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Abstract 
This dissertation describes a complete system that captures image data from multiple 

stereoscopic camera pairs and reconstructs a 3-D model of the imaged scene in real-

time. To achieve real-time rates, the system is organized in a distributed hierarchical 

fashion to maximize parallelism and uses algorithms that, in many instances, are 

suitable for direct implementation in digital hardware rather than software on a general 

purpose computer. At the lowest level of the hierarchy, image data is acquired from a 

single camera and processed to compensate for lens distortion and to apply rectification 

in preparation for stereo image processing. At the next level, data from pairs of cameras 

is matched to compute a dense stereoscopic disparity map from which 3-D surfaces are 

inferred and a mesh model is constructed. Finally, at the top level all of the individual 3-

D mesh models are merged into a single 3-D model. If desired, the camera image data 

can be applied to the resultant 3-D model as a texture and the model re-rendered from a 

virtual camera viewpoint. 

 

Previous 3-D research focuses on individual steps in this process (lens distortion 

correction, image rectification, stereoscopic disparity computation, and model building). 

This dissertation considers them instead in the context of a complete end-to-end system. 

Traditional approaches to model building begin with an unstructured "point cloud" that 

is neutral with respect to how the data was acquired; this allows model building to be 

studied independent of data acquisition but may miss some opportunities available in a 

more tightly coupled interface. By taking a broader view of the problems faced by the 

entire system, a novel algorithm for 3-D model building has been developed that takes 

advantage of the organization in the dense stereoscopic disparity map to efficiently 
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build its model. The core of this novel algorithm is a method of evaluating linear 

regression error to fit a series of line segments to data points in a way that can be 

efficiently implemented directly in hardware. 
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Chapter 1: Introduction 
 

This dissertation describes a design and implementation of an image capture system 

capable of reconstructing an observed dynamic three dimensional scene. The challenge 

inherent in this proposed system over previous systems is to operate at “real-time” 

video frame rates using relatively inexpensive hardware. The constraints implied by the 

term "real-time" can widely vary, but within this dissertation the specific goal was to 

acquire and process video a rate of at least 30 frames per second at a 640 by 480 

resolution, with a latency of only a few frames. At this modest resolution, the goal for 

the reconstructed model of the scene is not necessarily high precision but instead one 

with an image quality that is suitable for casual viewing by a human observer. 

 

The intended application for such a system is 3-D telepresence; once a 3-D model of the 

scene has been reconstructed, it can be rerendered in 2-D from some virtual camera 

position and orientation. At the smaller scale, this could be used to draw teleconference 

participants into a virtual environment with fewer of the artificial barriers of traditional 

teleconferencing. At the other end of the extreme, with many cameras and with higher 

resolution, a viewer could watch a sporting event from a position that they dynamically 

choose. 

 

Within the model building stage (covered in detail in Chapter 6), there are two specific 

novel developments: 
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• A method of using least-squares linear regression to segment data into a series 

of line segments, with each data point evaluated only once. 

• A method of processing a dense stereoscopic depth map into a 3-D model that 

takes advantage of spatial locality in the structure of the depth map. 

 

To achieve the desired frame rate several strategies have been adopted throughout all of 

the stages of the system: 

• Data should be processed and transferred in parallel. 

• Perform time critical calculations and data transfers with dedicated special-

purpose hardware rather than with a general-purpose microprocessor and 

software. 

• Organize the calculations to use faster operations and data types. 

• Complex operations that cannot be avoided entirely should be broken up into a 

series of simpler operations and pipelined. 

 

Wherever data can be independently processed, hardware parallelization trades what 

would have been n operations spread over time to n operations spread over space. In 

this ideal case, the only limitation is the cost of the additional processing hardware that 

the operations are spread across. In practice, however, there are often points where data 

cannot be independently processed or data sets need to be merged. At some point, the 

cost of distributing data to parallel operations or merging their results exceeds the 

benefit of the parallelization. 
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Microprocessors are designed to allow flexible algorithms and quick implementations 

of these algorithms. The architecture of the microprocessor is designed to give good 

results for a wide variety of operations, but at the expense of not being optimized for 

any specific task. For more specialized tasks, one can use correspondingly specialized 

compute units, such as Digital Signal Processors and Graphical Processing Units, or 

even implement a fully customized application specific compute unit. However, in all 

cases to efficiently implement a given algorithm, the algorithm must be a good fit with 

the capabilities of the underlying hardware. In this system, as much as possible, the 

algorithms have been chosen or designed so that computations could be implemented 

directly in hardware with a pipelined data flow model. 

 

Some operations are of greater complexity than others and require more time and/or 

hardware to implement. For example, multiplication requires the computation of partial 

products as well as the sum of all these partial products. Therefore, multiplication is 

considered more computationally expensive than the addition of two numbers. When 

calculations can be expressed in multiple algebraic forms, the calculation should be 

organized to minimize this computational expense. 

 

The chapters that follow begin with the relevant literature and provide a background to 

the concepts of this system in Chapter 2. This is followed in Chapter 3 by a description 

of the camera calibration process, which only needs to be performed once when the 

system is initially set up. The operation of the three stages of the system are covered in 

Chapters 4 through 6. The initial stage (Chapter 4) deals with image acquisition from a 
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single camera and corrects for some shortcomings in the non-ideal nature of real 

cameras (and particularly, low-cost cameras). The second stage (Chapter 5) processes 

images from pairs of adjacent cameras to determine depth at each point in the images 

via stereoscopic disparity. The third and final stage (Chapter 6) process the depth data 

into a 3-D mesh model that the original images can be applied to as decals to create a 

realistic 3-D model of the scene. Finally, Chapter 7 summarizes the results and suggests 

directions for future research.  
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Chapter 2: Literature / Background 
 

Previous 3-D model building research focuses primarily on reconstruction of a static 

scene (often as simple as a single object) using various ranging technologies. For 

example, in structured light analysis a sequence of light/dark patterns is projected [20], 

or laser scanned [14], onto the scene. Variation in objects’ surface contours distort the 

projected patterns. With knowledge of the patterns, both pre- and post-distortion, and 

relative positions of the projector and camera, the surfaces can be inferred and the scene 

reconstructed. Since the scene is static, the process can afford to spend a relatively long 

period of time sequencing through the various patterns and gathering the resulting data. 

Furthermore, to reconstruct both the front and back of the objects in the scene, the scene 

usually undergoes a rotation relative to the camera and light source. 

 

Alternatively, stereoscopic analysis [12] compares corresponding points in two images 

taken from different points of view to triangulate the position of the corresponding 

surface. The two images can be gathered with a pair of cameras or a single camera in 

motion. Again, to reconstruct both the front and back of the objects in the scene, the 

scene usually undergoes a rotation relative to the camera(s), akin to roll-out 

photography of cylindrically symmetric objects [18]. 

 

Advances in technology have made real-time stereoscopic analysis feasible. The 

necessary computations have been broken up and implemented in parallel FPGAs [25] 

or specialty parallel core processors [7]. To date, these real-time implementations have 
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focused solely on gathering range information rather than complete scene 

reconstruction.  

 

Once the range data has been acquired, a model of the scene can be reconstructed. 

These models can be represented either volumetrically [4] [22] or in terms of a mesh 

surface [24]. In a volumetric representation, the space is subdivided into small discrete 

pieces that indicate occupancy or vacancy of an object. Range information from each of 

the views is used to mark vacancies in the space, and the final scene model inferred 

from the pieces not marked as vacant.  Surface models are built from a mesh of 

polygons, usually triangles or quadrilaterals, defined by their vertices. Range 

information from multiple views may be combined to form a “point cloud” and the 

mesh formed by using points near each other to define polygons. Alternatively, meshes 

from each view can be formed on a regular grid, leaving discontinuities in the grid 

where the range information suggests a sudden change in depth. Then these meshes are 

combined, eliminating redundant polygons and filling in any small gaps to generate a 

final model. 

 

With multiple cameras, real-time stereoscope analysis has the potential for dynamic 

scene reconstruction if the range information can also be processed into scene surface in 

real-time. Naive reconstruction of the entire scene anew many times per second would 

handle the requirements of a dynamic scene. However, when changes in the scene are 

slow relative to the camera frame rate, knowledge of the scene from previous frames 

could potentially simplify the processing of the current frame. Inter-frame knowledge 
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has also been used to smooth out positional jitter arising from noise in the acquired 

images [6]. 

Homogeneous Coordinates 
Although the coordinates on an image plane are 2-dimensional, it is often convenient to 

represent a coordinate as a 3 element vector (or the corresponding 3 element column 

matrix). The first two elements represent the position on the 2-dimensional axes with 

the third element representing a scaling factor. If scaling is unneeded, the scaling factor 

is simply the value 1. 

