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Abstract

The Woodford Shale is probably the most prolific source rock in the Anadarko
Basin and Cherokee Platform. During the last decade, it became more important due to
its high unconventional hydrocarbon potential. Recent studies have emphasized the
facies heterogeneity from lithology, sequence stratigraphy, and geochemistry analyses.
Therefore, this project focuses on the organic geochemistry description of the
Woodford Shale and oils, and their genetic relationship. The primary objective is to
describe the depositional environment during sedimentation and its further association
with the oils in place in the surrounding area of the Cherokee Platform. The first set of
samples corresponds to the Woodford Shale obtained from a vertical core from a
vertical well in the southeastern Pottawatomie County.

The rock samples were characterized through screening techniques, total
organic carbon (TOC) and Rock-Eval (RE), and suggested organic-rich black and grey
highly oil/gas prone shale. The oxygen and hydrogen index from RE suggest a high-
quality kerogen, between Type I and II. The vitrinite reflectance measurement VR (%)
indicates early maturity stage of 0.59%. The TOC values range from 4 to 13%, with an
average of 9 to 10%. The HI was also high, from 470 to 560 mg HC/g TOC, and the
OI low, not higher than 10 mg HC/g TOC.

The Woodford Shale is subdivided into three members (Upper, Middle, and
Lower), but in this study, only the Upper and the top part of the Middle Woodford
were analyzed. Both intervals have shown alternation between suboxic and anoxic
depositional conditions, along with water column stratification and episodic euxinia or

anoxia photic zones (PZA). As a novelty, a new persistent PZA episode has been

X1V



described for Upper Woodford, where Ci carotenoids and aryl isoprenoids have
shown maximum abundance.

The second part of the investigation involved oils collected from different
wells in the area and a detailed correlation with the Woodford Shale to determine if
this was the source of the oils. The Ray 1-13 oil showed close correlation with the
Woodford itself where it is being produced as a tight oil, but maturity based on
biomarkers may suggest a deeper source rock with equivalent organofacies. In
addition, the Ray 1-13 oil has shown biodegradation signals and possibly a condensate
mixture.

Additionally, the Pottawatomie oils were compared with each other in order to
find possible groups and to assess the petroleum system on the southwestern Cherokee
Platform. In general, the oils show very similar fingerprinting and correlate within
each other and with the Woodford Shale and based on biodegradation two groups are
proposed. Lastly, most of the oils also show traces of being commingled by a

condensate oil type, due to light hydrocarbons enrichment.
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Chapter 1: Introduction

1.1. Geological Background

1.1.1. Regional Geology

The Cherokee Platform belongs to one of the major geologic provinces of
Oklahoma. It extends from southern Kansas and southwestern Missouri into central
Oklahoma. It is demarcated by the Ozark Uplift on the east, the Arkoma Basin on the
southeast, the Arbuckle Uplift on the south and by the Anadarko Basin and Anadarko
Shelf on the west. The Nemaha Ridge or Nemaha Trend separates both the Anadarko
Basin and the Cherokee Platform, and it is also a structural high for the surrounding
basins; namely the Anadarko, Marietta, Ardmore and Arkoma basins (Charpentier,
1990; Northcutt and Campbell, 1995; Fig. 1). The geologic history of the Oklahoma
Geological Provinces is intricate since it has suffered multiple deformation episodes
throughout the time. However, for convenience it can be summarized by two major
tectonic main events; an extensional one in the early Paleozoic and a compressive one
through the late Paleozoic.

From late Precambrian (~550 Ma) to late Ordovician (~440 Ma), a persistent
and extensive tectonic event took place at different stages. By the end of Precambrian
age the actual Oklahoma Province was a stable shelf landmass (Laurentia), but from
~550 to Early Cambrian (~525 Ma) there was a major extensive stage. The resultant
tectonic deformation is registered in a large northwest-striking fault zone through the
present day (Cardott and Chaplin, 1993) together with high intrusive igneous activity,
the current basin basement. This early extrusive extension was related to a major triple

junction rift system, where the Oklahoma side arm was aborted and became an



epicontinental sea known as South Oklahoma Aulacogen (SOA)- the deepest and best
known in USA (Johnson, 1989). Johnson (1989) described this aulacogen as the proto-

Anadarko Basin (Fig. 2).
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Figure 1. Major geologic provinces of Oklahoma, Cherokee Platform delimited in black
(modified from Northcutt and Campbell, 1995; Johnson, 2008).

