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Abstract 

Prediction of the natural gas price is imperative to producers, suppliers, traders, 

market makers, and bankers involved in the natural gas exploration, production 

transportation, and trading. Additionally, consumers are also highly affected by the 

changes in the price of oil and gas products. Several attempts have been made to model 

the energy commodity prices over the past few decades. Stochastic differential equation, 

linear and nonlinear regression, auto regression, and neural networks are the main 

techniques that have been implemented. 

In this thesis, three different categories of models are examined which are, 

stochastic differential equations, ARIMA, and autoregressive neural networks. The 

results indicate that, the NAR neural network provides a better fit to the given data as 

compared to the other proposed models. The three-layer NAR model with 6 hidden 

neurons was found to have the best performance in terms of one month ahead price 

prediction.  

 The accuracy of the NARX model with 6 neurons was found to be higher than 

that of the other models. Although, this model provides a reasonable fit to the given data, 

it fails to capture the price spikes effectively. The sensitivity analysis shows that 

CDD/HDD temperatures, extreme minimum temperature, and WTI oil prices have an 

insignificant effect on the results. On the other hand, total consumption, total production, 

and mean temperature of weather impact the results significantly.  

xiv 



Chapter 1: Introduction 

Prediction of the natural gas price is imperative to producers, suppliers, traders, 

market makers, and bankers involved in the natural gas exploration, production, 

transportation and trading as well as consumers involved in the utilization of the natural 

gas (Mishra, 2012). The price of energy commodity, including natural gas price, is 

dramatically volatile that encounters the parties to a high risk and uncertain situations. 

More accurate forecasting helps them to select an appropriate strategy in order to reduce 

the uncertainty by means of hedging the risks. This research attempts to find the best way 

to model and forecast the natural gas prices among different approaches, and choose the 

optimum practice.  

The natural gas price has also considerable effect on the evaluation of gas reserves 

(Caldwell & Heather, 1996), which is a major part of Gas Company’s assets. Fluctuation 

in gas prices disturb the company’s value and increase the investment risk which result 

in reduction of the company’s stock price. Determination of the factors which control the 

natural gas market and price, as well as spread of information between the all parties in 

the market, stabilize the firm value and reduce the volatility. 

Comparing to the other fossil fuels like coal or petroleum products, natural gas is 

less pollutant and more environment friendly. Since natural gas is the cleanest and the 

most abundant fossil fuel compared to other fossil resources in the world, by improving 

transportation technology and decreasing the handling costs, it is becoming the most 

popular source of energy globally (Conti, et al., 2015).  
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1.1. What is Natural Gas 

Natural gas, also called marsh or swamp gas in older texts and more recently 

Landfill gas, is a combustible mixture of gaseous hydrocarbons consisting of methane as 

a major component and heavier hydrocarbons, including ethane, propane, butanes, and 

very small amount of pentanes or heavier components (Speight, 2007). The natural gas 

mixture also includes the unsaturated hydrocarbons such as aromatics, olefins, 

naphthenic, mercaptanes, and more complex hydrocarbons. The inorganic components 

are available in the natural gas mixture. The most important inorganic materials are 

nitrogen, carbon dioxides, hydrogen sulfide, and water that should be removed from the 

stream before injecting it into a pipeline (GPSA, 2013). 

There are three main theories about the process of oil and gas formation 

underground; Thermogenic, biogenic, and abiogenic processes. In the most accepted 

theory, thermogenic process, the dead body of the organic species such as plants and 

animals buried into the deep waters by mud, soil, sands, rocks, and deposits. Over million 

years, the accumulation of the organic and inorganic materials made a heavy layer of 

these deposits with high pressure and temperature, which decomposed the complex 

organic components into the simpler one. Natural gas often discovered in the deeper 

reservoir as a single phase resource and it exists as an associated gas in shallower 

formation adjacent to the oil. The nature of organic debris also affects the product of this 

transformation (Bahadori, 2014). Figure 1 illustrates the relationship between the depth 

of the formation and the possibility of existence of the formed hydrocarbon. 

Even though natural gas was discovered in the 17th century, storage and 

transportation were the main issues. It was used as a lightener in the streets of Baltimore, 
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MD in 1816. To serve all the continent, natural gas pipeline grid has been developed by 

pipeline operators until all the country was in the coverage of the natural gas supply.  

 

 

Figure 1. The relationship between reservoir depth and temperature to the likely 
proportion of hydrocarbon produced (Chandra, 2006) 

 

 Now, the most part of the consuming natural gas in the United States is produced 

in the Rockies, Gulf of Mexico (inshore and offshore), Western Canada, and 

Midcontinent including Texas, Oklahoma, Nebraska, and Arkansas. The major part of the 

natural gas is transferred by the interstate pipeline network which connect the producers 
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and consumers all around the country. Figure 2 shows the current national network of 

natural gas pipeline in the Unites States. 

 

 

Figure 2. US natural gas pipeline network (EIA, 2009) 
 

1.2. Forms of Natural Gas 

For several decades, natural gas was vented as a dangerous byproduct of the oil 

wells. Most of the petroleum fluids in the reservoir condition contain various amounts of 

dissolved gas, which is liberated in the stock tanks. Since dissolved natural gas causes 

several problems in oil transportation, it should be separated in order to reduce the 

transportation cost.  
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Since storage and transferring of natural gas in gaseous phase was not feasible for 

a long time, it used to be consumed locally near to the production fields. By development 

of pipelines and new transportation technologies, such as LNG and CNG, natural gas can 

be conveniently delivered to the markets in the remote areas across the world (Mishra, 

2012).  

Natural gas is stored in different forms of underground storage, which are not 

available in every part of the country and often are located close to the production areas. 

Depleted reservoirs, aquifers, and salt caverns are the underground places that could be 

used as reliable storage for natural gas (Wang & Economides, 2013). 

A very famous form of natural gas has been emerging since the mid-70s is 

Liquefied Natural Gas (LNG), which is a liquid form of the natural gas that cooled by 

cryogenic technology to approximately -260°F (-162°C). LNG technology implements 

complex facilities and equipment in production, storage, and transportation sides which 

are expensive and hard to operate (Mokhatab, Mak, Valappil, & Wood, 2013). The good 

news is that LNG technology is improving in ease of handling and lowering the cost 

dramatically by time. The share of LNG in the transportation of natural gas is small but 

it is increasing.  

Compressed Natural Gas (CNG) is the other form of natural gas that is being 

applied to handle and transport the natural gas as a carrier of energy. CNG is the form of 

natural gas, which is compressed to high pressure around 4000 psi. It needs to be carried 

by special container and ships (Mokhatab & Poe, 2012).  

Hydrate is another form of natural gas, which is an ice-like crystal formed by 

existence of liquid water in high pressure and low temperature conditions. Natural gas 
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hydrate is abundant on the ocean’s bed. Collecting of hydrate and extraction of gas from 

the solid hydrate is not economic yet, but it is believed to be an alternative to LNG or 

pipelines in the future (Mokhatab & Poe, 2012).   

 

 

Figure 3. Production volume versus distance to market framework for gas 
technologies (Wood, Mokhatab, & Economides, 2008) 

 

Gas to Liquid (GTL) is a process in which natural gas in the presence of a catalyst 

converts into a heavier hydrocarbon mixture such as methanol and ammonia with lower 

volume and almost the same content of energy (Anderson, Kölbel, & Rálek, 1984). This 
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liquid form could be transferred easier than the gaseous form of the natural gas. This 

technology is not new, and was introduced seventy years ago (Schulz, 1999).  

Figure 3 shows a rule of thumb for application of different technologies and 

various forms of the natural gas in transportation based on the destination distance and 

the volume of the transferring gas. The pipeline is the best choice for transmission of huge 

amounts of natural gas in short distances. For long distance, especially oversea 

transportation with large amount of gas, LNG is a good option. 

 

 
Figure 4. World energy consumption 2013, Source: (BP, 2014) 

 

The production of shale gas is dramatically increasing. By increasing the shale 

gas production in the U.S., oil import will decline and enough gas will be available to 
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replace the coal in power generation industry (Panella, Barcellona, & D'ecclesia, 2012). 

New technologies and explorations enabled us to produce more natural gas from tight and 

unconventional reservoirs.  Unconventional reservoirs such as shale have a considerable 

share of reserve of natural gas in the North America. Hydraulic fracturing in combination 

of horizontal drilling was greatly developed in the 70s and 80s to produce hydrocarbon 

from tight formations.  Moreover, the rapid change in the economy of China needs a large 

amount of energy (U.S. EIA | IEO, 2013). In addition, the global energy demand is 

increasing as well as the portion of the demand for natural gas in the total energy 

consumption (BP, 2014). 

 

1.3. Regulations on Natural Gas Market 

The history of natural gas regulation goes back to the history of this industry. In 

mid-1800s, natural gas was produced from coal mines and consumed locally in municipal 

areas.  In order to reduce the cost of operations, the production and distribution of product 

were performed by a single company. Therefore; the regulation on price was set by 

government to prevent a monopoly. By expanding the pipelines in the 1900s and 

beginning of interstate transportation, local governments invented a new interstate natural 

gas market and determined the rate that could be charged by distributors.  

In 1938, Federal Government intervened for the first time in the interstate natural 

gas market and passed the Natural Gas Act (NGA) to give jurisdiction to Federal Power 

Commission (FPC) over regulation of the interstate natural gas sales to control every 

feature from wellhead to burner tip (IEA, 1995). The wellhead price was regulated in 

1940 in terms of production cost. After 1960 the geographical area became the base for 
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rate regulation. Since this regulation was not successful, FPC has determined national 

price ceiling for interstate sales in 1974. The determined price was below the market value 

of the commodity that made producers reluctant to explore and drill new reserves. The 

ceiling price was set for wellhead but interstate sales were almost free which caused some 

problems with consuming states (MacAvoy & Pindyck, 1974).   

The regulation of natural gas has dramatically changed during 30 years past. In 

November of 1978, Natural Gas Policy Act (NGPA) as part of the National Energy Act 

(NEA), has passed (Richardson & Nordhaus, 1995) by Congress to reach the following 

objectives:  

     1. Creating a single national natural gas market 

     2. Equalizing supply with demand 

     3. Allowing market forces to establish the wellhead price of natural gas 

New regulatory body, the Federal Energy Regulatory Commission (FERC), has 

been created to control the interstate natural gas market as well as deregulation of natural 

gas prices at the wellhead which resulted a significant amount of drilling rigs in early 80s. 

The main objective of this act was balancing the market. Power Plant and Industrial Fuel 

Use Act (FUA) at 1978 which, restricted the usage of natural gas in power plant to 

substitute other fuels such as coal and oil products on one hand, and the increment in 

production on the other hand leads a huge over-supply of natural gas. On the supply side, 

they encouraged the producers to explore and develop new fields, and on the demand 

side, they encouraged the consumers to consume other fuels. These actions together led 

the market into having a large excessive amount of gas supply (Texas, 1976).  
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Natural Gas Well Head Decontrol Act of 1989 (NGWDA) deregulated the first 

sales of natural gas determined by FERC (Huston, 2015). It was the beginning of 

deregulation in the natural gas market, which finalized by Order 636 in 1993 (Reiter & 

Economides, 1999).  

Finally, under the current regulations, only pipelines and Local Distribution 

Companies (LDCs) are directly regulated by FERC. Producers and marketers are 

controlled by authorization other than FERC while the price is determined by supply and 

demand law in a competitive market. Pipeline operators are obligated to accept natural 

gas into their infrastructures if it meets the technical specifications. 

 

1.4. Natural Gas Market 

Deregulation of price in the gas market, made a competitive market in which 

producers, consumers, and market makers could find the commodity at a fair price. This 

liberation was also a good platform for derivatives market. In the early 1990s, natural gas 

financial markets started to operate when the regulation in the U.S. was adjusted in order 

to liberate the market, as well as national grid for natural gas transportation was expanded. 

