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Abstract 
Recently (Pitblado et al. 2008, 2013), an interdisciplinary team of archaeologists 

and geologists collaborated to develop a protocol for sourcing quartzite in the Upper 

Gunnison Basin, Colorado where archaeological assemblages are commonly over 90 

percent quartzite (Dalpra and Pitblado 2016). Investigations from this research program 

have concluded that two techniques, when used in tandem, offer the best discriminatory 

results: geochemical characterization via laser ablation inductively coupled plasma 

mass spectrometry (LA-ICP-MS) and petrography (Pitblado et al. 2008). The following 

study briefly reviews the results of geochemical fingerprinting of Gunnison Basin 

quartzite, but focuses primarily on the results of petrographic analysis. The results 

demonstrate the discriminatory power of petrography on quartzite through a Basin-wide 

study functioning as a proof of concept. This Basin-wide analysis is followed by a more 

in depth look at two prehistorically used quarry locations analyzing both cobbles and 

outcrops. It is important to not just demonstrate differences between the sources, but 

also the variability within each source. The petrographic research is one step toward the 

ultimate goal, to develop a quartzite-sourcing protocol for the Gunnison Basin to enable 

“matching” cultural chipped stone assemblages to the likeliest raw material sources. 

This will allow researchers to reconstruct prehistoric land-use strategies in the Gunnison 

Basin with more precision than has been possible before. 
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Chapter 1: Introduction 
Prehistoric research has long used the geologic origin of stone tools and debitage 

to evaluate prehistoric behaviors associated with mobility and exchange patterns. North 

American archaeologists began using geochemical analysis in the 1960’s (Beck and 

Jones 2011; Eerkens and Rosenthal 2004; Frison et al. 1968; Hamilton et al 2013; Healy 

et al. 1984; Hoard et al. 1992; Glascock and Neff 2003; Jones et al. 2003, 2012; 

Luedtke 1978, 1979; Metcalf and McDonald 2012; Odell 2000; Stross et al. 1976; Roll 

2005; Weigand et al. 1977), establishing sizable databases of geochemical information 

that allow for relatively accurate determination of geologic source locations (Hughes 

1998, 2011; Shackley 1995, 1998, 2005). To date, these techniques have only used 

obsidian or fine-grain volcanics (Eerkens and Rosenthal 2004; Hamilton et al 2013; 

Hughes 2011), and to a lesser extent cryptocrystalline chert (Cracker et al. 1999; Roll 

2005; Speer 2014a, 2014b). Archaeologists have largely ignored quartzite in 

provenance studies, yet it is one of the most prevalent stone materials in the world. 

Quartzite has been viewed as a challenge for provenance analysis because of the few 

existing tests of geochemical methods (Ebright 1987). The purpose of this research is to 

aid in the creation of a robust database containing quartzite petrographic information to 

apply to issues of mobility and exchange in the Upper Gunnison Basin (UGB) in 

southwestern Colorado (Figures 1 and 2).  

The Southern Rocky Mountains, especially the UGB, have a long history of 

human occupation extending to at least year round Folsom occupation, 10,500 

radiocarbon years before present (14C yr BP) (Benedict 1992a; Black 2000; Kornfeld et 

al. 2010; Metcalf and McDonald 2012; Pitblado 2016; Stiger 2001). This region 

contains great environmental diversity in a vertically oriented landscape unique to the 
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Rocky Mountain region. Based on models of hunter-gatherer lifeways (Kelly 1992, 

1995), it is logical to assume that a highly variable and productive environment enabled 

a relatively longer-term occupation than previously proposed, particularly when applied 

to the traditional theories of Paleoamerican mobility covering expansive territories 

(Beck and Jones 2011; Kelly and Todd 1988; Goodyear 1989; Pitblado et al. 2013; 

Shackley 1998, 2005). Further, the relative availability of raw lithic material affects the 

design and use of local tool assemblages (Andrefsky 1994; Bamforth 1986). This 

traditional image has been tested in the Great Basin and American Southwest, areas of 

dispersed resources (e.g. Jones et al. 2003, 2012; Shackly 1998), but not in the UGB, a 

diverse environment with abundant lithic resources. 

 

Figure 1. View of the Upper Gunnison Basin from the basin floor looking north 

toward Crested Butte. Photo courtesy of Bonnie Pitblado. 
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Figure 2. Location map of the project area with sampled outcrop and cobble 

sources in the Upper Gunnison Basin. 
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Research Program Background 

Chipped stone assemblages in the UGB are dominated by quartzite, which has a 

weak sourcing track record discussed in the next chapter. This lack of an ability to 

source tools and debitage from chipped stone assemblages frustrates archaeologists in 

the UGB by the imposing interpretive limitations (Pitblado et al. 2008). Motivated by 

this limitation affecting the research of the Basin’s prehistoric hunter-gathers, Pitblado 

et al. (2006, 2008, and 2013) began a research program designed to understand the 

occurrences and distributions of quartzite throughout the UGB. Pitblado et al. (2008) 

reported the results of a pilot study using six different sourcing techniques on 20 

samples. The pilot study results indicated that laser ablation inductively coupled plasma 

mass spectrometry (LA-ICP-MS) and petrography best discriminated quartzite in the 

UGB. This prompted a Basin-wide research program referred to here as the total 

quartzite sourcing research program. 

Including the work detailed in this thesis, the total quartzite sourcing research 

program consist of three phases: first, collect quartzite from around the UGB including 

known quarries and geologically mapped quartzite outcrops and cobbles; second, 

analyze the samples using LA-ICP-MS; and third, analyze the samples with petrography 

(microscopic characterization). Bonnie Pitblado, Carol Dehler, and Hector Neff 

completed the first two steps between 2007 and 2013 (Pitblado et al. 2013). This 

document focuses on the petrographic analysis of a subset of the UGB quartzite 

samples. Examining samples at the microscopic level results in a quantitative mineral 

composition profile that complements geochemical analysis, recording the relationships 

between mineral grains and cement types that can influence chemical characterization.  
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Pitblado et al. (2013) reported LA-ICP-MS results of 402 samples from 48 

discrete UGB quartzite sources in an effort to discriminate among quartzite sources. 

LA-ICP-MS was selected over other geochemical techniques because it is minimally 

destructive (Neff 2010; Speakman and Neff 2005). Sampled sources in the UGB 

include known prehistoric quarry sites, outcrops, and secondarily deposited cobbles. 

Three separate Principal Component Analyses (PCA) were run on the 28 cobble and 20 

outcrop sources (n=48 total).   

A PCA on exclusively cobbles demonstrated that eight components account for 

99 percent of the variability, with the first two components accounting for 31 and 24 

percent respectively. Samples from southeast of the town of Gunnison (and close to the 

Chance Gulch site, that is discussed later) and in the center of the project area of the 

UGB have a signature that is distinct from cobbles occurring elsewhere, although these 

samples do exhibit a high amount of internal variability not seen in the outcrop sources.  

PCA on the outcrop sources revealed six components that together account for 

100 percent of the variability. The first two components account for the majority of 

samples at 46 and 21 percent. A dendrogram based on this data demonstrates a general 

grouping by geologic age, with the exception of Cretaceous Parlin Flats samples CD09-

3 and CD09-5, which grouped with Jurassic aged sources (Figure 3). Of special note 

here is that the three Jurassic aged groups clustered together. Pitblado et al. (2013) 

suggested that further analysis could differentiate among these sources or possibly the 

local forms of these occurrences. 
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Figure 3. UGB outcrop samples dendrogram of the compete-linkage cluster 

analysis of averaged trace element signatures (Pitblado et al. 2013). 

 

The PCA on all 48 sources outcrop and cobble sources demonstrated ten 

components accounting for 92 percent of the variability, with the first two components 

responsible for 42 and 12 percent, respectively (Figure 4). Generally, this discriminated 

between outcrop and cobble sources, although 7 outcrop sources grouped with 28 

cobble sources. Geographically, the PCA indicates that principal component 1 (PC1) 

has higher scores in the central and northern areas, while the east and west-central areas 

record lower scores. PC1 correlates with the enrichment of many trace elements and is a 

powerful metric. Overall, cobble sources show more variability than outcrop sources. 

Outcrop sources in general have depleted trace element signatures due to their more 

homogenous nature compared with the more heterogeneous cobble sources. Outcrop 
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sources usually come from single geological formations, whereas cobble sources 

usually represent a mixing of numerous formations (Neff 2010; Pitblado et al. 2013).  

 

Figure 4. UGB outcrop and cobble dendrogram of complete-linkage cluster 

analysis of averaged trace-element signatures for all 48 sampled localities (Pitblado 

et al. 2013). 
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Problem Statement 

The petrographic analysis of UGB quartzite is an independent analysis of the 

previously completed geochemical study (Pitblado et al. 2013). A direct comparison of 

the previous geochemical results to the petrographic results is not within the scope of 

this project because that would require the analysis of all 402 samples. Time and space 

limitations of a master’s thesis do not allow for the analysis of all 402 samples. As an 

independent supplemental analysis, petrography allows for a more detailed 

understanding of mineral constituents not possible with geochemical analysis such as 

LA-ICP-MS alone because it describes individual grain relationships with mineralogical 

composition instead of strictly elemental composition. I first will look at the 

petrographic variability of quartzite Basin-wide followed by a detailed look at two 

prehistoric quarry sites including the intensively used 5GN1 and a locality called Parlin 

Flats. Site 5GN1 is a Jurassic outcrop and cobble source, while Parlin Flats is a 

Cretaceous outcrop source. The preceding geochemical analysis (Pitblado 2013) 

focused on a coarse grain or first pass at the data and was not aimed at fine grain source 

discrimination. Accordingly, the coarse grain analysis initially grouped both 5GN1 and 

Parlin Flats together, although the geochemistry also suggested at areas of 

differentiation. The close similarities between 5GN1 and Parlin Flats provides an ideal 

test of petrography’s descriptive power that may provide the potential for stone artifact 

sourcing. This additional detailed analysis will demonstrate the homogeneity or 

heterogeneity of these individual sources and whether they change across space, 

facilitating a fine-grained understanding necessary for any subsequent artifact sourcing. 

The four main research questions of this study are:  
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1. What mineralogical and textual characteristics of UGB quartzite are identifiable 

at the microscopic level? 

2. What is the petrographic variability at the very well-known and widely used 

prehistoric outcrop and cobble quarry 5GN1? 

3. Can petrographic results refine our understanding of the Jurassic to Cretaceous 

bedrock transition at Parlin Flats, where that lithological contact is represented? 

4. Is there a perceptible difference between the 5GN1 and Parlin Flats sources? 

I address question 1 through the Basin-wide study consisting of petrographic 

analysis of 50 randomly selected quartzite samples collected from 48 discrete UGB 

source locations throughout the Basin. This represents 12% of 402 total samples. This 

Basin-wide study represents a proof of concept for the discriminatory power of quartzite 

petrography in the UGB. Questions 2, 3, and 4 focus on the well-known quartzite 

source of 5GN1 and Parlin Flats in the southern and southeastern areas of the UGB. 

Three samples from 5GN1 and four samples from Parlin Flats are included in the Basin-

wide study in Chapter 4 because of the random sampling in addition to each individual 

source examination. An additional 16 samples are analyzed for the detailed 5GN1 

analysis in Chapter 5, and an additional 11 samples are analyzed for the Parlin Flats 

analysis in Chapter 6. This amounts to 27 samples added for the detailed analysis 

presented in Chapters 5 and 6. In total, 77 quartzite samples are included in the analysis, 

which represents 19% of the 402 total samples.  
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Chapter 2: Archaeological and Geological Background 
Upper Gunnison Basin Archaeology 

Nearly 3,000 recorded archaeological sites from Folsom (10,500-10,000 14C yr 

BP) to historic times cover the 11,000 km2 area of the UGB (Andrews 2013; Andrews 

et al. 2008; Cassels 1983; Pitblado 2003; Pitblado et al. 2013; Stiger 2001). The UGB is 

one of the high altitude intermountain basins in the Southern Rocky Mountains and one 

of five in Colorado, with elevations ranging between 2200-4300 m asl (Figure 2) 

(Benedict 1991; Mutel and Emerick 1992). The UGB contains five unique vertically 

oriented ecozones containing different flora and fauna that are seasonally variable 

(Benedict 1991; Pitblado 2003; Vale 1995; Wyckoff and Dilsaver 1995). Within this 

distinctive environment, chipped stone artifacts dominate archaeological assemblages. 

Interestingly, archaeological chipped stone assemblages in the UGB often contain more 

than 90% quartzite tools and debitage for the entire archaeological time span (Black 

1991, 2000; Dalpra and Pitblado 2016; Pitblado 2002; Pitblado et al. 2013; Stiger 

2001). Throughout the Southern Rocky Mountains chert and quartzite dominate 

assemblages with obsidian rarely found in the region. Obsidian is usually transported 

from northern New Mexico, but also occasionally from southern Idaho sources such as 

Valles Caldera and Malad (Black 2000; Metcalf and McDonald 2012). One small 

obsidian source is present near Cochetopa Pass on the southern edge of the UGB, 

although the cobbles derived are very small, allowing for small artifact manufacture 

only. 

 Early Paleoamerican 

 The early Paleoamerican period can be divided into early and late periods 

(Buchanan and Collard 2007; Cannon and Meltzer 2008; Frison 1993; Pitblado 2003; 
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Pitblado and Brunswig 2007). In the UGB 69 Paleoamerican sites have been reported 

with 82 components as several are multicomponent (Pitblado 2016). In general the early 

Paleoamerican period includes Goshen-Plainview, and Folsom sites (13,500-10,200 14C 

yr BP), whereas the late Paleoamerican period includes Cody (Eden and Scottsbluff), 

Hell Gap, Angostura, Jimmy Allen/Frederick, Great Basin Stemmed, and Concave Base 

Stemmed (10,200-7,500 14C yr BP) (Bamforth 2002; Frison 1993; Holen and Holen 

2013; Kornfeld et al. 2010; Meltzer 2006; Miller et al. 2013; Pitblado 2003; Pitblado 

and Brunswig 2007). Early Paleoamerican projectile points are large, often well 

manufactured lanceolate points with the characteristic the Folsom channel flake 

removed (Kornfeld et al. 2010; Pitblado 2003).  

No Clovis sites have been recorded in the UGB, although some isolated finds 

are reported in private hands, but this has not been professionally confirmed (Pitblado 

2016). One possible site was recorded (5GN149) with dense lithic scatter with large, 

thin bifaces and overshot flakes, but Clovis afflation could not be substantiated (Cooper 

2006; Cooper and Meltzer 2009). In the UGB early Paleoamerican sites include 

projectile point surface finds, and the Mountaineer Folsom site, which consists of 

shallow deposits of Folsom projectile points and debitage from their manufacture with 

possible structure platforms (Andrews 2010, 2013; Andrews et al. 2008; Stiger 2001, 

2006; Pitblado 2002, 2003, 2016). Other Folsom sites in the Basin include the much 

smaller Soderquist, Flat Top (Andrews 2010), and Lanning sites (Andrews 2010; 

Pitblado 2016). In neighboring regions several Folsom sites are documented including 

the Jerry Craig, Upper Twin Mountain, and Barger Gulch sites in Middle Park, Black 

Mountain near Creede and, Linger, Reddin, Stewards Cattle Guard, and Zapata in the 
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San Luis Valley (Jodry 1999; Jodry and Stanford 1996; Jodry et al. 1992, 1996; 

Kornfeld 2013; Kornfeld et al. 2010; Surovell and Waguespack 2007; Surovell et al. 

