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Abstract

The University of Oklahoma (OU) recently acquired a Zeiss Neon, a dual beam

SEM/FIB Cross beam machine. This thesis focuses on its utilization via two

independent projects, one involving the characterization of solar-cells semicon-

ductor materials while the other focuses on the FIB to provide information

about a preserved megaspore.

Part I: Solar-Cells

Third generation photovoltaics (PVs) seek to increase the efficiency of PVs and

reduce their cost. One candidate to this third generation involves the use of

quantum dot (QD) structures to create an intermediate band-gap. This de-

vice can overcome the Shockley-Queisser efficiency limit (about 30%) by better

utilizing the solar spectrum. However, the current results are far from the the-

oretical limit, partly because of the material quality of the QDs structure. This

project involves high-density self-assembled InAs/GaAs1−xSbx QDs grown by

molecular beam epitaxy at the University of Oklahoma (OU). Ultimately, size,

shape, density, composition, and crystalline quality of the QDs as well as sim-

ilar details for the matrix layers play an important role in the PV efficiency.

Hence, the characterization of these properties is important. Characterizing

multiple layers of QDs will ultimately require cross-sectional transmission mi-

xvi



croscopy; however, along the way, atomic force microscopy (AFM) and field-

emission scanning electron microscopy (FE-SEM) will more easily yield details

about the uncapped top QD layer. For example AFM accurately determines

QD density, and quantitatively describes QD shape. On the other hand, AFM

is sensitive to tip/probe-shape artifacts. Cross-sectional FE-SEM can clear up

some of these artifacts and indicate crystalline quality; cross-sectional FE-SEM

was found as a means of giving better lateral resolution than our typical AFM

results. Ultimately, cross-sectional images from a transmission electron micro-

scope (TEM), would provide the best information, however pitfalls and machine

breakage delayed us in our work; while SEM/FIB in situ TEM preparation is

now possible, it could not be operated

Part II: Megaspores

Optical and electron microscopy are critical tools for studying preserved and fos-

silized organisms. Due to its early development and refinement, light microscopy

has dominated the study of organic-walled fossils. Taxonomic identification and

discrimination is almost exclusively based on features visible under transmitted

light. However electron microscopy, and in particular TEM, has been applied to

investigations of the ultrastructure of the walls and ornament that are beyond

the resolution of light microscopy. Hypotheses for the assembly of the walls have

been formulated based on these data. Recently new techniques, such as FIB,

SEM, and synchrotron radiation tomography, have expanded the boundaries of

imaging fossils. This thesis part focuses on investigating Arcelites Hexapartitus

species megaspore, using an SEM with FIB to obtain three dimensional infor-

mation about their inner exine channels. Channels were readily imaged through

the inner exine using a number of cross-beam geometries. The channels seem

to be simply connected running through the inner part of the exine layers, how-

xvii



ever, the channels/pores are found to stop before exiting this inner exine layer

at both its inner and outer surfaces. Additionally, it was found that they are

not continuous this inner exine layer. Investigations concerning the material

obstructing the channels have begun. So far, there is no evidence of a foreign

material present. It appears that the pores simply end before exiting the layers

and have occasional nano sized regions of sporopollenin, the megaspore wall

material, blocking the channels.
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Preface

The University of Oklahoma (OU) recently acquired a Zeiss Neon EsB dual
beam SEM/FIB Cross beam machine. In addition to providing excellent reso-
lution, other accessories can be added to broaden the microscope’s functionality.
However, very few of these functions are ever used. This is partly due to a lack
of communication regarding the functions and a lack of experience on how to
operate them. During this thesis, two of these functions were studied indepen-
dently during two different projects.
The first project involves the use of a micromanipulator in order to operate in
situ TEM sample preparation. This was done through the characterisation of
QD material for solar cell application. This section was very interesting and
pleasant and is referred as part I : SEMper TEMpus fugit.
The second function that was studied is the three dimensional reconstruction
of the entine of a “fossil” megaspore. This was done by slicing the spore with
the FIB while taking images with the electron inlen detector. This is referred
as part II : Another FIB Usage: 3D Reconstruction.

xix
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SEMper TEMpus fugit
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Chapter 1

Introduction

The last century considerably transformed our way of living with the democrati-

sation of electricity. Now, other continents, and especially Africa, are facing

substantial economic and demographic growth which can only be sustained by

making major investments in the energy sector. [10] The petroleum crisis that

began in 1973, was the first sign indicating that the world could not rely solely

on fossil fuel energy. Since then, many geopolitical events, including the recent

crisis in the middle east, confirm the need of active development of alterna-

tive renewable energy. Furthermore, the effects of the now-acknowledged global

warming crisis, partially due to carbon emissions, are important to the inter-

national community. Theis concerns were publicly expressed during the 21st

United Nations Climate Change Conference held in Paris in November, 2015

([11]). There, they agreed that there is a growing need for the development of

renewable resources. This is why much current research is focused on renewable

energy including wind energy, biomass energy, hydroelectric energy, and others.

This thesis focuses on new materials for photovoltaic (PV) devices that harness

solar energy.
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Figure 1.1: The solar radiation spectrum at the top of the atmosphere, Earth
surface and the black body approximation. [1]

The Solar Resource

The Sun is a huge ball of plasma that has been providing most of Earth’s

energy for billions of years. The surface of the sun, called the photosphere,

can be well approximated as a black body with a temperature of around 6000

K that radiates into space (c.f. Figure 1.1). Using the inverse-squared rule,

Earth receives about 1.7 × 1017 Watts from the Sun’s radiation. Only about

36% of this power reaches the surface of the Earth, providing us with a power

density of about 1367 W·m−2. This is called the “solar constant” [1]. Thus, the

energy provided by the sun is about 3.3×1024J/year. This currently represents

about 6800 times our yearly energy consumption. This energy can be converted

into different forms of energy —mainly electricity and heat. However, even if

the energy provided by the the sun is gargantuan, it is useless if we do not

have efficient ways to convert it into usable forms. This is where the different

generations of photovoltaic (PV) cells become necessary. The next section will
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describe the changes that occurred within each generation of PV devices.

Photovoltaic Devices

PV is a method that transforms electromagnetic radiation into electricity. PV

is a convenient technique since it does not make any noise, lasts for years, and

thus can be integrated into our architecture without major issues.

Brief History

The PV effect was discovered by the French physicist Alexandre Edmond Bec-

querel in 1839. However, the first PV device is attributed to Charles Fritts

in the early 1880s. He created his PV device by melting a selenium film onto

a thin gold layer. Unfortunately, the low efficiency and high cost of the cell

prevented it from use in any application[12]. The first major breakthrough in

solar cell fabrication was achieved in the 1950s with the use of silicon (Si). Si

drastically increased the efficiency of solar cells up to 6% [13]. At the time,

solar cell applications were not obvious. Solar cells were primarily used as a

power supply for satellites. Humanity waited until the oil shortage during the

petroleum crisis of the 1970s to recognise the growing need of alternate energy

sources. This prompted the investigation of PV devices. In 1985, research on

Si solar cells began to rapidly pay of when an efficiency of 20% was achieved for

the first time[14].
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Figure 1.2: Efficiency and cost projections for the first, second and third gen-
eration of photovoltaic technology [2].

Photovoltaic Generations

Different technologies, including bulk Si, III-V materials, and even organic ma-

terial, have been used to build PV devices. Experts divided solar cell technology

into three generations which are summarised in Figure 1.2. The first generation,

which still represents most of the market, is characterised by its high manufac-

turing cost for middle efficiency bounded by the Shockley-Queisser limit (30%)

[15]. Second generation solar cells are often referred as thin films due to their

small thickness which varies from a few nanometres to tens of micrometres.

Therefore, they are lighter, flexible, semi-transparent and thus can easily be
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integrated in human buildings. Additionally, thin films are cheaper to produce,

with the cost per watt continually decreasing with the increase of efficiency.

However, they are less efficient and can contain toxic materials, like cadmium

unlike traditional PV devices.

Historically, Si was used to make PV devices. Studies have shown that Si has a

bandgap close to the optimal one needed for homojunction solar cells. If Gallium

Arsenide (GaAs) is a more efficient material for homojunction cells [16]. But

its costs are still too high to be competitive, needing one to rethink PV design.

The third generation aims to drastically cut the cost per watt and improve the

efficiency. This generation is still under active development. Many designs, such

as organic solar cells, tandem cells and IB cells are being proposed[2, 15]. Figure

1.2 summarises the differences between the three generations of solar cells.

This thesis focuses on material for the third generation of solar cells, and more

specifically, IB PV cells where the IB is achieved by using an array of quantum

dot. The materials involved are indium (In) arsenide QDs within a gallium (Ga)

Arsenide Sb matrix, which will be described in detail further on in this thesis.
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Chapter 2

Technical background

Now that we know more about the history of solar cells, we will focus on the

physics of QDs. In this section, we will describe the theoretical concepts involved

in PV that one needs to know in order to understand the work presented later.

