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2.8 vmax vs. Log �Luminosity at 1121Å . . . . . . . . . . . . . . . . . . . . 36
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Abstract

Active Galactic Nucleus (AGN) produce rich, luminescent spectra across the electro-

magnetic spectrum. This work focuses on topics in the ultraviolet region, where lie

the broad absorption line outflows innate to Broad Absorption Line Quasi-Stellar

Objects (BALQSOs) and the Fe II bump, characteristic of strong Fe emitters.

We find the incidence of P V absorption in AGN to be ⇠ 10% and only observe

P V absorption in Broad Absorption Lines (BALs), never in narrow lines. Our

troughs exhibit envelope behavior in vmax versus Luminosity, as previously observed,

with P V detected troughs forming the upper edge of the envelope.

The spectral and photometric variabilities in the low luminosity, narrow line

Seyfert 1 galaxy WPVS007 are consistent with the BAL wind ablating o↵ the edge of

a variable scale height torus. WPVS 007 underwent the first ultraviolet occultation

yet observed for an AGN.

The di↵erences in ultraviolet spectral shape of the Fe emission shape observed in

strong Fe emitting AGN is attributable to higher excitation Fe II and excess Fe III

in PHL1811-like objects, but photoionization is not su�cient to fit the observed

emission.

xii



Chapter 1

Introduction

1.1 What is an Active Galactic Nucleus (AGN)?

Active Galactic Nucleus (AGN) are some of the most distant (up to z ⇡ 6), luminous

(on the order of 1012L�) objects in the observable universe (Osterbrock & Ferland

(2006)). Thought to be powered by the active accretion of matter onto a central

supermassive black hole, AGN are considered remarkable for their luminescence

across the entire electromagnetic spectrum, often outshining their host galaxy.

The anatomy of an AGN resembles that in figure 1.1. The central supermassive

black hole is surrounded by an accretion disk, actively accreting matter, transforming

gravitational potential energy into radiation and kinetic energy. The X-ray corona is

a sea of hot electrons that can Compton up-scatter photons from the accretion disk

into the X-ray band. Jets may form in the polar regions and transport energy and

momentum into what appear as extended radio lobe features, though not all AGN

exhibit radio jets and may exhibit only weak X-ray emission. The broad line region

consists of clumps of matter reprocessing continuum emission into line emission

radiation. The narrow line region lies at a greater radius and thus experiences less

Doppler broadening. Its lines therefore appear narrower, but the processes are the

same. A thick, dusty torus surrounds the central engine.

Roughly 10� 20% of optically observed AGN present outflowing winds, observed

as blue-shifted broad absorption lines (e.g. Gibson et al. (2009), Pâris et al. (2012),

1
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Pâris et al. (2014)). The fraction is substantially higher when considering radio

observed AGN, upwards of ⇠ 40% (e.g. Dai et al. (2008) and Shankar et al. (2008)).

Such outflows potentially aid galactic evolution by imparting energy, momentum,

and chemically enriched gas to the surrounding galaxy. They also serve as a possible

feedback mechanism that drives the co-evolution of the black hole mass and the host

galaxy stellar bulge (as evidenced by the M� � relation, e.g. Ferrarese & Merritt

(2000)). The stellar bulge lies outside the sphere of influence of the black hole,

therefore some method of communication is required to explain the co-evolution.

1.2 AGN in the Ultraviolet

While AGN are notable for their significant emission across the electromagnetic

spectrum, this work focuses on features in the ultraviolet portion of the spectrum.

1.2.1 Resonance Lines

Broad absorption lines are most often identified in the UV resonant doublet C IV

��1548, 1551Å and also observed in other nearby resonant doublet features, described

in table F.1.

These lines share the common theme of their ionic species having a single valence

electron, and therefore being isoelectronic with neutral lithium (C+3, N+4, and O+5,

ground state: 1s2s) or sodium (Si+3 and P+4, ground state: 1s22s22p63s). As a result,

their resonant transitions arise from the same levels. The ground state term for

these ions is all 2S 1
2
and the upper level terms of the doublet transitions are all 2Po

3
2

and 2Po
1
2

. These are the D1 and D2 lines, first observed in neutral sodium in the

3



�(Å) fij ⌧b/⌧r

O VI

1031.912 0.133
2.00

1037.613 0.0660
P V

1117.98 0.450
2.02

1128.01 0.221
N V

1238.821 0.156
1.99

1242.804 0.0780
Si IV

1393.76 0.513
2.00

1402.77 0.255
C IV

1548.202 0.190
1.99

1550.774 0.0952

Table 1.1: Resonance Line Data

Fraunhofer spectrum of the sun. For the rest of this work, we refer to the short

wavelength of the doublet, D1, as the blue line and its counterpart, D2, as the red

line.

For an absorption line, the optical depth, ⌧ , is related to the column density

(number of paricles per unit area), N, by: ⌧ / f�N , where f is the oscillator strength

and � is the wavelength of the transition. The ratio ⌧b/⌧r is therefore equal to the

ratio fb�b/fr�r and for these resonant lines, that ratio between the doublet lines is

⇠ 2 (blue:red). While atomic physics tells us the true theoretical ratio is always

2:1, the apparent ratio can be reduced to as low as 1:1 due to the e↵ects of partial

covering (see appendix F). Knowing the apparent ratio allows us to deconvolve the

doublet absorption line profile.

Because C+3 is a common ion in the gas, the C IV absorption line profile can

4



easily become saturated. When the profile becomes saturated, we lose information

and are only able to derive lower limits on the column density. In this scenario, less

abundant ions, such as P+4 can be important tracers of the real column density in

the gas.

1.2.2 Fe Emission & Eigenvector 1

Additionally, this work explores the UV Fe emission pseudo-continuum, a densely

packed region of overlapping emission lines forming an almost continuum, between

the Si II, Al III, C III emission complex near 1909Å and the Mg II resonant doublet

��2798, 2803Å as it relates to strong and peculiarly emitting Fe AGN from the Sloan

Digital Sky Survey (SDSS). With its vast catalog of possible transitions, Fe can

be an important coolant of the broad emission line gas. Optical Fe emission line

strength contributes to the relationships in the Boroson & Green (1992) eigenvector

1, along with the [O III] 5007Å intensity and the full width at half maximum broad

line component of H�. Leighly et al. (2007) identified two shapes of ultraviolet Fe

emission in strong Fe emitting AGN, one arising from normal Fe II emission, the

other from potentially excited Fe II and additional Fe III emission.

1.3 This Work

The studies in this work are broken into three parts. Chapter 2 explores the

incidence of P V absorption in Hubble Space Telescope (HST) observed AGN as well

as properties of the absorption profiles in companion ions: Si IV, C IV, and O VI.

Chapter 3 explains the broad absorption and emission line variability from HST

5



Cosmic Origins Spectrograph (COS) observations and Swift UV-optical Telescope

(Swift UVOT) photometric variability in the low luminosity, narrow line Seyfert 1

galaxy WPVS007. Chapter 4 uses the catalog of Fe emission lines in the Kurucz &

Bell (1995) database to probe the di↵erences in Fe emission among the two classes

of strong Fe emitting AGN, identified in Leighly et al. (2007).

6



Chapter 2

Phosphorus V Broad Absorption in HST

Observed AGN

2.1 Introduction

Galaxies and their AGN are known to experience a shared evolution, evidenced by the

observed correlation of central black hole mass with bulge stellar velocity dispersion

or bulge luminosity Ferrarese & Merritt (2000). However, how this shared evolution

proceeds is still not well known. One possible mechanism for this interaction is via

feedback, observed as blue-shifted absorption lines in AGN spectra. These outflowing

winds are crucial to AGN physics and galaxy evolution in that they can potentially

carry away angular momentum, thereby facilitating the accretion thought to power

the central engine, as well as drive both chemically enriched gas (Cavaliere et al.

(2002)) and kinetic energy (Scannapieco & Oh (2004)) into the host galaxy, thereby

influencing its evolution.

But what drives the outflow? One popular and potentially obvious mechanism is

acceleration via radiative line driving. Ionic species absorb line radiation preferentially

in the outward direction, but emit in random ones, thereby driving the gas outward.

A link between maximum outflow velocity and luminosity has been shown (Laor

& Brandt (2002), Ganguly & Brotherton (2008)), giving credence to radiative line

driving as a viable model.

To support bulge-black hole co-evolution via feedback, current models (Hopkins

7



& Elvis (2010)) require 0.5� 5% kinetic energy luminosity as a fraction of bolometric

luminosity. The kinetic energy luminosity is related to the outflow column density,

which can itself be di�cult to constrain. Most BALQSOs are identified via C IV

absorption; however, because both C+3 is a common ion and the C IV ��1548, 1551Å

doublet transition has a high opacity, C IV is easily saturated. Once a line becomes

saturated, a substantial increase in column density will lead to little if any change in

the line profile and therefore only a lower limit can be measured. One solution to

the saturation problem is the use of rare ions, such as P+4, which has a resonant UV

doublet transition at P V ��1118, 1128Å. Phosphorous has an abundance ⇠ 1, 000⇥

lower than carbon (Anders & Grevesse (1989)) and is therefore much less likely to

saturate, even for high column density outflows.

We study a sample of 66 HST Faint Object Spectrograph (FOS), Space Telescope

Imaging Spectrograph (STIS), and COS observed AGN from the Barbara A. Mikulski

Archive for Space Telescopes (MAST) for P V absorption and outflow properties.

This is the first study of its kind because no such large quantitative study of P V

has yet been performed. Although Filiz Ak et al. (2014) and Hamann et al. (2012)

comment on the incidence of P V absorption in SDSS observed quasars. By utilizing

HST observations, we probe a lower redshift and lower luminosity sample than the

SDSS, as evidenced by comparison with Gibson et al. (2009) and Filiz Ak et al.

(2014) in figures 2.15 and 2.16. Both to facilitate our search for P V absorption and

to measure the upper limit on how much absorption could hide within the noise

and not be detected, we require nearby Si IV ��1394, 1403Å, C IV ��1548, 1551Å

or O VI ��1032, 1038Å to fall within the observed bandpass and show evidence

8



for absorption. Where absorption occurs in these ions, we derive an optical depth

profile from the respective ion and apply it to the P V region in order to measure

the potential absorption present.

2.2 The Data

OU graduate student Aaron Morris started narrowing the possible data selection

on this project by downloading the entire HST catalog of FOS, STIS and COS

observations, observed as of May 2013, and removing any objects not qualifying as an

AGN. The next cut removed any targets where the observed frame wavelengths did

not include rest frame coverage of the P V (��1118, 1128Å) doublet and at least one

of Si IV (��1394, 1403), C IV (��1548, 1551), or O VI (��1032, 1038). For a target

to be included in our sample, it had to meet one of the following criteria: 1) visible

Si IV, C IV, or O VI absorption in the MAST archive preview spectrum, 2) multiple

observations so that absorption in one of these ions might be possible if combined to

improve the signal-to-noise ratio (SNR), or 3) independent confirmation of absorption

in the literature. Our final sample contains 66 targets with redshifts ⇠ 0.1 � 1.3.

Target information is given in table B.2.6. Some targets have been removed from our

sample for various reasons, described in Appendix D. Three undergraduate students

have been involved in the data processing and spectral modeling of this project:

Kenya Davis (REU Summer 2013), Tarryn Kahre (REU Summer 2014, UGRA Fall

2013 - Fall 2015), and Adam Marrs.

9



T
ab

le
2.
1:

T
ar
ge
t
In
fo
rm

at
io
n

T
A
R
G
E
T

a
N
E
D

P
ri
m
ar
y
N
am

eb
R
A

D
E
C

z
R
L
/R

Q
c

io
n
d

S
D
S
S
J0
01
22
4.
01
-1
02
22
6.
5

F
B
Q
S
J0
01
2-
10
22

00
12

24
.0
1

�
10

22
26
.5

0.
22
9

R
L

S
i
IV

H
S
-0
03
3+

43
00

G
A
L
E
X
A
S
C

J0
03
62
3.
07
+
43
16
40
.8

00
36

22
.9
80

+
43

16
40
.3
0

0.
12

R
Q

C
IV

IO
an

d
Q
S
O
00
45
+
39
26

IO
A
n
d

00
48

18
.9
86

+
39

41
11
.6
4

0.
13
4

R
Q

C
IV

C
T
34
4

L
B
Q
S
01
03
-2
75
3

01
05

34
.7
7

�
27

36
58
.4
0

0.
83
4

R
Q

S
i
IV

01
10
+
00
19

S
D
S
S
J0
11
05
6.
89
+
00
19
12
.0

01
10

56
.9
38

+
00

19
11
.2
1

0.
80
59
86

R
Q

C
IV

N
G
C
52
0.
40

G
A
L
E
X
A
S
C

J2
11
42
7.
71
+
03
53
05
.8

01
24

57
.5
85

+
03

53
48
.1
8

1.
20
2

R
Q

S
i
IV

S
D
S
S
J0
15
53
0.
02
-0
85
70
4.
0

S
D
S
S
J0
15
53
0.
01
-0
85
70
4.
0

01
55

30
.0

�
08

57
04

0.
16
44
27

R
Q

C
IV

3C
57

3C
05
7

02
01

57
.2

�
11

32
33

0.
67
05

R
L

S
i
IV

S
D
S
S
J0
80
35
9.
23
+
43
32
58
.4

2M
A
S
S
i
J0
80
35
92
+
43
32
58

02
03

59
.2
3

+
43

32
58
.4

0.
44
87

R
Q

O
V
I

F
IR

S
T
-J
02
09
30
.7
-0
43
82
6

F
B
Q
S
J0
20
9-
04
38

02
09

30
.7
43

�
04

38
26
.2
7

1.
12
8

R
L

O
V
I

H
E
02
38
-1
90
4

2M
A
S
S
i
J0
24
03
25
-1
85
15
1

02
40

32
.5

�
18

51
51

0.
63
1

R
Q

O
V
I

H
E
04
09
-5
00
4

G
A
L
E
X
A
S
C

J0
41
10
0.
92
-4
95
65
6.
2

04
11

00
.8

�
49

56
56
.0
0

0.
81
7

R
Q

C
IV

R
B
S
54
2

G
A
L
E
X
A
S
C

J0
42
60
0.
66
-5
71
20
0.
9

04
26

00
.7
77

�
57

12
01
.1
3

0.
10
4

R
L

S
i
IV

H
E
04
36
-2
61
4

2M
A
S
S
i
J0
43
81
01
-2
60
83
7

04
38

10
.1

�
26

08
37

0.
69

R
Q

S
i
IV

R
X
J0
43
9.
6-
53
11

6d
F
J0
43
93
87
-5
31
13
1

04
39

38
.7

�
53

11
31

0.
24
3

R
Q

O
V
I

P
K
S
04
54
-2
2

[H
B
89
]
04
54
-2
20

04
56

08
.9

�
21

59
09

0.
53
35

R
L

S
i
IV

3C
18
6

F
B
Q
S
J0
74
41
7.
4+

37
53
17

07
44

17
.4

+
37

53
17

1.
06
7

R
L

C
IV

S
D
S
S
J0
75
62
0.
08
+
30
45
35
.3

S
D
S
S
J0
75
62
0.
07
+
30
45
35
.4

07
56

20
.0
8

+
30

45
35
.3

0.
23
61

R
Q

C
IV

P
G
08
04
+
76
1

P
G

08
04
+
76
1

08
10

58
.6

+
76

02
43

0.
1

R
L

C
IV

3C
19
6.
0

3C
19
6

08
13

36
.0

+
48

13
03
.0
0

0.
87
1

R
L

O
V
I

3C
20
7

3C
20
7

08
40

47
.6

+
13

12
24

0.
68
08

R
L

S
i
IV

S
D
S
S
J0
92
83
7.
98
+
60
25
21
.0

S
B
S
09
24
+
60
6B

09
28

37
.9
8

+
60

25
21
.0

0.
29
54

R
L

S
i
IV

C
on

ti
n
ue
d
on

n
ex
t
pa
ge

a
ta
rg
et

n
am

e
fr
om

th
e
H
S
T

M
A
S
T

A
rc
h
iv
e

b
ta
rg
et

p
ri
m
ar
y
as

re
so
lv
ed

in
N
E
D

c
id
en
ti
fi
es

w
h
et
h
er

th
e
ta
rg
et

h
as

ev
er

b
ee
n
cl
as
si
fi
ed

as
an

y
ty
p
e
of

ra
d
io

ga
la
xy

in
N
E
D

(R
L
,
ra
d
io

lo
u
d
fo
r
ye
s;