2005). 

Late Paleoamerican 

 The late Paleoamerican period is characterized by large lanceolate and stemmed 

projectile points in chipped stone assemblages. Two of the most commonly found late 

Paleoamerican projectile points in the Basin are the oblique flaked Angostura and the 

parallel oblique flaked Jimmy Allen/Frederick types, which both are frequently basally 

ground (Kornfeld et al. 2010; Pitblado 2003). The late Paleoamerican period is better 

represented in the UGB than the early Paleoamerican period with numerous surface 

finds and five excavated sites. The oldest radiocarbon date in the UGB of 9,800 14C yr 

BP came from an unlined fire pit at the Elk Creek site (Kornfeld et al. 2010; Stiger 

2001; Pitblado 2002, 2003). Other notable late Paleoamerican sites in the UGB include 

Tenderfoot, Kezar Basin, Ponderosa/Soap Creek and Chance Gulch (Euler and Stiger 

1981; Jones 1984; Stiger 2001; Pitblado 2003). Both Kezar Basin and Tenderfoot have 

yielded deer, antelope, bighorn sheep, and bison bone associated with possible 

structures. Chance Gulch is a multicomponent site with an excavated in-situ hearth that 

radiocarbon dated to 7990+/- 50 14C yr BP with 17 surface and 7 in-situ projectile 

points of primarily the Angostura type (Pitblado 2002, 2016).  

Archaic 

 The Early Archaic (7500-5000 14C yr BP) and Middle Archaic (5000-3000 14C 

yr  BP) periods demonstrate an increased occurrence of roasting pits, hearths, structures, 

windbreaks, and ground stone compared to the Paleoamerican periods (Stiger 2001).  
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The Early Archaic period is also characterized by a swift change to side-notched 

projectile points that exhibit more morphological variation when compared with 

Paleoamerican projectile points (Kornfeld et al. 2010). Projectile point technology 

changed from relatively large lanceolate to smaller stemmed and notched points with an 

increase in stylistic variability (Reed and Metcalf 1999). Generally, beginning in the 

Early Archaic and becoming even more pronounced during the Middle Archaic, the 

number of sites increases and suggest a broadening diet. This broadening diet is 

evidenced by an increased dependence on plant materials with increasing amounts of 

recorded groundstone and manos (Kornfeld et al. 2010; Reed and Metcalf 1999; Stiger 

2001). Many Archaic sites in the UGB have been excavated contributing to their greater 

representation in the archaeological record (see Stiger 2001 for a lengthy list). 

Middle Archaic projectile points are mostly McKean variants exhibiting 

lanceolate flaking with indented bases and convex blade edges narrower at the base than 

at the middle of the point (Kornfeld et al. 2010). Radiocarbon dates are more numerous 

during the Middle and even more during the Late Archaic as compared to earlier 

periods, suggesting a significant population increase (Kornfeld et al. 2010; Stiger 2001). 

It is important to be cautious of this interpretation because most of these radiocarbon 

dates come from CRM projects prompted by energy extraction. Energy extraction 

occurs in areas due to geologic factors that may create a sampling bias, because these 

areas do not represent all of prehistory or human mobility/settlement patterns. These 

areas receive a higher concentration of archaeological surveys and excavations when 

compared to the rest of the basin. Further, formation processes and different erosion 

processes may alter the preservation and presence of charcoal to date (Surovell et al. 
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2009). A majority of the archaeological work in the Gunnison Basin involves Archaic 

sites. The concentration of sites is higher during the Late Archaic (3000-1500 14C yr 

BP), with the Early and Middle periods being similarly well represented (Pitblado 2002, 

2003). Pottery begins to appear during the Late Archaic in the Gunnison Basin as 

unadorned Brownware. 

Late Prehistoric 

The last culture period recognized in the UGB is the Late Prehistoric (1500-150 

14C yr BP) period, which again is characterized by more radiocarbon dates that may 

indicate as population growth (Kornfeld et al. 2010; Stiger 2001). Environmental 

degradation is suggested to have caused a drastic shift in the use and occupation of the 

UGB (Black 1983; Stiger 2001). During the Late Prehistoric period small corner notch 

triangular points are most common with the ubiquitous Cottonwood Triangular present 

as well. Stiger (2001) argued that an increase in game drives and an increased frequency 

of non-quartzite toolstone signaled this abrupt change from the Archaic, although he 

overemphasized the increase in non-quartzite toolstone during the Late Prehistoric. 

While the use of chert/chalcedony and obsidian/fine grain volcanics did increase it was 

marginal as the total toolstone assemblage when compared basin wide did not dip below 

70 percent quartzite (Dalpra 2015). Stiger (2001) further argued that the Late 

Prehistoric was characterized by logistically organized, highly mobile hunting parties 

instead of a more permanent hunter-gather in the UGB, although this is derived from a 

highly fragmentary and incomplete archaeological record largely based on undated 

surface sites. In fact, Peart (2013), refuted these assertions as contradicting of what 

many dated site assemblages actually show. Throughout prehistory, peoples in the UGB 
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lived a shifting yet intensive, mobile lifeway, leaving behind material culture consisting 

mainly of chipped stone tools and debitage with the occasional presence of pottery 

(Lipe and Pitblado 1999; Pitblado et al. 2013). 

 

Quartzite Geology and Petrography 

 Geologic Setting 

The UGB is one of five intermountain basins in the Colorado section of the 

Southern Rocky Mountains (Figure 2). The UGB lies east of the Uncompahgre Plateau, 

south of the Elk Mountains, west of the Sangre de Cristo Mountains, northwest of the 

San Luis Valley, and north of the San Juan Mountains. The only outlet in the UGB 

below 8,700 feet asl is the infamously narrow and deep Black Canyon of the Gunnison. 

Several different geological processes have contributed to the current landscape in the 

UGB including erosion, sedimentation, folding, faulting, peneplanation, volcanism, and 

intrusive igneous magmatism (Liestman 1985; Prather 1982).  

 Unlike the San Juan Mountains to the south, which are dominated by Tertiary 

volcanic rocks, the UGB shows a complex and diverse geologic history, with ages 

ranging from Precambrian to Quaternary (Liestman 1985; Streufert 1999). Precambrian 

rocks are the oldest in the world, and are relatively rare on Earth’s surface. Precambrian 

rocks in the UGB are separated into two major formations: the younger 

metasedimentary Black Canyon Schist and the older metavolcanic Dubois Greenstone 

(Hedlund and Olson 1981; Tweto 1987).  The Dubois Greenstone comprises three 

different sub-groups: metabasalt and meta-andesite flows, felsite porphyries and 

metatuffaceous rocks, and epiclastic rocks from older volcanic depositions (Hedlund 
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and Olson 1981). During the Late Paleozoic and Early Mesozoic eras, uplift and erosion 

caused the peneplanation of nearly all rocks to the Precambrian basement prior to the 

deposition of Upper Jurassic Junction Creek Sandstone (Hedlund and Olson 1981). This 

is especially true in the southern UGB where virtually no Paleozoic rocks are found, 

although a few remain in the northern portion. These deposits include the 

Pennsylvanian Maroon formation (Red shale, siltstone, arkosic sandstone and 

conglomerate with evaporites), Pennsylvanian Gothic shale, and Pennsylvanian Belden 

shale, which are the only remnants of the ancestral Rocky Mountains in the UGB 

(Cullers 2000; Larsen and Cross 1956; Prather 1982). The Maroon Formation is one of 

the best studied formations partly because of the imposing and famous Maroon Bells 

(14, 014 and 14,156 feet asl) near Aspen that formed as shallow inland marine deposits 

(Cullers 2000; Liestman 1985).  Paleozoic and Mesozoic rocks are mainly sedimentary 

with small igneous intrusions (Gaskill 1977; Streufert 1999).  

Mesozoic and Cenozoic rocks are common in the UGB. During the Upper 

Jurassic period much of Colorado and the entirety of the UGB was covered by an arid 

dune field (Cullers 1995; Golonka and Ford 2000) that later formed both the Jurassic 

Entrada sandstone and Navajo sandstone (Prather 1982). The Entrada sandstone is 

prevalent in the UGB, while the Navajo sandstone is concentrated in the Colorado 

Plateau to the southwest of the UGB. Mid-Jurassic climate change due to the breakup of 

the supercontinent Pangea contributed to the formation of Jurassic Junction Creek 

sandstone. The climate changed to a lush and moist tropical environment, silicifying 

Junction Creek sandstone in comparison to Entrada sandstone (Cullers 1995; Golonka 

and Ford 2000; Prather 1982). Both formations are very similar in composition, 
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essentially forming from similar dune fields, causing debate among geologists over 

where the contact zone lies (Prather 1982). The Entrada can reach up to 300 m in 

thickness, but in the UGB it only reaches a maximum thickness of 125 m, part of which 

is likely Junction Creek sandstone (Liestman 1985). Many rocks from the Mesozoic and 

older time periods were subjected to contact metamorphism during emplacement of late 

Cretaceous and younger intrusive igneous rocks (Gaskill 1977).  

The Middle Jurassic period also saw the formation of rivers flowing north 

carrying cobbles, volcanic ash, and sand (Golonka and Ford 2000; Liestman 1985; 

Young 1973). The volcanic ash and sand formed the Morrison Formation (mudstone, 

sandstone, siltstone, and limestone), which by no coincidence runs north-south 

expansively with the uplifted area over much of the greater Rocky Mountain region. 

Dramatic climate change resulted in a vast epeiric sea (shallow inland sea) covering 

most of the region during the Cretaceous period, depositing the Dakota sandstone and 

Burro Canyon (sandstone, shale, limestone, chert, and conglomerate) Formations. The 

epeiric sea had a variable coastline, with the rise and fall of the sea level contributing to 

these formations (Cullers 1995; MacKenzie 1975). Dakota sandstone in particular 

formed from the fine-grain sand beaches. The ordered nature of the Cretaceous 

formations suggests consistent depositional processes over long periods of time.  

During the late Cretaceous the Laramide Orogeny uplifted the Precambrian 

basement through faults, forming the modern Rocky Mountains (Liestman 1985; 

Livaccari 1991; Prather 1982). This dramatic uplift was caused by the Kula and 

Farallon plates impacting the North American plate at a low subduction angle (English 

and Johnston 2004; Livaccari 1991). The Laramide Orogeny is also the cause of 
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intermountain basin formation throughout the Rocky Mountains because these areas did 

not contain faults allowing the Precambrian basement to be uplifted (English and 

Johnston 2004; Livaccari 1991).   

During the Cenozoic era multiple concurrent geological processes occurred 

including erosion, sedimentation, glaciation, volcanism, and intrusive igneous 

magmatism (Epis and Chapin 1975; Prather 1982). All processes except glaciation 

occurred simultaneously during the early Cenozoic era when the volcanic San Juan 

Mountains formed (English and Johnston 2004; Epis and Chapin 1975; Prather 1982). 

Oligocene volcanic events adjacent to the UGB that deposited tertiary volcanic rocks 

include the eruptions of the West Elk Volcano 30 million years ago and the La Garita 

caldera 27.8 million years ago (Lamphere 1988; Stamm et al. 2004). During the 

Quaternary period intense glaciation covered the whole Rocky Mountains terminating at 

the end of the Pleistocene when human populations began to rapidly expand (Bendedict 

1992a, 1992b; Prather 1982). Many features of the modern landscape are the result of 

the long glacial periods contributing recognizable features including the horns, tarn 

lakes, and cirques common throughout the Rocky Mountains. 

 Within the project area, units containing quartzite include Precambrian 

metaquartzite, Paleozoic and Mesozoic orthoquartzite, Paleozoic and Mesozoic 

conglomerate, Paleozoic and Mesozoic contact-metamorphosed sandstone, and Tertiary 

and Quaternary gravels (DeWitt et al. 1985; Hedlund and Olson 1973, 1974; Streufert 

1999; Tweto 1987; Zech 1988). Major formations sampled in the following research 

include Cambrian Saguache quartzite, Ordovician Harding sandstone, Ordovician 

Parting sandstone, Jurassic Junction Creek sandstone, Jurassic Morrison Formation, 
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Cretaceous Dakota sandstone, and Cretaceous Burro Canyon Formation (Pitblado et al. 

2013). 

Quartzite Definition 

 Quartzite is an exceptionally hard, quartz-rich rock that fractures irregularly 

through grains and cement, forming an irregular or conchoidal fracture surface (Howard 

2005; Liestman 1985). Geologically, quartzite is classified as sandstone, where 

mineralogical composition and texture are the two major classification criteria created 

during deposition (Tucker 2001). Carozzi (1993) describes quartzite as a tight mosaic of 

interlocking crystals and grain overgrowths resulting in a quartzitic texture, while 

Howard (2005) describes quartzite as having a composition of 95% quartz or greater. 

On average, sandstones contain between 60 and 70 percent quartz grains (Blatt and 

Christie 1964; Pettijohn 1957). Clearly, geologists do not just have different definitions, 

but are classify the material in different ways. Mineralogical composition relates to 

source rock composition, tectonism, weathering, and subsequent diagenetic processes 

after initial deposition.  

Three major grain types are generally used to describe mineralogical 

composition of quartzite: quartz, feldspar, and lithics (here meaning a sand-sized rock 

fragment commonly of sedimentary or igneous origin, including accessory minerals) 

(Dott 1964). Composition is commonly displayed in ternary diagrams called QFL plots 

where quartz, feldspar, and lithics are charted as end members (Figure 5). Texture is the 

expression of the grain size, sorting, and shape in combination with the amount of 

interstitial pore material known as matrix. Matrix is the main classification for the 

differences between arenite, wacke (<15% matrix), and mudstone (<75% matrix) (Dott 
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1964; Pettijohn et al. 1987). 

  

Figure 5. Dott (1964) ternary diagram classification for sandstone and quartzite 

classifaction. 

 

Quartzite is almost always classified geologically as a quartz arenite, meaning it 

contains 95% or more quartz grains. Quartz arenites are divided into subfeldspathic and 

sublithic arenites depending on the higher quantity of either feldspar or lithic grains 

maintaining 75% or more quartz grains. Lower quantities of quartz are classified as 

either a feldspathic arenite or a lithic arenite. Wackes are also subdivided, and whereas 

all arenites are grain supported, wackes range from grain supported to matrix. Matrix 
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referring to a cement of a different minerology, rather than grain attributes such as 

quartz overgrowths. Geologists use other terms to further differentiate sandstone. 

Arkose sandstone is more than 25% feldspar and is synonymous with feldspathic arenite 

(Howard 2005). Although different quartzite definitions do exist beyond these two 

examples, I define quartzite in this research as all quartz arenites that contain 90% or 

more quartz grains. This includes some subfeldspathic and sublithic arenites.                                  

