDURE .

0
0
0

0
0
0

CRITICAL PATH LENGTH

CRITICAL PATH

EVENT
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
13
13

4
15
15

3
4

182

2
8

EVENT FLOAT
0
0
0
0
0

33
0
0
0
0
0
0
0

16
0

5
7

9
11

12
10

ACTIVITY TOTAL FLOAT FREE FLOAT INDEP. FLOAT SAFETY FLOAT
1 ----- 2 14 14 14 14
1 ----- 4 0 0 0 0
2 - ---- 5 0 0 0 0
3 ----- 2 0 0 0 0
3 ----- 6 33 0 0 33
3 ----- 7 21 21 21 21
4 ----- 3 0 0 0 0
4 ----- 8 0 0 0 0
5 ----- 12 51 51 51 51
5 ----- g 0 0 0 0
6 ----- 5 33 33 0 0
6 ----- 10 41 41 8 8
7 ----- 11 0 0 0 0
8 ----- 7 0 0 0 0
8 ----- 14 148 132 132 148
g ----- 12 0 0 0 0

10 ----- 13 0 0 0 0
11 - ---- 10 0 0 0 0
11 ----- 14 34 18 18 34
12 ----- 13 0 0 0 0
12 ----- 14 16 0 0 16
13 ----- 15 0 0 0 0
14 ----- 15 16 16 0 0

CRITICAL PATH LENGTH

CRITICAL PATH

EVENT
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
24
25

4
28
29

8
30
28

330

11
8

30

EVENT FLOAT
0

17
17
0

101
17
25

0
101

44
0
0

158
67

0
0

29
158

0
92

0
235

0
0
0

59
9
0
0
0

15
12

19
16

23
21

1 ----- 2 18 1 1 18
1 ----- 3 17 0 0 17
1 ----- 4 0 0 0 0
2 ----- 5 101 0 0 84
2 ----- 6 17 0 0 0
3 ----- 2 17 0 0 0
3 ----- 7 25 0 0 8
4 ----- 8 0 0 0 0
5 ----- 9 101 0 0 0
6 ----- 10 44 0 0 27
6 ----- 11 17 17 0 0
7 ----- 6 27 10 0 2
7 ----- 6 25 25 0 0
8 ----- 11 0 0 0 0
8 ----- 12 0 0 0 0
9 --- - - 13 158 0 0 57
9 ----- 14 101 34 0 0

10 ----- 14 67 0 0 23
10 ----- 15 44 44 0 0
11 ----- 15 0 0 0 0
11 ----- 16 38 38 38 38
12 ----- 16 0 0 0 0
12 ----- 17 29 0 0 29
13 ---- - 18 158 0 0 0
14 ---- - 19 67 67 0 0
15 ----- 19 0 0 0 0
15 ----- 24 169 169 169 169
15 ----- 20 143 51 51 143
16 ----- 20 92 0 0 92
16 ----- 21 0 0 0 0
17 ----- 21 29 29 0 0
16 ----- 22 235 0 0 77
18 ----- 23 158 158 0 0
19 ----- 23 0 0 0 0
20 ----- 24 92 92 0 0
21 ----- 24 25 25 25 25
21 ----- 25 0 0 0 0
22 ----- 26 235 176 0 0
23 ----- 26 59 0 0 59
23 -- - -- 27 52 43 43 52
23 ----- 24 0 0 0 0
24 ----- 27 9 0 0 9
24 ----- 28 0 0 0 0
25 ----- 24 62 62 62 62
25 ----- 29 0 0 0 0
26 ----- 30 59 59 0 0
27 ----- 30 9 9 0 0
28 - - --- 30 0 0 0 0
29 - ---- 28 0 0 0 0
29 ----- 30 88 88 88 88

CRITICAL PATH LENGTH

CRITICAL PATH

EVENT
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

1
44

MUUULt. ~

5
49

10
48

428

16
47

EVENT FLOAT
0

212
146
156

0
212
211
171
146

0
284
211
226
153
106

0
277
211
211
234
153
76

0
308
268
268
221
211

76
64

0
306
306
246
215

76
76

0
306
296

78
78
76

0
296
130

0

23
50

31 38

00

Ol 0
'l" lfJ

1 ----- 2 212 0 0 212
1 ----- 3 146 0 0 146
1 ----- 4 156 0 0 156
1 ----- 5 0 0 0 0
2 ----- 6 212 0 0 0
2 ----- 7 218 7 0 6
3 ----- 7 211 0 0 65
3 ----- 8 171 0 0 25
3 ----- 9 146 0 0 0
4 ----- 9 156 10 0 0
5 ----- 9 149 3 3 149
5 ----- 10 0 0 0 0
6 ----- 11 284 0 0 72
6 ----- 12 212 1 0 0
7 ----- 12 211 0 0 0
7 ----- 13 229 3 0 18
8 ----- 13 226 0 0 55
8 ----- 14 171 18 0 0
9 ----- 14 153 0 0 7
9 ----- 21 155 2 0 9
9 -- --- 15 146 40 0 0

10 ----- 15 106 0 0 106
10 ----- 16 0 0 0 0
1 1 ----- 17 284 7 0 0
12 ----- 17 277 0 0 66
12 ----- 18 2 11 0 0 0
13 ----- 18 226 15 0 0
14 ----- 19 230 19 0 77
14 --- - - 20 234 0 0 8 1
14 -- - -- 21 153 0 0 0
15 - -- - - 22 106 30 0 0
16 -- -- - 22 76 0 0 76
16 --- - - 23 0 0 0 0
17 ----- 24 308 0 0 31
17 ----- 25 277 9 0 0
18 ----- 25 268 0 0 57
18 ----- 26 288 20 0 77
18 ----- 27 267 46 0 56
18 ----- 19 211 0 0 0
19 ---- - 27 221 0 0 10
19 -- - -- 28 211 0 0 0
20 ----- 28 234 23 0 0
21 ----- 28 212 1 0 59
21 ----- 29 182 106 0 29
21 ----- 22 153 77 0 0
22 ----- 29 76 0 0 0
22 ----- 30 94 30 0 18
23 ---- - 30 84 20 20 84
23 --- - - 31 0 0 0 0
24 -- - -- 32 308 2 0 0
25 -- - - - 32 306 0 0 38
25 - - --- 33 316 10 0 48
25 ----- 26 268 0 0 0
26 ---- - 33 306 0 0 38
26 ----- 34 268 22 0 0
27 ----- 34 246 0 0 25
27 ---- - 41 247 169 0 26
27 - -- -- 35 221 6 0 0
28 ----- 35 215 0 0 4

28 ----- 36 211 135 0 0
29 -- - - - 36 115 39 0 39
29 ----- 37 76 0 0 0
30 ----- 37 1 14 38 0 50
30 ----- 44 162 162 98 98
30 ----- 38 64 64 0 0
31 ----- 30 64 0 0 64
31 ----- 38 0 0 0 0
32 ----- 39 318 12 0 12
3 2 ---- - 33 306 0 0 0
33 ----- 39 306 0 0 0
33 ----- 40 332 36 0 26
34 ----- 40 296 0 0 50
34 -- - -- 41 246 168 0 0
35 ----- 41 237 159 0 22
35 - - --- 42 215 137 0 0
36 ----- 42 78 0 0 2
36 ----- 43 76 0 0 0
37 --- -- 36 76 0 0 0
37 - -- -- 43 121 45 0 45
37 ----- 44 121 121 45 45
38 ----- 44 0 0 0 0
39 -- - -- 45 306 10 0 0
40 ----- 45 296 0 0 0
40 ----- 46 296 166 0 0
41 ----- 46 130 0 0 52
41 -- - -- 47 78 78 0 0
42 - --- - 41 78 0 0 0
42 -- - -- 47 88 88 10 10
42 -- - - - 48 82 82 4 4
43 ----- 48 91 91 15 15
43 -- - -- 49 76 76 0 0
44 ----- 49 0 0 0 0
45 ----- 50 296 296 0 0
46 - -- -- 50 130 130 0 0
47 - ---- 50 0 0 0 0
48 -- - - - 47 0 0 0 0
49 -- - -- 48 0 0 0 0
49 -- --- 50 30 30 30 30

