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Abstract
This dissertation describes a complete systemdigiures image data from multiple

stereoscopic camera pairs and reconstructs a 3-elnod the imaged scene in real-
time. To achieve real-time rates, the system ismagd in a distributed hierarchical
fashion to maximize parallelism and uses algorithimst, in many instances, are
suitable for direct implementation in digital hamahe rather than software on a general
purpose computer. At the lowest level of the higrgr image data is acquired from a
single camera and processed to compensate fodistastion and to apply rectification
in preparation for stereo image processing. Atidnet level, data from pairs of cameras
is matched to compute a dense stereoscopic digpaaip from which 3-D surfaces are
inferred and a mesh model is constructed. Finatlyhe top level all of the individual 3-
D mesh models are merged into a single 3-D motidedired, the camera image data
can be applied to the resultant 3-D model as aitexdnd the model re-rendered from a

virtual camera viewpoint.

Previous 3-D research focuses on individual stepshis process (lens distortion
correction, image rectification, stereoscopic digpaomputation, and model building).
This dissertation considers them instead in théesttrof a complete end-to-end system.
Traditional approaches to model building begin véthunstructured "point cloud" that
is neutral with respect to how the data was acduitfeis allows model building to be
studied independent of data acquisition but mays resne opportunities available in a
more tightly coupled interface. By taking a broadew of the problems faced by the
entire system, a novel algorithm for 3-D model ity has been developed that takes
advantage of the organization in the dense steppasdisparity map to efficiently

X



build its model. The core of this novel algorithsm a method of evaluating linear
regression error to fit a series of line segmeantsldta points in a way that can be

efficiently implemented directly in hardware.

Xi



Chapter 1: Introduction

This dissertation describes a design and implertientaf an image capture system
capable of reconstructing an observed dynamic ttireensional scene. The challenge
inherent in this proposed system over previousesystis to operate at “real-time”

video frame rates using relatively inexpensive har@. The constraints implied by the
term "real-time" can widely vary, but within thissdertation the specific goal was to
acquire and process video a rate of at least 3esaper second at a 640 by 480
resolution, with a latency of only a few frames. tAis modest resolution, the goal for
the reconstructed model of the scene is not neglgskagh precision but instead one

with an image quality that is suitable for casuelwng by a human observer.

The intended application for such a system is @Bpresence; once a 3-D model of the
scene has been reconstructed, it can be rerender2d from some virtual camera
position and orientation. At the smaller scales #tould be used to draw teleconference
participants into a virtual environment with fewadrthe artificial barriers of traditional
teleconferencing. At the other end of the extrewiéh many cameras and with higher
resolution, a viewer could watch a sporting eveotnfa position that they dynamically

choose.

Within the model building stage (covered in detaiChapter 6), there are two specific

novel developments:



* A method of using least-squares linear regresosegment data into a series
of line segments, with each data point evaluatdy amce.
» A method of processing a dense stereoscopic depgfhimto a 3-D model that

takes advantage of spatial locality in the struetfrthe depth map.

To achieve the desired frame rate several stratdgiee been adopted throughout all of
the stages of the system:
» Data should be processed and transferred in plaralle
» Perform time critical calculations and data trarsfeith dedicated special-
purpose hardware rather than with a general-purpoggoprocessor and
software.
* Organize the calculations to use faster operatnisdata types.
» Complex operations that cannot be avoided entskbuld be broken up into a

series of simpler operations and pipelined.

Wherever data can be independently processed, begdparallelization trades what
would have beem operations spread over time nooperations spread over space. In
this ideal case, the only limitation is the costleé additional processing hardware that
the operations are spread across. In practice, @wthere are often points where data
cannot be independently processed or data setstodmsimerged. At some point, the
cost of distributing data to parallel operationsnoerging their results exceeds the

benefit of the parallelization.



Microprocessors are designed to allow flexible athms and quick implementations
of these algorithms. The architecture of the mionopssor is designed to give good
results for a wide variety of operations, but a #xpense of not being optimized for
any specific task. For more specialized tasks, aareuse correspondingly specialized
compute units, such as Digital Signal Processods @Graphical Processing Units, or
even implement a fully customized application specompute unit. However, in all
cases to efficiently implement a given algorithhe algorithm must be a good fit with
the capabilities of the underlying hardware. InstBystem, as much as possible, the
algorithms have been chosen or designed so thaputations could be implemented

directly in hardware with a pipelined data flow nebd

Some operations are of greater complexity thanrsthad require more time and/or
hardware to implement. For example, multiplicatiequires the computation of partial
products as well as the sum of all these partiatiypets. Therefore, multiplication is
considered more computationally expensive thanathdition of two numbers. When
calculations can be expressed in multiple algebi@ims, the calculation should be

organized to minimize this computational expense.

The chapters that follow begin with the relevatdriture and provide a background to
the concepts of this system in Chapter 2. Thisliswed in Chapter 3 by a description
of the camera calibration process, which only needbe performed once when the
system is initially set up. The operation of theethstages of the system are covered in

Chapters 4 through 6. The initial stage (Chaptateg)ls with image acquisition from a



single camera and corrects for some shortcomingthénnon-ideal nature of real
cameras (and particularly, low-cost cameras). Tdword stage (Chapter 5) processes
images from pairs of adjacent cameras to detera@mth at each point in the images
via stereoscopic disparity. The third and finalgstdChapter 6) process the depth data
into a 3-D mesh model that the original images lvarapplied to as decals to create a
realistic 3-D model of the scene. Finally, Chaptesummarizes the results and suggests

directions for future research.



Chapter 2: Literature / Background

Previous 3-D model building research focuses piilsnan reconstruction of a static
scene (often as simple as a single object) usingus ranging technologies. For
example, in structured light analysis a sequendegbf/dark patterns is projected [20],
or laser scanned [14], onto the scene. Variatioobijects’ surface contours distort the
projected patterns. With knowledge of the pattebwth pre- and post-distortion, and
relative positions of the projector and camera stimaces can be inferred and the scene
reconstructed. Since the scene is static, the psocan afford to spend a relatively long
period of time sequencing through the various pastand gathering the resulting data.
Furthermore, to reconstruct both the front and lzddke objects in the scene, the scene

usually undergoes a rotation relative to the caraadalight source.

Alternatively, stereoscopic analysis [12] comparegesponding points in two images
taken from different points of view to triangulatfee position of the corresponding
surface. The two images can be gathered with agbaiameras or a single camera in
motion. Again, to reconstruct both the front ana@kbaf the objects in the scene, the
scene usually undergoes a rotation relative to ¢henera(s), akin to roll-out

photography of cylindrically symmetric objects [18]

Advances in technology have made real-time stegguscanalysis feasible. The
necessary computations have been broken up aneérmepted in parallel FPGAs [25]

or specialty parallel core processors [7]. To ddiese real-time implementations have



focused solely on gathering range information natitean complete scene

reconstruction.

Once the range data has been acquired, a modélkeofdene can be reconstructed.
These models can be represented either voluméyrigdl[22] or in terms of a mesh
surface [24]. In a volumetric representation, thace is subdivided into small discrete
pieces that indicate occupancy or vacancy of aeabbRange information from each of
the views is used to mark vacancies in the spau,tlee final scene model inferred
from the pieces not marked as vacant. Surface Isaate built from a mesh of
polygons, usually triangles or quadrilaterals, wedi by their vertices. Range
information from multiple views may be combined faom a “point cloud” and the
mesh formed by using points near each other tmégfolygons. Alternatively, meshes
from each view can be formed on a regular gridyiteg discontinuities in the grid
where the range information suggests a sudden ehamdepth. Then these meshes are
combined, eliminating redundant polygons and fjlin any small gaps to generate a

final model.

With multiple cameras, real-time stereoscope amallgas the potential for dynamic
scene reconstruction if the range information daa ke processed into scene surface in
real-time. Naive reconstruction of the entire scanew many times per second would
handle the requirements of a dynamic scene. Howe&wsgn changes in the scene are
slow relative to the camera frame rate, knowlediythe scene from previous frames

could potentially simplify the processing of therremt frame. Inter-frame knowledge



has also been used to smooth out positional jiteing from noise in the acquired

images [6].

Homogeneous Coordinates

Although the coordinates on an image plane areridsional, it is often convenient to

represent a coordinate as a 3 element vector éocalresponding 3 element column
matrix). The first two elements represent the pasibn the 2-dimensional axes with

the third element representing a scaling factosc#ling is unneeded, the scaling factor

is simply the value 1.

X
{ ]n sy (2.2)
y

S

Likewise, coordinates in the 3-dimensional world aften represented as a 4 element
vector (or 4 element column matrix), with again kst element simply a scaling factor

for the first three.