Semiconductors in solar devices

Semiconductors are the basis of solar cells. Let’s work through its definition

and general consideration explaining the physics behind them. Figure 2.1 can

be used to briefly describe the differences between conductors, semiconductors

and insulators. In conductors (e.g. metals), the conduction and valence bands

overlap, making it unnecessary for electrons to transit from one band to the

other. In insulator, the bandgap is large enough to prevent visible light from

energy transitions across the bandgap. In semiconductors however, the bandgap

is narrow (∼1eV) making it possible, to excite an electron from the valence band

to the conduction band by absorbing a photon of visible light. When the electron
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Figure 2.1: Conductivity of solids, categorised in terms of their energy bandgap

leaves the valence band, an empty state (or “hole”) is left behind. The creation

of an electron-hole pair is called an exciton.

III-V materials are crystalline semiconductors made of atoms from the group

III (mainly Aluminium (Al), Ga and In) and group V (mostly Nitrogen (N),

Phosphor (P), Arsenic (As) and Sb) element from Mendeleev’s periodic table.

They usually form a zinc blende crystal structure.

III-V materials receive plenty of attention because of their unusual properties.

First of all, some components, including GaAs, InAs and InSb, have a high

electron mobility, essential in high speed operations. Furthermore, most III-V

materials have a direct bandgap that makes them efficient absorbers and emit-

ters of light. This is an important property that broadens the path towards to

optoelectronic applications. The different possible alloy combinations allow one

to perform “bandgap engineering” (for instance in tandem cells) which provides

a fairly broad range of accessible light wavelength. One can get an idea of the

accessible bandgaps from Figure 2.2.
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Figure 2.2: Energy bandgap as a function of the lattice constant for some III–V
and II–VI semiconductors [3]

Quantum Dots as Semiconductors

QDs are nano-mono-crystals. Due to their small size, smaller to the exciton Bohr

radius, they acquire confinement properties. Indeed, QDs can be understood

using the textbook case “particle in a box” which explains its alternative name

: artificial atom.

Because the exciton is confined in a space smaller than the Bohr radius, the

QDs act like macromolecules. Any change in the number of atoms (i.e. size)

results in a change in the bandgap energy. Studies have shown that an increase

in size leads to a redshift of the wavelengths associated with the QD [17]. Bruce

introduced an equation (Equation 2.1 [18]) that predicts this behaviour and

links bandgap to radius of curvature in QDs.

∆EQD(R) = Ebulk +
h2

8R2
(

1

m∗
e

+
1

m∗
h

)− 1.786e2

4πε0εrR2
(2.1)
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Figure 2.3: Comparison of bulk semiconductor, quantum dots and molecule
band structure

This particularity is quite handy in bandgap engineering and has lead to dif-

ferent methods for creating QDs. Two general strategies have been used to

manufacture QDs —the top-down and the bottom-up approaches[19]. The

top-down approach consists of nano-scale patterning. Nano-scale patterning

involves starting from crystals and molding them to desired shapes. Electron

beam lithography and photo-lithography are generally the techniques used for

patterning. The bottom-up approach is more common and generally provides

a higher density of QDs. It consist in agglomerating atoms to form the desired

structure, often through the use of Molecular Beam Epitaxy (MBE). The MBE

process builds a crystal by adding atoms layer-by-layer. To obtain QDs, the

Stranski-Krastanov method is used. It consist in depositing one material (for

instance, InAs) on top of another material (e.g. GaAs) with a slightly different

lattice constant. The strain created by the lattice-mismatch drives the cre-

ation of small islands —these are QDs. Figure 2.4 a) schematically shows the

Stranski-Krastanov method. Figure 2.4 b) qualitatively illustrates the stress

building up, creating the QDs. The growth conditions are very important and
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Figure 2.4: a) Stranski-Krastanov growth scheme b) Qualitative view of a QD
with internal strain

small changes to any of the parameters (temperature, waiting time, flux, lattice

mismatch, etc.) can drastically change the QD size, shape and density; these

parameters will be crucial to the final efficiency which affects the cost per Watt

of the cells.

Solar cell physics

PV devices are made of semiconductors and use light as the the energy source

to create excitons, which quickly dissociate into a free electron and free hole.

This section focuses on the physics of PV devices.

Propagation of light

Maxwell’s equations describe the behaviour of electromagnetic waves. While

the solution to these equations is easy to obtain in free space, where one ob-

tains planar waves (perpendicular oscillating fields moving in one direction at
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speed of light), it is more complicated to find the solution in solids. The inter-

action with conducting matter leads to a damping therm. A damping term is a

modification of the speed based on the wave frequency and the solid refractive

index. Sometimes, the interaction with non-dielectric matter can also lead to a

break in the perpendicularity of the fields.

When an electromagnetic wave goes from one medium to another, a fraction of

the wave is transmitted and the other fraction is reflected. This behaviour is

described by Fresnel’s equation (Equation 2.2)


r = Er

Ei
= n1−n2

n1+n2

t = Et
Ei

= 2n1

n1+n2

(2.2)

Respectively, Ei, Er and Et are the electric field amplitude of the incident, the

reflected wave and the transmitted wave. ñ1 and ñ2 are the complex refractive

index of the first and second media. The intensity of the waves are given by

the reflectance R = |r|2. If the first medium is a vacuum (or air), ñ1 ≈ 1 and

ñ2 = nr + ini then, equation 2.2 can be written as:

R =
(nr − 1)2 + n2

i

(nr + 1)2 + n2
i

(2.3)

Unfortunately, The reflection coefficient is typically important in semiconduc-

tors (∼ 40%) since they often have a high refractive index (∼ 3). One must then

find other ways to increase this coefficient and obtain efficient light absorbers.

The transmitted part is more complex; in semiconductors, as in conductors, the

intensity is damped because energy is transferred to the crystal. One can write

:

It = Iie
−2κz = Iie

− z
δ (2.4)
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Where κ, the so called extinction coefficient, is the complex part of the wave

vector, k̃ = k + iκ and δ the skin depth or penetration depth. δ represents

the distance it takes to reduce the intensity by a factor of 1/e ≈ 1/3. If the

transmitted wave energy is higher than the semiconductor bandgap, an exciton

can be created and the surplus of energy is converted into heat.

The homojuction cell

Once the light penetrates our sample, it interacts with it. This section presents

the homojucntion solar cell’s physics —the most basic PV device.

The single junction solar cell is a simple p-n junction. The n and p doping

creates a depletion zone where carriers are removed and the remaining ions

create an electric field. When light strikes the crystal in the depletion zone with

sufficient energy, it creates an exciton. The electric field separates the electron

from the hole. The electrons in the so called conduction band move in one

direction while the holes in the valence band, move in the opposit direction.

This can be schematised as a two band diagram.

With a continuous amount of light striking the crystal, a difference of potential

is created allowing electric work to be provided if any device is connected to the

cell.

Quantum Dots Solar Cells and Project Advancement

Showing promising results, the homojunction solar cell was used in the first

generation of PV devices. A lot of studies were done on homojunction cells

and it was found that the maximum efficiency, called the Shockley limit, was
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Figure 2.5: Intermediate Band Solar Cell Energetic structure of an IB solar
cell of non-uniform QD heterojunctions. The minimum energy needed to excite
an electron from the intermediate states to the conduction band and from the
valence band to the intermediate states are εCI and εIV , respectively. This
intermediate states can be describe by a quasi-Fermi level : εF I [4].

around 30% [15]. To overcome this limit, new designs needed to be proposed.

One design that is currently being proposed is the IBQD. The idea in IBQD is to

increase the cell efficiency by adding another band. This would allow photons

with three different wavelengths to be absorbed (c.f. Figure 2.5 ). In most

approaches, including the one outlined here, stacked arrays of QD are used to

create this IB. Those QDs are addend in the depletion zone, and their quantum

confinments effect allows additional available states to be ocupied by carriers.

These states width is define by the uniformity of the QD layer and —assuming

all the carriers in the intermediate states are in electrochemical equilibrium—

their occupancy statistics may be described by a single quasi-Fermi level εFI [4].

To increase the absorption, several layers within the penetration depth of light

must be built.1 However, increasing the number of layers increases the strain
1The penetration depth can be quite short. In this study, for instance, GaAs’s penetration

depth for the incident light, having a wavelength of 540 nanometres, is 93 nanometres. [20]
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Figure 2.6: Layer structure for QD samples, from [5]

within the material. This affects the material’s absorption and conduction [21].

