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Abstract 
 

Documented distresses in pile foundations in soft soils during past earthquakes have 

shown that piles founded in soft soils undergo large lateral deformations during seismic 

loading. Improving the soil surrounding the piles is an effective strategy to improve the 

behavior of pile foundations in soft soils.  Many fundamental mechanisms determining 

the interaction between the improved soil and piles have, however, not been fully 

understood. This has led to limited applications of soil improvement around piles in 

seismic regions and excessive conservatism in designs. 

This dissertation assessed the static and seismic responses of single piles in 

improved and unimproved soft clays using data from a series of centrifuge tests. The 

centrifuge model contained a number of single piles embedded in a soft clay layer 

overlying a dense sand layer. The soft clay near the ground surface surrounding some of 

the piles was improved to various dimensions with cement. 

Experimental results were used to extract the p-y curves for both the improved 

and unimproved soils and these curves were compared with the curves currently used in 

practice. A new feature was added to the traditional bending moment curve fitting 

methods accounting for the discontinuities in the distributions of shear force and soil 

reaction along the piles at the interface between the improved and unimproved soil. The 

p-y curves currently used in practice were found to be accurate for cases with medium 

and large improved zones. Although the theory assumes that the p-y curve at a given 

depth is entirely controlled by soil at that depth, influence of adjacent soil layers were 

observed on the experimentally derived p-y curves. 



xxii 

System identification methods were employed to extract the natural frequencies, 

damping ratios, and mode shapes of the unimproved soil system. The identified 

parameters were validated against those estimated from analytical methods and employed 

to synthesize prediction models which were subsequently used to simulate the soil 

response for three successive base motions. The identified models captured acceleration 

time-histories reasonably well in the small and moderate shaking events. The influence 

of the improved zone size was reflected on the identified natural frequencies of the soil-

pile-top mass systems. 

Seismic interactions between the soil and pile were simulated by adapting a 

hysteretic model that integrated phenomena such as soil-pile separation, material 

degradation, and radiation damping. The developed interaction elements calibrated for 

one shaking event were deployed to predict the soil reactions in another shaking event. 

The predicted soil reactions compared reasonably well with those obtained from the 

measured results.
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CHAPTER 1: INTRODUCTION 
 

1.1 Motivation  

The performance of pile-supported structures such as highway bridges, port wharves, off-

shore oil and gas production platforms, and towers under lateral loadings depends on the 

interaction of soil and piles as well as the interaction between piles and the 

superstructures. Common sources of lateral loads are earthquakes, ocean waves, wind, 

ship impact and traffic. Vast documentation of pile distresses and failure in bridge 

structures during past earthquakes (Finn, 2005) has shown that piles in competent soils 

generally perform satisfactorily, while the excessive deformation of piles in soft and 

liquefied ground such as in port areas can cause severe structural damage. A wide range 

of methods and technologies have been developed to provide adequate lateral resistance 

where the foundation soil is incompetent. 

Cement-mixing soil improvement methods are often applied to enhance the 

bearing capacity of foundation soils by increasing the soil strength against deformation, 

liquefaction, and sliding (Bouassida and Porbaha, 2004; Lai et al., 2006; Namikawa et 

al., 2007; Siddharthan and Porbaha, 2008; Raju and Yandamuri, 2010; Barron et al., 2006; 

Yamashita et al., 2012). Modifying the soil strength has proved in many cases to be more 

economically efficient than modifying the structural elements of foundations (Ohtsuka et 

al., 1996; Rollins et al., 2010). Cement Deep Soil Mixing (CDSM) is a ground 

improvement technique that has been widely applied in supporting embankments and 

excavations, in sites susceptible to lateral spreading, in slope stabilization, and in seismic 

retrofitting of foundations (Kitazume and Terashi, 2013). In the CDSM method, a shaft 

is advanced into the ground, and a cement slurry is injected and mixed with the in situ 
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soil using rotary mixing tools. The single column of treated soil resulting from this 

process can be repeated with or without overlaps to produce a zone of improved soil. 

Recently, special attention has been paid to the application of soil mixing methods, both 

to enhance the performance of existing pile foundations and to aid in the design of new 

piles against lateral loads. However, researchers have not yet thoroughly examined the 

effects of ground improvement on pile response, nor have they validated or modified the 

existing computational models. Therefore, simplified and optimized design procedures 

for piles in improved ground have not yet been established.  

Only a few studies have been conducted to date on insitu and centrifuge testing of 

piles in cement-improved ground; one is the work of Tomisawa and Miura (2007), who 

investigated the static and dynamic behavior of piles under lateral loads and offered 

design methods concerning the necessary range of ground improvement. To evaluate the 

effectiveness of this ground improvement technique and to modify the available design 

procedures, Tobita et al. (2008) investigated the impact of ground improvement in 

liquefiable soils on the response of full-scale pile groups subjected to lateral loading. 

Rollins et al. (2010) evaluated the effect of different soil improvement methods on the 

ultimate strength of full scale pile groups. They found that mass mixing and jet grouting 

beneath and in front of the pile cap can increase the ultimate strength three- to five-fold 

over that of unimproved soils. The outcomes of these tests resulted in a simplified design 

method that can be used to determine the lateral extent of the improved zone. Bao et al. 