R
Q
,
ra
d
io

qu
ie
t
fo
r
n
o)

d
th
e
io
n
fr
om

w
h
ic
h
w
e
d
er
iv
ed

an
op

ti
ca
l
d
ep
th

p
ro
fi
le

to
ap

p
ly

to
th
e
P
V

re
gi
on

10



T
ab

le
2.
1
–
C
on

ti
n
ue
d
fr
om

pr
ev
io
us

pa
ge

T
A
R
G
E
T

a
N
E
D

P
ri
m
ar
y
N
am

eb
R
A

D
E
C

z
R
L
/R

Q
c

io
n
d

S
D
S
S
J0
93
65
3.
84
+
53
31
26
.8

S
D
S
S
J0
93
65
3.
84
+
53
31
26
.8

09
36

53
.8
6

+
53

31
26
.8
7

0.
22
77

R
Q

S
i
IV

S
D
S
S
J0
94
73
3.
21
+
10
05
08
.7

2M
A
S
X

J0
94
73
32
0+

10
05
09
3

09
47

33
.2
16

+
10

05
08
.8
8

0.
13
95
4

R
Q

O
V
I

4C
40
-2
4

F
B
Q
S
J0
94
85
5.
3+

40
39
44

09
48

55
.3
30

+
40

39
45
.0
0

1.
24
99
64

R
L

O
V
I

P
G
09
46
+
30
1

P
G

09
46
+
30
1

09
49

41
.1
06

+
29

55
19
.1
2

1.
22
34
48

R
Q

S
i
IV

S
D
S
S
J0
95
00
0.
73
+
48
31
29
.3

S
D
S
S
J0
95
00
0.
73
+
48
31
29
.3

09
50

00
.7
3

+
48

31
29
.3

0.
58
87

R
Q

O
V
I

P
G
10
01
+
05
4

P
G

10
01
+
05
4

10
04

20
.1

+
05

13
00

0.
16
10
76

R
Q

C
IV

P
K
S
10
04
+
13
0

P
G

10
04
+
13
0

10
07

26
.0
90

+
12

48
56
.2
0

0.
24
08

R
Q

O
V
I

S
D
S
S
J1
00
90
2.
06
+
07
13
43
.8

S
D
S
S
J1
00
9+

07
13

10
09

02
.0
6

+
07

13
43
.8

0.
45
56

R
Q

O
V
I

S
D
S
S
J1
10
31
2.
93
+
41
41
54
.9

2M
A
S
S
J1
10
31
29
3+

41
41
54
9

11
03

12
.9
3

+
41

41
54
.9

0.
40
19

R
Q

O
V
I

P
G
11
14
+
44
5

P
G

11
14
+
44
5

11
17

06
.3
90

+
44

13
33

0.
14
38
62

R
Q

C
IV

S
D
S
S
J1
11
75
4.
31
+
26
34
16
.6

T
O
N

05
76

11
17

54
.3
1

+
26

34
16
.6

0.
42
05

R
Q

O
V
I

P
G
11
15
+
40
7

P
G

11
15
+
40
7

11
18

30
.3

+
40

25
54

0.
15
43
38

R
L

C
IV

M
C
11
18
+
12

[H
B
89
]
11
18
+
12
8

11
21

29
.7

+
12

36
17

0.
68
36

R
L

C
IV

M
C
11
46
+
11
1

[H
B
89
]
11
46
+
11
1E

11
48

47
.8
94

+
10

54
59
.4
4

0.
86
1

R
L

C
IV

S
D
S
S
J1
15
75
8.
72
-0
02
22
0.
8

S
D
S
S
J1
15
75
8.
72
-0
02
22
0.
7

11
57

58
.7
2

�
00

22
20
.8

0.
26
02

R
Q

C
IV

IR
A
S
11
59
8-
01
12

2M
A
S
X

J1
20
22
67
8-
01
29
15
5

12
02

26
.7
50

�
01

29
15

0.
15
06
94

R
L

O
V
I

S
D
S
S
J1
20
94
4.
81
+
02
32
12
.7

S
D
S
S
J1
20
94
4.
81
+
02
32
12
.6

12
09

44
.8
1

+
02

32
12
.7

0.
23
84

R
Q

O
V
I

S
D
S
S
J1
21
03
7.
56
+
31
57
06
.0

S
D
S
S
J1
21
03
7.
56
+
31
57
06
.0

12
10

37
.5
6

+
31

57
06
.0

0.
38
9

R
Q

O
V
I

S
D
S
S
J1
22
53
4.
79
-0
24
75
7.
1

S
D
S
S
J1
22
53
4.
79
-0
24
75
7.
0

12
25

34
.8

�
02

47
57

0.
19
52

R
Q

C
IV

12
25
-0
05
2

S
D
S
S
J1
22
55
8.
44
-0
05
22
6.
1

12
25

58
.4

�
00

52
27
.0
5

0.
96
31

R
Q

C
IV

R
X
J1
23
0.
8+

01
15

S
D
S
S
J1
23
05
0.
03
+
01
15
22
.6

12
30

50
.0
40

+
01

15
21
.7
0

0.
11
7

R
Q

C
IV

Q
12
39
+
00
28

L
B
Q
S
12
39
+
00
28

12
42

02
.6
60

+
00

12
28
.5
0

1.
21
72
43

R
Q

S
i
IV

C
on

ti
n
ue
d
on

n
ex
t
pa
ge

a
ta
rg
et

n
am

e
fr
om

th
e
H
S
T

M
A
S
T

A
rc
h
iv
e

b
ta
rg
et

p
ri
m
ar
y
as

re
so
lv
ed

in
N
E
D

c
id
en
ti
fi
es

w
h
et
h
er

th
e
ta
rg
et

h
as

ev
er

b
ee
n
cl
as
si
fi
ed

as
an

y
ty
p
e
of

ra
d
io

ga
la
xy

in
N
E
D

(R
L
,
ra
d
io

lo
u
d
fo
r
ye
s;

R
Q
,
ra
d
io

qu
ie
t
fo
r
n
o)

d
th
e
io
n
fr
om

w
h
ic
h
w
e
d
er
iv
ed

an
op

ti
ca
l
d
ep
th

p
ro
fi
le

to
ap

p
ly

to
th
e
P
V

re
gi
on

11



T
ab

le
2.
1
–
C
on

ti
n
ue
d
fr
om

pr
ev
io
us

pa
ge

T
A
R
G
E
T

a
N
E
D

P
ri
m
ar
y
N
am

eb
R
A

D
E
C

z
R
L
/R

Q
c

io
n
d

P
G

12
54
+
04
7

P
G

12
54
+
04
7

12
56

59
.9

+
04

27
34

1.
02
55
84

R
Q

S
i
IV

13
06
+
30
21

[H
B
89
]
13
06
+
30
3

13
08

29
.6
9

+
30

05
39
.0
0

0.
80
77

R
Q

C
IV

P
G
13
09
+
35
5

F
B
Q
S
J1
31
21
7.
7+

35
15
21

13
12

17
.8

+
35

15
21

0.
18
29

R
L

C
IV

S
D
S
S
J1
32
05
94
1+

29
57
28
.1

2M
A
S
X

J0
20
01
26
1+

03
00
11
4

13
20

59
.4
1

+
29

57
28
.1

0.
20
64

R
Q

S
i
IV

P
G
13
22
+
65
9

P
G

13
22
+
65
9

13
23

49
.5

+
65

41
48

0.
16
8

R
Q

O
V
I

S
D
S
S
J1
33
05
3.
27
+
31
19
30
.5

[H
B
89
]
13
28
+
31
5

13
30

53
.2
7

+
31

19
30
.5

0.
24
22

R
Q

O
V
I

IR
A
S
13
34
9+

24
38

[H
B
89
]
13
34
+
24
6

13
37

18
.7
18

+
24

23
02
.9
5

0.
10
76
41

R
L

C
IV

S
D
S
S
J1
34
20
6.
56
+
05
05
23
.8

[H
B
89
]
13
39
+
05
3

13
42

06
.5
6

+
05

05
23
.8

0.
26
6

R
L

O
V
I

3C
28
8.
1

S
B
S
13
40
+
60
6

13
42

13
.2
4

+
60

21
42
.8

0.
96
45

R
L

C
IV

P
G
14
04
+
22
6

P
G

14
04
+
22
6

14
06

21
.9
00

+
22

23
46
.9
0

0.
09
8

R
L

C
IV

Q
S
O
-1
43
1+

39
52

F
B
Q
S
J1
43
12
0.
5+

39
52
41

14
31

20
.4
20

+
39

52
40
.0
7

1.
21
70
32

R
L

O
V
I

S
D
S
S
J1
43
51
1.
53
+
36
04
37
.2

S
D
S
S
J1
43
5+

36
04

14
35

11
.5
3

+
36

04
37
.2

0.
42
86

R
Q

O
V
I

4C
63
.2
2

4C
+
63
.2
2

15
23

45
.9

+
63

39
24

0.
20
4

R
L

O
V
I

S
D
S
S
J1
61
91
6.
54
+
33
42
38
.4

S
D
S
S
J1
61
9+

33
42

16
19

16
.5
4

+
33

42
38
.4

0.
47
09

R
Q

O
V
I

16
31
+
39
30

F
B
Q
S
J1
63
30
2.
0+

39
24
27

16
33

02
.1
9

+
39

24
27
.2
0

1.
02
45
75

R
L

C
IV

P
G
17
00
+
51
8

[H
B
89
]
17
00
+
51
8

17
01

24
.8

+
51

49
20

0.
29
2

R
L

S
i
IV

3C
35
1.
0

S
B
S
17
04
+
60
8

17
04

41
.4

+
60

44
31

0.
37
19

R
L

C
IV

17
14
+
57
57

S
D
S
S
J1
71
41
3.
39
+
57
57
11
.0

17
14

13
.4
09

+
57

57
11
.1
6

1.
25
27
55

R
Q

O
V
I

P
G
21
12
+
05
9

[H
B
89
]
21
12
+
05
9
N
E
D
01

21
14

52
.6

+
06

07
42

0.
46
6

R
Q

C
IV

Q
22
08
-1
72
0

L
B
Q
S
22
08
-1
72
0

22
11

15
.4
15

�
17

05
25
.8
4

1.
21

R
Q

S
i
IV

IR
A
S
-F
22
45
6-
51
25

2M
A
S
X

J2
24
84
16
5-
51
09
33
8

22
48

41
.2
04

�
51

09
53
.1
5

0.
10
16

R
Q

S
i
IV

P
K
S
22
51
+
11

[H
B
89
]
22
51
+
11
3

22
54

10
.4

+
11

36
38

0.
32
55

R
L

S
i
IV

P
G
23
02
+
02
9

[H
B
89
]
23
02
+
02
9

23
04

45
.0

+
03

11
46

1.
04
4

R
Q

C
IV

a
ta
rg
et

n
am

e
fr
om

th
e
H
S
T

M
A
S
T

A
rc
h
iv
e

b
ta
rg
et

p
ri
m
ar
y
as

re
so
lv
ed

in
N
E
D

c
id
en
ti
fi
es

w
h
et
h
er

th
e
ta
rg
et

h
as

ev
er

b
ee
n
cl
as
si
fi
ed

as
an

y
ty
p
e
of

ra
d
io

ga
la
xy

in
N
E
D

(R
L
,
ra
d
io

lo
u
d
fo
r
ye
s;

R
Q
,
ra
d
io

qu
ie
t
fo
r
n
o)

d
th
e
io
n
fr
om

w
h
ic
h
w
e
d
er
iv
ed

an
op

ti
ca
l
d
ep
th

p
ro
fi
le

to
ap

p
ly

to
th
e
P
V

re
gi
on

12



2.3 Processing

2.3.1 Downloading

The first task in processing the data is to obtain the target spectra from the MAST

archive. This is done by querying the archive database and submitting a request for

the relevant data and reference files. All requested STIS and COS observations were

re-calibrated on the fly through the most up-to-date version of the relevant pipeline,

CALSTIS and CALCOS, respectively, with the most up-to-date reference files by

the archive prior to being made available for download following a request. The FOS

instrument was removed from HST in 1997 and all archived observations were re-

calibrated with the improved FOS pipeline, POA CALFOS, by the Post-Operational

Archives (POA) branch of the Space Telescope - European Coordinating Facility

(ST-ECF) and placed in the HST archive in 2004. Once the request is fulfilled, the

files were downloaded from the FTP server at Space Telescope Science Institute

(STScI), stdatu.stsci.edu.

2.3.2 Extracting and Combining

Although all of the calibrated 1D spectra are stored in Flexible Image Transport

System (FITS) files, the method of extracting the data from those files and combining

them into one spectrum depends on the instrument from which the observations

originate. A number of our objects have a Higher Level Science Product (HLSP), i.e.

a combined spectrum, in the MAST Archive. We use these HLSP files in place of

our own processed spectra whenever possible.
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Information in FOS observed spectra are stored in separate FITS image files for

wavelength, flux, and statistical error, each containing a matrix of values where each

row is a separate time interval. FOS has two observing modes, ACCUM and RAPID.

The time intervals of ACCUM mode observations are cumulative and so the final

spectrum is simply the last row of the matrix. The vast majority of FOS targets

are observed in ACCUM mode. Some objects were observed in RAPID mode. The

time intervals of RAPID mode observations are independent and each row must be

combined to produce the final spectrum. Because the time intervals are short, the

individual observations making up a RAPID mode spectrum are photon limited. All

5 targets to which this situation applies have a HLSP available from MAST, and we

use those pre-combined spectra. If a FOS target has multiple observations we add

them, weighting by SNR2, and propagate the errors accordingly. For observations

with a su�cient number of photons weighting by SNR2 is akin to weighting by the

exposure time, since the noise scales with
p

exposure time.

Spectral information in STIS files are stored as FITS tables. For most of these

targets, the spectra were extracted and combined in the same way as described for

FOS multiple observation targets, weighting by SNR and propagating the errors

accordingly. A few of our STIS observed targets have echelle spectra, which must

be handled separately using the prescription outlined in the STIS Data Handbook

and Python-based interface to the Image Reduction and Analysis Facility (IRAF)

(PyRAF). The images are first flagged with a 10-pixel border (PyRAF utility imcalc)

to compensate for vignetting at the edge of the detector and a new 1D extraction

(PyRAF utility x1d) is performed. The new 1D extracted spectra were combined

14



using the PyRAF utility splice.

COS observed spectra are also stored as FITS tables. The COS instrument

has two detectors, one for Near UltraViolet (NUV) and one for Far UltraViolet

(FUV), each with a variety of dispersion gratings. Each grating has a variety of

central wavelength positions, which move the slit image across the detector in the

dispersion direction in order to extend the wavelength coverage of an observation.

At any of these settings, the instrument has four nod positions which shifts the

slit image slightly to 1) compensate for fixed patterned noise in the detector and

2) reduce the long term damaging e↵ects of exposing the detector to geocoronal

Ly↵. The combining of COS spectra for the same configuration using di↵erent nod

positions is done by the calibration pipeline. The combining of any other observation

configurations must be done in post-processing. We use the same method as described

for FOS multi-observation targets and STIS multi-observation, non-echelle targets.

The COS FUV data are separated into two segments (two separate images) and the

NUV data are separated into three stripes (in a single image). To avoid gaps in the

combined spectrum during processing, we combine COS data in wavelength order

starting with 1) di↵erent central wavelengths of the same grating, segment/stripe and

detector, 2) di↵erent gratings of the same segment/stripe and detector, 3) di↵erent

segments/stripes of the same detector, and 4) di↵erent detectors.

Many targets have observations from multiple instruments, but we were unable to

combine the data into one final spectrum for a variety of reasons. First, observations

from multiple instruments are unlikely to be simultaneous and if the target is variable

over the time between observations, the spectra are likely to be di↵erent. Second,
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not all of the multi-instrument observations will have the same wavelength coverage.

For some objects we will use data from di↵erent instruments for di↵erent ions, due

to the constraints of the wavelength coverage. Finally for some multi-instrument

observations, the combination of the spectra may significantly compromise the SNR.

2.3.3 Wavelength Calibration

Once the data have been combined, we need to evaluate the overall wavelength

calibration. To do this, we first plot the individual spectra that make up the combined

spectrum for the regions that narrowly cover our catalog of Interstellar Medium

(ISM) absorption lines as well as their rest wavelengths from the National Institutes

of Standards and Technology (NIST) database. If an individual spectrum varies

significantly from the rest wavelength in all its ISM lines, then a shift is made to

correct it. So far, no targets have required shifts in an individual observation. If

all the individual spectra, and hence the combined spectrum, di↵ers significantly in

the same direction in all its ISM lines from the NIST rest wavelength, we measure

the observed wavelengths of the ISM lines, then compute and apply an appropriate

shift. We use the general rule of thumb that if the spectrum deviates by more than

⇠ 0.1Å, a shift should be applied. This has been the case for a few spectra.

Should a shift be required, we use the Chandra Interactive Analysis of Obser-

vations (CIAO) spectral modeling and fitting application Sherpa to measure the

position, velocity width, and optical depth of the individual ISM lines in the spectrum

to be shifted. We use the ISM line measurements to evaluate whether a linear or

constant shift is more appropriate and shift the data accordingly.
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2.3.4 Binning

COS spectra are over sampled and require binning to bring the spectra to the

standard two bins per resolution element. We use the median bin size of the data

compared to the size of the resolution element for the configuration to determine

how many bins should be combined to produce the required spectrum. For most

COS spectra, three bins are combined to produce the required resolution.

2.3.5 Finalizing Spectra - De-redden & De-redshift

The final steps in processing data for analysis are to correct for reddening due to

extinction along the line of sight in our own galaxy and to correct for cosmological

redshift to bring the spectrum into its rest frame. We obtain the target redshifts

and E(B-V) reddening parameters from the NASA/IPAC Extragalactic Database

(NED) (https://ned.ipac.caltech.edu) and correct for galactic reddening using

the Cardelli et al. (1989) reddening curve (the ccm_unred utility in Interactive Data

Language (IDL)).

2.4 Continuum and Emission Modeling

In order to analyze the absorption, we must first remove the contribution of the

continuum and line emission flux. In most targets we can readily identify the level

of the continuum and line emission. However, for a handful of targets the absorption

is so extensive we can only set the level of the continuum with the aid of a template

or composite spectrum. Because it is derived from HST FOS quasars, we choose to

17



use the FOS Quasar Composite Spectrum of Zheng et al. (1997).

