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Abstract 

    The dual-porosity and dual-permeability theory of poroelasticity is used to analyze 

the wellbore dual-pressure responses of dual-porosity or naturally fractured formations. 

The pressure decline is analyzed by modeling the dual-pressure regimes of the dual-

porosity and dual-permeability medium during the after-closure phase of hydraulic 

fracturing. The analysis shows that both the matrix and natural fractures permeability, as 

well as the developed fracture length, can be estimated based on the obtained pseudo-

linear and pseudo-radial dual-pressure and dual-flow regimes.  

     The estimations are made by use of the corresponding 1/2 and -1 slopes in the time-

history plots of the wellbore pressure derivative. The transition period between pseudo-

linear and pseudo-radial regimes is also analyzed. The solution involves three time 

scales related to the rate of fluid flow through and in between the matrix and fractures 

network. Findings indicate the possible emergence of an additional -1/2 slope in the log-

log pressure-derivative plot of low-permeability shale formations. It is further shown 

that the transient pressure-response of the formation could be calibrated by 

incorporating an appropriate inter-porosity coefficient, as a measure of the linear fluid 

exchange capacity between the matrix and fracture porosities. The analytical 

expressions for the time markers of the upper limit for the pseudo-linear regime, lower 

limit for the pseudo-radial regime and the time at which the dip bases occur in pressure-

derivative curves are given to estimate this parameter.  

The solution is successfully applied to and matched with a published set of field data 

to provide estimations for the associated reservoir properties. The field data analysis is 

elaborated upon by a corresponding sensitivity analysis, through which the prominent 
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poroelastic parameters of the solution are determined. Lastly, the definition of 

conventional key parameters attributed to solutions of this type, such as formation total 

compressibility, storage coefficients and hydraulic diffusivity, are reformulated using 

the presented dual-porosity poroelastic approach to the problem. 



1 

Chapter 1 : Introduction 

1.1 Introduction to Pressure Decline Analysis  

Formation permeability determination is crucial in optimization of hydraulic 

fracturing design, oil and gas production. Formation permeability has traditionally 

been determined through well tests. Conventional pressure transient tests are powerful 

in formations with high permeability, but in tight formations with low permeability 

they can be time-consuming and provide only local estimates of formation properties 

if short-time tests are performed. Furthermore, the information might be affected by 

the near-wellbore damage and skin effects, where the formation permeability is 

decreased because of the accumulation of solid particles from the mud filtrate (Nunes 

et al. 2010). Conventional pressure buildup and drawdown transient pressure tests 

might even be impossible to determine the ultra-low permeability of unconventional 

formations, since the flow in such formations is ultra-slow without stimulation. Such 

disadvantages of conventional well testing could be avoided by using the “impulse 

fracture test” (Nolte 1979; Abousleiman 1991; Gu et al. 1993; Abousleiman et al. 

1994; Nolte et al. 1997). In this test, a small volume of fluid is injected into the 

formation under pressure high enough to create a short fracture, and then the well is 

shut down, either locally close to the target depth or at the wellhead. The test is 

illustrated by Figure 1.1.  
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Figure 1.1—Illustration of the impulse fracture test. 2L is the created hydraulic 

fracture length, H is the fracture height. 

The recorded pressure response is then used to estimate formation properties and 

fracture geometry. Figure 1.2 illustrates the typical wellbore pressure response during 

such test. A fluid is pumped into the wellbore at a constant rate. Wellbore pressure is 

increasing with pumping time and reaches the fracture initial pressure as time 

proceeds. During this time period, little of the injected fluid flows into the formation if 

the formation has low permeability. As surface pumping continues, formation 

breakdown pressure (the maximum wellbore pressure) is reached. Then wellbore 

pressure drops significantly due to hydraulic fracture propagation into the formation. 

When the pressure stabilizes, the injection is stopped. Then another significant 

pressure drop occurs because the friction in the wellbore decreases rapidly, based on 

which the instantaneous shut-in pressure can be determined. Without proppants, the 

hydraulic fracture closes as time proceeds and eventually fracture closure pressure is 

reached when the hydraulic fracture is closed. Details of such pressure definitions can 

be found in the literature (Nolte 1988; Cramer and Nguyen 2013). A clean fluid is 
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usually used in the impulse fracture test. The difference between the fracture initiation 

and breakdown pressures is small.  

 

Figure 1.2—Schematic of wellbore pressure response during the impulse fracture 

test. 

The impulse fracture test was originally used to determine the fluid leakoff 

coefficients, fracture closure time, fracture length and width (Nolte 1979; Kuhlman 

1990; Economides and Nolte 2000). The reservoir properties determined by this test 

should be more representative of the reservoir and avoid the near-wellbore effects 

because the created fracture can pass through the damage zone and provide a larger 

area for true formation properties. Formation permeability is usually estimated through 

simulation of the fluid exchange between the hydraulic fracture and the formation rock 
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by a distribution of the fluid point sources (Gu et al. 1993; Abousleiman et al. 1994). 

The fluid point source distribution is defined along the trajectory of the fracture, with 

its intensity determined by the leakoff rate.  

The pressure decline analysis consists mainly of two categories: pre-closure analysis 

and after-closure analysis. The pre-closure analysis focuses on the period after shut-in 

and before fracture closure while the after-closure pressure decline corresponds to the 

fracture after-closure regime, as shown in Figure 1.2. This dissertation focuses on the 

after-closure analysis. 

1.1.1 Pre-Closure Analysis 

    Nolte (1979) first introduced the pre-closure analysis to estimate fracture closure 

pressure, leak-off coefficient, fluid efficiency, fracture length and width. A PKN model 

is selected to simulate the hydraulic fracture geometry, as illustrated in Figure 1.3. In 

the PKN model, a hydraulic fracture is simulated as a bi-wing fracture with constant 

height. Both horizontal and vertical cross sections of the fracture are ellipitical. The 

fracturing fluid pressure is constant in the vertical direction. 
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Figure 1.3—PKN model for the hydraulic fracture geometry. H is fracture height, 

W is fracture width, and 2L is fracture length. 

The continuity equation for flow of an incompressible fluid in the fracture was 

presented by Nordgren (1972) as follows: 

0









t

A
q

x

q
l  ....................................................................................................... (1.1) 

where q(x,t) is the volume rate of flow through a cross section (x = x0) of the fracture, 

ql(x,t) is the volume rate of fluid loss to the formation per unit length of fracture, A(x,t) 

is the cross-sectional area of the fracture.  

Solving equation 1.1, Nolte (1979) derived the following pressure variation during 

hydraulic fracture closure: 

)(
)1(
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 ....................................................................... (1.2) 
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where pe is the pressure at the end of pumping, ∆tp = (t-tp)/tp, tp is the pumping time, 

Hp is the fluid loss height, CL is the leakoff coefficient, E is the Young’s modulus, v is 

the Poisson’s ratio, and βs is the ratio of average and wellbore pressure while shut-in, 

and  

 0)(
4

)( gtgtG pp 


 .......................................................................................... (1.3) 

  pppp ttArcSinttg  11)1()(   for low fluid efficiency ................... (1.4a) 

 2323 )()1(
3

4
)( ppp tttg                     for high fluid efficiency ................. (1.4b) 

    Equation 1.2 indicates that the pressure drop after shut-in and before fracture 

closure is proportional to G time. The linear proportional limit point allows estimation 

of the fracture closure pressure and closure time (Nolte 1979).  

Barree (1998) introduced the curves of dp/dG and Gdp/dG vs. G time to assist with 

the identification of fracture closure pressure. The linear proportional limit of the 

curve Gdp/dG vs. G time also indicates the fracture closure, as illustrated by Figure 

1.4. 
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Figure 1.4—A set of field data digitized from Barree (1998).  

 

The pre-closure analysis presented by Nolte (1979) is based on some ideal 

assumptions, including constant fracture height, Carter’s leak-off model, constant 

fracture area during closure, and fracturing fluid is incompressible. Such assumptions 

might not be satisfied in field cases, which results in non-linear behaviors in the curves 

of p and Gdp/dG vs. G time. Some of the factors that contribute to such non-linear 

behaviors have been investigated, including wellbore storage, tip extension, pressure 

dependent leak-off, and fracture height recession (Warpinski 1985; Economides and 

Nolte 2000; McClure et al. 2016). 

1.1.2 After-Closure Analysis 

    Gu et al. (1993) estimated the formation permeability based on the pseudo-radial 

flow regime, in which the asymptotic behavior of pressure is inversely proportional to 

the permeability of the formation. Using line source simulation, Abousleiman et al. 
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(1994) presented the theory to analyze the after-closure pressure decline both in the 

pseudo-radial flow regime and the pseudo-linear flow regime, in which the linear flow 

from the hydraulic fracture to the formation still dominates. The method as described 

estimates both the hydraulic fracture length and permeability. Figure 1.5 illustrates the 

1/2 slope in the pseudo-linear flow regime and -1 slope in the pseudo-radial flow 

regime, based on which the formation permeability and hydraulic fracture length were 

estimated (Abousleiman et al. 1994). Analysis of the pseudo-linear flow region was 

later extended to investigate spurt loss and closure time (Nolte et al. 1997). Soliman et 

al. (2005) present a technique to determine the after-closure flow regimes, including 

pseudo-radial flow regime, bilinear flow regime (accounting for residual conductivity 

of the hydraulic fracture), and pseudo-linear flow regime, which allows estimating the 

formation permeability, reservoir pressure, and fracture properties. The after-closure 

analysis technique was also shown to be an economical alternative for reservoir 

characterization involving formations with both relatively high permeability (Talley et 

al. 1999; Chipperfield and Britt 2000) and low permeability (Britt et al. 2004). 
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Figure 1.5—A set of field data digitized from Abousleiman et al. (1994). A single 

porosity rock formation.  

The after-closure pressure decline analyses mentioned previously apply to single-

porosity formations. However, extension of their application from single-porosity 

formations to dual-porosity or naturally fractured formations is necessary. The fluid 

leakoff rate, for instance, could be much larger compared to non-fractured formations, 

and dominated by natural fractures. This is contrary to cases of non-fractured 

formations, where the leakoff is controlled by the permeability of rock matrix, injected 

fluid rheology, and fracture geometry (Penny et al. 1985). To date, only a few methods 

are available to assess the after-closure analysis of naturally fractured formations. 

Nolte and Smith (1981) presented a method to identify natural fractures by a log-log 

plot of net pressure versus treating time. It is shown that the excessive leakoff to the 

natural fractures will be reflected on the net pressure response curves, where they tend 

to flatten. Houze et al. (1988) presented the pressure transient response when a well is 
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producing through a vertical fracture with infinite conductivity in a naturally fractured 

reservoir. Ozkan and Raghavan (1991) provided an extensive library of point source 

and line source solutions in a naturally fractured reservoir, accounting for various 

reservoir geometry and boundary conditions. Chipperfield (2006) presented an 

analytical instantaneous line source solution for a dual-porosity reservoir, using the 

analytical continuous line source solution given by Aguilera (1987). The after-closure 

pressure versus the inverse squared Nolte time was plotted in a log-log scale [Nolte 

Diagnostic Plot (NDP)] to identify natural fractures and estimate reservoir 

permeability, storativity ratio, and inter-porosity flow coefficient. The after-closure 

pressure analysis was also presented in a step-by-step procedure by Uribe et al. (2007; 

2008). More recently, Soliman et al. (2010) applied the analysis to naturally fractured 

formations, coalbed methane, and fractured horizontal wells. Two situations are 

examined—when the hydraulic fracture closes and when it stays open during the shut-

in period. Case studies of the after-closure analysis for naturally fractured reservoirs 

can be also found in Chipperfield (2005; 2006), Uribe et al. (2007), and Soliman et al. 

(2010). 

Figure 1.6 illustrates the shapes of pressure and pressure derivative curves for a 

dual-porosity dual-permeability formation. The hump in the pressure curve and the 

trough in the pressure derivative curve clearly indicate that the formation has dual-

porosity dual-permeability properties. So far, the after-closure analysis of dual-

porosity dual-permeability formations is highly dependent on the Warren and Root 

model. It is an idealized dual-porosity model, assuming that the secondary porosity 

consists of an orthogonal system of uniform fractures and that fluid can communicate 
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between primary and secondary porosities but cannot permeate through the primary 

porosity elements. It also assumes that there is only pure fracture fluid flow to the 

wellbore without matrix fluid flow to the wellbore.  

 

Figure 1.6—A set of field data digitized from Chipperfield (2006). A dual-porosity 

dual-permeability rock formation. 