(2012) modeled the seismic behavior of a group-pile foundation with partial ground 

improvement at some depth below the ground surface by conducting a series of shaking 

table tests. Most recently, a combination of static and dynamic pile load tests were 
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performed by Fleming et al. (2015) on a full scale single pile where the ground was 

improved by CDSM. Comparing the results of the improved and unimproved cases 

showed that the pile lateral strength increased by 42% and the effective elastic stiffness 

increased by 600%. 

Examination of the current literature shows a dearth of experimental data to help 

advance the fundamental understanding of the complex mechanisms of interaction 

between the improved soil and pile‒superstructure system. For this reason, the CDSM-

improvement technique is not widely used in earthquake-prone regions, even though this 

method shows great potential for retrofitting aging and degrading structures. Resolving 

these uncertainties through comprehensive experimental and analytical investigations 

could be an important step in earthquake hazard mitigation. 

The use of geotechnical centrifuges is well established as an experimental testing 

framework for earthquake studies where the dynamic response of reduced-scale models 

can be modeled under increased gravitational fields. Many physical model studies have 

reported dynamic and static lateral behavior of piles through centrifuge testing, for 

example, Finn and Gohl (1987), Ting et al., (1987), Scott (1994), Wilson (1998), 

Brandenberg et al., (2005), Banerjee (2009), Ashlock and Pak (2009), Zhang et al., 

(2011). These test results have been used to calibrate available commercial finite element 

or finite difference software using the concept of Beam on Nonlinear Winkler Foundation 

(BNWF) model, which is acknowledged by practicing engineers to be simple and 

computationally efficient. The BNWF theory simplifies the interaction mechanisms 

between the soil and pile under lateral loads by modeling the pile as a series of beam 

elements and idealizing the adjacent soil continuum with discrete springs, also called 
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interaction elements, distributed along the pile. The force-displacement relationships of 

these springs at a certain depth is represented by a p-y curve that describes the lateral soil 

resistance per unit length of pile (p) mobilized by lateral pile displacement (y). It is 

assumed that the discrete soil reactions at different depths are uncoupled. When the 

BNWF model is applied to problems involving cyclic and dynamic loading, it is 

important to properly formulate phenomena such as degradation of the improved zone, 

energy dissipation and soil-pile separation (Matlock et al., 1987; Boulanger et al., 1999; 

Gerolymos and Gazetas, 2005; Allotey and El Naggar, 2008a and 2008b). Integrating 

these components into the interaction elements is a very complex and challenging task 

even when the soil system is homogeneous. In the case of improved soil systems, which 

are notably inhomogeneous, the accuracy of the BNWF approach can suffer significantly. 

For several reasons, this is an area with great potential for further research. First, 

only limited numerical and physical data are available from previously published studies 

of soil improvement methods for deep foundations engineering. Second, it is inherently 

difficult to generalize the published results to other soil types and improvement methods. 

Third, there is a high level of uncertainty that makes it difficult to select optimal 

dimensions for the improved zone for a given design load. 

1.2 Research objectives 

This dissertation presents the results and interpretations of pseudo-static and seismic 

lateral load tests on centrifuge model piles in soft clay where the top layers of the soil 

were improved by CDSM. This study is part of the NEES-pilEs (The George E. Brown, 

Jr. Network for Earthquake Engineering Simulation-piles in low E soils), where E stands 

for Young's modulus.  
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The pile models are intended to cover a significant range of practical ground 

improvement dimensions. The current philosophy for designing bridges against 

earthquake loads demands plastic regions in piles to form above the soil surface. The 

reason for this restriction is that it is not feasible to identify piles with damage below the 

soil surface. The size of the improved zone can be determined by studying the soil and 

the pile behavior where the lateral and vertical extents of the improved zone gradually 

increase. The improved zone for which the nonlinrearity starts to concentrate in the pile 

is typically the optimum improved zone. This study intends to address how different 

degrees of ground improvement affect the lateral response of single piles and how these 

effects can be incorporated into computational models. This investigation provides 

insight into the mechanisms of soil-pile interaction in cement-improved soft clay by 

 Assessing the applicability of popular p-y models for the soft and cement-

improved clays in reproducing the pile response to pseudo-static load tests 

utilizing LPILE (Ensoft, Inc., 2004; a finite-difference-based software for 

modeling pseudo-static soil-pile interaction). The conventional p-y models are 

based on the results of field experiments on full scale piles, and they have proved 

to be reliable and accurate where only one type of soil is prominent. Because 

ground improvement introduces a strong heterogeneity in the soil profile, it is 

necessary to reevaluate the existing models. 

 Deriving the p-y curves directly from the centrifuge experiments and evaluating 

the validity of the extracted curves. 

 Improving the quality of the back-calculated p-y curves by incorporating the 

discontinuities imposed by the soil layer interfaces on lateral soil pressure 
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distribution along the piles at locations where significant changes in soil stiffness 

properties occur. 

 Comparing the p-y curves obtained from the pseudo-static loads tests and the 

seismic load tests. 