2.4.1 Direct Modeling: CIAO Sherpa

For most targets in our sample we can readily see the level of the continuum and

line emission. We use the CIAO modeling and fitting application, Sherpa (CIAO

4.5 Sherpa v1). To model the continuum, we fit a power law to line-free regions of

the spectrum and add gaussian components to fit the line emission regions, ignoring

the absorption contaminated regions. The final fit is achieved when the change in

fit statistic (chi2gehrels) reaches zero between iterations. We propagate the 1�

confidence intervals (results of the Sherpa functions conf or covar) through the

model in IDL to generate the error spectrum of the final fit.

2.4.2 Composite Modeling: FOS Quasar Composite

Targets in our sample with a considerable amount of absorption pose a challenge to

modeling the continuum directly and require a di↵erent approach. For these targets,

we use the FOS Quasar Composite of Zheng et al. (1997) to aid continuum placement.

As with the other targets, we model the continuum and line emission of the FOS

Composite in CIAO Sherpa. When applying the composite, we scale the emission

peak to the emission peak of the data in the region, e.g. in the vicinity of Si IV,

C IV, or O VI, and tilt the power law continuum, by stepping through new values

of the power law index, to best fit the continuum of the data. We determine the

best fit, lower and upper bounds, on the new power law index using a minimum �2

method for regions appearing to be free of absorption. As with the direct modeling
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approach, we propagate the estimated uncertainties to generate the error spectrum

of the final fit. The estimated uncertainties arise from the uncertainty associated

with scaling the template to the data and determining the new tilt. We assume that

there are no statistical or systematic errors in the FOS Composite, and therefore

exclude the uncertainties associated with the 1� confidence intervals from fitting the

FOS Composite in Sherpa.

Because the estimated error in the FOS Composite arise from the real variations of

actual quasar spectra, we exclude the uncertainties associated with the 1� confidence

intervals from fitting the FOS Composite in Sherpa. For some targets we were able

to scale the size of the emission line model fit to the data for a more appropriate fit.

2.4.3 Intervening Geocoronal Ly↵ Damping Wings

Short-ward of intrinsic Ly↵ (1215Å), spectra are plagued with the narrow, but intense,

peak of geocoronal Ly↵ arising from hydrogen emission in our own atmosphere as

well as the Ly↵ damping wings associated with hydrogen absorption in our own

galaxy. In one object where the potential P V velocities overlapped the side of an

otherwise clean Ly↵ damping wing, we were able to model the wing using a Voigt

absorption profile in Python to generate the intrinsic flux profile.

Note: To do this we had to run Sherpa inside the Python environment rather

than inside CIAO, which allowed us the use of both numpy and scipy to create a

Voigt profile. While Sherpa does have a built in absorptionvoigt profile, we found

it not to work as intended.
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2.5 Absorption Modelling

From the data and emission + continuum model, we generate the normalized flux

(I/I0), which is defined as the ratio of the data to the model. In doing this, we

remove the e↵ects the emission lines have on the absorbed spectrum. This method

assumes the outflow absorbs both the emission region and the continuum, i.e. that

the observed spectrum has the form

I = observed flux = (continuum+ emission) ⇤ absorption

and not

I = observed flux = continuum ⇤ absorption+ emission

so that with this assumption, the normalized flux is

I

I0
=

observed flux

continuum+ emission
= absorption

2.5.1 Derive Absorption Profile from Ion

To determine the properties of the potential absorption feature in P V, we first

derive a profile from another ion in preferential order of Si IV, C IV, or O VI,

depending on availability of data and existence of absorption in the region. We

chose Si IV preferentially first not only because, like P V, due to its comparative

rarity, Si IV requires a thick outflow to produce observable absorption, but also

because Junkkarinen et al. (2001) has shown P V profiles tend to resemble Si IV
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more than they do C IV. Furthermore, Si IV tends to su↵er less from the e↵ects of

saturation than C IV, which itself tends to su↵er less than O VI. Atomic physics

predicts that for these resonant doublet pairs, the ratio of their optical depths should

be 2:1, short:long. The observed ratio can be reduced to 1:1, because as the blue

line saturates, the red line will grow correspondingly stronger until it also saturates,

and the observed ratio will be some intermediate value. Partial covering e↵ects can

become important, since it will cause saturation to happen at non-zero intensity. We

start by deriving the optical depth in the region that is one doublet’s separation from

the edge of the trough. For example, we could choose the high velocity end, where

the contribution is solely from the blue line of the doublet. At those wavelengths,

the optical depth derived for the blue line is

⌧b(�) = �ln
I(�)

I0(�)

Moving to the next set of wavelengths, one doublet’s separation away, we force the

red line optical depth to be half the strength of the blue line optical depth at the

previous wavelengths

⌧r(�+��) = 0.5 ⇤ ⌧b(�) = �0.5 ⇤ ln
I(�)

I0(�)

And we can then derive the next piece of the blue line optical depth as follows

⌧b(�+��) = ⌧(�+��)� ⌧r(�+��) = �ln
I(�+��)

I0(�+��)
+ 0.5 ⇤ ln

I(�)

I0(�)
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and on across the profile. Note that �� must be exactly the wavelength separation

of the doublet and not some other arbitrary width, because � + �� is the set of

wavelengths corresponding to the same velocities as the blue set of wavelengths, �.

We also choose to derive a profile starting from the low velocity end of the trough,

where only the red line optical depth contributes to those wavelengths

⌧r(�) = �ln
I(�)

I0(�)

and derive the blue line optical depth a doublet’s separation away

⌧b(����) = 2 ⇤ ⌧r(�) = �2 ⇤ ln
I(�)

I0(�)

The next piece of the red line optical depth is analogous to the method above. Once

we have all the derived profiles (blue derived from blue edge, red derived from blue

edge, red derived from red edge, blue derived from red edge), we take a weighted

average based on how well the profiles come together to recreate the normalized flux.

The estimated errors are propagated accordingly, and derived in Appendix E. An

example of the profile derivation for PG 1254+047 is given in figure 2.1.

2.5.2 Apply Absorption Profile to Pv

Armed with the derived absorption profiles, we can apply them to the normalized flux

in the P V region and compute the estimated ⌧PV and its limits. We resample the

optical depth profile onto the appropriate wavelengths and increase its magnitude to

find the best fit according to two methods: (1) minimizing the sum of the distances

22



F
ig
u
re

2.
1:

D
er
iv
at
io
n
of

⌧
p
ro
fi
le
:
P
G

12
54
+
04
7
fr
om

S
i
IV

(1
39
3,
14
02
Å
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between the upper error bars on the normalized flux spectrum generated from

the profile and the lower error bars on the data normalized flux spectrum and (2)

minimizing �2 between the normalized flux spectrum generated from the profile and

the data normalized flux spectrum, where �2 is:

�2 =
X I

I0
� e�f⇤(⌧b+ 1

2
⌧r)

�2
I
I0

,

where ⌧b is the derived optical depth profile resampled onto the corresponding

wavelengths for the blue line of P V and 1
2⌧r is its red line analog, but at half the

strength. We also compute the upper and lower limits on method (2) by increasing

�2 by 6.635 to include the 99% error bars, as was done in Grupe et al. (2013).

A detailed description of the algorithm used to derive the best fit and estimated

errors in the multiplicative factor applied to the optical depth profile in the P V

region is given in Appendix E, along with the error propagation associated with

computing ⌧̄ , ¯⌧PV, and depthPV.

2.5.3 Levels of Detection

While many of our results indicate non-zero lower limits on the P V optical depth,

a second look reveals that many of them are spurious, preferentially fitting strong

features such that the blue and red P V troughs do not quite align. To quantitatively

evaluate the strength of those detections, we compute how far from zero the estimated

absorption lies from zero, in units of standard deviation, i.e. the ratio of the

multiplicative factor to its lower limit. Of the 17 targets having non-zero lower limits,

7 targets have strong, obvious, and believable P V absorption troughs with a ratio
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> 9, a natural break in the sample. An additional target, 1714+5757, also has a

ratio > 9 has a strong, obvious, and believable P V absorption trough, but only

occurs at the very highest velocity end and not over the entire range of velocities

covered by the O VI derived profile, bringing our total number of P V detections

to 8. Others of the initial 7 detections have P V absorption matching only portions

of the derived profile troughs, but the discrepancy is considerably less obvious. A

further 9 targets have a ratio > 1, indicating a nonzero lower limit.

2.6 Results & Discussion

2.6.1 Sample Characteristics

We have measured a number of parameters to describe the targets and their absorption

profiles: luminosity at 1121Å, maximum velocity, width, depth, average optical depth

(⌧̄ ), as well as the corresponding depthPV and ⌧̄PV estimates of the applied P V trough

profiles. How we compute these quantities and their corresponding uncertainties is

described in appendix B. We have applied a linear regression tool using the idl utility

linmix_err.pro of Kelly (2007). The tool is a Bayesian approach that computes

the likelihood function and returns 5,000 draws of the slope and intercept from the

posterior probability distribution. We chose linmix for its ability to handle censored

data, which will be required to deal with the P V derived quantities, discussed later

in this section. In the figures, the fit mean is the line described by the average values

of those draws and the 1�, 2�, and 3� bounds are found by sorting the deviations

of each line from the mean and computing the values that include 68.3%, 95.4%,
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and 99.7% of the distribution, respectively. With the described parameters and the

results of linmix, we explore expected trends as well as new and possibly interesting

relationships in the examples below.

width vs. vmax

Figure 2.2 shows a plot of trough width versus maximum velocity. We would expect

larger widths to translate to higher maximum velocities, however, narrow width

troughs can also have high maximum velocities. For example, in a trough having a

minimum velocity of zero, the width is equal to the maximum velocity, whereas a

very narrow trough might have a substantially higher maximum velocity than the

width would indicate. Targets having a wider trough than their maximum velocity

would dictate correspond to troughs having a positive minimum velocity. This could

be due either to the uncertainty in redshift or to the troughs or parts of troughs

corresponding to inflowing material rather than outflows. Overall the parameters

are very closely related, as expected.

vmax and width vs. depth

The relationship between vmax and trough depth, shown in figure 2.3, exhibits

considerable scatter. A slight negative relationship is observed at the 1� level,

though at 2� and 3�, the results are consistent with no relationship. When studying

variability in BAL troughs, Filiz Ak et al. (2012a) found that shallower, higher-

velocity portions of troughs tended to disappear more often than their deeper or

lower velocity counterparts, possibly indicating the link where higher velocity troughs

tend to be shallower. This trend makes physical sense given that deep, thick outflows

should be di�cult to drive to higher maximum velocities. However, the depth
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measurement here is indicative of the deepest part of the trough and does not

necessarily lie close to the high velocity end. If we consider the relationship between

trough width and depth, shown in Figure 2.4, we still observe an overall negative

trend as expected given the correlation of vmax with width, though if we consider

only the largest widths (& 10, 000 km s�1), we see a tentative positive trend.

⌧̄ vs. depth

Due to the nature of optical depth, we should expect optical depth to correlate

with trough depth and the relationship to be exponential. A positive relationship is

observed in Figure 2.5 and is clearly non-linear. For some targets, the highest depths

translate to considerably higher optical depths, indicating possible saturation. Note

that those such targets are dominated by profiles derived from O VI and no such

targets are derived from Si IV. As discussed in section 2.6.2, O VI derived troughs are

more likely to be observed with COS, which has higher resolution and is therefore

able to resolve intrinsically narrower troughs that would otherwise be smeared into

wider, shallower troughs. None of our P V detected targets appear to have ⌧̄s near of

saturation, and therefore allowing a measurement of only a lower limit, but it could

be that they have a smaller covering fraction.

⌧̄ vs. vmax

We show the relationship between ⌧̄ and vmax in Figure 2.6. We observe a negative

relationship between the two parameters, but more than that, we see very large

optical depths require moderate velocities. Very thick (potentially saturated) outflows

may be di�cult to drive to higher velocities due to the enormous amounts of energy

required.
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Below, we describe how these parameters relate to the targets’ luminosity.

luminosity vs. vmax, depth, and ⌧̄

Based on the previous works of Laor & Brandt (2002), Ganguly et al. (2007), and

Ganguly & Brotherton (2008), we know absorption troughs exhibit an envelope

relationship between maximum velocity and luminosity, where only the most luminous

objects can drive the highest velocity troughs. Figure 2.7 shows an example of this

for our sample. Here the P V detected targets appear to form the upper part of

the envelope and we have fit a linear regression to those points using the idl utility

linmix_err.pro of Kelly (2007).

Ganguly et al. (2007) equation 5 gives the functional form and fit parameters of

the envelope they fit in their figure 7:

v = v0

⇣ L

L0

⌘↵

log v0 = 3.96± 0.29

log L0 = 45.0

↵ = 0.662± 0.004

In order to reproduce their figure 7 using our data, we first estimate the 3000Å

luminosity from our 1121Å luminosities. Leighly et al. (2016) states that quasars have

a UV continuum similar to F⌫ / ⌫�0.5. In order to estimate the 3000Å luminosities,

we apply

⌫F⌫ = �F�
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and dim our 1121Å luminosities by a factor of (3000/1121)�1.5, which amounts to

a shift of ⇠ 0.2 in log space. We plot our data with Ganguly et al. (2007)’s fit in

figure 2.8. The highest vmax target in our sample, PG 2302+029, also appears in

Ganguly & Brotherton (2008) figure 1, an update of Ganguly et al. (2007) figure

7. In that figure PG 2302+029 has a log � L(3000Å) of ⇠ 46.8 and our estimate of

PG 2302+029’s 3000Å luminosity is ⇠ 46.7, suggesting our estimates of the 3000Å

are reasonable. If our P V detections form the upper envelope as they appear in 2.7,

then we find a shallower envelope than Ganguly et al. (2007).

This envelope relationship suggests that an object’s luminosity limits the maxi-

mum velocity its outflow can achieve. That more luminous objects can drive massive

outflows to higher maximum velocities makes sense, however, why can lesser outflows

not seem to exceed the maximum velocity for their given luminosities? Narrow

outflows do not necessarily contain as much material unless they are also very thick,

so it should be possible for narrow outflows to exceed that maximum velocity, but it

is not observed.

The relationship between depth and luminosity is slightly negative similar to the

relationship between vmax and depth, although with considerably more scatter. This

is shown in figure 2.9. More luminous objects tend to drive shallower outflows, but

the trend is not highly convincing, due to scatter.

The relationship between ⌧̄ and luminosity is potentially more interesting, shown

in figure 2.10. We might expect only higher luminosity targets to be able to drive

thicker outflows due to the energy requirements, but, as is seen in figure 2.10, this

is simply not the case. Without compensating for partial covering e↵ects, these ⌧̄s
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are only apparent optical depths and may be only lower limits as much more gas

could reside in the outflow if the outflow only partially covers the emission source.

Additionally, almost all of the higher optical depth targets are observed with COS

and derived from O VI. The resolution of COS is higher than either COS or STIS and

may allow us to see narrower, deeper lines that might have otherwise been smeared

into wider, shallower ones by another lower resolution detector.

P V derived quantities

Because our sample of P V derived quantities is dominated by upper limits, we chose

the idl utility linmix of Kelly (2007), which handles censored data. The quantity

depthPV derives directly from the applied ⌧PV profile, we should expect a correlation

between depthPV and ⌧̄PV. Figure 2.11 shows such a correlation. The relationship

between the P V derived quantities and all of the other variables is consistent with

zero at the 3� level. The relationships in figure 2.12 appear significant within 2�,

though by eye not exactly convincing. The upper left portion of each plot is devoid of

data, supporting a possible positive relationship with each set of variables, ⌧̄PV and

depthPV with vmax and width, indicating wider, higher velocity outflows, contrary

to that shown in figures 2.6, 2.5, 2.4 and 2.3. However, the upper right portion

of the plots are also sparsely populated, making any relationship considerably less

convincing.

2.6.2 Validation Check to Combine Ions and Detector Subsamples

In our sample, we have derived absorption profiles from ions and detectors based

on availability in the bandpass and the presence of absorption in the spectrum,
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now we test the validity of combining these subsamples. Either they uniformly

sample the whole range of the properties we investigate, or it could be that some

ion or detector subsample occupies a distinct region of parameter space. We test to

what level of significance we would reject the null hypothesis that the subsamples

derive from distinct distributions and not the same parent sample. We performed

Kolomogorov-Smirnov (KS) Tests (specifically scipy.stats.ks_2samp() in Python)

on the parameters of interest, in combinations of our three ion subsamples and our

three detector subsamples. If the p-values are > 0.05, then we can reject the null

hypothesis that the targets derive from di↵erent parent samples. The results are in

Tables 2.2 and 2.3, respectively.

Si IV & C IV C IV & O VI O VI & Si IV

Redshift (z) 0.374 0.257 0.488
Log Luminosity 0.803 0.860 0.542
DepthION 0.868 0.052 0.014
± Log vmax 0.344 0.633 0.157
Log Width 0.143 0.438 0.231
⌧̄ION 0.014 0.197 0.066

Table 2.2: KS test p-value results for the sample absorption properties by ion.

FOS & STIS STIS & COS COS & FOS

Redshift (z) 0.667 0.004 0.010
Log Luminosity 0.888 0.007 0.005
DepthION 0.134 0.001 0.002
± Log vmax 0.667 0.017 0.072
Log Width 0.134 0.030 0.111
⌧̄ION 0.991 0.018 0.013

Table 2.3: KS test p-value results for the sample absorption properties by detector.
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A more visual representation of the sample characteristics is shown in Figures 2.13

and 2.14 in the form of cumulative histograms. COS probes statistically significantly

lower redshifts and luminosities, but the ions are otherwise well mixed in redshift.