 

sx
x

sy
y

s

 
   ⇔   
    

  (2.1) 

Likewise, coordinates in the 3-dimensional world are often represented as a 4 element 

vector (or 4 element column matrix), with again the last element simply a scaling factor 

for the first three. 
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sz
z

s

 
   
   ⇔   
    

 

  (2.2) 

Coordinates in these forms that use the last element as a scaling factor are known as 

homogeneous coordinates and allow a wider range of arithmetic operations to be 

described in terms of matrix multiplication. Furthermore, these forms are able to reflect 

a key property of projective geometry in that the apparent size of objects is scaled by 

their distance from the viewer. 
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Camera Model 
The basic operation of a camera is best described by a pinhole camera model (Figure 1) 

[10]. Light from a point X in 3-D space passes through the pinhole point C to point x on 

the 2-D image plane. The direction the camera is pointing, the principal axis, coincides 

with the Z axis. The principal axis intersects the image plane at the principal point p 

which is taken as the origin for the image plane axes. The distance between C and p is 

the focal length f. In a physical camera, the image plane is necessarily behind the 

pinhole and thus the 2-D axes are reversed from the corresponding 3-D axes. For 

convenience to avoid axis reversal, a virtual image plane can be imagined at a position 

an equal distance in front of the pinhole (Figure 2); coordinates of X and x remain 

unaltered. 

 

Figure 1. Pinhole camera model (adapted from [10] fig. 6.1) 
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Figure 2. Alternate pinhole camera model (adapted from [10] fig. 6.1). 
 

For simple image processing, basing the world coordinate system relative to the camera 

may be sufficient. However, with multiple cameras or multiple points of view there 

needs to be a way to relate each of the image coordinates to a unified world coordinate 

system. This can be done with the a linear transformation below (Cyganek, 2009). 

 =x MX  (2.3) 

 i e=M M M  (2.4) 
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The matrix iM  defines some intrinsic camera parameters that allow some adjustment to 

the coordinate system for its image plane. In the case of a digital camera, parameters xh  

and yh  specify the width and height of a discrete pixel on the image plane so that the 

coordinates are in terms of pixel units. The parameters xo  and yo  specify an offset for 

the origin of the image plane coordinates from the principal point p.  

 

The matrix eM  defines extrinsic camera parameters that define how the camera’s 

coordinate system relate to the world coordinate system. The translational motion of the 

coordinate systems’ origins is specified as the column vector T and the rotation of the 

coordinate systems’ axes is specified as the orthogonal rotation matrix R; in (2.6) iR  

refers to the ith row of R. Since eM  is a 3 by 4 matrix, the world coordinate X must be 

in homogeneous coordinate form as a 4 element column vector (this allows the 

translational motion to be combined with the other matrix multiplication operations 

rather than a separate addition). If the camera's coordinate system is used as the world 

coordinate system, then an eM  without rotation or translation can be used: 

 0

1 0 0 0

0 1 0 0

0 0 1 0
e

 
 =  
  

M  (2.7) 

 

Focus 
The pinhole camera model is idealized; the pinhole functions as a lens with an infinitely 

small aperture. For an actual camera, using either a true pinhole or some more 
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sophisticated lens assembly, the aperture is necessarily finite. Thus, C is no longer a 

singular point, which in turn means that 3-D point X no longer corresponds to a single 

2-D point on the image plane but instead a region around the idealized point x known as 

the circle of confusion. When the camera and lens are perfectly focused to the depth of 

some point in the scene, the corresponding circle of confusion shrinks to a point. Other 

points closer or farther away have circles of confusion with a non-zero diameter but 

may still be considered “in focus” if the diameter is small enough. For some arbitrary 

maximum allowed diameter, one can solve [16] for the range of depths, neard  to fard , 

meeting this restriction: 

 

maximum circle of confusion diameter

depth lens is perfectly focused to

lens focal length

lens numerical aperture ("f-stop")

c

d

f

n

=
=
=
=

 

 
2f

h f
cn

= +  (2.8) 

 2

0 for 2

for 2
2

near

d f h

d dh f
d f h

h d f

≤ −
= − > − + −

 (2.9) 

 

22
for 0

for 
far

dh fd f
d h

d h d
d h

 − + ≤ <= −
∞ ≥

 (2.10) 

The depth h is called the hyperfocal distance; the amount of the scene in focus 

approaches its maximum as d approaches the hyperfocal distance. To improve the depth 

of field, the lens aperture can be reduced (decrease n), the camera and objects of interest 
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can be moved further apart (increase d), the focal length shortened (decrease f), or some 

combination of thereof. 

 

Reducing the lens aperture requires increasing either the exposure time of the camera or 

increasing the lighting of the scene (since less light can pass through the lens), but 

otherwise can increase, up to a limit, the depth of field without changing the image 

scaling. The limitation arises because (2.9)-(2.10) are based on a particle model of light 

and neglect its wave nature; as the aperture approaches the scale of the light’s 

wavelength, these equations become inapplicable and diffraction patterns become 

significant enough to actually increase the size of the circle of confusion. 

 

If there is sufficient room, the camera can be moved back from the objects of interest. 

However, the last alternative, reducing the focal length of the lens, has the advantage of 

working in all cases and is attractive as a general solution. Unfortunately, short focal 

length lenses (also known as wide-angle lenses) tend to also suffer increased distortion. 

Lens Distortion 
Imperfections in the manufacturing of a lens and misalignments of individual lens 

elements in a multi-lens assembly lead to unintended distortion in the resulting image; 

some amount of distortion  is unavoidable. To minimize the distortion, one can pay for 

more expensive lenses that are made to a higher degree of precision. Alternatively, one 

can cancel out the distortion by applying a second distortion that is the inverse of the 

first. 

 



13 
 

For a reasonably well made lens assembly the distortion occurs primarily along the 

radial axis, symmetric around the principal point.. For a pixel at radius rɶ  from the 

optical axis in the ideal image, the distortion moves it to an apparent radius r due to 

Seidel aberrations [8]:  

 3 5 7
1 2 3r r a r a r a r= + + + +ɶ …  (2.11) 

The constants ia  are related to the curvature of the lenses in the assembly and their 

relative positioning, but normally are computed through estimation using pairs of r and 

rɶ  associated with a known calibration target rather than physical measurement. 

 

Also possible is distortion that is perpendicular to the radial axis. This is commonly due 

to the image sensor being slightly off angle from being exactly perpendicular to the 

principal axis. However, this tangental distortion is normally a much smaller effect than 

the radial distortion and so is not considered further in this dissertation.  

 

Suppose the actual image is that of a regular grid of straight lines (Figure 3). When 

r r>ɶ , the image is said to suffer from pincushion distortion (Figure 4). When r r<ɶ , the 

image is said to suffer from barrel distortion (Figure 5). It is also possible for r r<ɶ  in 

some portion of the image and r r>ɶ  in another portion of the image, but this occurs 

less commonly. In any case, all of these distortions can be modeled by the above 

equation. 
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Figure 3. Image of a grid of straight lines. 
 

 

Figure 4. Example of pincushion distortion; straight lines bend inward. 
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Figure 5. Example of barrel distortion; straight lines bend outward. 
 

The higher order coefficients become progressively smaller and so at some point can be 

considered negligible. The coefficients are determined as part of the camera calibration 

process, often by locating straight line edges in either a real-world scene or calibration 

target and measuring the curvature of those edges in the acquired image [5] [3]. 

 

By similar triangles (see Figure 6), the coordinates x, y are distorted to 

 
xr

x
r

=
ɶ

ɶ  (2.12) 

 
yr

y
r

=
ɶ

ɶ  (2.13) 

with 2 2r x y= +  (2.14) 
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Figure 6. Radial distortion of point p. 
 

After substitution and simplification 

 ( )2 4 6
1 2 31x x a r a r a r= + + + +ɶ …  (2.15) 

 ( )2 4 6
1 2 31y y a r a r a r= + + + +ɶ …  (2.16) 

In this form, only even powers of r are needed, so the computationally expensive square 

root operation can be avoided. The apparent x,y coordinates are therefore given by 

 ( ) ( )( )2 32 2 2
1 2 31x x a r a r a r= + + + +ɶ …  (2.17) 

 ( ) ( )( )2 32 2 2
1 2 31y y a r a r a r= + + + +ɶ …  (2.18) 

 2 2 2r x y= +  (2.19) 

Iterating over all the  x, y coordinates of an image plane, one can compute all the 

corresponding positions ,x yɶ ɶ  within the distorted image using the above equations. By 

copying the value of the pixel at the distorted position to the pixel at the undistorted 

position, the overall undistorted image can be reconstructed. 
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Figure 7. Lens distortion correction. Left: Original distor ted image with dashed 
reference “straight” lines. Right: Distortion corrected image. ([10] fig. 7.6) 

 

Stereoscopic Vision 
Suppose a point X is visible from two adjacent cameras (see Figure 8), at point x1 in 

camera C1’s image plane and at point x2 in camera C2’s image plane. The plane 

containing the points C1, C2, and X is called the epipolar plane. If the epipolar plane is 

uniquely determined and the relative positions of C1, C2, x1, and x2 are known in 3-D 

space, then the relative position of X can be uniquely determined through triangulation.  

 

Figure 8. A pair of adjacent cameras view point X 
 

Because x1 is collinear with C1 and X, the epipolar plane can equivalently be defined as 

the plane containing the points C1, C2, and x1; this is more practical since the position of 

X is often not known in advance. Since any point that is collinear with C1 and X (other 
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than the degenerate case of C1 itself), when taken with the points C1 and C2, will define 

this same epipolar plane, the intersection of the epipolar plane with camera C2’s image 

plane forms a line, the epipolar line, that represents the image of these collinear points 

from camera C2’s point of view (see Figure 9). 