 

1.2 Introduction to Poroelasticity 

1.2.1 Poroelasticity 

    Biot (1941) first presented the isotropic poroelastic theory describing the coupled 

processes of fluid flow, stress variation and rock matrix deformation in a porous 

medium which is fully saturated with an incompressible fluid. Later on, the theory was 

generalized to account for a compressible fluid and matrial anisotropy (Biot 1955; 

Biot and Willis 1957; Rice and Cleary 1976). The isotropic and anisotropic 

poroelasticity has been widely used in many areas of the oil and gas industry. To name 



12 

a few, such areas include wellbore stability analysis (Detournay and Cheng 1988; Cui 

et al. 1997; Abousleiman and Cui 1998; Abousleiman et al. 2000; Ekbote and 

Abousleiman 2005; Ekbote and Abousleiman 2006; Nguyen and Abousleiman 2010a; 

Tran et al. 2011), Mandel’s problem (Mandel 1953; Abousleiman et al. 1996), rock 

failure around a hydraulic fracture (Warpinski et al. 2004; Ge and Ghassemi 2008; 

Ghassemi et al. 2010), wellbore strengthening (Alberty and McLean 2004; Mehrabian 

et al. 2015; Mehrabian and Abousleiman 2016; Mehrabian 2016), surface deformation 

and reservoir compaction (Geertsma 1973; Mehrabian and Abousleiman 2015b), solid 

cylinder, hollow cylinder and wellbore (Rice and Cleary 1976; Abousleiman and Cui 

1998).  

The governing equations for isotropic poroelasticity can be found in a variety of 

publications (Biot 1941, Biot 1955, Coussy 2004). They are revisited here and 

expressed explicitly in the following paragraphs.  

For a homogenous and isotropic fully saturated porous medium, the constitutive 

equations can be expressed as follows: 

p
v

v

v

E
ijkkijij  














211
 .......................................................................... (1.5) 

M

p
kk    ......................................................................................................... (1.6) 

where 
ij  and 

ij  are the stress and strain tensors, respectively, E and v   are the 

Young’s modulus and Poisson’s ratio,   is the effective pore pressure, 
ij  is the 

Kronecker delta function,  is the fluid content variation, M  is the effective coupled 

Biot’s moduli.  
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Disregarding the body forces, the quasi-static equilibrium equation can be written 

as: 

0




j

ij

x
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The fluid continuity equation is expressed as: 

0
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where q is the total volumetric fluid flux. 

The fluid flux due to the pore pressure gradient obeys Darcy’s law: 

i

i
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q
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where k is the permeability, and  μ is the fluid viscosity. 

Under the condition of small deformations, the strain-displacement relations can be 

expressed as follows: 
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where ui is the ith component of the displacement vector. 

1.2.2 Dual-Poroelasticity 

    Some rocks might contain natural fractures (Slatt and Abousleiman 2011; Slatt and 

O'Brien 2011). Such natural fractures usually have higher permeability than the rock 

matrix. Moreover, open natural fractures should be softer than the matrix. Such 

differences between the matrix and fracture system result in the dual-porosity dual-

permeability nature of rock formations. The previously discussed single poroelasticity 

theory might fail to explain the behaviors of such dual-porosity dual-permeability rock 
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formations during field operations and laboratory testing. It should be noted that 

organic-rich shale also has dual-porosity dual-permeability properties since the 

poromechnical and physical properties of the organic matter are usually significantly 

different from the ones of non-organic matrix (Eliyahu et al. 2015). 

The original dual-porosity dual-permeability concept for fractured/fissured rocks 

was proposed by Barenblatt et al. (1960). The two overlapping continua, primary 

porosity and secondary porosity, possess their own fluid pressure fields. Warren and 

Root (1963) proposed an idealized dual-porosity model, assuming that the secondary 

porosity consists of an orthogonal system of uniform fractures and that fluid can 

communicate between primary and secondary porosities, but not among the primary 

porosity elements. Their models are based on pure flow without coupling among pore 

pressure, stresses and rock deformation. Later on, the coupled dual-porosity dual-

permeability poroelastic model was presented, where the matrix and fracture systems 

are treated as two overlapping porous media that have their individual physical and 

poromechanical properties (Wilson and Aifantis 1982; Berryman and Wang 1995). 

Berryman and Pride (2002) investigated the isotropic dual-poroelastic coefficients 

which can be determined from the constituents’ properties and make the dual-

poroelastic formulation more applicable. Nguyen (2010) presented the formulations to 

determine the transversely isotropic dual-poroelastic coefficients. Some rocks, like 

naturally fractured and/or organic-rich shale (Slatt and Abousleiman 2011; Slatt and 

O'Brien 2011), might even have N-porosity and N-permeability properties. Recently, 

Mehrabian and Abousleiman (2014) derived the fully coupled N-poroelasticity 
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formulations and applied them to the Mandel’s problem and laboratory quasi-2D 

compression test on shale samples (Mehrabian and Abousleiman 2015a). 

Many numerical simulations have been conducted for flow analysis of fractured 

reservoir (Kazemi et al. (1976) for two-phase flow; Sonier et al. (1988) for three-phase 

flow; Zimmerman et al. (1993) for non-linear inter-porosity flow; to name a few). A 

numerical simulation has also been carried out by Gelet et al. (2012) for a vertical 

wellbore under non-isothermal conditions. Regarding analytical solutions, existing 

solutions include axisymmetric wellbore (Wilson and Aifantis 1982), one-dimensional 

consolidation (Lewallen and Wang 1998), plane-strain vertical wellbore (Li 2003), 

inclined wellbore (Abousleiman and Nguyen 2005; Nguyen and Abousleiman 2009; 

Nguyen et al. 2009), and Mandel’s problem and cylindrical geometry (Nguyen and 

Abousleiman 2009; Nguyen and Abousleiman 2010b). 

The governing equations for the dual-poroelasticity can be found in many 

publications (Wilson and Aifantis 1982; Berryman and Wang 1995; Berryman and 

Pride 2002; Abousleiman and Nguyen 2005) and are described in the following 

paragraphs. 

    The constitutive equations for a homogeneous and isotropic dual-poroelastic porous 

medium or naturally fractured rock formation can be written as follows: 
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where the superscripts I and II refer to the porous rock matrix and the porous fractures 

medium, respectively,  K and G are the overall bulk modulus and shear modulus, 

respectively, 
I and 

II are the effective pore pressure coefficients, pI and pII are the 

matrix and fracture pore pressure, respectively,  I and II are the variation of total 

fluid contents, and III MM , , and IIIM , are the effective coupled Biot’s moduli. 

The effective pore pressure coefficients and effective coupled Biot’s moduli can be 

identified in terms of the individual constituent’s properties and are shown explicitly 

in Berryman (2002), Nguyen and Abousleiman (2010), and Mehrabian and 

Abousleiman (2014). 

    Disregarding the body forces, the quasi-static equilibrium equation can be written 

as: 

0
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    The mass conservation of each porous medium, accounting for the inter-porosity 

fluid pressure diffusivity term, can be expressed separately as follows: 
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where Iv and II v  are the bulk volume fractions and Γ is the inter-porosity fluid flux 

transfer. 

    The dual-permeability nature of fractured formations requires dual Darcy’s law for 

the fluid flow, both in the matrix medium and fracture medium. Assuming that the 
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flow in each porous medium obeys Darcy’s law, the separate Darcy’s flow equations 

are expressed as follows (Barenblatt et al. 1960; Abousleiman and Nguyen 2005): 
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where kI and kII are the matrix and fracture permeability, respectively, and μ is the fluid 

viscosity. 

The inter-porosity fluid flow is modeled as a pseudo-steady state flow which 

assumes the fluid exchange between the two overlapping porous media is directly 

proportional to the pressure differences. The inter-porosity fluid flux transfer is 

defined by Warren and Root (1963) as follows: 

 III pp    ....................................................................................................... (1.17) 

where λ is the interflow coefficient (Pa-1·s-1) characterizing the fractured formation, 

such as matrix permeability and fracture geometry, distribution, and size.  

    Under the condition of small deformations, the strain-displacement relations can be 

expressed as follows: 
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1.3 Objectives and Outline 

This dissertation aims to apply the theory of poroelasticity to the after-closure 

analysis of naturally fractured formations. For this purpose, the line source theory 

(Carslaw and Jaeger 1959; Abousleiman et al. 1994) is first extended from the case of 
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single-porosity to the case of dual-porosity dual-permeability, accounting for both 

fracture and matrix fluid flow to the wellbore. In the dual-porosity dual-permeability 

model (Wilson and Aifantis 1982; Beskos and Aifantis 1986; Berryman 2002; Coussy 

2004; Abousleiman and Nguyen 2005), the matrix and fracture systems are treated as 

two overlapping porous media that have different physical and poromechanical 

properties. Furthermore, an inter-porosity flow is considered between the two porous 

networks, the strength of which is assumed to be proportional to the pressure gradient 

between them. The newly-derived analytical solutions provide effective methods to 

determine both matrix and fracture permeability, hydraulic fracture length and inter-

porosity flow coefficients based on the log-log plot of pressure derivative curve. Such 

parameters are crucial for hydraulic fracturing design. The analytical solutions are also 

applied to match field recorded wellbore pressure data to determine formation double 

poromechanical parameters such as Biot’s coefficient, Skempton’s coefficient and bulk 

modulus.  

In Chapter 2, the line source theory will be used to simulate the wellbore pressure 

response after hydraulic fracture closure in a dual-porosity porous medium. Instead of 

using the conventional Warren and Root model, the dual-poroelastic model will be 

used, accounting for both flow in matrix and fractures. First, the instantaneouse point 

source solution for a single porosity formation will be extended to account for a dual-

porosity dual-permeability formation. Second, the instantaneous line source solution 

will be derived based on the instantaneous point source solution. And consequently, 

continuous line source and finite interval line source solutions for a dual-porosity 

dual-permeability formation are derived to simulate wellbore pressure response after a 
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finite time of injection. The solutions are analyzed mathematically and the slopes of 

1/2 and -1, which indicate pseudo-linear flow and pseudo-radial flow, respectively, in 

the log-log plots of both matrix and fracture pressure derivative curves are discussed. 

A slope of -1/2 is discovered during the transient period from pseudo-linear flow to 

pseudo-radial flow. It is proved mathematically that this transient period is significant 

in formations with low permeability. The plot of pressure vs. square root time is also 

investigated to identify the straight-line behavior during the pseudo-linear flow 

regime. 

In Chapter 3, a numerical example for a dual-porosity dual-permeability porous 

medium is presented to illustrate wellbore pressure decline after hydraulic fracture 

closure. Both matrix and fracture pressure decline curves are illustrated. The pseudo-

linear flow regime, transient period and pseudo-radial flow regime are clearly 

identified in the log-log plots of the dual-pressure derivative curves. Moreover, matrix 

and fracture permeabilities are estimated based on the combination of 1/2 slope and -1 

slope or the combination of -1/2 slope and -1 slope. Besides the matrix and fracture 

permeabilities, the hydraulic fracture length can be also estimated based on the -1 

slope and the straight-line behavior in the plot of pressure vs. square root time. Three 

time markers are defined, including the upper time limit of pseudo-linear flow, lower 

time limit of pseudo-radial flow and the time when the dip base of pressure derivative 

curves occurs. Such time markers are found to be sensitive to the inter-porosity flow 

coefficient and can be used to estimate the inter-porosity flow coefficient. A time scale 

is also defined to investigate the time when the two porous media reach a state of 

equilibrium. This time scale is inversely proportional to the inter-porosity flow 
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coefficient, which quantitatively shows that larger inter-porosity flow coefficient 

results in shorter time for the two systems to reach a sate of equilibrium.  