All of these evolutions prepared a reliable infrastructure for natural gas trading and 

availability all around the country. New financial markets for energy commodity, 

including financial derivatives like future contracts and options, facilitates the investors 

and traders to hedge their investment. In April, 1990 New York Mercantile Exchange 

(NYMEX) was started to trade natural gas futures contracts with Henry Hub in Louisiana 

as a delivery location.  
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The price of energy in general and the price of natural gas in particular, are very 

volatile. For the investors who plan to build million-dollar power plants, the incoming 

cash flow involves them with a high degree of uncertainty because the fuel price 

flocculation brings instability in revenues. The price oscillation in short time denotes the 

risk of this commodity which makes the investors worried about the fuel price as a major 

part of the operation costs. Figure 5 demonstrates the natural gas price changes since 1997 

which, changes widely during the time.   

 

 

Figure 5. Henry Hub Natural Gas Spot Price, (Source: EIA) 
 

Natural gas markets were considered as domestically isolated markets in the past, 

but by expanding the pipelines around the world and developing LNG technology, it 

could be transferred easier than before (Mishra, 2012). It fills the price gap between 
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different regions and converges the price globally. Figure 6 illustrates the flow of natural 

gas in the United States’ economy.    

 

 

Figure 6. Natural gas supply and disposition in the United States, 2014 (EIA, 2014) 
 

1.5. Chapters and Contexts 

This research is conducted to examine various models to describe, fit, and predict 

the natural gas price in the United States market based on the historical spot price at Henry 

Hub, and other related parameters such as meteorological data, economic data etc. The 
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objective is to find the simplest and the best fitted model to predict the natural gas price, 

which is very important to investors, producers, and consumers to hedge and manage the 

risks associated with their economic and financial activities. This thesis contains 5 main 

chapters. A software package developed by MATLAB® is attached to this booklet. 

Chapter 2: This chapter presents a survey of the most relevant studies reported in 

the literature about the prediction of the energy prices. The studies are critically reviewed 

and cross-compared in order to determine a) the most influential factors for the price of 

energy in general and natural gas in particular, and b) the methods that have successfully 

been used for the prediction of the energy price. The survey highlights the potential and 

capabilities of ANNs for similar applications and justifies their use for the gas price 

prediction.  

Chapter 3: In this chapter three categories of models are presented; Stochastic 

differential equation models, time series models, and neural networks models. The first 

part defines some basic concepts which are used in our models. Then models are defined 

one by one. Finally, the neural network model is described in more details as a main 

model for this research. In this chapter the neurons and linkage between them is explained 

and some description about the architecture, activation functions, and learning algorithm 

have been given. 

Chapter 4: The methods, variables, sources, data gathering, tools applied, and 

method validation are described in details. In this chapter, one of the most important part 

of this chapter is validation and evaluation of the applied methods. A part of data is kept 

for testing the solved neural network. The results for models which are presented in this 

chapter, are comparable because of using the same data set. 
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Chapter 5: A summary of the results is presented and recommendations for further 

studies are provided.  
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Chapter 2: Literature review 

Hotelling (1931) could be recognized as the first researcher who introduced a 

model to describe the behavior of exhaustible resources, such as natural gas. This model 

is known as the Hotelling’s rule; which states that the producers of a non-renewable 

commodity (e.g. Natural gas) tend to sell their commodities when the benefits from the 

sale are more than the benefits of keeping it.  In other words, the extraction cost and the 

present value of the commodity in one side, and the cost of the storage and future value 

of the commodity in other side, which are related by interest rate, will determine the 

proficiency of keeping or selling the commodity. It is assumed that the markets are 

efficient and the owners are motivated by the profit. This rule does not consider the 

emergence of new technologies and resources that may be explored and discovered in the 

future.  Pindyck (1978) has optimized Hotelling’s model for oil and gas case by taking 

the oil and gas reserve increment by exploration into account. An MIT Energy Lab report 

(MacAvoy & Pindyck, 1974) revealed the problem of natural gas shortages with 

econometrics models; which noted that the ceiling price was set by the Federal Power 

Commission and did not represent the price of the supply and demand equilibrium.   

Linear models considers a linear correlation between independent and dependent 

variables. They assume that the same stimulus in a system will result the same response. 

Observations are used to forecast the future outcomes in definite conditions. The most 

linear models have poor performance in prediction due to the complex behavior of the 

system which, could be recognized as nonlinearity (Agbon & Araque, 2003). 

In the past, the linear models were very common to use predicting the oil and gas 

prices. A pessimistic case, most likely case, and an optimistic case were reported by a 
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sensitivity analysis (Powers & Stevenson, 1987). Although the relationship between 

natural gas and oil price is not a linear correlation some simple and linear correlation have 

been developed which are useful as a rule of thumb (Brown & Yücel, 2008). Some models 

were established based on price elasticity, economic growth effect, and energy intensity 

(Roberts, 1989). Price elasticity is the ratio of the percentage change in quantity 

demanded and the percentage change in the commodity price.  

Bopp (1990) and Hsieh (1990) applied econometrics model, and Pilipovic (2007) 

implemented time series models to predict natural gas prices. Reiter and Economides 

(1999) applied both multivariate econometrics and neural network models to forecast the 

natural gas price in the short term. Inikori, et al. (2001) investigated the effect of oil and 

natural gas prices on the oil and gas industry by establishing a linear regression model, 

which forecasted said prices. They considered price elasticity and supply demand 

balances as input variables.  

Two forecasting models have been developed by Nogales, et al. (2002) to predict 

the daily price of natural gas. They have used the time series analysis approach to 

establish dynamic regression and transfer function for Spain and California Market, 

which resulted in the average errors of 5% and 3% respectively. Agbon and Araque 

(2003) applied chaos time series analysis and fuzzy neural network model with a 

nonlinear model to predict the oil and gas prices. Ogwo, et al. (2007) developed an 

equitable pricing model to predict the natural gas price. Mishra (2012) modeled the 

natural gas price with time series as well as a nonparametric approach to forecast the 

price. Hu and Trafalis (2011) developed a new kernel for a neural network model (vector 

support machine) to predict the natural gas price. Panella, et al. (2012) suggested a new 
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approach to implement the neural network to model a nonlinear regression time series, 

associated with energy commodity prices. Yi & Wang (2013) addressed the effect of oil 

price on the international price of natural gas using wavelet based Boltzmann cooperative 

neural network. Ekweanua, et al (2014) found a robust correlation between the natural 

gas price and production, import, and export amount by neural network model.  

To predict natural gas price in long term or short term, several approaches and 

models have been proposed and applied by different researchers. Each method and model 

has its own advantages and disadvantages. The multivariate models which take several 

variables into account are more accurate than the univariate models. However the external 

variables often need to be predicted themselves. For example, a predictor model for 

natural gas price which is a function of oil price is struggling with the same uncertainty 

in oil price. It is not easy to predict the variable in more than one time step in the future.  

Crude oil price has a stochastic nature that most of the time is normally distributed 

and sometimes it behaves like a nonlinear manner (Caldwell & Heather, 1996). Crude oil 

price is not just a function of supply and demand, but depends on more variables such as 

changes in technology, culture, ultimate resource base, consumption patterns and 

population growth (Skov, 1995). This complexity shows the non-linear nature of the 

crude oil price. The oil supply has a dominant role in oil price modeling. Small changes 

in supply made a large change in the oil price illustrating a strong relationship between 

the supply and price elasticity, which may not be linear (Dougherty, 1987). 

The energy commodity prices behave a stochastic process (Schwartz, 1997). 

Several attempts have been performed to capture the stochastic nature of the energy price 

movement, by single-factor models (Lucia & Schwartz., 2002) and (Barlow M. T., 2002).  
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Agbon and Araque examined the spot oil and gas price and concluded that are likely 

chaotic and fractal (Agbon & Araque, 2003). Barlow et al (2004) examined three different 

multi-factor stochastic models describing by stochastic differential equations. They used 

Kalman Filters to calibrate the Models’ factors. They concluded that the log spot price 

mean-reverting to generalized Wiener process and Pilipovic model, are applicable to 

model electricity spot prices (Barlow, Gusev, & Lai, 2004). A research on Canadian oil 

and gas price claims that the long term prices tend to revert back to the long term average, 

while short term prices were not predictable (Morgan, Mikalson, & Herchen, 2012). 

High spikes and oscillations on price trends assert that the economic system is 

very complex and is affected by a large number of variables. The complexity is due to 

initial conditions, the system paths, and the final conditions which lead us to the non-

linear models (Agbon & Araque, 2003). Polynomial, and Gaussian function curve fittings 

are a traditional method to establish a nonlinear model. Even though these solutions may 

not model the spike prices but offer a reasonable explanation for the most conditions 

(Agbon & Araque, 2003).  

The neural network has been implemented in several areas of science (Qian & 

Sejnowski, 1988), social science (Agarwal, Saferpour, & H., 2014), engineering (Hoskins 

& Himmelblau, 1988), and finance (Trippi & Turban, 1992). The application of neural 

network in petroleum engineering is increased in different subjects such as production 

(Al-Fattah & Startzman), well testing (Al-Kaabi & Lee, 1993), and phase behavior 

(Habiballah, Startzman, & Barrufet, 1996). Reiter and Economides (1999) claim that 

short term prediction of gas price is feasible by using lagged variables and neural network 
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models. Hu (2011) built a support vector regression to model the non-linear behavior of 

gas price. She took advantage of neural networks to solve the models. 

A study has been conducted to evaluate different models including linear 

regression, time series models, and neural network based models, with and without 

explanatory variable, to predict the electricity price in the short term. They found that 

neural network based models are showing better results with an accuracy of 0.5 to 47%, 

but there were not enough evidence to prove it (Yıldırım, Bayrak, & Weber, 2014).  
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Chapter 3: Methodology 

All the data, related to prices, consumptions, reserves, storages, productions, 

pipelines etc., are collected from the U.S. Energy Information Administration’s website 

(EIA, US Energy Information Administration, 2016) which are accessible in Microsoft 

Excel® format online for free. Climate data including cooling/heating degree days, 

extreme maximum/minimum temperature, mean temperature, and mean 

maximum/minimum temperature for New Orleans, LA, were downloaded from the 

National Centers for Environmental Information department of the National Oceanic and 

Atmospheric Administration (NOAA, 2016). All these data were combined together in a 

single Microsoft Excel® file as an input data file. 

The data file was loaded into MATLAB® environment which is the main platform 

to analyze the data in this research. The Econometric Toolbox™, Financial Toolbox™, 

and Neural Network Toolbox™ are the most important toolboxes that were used to 

simulate and analyze the given data. Codes and routines have been developed for analysis, 

which are available as a software package attached to this thesis. A simple graphical user 

interface (GUI) has been developed to utilize the written code easily.  

In this chapter a brief explanation is proposed about the key concepts and 

definitions which are used in the implemented models. After basic definitions, models 

are defined in details. 

 

3.1. Basic Definitions 

The objective of this investigation is to find a model, fit, and predict the natural 

gas spot price at the Henry Hub. Natural gas price is a random variable which follows a 
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stochastic process with a random trend. Initially, few important definitions which are 

useful and applicable in the modeling process are presented. Then the brief statement of 

the models has been introduced.  

 

3.1.1. Random Variables 

A random variable is a measurable function of 𝑋𝑋 from the probability space Ω into 

the set of real numbers ℝ known as the state space. Three modifications are needed to 

make this definition more precise (Gallager, 2013): 

(i) The mapping 𝑋𝑋(𝜔𝜔) must have the property that {𝜔𝜔 𝜖𝜖 Ω ∶ 𝑋𝑋(𝜔𝜔) ≤ 𝑥𝑥} is an 

event for each 𝑥𝑥 𝜖𝜖 ℝ.  

(ii) Every finite set of random variables 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 has the property that for each 

𝑥𝑥1 𝜖𝜖 ℝ, … , 𝑥𝑥𝑛𝑛 𝜖𝜖 ℝ, the set {𝜔𝜔 𝜖𝜖 Ω ∶ 𝑋𝑋1(𝜔𝜔) ≤ 𝑥𝑥1, … ,𝑋𝑋𝑛𝑛(𝜔𝜔) ≤ 𝑥𝑥𝑛𝑛} is an 

event. 

(iii) 𝑋𝑋 might be undefined or infinite for a subset of Ω that has 0 probability. In 

other words, the probability of events {𝑋𝑋 = ±∞} is zero. 