- (2.2)

Coordinates in these forms that use the last elem®&m scaling factor are known as
homogeneous coordinates and allow a wider rangaritimetic operations to be

described in terms of matrix multiplication. Funtnre, these forms are able to reflect
a key property of projective geometry in that tipgparent size of objects is scaled by

their distance from the viewer.



Camera Model
The basic operation of a camera is best descripepimhole camera modéFigure 1)

[10]. Light from a poinX in 3-D space passes through the pinhole gitd pointx on
the 2-D image plane. The direction the camera istjpg, the principal axis, coincides
with the Z axis. The principal axis intersects the image @lahthe principal poinp
which is taken as the origin for the image planesax he distance betwe&nandp is
the focal lengthf. In a physical camera, the image plane is nedgssshind the
pinhole and thus the 2-D axes are reversed fromctiteesponding 3-D axes. For
convenience to avoid axis reversal, a virtual implg@e can be imagined at a position
an equal distance in front of the pinhole (Figuje ®@ordinates oX and x remain

unaltered.

X
X
| C ,
camera principal axis

pinhole

image plane

Figure 1. Pinhole camera model (adapted from [10]d. 6.1)



camera
pinhole

principal axis

image plane

Figure 2. Alternate pinhole camera model (adaptedrém [10] fig. 6.1).

For simple image processing, basing the world doatd system relative to the camera
may be sufficient. However, with multiple camerasnaultiple points of view there
needs to be a way to relate each of the image wtes to a unified world coordinate

system. This can be done with the a linear transition below (Cyganek, 2009).

X =MX (2.3)
M=MM (2.4)

il 0 o,

h,

M. =0 f 0 (2.5)

i h y

y

0O 0 1

R, -R.T
M.=|R, R, (2.6)

R, -R,T



The matrixM, defines some intrinsic camera parameters thavatome adjustment to
the coordinate system for its image plane. In #eeof a digital camera, parametéys
and h, specify the width and height of a discrete pixeltbe image plane so that the
coordinates are in terms of pixel units. The patanseo, and o, specify an offset for

the origin of the image plane coordinates fromghecipal pointp.

The matrix M, defines extrinsic camera parameters that defing tiee camera’s
coordinate system relate to the world coordinagtesy. The translational motion of the
coordinate systems’ origins is specified as theirmol vectorT and the rotation of the

coordinate systems’ axes is specified as the oaditalgrotation matrix; in (2.6) R,
refers to thath row of R. SinceM is a 3 by 4 matrix, the world coordinaemust be

in homogeneous coordinate form as a 4 element coluector (this allows the
translational motion to be combined with the othaatrix multiplication operations
rather than a separate addition). If the camersdinate system is used as the world
coordinate system, then d&h_ without rotation or translation can be used:

M, = (2.7)

o O Bk
o P O
= o O
o O O

Focus
The pinhole camera model is idealized; the pinfintetions as a lens with an infinitely

small aperture. For an actual camera, using eithdrue pinhole or some more

10



sophisticated lens assembly, the aperture is nadlgsinite. Thus,C is no longer a
singular point, which in turn means that 3-D pofhho longer corresponds to a single
2-D point on the image plane but instead a regronrad the idealized poixtknown as
thecircle of confusionWhen the camera and lens are perfectly focusdidetalepth of
some point in the scene, the corresponding circt@ofusion shrinks to a point. Other
points closer or farther away have circles of ceitfa with a non-zero diameter but

may still be considered “in focus” if the diametersmall enough. For some arbitrary

maximum allowed diameter, one can solve [16] fa tAnge of depths] ., to d,,
meeting this restriction:
¢ =maximum circle of confusion diamei
d = depth lens is perfectly focused to
f =lens focal length
n=lens numerical aperture ("f-stop")
f 2
h=—+f (2.8)
cn
0 ford<2f-h
d.. = - f2 2.9
e T) AN g s 21 - (29)
h+d-2f
dh-2fd+ f?
_ forO<d<h
d, = h-d (2.10)
00 ford=h

The depthh is called the hyperfocal distance; the amount hif scene in focus
approaches its maximum dspproaches the hyperfocal distance. To improvelépth

of field, the lens aperture can be reduced (deemashe camera and objects of interest

11



can be moved further apart (increaethe focal length shortened (decre§ser some

combination of thereof.

Reducing the lens aperture requires increasingreilie exposure time of the camera or
increasing the lighting of the scene (since leghtlican pass through the lens), but
otherwise can increase, up to a limit, the depthiedél without changing the image
scaling. The limitation arises because (2.9)-(2dr@)based on a particle model of light
and neglect its wave nature; as the aperture apipesathe scale of the light's
wavelength, these equations become inapplicable difiichction patterns become

significant enough to actually increase the sizthefcircle of confusion.

If there is sufficient room, the camera can be ndovack from the objects of interest.
However, the last alternative, reducing the foeabth of the lens, has the advantage of
working in all cases and is attractive as a gensshltion. Unfortunately, short focal

length lenses (also known as wide-angle lensed)ttealso suffer increased distortion.

Lens Distortion
Imperfections in the manufacturing of a lens andalignments of individual lens

elements in a multi-lens assembly lead to unintdrdistortion in the resulting image;
some amount of distortion is unavoidable. To mimerthe distortion, one can pay for
more expensive lenses that are made to a higheeelef precision. Alternatively, one
can cancel out the distortion by applying a secaistbrtion that is the inverse of the

first.

12



For a reasonably well made lens assembly the tmtooccurs primarily along the
radial axis, symmetric around the principal poiftor a pixel at radiug from the
optical axis in the ideal image, the distortion mevt to an apparent radinsdue to

Seidel aberrations [8]:
F=r+ari+ay°+ay’+... (2.11)
The constantsa, are related to the curvature of the lenses inasembly and their

relative positioning, but normally are computedtigh estimation using pairs piand

' associated with a known calibration target rathan physical measurement.

Also possible is distortion that is perpendicutathe radial axis. This is commonly due
to the image sensor being slightly off angle froeinly exactly perpendicular to the
principal axis. However, this tangental distortiemmormally a much smaller effect than

the radial distortion and so is not consideredherin this dissertation.

Suppose the actual image is that of a regular gfrigtraight lines (Figure 3). When
f >r , the image is said to suffer from pincushion diste (Figure 4). Whert <r , the
image is said to suffer from barrel distortion (g 5). It is also possible far<r in
some portion of the image ard>r in another portion of the image, but this occurs
less commonly. In any case, all of these distostican be modeled by the above

equation.

13



Figure 3. Image of a grid of straight lines.

Figure 4. Example of pincushion distortion; straigh lines bend inward.
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Figure 5. Example of barrel distortion; straight lines bend outward.

The higher order coefficients become progressigaigller and so at some point can be
considered negligible. The coefficients are deteadias part of the camera calibration
process, often by locating straight line edgesitimee a real-world scene or calibration

target and measuring the curvature of those edgieiacquired image [5] [3].

By similar triangles (see Figure 6), the coordisatey are distorted to

% szr (2.12)
y =yTr (2.13)
with r=x*+y? (2.14)

15



Figure 6. Radial distortion of point p.

After substitution and simplification

$<=x(1+ ar+ar+ a3r6+...) (2.15)

y=y(l+ar+ar+ar+..) (2.16)

In this form, only even powers of r are neededhgocomputationally expensive square

root operation can be avoided. The appaxgntoordinates are therefore given by

>~<=x(1+ qr2+a2(r2)2+a3(r2)3+...) (2.17)
y:y(1+ qr2+a2(r2)2+a3(r2)3+...) (2.18)
r’=x2+y? (2.19)

Iterating over all the x, y coordinates of an image plane, one can computéhall
corresponding positiong, ¥ within the distorted image using the above equati®y
copying the value of the pixel at the distortedifiams to the pixel at the undistorted

position, the overall undistorted image can be mstocted.

16



Figure 7. Lens distortion correction. Left: Original distorted image with dashed
reference “straight” lines. Right: Distortion corre cted image. ([10] fig. 7.6)

Stereoscopic Vision
Suppose a poinX is visible from two adjacent cameras (see FigyreaBpointx; in

cameraC,’'s image plane and at point in cameraC,'s image plane. The plane
containing the point€;, C,, andX is called theepipolar plane If the epipolar plane is
uniquely determined and the relative positionefC,, x;, andx, are known in 3-D

space, then the relative positionXotan be uniquely determined through triangulation.