 

Figure 9. Varying potential depths of X cause its image x2 to vary along the 
epipolar line in camera C2’s image plane.  

 

The epipolar line is useful because the position of x2 is also not usually known in 

advance. Instead, camera C2’s image plane must be searched for a region that 

sufficiently matches the region around x1 in camera C1’s image plane. The constraint 

imposed by the epipolar line reduces the potential search space from a quadratic size to 

a linear size. 

Fundamental Matrix 
For particular stereoscopic camera pair there exists a matrix F, the fundamental matrix, 

such that 

 2 1 0T =x Fx   (2.20) 
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for any pairs of corresponding points 1x  and 2x  given in homogeneous pixel coordinate 

form. The fundamental matrix encapsulates the relative position and orientation of the 

camera pair. It also has the useful property that the nullspace of 1Fx is the epipolar line 

corresponding to 1x . 

Image Rectification 
Although the camera pair shown in Figure 8 can be in a wide range of relative positions 

and orientations that allow the position of X to be determined, some are more favorably 

solved than others. If the cameras are oriented such that their image planes are parallel 

to the line joining C1 and C2, then there will exist a set of parallel lines in the image 

plane of camera C1 that all of the points in one of these lines will share the same 

epipolar line in the image plane of camera C2.  

 

Each of these parallel lines in conjunction with their corresponding epipolar lines can be 

processed independently and thus potentially simultaneously. With the proper 

orientation of the camera about its principal axis, both the set of parallel lines in camera 

C1 and the corresponding epipolar lines in camera C2 can be parallel to a chosen axis 

(typically x) within the image planes. This would allow the hardware addressing of the 

image plane data to be partitioned easily so that the potentially simultaneous processing 

can become actual simultaneous processing. 

 

If the orientation of the cameras do not meet the above conditions, it is still possible to 

compute the image of a virtual image plane that does meet the above conditions based 

on the image in the actual image plane; this process is known as image rectification. 
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Image rectification may still be useful even if the cameras are intentionally oriented to 

meet these conditions, due to limitations in the tolerances achievable in the 

manufacturing process. A calibration process (discussed in Chapter 3) can be used to 

determine the actual relative orientation of the cameras and thus compute projective 

transformations for the two actual images to generate virtual images of an idealized 

orientation [9]. 

 

While computing the appropriate projective transformation matrix H for the 

rectification is somewhat complex, the transformation itself is straightforward. For a 

coordinate x in homogenous form on the actual image plane, the corresponding 

coordinate ̂x  (also in homogenous form) on the idealized image plane is given by: 

 ˆ =x Hx   (2.21) 

Expanding these three matrices into their component elements: 
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  (2.22) 

Applying the matrix multiplication and normalizing the result: 
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Image Remapping 
Both the lens distortion correction and image rectification involve the mapping of pixels 

from some positions in a source image to new positions in a destination image. 

However, the mapping functions are continuous while the pixels occupy spatially 

discrete positions. Thus, in most cases the mapping function will return a position that 

will partially overlap four possible discrete pixel locations. Compounding this problem, 

pixels that are adjacent in the source image may not be exactly adjacent in the 

destination image. Instead, they might slightly overlap or even leave a gap between 

their positions in the destination. 

 

A partial solution is to use an inverse mapping function that relates positions of pixels 

in the destination back to the corresponding position in the source. This inverse 

mapping avoids the problem of pixel gaps in the destination image because every pixel 

position has a mapping back to some position in the source. There may still be gaps in 

terms on which pixels are used in the source image (some source pixels may be left 

unused), but this would only appear as a loss of detail and is preferable to the alternative 

of completely missing pixel data that would occur from pixel gaps in the destination 

image. 

 

Using the inverse mapping does not solve the problem of the discrete versus continuous 

pixel positions. The simplest solution is to round the continuous position to the nearest 

discrete position. However, this rounding would introduce a positional error of up to 

half a pixel position which in turn reduces the reliability of the correspondence 

matching and increases the possible error in the depth calculations. 
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A better solution to the problem of the continuous positions is to use some interpolation 

function to estimate the value between the discrete pixel positions. One of the simplest 

interpolations is bi-linear interpolation, where pixel value is assumed to linearly vary in 

the horizontal and vertical axes between the four closest discrete pixel positions. 

 fu u u= −      (2.24) 

 fv v v= −      (2.25) 
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  (2.26) 

In equation (2.26), the pixel’s value is determined by the values of the pixels it overlaps, 

each weighted by the area of overlap (see Figure 10). 

 

Figure 10. A pixel offset from the usual integer grid coordinates 
 

Disparity and Depth 
From a pair of rectified images the depth z from the cameras to point X is given by [12]: 

 
bf

z
d

=  (2.27) 
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 1 2b = −C C  (2.28) 

 1 2d x x= −  (2.29) 

where x1 and x2 are the components of x1 and x2 in the image plane coordinate system 

that correspond to the axis parallel to the epipolar lines and f is the effective focal length 

of the cameras after rectification. Since for any particular configuration of cameras b 

and f are constant, the depth z and disparity d are always inversely proportional. With 

the depth known, the coordinate X can be recovered relative to either camera: 

 ( )1 1 1

z

f
= + −X C x C  (2.30) 

 ( )2 2 2

z

f
= + −X C x C  (2.31) 

The set of all such points computed for X for the set of corresponding points found in 

the two image planes is known as the point cloud. 

Scene Reconstruction 
Once the point clouds have been determined for each of the camera pairs, an overall 

model of the scene can be reconstructed. A top-down view of a sample object 

surrounded by four camera pairs is shown below in Figure 11; while assumed present, 

the third dimension is omitted for ease of illustration. 
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Figure 11. Top down view of an example scene with cameras represented by circles 
 

Volumetric Models 
In a volumetric model, the model is represented by a three dimensional array in which 

the array elements indicated the presence or absence of an object at the corresponding 

point in the world domain. If corresponding points are visible in both images of a 

camera pair, then there can be no occluding object between the cameras and the 

corresponding 3-D world point. Therefore, all array elements representing positions 

between the camera pair and the 3-D world point can be marked as unoccupied (see 

Figure 12). 

 

Figure 12. Binary volumetric model formed from each camera’s view. 
 

For binary model images, if an object’s presence is denoted in the array element by a 1 

and its absence denoted by a 0, then a bitwise AND operator can be applied to 

successive models formed from each view to generate a final composite model (Figure 

13). Alternatively, the array elements may be represented as a continuous probability of 
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the presence of an object, to account for the estimated error in the position of a 3-D 

world point.  

 

Figure 13. Combining each successive view’s volumetric model to form final 
model. 

 

Surface Mesh Models 
In a surface mesh model, the point clouds are assumed to be samples from a relatively 

smooth and generally continuous surface. This problem is ill-posed meaning there are 

many solutions to finding a function that defines this surface depending on the working 

definitions of “relatively smooth” and “generally continuous” [1]. To build the 

composite model, either all of the point clouds from all of the views (Figure 14) are 

combined into a global point cloud and then processed to form a surface mesh model 

(Figure 15) or the individual points clouds are formed into surface meshes (Figure 16) 

and then these meshes are combined (Figure 17). 

 

 

 

Figure 14. Point clouds formed from each camera’s view. 
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Figure 15. Composite point cloud (left) processed to form surface model (right). 
 

 

Figure 16. Each view’s point cloud processed to form surface models. 
 

 

Figure 17. Combining each view’s surface model to form final model. 
 

Forming surface meshes from individual point clouds has the advantage that sudden 

changes in depth relative to the associated camera offer strong hints to find actual 

discontinuities, whereas in a global point cloud continuity is assumed by close 

proximity. However, combining multiple surface meshes formed from the individual 

point clouds may result in redundant or overlapping meshes that may need trimming. If 

there are slight errors in the mesh positions, the combined meshes may also have small 

gaps between them that need filling in. 
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The novel method of model building outlined in Chapter 6 is similar in spirit to this 

second approach of forming mesh models from individual point clouds and then 

merging the resulting meshes to form a unified model. However, rather than distilling 

the range data from disparities in the 2-D images into a pure point cloud form and then 

processing the point cloud, the spatial relationships present in the original 2-D images 

are retained and used to guide the mesh formation. 
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Chapter 3: System Overview, Calibration, and Camera 
Limitations 

System Overview 
Image processing is usually a computationally intensive task; image processing in real-

time is even more so. To keep the computational requirements and bandwidth 

reasonable, the system is organized so that operations can be parallelized. While the 

algorithms are initially implemented in software, many are structured so that they can 

easily be performed by FPGA hardware for improved performance. Figure 18 shows the 

top level view of the system organization. 
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Stereoscopic 
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Figure 18. Top-level system organization 
 

The Stereoscopic Camera Pair Module (SCPM, see Figure 19) is much more than just a 

pair of cameras; it also includes all of the hardware and software needed to process the 

images from the module’s camera pair into a 3-D model of the partial scene visible to 

those cameras. 
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Figure 19. Prototype stereoscopic camera pair module (SCPM) organization 
 

The Omnivision 5647 is a full color, medium resolution (5 megapixel), digital camera. 