Throughout Cambrian to Ordovician the SOA continued under normal
subsidence, except during the mid-Cambrian (~525 Ma) and during Cincinnatian time
(Late Ordovician), with the last one due to cooling of the lithosphere and an increase
in sedimentary loading (Cardott and Chaplin, 1993). As a consequence, from
Cambrian through Early Mississippian the Arkoma basin and Ouchita fold belt region
formed part of a vast stable shelf (predecessor of the Anadarko and Cherokee
Platform) on the southern passive continental margin of North America. The
sedimentation began with shallow-water marine transgressive sandstones of the
Reagan Group, or the equivalent Timebered Hills Group (Upper Cambrian), that was

followed by the Arbuckle Group- a shallow marine limestones and dolomites until



early Ordovician (Fig. 3; Johnson, 1989). From mid-Ordovician to early Mississippian
the basin received influx from northeastern and eastern sources, of fossiliferous
shallow-water marine carbonates interbedded with fine-grained to moderate coarse
grained clastic sediments, integrated by the following formations: Simpson Gr., mid-
Ordovician sandstones and limestones; Viola Gr., early Upper Ordovician limestones;
Sylvan Shale, late Upper Ordovician gray and green-gray shales; Hunton Gr., early
Silurian to Devonian carbonates; and the Woodford Shale, Upper Devonian organic
rich black shale from euxinic sea (Fig. 3). There were only two major interruptions,
one in pre-middle Devonian (pre-Frisco) and the other in pre-late Devonian (pre-

Woodford; Johnson and Cardott, 1992).
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Figure 2. Map of southwestern United States, showing estimated boundary of the Oklahoma
basin and the Southern Oklahoma Aulacogen-SOA (Johnson, 1989).



The major regional compressive episode was caused by the continent-continent
collision of Euramerica with Gondwana, and initiated the orogenies of the Ouchita,
Arbuckle, and Wichita Mountains. It extended from the Early Mississippian
(Chesterian) to the Early Permian. Folding and thrusting occurred in what constitutes
the present-day southern Oklahoma (Fig. 1). At the beginning during the Chesterian
the SOA started to be compressed and deformed. Next during the Marrowan and
Atokan, the Crimer Uplift divided the south of SOA into the Marietta and Ardmore
basins. From the early Atokan the Wichita Uplift was active until the Permian. By
middle Atokan time, down to the south syndepositional growth faults transformed the
southern Arkoma shelf into a foreland basin, which was subsequently filed with
deltaic and fluvial deposits (Sutherland, 1989).

The third epirogenic episode is the Arbuckle Uplift, which started in the early
Desmonian and extended to the late Virgilian and it is responsible for the Arbuckle
Mountains elevated by regional folds. Nonetheless, erosion from the early Mesozoic to
present has removed a significant part of the stratigraphic section from both the
Arkoma basin and the Ouachita fold belt. However, northwest of the Arbuckle
orogeny, the Cherokee Platform remained relatively unaltered, where the stratigraphic
record resulting from this entire sequence of events includes only a thin, early
Paleozoic section of carbonates and organic-rich shale overlain by a thick section
interbedded sandstones and shale, all of which have subsequently been extensively
faulted (Byrnes and Lawyer, 1999).

By the middle Virgilian, the Arbuckle deformation concluded and continued

only as a fragile faulting system (Johnson, 1989). Except for a late Wichita Uplift



event, the Permian represented a relative tectonic calm period. The Arbuckle
Mountains area was buried under their own clastic detritus. Since then, the whole
province remained considerably stable mainly controlled by slow subsidence and

faulting throughout the Holocene.
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Figure 3. Generalized stratigraphic column for Central Oklahoma (Modified after Charpentier,
1990).