Therefore, increasing the number of QD layers is not always beneficial. Indeed,

an experimental study has shown that —for InAs QDs on a GaAs matrix— in-

ncreasing the number of layers from 10 to 20 to 50 decreases the cell performance

[22]. This is why Levy and Honsberg proposed some stress compensation ma-

terial [4]. However, introducing Sb changes the confinement potential and can

lead to a type II band alignment [23]. OU is currently studying such materials

and has grown several sets of InAs on a GaAs1−xSbx matrix. The composition

of the sample is described in figure 2.6. The shape and density of the QDs was

significantly influenced by the concentration of Sb, needing one to characterise

those materials. Photoluminescence (PL) measurements and AFM were used

on these samples to compare them [24]. The T657 sample featuring 13% of Sb,

seemed to possess the best properties. PL provides different types of informa-

tion. The height of the PL peak gives us an idea of the density of the QDs, the

position of the peak gives us an idea of the size of the QDs, and the width of

the peak gives us an idea of the distribution of the size of the QDs. However,

more quantitative information is needed regarding the shape of such materials

in order to enhance the growth method. Ultimately, TEM would provide the

best information; however, it is a very time consuming process. This is why
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obtaining similar information with AFM and SEM was investigated.
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Chapter 3

Atomic Force Microscopy

In order to obtain information such as the density, the shape and the volume

of the QDs, AFM was firstly used. AFM is a fast and convenient (vacuum-

free) technique that allows one to obtain 3D pictures of a surface morphology.

Globally speaking, it consists of scanning the sample with a sharp tip on the

end of a flexible cantilever. The tip-sample interaction is monitored by a laser

and provides topological information. There are three ways of operating the

machine; the contact, tapping and non-contact modes. The contact and tapping

modes are more precise and generally used more often than the non-contact

mode, however, the sample and the tip can be damage during the operation.

This is why we choose to work with the non-contact mode.

In this section we will describe the work done with the OU AFM; an Asylum

Research MFP-3D-Bio using a Asylum AC160TS-R3 (9±2 nm radius) tip. The

three samples of interest were imaged, however, sample T788C1 did not look as

expected and could not be used in this study.
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Figure 3.1: Schematic illustrating AFM tip artifact

Data extraction

Since AFM pictures are a measure of the tip-sample interaction, the raw pic-

tures do not represent the sample but rather a convolution of the tip and the

topographic information. Figure 3.1 present three consequences of this artifact

with a relatively “dull” tip. Trying to characterise raw data would result in an

underestimation of the height and depth. On figure 3.1, it can be see that the

feature size are not correctly recorded. Indeed, the feature’s diameter is over-

estimate and an inattentive eye might count one sphere instead of two. This is

why one must be careful regarding the raw data and apply several corrections.

Extraction Protocol

Gwyddion [25] —probably the best AFM free software available— was used to

extract and filter the data. The following protocol was used :

1. Align rows using matching

2. Correct horizontal scars (stocks)
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3. Level data to make facets point upward

4. Level data by mean plan subtraction

5. Remove polynomial background (3rd degree)

6. Shift minimum data value to zero

7. Blind tip estimation

8. Surface reconstruction

The blind tip estimation was used which might be a problem. Figure 3.2 presents

images of T657 with (a) a simple shift, (b) before convolution and (d) after

surface reconstruction. In this picture, one can observe that the maximum

height of the sample is decreased during the data processing. To further analyse

this behaviour, Figure 3.4 showing the maximum height, average height and

average QD height in several samples can be used. Surprisingly, the maximum

and average quantum QD height is decreased by the deconvolution; however,

the surface reconstruction does not seem to have an important impact. Most of

the changes are due to the filters applied to the sample. The shape of the AFM

probe was verified using SEM; Figure 3.3 shows a new tip and one after being

used on a sample. The radius seems to be within the lower end limit of the

Figure 3.2: AFM picture of T657 sample extracted differently. A) the data
presented with just a shift so that the minimum value is zero, B) the data after
going through step 1 to 6, C) the blind estimation of the tip and finally, D) the
data after the surface reconstruction.
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specifications, but the used tip shows some severe damages. Because of those

damages, the blind tip approximation was preferred to using the original shape;

Those damages might also explain the unexpectedly dull shape of the tip in the

blind tip approximation.

Data processing

Once the data are properly extracted, information can be retrieved. However

to do so, one must have the right tool. In this sample we are particularly

interested in the QD size (i.e. height and diameter), shape (i.e. radius of

curvature) distribution as much as the density. Different attempts were made

using Gwiddion or imageJ but none seems to be quite automatic, reliable and

easy to use. Different parameters have to be tweaked needing one to constantly

check if the output is correct. For instance with Gwyddion the best algorithm

appears to be the watershed, but it is really inconsistent providing sometime a

30% error and sometimes being an order of magnitude out (detecting multiple

QDs in one). ImageJ was not studied thoroughly; the approach was to threshold

Figure 3.3: Asylum AC160TS-R3 AFM tip picture, a) and b) show respectively
low and high mag of a new tip (picture taken at 45◦ stage tilt). c) shows the
tip after being used for imaging the T657C3 sample (picture taken at 33◦ stage
tilt)
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Figure 3.4: Maximum and average height from raw picture, before convolution
and after convolution.

the image and then count the features remaining but the results were not good

enough to be mention. This is why a short python script was written (based on

mahotas [26]). The approach chosen was to try detecting the QDs by finding

the local maximums in pictures. In this algorithm, two main parameters can

be used; sigma and the disk size. Sigma is the amplitude of the Gaussian blur

applied to the data that reduces the noise —allowing better counting. It was

set to one by default although it seldom had to be decreased down to 0.3 for a

big scanning area (1 micron square) or a high magnification picture (170x170

nm). The disk size is the size of the local maxima and helps avoid detecting

multiple QD in one. The script is designed to find a good value automatically by

pre-scanning the picture and trying to determine the average size of the profile.

This auto-evaluating feature (applied when the disk size is set to 0) is hence

dependent on the sigma parameter value.
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Figure 3.5: Number of dots found with the Python script and Gwiddion.

Figure 3.5 displays the output of Gwiddion watershed algorithm compared to

the python script. By using an attentive eye or zooming in the picture, one can

observe the python script detects more QDs and hence seems to provide better

results.

Image Processing

Preliminary Verifications

The python script appeared to provide better results so far. It was decided

to verify it and eventually rely on it for the rest of this study. The way the

algorithm was checked was by competing against a human. To do so, several

AFM pictures were used. Some of them were cropped to allow manual counting

whereas other pictures with a higher magnitude were not. Two human were

used, one that did not know how the software would run (referred as the unaware
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Figure 3.6: Number of QDs found in the same picture according to the python
script, a user that knows how the script works and one that does not.

Figure 3.7: Density of T567 from several pictures and cleaves.
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counter) and myself knowing what the script is looking for (referred as the aware

counter). The result is displayed in figure 3.6. It appears that the result are

quite consistent with an average difference of 4% (and going up to 14%) for

the aware counter and 10% (with a maximum of 20%) for the other counter.

The maximum error happened in both cases for sample T783C0. This can be

explained by the fact that the algorithms tries to find regional maxima compared

to a specific disk size. It is thus bound to this disk size and would perform badly

if the sample had a large variety of QD sizes; this is the case in this sample

where one can observe a larger distribution of QD diameters. By looking at

all the pictures taken from the same sample and transforming the number of

QDs counted into densities, one can observe the relative consistency of the

measurement as presented in figure 3.7. The result was decided good enough to

continue using the python script for the rest of this study. Furthermore, other

feature were added to the script allowing one to evaluate other characteristics

of the QDs such as the height, the radius of curvature and diameter.

Density

The density of the QDs was calculated using the python script. The results are

displayed in figure 3.8. The results are different from what had been previously

found and were thus verified by using multiple pictures. Since the raw data

from Amethyst were not available, the python script ran on amplitude retrace

provided in a PowerPoint.
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Figure 3.8: Density of T783 (0% Sn), T788 (7% Sn) and T657 (13% Sn).

Height and Radius of Curvature

After the number of QD was determined (and hence, their positions identified)

information about the height and the radius of curvature could be collected.

The height is a simple measure of the pixel colour at the QD position whereas

the radius of curvature was calculated using the equation:

R =
√
rh × rv (3.1)

Where rh and rv are the radius of curvature on the horizontal and vertical axes.

They were calculated using the mathematical formula.

rh,v =
(1 + y′2) 2

3

y′′
(3.2)
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Figure 3.9: Horizontal and vertical profile within a QD disk size. Pixel 6 is the
positions of the local maximum detected. The calculated radius is displayed.