CRITICAL PATH LENGTH

CRITICAL PATH

EVENT
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

MODULE 4

1 3
60 69

112 122

251

11 21
68 78

130 142

30 41
87 99

152 158

EVENT FLOAT
0

17
0

15
42
42
27
28
23
17
0

40
42
42
48
27
86
84
63
28

0
3

22
47
27
29
44
63

3
0
3

22
26
27
59
31
29
44
73
58

0
13
29
27
32
29

50
100
160

48 66
49 19
50 0
51 13
52 13
53 27
54 32
55 32
56 29
57 42
58 24
59 19
60 0
61 13
62 54
63 32
64 63
65 29
66 24
67 31
68 0
69 0
70 49
71 68
72 32
73 45
74 29
75 24
76 31
77 16
78 0
79 38
80 36
81 32
82 33
83 29
84 24
85 22
86 8
87 0
88 36
89 45
90 35
91 32
92 33
93 29
94 23
95 22
96 27
97 8
98 7
99 0

100 0
101 32
102 33
103 29
104 54
105 22
106 29

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

15
7
6
4
2
0

33
29
22
44
29
15

7
4
9
0
7

29
22
42
15

4
7
0

12
25

7
77
30
22
22
15
23
28

4
0

15
7

26
38
22
22
15
33
28

0
7

24
15
15
15

0
7
0

1 ----- 2 17 0 0 17
1 ----- 3 0 0 0 0
1 ----- 4 15 0 0 15
1 ----- 5 42 0 0 42
1 ----- 6 42 0 0 42
1 ----- 7 27 0 0 27
2 ----- 8 28 0 0 11
2 ----- 9 23 0 0 6
2 ----- 10 17 0 0 0
3 ----- 10 18 1 1 18
3 ----- 11 0 0 0 0
4 ----- 11 15 15 0 0
4 ----- 12 40 0 0 25
5 --- - - 13 42 0 0 0
5 ----- 14 48 6 0 6
6 ----- 14 42 0 0 0
6 ----- 15 48 0 0 6
7 -- - -- 15 56 8 0 29
7 ----- 16 27 0 0 0
7 ----- 17 86 0 0 59
7 ----- 18 84 0 0 57
8 ----- 19 63 0 0 35
8 ----- 20 28 0 0 0
9 ----- 20 29 1 0 6
9 ----- 21 23 23 0 0

10 ----- 21 17 17 0 0
1 1 ----- 21 0 0 0 0
1 1 ----- 31 25 22 22 25
11 ----- 22 3 0 0 3
1 1 ----- 23 22 0 0 22
12 ----- 23 40 18 0 0
13 - ---- 24 47 0 0 5
13 -- - - - 23 42 20 0 0
14 ----- 24 48 1 0 6
14 ----- 25 42 15 0 0
15 ----- 25 48 21 0 0
16 ----- 25 27 0 0 0
16 ----- 26 29 0 0 2
16 ----- 27 44 0 0 17
17 -- - -- 27 86 42 0 0
18 - - --- 27 84 40 0 0
19 - --- - 28 63 0 0 0
20 ----- 29 28 25 0 0
21 ----- 29 3 0 0 3
21 ----- 30 0 0 0 0
21 ----- 31 16 13 13 16
22 ----- 31 3 0 0 0
22 ----- 32 32 10 7 29
23 - - --- 32 22 0 0 0
23 - --- - 33 26 0 0 4
24 -- - -- 33 47 21 0 0
24 -- --- 34 70 43 0 23
25 ----- 34 27 0 0 0
25 ----- 35 59 0 0 32
26 ----- 36 31 0 0 2
26 ----- 37 29 0 0 0
26 ----- 38 49 5 0 20
27 --- - - 38 44 0 0 0
28 -- - - - 39 73 0 0 10

28 ----- 40 63 5 0 0
29 ----- 40 58 0 0 55
29 ----- 41 3 3 0 0
30 - ---- 41 0 0 0 0
31 ----- 41 3 3 0 0
31 ----- 42 13 0 0 10
32 ----- 42 22 9 0 0
32 ----- 43 29 0 0 7
33 ----- 32 26 4 0 0
33 ----- 43 45 16 0 19
33 ----- 44 53 26 0 27
34 ----- 44 27 0 0 0
34 ----- 45 32 0 0 5
35 ----- 45 59 27 0 0
36 ----- 45 43 11 0 12
36 ----- 46 31 2 0 0
37 ----- 46 29 0 0 0
37 ----- 47 50 6 0 21
38 ----- 47 44 0 0 0
39 ----- 48 73 7 0 0
40 ---- - 48 66 0 0 8
40 --- - - 49 58 39 0 0
41 ----- 49 34 15 15 34
4 1 ---- - 50 0 0 0 0
42 ----- 50 27 27 14 14
42 ----- 51 13 0 0 0
42 ----- 52 13 0 0 0
43 ----- 53 29 2 0 0
44 ----- 53 27 0 0 0
44 ----- 54 46 14 0 19
45 --- -- 54 32 0 0 0
45 ----- 55 39 7 0 7
46 ----- 55 46 14 0 17
46 ----- 56 29 0 0 0
46 ----- 57 42 0 0 13
47 ----- 57 44 2 0 0
48 ----- 66 71 47 0 5
48 ----- 58 66 42 0 0
49 ----- 58 24 0 0 5
49 ----- 67 36 5 0 17
49 -- - -- 59 19 0 0 0
50 ----- 49 19 0 0 19
50 ----- 59 19 0 0 19
50 ----- 60 0 0 0 0
51 ----- 60 13 13 0 0
52 ----- 60 16 16 3 3
52 ----- 61 13 0 0 0
53 ----- 61 27 14 0 0
53 ----- 62 54 0 0 27
54 ----- 63 45 13 0 13
54 ----- 55 32 0 0 0
55 ----- 63 32 0 0 0
56 ----- 63 44 12 0 15
56 ----- 73 62 17 0 33
56 ----- 64 63 0 0 34
56 ----- 65 29 0 0 0
57 -- --- 65 42 13 0 0
58 -- --- 66 24 0 0 0
58 - --- - 67 31 0 0 7
59 -- --- 67 36 5 0 17

59 ----- 68 19 19 0 0
60 ----- 68 10 10 10 10
60 ----- 69 0 0 0 0
61 -- - -- 69 13 13 0 0
61 ----- 70 49 0 0 36
62 ----- 70 54 5 0 0
62 ----- 71 68 0 0 14
62 ----- 72 70 38 0 16
63 ----- 72 32 0 0 0
63 ----- 73 45 0 0 13
64 ----- 73 63 18 0 0
65 ----- 74 29 0 0 0
65 ----- 83 39 10 0 10
66 ----- 75 24 0 0 0
66 --- - - 76 42 11 0 18
67 ----- 76 31 0 0 0
68 ----- 77 16 0 0 16
68 ----- 78 0 0 0 0
69 ----- 68 0 0 0 0
69 ----- 78 29 29 29 29
69 ----- 79 38 0 0 38
70 ----- 80 49 13 0 0
71 ----- 80 68 32 0 0
72 ----- 81 32 0 0 0
73 ----- 81 45 13 0 0
73 ----- 82 63 30 0 18
74 ----- 82 57 24 0 28
74 ----- 83 29 0 0 0
75 ----- 84 24 0 0 0
76 ---- - 84 31 7 0 0
76 ---- - 85 32 10 0 1
77 ----- 85 22 0 0 6
78 - ---- 86 8 0 0 8
78 ----- 87 0 0 0 0
79 ----- 87 38 38 0 0
79 ----- 88 44 8 0 6
80 ----- 88 36 0 0 0
80 -----100 48 48 12 12
80 ----- 89 45 0 0 9
81 ----- 89 49 4 0 17
81 -- - -- 90 35 0 0 3
81 ----- 91 32 0 0 0
82 - --- - 92 33 0 0 0
83 ----- 82 33 0 0 4
83 ----- 92 52 19 0 23
83 ----- 93 29 0 0 0
84 ----- 94 31 8 0 7
85 ----- 94 23 0 0 1
85 ----- 95 22 0 0 0
85 - ---- 96 27 0 0 5
86 ---- - 96 28 1 0 20
86 - ---- 97 8 0 0 0
87 ----- 97 8 0 0 8
87 ----- 98 7 0 0 7
87 ----- 99 0 0 0 0
88 ----- 99 36 36 0 0
89 ---- - 100 45 45 0 0
89 -----101 45 13 0 0
90 -----101 35 3 0 0
91 --- --101 32 0 0 0

"'"' - - --- lV.::l ..::::, V V u
93 -----104 54 0 0 25
94 -----105 23 1 0 0
95 -----105 22 0 0 0
96 -----105 27 5 0 0
96 -----106 29 0 0 2
97 -----107 15 0 0 7
97 -----108 8 1 0 0
98 -----108 7 0 0 0
98 -----109 9 3 0 2
99 --- -- 109 6 0 0 6
99 ----- 110 4 0 0 4
99 -----100 0 0 0 0