C___—
C; “

Figure 8. A pair of adjacent cameras view point X

X

/
|

Because; is collinear withC; andX, the epipolar plane can equivalently be defined as
the plane containing the poirs, C,, andxy; this is more practical since the position of

X is often not known in advance. Since any point thaollinear withC, andX (other

17



than the degenerate casedafitself), when taken with the poin@; andC,, will define
this same epipolar plane, the intersection of hipaar plane with camer@,’s image
plane forms a line, thepipolar line that represents the image of these collineartpoin

from cameraC,’s point of view (see Figure 9).

Figure 9. Varying potential depths of X cause itsmage % to vary along the
epipolar line in camera G’s image plane.
The epipolar line is useful because the positiorxofs also not usually known in
advance. Instead, camef@’s image plane must be searched for a region that
sufficiently matches the region arourgdin cameraC;’s image plane. The constraint
imposed by the epipolar line reduces the potesgalch space from a quadratic size to

a linear size.

Fundamental Matrix
For particular stereoscopic camera pair there ®rishatrixF, thefundamental matrix

such that

X;Fx, =0 (2.20)

18



for any pairs of corresponding points and x, given in homogeneous pixel coordinate

form. The fundamental matrix encapsulates theivelgiosition and orientation of the

camera pair. It also has the useful property thatullspace ofx,is the epipolar line

corresponding to .

Image Rectification
Although the camera pair shown in Figure 8 cannbe wide range of relative positions

and orientations that allow the position>oto be determined, some are more favorably
solved than others. If the cameras are orientell that their image planes are parallel
to the line joiningC; andC,, then there will exist a set of parallel linestire image
plane of camer&; that all of the points in one of these lines valare the same

epipolar line in the image plane of camé&a

Each of these parallel lines in conjunction witkittcorresponding epipolar lines can be
processed independently and thus potentially sanghbusly. With the proper
orientation of the camera about its principal akisth the set of parallel lines in camera
C: and the corresponding epipolar lines in can@raan be parallel to a chosen axis
(typically x) within the image planes. This would allow thedveare addressing of the
image plane data to be partitioned easily so ti&apbtentially simultaneous processing

can become actual simultaneous processing.

If the orientation of the cameras do not meet th@va conditions, it is still possible to
compute the image of a virtual image plane thasduoeet the above conditions based

on the image in the actual image plane; this pteknown asmage rectification
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Image rectification may still be useful even if tt@meras are intentionally oriented to
meet these conditions, due to limitations in thderamces achievable in the
manufacturing process. A calibration process (dised in Chapter 3) can be used to
determine the actual relative orientation of thenesas and thus compute projective
transformations for the two actual images to gdeevatual images of an idealized

orientation [9].

While computing the appropriate projective trangfation matrix H for the
rectification is somewhat complex, the transforomatitself is straightforward. For a
coordinatex in homogenous form on the actual image plane, dbeesponding

coordinatex (also in homogenous form) on the idealized imdgaeis given by:

X = Hx (2.21)
Expanding these three matrices into their compoekements:

| [h h, B X
§|=|h, h, h y (2.22)
] |h h, hyl1

Applying the matrix multiplication and normaliziriige result:

| hyx+ h,y+ Ry

hy, X+ h, y+ h;

thX+ hZZ y+ hZ3 (223)

hy, X+ hy, y+ hy,
1

>
1
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Image Remapping
Both the lens distortion correction and image fietiion involve the mapping of pixels

from some positions in a source image to new pwtiin a destination image.
However, the mapping functions are continuous wliie pixels occupy spatially
discrete positions. Thus, in most cases the magpimgtion will return a position that
will partially overlap four possible discrete piXetations. Compounding this problem,
pixels that are adjacent in the source image may beoexactly adjacent in the
destination image. Instead, they might slightly rteye or even leave a gap between

their positions in the destination.

A patrtial solution is to use an inverse mappingction that relates positions of pixels
in the destination back to the corresponding pmsitin the source. This inverse
mapping avoids the problem of pixel gaps in thdidason image because every pixel
position has a mapping back to some position insthece. There may still be gaps in
terms on which pixels are used in the source in{ageme source pixels may be left
unused), but this would only appear as a loss w@ildend is preferable to the alternative
of completely missing pixel data that would occroni pixel gaps in the destination

image.

Using the inverse mapping does not solve the proloiethe discrete versus continuous
pixel positions. The simplest solution is to routhd continuous position to the nearest
discrete position. However, this rounding wouldradiuce a positional error of up to
half a pixel position which in turn reduces theiakility of the correspondence

matching and increases the possible error in tpehd=mlculations.
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A better solution to the problem of the continupasitions is to use some interpolation
function to estimate the value between the disqoetel positions. One of the simplest
interpolations is bi-linear interpolation, wheregli value is assumed to linearly vary in

the horizontal and vertical axes between the ftngest discrete pixel positions.
U =u-| u] (2.24)
Vv, =v=| V| (2.25)

P(u,v)=(1-\/f)((1‘t4) ALu [ )+ v Rl y+a] j'))
(S L (R A (RVESTRVES )

In equation (2.26), the pixel’s value is determifgdhe values of the pixels it overlaps,

(2.26)

each weighted by the area of overlap (see Figuye 10

l-uf uf
e

Figure 10. A pixel offset from the usual integer gd coordinates

Disparity and Depth
From a pair of rectified images the deptihom the cameras to poitis given by [12]:

z=— (2.27)
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b=|C,-C,| (2.28)

d=|x - (2.29)
wherex; andx; are the components & andx; in the image plane coordinate system
that correspond to the axis parallel to the epipat@s and is the effective focal length
of the cameras after rectification. Since for amytipular configuration of camerds
andf are constant, the depthand disparityd are always inversely proportional. With

the depth known, the coordinatecan be recovered relative to either camera:

X :C1+Tz(x1—C1) (2.30)

X =C, +%(x2—C2) (2.31)

The set of all such points computed ¥rfor the set of corresponding points found in

the two image planes is known as fuent cloud

Scene Reconstruction
Once the point clouds have been determined for eat¢he camera pairs, an overall

model of the scene can be reconstructed. A top-deigw of a sample object
surrounded by four camera pairs is shown belowigurié 11; while assumed present,

the third dimension is omitted for ease of illustna.
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Figure 11. Top down view of an example scene witlameras represented by circles

Volumetric Models
In a volumetric model, the model is representeatilgree dimensional array in which

the array elements indicated the presence or absenan object at the corresponding
point in the world domain. If corresponding poirgee visible in both images of a
camera pair, then there can be no occluding oljetiveen the cameras and the

corresponding 3-D world point. Therefore, all argments representing positions

between the camera pair and the 3-D world point lmamarked as unoccupied (see

Figure 12).

Figure 12. Binary volumetric model formed from eachcamera’s view.

For binary model images, if an object’s presenageisoted in the array element by a 1
and its absence denoted by a 0, then a bitwise AigBrator can be applied to
successive models formed from each view to generditeal composite model (Figure

13). Alternatively, the array elements may be repnéed as a continuous probability of
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the presence of an object, to account for the estidherror in the position of a 3-D

world point.

Figure 13. Combining each successive view’s volumietmodel to form final
model.

Surface Mesh Models
In a surface mesh model, the point clouds are asdumbe samples from a relatively

smooth and generally continuous surface. This prabk ill-posed meaning there are
many solutions to finding a function that definbis tsurface depending on the working
definitions of “relatively smooth” and “generallyowtinuous” [1]. To build the
composite model, either all of the point cloudsrirall of the views (Figure 14) are
combined into a global point cloud and then proegds form a surface mesh model
(Figure 15) or the individual points clouds arenfied into surface meshes (Figure 16)

and then these meshes are combined (Figure 17).

Figure 14. Point clouds formed from each camera’sigw.
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Figure 16. Each view’s point cloud processed to for surface models.

Figure 17. Combining each view’s surface model t@fm final model.

Forming surface meshes from individual point clolds the advantage that sudden
changes in depth relative to the associated cawiéea strong hints to find actual
discontinuities, whereas in a global point cloudntowity is assumed by close
proximity. However, combining multiple surface meshformed from the individual
point clouds may result in redundant or overlappimgshes that may need trimming. If
there are slight errors in the mesh positionsctirabined meshes may also have small

gaps between them that need filling in.
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The novel method of model building outlined in Ctep6 is similar in spirit to this
second approach of forming mesh models from ind@idpoint clouds and then
merging the resulting meshes to form a unified rhodewever, rather than distilling
the range data from disparities in the 2-D imagés @ pure point cloud form and then
processing the point cloud, the spatial relatignshoresent in the original 2-D images

are retained and used to guide the mesh formation.
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Chapter 3: System Overview, Calibration, and Camera
Limitations

System Overview
Image processing is usually a computationally isitentask; image processing in real-

time is even more so. To keep the computationauirements and bandwidth

reasonable, the system is organized so that opesatian be parallelized. While the
algorithms are initially implemented in softwareamy are structured so that they can
easily be performed by FPGA hardware for improvedgrmance. Figure 18 shows the

top level view of the system organization.