In Chapter 4, three case studies are presented. In Case Study 1, recorded wellbore 

pressure response from an Australian gas field (Chipperfield 2006) during the after-

closure period is studied. The hump in the pressure curve and the dip in the pressure 

derivative curve are clearly identified, which indicate that the studied formation is a 

dual-porosity dual-permeability formation. The average permeability of the formation 

is estimated based on the -1 slope, i.e., the pseudo-radial flow regime. The -1/2 slope 

on the log-log pressure derivative curve is not clearly observed, which indicates that 

the formation permeability is not very low. The curve of pressure vs. square root time 

is also plotted to identify the straight-line behavior during the pseudo-linear flow. The 

newly-derived analytical solution is then used to match the field data. A good match 

between the two can be found. Consequently, the dual-porosity poroelastic parameters 

of the formation are estimated. Sensitive analysis is applied and shows that the match 

is sensitive to both matrix and fracture permeability, matrix bulk modulus, Skempton’s 

coefficient and Biot’s coefficient, but not sensitive to fracture bulk modulus, 

Skempton’s coefficient or Biot’s coefficient. Such sensitive analysis clearly indicates 

that the flow in matrix should be taken into account during the after-closure analysis, 

since the match is sensitive to matrix permeability and matrix poromechanical 

parameters. In Case Studies 2 and 3, the hump in the pressure curves is not clear. But 

the dip behavior in the pressure derivative curves can be clearly observed, which 

identify the dual-porosity dual-permeability nature of the formations. The analytical 

solution of the fracture pressure captures the field data to some extent, based on which 
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formation poromechanical parameters are estimated. Conventional well test 

parameters, including total compressibility, storage and hydraulic diffusivity, are 

revisited and the equivalent poroelastic parameters are defined. These conventional 

well test parameters have been defined by reservoir engineers since the 1950s, and 

corresponding correlations for their estimates have to date been used in the industry 

practice of type curve and well testing analyses. However, they have never been 

revisited from a poromechanical standpoint. Chapter 4 offers an in-depth review of 

these same parameters and characterizes them by the well-known poroelastic constants 

which can be measured through standard and established laboratory methods (Hart and 

Wang 1995; Berryman and Wang 1995) or well logging data (Abousleiman et al. 

2007). 

Finally, Chapter 5 provides a summary of this dissertation’s findings and 

conclusions. 
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Chapter 2 : Analytical Solutions for Line Source Simulation 

2.1 Line Source Simulation 

In the case of a single porosity formation, Gu et al. (1993) applied the instantaneous 

line source simulation and studied the -1 slope in the log-log pressure derivative plot 

for estimation of permeability. Abousleiman et al. (1994) presented both instantaneous 

line source and finite line source solutions and investigated the slopes of 1/2 and -1 for 

estimation of permeability and hydraulic fracture length. In the case of a dual-porosity 

formation, line source solutions were also derived to estimate fracture permeability 

and inter-porosity flow coefficient, using the Warren and Root model (Houze et al. 

1988; Ozkan and Raghavan 1991; Chipperfield 2006). This section will apply the line 

source theory to simulate wellbore pressure response after hydraulic fracture closure in 

a dual-porosity dual-permeability formation, using the dual-poroelastic model.  

Suppose the impulse fracture test is applied to a naturally fractured formation that is 

bounded by two impermeable ones, as illustrated in Figure 1.1. The fracturing fluid is 

pumped at a rate of Q0 for a time of tp, and the created hydraulic fracture closes at time 

tc. Assume that both the wellbore section and the created hydraulic fracture extend to 

the full height of the formation and the hydraulic fracture is symmetric with respect to 

the wellbore. Ignoring the pressure difference along the vertical direction in the 

created fracture and approximating the problem by a plane strain problem, this allows 

for 2D analysis.  

Considering a horizontal plane in the formation, the wellbore is simulated as one 

point denoted by the origin. The after-closure wellbore pressure can be simulated by 

the finite interval line source solution (i.e., the pressure influence at the middle point 
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of a finite line source with an injection of a volume of Q0tp for a finite duration tc, as 

shown in Figure 2.1). The length of the line source, 2Le, is expected to be longer than 

the maximum length of the hydraulic fracture, 2L, because the injection is more 

concentrated near the well region, which creates an illusion of a longer line source 

(Abousleiman et al. 1994).  At the origin, both a matrix and fracture after-closure 

pressure decline will be investigated. 

 

Figure 2.1—Line source simulation in a naturally fractured rock formation. 

 

2.2 Analytical Solutions 

    The homogeneity and infinite extents of solution domain in this problem and fluid 

source-type boundary conditions caused the coupled governing equations of 

poroelasticity (Eqs. 1.11-1.18) to recover the pressure equations in the uncoupled form 

as follows (i.e., Eq. B-1 in Appendix B): 
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Where the coefficients matrixes A, D and Γ are expressed in Eq. A-8, A-12 and A-13, 

respectively. 
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Note that the above governing equations of the dual pressure fields have the same 

form as the ones given by Barenblatt et al. (1960) who presented the original dual-

continuum theory and provided the dual pressure governing equations as follows: 
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Comparisons between Eqs. A-8, A-12 and A-13 and 2.3 show that the primary 

significance of poroelasticity in this specific application and solution is identified by 

calibrating parameters in the coefficient matrices Aʹ, Dʹ and Гʹ with poroelastic 

parameters in the coefficient matrices A, D and Г, respectively. Results are shown in 

Table 4.4.   

    To obtain the solutions of a finite interval line source with an injection of a volume 

of Q0tp for a duration tc, it is necessary to derive the solutions of instantaneous point 

source, instantaneous line source, and continuous line source. The steps to derive the 

solutions are illustrated in Figure 2.2 and are also explicitly presented as follows: (1) 

the pressure influence solution resulting from an instantaneous point source with a unit 

fluid volume injection in a plane with single porosity and single permeability (Carslaw 

and Jaeger 1959; Abousleiman et al. 1994) is extended to the dual-porosity dual-

permeability case (matrix: Ip pointinst,
; fracture: IIp pointinst,

); (2) the solutions (matrix:

Ip lineinst, ; fracture: 
IIp lineinst, ) resulting from an instantaneous line source with a uniform 

intensity along a length of 2Le are obtained by integrating the former solutions along 
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the length; (3) the solutions (matrix: 
Ip linecont, ; fracture: 

IIp linecont, ) resulting from a 

continuous line source with a uniform intensity along a length of 2Le and of time t are 

obtained by integrating the former instantaneous line source solutions with respect to 

time; and (4) the solutions (matrix: 
Ip wline, ; fracture: 

IIp wline, ) at the wellbore resulting 

from a finite interval line source with an injection of a volume of Q0tp for a duration tc 

can be obtained as follows: 
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where ∆t is the after-fracture-closure time, H is the fracture height, and 2Le is the 

equivalent fracture length, which is expected to be longer than the actual maximum 

fracture length. The details for deriving the various source solutions are presented in 

Appendix A. 
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Figure 2.2—Illustration of the steps to derive the finite line source solutions, N= I, 

II. 

Note that the dependency of the rock matrix and fracture pressures pI and pII on the 

rock strain is implicit in the constitutive equations of poroelasticity (See Eqs. 1.11-

1.13). However, solving for these pressures via Eq. 2.1 does not directly involve the 

rock strain or stress. For this reason, the well-known poroelastic coupling effects such 

as Mandel-Cryer effect (Abousleiman et al. 1996) or Noordbergum effect (Verruijt 

1969, Gambolati 1974) are not tractable with the presented solution. Conversely, this 

dissertation considers an infinite domain for the analysis. Together with domain 

homogeneity, this assumption results in the seemingly uncoupled form of the 

governing equations of the matrix and fracture pressures (Eq. 2.1).  
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Alternatively, Mehrabian and Abousleiman (2009) identified a variation of 

Noordbergum effect, known as dilative intake effect, as a result of the possible 

inhomogeneity in the poroelastic solution domain. The pore pressure buildup in the 

pore fluid due to an embedded point fluid sink (or conversely pressure decline in the 

pore space near a point fluid source) is related to contraction/dilation of the relatively 

compliant rock matrix surrounding a stiffer reservoir. However, again, the domain 

homogeneity assumption of present study does not allow for capturing such 

poroelastic coupling effects. 

2.3 Flow Regimes Identification 

The following three flow regimes will be discussed in this section: pseudo-linear 

flow regime, pseudo-radial flow regime, and some transient period between these two 

regimes. Furthermore, it will be demonstrated that the transient period is significant 

for low permeability rock formations. 

2.3.1 Pseudo-Linear Flow Regime 

    In the pseudo-linear flow regime, when ∆t→0+, six quantities at the wellbore will be 

investigated. They are listed as follows: Ip , IIp , tddp I  , tddp II  , 

tdtdp I  , and tdtdp II  . Appendix B shows that, when ∆t→0+, the last four 

of these six quantities can be approximated by the following four quantities: 

tdpd I  , tdpd II  , tdptd I  , and tdptd II   , where overbar stands for 

the pressure solutions without considering inter-porosity flow between the matrix and 

fractures. When ∆t→0+, the pressures Ip and IIp  are different from Ip and IIp for 

relatively large inter-porosity flow coefficients, but the difference might not be 

significant for relatively small inter-porosity flow coefficients, as shown in Figure 2.3. 
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Pressures Ip and IIp during the pseudo-linear flow regime are analyzed by 

approximating them by Ip and IIp , neglecting the inter-porosity flow. 

Furthermore, it is shown in Appendix B that, when ∆t→0+, the slope of -1/2 is 

expected in the log-log plots of tdpd I   and tdpd II   vs. Δt; the slope of 1/2 is 

expected in the log-log plots of tdptd I   and tdptd II   vs. Δt; and a straight-

line asymptotic behavior is expected in the plots of Ip  and IIp  vs. Δt1/2.  

Previous work, including Fig. 4.3 in Abousleiman (1991) and Fig. 9-37 in 

Economides and Nolte (2000), has tried to illustrate the pseudo-linear flow from a 

hydraulic fracture to a single-porosity rock formation. For dual-porosity dual-

permeability rock formations, Figure 2.3 illustrates the pseudo-linear flow. Because of 

the higher permeability of fractures, the hydraulic diffusion rate into natural fractures 

is greater than that into the matrix. The flow into both the matrix and natural fractures 

is perpendicular to the hydraulic fracture surface. Hydraulic fracture length contributes 

to the pressure response at the wellbore and can be estimated based on this flow 

period.  

During the test, the injection is more concentrated near the well region 

(Abousleiman et al. 1994). Considering the conductivity of the created hydraulic 

fracture, Cinco-Ley et al. (1989) showed the non-uniform distribution of the fluid flux 

into the formation along the hydraulic fracture during the pseudo-linear flow. Because 

of the non-uniform flux distribution which is different from the linear flow, (Cinco-

Ley et al. 1989) proposed the name of pseudo-linear flow. 
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Figure 2.3—Illustration of pseudo-linear flow in a naturally fractured formation. 

 

2.3.2 Pseudo-Radial Flow Regime 

    In the numerical example section, it will be shown that, when ∆t→∞, both the 

matrix and fracture pore pressures at the wellbore have the following asymptotic 

behavior:  
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Eq. 2.6 indicates that, when ∆t→∞, a slope of -1 is expected in the log-log plots of 

Ip , IIp , tdtdp I  , and tdtdp II   vs. Δt, and a slope of -2 is expected in the 

log-log plots of tddp I   and tddp II   vs. Δt. 

Comparing Eq. 2.6 with Eq. 15 in Abousleiman et al. (1994) for a single-porosity 

case 
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the average permeability for a dual-porosity dual-permeability system can be defined 

by 

IIIIII

avg kkk vv   .................................................................................................. (2.8) 
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     In the case of single porosity, Fig. 4.2 in Abousleiman (1991) and Fig. 9-37 in 

Economides and Nolte (2000) illustrate the pseudo-radial flow, which is not affected 

by the hydraulic fracture geometry but instead is governed by reservoir mobility and 

can be used to estimate reservoir permeability. Based on the previous analysis, when a 

pseudo-radial flow period occurs in a dual-porosity dual-permeability formation, the 

latter behaves as an overall system with an average permeability defined by Eq. 2.8, as 

illustrated in Figure 2.4. Analysis of this period allows for estimating the reservoir 

average permeability. 

 

 

Figure 2.4—Illustration of pseudo-radial flow in a naturally fractured formation. 
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2.3.3 Transient Period between Pseudo-Linear and Pseudo-Radial Flow Regimes 

    Eqs. B-18 and B-20 indicate that, for some transient period between the pseudo-

linear and pseudo-radial flow regimes, a slope of -3/2 might be able to be observed in 

the log-log plots of  tdpd I  and  tdpd II  vs. Δt and a slope of -1/2 in the log-

log plots of tdptd I  and tdptd II   vs. Δt. Yet, to obtain Eqs. B-18 and B-20, 

the following equation (i.e., Eq. B-17) must be satisfied: 
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To satisfy the conditions (Eq. 2.9), the two quantities (  e

I L and 
e

II L ) are 

required to be relatively large. Yet, a short fracture is usually created in an impulse 

fracture test (i.e., Le is usually relatively small). If the test is implemented in shale 

formations with relatively low permeability, conditions (Eq. 2.9) might be satisfied 

and slopes of -3/2 and -1/2 might be able to be observed. This can be supported by the 

following numerical example in which a shale formation with low permeability (in the 

range of nd) is studied and the two slopes are observed and the field case study in 

which the rock formation has relatively high permeability (in the range of md) and the 

two slopes are not clearly observed. Therefore, the two slopes of -3/2 and -1/2 might 

exist in unconventional reservoirs with relatively low permeability and might not exist 

in conventional reservoirs with relatively high permeability. 