100 -----110 5 1 1 5
100 -----111 2 0 0 2
100 -----1 12 0 0 0 0
101 -----112 32 32 0 0
101 -----113 40 7 0 8
102 -----113 33 0 0 0
103 ---- - 113 44 11 0 15
103 -----114 29 0 0 0
104 --- - -112 54 54 0 0
105 -----115 22 0 0 0
105 - - - - -116 44 0 0 22
106 -----116 44 0 0 15
106 -----117 29 0 0 0
106 -----118 31 16 0 2
107 - ----118 15 0 0 0
108 -----118 34 19 12 27
108 -----119 7 0 0 0
109 -----119 8 1 0 2
109 -----120 6 2 0 0
110 -----120 4 0 0 0
110 -----121 9 0 0 5
111 -----121 13 4 2 11
111 -----130 31 31 29 29
111 -----122 2 2 0 0
112 -----122 0 0 0 0
112 -- -- - 123 7 0 0 7
113 - ---- 123 33 26 0 0
114 -- -- -124 29 0 0 0
115 -----135 34 4 0 12
115 --- - - 125 22 0 0 0
116 -----125 44 22 0 0
116 -----126 46 4 0 2
117 -----126 42 0 0 13
117 -----127 29 14 0 0
118 ---- - 127 15 0 0 0
119 - ----127 25 10 3 18
119 - - -- - 139 32 9 2 25
119 -- - --128 7 3 0 0
120 -----128 4 0 0 0
120 -----129 7 0 0 3
121 -----129 9 2 0 0
121 - --- -130 18 18 9 9
122 - -- --130 0 0 0 0
122 -----131 12 0 0 12
122 -----132 25 0 0 25
123 ---- - 132 30 5 0 23

123 -----133 7 0 0 0
124 -----123 29 22 0 0
124 -----133 46 39 10 17
124 -----134 77 0 0 48
125 -----135 30 0 0 8
125 -----136 22 0 0 0
126 -----137 42 20 0 0
127 -----137 22 0 0 7
127 -----138 15 0 0 0
127 -----139 23 0 0 8
128 -----139 23 0 0 19
128 -----140 28 0 0 24
128 -----141 4 0 0 0
129 -----141 7 3 0 0
129 -----142 25 25 18 18
130 -----142 0 0 0 0
131 -----142 12 12 0 0
131 -----143 15 0 0 3
132 -----143 25 10 0 0
133 -----144 7 0 0 0
133 - - - - -145 26 0 0 19
134 -----146 77 39 0 0
135 -----147 30 8 0 0
136 -----147 22 0 0 0
136 -----148 28 6 0 6
137 -----148 22 0 0 0
137 -----149 24 9 0 2
138 -----149 15 0 0 0
139 -----149 23 8 0 0
139 -----150 38 5 0 15
140 - --- - 150 33 0 0 5
140 - ----151 28 0 0 0
141 -----152 4 4 0 0
142 -----152 0 0 0 0
143 -----152 15 15 0 0
143 -----153 20 13 0 5
144 -----153 7 0 0 0
144 -----154 24 0 0 17
145 --- - - 154 26 2 0 0
146 -- ---154 38 14 0 0
147 - --- - 155 22 7 0 0
148 -----155 22 7 0 0
149 -----155 15 0 0 0
150 -----157 33 18 0 0
151 -----157 28 13 0 0
152 -----158 0 0 0 0
153 -----159 7 0 0 0
154 -----159 24 17 0 0
155 - ----156 15 0 0 0
156 -- ---157 15 0 0 0
157 -----160 15 15 0 0
158 -----160 0 0 0 0
159 -----160 7 7 0 0

41

REFERENCES

1.Malcolm,D.G.,Fazar,W.,et al,(1959) "Application of a Technique

for R&D Program Evaluation",Systems Dev. Corp.,Santa Monica CA

2.Kelley,J.E.,and Wa lker,M.R.,(1959) "Critica l Path Planning and

Scheduling",Proc. of the Eas t ern Joint Computer Conference,

pp. 160-173

3.Siemens,N.,(1971) "A Simple CPM Time-Cost Trade off Algorithm"

Management Science,Vol. 17,pp. 354-363

4. Fulkerson,D.R.,(1961) "A Network Flow Computation for Project

Cost Curves", Mana gement Science,Vol. 7,pp. 167-168

5.Golomb,S.W.,and Baume rt,L.D.,(1965) "Backtrack Programming",

J .ACM ,Vol. 12,pp. 516-524

6.Tarjan,R.,(1972) "Depth-first Search and Linear Graph Algori

thms",SIAM J.COMPUT.,Vol. 1(2),pp. 146-160

7.Berztiss,A.T.,(1980) "Depth-first K-trees and Critical Path

Analysis",Acta Informatica,Vol. 13,pp. 325-346

8.Satyanarayana,A.,(1982) "A Unified Formula for Analysis of

Some Network Reliability Problems" ,IEEE Transactions on

Reliability,Vol. R- 31,pp. 23-32

9.Locks,M.0.,(1983) "Optimal Search for Cri t ical Path",unpub.

10.Smith,L.A.,and Mahler,P.,(1978) "Comparing Commercially Ava i

lable CPM/PERT Computer Programs",Industrial Engineering,

Vol. 10,pp. 37-39

ll.Thomas,W.,(1969) "Four Float Measures for Critical Path Sche

duling",Industrial Engineering,Vol. l,pp. 19-23

12 . Phillips,D.T.,and Garcia-Diaz,A.,(1981) "Fundamentals of Net

work Analysis",Prenctice Hall Inc.

13.PREMIS - Commercially available software package for CPM

14.Ashbrook,M.,and Zinn,H.,(1980) "A First Look at Graph Theory

Applications",BYTE,Vol . 5(2),pp. 18-28

42

43

APPENDIX

44

/ * THIS PROGRAM EXECUTES A SINGLE PASS,DEPTH-FIRST SEARCH METHOD *
/* FOR FINDI NG THE CRITICAL PATH I N A DIRECTED,ACYCLIC NETWORK . *
/* THE PROGRAM CAN BE USED TO SOLVE PROBLEMS RELATING TO A SIMPLE *
/* NETWORK OR TO A SUPERNETWORK OF SEVERAL MODULES ,EACH MODULE *
/* BEING A SIMPLE NETWORK I N ITSELF WITH ONE STARTING AND ONE *
/* ENDING EVENT. *
/ * THE PROGRAM CAN HANDLE UPTO 50 MODULES AT A TIME. *
/* ALSO,IT FINDS MULTIPLE CRITICAL PATHS IF MORE THAN ONE EXI ST. *
/* HOWEVER,THE NUMBER OF PARTIAL CRITICAL PATHS FROM ANY ONE EVENT *
/* CANNOT EXCEED 3.IN PRACTICAL PROBLEMS THIS LIMITATION CANNOT BE *
/* OF ANY CONSEQUENCE. *
/* THE PROGRAM CONSISTS OF A MAIN PROCEDURE,DFSCRIP,AND SIX *
/* INTERNAL PROCEDURES.A DESCRIPTION OF THE FUNCTIONS OF EACH *
/ * PROCEDURE IS GIVEN AT ITS BEGINNING. *
/* THOUGH THE DEPTH FIRST SEARCH REQUIRES ONLY ONE PATH TO FIND THE*
/* CRITICAL PATH,TWO PASSES ARE REQUIRED TO BE ABLE TO CALCULATE *
/* THE FLOAT VALUES.THIS PROGRAM HAS BEEN WRITTEN TO INCLUDE THE *
/* FLOAT CALCULATIONS. *
/*-------------INSTRUCTIONS FOR ENTERING DATA---------------------*
/* *
/* THE INPUT DATA IS TO BE ENTERED AT THE END OF THE PROGRAM AS *
/* DESCRIBED HERE. *
/* DATA FOR EACH OF THE MODULES IS ENTERED FIRST AND THEN THE DATA 1