  At a macroscopic level there are two major quartzite classes formed by 

subsequent diagenic processes: orthoquartzite and metaquartzite. Orthoquartzite refers 

to a sedimentary rock, while metaquartzite is metamorphic. The major difference is the 

degree of heat and pressure applied during formation (Carozzi 1993; Ebright 1987). 

Metaquartzite experiences higher heat and pressure, causing fusion of individual grains 

and resulting in extremely hard rock that fractures irregularly instead of conchoidally.  

Under the microscope, metaquartzite shows little cement and demonstrates sutured 

boundaries  between connecting grains (Figure 6) (Carozzi 1993; Tucker 2001), 

whereas orthoquartzite contains quartz overgrowths and cement that visibly separates 

individual grains (Figure 7) (Ebright 1987).  In the pilot study on UGB quartzite 

(Pitblado et al. 2008), many samples consisted of elements other than silica separating 

them from microcrystalline silicates (i.e., chert, flint, and chalcedony) commonly used 

as prehistoric toolstone (Cackler et al. 1999; Luedtke 1978, 1979; Roll et al. 2005). This 

variable mineralogy not only allows for chemical discrimination, but also the greater 

petrographic detail further distinguishing the quartzite within and beyond the UGB.  
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Figure 6. Sample CD09-2D with muscovite birefringent material (center) with 

sutured grain boundaries evident, and the poorly sorted quartz grains. The 

sutured grains are a key characteristic of metaquartzite. Top photomicrograph is 

in plane light with the bottom in cross-polarized light under 10X magnification.  

Muscovite 
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Figure 7. Sample SC09-18B with a Volcanic Rock Fragment (VRF), surrounded by 

quartz grains exhibiting thick dust rings and zebraic chalcedony cement. Notice 

the black dots and lines on the quartz grains indicating increased during 

formation. Top photomicrograph is in plane light with the bottom in cross-

polarized light under 10X magnification. 
  

Quartz VRF 

Zebraic 

Chalcedony 

Dust Ring 
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Petrographic Characteristics and Classification of Quartzite  

 Several different characteristics are used to petrographically characterize 

quartzite in the UGB. These not only allow for the differentiation between different the 

types of quartzite, but also a detailed analysis of quartzite at a much finer level.  

Microscopic evaluation begins with qualitative data recording. Lithifaction and 

diagenesis are described through qualitative sediment texture attributes of grain size and 

morphology. Grain size is measured through conversion from an internal grid in the 

Olympus BH2 microscope to millimeters and assigned size on the Udden-Wentworth 

grain-size scale (Table 1, Wentworth 1922). On the Zeiss Axio AX10 Imager Z1 used 

with the 5GN1 and Parlin Flats samples grain size is averaged from minimally 30 grain 

measurements from an image through software tied to the microscope. Grain 

morphology consists of two main categories: roundness and sorting. Roundness 

includes six categories from very angular to well rounded (Powers 1953; Pettijohn et al. 

1987). Grain sorting is determined by comparing the degree of similarity in grain size 

(Carozzi 1993; Scholle 1979; Tucker 2001). Five categories ranging from very well to 

poorly sorted describe grain sorting.  
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Table 1. Udden-Wentworth (Wentworth 1922) grain size scale. This is the 

standard size description of grain size within petrography and is used in this 

research. 

 

 

 

 Mineral composition is assigned from point counting individual grains. Point 

counting is the systematic quantitative description of a sample by counting every grain 

present under the microscope crosshairs. This is completed with the use of a point count 

mechanism attached to the microscope stage that allows for precise horizontal 

transecting through a sample. The point count mechanism creates an artificial grid with 

equally spaced intervals. The size of the grid varies by sample because each grid point 

must be wider than the largest grain, yet account for as much of the sample as possible 

(Tucker 2001). This technique is standardized in geology as the Gazzi-Dickinson 

method (Dickinson 1970, 1985; Dickenson and Suczek 1979; Graham et al 1975; 

Ingersoll et al. 1984). Qualitative assessment is additionally assigned as stated above to 
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describe the diagenic processes involved with the formation of the sample (e.g., grain 

roundness, sorting, and texture).  

Individual grain identification is determined through visual characteristics under 

plane and cross-polarized light. The sample is rotated so that polarized light vibrates at 

different angles within the crystal (Raith et al. 2011; Scholle 1979; Tucker 2001). An 

upper polarizer set at a right angle to the lower polarizer is inserted and withdrawn from 

the microscope. When the upper polarizer is inserted, the mineral sample is viewed 

between crossed polarizers. With no sample or an isotropic sample present, no light will 

be visible because the polars are crossed. However, if a randomly oriented anisotropic 

mineral is inserted, the crystal will appear and will go extinct (dark) every 90° of stage 

rotation (Raith et al. 2011; Tucker 2001). Plane and cross-polarized light allow for the 

identification of minerals through this extinction, because the individual grain texture 

and color are not otherwise visible. Other optical properties including relief, 

birefringence, and twinning are diagnostic of certain minerals and are discussed below. 

Quartzite is dominated by quartz grains, with feldspar (mainly microcline and 

orthoclase), muscovite, and accessory minerals like tourmaline and zircon (Carozzi 

1993). Some rounded grains of chert and volcanic rock fragments occur, although 

infrequently.  

 Monocrystalline quartz grains are derived from plutonic igneous and 

metamorphic rocks, older reworked sandstone, or phenocrysts of volcanic and 

pyroclastic rocks (Carozzi 1993; Raith et al. 2011; Tucker 2001). Monocrystalline 

quartz grains are split into two different types based on how they demonstrate 

undulatory extinction (turn dark) when the microscope platform is rotated (Tucker 
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2001). Quartz monocrystalline undulatory (QMU) grains display a wavy or rolling 

extinction where the grain gradually turns dark when rotated on the platform (Table 2). 

Quartz moncrystalline nonundulatory (QMN) grains display a straight extinction where 

the entire grain turns dark when simple based on grain shape. Grains of volcanic origin 

contain a bipyrimidal phenocryst shape and are strain-free, displaying a straight 

nonundulate extinction. Grains from older reworked sandstones show remnants of 

abraded overgrowths and a generally rounded to subrounded shape, which typically 

have undergone increased stress, contributing to a rolling undulate extinction. These are 

the most common grains in UGB silicified sandstones and quartzite. Grains derived 

from phenocrysts in rhyolites show overgrowths and intervening inclusions generated 

during the different accretion phases, which are usually noundulatory (Carozzi 1993; 

Scholle 1979; Tucker 2001). Quartz polycrystalline grains are derived either from 

plutonic igneous rock bodies (tabular and/or massive plutons), metamorphic origins, or 

vein filling, identified by subparallel or intersecting quartz crystals with different 

extinctions within a single grain. These are formed through high strain and heat. Quartz 

polycrystalline grains are split into two separate categories for petrography: quartz 

polycrystalline simple (QPS) and quartz polycrystalline complex (QPC). The difference 

between these categories is that QPS contains three or fewer crystals in a single grain 

while QPC contains more than three crystals in a grain. All quartz grains can display 

Bohme lamallae, which are parallel, irregular planar trails on a quartz grain that indicate 

high stress or a low grade metamorphic origin (Raith et al. 2011). Other grains and 

minerals that occur in UGB quartzites include micas (specifically muscovite and 

biotite), feldspars, rock fragments, and heavy minerals.  
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Feldspar grains are the most frequently occurring grain besides quartz (Tucker 

2001). Feldspars are softer and some such as plagioclase have distinct twinning, a 

unique attribute shared by few other minerals where crystal-structure intergrowths of 

two or more crystals mirror or rotate against each other's orientation (Raith et al. 2011). 

Twinning is easily identifiable under cross-polarized light with the individual parts 

demonstrating different birefringence and extinction. Birefringence is a mathematical 

range from largest to smallest refractive index, where those with high birefringence 

demonstrate bright colors and those with low birefringence show dull colors or black 

and white (Raith et al. 2011). Without a stain, it is difficult to tell the difference 

between feldspars and quartz in plane and polarized light, especially when the feldspar 

grains are weathered, as most are in UGB quartzites. To account for this difficulty, a 

potassium-feldspar (K-spar) hydrofluoric stain that turns feldspars a distinct yellow is 

commonly used in analysis, and is used in this study.  

Rock fragments are the coarsest grains in quartz and sandstones and are referred 

to as “lithics” in geology (Scholle 1979; Tucker 2001). Lithics are groups of fine-grain 

igneous and sedimentary rocks picked up from surrounding bedrock deposits (Carozzi 

1993; Tucker 2001). Rock fragments can be confused with heavy minerals such as iron 

because they appear black under cross-polarized light, but heavy minerals stay black 

and do not display extinction unlike rock fragments. Because of this unique attribute 

heavy minerals are also referred to as "dark" minerals. Rock fragments are usually made 

of many different small grains aggregated together instead of a single grain as in heavy 

minerals. 
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Table 2. Petrographic classification explanation for this study. All different 

categories are unique grains documented in the UGB quartzite and will be 

discussed further. 

 

Petrographic 

Classification  
Description 

QMU 

 

Quartz Monocrystalline Undulatory-Grain displays a wavy 

or rolling extinction 

 

QMN 

 

Quartz Moncrystalline Nonundulatory-Grain displays a 

straight extinction  

 

QPS 

 

Quartz Polycrystalline-Three or less crystals in a single 

grain  

 

QPC 

 

Quartz Polycrystalline-More than three crystals in a grain 

 

Matrix 

 

A dominate cement that envelops all grains 

 

Silca Cement 

 

Quartz overgrowths or commonly chalcedony 

 

Wx Feldspar 

 

Weathered Feldspar 

 

VRF 

 

Volcanic Rock Fragment 

 

Calcite 

 

Carbonate 

 

Chalcedony 

 

Silcia, mainly zebraic in the samples 

 

SRF 

 

Dentrical Chert fragment 

 

Biotite 

 

 

High Birefringence, displays pleochroism and parallel 

extinctions 

 

Iron 

 

Dark or opaque minerals 

 

Sericite 

 

 

Highly degraded feldspar degrading into clay when 

subjected to hydrothermal alteration 

 

Chlorite 

A sheet silicate mineral similar to mica but is less 

birefringent appearing green in plane light and brown in 

cross polarized light 
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Micas commonly occur as sheet silicates in the matrix of quartzite and 

sandstones. Muscovite and biotite are easy to identify under cross polarized light 

because both are highly birefringent and exhibit parallel extinction (Scholle 1979; 

Tucker 2001). Biotite displays a brown to green pleochroism from plane to cross-

polarized light. Pleochroism is a property where different colors are exhibited as a 

function of variable light vibrations when the microscope platform is rotated (Raith et 

al. 2011). Muscovite is almost colorless in plane light, but has bright second order 

colors under cross-polarized light (Carozzi 1993; Scholle 1979; Tucker 2001). Clay 

minerals also commonly occur with micas. Common clay minerals in the UGB quartzite 

samples are kaolinite and chlorite. Both minerals form through chemical weathering 

processes leaching ions (ions are removed by dissolution into water). Kaolinite is 

chemically weathered feldspar, and chlorite is chemically weathered rock fragments 

(Kroll et al. 1986). Both are identified by a slightly different pleochroism, transitioning 

from brown to a dull green with less birefringence than biotite.  

In a rock, the pore-filling material consists of cement that precipitates normally 

with groundwater between grains to bind them together, thus making sand, sandstone. 

This occurs during the lithification and/or diagenic sediment process. Quartzite cement 

can begin as a pressure solution, but most commonly it is precipitated silica 

overgrowths on quartz grains formed in an aqueous solution or well-ordered, low 

temperature quartz (Carozzi 1993). On monocrystalline grains overgrowths have the 

same optical extinction orientation, but for polycrystalline grains the overgrowth 

matches the orientation with the individual crystals in direct contact. This trend also 

extends to chert grains. The area between a grain and overgrowth is a capillary pore that 
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forms dust rings containing minute mineral grains, clay mineral coatings, iron oxides, 

and organic matter, all of which contribute to the overall shape of the grain, but stop at 

the boundary with overgrowths (Carozzi 1993). Silica-base overgrowths and 

chalcedony cements are common in UGB quartzite. Pressure solution cements, 

normally carbonates such as calcite, contain independent extinctions to crystal structure 

and grain contact. Calcite can appear in different colors, but is mainly white and 

occasionally black, appearing dull and without grain shape or boundaries common with 

other structures in quartzite and sandstones. Chalcedony in UGB quartzite is almost 

exclusively zebraic with a combination of brown/black and white stripes, which 

alternate when rotating the microscope platform. Less common cements in quartz 

arenites include gypsum, barite, celestite, and opal. Chlorite occurs frequently in clay 

cements, although these do not appear in the samples examined with one exception.   

Previous Quartzite Provenance Research 

Archaeological efforts to source quartzite have been mostly successful when 

attempted, yet the aggregate nature of sedimentary quartzite is difficult to understand 

(when compared to obsidian and fine grain volcanics) contributing to little peer-

reviewed literature (Ebright 1987; Church 1994, 1996; Howard 2005; Liestman 1985). 

Since quartzite is one of the most common rocks in the world and often fracture 

concordially, it was frequently used by prehistoric peoples for stone tool manufacture, 

grinders (for maize, nuts, and grains), and sculptures. Stross et al. (1988) provided the 

first successful archaeological example utilizing quartzite provenance analysis by 

combining Instrumental Neutron Activation Analysis (INAA) and petrography to 

differentiate two quarries 900 km apart as the source for the Egyptian Colossi of 

http://serc.carleton.edu/research_education/geochemsheets/techniques/INAA.html
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Memmon. Liestman (1985) completed extensive research in the Curecanti National 

Recreation Area in the UGB, describing quartzite-bearing units and which quartzite 

materials are commonly found at archaeological sites there. Liestman also used limited 

petrography to describe quartzite. Similarly, Church (1994, 1996) used a combination of 

petrography and XRF to gain an understanding of quartzite and chert in the Bearlodge 

Mountains in Wyoming and Ogallala Orthoquartzite in Nebraska along the northern 

Missouri River with some promising results. 
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Chapter 3: Methods 
Field Collection 

Under the direction of Bonnie Pitblado and Carol Dehler Utah State University 

students completed field collection of quartzite samples during an archaeology field 

school in 2009. The collection sampled 48 discrete geological localities across the 

11,000 km2 of the UGB (Figure 2). Outcrop (primary) and cobble (secondary) quartzite 

exposures were targeted because prehistoric peoples had equal access to both (Pitblado 

et al. 2013). Sample sites included recorded archaeological sites and geological 

exposures visited after locating them on geological maps (Gaskill 1977; Gaskill et al. 

1986, 1987; Streufert 1999). Samples came from all potential UGB quartzite sources 

including Precambrian metaquartzite and quartz veins, Paleozoic and Mesozoic 

orthoquartzite, Paleozoic and Mesozoic quartzite-bearing conglomerate, Paleozoic and 

Mesozoic contact-metamorphosed sandstone, and Tertiary and Quaternary quartzite-

rich cobbles (Pitblado et al. 2013). The sampling focus was on the known quarries 

around the Chance Gulch site (cobble quarries), above the Gunnison River and modern 

Blue Mesa Reservoir, and other known bedrock and cobble quarries (Figure 2). 