 

3.1.2. Stochastic Process 

In probability theory, a stochastic process is a family of random variables 𝑋𝑋 from 

the probability space Ω into ℝ indexed by time set 𝑡𝑡 𝜖𝜖 𝕋𝕋, which could be denoted by 

{𝑋𝑋(𝑡𝑡,𝜔𝜔): 𝑡𝑡 𝜖𝜖 𝕋𝕋,𝜔𝜔 𝜖𝜖 Ω}. We simplify the notation to {𝑋𝑋(𝑡𝑡): 𝑡𝑡 𝜖𝜖 𝕋𝕋} or {𝑋𝑋𝑡𝑡: 𝑡𝑡 𝜖𝜖 𝕋𝕋} when the 

time variable t is continuous (𝕋𝕋 =  ℝ) or is a discrete variable (𝕋𝕋 =  ℕ) respectively 

(Prabhu, 2007). In a stochastic or random process, we always, encountered to some 
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uncertainty: even if the initial condition of the process is fixed, there are several 

directions, named a sample path, in which the process may proceed. 

 

3.1.3. Monte Carlo Simulation 

Monte Carlo methods are a wide range of computational algorithms that rely on 

the repeated random sampling or output of a random-base function to obtain the best 

numerical results. In a stochastic process or time series simulation, the functions generate 

different results in different iterations. They are often used in physical, mathematical and 

statistical problems and are most useful when it is difficult or impossible to use the other 

mathematical methods. These models contain a white noise term in their definition. 

Different random variables lead us to the different values and possible paths. For these 

types of modeling it is possible to run the model for several times, which are generated 

from various and independent white noises. Every run results its specific solution. Monte 

Carlo simulation is a useful tool to analyze these outputs statistically (Glasserman, 2003).  

 

3.1.4. Wiener Process 

Weiner process or Brownian motion 𝑊𝑊𝑡𝑡 is a continuous-time stochastic process 

over time t, which is used to model the integral of a white noise Gaussian process. The 

process is characterized by the following properties: 

(i) 𝑊𝑊0 = 0 with probability of 1. 

(ii) 𝑊𝑊𝑡𝑡 is normally distributed for all 𝑡𝑡 ≥ 0 with mean 0 and variance 𝑡𝑡. 

(iii) 𝑊𝑊𝑡𝑡 has independent increment: 𝑑𝑑𝑊𝑊𝑡𝑡for any time is independent. 
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(iv) 𝑊𝑊𝑡𝑡 has continuous paths, meaning that any realization of 𝑊𝑊𝑡𝑡 is a continuous 

function of t. 

 

3.1.5. Time Series 

The time series is a stochastic process of random variable 𝑋𝑋 indexed by time. 𝑋𝑋𝑡𝑡 

is a notation used for discrete parameter process and 𝑋𝑋(𝑡𝑡) is a notation for continuous 

parameter process. In this research, we are dealing with the discrete parameter process of 

time series. 

 

3.1.6. White Noise 

A time series is called discrete white noise if  

(i) The 𝑋𝑋𝑡𝑡’s are identically distributed 

(ii) ϒ(𝑡𝑡1, 𝑡𝑡2)  =  0 when 𝑡𝑡1 ≠  𝑡𝑡2 

(iii) ϒ(𝑡𝑡, 𝑡𝑡)  =  𝜎𝜎2, where 0 <  𝜎𝜎2  <  ∞ 

Where auto-covariance function ϒ defined as; 

 𝛾𝛾(𝑡𝑡1, 𝑡𝑡2) = 𝐸𝐸{[𝑋𝑋(𝑡𝑡1) − 𝜇𝜇(𝑡𝑡1)][𝑋𝑋(𝑡𝑡2) − 𝜇𝜇(𝑡𝑡2)]} Eq. 1 

 

3.1.7. Stationary Time Series 

A time series is stationary if its statistical parameters such as mean and variance 

remain constant for all the time steps. The Engle test is one of the standard procedure to 

determine stationarity of a time series. 
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3.1.8. Autocorrelation and Partial Autocorrelation 

Autocorrelation function is a correlation of time series with itself. This function 

measures the correlation between the variable 𝑋𝑋𝑡𝑡 and its lag 𝑋𝑋𝑡𝑡−𝑘𝑘 which is a real value 

between -1 and 1 where -1 implies a complete negative correlation and 1 is a complete 

positive correlation while 0 indicates no correlation between the variables. In a similar 

way, partial autocorrelation is a correlation between  𝑋𝑋𝑡𝑡 and  𝑋𝑋𝑡𝑡−𝑘𝑘 when  𝑋𝑋𝑡𝑡−𝑘𝑘 comes into 

the picture and improves the correlation to 𝑋𝑋𝑡𝑡. On the other hands, partial autocorrelation 

of a variable in k order is the amount of correlation between the variable and its kth lag 

that was not explained by the correlations at all lower orders lags. 

 

3.2. Stochastic Differential Equation (SDE) Models 

Stochastic Differential Equation (SDE) is a differential equation with one or more 

stochastic variable. It could be defined based on a Wiener process in general form:  

 𝑑𝑑𝑆𝑆𝑡𝑡 = 𝐹𝐹(𝑡𝑡, 𝑆𝑆𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝐺𝐺(𝑡𝑡, 𝑆𝑆𝑡𝑡)𝑑𝑑𝑊𝑊𝑡𝑡 Eq. 2 

 

where 𝐹𝐹 is drift function, and 𝐺𝐺 is diffusion function. Changes on these functions 

with different definitions result different models as described below. If 𝑆𝑆𝑡𝑡 was defined as 

the rate of return and 𝑋𝑋𝑡𝑡 as price, we could rewrite the Eq. 2 in form of: 

 
𝑑𝑑𝑋𝑋𝑡𝑡
𝑋𝑋𝑡𝑡

= 𝐹𝐹(𝑡𝑡, 𝑆𝑆𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝐺𝐺(𝑡𝑡, 𝑆𝑆𝑡𝑡)𝑑𝑑𝑊𝑊𝑡𝑡 Eq. 3 
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3.2.1. Geometric Wiener Process 

Geometric Brownian motion or exponential Brownian motion is a continuous-

time stochastic process which is satisfying the following stochastic differential equation: 

 𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇(𝑡𝑡)𝑋𝑋𝑡𝑡𝑑𝑑𝑡𝑡 + 𝜎𝜎(𝑡𝑡)𝑋𝑋𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡 Eq. 4 

 

where 𝜇𝜇 is drift parameter, 𝜎𝜎 is volatility parameter, and 𝑊𝑊𝑡𝑡 is a Wiener process 

or Brownian motion. 

 

3.2.2.  Constant Elasticity of Variance (CEV) models 

CEV models are a special case of drift-rated models which defined as: 

 𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇(𝑡𝑡)𝑋𝑋𝑡𝑡𝑑𝑑𝑡𝑡 + 𝐷𝐷(𝑡𝑡,𝑋𝑋𝑡𝑡𝛼𝛼)𝜎𝜎(𝑡𝑡)𝑑𝑑𝑊𝑊𝑡𝑡 Eq. 5 

 

3.2.3. Linear Drift-Rate Models 

This model is described based on following SDE: 

 𝑑𝑑𝑋𝑋𝑡𝑡 = (𝐴𝐴(𝑡𝑡) + 𝐵𝐵(𝑡𝑡)𝑋𝑋𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝐷𝐷(𝑡𝑡,𝑋𝑋𝑡𝑡𝛼𝛼)𝜎𝜎(𝑡𝑡)𝑑𝑑𝑊𝑊𝑡𝑡 Eq. 6 

 

3.3. Time Series Models 

Time series models represent different stochastic processes and experience many 

varieties such as the autoregressive (AR) models, the integrated (I) models, and the 

moving average (MA) models, which are dependent linearly on their previous data 

points. Combinations of these models produce new models as autoregressive moving 

average (ARMA) and autoregressive integrated moving average (ARIMA). These classes 

also could be merged with vector-valued data as multivariate time-series models may 
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called as VAR for vector auto-regression. An extra set of references of these models is 

available for use where the observed variable is affected by exogenous variables where 

the acronyms are terminated with an "X" for exogenous term. 

Among other types of non-linear time series models, there are some models to denote the 

changes of variance over time. These models represent autoregressive conditional 

heteroscedasticity (ARCH) and the group of a wide variety of models (GARCH, etc.). 

Here changes in variability are related to, or predicted by, recent past values of the 

observed series.  

 

3.3.1. AR Model 

AR (r) or Autoregressive model of order or is a model which is relating a time 

series variable into the r past data 

 

𝑋𝑋𝑡𝑡 − 𝜙𝜙0 − 𝜙𝜙1𝑋𝑋𝑡𝑡−1 − ⋯− 𝜙𝜙𝑟𝑟 𝑋𝑋𝑡𝑡−𝑟𝑟 = 𝑎𝑎𝑡𝑡 

𝑋𝑋𝑡𝑡 − 𝜙𝜙0 − 𝜙𝜙1𝐵𝐵1𝑋𝑋𝑡𝑡 − ⋯− 𝜙𝜙𝑟𝑟 𝐵𝐵𝑟𝑟 𝑋𝑋𝑡𝑡 = 𝑎𝑎𝑡𝑡 

𝝓𝝓(𝐵𝐵)𝑋𝑋𝑡𝑡 = 𝜙𝜙0 + 𝑎𝑎𝑡𝑡 

Eq. 7 

where 𝑎𝑎𝑡𝑡 is white noise and 𝜇𝜇 is mean of 𝑋𝑋𝑡𝑡. Another expression for AR (r) model 

is: 

 𝑋𝑋𝑡𝑡 = 𝜙𝜙0 + �𝜙𝜙𝑖𝑖 𝑋𝑋𝑡𝑡−𝑖𝑖

𝑟𝑟

𝑖𝑖=1

+ 𝑎𝑎𝑡𝑡 Eq. 8 

 

3.3.2. MA Model 

Moving Average model of order m, MA (m), is generating realization from 
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𝑋𝑋𝑡𝑡 − 𝜇𝜇 = 𝑎𝑎𝑡𝑡 − 𝜃𝜃1 𝑎𝑎𝑡𝑡−1 − ⋯− 𝜃𝜃𝑚𝑚 𝑎𝑎𝑡𝑡−𝑚𝑚 

𝑋𝑋𝑡𝑡 − 𝜇𝜇 = 𝑎𝑎𝑡𝑡 − 𝜃𝜃1𝐵𝐵1 𝑎𝑎𝑡𝑡 − ⋯− 𝜃𝜃𝑚𝑚 𝐵𝐵𝑚𝑚 𝑎𝑎𝑡𝑡 

𝑋𝑋𝑡𝑡 − 𝜇𝜇 = 𝜽𝜽(𝐵𝐵)𝑎𝑎𝑡𝑡 

Eq. 9 

Another expression for MA (m) model is 

 𝑋𝑋𝑡𝑡 = 𝜇𝜇 −�𝜃𝜃𝑖𝑖 𝑎𝑎𝑡𝑡−𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 Eq. 10 

   

3.3.3. ARMA Model 

Autoregressive Moving Average process, ARMA (r, m), is a combination of 

Moving Average MA (m) and Autoregressive AR (r) processes. Suppose {𝑋𝑋𝑡𝑡;  𝑡𝑡 =

 ±1, ±2, … } is a causal, stationary, and invertible process. Therefore, it satisfies the 

following equation: 

 

𝑋𝑋𝑡𝑡 − 𝜇𝜇 − 𝜙𝜙1 (𝑋𝑋𝑡𝑡−1 − 𝜇𝜇) −⋯− 𝜙𝜙𝑟𝑟 (𝑋𝑋𝑡𝑡−𝑟𝑟 − 𝜇𝜇)

= 𝑎𝑎𝑡𝑡 − 𝜃𝜃1 𝑎𝑎𝑡𝑡−1 − ⋯− 𝜃𝜃𝑚𝑚 𝑎𝑎𝑡𝑡−𝑚𝑚 

𝑋𝑋𝑡𝑡 − 𝜇𝜇 − 𝜙𝜙1𝐵𝐵1 (𝑋𝑋𝑡𝑡 − 𝜇𝜇) −⋯−𝜙𝜙𝑟𝑟 𝐵𝐵𝑟𝑟 (𝑋𝑋𝑡𝑡 − 𝜇𝜇)