/* FOR THE SUPERNETWORK. 1

/* FOR EACH MODULE: 1

/* ENTER THE MODULE NAME WITHIN SINGLE QUOTES FOLLOWED BY THE 1

/* NUMBER OF EVENTS.THE MODULE NAME CANNOT EXCEED 15 CHARACTERS 1

/* INCLUDING BLANKS.THEN, FOR EACH EVENT(EXCEPT THE FINISHING
/* EVENT} ENTER EACH SUCCESSOR EVENT AND CORRESPONDING ACTIVITY
/* TIME.ENTER AO AT THE END OF THE LIST FOR EACH EVENT.EXAMPLE--
/* 'JOB l' 5
/* 1 , 2 , A, 4 , B, 3 , C, 0
/* 3 , 2 , E, 4 , 0 , 0
/* 2 , 5 , D , 0
/* 4 , 5 , G , 0
/* THE FIRST LINE STATES THAT JOB 1 HAS 5 EVENTS.THE SECOND LINE
/* STATES THAT EVENT 1 IS SUCCEEDED BY EVENT 2,4,AND 3 AND THE
/* THE CORRESPONDING ACTIVITY TI MES ARE A,B AND C RESPECTIVELY.
/* LIKEWISE,FROM THE SUBSEQUENT LINES IT IS INFERRED THAT ACTIVITY
/* 2-5 HAS A TIME OF D,ACTIVITY 3--2 HAS A TIME OF 4 AND SO ON.
/* SINCE THERE ARE NO ACTIVITIES STARTING FROM EVENT 5,THERE WILL
/* BE NO CORRESPONDING LINE OF ENTRIES.
/* DUMMY ACTIVITIES ARE ENTERED LIKE ALL OTHER ACTIVITES,WITH AN
/* ACTIVITY TIME OF 0.ACTIVITY 3--4 IN THE EXAMPLE ABOVE IS A DUMMY ,
/* ACTIVITY.
/* THE ORDER OF ENTRY OF EVENTS WITHIN A LINE OR AMONG LINES IS
/* INCONSEQUENTIAL.IN THE EXAMPLE ABOVE,EVENT 4 APPEARS BEFORE
/* EVENT 3 IN LINE 2.ALSO, ENTRIES FOR STARTING EVENT 3 HAS BEEN
/* MADE BEFORE ENTRIES FOR EVENT 2.
/* FOR INTEGRATING THE MODULES ALSO A SIMILAR PATTERN OF DATA
/* ENTRY IS USED.HOWEVER,THE NAME MUST BE ENTERED AS 'PROJECT' AND
/* NO OTHER NAME MAY BE USED.FURTHER,THE ACTIVITY TIMES ARE TO BE
/* REPLACED BY MODULE NAMES.EXAMPLE--
/* 'PROJECT' 6

45

/* 1 , 2 , ' JOB 1 ' , 4 , ' JOB 3 ' , 0 *
/* AND SO ON FOR THE REMAI NI NG EVENTS. *
/* THIS MEANS THAT THERE ARE 6 EVENTS IN THE SUPERNETWORK.EVENTS *
/* 1 AND 2 ARE CONNECTED BY JOB l,EVENTS 1 AND 4 BY JOB 3 ETC. *
/* AS IN THE CASE OF MODULES THERE WILL BE ENTRIES CORRESPONDING *
/* TO 5 EVENTS,ONE LESS THAN THE TOTAL NUMBER OF EVENTS. *
/ * THE NAME OF THE MODULES HERE AND THE INDIVIDUAL MODULE DATA *
/* SHOULD BE IDENTICAL WITHIN QUOTES, INCLUDI NG BLANK SPACES.FOR *
/* EXAMPLE, ' JOB l' WILL NOT BE IDENTIFIED AS 'JOB l'. *
/* ALL DATA CAN BE ENTERED IN FREE FORMAT.THERE ARE NO SPECIFIED *
/* COLOUMNS OR FIELDS FOR ENTRY.NUMBERS MUST BE SEPARATED BY *
/* ATLEAST ONE BLANK OR A COMMA.NAMES MUST APPEAR WITHIN QUOTES. *
/* ZEROS AT THE END OF THE LISTS OF ACTIVITY TIMES ARE NECESSARY. *
/* 1

/*---1
/* 1

/*---1
DFSCRIP:PROCEDURE OPTIONS(MAIN);

/* THIS MAIN PROCEDURE READS THE NAMES OF THE MODULES AND THE j

/ * THE NUMBER OF EVENTS IN THE MODULES AND BY I NVOKING THE PROCE- j

/* DURE 'SEARCH' ,FINDS THE SOLUTION TO THE CRITICAL PATH PROBLEM.

DCL TOTAL EVENTS FIXED;
DCL 1 MODULE{50),

2 NAME CHAR{l5) VAR,
2 TIME FIXED;

DCL(A,B,C,I,J,K,M,P,X,Y,Z) FIXED;

M=l;
DO WHILE { '1' B);

GET LIST {MODULE(M).NAME,TOTAL EVENTS);
CALL SEARCH; -
IF NAME(M)='PROJECT' THEN RETURN;
M=M+l;

END;

RETURN;
/*---1
SEARCH:PROCEDURE;

/* THIS PROCEDURE CARRIES OUT THE DFS SEARCH.THE FIRST SECTION OF
/* THIS PROCEDURE CONSTRUCTS THE FORWARD AND BACKWARD LINKED LISTS
/* FOR STORING THE INFORMATION ABOUT THE NETWORK.THE SECOND SEC
/* TION BUILDS THE TREE BY CALLI NG THE 'BUILD TREE' PROCEDURE,DE
/* TERMINES THE EVENT TIMES(EET AND LET) BY CALLING THE PROCEDURE
/* 'CRITICAL PATH' ,AND FINDS THE CRITICAL PATH BY TRACING THE
/* CRITICAL EVENTS BY MEANS OF THE 'CP ROUTE' PROCEDURE.THE THIRD
/* SECTION CALCULATES THE VARIOUS FLOAT VALUES.
/* THE DEFINITIONS OF MOST OF THE VARIABLES USED IN THIS PROGRAM
/* ARE SELF EVIDENT . THE STRUCTURED VARIABLES ARE DESCRIBED BRIEFLY
/* HERE.

46

/ * TREENODE - RE PRESENTS THE NODE ON THE TREE. *
/* .EVENT STANDS FOR THE CORRESPONDING EVENT ON THE NET-*
/* WORK; *
/* .PATH STANDS FOR THE LENGTH OF THE PARTIAL PATH FROM *
/* THAT EVENT TO THE TERMINAL; *
/* .SON AND .BROTHER ARE US ED TO IDENTIFY THE RELATIONS *
/* BETWEEN THE NODES ON THE TREE. *
/* HEADER(X) - FLINK AND BLI NK POINT TO THE FIRST CARDS ON THE *
/* FORWARD AND BACKWARD LI NKED LISTS FOR THE EVENT X. *
/* CARD - USED TO STORE INFORMAT ION ABOUT THE INTERRELATION- *
/* SHI PS BETWEEN THE EVENTS ON THE NETWORK. *
/ * . EVENT STANDS FOR A SUCCESSOR OR PREDECESSOR EVENT Y *
/* OF EVENT X. *
/* .TIME STANDS FOR THE DURATION OF ACTIVITY X--Y. *
/* .LINK POINTS TO THE NEXT CARD ON THE LINKED LIST. *
/* *
/*-------------------- - ---------- ------------------------------------*

DCL 1 TREENODE(3*TOTAL EVENTS),
(2 EVENT, -

2 PATH,
2 FATHER,
2 SON,
2 BROTHER) FIXED;

DCL 1 HEADER(TOTAL EVENTS),
(2 FLINK, -

2 BLINK) FIXED;

DCL 1 CARD(5*TOTAL EVENTS),
(2 EVENT, -
2 TIME,
2 LINK) FIXED;

DCL (EET(TOTAL EVENTS),
LET(TOTAL-EVENTS),
SUCCESSORTTOTAL EVENTS,3),
FLAG(TOTAL_EVENTS)) FIXED;

DCL SOURCE FIXED;

DCL (FREE FLOAT,
INDEP FLOAT,
SAFETY FLOAT,
TOTAL_F LOAT) FIXED;

DCL DIRECTION CHAR(lO) VAR,
MODULE CHAR(l5) VAR;

DO I=l TO TOTAL EVENTS;
EET (I) , LET (IT= 0;
HEADER(I).FLINK=O;

HEADER(I).BLINK=O;
DO J=l TO 3;

SUCCESSOR(I,J)=O;
END;

END;

47

/ * SECTION 1 ------------*
A=O;
DO J=l TO TOTAL EVENTS- 1;

GET LIST(X) ;-
IF (NAME(M)='PROJECT' & M>l) THEN GET LIST(Y, MODULE);
ELSE GET LIST(Y,Z);
A=A+l;
LOOP:;
DIRECTION='FORWARD';
CALL TRACE(X,DIRECTION);
IF B=O THEN HEADER(X).FLINK=A;