Since the position detected is the centre of a regional maximum, it is not

necessarily the highest position of the QD; the highest point can be anywhere

withing this disk defined by the disk size parameter. Moreover, the position of

the QDs are detected in a copy of the image, obscured by a Gaussian blur, while

the the data are retrieved from the original picture. Figure 3.9 illustrates this

statement. Because of that, the QD height calculated can be slightly off and so

can be the radius of curvature. In our case, since a small disk size was used, it

can be assumed that the calculated values are very close from the actual data.

Figure 3.10 displays the height distribution of sample T783 and T657 whereas

figure 3.11 displays the radius of curvature for both samples. Sample T783 has

a larger height distribution while T657 is more uniform. Additionally, sample

T657 has the highest height. The same trend can be observe in the radius

of curvature distribution —T657 presents a narrower distribution. However

T657 shows a radius of curvature mainly between ten and fifteen nanometres,
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Figure 3.10: Height distribution for samples T783 (0% Sb) and T657 (13% Sb)
samples.

Figure 3.11: a) the radius of curvature distribution for T783 (0% Sb) and T657
(13% Sb). b) the beginning of the distribution displaying respectively 78% and
86% of the QDs
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Figure 3.12: Figures a) and c) displays a QD border detected for a case where it
works relatively well and one where it does not. Figures b) and d) are zoomed
in version showing in red the area detected and in green the area considered.

suggesting the AFM tip is imaged rather than the sample’s radius.

Diameter

Attempts to calculate the QD diameters were made. The Mahotas built in edge

detection function (canny edge detection) did not provide a good result. In order

to save time and for the first attempt, a simple 2×One dimensional (1D) ap-

proach was used; it detects when the local vertical and horizontal profiles reach

a minimum. This provides four points that can be interpreted as a rectangle or

an ellipse. The ellipse was chosen because QDs seemed to have an elliptic shape.

The detected area with this algorithm was often considerably larger than the

actual QDs. For a different consideration —including the theoretical shape of

the dot (see subsection 3.3.4)— it was decided to reduce the area detected by

taking the best fit for the inscribed square of the ellipse. Figure 3.12 displays
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Figure 3.13: Complete diameter distribution.

Figure 3.14: Diameter distribution with values between 1 and 60 nm. a) the
result from the python script b) measured by hand
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the detected rectangle/ellipse and the inscribed square we used, illustrating the

detection steps.

This method was not highly reliable and probably provides better results for

high density samples. Nonetheless the distribution of the diameters for samples

T783 and T651 are displayed in Figure 3.13. Most of the diameters are under 60

nanometres which still seems quite high by looking at the pictures; Figure 3.14

highlights this region and compare it to manual data calculated on a small

fraction of the picture (19 and 22 values for respectively T783 and T567). The

automatic and manual result do not look similar although one can qualitatively

notice the same behaviours; a narrower distribution for T657 and three peaks

for T783. Once again sample T657 seems to have a better homogeneity with

a narrower distribution. Indeed, in the automatic case, 42% of the T657 QDs

have a diameter between 20 and 34 nanometres while only 23% of the T783

QDs are in this range. Sample T783 seems to have severall dot diameters in

both automatic and manual cases, featuring QDs diameters around 26, 40 and

70 nanometres.

Size of the Wetting Layer

Estimating the size of the wetting layer seems possible with AFM data. To do

so, two methods were applied :

• Matching pyramid method : the average characteristic of the QDs (height

and diameter) are calculated and used to model an ideal sample where all

the QDs are similar. The shape of the QDs was chosen to be a pyramid.

Indeed, it has been shown theoretically and experimentally that InAs QDs

have a pyramidal shape [21]. The volume per area of all these dots is then
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Sample Height [nm] Diameter
[nm]

Density
[cm−2]

Wetting layer
size [ML]

T783C1–500 4 37 7.84× 1010 1.8
T657C3–500 5 30 1.55× 1011 1.1

Table 3.1: Wetting layer estimation using the matching pyramid method.

subtracted from the volume per area deposited on the sample, theoretically

providing the height of the wetting layer.

• Mean value method : The probe is assumed to touch once the wetting

layer (being the lower height; 0). The average height of all the scanned

area is then a measure of the volume per area of the QD. Subtracting this

number from the volume per area deposited on the sample provides an

estimation of the wetting layer height.

The results of the matching pyramid methods are display in table 3.1. It was

chosen to use the average of the middle of the distribution for the height data.

The diameter was also chosen according to this criterion, but also taking into

account manual data. The wetting layer calculated is 1.1 ML and 1.8 ML

for T783 and T657 respectively. For sample T783, this is not far from the

1.6 ML measured from the reflection high-energy electron diffraction (RHEED)

pattern, but only one diameter was assumed while it was found that the sample

had a large distribution of diameters. The result of the mean value method was

expected to provide better results since there are fewer assumptions; however,

it is highly dependent of our assumption that the wetting layer is touch one,

at the lowest point. As it turns out, this assumption must be wrong since the

average height calculated for T783 and T657 (respectively 3.75 and 2.93 nm) is

greater than the matter deposited (3ML, so about 0.9 nm). This of course leads

to a wrong result with a negative wetting layer height. One could try to enhance
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this result by calculating the average height of the QDs, and the average height

of the area that is not considered as containing QDs and subtract them.
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Chapter 4

Scanning Electron Microscopy

After analysing the AFM data, doubts arose regarding the accuracy of the

measurements due to tip artifacts. This lead to the use of the Zeiss Neon 40,

OU’s’ best SEM. SEM cannot provide 3D information like AFM does, but the

two dimensional (2D) pictures can be taken at a tilt so that height information

can be measured. This chapter relates the work done with the SEM machine.

Imaging Concerns

Several parameters can alter the SEM picture quality. Some of them can be

easily modified by changing a value in the software, but others such as the

beam coherence or the type of atoms present in the chamber are more difficult

to change. This section covers the work done in order to enhance the picture

quality.
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Imaging Parameters

First of all, let’s discuss about theoretical considerations regarding the SEM

parameters. The features to image are very small —in the nanometre scale.

In order to obtain accurate measurements of topological information, only sec-

ondary electrons (SE) (and preferably SE-I type [SE exiting the sample close to

the beam]) should be used. This can be achieved by using the “Ìnlen” detector

which is located in the objective lens and only captures SE. This can be done

because the magnetic field that drags electrons back in the lens is too weak to

affect back scattered electrons. Additionally, a small accelerating voltage must

be use in order limit the size of the interaction volume. However, decreasing the

acceleration voltage also limits the maximum theoretical resolution as stated by

Abbe’s equation.

d0 =
0.612λ

n sinα
=

0.753

α
√
v

(4.1)

Furthermore, such a decrease also induces a diminution of the signal to noise

ratio, ratio that can be improved by setting the smallest working distance (WD)

possible. Smaller probe current can also helps achieve better resolution. How-

ever, the only way to control the probe current in the Zeiss Neon, is to modify

the aperture size. Doing so also changes our α angle and could not result in a

benefit.

Finding the Best Accelerating Voltage

To find the best accelerating voltage, several images were taken at 200 kX. The

result is shown in figure 4.1. One can observe that 2 kV is too sensitive to

contamination, preventing a good use of the dynamic range. The picture is also
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Figure 4.1: Voltage impact on the picture quality. Pictures are taken at 2, 5,
10 and 15 kV.

Figure 4.2: Aperture impact on the picture quality. Picture are taken with a
7.5, 20 and 30 µm aperture.

quite noisy. The 15 kV picture on the other hand, does not show clear QD edges

and is also noisy. The difference between 10 and 5 kV is not that clear in this

picture, nevertheless, 5 kV was chosen to be as surface-sensitive as possible.

Finding the Best Aperture Size

Similarly, several pictures with an aperture size of 7.5, 20 and 30 (default aper-

ture) micrometres where taken. Figure 4.2 displays them. The 7.5 µm aperture

is clearly not optimal with poor signal-to-noise ratio. The difference between
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Figure 4.3: Working distance impact on the picture quality. Picture are taken
with a 2 and 5 millimetres working distance.

the 20 and 30 µm apertures is arguable; 20 micrometres is generally more noisy

but presents a better contrast. The thirty micrometres aperture was chosen be-

cause the additional noise that appears with the twenty micrometres aperture

makes automatic image-processing harder.

Verifying the Influence of the Working Distance

Finally, a quick verification regarding the working distance (WD) was made.

Figure 4.3 displays it; as expected, reducing the WD reduces the noise and

provides a sharper picture.

Contamination Considerations

Even with the enhance parameters found in the previous section, the growth of

carbonate contamination as much as the noise prevents taking good pictures.