Stereoscopic
Camera Pair |«
Module

Stereoscopic General
Camera Pair [« > < > Purpose

Module Network Computer
Switch

Stereoscopic
Camera Pair |«
Module

Figure 18. Top-level system organization

The Stereoscopic Camera Pair Module (SCPM, sead-itR) is much more than just a
pair of cameras; it also includes all of the han®nend software needed to process the
images from the module’s camera pair into a 3-D ehad the partial scene visible to

those cameras.
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Camera | Single-Board Computer | |
(Omnivision 5647) | (Raspberry Pi)
General
Purpose
Computer Network
(Mac Mini)
Camera Single-Board Computer
(Omnivision 5647) [~ | (Raspberry Pi) N

Figure 19. Prototype stereoscopic camera pair model(SCPM) organization

The Omnivision 5647 is a full color, medium resadat(5 megapixel), digital camera.
While the color and resolution are beyond the neefds basic proof-of-concept
implementation, the Raspberry Pi single-board cdaeml9] is designed to work with
this specific camera and tightly integrates the eaminterface with the combined
CPU/GPU. The camera hardware can combine the vdtweadjacent pixels in the
array to produce an image with lower resolutiomttiae native resolution of the sensor
array as well as reducing the sensor noise lewtioAgh this could also be done by the
CPU or GPU, handling it inside the camera itsedef up processing power that could
be used for more complex tasks and reduces théwhdin needed to manage the

camera interface.

The Raspberry Pi is a powerful low-cost single-boaymputer based on the Broadcom
BCM2835 System-on-chip. This device integrates @ MHz ARM1176JZFS CPU, a
Videocore 4 GPU, 512 MB of RAM, and various perigénterfaces including the
dedicated camera interface and a USB 2.0 interfHus. USB interface connects to an

SMSC LAN9512 combination USB 2.0 hub and 10/100Rfirernet controller.
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The image data from the camera is processed b%Rig before being passed to the
CPU. The transformation needed for image rectificatfits well with any GPU
designed to handle accelerated 3-D operationsydimal) the Videocore 4 GPU. The
lens distortion correction probably could be hadddky the GPU, although this is less
certain because it depends on the details ofdtsitecture. Unfortunately, programming
information for the Videocore 4 GPU is not publichyailable and its firmware is
provided only as a binary image without source cddee published interface to the
camera only supports some very basic transformati(notations in 90 degree
increments, flipping the image along the verticahorizontal axes, and some limited
rescaling options) and some predefined artisticigpeffects. Thus, the lens distortion
correction and image rectification is left for tARM CPU to process. Implementation

details of these steps will be covered in Chapter 4

The Mac Mini is a general purpose desktop compirtea compact form factor. It
receives a undistorted rectified image from eaclhef Raspberry Pis and uses block
matching to find the disparity between correspogdpoints in both images. The
disparities are then processed and grouped inigpolregions to form a mesh model.

Implementation details of these steps will be ceden Chapter 5 and 6, respectively.

Calibration
Since the ultimate goal of this system is to predaanodel of a real-world scene, it is

important that the images produced by the cameaashe used to accurately measure

the size and position of objects in that scenes Tiecessitates an accurate model of the
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camera itself (the intrinsic parameters) as welkhes position and orientation of the
camera relative to a real-world coordinate systeéhe (extrinsic parameters). The
calibration process only needs to be performedtone after the system is set up to
observe a particular scene, so there has beenteroptto optimize the speed of the

calibration process.

The intrinsic parameters can be grouped into twegmies: 1) parameters that map a
pixel position in the image to a physical locat@nthe image sensor within the camera,
and 2) the parameters that model the distortiorthen lens system. With the lens

distortion correction and rectification stages Hied, a calibration target consisting of a
black-and-white chessboard pattern is shown to eactera. The corners of the squares
in the pattern are easy to identify features witthie image, even with significant

distortion. Furthermore, the stark contrast betwtenblack and white squares allows

the corner positions to be inferred with fractiafisa pixel accuracy.

Using multiple images of this calibration targetverying positions and orientations, an
OpenCV library [2] function is used to compute afl the intrinsic parameters. The
coordinates of the corners of the squares in tiessiioard pattern image are identified

and then processed by separate algorithms forasegory of intrinsic parameter.

The lens distortion parameters are determined hyethod based on Brown [3]. The
corners of the squares of the chessboard patteuldsform a grid of implied straight

lines; any nonlinearities must be due to lens disto. Thus the lens distortion model
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can be recovered through an iterative process tfieé to match the observed
nonlinearity. Although a single image of the caifoon target would be sufficient to
uniquely determine the parameters, multiple imagesused to find a model that fits all
of the available data on a least-squares besadisito minimize the effect of any small

errors in locating the square’s coordinates.

Once the corner positions have been adjusted tpeosate for any distortion, the
remaining intrinsic parameters are determined uthiegmnethod given in [26]. Because
the calibration target is planar, for each imaggdmust exist a translation and rotation

matrix M, such that the world coordinate for all of the @mwithin that image have
a z-axis component of 0. Each matik, has 6 degrees of freedom (3 rotational axes
and 3 translational axes). The matik that is common to all of the images, has 4

degrees of freedom. With a sufficient number ofgesmand corner coordinates within
each image, the constraint that the world z-axiemanent is 0 along with the image
corner coordinates can be used to set up a laigiersyof equations to solve for the

commonM, (and incidentally, theVl , for each image), at least up to a scaling factor.

However, since the size of the squares in the tloasd pattern is known, the scaling

factor can also be calculated as well.

To some extent, the extrinsic parameters can h&ash since the coordinate system

for the real-world scene and resulting model caso dbe arbitrary. However, the

position and orientation of the cameras relativedaoh other need to be known at two
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different levels: 1) the relative position and ategion of the camera pair within the

SCPM, and 2) the relative position and orientatiofithe SCPMs.

For the camera pair within the SCPM, the same rldn target used for intrinsic
calibration can be used. In fact, as long as tHidbresion target is visible to both
cameras at the same time, images for both caldmatan be acquired at the same time.
The OpenCV library also provides a calibration tim to compute the fundamental
matrix based on two views of the same calibratemgdt. The fundamental matrix can
then be used to compute the appropriate transfansatto both images for

rectification.

Camera Limitations
For a static scene, it does particularly mattermtine images from the various cameras

are acquired. However, for a dynamic scene it besoanitical that all the images are
from a particular point in time. The computed deptla point is inversely proportional

to the distance that point has apparently shiftetiveen the left and right rectified

images. If the underlying object associated witht fhoint is in motion and the left and
right images are from different times, the appasitted distance becomes a function
not only of the depth but also the motion. Gengralhy motion in the scene is not
known in advance, so correctly calculating the ddmcomes impossible in this case.
Thus, to minimize errors in the calculated deptie tameras must be sufficiently

synchronized that any motion difference betweerctraeras is negligible.
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In the best case, the two cameras in an SCPM afendoy a single digital clock source
from within the SCPM. The offset in synchronizatitom one camera to the other
would relate to the different propagation delaystlod clock signal from the clock
generator to each of the two cameras. Becauseeobriall distances involved, the

offset could easily be kept to the order of nanosds or less.

Unfortunately, the camera synchronization problemnot just limited to the two
cameras within each SCPM; all of the SCPMs alsal neebe synchronized. While a
single digital clock could also drive all the SCREMsaintaining the integrity of the
clock signal over the comparatively longer distangaakes this implementation

strategy more difficult in this situation.

As an alternative, one can take advantage of moligimspeed network interfaces.
Rather than a single digital clock source for thire system, there could be a
multitude of clocks driving the cameras, as long &#iming differences between the
clocks are minimized. Keeping many clocks synchrediover a network is exactly the
problem the Precision Time PrototdPTP) [11] was designed to solve. In a local
network, PTP will typically maintain clock synchimation within a microsecond but

performance can be as good as a nanosecond whenwite network interface

hardware that was designed specifically to suppoR.

The notion that a camera acquires its image at ratance in time is also a

simplification. The image is actually acquired irbaef span of time, the length of

1 Also known as the IEEE 1588-2002 standard, latesraded as IEEE 1588-2008.
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which is determined by the camera’s exposure gpt#my motion in the time span

results in light from a single point to correspargly move across the image sensor,
resulting in blur. Lower lighting levels requirette@r a longer exposure time which
increases this blur, or an increase in the imagsm& gain which also increases the

magnitude of the noise.