 Both outcrops and cobbles were sampled, although in slightly different ways 

(Pitblado et al. 2013). A Jacob's staff assisted in measuring vertical increments on 

outcrops, with fist size samples taken at each meter increment. Lateral sampling 

occurred at one meter increments.  

A separate protocol was necessary for cobble deposits. After identifying Tertiary 

and Quaternary cobbles in alluvial fans, a 30 m tape was laid in either north-south or 

east-west. Samples were recorded at one meter intervals, with ten centimeters on either 

side if necessary. If 10 samples were not found, the tape was re-laid on the same 
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cardinal axis with collection continuing until 10 quartzite samples (or quartzite-like 

material in the field) intersected on the transect. Students and supervising professors 

recorded all locations, photographed, and sketched the location of outcrop samples. All 

locations were recorded using GPS units in UTM coordinates, zone 13S (Pitblado et al. 

2013).  

Laboratory Methods 

Two research assistants made the 402 samples made into billets (12-X-24-X-46 

mm) under Dr. Dehler's supervision in the Geology Department at Utah State 

University (Pitblado et al. 2008; Pitblado et al. 2013). Quality Thin Section of Tucson, 

Arizona manufactured the billets into thin sections, hand polished to 30 microns and 

stained feldspar yellow for easy identification. My research begins with the microscopic 

analysis. All Basin-wide study point counts are completed with an Olympus BH2 

microscope with a Cannon Powershot G6 camera (for photos), while 5GN1 and Parlin 

Flats samples were analyzed on a Zeiss Axio AX10 Imager Z1. Two different research 

locations in two states required the use of two different microscopes. The Olympus BH2 

is at the Utah State University geology department, while the Zeiss Axio AX10 Imager 

Z1 is at the University of Oklahoma geology department. Both are optical microscopes 

with a polarized filter under the stage, a circular rotating stage, and a second removable 

polarized filter with light traveling in two perpendicular polarized light planes (the Zeiss 

is set up in the opposite configuration). Each slide is placed in the same orientation with 

the label to the right and point counts beginning at the same location on the point count 

mechanism.  
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Random sample selection is important for the proof of concept to prevent bias 

on. This way I could not place my knowledge of how the samples should differentiate, 

and instead focus on the accurate analysis. I thoroughly describe each sample in terms 

of texture, composition, bedding or foliation, and crosscutting relationships. One-

hundred grain point counts were completed instead of the standard three hundred 

(Dickinson 1970, 1985; Ingersoll et al. 1984) after a test study conducted by Dr. Dehler 

and students concluded that a 100 point count statistically differentiates UGB 

composition as accurately as a 300 point count (Dehler 2012; Lister and Hobbs 1980; 

Tucker 2001). Dr. Dehler’s test is verified by previous studies centered on 

orthoquartzite petrography in relation to provenance studies (Blatt and Christie 1963). 

Analytical Methods 

 I recorded all data from the point counts in Excel spreadsheets and described 

them in a Word document. I imported the Excel data into IBM Statistics Package for the 

Social Science version 10.2 (SPSS ®) to perform statistical analysis. Ternary diagrams 

of row standardized or normalized petrographic data (Figure 5) are created in the 

Grapher 10 ® program putting data into one of three end members (quartz, feldspar, or 

lithics referred to as QFL) to display sample mineral composition. Ternary diagrams are 

commonly used with petrographic data graphically displaying three variables (in this 

case the QFL categories) row standardized for each individual category. The ternary 

diagrams are a powerful representation of sample composition and are the main graphic 

representation responsible for research questions 2-4 to describe sample variability. 

Petrographic categories for statistical analysis consist of between three and fifteen 

categories. Three categories are the QFL groupings while the fifteen categories refers to 
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the raw petrographic descriptive categories previously described in the Petrographic 

Characteristics and Classification of Quartzite section, and detailed in Table 2. 

Statistical analyses is run on both row standardized QFL categories and raw 

petrographic descriptive categories to fully understand statistical relationships. Ellipses 

are placed around the groups to demonstrate where each sample/group is located. These 

are not statistically calculated ellipses, but merely hand drawn lines to highlight the 

groupings achieved with the multivariate analyses detailed below. Multivariate analysis 

capable of working with the nominal and interval-ratio scale data is necessary given the 

multiple petrographic categories. Two similar analyses were utilized to group the data 

into meaningful clusters, K-means cluster analysis and discriminant analysis.  

 K-means cluster analysis is a form of cluster analysis that splits the dataset by 

utilizing an algorithm to partition each case into K clusters or groups (Aldenderfer and 

Blashfield 1984). K-means analysis partitions the sample mean to classify raw data into 

groups in a nonhierarchical manner. Essentially, it determines how to place the cluster 

centroids farthest apart from each other without isolating any one data point from a 

cluster (Aldenderfer and Blashfield 1984). K-means cluster analysis is an ideal analysis 

for classification with the three QFL groups utilized in this study. The primary 

assumptions are: 1) there are always K clusters; 2) there is always minimally one item 

in each cluster; 3) the clusters are non-hierarchical and do not overlap; and 4) each point 

is closer to its own centroid than to another cluster’s centroid (Aldenderfer and 

Blashfield 1984). This procedure is ideal for large datasets with multiple variables, 

although the algorithm does require a set number of clusters by myself before it can 
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work. Testing the accuracy of the K-means clusters discriminant analysis is an 

appropriate follow up procedure.  

 Additional discrimination of the petrographic groupings is completed through 

discriminant analysis, which analyzes relationships between individual elements 

(Heidke and Miksa 2000; Klecka 1980; Miksa and Heidke 2001). Discriminant analysis 

functions in a different way than the K-means cluster analysis, yet delivers similar 

results. While it is not necessary to run both, I did this to check the accuracy of K-

means groupings. An advantage of using discriminant analysis after K-means cluster 

analysis is that it yields an accuracy percentage to evaluate the groups. This is necessary 

because discriminant analysis uses categorical variables to find a linear combination 

separating categories into two or more classes.  

 Discriminant analysis allows for the study of two or more object groups while 

considering multiple variables (Heidke and Miksa 2000; Klecka 1980).  This is useful 

when several different variables contribute to an outcome, in this case for quartzite 

petrographic group classification. Quartzite samples are the objects and the 15 (Table 2) 

petrographic descriptive categories are the variables. The QFL categories are 

additionally run through discriminate analysis as with K-means cluster analysis. While 

these groups differ in size, the final group size is set from the discriminant analysis 

results, as each individual point count category is used to predict further group 

membership.  

 Seven assumptions underlie discriminant analysis (Klecka 1980): 1) two or more 

groups; 2) minimum of two cases per group; 3) any number of discriminating variables, 

given that it is less than the total number of cases; 4) discriminating variables are 
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measured at the interval level; 5) no discriminating variable may be a linear 

combination of other discriminating variables; 6) the covariance matrices for each 

group must be (approximately) equal; and 7) each group has been drawn from a 

population with a multivariate normal distribution on the discriminating variables. 

Discriminant analysis additionally allows for the evaluation of the degree of 

petrographic groups variability within the UGB.  

 The grouping of data with K-means and discriminant analyses allows for the 

understanding of the many data points by reducing the dimensions to understandable 

variables or creating groups rather than individual data points. By using these analyses 

to group the samples it allows for the understanding of sample variability and 

differences intra and inter-source. For comparison value, especially between 5GN1 and 

Parlin Flats samples, the grouping of samples are essential.   

 The paired K-means and discriminant analysis is used with cobble, outcrop, and 

both cobble and outcrop data together in a three-tiered approach to understand if these 

source differences contribute to different compositions between cobble and outcrop 

sources. This approach is repeated with each quarry site. Since 5GN1 is both a quarry 

and outcrop sources, the three-tiered approach is completed. Parlin Flats is an outcrop, 

and requires one paired analysis. Last, all of the samples are compared together to 

understand the full composition of analyzed samples. The main focus is on the 

comparison of the two quarry sites 5GN1 and Parlin Flats to understand whether and to 

what degree source differentiation is possible using this petrographic and analytical 

approach.  
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Chapter 4: Basin-Wide Analysis-Characterizing the Variability of 

UGB Quartzite  
Through the detailed petrographic analysis of 50 thin section samples from the 

UGB many basic trends appear. First, many of the thin sections do not meet the 

geologic definition of quartzite (95 percent quartz or more) (Appendix A: Table 1).  

Most samples are between 80 to 90 percent quartz composition with the mean being 

86.5 percent, yet 26 percent (n=13) of the samples contain fewer quartz grains. 

Preliminary data analysis is shown with a ternary diagram illustrating initial data 

clustering within the QFL categories. This is an important first step, functioning as the 

basis for the following analysis, because it best displays compositional differences 

graphically.  

 To further interpret the dataset, multivariate techniques are used to detail the 

petrographic group characteristics and differences. This approach allows for discrete 

groupings necessary for the analysis and the conclusions this study intends. It is 

important to classify and interpret each petrographic category such as chalcedony or 

quartz monocrystalline ungulatory (QMU) to illustrate more than just categorical 

differences.  

K-Means Cluster Analysis 

 In order to understand petrographic group differences, K-means cluster analysis 

is selected as the next step because its parameters fit the nominal multivariable dataset. 

This is run on both row standardized QFL categories and raw data. The QFL categories 

demonstrate the most powerful groupings. The following discussion reports the results 

from the QFL categories for petrographic groups.  
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 Since I set the number of clusters in a K-means cluster analysis, multiple K-

means analyses are run on the quartzite dataset with a different number of clusters. Five 

clusters, or groups, is optimal to analyze the data set because it is the most statistically 

significant number of clusters in the K-means analysis. In total there is six groups since 

group #6 describes an outlier described below. Statistical significance for clusters is 

determined by the highest similarity within a cluster and the lowest similarity between 

clusters and is checked for accuracy with a subsequent discriminant analysis. The 

optimal number of clusters is based on the most accurate groups as determined by the 

paired discriminant analysis, which results in a predictive accuracy percentage (Table 3; 

Appendix Table 2). Discriminant analysis is used with the K-means clusters here to 

understand the clusters and dataset better by gaining insight into the relationship 

between cluster membership and the variables used to predict cluster membership 

through its predictive accuracy.  

Table 3. K-means cluster centers based off Quartz, Feldspar, and Lithics 

categories. Clusters 1-5 stand for random petrographic groups with group six 

withheld as it is an outlier group (crystalline limestone). 

 

 Petrographic Group 

1 2 3 4 5 

Quartz 69.11 52.00 85.61 96.32 85.13 

Feldspar 4.83 1.50 2.36 1.84 12.56 

Lithics 26.06 46.50 12.04 1.84 2.31 

 

Discriminant Analysis 

 The goal of using discriminant analysis here after K-means is to understand the 

appropriate group size and to understand the predictive power of the groups as 

demonstrated with the accuracy percentage resulting from discriminant analysis. This is 
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completed on all different distributions of quartzite in the study including cobbles and 

outcrops. A three-tiered approach is run analyzing cobbles, then outcrops, and finally 

both cobbles and outcrops together. The first discriminant analysis includes all 29 

cobble samples with the QFL categories. The entire group of selected cobble samples 

are classified correctly making the accuracy of this first discriminant analysis 100 

percent (Figure 8; Appendix A: Table 3). The second discriminant analysis includes all 

20 outcrop sources with each of the 15 individual elements. All outcrop samples 

selected are correctly classified resulting in an accuracy of 100 percent in the second 

discriminant analysis (Figure 9; Appendix A: Table 4).  

 
 

Figure 8. Cobble Discriminant Distribution Graph. Petro_Coding indicates the 

Petrographic groups. 
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Figure 9. Outcrop Discriminant Graph. Petro_Coding indicates the Petrographic 

groups. 
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Figure 10. Cobbles and Outcrops Discriminant Graph. Petro_Coding indicates the 

Petrographic groups. 

 

 

The third and final discriminant analysis on all 49 samples (without the one 

limestone outlier) resulted in one misclassification; sample CD09-4C (Figure 11; 

Appendix A: Table 5). This outlier is an outcrop source that was classified as Group #3 

through K-means, but was placed into Group #5 with the third discriminant analysis. 

This is logical because when looking at the ternary diagram (Figure 12), the groups 

contain similar composition at the edges of each group where the ellipses are very close, 

facilitating an easy misclassification. With the one misclassification the accuracy of 

cobbles and outcrops is 98 percent in the third discriminant analysis. 
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Petrographic Groups 

 The following petrographic groups are derived by first viewing the graphic 

representation on a ternary diagram (Figure 11; Appendix A: Table 1), then through K-

means cluster and discriminant analyses. The ellipses on the QFL ternary diagram are 

not calculated ellipses, but instead simply hand-drawn ellipses that encompass the 

groups derived from the paired K-means and discriminant analyses groups. The six 

petrographic groups reflect each group’s unique mineral composition. 

 
 

Figure 11. Random Sample Ternary Diagram showing concentrations of quartz, 

feldspar and lithics. The different symbols indicate the Petrographic group 

membership and not geologic formation. The top and right axis represents quartz, 

right and bottom axis represents lithic, and the left axis representing feldspar 

sample composition. 
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 Group #1 (n=10) consists of moderate amounts of lithic material making it a 

litharenite or volcanic arenite, which does not fall within the traditional definition of 

quartzite as 90% quartz grains (Figure 7). The average slide in this group is similar to 

sample SC09-18B containing moderate sized quartz grains with thick dust rings that are 

surrounded by VRF's and a dark iron cement (Figure 7). QPC's are more visible than in 

most other samples. SC09-18B contains weathered feldspar and a significant amount of 

zebraic chalcedony, compromising the majority of the cement. Zebraic chalcedony is 

especially noticeable as a crystalline structure that alternates a pale white with a brown 

to near black, changing color as the mineral is turned on the stage in cross-polarized 

light. Moderate to well-sorted, sub-rounded to sub-angular grains range from silt to very 

fine sand in size (35 to 177 microns). The high amount (18 percent) of zebraic 

chalcedony in SC09-18B makes it typical of the group. Although VRF, biotite, and iron 

grains do add to the lithic total, these rarely make up more than 5 percent (as VRFs do 

in SC09-18B) of the total sample composition in Group #1. The mean composition in 

Group #1 is 80.61 percent quartz, 14.12 percent lithics, and 5.27 percent feldspar (Table 

4). Important individual category means include 12.2 percent zebraic chalcedony, 4.7 

percent VRF, 3.2 percent calcite, 3.1 percent biotite, and 1.5 percent iron. 

 Group #2 (n=2) contains the highest amount of lithics in all samples, yet is a 

small group overall. The high amount of lithics led the group to be classified as a lithic 

arenite, close to being a volcanic arenite (Figure 5). Sample SC09-13F contains fine 

quartz grains with a highly weathered feldspathic cement containing biotite (Figure 12).  
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Figure 12. Sample SC09-13F with a ribbon of biotite (center) surrounded by 

volcanic rock fragments (VRF), weathered feldspar (dark grain) and quartz grains 

(QMU) with small overgrowths. Top photomicrograph is in plane light with the 

bottom in cross-polarized light under 10X magnification. 
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Biotite also occurs as a separate grain. Calcite occurs frequently with a high amount of 

volcanic inclusions on QMU's.  SC09-13F is moderate to well-sorted, containing 

angular to sub-rounded grains, which range from fine silt to very fine sand (35 to 118 

microns). Conversely, the other sample in this category is a metamorphic volcanic 

arenite (sample CD09-2D) (Figure 6). CD09-2D contains a few quartz grains 

surrounded by a high biorefringant clay or chert matrix with volcanic fragments very 

common. Quartz grains are sutured through either metamorphic processes or 

replacement. Large amounts of muscovite flakes commonly group together. Sample 

sorting is bimodal and variable with a relatively high percentage of QPC's (6 percent) 

for this project. CD09-2D is very poorly sorted, with angular to sub-angular grains 

ranging from fine silt to fine sand, bordering on medium sand grains (35 to 482 

microns). Group #2 in general has a very high percentage of lithic material (46.5 

percent between both samples), but is most likely an outlier as the different 

(sedimentary and metamorphic) compositions share a high amount of volcanic lithics. 