While the color and resolution are beyond the needs of a basic proof-of-concept 

implementation, the Raspberry Pi single-board computer [19] is designed to work with 

this specific camera and tightly integrates the camera interface with the combined 

CPU/GPU. The camera hardware can combine the values for adjacent pixels in the 

array to produce an image with lower resolution than the native resolution of the sensor 

array as well as reducing the sensor noise level. Although this could also be done by the 

CPU or GPU, handling it inside the camera itself frees up processing power that could 

be used for  more complex tasks and reduces the bandwidth needed to manage the 

camera interface. 

 

The Raspberry Pi is a powerful low-cost single-board computer based on the Broadcom 

BCM2835 System-on-chip. This device integrates a 700 MHz ARM1176JZFS CPU, a 

Videocore 4 GPU, 512 MB of RAM, and various peripheral interfaces including the 

dedicated camera interface and a USB 2.0 interface. This USB interface connects to an 

SMSC LAN9512 combination USB 2.0 hub and 10/100 Mb Ethernet controller. 
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The image data from the camera is processed by the GPU before being passed to the 

CPU. The transformation needed for image rectification fits well with any GPU 

designed to handle accelerated 3-D operations, including the Videocore 4 GPU. The 

lens distortion correction probably could be handled by the GPU, although this is less 

certain because it depends on the details of its architecture. Unfortunately, programming 

information for the Videocore 4 GPU is not publicly available and its firmware is 

provided only as a binary image without source code. The published interface to the 

camera only supports some very basic transformations (rotations in 90 degree 

increments, flipping the image along the vertical or horizontal axes, and some limited 

rescaling options) and some predefined artistic special effects. Thus, the lens distortion 

correction and image rectification is left for the ARM CPU to process. Implementation 

details of these steps will be covered in Chapter 4. 

 

The Mac Mini is a general purpose desktop computer in a compact form factor. It 

receives a undistorted rectified image from each of the Raspberry Pis and uses block 

matching to find the disparity between corresponding points in both images. The 

disparities are then processed and grouped into polygon regions to form a mesh model. 

Implementation details of these steps will be covered in Chapter 5 and 6, respectively.  

Calibration 
Since the ultimate goal of this system is to produce a model of a real-world scene, it is 

important that the images produced by the cameras can be used to accurately measure 

the size and position of objects in that scene. This necessitates an accurate model of the 
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camera itself (the intrinsic parameters) as well as the position and orientation of the 

camera relative to a real-world coordinate system (the extrinsic parameters). The 

calibration process only needs to be performed one time after the system is set up to 

observe a particular scene, so there has been no attempt to optimize the speed of the 

calibration process. 

 

The intrinsic parameters can be grouped into two categories: 1) parameters that map a 

pixel position in the image to a physical location on the image sensor within the camera, 

and 2) the parameters that model the distortion in the lens system. With the lens 

distortion correction and rectification stages disabled, a calibration target consisting of a 

black-and-white chessboard pattern is shown to each camera. The corners of the squares 

in the pattern are easy to identify features within the image, even with significant 

distortion. Furthermore, the stark contrast between the black and white squares allows 

the corner positions to be inferred with fractions of  a pixel accuracy. 

 

Using multiple images of this calibration target in varying positions and orientations, an 

OpenCV library [2] function is used to compute all of the intrinsic parameters. The 

coordinates of the corners of the squares in the chessboard pattern image are identified 

and then processed by separate algorithms for each category of intrinsic parameter.  

 

The lens distortion parameters are determined by a method based on Brown [3]. The 

corners of the squares of the chessboard pattern should form a grid of implied straight 

lines; any nonlinearities must be due to lens distortion. Thus the lens distortion model 
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can be recovered through an iterative process that tries to match the observed 

nonlinearity. Although a single image of the calibration target would be sufficient to 

uniquely determine the parameters, multiple images are used to find a model that fits all 

of the available data on a least-squares best-fit basis to minimize the effect of any small 

errors in locating the square’s coordinates.  

 

Once the corner positions have been adjusted to compensate for any distortion, the 

remaining intrinsic parameters are determined using the method given in [26]. Because 

the calibration target is planar, for each image there must exist a translation and rotation 

matrix  eM  such that the world coordinate for all of the corners within that image have 

a z-axis component of 0. Each matrix eM  has 6 degrees of freedom (3 rotational axes 

and 3 translational axes). The matrix iM  that is common to all of the images, has 4 

degrees of freedom. With a sufficient number of images and corner coordinates within 

each image, the constraint that the world z-axis component is 0 along with the image 

corner coordinates can be used to set up a large system of equations to solve for the 

common iM  (and incidentally, the eM  for each image), at least up to a scaling factor. 

However, since the size of the squares in the chessboard pattern is known, the scaling 

factor can also be calculated as well. 

 

To some extent, the extrinsic parameters can be arbitrary, since the coordinate system 

for the real-world scene and resulting model can also be arbitrary. However, the 

position and orientation of the cameras relative to each other need to be known at two 
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different levels: 1) the relative position and orientation of the camera pair within the 

SCPM, and 2) the relative position and orientations of the SCPMs. 

 

For the camera pair within the SCPM, the same calibration target used for intrinsic 

calibration can be used. In fact, as long as the calibration target is visible to both 

cameras at the same time, images for both calibrations can be acquired at the same time. 

The OpenCV library also provides a calibration function to compute the fundamental 

matrix based on two views of the same calibration target. The fundamental matrix can 

then be used to compute the appropriate transformations to both images for  

rectification. 

Camera Limitations 
For a static scene, it does particularly matter when the images from the various cameras 

are acquired. However, for a dynamic scene it becomes critical that all the images are 

from a particular point in time. The computed depth of a point is inversely proportional 

to the distance that point has apparently shifted between the left and right rectified 

images. If the underlying object associated with that point is in motion and the left and 

right images are from different times, the apparent shifted distance becomes a function 

not only of the depth but also the motion. Generally, any motion in the scene is not 

known in advance, so correctly calculating the depth becomes impossible in this case. 

Thus, to minimize errors in the calculated depth, the cameras must be sufficiently 

synchronized that any motion difference between the cameras is negligible. 
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In the best case, the two cameras in an SCPM are driven by a single digital clock source 

from within the SCPM. The offset in synchronization from one camera to the other 

would relate to the different propagation delays of the clock signal from the clock 

generator to each of the two cameras. Because of the small distances involved, the 

offset could easily be kept to the order of nanoseconds or less. 

 

Unfortunately, the camera synchronization problem is not just limited to the two 

cameras within each SCPM; all of the SCPMs also need to be synchronized. While a 

single digital clock could also drive all the SCPMs, maintaining the integrity of the 

clock signal over the comparatively longer distances makes this implementation 

strategy more difficult in this situation. 

 

As an alternative, one can take advantage of modern high-speed network interfaces. 

Rather than a single digital clock source for the entire system, there could be a 

multitude of clocks driving the cameras, as long any timing differences between the 

clocks are minimized. Keeping many clocks synchronized over a network is exactly the 

problem the Precision Time Protocol1 (PTP) [11] was designed to solve. In a local 

network, PTP will typically maintain clock synchronization within a microsecond but 

performance can be as good as a nanosecond when used with network interface 

hardware that was designed specifically to support PTP.  

 

The notion that a camera acquires its image at an instance in time is also a 

simplification. The image is actually acquired in a brief span of time, the length of 
                                                 
1 Also known as the IEEE 1588-2002 standard, later amended as IEEE 1588-2008. 
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which is determined by the camera’s exposure setting. Any motion in the time span 

results in light from a single point to correspondingly move across the image sensor, 

resulting in blur. Lower lighting levels require either a longer exposure time which 

increases this blur, or an increase in the image sensor’s gain which also increases the 

magnitude of the noise. 

 

Finally, the span of time for the exposure might not be the same span of time for all 

regions of the image sensor. Traditional film cameras use a mechanical shutter that 

essentially exposes the entire frame of the film simultaneously (the time it takes for the 

shutter to open and close is assumed to be negligible compared to the exposure time). 

Digital cameras generally do not use a mechanical shutter but instead leave the image 

sensor permanently exposed. Instead, the pixels on the image sensor are sampled after 

the desired exposure time has elapsed and then reset. 

 

In the less expensive image sensors, this sampling happens a line at a time as the data is 

read out of the sensor and is known as rolling shutter. While the duration of exposure 

remains the same for all lines, the absolute start and stop time of the exposure is slightly 

offset from one line to the next by the amount of time it takes to output each line’s pixel 

data. More expensive image sensors have additional hardware to buffer the sampled 

pixel data, decoupling the sampling from the data output process. This allows the 

exposure start and stop time to be the same for the entire image and is thus known as a 

global shutter. If the imaged scene is in motion, cameras with global shutter are 

preferable for the same reasons given previously with regard to camera synchronization  
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The initial proof-of-concept implementation is using cameras with rolling shutter and 

all synchronized over the network with PTP. The rolling shutter will cause distortion in 

the model for objects moving quickly relative to the motion of the virtual shutter across 

the image sensor, but is considered a reasonable cost trade-off, at least for proof-of-

concept purposes. With additional funding, the cameras could be upgraded to more 

sophisticated cameras that use global shutter.  
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Chapter 4: Image Acquisition, Lens Corrections, and 
Rectification 

Overview 
While the prototype system is using an single-board computer to do the initial 

processing associated with each individual camera, the proposed system will use 

dedicated hardware to accelerate the processing to achieve a faster frame rate needed for 

quality video. A block diagram of this hardware is shown below in Figure 20. These 

blocks are organized conceptually, and do not necessarily reflect the boundaries 

between physical components. 