= 𝑎𝑎𝑡𝑡 − 𝜃𝜃1𝐵𝐵1 𝑎𝑎𝑡𝑡 − ⋯− 𝜃𝜃𝑚𝑚 𝐵𝐵𝑚𝑚 𝑎𝑎𝑡𝑡 

𝝓𝝓(𝐵𝐵)(𝑋𝑋𝑡𝑡 − 𝜇𝜇) = 𝜽𝜽(𝐵𝐵)𝑎𝑎𝑡𝑡 

Eq. 11 

Another expression for ARMA (r, m) model is 

 𝑋𝑋𝑡𝑡 − 𝜇𝜇 −�𝜙𝜙𝑖𝑖 𝑋𝑋𝑡𝑡−𝑖𝑖

𝑟𝑟

𝑖𝑖=1

= 𝑎𝑎𝑡𝑡 −�𝜃𝜃𝑖𝑖 𝑎𝑎𝑡𝑡−𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 Eq. 12 
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3.3.4. ARIMA Model 

The Autoregressive Integrated Moving Average, ARIMA (r, d, m), process of 

orders r, d, and m is a process, 𝑋𝑋𝑡𝑡, whose differences (1 − 𝐵𝐵)𝑑𝑑𝑋𝑋𝑡𝑡 satisfy an ARMA (r, 

m) model that is a stationary model in which d is a non-negative integer. We use the 

following notation: 

 𝝓𝝓(𝐵𝐵)(1 − 𝐵𝐵)𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜽𝜽(𝐵𝐵)𝑎𝑎𝑡𝑡 Eq. 13 

where all the roots of 𝜙𝜙(𝑧𝑧) = 0 and 𝜃𝜃(𝑧𝑧) = 0 are outside of the unit circle, and 

𝜙𝜙(𝑧𝑧) and 𝜃𝜃(𝑧𝑧) have no common factors. Parameter d in the ARIMA model represents 

the dth difference of 𝑋𝑋𝑡𝑡 to find a stationary time series. Assume that 𝑋𝑋𝑡𝑡 is not stationary, 

then we can reproduce a new time series with differencing the original time series such 

as 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑡𝑡−1for d = 1 and (𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑡𝑡−1) − (𝑋𝑋𝑡𝑡−1 − 𝑋𝑋𝑡𝑡−2) for d = 2 and so on until a 

stationary time series is obtained. 

ARIMA (0,1,0) is the famous random walk model as follows: 

 𝑋𝑋𝑡𝑡 = 𝜇𝜇 + 𝑋𝑋𝑡𝑡−1 Eq. 14 

   

3.3.5. ARCH Model 

To address the conditional volatility behavior, (Engle, 1982) introduced the 

Autoregressive Conditional Heteroscedasticity (ARCH) model. ARCH (q) is defined 

based on an ARMA model in which the term 𝑎𝑎𝑡𝑡 is a function of conditional variance. Let 

𝜎𝜎𝑡𝑡|𝑡𝑡−1
2  be the conditional variance of 𝑋𝑋𝑡𝑡, and suppose 

 
𝑎𝑎𝑡𝑡 = 𝜎𝜎𝑡𝑡|𝑡𝑡−1𝜀𝜀𝑡𝑡 

𝜎𝜎𝑡𝑡|𝑡𝑡−1
2 = 𝛼𝛼0 + 𝛼𝛼1𝑎𝑎𝑡𝑡−12 + ⋯+ 𝛼𝛼𝑞𝑞𝑎𝑎𝑡𝑡−𝑞𝑞2  Eq. 15 
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In this equation, 0 ≤ 𝛼𝛼1 < 1 and 𝜀𝜀𝑡𝑡’s are independent, identically distributed, zero 

mean and unit variance random variables that are independent of  𝑎𝑎𝑡𝑡−𝑘𝑘,𝑘𝑘 = 1,2, … . We 

can formulate the ARCH (q) model as follows: 

 

⎩
⎪
⎨

⎪
⎧

𝑎𝑎𝑡𝑡 = 𝜎𝜎𝑡𝑡|𝑡𝑡−1. 𝜀𝜀𝑡𝑡

𝜎𝜎𝑡𝑡|𝑡𝑡−1
2 = 𝛼𝛼0 + �𝛼𝛼𝑖𝑖 𝑎𝑎𝑡𝑡−𝑖𝑖2

𝑞𝑞

𝑖𝑖=1

 Eq. 16 

   

3.3.6. GARCH Model 

GARCH (p, q) is a generalized ARCH (p, q) model introduced by (Bollerslev, 

1986) and (Taylor, 2007) which includes the lagged terms of the conditional variances. 

This model is defined as 

 𝜎𝜎𝑡𝑡|𝑡𝑡−1
2 = 𝛼𝛼0 + 𝛼𝛼1𝑎𝑎𝑡𝑡−12 + ⋯+ 𝛼𝛼𝑞𝑞𝑎𝑎𝑡𝑡−𝑞𝑞2 + 𝛽𝛽1𝜎𝜎𝑡𝑡−1|𝑡𝑡−2

2 + ⋯+ 𝛽𝛽𝑝𝑝𝜎𝜎𝑡𝑡−𝑝𝑝|𝑡𝑡−𝑝𝑝−1
2  Eq. 17 

The compact form of GARCH (p, q) is 

 

⎩
⎪
⎨

⎪
⎧

𝑎𝑎𝑡𝑡 = 𝜎𝜎𝑡𝑡|𝑡𝑡−1. 𝜀𝜀𝑡𝑡

𝜎𝜎𝑡𝑡|𝑡𝑡−1
2 = 𝛼𝛼0 + �𝛽𝛽𝑗𝑗  𝜎𝜎𝑡𝑡−𝑗𝑗|𝑡𝑡−𝑗𝑗−1

2

𝑝𝑝

𝑗𝑗=1

+ �𝛼𝛼𝑖𝑖 𝑎𝑎𝑡𝑡−𝑖𝑖2

𝑞𝑞

𝑖𝑖=1

 Eq. 18 

   

3.4. Artificial Neural Networks (ANN) Models 

Natural gas price prediction is important as it helps to have a better picture of the 

market in the future and enables us to monitor the factors that might affect the price 

movement. There are several technics to model and predict the natural gas price trend. 

Since the natural gas price change is random, the stochastic process could explain the 

nature of this oscillation. In addition, the periodic fluctuations of the natural gas price 
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introduce some other variables which can describe these vacillations. Another method 

that could explain this random trend is the time series techniques. The price could be 

modeled based on various auto-regression methods. Artificial neural network came into 

the picture when computers became more popular. Using fast computers enables us to 

run and train a neural network with high speed and accuracy. 

We could take advantage of neural networks because of their properties, which 

help us to build a strong and robust model. The ability to learn and generalization are 

two important features of neural networks. Neural networks are able to solve complex 

problems by dividing them into simple tasks. An artificial neural networks consist of 

activation function that could be linear or nonlinear. By choosing the various nonlinear 

functions and different arrangement of the neurons and layers, nonlinear response to the 

stimuli would be captured.  Nonlinearity handling is one of the most useful features of 

the neural networks which helps us to model complex functions (Haykin, 1999). 

In neural network design, the networks learn to decrease the difference between 

the response and actual answers. There is an input-output mapping between the inputs 

and responses based on model-free estimation. After training the neural networks and 

defining the synaptic weight parameters, there is a single response for each specific inputs 

(Haykin, 1999).  

Adaptivity is an important feature of the neural networks. The trained neural 

networks are able to modify the synaptic weight for new examples. They could be trained 

for new situation and reevaluate the responses comparing to the real answers. This feature 

is very useful for the problems that deal with online and dynamic data (Haykin, 1999). 
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In machine learning and data analysis, an Artificial Neural Network (ANN) is a 

family of models and data structures that simulate the operation of the human brain and 

nervous system. Artificial neural network is a branch of artificial intelligence emerged 

since the 1940s. (Hecht-Nielsen, 1989) proposed a good definition of an artificial neural 

network: "... a computing system made up of a number of simple, highly interconnected 

processing elements, which process information by their dynamic state response to 

external inputs.”  

ANNs are generally described as a set of interconnected neurons grouped in layers 

which transfer signals between each other. The connections have numerical weights that 

can be adjusted based on feedback or comparison to a reference data set that make it 

adaptable to inputs and capable of learning.  

Layers are key concepts in neural network architecture which, are made of a set 

of interconnected node named neurons containing an output function named activation 

function. The linkage between neurons are called synapsis which contained numerical 

weights. Independent variables as input data enter into the network via first layer called 

input layer, and dependent variables as results are obtained from the last layer named 

output layer. As shown in Figure 7, there are one or more layers, between input and output 

layers, as hidden layers. Each node of a layer is connected to the all nodes of the next 

layer. Each input to a layer is multiplied by a weight, then will be combined together with 

reference to a threshold and activation function and use them to determine the layer’s 

outputs. The output could be a final result or an input to the next layer. The weights are 

initialized by random numbers and then trained by a large number of available data to get 

an accurate response. 
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Different learning algorithms are designed to train neural networks, which modify 

the weights of the synapsis to achieve the best fit to the inputs. Backpropagation is one 

the most famous types of neural networks, which performs a gradient descent within the 

solution’s vector space towards a global minimum along the fastest vector of the error 

surface.   

 

 

Figure 7. Schematic of artificial neural network 
 

Neural networks are often applied to solve the problems with unknown correlation 

or cumbersome non-linear models which cannot be defined easily. As the exact solution 

or even the form of the solution is vague, neural networks require a large number of runs 

to determine the best solution. A neural network after training with defined weights is 

ready to use as a powerful analytical tool for other data, plugging in inputs and readily 

get the results at the output layer.  
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3.4.1. Models of a Neuron 

Neuron is the simplest unit of neural networks acts as an information-processing 

unit, which forms a complex neural network to process the input data. A neuron consists 

of more basic elements like synapses, an adder, and an activation function demonstrated 

in Figure 8. According to the figure, a set of synapses or connecting links, transfers the 

input signal 𝑥𝑥𝑖𝑖 to the neuron 𝑘𝑘 which determined by the synaptic weight 𝑤𝑤𝑘𝑘𝑖𝑖. In other 

words, 𝑤𝑤𝑘𝑘𝑖𝑖 is a synaptic weight that could take a negative or positive value multiplies the 

input signal 𝑖𝑖  and sends the result into the neuron 𝑘𝑘. An adder adds up all the weighted 

input signals and bias in the neuron. The summation of the weighted signals and bias go 

to the activation function, which is a linear or nonlinear function. Activation function 

keeps the output values into a limited ranges. The output could be an input for another 

neuron in the next layer. 

In the mathematical term the Figure 8 is written as: 

 𝜐𝜐𝑘𝑘 = �𝑤𝑤𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=0

 Eq. 19 

and 

 𝑦𝑦𝑘𝑘 = 𝜑𝜑(𝜐𝜐𝑘𝑘) Eq. 20 

where 𝑥𝑥𝑖𝑖’s are the input signals. To make it easier for showing the formula as well as a 

matrix algebra operation, a hypothetical signal 𝑥𝑥0 = 1 is considered to take the bias term 

into account. The weigh for bias is defined as 𝑤𝑤𝑘𝑘0 = 𝑏𝑏𝑘𝑘. 
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Figure 8. Nonlinear model of a neuron (Haykin, 1999). 
 

 

3.4.2. Types of Activation Function 

The activation function 𝜑𝜑(𝜐𝜐𝑘𝑘), translates the induced local field 𝜐𝜐𝑘𝑘 into a limited 

value. This function is defined in several ways, here we introduce three basic types of the 

activation function. 

 

3.4.2.1. Threshold Function 

The threshold function is defined as: 

 𝜑𝜑(𝜐𝜐𝑘𝑘) = �1                           𝜐𝜐𝑘𝑘 ≥ 0
0                           𝜐𝜐𝑘𝑘 < 0 Eq. 21 
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The output of this function is equal to unit for the positive inputs and is zero for 

negative inputs. The threshold or reference value for the neuron is bias coefficient. The 

Figure 9 shows the illustration of this function. 