The mean composition in Group #2 is 52 percent quartz, 46.5 percent lithics, and 1.5 

percent feldspar (Table 4). Important individual category means include 19 percent 

calcite, 0.5 percent biotite, 4 percent iron , 1 percent VRF, and 0 percent zebraic 

chalcedony. 

Group #3 (n=6) contains the least amount of lithics for the high lithic groups 

placing the composition in the sublithic arenite category (Figure 5). Group #3 is similar 

to Group #1 in that it contains zebraic chalcedony as the main cement, yet with a lower 

amount (10 percent of the total composition instead of 18 percent). One exception to 

this is sample 5GN3510-E (Figure 13) in Group #3, which does not contain any 
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Table 4. Mean Percentage of Basin-Wide Study Petrographic Group Composition. 

 QFL Categories Important Individual Categories 

Petrographic 

Group 

Quartz Feldspar Lithics Total VRF Bioite Iron Zebraic 

Chalcedony 

Calcite 

1 80.61 5.27 14.12 100 4.7 3.1 1.5 12.2 3.2 

2 52 1.5 46.5 100 1 0.5 4 0 19 

3 86.6 2.4 10.96 100 3.83 1.33 1.33 3.17 3 

4 96.4 1.8 1.8 100 0.8 0.13 0.2 0.27 0.13 

5 85.19 12.57 2.24 100 0.75 1.81 0.31 0.69 0.44 

6 Crystalline Limestone 

 

chalcedony, but instead contains detrital chert fragments (SRF). SC09-6G is an example 

of the average sample in this group (Figure 14). Mineral grains are moderately sorted 

quartz with a large amount of a zebraic chalcedony matrix, small pieces of biotite, and 

highly weathered and degraded feldspar. Many of SC09-6G's QMU's have a "dirty" 

appearance from volcanic inclusions lacking overgrowths. Some very small 

overgrowths are present through thick, well defined dust rings. VRF's consist of black 

volcanic cement, which differs in appearance from iron. This occasionally becomes a 

pseudo-matrix occupying much of the microscopic view. Biotite only occurs in very 

small broken pieces, suggesting that the sample had degraded through the chemical 

weathering processes. 
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Figure 13. Sample 5GN3510-E demonstrating a dentrical chert fragment (SRF) at 

the center surrounded by quartz grains and some small amounts of calcite. Top 

photomicrograph is in plane light with the bottom in cross-polarized light under 

10X magnification. 
 

Calcite 
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Figure 14. Sample SC09-6G showcasing the bimodal nature of this sample with 

quartz grains (QMU) with thick dust rings and volcanic inclusions next to a large 

amount of zebraic chalcedony and some small volcanic rock fragments (VRF) 

visible. Top photomicrograph is in plane light with the bottom in cross-polarized 

light under 10X magnification. 
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Some grains show high amounts of strain, while others appear to be a newer formation 

sequence with no evidence of straining, or in a bimodal depositional sequence. SC09-

6G does have several plucked grains and varies from moderate to poorly-sorted. Grains 

are rounded to sub-angular range from silt to fine sand (35 to 295 microns), with no 

average grain size because of the samples’ variable nature. Bohme lamellae (parallel, 

irregular planar trails on a quartz grain that indicate high stress or a low grade 

metamorphic origin) present on quartz grains, a chalcedony matrix, and zebraic 

chalcedony are the typical features of this sample and of Group #3 as a whole. The 

mean composition in Group #3 is 86.6 percent quartz, 10.964 percent lithics, and 2.4 

percent feldspar (Table 4). Important individual category means include 3 percent 

calcite, 3.17 percent zebraic chalcedony, 3.83 percent VRF, 1.3 percent biotite, and 1.3 

percent iron. 

 Group #4 (n=15) is the group with the most quartz grains fitting into the 

traditional category of quartzite (containing more than 90% quartz grains) (Carozzi 

1993; Ebright 1987; Howard 2005). I hypothesize that this group represents the most 

often targeted form of quartzite for prehistoric knappers because of the high amount of 

silica. Sample SC09-26C is an example of this category because it contains 96.39 

percent silica, and is classified as a quartz arenite (Figure 5 and Figure 15). Moderate 

sized quartz grains dominate this sample, although some VRF and calcite grains are 

present in very small amounts. Small to moderate overgrowths are common on quartz 

grains, as are QPC's, and silica cement. Biotite is not recorded in the point count due to 

the very small compositional amount. SC09-26C is almost all quartz grains with only 4 

percent chert lithic grains. The sample is very well-sorted with sub-rounded to sub-
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angular grains ranging between silt and very fine sand (29 to 236 microns), with an 

average grain of very fine sand (118 microns). This is the most homogenous category 

facilitating the fracture through grains and cement (the concordial fracture) that make an 

ideal tool raw material. The mean composition in Group #4 is 96.4 percent quartz, 1.8 

percent feldspar, and 1.8 percent lithics (Table 4). Important individual category means 

include 0.8 percent VRF, 0.27 percent zebraic chalcedony, 0.2 percent iron, 0.13 

percent biotite, and 0.13 percent calcite. 

 Group #5 (n=16) is similar to Group #3 containing primarily quartz grains, but 

instead of a small amount of lithic material it contains feldspar, making it subarkose and 

arkose arenite (Figure 5). Feldspar in this study is extremely degraded with very few 

exceptions where twinning is rarely observed. Sample 5GN850-3B is representative of 

this group (Figure 16). 5GN850-3B contains predominately moderately sorted QMU's 

with a small amount of degraded feldspar. The sample is characterized by very thick 

overgrowths that lack defined dust rings, with the weathered feldspar being highly 

degraded and barely visible (10 percent of composition).  Some very small amounts of 

VRF's are visible within a matrix of calcite. 5GN850-3B is moderate sorted with 

rounded to sub-rounded grains containing grain sizes ranging between silt to very fine 

sand (83 to 236 microns). The mean composition in Group #5 is 85.19 percent quartz, 

12.57 percent feldspar, and 2.24 percent lithics (Table 4). Important individual category 

means include 1.81 percent biotite, 0.69 percent zebraic chalcedony, 0.75 percent VRF, 

0.31 percent iron, and 0.44 percent calcite. 
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Figure 15. Sample SC09-26C with very well sorted, large the quartz grains (QMU) 

and overgrowths with defined dust rings. Some volcanic inclusions are visible on 

the margins of the photomicrograph (dark spots). Top photomicrograph is in 

plane light with the bottom in cross-polarized light under 10X magnification. 
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Figure 16. Sample 5GN850-3B exhibits large quartz grains with highly visible 

large overgrowths, degraded feldspar and calcite. Top photomicrograph is in plane 

light with the bottom in cross-polarized light under 10X magnification. 
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 Group #6 (n=1) is the smallest and most unique group. A detailed point count 

was not completed on this group because this group is a product of field sampling error 

and is not quartzite or sandstone in any measure. Group #6 is a crystalline limestone 

carbonate, illustrated in sample SC09-24H (Figure 17). This is not on the ternary 

diagram (Figure 11) because its composition does not fit within the QFL parameters. It 

does not exhibit grain boundaries, grain relationships, or any similar composition to the 

rest of the samples in the study.  
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Figure 17. Sample SC09-24H, the crystalline limestone of Petrographic Group #6 

with mica’s and iron grains prevalent. Top photomicrograph is in plane light with 

the bottom in cross-polarized light under 10X magnification. 
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Discussion 

Geologic Formation Associations 

   Geologic formations do not match the petrographic groups perfectly, yet they do 

demonstrate predictable patterns (Table 5 and 6).  

 Petrographic Group #1 is dominated by Tertiary sources, with Tertiary gravel 

cobbles making up seven of ten samples. The other samples are from a Quaternary fan 

(n=1) and Tertiary cobble (n=2) deposits. Petrographic Group #2 is the most lithic 

heavy group. It is also sampled from exclusively Quaternary age geologic formations. 

Petrographic Group #3 contains low amounts of lithic materials and is primarily from 

Cretaceous Dakota and Burro Canyon Formations, with the exception of two Tertiary 

gravel cobble sources. Petrographic Group #4 contains almost pure silica and is the 

second largest group in the study with fifteen samples. Petrographic Group #4 is 

dominated by Jurassic Junction Creek and Entrada samples (54 percent), with the rest 

sampled from Quaternary Alluvium cobbles (20 percent), Tertiary gravel deposits (13 

percent), and Quaternary gravels (13%). Petrographic Group #5 is the largest group 

with sixteen samples, and is the most diverse when considering geologic formation 

sources. It is comprised of Tertiary cobble sources (44 percent), Cambrian Saguache 

outcrop (25 percent), Jurassic Junction Creek outcrop (19 percent), and Jurassic 

Junction Creek cobbles (13 percent).  

 Geologic formation distribution is clearer when cobble and outcrop sources are 

separated from each other. Separating outcrops and cobbles demonstrates that 

Petrographic Groups #1 and #2 are only cobble sources with some other cobbles 

scattered throughout the other groups as expected from their heterogeneous nature. 
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Petrographic Group #3 is exclusively from Cretaceous outcrops with Petrographic 

Group #4 exclusively from Jurassic outcrops. Petrographic Group #5 is found in both 

Cambrian and Jurassic outcrops. Logically, Petrographic Groups #4 and #5 have the 

potential to overlap slightly as the groups are separated by a continuum of the amount 

of feldspar. There is not clear divide with the amount of feldspar, which contributes to 

this overlap. Understanding that Petrographic Groups #4 and #5 overlap, the higher 

silica samples in Petrographic Group #5, adjacent to Petrographic Group #4, are all 

from Jurassic sources. The higher feldspar samples of Group #5 are primarily of 

Cambrian origin, although one does fit with the higher silica near the border with Group 

#4. 

Table 5. Petrographic Groups Compared to Geologic Group/Formation. The 

Geologic Formations represent all Formations sampled. 

 

Petrographic Group Geologic Formation 

1 Tertiary Gravels (70%), Tertiary Cobble 

(20%), Quaternary Fan (10%) 

2 Tertiary Gravels (50%), Quaternary 

Alluvium (50%) 

3 Cretaceous Dakota and Burro Canyon 

(67%), Tertiary gravels (33%) 

4 Jurassic Junction Creek and Entrada 

(54%), Quaternary Alluvium (20%), 

Tertiary Gravels (13%), Quaternary 

Gravels (13%) 

5 Tertiary cobbles (44 percent), Cambrian 

Saguache (25 percent), Jurassic Junction 

Creek (19 percent), and Jurassic Junction 

Creek cobbles (13 percent) 

6 Crystalline Limestone cobble 
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Table 6. Petrographic Groups Compared to Geologic Group/Formation with 

Reference to Cobble and Outcrop Distinction. 

 

Separating Cobbles from Outcrops 

1 and 2 Cobbles only 

3 Cretaceous Dakota/Burro Canyon 

Outcrop 

4 Jurassic Junction Creek and Entrada 

Outcrops 

5 Cambrian Saguache (63%) and Jurassic 

Junction Creek (37%) Outcrops 

 

Spatial Associations 

Spatially a few patterns emerge (Figure 19). Petrographic Groups #1 and #3, the 

lithic heavy groups, only occur in the southern portion of the UGB. The southern 

portion of the UGB is distinct as the contact zone with the Uncompahgre Plateau where 

the uplift features that created the steep mountains around Crested Butte change to the 

large, high Uncompahgre Plateau. The volcanism responsible for higher lithic amounts 

occurred in this area. Petrographic Group #4 shows the most significant spatial pattern, 

the group highest in silica and best toolmaking material, occurs only at known 

prehistoric quarries and not commonly at non prehistoric sampled areas in the UGB. For 

example, it occurs in high concentrations at 5GN1, a massive quartzite quarry adjacent 

to the Blue Mesa Reservoir, and prehistoric Gunnison River (Figure 18). This may be 

the most valuable finding of the Basin-wide study beyond its role as a proof of concept 

that is the main objective: demonstrating that petrography can distinguish between 

individual quartzite sources. Chapters 5-7 focus on a closer examination of how well 

petrography can distinguish between individual quartzite sources with the examination 

of all 5GN1 samples and Parlin Flats samples collected. 
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Figure 18. Spatial Distribution of Basin-Wide Study Petrographic Groups. Notice 

that the high lithic quantity groups #1 and 3 only occur in the southern portion of 

the Basin.   
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Chapter 5: 5GN1 Analysis 
 As its site number suggests, 5GN1 is the first site recorded in Gunnison County, 

representing a large cobble and Jurassic Junction Creek (Jj) outcrop quarry and 

rockshelter site used extensively throughout prehistory. The site is along on the south 

side of the modern Blue Mesa reservoir west of the present day Gunnison River in a 

parkland environment at roughly 7,700 ft. asl. (Figure 19). Prehistorically, this would 

have overlooked and been readily accessible to the Gunnison River. First recorded by 

William G. Buckles in 1962 (Buckles 1962) the site has been revisited several times by 

archaeologists over the years, and was it designated eligible for the National Register in 

2009 by the Louis Berger Group INC. CRM firm (Anderson et al. 2009). Utah State 

University visited the primary site (and two other loci 5GN1.1 and 5GN1.2) during the 

2009 field school to record and collect samples that are discussed in this chapter.  

 

Figure 19. 2009 USU Field crew collecting samples and documenting 5GN1.2. 

Photo courtesy of Bonnie Pitblado. 
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Although Buckles’ original site form (1962) lists the site as having been picked 

over by collectors, he also documented several tools including knife fragments (19), 

choppers (3), and a probable Late Prehistoric cottonwood triangular projectile point (1) 

all made from the local fine grain quartzite in addition to “a great amount of broken 

quartzite”. When the USU field school visited the main 5GN1 site, they documented 20 

quartzite projectile points dating to the Middle, Late Archaic, and unassigned 

prehistoric eras. Additionally, they noted over 500,000 quartzite and chert primary 

reduction debitage flakes and over 1,000,000 secondary quartzite and chert debitage 

flakes ranging in color from white, greyish pink, and red. 5GN1.1 and 5GN1.2 are both 

quarries and rock shelters with hearths and over 100 pieces of quartzite debitage a piece 

(see Peart 2013 for a detailed examination of 5GN1.2 and discussion of 5GN1 and 

5GN1.1).  

 The description of the cobble and outcrop sample variability contributes to this 

petrography project, but also to a greater understanding of this important quarry and 

habitation site.  