1.1.2. Woodford Shale

The Woodford Shale (late Devonian-early Mississippian) is an important
hydrocarbon source in Oklahoma. It has been a prolific hydrocarbon-source for a
century and more recently has become important as an unconventional resource for the
southern Mid-continent of the United States. The major characteristic of the Woodford
lithology is black shale, but chert, siltstone, sandstone, dolostone, and light-colored
shales are common locally (Comer, 2005). It is typically late Devonian (Frasnian-
Famennian) in age but ranges from middle Devonian (Givetian) to early Mississippian
(Kinderhookian; Hass and Huddle, 1965). The age is primarily based on conodont
fauna from the southern Oklahoma, where the oldest in the formation indicates early-
late Devonian and the youngest conodonts are earliest Mississippian (Kinderhookian).
Conodonts in Misner sandstone are diachronous to the Woodford Shale (Amsden and
Klapper, 1972 in Kirkland, 1992). The overlying Sycamore Limestone contains a bare
fauna of conodonts of the middle to late Kinderhookian (Spesshardt, 1985 in Kirkland,
1992).

The Woodford Shale thickness in the shelf, particularly in platform areas, is
only 0 to 125ft. thick for both the Delaware and Anadarko-Arkoma Basins.
Alternatively, in deep basin zones such as the Aulacogen, it is from 200 to >900ft.
thick (Fig. 4; Hester et al., 1990). Thickness also depends locally on the
paleotopography as a result of the Hunton Unconformity erosion surface-karstic
environment (Fig. 5; Johnson and Cardott, 1992; Kirkland et al., 1992). Moreover, the

geologic provinces of Oklahoma show variable continental shelf distributions for the



Woodford Shale, from shallow water in carbonate platforms to deep water associated

to clastic abyssal plains, with relatively slow sedimentation rate (Comer, 2008b).
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Figure 4. Thickness map of the Woodford Shale in Oklahoma and Arkansas (modified from
Comer, 2005 in Comer, 2008b).

The Woodford Shale deposition occurred over the pre-Woodford
Unconformity which presented an irregular paleogeography in the southern North
American Craton by the late Devonian (Fig. 5; Comer, 2005). At the beginning of the
late Devonian (Frasnian), Laurentia was across the equator, placing the southern Mid-
Continent margin towards west or south-west near to 15 to 20° south latitude (Fig. 6,
385 Ma “A”). The pre-Woodford erosion is mostly recorded in the carbonatic Hunton
Group, but it had a vast effect and extension exposing rocks in northern Oklahoma as
old as Arbuckle (late Cambrian-early Ordovician) and as old as latest Ordovician in
southern Oklahoma (Kirkland et al., 1992). The rising sea level during late Devonian
(Fig. 6, 385 ”B”-360 Ma) invaded the majority of the southern proto-North American

Continent, flooding major marine inlets which ultimately became the deepest zones of



the Val Verde, Delaware, Anadarko and Arkoma basins. It also covered most of the
shelf areas, isolating reduced high land-masses with abridged vegetation and river
systems (Comer, 2005). Deposition of thick biogenic silica (Novaculite) layers along
the late Devonian continental margin shows evidence of upwelling; sand from the
Ozark Uplift was deposited on the subsiding Anadarko Basin, while silt from the
Transcontinental Arch was deposited into the Delaware and Midland Basins (Fig. 6,

360 Ma; Comer, 2008b).
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Figure 5. Schematic block diagram of paleotopography with platform areas and deep
depocenters of West Texas and southern New Mexico during late Devonian (modified from
Comer, 2008a).
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Figure 6. 385 Ma “A”: Paleo-reconstruction for southern North American Craton (Laurentia).
385 Ma “B”: southern Mid-Continent shelf subaerially exposed, regional unconformity in
progress. 360 Ma: extensive eipiric sea covering most of the landmass (eustatic highstand;
modified from Blakey, 2008 in Comer, 2008b)