Additionally, it was found that the the QDs seemed to “grow” under the effect

of the electron beam. The growth rate was not consistent and seemed to depend

on the sample previously in the chamber. The growth rate was measure and is
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Figure 4.4: a) represent the average growth rate of the QDs. b) is the worse
contamination that happened.

displayed in figure 4.4a. The orange curve displays the growth rate measured

when the problem was discovered, while the blue curve was recorded after several

cycles of in situ plasma cleaning for a total of about 13 hours. Doing so seemed

to clean the chamber resulting in less contamination. However the growth rate

was not consistent and depended on the samples previously put in the chamber.

Hence, after imaging bio-films, a super-growth of hundreds of nanometres (c.f.

figure 4.4b ) was observed.

Those considerations suggested the need for cleaner samples and a cleaner cham-

ber. A plasma cleaning of 8 minutes with 40 Watts was tested, without any

notable change. In the literature, the National Institute of Standards and Tech-

nology (NIST) claimed to get rid of such contamination by overnight plasma

cleaning [27]. It was decided to follow their recommendation.

An overnight –12 hours at 40W– O2 in air plasma was done. It did not

clean already-grown features such as those formed after imaging the bio-film.

Nonetheless, the overnight plasma clearly improved the picture quality; the pic-

tures where less noisy, sharper and less keen to contamination. However the
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Figure 4.5: Comparison of sample composition, analysis by EDS, before and
after an overnight plasma cleaning.

Figure 4.6: Image presenting the surging artifact.

overnight plasma was not totally beneficial. An energy-dispersive X-ray spec-

troscopy (EDS) analysis was done, showing the sample experienced oxidation

; figure 4.5 displays the result. Furthermore, the SEM stage was damaged by

such long plasma exposure. The grease turned into a gummy texture preventing

accurate movements and needing one to constantly reinitialise the stage posi-

tion. Finally, an effect we named surging appeared. This describes a brutal

movement of the stage that prevents good imaging (cf. Figure 4.6). Cleaning

the stage helped reduce surging but to this day, the stage still present major
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Figure 4.7: Comparison of O2 in air and Ar plasma cleaning.

issues –especially when tilting. Because of the sample oxidation and the stage

problem, it was decided to change the plasma gas and use a less agressive one

—Ar. Ar was tested against O2 in air. For the comparison, it was decided to

zoom in several areas for a monitored amount of time (usually between 5 to 30

seconds) to take pictures. Figure 4.7 displays a low magnification picture of the

same area before and after plasma-cleaning the sample for an hour at 40 Watts.

As it turns out, Ar present a cleaner result than O2. Indeed one can notice a

slight carbon-layer contrast remaining after the O2 in air cleaning while there is

nothing remaining after the Ar cleaning. Ar should thus be preferred. However,

because of the stage problem, it was decided to limit –if not stop– the use of in

situ plasma until a solution for the stage is found.

The NIST claimed to be able to get rid of vibration efffect using software (AC-

CORD) [28]. Even though our “surging” effect was different than normal vibra-

tion it was decided to test if this software could improve the image quality. The

easiest way to use the ACCORD software is to record a video with :
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• The shortest possible dwell time

• No averaging and integration

• No compression

• As few environmental perturbations as possible (no phone, no talking,

etc.)

As it turns out, the ACCORD software was not able to improve the picture.

In fact, the sudden movement was difficult to follow leading to a discontinuous

picture.

Density

The SEM pictures were generally more noisy than the AFM pictures, needing a

higher Gaussian blur to properly count the QDs. However, if the default setting

(set to one for AFM) was set to three, it could not be used consistently and

one needed to adjust it in order to have the best results. Furthermore, most

pictures were taken in a dirty chamber environment, facing contamination, the

stage still being damaged. This time, manual counting was not done but it was

meticulously verified that QDs were not over- or under-counted. Additionally,

the python script was slightly modified so that the possible stage tilt angle could

be taken into account. The influence of the angle over the density value was

recorded. In figure 4.8 several pictures at 200 kX were taken at different angles

(0, 27, 45 and 80 ◦). The angle did slightly influence the measured density, but

the values are still within the uncertainty range. However, one should be advised

40



Figure 4.8: Plot recording the variation of the density with tilt angle.

to recorde density values systematically with an angle of 0 — theposition where

the uncertainty of the angle is the smallest— for better density comparison.

Samples T783C0, T788C0 and T657C3 (respectively 0, 7 and 13% of Sb) were

imaged in order to record their density. Figure 4.9 displays the density results.

It can be seen that sample T783 has the lowest density showing the effectiveness

of the strain releif compound. Sample T788 has a higher density than T657 with

smaller QDs. This means that increasing the Sb concentration from 7% to 13%

decreased the QD anti-coalescence effect.

Diameter

The AFM algorithm was used to determine the QDs diameters. It hence faces

the same limitation regarding accuracy. Results are display in figure 4.10. One

can observe than this result is not correct. By looking at the SEM pictures, it
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Figure 4.9: Density measured for several QDs samples.

Figure 4.10: Diameter distribution for T783, T788 and T657. The average hand
calculated diameter was added. Sample T783 presents two QDs size.
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can been seen for instance that sample T783 possesses at least three QD sizes

and should thus present three peaks. It was hand calculated that those peaks

should be around 9, 13 and 20 nanometres, but there are also larger dots with

a diameter up to 30 nanometres . This shows that one needs to think of an

alternative method to efficiently calculate the QD diameters. For this reason,

hand-calculated diameters were also provided for T788 and T657.

For sample T657, data extracted form cross-sectional measurements (for in-

stance, measured in figures 4.6 and 4.13) were also analysed. It suggests a

different, larger, diameter. Indeed, individual measurements or dividing the

picture size by the number of QDs counted lead to an average QD size of about

26 nanometres.

Height and Radius of Curvature

As mentioned before, one can tilt the sample in order to determine QD heights.

Angles around 90◦ must thus be used in order to have better results. However,

the SEM cannot reach angles greater than 67◦, needing one to mount the sample

perpendicular to the electron gun. In order to do so, two holders were modified.

Specimen holder

The first holder is one of OU’s classic cross-sectional holder. A clip was added so

that the sample could be easily mounted and unmounted. Additionally a brass

holder was modified so that it is able to convert a flat holder to a cross-sectional

one and vice versa. The holders remain in the SEM lab and are available to
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Figure 4.11: Flat / cross-sectional adaptor (a and b) and cross-sectional holder
(c)

other users1; they are displayed in figure 4.11

Retrieving Height Data

Once the sample is properly mounted, an algorithm to record the heights was

created. According to the image recorded, one can use the bright edge effect to

detect the position height of a QD edge. By going forward in the x direction,

one can thus record the height profile. However, this profile might not always

be continuous. A correction was accomplised by adding another condition, if

the recorded height is above the current one, instead of making a discontinuous

connection, go a pixel higher and similarly for lower cases. Figure 4.12 presents

the result of the algorithm on sample T657, with discontinuous and continuous

detection. Once extracted, the trend-line of the profile was removed to correct

the angle and a shift was applied so that the minimum value is zero. To calculate

the height, it was decided to use the lowest point as zero and compare all local

maximum heights compare to it. The extracted and corrected profile is displayed
1Ask Preston Larson
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Figure 4.12: 80◦ T657 sample with edge-detection script output.

Figure 4.13: Height data exported and corrected.
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in figure 4.13. The average QD height was find to be 5.36 nanometres.

The radius of curvature can now be calculated from this profile. However,

a problem occurred. Indeed, the condition that the height profile must be

continuous (which makes physical sense) implies that if you zoom in on each

local maximum and evaluate the radius of curvature at this point, you will

always find the same radius. This is because by definition, for a local maximum

to exist, it must be higher that the two adjacent points. Since the points are

discrete (pixels), the curvature at any local maximum is similar and defined by

the pixel size. For this reason, a more complex algorithm is needed to calculate

the best fitting shape for a certain height.

Imaging the Stacked Layer

Previously, only the top layer of QDs was investigated using AFM and SEM.

However, it is well known that QD shapes change when a cap layer uis grown [29].

Additionally, stacked layers would be used in a final device and thus need to be

characterised. This can be done by scanning tunnelling microscopy (STM) [30],

TEM but a faster and easier technique would be very usefull. After several

hours of plasma exposure, in a clean environment, the stacked layers of QDs

seem to be visible. Figure 4.14 displays sample T657 with a scaled compo-

sition. Indeed, what looks like a stack layer of QDs is positioned where the

layer should be. It was not done, but image processing can surely retrieve more

detailed information tham what was manually calculated. The information re-

trieved manually is presented in figure 4.15. The staked QD’s height —for

sample T657— is about twice the height of the top-layer QDs. An average

height of about 12.7 nm was recorded. To gather a more statistically significant
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Figure 4.14: SEM picture showing a cross-section of T657 (with 80◦ tilt) and
its scaled composition superimposed.