 

 

Figure 20. Block diagram showing the image data flow for an individual camera 
 

The memories shown in Figure 20 are random access memory (RAM). By their very 

nature the RAM’s contents may be read or written in any order. However, the time each 

access takes may vary depending on the order of the accesses. Generally, modern high-

speed RAM large enough to hold a complete image is fastest when the locations are 

accessed sequentially, somewhat slower when accessed locations are in the same region 

but not sequential, and slowest when accesses are in different regions. Therefore, 
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whenever possible, the data flow should be organized so that either the RAM is 

accessed sequentially or smaller RAM is used that has no speed penalty for random 

access. 

Camera 
The Omnivision 5647 camera outputs its data through a Camera Serial Interface 2 (CSI-

2) interface in which the data bits are serialized and sent synchronously using a low-

voltage differential-signal physical interface. While this interface offers good signal 

integrity over the cable from the camera, it necessitates a much higher speed clock and 

the serial nature is completely at odds with parallel processing. All of the individual bits 

associated with each pixel need to be accumulated in a shift register so that the full pixel 

data can be reformatted into parallel output. 

Source Image Memory 
Within the source image memory, the pixel data is parallelized in two different ways. In 

the first case, the pixel data has three components, usually abbreviated with the letters 

Y, U, and V2. The Y component encodes the luminance, the grayscale brightness. The 

U and V components collectively encode the hue and saturation of the color. All three 

of these components can be processed in parallel. Alternatively, the U and V 

components can be discarded at this point if a grayscale image is acceptable in the final 

model. 

 

The second way the pixel data can be parallelized is spatially. Recall from Equation 

(2.26) in Chapter 2 that the pixel remapping process in general needs the values of four 

                                                 
2 This usage of U and V is completely unrelated to the convention of using U and V as pixel coordinates. 
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adjacent source pixels: ( ) ( ) ( ) ( ), , 1, , , 1 , 1, 1P u v P u v P u v P u v+ + + +  for some integer 

pixel coordinates u and v. If u is even, then 1u +  is odd. If u is odd, then 1u +  is even. 

Of course this applies to v as well. Thus, the four combinations of even and odd for u 

and v will always map to the four required source pixel positions above and a memory 

for each combination will allow all four pixel values to be accessed simultaneously. 

 

Since the evenness or oddness of the two components of the pixel coordinate 

determines which of the four memories will hold the pixel value and bit 0 indicates this 

evenness or oddness, only bits 1 and higher of the components are needed for the 

memories’ address lines. The addresses to each memory, however, are not necessarily 

the same. Without loss of generality, consider the portion of the address derived from u. 

When u is even, 1u +  only differs from u in bit 0, which is not part of the derived 

memory address so the addresses to both the even and odd memory are the same. But 

when u is odd, then 1u +  causes a carry out of bit 0 into bit 1 (and perhaps a cascade of 

further carries, depending on the values of the rest of the bits) causing the derived 

address for the even memory to be 1 higher than the odd. This can be implemented in 

hardware with an adder that adds 0 to the upper bits of u with a carry-in from bit 0 of u 

(so this can be a half-adder). This address line related circuitry for the source memory is 

shown below in Figure 21. 
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Figure 21. Source image memory organization (only address lines shown) 

Remapping Engine 
The remapping engine iterates through all of the coordinates of the image in the 

corrected image memory, applying the transformations to correct the lens distortion and 

achieve rectification in order to determine the corresponding coordinate in the source 

image memory. The engine then fetches the four closest pixels values at integer 

coordinates from the source image memory and applies linear interpolation to compute 

the pixel value to store in the corrected image memory. 



41 
 

×
×

×

×

×

×
v0

v-1:-3

8 - v-1:-3

u-1:-38 - u-1:-3 u0

RAM11RAM01

0

1

0

1

RAM00

0 1 0 1

RAM10

Interpolated 

Result

 

Figure 22. Remapping engine pixel value data flow. 
 

Figure 22 shows the data flow computing the interpolated pixel value and is basically a 

hardware implementation of Equation (2.26). The only complication is that since the 

RAMs are dedicated to a particular combination of even and odd horizontal and vertical 

components, the pixel’s value should be multiplied by the fractional component or one 

less the fractional component depending on the evenness or oddness of u and v. In 

general, the multiplexers could be applied to either of the factors, but by associating 

them, as in Figure 22, with the fractional parts instead of the pixel value from the RAMs 
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allows their propagation delay time to occur in parallel with the RAM access time, 

rather than adding to it. 

 

The remapping engine fetches the u and v pixel coordinate from the remapping 

memory. Each pixel coordinate in the corrected image is transformed into an image 

plane coordinate, the lens distortion Equations (2.17) - (2.19) applied, the image 

rectification Equation (2.21) applied, and then finally transformed back to pixel 

coordinates u and v within the source image memory. Rather than perform all of these 

calculations in the midst of the remapping process, these calculations can be performed 

once after SCPM calibration and the results stored in the remapping memory. Since 

these calculations are only done once per system setup and are not particularly time 

critical, they can be handled by a general purpose processor instead of dedicated 

special-purpose arithmetic hardware. 

 

If the locations in the destination image memory are accessed sequentially, the 

corresponding locations in the remapping memory will also be accessed sequentially. 

This sequential access pattern allows the fastest access times for both of these 

memories. 

. 

 

 

 



43 
 

 

Chapter 5: Stereo Disparity Computation 
The heart of determining depth from a pair of stereoscopic images is the 

correspondence problem; if a point in 3-D space can be identified as corresponding 

points on the two 2-D images taken by calibrated stereoscopic cameras then the depth of 

that point can be computed from the two 2-D coordinates and the calibration data. As 

noted in Chapter 2, epipolar lines can be used to constrain the search space. Image 

rectification warps the image so that the epipolar lines become parallel to one of the 

image's axes; this alignment makes a search along the epipolar line coincide with a 

search along consecutive locations in the memory holding the image, which in turn 

allows more efficient memory accesses and/or pipelining. However, finding 

corresponding points is still a challenging problem. 

 

While there are many methods for identifying corresponding points [21], the chosen 

method is the "StereoBM" algorithm of the OpenCV library [2]. This method is 

classified as a block matching algorithm; a square block of pixels in one 2-D image is 

compared to a block window of the same size in the other 2-D image. This window is 

moved along the epipolar line and a comparison is made at each location. 

 

In general, the location of the window when the best match is found is considered to be 

the corresponding point. However, the actual corresponding point may not be visible in 

both images or there may be multiple, ambiguous matches. To reduce the chances of a 

false match in the first case, the OpenCV StereoBM algorithm requires that the best 

match also meets a minimum threshold so that poor matches are simply discarded. For 
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the second case, the algorithm also keeps track of the second best match that is not 

immediately adjacent to the best match and then requires that the ratio of the best match 

to the second best also exceeds a minimum threshold. 

 

When comparing the block, the OpenCV StereoBM algorithm computes the absolute 

difference between corresponding pixel values in the block and window and then sums 

this absolute difference over all of the pixels within the block. Some other block 

matching algorithms use the square of the difference between corresponding pixel 

values, which has some nice mathematical properties such as easier to analyze 

derivatives, but the multiplication is more computationally intensive than the absolute 

value operation. 

 

The size of the block is an important trade-off. If the block size is too small, there may 

not be enough pixels to compare to have sufficient confidence that the match is 

unambiguous. Alternatively, if the block size is too large, the block may encompass 

regions of significantly different depths and so fail to match. The default block size is 

17 by 17 pixels. 

 

The output of the OpenCV StereoBM algorithm is a set of disparity values, that is, how 

far a point in one image has apparently shifted to reach the position of the 

corresponding point in the other image. If the disparity value is 0, the point is 

hypothetically an infinite distance away; in practice, the point is simply far enough 

away that there is not enough detail available to resolve the actual distance. There is 
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also a special value used for the disparity if the point could not be confidently matched 

to a corresponding point. 

 

When demonstrating new stereoscopic related algorithms, many papers use the so-

called "Tsubuka head and lamp" (often shorted to just "Tsubuka") images from [17] and 

shown below as Figure 23 and Figure 24. 

 

Figure 23. "Tsukuba" left image. [17] 
 



46 
 

 

Figure 24. "Tsukuba" right image. [17] 
 

The output of the OpenCV StereoBM algorithm for the "Tsukuba" images is shown in 

Figure 25; increased darkness indicates increased disparity and pure white regions 

indicate that the disparity is unknown. For comparison purposes, the ground-true 

disparity is shown in Figure 26. Generally, errors in the computed disparity occur in 

regions where there are many changes in depth over a short span, such as along the arm 

of the lamp. Disparity information is missing in larger regions where the corresponding 

point is occluded by other objects in the second image (the camera stand is partially 

obscured by the head).  
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Figure 25. "Tsukuba" disparity map computed by the OpenCV block matching 
algorithm. 