Despite the magnitude of the pre-Woodford erosional unconformity it rarely
shows physical time disparity, with only a few basal thin conglomerates (as much as 4
in. thick) and minor distinct discordance in dip (Amsdem, 1960 in Kirkland et al.,
1992). But the unconformity can certainly be appreciated by the pre-Woodford rocks
abrupt truncation. The lack of basal conglomerates and the absence of dip discordance
suggest regional tectonic stress rather than severe local deformation (Kirkland et al.,
1992). In Figure 7 the pre-Woodford Unconformity can be appreciated in a schematic
stratigraphic incision for northern and southern Oklahoma and the magnitude of
erosion on previous formations; the middle Ordovician hiatus is the longest during the

Paleozoic.
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Figure 7. Generalized stratigraphic column for the pre-Pennsylvanian of southern Oklahoma,
showing schematic Pre-Woodford unconformity incision extent for southern and northern
Oklahoma. Black intervals= hiatus (Modified after Amsden, 1973 in Kirkland et al., 1992).
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Since the Woodford Shale is part of the major worldwide late Devonian
transgression it can be correlated to other prolific shales of the same sea level rise
event. Important stratigraphic equivalents in North America include the Antrim Shale
(Michigan Basin), Ohio Shale (Appalachian Basin), New Albany Shale (Illinois
Basin), Bakken Shale (Williston Basin), and Exshaw Formation (Western Canada
Basin; Comer 2008a).

The Total Organic Carbon content (TOC wt.%) of the Woodford Shale ranges
from 4 to 18% in fresh outcrop samples (Kirkland et al., 1992). A relationship has
been described between lithology and TOC content where: green shales are the leanest
(0.3%) associated to an oxic and ephemeral bottom water environment, cherty-shales
can average 3.2%, dolomitic- shales 4.3%, and the black-shale with phosphatic
nodules present as much as 13.7% TOC, a result of the anoxic environment with high
production and preservation (Kirkland et al., 1992). The TOC variation within the
Woodford Shale has also been related to the radioactivity signal since concentrated
organic matter under anoxic conditions can also concentrate uranium as a trace
element (Kirkland et al., 1992).

The Woodford Shale organic matter is classified as a Type I/Il kerogen,
resulting in an excellent quality hydrocarbon prone source rock. In unweathered
outcrop Woodford Shale samples (McAlester Cemetery Quarry), Kirkland et al.,
(1992) measured Hydrogen Index (HI) values from 500 to >800 mgHC/gTOC, and
determined that 57-63% of the extractable organic matter corresponds to aliphatic
compounds. Furthermore, sulfur content is generally high (~5% in black massive

layers) reducing significantly the thermal maturity-expulsion timing, favoring an early
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bitumen production for a Type II kerogen (Kirkland et al., 1992). The thermal
maturity is controlled by the local structural geology where higher maturities are
found in deep basins such as the South Oklahoman Aulacogen. Intermediate maturities
are generally spread throughout the platforms provinces, and low maturities are
associated to tectonically uplifted areas (Fig. 8; Comer, 2005). More recently Cardott
(2012) has updated the Woodford Shale thermal maturity of the Oklahoma Geologic
Provinces based on Vitrinite Reflectance measurements (VR0%). Figure 9 shows the

southern Cherokee Platform in the study area, where is less than 0.6 VR0%.

lﬂ{. no data
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absent

Figure 8. Thermal maturity map showing distributions along provinces. Red rhombus
represents Ray 1-13 location (modified from Comer, 2005 in Comer 2008).