 

 

Figure 9. Illustration of different activation functions. 
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3.4.2.2. Piecewise-Linear Function 

The piecewise-linear function is a combination of linear function and threshold 

functions. The results for input values between -0.5 and 0.5 is a linear output. The 

piecewise-linear function is defined as: 

 𝜑𝜑(𝜐𝜐𝑘𝑘) = �
1                                             𝜐𝜐𝑘𝑘 ≥ 0.5
𝜐𝜐𝑘𝑘                           0.5 > 𝜐𝜐𝑘𝑘 ≥ −0.5
0                                        𝜐𝜐𝑘𝑘 ≤ −0.5

 Eq. 22 

As seen in Figure 9, the middle part of the output behave as a linear function. The 

out bonds have constant values.  

3.4.2.3. Sigmoid Function 

   The sigmoid function is very common to use in neural networks. It is defined 

as:  

 𝜑𝜑(𝜐𝜐𝑘𝑘) =
1

1 + 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎𝜐𝜐𝑘𝑘) Eq. 23 

where 𝑎𝑎  is a slope parameter that may have different values. The sigmoid, similar 

to the threshold and piecewise-linear functions has a value between 0 and 1 but the most 

important characteristics of the sigmoid function is its differentiability. The Figure 9 

shows the illustration of this function with different 𝑎𝑎’s. 

 

3.4.3. The Architecture of Neural Networks 

Neural networks are arranged in different ways from simplest one as a single-

layer network to multi-layer and recurrent networks. Single-layer network as showed in 

Figure 10, does not have any hidden layer. The output layer acts as computational layer. 

36 

 



The output from this layer is the final output and is considered as the response of the 

neural network. This network is a feedforward network. 

Multilayer neural network as shown in Figure 11, has one or more hidden layers. 

The figure illustrates a 5-4-3-1 multilayer neural network in which the computational 

neurons are located in the hidden layer. This network has 5 nodes as input which feed 

into the second layer or first hidden layer as input values. The outputs from the first 

hidden layers go to the second hidden layer as input. The last layer is the output layer 

which has a single output as a final result. 

 

 

Figure 10. Single layer neural network. 
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Figure 11. Multilayer neural network. 
 

The other type of neural network arrangement is recurrent neural network, which 

has a feedback from the result affecting the input layer with delayed values. As seen in 

Figure 12, the delayed values could come from a hidden layer as final or intermittent 

results, which are stored in the memory by a delay operator. This feedback improves the 

results.   
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Figure 12. Recurrent neural network. 
 

3.4.4. Learning Process 

The ability to learn of the neural network is a very important feature, which help 

it to improve by new examples. Neural networks are stimulated by environment as the 

input signals which, results in the respond based on the current situation. Comparing the 

response and the environment, neural networks adjust the synaptic weights to gain a better 

response. This process is learning process classified in different categories as describe in 

following sections. 
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3.4.4.1. Error-Correction Learning 

At this type of learning, the response of the neural network is compared to the 

desired answer that is given and the error function is calculated. The objective is to 

minimize the cost function which is calculated from the produced error. Let take 𝑦𝑦𝑘𝑘(𝑛𝑛) 

as a response of neuron k, 𝑑𝑑𝑘𝑘(𝑛𝑛) as the desire response of that neuron, and 𝑒𝑒𝑘𝑘(𝑛𝑛) as an 

error. 𝑛𝑛 demonstrates the time step of the process.  

 𝑒𝑒𝑘𝑘(𝑛𝑛) = 𝑑𝑑𝑘𝑘(𝑛𝑛) − 𝑦𝑦𝑘𝑘(𝑛𝑛) Eq. 24 

Mean square error (MSE) is defiend as 

 𝑀𝑀𝑆𝑆𝐸𝐸(𝑛𝑛) =
1
2
�𝑒𝑒𝑘𝑘2(𝑛𝑛) Eq. 25 

To minimize the MSE, we define ∆𝑤𝑤𝑘𝑘𝑖𝑖(𝑛𝑛), the adjustment to the synaptic weights as: 

 ∆𝑤𝑤𝑘𝑘𝑖𝑖(𝑛𝑛) = η𝑒𝑒𝑘𝑘(𝑛𝑛)𝑥𝑥𝑖𝑖(𝑛𝑛) Eq. 26 

where η is a positive value named learning rate. The synaptic weight in the next time 

steps would be determined by: 

 𝑤𝑤𝑘𝑘𝑖𝑖(𝑛𝑛 + 1) = 𝑤𝑤𝑘𝑘𝑖𝑖(𝑛𝑛) + ∆𝑤𝑤𝑘𝑘𝑖𝑖(𝑛𝑛) Eq. 27 

 

3.4.4.2. Memory-Based Learning 

In this method, all or part of the previous experiences are kept in a large memory 

of correctly classified examples: {(𝑿𝑿𝑖𝑖 ,𝑑𝑑𝑖𝑖)}𝑖𝑖=1𝑁𝑁 , where 𝑿𝑿𝑖𝑖 is the input signal vector, and 𝑑𝑑𝑖𝑖 

is the corresponding desired response. The memory based algorithm consists of two parts 

(Haykin, 1999): 

• Criterion used for defining the local neighborhood of the vector, and, 
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• Learning rule applied to the training in the local neighborhood. 

There are variety of algorithm in which these parts with neighborhoods are 

defined. One of the most famous memory based learning processes is the nearest rule, 

where the local neighborhood is defined as the training example that lies in the immediate 

neighborhood of the test vector. 

 

3.4.4.3. Hebbian Learning 

Hebbian learning rule is the oldest and most famous learning rule proposed by 

(Hebb, 2005) as “when an axon of cell A is near enough to excite a cell B and repeatedly 

or persistently takes part in firing it, some growth process or metabolic changes take 

place in one or both cells such that A’s efficiently as one of the cells firing B, is 

increased”. The other name for this learning type can be correlational learning.  

Based on Hebb’s statement we may have two following parts: 

- If two neurons linked by a synapse are activated simultaneously, then the 

synapse is strengthen selectively. 

- If two neurons linked by a synapses are activated asynchronously, then the 

synapse is weakened or eliminated selectively. 

This form of synapse is called Hebbian synapses. There are four mechanisms that 

distinguish a Hebbian synapse: time dependent mechanism, local mechanism, interactive 

mechanism, and correlational mechanism. 

The simplest way to show the Hebbian learning in mathematical form is as 

follows: 
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 Δ𝑤𝑤 =  𝑥𝑥𝑖𝑖𝑦𝑦 Eq. 28 

This rule is totally based on feed forward, unsupervised learning. It means that if 

the cross product of output and input is positive, the weight is increased, otherwise it is 

decreased (Haykin, 1999). 

 

3.4.4.4. Competitive Learning 

The competitive learning process is designed based on Hebbian learning method, 

unless the output neurons compete with each other and only one neuron would be 

activated instead of the several neurons. This learning method has three basic rules 

(Rumelhart & Zipser, 1985): 

- All the neurons are set similarly except the weights which are distributed 

randomly that result in the neutrons respond to differently to the same input 

patterns. 

- The strength of each neuron is limited. 

- There is a mechanism that allows only one neuron or one in a group to get 

activated at the same time. The neuron that wins the competition is called the 

winner-tasks-all neuron. 

 

3.4.4.5. Boltzmann Learning 

Boltzmann learning is a stochastic learning method. In Boltzmann network, the 

neurons have a recurrent structure and they respond in a binary form. A main concept in 

this learning process is energy function which is defined as: 
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 E = −
1
2
��𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑗𝑗𝑖𝑖

              𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 ≠ 𝑗𝑗 
Eq. 29 

where 𝑥𝑥𝑖𝑖 is state of the ith neuron, 𝑤𝑤𝑖𝑖𝑗𝑗 is the synaptic weight between neuron i 

and j, and 𝑖𝑖 ≠ 𝑗𝑗 states that the neuron does not have self-feedback. The neurons are chosen 

randomly. 

The neurons are separated into two visible and hidden classes. Visible neurons 

have interface with the environment while the hidden neurons operate independently 

(Haykin, 1999).  

 

3.5. Factors and Variables 

In a competitive market (e.g. the U.S. energy market), the price of commodity 

will vary until it reaches the economic equilibrium point which is a point where the 

quantity demanded will be equal to the quantity supplied at the current price. According 

to this theory, excess supply results the price decline and excess demand yields increment 

of the price. The equilibrium state remains same until the market situation is not changed. 

If some condition changed in the current market, for example an unforeseen cold winter 

occurs, the level of demand will change. This change defines a new point as an economic 

equilibrium state and prices move to the new point. The new equilibrium price is the price 

in which supply and demand are balanced in the same quantity transaction.  

The models for prediction the price are classified into two different categories as 

univariate and multivariate models. Univariate models just attempt to simulate the 

phenomena by the target variables itself and its lags. In this models, other parameters that 

may affect the behavior of the dependent variables are not considered assuming all the 

43 

 



causes are reflected in the prices. The second class, multivariate models, enters the 

different parameters, which are called exogenous variables. These variables may affect 

the dependent variable behavior based on the economic, social, or political situations. The 

problem with these models is to require forecasting these parameters in the future in order 

to predict the target variable. At this section, we review some exogenous variables, which 

were considered as dominant variables respect to the gas price movement in the literature.  

Some factors may also affect the supply and demand of the natural gas such as 

macroeconomic parameters, natural gas production and consumption, storage and 

inventories, weather conditions, pipeline capacity, and fuel substitutions. Political issues, 

military interface, and economic instability as an important factor in the energy market, 

particularly in the oil market are not considered in the previous researches (Chiroma, 

Abdulkareem, Sameem, Abubakar, Adamu, & Mohammed, 2013) because evaluation 

and quantizing of these variables is not an easy task. 

 

3.5.1. Natural Gas Production and Consumption 

Production and consumption of natural gas are the variables that are directly tied 

to the supply and demand. The amount of the production and consumption as well as their 

difference have significant effect on gas prices. The gap between supply and demand acts 

as a driving force for the price movement.  

 

3.5.2. Pipeline Capacity 

Since most of the transportation of natural gas is performed by pipeline In the 

U.S., the capacity of the pipeline is restricting the natural gas transportation. When 

44 

 



demand of the natural gas rises rapidly and reaches the pipeline capacity limits, more 

production and storage withdrawal cannot compensate the market demands. Therefore 

the maximum capacity of the pipeline and its available capacity would be important 

factors in the market adjustment (Avalos, 2012). 

 

3.5.3. Storage of Natural Gas 

Geman and Ohana (2009) asserted there is a correlation between the inventory 

and natural gas price when inventory is in below its long run average. Storing of the 

natural gas is not easy. Natural gas mainly stores in underground reservoirs. This type of 

storage is not available anywhere, we need it. Natural gas production is almost constant 

during the year, but the consumption varies in different seasons. To damp the seasonal 

fluctuation of natural gas demand, it stores in the underground storage and restores when 

the demand is higher than production. Song et. al. (2013) showed that natural gas price 

respond to the storage report shock. When the storage at a certain time is less than 

expected value at the similar time, the market is shocked about the storage amount. If the 

expectation was much higher than the existent stored gas, the price rises.  

The inventory itself is important, but not include enough information about the 

supply or demand of the commodity. The market expectation of the sacristy of the 

commodity is more important than the absolute value of current storage. Busse et al. 

(2012) found that the level of storage does not have a significant effect on the natural gas 

price movement. 
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3.5.4. Substitutions 

Several years ago, before 1990, burner tips were designed in such a way that could 

switch the fuel between natural gas and oil products easily. This feature made the refined 

petroleum products as a perfect substitution for natural gas.  Recently the situation 

became different and designs changed. It is not so easy to switch the fuel as before (Brown 

& Yücel, 2008).  

There are various researches with different result about the relationship between 

the refined petroleum products and natural gas. Villar and Joutz (2006) show a strong 

relationship between the natural gas and the oil, in the other hands, Bachmeier and Griffin 

(2006) claim there is a relationship between these fuels but it is weak. Brown and Yücel 

(2008) found that the relationship is significant which is conditioned by the other factors 

like weather, inventories, and shut in production. Part of the price for natural gas and oil 

comes from the cost of exploration, extraction and taxes which are almost same for both 

commodities. 