Results  

 All samples from the three 5GN1 locations including outcrop (SC09-1 and 

SC09-7) and cobble (SC09-6) samples are point counted in order to characterize the 

quarry variability. Included in this detailed look at all 5GN1 samples, 3 samples are 

included in the Basin-wide study with 16 additional samples introduced. New groups 

are made specifically for 5GN1 because it is important to understand the variability 

within the source itself and how that variability clusters within the geologic formation 

before it is placed within context of the Basin-wide study groups. The additional 
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samples will be placed within a new Basin-wide context in Chapter 8. The same three 

tiered statistical analysis applied to the Basin-wide study (Chapter 4) is applied here to 

the cobbles, outcrop, and total 5GN1 sample. The petrographic groups largely align 

with the petrographic groups from broader study of UGB quartzite, but taken in 

isolation vary slightly. The groups presented here are specific to the 5GN1 samples and 

will be compared to Parlin Flats in Chapter 6, and combined with evaluated in the 

broader UGB sample in Chapter 7. 

K-means Cluster Analysis 

K-means cluster analysis demonstrates that all 5GN1 samples (SC09-6) fit 

within three distinct petrographic groups. Appendix A: (Table 6) details group 

membership and distance from the K-cluster centroid; Table 7 shows group centroids or 

average. Since the number of groups is set before K-means cluster analysis is run, 

several iterations are run with different group sizes. Three groups is the most accurate 

when checked with the paired discriminant analysis discussed below. This multiple 

iterations and accuracy checking as completed with Basin-wide is a technique utilized 

for each time the paired multivariate analyses are run. 5GN1 cobbles fit into three 

groups (Table 8; Appendix Table 7), and outcrops fit into two statistically significant K-

means clusters (Table 9; Appendix Table 8).  

Table 7. 5GN1 K-Means Cluster Analysis Group Centroids. 

 

 
Group 

1 2 3 

Quartz 97.57809 86.06507 75.80571 

Feldspar 0.603429 1.650962 2.938395 

Lithics 1.81848 2.938395 21.25589 
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Table 8. 5GN1 Cobble K-Means Cluster Analysis Group Centroids. 

 

 
Group 

1 2 3 

Quartz 98.66071 86.30805 78.93471 

Feldspar 0.446429 2.030015 3.058652 

Lithics 0.892857 11.66194 18.00664 

 

 

Table 9. 5GN1 Outcrop K-Means Cluster Analysis Group Centroids. 

 

 
Group 

1 2 

Quartz 100.0000 71.6814 

Feldspar .0000 6.1947 

Lithics .0000 22.1239 

 

Discriminant Analysis 

The first discriminant analysis on the ten 5GN1 quartzite cobble samples 

classification with K-means groups are classified correctly with 100 percent accuracy 

(Figure 20; Appendix A: Table 9). Second, the nine outcrop sample accuracy is also 

perfect at 100 percent (Appendix A: Table 10). As two outcrop groups are optimal no 

discriminant plot is made. With the third discriminant analysis for the total 5GN1 

samples (n=19), the accuracy drops to 94.7 percent. Sample SC09-1D originally 

belonged to petrographic group #1, but the discriminant analysis reclassified SC09-1D 

to group #3 based on the analyses greater discretionary power (Figure 21; Appendix A: 

Table 11).  
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5GN1 Cobble Samples 

 The ten 5GN1 cobble samples separate into three petrographic groups (Figure 

22). The groups, as with Basin-wide study (Chapter 4) are derived from the K-means 

and Discriminant analyses. Each group reflects the samples’ QFL mineral composition.  

 

Figure 20. 5GN1 Cobble Discriminant Analysis Plot. Petro Group indicates the 

Petrographic groups. 

 



66 

 

Figure 21. Total 5GN1 Discriminant Analysis Plot. Petro Group indicates the 

Petrographic groups. 

 

5GN1 cobble group #1 is represented by two samples. These are characterized 

by an almost entirely quartz composition with a group average of 98.7 percent, well 

within the traditional geologic definition of quartzite. In fact sample SC09-6E is 100 

percent silica quartz. The other sample within this group, SC09-6B, is a textbook 

example of geologic sedimentary quartzite with thick quartz overgrowths surrounding 

well defined quartz grains with thick dust rings and thick quartz overgrowths as the 

cement (Figure 23). Rounded to sub-angular grains vary in size from fine to medium 

sand (174 to 460 microns) with an average of 280 microns (medium sand). Group 

samples are pure silica or at minimum 98 percent making them an ideal toolstone 

aligning with Basin-wide study petrographic group #4, geologically described as a 
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quartz arenite (Figure 5). This is not to say the other cobbles would not have been 

utilized, but these samples would have been what a discerning knapper was after when 

quarrying toolstone.  

5GN1 cobble group #2 contains five samples characterized by an average 87 

percent quartz, 1.6 percent feldspar, and 11.4 percent lithic, geologically characterized 

as a sublithic arenite. These samples all contain moderately well sorted rounded to sub-

angular grains within a usually thick zebraic chalcedony cement (Figure 24). The little 

feldspar present is highly degraded and dispersed. Often the feldspar is only identifiable 

with the help of the K-spar stain. Chert fragments are present in the samples, although 

always make up less than 7.8 percent of total composition. Complex quartz grains (QPS 

and QPC) are notably absent from this group inferring limited strain during diagenesis. 

Unstrained quartz grains (QMN) are present in low amounts (0.03 percent). I noted 

other (QMN and QPC) grains while point counting, yet I did not record them because 

these grains were never under the crosshairs used to pin point grains in the systematic 

point count. Grain size is variable between very fine sand to coarse sand (74 to 598 

microns) with an average of 276 microns (medium sand). This group is roughly 

equivalent to group #3 in the Basin-wide Study. 
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Figure 22. Ternary Diagram for 5GN1 Cobble samples. The top and right axis 

represents quartz, right and bottom axis represents lithic, and the left axis 

representing feldspar sample composition. 
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Figure 23. 5GN1 Cobble sample SC09-6B displaying rounded to sub-rounded 

quartz grains with thick overgrowths and lack of chalcedony. Top 

photomicrograph is in plane light with the bottom in cross-polarized light under 

10X magnification. 
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5GN1 cobble group #3 contains three cobble samples with thin zebraic cement 

surrounding moderately well sorted, rounded to sub-rounded grains (Figure 25). This 

sublithic arenite to volcanic arenite has an average sample composition of 76 percent 

quartz, 3 percent feldspar, and 21 percent lithic, contributing to it being the most mixed 

composition equivalent to group #1 in the Basin-wide Study. This group contains the 

most feldspar, although still just 6 percent or less. As with other samples in the study 

the feldspar is highly degraded and difficult to see without the K-spar stain (introduced 

when the thin sections are manufactured to identify feldspar easier), with the exception 

of the few plagioclase grains that display twinning. Mica is present in very low amounts 

missing any points on the point count. Quartz grains are notably unstrained compared to 

other samples, although complex quartz grains (QPS and QPC) are still poorly 

represented in the point count at 0.03 percent of group sample composition. Grain size 

ranges from very fine sand to medium sand (80 to 457 microns) with an average of 255 

microns (just within the medium sand category from fine sand). 
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Figure 24. 5GN1 cobble sample SC09-6C with quartz grains surrounded by a thin 

zebraic chalcedony cement. The two quartz grains in the top center are 

demonstrating ungulatory extinction. Top photomicrograph is in plane light with 

the bottom in cross-polarized light under 10X magnification. 
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Figure 25. 5GN1 Cobble sample SC09-6F average composition. Note the black and 

white chalcedony cement around quartz grains with a chert fragment in the lower 

right corner near the scale. Top photomicrograph is in plane light with the bottom 

in cross-polarized light under 10X magnification. 
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5GN1 Outcrop Samples 

 Outcrop samples at 5GN1 are fairly homogenous as might be expected given 

that all outcrop samples belong to Jurassic Junction Creek Formation (Jj). Nonetheless 

the samples divide into two uneven groups with group #1 containing one sample (SC09-

7B) and group #2 with the other eight samples (Figure 26).  

 Outcrop Group #1 is equivalent to 5GN1 cobble group #1, a quartz arenite, 

although this particular sample shows a slightly more mixed mineralogical composition 

with 95.4 percent quartz, 0.9 percent feldspar, and 3.7 percent lithic. This fits well 

within the geologic definition of quartzite, as demonstrated by the nearly pure quartz 

grain composition shown in Figure 27 of SC09-7B. Frrom a knappers perspective this 

represents a prime toolstone that would concordially fracture across the nearly pure 

silica grains. What is characteristic of this group is medium to thick quartz overgrowths 

that surround quartz grains. Lithics constitute 4.6 percent of the sample and are all 

rounded chert grains. Biotite was noted, although it was not accounted for in the point 

count as the microscope crosshairs used to identify what is to be counted never fell on 

it. This well sorted sample’s grains vary from fine to medium sand (126 to 404 microns) 

with an average of medium sand (261 microns). 
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Two

 

Figure 26. Ternary Diagram for 5GN1 Cobble samples. The top and right axis 

represents quartz, right and bottom axis represents lithic, and the left axis 

representing feldspar sample composition. 
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Figure 27. 5GN1 Outcrop sample SC09-7B demonstrating a nearly pure quartz 

grain composition. Quartz grains exhibit medium to large quartz overgrowths 

comprising the cement. Top photomicrograph is in plane light with the bottom in 

cross-polarized light under 2.5X magnification. The dark grains in the top (plane 

light) photomictograph are K-spar stain feldspar (top lower right) chert (bottom 

lower right), and biotite (lower left), although the biotite was not recorded in the 

point count.  
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5GN1 outcrop group #2 is statistically significant for this small subset, but 

crosses the boundary of what is two 5GN1 cobble groups (2 and 3) and Basin-wide 

study groups (1 and 3) of sublithic anrenite and lithic arenite. SC09-1D is 81 percent 

quartz, which would be grouped with 5GN1 cobble group 2, for which the break point 

is 80 percent quartz. Because it is the only sample within the 80 to 90 percent quartz 

range with sample SC09-1D (normally within a septate group as with the 5GN1 cobble 

samples), it is grouped with the other sub 80 percent quartz grain samples. Similar to 

cobble group #3 the outcrop group #2 samples are still predominantly quartz grains at 

76.7 percent quartz, 2.4 percent feldspar, and 20.9 percent lithics. The cement is zebraic 

chalcedony in thin multicrystilalline ribbons around quartz grains with some small pore 

space present in the middle of such matrix ribbons of black calcite. Feldspar is present 

in small amounts (4 percent or less), with a few fragments displaying plagioclase 

twining (Figure 28). Small chert fragments occur in quantities less than 7 percent of 

sample composition, with chert grains larger on average than quartz grains. The quartz 

grains are normally rounded to sub rounded, some with small volcanic vacuoles (needle 

like volcanic inclusions). Many grains have thick dust rings (boundaries), with some 

having small to medium quartz overgrowths. For the most part quartz grains are 

unstressed. A few polycrystalline quartz grains (QPC) are present, likely from 

secondary deposition. Grain size ranges from very fine sand to medium sand (116 to 

494 microns) with an average of 214 microns or fine sand.  

A Collective View of 5GN1 Samples 

All 5GN1 samples fit within three petrographic groups and are notable for 

containing less than 5 percent feldspar (Figure 29). These samples are mainly composed 
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of silica quartz grains and chalcedony cement contributing to a relatively high lithic 

quantity. This is not surprising, given that this trend was observed with the broader 

Basin-wide study on UGB quartzite, how lithic-high samples tend to occur near the 

southern portion of the basin near higher volcanism. An important result of the Basin-

wide study is that it allows for these spatial understandings to be known, and tested as 

in this case with 5GN1. The total 5GN1 petrographic groups mirror the cobble groups 

discussed above with group #1 of nearly pure quartz grains, group # 2 representing a 

sublithic arenite with thin zebraic chalcedony cement, and group #3 below 80 percent 

quartz straddling the border between a sublithic arenite and a lithic arenite. The main 

difference between the 5GN1 groups and the outcrop groups is sample SC09-1D is now 

groups in 5GN1 group #2, as it contains more than 80 percent quartz as discussed 

above.   
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Figure 28. 5GN1 Outcrop sample SC09-1G with quartz grains surrounded by a 

thin zebraic chalcedony cement. Note the Plagioclase fledspar in the lower left of 

frame exhibiting twinning with a yellow brown (from the stain) and black color. 

Additionally, the large quartz grain in the upper left is demonstrating a textbook 

ungulatory extinction in the cross-polarized image. Top photomicrograph is in 

plane light with the bottom in cross-polarized light under 10X magnification. 
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Figure 29. Ternary Diagram showing all 5GN1 samples. The top and right axis 

represents quartz, right and bottom axis represents lithic, and the left axis 

representing feldspar sample composition. 
   

Discussion  

In the context of the Basin-wide  study petrographic groups, 5GN1 groups #1, 2 

and 3 primarily align with Basin-wide  groups #4 (primarily quartz), 3 (quartz and 

lithic), and 1 (lithic heavy) respectively. Absent from the samples is the feldspar-heavy 

category. Although, 5GN1 samples contain feldspar, it is only in small amounts less 

than 5 percent.  
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Of significant geologic interest here is that the cobble groups and Jurassic 

Junction Creek outcrop groups are the same petrographically and geochemically 

(Pitblado et al. 2013). This is an unusual and unexpected outcome. Cobbles are nearly 

always more heterogeneous UGB wide when compared to outcrops, as demonstrated 

with Basin-wide petrographic study and previously obtained geochemical results. 

Additionally, the cobbles rarely match the nearest outcrop, except in few only a few 

cases that includes the 5GN1 samples. Therefore, this result is an anomaly in the larger 

quartzite study (Pitblado and Dehler 2006; Pitblado et al. 2008 and 2013). The near 

absence of a group characterizing the 80 to 90 percent quartz groups at 5GN1 is notable 

in the outcrop samples. I believe this to be an artifact of sampling and not characteristic 

of an actual difference, especially since the geochemistry and petrography agree that 

these are the same material. Mineralogical and textural characteristics are similar in the 

5GN1 samples such as quartz grain weathering and variability of chalcedony and 

lithics. The outcrop in this instance and not, for example the Paleo Gunnison River or 

another formation process, is most likely the parent source for the cobbles.     
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Chapter 6: Parlin Flats Analysis 
 Parlin Flats refers to sample locations CD09-3, 4, and 5 from the 2009 USU 

fieldschool. Located on cliffs near the unincorporated community of Parlin, east of the 

city of Gunnison in the eastern portion of the UGB, Parlin Flats consists of a series of 

sampled Cretaceous Dakota and Burro Canyon (Kdb) deposits. It is still a part of the 

intermountain basin, sagebrush parkland environmental zone at nearly 8,000 ft. asl. 

(Figure 30). The outcrops were sampled in three separate locations laterally and 

vertically. Samples CD09-3 were collected laterally, whereas CD09-4 and CD09-5 

capture potential vertical variability. One archaeological site was recorded at sample 

site CD09-3 and it consisted of more than 1,000 quartzite debitage flakes, 300 chert 

debitage flakes, and one Late Archaic corner notched serrated knife, in addition to 

tested cobbles and outcrops (Figure 31).  