12



Cherokee |
Pla

.
p.57 u‘z’

“B{]%? ) os7

o N

Explanation
N ® Sample Location

A /\/ 1% Vitrinite Reflectance
/\/ Vitrinite Isoreflectance

1] 40 Kilometers

I ————

o 25 Mites
.|
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The Woodford Shale has been widely and informally subdivided into the
Upper, Middle, and Lower-members, based on well-log characteristics, lithology, and
relative kerogen concentrations (Hester et al., 1990). Despite the entire Woodford
Shale interval presenting high radioactivity, low densities and high resistivities, the
middle member is the least dense, and the most resistive and radioactive of the three
members. Consequently the three members were interpreted as having different

organic matter content and different depositional conditions (Fig. 10; Hester et al.,

1990).
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Figure 10. Generalized well-log showing the informal subdivision of the Woodford Shale
based primarily on Gamma Ray response; (modified after Hester et al., 1990).
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In the same area as being discussed in the current thesis, Althoff (2012)
defined five megacycles for the Woodford Shale based on gamma-ray and bulk-
density logging patterns. The cycles are defined by an unconformity or transgressive
surface of erosion (TSE) at the base and a general increase in bulk-density
accompanied by an upward reduction in Gamma-Ray values, therefore coarsening to
the top of each cycle. Each cycle integrates several higher-order and smaller cycles,
labeled as A, B, C, D, and K (Fig. 11). Cycles K, D, C, and top of B, are in
correspondence with the Ray #1-13 core analyzed for organic geochemistry in the
current thesis.

T7N-R2E-S17 Southwestern Exploration Farley Fee No. 1

GR Bulk Density
7
B = Pennsylvanian Shale
B E3EEE =
o - T T L T P T P T L L L
g = == Woodford Cycle K
] L R R B R B B B B B B |
= e e s Woodford Cycle D
-: : 3 5 L _ R _ R R R B B B B B B |
Ee= St = . Upper Woodford
== ' Woodford Cycle C
é — 1
: . | B R R B B R B |
Eoizs Woodford Cycle B Middle Woodford
=== = Woodford Cycle A Lower Woodford
Hunton Limestone
o ‘_ R L R _ R _ B B B B B B B B |
S e e SSll===5F=S=======:=== Sylvan Shale

Figure 11. Fairly Fee #1 well-log showing the five new proposed cycles and their
correspondence with the classic informal denomination of the Woodford Shale members.
Red arrows indicate the decreasing tendency of the gamma-ray log and blue arrows show
the increasing tendency of the bulk-density log for each cycle (modified after Althoff, 2012).
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Miceli Romero (2010) described the Woodford Shale in Lincoln,
Pottawatomie, and Hughes Counties for the southern Cherokee Platform Province, and
Pontotoc County for the Arbuckle Uplift Province. Based on C;y/Cpo-steranes,
hopanes/steranes, and C,3-trycyclic/Csp-hopane ratios, and the presence of eudesmane,
it was proposed that terrigenous input increased towards the north of the platform. The
informal subdivision members were correlated with pristane/phytane and relative
hydrocarbon potential (RHP) ratios. These ratios together with the arylisprenoids were
used to determine oxicity, chemocline, and photic zone of anoxia (PZA) vertical
variation. It was concluded that the middle Woodford was deposited under anoxic
conditions with persistent PZA during a major transgression (sea level rise). The upper
and lower Woodford were deposited under dysoxic/suboxic conditions and episodic
PZA periods, the upper during a general regression (HST with high sedimentation
rate) and the lower during major transgressive-regressive-transgressive cycle (Fig. 12;
Miceli Romero, 2010).

In the Pauls Valley area, in the Anadarko Basin, Jones and Philp (1990)
described biomarkers in oil and rock samples, and determined that the dominating
petroleum system was composed by 85% of oils related to the Woodford Shale as the
source rock, and the minor petroleum systems were related to deeper sources such as

the Viola Group.
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Chapter 2: Methodology

2.1. Study Area and Sample Locations

The study area is located in southeastern Oklahoma in the geological province
of Cherokee Platform (Fig. 13). A total of 27 rock extracts and oil samples were
analyzed. Twelve well-core samples correspond to the Upper and Middle Woodford in
the Ray 1-13 vertical well. The other fifteen samples correspond to oils produced from
the same area (Fig. 14) and the location details are cited in Table 1. The oil samples
were provided by West Star Operating Company to ConocoPhillips School of
Geology and Geophysics, University of Oklahoma.