Finally, the span of time for the exposure might be the same span of time for all
regions of the image sensor. Traditional film camseuse a mechanical shutter that
essentially exposes the entire frame of the filmuianeously (the time it takes for the
shutter to open and close is assumed to be ndgligdmpared to the exposure time).
Digital cameras generally do not use a mechaniuvatter but instead leave the image
sensor permanently exposed. Instead, the pixetheimmage sensor are sampled after

the desired exposure time has elapsed and themn rese

In the less expensive image sensors, this sampépgens a line at a time as the data is
read out of the sensor and is knowrr@éng shutter While the duration of exposure
remains the same for all lines, the absolute ataitstop time of the exposure is slightly
offset from one line to the next by the amountiwietit takes to output each line’s pixel
data. More expensive image sensors have additiveralware to buffer the sampled
pixel data, decoupling the sampling from the datpot process. This allows the
exposure start and stop time to be the same foerntiee image and is thus known as a
global shutter If the imaged scene is in motion, cameras witbbgl shutter are

preferable for the same reasons given previoudly kggard to camera synchronization
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The initial proof-of-concept implementation is uginameras with rolling shutter and
all synchronized over the network with PTP. Thdimglshutter will cause distortion in
the model for objects moving quickly relative t@ timotion of the virtual shutter across
the image sensor, but is considered a reasonabtetreale-off, at least for proof-of-
concept purposes. With additional funding, the gasecould be upgraded to more

sophisticated cameras that use global shutter.
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Chapter 4: Image Acquisition, Lens Corrections, and
Rectification

Overview
While the prototype system is using an single-boeodnputer to do the initial

processing associated with each individual camtra, proposed system will use
dedicated hardware to accelerate the processiaghieve a faster frame rate needed for
guality video. A block diagram of this hardwaresisown below in Figure 20. These
blocks are organized conceptually, and do not rsecig reflect the boundaries

between physical components.

Source Remanoin Corrected (To later
Camera » Image bping » Image —»
Engine stages)
Memory Memory
J
Remapping
Memory

Figure 20. Block diagram showing the image data fle for an individual camera

The memories shown in Figure 20 are random accessony (RAM). By their very

nature the RAM’s contents may be read or writtearig order. However, the time each
access takes may vary depending on the order @dtesses. Generally, modern high-
speed RAM large enough to hold a complete imadgastest when the locations are
accessed sequentially, somewhat slower when acckgsgions are in the same region

but not sequential, and slowest when accessesnarbfferent regions. Therefore,
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whenever possible, the data flow should be orgdnige that either the RAM is
accessed sequentially or smaller RAM is used thatro speed penalty for random

access.

Camera
The Omnivision 5647 camera outputs its data thrau@lamera Serial Interface 2 (CSI-

2) interface in which the data bits are serialiaed sent synchronously using a low-
voltage differential-signal physical interface. \Ii¢hihis interface offers good signal
integrity over the cable from the camera, it neitates a much higher speed clock and
the serial nature is completely at odds with pafgtocessing. All of the individual bits
associated with each pixel need to be accumulatadshift register so that the full pixel

data can be reformatted into parallel output.

Source Image Memory
Within the source image memory, the pixel dataaiajelized in two different ways. In

the first case, the pixel data has three componastglly abbreviated with the letters
Y, U, and V.. The Y component encodes the luminance, the gasg/dmightness. The
U and V components collectively encode the hue satdration of the color. All three
of these components can be processed in paralléérnatively, the U and V
components can be discarded at this point if asgiag image is acceptable in the final

model.

The second way the pixel data can be parallelisespatially. Recall from Equation

(2.26) in Chapter 2 that the pixel remapping predaggeneral needs the values of four

% This usage of U and V is completely unrelatechtodonvention of using U and V as pixel coordinates
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adjacent source pixels?(u,v), P(u+1, Y, { u w1, ¥ u 1 ¥ ) for some integer

pixel coordinates! andv. If u is even, theru+1 is odd. Ifu is odd, thenu+1 is even.
Of course this applies toas well. Thus, the four combinations of even add for u
and v will always map to the four required sourceeppositions above and a memory

for each combination will allow all four pixel vada to be accessed simultaneously.

Since the evenness or oddness of the two comporwnthe pixel coordinate
determines which of the four memories will hold trirel value and bit O indicates this
evenness or oddness, only bits 1 and higher ofctmponents are needed for the
memories’ address lines. The addresses to each mpehmwever, are not necessarily
the same. Without loss of generality, considerpbion of the address derived fram
Whenu is even,u+1 only differs fromu in bit O, which is not part of the derived
memory address so the addresses to both the edenddnmemory are the same. But
whenu is odd, thenu+1 causes a carry out of bit O into bit 1 (and peshagascade of
further carries, depending on the values of thé oéghe bits) causing the derived
address for the even memory to be 1 higher thamdoae This can be implemented in
hardware with an adder that adds 0 to the uppsrdbit with a carry-in from bit O ofi
(so this can be a half-adder). This address lile® circuitry for the source memory is

shown below in Figure 21.
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Figure 21. Source image memory organization (onlydaress lines shown)

Remapping Engine
The remapping engine iterates through all of theradinates of the image in the

corrected image memory, applying the transformationcorrect the lens distortion and
achieve rectification in order to determine theresponding coordinate in the source
image memory. The engine then fetches the fourestopixels values at integer
coordinates from the source image memory and appfiear interpolation to compute

the pixel value to store in the corrected image orgm
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Figure 22. Remapping engine pixel value data flow.

Figure 22 shows the data flow computing the intleeal pixel value and is basically a
hardware implementation of Equation (2.26). Theyadmplication is that since the
RAMs are dedicated to a particular combinationvareand odd horizontal and vertical
components, the pixel's value should be multiplgdthe fractional component or one
less the fractional component depending on the ressor oddness af andv. In

general, the multiplexers could be applied to eithiethe factors, but by associating

them, as in Figure 22, with the fractional parstead of the pixel value from the RAMs
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allows their propagation delay time to occur ingtlet with the RAM access time,

rather than adding to it.

The remapping engine fetches theand v pixel coordinate from the remapping
memory. Each pixel coordinate in the corrected enagtransformed into an image
plane coordinate, the lens distortion Equationd7R.- (2.19) applied, the image
rectification Equation (2.21) applied, and thenafip transformed back to pixel
coordinatess andv within the source image memory. Rather than perfall of these
calculations in the midst of the remapping proct#ssse calculations can be performed
once after SCPM calibration and the results stamethe remapping memory. Since
these calculations are only done once per systéap sad are not particularly time
critical, they can be handled by a general purpmseessor instead of dedicated

special-purpose arithmetic hardware.

If the locations in the destination image memorg a@ccessed sequentially, the
corresponding locations in the remapping memory aldo be accessed sequentially.
This sequential access pattern allows the fastesésa times for both of these

memories.
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Chapter 5: Stereo Disparity Computation
The heart of determining depth from a pair of sisoepic images is the

correspondence problem; if a point in 3-D space learidentified as corresponding
points on the two 2-D images taken by calibratedesiscopic cameras then the depth of
that point can be computed from the two 2-D coaths and the calibration data. As
noted in Chapter 2, epipolar lines can be usedottstcain the search space. Image
rectification warps the image so that the epiptitees become parallel to one of the
image's axes; this alignment makes a search almmgpipolar line coincide with a
search along consecutive locations in the memolfglimg the image, which in turn
allows more efficient memory accesses and/or pipali However, finding

corresponding points is still a challenging problem

While there are many methods for identifying copmwling points [21], the chosen
method is the "StereoBM" algorithm of the OpenC¥Yrdry [2]. This method is
classified as a block matching algorithm; a squdoek of pixels in one 2-D image is
compared to a block window of the same size indther 2-D image. This window is

moved along the epipolar line and a comparisonaderat each location.

In general, the location of the window when thetlmeatch is found is considered to be
the corresponding point. However, the actual cpading point may not be visible in
both images or there may be multiple, ambiguousinegt To reduce the chances of a
false match in the first case, the OpenCV StereaBfybrithm requires that the best

match also meets a minimum threshold so that padcmes are simply discarded. For
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the second case, the algorithm also keeps tradkeosecond best match that is not
immediately adjacent to the best match and thenimegjthat the ratio of the best match

to the second best also exceeds a minimum threshold

When comparing the block, the OpenCV StereoBM dtligor computes the absolute
difference between corresponding pixel values enliltock and window and then sums
this absolute difference over all of the pixels hait the block. Some other block
matching algorithms use the square of the diffezebhetween corresponding pixel
values, which has some nice mathematical propedigsh as easier to analyze
derivatives, but the multiplication is more comgiataally intensive than the absolute

value operation.