COS also probes significantly deeper depths and larger average ⌧s. O VI also probes

significantly deeper depths and larger average ⌧s, but a large sample of O VI derived

profiles comes from COS. STIS probes significantly larger widths than COS, but

the ions are well mixed. STIS does have a lower resolution than COS, which will

result in a comparatively wider and shallower profile if observed with STIS for the

same absorption. STIS probes only higher velocities, but the di↵erence between

FOS & STIS is not significant. COS & FOS look very similar, but have a marginally

significant di↵erence according to the KS test.

Overall, most of the tested parameters are well mixed among both ion and

detector. Our detections are made almost exclusively from Si IV derived profiles,

which might indicate P V occupies a more similar region of parameter space to Si IV

than O VI. This would be in line with the discovery of Junkkarinen et al. (2001) that

P V troughs more resemble the shape of Si IV troughs than they do other ions. Like

P V, Si IV is rarer than either C IV or O VI and a thicker outflow is required to

observe the ion in absorption.

2.6.3 Comparison with Other Samples

We compare our work to previous citations of P V BAL incidence from the literature,

namely the works of Filiz Ak et al. (2014) and Hamann et al. (2012).
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Filiz Ak et al. (2014) is a variability study and a subsample of Gibson et al. (2009),

requiring at least one observation each in the SDSS-I/II and Baryon Oscillation

Spectroscopic Survey (BOSS) of SDSS-III. Filiz Ak et al. (2014) requires presence

of a moderately strong C IV BAL, with BI0 > 100 (km s�1), and subdivide their

sample by accompaniment (or lack thereof) of other broad absorption line species.

The C IV00 subsample has no accompanying BAL from either Si IV or Al III in

the same velocities as the C IV BAL. C IVS0 has a Si IV BAL, but no Al III BAL,

and C IVSA has BALs in both Si IV and Al III at the same velocities as the C IV

BAL. To comment on the incidence of P V absorption, they further restricted their

sample to targets that would cover a P V BAL and visually investigated that region

in the velocity locations of the C IV BAL troughs. Filiz Ak et al. (2014) report only

the approximate percentages of their subsamples that appear to have detectable or

moderate to strong P V absorption. Because we are interested in comparing the total

incidence of P V absorption, we calculate the total percentage of targets appearing

to have either at least detectable or moderate to strong P V absorption from their

total number of targets in which P V would fall within the bandpass. The results

are summarized in Table 2.4.

subsample # targets
detectable moderate+
(%) (#) (%) (#)

C IV00 40 ⇠ 12% 5 ⇠ 0% 0
C IVS0 113 ⇠ 50% 57 ⇠ 10% 11
C IVSA 47 ⇠ 88% 41 ⇠ 70% 33
TOTAL 200 ⇠ 52% 103 ⇠ 22% 44

Table 2.4: Summary of P V incidence in Filiz Ak et al. (2014).
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Although Filiz Ak et al. (2014) do not exactly define the boundaries of detectable

versus moderate to strong P V absorption, all 8 of our detections should fall into the

moderate to strong category as they all exhibit clear presence of P V absorption. Of

those 8 detections, 6 were made using profiles derived from Si IV, the 7th and 8th

from C IV and O VI, respectively, for total incidence of ⇠ 12%. Without knowledge

of Al III absorption, our ⇠ 12% moderate to strong P V absorption is in good

agreement with the Filiz Ak et al. (2014) comments on C IVS0 BALs, but a factor

of ⇠ 2 lower than the figure for their total P V sample. So, despite the luminosity

di↵erences in the sample, we find a similar incidence of P V absorption.

Hamann et al. (2012) visually inspected ⇠ 3000 BAL quasars in SDSS DR9 with

z > 2.3 (requiring P V to fall in the SDSS bandpass). While the work is ongoing,

they report finding > 50 quasars with ‘definite strong’ P V BALs and ‘many more’

where P V BALs are ‘probably present’. Details are to follow in Capellupo et al.

(2013, in prep.).

We also compare sample properties to show our sample probes significantly lower

luminosities and redshifts. These are shown in figures 2.15 and 2.16, respectively.

Due to the vast di↵erences in sample size and therefore scale, we use non-uniform bin

sizes among the samples. Notably these figures show that our targets occupy the low

end of both the flux and redshift ranges, indicating our sample probes nearer, fainter

objects. The pileup of velocities in the comparison samples near �25, 000km s�1 and

3, 000km s�1 are indicative of the requirements imposed by balnicity (see appendix

G). We do not impose such velocity requirements and our troughs can probe di↵erent

velocity troughs than the comparison sample.
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2.7 Summary & Conclusions

We have analyzed a sample of 66 HST observed quasars for possible P V absorption

by applying optical depth profiles derived from Si IV, C IV, and O VI and our results

indicate the following:

(1) We detect P V absorption in 8 of our targets, for an incidence of ⇠ 12%,

consistent with the ⇠ 10% figure from Filiz Ak et al. (2014) quoted for C IVS0

BALs.

(2) We only detect P V absorption in targets with broad absorption line troughs.

Due to phosphorus’ lower abundance, a fairly thick column is required to observe

P V in absorption and therefore P V is often found in thicker outflows. However,

that P V is only observed in broad outflows and never in narrow ones was not

previously known.

(3) We observe the behavior of an envelope relationship between vmax and luminos-

ity as described in Laor & Brandt (2002) and Ganguly & Brotherton (2008),

indicating only the brightest targets can drive the highest velocity troughs and

that the maximum velocity of the wind is limited by its luminosity.

(4) We find that the brightest targets do not drive the thickest or deepest outflows,

though this observation is heavily biased by detector.

(5) Our detections are made almost exclusively from Si IV derived profiles, which

might indicate P V occupies a more similar region of parameter space to Si IV

than O VI. This would be in line with the discovery of Junkkarinen et al. (2001)
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that P V troughs more resemble the shape of Si IV troughs than they do other

ions.
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Chapter 3

WPVS007: BAL Variability in a NLS1 Galaxy

3.1 Introduction

That a central black hole’s mass correlates with physical properties of its host

galaxy, bulge stellar velocity dispersion and luminosity (Ferrarese & Merritt (2000))

indicates the black hole exerts influence on its host galaxy’s evolution. However, the

stellar bulge lies outside of the black hole’s gravitational influence and how these

components communicate is still not well understood. One possible mechanism of

black holes influencing host galaxy evolution is via feedback from accretion disk winds.

Outflowing winds can infuse the host galaxy with chemically enriched material, mass

and energy. Viable AGN feedback models (Hopkins & Elvis (2010)) require a kinetic

energy luminosity of 0.5 � 5% of the bolometric luminosity to exert influence on

its host galaxy. One method of testing feedback models is by observing variability

in AGN outflows. WPVS007, with its Seyfert level luminosity yet high velocity

outflows, presents promise in achieving the 0.5-5% required for feedback.

Observed variability in AGN is driven by three primary physical properties:

(1) variation in the ionization state of the outflowing material, (2) changes in the

geometry of that material along the line of sight, and (3) shifts in velocity structure.

The ionization state of the gas varies in response to either the fluctuations of the

ionizing source itself or variation in the shielding gas, if it exists, theorized to keep

the outflow from becoming overly ionized. Changes in ionization shift the population

53



of the favored ionic species, increasing or decreasing the number of ions capable of

making the observed transition. Such variability would be seen as variation in the

depth of the absorption trough, which is largely the kind of variability we observe

(Capellupo et al. (2013), Hall et al. (2011), Lundgren et al. (2007), Miller et al.

(2012), Barlow (1993), Voit et al. (1987), and Smith & Penston (1988)). Smith &

Penston (1988), Barlow et al. (1992), Chen & Qin (2015), Kraemer et al. (2002), and

Grier et al. (2015) all attribute the trough depth variation observed in their samples

to changes in ionization. Additionally the depth of trough segments are observed to

vary in concert within the same ion at di↵erent velocities (Capellupo et al. (2012)

and Filiz Ak et al. (2012a)) and for Si IV and C IV at the same velocity (Capellupo

et al. (2012) and Gibson et al. (2010)), with Si IV more likely to vary (Capellupo

et al. (2012)). Because the troughs at widely separated velocities should arise from

physically widely separated parts of the outflow, such coordinated variability may

be due to changes in the ionization state of the gas, which is capable of acting over

a wide range of radii. That the fractional change in absorption varies inversely with

BAL strength, i.e. shallower troughs vary more strongly than deeper ones (Capellupo

et al. (2011) and Filiz Ak et al. (2012a)) also supports variability due to changing

ionization, as saturated troughs would show little change in response to even large

changes in ionization. No link has yet been found between the variability of the

absorption trough and the continuum radiation.

A variation in covering fraction changes how we see the outflow oriented to the

source along the line of sight, i.e. its geometry. Like the response to variable ionizing

radiation, changes in covering fraction would appear as a variation of trough depths,
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i.e. deeper troughs when more of the outflow covers the line of site. However, a

change in covering fraction might also alter the ratio of optical depths in the doublet

lines of species such as C IV, Si IV, N V, and O VI. Variable saturated troughs are

more readily attributable to changes in outflow geometry since saturated troughs

respond only weakly to variable ionization. That only small, discrete segments of

troughs tend to vary (Capellupo et al. (2013), Filiz Ak et al. (2012a), Gibson et al.

(2008), Miller et al. (2012), Kraemer et al. (2002), Joshi et al. (2014), and Vivek et al.

(2012)) tends to support variation due to changes in covering fraction as ionization

changes should cause more coordinated variability.

We know acceleration of the outflowing gas has to occur, as gas velocities have

been observed to reach high speeds (⇠ 0.1c), whether by radiation pressure, magnetic

pressure, or some other mechanism. Although a shift in the velocity profile would be

the unmistakeable signature of acceleration, none has yet been definitively observed.

We can see acceleration via radiative line driving in the form of line locked doublets,

in which the short wavelength trough of the lower velocity parcel overlaps the long

wavelength trough of the higher velocity parcel. This occurs when one parcel shadows

the other, moderating the radiation and requiring both parcels to have the same

acceleration. Some line locked candidates have been observed (e.g. Hall et al. (2007),

Ganguly et al. (2003), and Srianand et al. (2002)), but tend to be quite rare.

Some BAL troughs have been observed to wholly appear or wholly disappear

(Filiz Ak et al. (2012a)), sometimes converting such objects from a non-BAL to a

BAL or vice versa. Are such occurrences extremes of the variability spectrum or

a whole other beast entirely? Filiz Ak et al. (2013) found that the distribution of
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BAL equivalent width variability indicates trough disappearance is only an extreme

example of general variability rather than a qualitatively distinct phenomenon.

WPVS007 is unusual in that its trough depth variations are not coordinated,

nor is the variability limited to changes in trough depth. The BALs lose strength

at higher velocities and simultaneously gain strength at lower ones. The miniBALs

appear constant over the observations. We will investigate the causes of variability

in WPVS007 with the current HST and Swift UVOT observations described in §3.2.

In §3.3, we discuss the size scales and probable origin of the outflow as being from

the torus rather than the accretion disk, as is commonly thought.

3.2 Observations

3.2.1 HST COS Observations

In Leighly et al. (2015) we presented new WPVS007 data from the Hubble Space

Telescope Cosmic Origins Spectrograph (HST COS) in addition to the archival FOS

spectrum taken in 1996. The new observations were taken June 11, 2010, June 4,

2013, December 12, 2013, and March 30, 2015. For all observations, the instrument

was configured with the FUV detector, Primary Science Aperature (PSA) and G140L

grating. The 2010 exposures were configured at a central wavelength of 1230Å in

each of three nod positions for a total exposure time of 5060.576s. In Cycle 20, two

new central wavelength configurations became available and the June and December

2013 data sets were configured at central wavelength positions of 1280Å and 1105Å

in each of two nod positions for total exposure times of 4606.688s and 4606.720s,
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respectively. The March 2015 data set was configured in the 1105Å position only,

for a total exposure time of 5322.752s. Details are in Table 3.1.

Table 3.1: Observation Log

Date
Central Exposure Wavelength

Wavelength Time (s) Range (Å)a

2010-06-11 1230 (Å) 5060.576 1087-1986b

2013-06-04
� 1105 (Å) 2590.336  

1108-1833
1280 (Å) 2016.352

2013-12-12
� 1105 (Å) 2590.336  

1110-1840
1280 (Å) 2016.384

2015-03-30 1105 (Å) 5322.752 1110-1717c

(a) where the signal to noise ratio > 10, observed frame
(b) gap in coverage at 1172Å-1265Å, observed frame
(c) the flux in 2015 is much lower than in previous observations, so wavelength range
given is for where the signal to noise ratio > 2, observed frame

Based on measurements of the interstellar medium absorption lines in Segment

A of each of the spectra, we determined slight shifts (< 1Å) were necessary for the

June 2010, December 2013 and March 2015 data. The detailed measurements are

given in Appendix E. Data for a single central wavelength position and several nod

positions are combined by the CalCOS pipeline (Massa et al. (2013)). For the 2013

datasets, we utilize two central wavelength positions and combine the data in the

overlapping regions choosing to weight by the square of the signal to noise ratio

(which is similar to weighting by the exposure for Poisson statistics). We bin the

data by combining sets of three adjacent data points to adjust for over sampling,

a factor of three for all sets. For all data, we smooth with a three point scheme

where the center point is weighted by 3/5 and the adjacent points 1/5 each. We

correct for galactic reddening using the Cardelli et al. (1989) reddening curve and
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E(B � V) = 0.012mag for WPVS007 from Schegel et al. (1998). Finally we shift

the spectra into the rest frame using the same redshift value of Leighly et al. (2009),

z = 0.02882.

The resulting data are shown in figure 3.1, along with appropriate line identifica-

tions. The progression of observations is towards lower luminosity, lower velocity,

and shallower troughs.

3.2.2 Swift UVOT Observations

The Swift UVOT has also monitored WPVS007 since 2005, (Grupe et al. (2007, 2008,

2013), Leighly et al. (2015)), most recently published through August 2015. Near

weekly observations in all filters have continued to the present time and figure 3.2

shows the updated UVM2 fluxes (upper) and E(B� V) intrinsic reddening (lower),

computed, as in Leighly et al. (2015), by simultaneous fitting of a constant indexed

power law + SMC reddening (Pei (1992)).

Figure 3.3 shows the corresponding updated version of the color-magnitude plot

that is the right-hand panel of figure 1 in Leighly et al. (2015). As with the previous

plot, the lines indicate the best fits to SMC reddening (Pei (1992)) and intrinsic

variability (Kokubo et al. (2014)). Leighly et al. (2015) find that both (1) the data

favor the SMC reddening model, and (2) the UVM2 trough around March 2015 is

characteristic of occultation. The dynamic timescale for this occultation is 60 days.

Since the latest observations reported in Leighly et al. (2015), WPVS007 has largely

occupied the same region of color-magnitude space, though with considerable scatter.

Figure 3.4 shows a more visual representation of the reddening between observa-
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tions. The HST spectra are plotted alongside the Swift photometry in their respective

bands. The Swift photometric curve for March and April 2015 appears intrinsically

and more dramatically redder than the previous observations complementing the

near secular decrease in flux since 2010.

3.3 Analysis

Leighly et al. (2015) argue Swift variability in WPVS007 (decrease in flux accom-

panying an increase in intrinsic reddening) points to the first observed UV AGN

occultation and that the corresponding BAL velocity and BEL width variability

point to an origin in the torus.

3.3.1 Size Scales

Figure 3.6 shows the relevant size scales relative to the range of possible black

hole masses for WPVS007. Leighly et al. (2009) estimated a black hole mass of

4.1⇥ 106 M
�

. The spread in MBH arises from the 0.43 dex uncertainty estimated by

Vestergaard & Peterson (2006) with regard to the scaling relation derived masses.

WPVS007 is a low-luminosity object, and based on the 5500Å luminosity density

and the relationship between UV luminosity and ↵ox Ste↵en et al. (2006), the

predicted value of ↵ox for this object is �1.22. Grupe et al. (2008) reported the

first hard X-ray spectrum of WPVS 007, obtained during a long observation using

Swift. The X-ray spectrum showed clear evidence for partial covering, and when

that had been taken into account, the spectral energy distribution was found to

be X-ray weak, with ↵ox = �1.9. Leighly et al. (2009) showed that an X-ray weak
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SED explained the absorption lines better than an SED with ↵ox = �1.28, close to

the value expected based on the UV luminosity. Normalizing this SED to the 1996

HST FOS optical spectrum yields the photoionizing flux at earth for this SED, for a

luminosity distance of 1.245Mpc, of 0.154 photons s�1 cm�2. This normalized flux

density yields a bolometric luminosity of 5.0 ⇥ 1043 erg s�1. Using that estimated

bolometric luminosity and an ⌘ = 0.1 sum of blackbodies accretion disk, Leighly

et al. (2015) estimated three characteristic continuum radii: (1) R1550, the emission

at 1550Å, under C IV, (2) R2150, the emission at 2150Å, the Swift UVM2 filter rest

frame e↵ective wavelength, and (3) R3350, the emission at 3350Å, the Swift U filter

rest frame e↵ective wavelength.

Leighly et al. (2015) estimated the location of the BLR from H� and C IV. The

H� estimation is bracketed by the Leighly et al. (2009) RH� = 9.7 ⇥ 10�3 pc and

somewhat smaller value, RH� = 4.2⇥ 10�3 pc of Grupe et al. (2013). Emission line

fitting of C IV, shown in figure ??, reproduced from Leighly et al. (2015), Figure

3, gives a C IV broad component width of 4170 km s�1. Scaled with the H� line

width, 1190 km s�1, from Leighly et al. (2009) and assuming virialization, Leighly

et al. (2015) estimate 3.4⇥ 10�4 pc < RCIV < 7.9⇥ 10�4 pc.