Note that the dual-poroelastic formulation reduces to two coupled diffusion 

equations as shown in the matrix form of Eq. 2.1.  Each is associated with an apparent 

diffusion coefficient of the corresponding porosity network. By assuming no inter-
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porosity flow, Eq. C-4 implies that 
I and 

II are the two eigenvalues of the matrix 

AD-1, which indicates that I1 and II1 are the two eigenvalues of the matrix DA-1. 

If degenerate the dual-poroelastic case to single poroelastic case, Eq. 2.1 would 

degenerate to the pressure diffusion equation, pctp p

2   , which is Eq. 5.26 in 

Coussy (2004).        

Furthermore, the matrix DA-1 would degenerate to the hydraulic diffusivity 

coefficient for the poroelastic case, 
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which is Eq. 5.22 in Coussy (2004). Thus, for the dual-poroelastic case, the two 

eigenvalues of the matrix DA-1, I1 and II1 , can be physically defined as the 

effective pressure diffusion coefficients in the porous rock matrix and the fracture 

network, respectively, while neglecting the inter-porosity flow.  

     Fig. 4.3 in Abousleiman (1991) illustrates the transient flow in a single-porosity 

formation. For a dual-porosity dual-permeability formation, Figure 2.5，Figure 2.6, 

and Figure 2.7 illustrate and compare the transient periods for the following three 

cases: λ = 0, 0 < λ < ∞, and λ = ∞, respectively. The curvatures of the arrows 

describing flow in natural fractures are designed to be larger (i.e., “bend worse”) than 

the corresponding curvatures of the arrows describing flow in the matrix. This is 

because the fracture permeability is higher, and fracture systems tend to achieve a 

pseudo-radial flow regime faster than a matrix when neglecting the inter-porosity flow 

(i.e., λ = 0), which is supported by Figure 3.2. Furthermore, in the extreme case of no 

inter-porosity flow (i.e., λ = 0), the flow in the matrix and the flow in fractures behave 
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separately, without hydraulic communication (Figure 2.5). In the case of finite nonzero 

inter-porosity flow (i.e., 0 < λ < ∞), the two flows have hydraulic communication and 

tend to behave as one overall flow in the rock formation as time progresses. The 

arrows representing flow in the matrix and flow in fractures tend to merge as time 

progresses (Figure 2.6). In the other extreme case of infinite inter-porosity flow (i.e., λ 

= ∞), any pressure difference between the matrix and fracture will be balanced 

instantaneously because of the infinite inter-porosity flow. As a result, the matrix and 

fractures pore pressure fields are identical. The dual-porosity dual-permeability 

formation behaves as one overall system during the entire after-closure period (Figure 

2.7). These analyses are also numerically supported by Figure 3.2. 

 

Figure 2.5—Illustration of transient period between pseudo-linear and pseudo-

radial flow regimes, λ = 0. The flow in matrix is separated from the flow in 

fracture.   

 



34 

 

Figure 2.6—Illustration of transient period between pseudo-linear and pseudo-

radial flow regimes, 0 < λ < ∞. Matrix and fracture tend to reach a state of 

equilibrium as time proceeds. 

 

Figure 2.7—Illustration of transient period between pseudo-linear and pseudo-

radial flow regimes, λ = ∞. Matrix and fracture behave as one average system. 

 

Based on the previous analysis, one can imagine the influence of the inter-porosity 

flow coefficient on the flow behavior of the transient period. When the inter-porosity 
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flow coefficient becomes larger, the matrix and fracture pore pressures should 

converge faster and the arrows representing the two flows should also merge faster, 

which can be numerically supported by Figure 3.3. Note that the hydraulic fracture 

length also contributes to the pressure response at the wellbore during the transient 

period. 

     In a single-porosity formation, a similar analysis can be easily derived and obtained 

following the same steps, part of which can be found in previous published work, e.g., 

the analysis of -1 slope in the pseudo-radial flow regime can be found in Gu et al. 

(1993) and Abousleiman et al. (1994), and the analysis of 1/2 slope in the pseudo-

linear flow regime can be found in Abousleiman et al. (1994). For comparison, the 

after-closure analysis for both a single-porosity formation and naturally fractured 

formation is summarized in Tables 2.1 through 2.3. The flow regimes and the 

corresponding slope behavior are summarized in    Table 2.4. 

        Table 2.1—Log(-Δtdp/dΔt) vs. Log(Δt). 

Flow 

Regime 

Single Porosity Dual Porosity 

Pseudo-

linear 

1/2 slope 
t

tkHL

ctQ

td

tdp
t

ce

pp











4
    

)(

0

 

 
t

tHL

CnCntQ

td

tpd
t

ce

IIIIIIIII

p

I















4
    

)(

12110

wline,

 

 
t

tHL

CnCntQ

td

tpd
t

ce

IIIIIIIII

p

II















4
    

)(

22210

wline,

 



36 

Transient 

period 

-1/2 

slope 
tkHL

ctQ

td

tdp
t

e

pp









1

8
    

)(

0




 

 
tHL

CnCntQ

td

tdp
t

e

IIIIIIIII

p

I











1

8
    

)(

12110

wline,





 

 
tHL

CnCntQ

td

tdp
t

e

IIIIIIIII

p

II











1

8
    

)(

22210

wline,





 

Pseudo-

radial 

-1 slope tkH

tQ

td

tdp
t

p









1

4
    

)(

0




 

tHkk

tQ

td

tdp
t

IIIIII

p









1

)vv(4
    

)(

0




 

Where 
))(1(3)1(

)1(3
22 BvvB

vBKk
c p

 


 is the hydraulic diffusivity for the 

poroelastic case, which is Eq. 5.22 in Coussy (2004). 

      Table 2.2—Log(-dp/dΔt) vs. Log(Δt) 
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Table 2.3—p(Δt) vs. (Δt)1/2 
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    Table 2.4—Flow regimes and the corresponding slopes. 

Plots 
Pseudo-

Linear 

Transient Period 

(Significant for low 

permeability 

formations) 

Pseudo-Radial 

  tttdp  log  .   vslog  1/2 -1/2 -1 

  ttdp  log  .   vslog  -1/2 -3/2 -2 

tp   .   vs  

Straight 

Line 
  

 

2.4 Summary 

    In this section, the line source theory is applied to simulate the wellbore pressure 

response after hydraulic fracture closure in a dual-porosity formation, using the dual-

poroelastic model. The instantaneous point source solution for a single porosity 

formation is extended to account for a dual-porosity dual-permeability formation. The 

instantaneous point source solution is then used to derive the instantaneous line source 

solution, and consequently, continuous line source and finite interval line source 



39 

solutions for a dual-porosity dual-permeability formation. The slopes of 1/2 and -1, 

which indicate pseudo-linear flow and pseudo-radial flow, respectively, in the log-log 

plots of both matrix and fracture pressure derivative curves are discussed. 

Furthermore, a slope of -1/2 is discovered during the transient period from pseudo-

linear flow to pseudo-radial flow. It is proved that this transient period is significant in 

formations with low permeability. The plot of pressure vs. square root time is also 

investigated to identify the straight-line behavior during the pseudo-linear flow 

regime. 
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Chapter 3 : Hydraulic Fracture After-Closure Analysis   

3.1 After-Closure Dual-Pressure Decline Curves 

In this section, a numerical example is studied to illustrate dual-pressure decline 

curves and the corresponding flow regimes during the after-closure phase of hydraulic 

fracturing in a dual-porosity dual-permeability porous medium. The rock parameters 

in    Table 3.1 are selected to mimic the Woodford shale in Abousleiman et al. (2013). 

For the natural fractures system, an amount of methods to estimate poroelastic 

parameters were proposed by Cook (1992), based on the individual fracture 

characteristics, orientation and spacing. In general, if natural fractures are open, their 

permeability is higher than the matrix. Moreover, open natural fractures should be 

softer than the matrix. The fracture bulk modulus is selected 50 times smaller than the 

matrix in this example. 

   Table 3.1—Selected rock parameters for simulation. 

Parameters K (GPa) v B α k (nd) µ (cp) v (%) λ (1/MPa/D) 

Matrix (I) 4.8 0.3 0.56 0.88 45 1 99 
1 × 10-5 

Fracture (II) 4.8/50 0.3 0.96 0.9 1 × 105 1 1 

 

The hydraulic treatment simulation data used are as follows: Q0 = 0.008 m3/s, tp = 6 

min, tc = 8 min, H = 10 m, Le = 25 m. 

Figure 3.1 illustrates the after-closure flow regimes, including the pseudo-linear 

flow regime, the pseudo-radial flow regime, and the transient period between these 

two regimes. Both matrix and fracture pressure responses together with the pressure 

derivatives at the wellbore are plotted. The slopes 1/2, -1/2, and -1 can be clearly 

identified in the pressure derivative curves. 
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Figure 3.1—Illustration of after-closure flow regimes. The three flow regimes and 

their corresponding slopes are clearly identified in the dual pressure derivative 

curves. 

Figure 3.2 shows the matrix and fracture after-closure pressure responses at the 

wellbore for three different inter-porosity flow coefficients—λ = 0, λ = 1 × 10-

5/MPa/D, and λ = ∞—together with a straight line, which is defined by  

cc

IIIIII

p

t

t

Htkk

tQ
p





 log

)vv(4
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 ............................................................ (3.1) 

It can be observed that, in the case of no inter-porosity flow (i.e., λ = 0), when 

∆t→∞, the matrix and fracture behave as two separate systems. Yet, in the case of 

finite nonzero inter-porosity flow (i.e., λ = 1 × 10-5/MPa/D), when ∆t→∞, the matrix 

and fracture pore pressure and pressure derivative curves converge to the straight line 

with a slope of -1. This means the naturally fractured formation behaves as an overall 
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system, with an average permeability of vIkI+vIIkII when it reaches the pseudo-radial 

flow regime. In the case of infinite inter-porosity flow (i.e., λ = ∞), matrix and fracture 

pore pressures are identical and the naturally fractured formation behaves as one 

overall averaged system during the entire after-closure period. 

 

Figure 3.2—Evolution of Δp and –Δtdp/dΔt at the wellbore, λ0 = 1 × 10-5/MPa/D. 

Matrix and fracture eventually reach a state of equilibrium for a finite inter-

porosity flow coefficient. 

To obtain a visualized comparison, Figure 3.3 illustrates the effects of finite inter-

porosity flow coefficient λ on the matrix and fracture pore pressure responses at the 

wellbore. In the case of a finite nonzero value of the inter-porosity flow coefficient 

(i.e., 0 < λ < ∞), when λ becomes larger, the matrix and fracture pore pressures 

converge faster. 
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Figure 3.3—Effects of inter-porosity flow coefficient λ on pI and pII at the 

wellbore. Matrix and fracture reach a state of equilibrium faster for larger inter-

porosity flow coefficient, which is quantitatively illustrated.  

 

3.2 Formation Properties Estimation 

The after-closure analysis will be applied on both matrix and fracture pressure 

decline curves to estimate formation properties. 

3.2.1 Matrix Pressure Curve Analysis 

The curve of matrix pore pressure derivative –ΔtdpI/dΔt in Figure 3.1 shows that the 

slopes of 1/2, -1/2, and -1 are clearly observed in the pseudo-linear regime, transient 

period, and pseudo-radial regime, respectively. A combination of the 1/2 slope and -1 

slope allows estimating the matrix and fracture permeability, as shown in Eq. 3.4. 
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Similarly, a combination of the -1/2 slope and -1 slope allows estimating the two 

permeabilities, as shown in Eq. 3.6. The details are presented below. 

In the pseudo-radial flow regime, by reading the pressure intercept pi (pi = 5.0×104 

MPa) between the Δt/tc = 1-axis with the straight line with slope of -1, the average 

permeability of the naturally fractured rock can be estimated as follows: 

2190
m105.9

4
vv 

ci

pIIIIII

avg
tHp

tQ
kkk




 ...................................................... (3.2) 

Compared with the “true” value 10.4 × 10-19 m2, the value provided by Eq. 3.2 

shows good agreement. 