 
 

Figure 30. Test location CD09-3 and 2009 USU fieldschool crew sampling CD09-5B 

left and right respectively. Photos courtesy of Bonnie Pitblado.  
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Figure 31. 2009 USU Fieldschool crew flagging out the site near CD09-3. Photo 

courtesy of Bonnie Pitblado. 

 

Results 

 The fifteen Parlin Flats samples demonstrate interesting variability within the 

Cretaceous Dakota and Burro Canyon Formations, despite the fact that all the samples 

are geochemically indistinguishable (Pitblado et al. 2013). From the Basin-wide study 

(chapter 4) 4 samples were included in this more detailed analysis with an additional 11 

samples. Similar to 5GN1, new specific Parlin Flats groups are made to fully 

understand the variability within the source and how that variability clusters within the 

geologic formation. I utilized the same statistic approach is utilized as the Basin-wide 

and 5GN1 analysis, except I ran it only once because all Parlin Flats samples are from 

the same outcrop formation. Although the groups I obtained mirror the petrographic 
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groups outlined in the Basin-wide Study, these are statistically distinct groups specific 

to the Parlin Flats data.  

K-means Cluster Analysis 

 As in the case of 5GN1, the Parlin Flats samples discriminated into three groups 

(Table 10; Appendix A: Table 12). These groups are spread out along the quartz and 

lithic axes of the ternary diagram (Figure 33) due to an overall lack of feldspar in the 

samples (1.4 percent).  

Table 10. Parlin Flats K-Means Cluster Analysis Group Centroids. 

Final Cluster Centers 

 
Cluster 

1 2 3 

Quartz 93.3967 77.5163 66.4269 

Feldspar .8557 1.3428 2.3980 

Lithic 5.7490 21.1408 31.1751 

 

Discriminant Analysis 

 The K-means cluster analysis groups were again 100 percent accurate as verified 

through discriminant analysis (Figure 32; Appendix A: Table 13). There is a clear 

distinction between the groups.   
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Figure 32. Parlin Flats Discriminant Analysis Plot. Petro Group indicates the 

Petrographic groups. 

Parlin Flats Petrographic Groups 

 When compared with the 5GN1 samples the Parlin Flats samples constitute 

similar groups, although in the case of Parlin Flats, there is a drop off in quartz grains 

between 80 and 89 percent quartz (Figure 34). What is a gradual transition in quartz 

composition in the Basin-wide study and at 5GN1 is much sharply distinct in this 

Cretaceous Dakota and Burro Canyon Formations.  
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Figure 33. Parlin Flats samples ternary diagram. The top and right axis represents 

quartz, right and bottom axis represents lithic, and the left axis representing 

feldspar sample composition. 

 

 

 The Parlin Flats group #1 consists of seven samples primarily from CD09-3 (5), 

with two more from CD09-4. Notably absent from this group are samples from the 

CD09-5B location. Parlin Flats group #1 samples are a quartz arenite with nearly pure, 

well sorted rounded to sub-rounded silica quartz grains with a group average of 93 

percent quartz, 1 percent feldspar, and 6 percent lithic primarily chalcedony, chert, and 

VRF’s (Figure 34). Grain size is notable for the furthest west sample in the CD09-3 

collection group, CD09-3A. The grains in sample CD09-3A are notably small at an 

average of 97 microns (very fine sand) and total range of 51 to 169 microns (coarse silt 
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to fine sand) (Figure 34). The rest of Parlin Flats group #1 average grain size is around 

274 microns (medium sand) with a variable range of 67-521 microns (very fine to 

coarse sand). CD09-3A was collected near a fault plane, which likely caused increased 

pressure and heat during the initial formation of its diagenesis. This caused the grains to 

become closely aligned facilitating the growth of quartz overgrowths and not allowing 

the presence of a cement. The increased pressure can also make the sample more 

homogenous overall and with grain size as it will preferentially select for similar grain 

size minerals (in this case quartz grains) during the formation process. Additionally, 

CD09-3A is 98 percent quartz making it nearly pure silica. Otherwise this sample is 

characterized by thick dust rings around quartz grains and thick well developed quartz 

overgrowths preventing the inclusion of a chalcedony or calcite cement as observed in 

other samples from the UGB. All six other samples in this group have moderate quartz 

overgrowths and thin to barely visible dust rings. This is unusual for samples that 

contain primarily quartz grains and no chalcedony cement. 

 Parlin Flats group #2 contains four samples with an average composition of 77 

percent quartz, 1.5 percent feldspar, and 21.5 percent lithic, making these sublithic and 

lithic arenite samples. They show a thin chalcedony cement around moderately well to 

well sorted quartz grains (Figure 35). Biotite and mica occurs in small, fragmented 

quantities with three out of the four samples containing 1 percent mica or biotite. This 

suggests less pressure during rock formation, in contrast to Parlin Flats group #1. Grain 

size ranges from very fine sand to medium sand (86 to 414 microns) with an average 

grain size of 210 microns (fine sand) on sub-rounded to sub-angular grains. Quartz 

overgrowths are present, but are fairly small or absent.  
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 Parlin Flats group #3 containing four lithic arenite samples is the most mixed 

composition group, showing 66.4 percent quartz, 2.4 percent feldspar, and 31.2 percent 

lithic. Thick chalcedony cements are common with sub-rounded to sub-angular quartz, 

chert, and VRF grains (Figure 36). The mixed composition of these samples suggest 

less heat and pressure samples during formation. Dust rings are thin and difficult to 

notice. Mica and biotite are noted with some whole grains present, although this still 

remains less than 1 percent of total sample composition. Volcanic inclusions are very 

common on quartz grains. Grain size varies from 96 to 502 microns (very fine sand to 

medium-coarse sand) with an average grain size of 233 microns (fine sand). Both 

CD09-5 samples are within this group, suggesting that it was not an area that would 

have been prehistorically quarried.  
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Figure 34. CD09-3A demonstrating the ubiquitous rounded to sub-rounded quartz 

grains with thick overgrowths. The bright mineral in the lower left is a mica 

fragment, unusual for this sample. Top photomicrograph is in plane light with the 

bottom in cross-polarized light under 10X magnification. 
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Figure 35. CD09-3D exhibiting vibrant thin ribbons of zebraic chalcedony around 

quartz grains, a few with small overgrowths. Top photomicrograph is in plane 

light with the bottom in cross-polarized light under 10X magnification. 
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Figure 36. CD09-3F demonstrating characteristic thick zebraic chalcedony 

surrounding sub-rounded to sub-angular quartz grains. Notice the bright purple 

piece of mica in the center right of frame. Top photomicrograph is in plane light 

with the bottom in cross-polarized light under 10X magnification. 
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Discussion 

 A clear trend captured by the vertical sampling of the Parlin flats samples is that 

the finest-grain and purest quartzite from the Cretaceous Dakota and Burro Canyon 

Formation occurs at or near the contact with the Jurassic Morrison Formation. The 

further away from the contact zone sample, the more mixed in composition the samples 

become. For example, CD09-4A is part of Parlin Flats group #1, and came from meter 

mark 1. CD09-4B, part of Parlin Flats group #2 is from meter mark 3. CD09-4C, from 

meter mark 16, belongs to Parlin Flats group #3. The exception to this pattern is CD09-

4D, from meter mark 41, which belongs to Parlin Flats group #1, and represents a 

completely different depositional event that likely occurred long after any of the other 

samples. CD09-4D is the only sample collected from the archaeological site CD09, 

which has quartzite consisting of 99 percent silica quartz. This demonstrates the same 

tendency we saw at 5GN1 that prehistoric peoples of the UGB desired in a toolstone. 

The event that created CD09-4D at meter mark 41 was a return to a quick high pressure 

formation that contributed to its different diageneses. CD09-5A and B samples belong 

to Parlin Flats group #3 despite being collected from 7 and 10.5 meter marks. These 

samples were likely collected from the same area in the formation as CD09-4C with the 

contact zone not exposed in this collection area.  

In the regard to the Basin-wide results, Parlin Flats groups #1, 2, and 3 primarily 

align with petrographic groups #4, and 1 respectively. 
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Chapter 7: A Tale of Two Sources-Comparison of 5GN1 and Parlin 

Flats  

 
 Both 5GN1 and Parlin Flats were prehistorically quarried, although with 

different degrees of intensity. The extensively and consistently quarried 5GN1 was a 

primary lithic source within the UGB with its many loci driving archaeological research 

since Buckles’s first recording in 1962 (Anderson et al. 2009; Buckles 1962; Peart 

2013; Stiger 2001). Parlin Flats as a quartzite source on the other hand, was not 

recorded as having any prehistoric activity until the 2009 Utah State University 

Fieldschool collected samples for this geologic study. While used prehistorically, Parlin 

Flats does not compare to 5GN1 is exploitation, although both were clearly utilized. A 

comparison of these quarries entails comparing a Cretaceous Dakota and Burro Canyon 

Formation (Kdb) in Parlin Flats to a Jurassic Junction Creek Formation (Jj) at 5GN1. 

Parlin Flats is of direct interest in comparison to 5GN1 because on the initial coarse 

grain geochemical analysis it grouped with Jurassic sources despite being Cretaceous in 

age (Figure 3) (Pitblado et al. 2013).  

 Despite both areas having some geochemical characteristic composition, 

petrography reveals a big difference between the two sources in the absence of samples 

with quartz grains between 80 and 90 percent at Parlin Flats versus 5GN1. This is 

similar to a gap noted within the 5GN1 outcrop sample, which is likely due to sampling 

error. Why this is not the case at Parlin Flats is because the clear pattern demonstrated 

throughout the formation from near the contact with the Jurassic Morrison Formation 

from nearly pure quartz grains to a more mixed composition (Figure 33), while 5GN1 

outcrops are more homogenous. Parlin Flats exhibits a greater range of differences in 

sample composition than 5GN1. Further, the associated cobbles at 5GN1 do occur in 
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the 80 to 90 percent quartz range and overlap with the other recorded petrographic 

groups present (Figure 26).   

 Other differences between the quarry sites relate to individual mineral 

composition. Samples from Parlin Flats group #1, while having a nearly identical 

mineralogical composition 5GN1 group #1 in the QFL groups, nonetheless display 

some notable differences. Both sources’ groups include nearly pure quartz grains, 

making them quartz arenites and fulfilling the geologic definition of quartzite. 

However, the Parlin Flats group #1 samples have moderate quartz overgrowths and 

quartz grain dust rings that are thin to nonexistent. Conversely, samples from 5GN1 

group #1 have thick overgrowths and thick dust rings signifying a different depositional 

process (Figure 37).   

 Feldspar occurs in small amounts at each source location, although feldspar 

occurs in amounts 2 and 3 times that at Parlin Flats in several 5GN1 samples. Lithic-

heavy or lithic arenite samples that occur in Parliln Flats group #3 all exhibit thick 

zebraic chalcedony cements (Figures 36 and 37). In 5GN1 group #3 of similar 

composition, the zebraic chalcedony is notably thinner (Figures 25 and 28). Quartz 

grains on the 5GN1 group #3 have small to medium quartz overgrowths and thick dust 

rings with both of these attributes absent in the Parlin Flats group #2 and 3. Parlin Flats 

quartz grains throughout every group (#1-3) contain more volcanic intrusions within 

quartz grains in addition to volcanic rock fragments (VRFs). The presence of more 

volcanic intrusions and VRFs in the Parlin Flats samples is expected as the outcrop is 

near a fault. Additionally, the Parlin Flats assemblage contains four samples with higher 

lithics and a more mixed composition overall with quartz grains between 60 and 70 
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percent (Figure 34). This more mixed composition does not occur at 5GN1 (Figure 29). 

In short, petrography can account for source differences and variability. While the 

geochemistry on the first coarse grain analysis did not find major differences, it is likely 

that further geochemical analysis will verify the differences found with petrography. 
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Figure 37. Comparison of 5GN1 and Parlin Flats with differential thickness in the 

chalcedony cement. Notice the intrusions in the Parlin Flats quartz grain in the 

center right. Both are taken at 10X with plane and cross-polarized top and bottom 

respectively.    
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Chapter 8: Discussion and Conclusions 
Basin-Wide Study: UGB Quartzite Variability 

The previously obtained LA-ICP-MS geochemistry results are encouraging from 

a sourcing-potential perspective, classifying the 402 quartzite samples from 48 source 

localities by geologic era, cobble or source origin, and demonstrating meaningful spatial 

differences (Neff 2010; Pitblado et al. 2013). The petrographic study yielded six distinct 

petrographic groups based on the samples’ mineralogical and textual characteristics. 

The Basin-wide study on samples from across the UGB study demonstrated that 

significant differentiation among sources is achievable (Figure 11). In addition, from a 

prehistoric toolmakers-and thus archaeological-perspective, Basin-wide Groups #3, #4, 

and #5 are of the highest quality (i.e. have the greatest percentage of silica) and are the 

best-controlled quartzite among the sample population.  

Petrographic Group #4 correlates with known prehistoric quartzite quarries. This 

is archaeologically important and a significant outcome of this study, because 

Petrographic Group #4 consists of nearly pure silica, making it the optimal quartzite 

toolstone in the UGB. The correlation between petrographic groups and geologic 

formations is very encouraging. When considering only outcrop sources, the 

petrographic groups align well with the various UGB formations according to geologic 

age. Petrographic Group #3 characterizes with Cretaceous sources, Group #4 Jurassic 

sources, and Group #5 Cambrian (and infrequently Jurassic) sources. Petrographic 

Groups #1 and #2 both capture secondarily deposited cobble sources.  

5GN1 

 The detailed analysis of 5GN1 offers a first step in understanding the 

petrographic variability within this well-known quartzite quarry. While this is mainly a 



97 

descriptive exercise, valuable information has been forthcoming/resulted. All of the 

samples from 5GN1 lack feldspar and show a higher than average amount of lithics 

versus other UGB samples. This is consistent with the observation that higher lithic 

amounts occur in the southern portion of the basin than to the north.  

Parlin Flats 

 The Parlin Flats analysis contributes important information to be used by 

archaeologists and geologists alike to understand the composition of the Cretaceous 

Dakota and Burro Canyon Formation near/at its contact with the Jurassic Morrison 

Formation. Additionally, the knowledge of how the formation consistently changes as it 

approaches the shale of the Upper Cretaceous will assist in a greater understanding of 

its variability through geologic time. It should be noted that this trend is based on a 

small sample size that should be further tested. The predictable variability the further 

from the contact with the Morrison Formation contributes a good test for where the 

finest, purest quartz is found and if this was what was prehistorically quarried whereas 

other areas at Parlin Flats are sampled for this geologic study where less pure and 

unquarried. The archaeological site CD09-3 demonstrates that this group (petrographic 

group #4 from the Basin-wide study) was prehistorically quarried. CD-4A represents a 

slightly different scenario. Its presence near a fault shows that the high quality quartzite 

and silicified sandstone formations near faults can contain smaller grain, nearly pure 

quartz grain stone. Simply stated, areas near faults can contain very high quality 

toolstone because of the higher heat and pressure during rock formation squeezing out 

not quartz grains and controlling for grain size.  
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Comparison of 5GN1 and Parlin Flats 

The mineralogical and petrographic composition clearly demonstrate attributes 

particular to 5GN1 and Parlin Flats. Textural and mineralogical differences combined 

with quantifiable compositional differences demonstrate the separate formation process 

or diagenesis that occurred at each quarry. This shows that as originally hypothesized, 

petrography is a powerful tool that when coupled with the previous LA-ICP-MS 

geochemical analysis, can achieve fine grain source differentiation even within and 

between similar sources. The initial coarse grain geochemical results are explained and 

refined by petrography as in this case, and in the example of Basin-wide study group 

#6, the crystalline limestone that stood alone geochemically. 