The torus distance estimates are bracketed by the dust sublimation radius,

approximated by the K-band reverberation radius RTK, and the 12µm peak emission

radius. From Kishimoto et al. (2011), and the HST FOS 5500Å flux density, Leighly

et al. (2015) estimate the inner edge of the torus to be 0.036 pc. Leighly et al. (2015)

estimate the peak 12µm emission by comparing WPVS007’s bolometric luminosity

with Burtscher et al. (2013) Table 6, and find values ranging 0.3 pc < R12µm < 2 pc.
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The distance to the absorber is related to the electron density and ionization

parameter by

U =
Q

4⇡R2nec
.

Leighly et al. (2015) estimate the electron density from the 2009 FUSE S IV trough

and the ionization parameter Cloudy modeling in the presence of P V absorption

lines.

The 2003 FUSE spectrum revealed absorption from S IV, from both the ground

state at 1063Å, and from the fine-structure excited state at 1073Å Leighly et al.

(2009). These lines can be used to measure the density of the absorbing gas (e.g.,

Dunn et al., 2012; Borguet et al., 2013), because for increasing density, toward and

past the critical density, the excited state is increasingly populated up to a ratio

of n(excited)/n(ground) = gik(excited)/gik(ground) = 2.02. So, the measured ratio

of the excited state and ground state column densities can be used to estimate the

density. Then, using the photoionization parameter estimated from Cloudy analysis

of the absorption lines Leighly et al. (2009), we can estimate the distance of the

absorber from the continuum emission region.

The apparent column densities of S IV�1062 and S IV*�1073 measured from

the FUSE spectrum were 1.47 ± 0.065 ⇥ 1015 cm�2, and 1.88 ± 0.042 ⇥ 1015 cm�2,

respectively (Table 2, Leighly et al. (2009)). These combine to yield a ratio of excited

state column density to ground state column density of 1.28± 0.05.

However, this spectrum su↵ers from partial covering. We know this because the

ratio of the optical depths of the P V absorption lines is not 2 but is rather 1.38.

Moreover, it is also clear that the partial covering is inhomogeneous; that is, the
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di↵erent lines have di↵erent covering fractions, depending, most likely, on the line

opacity (e.g., Hamann et al., 2001; Lucy et al., 2014). This can be seen in Fig. 9

in Leighly et al. (2009), where the O VI absorption is nearly black; the residual

intensity at the bottom of the trough is about ⇠ 10% of the continuum (i.e., a

covering fraction of about 90%), while analysis of the P V troughs yields a maximum

covering fraction of about 55%. So, to investigate this situation, 0.45 was subtracted

from the I/I0 spectrum, the P V optical depth template was re-derived (following the

method described in Leighly et al. (2009)), and the column densities of the P V and

S IV lines were re-derived. It is noteworthy that the P+ column densities estimated

from each of the doublet lines are now consistent with one another, implying that

partial covering has been accounted for. For the S IV lines, the resulting column

densities were 3.37± 0.26⇥ 1015 cm�2 and 4.04± 0.20⇥ 1015 cm�2 for the ground

and excited states, respectively, yielding a ratio of 1.20± 0.09.

Combining the two ratio estimates and their statistical errors yields a conservative

range of ratios between 1.11 and 1.33. Lucy et al. (2014) (Fig. 14) computed the

expected ratio of the excited state to ground state column densities. Using that

information, we find a range of densities between 7.3⇥ 104 and 1.34⇥ 105 cm�2.

Leighly et al. (2009) showed that that the photoionization parameter required

to explain the observed absorption lines (in particular, the P V lines, which require

both a high column density and a high ionization parameter, was logU � 0. We

re-evaluated that number with higher sampling of the ionization parameter to yield

a revised value of logU � �0.3.

Leighly et al. (2015) roughly estimate the upper limit from the standard global
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covering fraction, ⌦ = 0.2, and an implausibly large (> 20%) kinetic energy fraction

to give 0.17 pc < RBAL < 1.47 pc, consistent with the previous estimate for the

location of the torus.

3.3.2 Absorber Location

Assuming the coordinated variability of the BAL velocities, C IV emission widths,

and intrinsic reddening implies a common origin, the variability time scale can be

used to estimate the location to the C IV absorber. For a rough estimate, the

timescale is naturally bracketed by 190 d < T < 473 d, since not much variation

is observed between the 2013 observations (190d apart), and serious variability is

observed between the December 2013 and March 2015 observations (473d apart).

The resulting location, plotted in 3.6, is consistent with an origin in the torus.

3.3.3 Occulter Location

Photoionization, S IV density, variability timescale dynamical arguments put WPVS007’s

BAL in the location of the torus, but what about the dynamical argument for the

location of the occulter? Assuming a Keplerian velocity, V = R�/T with an occulta-

tion timescale of 60 days, and an occulting cloud size equivalent to the size of the

continuum emitting region, Leighly et al. (2015) estimate distances to the occulter

for gas absorbing at the continuum wavelengths listed previously, 1550Å, 2150Å,

and 3350Å. As previously mentioned, an increase in reddening accompanies the

occultation, indicating the presence of dust and implying a location beyond the dust

sublimation radius, previously approximated by the K-band reverberation radius,

69



RTK. This scenario is consistent for the inner clouds, absorbing at 1550Å and 2150Å,

but not the outer cloud absorbing at 3350Å.

3.3.4 The Bigger Picture

So if the absorber and the occulter have locations consistent with the dusty torus,

what does the spectral variability we observe in WPVS007 imply? As previously

stated, WPVS007 is unusual in that its trough depth variations are not coordinated,

nor is the variability limited to changes in trough depth; its BALs lose strength at

higher velocities and simultaneously gain strength at lower ones. The emission line

width and reddening variability is also unlike that seen in other AGN.

Leighly et al. (2015) propose a scenario of for the variability in WPVS007

described in figure 3.7, reproduced from their figure 5. If WPVS007 has a variable

scale height torus, the observed variability is naturally explained by the variation in

height rotating into and out of our line of sight. Deep, high velocity troughs and low

reddening (like that observed in 2010), are observed when the scale height of the

torus is low. If the torus is also the origin of the BAL gas, then the BAL gas has

moved quite far from the torus and is nearly unobscured. When a higher scale height

piece of the torus rotates into our line of sight, we’re looking through mostly dust,

and the BAL very near the torus boundary and is nearly completely obscured (as

seen in 2015), hence the enhanced reddening. The 2013 BAL troughs are observed

when an intermediate scale height piece of torus lies in our line of sight.
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3.4 Summary

WPVS007 is the first ever observed UV occultation event. Its BAL and reddening

variability support the broad absorption line gas natural origin in the dusty, gas-

rich torus. But what about WPVS007 is otherwise so unique? WPVS007’s low

luminosity and small black hole mass allow for a shorter variability timescale, possible

on human timescales. Indeed Leighly et al. (2009) compared WPVS007 and 100⇥

more luminous LBQS1212+1445 and found the di↵erence in time scales to favor

WPVS007 by a factor of 10. While the emergence of BAL gas from the dusty torus

seems a natural explination, further monitoring is needed to fully test the prediction

that as WPVS007 emerges from the occultation (as it has been since March 2015),

we would observe an increase in the BAL maximum velocity, deepening of the trough,

and a broadening of the C IV emission line. Further testing is also needed to see

whether the explanation is extendible to other objects, though for most objects the

time scales necessary are probably prohibitive.
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Chapter 4

Ultraviolet Iron Emission in Strong Iron Emitting

AGN in the SDSS

Fe II emission poses a long-standing yet important problem in studies of quasar

broad emission lines. Fe II emission is a primary coolant of the broad-line region, a

primary player in the set of emission line correlations known as Eigenvector 1, and

can potentially yield information about metallicities in the early Universe. While it

is generally thought that UV Fe II emission has the same general shape in quasars,

varying only in equivalent width, Leighly et al. (2007) identified two characteristic

shapes. Typical strong iron emitting quasars exhibit somewhat rounded Fe II

emission in the ⇠ 2250� 2650Å region while PHL 1811-like strong iron emitting

quasars exhibit additional Fe II emission in the ⇠ 2250� 2650Å region and excess

emission in the regions ⇠ 2050 � 2150Å and ⇠ 1900 � 2000Å. These regions are

highlighted in Figure 4.1. Leighly et al. hypothesized the di↵erence in shape arises

from di↵erences in Fe excitation and ionization in these strong Fe emitters: that the

emission in typical strong iron emitters arises from less excited levels of Fe II, and in

PHL 1811-like spectra the emission arises from more highly excited levels Fe II and

also some Fe III.

Here we probe the near UV Fe emission in quasars by modeling strong Fe emitters

with templates generated using the atomic data in the Kurucz database. We populate

the levels as in a thermal gas, and allow them to depart from equiliibrium in groups

of upper level energy. We emphasize that this is an empirical model, intended as a
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tool to investigate and quantify di↵erences in Fe emission among strong Fe emitting

AGN.

4.1 “Normal” vs. “PHL 1811-like” Emission: The Puzzle

When analyzing the UV emission in PHL 1811 with the I Zw 1 Fe II template of

Vestergaard & Wilkes (2001), Leighly et al. (2007) found that while the template fit

quite well near the Mg II ��2798, 2803Å doublet, it fell short at shorter wavelengths

(particularly the region 2300 � 2500Å). Their Figure 5 demonstrates that other

objects share PHL 1811’s unusual Fe emission shape. Visual inspection of 81 strong

iron emitting quasars in the SDSS reveals a total of 26 objects (⇠ 32%) sharing PHL

1811’s unusual shape, 44 objects (⇠ 54%) having the more typical rounded shape of

I Zw 1, and the remaining 11 objects (⇠ 14%) having a third, possibly intermediate

shape. Note that these objects do not form a complete sample, so the fractional

occurrance is merely illustrative. We choose a sample of 6 each of typical and PHL

1811-like shape to model with our empirical Fe templates. Details of the sample are

given in Table 4.1

To investigate the unusual Fe emission in PHL 1811, Leighly et al. (2007) plot, in

Figure 6, the spectrum of PHL 1811 along with the Fe II and Fe III atomic transition

upper level energies, di↵erentiated by the strength of the transition probability, Aij.

Fe has an especially rich spectrum of line transitions in the UV and the locations of

particularly strong transitions in the vicinity of PHL 1811’s emission excess suggests

the emission may arise from both Fe III and more highly excited transitions of Fe II.
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Target RA DEC z

Typical Fe Shape
J124244.37+624659.1 190.68486 62.783 1.2953
J105023.68-010555.5 162.60000 �1.0850 1.536421
J172314.14+654746 260.80893 65.7961 1.4409
J092332.32+574557.3 140.88472 57.76595 1.3784
J091301.03+525928.9 138.25424 52.99138 1.3785
J120702.40+492853.2 181.76002 59.48145 1.3745

PHL 1811-like Fe Shape
PHL 1811 328.7583 �9.3733 0.192
J094257.808-004705.2 145.7417 �0.7847 1.362837
J014940.12+0.001718.0 27.41718 0.28834 1.4641
J143613.18+045400.0 219.05495 4.90002 1.4224
J231253.05+144453.3 348.22102 14.74817 1.5261
J094021.12+033144.7 145.08802 3.52911 1.294

Table 4.1: Sample Information.

In order to contrast the shapes of the typical strong iron emitting quasar with those

like PHL 1811, Figure 4.1 reproduces the essence of their Figure 6, but includes a

typical Fe shaped spectrum, J091301.03+525928.9, and shades the interesting regions

to highlight the Fe II bump (light grey) and Fe III excess flux regions (darker grey).

4.2 A Thermal Model

Our current aim is to investigate whether Fe III and highly excited Fe II explain

the excess emission observed in objects like PHL 1811. We cannot simply use the

popular photoionization code Cloudy (Ferland et al. (2013)) to simulate the Fe

emission as it does not have su�cient atomic data available to generate the specific

spectra we need. Bruhweiler & Verner (2008) produced and inserted into Cloudy

an 830 level Fe II atom up to 14.06 eV, nearly the upper level energy we employ
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Figure 4.1: Fe Shape Examples: Typical vs. PHL 18111-like, with Akis for each ion
plotted in upper level energy for reference.
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here, but did not make it publicly available. The most up to date Fe II atom in

Cloudy is the 371 level model of Verner et al. (1999), which includes levels up to

11.6eV while the ionization potential of Fe+ is 16.18eV. Regardless, the available

Fe III data in Cloudy is completely insu�cient for our purposes as no model atom for

Fe+2 currently exists in the code. Lykins et al. (2015) cite two sources for the Fe III

atomic data in Cloudy: Zhang (1996), up to 1.127 Ry = 15.327 eV, and Kurucz

(2009), which makes no mention of Fe III. As a result, we use the more uncertain

data in the Kurucz database (Kurucz & Bell (1995)).

Additionaly, Joly et al. (2007) and Joly et al. (2008), when investigating the optical

spectrum of strong Fe II emitter IRAS 07598+6508, concluded that photoionization

was unable to explain the observed line ratios and that a small, dense, cloud

shielded from the central engine produced the best results. In such conditions the

excitation and ionization are driven by collisions rather than photons. This collisional

requirement motivates our thermal model.

We start with all the transitions available in the Kurucz database for each ion

and group them by upper level energy. These ranges are shown in Table 4.2. We

use a zeroth order approach and generate a set of templates of added gaussian lines

whose amplitudes and widths are assigned as follows. We populate the levels as in a

thermal gas and allow all radiation to exit the gas. For a thermal gas, the levels are

populated according to the Boltzmann equation, relative to ground:

Nk

Nground
=

gk
gground

e�
Ek
kT
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If k is the upper level of the transition and i is the lower, the power radiated in each

line as given by Drake (2006) Eq. 10.11:

✏line =
hc

4⇡�0
AkiNk

and the total emitted line intensity is related to the line profile, I(�) by:

Iline =

Z
✏linedV =

Z
I(�)d�

We assign amplitudes according to ✏line relative to Nground:

Amplitude =
✏line

Nground
=

h cAki

4⇡�0
(2Jk + 1)e�

Ek
kT

Within each group the distribution of energy levels is thermal. We produce a template

for each group of upper level energies for each ion and allow them to depart from

equilibrium in those groups. The departure coe�cients of the groups of upper levels

are related to the template amplitudes in the fits, but because the amplitudes depend

on the ground state population, Nground, we will compute departures relative to the

lowest upper level energy bin.

Osterbrock & Ferland (2006) suggest a good approximate estimate of the tem-

perature in Broad Line Region (BLR) to be ⇠ 104 K, since T > 35,000 K would

ionize almost all of the Fe II to Fe III. We adopt their suggested value here. We also

assign a full width at half maximum velocity width of 1,000 km s�1 to each line in

the template, based on the measurements of the relatively isolated Fe II UV 191
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template Upper Level Energy Ranges (eV)
designation Fe II Fe III Ni II Ni III

a 4-7 10-12 6-10 13-16

b 7-10 12-22 10-14 16-19

c 10-12 22-29 14-18 19-24

d 12-15 24-31

Table 4.2: Upper Level Energy Ranges for Template Partitions.

multiplet in each spectrum.

Figures 4.2 and 4.3 show the Fe II and Fe III templates, respectively, along with

their transitions, di↵erentiated in color by their transition probability.

When fitting our sample spectra, we discovered our templates cannot fit the

characteristic bump that straddles 2200Å, as no significantly strong Fe lines exist

there. To remedy this problem, we looked at transitions and generated templates

for other Fe peak elements, metals with su�cient lines to be e↵ective coolants and

significant abundance so as to be plausible. Ni fits those requirements and Ni II’s

lower level transitions reproduce the characteristic 2200Å bump, so we include those

templates in our spectral fitting also.

4.3 Spectral Fitting

We fit our sample of strong Fe emitting quasar spectra using the CIAO modeling

and fitting application, Sherpa (4.7.1), inside an iPython notebook. First we fit a

power law and gaussian lines to the Mg II doublet (��2798, 2803Å), C III] (�1909Å),
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Si III] (�1892Å), and Al III (�1855Å), while ignoring the Fe pseudo-continuum.

Their widths and positions are constrained relative to the red line of the Mg II

doublet. Finally we add in the templates, loaded as table models whose only tunable

parameter is the amplitude, and fit to convergence.

4.4 Results

The resulting fits are shown in figures 4.6 and 4.7 for the Typical and PHL1811-like

spectra, respectively. The fitted power law has been subtracted from each spectrum

to highlight the fit to the emission.

The breakdown of the Fe II template fits to the Fe II bump in each target is

shown in Figure 4.8. Visually we can see the relative strength of higher ionization

Fe II shift in PHL 1811-like targets compared to Typical Strong Fe Emitting targets.

In typical targets, the 12-15 eV template is weak relative to the 7-10 eV one, whereas

in PHL 1811-like targets the amplitudes of both templates are comparable. This

shows that PHL 1811-like targets require higher excitation Fe II, as predicted.

Table 4.3 also shows the breakdown of Fe II fit by the templates as a fraction of

the total Fe II emission fit. Although all targets show the highest fraction of Fe II fit

in the most highly excited bin, Eup = 12 � 15eV, the PHL 1811-like targets show

a higher fraction in that bin relative to the to the more typical targets, which was

predicted. Table 4.4 shows the fractions of Fe fit by each ion, Fe II and Fe III. As

predicted, the PHL 1811-like targets mostly show a stronger fraction of Fe fit by

Fe III, although there is some overlap of J094257.808-004705.2 with the more typical
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targets. This is also true of the FeIId/FeII fraction for J094257.808-004705.2. That

target also has a higher fraction of FeIIc/FeII, Eup = 10� 12eV, relative to the other

PHL 1811-like targets, possibly placing it as an intermediate target.