In the pseudo-linear flow regime, by extending the Δt/tc = 1-axis to intersect the 

straight line with a slope of 1/2 and reading the pressure intercept pi (pi = 700 MPa), 

the following quantity can be estimated based on Eq. B-6: 

msPa 109.4
4

12

0

1211 
p

iceIIIIIIIII

tQ

ptHL
CnCn


  ............................ (3.3) 

A good agreement also can be obtained when comparing the value from Eq. 3.3 with 

the “true” value 1.1 × 1013 Pa·s1/2/m. Note that the left side of Eq. 3.3 depends on the 

poromechanical and physical properties of the rock formation, based on Eq. C-2. 

Treating the left side of Eq. 3.3 as a function of kI and kII, and assuming other 

parameters are known, the matrix and fracture permeability can be estimated by 

solving Eqs. 3.2 and 3.3 with Mathematica software as follows: 

kI = 3.2 × 10-20 m2 = 32 nd; kI I = 9.2 × 10-17 m2  = 0.92 × 105 nd ............................. (3.4) 
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Note that Eq. 3.3 is based on the without-inter-porosity-flow case. As previously 

analyzed, the quantity tdtdp I   at Δt→0+ can be approximated by tdptd I  , 

which is also shown in Figure 3.1. 

The slope of -1/2 is observed in some transient period between the pseudo-linear 

and pseudo-radial flow regimes, as shown in Figure 3.1. Note that Figure 3.2 shows 

that the slope of -1/2 might be different for the cases of with-inter-porosity flow and 

without-inter-porosity flow. However, it is still interesting to investigate the slope of -

1/2 for the case of with-inter-porosity flow approximated by the case of without-inter-

porosity flow. By extending the straight line with a slope of -1/2 to intersect the Δt/tc = 

1-axis, and reading the pressure intercept pi (pi = 400 MPa), the following quantity can 

be estimated based on Eq. B-10: 
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  .......................... (3.5) 

A combination of Eqs. 3.2 and 3.5 provides the estimation of matrix and fracture 

permeability as follows: 

kI  = 2.8 × 10-20 m2  =  28 nd; kII  =  9.3 × 10-17 m2  =  0.93 × 105 nd ........................ (3.6)  

The estimation presented in Eq. 3.6 also shows good agreement with the “true” 

values. 
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Figure 3.4—Evolution of –dpI/dΔt at the wellbore. -1/2, -3/2 and -2 slopes are 

clearly identified in the three flow regimes. 

Figure 3.4 illustrates the evolution of –dpI/dΔt at the wellbore. The slopes of -1/2, -

3/2, and -2 in Figure 3.4 correspond to the slopes of 1/2, -1/2, and -1 in Figure 3.1. 

Similar to the previous pressure analysis, the estimation of matrix and fracture 

permeability based on Figure 3.4 would have the same results as the one based on 

Figure 3.1, which will be omitted. 

To further apply the after-closure analysis, Figure 3.5, Figure 3.6 and Figure 3.7 are 

investigated to estimate matrix permeability, fracture permeability, and hydraulic 

fracture length. Figure 3.8 and Figure 3.9 show the time markers of the dip bases in 

the matrix and fracture derivative curves.  
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Figure 3.5—Evolution of pI at the wellbore. The straigt-line behavior is clearly 

identified in the pseudo-linear flow regime. 

Figure 3.5 shows a plot of pI vs. Δt1/2. The straight line asymptotic behavior can be 

observed at ∆t→0+. Approximating the straight line using Eq. B-8, the following two 

equations can be obtained: 
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Eqs. 3.2, 3.7, and 3.8 can be used to estimate kI, kII , and Le. Using Mathematica 

software to solve the three equations provides an estimation of matrix permeability, 

fracture permeability, and equivalent fracture length as follows: 

kI  = 1.0 × 10-19 m2 = 100 nd; kII = 8.6 × 10-17 m2  =  0.86 × 105 nd; Le = 20.0 m ..... (3.9) 

     It can be observed that combining the slope of -1 in the curve of -ΔtdpI/dΔt with the 

straight line asymptotic behavior in the curve of pI allows estimating the matrix 

permeability, fracture permeability, and equivalent fracture length. 

The above analysis is based on matrix pressure and pressure derivative curves. The 

following section will discuss fracture pressure and pressure derivative curves. 

3.2.2 Fracture Pressure Curve Analysis 

Analysis can also be applied to the curve of fracture pressure derivative –ΔtdpII/dΔt 

in Figure 3.1.  Eq. 3.2 can also be obtained based on the -1 slope in Figure 3.1. 

Similarly, by reading the pressure intersect pi (pi = 19 MPa) between the straight line 

of the 1/2 slope with the Δt/tc = 1-axis, according to Eq. B-7, the following equation 

can be obtained: 

msPa 102.6
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  ......................... (3.10) 

Solving Eqs. 3.2 and 3.10 using Mathematica software provides an estimation of the 

matrix and fracture permeability as follows: 

kI = 2.7 × 10-20 m2 = 27 nd; kII = 9.2 × 10-17 m2 = 0.92 × 105 nd ............................. (3.11) 
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     The estimated matrix and fracture permeabilities in Eq. 3.11 are based on the slopes 

of -1 and 1/2. As previously discussed, they can also be estimated based on the slopes 

of -1 and -1/2, which are presented below. 

The slope of -1/2 is also observed in Figure 3.1. Based on Eq. B-11, the pressure 

intersect pi (pi = 9 MPa) between the straight line of the -1/2 slope with the Δt/tc = 1-

axis can also be read to estimate the following equation: 

msPa 104.2
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  .......................... (3.12) 

Eqs. 3.2 and 3.12 allow estimating the matrix and fracture permeability as follows: 

kI = 50.9 × 10-20 m2 = 509 nd; kII = 4.5 × 10-17 m2 = 0.45 × 105 nd ........................ (3.13) 

By comparing the estimations from Eqs. 3.11 and 3.13 with the “true” values of kI 

and kII, it is observed that, to estimate kI and kII based on the -1/2 slope and -1 slope, 

the estimation from the matrix pressure derivative curve provides more accurate 

results than that from the fracture pressure derivative curve, in this case. This is 

because the analysis of the -1/2 slope ignores the effects of inter-porosity flow. In this 

data set, considering the matrix pressure derivative curve, the -1/2 slope is the same 

for the with-inter-porosity-flow case and without-inter-porosity-flow case; however, 

considering the fracture pressure derivative curve, the -1/2 slope is different for the 

two cases, as shown in Figure 3.2. 
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Figure 3.6—Evolution of –dpII/dΔt at the wellbore. -1/2, -3/2 and -2 slopes are 

clearly identified in the three flow regimes. 

Figure 3.6 shows the evolution of –dpII/dΔt at the wellbore. The slopes of -1/2, -3/2, 

and -2 in Figure 3.6 correspond to the slopes of 1/2, -1/2, and -1 in Figure 3.1. 

Similarly, the estimation of matrix and fracture permeability based on Figure 3.6 

would provide the same results as the one based on Figure 3.1, which will be omitted. 
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Figure 3.7—Evolution of pII at the wellbore. The straigt-line behavior is clearly 

identified in the pseudo-linear flow regime. 

Figure 3.7 shows the plot of pII vs. Δt1/2. The straight line asymptotic behavior is 

observed at ∆t→0+. Approximating the straight line using Eq. B-9 provides the 

following two equations: 
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Eqs. 3.2, 3.14, and 3.15 can be combined to estimate kI, kII , and Le as follows: 

kI = 1.0 × 10-21 m2 = 1.0 nd; kII = 9.5 × 10-17 m2 = 0.95 × 105 nd; Le = 25.1 m ...... (3.16) 

 

3.2.3 Definitions of Time Markers 

Figure 3.8 and Figure 3.9 present the effects of the inter-porosity flow coefficient on 

the matrix and fracture pressure responses at the wellbore. Its influence on the time 

marker of the dip base of the pressure derivative curves is interesting. Stewart and 

Ascharsobbi (1988) and Chipperfield (2006) present the analytical expression of the 

dimensionless time marker of the dip base in the fracture pressure derivative curve for 

the Warren and Root dual-porosity model. In the case of the dual-porosity dual-

permeability model used in this chapter, the analytical expressions for the time 

markers of the dip bases in both matrix and fracture pressure derivative curves are 

shown below. 
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Figure 3.8—Effects of inter-porosity flow coefficient on the evolution of pI & –

ΔtdpI/dΔt. The time marker for the dip base is inversely proportional to λ. 
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Figure 3.9—Effects of inter-porosity flow coefficient on the evolution of pII & –

ΔtdpII/dΔt. The time marker for the dip base is inversely proportional to λ. 

Denoting the time markers of the dip bases in –ΔtdpI/dΔt and –ΔtdpII/dΔt curves by 

I

Dt  and 
II

Dt , sensitive analysis based on Eq. B-1 indicates that the time markers have 

the following forms:  
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where 
I

A  and 
II

A  are the two eigenvalues of the matrix A. 

The pressure derivative curves shown in Figure 3.8 and Figure 3.9 indicate that 

5100.1 c

I

D tt  and 003c

II

D tt  when λ = 1 × 10-5/MPa/D. Substitution of the two 
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values into Eqs. 30 and 31 provides that: C0 ≈ 0.6, a ≈ 6.4. Eqs. 3.17 and 3.18 indicate 

that the time markers of the base dip in both matrix and fracture derivative curves are 

inversely proportional to the inter-porosity flow coefficient. In fact, similarly, the time 

markers of the hump in matrix and fracture pressure curves also could be determined 

to be inversely proportional to the inter-porosity flow coefficient, as shown in Figure 

3.8 and Figure 3.9. 

Next, the time marks of upper limit time for pseudo-linear flow and the lower limit 

time for pseudo-radial flow will be given for both matrix and fracture pressure 

derivative curves.  

Denoting the time marks of upper limit for pseudo-linear regime in –ΔtdpI/dΔt and –

ΔtdpII/dΔt curves by 
I

Ut  and 
II

Ut , and lower limit for pseudo-radial regime in –ΔtdpI/dΔt 

and –ΔtdpII/dΔt curves by 
I

Lt  and 
II

Lt , respectively, the above analysis shows that  
I

Ut  

and 
I

Lt  have the same form with Eq. 3.17, 
II

Ut  and 
II

Lt  have the same form with Eq. 

3.18. Figure 3.8 and Figure 3.9 indicate that 4.0 c

II

Uc

I

U tttt  when λ = 1 × 10-

5/MPa/D. Substitution of the two values into Eqs. 3.17 and 3.18 provides C0 ≈ 1.4× 10-

4, a ≈ 3.1 for 
I

Ut  and 
II

Ut . Figure 3.8 and Figure 3.9 also indicate that 

5102 c

II

Lc

I

L tttt  when λ = 1 × 10-5/MPa/D. Substitution of the two values into 

Eqs. 3.17 and 3.18 provides C0 ≈ 67.8, a ≈ 1.3 for 
I

Lt  and 
II

Lt . 

To investigate when the two porous media reach a state of equilibrium, a timescale 

(Mehrabian and Abousleiman 2015a) can be defined by 

λ
MM III
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Figure 3.3 shows that, for the case of λ = 1×10-5/MPa/day, the two porous media 

reach a state of equilibrium when ∆t/tc > 3×104 which approximately corresponds to 

the relation of ∆t > 5.8τ. Such relation is further supported by the cases of λ = 1×10-

4/MPa/day and λ = 1×10-3/MPa/day. One can imagine that the two porous media 

behave as one medium for large enough λ and never reach equilibrium during the test 

for small enough λ. Extreme cases of λ = 0 and λ = ∞ are illustrated in Figure 3.3. 

It is also interesting to define another time scale when the two systems start the 

pseudo-radial flow. Before giving the definition, the time scales for the matrix and 

fracture to start their own pseudo-radial flow for the case of no inter-porosity flow 

should be defined. 

Using the effective pressure diffusion coefficients discussed in Chapter 2, the time 

scales for matrix and fracture to start the pseudo-radial flow for the case of no inter-

porosity flow can be defined, respectively, as follows: 

I
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I L  2  ................................................................................................................ (3.20) 

II

e

II L  2  ............................................................................................................... (3.21) 

Then the time scale, τr, for the two systems to start the pseudo-radial flow can be 

defined by taking the harmonic average over the above two time scales as follows: 
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vv1
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Figure 3.3 shows that, for the case of λ = 1×10-5/MPa/day, the two systems start the 

pseudo-radial flow when ∆t/tc > 4×105 which approximately corresponds to the 

relation of ∆t > 0.1τr. This time scale, τr, is not sensitive to the inter-porosity flow 
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coefficient as shown in Figure 3.3. That is why its definition does not involve the 

inter-porosity flow coefficient. 

3.3 Summary 

In this section, a numerical example is presented to illustrate wellbore pressure 

decline after hydraulic fracture closure in a dual-porosity dual-permeability formation. 