Ray 1-13 is located in Wanette Northwest field, Latitude: +34.9947099,
Longitude: -97.0514484; Section, Twp., Range: 13 6N 2E. This particular well was
vertically drilled and the Upper and Middle Woodford were recovered by core
sampling. The oil production has been treated with hydraulic fracturing along the
Woodford Shale interval. The Woodford core of Ray 1-13 sampling was provided by
the Oklahoma Geological Survey in Norman, Oklahoma and 12 samples were selected

for extraction and further biomarkers analyses:

- 4585.9 ft. -4669.1 ft.
-4592.5 ft. -4679.3 ft.
- 4596.6 ft. -4702.3 ft.
- 4608.0 ft. -4717.0 ft.
-4626.5 ft. -4723.4 ft.
- 4648.5 ft. -4729.0 ft.
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Figure 13. Oklahoma State map, with Counties divisions and Ray 1-13 location.

WaBNET | Chiproker:

Aerlaiv

Well Name

Matthews #1-6
Matthews #2-6
Hog Creek #1-11
Schoemann #1-12
Ray #1-13

Hog Creek #1-14
Bodine #1-9

Edith #3-9

West Star #1-18H
Andrew #1-6
Youngblood #1-31
Camp Agnes M-1A
Teel #1A

Salt Creek #1-33H
Fundis #1-7

Formation
Reservoir

Red Fork
Viola
Woodford
Woodford
Woodford
Woodford
Woodford
Viola
Woodford
Woodford
Hunton
Hunton
Hunton
Woodford
Woodford

Sample
Source

Production
Production
Production
Production
Production
Production
Production
Production
Production
Production
Production
Production
Production
Production
Production

Top depth Base depth

(ft)

5268
5708
4821
4423
4578
4809
4010
4290
4931
5568
4307
4408
4426
5150
4385

(ft)

5952
6962
4884
4662
4789
4848
4251
4356
9869
5757
4496
4428
4446
9840
4644

UWI

351252365500 6 6N  2E
351252370900 6 6N  2E
351252372600 11 6N 2E
351252370100 12 6N 2E
351252363800 13 6N 2E
351252376900 14 6N 2E
351252364000 9 6N  3E
351252376600 9 6N  3E
351252373600 18 6N  3E
351252364500 6 7N 2E
351250223700 7 7N 3E
351252292900 31 7N 3E
351252293100 31 7N 3E
351252373900 33 7N 3E
351252363600 7 6N  3E

SECT TWP RNG TVTD

6415
7050
5269
4959
5600
5147
4832
4750
4209
7012
4555
5300
5131
4431
5869

Table 1. Well locations of the oils involved in the present research.
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Figure 14. Detailed geographical location of the oils in southwestern Pottawatomie County,
Oklahoma. The data of the wells is listed in Table 1. Red circle: Ray 1-13 well.

2.2. Experimental

All of the samples (15 oils and 12 extracts) were specially prepared for organic
geochemistry research. The rock extract samples were selected from the Ray 1-13
core, archived in the Oklahoma Geological Survey Facilities, based on previous
screening data provided by West Star Operating Company and lithology analysis.
Then, the core slabs were split for further screening and biomarkers techniques. The
15 oil samples were also provided by West Star Operating Company to the University

of Oklahoma, and prepared for organic analytical chemistry.
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2.2.1. Preliminary Treatment

All the samples were washed and brushed with hot water and rinsed with a
mixture (1:1) of methanol (MeOH; CH3OH) and dichloromethane (DCM; CH,Cl,) in
order to remove possible organic contaminant from the drilling fluids. After
completely drying under atmospheric conditions, they were crushed with a porcelain

mortar and pestle until fine powder.