Some obvious inadequacies stand out in the final fits. The Fe II bump edge near

⇠ 2600Å is fit particularly poorly, as is the width of the Fe II clump just to the blue

of the Mg II doublet. Our final fit of the prototypical PHL 1811 is particularly poor

across the spectrum and continues to have excess emission in the ⇠ 2050� 2150Å

region. The final fit of J094257.808-004705.2 is better, but still has excess emission

in the ⇠ 2050� 2150Å region. The rest of the so-called PHL 1811-like targets are

fit considerably better across the spectrum, with the exception of a spike of excess

emission around ⇠ 2450Å, which appears in all PHL 1811-like targets.

Selective pumping may be important for some transitions, particularly the Fe II

UV 191 1787Å triplet, which is poorly fit by the templates in most objects. Baldwin

et al. (1996) suggest UV 191 may be pumped from UV9 1265Å or from a chance

overlap with Si II 1263Å, which itself must be pumped to reproduce their observed

Si II lines. Sigut & Pradhan (1998) demonstrate Ly↵’s significance in powering the

near-IR Fe II 9200Å bump. The subsequent cascade powers several UV transitions,

including those near the Mg II doublet.

4.4.1 Departure Coe�cients

We started with a simple, thermal model, but just how far do our results depart

from equilibrium? As mentioned previously, that the fit coe�cients depend on the

ground state population means we need to normalize relative to the lowest upper
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Target FeIIa/FeII FeIIb/FeII FeIIc/FeII FeIId/FeII
Typical Fe Shape

J124244.37+624659.1 0.309 0.459 0.091 0.140
J10502368-010555.5 0.191 0.481 0.049 0.279
J172314.14+654746 0.229 0.441 0.063 0.267
J092332.32+574557.3 0.190 0.409 0.080 0.321
J091301.03+525928.9 0.139 0.445 0.054 0.363
J120702.40+492853.2 0.147 0.445 0.041 0.368

PHL 1811-like Fe Shape
PHL 1811 0.120 0.240 0.159 0.481
J094257.808-004705.2 0.137 0.385 0.212 0.266
J014940.12+0.001718.0 0.140 0.421 0.000 0.439
J143613.18+045400.0 0.181 0.303 0.000 0.517
J231253.05+144453.3 0.161 0.535 0.000 0.305
J094021.12+033144.7 0.161 0.453 0.000 0.386
Thermal Equilibrium, 104 K 0.789 0.200 0.009 0.002

Table 4.3: Fe II Results: Fraction of the fitted Fe II flux from each upper level energy
bin.

level energy bin to excise its influence. Table 4.5 gives the departure coe�cients

relative to that lowest bin. As might be expected, the upper levels depart are

significantly overpopulated relative to equilibrium, departing by a few to several

orders of magnitude. The uppermost levels of the PHL1811-like targets appear to

depart more than the typical ones, though there is significant overlap.

4.5 Comparison to Other Templates

4.5.1 Vestergaard & Wilkes: 1Zw1

This investigation began with the inability of the Vestergaard & Wilkes (2001) 1Zw1

template to fit the Fe pseudo-continuum in PHL 1811 and other like objects. So how

well do our models fit the 1Zw1 template? Figure 4.9 shows the results, with the
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Target FeII/Fe FeIII/Fe
Typical Fe Shape

J124244.37+624659.1 0.891 0.109
J10502368-010555.5 0.944 0.056
J172314.14+654746 0.957 0.043
J092332.32+574557.3 0.958 0.042
J091301.03+525928.9 0.739 0.261
J120702.40+492853.2 0.950 0.050

PHL 1811-like Fe Shape
PHL 1811 0.797 0.203
J094257.808-004705.2 0.888 0.112
J014940.12+0.001718.0 0.749 0.251
J143613.18+045400.0 0.498 0.502
J231253.05+144453.3 0.645 0.355
J094021.12+033144.7 0.757 0.243

Table 4.4: Total Fe Results: Fraction of the fitted Fe flux from each ion, Fe II and
Fe III.

templates of Fe II in the upper panel and those of Fe II in the lower. Our models

are unable to satisfactorily fit the blue edge of the Fe II bump, though fits to all our

targets suggest Ni may do well here and with the double bump surrounding ⇠ 2200Å.

The width of the Fe II clump to the blue of the Mg II doublet, as in the other targets,

and the red side of the Mg II doublet is woefully underfit. Both suggest selective

pumping may be important.
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Target FeIIa/FeII FeIIb/FeII FeIIc/FeII FeIId/FeII
Typical Fe Shape

J124244.37+624659.1 1.00 5.85 25.74 162.36
J10502368-010555.5 1.00 9.95 22.51 524.75
J172314.14+654746 1.00 7.59 23.93 418.83
J092332.32+574557.3 1.00 8.50 36.75 608.26
J091301.03+525928.9 1.00 12.63 33.88 938.66
J120702.40+492853.2 1.00 11.92 24.14 897.48

PHL 1811-like Fe Shape
PHL 1811 1.00 7.89 115.05 1437.34
J094257.808-004705.2 1.00 11.11 135.35 699.26
J014940.12+0.001718.0 1.00 11.81 0.00 1121.34
J143613.18+045400.0 1.00 6.59 0.00 1026.21
J231253.05+144453.3 1.00 13.12 0.00 681.18
J094021.12+033144.7 1.00 11.07 0.00 859.74

Table 4.5: Fe II level contribution compared to Thermal Equilibrium, relative to the
lowest upper energy level bin.
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4.5.2 Bruhweiler & Verner

While Bruhweiler & Verner (2008) do not make their atomic data publicly available,

they do post several template models online (available at:

http://iacs.cua.edu/personnel/personal-verner-feii.cfm). Figure 4.10 shows

the 14 available models in addition to a close up of the fit to 1Zw1. The far left

panels show the fits to 1Zw1, followed by their 371 level atom model, and three

models for their 735 level atom. The remaining 10 plots show fits to models for their

830 level atom. Overall, our fits are reasonable, with the exception of the bump

leading o↵ to the blue from ⇠ 2300Å, which is consistently under fit. The Bruhweiler

& Verner (2008) models would also appear to inadequately fit the blue edge of the

Fe II bump in 1Zw1, as ours do.

Visual inspection of our fits to the Bruhweiler models show weak 12-15 eV Fe II

relative to the 7-10 eV Fe II, as was seen in the fits of our typical targets and for

1Zw1. This coupled with a lack of Fe III indicates these models would also be a poor

fit for our PHL1811-like targets. The biggest factor in achieving comparable 12-15

eV and 7-10 eV Fe II seems to be the inclusion of more levels, 371 to 735 to 870.

This should not be surprising since the inclusion of more energy levels contributes to

the highest excitation bin, but no trend with density, ionization or microtubulance

parameter is observed.
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4.6 Conclusions

Although our model is simple, with levels populated thermally and the gas transparent

to radiation, we are able to demonstrate that the Fe II bump in PHL 1811-like objects

appears to need a larger contribution from the more highly excited levels as well as

a larger contribution from Fe III.
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Chapter 5

Conclusions

So what have we learned?

P V absorption is only observed in thick broad absorption line outflows and

⇠ 10% of the targets studied, consistent with the moderate to strong figure from

Filiz Ak et al. (2014) for C IVS0 BALs. The maximum velocity of a trough is limited

by its luminosity and only the most luminous targets can drive the highest velocity

troughs, consistent with the envelope relationship of Laor & Brandt (2002) and

Ganguly & Brotherton (2008).

The observed variability in the low luminosity, narrow line Seyfert 1 galaxy

WPVS007 is consistent with arising from a variable scale height torus rotating into

the line of sight. The decreased brightness, shallower, lower velocity troughs, and

increased reddening point to a dusty occultation, while measures of the location of

the absorbing gas put it in a location consistent with the torus. This is the first UV

occultation observed.

Modeling of UV Fe II and Fe III emission in PHL1811-like AGN is consistent

with a higher contribution from more highly excited levels of Fe II and additional

Fe III compared with more typical strong Fe emitting AGN, as put forth by Leighly

et al. (2007).
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Appendix A

Acronyms

AGN Active Galactic Nucleus

BAL Broad Absorption Line

BALQSO Broad Absorption Line Quasi-Stellar Object

BLR Broad Line Region

BOSS Baryon Oscillation Spectroscopic Survey

CIAO Chandra Interactive Analysis of Observations

COS Cosmic Origins Spectrograph

FITS Flexible Image Transport System

FOS Faint Object Spectrograph

FUV Far UltraViolet

HLSP Higher Level Science Product

HST Hubble Space Telescope

IDL Interactive Data Language

ISM Interstellar Medium

MAST Barbara A. Mikulski Archive for Space Telescopes
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NED NASA/IPAC Extragalactic Database

NIST National Institutes of Standards and Technology

NUV Near UltraViolet

POA Post-Operational Archives

PyRAF Python-based interface to the Image Reduction and Analysis Facility

(IRAF)

SDSS Sloan Digital Sky Survey

SNR signal-to-noise ratio

ST-ECF Space Telescope - European Coordinating Facility

STIS Space Telescope Imaging Spectrograph

STScI Space Telescope Science Institute

Swift UVOT Swift UV-optical Telescope
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Appendix B

P V Project: Parameters of Interest and Their

Estimated Errors

This appendix explains the origin and shows the derivation of the quantities measured

in the P V Project, described in Chapter 2.

B.1 Direct Parameters

The following parameters are gathered directly from the data or normalized flux

without depending on the derivation of the optical depth profile.

B.1.1 log luminosity

The only spectral region common to all of the targets in our sample is that covered

by P V ��1118Å, 1128Å. For that reason we choose to define our luminosity based

on the flux at the oscillator strength weighted average of the P V doublet line, 1121Å.

Because any given spectrum may have absorption in the immediate vicinity, we take

the flux at this wavelength from the modeled flux, I0, instead of directly from the

data.

The flux measured at Earth is related to the intrinsic luminosity of the AGN by

the geometric dilution factor:

L = 4⇡D2
L F (B.1)

where L is the luminosity in question, F is the flux taken at the wavelength described

above, and DL is the luminosity distance, which is related to the comoving transverse
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distance, DM , by:

DL = (1 + z)DM (B.2)

DM is related by the comoving radial distance, DC , by

DM =

8
>>>>>>>><

>>>>>>>>:

DHp
⌦k

sinh(
p

⌦k
DC
DH

) ⌦k > 0

DC ⌦k = 0

DH
p

|⌦k|
sin(

p
|⌦k|

DC
DH

) ⌦k < 0

(B.3)

DH is the Hubble distance and DH = c/H0, the speed of light divided by the present

day value of the Hubble constant. The density parameter ⌦k is the curvature of the

universe and together with ⌦M , the matter density, and ⌦⇤, the dark energy density,

sum to 1:

⌦M + ⌦⇤ + ⌦k = 1 (B.4)

For the cosmological parameters, we choose the final results from WMAP, in Bennett

et al. (2013), presented here in Table B.1. From the values in Table B.1 and Equation

parameter value units

⌦M 0.2865
⌦⇤ 0.7135
H0 69.32 km s�1 Mpc�1

Table B.1: Cosmological Parameters from WMAP Final Results, Bennett et al.
(2013).

B.4, we see ⌦k = 0, consistent with a flat universe. Equation B.3 and ⌦k = 0 tell us
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DM = DC . The comoving radial distance, DC , is:

DC = DH

Z z

0

dz0

E(z0)
(B.5)

where z is the redshift of the AGN and E(z) is the Hubble parameter:

E(z) =
p

⌦M(1 + z)3 + ⌦k(1 + z)2 + ⌦⇤ (B.6)

Putting Equations B.1, B.2, B.5, and B.6 together, we get

L = 4⇡ (1 + z)2
⇣ c

H0

⌘2 h Z z

0

dz0p
⌦M(1 + z)3 + ⌦k(1 + z)2 + ⌦⇤

i2
F (B.7)

Performing dimensional analysis on Equation B.7:

⇣ [km s�1]

[km s�1 Mpc�1]

⌘2

[erg s�1 cm�2 Å�1 10�14] = [erg s�1 Å�1]
⇣Mpc

cm

⌘2

10�14 (B.8)

shows us we need to multiply the results of Equation B.7 by a conversion factor

⇣Mpc

cm

⌘2

10�14 = (3.08567758e24)2 10�14 (B.9)

to get the luminosity in [erg s�1 Å�1]. We propagate the flux errors through the

luminosity by calculating

�L =
L(F + �F )� L(F � �F )

2
. (B.10)
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For the flux errors, �F , we take an average of the flux errors in the vicinity of

1121Å directly from the data. Because the luminosities can span several orders of

magnitude, we prefer to use the log luminosity, so we calculate log L and propagate

the errors accordingly:

(�logL)
2 =

⇣@ logL
@L

�L

⌘2

=
⇣ �L

L log 10

⌘2

(B.11)

So the error in logL is �logL = �L/(L log 10).

B.1.2 vmin,ION, vmax,ION, and widthION

The minimum velocity, vmin,ION, derives from the maximum wavelength transformed

to a velocity space where zero velocity corresponds to the longer (red) wavelength

of the doublet and vmax,ION derives from the minimum wavelength transformed to

a velocity space where zero velocity corresponds to the shorter (blue) wavelength

of the doublet. To derive the minimum and maximum velocities and the width of

the absorption trough from which the profile was derived, we consider the points

where the normalized flux in the trough falls (1) just below 1 and (2) to 10% below

1. Our choice of 10% below the continuum reflects the original balnicity definition

of Weymann et al. (1991), where the trough was required to be 10% below the

continuum with a width of 2, 000 km s�1, excluding the first 3, 000 km s�1 blue-ward

of the emission peak. For vmax we call these vmax,<1 and vmax,10%, respectively. We

define vmax as the average of these two values and the error in vmax, �vmax , as half
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the di↵erence:

vmax =
vmax,<1 + vmax,10%

2
(B.12)

�vmax =
|vmax,10% � vmax,<1|

2
(B.13)

and similarly for vmin and �vmin
:

vmin =
vmin,<1 + vmin,10%

2
(B.14)

�vmin
=

|vmin,<1 � vmin,10%|

2
(B.15)

From these quantities we calculate the width in the usual way:

width = vmin � vmax (B.16)

and propagate the errors accordingly

�width =

r⇣@width
@vmin

�vmin

⌘2

+
⇣@width
@vmax

�vmax

⌘2

=
q

�2
vmin

+ �2
vmax

(B.17)

Each of these quantities can span several orders of magnitude, so we choose to

use the logarithm instead. No target has a |vmin| or |vmax| < 1, so we choose to

preserve the negative sign as an indicator of a blue-shifted velocity rather than a

negative power of ten. We define the pseudo log vmin in the following way:

log vmin = log10(vmin)
vmin

|vmin|
(B.18)
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and propagate the error bars accordingly:

�log vmin
=

r⇣@ log vmin

@vmin
�vmin

⌘2

=
�vmin

|vmin| ln 10
(B.19)

The definitions for log vmax and its corresponding error bars are similar:

log vmax = log10(vmax)
vmax

|vmax|
(B.20)

�log vmax =

r⇣@ log vmax

@vmax
�vmax

⌘2

=
�vmax

|vmax| ln 10
(B.21)

The width of the ion profile is always a positive quantity, so log width is defined in

the normal way:

log width = log10(width) (B.22)

�log width =

r⇣@ log width
@width

�width

⌘2

=
�width

width ln 10
(B.23)

B.1.3 depthION

The depth of the ion trough occurs where the normalized flux is a minimum:

depthION = 1�min
⇣ I

I0

⌘
(B.24)

The errors in the depth are the same as the errors in the normalized flux at that

minimum point:

�depthION
=

s⇣@depthION

@ I
I0

� I
I0

⌘2

= � I
I0

���
min( I

I0
)

(B.25)
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Å

�
1
)

c
1
�
tr
ou

gh
m
in
im

u
m

d
m
in
im

u
m

ve
lo
ci
ty

of
tr
ou

gh
,
(k
m
s�

1
)

e
m
ax

im
u
m

ve
lo
ci
ty

of
tr
ou

gh
,
(k
m
s�

1
)

f
w
id
th

of
tr
ou

gh
,
(k
m
s�

1
)

111



T
ab

le
B
.2

–
C
on

ti
n
ue
d
fr
om

pr
ev
io
us

pa
ge

T
A
R
G
E
T

a
L
og

L
u
m
in
os
it
yb

d
ep
th

c
v m

in
d

v m
a
x
e

w
id
th

f

(e
rg

s�
1
Å
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B.1.4 Measured Values

The measured values for the direct quantities, log luminosity, depth, vmin, vmax, and

width, are presented in table B.2.

B.2 Derived Parameters

Because the definition of the following parameters requires the deconvolution of the

optical depth profile, ⌧ION, from the absorption trough of the ion of choice, they

cannot be computed directly from the data.