 

 

 

Figure 26. "Tsukuba" ground-truth disparity map. [1 7] 
 

Overall, the OpenCV StereoBM algorithm has many attributes, some already noted 

above, that  are conducive to direct implementation in hardware. In fact, a FPGA based 
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design already exists [23] and has been verified that its output matches the OpenCV 

software version bit-for-bit. 

 

Strother's design [23] accepts the rectified images as a stream of pixel data that is 

scanned left-to-right and top-to-bottom. After processing, the design outputs disparity 

values in the same left-to-right and top-to-bottom order. As such, there need not be any 

intermediate memory between the remapping engine of the preceding rectification and 

lens distortion correction stage and this stereo disparity computation stage. Likewise, 

the model building stage, discussed in the next chapter, can also accept the disparity 

values as a stream in left-to-right and top-to-bottom order. 

 

The performance of Strother's design at a number of resolutions in various FPGAs is 

shown in Table 1. All of these rates are adequate for typical non-high definition video 

rates. 

 

Table 1. Performance of hardware implementation of OpenCV StereoBM [23] 
Pixel resolution FPGA Frame rate achieved 

320 x 240 Xilinx Spartan 3E 250 120 frames/second 

640 x 480 Xilinx Spartan 3E 500 30 frames/second 

800 x 480 Xilinx Spartan 6 LX25 60 frames/second 

800 x 480 Altera Cyclone IV EP4CE22 60 frames/second 

1920 x 1080 Xilinx Spartan 6 LX75 30 frames/second 
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Chapter 6: Model Building 
 

Building the model is a matter of finding the polygons that closely approximate the 

surface(s) implied by the range data. A traditional approach is to transform the ranges  

into a point cloud, the set of points in 3-D space that correspond to the 2-D points with 

known range, and then use these as vertices for a mesh of triangles that imply the 

surface(s). When less detail is desired, groups of adjacent triangles can be merged to 

form a single triangle that resembles the original group. 

 

However, working purely from a point cloud loses some useful information in the 

original 2-D organization of the range data. Adjacent pixels within the 2-D image 

frequently represent adjacent regions in 3-D space, and this adjacency is exploited in 

my new approach to quickly identify which points in the point cloud are near each other 

when forming the surface mesh. Furthermore, the adjacency can also be used to help 

identify which points might be omitted from the surface mesh at the outset, rather than 

assembling a detailed mesh that requires further processing to simplify. 

 

It is well known and easy to show that a line segment in 3-D space maps to a line 

segment on the image plane. Thus, the outline of a polygon in 3-D space will also map 

to a polygon on the image plane. To find these polygons, one needs to identify the 

pixels on the image plane that are both contiguous and members of the same 

approximate plane in 3-D space.  
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Simple Linear Regression 
Linear regression is a method for modeling a set of coordinates as points on a 

hypothetical line [15]. For a pair of unique coordinates one may directly compute the 

equation of the line that contains those two coordinates, but when more than two unique 

points are used generally there is no longer a line that includes all the coordinates. In 

this case, a line is found that minimizes the error between the line and the coordinates. 

 

The equation of a 2-dimensional line in slope-intercept form is: 

 y mx b= +   (6.1) 

The error for an individual coordinate is usually computed as the square difference 

between the dependent variable y of the equation of the line and the y value of the 

coordinate: 

 ( )2

i i iE mx b y= + −   (6.2) 

The square of the difference in Equation (6.2) is used so that its value is always non-

negative and can be summed over all the coordinates without the possibility of an error 

at one coordinate canceling or reducing the error at another coordinate: 

 ( )2

1 1

N N

i i i
i i

E E mx b y
= =

= = + −∑ ∑   (6.3) 

Find the values for m and b that minimize this error (for conciseness, assume all of the 

summations are over the range 1i =  to N): 

 ( ) 20 2 i i i i i i i

E
mx b y x m x b x x y

m

∂= = + − = + −
∂ ∑ ∑ ∑ ∑   (6.4) 

 ( )0 2 i i i i

E
mx b y m x Nb y

b

∂= = + − = + −
∂ ∑ ∑ ∑   (6.5) 
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( )2
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i i i

i i i i i

i i i i

i

x y x
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m

x x N x x
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−
= =

−
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∑ ∑ ∑ ∑
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  (6.7) 

 
( )

2

2

2

22

i i i

i i i i i i i

i i i i

i

x x y

x y x y x x y
b

x x N x x
x N

−
= =

−

∑ ∑
∑ ∑ ∑ ∑ ∑ ∑
∑ ∑ ∑ ∑
∑

  (6.8) 

Using Linear Regression Error to Group Points into Line 
Segments 
Linear regression attempts to model a set of points as a single line. If the points are 

actually based on multiple line segments,  linear regression will determine the best line 

that reflects a composite of the underlying line segments. If those segments were close 

to being co-linear, the resulting line will have only a small error and will probably be an 

acceptable approximation. Otherwise, the poor fit of the resulting line to the underlying 

segments is reflected in a large error. 

 

By deciding on an acceptable level of error, one can use the linear regression error to 

group points into different line segments. With the points sorted by their independent 

coordinate, the points are processed sequentially. Initially, a point is assumed to be part 

of the current line segment and Equations (6.7) and (6.8) are used to find the parameters 

for the current line segment. Then Equation (6.3) is used to compute the resulting error. 

If the error now exceeds the maximum acceptable error, the most recent point is 
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removed from the current line segment and is instead used as the starting point for a 

new line segment. 

 

Unfortunately, using Equation (6.3) to recompute the error for each line segment as 

each new point is added requires reevaluating the error between each point used and the 

fit line. In the underlying computer hardware these accesses of the point's coordinates 

are difficult to parallelize, and so become a bottleneck to computing the error quickly. 

However, one can also substitute Equations (6.7) and (6.8) into Equation (6.3) to 

directly compute the overall error based on the various summations: 

( ) ( ) ( )
( )

2 2 22 2 2 2

22

2 i i i i i i i i i i i i

i i

x y x y x y N x y N x y x y
E

N x x

− − + −
=

−

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
∑ ∑

 (6.9) 

Initially, Equation (6.9) may appear to be a step backwards since it has considerably 

more operations than Equation (6.3). Its virtue is that all of the summations can be 

computed incrementally; as each new point is considered, the corresponding newest 

term in the summation can be computed and added to the total. Then Equation (6.9) can 

be reevaluated based on these new totals, without any need to access any prior point 

coordinates. 

 

The expansion of Equation (6.3) into (6.9) is somewhat complicated because of the non-

zero value for the intercept b. Suppose the coordinate system undergoes a translation 

such that the line passes through this new origin, forcing: 

 0b =   (6.10) 

Equation (6.10) now makes solving Equation (6.4) for m considerably simpler: 
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2

i i

i

x y
m

x
= ∑
∑

  (6.11) 

Substituting Equations (6.10) and (6.11) into (6.3) results in: 

 
( )( ) ( )22 2

2

i i i i

i

x y x y
E

x

−
= ∑ ∑ ∑

∑
  (6.12) 

Equation (6.12) is much simpler than Equation (6.9), but it depends on an initial 

coordinate translation. The translation itself is fairly cheap computationally, only two 

additions; the difficulty is determining where to place the new origin. For Equation 

(6.12) to be equal to Equation (6.9), the origin must be on the final fitted line, but the 

position of the line won't be known exactly until after the points have been grouped. 

This circular dependency makes Equation (6.12) appear useless for evaluating the error 

when grouping. 

 

The circular dependency can be broken by accepting Equation (6.12) instead as an 

estimate of Equation (6.9). If the new origin is not actually on the fitted line, but slightly 

off the line, then the best-fit line would have a non-zero intercept b, with a magnitude 

dependent on how far the line passes from the origin. If the maximum acceptable error 

is small, then all of the points grouped for a line segment must be close to the fitted line. 

Any of these points (the first point of the segment being the most convenient) could be 

used as an origin when computing Equation (6.12) with the understanding that the true 

best-fit line is in most cases a better fit than the line passing through this origin, but 

never worse. Thus Equation (6.12) may overestimate the error in comparison to 
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Equation (6.9). So if Equation (6.12) is still less than the maximum acceptable error, 

Equation (6.9) is as well. 

Grouping Example 
As an example, consider the three line segments sampled with a small amount of added 

Gaussian noise shown below in Figure 27. 

 

Figure 27. Sample line segment data. 
 

If the maximum allowed error is arbitrarily set to 2, plotting the accumulated error E 

using Equation (6.9) results in Figure 28 and gives rise to the three line segments shown 

in Figure 29. 
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Figure 28. Accumulated error E using Equation (6.9). 
 

 

Figure 29. Three line segments fit to data using grouping based on Figure 28. 
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Similarly, if the maximum allowed error is arbitrarily set to 2, plotting the accumulated 

error E using Equation (6.12) results in Figure 28 and gives rise to the four line 

segments shown in Figure 29. Note that since Equation (6.12) slightly overestimates the 

true error, the final line segment happens to be broken into two line segments with this 

particular threshold for the maximum error.  

 

Figure 30. Accumulated error E using Equation (6.12) 
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Figure 31. line segments fit to data using grouping based on Figure 30. 
 