ELSE CARD(B).LINK=A;
CARD(A).EVENT=Y;
CARD(A) .LINK=O;
IF (NAME(M)='PROJECT' & M>l) THEN CALL IDENTIFY(MODULE,Z};
CARD(A) .TIME=Z;
A=A+l;
DIRECTION='BACKWARD';
CALL TRACE(Y,DIRECTION);
IF(B=O} THEN HEADER(Y).BLINK=A;

ELSE CARD (B).LINK=A;
CARD (A).EVENT=X;
CARD(A) . LINK=O;
CARD(A).TIME=Z;
JUMP:;
GET LIST(Y);

IF (Y=O) THEN GOTO OUT;
IF (NAME(M)='PROJECT' & M>l) THEN GET LIST(MODULE);
ELSE GET LIST(Z);
A=A+l;
GOTO LOOP;
OUT:;

END; /* ______________________ j

/*
DO L=2 TO 1 BY -1;

DO J=l TO TOTAL_EVENTS;
FLAG(J)=O;

END;
IF L=l THEN SOURCE=l;

ELSE SOURCE=TOTAL EVENTS;
C=l; -
TREENODE(C).EVENT=SOURCE;
TREENODE(C).PATH=O;
TREENODE(C).SON=O;

SECTION 2 -------------j

TREENODE(C).BROTHER=O;
IF L=l THEN DO;

END;

ELSE DO;

CALL BUILD_TREE(SOURCE,C);
I=l;
CALL CRITICALPATH(I,LET,FLINK);

END;

CALL BUILD_TREE(SOURCE,C);
I=l;
CALL CRITICALPATH(I,EET,BLINK);

END;

PUT PAGE EDIT(MODULE(M).NAME)(X(30),A);

PUT SKIP{3)EDIT('CRITICAL PATH LENGTH=' ,LET(l))
(COL(5),A,COL(40),F(4));

MODULE(M).TIME=LET(l);

PUT SKIP(3)EDIT('CRITICAL PATH ')(COL(5),A);
K=l;
Y=O;

48

CALL CP_ROUTE(K);
/*

____________________ ;

PUT SKIP(5)EDIT('EVENT' ,'EVENT FLOAT')(COL(20),A,COL(35),A);
DO K=l TO TOTAL EVENTS;

PUT SKIP EDIT(K,LET(l)-LET(K)-EET(K))
(COL(21),F(3),COL(38),F(3));

END;
PUT PAGE . EDIT('ACTIVITY' ,'TOTAL FLOAT' ,'FREE FLOAT' ,'INDEP. FLOAT',

'SAFETY FLOAT')
(COL(l0),A,COL(25),A,COL(40),A,COL(55),A,COL(70),A);

DO I=l TO TOTAL EVENTS;
K=HEADER(I).FLINK;
DO WHILE(K~=O);

IF CARD(K).TIME=O THEN GOTO NEXT;
J=CARD(K).EVENT;
TOTAL FLOAT=LET(l)-LET(J)-EET(I)-CARD(K).TIME;
FREE FLOAT=EET(J)-EET(I)-CARD(K).TIME;
INDEP FLOAT=MAX(O,EET(J)-LET(l)+LET(I)-

- CARD(K).TIME);
SAFETY FLOAT=LET(I)-LET(J)-CARD(K).TIME;
PUT SK!P EDIT(!,'-----' ,J, TOTAL FLOAT,FREE FLOAT,INDEP FLOAT,

SAFETY FLOAT) - - -

NEXT:;

(COL(7)~F(3),COL(l2),A,COL(l7),F(3),COL(28),F(3),
COL(43),F(3),COL(57),F(3),COL(72) , F(3));

K=CARD(K).LINK;
END;

END;
/*

RETURN;

49

/*---·
TRACE:PROCEDURE(EVENT , DIRECTION);

/* THIS PROCEDURE FINDS THE LAST CARD ON THE LINKED LIST FOR THE
/* EVENT SPECIFIED WITHIN PARANTHESIS.DIRECTION SPECIFIES THE
/* FORWARD OR THE BACKWARD LIST.

DCL (EVENT , A)FI XED;
DCL DIRECTION CHAR(*) VAR;

IF (DIRECTION='FORWARD') THEN A=HEADER(EVENT).FLINK;
ELSE A=HEADER(EVENT).BLINK;

IF(A=O) THEN B=O;
ELSE DO WHILE(A~=O);

B=A;
A=CARD(A).LINK;

END;

RETURN;
END TRACE;
/*--------- ---l
BUILD_TREE:PROCEDURE(EVENT, TREE_NODE)RECURSIVE;

/* FOR AN EVENT CORRESPONDING TO THE SPECIFIED TREE-NODE,THIS
/* PROCEDURE IDENTIFIES THE CORRESPONDING SUCCESSOR EVENTS ON THE
/* NETWORK AND ADDS BRANCHES ON THE TREE.

DCL (EVENT,TREE NODE,DUMMY)FIXED;
DCL (D,E,F) FIXED;

D=TREE NODE;
IF FLAG(EVENT)=l THEN RETURN;
IF((EVENT=l & L=2) I (EVENT=TOTAL_EVENTS & L=l))

THEN DO;
FLAG(EVENT)=l;
RETURN;

END;
I F L=l THEN F=HEADER(EVENT).FLINK;

ELSE F=HEADER(EVENT).BLINK;
C=C+l;
TREENODE(C).EVENT=CARD(F).EVENT;
TREENODE(C).BROTHER=O;
TREENODE(C).SON=O;
TREENODE(D).SON=C;

F=CARD(F).LINK;

* I

DO WHILE(F-.=0);
C=C+l;
TREENODE (C).EVENT=CARD(F).EVENT;
TREENODE (C).SON=O;
TREENODE(C).BROTHER=O;
TREENODE(C-1).BROTHER=C;
TREENODE(C).FATHER=D;
F=CARD(F).LINK;

END ;

F=TREENODE(D).SON;
DO WHILE(F-.=0);

CALL BUILD TREE(TREENODE(F).EVENT, F);
F=TREENODETF).BROTHER;

END;
FLAG(EVENT)=l;

RETURN;
END BUILD TREE;

50

/*---i

CRITICALPATH:PROCEDURE(NODE, EVENT_TIME,LINK)RECURSIVE ;

/* STARTING FROM A SPECIFIED NODE ON THE TREE,THIS PROCEDURE CAL
/* CULATES THE LONGEST PARTIAL PATH BETWEEN THE CORRESPONDING EVENT
/* AND THE TERMINAL. ALSO IT DETERMINES THE CORRECT SEQUENCE OF
/* ACTIVITI ES ALONG THIS PATH.
/* THE ARGUMENT LINK IDENTIFIES THE DIRECTION OF THE PASS AND THE
/* APPROPRIATE EVENT TI ME IS OUTPUT AS THE SECOND ARGUMENT.

DCL (A,B,C,DUMMY) FIXED;
DCL (NODE,

EVENT TIME (*)I
LINK(*)) FIXED;

DUMMY=TREENODE(NODE).EVENT;
IF (DUMMY=TOTAL EVENTS & L=l) j (DUMMY=l & L=2)

THEN DO; -
EVENT TIME(DUMMY)=O;
RETURN;

END;

A=TREENODE(NODE).SON;
DO WHILE(A-. =0);

CALL CRITICALPATH(A , EVENT TI ME ,LINK);
A=TREENODE(A).BROTHER; -

END;

A=TREENODE(NODE).SON;
IF A=O THEN RETURN;
B=LINK(DUMMY);
C=O;
DO WHILE(A-.=0);

51

IF EVENT TIME(DUM:MY)< EVENT TIME(TREENODE(A).EVENT) +CARD(B) . TIME
THEN DO;

EVENT TI ME(DUM:MY)=
EVENT-TI ME(TREENODE(A).EVENT)+CARD(B).TIME;
C=l; -
SUCCESSOR(DUM:MY,C)=TREENODE(A).EVENT;

END;
ELSE IF EVENT TI ME(DUM:MY)=EVENT TIME(TREENODE(A).EVENT)+CARD(B).TI~

THEN DO; - -
C=C+l;
SUCCESSOR(DUM:MY,C)=TREENODE(A).EVENT;

END;
A=TREENODE(A).BROTHER;
B=CARD(B).LINK;

END;

DO A=C+l TO 3;
SUCCESSOR(DUM:MY,A)=O;

END;

RETURN;
END CRITICALPATH;
/*---1
CP_ROUTE:PROCEDURE(EVENT) RECURSIVE;

/ * STARTING FROM THE EVENT SPECIFIED AS THE ARGUMENT,THIS PROCEDURE
/ * TRACES THE PARTIAL PATH FROM THAT EVENT TO THE TERMINAL.
/ * IF THE EVENT SPECIFIED IS THE STARTING EVENT, THEN THE
/* CRITICAL PATH IS · OBTAINED.