B.2.1 ⌧̄ION

The average optical depth for the derived profile of the ion of choice is just:

⌧̄ION =
1

N

NX

i=1

⌧ION,i (B.26)

where i is the index of each point (wavelength or velocity bin) and N is the total

number of such points in the derived profile trough. The error in the average optical

depth is as follows:

�⌧̄ION
=

s⇣ @⌧̄ION

@⌧ION,1
�⌧ION,1

⌘2

+ ...+
⇣ @⌧̄ION

@⌧ION,N
�⌧ION,N

⌘2

=
1

N

vuut
NX

i=1

�2
⌧ION,i

(B.27)

B.2.2 f , (⌧PV = f ⇤ ⌧ION)

We multiply ⌧ION by a factor f to get the P V optical depth, ⌧PV. We use two figures

of merit to evaluate values of f and combine the results to get the upper limits and
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best values with upper and lower error bars on f . One figure of merit minimizes the

sum of the distances between the lower error bar on the data normalized flux and

the upper error bar on the calculated normalized flux, given f , to find the best f

value, fmin. This minimizing distance figure of merit should be appropriate for upper

limits, where we are looking for the maximum amount of absorption that can be

present but still hidden within the noise. The other figure of merit is a traditional

minimum �2 approach where the upper and lower bounds occur where ��2 = 6.635

and correspond to the 99% confidence interval. Our choice of the 99% confidence

interval really makes our determination of the error bars at the level of 3� rather

than 1�.

We combine the results as follows. If either the minimizing distance figure of

merit f , fmin, or the �2 figure of merit f lower bound, f�2,lo, are 0 (consistent with

no absorption), then the resulting f is an upper limit whose value is either fmin or

the f�2 upper bound, f�2,hi, whichever is greater. To summarize, for an upper limit,

f takes on the values:

f =

8
>>>>>>>><

>>>>>>>>:

fmin if f�2,lo = 0and fmin > f�2,hi

f�2,hi if f�2,lo = 0and fmin < f�2,hi

f�2,hi if fmin = 0

(B.28)
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The error bars for an upper limit measurement are as follows:

�f ,lower = f , so that f � �f ,lower = 0

�f ,upper = 0, because f + �f ,upper = f

(B.29)

If neither the minimizing distance nor the �2 lower bound fs are zero, then f is

assigned the value of the �2 best fit f . The lower error bar derives naturally from

f�2,lo and the upper error bar derives from either f�2,hi or fmin, whichever is greater.

Recall fmin is an indicator of the maximum amount of absorption we can fit in the

P V region and still be within the noise, so it would be an appropriate upper limit

whenever it is greater than f�2,hi. For a non-upper limit measurement:

f = f�2,best (B.30)

�f ,lower = f � f�2,lo (B.31)

�f ,upper =

8
>>><

>>>:

fmin � f if fmin > f�2,hi

f�2,hi � f if fmin < f�2,hi

(B.32)

B.2.3 ⌧PV

Once we have a measurement for f
�f ,upper
�f ,lower , we can construct the optical depth for

P V, ⌧PV, and its corresponding upper and lower error bars in order to compute the

average optical depth, ⌧̄PV, and depth, depthPV.
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The profile ⌧PV is reconstructed as follows:

⌧PV = f(⌧ION,b +
1

2
⌧ION,r) (B.33)

based on the assumption that P V fully covers the source and is not saturated. For

that assumption, atomic physics tells us the ratio of the optical depth profiles for

each line of the doublet should be 2:1, blue:red. ⌧ION,b is the contribution from the

blue line of the doublet, shifted to the corresponding wavelengths for the blue line

of the PV Doublet and ⌧ION,r is the contribution from the red line of the doublet.

The profiles have the same shape, ⌧ION, just separately shifted to their corresponding

wavelengths. Because the error bars on f are asymmetric, the error bars on ⌧PV are

also asymmetric. The error bars at each point have the form:

�⌧PV
=

s⇣@⌧PV
@f

�f

⌘2

+
⇣ @⌧PV
@⌧ION,b

�⌧ION,b

⌘2

+
⇣ @⌧PV
@⌧ION,r

�⌧ION,r

⌘2

=

r
(⌧ION,b +

1

2
⌧ION,r)2�2

f + f 2⌧ 2ION,b +
1

4
f 2⌧ 2ION,r

(B.34)

B.2.4 ⌧̄PV

With the re-constructed ⌧PV profile and errors, the definition of ⌧̄PV follows naturally

in the same way as ⌧̄ION:

⌧̄PV =
1

N

NX

i=1

⌧PV,i (B.35)

where i denotes the individual wavelength points. Again, the asymmetric error bars

on ⌧PV imply asymmetric errors for ⌧̄PV. They otherwise have the same form as
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�⌧̄ION :

�⌧̄PV
=

s⇣ @⌧̄PV
@⌧PV,1

�⌧PV,1

⌘2

+ ...+
⇣ @⌧̄PV
@⌧PV,N

�⌧PV,N

⌘2

=
1

N

vuut
NX

i=1

�2
⌧PV,i

(B.36)

B.2.5 depthPV

To compute depthPV, we first convert ⌧PV to a normalized flux, ( I
I0
)PV :

⇣ I

I0

⌘

PV
= e�⌧PV (B.37)

with asymmetric errors of the form:

�( I
I0

)PV
=

s
⇣@( I

I0
)PV

@⌧PV
�⌧PV

⌘2

=
⇣ I

I0

⌘

PV
�⌧PV

(B.38)

The calculation of depthPV and its error bars then follow the depthION formulation:

depthPV = 1�min
⇣ I

I0

⌘

PV
(B.39)

The errors are asymmetric and are the errors in the normalized flux at that minimum

point:

�depthPV
=

s⇣@depthPV

@( I
I0
)PV

�( I
I0

)PV

⌘2

= �( I
I0

)PV

���
min(( I

I0
)PV)

(B.40)

B.2.6 Measured Values

The measured values for the derived quantities, ⌧̄ , ⌧̄PV, and depthPV, are presented

in table B.3.
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Appendix C

P V Project: Spectral and ⌧ Profile Data

The following plots are the data and results for the individual targets in our HST

archival sample. The upper panel in each plot is the spectrum shifted to the AGN’s

rest-frame. The continuum+emission models for the ion from which we derive an

optical depth profile (Si IV, C IV, or O VI) and for P V are over-plotted in red.

The left middle and lower panels are the region of the spectrum for the ion from

which we derived an optical depth profile and for P V, respectively. Again, the

continuum+emission models are over-plotted in red. The middle right panel is

the optical depth profile for the ion from which we chose to derive one. Based no

availability of data and existence of absorption we chose to derive profiles first from

Si IV, next from C IV or lastly from O VI.

The lower right panel is the derived optical depth profile applied to the normalized

flux in the P V region. The ⌧ profile is applied to each line of the P V doublet, blue

for 1117.98Å and red for 1128.01Å. A green line shows the contribution from both

where they overlap. If the best fit factor from the �2 method is not zero, the factor

used to plot the applied profile is the best fit factor and the plot is labelled with ‘best

fit’. If the best fit factor from the �2 method is zero, then the factor used to plot the

applied profile is the upper limit and the plot is labelled with ‘upper limit’. These

factors and upper limits are for the case where the profile was derived by forcing full

covering. They are applied assuming full covering also.
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Figure C.1
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Figure C.2
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Figure C.3
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Figure C.4
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Figure C.5
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Figure C.6
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Figure C.7
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Figure C.8
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Figure C.9
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Figure C.10
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Figure C.11
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Figure C.12
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Figure C.13

134



Figure C.14
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Figure C.15
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Figure C.16
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Figure C.17
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Figure C.18
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Figure C.19
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Figure C.20
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Figure C.21
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Figure C.22
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Figure C.23
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Figure C.24

145



Figure C.25
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Figure C.26
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Figure C.27
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Figure C.28
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Figure C.29
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Figure C.30
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Figure C.31
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Figure C.32
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Figure C.33
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Figure C.34
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Figure C.35
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Figure C.36
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Figure C.37
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Figure C.38
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Figure C.39
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Figure C.40
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Figure C.41
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Figure C.42
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Figure C.43
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Figure C.44
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Figure C.45
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Figure C.46
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Figure C.47
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Figure C.48
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Figure C.49
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Figure C.50
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Figure C.51
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Figure C.52
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Figure C.53
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Figure C.54
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Figure C.55
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Figure C.56
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Figure C.57
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Figure C.58
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Figure C.59
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Figure C.60
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Figure C.61
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Figure C.62
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Figure C.63
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Figure C.64
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Figure C.65
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Figure C.66
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Appendix D

P V Project: Removed Targets

Over the course of developing and applying our method we had to remove some

targets from our sample. In this appendix we explain our various reasons for doing

so.

D.1 Slit-less Observations

Three of our initial targets were performed as slit-less observations in STIS. Without

independent flux measurements we cannot calibrate these spectra and therefore

removed them from our sample. These objects are: Kaz102, HE1113+641, and

IR07546+3928.

D.2 No Apparent Absorption

After combining the observations of some targets, no apparent absorption was

identified in their spectra. We removed these targets from our sample. These targets

include: QSO B1435-0645 (STIS, COS), PG 1415+451 (FOS), PKS0252-549 (STIS),

and FBQSJ1010+3003 (COS).

D.3 Narrow Lines with Un-Physical ⌧ Ratios

Atomic physics tells us the ratio of optical depths for the blue to red lines of the

resonance doublets for all our ions of interest should be 2:1. Partial covering can
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reduce the apparent optical depth ratio to as low as 1:1. Anything outside of those

ratios is unphysical and therefore the absorption is not due to the ion doublet of

interest. We removed the following targets for this reason: SDSSJ122035.10+385316.4,

SDSSJ110406.94+314111.4, and HE0226-4110.

D.4 Narrow Lines without Partial Covering

Some narrow absorption from O VI and C IV can be generated from intervening

galaxies rather than the AGN itself. [REFERENCE] We required our subset of O VI

and C IV targets narrower than ⇠ 500(km s�1) to exhibit partial covering so as not

to be confused with potential absorption from intervening galaxies. This requirement

of partial covering removes the following targets: SDSSJ122102.49+155447.0 (COS),

SDSSJ152139.66+033729.2 (COS), and QSO B1617+1731 (COS).

D.5 O VI BAL blended with Ly↵ Damping Wings

Three of our initial targets have geocoronal Ly↵ damped absorption overlapping

the O VI absorption. Because we cannot reliably deconvolve this absorption, we

remove them from our sample. These three targets are: PG 0923+201 (COS, STIS),

2MASX-J01013113+4229356 (COS) and SDSSJ021218.32-073719.8 (COS).

D.6 Other

PDS456
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Appendix E

WPVS007: ISM Line Measurements

We check each nod position (FPPOS and central wavelength) observation for de-

viations from known ISM lines by modeling them with a linear polynomial and

an absorption gaussian in their immediate vicinity using CIAO Sherpa. We then

compute a constant shift using the measured deviations and 1� confidence interval

error bars. The results are in Tables E.1, E.2, E.3, E.4 for the June 2010, June 2013,

December 2013, and March 2015 data respectively. Lines in some spectra are unable

to be measured for various reasons. A comment on why they may not be measurable

is given in place of the measured data in the table.

The footnotes are as follows:

(a) Reference positions from Blades et al. [REFERENCE]

(b) Reference positions from the NIST Atomic Lines Database [REFERENCE]

(c) Measured line position from CIAO Sherpa

(d) 1� confidence interval error bars, rounded to 1 significant digit

(e) Calculated wavelength separation, wavelength separation = measured - NIST,

rounded to the same decimal place as the error
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Table E.1: WPVS007 HST COS June 2010 ISM Line Measurements

wavelength (Å)
wavelength

species
separatione

Bladesa NISTb measuredc errord (Å)
LB5A01XYQ SHIFT = �0.6± 0.1

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 o↵ edge of detector
O I 1302.168 1302.168 o↵ edge of detector
Si II 1304.370 1304.370 o↵ edge of detector
C II 1334.532 1334.532 1335.34 0.01 0.81
Si II 1526.720 1526.720 1527.47 0.03 0.75
Fe II 1608.446 1608.446 within noise
Al II 1670.787 1670.7867 1671.32 0.1 0.5

LB5A01YFQ SHIFT = �0.70± 0.09

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 o↵ edge of detector
O I 1302.168 1302.168 1303.03 0.03 0.86
Si II 1304.370 1304.370 1305.16 0.03 0.79
C II 1334.532 1334.532 1335.58 0.02 1.05
Si II 1526.720 1526.720 1527.53 0.06 0.81
Fe II 1608.446 1608.446 1609.06 0.2 0.6
Al II 1670.787 1670.7867 1671.43 0.08 0.64

LB5A01YFQ SHIFT = �0.7± 0.1

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 o↵ edge of detector
O I 1302.168 1302.168 1303.16 0.03 0.99
Si II 1304.370 1304.370 1305.25 0.07 0.88
C II 1334.532 1334.532 1335.64 0.03 1.11
Si II 1526.720 1526.720 1527.47 0.05 0.75
Fe II 1608.446 1608.446 within noise
Al II 1670.787 1670.7867 1671.44 0.1 0.7
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Table E.2: WPVS007 HST COS June 2013 ISM Line Measurements

wavelength (Å)
wavelength

species
separatione

Bladesa NISTb measuredc errord (Å)
LC2201MJQ SHIFT = 0.2± 0.1

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 o↵ edge of detector
O I 1302.168 1302.168 o↵ edge of detector
Si II 1304.370 1304.370 o↵ edge of detector
C II 1334.532 1334.532 1334.41 0.07 -0.12
Si II 1526.720 1526.720 1526.32 0.2 -0.4
Fe II 1608.446 1608.446 1608.48 0.4 0.0
Al II 1670.787 1670.7867 1670.52 0.2 -0.3

LC2201MLQ SHIFT = +0.26± 0.09

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 o↵ edge of detector
O I 1302.168 1302.168 1301.75 0.04 -0.42
Si II 1304.370 1304.370 1303.94 0.07 -0.43
C II 1334.532 1334.532 1334.53 0.06 -0.00
Si II 1526.720 1526.720 1526.57 0.2 -0.2
Fe II 1608.446 1608.446 within noise
Al II 1670.787 1670.7867 1670.52 0.6 -0.3

LC2201MNQ SHIFT = 0.06± 0.07 = NO SHIFT

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 1260.56 0.06 0.14
O I 1302.168 1302.168 1302.13 0.07 -0.04
Si II 1304.370 1304.370 1304.09 0.2 -0.3
C II 1334.532 1334.532 1334.68 0.05 0.15
Si II 1526.720 1526.720 1526.63 0.09 -0.09
Fe II 1608.446 1608.446 1608.36 0.4 -0.1
Al II 1670.787 1670.7867 1670.52 0.1 -0.3

LC2201MPQ SHIFT = 0.00± 0.08 = NO SHIFT

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 1260.56 0.05 0.14
O I 1302.168 1302.168 1302.16 0.05 -0.01
Si II 1304.370 1304.370 1304.57 0.07 0.20
C II 1334.532 1334.532 1334.85 0.05 0.32
Si II 1526.720 1526.720 1526.53 0.1 -0.2
Fe II 1608.446 1608.446 1608.29 0.2 -0.2
Al II 1670.787 1670.7867 1670.68 0.2 -0.1
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Table E.3: WPVS007 HST COS December 2013 ISM Line Measurements

wavelength (Å)
wavelength

species
separatione

Bladesa NISTb measuredc errord (Å)
LC2202T4Q SHIFT = �0.35± 0.03

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 o↵ edge of detector
O I 1302.168 1302.168 o↵ edge of detector
Si II 1304.370 1304.370 o↵ edge of detector
C II 1334.532 1334.532 1334.93 0.06 0.40
Si II 1526.720 1526.720 1527.0 0.1 0.3
Fe II 1608.446 1608.446 within noise
Al II 1670.787 1670.7867 1671.14 0.09 0.35

LC2202T6Q SHIFT = �0.5± 0.2

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 o↵ edge of detector
O I 1302.168 1302.168 1302.19 0.08 0.02
Si II 1304.370 1304.370 1304.32 0.08 -0.05
C II 1334.532 1334.532 1335.22 0.07 0.69
Si II 1526.720 1526.720 1527.11 0.1 0.4
Fe II 1608.446 1608.446
Al II 1670.787 1670.7867 1671.4 0.2 0.6

LC2202TIQ SHIFT = �0.52± 0.03

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 1260.98 0.09 0.56
O I 1302.168 1302.168 1302.74 0.09 0.57
Si II 1304.370 1304.370 1304.88 1 1
C II 1334.532 1334.532 1335.16 0.07 0.63
Si II 1526.720 1526.720 1527.25 0.09 0.53
Fe II 1608.446 1608.446 1609.08 1 1
Al II 1670.787 1670.7867 1671.21 0.2 0.4

LC2202TLQ SHIFT = �0.65± 0.05

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 1261.13 0.08 0.71
O I 1302.168 1302.168 1302.85 0.07 0.68
Si II 1304.370 1304.370 1304.88 0.08 0.51
C II 1334.532 1334.532 1335.22 0.07 0.69
Si II 1526.720 1526.720 1527.28 0.1 0.6
Fe II 1608.446 1608.446 1608.87 0.2 0.4
Al II 1670.787 1670.7867 1671.47 0.2 0.7
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Table E.4: WPVS007 HST COS March 2015 ISM Line Measurements

wavelength (Å)
wavelength

species
separatione

Bladesa NISTb measuredc errord (Å)
LCSY01EMQ SHIFT = �0.27± 0.09

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 1260.65 0.07 0.23
O I 1302.168 1302.168 heavily blended with airglow
Si II 1304.370 1304.370 heavily blended with airglow
C II 1334.532 1334.532 1334.91 0.09 0.38
Si II 1526.720 1526.720 1527.3 0.3 0.6
Fe II 1608.446 1608.446 1608.7 0.2 0.3
Al II 1670.787 1670.7867 1671.0 0.2 0.3

LCSY01EOQ SHIFT = �0.4± 0.1

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 1260.76 0.07 0.3
O I 1302.168 1302.168 heavily blended with airglow
Si II 1304.370 1304.370 heavily blended with airglow
C II 1334.532 1334.532 1334.89 0.08 0.4
Si II 1526.720 1526.720 1526.8 0.3 0.1
Fe II 1608.446 1608.446 1609.12 0.6 0.7
Al II 1670.787 1670.7867 1671.2 0.2 0.4

LCSY01EQQ SHIFT = �0.33± 0.07

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 1260.64 0.08 0.22
O I 1302.168 1302.168 1302.3 0.2 0.1
Si II 1304.370 1304.370 1304.5 0.2 0.1
C II 1334.532 1334.532 1335.04 0.08 0.51
Si II 1526.720 1526.720 1527.0 0.1 0.2
Fe II 1608.446 1608.446 1608.7 0.3 0.3
Al II 1670.787 1670.7867 1671.3 0.3 0.5

LCSY01ESQ SHIFT = �0.28± 0.08

FUV

8
>>>>>>>><

>>>>>>>>:

Si II 1260.421 1260.422 1260.64 0.08 0.21
O I 1302.168 1302.168 1302.82 0.06 0.65
Si II 1304.370 1304.370 1304.66 0.06 0.29
C II 1334.532 1334.532 1334.85 0.09 0.32
Si II 1526.720 1526.720 1526.9 0.1 0.2
Fe II 1608.446 1608.446 within noise
Al II 1670.787 1670.7867 1671.1 0.3 0.3
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Appendix F

WPVS007: Modeling Normalized Flux

F.1 Singlet

For a singlet line, at each wavelength (�), only one velocity contributes to the

absorption. In the simplest case, the normalized intensity looks like:

I

I0
(�) = e�⌧(v)

In the case where the absorber only partially covers the source, we need to take

the covering fraction into account. Traditionally this looks like:

I

I0
(�) = (1� Cf (v)) + Cf (v)e

�⌧(v)

The term (1� Cf (v)) is the uncovered fraction at velocity, v. Photons not going

through the absorber get through without being attenuated, so for the fractional area

(1� Cf ), I = I0. Photons going through the absorber, of fractional area Cf (v), are

attenuated in the normal way, where I = I0e
�⌧ . For a single line, there are no addi-

tional constraints on the shape of the covering fraction as a function of velocity, Cf (v).