The size of the block is an important trade-offthé block size is too small, there may
not be enough pixels to compare to have sufficemfidence that the match is
unambiguous. Alternatively, if the block size i®ttarge, the block may encompass
regions of significantly different depths and sd fa match. The default block size is

17 by 17 pixels.

The output of the OpenCV StereoBM algorithm is tacdelisparity values, that is, how
far a point in one image has apparently shiftedreéach the position of the
corresponding point in the other image. If the dify value is 0, the point is
hypothetically an infinite distance away; in praeti the point is simply far enough

away that there is not enough detail availableesolive the actual distance. There is
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also a special value used for the disparity ifgbent could not be confidently matched

to a corresponding point.

When demonstrating new stereoscopic related algosi many papers use the so-
called "Tsubuka head and lamp" (often shorted $0'jlisubuka™) images from [17] and

shown below as Figure 23 and Figure 24.

Figure 23. "Tsukuba" left image. [17]
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Figure 24. "Tsukuba" right image. [17]

The output of the OpenCV StereoBM algorithm for thsukuba" images is shown in
Figure 25; increased darkness indicates increassgmhrity and pure white regions
indicate that the disparity is unknown. For comgami purposes, the ground-true
disparity is shown in Figure 26. Generally, errorghe computed disparity occur in
regions where there are many changes in depthaoskort span, such as along the arm
of the lamp. Disparity information is missing indar regions where the corresponding
point is occluded by other objects in the secondgen(the camera stand is partially

obscured by the head).
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Figure 25. "Tsukuba" disparity map computed by the OpenCV block matching
algorithm.

Figure 26. "Tsukuba" ground-truth disparity map. [1 7]

Overall, the OpenCV StereoBM algorithm has manyilattes, some already noted

above, that are conducive to direct implementaitionardware. In fact, a FPGA based
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design already exists [23] and has been verified ils output matches the OpenCV

software version bit-for-bit.

Strother's design [23] accepts the rectified imagesa stream of pixel data that is
scanned left-to-right and top-to-bottom. After pgssing, the design outputs disparity
values in the same left-to-right and top-to-bottorder. As such, there need not be any
intermediate memory between the remapping engirteeopreceding rectification and
lens distortion correction stage and this sterepatity computation stage. Likewise,
the model building stage, discussed in the nexptelnacan also accept the disparity

values as a stream in left-to-right and top-to-dootorder.

The performance of Strother's design at a numbeesiflutions in various FPGAs is

shown in Table 1. All of these rates are adequatéypical non-high definition video

rates.

Table 1. Performance of hardware implementation oDpenCV StereoBM [23]

Pixel resolution FPGA Frame rate achieved
320 x 240 Xilinx Spartan 3E 250 120 frames/secopd
640 x 480 Xilinx Spartan 3E 500 30 frames/second
800 x 480 Xilinx Spartan 6 LX25 60 frames/second
800 x 480 Altera Cyclone IV EP4CE250 frames/second
1920 x 1080 Xilinx Spartan 6 LX75 30 frames/second
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Chapter 6: Model Building

Building the model is a matter of finding the padyg that closely approximate the
surface(s) implied by the range data. A traditiomgproach is to transform the ranges
into a point cloud, the set of points in 3-D sp#ta correspond to the 2-D points with
known range, and then use these as vertices foesh raf triangles that imply the

surface(s). When less detail is desired, groupadgbcent triangles can be merged to

form a single triangle that resembles the origgraup.

However, working purely from a point cloud losesm®ouseful information in the
original 2-D organization of the range data. Adjdcpixels within the 2-D image
frequently represent adjacent regions in 3-D spand, this adjacency is exploited in
my new approach to quickly identify which pointstire point cloud are near each other
when forming the surface mesh. Furthermore, thacadicy can also be used to help
identify which points might be omitted from the fuoe mesh at the outset, rather than

assembling a detailed mesh that requires furth@rgssing to simplify.

It is well known and easy to show that a line segmie 3-D space maps to a line
segment on the image plane. Thus, the outlinepaflygon in 3-D space will also map
to a polygon on the image plane. To find these gaig, one needs to identify the
pixels on the image plane that are both contiguand members of the same

approximate plane in 3-D space.

49



Simple Linear Regression
Linear regression is a method for modeling a setcadrdinates as points on a

hypothetical line [15]. For a pair of unique cooralies one may directly compute the
equation of the line that contains those two cowtdis, but when more than two unique
points are used generally there is no longer athia includes all the coordinates. In

this case, a line is found that minimizes the ebetwween the line and the coordinates.

The equation of a 2-dimensional line in slope-icggt form is:

y=mx+ L (6.1)
The error for an individual coordinate is usuallymputed as the square difference
between the dependent varialylef the equation of the line and tlyevalue of the

coordinate:

E = (mg+ by 62)
The square of the difference in Equation (6.2)deduso that its value is always non-

negative and can be summed over all the coordinatbsut the possibility of an error

at one coordinate canceling or reducing the eiranather coordinate:

E=zN:Ei =ZN:(m)I<+ b- y)° (6.3)

i=1 i=1
Find the values fom andb that minimize this error (for conciseness, assathef the

summations are over the rangel to N):

S amrbey) ke B e B Y gy (64)

O=Z—Ez22(mx+b— y)= 1 x+ N&Y oy (6.5)
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12y N

DX D%
2% N

> % ny‘

SDOREEDR AR DN EDNINR S (6.8)
Y DX NY X (X %)
2% N

_ND Xy -2 >.<Zzy 6.7)
N (X %)

Using Linear Regression Error to Group Points into Line
Segments
Linear regression attempts to model a set of pasta single line. If the points are

actually based on multiple line segments, linegression will determine the best line
that reflects a composite of the underlying lingmsents. If those segments were close
to being co-linear, the resulting line will havelya small error and will probably be an
acceptable approximation. Otherwise, the poorffthe resulting line to the underlying

segments is reflected in a large error.

By deciding on an acceptable level of error, one use the linear regression error to
group points into different line segments. With fheents sorted by their independent
coordinate, the points are processed sequentialtially, a point is assumed to be part
of the current line segment and Equations (6.7)(&rR) are used to find the parameters
for the current line segment. Then Equation (63)sed to compute the resulting error.

If the error now exceeds the maximum acceptabler.ethe most recent point is

51



removed from the current line segment and is imstesed as the starting point for a

new line segment.

Unfortunately, using Equation (6.3) to recompute #rror for each line segment as
each new point is added requires reevaluatingritoe between each point used and the
fit line. In the underlying computer hardware theseesses of the point's coordinates
are difficult to parallelize, and so become a leotick to computing the error quickly.
However, one can also substitute Equations (6.d) @8) into Equation (6.3) to

directly compute the overall error based on théowgrsummations:

2 2 2
SEORIIWPISEHIEIOIE) Bl DI IRl MO i VIR DR PN
= . _

N =(X %)
Initially, Equation (6.9) may appear to be a stegkwards since it has considerably
more operations than Equation (6.3). Its virtughiat all of the summations can be
computed incrementally; as each new point is camsi] the corresponding newest
term in the summation can be computed and add#ettmtal. Then Equation (6.9) can
be reevaluated based on these new totals, withpuneed to access any prior point

coordinates.

The expansion of Equation (6.3) into (6.9) is soima&wwcomplicated because of the non-
zero value for the interceft Suppose the coordinate system undergoes a tiiansla

such that the line passes through this new orfgingjng:
b=0 (6.10)

Equation (6.10) now makes solving Equation (6.4)nfaonsiderably simpler:
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m= 25 6.11)

X

Substituting Equations (6.10) and (6.11) into (8e3ults in:

(X)X w)-(Xxy)
X

Equation (6.12) is much simpler than Equation (68t it depends on an initial

E= (6.12)

coordinate translation. The translation itself agly cheap computationally, only two
additions; the difficulty is determining where téage the new origin. For Equation
(6.12) to be equal to Equation (6.9), the originsirioe on the final fitted line, but the
position of the line won't be known exactly untitea the points have been grouped.
This circular dependency makes Equation (6.12) appseless for evaluating the error

when grouping.

The circular dependency can be broken by accepigation (6.12) instead as an
estimate of Equation (6.9). If the new origin ig aotually on the fitted line, but slightly

off the line, then the best-fit line would have @nrzero intercepb, with a magnitude

dependent on how far the line passes from therorlfthe maximum acceptable error
is small, then all of the points grouped for a ls@gment must be close to the fitted line.
Any of these points (the first point of the segmieeing the most convenient) could be
used as an origin when computing Equation (6.12) Wie understanding that the true
best-fit line is in most cases a better fit thaa time passing through this origin, but

never worse. Thus Equation (6.12) may overestintaée error in comparison to
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Equation (6.9). So if Equation (6.12) is still leébsn the maximum acceptable error,
Equation (6.9) is as well.
Grouping Example
As an example, consider the three line segmentplsdmwvith a small amount of added

Gaussian noise shown below in Figure 27.