DCL EVENT FIXED;
DCL X FIXED;

IF(EVENT=TOTAL EVENTS) THEN DO;

X=l;

. Y=Y+l;
IF Y=8 THEN Y=l;
PUT EDIT(EVENT)(COL(20+Y*5),F(3));
RETURN;

END;

DO WHILE(SUCCESSOR(EVENT,X)~=O);
Y=Y+l;
I F Y=8 THEN Y=l;
PUT EDIT (EVENT)(COL(20+5*Y),F(3));
CALL CP ROUTE(SUCCESSOR(EVENT,X));
X=X+l; -

END;

RETURN;
END CP ROUTE;
/*---
IDENTIFY:PROCEDURE(MODULE_NAME, MODULE_TIME);

52

/* THIS PROCEDURE RETRIEVES THE CALCULATED CRITICAL PATH FOR A
/* MODULE SPECIFIED BY I TS NAME.THOUGH THE USER CAN IDENTIFY ~
/* MODULES BY ALPHA-NUMERIC CHARACTERS,THE PROGRAM ASSIGNS NUMBERS
/* TO THE MODULES AND WHEN A MODULE IS REFERRED TO BY ITS NAME ,
/* A SUITABLE I DENTIF I CATION PROCEDURE IS REQUIRED.

DCL MODULE NAME CHAR(*) VAR,
MODULE-TIME FI XED;

DO L=l TO M-1;
IF NAME (L)=MODULE NAME

THEN DO; -
MODULE TIME=MODULE(L).TIME;
RETURN;

END;
END;

RETURN;
END IDENTIFY ;
/*---;
END SEARCH; /*-- __________________ ;

END DFSCRIP;
/*---~
/*---i
/* THE INPUT DATA IS TO BE ENTERED NOW AFTER THE '*DATA' CARD.

SEE INSTRUCTIONS AT THE BEGINNI NG OF THE PROGRAM.

*DATA

53

/* THIS PROGRAM EXECUTES THE CONVENTIONAL , TWO PASS METHOD FOR *
/* FI NDING THE CRITICAL PATH IN A DIRECTED,ACYCLIC NETWORK. *
/* THE PROGRAM CAN BE USED TO SOLVE PROBLEMS RELATING TO A SINGLE *
/* ACTIVITY NETWORK OR TO A SUPER NETWORK OF SEVERAL MODULES,EACH *
/* MODULE BEING A SIMPLE NETWORK WITH ONE STARTING EVENT AND ONE *
/* ENDING EVENT. *
/* THE PROGRAM CAN HANDLE UPTO 50 MODULES AT A TIME. *
/* THE PROGRAM CONSISTS OF A MAIN PROCEDURE,CONCRIP,AND SI X *
/* INTERNAL PROCEDURES.A DESCRIPTION OF THE FUNCTIONS OF EACH *
/* PROCEDURE IS GIVEN AT ITS BEGINNING. *

/*-------------INSTRUCTIONS FOR ENTERING DATA---------------------*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/ *
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

THE INPUT DATA IS TO BE ENTERED AT THE END OF THE PROGRAM AS
DESCRIBED HERE.
DATA FOR EACH OF THE MODULES IS ENTERED FIRST AND THEN THE DATA
FOR THE SUPERNETWORK.
FOR EACH MODULE:
ENTER THE MODULE NAME WITHIN SINGLE QUOTES FOLLOWED BY THE
NUMBER OF EVENTS.THE MODULE NAME CANNOT EXCEED 15 CHARACTERS
INCLUDING BLANKS.THEN, FOR EACH EVENT(EXCEPT THE FINISHING
EVENT) ENTER EACH SUCCESSOR EVENT AND CORRESPONDING ACTIVITY
TIME.ENTER AO AT THE END OF THE LIST FOR EACH EVENT.EXAMPLE--

' JOB l' , 5
1 , 2 , A , 4 , B , 3 , C , 0
3 , 2 , E , 4 , 0 , 0
2,5,D,0
4,5,G,0
THE FIRST LINE STATES THAT JOB 1 HAS 5 EVENTS.THE SECOND LINE
STATES THAT EVENT 1 IS SUCCEEDED BY EVENT 2,4,AND 3 AND THE
THE CORRESPONDING ACTIVITY TIMES ARE A,B AND C RESPECTIVELY.
LIKEWISE, FROM THE SUBSEQUENT LINES IT IS INFERRED THAT ACTIVITY
3-2 HAS A TI ME OF E,ACTIVITY 3-4 HAS A TIME OF O AND SO ON.
SINCE THERE ARE NO ACTIVITIES STARTING FROM EVENT 5,THERE WILL
BE NO CORRESPONDING LINE· OF ENTRIES.
DUMMY ACTI VITIES ARE ENTERED LIKE ALL OTHER ACTIVITES,WITH AN
ACTIVITY TIME OF 0.ACTIVITY 3--4 IN THE EXAMPLE ABOVE IS A DUMMY
ACTIVITY.
THE ORDER OF ENTRY OF EVENTS WITHIN A LINE OR AMONG LINES IS
INCONSEQUENTIAL.IN THE EXAMPLE ABOVE,EVENT 4 APPEARS BEFORE
EVENT 3 IN LINE 2.ALSO, ENTRIES FOR STARTING EVENT 3 HAS BEEN
MADE BEFORE ENTRIES FOR EVENT 2.
FOR INTEGRATING THE MODULES ALSO A SIMILAR PATTERN OF DATA
ENTRY IS USED.HOWEVER,THE NAME MUST BE ENTERED AS 'PROJECT' AND
NO OTHER NAME MAY BE USED.FURTHER,THE ACTIVITY TIMES ARE TO BE
REPLACED BY MODULE NAMES.EXAMPLE--
'PROJECT' , 6
1 , 2 , ' JOB 1 ' , 4 , ' JOB 3 ' , 0
AND SO ON FOR THE REMAINING EVENTS.
THIS MEANS THAT THERE ARE 6 EVENTS IN THE SUPERNETWORK.EVENTS
1 AND 2 ARE CONNECTED BY JOB l,EVENTS 1 AND 4 BY JOB 3 ETC.
AS IN THE CASE OF MODULES THERE WILL BE ENTRIES CORRESPONDI NG
TO 5 EVENTS,ONE LESS THAN THE TOTAL NUMBER OF EVENTS.
THE NAME OF THE MODULES HERE AND THE INDIVIDUAL MODULE DATA

*
*
*
*
*
*
*
*
*
*
1

1

-J

1

-J

'i

'I

'I

'i

7

7

/ *
/ *
/ *
/ *
/*
/*
/*
/*

54

SHOULD BE IDENTICAL WITHIN QUOTES,INCLUDING BLANK SPACES.FOR
EXAMPLE, ' JOB l' WI LL NOT BE IDENTI FI ED AS 'JOB l'.
ALL DATA CAN BE ENTERED I N FREE FORMAT.THERE ARE NO SPECIFIED
COLOUMNS OR FIELDS FOR ENTRY. NUMBERS MUST BE SEPARATED BY
ATLEAST ONE BLANK OR A COMMA . NAMES MUST APPEAR WI THIN QUOTES.
ZEROS AT THE END OF THE LISTS OF ACTIVITY TI MES ARE NECESSARY.

/*--------------------------------------- ---------------------------~
CONCRIP:PROCEDURE OPTIONS(MAIN);

/* THE MA IN PROCEDURE READS THE NAMES OF THE DIFFERNT MODULES
/* THE NUMBER OF EVENTS IN EACH MODULE AND FINDS THE SOLUTION TO
/* THE CRITICAL PATH PROBLEM BY INVOKING THE PROCEDURE 'EXECUTE'.