The pseudo-linear flow regime, transient period and pseudo-radial flow regime are 

clearly identified in the log-log plots of the dual-pressure derivative curves. 

Furthermore, it is also illustrated how to estimate the dual permeabilities based on the 

combination of 1/2 slope and -1 slope or the combination of -1/2 slope and -1 slope. It 

is shown that the dual permeabilities and hydraulic fracture length can also be 

estimated based on the -1 slope and the straight line behavior in the plot of pressure vs. 

square root time. Different time markers are also defined, allowing to estimate the 

inter-flow coefficient. Two time scales are also defined to investigate the time when 

the two porous media reach a state of equilibrium and the time when the pseudo-radial 

flow starts.  
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Chapter 4 : Field Applications 

In this Chapter, the newly-derived analytical solution is utilized to analyze field 

data. Three field cases are studied. Field data for the first two cases is digitized from 

Chipperfield (2005; 2006), and field data for the third case is provided by Halliburton. 

The dual-porosity dual-permeability nature of the studied formations can be clearly 

identified by the hump in the pressure curves or the dip in the pressure derivative 

curves. 1/2 and -1 slopes are also observed to show the pseudo-linear and pseudo-

radial flow regimes. Because data is lacking to solve the corresponding equations (Eq. 

3.2, 3.10, 3.14 and 3.15) to estimate the permeability and fracture length based on 

such slopes, another method is implemented by matching the analytical solution with 

field data.  

Conventional well test parameters, including formation total compressibility and 

hydraulic diffusivity, were defined by reservoir engineers since the 1950s (Hall 1953), 

and corresponding correlations for their estimates have to date been used in industry 

practice of type curve and well testing analyses. However, they have never been 

revisited from a poromechanical standpoint. Such parameters are revisited and the 

equivalent poroelastic parameters are defined in this chapter.  

4.1 Case Studies 

    4.1.1 Case Study 1 

    An Australian gas field (Chipperfield 2005; 2006) is revisited in this section to show 

the after-closure pressure analysis based on the previous theoretical methods. The gas 

field was inferred to have natural fractures by borehole-imaging tools. Pay thickness is 

110 ft, and the average permeability is expected to be in the range of 0.2 to 0.5 md. 
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The reservoir pressure (pi) was measured to be 2,240 psi before the stimulation 

treatment. A step-rate test was implemented, and a volume of 5,000 gal fluid was 

injected into the well at 1 to 12 bbl/min. During the step-rate test, a fluid was injected 

into the well for a defined period in a series of increasing pump rates. The NDP 

(Economides and Nolte 2000), which represents the pressure difference (∆p = pw-pi) 

vs. the inverse squared Nolte time ( 21 lF ), is digitized from Chipperfield (2006) and 

used to plot Figure 4.1 by changing the time scale to Δt/tc. In Figure 4.1, the pressure 

derivative data are added, which is defined as follows (Uribe et al. 2007): 
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The hump in the pressure difference plot and the dip in the pressure derivative plot 

indicate the existence of natural fractures in this gas field. The slope of 1/2 at Δt→0+, 

the slope of -1 at Δt→∞, and the dip in the pressure derivative plot can be clearly 

identified in Figure 4.1. Considering that the formation is naturally fractured, the 

matrix permeability may be lower relative to that of the fracture system, and the 

fracture system may tend to communicate with the wellbore better than the matrix 

does. Then, the recorded wellbore pressure might tend to reflect the fracture pressure. 

Therefore, it is reasonable to use equations similar to Eqs. 3.2 and 3.10 to estimate 

matrix and fracture permeability. The average permeability of the formation can be 

approximately determined as 0.62 mD, using Eq. 3.2. If the poromechanical properties 

of the formation are known, substitution of them into the two equations can be used to 

estimate the matrix and fracture permeability. It should be noted that the slope of -1/2 



60 

is not clearly observed in Figure 4.1, which indicate that the permeability of the 

formation is not very low, as proved in Chapter 2.  

 

Figure 4.1—Evolution of Δp and –Δtdp/dΔt at the wellbore for field data 1. The 

hump and trough in the pressure and pressure derivative curves clearly indicate 

a dual-porosity dual-permeability rock formation. 

 

Figure 4.2 shows the plot of –dp/dΔt vs. Δt/tc. The slopes of -1/2 and -2 can be 

clearly identified, which correspond to the slope 1/2 and -1 in Figure 4.1, respectively. 
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Figure 4.2—Evolution of -dp/dΔt at the wellbore for field data 1. -1/2 and -2 

slopes clearly identify the pseudo-linear and pseudo-radial flow regimes, 

respectively. 

 

Figure 4.3 shows the plot of Δp vs. (Δt/tc)
1/2. The straight-line asymptotic behavior 

during the pseudo-linear flow period can be used to estimate matrix permeability, 

fracture permeability, and fracture length by solving Eqs. 15, 27, and 28 once the 

poromechanical properties of the formation are known. 



62 

 

 

Figure 4.3—Linear-Sqrt Time plot of Δp for field data 1. The straight-line 

behavior is clearly observed in the pseudo-linear flow regime. 

 

  Because data is lacking to solve the corresponding equations to estimate the 

permeability and fracture length, another method is implemented by matching the 

analytical solution with the field data. Note that the water formation volume factor can 

often be neglected because it is close to 1.0 under most conditions. Furthermore, the 

injected fluid used in the step-rate test is usually an incompressible Newtonian fluid 

(Mader 1989). Therefore, it is reasonable to set the water formation volume factor as 

1.0. An incompressible fluid is also assumed, and the wellbore storage effects are 

neglected in this chapter. Such assumptions are consistent with Chipperfield (2006). 



63 

The value of 5,000 gal is treated as the volume of fluid injected into the formation. In 

the match, when an average pump rate of 6 bbl/min (i.e., Q0 = 6 bbl/min) is selected, 

the equivalent pump time tp can be calculated to be 20.3 min based on the 5,000 gal of 

fluid injected. Fracture height, H, is assumed to equal the pay thickness of 110 ft. To 

obtain a good match between the two, the fracture closure time, tc, is selected as 30 

min and equivalent fracture length, Le, is selected as 35 ft. Other data used for the 

analytical solutions are presented in Table 4.1. 

Figure 4.4 shows the NDP match between the analytical solutions and the field data. 

It can be observed that the fracture pressure curve fit the field data well. One of the 

reasons that the fracture pressure rather than the matrix pressure can fit the field data is 

that the fracture may be able to communicate with the wellbore better than the matrix 

because of the relatively higher permeability of the fracture. The recorded field 

wellbore pressure data may tend to represent the fracture pressure at the wellbore. 

 

     Table 4.1— Input for the analytical solutions to match field data 1. 

Parameters K (GPa) v B α k (md) 
µ 

(cp) 

v 

(%) 
λ (1/MPa/D) 

Matrix (I) 6 0.2 0.2 0.8 0.3 1 95 
5.0 × 10-2 

Fracture (II) 2 0.2 0.8 0.88 8 1 5 
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Figure 4.4—NDP match between analytical solutions and field data 1. A good 

match between fracture pressure and field data 1 is observed. 

 

Figure 4.5 shows the pressure and pressure derivative match between the field data 

and the analytical solutions, with the time scale defined by Δt/tc. A good match is 

observed for both the pressure and pressure derivative curves. The estimated average 

permeability from the match is kavg = vIkI+vIIkII = 0.69 md, which is in good 

agreement with the reported value in Chipperfield (2006) (i.e., approximately 0.2 to 

0.5 md). 
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Figure 4.5—Pressure and pressure derivative match between fracture and field 

data 1. A good match is obtained. 

 

To show how the poromechanical and physical properties of the formation influence 

the fracture pressure at the wellbore, sensitivity analysis is performed, as shown in 

Figure 4.6 through Figure 4.14. For comparison, all parameters are halved or doubled, 

except the fracture Skempton’s coefficient and Biot’s coefficient, both of which are 

larger than 1 when keeping doubled. Figure 4.6 shows the influence of the inter-

porosity flow coefficient on the pressure match between the analytical solution and the 

field data. It can be observed that when the inter-porosity flow coefficient decreases or 

increases, the hump in the pressure curve shifts to the right and left, respectively, 

which is in agreement with previous analysis. 
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Figure 4.6—Effects of λ on the match between pII and field data 1.  

pII is sensitive to λ. 

 

Figure 4.7 through Figure 4.14 show the sensitivity analysis on the physical and 

poromechanical parameters. Figure 4.7 and Figure 4.8 show that the fracture pressure 

at the wellbore is sensitive to both matrix and fracture permeability. When increasing 

the matrix and fracture permeability, the pressure curve during the pseudo-radial flow 

period will shift downward, which can be supported by Eq. 16 (i.e., the intercept 

pressure value pi should be decreased to increase kavg). Furthermore, the fracture 

pressure at the wellbore is sensitive to the matrix bulk modulus, Skempton’s 

coefficient, and Biot’s coefficient, as shown in Figure 4.9, Figure 4.11 and Figure 
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4.13. However, it is not sensitive to the fracture bulk modulus, Skempton’s coefficient, 

and Biot’s coefficient, as shown in Figure 4.10, Figure 4.12 and Figure 4.14. 

 

 

Figure 4.7—Effects of kI on the match between pII and field data 1.  
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Figure 4.8—Effects of kII on the match between pII and field data 1. 

 

Figure 4.9—Effects of KI on the match between pII and field data 1. 
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Figure 4.10—Effects of KII on the match between pII and field data 1. 

 

Figure 4.11—Effects of BI on the match between pII and field data 1. 
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Figure 4.12—Effects of BII on the match between pII and field data 1. 

 

Figure 4.13—Effects of αI on the match between pII and field data 1. 
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Figure 4.14—Effects of αII on the match between pII and field data 1. 

 

Taking the Skempton’s coefficient as an example, the match between pII and field 

data is sensitive to BI, yet not sensitive to BII in this case. The sensitivity is essentially 

controlled by the matrix A-1D and A-1Γ in the pressure governing equation Eq. 2.1. 

Note that the sensitivity to one parameter is also dependent on the values of other 

parameters.  

The previous analysis shows that the after-closure pressure at the wellbore is 

sensitive to both matrix and fracture permeability and matrix poromechanical 

parameters. To obtain an estimation that represents formation properties, it might not 

be sufficient to use the Warren and Root dual-porosity model, which ignores the fluid 

communication between matrix elements and in which only pure fracture flow is 

considered. Furthermore, the idealized “sugar cube” geometry in the Warren and Root 
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model might make the results problematic when treating many dual-porosity 

formations, for example, organic-rich shale formations. To obtain a more convincing 

estimation of a dual-porosity formation’s properties, it is necessary to use the current 

poroelastic dual-porosity dual-permeability model for the analysis. 

4.1.2 Case Study 2 

    Another Australian gas field (Chipperfield 2005) is studied in this section. The 

gas field was inferred to have natural fractures from core and offset well tests over the 

treatment interval (Chipperfield 2005). Pay thickness is estimated to be 82 ft. The 

reservoir pressure (pi) was measured to be 3090 psi by bottomhole gauges before the 

stimulation treatment. During the impulse fracture test, a 13500 gal injection was 

implemented at a rate of 30 bbl/min. The after-closure portion of wellbore pressure 

data is digitized from Chipperfield (2005) and utilized to plot Figure 4.15 and Figure 

4.16. The straight-line behavior is clearly identified in the plot of Δp vs. (Δt/tc)
1/2 

during the pseudo-linear flow regime, as shown in Figure 4.15.  
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Figure 4.15—Linear-Sqrt Time plot of Δp for field data 2. The straight-line 

behavior is clearly observed in the pseudo-linear flow regime. 

 

Figure 4.16 shows the plots of Δp and –ΔtdΔp/dΔt vs. Δt/tc. Different from field data 

1, the hump in the pressure curve cannot be clearly observed. But the dip in the 

pressure derivative curve can be clearly detected to identify the dual-porosity dual-

permeability nature of the formation.The 1/2 and -1 slopes can be clearly observed 

from the pressure derivative curve during the pseudo-linear and pseudo-radial flow 

regimes. Based on the -1 slope, the formation average permeability can be estimated to 

be around 13.3 mD.  

The analytical solution of the fracture pressure is applied to match the field data 2. 

Figure 4.16 shows that the analytical solution is able to capture the wellbore pressure 
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data to some extent. Inputs of the formation parameters are listed in Table 4.2. Other 

inputs for the stimulation treatment are listed as follows: H = 250 ft, Q0 = 30 bbl/min, 

tp = 10 min, tc = 12 min, Le = 8.2 ft.  