Figure 4.15: a) T657 QD top layer and stacked layer heights for four pictures.
b) the measurements done on the 4th picture
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Figure 4.16: ECC vs SE at low magnification.

Figure 4.17: ECCI vs SEI at high magnification.

number of measurements, the FIB could in principle be used to etch the sample

edge and image several lines of QDs.

Another Detector : Electron Channelling Contrast

Imaging

In addition to the plasma cleaner, OU’s SEM also possesses a solid state detector

capable of providing electron channelling contrast imaging (ECCI). ECCI is very

sensitive to topographic information as much as internal strain. Using ECCI

48



on T567 provided two new piece of information. The first one, presented in

figure 4.16, is anisotropic cross hatching. Since ECCI is much more sensitive to

strain than SE, the anisotropy is likely to result from the internal strain. The

second one, presented in figure 4.17, is a clear image of QD chains.
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Chapter 5

Transmission Electron Microscopy

TEM is ultimately the best and more reliable technique to observe the actual

physical shape of our QD sample and thus determine if our AFM and SEM mea-

surements are correct. However doing so is very time consuming and reducing

the preparation time would be of great help. With OU’s Zeiss Neon instrument,

SEM and in situ TEM sample preparation can be done together, allowing one to

select and prepare the area of interest he to image by TEM. This is a powerful

tool that not only allows one to image a chosen area, but is also typically faster

than traditional preparation techniques. However, this technique does require

more training and monitoring without which, the preparation is likely to fail.

In situ TEM preparation was enable when OU bought a Kleindink microma-

nipulator. However, since then, no samples were prepared and the methods had

not been thoroughly acquired yet. This section documents our work in route to

successful TEM sample preparation.

50



Figure 5.1: OU’s TEM grid holder.

Sample Preparation

TEM Grid Holder

Even though making a TEM grid holder is separate from in situ site specific

TEM sample preparation, it is a crucial step in the process and was thus should

be mentioned. Grid holder can be bought online on specific electron microscopy

site, however, they are rather expensive (about 1000 dollars [31]). It was then

decided to build our own home-made grid holder. Stainless steal was first con-

sidered but rapidly changed to beryllium copper for additional stiffness. Figure

5.1 displays our grid holder; a small mark was added to create a more local

pressure on the TEM grid. Omniprobe [31] grid were used.

Short Protocol

The protocol for doing is situ TEM liftout is well known and quite simple. A

summarised version of this protocol can be find below and is illustrated in figure
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Figure 5.2: Short protocol for TEM sample preparation.

52



5.2.

0. Find the area of interest. This could be a particular defect or an area

without defects.

1. Electron beam deposition of tungsten (W) on the selected area.

2. FIB deposition of W on the electron beam deposition layer.

3. Etch two coarse trenches around the FIB deposition.

4. Enhance the coarse trench by etching two smooth tilted rectangle areas.

5. Tilt the sample back to 7deg and etch one side, the bottom of the specimen

and half of the other side, making a ‘U’ shape.

6. Spot weld the sample to the micro-manipulator.

7. Free the sample from the wafer.

8. Spot weld the sample to the TEM grid.

9. Free the sample from the micromanipulater.

10. Polish the sample.

Practical considerations and pitfalls make this process harder, needing addi-

tional technical details in order to perform this operation. This process was

done and the new TEM lift-out procedure can now be found on the Zeiss Neon

control computer1

1One can find it at the following path : “C:\Documents and Settings\All
Users\Documents\*TEM-LiftOut.pptx”
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Figure 5.3: TEM low magnification pictures presenting two types of defects.

Sample Defects

Unfortunately, none of our attempts succeeded to make a TEM part. This is

partially due to the learning curve of the process and mostly due to a malfunc-

tion in the Kleindink micromanipulator that has been sent back to Germany for

repair. Meanwhile, the test sample that was done when the micromanipulator

was bought to demonstrate its potential was studied. This was done because

samples prepared with FIB are known to often present more damage —especially

amorphization[32]. By imaging this sample with a JEOL JEM-2010 —a high

resolution TEM— it was discovered that this technique introduced two types

of damage.

The first one was mostly located at the top of the sample and looks like spotted

damages. By zooming in, one can observe Moiré fringes, possibly indicating a

polycrystalline material (Figure 5.4 a). Zooming even more allows one to observe

lattices (Figure 5.4 b) with no obvious amorphization. This is confirmed by a
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Figure 5.4: TEM high magnification pictures of the first defect: (a) the detect,
(b) a zoom in version of (a) with the lattice visible and (c) the diffraction
pattern.

bright field image of the area (Figure 5.4 c) that presents a clearly noncrystalline

diffraction pattern.

The second defect was called “curtaining”. Figure 5.3 shows that the curtaining

effect is getting worse with depth. In Figure 5.3b, one can observe that the

curtaining effect is present on the top of the surface; however, one cannot see

it in Figure 5.3a until a certain depth, meaning the effect is getting worse with

depth. Zooming in on it allows one to calculate the period of it, about 60

nanometres.

Surface damages can prevent achieving the best resolution and should thus

be minimise. This was not done on this sample since it does not belong to

our group, but several options could help to smooth the surface. If the same

artifacts are seen on a future TEM liftout protocol, one should try (in order) :

1. Using different FIB parameters for the finial polishing

2. Using the low energy ion milling (GATAN). For an energy about 5 kV,

damages are expected to be less than 3 nm [33].
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3. Plasma etching.

4. Ozone or liquid etching.
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Chapter 6

Discussion

As was previously mentioned, TEM could not be performed. Thus it is difficult

to have clear answer regarding the shape of the QDs, and especially the stacked

structures. Comparison between AFM and SEM data, knowing both limitations

and artifacts, could nonetheless increase our understanding.

Density

AFM and SEM should be as capable when it comes to image density, however,

one can see in Figure 6.2 that SEM indicates a higher density than AFM. The

SEM density is 1.8 and 1.3 times greater than the AFM density for sample

T783 and sample T657, respectively. One could question the quality of the

QD detection, but it can be seen in Figure 6.1 that in both case the detection

works well. This could be explained by the fact that AFM can be blind to small

objects, and does not record the smallest QDs. SEM should theoretically be

the most accurate; however depending on the chamber cleanliness, the noise

can be quite high, preventing good detection. For sample T657, the best SEM
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Figure 6.1: QD detection by AFM and SEM

Figure 6.2: QD density determined by AFM and SEM
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Figure 6.3: AFM and SEM pictures with some diameter highlighted.

picture provides a value of 2.1 × 1011 cm−2, but the average SEM density was

calculated to be 1.8 × 1011 cm−2; the AFM picture provides a density arround

1.6 × 1011 cm−2. The density of about 1.8 × 1011 cm−2 is believed to be the

most likely since it occurred a large number of times and places 1.6×1011 cm−2

and 2.1 × 1011 cm−2 at the limit of the assumed 10% error range. For sample

T783, the AFM value (1.8× 1011) was chosen because of the noise level in the

SEM picture, and the different QD sizes are prone to cause false detections. For

sample T788, only SEM data was available, the pictures were clear with good

detection; the value was kept.

Diameter

It was previously mentioned that a better way to automatically measure the

QD’s diameter needed to be found. In both cases, AFM and SEM, the result

did not appear to be correct. Hand-calculation on the images provided by

both microscopes do not agree (c.f. Figure 6.3). AFM presents wider QDs than

SEM. Surprisingly, SEM plan view and cross-sectional results are not consistent,

cross-sectional information being larger and closer to AFM values. This could
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be because SEM is not height sensitive and SE from between QDs do not escape.

This would lead to smaller QDs with larger separation regions which is what

is observed. Additionally, the noisiness of the SEM images limits the ability to

define where QDs edges are —especially for an algorithm. SEM cross-sectional

images should provide the best data but with non-statistical numbers. In this

case, for sample T657, the 26 nanometres given by the cross-sectional SEM

picture was found to be plausible. For sample T783, it is harder to tell since

the images obtain from both microscope are radically different. Additionally,

the fact that the QD sizes vary widely suggests that a single number would not

be the best way to describe the QD sizes.

Height and Radius of Curvature

The AFM and SEM height data could not be compared for T783 and T788

because cross-sectional SEM could not be performed for these samples. On

sample T657, AFM provides data with a height around 5 nanometres whereas

SEM provides data saying the height is about 5.3 nanometres. This is very close

and likely to be correct. In both cases, one should wonder if the zero height,

the reference point, is the surface of the wetting layer or any other point. With

SEM cross-sectional images, one can simply measure on the sample that any

dot has the recorded height and thus verify the result. On AFM, with a high

density sample —and especially with a dull tip— the wetting layer is less likely

to be reached, meaning the zero point is higher than it should be. For this

reason, on high density samples like T788 and T657, SEM should be done in

order to corroborate the AFM result. Concerning the stacked layer, only SEM

could provide information, and just for sample T657, meaning there is noting
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Sample Height [nm] Diameter
[nm]

Density
[cm−2]

Wetting layer
size [ML]

T657C3–500 5.3 25 1.8× 1011 1.36

Table 6.1: Wetting layer estimation using the matching pyramid method

to compare the data with. However, one must remember that this information

was acquired with cross-sectional SEM in a clean environment and should ergo

be correct.