DCL 1 MODULE(50),
2 NAME CHAR(50) VAR,
2 TIME FIXED;

DCL TOTAL_EVENTS FIXED;

DCL (A,B,C,I,J,K,M,P,X,Y,Z) FIXED;

M=l;
DO WHILE('l'B);

GET LIST(NAME(M),TOTAL EVENTS);
CALL EXECUTE; -
IF NAME(M)='PROJECT' THEN RETURN;
M=M+l;

END;

RETURN;

/*-------------------------------. -----------------------------------·
EXECUTE:PROCEDURE;

/* THIS PROCEDURE CARRIES OUT THE ACTUAL TWO-PASS , CONVENTIONAL
/* METHOD FOR FINDING THE CRITICAL PATH.THE PROCEDURE CAN BE
/* DIVIDED IN TO THREE SECTIONS.THE FIRST SECTION CONSTRUCTS THE
/* THE FORWARD AND BACKWARD LINKED LISTS FOR STORING THE INFOR
/* MATION ABOUT THE NETWORK.THE SECOND SECTION CARRIES OUT THE
/* TWO PASSES FOR FINDING THE EARLY EVENT TIMES AND THE LATE
/* FINISH TIMES BY CALLING ITS INTERNAL PROCEDURES. THE CRITCAL
/* PATH IS THEN FOUND BY IDENTIFYI NG EVENTS WITH ZERO TOTAL FLOAT.
/* THE THIRD SECTION CALCULATES THE VARIOUS FLOAT MEASURES.

/* THE DEFINITION OF MOST OF THE VARIABLES ARE QUITE SELF EVIDENT.
/* THE TWO STRUCTURED VARIABLES USED ARE DESCRIBED BELOW .
/* A. HEADER(X) FLINK AND BLINK IDENTIFY THE FIRST CARDS ON THE
/* FORWARD AND BACKWARD LINKED LISTS FOR THE EVENT
/* x.
/* B.CARD USED TO STORE INFORMATION ABOUT THE INTERRELA-
/* TIONSHIPS BETWEEN THE EVENTS OF THE NETWORK.

55

/*
/*
/*
/*
/*

.EVENT STANDS FOR A SUCCESSOR OR A PREDECESSOR
EVENT Y OF EVENT X.

.TI ME STANDS FOR THE DURATION OF ACTIVITY X- -Y

.LINK IS USED FOR IDENTIFYING THE NEXT CARD ON
THE LI NKED LIST.

DCL 1 HEADER(TOTAL_EVENTS),
(2 FLINK,

2 BLINK) FIXED;

DCL 1 CARD(4*TOTAL EVENTS),
(2 EVENT, -

2 TIME,
2 LINK) FIXED;

DCL (LET(TOTAL EVENTS) ,
EET(TOTAL-EVENTS),
FLAG(TOTAL_EVENTS))FIXED;

DCL SOURCE FIXED;

DCL (FREE FLOAT,
INDEP FLOAT,
SAFETY FLOAT,
TOTAL_FLOAT) FIXED;

DCL DIRECTION CHAR(lO) VAR,
MODULE CHAR(l5) VAR;

DO I=l TO TOTAL EVENTS;
LET (I) , EET (IT= 0;
FLAG(I)=O;
HEADER(I).FLINK,HEADER(I).BLINK=O;

END;

/* SECTION 1 --------- --------
A=O;
DO J=l TO TOTAL EVENTS-1;

GET LIST(X) ;-
IF(NAME(M)='PROJECT' & M>l) THEN GET LIST(Y,MODULE);
ELSE GET LIST(Y,Z);
A=A+l;
LOOP:;
DIRECTION='FORWARD';
CALL TRACE(X,DIRECTION);
IF B=O THEN HEADER(X).FLINK=A;

ELSE CARD(B).LINK=A;
CARD(A).EVENT=Y;
CARD(A).LINK=O;
IF(NAME(M)='PROJECT' & M>l) THEN CALL IDENTIFY(MODULE,Z);
CARD(A) .TIME=Z;
A=A+l;
DIRECTION='BACKWARD';
CALL TRACE(Y,DIRECTION);

IF(B=O) THEN HEADER(Y).BLINK=A;
ELSE CARD(B) .LI NK=A;

CARD(A).EVENT=X;
CARD(A).LI NK=O;
CARD(A) .TI ME=Z;
GET LIST(Y);

IF (Y=O) THEN GOTO OUT;
I F(NAME(M)='PROJECT' & M>l) THEN GET LIST(MODULE);
ELSE GET LIST(Z);
A=A+l;
GOTO LOOP;
OUT:;

END;

56

/ * -------------------------~

/ *
SOURCE=l;

SECTION 2 ---------------j
CALL PASS(EET,FLINK);
DO I=l TO TOTAL EVENTS;

FLAG(I)=O; -
END;
SOURCE=TOTAL EVENTS;
CALL PASS(LET ,BLINK);
MODULE(M). TIME=EET(TOTAL_EVENTS);

PUT PAGE EDIT(NAME(M))(X(30),A);
PUT SKIP(5)EDIT('CRITICAL PATH LENGTH=' ,EET(TOTAL_EVENTS))

(X (5) , A , COL (4 0) , F (4)) ;

PUT SKIP(5) EDIT ('CRITICAL EVENTS')(X(5),A);
Y=O;
DO I=l TO TOTAL EVENTS;

IF (LET(I)+EET(I)=LET(l))

END;
/*

THEN DO;
Y=Y+l;
IF Y=8 THEN Y=l;
PUT EDIT (I)(COL(20+Y*5),F(3));

END;

--------------------i
/* SECTION 3 ----------i
PUT SKIP(S)EDIT('EVENT' ,'EVENT FLOAT')(COL(20),A,COL(35),A);
DO K=l TO TOTAL EVENTS;

PUT SKIP EDIT(K,LET(l)-LET(K)-EET(K))
(COL (21) , F (3) , COL (3 8) , F (3)) ;

END;

PUT PAGE EDIT(NAME (M))(X(30),A);
PUT SKIP(5)EDIT('ACTIVITY' ,'TOTAL FLOAT' ,'FREE FLOAT' ,'INDEP. FLOAT',

'SAFETY FLOAT')
(COL(l0),A,COL(25),A,COL(40),A,COL(55),A,COL(70),A);

DO I=l TO TOTAL EVENTS;
K=HEADER(I) . FLINK;
DO WHILE(K-,=0);

IF CARD(K).TI ME=O THEN GOTO NEXT;
J=CARD(K).EVENT;
TOTAL FLOAT=LET(l)-LET(J)-EET(I)-CARD(K).TIME;
FREE FLOAT=EET(J)-EET (I)-CARD(K).TI ME ;
INDEP FLOAT=MAX(O,EET (J)-LET(l)+LET(I)-

- CARD(K).TI ME);

57

SAFETY FLOAT=LET(I)-LET(J)-CARD(K).TIME;
PUT SK!P EDIT(!,'-----' ,J,TOTAL FLOAT , FREE FLOAT , INDEP FLOAT,

SAFETY FLOAT) - - -
(COL(7)~F(3),COL(l2),A,COL(l7),F(3),COL(28},F(3),
COL(43),F(3),COL(57),F(3),COL(72),F(3));

NEXT:;
K=CARD(K).LINK;

END;
END;
J UMP:;
/ *

RETURN;
/*---
TRACE:PROCEDURE(EVENT,DIRECTION);

/* THIS PROCEDURE FINDS THE LAST CARD ON TH LI NKED LI ST FOR THE
/* EVENT SPECIFIED AS THE ARGUMENT.DIRECTION SPECIFIES THE FORWARD

DCL (EVENT,A)FIXED;
DCL DIRECTION CHAR(*) VAR ;

IF (DIRECTION='FORWARD') THEN A=HEADER(EVENT).FLINK;
ELSE A~HEADER(EVENT).BLINK;

IF (A-,=0) THEN DO WHILE(CARD(A).LINK.,=0);
A=CARD(A).LI NK ;

B=A;

RETURN;
END TRACE;

END;

/*---
PASS:PROCEDURE(EVENT_TIME,LINK);

/* THIS PROCEDURE CARRIES OUT THE ACTUAL PASS.THE ARGUMENT LINK
/* REFERS EITHER TO THE FORWARD OR TO THE BACKWARD LINKS,
/* AND THE EVENT TIME IS EITHER THE LATEST EVENT TIME OR THE
/* EARLIEST EVENT TIME.APPROPRIATE ARGUMENTS ARE SUPPLIED AT
/* THE CALLING POINT DEPENDING ON THE DIRECTION OF THE PASS.