Recently world powers had a contraction to reduce the CO2 emission in the world. 

Natural gas as clean fuel, which has a lower emission respect to other fossil fuels like 

coal and petroleum residuals is a suitable replacement. In order to reduce the CO2 

emission and air pollution, the government policy is to encourage the consumers to move 

on more environmental friendly fuels like green energies and natural gas.  

An important question here is that if the oil price is an exogenous variable or 

endogenous. Villar and Joutz (2006) state that it is an exogenous variable. This question 

is debatable and needs more investigation. As a rule of thumb, most researchers agree 

with Villar and Joutz. 
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3.5.5. Weather Effect 

Energy consumption is different in various weather conditions and temperatures. 

For instance, residents consume more energy to heat up their home, when the weather 

temperature is too low. Also in high temperature condition, lots of energy is required to 

cool down the places we live. Therefore, in high and low temperatures, energy demand 

increase dramatically, respect to the moderate temperatures (Considine, 2000). This rise 

in consumption affects the demand side of the market (Bower & Bower, 1985). Since this 

demand is predictable in severe conditions of summer and winter, suppliers would be 

prepared for the high demand. The market flocculation is damped by storing the natural 

gas in summer and restoring in winter. This seasonality effect changes the U.S. natural 

gas market demand up to 50% (Mu, 2007). The residential and commercial sector 

consumption is more sensitive to the weather changes respect to the industrial section 

(Elkhafif, 1996). Considine (2000) also states that warmer climate condition slightly 

reduces the natural gas consumption and energy demand. 

The weather is more imperative when a sudden change occurs in climate. A big 

change that was not predicted before, a change with a low probability for that season, 

may lead the price level to a dramatic high spike. We call this incident as weather shock. 

Mu (2007) shows that weather shock has an effect on natural gas market in both spot and 

future trading. 

Heating/Cooling degree days are indicators of household energy consumption for 

space heating/cooling. Heating/Cooling degree days are defined as the amount of 

temperature below/above the base temperature. For an average outdoor temperature of 65 
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degrees Fahrenheit, most buildings require to heat/cool to maintain a 70 degree 

temperature inside (ASHRAE, 1993). Therefore, we assume 65 °F as the base 

temperature in our calculations. 

The following linear functions are cooling and heating degree days in term of 

temperature of current day.   

 
𝐶𝐶𝐷𝐷𝐷𝐷 = �0                          𝑇𝑇 ≥ 65℉

65 − 𝑇𝑇                𝑇𝑇 < 65℉ 

𝐻𝐻𝐷𝐷𝐷𝐷 = �0                          𝑇𝑇 ≤ 65℉
𝑇𝑇 − 65                𝑇𝑇 > 65℉ 

Eq. 30 
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Chapter 4: Results and Discussions 

The first step in statistical analysis is to investigate the time series distribution. 

The Jarque-Bera normality test shows that the price time series is not normally distributed 

but it follows a log-normal distribution (Jarque & Bera, 1987). Figure 13 illustrates the 

distribution of the logarithmic price with respect to the reference red line in the normal 

plot. Therefore, the log price or the return of the natural gas price is normally distributed 

and follows the Gaussian distribution. Now, it is appropriate to assume normal 

distribution for first the difference of variable and/or the logarithm of the gas price.  

 

 

Figure 13. Normality test on gas price time series. 
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4.1. Stochastics Differential Equation Models 

In this section, some SDE models have been examined to fit and predict the 

natural gas prices. The models are univariate single factor model which are analyzing the 

gas price behavior based on its historical information.  

 

4.1.1. Geometric Brownian motion (GMB) Model 

This model, as mentioned before, is described by the following SDE: 

 𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇(𝑡𝑡)𝑋𝑋𝑡𝑡𝑑𝑑𝑡𝑡 + 𝜎𝜎(𝑡𝑡)𝑋𝑋𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡 Eq. 31 

 

The drift and diffusion terms could be considered as constant values or variables 

varying with time. Figure 14 demonstrates the solution with the constant parameters. The 

model was run for the existing time series since the beginning. The solid line is the 

historical price while the dotted red line is the one step ahead forecast based on the GBM 

model. As mentioned before, the stochastic differential equation model solutions contain 

random variables. Each realization has its own path. Therefore, the model was run for 

1000 times and the mean value of these solutions was considered as the forecasted value. 
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Figure 14. GBM model back test results (constant parameters) 
 

After back testing the model, prediction values for 1, 6, 12, and 24 months have 

been produced. Same method was applied for the forecasting: the model has been run for 

1000 times and the average value for each step has been considered as the solution. The 

lower and higher possible prices with a 95% confidence level have been determined. 

Figure 15 shows the histograms of the forecasted price values for 1, 6, 12, and 24 steps 

ahead. The distribution is a log normal distribution. This behavior was predictable from 

the definition of the SDEs. For example, the predicted price for two years later, 24 steps 

ahead from now, is 1.45 $/MMBtu, which tolerates between 0.47 and 4.31 $/MMBtu with 

a 95% confidence level. The distribution of the forecasted price in the next step is closer 

to the normal distribution, but the distribution of far future behaves more like a log normal 

distribution. 
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Figure 15. The obtained solutions for 1, 6, 12, and 24 steps ahead by GBM model 
(constant parameters) 

 

 

Figure 16. Gas price prediction based on GBM model with constant statistical 
parameters (constant parameters) 

 

Figure 16 illustrates the forecasted price with 95% confidence bonds. The black 

solid line is one of the realized paths of the simulated prices. The model is trying to 
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forecast the price in the future. The gas price has a falling trend for 24 steps ahead. As 

time goes by, the prediction is less accurate.  

The same procedure has been followed for modeling the gas price with variable 

mean and standard deviation. For the first 100 data, the parameters have been considered 

as cosntant parameters and then the new data were added to the previous data and new 

parameters were calculated. These parameters were used as the input parameters in the 

model. There is no significant difference observed between the results of Figure 17 

through Figure 19 and the results from the constant parameter model.   

 

 

Figure 17. GBM model back test results (variable parameters) 
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Figure 18. The obtained solutions for 1, 6, 12, and 24 steps ahead by GBM model 
(variable parameters) 

 

 

Figure 19. Gas price prediction based on GBM model with constant statistical 
parameters (variable parameters) 
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4.1.2. Constant Elasticity of Variance (CEV) models 

As mentioned before, CEV models are a special case of drift-rated models, which 

is defined as follows: 

 𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇(𝑡𝑡)𝑋𝑋𝑡𝑡𝑑𝑑𝑡𝑡 + 𝐷𝐷(𝑡𝑡,𝑋𝑋𝑡𝑡𝛼𝛼)𝜎𝜎(𝑡𝑡)𝑑𝑑𝑊𝑊𝑡𝑡 Eq. 32 

If the factor 𝛼𝛼 is equal to unity, the CEV model will be converted to the GBM 

model. For this section, we assume 𝛼𝛼 = 0.5 which builds the diffusion function based on 

the square root of the price variable. The volatility term is a function of square root of the 

price, which means compared to the GBM model, the volatility in higher prices is less. If 

the chosen value for parameter 𝛼𝛼 is greater than unity, the volatility of higher prices will 

increase dramatically. The same procedure and approach for this model were performed. 

Figure 20 to Figure 25 demonstrate the results for this model. 

 

 

Figure 20. CEV model back test results (constant parameters) 
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Figure 21. The obtained solutions for 1, 6, 12, and 24 steps ahead by CEV model 
(constant parameters) 

 

 

Figure 22. Gas price prediction based on CEV model with constant statistical 
parameters (constant parameters) 
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Figure 23. CEV model back test results (variable parameters) 
 

 

Figure 24. The obtained solutions for 1, 6, 12, and 24 steps ahead by CEV model 
(variable parameters) 
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Figure 25. Gas price prediction based on CEV model with constant statistical 
parameters (variable parameters) 

 

4.1.3. Linear Drift-Rate Models 

This model is described based on the following SDE: 

 𝑑𝑑𝑋𝑋𝑡𝑡 = (𝐴𝐴(𝑡𝑡) + 𝐵𝐵(𝑡𝑡)𝑋𝑋𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝐷𝐷(𝑡𝑡,𝑋𝑋𝑡𝑡𝛼𝛼)𝜎𝜎(𝑡𝑡)𝑑𝑑𝑊𝑊𝑡𝑡 Eq. 33 

In this model, if the equalities of 𝛼𝛼 = 1, 𝐴𝐴(𝑡𝑡) = 0, and 𝐵𝐵(𝑡𝑡) = 𝜇𝜇(𝑡𝑡) are 

considered, the model would be as same as the GBM model. Definitely, with 𝛼𝛼 = 0.5, 

the CEV model will be constructed. In order to find a solution for this model we can take 

𝐴𝐴(𝑡𝑡) = 𝐵𝐵(𝑡𝑡) = 1
2
𝜇𝜇(𝑡𝑡) and 𝛼𝛼 = 1. For analyzing the data, the same procedure was 

applied. The following figures show the results: 
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Figure 26. LDR model back test results (constant parameters) 
 

 

Figure 27. The obtained solutions for 1, 6, 12, and 24 steps ahead by LDR model 
(constant parameters) 
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Figure 28. Gas price prediction based on LDR model with constant statistical 
parameters (constant parameters) 

 

 

Figure 29. LDR model back test results (variable parameters) 
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Figure 30. The obtained solutions for 1, 6, 12, and 24 steps ahead by LDR model 
(variable parameters) 

 

 

Figure 31. Gas price prediction based on LDR model with constant statistical 
parameters (variable parameters) 
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4.1.4. Summary of SDE Models 

Table 1 shows a summary of the forecasting results for the presented SDE models. 

In this table, the minimum and maximum possible prices with a 95% confidence level are 

given for 1 step and 24 steps ahead. According to the models, the gas price is fluctuating 

between 0.47 and 5.52 $/MMBtu for two years. The most possible price for December 

2017 is between 1.42 and 1.96 $/MMBtu. 

 
Table 1. Summary of SDE models forecasting 

  1 step ahead forecast 24 steps ahead forecast 
  Min. Mean Max. Min. Mean Max. 

Static 
GBM 1.50 1.91 2.34 0.47 1.45 4.3 
CEV 1.61 1.91 2.23 0.51 1.56 3.51 
LDR 1.49 1.91 2.34 0.42 1.46 4.71 

Dynamic 
GBM 1.49 1.93 2.39 0.55 1.75 5.52 
CEV 1.49 1.94 2.38 0.71 1.96 4.25 
LDR 1.48 1.92 2.37 0.43 1.42 4.59 

 

4.2. Time Series Models 

In this section, the natural gas monthly spot price at Henry Hub is considered as 

a time series and it was attempted to fit the best model of ARIMA/GARCH by using 

Econometrics Toolbox™ of MATLAB® software. ARIMA model as a general form of 

univariate time series has been selected. To establish the model first the mean and 

variance are considered as constant values, and then the parameters were estimated. In 

the next step, the statistical parameters were considered as variables and were estimated 

by the GARCH model. The combined model, ARIMA/GARCH, was established. The 

following sections indicate the estimation process step by step for these models.  
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4.2.1. ARIMA/GARCH Model 

4.2.1.1. Estimation of Parameter d 

To implement the time series models described above in the natural gas spot 

market, we need to make sure that the given time series is stationary. For non-stationary 

time series we could apply some linear or non-linear transformations to achieve a 

stationary trend. As the first step, the autocorrelations (ACF) and partial autocorrelation 

functions (PACF) of the time series should be calculated which indicate the stationary or 

non-stationary behavior of the variable. The second step is to use standard tests such as 

KPSS (Kwiatkowski, Phillips , Schmidt, & Shin, 1992), and augmented Dickey-Fuller 

tests (Perron, 1988) in order to confirm the stationary behavior of the variable statistically. 

To convert a non-stationary time series into a stationary one, we may make a new time 

series in terms of differences of one lag. This process defines the differencing parameter 

“d” in ARIMA model.  