We can rewrite the above equation to think instead about the e↵ect absorption
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has on the normalized intensity:

I

I0
(�) = 1� Cf (v) ⇤ (1� e�⌧(v))

Now we can more easily see the reduction in normalized intensity caused by the

absorber, where Cf(v) is the fraction of the source covered by the absorber, and

(1� e�⌧(v)) is the fraction of light that gets absorbed.

For the special case of full covering, Cf (v) = 1 and we recover the simplest case,

I
I0

= e�⌧ . For the trivial case of no absorption, Cf(v) = 0 and we recover the fact

that I = I0.

F.2 Doublet

For a doublet line, with velocity separation �v, two velocities contribute to the

absorption at each wavelength, �. At a given �, atoms traveling with velocity v can

absorb the shorter wavelength of the doublet (the blue line), and atoms traveling

with velocity v +�v can absorb the longer wavelength of the doublet (the red line).

Optical depth is related to the number of absorbers by:

⌧ ⇠ fij ⇤ � ⇤N

196



where fij is the oscillator strength for absorption from lower level i to upper level j

and � is the wavelength of the line. So the optical depth profiles of the doublet lines

are related by the ratio of their f ⇤ �s:

⌧b
⌧r

=
fij ⇤ �b

fik ⇤ �r

if the blue line absorbs from level i to j and the red line from i to k. For the special

case of the UV resonance lines this ratio is ⇠ 2 (see Table F.1).

�(Å) fij ⌧b/⌧r

O VI

1031.912 0.133
2.0040795849

1037.613 0.0660
P V

1117.98 0.450
2.0180936909

1128.01 0.221
N V

1238.821 0.156
1.9935903006

1242.804 0.0780
Si IV

1393.76 0.513
1.9988431293

1402.77 0.255
C IV

1548.202 0.190
1.9924882346

1550.774 0.0952

Table F.1: Resonance Line Data

So if the blue line optical depth is ⌧(v), then at the same wavelength, � the red

line optical depth is 1
2⌧(v +�v).
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F.2.1 Full Covering, Cf (v) = 1

Let’s explore the case of full covering. For the case where the blue line absorbs first,

at the point where the blue line is absorbed,

I = I0e
�⌧(v)

Moving to the point where the red line is absorbed, the incident intensity on the red

line gas is the resultant intensity from the blue line gas. So the final intensity is:

I = (I0e
�⌧(v))e�

1
2
⌧(v+�v)

which reduces to

I = I0e
�(⌧(v)+ 1

2
⌧(v+�v))

and shows that ⌧ is commutative. Let’s check: For the case where the red line

absorbs first, at the point where the blue line is absorbed,

I = I0e
�( 1

2
⌧(v+�v)).

Moving to the point where the blue line is absorbed, the incident intensity on the

blue line gas is the resultant intensity from the red line gas. So the final intensity is:

I = (I0e
� 1

2
⌧(v+�(v)))e�⌧(v)
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which reduces to

I = I0e
�( 1

2
⌧(v+�v)+⌧(v))

which is indeed commutative.

F.2.2 Constant Partial Covering, Cf (v) = constant

Now we’ll take a look at partial covering, but start simple with a covering fraction

constant in velocity. For simplicity, we assume maximal overlap in the gas geometry.

If the blue line absorbing gas absorbs first:

[source] -------> {blue} -------> {red}

From the source, before we have any absorption, I/I0 = 1. From above, we know

the e↵ect the blue line absorbing gas cloud has is

�Cf (1� e�⌧(v))

By assuming maximal overlap and a constant covering fraction, the red line absorbing

gas fully covers the blue line absorbing region. The incident intensity into the red

line absorbing gas is I0e�⌧(v), so the contribution to the normalized intensity from

the red line absorbing gas is

�Cfe
�⌧(v)(1� e�

1
2
⌧(v+�v))
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Putting it together, the final emerging normalized intensity is

I

I0
= 1� Cf (1� e�⌧(v))� Cfe

�⌧(v)(1� e�
1
2
⌧(v+�v))

I

I0
= 1� Cf + Cfe

�⌧(v)
� Cfe

�⌧(v) + Cfe
�(⌧(v)+ 1

2
⌧(v+�v))

I

I0
= (1� Cf ) + Cfe

�(⌧(v)+ 1
2
⌧(v+�v))

The normalized intensity for a doublet with a constant covering fraction looks just

like partial covering for a singlet, but with the optical depth profile for the full

covering of a doublet. Again, the optical depths commute, but for completeness,

let’s check. If the red line absorbing gas absorbs first:

[source] -------> {red} -------> {blue}

From the source, before we have any absorption, I/I0 = 1. From above, we know

the e↵ect the red line absorbing gas cloud has is

�Cf (1� e�
1
2
⌧(v+�v))

By assuming maximal overlap and a constant covering fraction, the red line absorbing

gas fully covers the blue line absorbing region. The incident intensity into the blue

line absorbing gas is I0e�
1
2
⌧(v+�v), so the contribution to the normalized intensity

from the red line absorbing gas is

�Cfe
� 1

2
⌧(v+�v)(1� e�⌧(v))
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Putting it together, the final emerging normalized intensity is

I

I0
= 1� Cf (1� e�

1
2
⌧(v+�v))� Cfe

� 1
2
⌧(v+�v)(1� e�⌧(v))

I

I0
= 1� Cf + Cfe

� 1
2
⌧(v+�v)

� Cfe
� 1

2
⌧(v+�v) + Cfe

�( 1
2
⌧(v+�v)+⌧(v))

I

I0
= (1� Cf ) + Cfe

�( 1
2
⌧(v+�v)+⌧(v))

So indeed the optical depth is commutative.

F.2.3 Non-Constant Partial Covering

Let’s now consider each line of the doublet having its own covering fraction. Each

wavelength, �, ties the optical depth profiles at two velocities, v and v +�v. So

if we start by making the simple consideration that either Cf(v) > Cf(v + �v)

or Cf(v) < Cf(v + �v), then Cf has to be either a monotonically decreasing or

monotonically increasing function of velocity, respectively.

Monotonically Decreasing Covering Fraction: Cf (v) > Cf (v +�v)

Again assuming maximum overlap of the absorbing gas regions, starting with the

case where the blue line gas absorbs first and has the larger covering fraction:

[source] -------> {BLUE} -------> {red}

From the source, before we have any absorption, I/I0 = 1. From above, we know

the e↵ect the blue line absorbing gas cloud has is

�Cf (v)(1� e�⌧(v))
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If the red line absorbing gas has a smaller covering fraction and completely overlaps

the blue line absorbing gas, then it fully covers the blue line absorbing gas. The

incident intensity into the red line absorbing gas is I0e�⌧(v). So the e↵ect of the red

line absorbing gas on the normalized intensity is

�Cf (v +�v)e�⌧(v)(1� e�
1
2
⌧(v+�v))

Putting it together, the final emerging normalized intensity is:

I

I0
= 1� Cf (v)(1� e�⌧(v))� Cf (v +�v)e�⌧(v)(1� e�

1
2
⌧(v+�v))

I

I0
= 1� Cf (v) + Cf (v)e

�⌧(v)
� Cf (v +�v)e�⌧(v) + Cf (v +�v)e�(⌧(v)+ 1

2
⌧(v+�v))

I

I0
= (1� Cf (v)) + (Cf (v)� Cf (v +�v))e�⌧(v) + Cf (v +�v)e�(⌧(v)+ 1

2
⌧(v+�v))

where (1�Cf (v)) is the uncovered fraction, (Cf (v)�Cf (v+�v))e�⌧(v) is the fraction

covered by the blue line absorbing region and NOT the red line absorbing region,

and

Cf (v +�v)e�(⌧(v)+ 1
2
⌧(v+�v))

is the fraction covered by BOTH the blue and red line absorbing regions. We know

that absorption is commutative (that it does not matter whether the blue line

absorbing region or the red line absorbing region absorbs first), so let’s check. Now

the red line absorbing region absorbs first but still has the smaller covering fraction:

[source] -------> {red} -------> {BLUE}
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From the source, before we have any absorption, I/I0 = 1. From above, we know

the e↵ect the red line absorbing gas cloud has is

�Cf (v +�v)(1� e�
1
2
⌧(v+�v))

Considering maximal overlap and that the blue line absorbing gas has a larger

covering fraction, the blue line absorbing gas fully covers the red line absorbing

region. The incident intensity into the blue line absorbing gas that covers the red line

absorbing gas is I0e�
1
2
⌧(v+�v). The contribution to the normalized intensity from the

blue line absorbing gas has two parts, the fraction that covers the red line absorbing

gas:

�Cf (v +�v)e�
1
2
⌧(v+�v)(1� e�⌧(v))

and the fraction that does not:

�(Cf (v)� Cf (v +�v))e�(⌧(v)+ 1
2
⌧(v+�v))

Putting it together, the final emerging normalized intensity is

I

I0
= 1� Cf (v +�v)(1� e�

1
2
⌧(v+�v))� Cf (v +�v)e�

1
2
⌧(v+�v)(1� e�⌧(v))

� (Cf (v)� Cf (v +�v))(1� e�⌧(v))
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I

I0
= 1� Cf (v +�v) + Cf (v +�v)e�

1
2
⌧(v+�v)

� Cf (v +�v)e�
1
2
⌧(v+�v)

+ Cf (v +�v)e�( 1
2
⌧(v+�v)+⌧(v))

� Cf (v) + Cf (v +�v)

+ Cf (v)e
�⌧(v)

� Cf (v +�v)e�⌧(v)

I

I0
= (1� Cf (v)) + (Cf (v)� Cf (v +�v))e�⌧(v) + Cf (v +�v)e�( 1

2
⌧(v+�v)+⌧(v))

So indeed the optical depth is commutative.

Monotonically Increasing Covering Fraction: Cf (v) < Cf (v +�v)

Again assuming maximum overlap of the absorbing gas regions, but starting with

the case where the red line gas absorbs first and has the larger covering fraction:

[source] -------> {RED} -------> {blue}

From the source, before we have any absorption, I/I0 = 1. From above, we know

the e↵ect the red line absorbing gas cloud has is

�Cf (v +�v)(1� e�
1
2
⌧(v+�v))

If the blue line absorbing gas has a smaller covering fraction and completely overlaps

the red line absorbing gas, then it fully covers the red line absorbing gas. The

incident intensity into the red line absorbing gas is I0e�
1
2
⌧(v+�v). So the e↵ect of the

blue line absorbing gas on the normalized intensity is

�Cf (v +�v)e�
1
2
⌧(v+�v)(1� e�⌧(v))
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Putting it together, the final emerging normalized intensity is:

I

I0
= 1� Cf (v +�v)(1� e�

1
2
⌧(v+�v))� Cf (v)e

� 1
2
⌧(v+�v)(1� e�⌧(v))

I

I0
= 1� Cf (v +�v) + Cf (v +�v)e�

1
2
⌧(v+�v)

� Cf (v)e
� 1

2
⌧(v+�v) + Cf (v)e

�( 1
2
⌧(v+�v)+⌧(v))

I

I0
= (1� Cf (v)) + (Cf (v)� Cf (v +�v))e�⌧(v) + Cf (v +�v)e�(⌧(v)+ 1

2
⌧(v+�v))

where (1�Cf (v)) is the uncovered fraction, (Cf (v)�Cf (v+�v))e�⌧(v) is the fraction

covered by the blue line absorbing region and NOT the red line absorbing region,

and

Cf (v +�v)e�(⌧(v)+ 1
2
⌧(v+�v))

is the fraction covered by BOTH the blue and red line absorbing regions. We know

that absorption is commutative (that it does not matter whether the blue line

absorbing region or the red line absorbing region absorbs first), so let’s check. Now

the red line absorbing region absorbs first but still has the smaller covering fraction:

[source] -------> {red} -------> {BLUE}

From the source, before we have any absorption, I/I0 = 1. From above, we know

the e↵ect the red line absorbing gas cloud has is

�Cf (v +�v)(1� e�
1
2
⌧(v+�v))
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Considering maximal overlap and that the blue line absorbing gas has a larger

covering fraction, the blue line absorbing gas fully covers the red line absorbing

region. The incident intensity into the blue line absorbing gas that covers the red line

absorbing gas is I0e�
1
2
⌧(v+�v). The contribution to the normalized intensity from the

blue line absorbing gas has two parts, the fraction that covers the red line absorbing

gas:

�Cf (v +�v)e�
1
2
⌧(v+�v)(1� e�⌧(v))

and the fraction that does not:

�(Cf (v)� Cf (v +�v))e�(⌧(v)+ 1
2
⌧(v+�v))

Putting it together, the final emerging normalized intensity is

I

I0
= 1� Cf (v +�v)(1� e�

1
2
⌧(v+�v))� Cf (v +�v)e�

1
2
⌧(v+�v)(1� e�⌧(v))

� (Cf (v)� Cf (v +�v))(1� e�⌧(v))

I

I0
= 1� Cf (v +�v) + Cf (v +�v)e�

1
2
⌧(v+�v)

� Cf (v +�v)e�
1
2
⌧(v+�v)

+ Cf (v +�v)e�( 1
2
⌧(v+�v)+⌧(v))

� Cf (v) + Cf (v +�v)

+ Cf (v)e
�⌧(v)

� Cf (v +�v)e�⌧(v)

I

I0
= (1� Cf (v)) + (Cf (v)� Cf (v +�v))e�⌧(v) + Cf (v +�v)e�( 1

2
⌧(v+�v)+⌧(v))

So indeed the optical depth is commutative.
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Appendix G

Measures of Balnicity

G.1 Balnicity Index

Weymann et al. (1991) defined the balnicity index, BI, to quantitatively describe the

BAL-ness of quasar broad absorption lines. It is defined in the following way:

BI = �

Z 3,000

25,000

h
1�

f(v)

0.9

i
C(v)dv (G.1)

f(v) is the normalized flux as a function of velocity displacement from the line center.

C(v) is a step function that only becomes 1 when the quantity [1� f(v)
0.9 ] has been > 0

over a consecutive span of 2, 000 (km s�1). The first 2, 000 (km s�1) do not contribute

to the index. The 3, 000 (km s�1) lower velocity limit ensures the emission line does

not interfere with the BAL trough. Because this quantity was defined with C IV

BALs in mind, the 25, 000 (km s�1) upper limit ensures that the Si IV ��1393, 1402

emission line doublet does not interfere with the higher velocity end of the C IV

BAL.

G.2 Absorption Index

Hall et al. (2002) defined an absorption index, AI, to relax some of the restrictions

Weymann et al. (1991) imposed on the balnicity index. The lower limit on the

velocity is extended back to zero, the emission line center. The requirement on the
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step function, C(v) is relaxed to require only a continuous 450 (km s�1) produce a

positive value for [1 � f(v)
0.9 ]. The first 450 (km s�1) do not contribute to the index.

The definition looks like

AI =

Z 25,000

0

h
1�

f(v)

0.9

i
C(v)dv (G.2)

G.3 Detection Index

Pâris et al. (2012) defined a detection index, DI, to relax to include the contribution

of the first 2, 000 (km s�1). It otherwise retains the same definition as Weymann

et al. (1991):

DI = �

Z 3,000

25,000

h
1�

f(v)

0.9

i
C(v)dv (G.3)

but now the step function, C(v), is equal to 1 wherever [1� f(v)
0.9 ] > 0 for a minimum

width of 2, 000 (km s�1), not just the velocities beyond the first 2, 000 (km s�1).
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