The radius of curvature is probably the least correct information, at least at its

current state. The radius of curvature was estimated by the radius of curvature

of the local maximums. This seemed to be the easiest way to obtain such

information, but the physical reason linked to the way data are acquired makes

this number likely incorrect. Indeed, it was explained for the SEM case that the

condition that the height profile must be continuous leads to similar radius of

curvature measurements with the technique used. Amelioration could be done

by finding the best fitting radius for a larger portion of the curve. The same

effect can occur for AFM, and especially if the tip is being imaged, meaning the

result should be read carefully. The fastest way to have an idea of the radius of

curvature would be to measure it directly on cross-sectional SEM pictures.

Wetting Layer

With the information in the previous section in mind, the wetting layer calcu-

lation for sample T657 should be done again, taking into account the changes

introduced by SEM measurements. The number obtained, displayed in Ta-

ble 6.1, is closer to the RHEED measurement (1.7 ML) meaning the values are

probably closer from the actual feature sizes.
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Best sample

The previous data obtain from Amethyst’s AFM suggested that sample T657

had the best density and shape uniformity. The results presented here however

are contradictory and present T788 as a better candidate. Indeed its density is

about three time greater than T675 and Figure 4.10 shows a narrower distribu-

tion of diameters, meaning the QD diameters are more homogeneous. Further

measurements should be done to confirm this and obtain information regarding

the QDs’ height as much as their shapes in stacked layers. This could be done by

cross-sectional SEM but the stage still presents issues. The micromanipulator

should be back soon, opening the way to TEM.
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Chapter 7

Conclusion

Developing third generation with low cost/watt is the final goal of the project.

To do so, the IBQD design was chosen. Several set of InAs QDs on GaAsxSb1−x

were grown and needed to be characterise. Three samples with different Sb con-

centration were imaged with AFM and SEM in order to characterise them. TEM

was also aimed, but developing the in situ TEM preparation protocol as much

as the failure of the micro-manipulator delayed us. Generally, AFM was find

to overestimate the size of the QDs as much as having a slightly lower density.

On the other hand, SEM, and especially with preliminary in situ Ar plasma

cleaning, was found to be more versatile. In fact, SEM was found to provide

better density, diameter, height and radius of curvature as much as providing an

idea of the staked layer height. Both machine provided about the same height

information. The radius of curvature as much as the diameter was harder to cal-

culate automatically and better algorithms must be written. Sample T657 was

believed to have the best characteristic from previous measurements. However,

the work related in this paper suggest sample T788 featuring 7% of Sb has the

best density (∼ 6 × 1011) and the narrower size distribution. Further analyses
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and especially TEM must be done to further understand the QDs’s stack layer

form.
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Part II

Another FIB usage: 3D

reconstruction
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1. Introduction

Darwinian evolution has been a very successful theory that explains why Earth’s

species evolve. However, what causes these changes cannot be explained and

must be studied.

Understanding biodiversity changes and the impact of environmental changes

on biodiversity is a great challenge for many biologists. By understanding past

events and the effects on biodiversity, paleobotanists hope to predict the im-

pact of future changes such as ones introduced by humans (global warming,

deforestation, change in ocean pH, etc.)

One of the major interests of paleobotanists is the downfall of the diversity

among Lycopsids and the rise of diversity among ferns during the late Creta-

ceous period. Sorting species by their characteristics and recording which of

those were present at what time provides insight into how species evolve and

why some species are more diverse than others. The goal of this thesis part is

to examine the inner exine (protective wall) porous structure of Arcellites hexa-

partitus megaspores. Doing so will help to understand the relationships between

Arcellites species and others (mostly water ferns and Lycopsids) and possibly

find characteristics that would categorise Arcellites. Furthermore, studying the

inner exine porosity could help to understand the function of the channels during

deposition of the wall and during the life of the spores.
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2. Background Information

This paper is a M.S. thesis in the field of engineering physics. However, this

part contains multiple references to biological terms, making it necessary to

provide some background information and definitions. Additionally, information

regarding the FIB geometry will be given.

Spores

Heterospory describes the production of two sex-differentiated spores. It is an

evolution of homopory (or isopory) as part of the process of sex-differentiation

in evolution. Heteroporous spores are composed of haploid cells protected by

resistant walls. The male spore, called the microspore, is generally smaller while

the female spore, called the megaspore, is generally larger. In fossil records, the

gender of a spore can be ambiguous, which is why the size of the spore is often

used to determine gender. It was proposed in the 1960s that any spore greater

than 200 micrometre (µm) was a megaspore. For Arcellites hexapartitus, the

main body was found to vary from 170-265 µm whilst in situ and attached

microspores were found to have a diameter between 33-40 µm (see figure 2.1).

The walls of the megaspores can be described in three layers, starting from the

inside: the intine (often missing), the exine, and the perine. Figure 2.2 displays
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Figure 2.1: a) a full megaspore [6], b) a section of another sample and c) a
microspore attached to a megaspore [6]

Figure 2.2: Megaspore’s wall description
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Figure 2.3: Marsileaceæ and Salviniaceæ families and their exine channel types
(from [7, 8, 9])

the different walls composing megaspores; the left picture is a SEM picture of

the studied sample. The inner exine is the focus of this paper. The inner exine

is usually missing in broken specimens. Because of this, a megaspore with a full

body is needed to examine the inner exine. The Arcellites hexapartitus megas-

pores found are not fossils in the sense that they are not composed of petrified

organic matter. Instead, megaspore exines are composed of sporopollenin, a

highly inert biological polymer.
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Water Ferns

Arcellites species are believed to be descendants of plants that were located near

or in water. This is why links with water ferns have been proposed.

Homoporous ferns produce sparsely channelled exines in most species. Het-

erosporous waterferns (in families of Marsileaceæ and Salviniaceæ) are dif-

ferent. Their exine channels can be sparse (Marsilea and Salvinia), layered

spongy (Regnellidium and Pillularia), or extremely open (Azolla), as shown in

figure 2.3. Betten et al. [34] used TEM to analyze Arcellites species. They

found that most Arcellites are densely channelled. These channels were found

to be perpendicular to the surface in most cases. This difference questions the

relationship between Arcellites species and water ferns. This also suggests that

Arcellites might be related to lycopsids [34].

This is why analysing the porous structure of the inner exine using FIB was

investigated.

Project

Traditionally, megaspore species are identified through two electron pictures —

a rough cross-section observed via SEM and a smooth one imaged with TEM

(c.f. top pictures of Figure 2.4). The goal of this project is to demonstrate the

potential of SEM paired with FIB to obtain similar results and investigate the

porous structure of the inner exine (c.f. bottom pictures of Figure 2.4).

The specimens were furnished by Dr. Lupia from OU’s Sam Noble Museum.

Bonding specimens for SEM viewing and FIB slicing is a crucial non-trivial step.
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Figure 2.4: Top pictures are traditional images used to identify megaspore
species; the bottom images are the alternatives investigated in this thesis.
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We need to control the specimen orientation and coat to make conducting, this

is not easy for samples that are 100 um in size. The old method involves B72

an acrylic resin (removable in acetone) and thick PdAu sputter coated layers.

Generally Lupia maneuvers the specimen using a eye-lash on rod manipulator

under a stereo zoom microscope. He is very adept at this procedure and can

usually place the specimen in the B72 with the appropriate surface(s) showing

without the B72 wicking over these surfaces. Although this is not easy. We

switched to thinner sputter coated iridium layers, these worked except the irid-

ium layer may introduce strain to the specimens and because the specimens

are brittle this may cause the specimens to crack and even break apart. We

stuck with iridiumidium coating and we tried to adjust the coating geometry

to evenly coat all sides of a specimen equally. Even so we still had recurring

problems with specimen cracking and breakage leading to the loss of parts of our

specimens. We also moved away from B72 which wicks and can inadvertently

coat the critical surface that should remain bare and dries too fast. We also

decided to not use the usual 1/2” diameter Zeiss 1/8” stub because it would

limit the FIB-SEM geometries available due to the 4.5 mm working distance

associated with the FIB. Toward this goal we switched to 6-32 set screws as

sample holders. We also developed a holder for the 6-32 set-screws that provide

a large smooth plane allowing the specimen to be easily moved on and off the

set-screw, without losing the specimen. Our first approach to this was to use a

Teflon piece with a 1/8” rod (similar size to the 6-32 set-screw). However, the

Teflon pieces charged up electrostatically so that the specimen moved by itself,

which is not good. Using an aluminum piece with 6-32 set-screws overcame the

static charging issues. We also tried a UV-curing glue however this started to

cure under microscope observation, which was a problem. Similarly we tried a
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thicker super glue and a 5 minute epoxy, neither of these made manipulation

of the sample simple. Finally we used a very small portion of conducting dou-

ble sided tape as the initial glue to hold down the specimen. In principle this

allowed the specimen to be still moved once the specimen made contact with

the tape. Also it got rid of any possibility of a glue wicking onto the specimen.