Identifying Line Segments 
The image plane is scanned top-to-bottom and left-to-right to find line segments in the 

2-D image that correspond to line segments in 3-D space and thus may be part of a 

polygon in 3-D space. The left-to-right scan inherently gives rise to 2-D line segments; 

the question really is how well do the corresponding points in 3-D space fit a line? 

 

A 3-D line can be represented in parametric form [13]: 

 
0

0

0

D

D

D

X X X

Y Y t Y

Z Z Z

     
     = +     
          

  (6.13) 

[ ]0 0 0

T
X Y Z  specifies some arbitrary reference point on the line, [ ]T

D D DX Y Z  

specifies a non-zero direction vector that the line follows from that point., and t varies 
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over the set of real numbers to generate all the points on the line. However, for a 

particular line the values in Equation (6.13) are not necessarily unique. The direction 

vector can be multiplied by any non-zero scalar and while the magnitude may change, 

the direction itself does not. Also, since the reference point can be any point on the line 

and t can be any real value, any reference point component can take on any value if the 

corresponding component of the direction vector is non-zero. 

 

For 3-D lines that also appear as lines in the 2-D image plane, 0DX ≠   and 0DY ≠ . 

With these restrictions on XD and YD, Equation (6.13) can be rewritten but still represent 

the same line as 

 0 0 1

0 0

0 1

/ /

/ /
D D D D

D D D D

X

Y Y X Y X t Y X

Z Z X Z X Z X

     
     = − +     
     −     

  (6.14) 

and 
0 0

2

0 0

/ /

0 1

/ /

D D D D

D D D D

X X Y X Y X Y

Y t

Z Z Y Z Y Z Y

−     
     = +     
     −     

  (6.15) 

 

 1t X=   (6.16) 

 0
0

D D

D D

X Z XZ
Z Z

X X
= − +   (6.17) 

 0 0
D D

D D

X X
X Z Z X

Z Z
= − +   (6.18) 

 2t Y=   (6.19) 

 0
0

D D

D D

Y Z YZ
Z Z

Y Y
= − +   (6.20) 



59 
 

 0 0
D D

D D

Y Y
Y Z Z Y

Z Z
= − +   (6.21) 

Equations (6.18) and (6.21) allow the line to be described in slope-intercept form in the 

X-Z and Y-Z planes: 

 x xX m Z b= +   (6.22) 

 y yY m Z b= +   (6.23) 

with 

 D
x

D

X
m

Z
=   (6.24) 

 0 0
D

x
D

X
b X Z

Z
= −   (6.25) 

 D
y

D

Y
m

Z
=   (6.26) 

 0 0
D

y
D

Y
b Y Z

Z
= −   (6.27) 

 

 

Use the sum-of-square-residuals (Ssr) to evaluate how well the data points fit Equations 

(6.22) and (6.23) : 

 ( ) ( )2 2

1 1

N N

sr i i
i i

S X X Y Y
= =

= − + −∑ ∑   (6.28) 

 ( ) ( )22

1 1

N N

sr x i x i y i y i
i i

S m Z b X m Z b Y
= =

= + − + + −∑ ∑   (6.29) 

 sr srx sryS S S= +   (6.30) 



60 
 

 ( )2

1

N

srx x i x i
i

S m Z b X
=

= + −∑   (6.31) 

 ( )2

1

N

sry y i y i
i

S m Z b Y
=

= + −∑   (6.32) 

 

If the line is being fitted to data from a horizontal slice in the image plane (y is constant) 

then Equation (6.32) can be simplified. Recall Equations (2.3) through (2.7): 

 =x MX  (2.3) 

 i e=M M M  (2.4) 

 

0

0

0 0 1

x
x

i y
y

f
o

h

f
o

h

 
 
 
 =  
 
 
 
 

M  (2.5) 

 

 
1 1

2 2

3 3

e

− 
 = − 
 − 

R R T

M R R T

R R T

 (2.6) 

 

 0

1 0 0 0

0 1 0 0

0 0 1 0
e

 
 =  
  

M  (2.7) 

Choosing no coordinate rotation or translations ( 0e e=M M  ): 
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  (6.33) 

Then 

 i
y

i y

Y f
y o

Z h
= +   (6.34) 

for all Yi and Zi visible through that slice. Solve for Zi: 

 ( )
i

i

y y

Y f
Z

h y o
=

−
  (6.35) 

Substituting Equation (6.35) into Equation (6.32): 

 ( )

2

1

N
y i

sry y i
i y y

m Y f
S b Y

h y o=

 
 = + −
 − 

∑   (6.36) 

Then choosing 

 
( )y y

y

h y o
m

f

−
=   (6.37) 

and 0yb =   (6.38) 

forces every term in the summation of (6.36) to be zero: a perfect fit, at least in the Y-Z 

plane. So to evaluate the goodness of fit, only equation (6.31) needs to be evaluated. 

However, Equation (6.31) is the same as Equation (6.3) but with different variable 

names, so Equations (6.9) and (6.12) can be updated with appropriately renamed 

variables: 
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  (6.39) 

 
( )( ) ( )22 2

2

i i i i

i

Z X Z X
E

Z

−
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∑

ɶ ɶ ɶ ɶ

ɶ
  (6.40) 

with the coordinate system origin shifted to the first point by: 

 1i iX X X= −ɶ   (6.41) 

 1i iZ Z Z= −ɶ   (6.42) 

Division is one of the harder operations to implement in hardware and so should be 

avoided when possible. If the error, E, itself is only needed as part of a test to ensure 

that it does not exceed some maxE  then the division can be algebraically replaced with a 

multiplication. For example, Equation (6.40) can be rearranged into the test: 

 ( )( ) ( )? 22 2 2
max i i i i iE Z Z X Z X> −∑ ∑ ∑ ∑ɶ ɶ ɶ ɶ ɶ   (6.43) 

 

Line Segment Variables 
Each line segment has the following associated variables: 

• uL - the u in the pixel coordinate space for the left endpoint of the segment 

• uR - the u in the pixel coordinate space for the right endpoint of the segment 

• L  - the 3-D coordinate [ ]T

X Y ZL L L  of the left endpoint of the segment 

• R - the 3-D coordinate  [ ]T

X Y ZR R R of the right endpoint of the segment 
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• XΣ  - the sum of the 3-D X coordinates of the points in the line segment 

• ZΣ - the sum of the 3-D Z coordinates of the points in the line segment 

• XXΣ ɶ ɶ  - the sum of the squared relative 3-D X coordinates of the points in the 

line segment 

• ZZΣ ɶ ɶ  - the sum of the squared relative 3-D Z coordinates of the points in the line 

segment 

• XZΣ ɶ ɶ - the sum of the product of the relative 3-D X and Z coordinates of the 

points in the line segment 

• T - the index of an associated "top" line segment or 0 if there is no associated 

segment. 

All of these variables are retained in memory. There may be other values associated 

with each line segment, such as its midpoint location, that are not retained in memory 

but instead computed as needed from the  variables above. 

Line Segment Identification Algorithm 
Each horizontal slice of the 2-D disparity data is broken into a series of line segments 

using the following algorithm: 

• Each pixel position in the slice is evaluated exactly once, in any order that 

results in adjacent pixels being processed consecutively 

• If there is no disparity data available for that pixel position and there is a current 

line segment that has not been ended, then that line segment is marked as ended 

with a discontinuity. 

• If there is disparity data available for that pixel position and there is a current 

line segment that has not been ended: 
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o Provisionally update the ,XΣ  ,ZΣ  ,XXΣ ɶ ɶ  ,XZΣ ɶ ɶ  and ZZΣ ɶ ɶ  sums with the 

X, Z, 2,Xɶ  XZɶ ɶ  , and 2Zɶ  values for the current pixel position.  

o Test if the error, E, exceeds the maximum chosen threshold maxE  by 

evaluating the inequality in Equation (6.43) 

o If E exceed the chosen threshold, then the provisional sums are 

discarded, the current line segment is marked as ended with continuity, 

and a new line segment is begun. 

o Otherwise, if E did not exceed the chosen threshold, then the provisional 

sums are accepted as the actual sums, uR  is assigned u, and R is 

assigned [ ]T
X Y Z . 

• If there is disparity data available for that pixel position and there is no current 

line segment or the current line segment has already been ended, then a new line 

segment is begun. 

• If all of the pixel positions in the slice have been considered and there is a 

current line segment that has not been ended, then that segment is marked as 

ended with a discontinuity. 

• Whenever a new line segment is begun: 

o The XΣ  and ZΣ  sums are reset to X and Z respectively. 

o The ,XXΣ ɶ ɶ  ,XZΣ ɶ ɶ  and ZZΣ ɶ ɶ  sums are reset to 0. 

o uL  and uR  are assigned u. 

o L  and R are assigned [ ]T
X Y Z   

o T is assigned 0. 
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Examples of the line segment extraction at various error thresholds using the "Tsukuba" 

disparity values from Figure 25 are shown below as Figure 32 through Figure 34. 