As shown in Figure 32, the autocorrelation functions for the original time series, 

HH spot price, do not converge to zero and are significant for large number of lags. They 

decay into the range very slowly and could not reach the domain even after 38 lags but in 

the partial correlation graph after the second lag they become significantly small. It can 

be inferred from this behavior that this variable is not stationary. Therefore, a new time 

series was generated by differencing natural gas price, which is illustrated in Figure 33. 
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Figure 32. Autocorrelation and Partial Autocorrelations functions for Henry Hub 
Spot Price 

 

 

Figure 33. Natural Gas Spot Price (a) and First Difference of Price (b) Historical 
Data 
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Figure 35 reveals that the new time series produced by differencing of natural gas 

price time series is stationary. The KPSS and ADF test results summarized in Table 2 

also confirm the explanations of the AFC and PAFC graphs that the spot price trend is 

not a stationary time series but its first difference is. Therefore, it is suggested to use the 

first difference (i.e. d =1) in order to establish an ARIMA-GARCH model. 

 
Table 2. Result summary for stationary tests 

Variable Test Stat. Crit. 
Value 

Likelihood 
Log 

Significance 
Level 

MSE 

Spot Price KPSS 3.26 0.1460 -508.48 95% 5.110 
ADF -1.25 -1.9421 -271.49 95% 0.643 

First Difference of 
Price 

KPSS 0.03 0.1460 -272.115 95% 0.612 
ADF -15.42 -1.9421 -270.200 95% 0.643 

 

 

Figure 34. Standard Deviation of Differenced Time Series 
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Another method for estimation of the optimum number of differences is to find 

the minimum standard deviation of the produced time series, which is demonstrated in  

Figure 34. This method also suggests using d = 1. 

4.2.1.2. Estimation of Parameters r and m 

Figure 35 which ilustrates the ACF and PACF for the model variable indicates 

that the 5th and 9th lags of the time series have a close relationship with the variable. The 

negative values of these significant lags in PACF denote that a slighltly over-differenced 

variable is occurred which could be corrected by considering the lags as MA lags. 

Therefore, ARIMA (5,1,9) was chosen as a descriptive model in which the coefficient for 

the lags are zero expect the 5th and 9th lags. 

 

 

Figure 35. Autocorrelation and Partial Autocorrelations functions for First 
Difference of Spot Price 
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In order to find the optimum parameters of the ARMA model, various 

combinations of the lags were defined, and then Akaike and Bayesian information criteria 

were examined for those to choose the best model (Box, Jenkins, & Rein, 2015). 

According to the AIC results in Table 3, the ARIMA (9, 1, 9) model with the 5th and 9th 

lags in both AR and MA section is the optimum model. On the other hand, the BIC results 

in Table 4 suggest choosing ARIMA (5, 1, 9) model with the 5th lag in AR and the 9th lag 

in MA section. As the results of both methods for these two models are very close, 

ARIMA (5, 1, 9) was preferred to be selected which has two parameters less than the 

other model. A simpler model is always better if the accuracy is not decreased much. 

 

Table 3. Akaike Information Criteria Results for Different Lags in ARIMA Model 

  MA Lags 
  0 5 5, 9 9 

A
R

 L
ag

s 0 549.92 545.76 536.65 539.56 
5 545.39 545.25 536.20 535.41 
5, 9 536.23 538.10 531.86 535.16 
9 540.16 537.04 537.46 542.08 

 

Table 4. Bayesian Information Criteria Results for Different Lags in ARIMA 
Model 

  MA Lags 
  0 5 5, 9 9 

A
R

 L
ag

s 0 556.77 556.04 550.36 549.85 
5 555.68 558.97 553.34 549.13 
5, 9 549.94 555.24 552.44 552.31 
9 550.45 550.76 554.61 555.80 
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4.2.1.3. Estimation of ARCH and GARCH parameters 

As shown in Figure 36, the variance of first difference of the natural gas price is 

not constant and varies by time. These changes in statistical parameters leaded us to 

define a GARCH model for fitting the variances. 

 

 

Figure 36. Variance and Mean of Time Series during Time 
 

The first approach is interpretation of ACF and PACF of the modeling variable. 

Figure 37 indicates that a significant arch effect can be seen in 2 lags of the modeling 

variable. The number of lags is the summation of ARCH and GARCH lags (p + q) 

together. GARCH (1, 1) was defined for variance modeling and now our model is 

completed as ARIMA (5, 1, 9) / GARCH (1, 1). There are some statistical tests such as 
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Engle’s test that indicate the conditional heteroscedasticity of the time series (Engle, 

1982). This test approves the obtained results as well. 

 

 

Figure 37. ACF and PACF of Squared First Difference of HH Spot Price 
 

 

Table 5 shows the model parameters’ values, standard errors, and t-statistic 

associated with the parameters. Plugging the parameters in the models results in: 

 

 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡−1 − 0.0279 − 0.0567 (𝑋𝑋𝑡𝑡−5 − 𝑋𝑋𝑡𝑡−6) + 𝑎𝑎𝑡𝑡 + 0.2205 𝑎𝑎𝑡𝑡−9

𝑎𝑎𝑡𝑡 = 𝜎𝜎𝑡𝑡|𝑡𝑡−1. 𝜀𝜀𝑡𝑡

𝜎𝜎𝑡𝑡|𝑡𝑡−1
2 = 0.0499 + 0.5288 𝜎𝜎𝑡𝑡−1|𝑡𝑡−2

2 + 0.4712 𝑎𝑎𝑡𝑡−12

 Eq. 34 
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Table 5. ARIMA/GARCH model's parameters 
Parameter Value Std. Error t-Statistic 
ARIMA Const. -0.0279 0.0230 -1.2162 
AR(5) -0.0567 0.0447 -1.2677 
MA(9) -0.2205 0.0344 6.4023 
GARCH Const. 0.0499 0.0204 2.4433 
ARCH(1) 0.4712 0.0725 6.5023 
GARCH(1) 0.5288 0.0653 8.0958 

 

To validate and check the model, the model was run, starting from 1999 until the 

last date of the available data. The model was established for the early data and then was 

rebuilt for the emerging data over time for forecasting the price in one step ahead. The 

results are illustrated in Figure 38. In Figure 38(a), the dotted red line is the forecasted 

prices and the solid blue line is the actual historical data. In Figure 38(b), the residual 

values are illustrated, which indicate that the model is outperforming when new data are 

coming into the model. The residual values are converging to zero over time although the 

model has poor performance at the spikes. 

Finally, the model was run to predict the price for 12 months in the future with 

the confidence level of 95%. The results are demonstrated in Figure 39. The prediction 

shows a descending trend until it reaches the lowest point at a price of 2 $/MMBtu in 

May 2016 and then starts to move upward until it hits the price of 2.3 $/MMBtu in 

September 2016. It also shows that the natural gas price will fluctuate between 1.5 and 

3.2 $/MMBtu in a 95% level of confidence.  
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Figure 38. (a) Model Back Test Results, (b) Residual Value for Model 
 

 

Figure 39. Model Forecasting for 12 Month in Future 
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4.3. Neural Network Models 

In this section, univariate nonlinear auto-regression neural network model (NAR) 

and multivariate nonlinear auto-regression neural network model (NARX) have been 

examined to describe the natural gas price behavior. 70% of the data is considered as the 

training dataset while the remaining 30% of data was equally reserved for testing and 

validation.  

 

4.3.1. Univariate Neural Network Autoregression (NAR) Model 

To determine the number of lags, a model including one lag and one hidden layer 

was built. The autocorrelation for the error terms is demonstrated in Figure 40. These 

results are consistent with the obtained results in the ARIMA Modeling section. 

Therefore, 9 lags were selected to eliminate the auto-correlated errors from the diagram 

and the model was run for new parameters. Figure 41 shows that 9 lags could not capture 

the autocorrelation errors completely. Therefore, more lags were added to the model. 

Figure 42 shows that 10 lags for this model could be appropriate enough and would 

capture the autocorrelation effect on the errors. 
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Figure 40. Autocorrelation of error for 1-layer 1-lag NAR model. 
 

 

Figure 41. Autocorrelation of error for 1-layer 9-lag NAR model. 
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Figure 42. Autocorrelation of error for 1-layer 10-lag NAR model. 
 

 

Figure 43. Performance of neural networks vs. number of neurons in the hidden 
layers for NAR model. 
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To determine the number of neurons in the hidden layer for neural networks, the 

model was run for 1-neuron to 50-nerouns in the hidden layer, the MSE for each layer 

has been plotted in Figure 43. The plot shows that adding more neurons in the hidden 

layer does not improve the results considerably. Therefore, one neuron model was 

selected as the describing model for this section. A model with 6 neurons in the hidden 

layer shows slightly better results but the enhancement is not good enough to choose. The 

Figure 47 through Figure 49 show the results for 10-6-1 neural networks. The results are 

almost similar to the outputs for 1-layer model. 

 

 

Figure 44. Back testing of the NAR model with 10 lags and 1 neuron in the hidden 
layer 
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The response is plotted to check if the model is appropriate enough to capture the 

nonlinear behavior of the time series. The model simulates the movements very well 

unless a rapid change is occurred. The error diagram shows the absolute errors during the 

simulation time.  

Figure 45 illustrates the regression between the target values and the simulated 

values for the training, testing, and validation data sets. In terms of regression lines, the 

simulated values show very promising results. The R2 values for the training, testing, and 

validation data are close which means that the model is not over fitted. This result is also 

confirmed by the performance trend of the model for these data shown in Figure 46.  

 

 

Figure 45. Regression results and R squared for 10-1-1 NAR model. 
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Figure 46. Performance progress for 10-1-1 NAR model. 
 

 

Figure 47. Regression results and R squared for 10-6-1 NAR model. 
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Figure 48. Performance progress for 10-6-1 NAR model 
 

 

Figure 49. Back testing of the NAR model with 10 lags and 6 neurons the hidden 
layer 
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4.3.2. Multivariate Neural Network Autoregression (NARX) Model 

The last model that was created is a NARX model; A neural network time series 

model which contains exogenous variables to justify the responses. The variables are 

West Texas instrument oil price, total gas production, total gas consumption, storage 

capacity, storage volume, injection to and withdraw from the storages, cooling days, 

heating days, extreme minimum temperature, extreme maximum temperature, and mean 

temperature. As performed before for the NAR model, to determine the numbers of lags 

for gas price, an autocorrelation between the lags is plotted in Figure 50. The plot leads 

us to choose 9 lags for this model. The starting lags for the exogenous variables were 

considered to be one. This investigation revealed that no more lags are required for these 

variables.  

 

 

Figure 50. Autocorrelation for 1 neuron 1-lag NARX 
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Figure 51. Autocorrelation of error for 1-neuron 9-lag NARX model. 
 

 

Figure 52. Autocorrelation of error for 1-layer 9-lag NARX model. 
 

  Figure 51 and Figure 52 show that 9 lags for gas price is good enough to capture 

the correlation between the errors. To determine the number of neurons in the hidden 

layers, the model was simulated for different situations plotted in Figure 53. This trend 

80 

 



has a very similar behavoir to the NAR model ilustrated in Figure 43. The model was run 

for both 1 and 6 neurons in a hidden layer neural network which seems to be the best 

possible solution. 

 

 

Figure 53. Performance of neural networks vs. no. of neurons in the hidden layer 
in NARX model. 

 

The following figures show that the imrovement by using 6 neurons in the hidden 

layer instead of 1 neuron is acceptable. The R2 values for the taining, testing, and 

validation sets demonstrate that the model is not over fitted.  
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Figure 54. Regression results and R squared for 21-1-1 NARX model. 
 

 

Figure 55. Performance progress for 21-1-1 NARX model 
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Figure 56. Back testing of the NARX model with 9 lags and 1 neuron in the hidden 
layer. 