2.2.2. Rock Screening Techniques

Total organic carbon (TOC) and rock-eval pyrolysis (RE) were conducted by
Geolab Sur S.A. For TOC measurements, approximately 0.15 grams of sample were
treated with concentrated HCI to remove carbonates, and vacuum filtered on glass
fiber paper. The residue and paper were placed in a ceramic crucible, dried, and
combusted with pure oxygen in a LECO C230 CHC carbon analyzer at about 1500°C.

Rock-Eval II pyrolysis is used to determine kerogen type, kerogen maturity
and the amount of free hydrocarbons. About 0.1 grams of sample were carefully
weighed in a pyrolysis crucible and then heated to 300°C to determine the amount of
free hydrocarbons, S1, that is thermally distilled. Next, the amount of pyrolyzable
hydrocarbons, S2, was measured when the sample was heated in an inert environment
which rises from 300° to 550°C at a heating rate of 25°C/minute. S1 and S2 are
reported in mg HC/g sample. Tmax, a maturity indicator, is the temperature of
maximum S2 generation. When S2 values are less than 0.2 mg HC/g sample, the S2
maximum typically has poor definition and thus, Tmax cannot be reliably determined

(Peters, 1986). Carbon dioxide generated during the S2 pyrolysis, an indicator of
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kerogen oxidation, was collected up to a temperature of 390°C and reported as S3 in
units of mg CO,/g sample. Hydrogen Index (HI = S2 *100/TOC) and Oxygen Index
(OI = S3*100/TOC) are used as kerogen type indicators when plotted on a van

Krevelen type diagram.

2.2.3. Vitrinite Reflectance

Vitrinite reflectance was measured at the Oklahoma Geological Survey
Organic Petrography Laboratories in Norman, Oklahoma by Brian Cardott (personal
communication, 2014). Rock chips from the core at 4701.0ft. were collected and

polished in a pellet and used to measure vitrinite reflectance values.

2.2.4. Extraction

Fifty grams of crushed rock were introduced in inert glass-fiber thimbles and
installed in a soxhlet extractor with a solvent composed of DCM:MeOH (1:1). Fresh
solvent cycled through the sample for 24 hours and collected in a 500mL round
bottom flask with activated cupper to remove elemental sulfur. The extract and solvent

were reduced in a rotoevap under vacuum and transferred into a 4 mL vial.

2.2.5. Fractionation

Fractionation of the rock extracts and the oils followed the same methods. The
extracts and the whole oils were treated with an excess of n-pentane in centrifuge
tubes and strongly agitated. Once the bitumen and oil are homogeneous with the »n-
pentane, they were left in the refrigerator overnight and subsequently centrifuged and
the pentane removed.

The pentane is recovered with a Pasteur pipette together with the maltenes

fraction, leaving the high molecular and highly polar (asphaltenes) behind. The
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pentane is evaporated in order to get the solvent-free maltenes and transferred into
2mL vials. This fraction was diluted with hexane, to fractionate into NSO compounds
(resins), aromatic and saturate fractions. This fractionation was conducted in a Hewlett
Packard 1050 serie, high performance liquid chromatography (HPLC), equipped with
packed alumina (A540-3; 8-200 Mesh) guard column and a PartiSep Pac
chromatographic column (5u 85 A; 25¢m x 9.6 mm, Amino Cyano functional group).
The saturate fraction elutes first with a 5 minutes 4mL/min flow of hexane, followed
by the aromatics fraction with a 5 minutes SmL/min flow of dichloromethane (DCM).
Lastly the NSO fraction (nitrogen, sulfur, oxygen) elutes with 12 minutes SmL/min
flow of ethyl acetate.

After the evaporation of the solvents from the fractions, they were diluted
using ImL of hexane per 3mg of sample for injection into a conventional gas
chromatograph (GC).The saturate fraction was molecular-sieved to remove the n-
alkanes. A Pasteur pipette was packed with approximately 2g of HI-SIV 3000 and
three bed volumes of Cs were added to remove impurities. The sample was added to
the column and it was allowed to stand for two minutes. Then three additional bed
volumes of C¢ were used to elute the sample. The n-alkanes were retained