Consideration of All 77 Samples 

 The results from 5GN1 and Parlin Flats, in combination with Basin-wide study 

results led to significant conclusions. By using the paired analysis of K-means cluster 

analysis and discriminant analysis one last time, the 77 total samples (the crystalline 

limestone is excluded from statistical analysis discussed in Chapter 4) from the UGB 

represent 23 percent of the total 402 sample assemblage. One misclassification was 

detected in the discriminant analysis on the K-means clusters for an accuracy of 97.4 

percent (Figure 38; Appendix A: Tables 14 and 15). With this corrected, the final 

petrographic groupings shifted slightly to accommodate the additional samples that are 

heavy on the lithics axis (Figure 38). Still the groups the groups are largely the same as 

described in Chapter 4 (Table 11). This robust classification of quartzite can only help 

with the future of quartzite chipped stone research within the UGB and beyond.  
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Table 11. Total Project K-Means Cluster Analysis Group Centroids. 

 

 
Petrographic Group  

1 2 3 4 5 

Quartz 69.3475 52.0000 79.7432 94.6415 85.2522 

Feldspar 4.7298 1.5000 1.7637 1.5473 11.8061 

Lithics 25.9227 46.5000 18.4931 3.8116 2.9412 

 

This study demonstrates that petrographic analysis can effectively discriminate 

among different geologic sources of quartzite in the UGB, establishing a direction for 

inter-and intra-source differentiation for future research.  The differences between 

5GN1 and Parlin Flats quartzite sources show that it is possible to discriminate between 

these two despite similar compositions. Mineralogical differences clearly demonstrate 

that discrimination between these two quarries is possible, due to distinctions in the 

amount and presence of feldspar, volcanic inclusions, and quartz grain characteristics at 

the two localities. Results from this research have aided in the creation of a robust 

petrographic database that complements the existing geochemical version, but which 

also serves as a platform for future petrographic analysis of UGB quartzite.  

It is the hope that this research will lead to additional sourcing studies in the 

UGB and a greater understanding of hunter-gather mobility. The variability within 

geologic formations as demonstrated with both 5GN1 and Parlin Flats sources allows 

for a detailed understanding of source distribution than was previously attempted. A 

greater understanding of Jurassic and Cretaceous deposits in the UGB is demonstrated 

with the characteristics and differences at each source. While this can be applied to the 

sourcing of artifacts, I advise caution. For an accurate application to the sourcing of 
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artifacts, a complete study that includes the analysis of a greater number of the 402 

samples needs to be completed for a fine grain source database to work with rather than 

the subset that is available at the conclusion of this thesis. 

 

Figure 38. Total Study Upper Gunnison Basin Petrographic Composition Groups. 

The top and right axis represents quartz, right and bottom axis represents lithic, 

and the left axis representing feldspar sample composition. 

 

Anthropological Considerations 

What is fascinating with the UGB is the continued occupation from Folsom to 

Late Prehistoric. Many questions remain unanswered because of the inability to address 

human mobility through chipped stone assemblages in this lithic environment. One 
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hypothesis is that the high usage of quartzite within the UGB indicates a more isolated 

population than other neighboring intermountain basins. While this is likely a wrong 

assumption, the ability to test it could allow the archaeological record to speak in ways 

unavailable to archaeologists working with these quartzite assemblages before.  

The Folsom period within the Basin and the greater Southern Rocky Mountains 

is of great interest to researchers. A detailed sourcing study would add a valuable line of 

evidence to understanding Folsom mobility and occupation in the mountains. In 

particular, a challenge to the ultra-mobile model of Folsom mobility based on exotic 

chert artifacts primarily from sites on the Plains (Hofman et al. 1991; Kelly and Todd 

1988; Goodyear 1989) would be a welcome addition to the archaeological record. 

Interesting research questions tied to the ability to source quartzite artifacts at Folsom 

sites in the UGB and neighboring basins focus on the idea of bifacial reduction 

strategies tied to the conservation of exotic chert raw materials. The presence of local 

quartzite artifacts within Folsom assemblages could indicate that this model of ultra-

mobile Folsom hunter-gathers is less applicable to the Southern Rocky Mountains 

demonstrating more variability in the archaeological record than has been previously 

afforded. To then compare the changes or continuity in mobility to the relatively better 

represented Late Paleoamerican period in the UGB could demonstrate interesting 

cultural changes over time. 

For later periods in the UGB, the ability to use stone assemblages as a proxy for 

mobility could demonstrate cultural ties to neighboring regions. This is especially 

important with population density hypothesized to be growing during the Late Archaic 

and Late Prehistoric periods (i.e. Stiger 2001). Are certain types of UGB quartzite 
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valued over others? And if so do these types of quartzite travel outside of the Basin and 

if so how far? Cultural contact between areas in the UGB and greater Southern Rocky 

Mountains that has not been researched in this way previously, and quartzite sourcing 

could open up the archaeological record for new interpretations.  

Human behavior is not exclusive to just obsidian and fine grain volcanic 

artifacts, or exotic stone artifacts. Human behavior encompasses everything that was 

available to the people of the past and all artifacts should be investigated/sourced if 

possible to understand the complexity of past human technology and variation.   

Future Research Directions 

As with all research, this study is one step of many in expanding our knowledge 

of geological processes and materials that have influenced prehistoric human behaviors. 

This work has the potential to provide powerful results, allowing archaeologists to 

apply provenance analysis to quartzite artifacts/assemblages for the application of 

prehistoric land use questions with petrography and/or LA-ICP-MS in the Rocky 

Mountains and potentially around the world.  

Future research objectives include: 

 Complete petrographic analysis on all 402 quartzite samples, explaining 

geochemical outliers 

 Fully describe all outcrop and prehistoric quarry sources in the UGB 

 Apply provenience analysis to the Late Paleoamerican Chance Gulch 

archaeological assemblage (95% quartzite), 

 Apply to other Gunnison Basin sites covering all periods of human 

occupation, 
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 Compare sourcing information among UGB sites spatially and 

temporally, 

 Build quartzite source databases for other basins in the Southern Rocky 

Mountains, 

 Compare mobility among the intermountain basins, 

 Compare mobility between larger regions. 

 
 

Figure 39. Late Paleoamerican projectile points from the Chance Gulch site in the 

Upper Gunnison Basin, Colorado. Photo courtesy of Bonnie Pitblado.  
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Appendix A: Additional Tables 
 

Table 12.  Master Basin-Wide Study Petrographic Data. 
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Table 13.   Results of Basin-Wide Study K-means cluster analysis (excludes non-

quartzite group 6). 

 

Petrographic 

Group 

Sample No. Distance to 

Cluster 

Centroid 

1 CD09-3G 5.040 

1 CD09-3I 6.029 

1 CD09-4A 10.326 

1 MP09-1H 4.191 

1 SC09-1E 6.590 

1 SC09-4C 2.590 

1 SC09-18B .854 

1 SC09-18 Spot1 4.221 

1 SC09-22H 10.463 

1 5GN852-1B 10.455 

2 CD09-2D 4.950 

2 SC09-13F 4.950 

3 CD09-4C 5.281 

3 SSC09-5 Spot1 7.476 

3 SC09-6G .816 

3 SC09-10spot3 5.555 

3 SC09-18 Spot3 6.043 

3 5GN3510-E 4.399 

4 BF09-4G 3.176 

4 BP09-8D 5.546 

4 SC09-6E 4.508 

4 SC09-10spot5 2.903 

4 SC09-11C 1.406 

4 SC09-12B 2.344 

4 SC09-13D .923 

4 SC09-23A 5.655 

4 SC09-23F 4.105 

4 SC09-26C 3.822 

4 5GN2269-A 2.817 

4 5GN3510-

F(BF09-3F) 

3.236 

4 5GN850-1I 3.236 

4 5GN850-2B 3.267 

4 5GN850-4H 5.777 
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Petrographic 

Group 

Sample No. Distance to 

Cluster 

Centroid 

5 BP09-2C 1.782 

5 BP09-4G 2.591 

5 MP09-1F 6.941 

5 SC09-3B 6.509 

5 SC09-3I 2.831 

5 SC09-8I 3.364 

5 SC09-10 T3B 4.027 

5 SC09-10 T3D 6.509 

5 SC09-13A 5.436 

5 SC09-22A 3.010 

5 SC09-23I 11.326 

5 SC09-23B 5.806 

5 5GN1982-G 3.005 

5 5GN840-F 5.244 

5 5GN850-3B 5.392 

5 5GN852-1D 5.524 
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Table 14. Basin-Wide Study Quartzite Cobble Discriminant Analysis Table.
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Table 15. Basin-Wide Study Quartzite Outcrop Discriminant Analysis Table. 
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Table 16. Basin-Wide Study Quartzite Cobble and Outcrop Discriminant Analysis 

Table. 
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Table 17. Results of 5GN1 Cobble K-means Cluster Analysis. 

 

Petrographic 

Group 

Sample No. Distance to 

Cluster 

Centroid 

3 SC09-6A 1.472 

3 SC09-6F 4.427 

3 SC09-6H 2.955 

2 SC09-6B 1.67 

2 SC09-6E 1.67 

3 SC09-6C 6.846 

1 SC09-6D 3.537 

1 SC09-6G 2.449 

1 SC09-6I 4.174 

1 SC09-6J 4.777 

 

 

Table 18. Results of 5GN1 Outcrop K-means Cluster Analysis. 

 

Petrographic 

Group 

Sample 

No. 

Distance 

to Cluster 

Centroid 

1 SC09-7B 0 

2 SC09-1A 2.163 

2 SC09-1B 1.42 

2 SC09-1C 4.949 

2 SC09-1D 6.087 

2 SC09-1E 3.359 

2 SC09-1F 2.619 

2 SC09-1G 4.188 

2 SC09-7A 0.962 
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Table 19. Results of 5GN1 K-means Cluster Analysis. 

 

Petrographic 

Group 

Sample 

No. 

Distance 

to 

Cluster 

Centroid 

1 SC09-6B 0.388 

1 SC09-6E 3.088 

1 SC09-7B 2.866 

2 SC09-1D 6.716 

2 SC09-6C 5.524 

2 SC09-6D 4.722 

2 SC09-6G 1.248 

2 SC09-6I 5.405 

2 SC09-6J 5.573 

3 SC09-1A 3.235 

3 SC09-1B 2.216 

3 SC09-1C 3.954 

3 SC09-1E 2.728 

3 SC09-1F 3.71 

3 SC09-1G 3.102 

3 SC09-6A 1.343 

3 SC09-6F 5.326 

3 SC09-6H 2.485 

3 SC09-7A 1.785 
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Table 20. Results of 5GN1 Quartzite Cobble Discriminant Analysis.  
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Table 21. Results of 5GN1 Quartzite Outcrop Discriminant Analysis. 
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Table 22. Results of 5GN1 Total Discriminant Analysis. 
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Table 23. Results of Parlin Flats K-means Cluster Analysis. 

 
Parlin Flats 

Petrographic 

Group 

Sample 

No. 

Distance 

to 

Cluster 

Centroid 

1 CD09-3A 6.362 

1 CD09-3B 5.744 

1 CD09-3C 3.415 

1 CD09-3G 2.052 

1 CD09-3I 5.87 

1 CD09-4A 4.727 

1 CD09-4D 7.577 

2 CD09-3D 3.481 

2 CD09-3E 0.97 

2 CD09-3H 2.399 

2 CD09-4B 4.532 

3 CD09-3F 2.455 

3 SC09-4C 5.544 

3 CD09-5A 5.327 

3 CD09-5B 3.941 
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Table 24. Results of Parlin Flats Discriminant Analysis. 
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Table 25. Total Project K-means Cluster Analysis. Note this is for 76 of the 77 

samples excluding the Crystalline Limestone Outlier. 

 
Petrographic 

Group 

Sample No. Distance to 

Cluster 

Centroid 

1 SC09-22H           10.699 

1 SC09-4C            2.878 

1 5GN852-1B          10.362 

1 SC09-1C            4.224 

1 SC09-1E            6.3 

1 SC09-1G            5.284 

1 SC09-6F            4.693 

1 CD09-3F            8.742 

1 CD09-4B            5.93 

1 SC09-4C            2.878 

1 CD09-5A            11.612 

1 CD09-5B            5.23 

2 CD09-2D            4.95 

2 SC09-13F           4.95 

3 SC09-5 Spot1       2.823 

3 5GN3510-E          5.811 

3 SC09-1A            2.805 

3 SC09-1B            2.788 

3 SC09-1D            2.147 

3 SC09-1F            2.28 

3 SC09-6A            4.009 

3 SC09-6C            3.591 

3 SC09-6G            7.926 

3 SC09-6H            2.534 

3 
SC09-18 

Spot1      
3.699 

3 SC09-7A            3.176 

3 CD09-3D            2.193 

3 CD09-3E            4.298 

3 CD09-3H            1.172 

4 SC09-10spot3       7.465 

4 
SC09-18 

Spot3      
6.282 

4 5GN2269-A          2.097 

4 5GN850-1I          5.254 

4 5GN850-2B          5.293 

4 5GN850-4H          4.676 

4 BF09-4G            5.175 
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4 BP09-8D            4.95 

4 SC09-10spot5       2.04 

4 SC09-11C           3.813 

4 SC09-12B           4.945 

4 SC09-13D           3.116 

4 
5GN3510-

F(BF09-3F) 
6.755 

4 SC09-23A           5.033 

4 SC09-23F           5.275 

4 SC09-26C           1.96 

4 SC09-6B            3.423 

4 SC09-6D            8.015 

4 SC09-6E            6.755 

4 SC09-6I            7.294 

4 SC09-7B            1.006 

4 CD09-3A            4.448 

4 CD09-3B            8.122 

4 CD09-3C            5.818 

4 CD09-3G            0.368 

4 CD09-3I            8.246 

4 CD09-4A            5.008 

4 CD09-4D            5.586 

4 MP09-1H            3.318 

5 SC09-18B           8.171 

5 5GN1982-G          3.624 

5 5GN850-3B          5.361 

5 5GN852-1D          6.462 

5 BP09-2C            2.767 

5 BP09-4G            2.732 

5 MP09-1F            6.408 

5 5GN840-F           3.251 

5 SC09-10 T3B        3.532 

5 SC09-10 T3D        6.361 

5 SC09-13A           4.661 

5 SC09-22A           3.625 

5 SC09-23I           11.337 

5 SC09-23B           5.726 

5 SC09-3B            7.415 

5 SC09-3I            3.639 

5 SC09-8I            3.784 

5 SC09-6J            8.679 
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Table 26. Results of Total Project Discriminant Analysis. Note this is for 76 of the 

77 samples excluding the Crystalline Limestone Outlier. 
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