Table 4.2—Input for the analytical solutions to match field data 2. 

Parameters K (GPa) v B α k (md) 
µ 

(cp) 

v 

(%) 
λ (1/MPa/D) 

Matrix (I) 4 0.2 0.06 1 9 1.2 94 
0.16 

Fracture (II) 0.036 0.2 0.8 1 80 1.2 6 

         

 

Figure 4.16—Pressure and pressure derivative match between fracture and field 

data 2.  

 

Compared to the formation in Case Study 1, the one in Case Study 2 has higher 

matrix permeability, fracture permeability, and the inter-porosity flow coefficient. This 
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estimation is consistent with the studies presented by Warren and Root (1963) who 

showed that the matrix permeability is one of the factors that control the inter-porosity 

flow coefficient, specifically, higher matrix permeability usually leads to larger inter-

porosity flow coefficient.  

4.1.3 Case Study 3 

    The field data in this case is provided by Halliburton. The portion of the wellbore 

after-closure pressure is plotted in Figure 4.17 and Figure 4.18.  

 

Figure 4.17—Linear-Sqrt Time plot of Δp for field data 3. The straight-line 

behavior is clearly observed in the pseudo-linear flow regime. 

 

Figure 4.17 shows the plot of Δp vs. (Δt/tc)
1/2 in which the straight-line behavior can 

be found during the pseudo-linear flow regime. Figure 4.18 shows the plots of Δp and 
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–ΔtdΔp/dΔt vs. Δt/tc. The dual-porosity dual-permeability nature of the formation can 

be clearly identified by the dip behavior in the pressure derivative curve. 1/2 and -1 

slopes can be also located on the pressure derivative curve to determine the pseudo-

linear and pseudo-radial flow regimes. Formation average permeability is estimated to 

be around 1.6×103 nD, based on the -1 slope during the pseudo-radial flow.  

Table 4.3—Input for the analytical solutions to match field data 3. 

Parameters K (GPa) v B α k (md) 
µ 

(cp) 

v 

(%) 
λ (1/MPa/D) 

Matrix (I) 12 0.3 0.8 0.88 18×10-6 1 99 
1.5×10-5 

Fracture (II) 0.15 0.3 0.96 0.9 0.16 1 1 

         

 

Figure 4.18—Pressure and pressure derivative match between fracture and field 

data 3. 
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The analytical solution of fracture pressure is applied to match field data 3. Inputs 

for the analytical solutions are listed in Table 4.3. Other inputs are listed as follows: H 

= 16 ft, Q0 = 14 bbl/min, tp = 10 min, tc = 50 min, Le = 19.7 ft. 

Figure 4.18 shows the match between the analytical fracture pressure and the field 

data 3. The analytical solution is capable of capturing both pressure and pressure 

derivative curves. Compared to the former two cases, the formation in case 3 has the 

lowest matrix permeability and also the smallest inter-porosity flow coefficient. This 

observation further supports the statement that lower matrix permeability usually 

results in smaller inter-porosity flow coefficient. 

4.2 Equivalent Poroelastic Well Test Parameters 

    In this section, some conventional well test parameters are revisited and the 

equivalent poroelastic parameters are defined, beginning with storage coefficients. In 

the area of hydrology, the storage coefficient or storativity is the volume of water 

released from storage per unit of surface area of an aquifer under a unit decline in the 

hydraulic head (Freeze and Cherry 1979). Various work has been performed to 

determine the storage coefficient from pumping tests. Cooper and Jacob (1946) 

present a method to determine the storage coefficient based on the drawdown data 

collected during pumping. Banton and Bangoy (1996) propose a new method, which 

allows determining the storage coefficient from recovery data collected from two or 

more locations.  

For a poroelastic porous medium saturated with fluid, the unconstrained storage 

coefficient, Sσ, is the change of fluid content variation per unit change of the fluid 
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pressure when fixing the external confining pressure and is defined by the following 

equation (Berryman and Wang 1995; Wang 2000): 

BKp
S

cpf





 





0

 ............................................................................................... (4.2) 

where ζ is the variation of fluid content, pf is the fluid pressure, pc is the confining 

pressure, α is the Biot’s coefficient, B is the Skempton’s coefficient, and K is the bulk 

modulus. For the dual-porosity model used in this chapter, the matrix and fracture 

unconstrained storage coefficients are vIαI/BIKI and vIIαII/BIIKII, respectively 

(Berryman and Wang 1995). The unconstrained cross-storage coefficient is 

approximated by zero (Mehrabian and Abousleiman 2014) (i.e., the fluid volume 

change in one porous medium resulting from a pressure change in the other porous 

medium is negligible when keeping the confining pressure unchanged). 

     Wang (2000) also presents the constrained storage coefficient, Sε, which is the fluid 

volume released from storage per unit of control volume per unit of pressure decline 

while maintaining the control volume constant and is defined by 
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where M is the Biot’s modulus. For the dual-porosity model used in this chapter, the 

constrained and coupled matrix and the fracture and cross-storage coefficients are 

IM1 , 
IIM1  and 

IIIM ,1 , respectively. It can be observed that the constrained 

cross-storage coefficient is nonzero. As a matter of fact, its value is negative, which 

physically means that an increase in pressure in one porous medium tends to release 

fluid from the other porous medium when the bulk volume is unchanged. 
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     Warren and Root (1963) define the storativity ratio ω as follows: 

mmff

ff

CC

C
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where Cm and Cf  are the matrix and fracture compressibility, respectively, and ϕm and 

ϕf are the matrix and fracture porosity, respectively. ω is less than 1 and stands for the 

fracture storage volume fraction. The Warren and Root model assumes only pure 

fracture fluid flow exists without matrix fluid flow to the wellbore, and the matrix only 

acts as storage.  

 Two other interesting terms that will be discussed below are the hydraulic 

diffusivity and total compressibility. Conventional hydraulic diffusivity is defined by 

tCkc   ................................................................................................................ (4.5) 

where ϕ is the porosity and the total compressibility Ct is defined by Ct = CgSg + CoSo 

+CwSw +Cformation (Lee et al. 2003) and especially equals Cw + Cformation for a formation 

fully saturated with water, where Cg, Co, and Cw are the gas, oil, and water 

compressibilities, respectively, Sg, So, and Sw are the gas, oil, and water saturations, 

respectively, and Cformation is the formation compressibility. 

Comparison between Eq. 33 with Eq. 38 allows to define the equivalent poroelastic 

total compressibility as follows: 
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where the porosity term ϕ plays the role of switch between average over bulk volume 

and pore volume and is excluded from such definition. 

Table 4.4 compares the conventional well test parameters with the equivalent 

poroelastic parameters for a fully saturated formation. 
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Table 4.4—Conventional well test parameters vs. equivalent poroelastic 

parameters; fully saturated. 

 
Conventional Well Test 

Parameters 

Equivalent Poroelastic 

Parameters 

Single 

porosity 

Total 

compressibility  
formationw CC   
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vBK

BvvB
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Dual 

porosity 

Matrix storage mtmC   
IM1  

Fracture 

storage 
ftfC   IIM1  

Matrix 

diffusivity 
tmm

I Ck   I1  

Fracture 

diffusivity 
tff

II Ck   II1  

 

    The parameters IM , IIM , 
I and 

II  can be identified in terms of the individual 

constituent’s physical and poromechanical properties, such as v(N), v(N), α(N), B(N) and 

K(N), N= I and II, and are shown explicitly in Berryman (2002), Nguyen and 

Abousleiman (2010), and Mehrabian and Abousleiman (2014).  

Thus, when the corresponding individual constituent’s physical and poromechanical 

properties are estimated, as presented in Table 4.1, the corresponding equivalent 

poroelastic parameters also can be estimated based on the previous analysis. 

The primary significance of poroelasticity in this specific application and solution is 

identified by revisiting the problem parameters, i.e., formation total compressibility Ct 

and hydraulic diffusivity c in the case of single porosity, and their counterparts in the 

case of dual-porosity. These parameters have been defined by reservoir engineers since 
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the 1950s (Hall 1953), and corresponding correlations for their estimates have to date 

been used in the industry practice of type curve and well testing analyses. However, 

they have never been revisited from a poromechanical standpoint. Table 4.4 offers an 

in-depth review of these same parameters and characterizes them by the well-known 

poroelastic constants which can be measured through standard and established 

laboratory methods (Hart and Wang 1995; Berryman and Wang 1995) or well logging 

data (Abousleiman et al. 2007). 

Finally, it is of interest to provide a brief review of the single and dual-porosity 

models and the evolution of their applications in the pressure decline analysis, as 

shown in Table 4.5. 

   Table 4.5—A brief review of the evolution of pressure decline analysis. 
Author, year Governing Equations Comments 

Gu et al. 1993 

Abousleiman et al. 1994 

Nolte et al. 1997 

Soliman et al. 2005 
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Houze et al. 1988 
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Soliman et al. 2010 

 

A comparison between the poroelastic formulation used in this paper and the 

original dual-continuum theory suggested by Barenblatt et al. (1960) suggests that a 

flow-only model should be capable of generating the results of the poroelastic model 

presented in this study, provided that the following conditions are simultaneously met: 

1. Flow in both matrix and fractures, as well as inter-porosity fluid exchange, in 

accordance with the original dual-continuum theory of Barenblatt et al. (1960) are 

accounted for; 

2. The rock compressibility, diffusivity, and storage parameters in the governing 

equation (Eq. 2.1) are selected or calibrated in accordance with the poroelastic 

definitions of Table 4.4. 

Existing publications on the pressure decline analysis, however, only partially 

fulfill condition 1, and none of which appear to have examined condition 2 above.  

4.3 Summary 

Three sets of field data are studied in this chapter. In Case Study 1, the hump in the 

pressure curve and the dip in the pressure derivative curve clearly indicate that a dual-

porosity formation is studied. The average permeability of the formation is estimated 

based on the -1 slope. The -1/2 slope on the log-log pressure derivative curve is not 

clearly observed, which indicates that the formation permeability is not very low. The 

newly derived analytical solutions are then used to match the field data. A good match 

between the two can be found. Consequently, the dual-porosity poroelastic parameters 

of the formation are estimated. Sensitive analysis shows that the match is sensitive to 

both matrix and fracture permeability, matrix bulk modulus, Skempton’s coefficient 
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and Biot’s coefficient, but not sensitive to fracture bulk modulus, Skempton’s 

coefficient and Biot’s coefficient. In cases 2 and 3, the hump in pressure curve is not 

clear. But the dip behavior in the pressure derivative curves can be clearly observed, 

which identifies the dual-porosity dual-permeability nature of the formations. The 

analytical solution of the fracture pressure is able to capture the field data to some 

extent, based on which the formation poromechanical parameters are estimated. 

Conventional well test parameters are revisited and the equivalent poroelastic 

parameters are defined. Such definitions are predominant, since the equivalent 

poroelastic parameters could be easily determined from well logs or laboratory tests. 
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Chapter 5 : Conclusions 

The dual-porosity dual-permeability poroelastic theory is applied and the analytical 

line source solutions are derived to simulate and analyze wellbore after-closure 

pressure decline curves. 

In Chapter 2, the poroelastic 2D line source solutions are derived in the Laplace 

domain for a dual-porosity dual-permeability formation. Then the solutions in the time 

domain are also derived for the case of no inter-porosity flow. The latter solutions are 

used to approximate the former ones for pressure derivative curve slope analysis. The 

slope of 1/2 in the pseudo-linear flow regime, -1/2 in the transient period and -1 in the 

pseudo-radial flow regime are mathematically described for both matrix and fracture 

pressure derivative curves. Moreover, it is proved that the -1/2 slope is clearly 

observed for formations with low permeability. The straight-line behavior in the plot 

of pressure vs. square time is also mathematically investigated. 

In Chapter 3, a numerical example is given to illustrate the wellbore pressure 

decline during the mini-frac test applied to a shale formation. The slopes of 1/2, -1/2 

and -1 are clearly observed to identify the pseudo-linear flow regime, transient period 

and pseudo-radial flow regime. The effects of inter-porosity flow coefficient are also 

illustrated. The trough of the pressure derivative curve moves to the right when the 

inter-porosity flow coefficient decreases. A Mathematical algorithm is also presented 

to estimate both matrix and fracture permeabilities based on the combination of slopes 

1/2 and -1 or the combination of slopes -1/2 and -1. This is important especially when 

the 1/2 slope in some cases is not obvious. It is also shown that a combination of -1 

slope in the log-log plot of pressure derivative curve and the straight line behavior in 
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the linear plot of pressure vs. square root time allows estimation of matrix 

permeability, fracture permeability and hydraulic fracture length. Different time 

markers are also defined to investigate the flow regimes. Such time markers include 

the upper limit of pseudo-linear flow regime, the time when the dip base of pressure 

derivative curve occurs and the lower limit of pseudo-radial flow regime. It is found 

that the inter-porosity flow coefficient plays an essential role in such definitions and 

can be estimated based on such time markers. Time scales are also defined to study the 

time when the matrix and fracture systems reach an equilibrium state and the time 

when the pseudo-radial flow starts.  