Unfortunately this left the specimen only held to the set-screw by the double

sided tape adhesive and we know this to be a drift sensitive bond. To circum-

vent this drift condition we used silver paint to bridge from the set-screw to

the specimen in a couple of places. This took some patience because the silver

paint itself can wick, however we were successful with this approach.

The coating time was thirty seconds for an average of 180 nm1, although the

coating thickness is not important when etching. The thirty seconds was de-

fined by another student who previously worked on a similar sample. Fifteen

seconds was initially tried by this student, but charging effects led him to dou-

ble the coating time. Thirty seconds seems to provide good results in terms of

charging, but intermediate times should be investigated on future samples. The

FIB slicing and imaging were done by the Zeiss Neon; it features a 54◦ (non-

changeable) angle between the FIB gun and the electron gun. This means that

the images recorded have a slope. Two possible approaches can be used; FIBing

perpendicular to the surface while imaging the sample’s cross-section obliquely,

or FIBing parallel to the surface while imaging the top surface obliquely. Both

approaches were used and will be presented in the following sections. Figure

2.5 illustrates both cases.

1a graduate student previously calculated that the average deposition rate was 6 nm/s.
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Figure 2.5: Two possible ways to obtain data from the SEM whilst etching with
the FIB
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3. Perpendicular Etching

The top-down etching approach was used first because of the simplicity of the

approach. With this geometry one can easily create a smooth surface with a

higher current before polishing with a finer current. Furthermore, viewing the

inner exine cross-sectionally theoretically allows one to see a channel beginning

and ending within a few slices. It is necessary to etch the entire inner exine when

doing the same with parallel etching. Figure 3.1 displays the sample image by

the FIB and the image acquired by SE.

A volume of 5227x3920x2690 nm3 (pixel size of 5.104 nm) was etched using the

mill for depth mode, with 10 µm as the depth. 100 picoamperes (pAs) was used

as the milling current and the slicing size was modified from the auto parameter

to 5.104 nm so that the voxels (3D pixels) were cubes. The images were taken

with the “inlen” detector, using a magnification of 38,750 times, at speed 3, with

line averaging (7.9 seconds per image).

3D reconstruction was attempted but was not successful as can be seen in fig-

ure 3.2c. The difficulty in detecting the channels resulted in the failed procedure.

There were many reasons that made channel detection difficult. The main rea-

son was the lack of dynamic range. One can observe in figure 3.1b that most

of the dynamic range is taken up by the top layer of the inner exine and the

bottom part of the exine; the inner exine only has a few of the grey shades avail-
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Figure 3.1: SEM (top-down) and FIB (oblique) view of the inner exine

Figure 3.2: 3D images of the exine: a) using a white-black gradient. b) using a
white-transparent gradient. c) only the inner exine.
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Figure 3.3: Z-projection of a substack of 27 pictures, keeping the minimum
value (black pixel) in order to display channels

able, making the holes harder to detect. Additionally, the acceleration voltage

was too high, providing a convolution of the surface topology and information

behind it. The channels can be seen in darker shades before opening. The dif-

ference between an open channel and a future opening is very subtle and hard

to differentiate. Moreover, the FIB also leaves repetitive oblique marks whilst

etching hardens the differentiation process —even to the human eye.

Following the channels as they opened was also attempted manually. This was

not an easy process because the channel openings are not continuous and can

happen at any point on the channel. This makes it difficult to be sure that the

openings found belong to the same channel. Additionally, no channel seemed

to go totally through. It could not be stated whether or not the pores were

connecting through because the bright edge effect occurring at the end of the

inner exine decreased the contrast. Several almost connected channels were

found. A Z-projection using the minimum (i.e. darker) value was used to

display those channels. The picture obtained can be seen in figure 3.3 and the

shadow above the circled channels suggests a pore connection. However, there

is no concrete evidence.

Instead of redoing the experiment with better parameters, the second approach,
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parallel etching, was used. This approach was chosen because following the

channels while etching would make it easier to distinguish different channels

and their path. Additionally, the shadowed marks would not exist in this con-

figuration because all the channels are more or less perpendicular to the surface.

Also, the dynamic range should not be an issue in this configuration if it is set

correctly at the beginning of the procedure. Finally, in this configuration there

would not be any bright edge effect dimming the contrast; only the channels

should be highlighted by this effect.
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4. Parallel Etching

In addition to the advantages listed in the previous section, parallel etching also

offers the possibility for statistical analysis of the channels. Being in the plane

of the pores allows one to count their number and see their behaviour quite

easily.

The parameters used were not very different. The FIB current, depth, imagining

detector, and scanning speed were left unchanged. The only difference was the

break in the cubic voxel rule. Because of the top-down imaging configuration,

all of the inner exine needed to be etched. Thus, it was decided to break the

rule that facilitate 3D reconstruction. Not doing so would lead to extremely

long operating times, estimated to be over eleven hours. The magnification was

set to 37,240 times (3 nm pixel size). The width of the etched slices was set

to the “auto” parameter, setting it to 14.5 nm. This significantly sped up the

process, which only took about two hours and fifteen minutes.

The geometry however was not exactly as intended. Because of the curvature of

the sample and the difficulty in finding a good orientation, the etching was not

completely perpendicular. Instead, the etching was at an angle which caused the

top of the pictures to be deeper than the bottom. A schematic representation of

the geometry is represented in 4.1. The first issue to be evaluated was whether

the pores were connected to the surface. To do so, an orthogonal (YZ, c.f. Figure
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Figure 4.1: Parallel etching geometry.

Figure 4.2: YZ projection that displays the discontinuity of the intine-side chan-
nels.
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Figure 4.3: The evolution of the number of channels from the intine side (image
0) to the exine side (image 3̃70).

Figure 4.4: Set of pictures displaying pores closing and reopening. Each picture
is separated by 14.5 nm. The scale bar is 200 nm.

4.2) projection was used. It is now clear that there is no correlation between

the outside opening being visible and the inner exine pores. In fact, the data

suggest that the channel number is not constant and goes from zero, to a few,

to many, to a few again before disappearing just before the connection to the

exine. This behaviour is better represented in Figure 4.3. 3D reconstruction

was attempted in order to observe the pores’ behaviours and determine whether

they merge or simply disappear. The output is presented in Figure 4.5. From

the data obtained, it seems that the pores are not continuous even in the high

density area. The non-filtered data display the same behaviours. Indeed, it

can be seen in figure 4.4 that the pores close before reopening within 43 nm.

Further investigations were made on these channels to determine that low energy

backscattered electrons show white features on the pores located near the intine.
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Figure 4.5: 3D reconstruction of the parallel etching data.

Figure 4.6: (a) is the EDS spectrum of two areas highlighted in (b), the red
spectrum is located where the white marks are. (b) is an inlen (SE2) picture
to compare with (c), is a low energy backscattered electron image (LE BSE)
featuring white marks on the lower channels. (d) is a higher magnitude picture
of (b) white marks.
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This is likely due to a higher atomic number, but EDS analyses does not display

any notable difference in compositions —only the carbon counts change. Both

spectrum, the area they were taken, and the white marks are displayed in Figure

4.6. The fact that EDS do not present any differences in the composition could

be attributed to the large interaction volume of the X-rays. This does not prove

the absence of any other material obscuring the channels, although the location

of those marks (near from the intine) indicates that further channels might be

filled with sporopollenin.
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5. Conclusion

Moving from a traditional SEM/TEM characterisation method to a SEM/SEM+FIB

was studied. The FIB method showed some potential benefits and could sig-

nificantly reduce preparation time. Additionally, the ability to provide 3D in-

formation about the sample’s structure could be of great use and cannot be

obtained from TEM. The preparation protocol should be enhanced —especially

the gluing procedure— but etching parallel to the exine surface provided some

data that are usable. The present work showed a discontinuity of the channels

at both of the inner exine edges. Furthermore, the number of pores has been

shown to vary withing the inner exine with discontinuities. The current state of

the research provides no evidence that the channels are obstructed by any other

material than sporopollenin —the exine material. Finally, data from the sample

are available and could be used to do statistical analysis over the channels.
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