30 T T T T

0 20 40 60 80 100

Figure 27. Sample line segment data.

If the maximum allowed error is arbitrarily set 29 plotting the accumulated err&r
using Equation (6.9) results in Figure 28 and givas to the three line segments shown

in Figure 29.
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25 1

0.5

Figure 28. Accumulated errorE using Equation (6.9).

30 T T T T

Figure 29. Three line segments fit to data using guping based on Figure 28.
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Similarly, if the maximum allowed error is arbitilgrset to 2, plotting the accumulated
error E using Equation (6.12) results in Figure 28 andegivise to the four line

segments shown in Figure 29. Note that since Egud6.12) slightly overestimates the
true error, the final line segment happens to lod&dar into two line segments with this

particular threshold for the maximum error.

25

0 20 40 60 80 100

Figure 30. Accumulated errorE using Equation (6.12)
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30 T T T T

Figure 31. line segments fit to data using groupingased on Figure 30.

Identifying Line Segments
The image plane is scanned top-to-bottom and defight to find line segments in the

2-D image that correspond to line segments in 3Bcs and thus may be part of a
polygon in 3-D space. The left-to-right scan inimsegives rise to 2-D line segments;

the question really is how well do the correspogdinints in 3-D space fit a line?

A 3-D line can be represented in parametric forB8]:[1

X1 %] [Xs
Yi=| Y |+1 Y (6.13)
z| |z, |2

[X, Y, Z] specifies some arbitrary reference point on the,l[X, Y, Z]

specifies a non-zero direction vector that the fmieows from that point., antl varies
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over the set of real numbers to generate all thatpmn the line. However, for a

particular line the values in Equation (6.13) act necessarily unique. The direction
vector can be multiplied by any non-zero scalar whde the magnitude may change,
the direction itself does not. Also, since the refee point can be any point on the line
and t can be any real value, any reference pomponent can take on any value if the

corresponding component of the direction vectarois-zero.

For 3-D lines that also appear as lines in the 2aBge plane, X, #0 andY, 0.

With these restrictions axp andYp, Equation (6.13) can be rewritten but still repres

the same line as

X 0 1
Y= %= %% % |+ 8 Y% (6.14)
2] (2,-%Z%/ %] [%/%

XT [Xo=%X%I¥%] [ %/Y
and Y | = 0 +l‘2 1 (615)
Z

Z-%%!l¥] [%/Y

t =X (6.16)
7=z -%o%0 X4 (6.17)
XD XD
X, o X
=207 X0 7, 6.18
Z. 2 4t X (6.18)
t, =Y (6.19)
7=z -Y% Y54 (6.20)
Yo %



Y, , Y
Y=207-D 7+ 6.21
z, 1z, ¥ (6:21)

Equations (6.18) and (6.21) allow the line to beatked in slope-intercept form in the

X-Z and Y-Z planes:

X=mZ+1h (6.22)
Y=mZ+h (6.23)
with
_Xp

m, —Z—D (6.24)

—x - %o
b, = X, Z. Z, (6.25)
m, :;—D (6.26)

_y Yo
b, =Y, - Z, (6.27)

Use the sum-of-square-residugBsy to evaluate how well the data points fit Equagion

(6.22) and (6.23) :

5, =2 (%= %)+ 2 (Y- ¥ (6.29
S, Z;( mZ+ h- X)* +Z:,( mz p- Y (6.29)
Ssr = %rx+ §ry (630)
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M=

SSI‘X =

1
LY

M=z

SHES

{0l
[y

(mZ+ Q- X)°

(mz+p-¥

(6.31)

(6.32)

If the line is being fitted to data from a horizahslice in the image plang is constant)

then Equation (6.32) can be simplified. Recall Eiumes (2.3) through (2.7):

X =MX
M=MM
i 0 o
h,
M, =/ 0 i 0,
hy
O 0 1
R, -R.T
M.=|R, R,
R, -R,T
1 0O
M,=/0 1 O
0 01

Choosing no coordinate rotation or translatiokk, EM , ):
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i 0 o X
SX h, ¢ 1 00O v
sy|=| 0 — 01 00 6.33
y 9 ~ (6.33)
s Y 0010
0O 0 1 1
Then
Y, f
y:?+oy (6.34)
for all Y; andz visible through that slice. Solve fdr.
z, =T (6.35)
h(y-9)
Substituting Equation (6.35) into Equation (6.32):
N v f i
_ m, ¥
S, = +h-Y (6.36)
» ;[hy(y-oy) ¥
Then choosing
h(y-9)
=27 6.37
m, === (6.37)
and b, =0 (6.38)

forces every term in the summation of (6.36) tebm: a perfect fit, at least in the Y-Z
plane. So to evaluate the goodness of fit, onlyaggqo (6.31) needs to be evaluated.
However, Equation (6.31) is the same as EquatioB) (But with different variable
names, so Equations (6.9) and (6.12) can be updaiid appropriately renamed

variables:
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C DZYXYZX-FE(EX) - NT Z2X)

sziz_(z Z) (6.39)
NEZY -2y F
N> Z-(22)

_(ZZ)(Zx)-(Xz2%)
E= ZZZ (6.40)

with the coordinate system origin shifted to thstfpoint by:
Xi=X =X (6.41)
2,=%-17 (6.42)

Division is one of the harder operations to implam@ hardware and so should be
avoided when possible. If the errdy, itself is only needed as part of a test to ensure

that it does not exceed sonke,, then the division can be algebraically replaceitth ai

multiplication. For example, Equation (6.40) carréarranged into the test:

£ 25(X 22)(2 %) - (2 2 %) (6.43)

Line Segment Variables
Each line segment has the following associateclbas:

* L,-theuin the pixel coordinate space for the left endpoirthe segment

* R, -theuin the pixel coordinate space for the right endpof the segment
« L -the 3-D coordinatgL, L, L,|" of the left endpoint of the segment

« R-the 3-D coordinatdR, R, RJ]' of the right endpoint of the segment
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>X -the sum of the 3-IX coordinates of the points in the line segment

>Z - the sum of the 3-IZ coordinates of the points in the line segment

XX - the sum of the squared relative 3Xcoordinates of the points in the
line segment

377 - the sum of the squared relative ZRoordinates of the points in the line
segment

>XZ - the sum of the product of the relative 3XDandZ coordinates of the
points in the line segment

T - the index of an associated "top" line segmend dfrthere is no associated

segment.

All of these variables are retained in memory. €heray be other values associated

with each line segment, such as its midpoint lecatthat are not retained in memory

but instead computed as needed from the variablege.

Line Segment Identification Algorithm
Each horizontal slice of the 2-D disparity datdisken into a series of line segments

using the following algorithm:

Each pixel position in the slice is evaluated elyaonce, in any order that
results in adjacent pixels being processed conisetyt

If there is no disparity data available for thatgbiposition and there is a current
line segment that has not been ended, then tleaségment is marked as ended
with a discontinuity.

If there is disparity data available for that pix®sition and there is a current

line segment that has not been ended:
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o Provisionally update th&X, 57, XX, =XZ, and=ZZ sums with the
X, Z, X?, XZ ,andZ? values for the current pixel position.
0 Test if the errorE, exceeds the maximum chosen threshBld, by

evaluating the inequality in Equation (6.43)

o If E exceed the chosen threshold, then the provisicuashs are
discarded, the current line segment is marked decewith continuity,
and a new line segment is begun.

o Otherwise, IifE did not exceed the chosen threshold, then thegomal
sums are accepted as the actual suRs,is assignedu, and R is
assigned X Y Z]T.

If there is disparity data available for that piyelsition and there is no current
line segment or the current line segment has afrbadn ended, then a new line
segment is begun.
If all of the pixel positions in the slice have heeonsidered and there is a
current line segment that has not been ended, ttte@nsegment is marked as
ended with a discontinuity.
Whenever a new line segment is begun:

0 The XX andXZ sums are reset andZ respectively.

0 The IXX, =XZ, and>ZZ sums are reset to 0.

o

L, and R, are assigned.

L andR are assigneflX Y Z]T

(@)

(@)

T is assigned 0.
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Examples of the line segment extraction at varemgr thresholds using the "Tsukuba"

disparity values from Figure 25 are shown belowigsire 32 through Figure 34.