DCL LINK(*) FIXED,
EVENT TI ME (*) FIXED,
(A,B,DUMMY) FIXED;

A=LINK(SOURCE);
FLAG(SOURCE)=l;
DO WHILE(A.,=0);

EVENT TI ME(EVENT (A))=EVENT_TI ME(SOURCE)+CARD(A).TI ME ;
A=CARD(A).LI NK;

END;

J=O;
IF SOURCE=l THEN 1= 2;

ELSE !=TOTAL EVENTS-1;
BACK:; -
IF SOURCE=l THEN DO;

DO WHILE(I.,>TOTAL EVENTS-1);
CALL CALCULATE;
I=I+l;

END;
IF J=O THEN GOTO SKIP;
DO J=K TO TOTAL EVENTS-1;

IF FLAG(J)=O-THEN DO;
I=K;
J=O;

ELSE DO;

END;
SKIP: ;

END;

DO WHILE(I.,<2);
CALL CALCULATE;
I=I-1;

END;
IF J=O THEN GOTO HOP;
DO J=K TO 2 BY -1;

IF FLAG(J)=O THEN DO;
I=K;
J=O;

END;
HOP:;

END ;
RETURN;

GOTO BACK;
END;

GOTO BACK;
END;

58

/*---:
CALCULATE:PROCEDURE;

/* THIS PROCEDURE CARRIES OUT THE ACTUAL CALCULATION OF THE EVENT
/* TI MES BY ADDING THE DURATION TIME AND THE EVENT TIME OF EACH
/* PRECEDING EVENT AND MAKING THE MAXIMAL SELECTION

IF FLAG(I)=O THEN CALL TEST(I);
IF FLAG(I)=O THEN GOTO FURTHER;
B=LINK(I);

DO WHILE(B.,=0);
DUMMY=CARD(B).TIME+EVENT TIME(I);
IF DUMMY> EVENT TI ME(CARD(B).EVENT)

THEN EVENT TIME(CARD(B). EVENT)=DUMMY;
B=CARD(B).LINK;

END;
GOTO CONTINUE;
FURTHER:;
J=J+l;
IF J=l THEN K=I;
CONTINUE :;

RETURN;
END CALCULATE;

59

/*---j
/*---i
TEST:PROCEDURE(EVENT);

/* THIS PROCEDURE TESTS TO SEE IF ALL THE DIRECTLY PRECEEDING (OR
SUCCEEDING) EVENTS HAVE BEEN VISITED AND THEIR EVENT TIMES
CALCULATED(INDICATED BY SET FLAG).IF SO THE FLAG FOR THIS EVENT
IS ALSO SET.

DCL (EVENT,
A,B) FIXED;

IF SOURCE=l THEN A=BLINK(EVENT);
ELSE A=FLINK(EVENT);

DO WHILE(A,=0);
B=CARD(A).EVENT;
IF FLAG(B)=O THEN GOTO AHEAD;
A=CARD(A).LINK;

END;
FLAG(EVENT)=l;
AHEAD:;

END TEST;
/*---1
END PASS;
/*---1
IDENTIFY:PROCEDURE (MODULE_NAME,MODULE_TIME);

/* THIS PROCEDURE RETRIEVES THE CRITICAL PATH TI ME FOR THE MODULE
/* SPECIFIED IN THE ARGUMENT.THE USER IDENTIFIES MODULES BY ALPHA
/* NUMERIC CHARACTERS BUT THE PROGRAM ASSIGNS A NUMERIC VALUE TO
/* THE MODULES AND WHENEVER A MODULE IS REFERRED TO BY ITS NAME,
/* A SUITABLE INTERNAL IDENTIFICATION PROCEDURE IS REQUIRED.

DCL MODULE NAME CHAR(*) VAR,
MODULE-TI ME FIXED;

DO L=l TO M-1;

IF MODULE NAME=NAME(L)
THEN DO;

END;

RETURN ;

MODULE TI ME=MODULE(L).TIME;
RETURN;

END;

END IDENTIFY;

60

/*--- -----------*
END EXECUTE;
/*---*
END CONCRIP;
/*---*
/*---*
/* THE INPUT DATA IS TO BE ENTERED NOW AFTER THE DATA CARD. *
/* SEE INSTRUCTIONS AT THE BEGINNING OF THE PROGRAM. *

*DATA

VITA

Subramanian Srinivasan

Candidate for the degree of

Master of Business Administration

Report: DFSCRIP: An Implementation of a Single-pass

Algorithm for the Critical Path Method

Major Field: Business Administration

Biographical:
Personal Da ta:

Born in Madras, India on August 23rd, 1950, son of Mr
and Mrs s.srinivasan.

Educational:
Graduated from the Birla Institute of Technology and
Science, Pilani, Rajasthan, India in 1971 with a
B.E(HONS) degree in Electrical Engineering. Obtained
the M.E. degree, specializing in Electrical Power
Systems, from the same University in 1973.

Professional Experience:
Worked in different capacities with electrical
manufacturing companies in India from 1974 to 1981; as
Development Engineer with Pioneer Equipment Co. Ltd.,
Baroda, as Assistant Development Engineer in the R&D
division of Jyoti Ltd., Baroda, and as Senior Engineer
with Vidyut Agni Furnaces Pvt. Ltd., Madras.

	Thesis-1984R-S774d_Page_01
	Thesis-1984R-S774d_Page_02
	Thesis-1984R-S774d_Page_03
	Thesis-1984R-S774d_Page_04
	Thesis-1984R-S774d_Page_05
	Thesis-1984R-S774d_Page_06
	Thesis-1984R-S774d_Page_07
	Thesis-1984R-S774d_Page_08
	Thesis-1984R-S774d_Page_09
	Thesis-1984R-S774d_Page_10
	Thesis-1984R-S774d_Page_11
	Thesis-1984R-S774d_Page_12
	Thesis-1984R-S774d_Page_13
	Thesis-1984R-S774d_Page_14
	Thesis-1984R-S774d_Page_15
	Thesis-1984R-S774d_Page_16
	Thesis-1984R-S774d_Page_17
	Thesis-1984R-S774d_Page_18
	Thesis-1984R-S774d_Page_19
	Thesis-1984R-S774d_Page_20
	Thesis-1984R-S774d_Page_21
	Thesis-1984R-S774d_Page_22
	Thesis-1984R-S774d_Page_23
	Thesis-1984R-S774d_Page_24
	Thesis-1984R-S774d_Page_25
	Thesis-1984R-S774d_Page_26
	Thesis-1984R-S774d_Page_27
	Thesis-1984R-S774d_Page_28
	Thesis-1984R-S774d_Page_29
	Thesis-1984R-S774d_Page_30
	Thesis-1984R-S774d_Page_31
	Thesis-1984R-S774d_Page_32
	Thesis-1984R-S774d_Page_33
	Thesis-1984R-S774d_Page_34
	Thesis-1984R-S774d_Page_35
	Thesis-1984R-S774d_Page_36
	Thesis-1984R-S774d_Page_37
	Thesis-1984R-S774d_Page_38
	Thesis-1984R-S774d_Page_39
	Thesis-1984R-S774d_Page_40
	Thesis-1984R-S774d_Page_41
	Thesis-1984R-S774d_Page_42
	Thesis-1984R-S774d_Page_43
	Thesis-1984R-S774d_Page_44
	Thesis-1984R-S774d_Page_45
	Thesis-1984R-S774d_Page_46
	Thesis-1984R-S774d_Page_47
	Thesis-1984R-S774d_Page_48
	Thesis-1984R-S774d_Page_49
	Thesis-1984R-S774d_Page_50
	Thesis-1984R-S774d_Page_51
	Thesis-1984R-S774d_Page_52
	Thesis-1984R-S774d_Page_53
	Thesis-1984R-S774d_Page_54
	Thesis-1984R-S774d_Page_55
	Thesis-1984R-S774d_Page_56
	Thesis-1984R-S774d_Page_57
	Thesis-1984R-S774d_Page_58
	Thesis-1984R-S774d_Page_59
	Thesis-1984R-S774d_Page_60
	Thesis-1984R-S774d_Page_61
	Thesis-1984R-S774d_Page_62
	Thesis-1984R-S774d_Page_63
	Thesis-1984R-S774d_Page_64
	Thesis-1984R-S774d_Page_65
	Thesis-1984R-S774d_Page_66
	Thesis-1984R-S774d_Page_67
	Thesis-1984R-S774d_Page_68
	Thesis-1984R-S774d_Page_69
	Thesis-1984R-S774d_Page_70
	Thesis-1984R-S774d_Page_71
	Thesis-1984R-S774d_Page_72
	Thesis-1984R-S774d_Page_73
	Thesis-1984R-S774d_Page_74
	Thesis-1984R-S774d_Page_75
	Thesis-1984R-S774d_Page_76
	Thesis-1984R-S774d_Page_77
	Thesis-1984R-S774d_Page_78
	Thesis-1984R-S774d_Page_79
	Thesis-1984R-S774d_Page_80
	Thesis-1984R-S774d_Page_81
	Thesis-1984R-S774d_Page_82
	Thesis-1984R-S774d_Page_83
	Thesis-1984R-S774d_Page_84