 

 

Figure 57. Regression results and R squared for 21-4-1 NARX model. 
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Figure 58. Performance progress for 21-4-1 NARX model 
 

 

Figure 59. Back testing of the NARX model with 9 lags and 4 neurons in the 
hidden layer. 
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4.3.3. Sensitivity Analysis 

In order to investigate the effect of exogenous variables on model response, a 

sensitivity analysis has been performed. Based on the model and real data, a base case 

was defiened. Each variable was multiplied by factors of 0.5, 0.8, 1.2, and 2, and then 

introduced into the model. The following figures show the changes on the respose due to 

the changes in the exogenous variables. A mean error was defined to determie the 

deviation of the respose with respect to the base case based on the following formula: 

 𝑆𝑆𝐴𝐴𝐸𝐸𝑐𝑐 =
1
𝑁𝑁
�(𝑦𝑦�𝑏𝑏 − 𝑦𝑦�𝑐𝑐)2 Eq. 35 

where 𝑆𝑆𝐴𝐴𝐸𝐸𝑐𝑐 is the sensitivity analysis error, 𝑦𝑦�𝑏𝑏 is the base case response, 𝑦𝑦�𝑐𝑐 is the case 

study response, and 𝑁𝑁 is the number of data. 

 

 

Figure 60. Sensitivity analysis for West Texas oil price. 
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Figure 61. Sensitivity analysis for total production of natural gas. 
 

 

 

Figure 62. Sensitivity analysis for natural gas storage capacity. 
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Figure 63. Sensitivity analysis for natural gas storage volume. 
 

 

 

Figure 64. Sensitivity analysis for natural gas storage injection. 
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Figure 65. Sensitivity analysis for natural gas storage withdrawal 
 

 

 

 

Figure 66. Sensitivity analysis for total consumption of natural gas. 
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Figure 67. Sensitivity analysis for cooling degrees day Temperature. 
 

 

 

Figure 68. Sensitivity analysis for heating degrees day temperature. 
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Figure 69. Sensitivity analysis for extreme maximum temperature at New Orleans, 
LA. 

 

 

 

Figure 70. Sensitivity analysis for extreme minimum temperature at New Orleans, 
LA. 
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Figure 71. Sensitivity analysis for mean temperature at New Orleans, LA. 
 

 

As can be seen in the figures, the most sensitive parameters are total consumption, 

total production, and mean monthly temperature. The least important exogenous 

parameters are CDD/HDD temperatures, extreme minimum temperature and WTI oil 

price. 

Table 6. The measured mean error in sensitivity analysis 

Exogenous Variables 
SAEc 

0.5X Base 0.8X Base 1.5X Base 2X Base 
WTI Oil Price 0.05 0.01 0.04 0.17 
Total Production 5.22 1.05 8.88 28.93 
Storage Capacity 1.25 0.22 1.21 4.05 
Storage Volume 0.79 0.17 1.72 7.01 
Storage Injection 0.90 0.16 1.36 5.18 
Storage Withdrawal 0.77 0.14 1.04 3.89 
Total Consumption 26.06 4.82 10.53 17.26 
Cooling Degree Day 0.36 0.06 0.30 1.03 
Heating Degree  0.22 0.04 0.27 1.04 
Extreme Max. Temp. 0.41 0.10 1.85 2.33 
Extreme Min. Temp. 0.04 0.01 0.04 0.13 
Mean Temperature 2.75 0.55 4.54 16.94 
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4.4. Result Summary 

This section provides a summary of the results obtained using the mentioned 

models. To better explain the difference between these models, R-squared is calculated 

for each model. R-squared values do not vary significantly among the SDE models. Table 

7 summarizes the calculated R-squared for these models. It can be observed in this table 

that neural network based models fit the data better than the other models. Among the 

different neural network models, NARX 21-6-1, is the best model in term of the test 

performance. 

 

Table 7. Fit results of models. 
Model R-Squared 
SDE Models %84.3 
ARIMA/GARCH %84.6 
NAR 10-1-1 %94.5 
NAR 10-6-1 %95.0 
NARX 21-1-1 %93.9 
NARX 21-6-1 %94.6 
NARX 14-6-1 %94.2 

 

 The obtained results for one step predictions is available in Table 8. The results 

obtained using different models are in a good agreement except the one obtained using 

the NAR model. The real value for gas price is 2.28 $/MMBtu which is closer to the NAR 

model prediction. According to the back test of the models, the NARX model has a better 

fit to the historical data, but the results in Table 8  shows otherwise. 
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Table 8. Predicted natural gas price for different models. 

Model Predicted Price 
GBM 1.93 
CEV 1.94 
LDR 1.92 

ARIMA 1.95 
NAR 10-6-1 2.01 

NARX 21-6-1 1.92 
 

4.5. Natural Gas Price Forecaster Package 

In order to produce the results based on the models that were proposed in this 

research, a software package has been developed. Graphical User Interfaces (GUIs) were 

designed to be able to use the models easier and more efficient. This package helps to 

reproduce the results and also examine the models with different parameters.  Figure 72 

shows the main menu for the software package. In the main menu, the historical price of 

natural gas is illustrated. From the radio button section, we can choose the type of models. 

Pressing “Model Details” button enables us to select the model. 

 

Figure 72. Software package's main menu. 
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After selecting the method, another window will appear for choosing the specific 

model. The following figures show the menus which depend on the method selection. 

Figure 73 has the options to select GBM, CEV, or LDR model. In this window, we can 

also determine if the statistical parameters are static or dynamic. Figure 74 shows the 

parameters for autoregression and moving average lags as well as heteroscedasticity 

parameters. Here we can define these parameters. 

 

 

Figure 73. SDE model selection window. 
 

 

Figure 74. ARIMA / GARCH model selection window 
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Figure 75. Neural networks model selection window 
 

Figure 75 is the menu for setting the parameters for neural networks models. In 

this menu, we can determine the exogenous variables, which are introduced into the 

NARX model. 

The next step is to define what type of curves and results are desirable for us. By 

pressing the “Analysis” button, depending on which model was selected, a new model 

will appear to set the favorable outputs. Figure 76 to Figure 78 show these windows. The 

results are the same as presented in the previous sections. 
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Figure 76. Output setting window for SDE model. 
 

 

Figure 77. Output setting window for ARIMA model. 
 

 

Figure 78. Output setting window for ANN.   
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Chapter 5: Conclusions 

Three different classes of gas price prediction models are examined in this study 

to determine the optimum model. Introducing exogenous variables is proposed as a viable 

approach towards accurate price prediction. However, the results in this study indicate 

that the accuracy in the prediction is not significantly improved by introducing exogenous 

variables. Moreover, the price spike characterization is not improved despite the 

increased complexity of the model due to exogenous variables. Therefore, the univariate 

models may sometimes be selected due to their simplicity as compared to the complex 

multivariate models.  

It is shown in the modeling result that the appropriate number of the lags for the 

model is 9, particularly in the autoregression models. Due to the seasonality nature of the 

natural gas price, which is a function of consumption, the cycle is expected to match the 

calendar cycles, namely, seasonal (3 months) or annual (12 months) periods.  

The results indicate that, the NAR neural network provides a better fit to the given 

data as compared to the other proposed models. The three-layer NAR model with 6 

hidden neurons was found to have the best performance in terms of one step ahead price 

prediction.  

The accuracy of the NARX model with 6 neurons is found to be higher than that 

of the other models. Although, this model provides a reasonable fit to the given data, it 

fails to capture the price spikes effectively.  

The sensitivity analysis shows that CDD/HDD temperatures, extreme minimum 

temperature, and WTI oil prices have an insignificant effect on the results. On the other 
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hand, total consumption, total production, and mean weather temperature impact the 

results significantly.  

In summary, three different price modeling classes are examined and compared 

with each other from the accuracy point of view. Moreover, an accurate yet simple model 

is proposed in this work that is capable of gas price forecasting in the volatile oil/gas 

market. Here are some of the model features: 

• The same data set is used in all of the simulations which makes the results 

comparable. 

• This work is the first attempt to model natural gas price by multivariable 

neural autocorrelation technique. 

• The sensitivity analysis shows the importance of the exogenous variables in 

natural gas price simulation. 

• It was found that total natural gas consumption and production as well as the 

temperature changes are the most controlling exogenous variables. 

• A user-friendly and easy-to-use software package is developed to simulate 

gas price behavior using various models with different parameters.   

 

Recommendation for future work in this field should encompass: 

• Examine other exogenous variables like weather shock, disaster’s effect, and 

political incidents.  

• Using the lags of exogenous variables in the simulation. 
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Appendix A: Nomenclature 

ANN : Artificial Neural Network 

ARCH : Autoregressive Conditional Heteroscedasticity 

ARIMA : Autoregressive Integrated Moving Average 

𝑎𝑎𝑡𝑡 : White noise at time t 

𝐵𝐵𝑟𝑟 : Backward operator at lag r 

CCD : Cooling degree days 

CEV : Constant Elasticity of Variance 

d : Integrating parameter in ARIMA model 

𝑑𝑑𝑘𝑘(𝑛𝑛) : Desired value of neuron k at iteration n 

E : Boltzmann energy function 

𝐸𝐸(𝑋𝑋) : Expected value of 𝑋𝑋 

𝑒𝑒𝑘𝑘(𝑛𝑛) : Calculated error of neuron k at iteration n 

GARCH : General Autoregressive Conditional Heteroscedasticity 

GBM : Geometric Brownian motion 

HDD : Heating degree days 

LDR : Linear Draft-Rate  

𝑀𝑀𝑆𝑆𝐸𝐸 : Mean Squared Error 

m : Moving average parameter in ARIMA model 

ℕ : Set of natural numbers 

NAR : Nonlinear Autoregressive 

NARX : Nonlinear Autoregressive with exogenous variables 
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p : GARCH model parameter 

q : ARCH model parameter 

ℝ : Set of real numbers (state space) 

r : Autoregression parameter in ARIMA model 

𝑆𝑆𝑡𝑡 : Stochastic process 

𝑆𝑆𝐴𝐴𝐸𝐸𝑐𝑐 : Calculated mean error for model in case c 

SDE : Stochastic Differential Equation 

𝕋𝕋 : Set of numbers demonstrate time  

𝑡𝑡 : Time index 

WTI : West Texas Instrument 

𝑊𝑊𝑡𝑡 : Wiener process at time t  

𝑤𝑤𝑘𝑘𝑖𝑖 : Synaptic weight for signal input i in neuron k 

∆𝑤𝑤𝑘𝑘𝑖𝑖(𝑛𝑛) : Adjusted to synaptic weight at iteration n 

𝑋𝑋 : Random variable 

𝑋𝑋𝑡𝑡 : Discrete stochastic process (random) variable 

𝑋𝑋(𝑡𝑡) : Continuous stochastic process (random) variable 

𝑥𝑥 : Real number 

𝑥𝑥𝑖𝑖 : Input signal to neuron  

𝑦𝑦𝑘𝑘 : Response of neuron k 

𝑦𝑦𝑘𝑘(𝑛𝑛) : Calculated value of neuron k at iteration n 

𝑦𝑦�𝑏𝑏 : Calculated response for model in base case 

𝑦𝑦�𝑐𝑐 : Calculated response for model in case c 
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𝛼𝛼 : Leverage parameter of price level and price volatility 

𝛼𝛼𝑞𝑞 : Regression coefficient of ARCH at lag q 

𝛽𝛽𝑝𝑝 : Regression coefficient of GARCH at lag p 

𝛾𝛾(𝑡𝑡1, 𝑡𝑡2) : Auto-covariance of time series variable at time 𝑡𝑡1 and 𝑡𝑡2 

𝜀𝜀𝑡𝑡 : Random error at time t 

η : Learning rate 

𝜎𝜎 : Standard deviation / Volatility 

𝜃𝜃𝑚𝑚 : Moving Average (MA) coefficient at lag m 

𝜇𝜇 : Mean value 

𝜎𝜎2 : Variance 

𝜎𝜎𝑡𝑡|𝑡𝑡−1
2  : Conditional variance at time t 

𝜐𝜐𝑘𝑘 : Induced local field of neuron k 

𝜙𝜙𝑟𝑟 : Auto-Regression (AR) coefficient at lag r 

𝜑𝜑(. ) : Activation function of a neuron 

Ω : Probability space 

𝜔𝜔 : Probability number 
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Appendix B: Software Package 

A software package including MATLAB® m files, Microsoft Excel® files, and 

related files and codes are associated with this research. The files are compressed in rar 

format and are available online . The author’s email saied@ou.edu  is also available to 

respond to the questions and requests. 
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