Figure 32. Segment map with maximum error = 1: 1262 segments
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Figure 33. Segment map with maximum error = 10: 407 segments
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Figure 34. Segment map with maximum error = 100: 2B3 segments

Merging Line Segments into Polygons
Once all of the line segments have been identifegjacent line segments that are

coplanar and have acceptably straight edges cgnoed into polygons. Horizontally
adjacent line segments do not need to be considereause the underlying points are
not coplanar; if they were coplanar, the underlypoints of these two segments would
have been colinear and grouped into a single segnaginer than two. Thus, only

vertically adjacent line segments need to be censal
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Within a pair of horizontal slices, all of the lireegments are tested in pairs for
adjacency. In general, the line segments coulddmsidered adjacent if there is any
overlap in their horizontal spans. That is, eitiner horizontal minimum or maximum of

one segmenitis within the horizontal minimum and maximum oétbther segment
(L) <(L), <(R) (6.44)

(LU)i <(Ru)j <(R1)i (6'45)
A Dbetter test, with only slightly higher computat&d cost, is to require that the

midpoint of each segment be within the horizontadimum and maximum of the other.

This assures that there is a significant regiocoimmon between the two segments:

), < BB (g) (6.46
(), <R (m) (647

Initially, the indexi is set to the index of the first segment of a zmntal slice and the
index | is set to the index of the first segment of thiéoWing horizontal slice. If the
indexed segments' midpoints overlap with each tgtsgran, i.e., both Equation (6.46)
and (6.47) hold true, then more computationallyesgive tests can be evaluated and
bothi andj are advanced to the next index. Otherwise, the @mé ofi orj is advanced

to the next index; whichever corresponds to themsseq that horizontally "precedes”

the other. Specificallyi,is advanced when either:
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f<(|_u)i (6.48)
or
-+
(L) < ) Z(R“)' (6.49)

Otherwisg is advanced.

Once a pair of vertically adjacent line segmentgehbeen identified, there are three
tests to see if the lower segment can be combin&m a polygon with the upper
segment and any previous segments that the upgeresg had already been combined
with: 1) are the left edges sufficiently coline&), are the right edges sufficiently
colinear, and 3) are all of the underlying poiniffisiently coplanar? Tests 1 and 2 use
the same linear regression incremental error etialuaescribed earlier in this chapter
using theu, v pixel space coordinates of the left or right efligpending on the test) of

the line segments.

Test 3, coplanarity, is somewhat more complicatdile one can extend the derivation
of Equation (6.9) to find its equivalent for the Itheariate regression needed to evaluate
how a plane would fit the data points, the numbeteoms in this equation quickly
becomes unreasonable. As an alternative, the st@hde product can be used to

evaluate coplanarity:

E=[(L) ~R)[L)-C) J§e ), -R) ] (6.50)
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Equation (6.50) computes the volume of the paegigled implied by the two line
segments; if the volume is 0 (or sufficiently clageQ) then the line segments are

(sufficiently) coplanar.

If all three tests have passed, then the two lagenents are considered to be part of the

same polygon(T). is assignedT) +i and then(T) is assigned zero. ThufT)

j i

will have the index of the topmost line segmenagdolygon when is the index of the

bottommost line segment of a polygon. Otherwi(;‘é)j is zero because the line

segment is not part of any polygon or occupies sotmer position within the polygon.

These final three tests could be implemented irdvaare as well, however, it is
expected that a software implementation would begadte if the line segments are
built directly by a hardware implementation. Foraewple, the "Tsukuba" images
(which have a resolution of 384 by 288 pixels) tak@roximately 10 ms to merge on

an AMD FX-6300 CPU running at 3.5 GHz.

As an example of this line segment merging processsider the line segments shown
in Figure 35. Gaps have been inserted between timessegments to show the distinct
segments for illustration purposes, but they represegments that are continuous in
both the horizontal and vertical directions. Assugnithe segments are sufficiently
coplanar, these segments could be grouped intpdlygons shown in bold in Figure
36. Note that the edges of these polygon needxaatly coincide with the line segment

endpoints, as shown in the upper right polygons tisi determined by the linear
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regression error tolerance chosen for the left agtlt edges. There is also the
possibility that a segment cannot be merged with atter segment and becomes

orphaned; see the line segment in the upper rayintec.

Figure 35. Enlarged detail of sample line segments.

A\ \
A\ \

\ a

Figure 36. Line segments (thin) from Figure 35 groped into polygons (bold).

Extracting the Polygons
Once the line segment merging process has beenlemapthe line segments are

iterated over to find each instance tl@?a‘l)i # 0. Each instance represents a trapezoidal

polygon that is part of a surface in the 3-D modeis polygon can be approximated by

the vertices(L )., (R),. (R)j, and (L)j with j =(T).. However, these vertices may

not be exactly coplanar, so the trapezoid is gptihg the diagonal into two triangles,

one with vertice(L ) , (R),, and(R),, and the other with verticels ) , (R) , and
(L)j ’
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Examples of the resulting polygons built from time segments in Figure 32, Figure
33, and Figure 34 are shown below as Figure 31Ur€ig8, and Figure 39, respectively.
As the allowed error increases, the number of poiggriangles decreases. Potentially,
the maximum allowed error could be dynamically athd according to the bandwidth
available and complexity of the image so that mdetail is retained when the

bandwidth needed to transmit a more complex madaVailable.

T e
Irﬂ 2 _!l'."-‘__ A

5

Figure 37. Polygons with maximum error = 1: 6128 fangles
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Figure 38. Polygons with maximum error = 10: 2310rtangles
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Figure 39. Polygons with maximum error = 100: 912rtangles
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Chapter 7: Conclusions / Recommendations
This dissertation describes a complete end-to-estem for acquiring images of a

scene and reconstructing a 3-D model of that seeneal-time. For the most part, the
system's image processing has been structuredasat ttan be implemented in logic
within FPGAs, with the number of clock cycles neggeoportional to the number of
pixels in the source images. Each stage can coendeprocessing within the period of
a single video frame, and pipeline its resultsite hext stage on a frame-by-frame
basis. Thus, the system has an overall latencylyf @ few frames and meets its real-

time objective, both in terms of frame rate anéraly.

Within the model building process, an algorithm feing linear regression error to
group a series of data points into multiple lingreents, rather than a single line, was
discovered. This algorithm has the efficient proypdhat each point need only be
evaluated once and so not only has a run-timeafastly O(n), but also fits well with a
pipelined data flow model in hardware. This lingreenting algorithm was then used
as a basis for discovering planar surfaces andgpaly in a novel model building

algorithm.

Nevertheless, there are certainly some areas fpromement and future research. The
model building relies entirely on the quality oftalan the stereo disparity map. The
OpenCV StereoBM algorithm was chosen becausealréady implemented both as a
software library function as well as a verified dhaare FPGA design. However, there

are other algorithms with better accuracy; it may pgmossible to create an FPGA
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implementation of them as well. Alternatively, t®@penCV StereoBM algorithm could
be retained as an initial estimate of the dispabtyt a secondary algorithm added that
considers inter-frame motion to refine the dispafitorresponding points must both
either be in regions with motion or regions withonbtion; otherwise, they cannot

correspond even if the pixel values are similar).

Within the model building algorithm, the line segrms are grouped into trapezoidal
polygons, which are then split into two triangl&8hile the 3-D mesh models are
generally built from triangle primitives, there ar@ious ways to break down the higher
order polygons into triangles. Limiting the polygoto trapezoids was a decision based
on simplicity; allowing more complex polygons magrmit a better breakdown of
triangles (triangles with very sharp angles areemdifficult to render properly when

regenerating the model on a display).

The generated polygon vertices could be betterctzleso that the surface fits the
underlying data points more closely. Many of thensuused for evaluating the
regression error in the line segments are also sweaded to compute a least-squares
regression-fit of a plane to the points; with a fewre sums computed and retained, a
best-fit polygon could be computed. Somewhat atsadith this, however, is another
problem with the polygon vertices. Adjacent polygdhat are both part of what should
be a smooth surface may have gaps on their ed¢eslifie segmentation algorithm
tracks where the line segments, and thus also éBalting polygons, should be

continuous, but this information is not currentbjiry used.
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Finally, the maximum allowed error when groupingaaént regions into polygons is
currently a fixed parameter. A larger allowed eradlows rougher surfaces to be
approximated as planar, which in turn reduces timber of polygons in the model and
the amount of bandwidth necessary to transmit tlogleln Alternatively, a smaller

allowed error preserves more detail but at the es@eof more polygons, a more
complex model, and more bandwidth required. Rathen use a fixed value for the
maximum allowed error, this value could be dynamhycadjusted so that if the

available bandwidth changes or the complexity of ®#tene changes, the actual

bandwidth used could track the available bandwidth.
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