In Chapter 4, three sets of field data are studied. In case 1, the formation is clearly 

identified as a dual-porosity dual-permeability formation through the hump in the 

pressure curve and the trough in the pressure derivative curve. The slopes of -1/2 and -

1 can be visibly recognized, which indicates the pseudo-linear flow and the pseudo-

radial flow. Since it is a dual-porosity dual-permeability formation, the average 

permeability of the formation is approximately determined as 0.62 mD base on the -1 

slope. To further estimate the dual permeabilities of the formation, the corresponding 

poroelastic parameters are required. It is noted that the -1/2 slope on the log-log 

pressure derivative curve is not clearly observed, which indicates that the formation 

permeability is not very low. This statement is further supported by the estimated 

average permeability, i.e., 0.62 mD. The set of field data is then further analyzed by 

matching the newly derived analytical solutions. A good match between the two can 

be found, based on which the dual-porosisty poroelastic parameters of the formation 

are determined. Sensitive analysis is also presented to show that the match is sensitive 
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to both matrix and fracture permeability, matrix bulk modulus, Skempton’s coefficient 

and Biot’s coefficient, but not sensitive to fracture bulk modulus, Skempton’s 

coefficient and Biot’s coefficient. This sensitive analysis makes it necessary to couple 

matrix flow in after-closure analysis since the pressure decline is sensitive to matrix 

permeability and matrix poroelastic parameters. In cases 2 and 3, the hump in pressure 

curve is not clear. But the dip behavior in the pressure derivative curves can be clearly 

observed, which identifies the dual-porosity dual-permeability nature of the 

formations. The analytical solution of the fracture pressure is able to capture the field 

data to some extent, based on which the formation poromechanical parameters are 

estimated. Finally, conventional well test parameters are revisited and the equivalent 

poroelastic parameters are defined. Such definitions are predominant since the 

equivalent poroelastic parameters could be easily determined from well logs or 

laboratory tests. 
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Appendix A: After-Closure Wellbore Pressure Solution 

Considering Inter-Porosity Flow 

Instantaneous Point Source Solution. In this section, the pressure influence solution 

resulting from an instantaneous point source with a unit fluid volume injection in a 

plane with single porosity and single permeability (Carslaw and Jaeger 1959; 

Abousleiman et al. 1994) is extended to the dual-porosity dual-permeability case. 

Combining the constitutive Eq. 1.11 with the stress equilibrium equation (Eq. 1.14) 

and strain-displacement relations (Eq. 1.18), the following Navier’s equation can be 

derived: 
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In this problem, the displacement field is irrotational because it is assumed to be 

radial; therefore, the following equation can be obtained: 0 u , and substituting it 

into Eq. A-1 provides 
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Using the fact that  u and integrating Eq. A-2, the following equation can be 

obtained: 
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where f(t) is an integration function only dependent on time.  

Furthermore, because the domain studied here is infinite, and all of the strain and 

pore pressures must vanish at infinity, it is obtained that 0)( tf , or 
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which is an extension of Eq. 5.24 from Coussy (2004). 

Combining Eq. A-4 with the constitutive equations (Eqs. 2 and 3) provides 
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which can be written in the matrix form 
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and 34GK  . 

 Substituting the Darcy’s flow equations (Eq. 1.16) into the mass balance equations 

(Eq. 1.15), the following is obtained: 
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The above equations can be rearranged and presented in the following matrix form: 
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Substituting Eq. A-7 into Eq. A-11 provides 
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Applying the Laplace transform to Eq. A-14 and using the fact that 

0)0()0(   tt III   at r > 0, Eq. A-14 can be rewritten in the Laplace domain 

as follows: 
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where the operator 
2  can be expressed in the polar coordinates as follows: 
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Because of the symmetry of the problem, Equation A-16 is further simplified as 
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The ordinary differential equation (Eq. A-15) can be solved using the method given 

in Lesson 29 of Farlow (1982). The solution is written in the following matrix form: 
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where the matrix P satisfies the following condition: 

  







 

II

I

PAsIADP




0

0111
 ........................................................................ (A-19)

 

and is denoted by 
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where K0(x) is the modified Bessel function of the second kind and the constants CI 

and CII are to be determined.   

Substitution of Eq. A-18 into Eq. A-7 provides the instantaneous point source 

solution of pore pressure in the Laplace domain: 
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where the matrix A-1P can be denoted by 
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To obtain the expressions of the coefficients CI and CII, consider a unit fluid volume 

is injected instantaneously at the origin of the infinite plane; the solutions provided by 

Eq. A-21 must satisfy the instantaneous injection condition: 
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at any t:
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Applying the Laplace transform to the above equation, the following equation is 

obtained: 

 
s

rdrIII




2

1
 

~~

0




 .......................................................................................... (A-24)
 

Substituting the solution (Eq. A-21) into Eq. A-24 provides 
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Furthermore, when the unit fluid volume is injected instantaneously at the origin, 

the amount of fluid volume is assumed to be distributed in both the matrix and fracture 

at a ratio of vI : vII, or 

for any R:
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Especially when setting R = ∞, the following is obtained: 
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Using the fact that )(lim)(lim 0 ssFtf st   and the solution (Eq. A-21), the 

following two equations are obtained: 
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Note that the three equations (Eqs. A-25, A-28, and A-29) are not independent. Eq. 

A-29 can be derived from Eqs. A-25 and A-28, and Eq. A-28 can be derived from Eqs. 
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A-25 and A-29. Thus, combining either Eqs. A-28 or A-29 with Eq. A-25 (Eq. A-28 is 

used in this example) provides the expressions CI and CII: 
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where 
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I sm
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II

II

s

I sm
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12 lim  . 

Instantaneous Line Source Solution. Consider an instantaneous line source with a 

uniform intensity and a length, 2L. The matrix pore pressure at an arbitrary point (x,y) 

can be obtained by integrating the previously discussed point source solution: 

'),(),,( pointinst,lineinst, dxtrptyxp
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where   22
' yxxr  . 

Applying the Laplace transform with both sides of the above formula provide 
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or  
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Especially at the origin (0,0), the following is obtained: 
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The integration in Eq. A-34 can be calculated using Mathematica software, which 

provides the instantaneous line source solution of matrix pore pressure at the origin as 

follows: 
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where L-1(x) and L0(x) are modified Struve functions of order -1 and 0, respectively. 

 Similarly, the instantaneous line source solution of fracture pore pressure at the 

origin can be obtained as follows: 
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Continuous Line Source Solution. Now, consider a continuous line source with a 

uniform intensity along length 2L and of time t. The matrix pore pressure at the origin 

can be obtained by integrating the instantaneous line source solution (Eq. A-35): 
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Using the formula 
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and substituting Eq. A-35 into Eq. A-37, the continuous line source solution of the 

matrix pore pressure at the origin can be expressed in the Laplace domain as follows: 
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 Similarly, the continuous line source solution of the fracture pore pressure at the origin 

in the Laplace domain is 
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Finite Interval Line Source Solution. The finite interval line source solution is used 

to simulate the matrix and fracture pore pressures at the wellbore after fracture 

closure. Based on the previous source solutions, the after-closure solutions (matrix: 

Ip wline,
; fracture: IIp wline,

) resulting from an injection of a volume of Q0tp for a finite 

duration tc are expressed as follows: 
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wline, tpttp
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tQ
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ce

pII   .............................................. (A-42) 

where ∆t is the after-fracture-closure time, H is the fracture height, and 2Le is the 

equivalent fracture length, which is expected to be longer than the actual maximum 

fracture length. 
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Appendix B: After-Closure Pressure Analysis 

Pseudo-Linear Period. Substitution of Eq. A-7 into Eq. A-11 provides the governing 

equation of pressure: 
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Multiplying both sides of the Equation B-1 by –t provides 
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because t→0+ (i.e., in the pseudo-linear flow regime, the pressure derivatives have the 

following asymptotic behavior): 
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which is shown in Figure 3.1. 

Furthermore, when t→0+, both pI and pII are finite. As a result, the last term of Eq. 

12 has a higher infinitesimal )(tO , which implies that the governing equation for -

t∂pI/∂t and -t∂pII/∂t can be approximated by the following equation: 
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or 





















 

II

I

II

I

p

p
DA

p

p

t

21
 ....................................................................................... (B-5)

 

which is the without-inter-porosity-flow case. 

Because the solutions provided in Appendix A are in the Laplace domain, it can be 

tedious to directly investigate the asymptotic behaviors of -t∂pI/∂t and -t∂pII/∂t at t→0. 



108 

Fortunately, with the previous analysis, they can be approximated using the solutions 

of the without-inter-porosity-flow case ,which can be obtained in the time domain. 

The solutions of the without-inter-porosity-flow case are provided in Appendix C as 

follows: 
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where the symbol bar stands for the without-inter-porosity-flow case. 

     It is easy to check that, during the pseudo-linear flow period when ∆t→0+, the 

solutions provided by Eq. B-7 have the following asymptotic behaviors: 
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It can be observed that, at ∆t→0+, a straight-line behavior is expected in both plots 

of 
Ip  and 

IIp  vs. Δt1/2. 

Based on Eqs. B-8 and B-9, the pressure derivatives have the following asymptotic 

behavior during the pseudo-linear period: 
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or 
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It can be observed that, at ∆t→0+, the slope of -1/2 is expected in log-log plots of -

dpI/dΔt and -dpII/dΔt vs. Δt, and the slope of 1/2 is expected in log-log plots of -

ΔtdpI/dΔt and -ΔtdpII/dΔt vs. Δt. 
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Transient Period between Pseudo-Linear and Pseudo-Radial Regimes. When 

checking the solutions from the without-inter-porosity-flow case provided by Eq. B-7, 

it can be interesting to investigate the pressure derivatives asymptotic behavior at 

some intermediate time between the pseudo-linear and pseudo-radial flow regimes. In 

the case of without inter-porosity flow, the matrix pressure derivative can be obtained 

as follows: 
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(B-14) 

Recalling the Taylor theory, a smooth function f(x) can be approximated by the 

following formula: 

00 )(')()( xxfxfxxf   .................................................................................... (B-15) 
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If there is some intermediate time Δt such that the following inequality and 

asymptotic behavior is held 
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then Eq. B-18 could be further approximated by the following formula: 
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Then, the slope of -3/2 is expected at some intermediate time in the log-log plot of -

dpI/dΔt vs. Δt. 

or  
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    Then, the slope of -1/2 is expected at some intermediate time in the log-log plot of     

-ΔtdpI/dΔt vs. Δt. 

Similar approximations for fracture pressure at some intermediate time also can be 

obtained as follows: 
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Appendix C: After-Closure Wellbore Pressure Solution without 

Inter-Porosity Flow 

Instantaneous Point Source. Supposing there is no inter-porosity flow between the 

matrix and fracture system, the governing equations of pressure can be obtained by 

setting Γ = 0 in Eq. B-1, which become  
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Substituting Eq. A-7 into Eq. C-1 provides 
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Using the method in Lesson 29 of Farlow (1982), the solutions of Eq. C-2 can be 

obtained in the time domain as follows: 
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where the symbol overbar denotes the solutions of the without-inter-porosity-flow 

case; the matrix P  satisfies the following condition 
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and is denoted by 











III

III

mm

mm
P

2221

1211
 ..................................................................................................... (C-5)

 

 



113 

The matrix and fracture pressure influence resulting from an instantaneous point 

source with unit volume are 
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where 
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Calculation of the Constants. By using the same idea as the previous calculation in 

Appendix A, the constants can be determined using the following two equations: 
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Line Source Simulation. First, matrix and fracture pressure influences resulting from 

the instantaneous line source with unit intensity can be obtained by integrating the 

instantaneous point source solutions along the fracture length 2L as follows: 
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Especially at the origin (0,0), 
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Then, for a continuous line source with unit intensity, the pressure influences at the 

origin are as follows: 
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where E1(x) and Erf(x) are the exponential integral function and error function, 

respectively. 
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For an injection of a volume of Q0tp for a duration tc, the matrix and fracture pore 

pressure at the origin can be expressed in the time domain as follows: 
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