 

Figure 32. Segment map with maximum error = 1: 12622 segments 
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Figure 33. Segment map with maximum error = 10: 4072 segments 
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Figure 34. Segment map with maximum error = 100: 2318 segments 
 

 

Merging Line Segments into Polygons 
Once all of the line segments have been identified, adjacent line segments that are 

coplanar and have acceptably straight edges can be grouped into polygons. Horizontally 

adjacent line segments do not need to be considered because the underlying points are 

not coplanar; if they were coplanar, the underlying points of these two segments would 

have been colinear and grouped into a single segment rather than two. Thus, only 

vertically adjacent line segments need to be considered. 
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Within a pair of horizontal slices, all of the line segments are tested in pairs for 

adjacency. In general, the line segments could be considered adjacent if there is any 

overlap in their horizontal spans. That is, either the horizontal minimum or maximum of 

one segment i is within the horizontal minimum and maximum of the other segment j: 

 ( ) ( ) ( )u u ui j i
L L R< <  (6.44) 

 ( ) ( ) ( )u u ui j i
L R R< <  (6.45) 

A better test, with only slightly higher computational cost, is to require that the 

midpoint of each segment be within the horizontal minimum and maximum of the other. 

This assures that there is a significant region in common between the two segments: 

 ( )
( ) ( )

( )
2

u uj j
u ui i

L R
L R

+
< <  (6.46) 

 ( ) ( ) ( ) ( )
2

u ui i
u uj j

L R
L R

+
< <  (6.47) 

 

Initially, the index i is set to the index of the first segment of a horizontal slice and the 

index j is set to the index of the first segment of the following horizontal slice. If the 

indexed segments' midpoints overlap with each other's span, i.e., both Equation (6.46) 

and (6.47) hold true, then more computationally expensive tests can be evaluated and 

both i and j are advanced to the next index. Otherwise, the only one of i or j is advanced 

to the next index; whichever corresponds to the segment that horizontally "precedes" 

the other. Specifically, i is advanced when either: 
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( ) ( ) ( )

2
u ui i

u j

L R
L

+
<   (6.48) 

or 

 ( )
( ) ( )

2

u uj j
u i

L R
L

+
<   (6.49) 

Otherwise j is advanced. 

 

Once a pair of vertically adjacent line segments have been identified, there are three 

tests to see if the lower segment can be combined into a polygon with the upper 

segment and any previous segments that the upper segment had already been combined 

with: 1) are the left edges sufficiently colinear, 2) are the right edges sufficiently 

colinear, and 3) are all of the underlying points sufficiently coplanar? Tests 1 and 2 use 

the same linear regression incremental error evaluation described earlier in this chapter 

using the u, v pixel space coordinates of the left or right edge (depending on the test) of 

the line segments. 

 

Test 3, coplanarity, is somewhat more complicated. While one can extend the derivation 

of Equation (6.9) to find its equivalent for the multivariate regression needed to evaluate 

how a plane would fit the data points, the number of terms in this equation quickly 

becomes unreasonable. As an alternative, the scalar triple product can be used to 

evaluate coplanarity: 

 ( ) ( ) ( ) ( ) ( ) ( )
i i i j j j

E     = − × − ⋅ −     
L R L L L R   (6.50) 
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Equation (6.50) computes the volume of the parallelepiped implied by the two line 

segments; if the volume is 0 (or sufficiently close to 0) then the line segments are 

(sufficiently) coplanar. 

 

If all three tests have passed, then the two line segments are considered to be part of the 

same polygon. ( )
j

T   is assigned ( )
i

T i+  and then ( )
i

T   is assigned zero. Thus, ( )
j

T  

will have the index of the topmost line segment of a polygon when j is the index of the 

bottommost line segment of a polygon. Otherwise, ( )
j

T  is zero because the line 

segment is not part of any polygon or occupies some other position within the polygon. 

 

These final three tests could be implemented in hardware as well, however, it is 

expected that a software implementation would be adequate if the line segments are 

built directly by a hardware implementation. For example, the "Tsukuba" images 

(which have a resolution of 384 by 288 pixels) take approximately 10 ms to merge on 

an AMD FX-6300 CPU running at 3.5 GHz. 

 

As an example of this line segment merging process, consider the line segments shown 

in Figure 35. Gaps have been inserted between these line segments to show the distinct 

segments for illustration purposes, but they represent segments that are continuous in 

both the horizontal and vertical directions. Assuming the segments are sufficiently 

coplanar, these segments could be grouped into the polygons shown in bold in Figure 

36. Note that the edges of these polygon need not exactly coincide with the line segment 

endpoints, as shown in the upper right polygon; this is determined by the linear 
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regression error tolerance chosen for the left and right edges. There is also the 

possibility that a segment cannot be merged with any other segment and becomes 

orphaned; see the line segment in the upper right corner. 

 

 

Figure 35. Enlarged detail of sample line segments. 
 

 

Figure 36. Line segments (thin) from Figure 35 grouped into polygons (bold). 
 

Extracting the Polygons 
Once the line segment merging process has been completed, the line segments are 

iterated over to find each instance that ( ) 0
i

T ≠ . Each instance represents a trapezoidal 

polygon that is part of a surface in the 3-D model. This polygon can be approximated by 

the vertices ( ) ,
i

L  ( ) ,
i

R  ( ) ,
j

R  and ( )
j

L  with ( ) .
i

j T=  However, these vertices may 

not be exactly coplanar, so the trapezoid is split along the diagonal into two triangles, 

one with vertices ( ) ,
i

L  ( ) ,
i

R  and ( ) ,
j

R  and the other with vertices ( ) ,
i

L  ( ) ,
j

R  and 

( )
j

L . 
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Examples of  the resulting polygons built from the line segments in Figure 32, Figure 

33, and Figure 34 are shown below as Figure 37, Figure 38, and Figure 39, respectively. 

As the allowed error increases, the number of polygons/triangles decreases. Potentially, 

the maximum allowed error could be dynamically adjusted according to the bandwidth 

available and complexity of the image so that more detail is retained when the 

bandwidth needed to transmit a more complex model is available. 

 

Figure 37. Polygons with maximum error = 1: 6128 triangles 
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Figure 38. Polygons with maximum error = 10: 2310 triangles 
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Figure 39. Polygons with maximum error = 100: 912 triangles 
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Chapter 7: Conclusions / Recommendations 
This dissertation describes a complete end-to-end system for acquiring images of a 

scene and reconstructing a 3-D model of that scene in real-time. For the most part, the 

system's image processing has been structured so that it can be implemented in logic 

within FPGAs, with the number of clock cycles needed proportional to the number of 

pixels in the source images. Each stage can complete its processing within the period of 

a single video frame, and pipeline its results to the next stage on a frame-by-frame 

basis. Thus, the system has an overall latency of only a few frames and meets its real-

time objective, both in terms of frame rate and latency. 

 

Within the model building process, an algorithm for using linear regression error to 

group a series of data points into multiple line segments, rather than a single line, was 

discovered. This algorithm has the efficient property that each point need only be 

evaluated once and so not only has a run-time cost of only O(n), but also fits well with a 

pipelined data flow model in hardware. This line segmenting algorithm was then used 

as a basis for discovering planar surfaces and polygons in a novel model building 

algorithm. 

 

Nevertheless, there are certainly some areas for improvement and future research. The 

model building relies entirely on the quality of data in the stereo disparity map. The 

OpenCV StereoBM algorithm was chosen because it is already implemented both as a 

software library function as well as a verified hardware FPGA design. However, there 

are other algorithms with better accuracy; it may be possible to create an FPGA 
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implementation of them as well. Alternatively, the OpenCV StereoBM algorithm could 

be retained as an initial estimate of the disparity, but a secondary algorithm added that 

considers inter-frame motion to refine the disparity (corresponding points must both 

either be in regions with motion or regions without motion; otherwise, they cannot 

correspond even if the pixel values are similar). 

 

Within the model building algorithm, the line segments are grouped into trapezoidal 

polygons, which are then split into two triangles. While the 3-D mesh models are 

generally built from triangle primitives, there are various ways to break down the higher 

order polygons into triangles. Limiting the polygons to trapezoids was a decision based 

on simplicity; allowing more complex polygons may permit a better breakdown of 

triangles (triangles with very sharp angles are more difficult to render properly when 

regenerating the model on a display). 

 

The generated polygon vertices could be better selected so that the surface fits the 

underlying data points more closely. Many of the sums used for evaluating the 

regression error in the line segments are also sums needed to compute a least-squares 

regression-fit of a plane to the points; with a few more sums computed and retained, a 

best-fit polygon could be computed. Somewhat at odds with this, however, is another 

problem with the polygon vertices. Adjacent polygons that are both part of what should 

be a smooth surface may have gaps on their edges. The line segmentation algorithm 

tracks where the line segments, and thus also the resulting polygons, should be 

continuous, but this information is not currently being used. 
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Finally, the maximum allowed error when grouping adjacent regions into polygons is 

currently a fixed parameter. A larger allowed error allows rougher surfaces to be 

approximated as planar, which in turn reduces the number of polygons in the model and 

the amount of bandwidth necessary to transmit the model. Alternatively, a smaller 

allowed error preserves more detail but at the expense of more polygons, a more 

complex model, and more bandwidth required. Rather than use a fixed value for the 

maximum allowed error, this value could be dynamically adjusted so that if the 

available bandwidth changes or the complexity of the scene changes, the actual 

bandwidth used could track the available bandwidth. 
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