 Commenting on the effects of the improved zone size on the characteristics of the 

p-y curves. 

 Estimating the modal characteristics of the soil at free-field and of the piles in 

both improved and unimproved soils using spectral analysis and state space 

system identification methods. Changes in the stiffness of the soil-pile system 

introduced by the improved soil affect the fundamental frequency of the system. 

 Validating the identified modal parameters using the published analytical 

methods and closed-form solutions. 

 Using the identified modal parameters as a way of explaining the size impacts of 

the improved zone on the modal parameters of the soil-pile systems. 

 Developing a representative macro-element model for the hysteretic p-y behavior 

of the cement-improved soil under seismic excitations while accounting for 

factors such as soil-pile separation, soil strength and stiffness degradation, and 

damping associated with outgoing stress waves that the piles transmit into the soil 

(radiation damping). 

 Exploring the possibility of calibrating the macro-element models using the 

measured soil properties. 

 Providing recommendations for the seismic and static designs of single pile 

foundations in CDSM-improved soft clay.  
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1.3 Dissertation organization 

Chapter 2 describes the details of the centrifuge model, including the model 

layout, model preparation, construction of the cement-improved zones, properties of the 

soils, structural properties of the piles, and layout of the sensors placed in the soil and 

attached to the piles.  

Chapter 3 starts with a review of the BNWF model. This chapter then describes 

the bending moment curve-fitting procedure adopted to back-calculate the experimental 

p-y curves that account for the discontinuity of the shear force in the pile and the lateral 

soil pressure acting on the pile at the interface of different soil layers. The p-y curves are 

derived for piles with different degrees of soil improvement and compared with one 

another. This chapter also assesses the applicability of the conventional models in 

predicting the pile behavior when subjected to static loads. This is followed by a 

discussion about estimating the parameters required by these models. The reliability of 

the implemented curve-fitting procedure was evaluated by integrating the derived p-y 

curves into the LPILE computer code. 

Chapter 4 extends the bending moment curve-fitting method developed in Chapter 

3 to the seismic data. Free-field lateral displacement is derived using the accelerometers 

in the soil, and p-y traces are back-calculated where the y component represents the pile 

displacement relative to the free-field soil. This chapter also explores tracking of the 

excess pore pressure at various levels over time and discusses correlations between the 

soil response and pore pressure.  

Chapter 5 provides technical background on state space identification and spectral 

analysis which are used to estimate the modal parameters of the soil and pile system. It 
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includes the estimation of the modal characteristics of the unimproved soil at free-field 

using accelerometer recordings and the data-driven subspace state space system 

identification (4SID) method. The estimated natural frequencies and the normal mode 

shapes are compared with closed-form solutions obtained from the one-dimensional shear 

wave propagation equation. The identified modal parameters are then employed to 

synthesize state space prediction models, which are subsequently used to simulate the soil 

response to three successive base motions. This chapter also presents an examination of 

the transfer functions calculated using spectral methods on the pile head, soil surface, and 

base motion accelerations, and estimates the natural frequencies of the soil-pile systems.  

Chapter 6 provides a detailed review of previous studies in developing macro-

element models for seismic/dynamic p-y behaviors with a focus on mathematical 

formulation and components. A review of the Bouc-Wen hysteresis model and its 

application in structural and geotechnical systems is also presented. This model was 

selected due to its power in simulating the soil-pile separation and the degradation in soil 

stiffness and strength. This chapter provides details about the formulation of the Bouc-

Wen model and explains the procedure for calibrating its parameters to reproduce the p-

y traces obtained in the improved zones. Chapter 6 also considers combination of the 

nonlinear hysteretic spring and a viscous damper for modeling the radiation damping. 

Chapter 7 summarizes the outcomes of the research and shows how the research 

objectives have been achieved. Recommendations for future work are presented with 

regards to the issues and problems encountered in this research. 
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CHAPTER 2: CENTRIFUGE TESTING 
 

2.1 Geotechnical centrifuge testing 

The centrifuge tests reported here were conducted at the NEES@UC Davis centrifuge 

facility (Liu et al., 2010). The major components of the centrifuge system are a container 

wherein the soil model is built, a platform accommodating the container, a shaking table, 

and a reaction mass (Figure 2.1). The radius from the center of rotation to the platform is 

9 m. More detailed information about the UC Davis centrifuge can be found in Wilson et 

al. (1997).  

The centrifuge model was constructed in a Flexible Shear Beam (FSB) container 

with inside dimensions of 1.722 m long, 0.697 m deep, and 0.684 m wide and a weight 

of 846.3 kg. The container is made of five hollow aluminum rings separated by durometer 

neoprene layers and a base plate form as shown in Figure 2.2. Shear stiffness of the 

container increases with depth. In horizontal vibration where the behavior of 

soil/structure systems under vertically propagating shear waves is investigated, it is 

essential to provide suitable boundary conditions so that the container moves with the soil 

profile and shear deformation prevails. The column bending of soil is minimized by 

complementary shear stresses provided by shear rods (see Figure 2.3). During 

consolidation, they were separated from the clay layers by a thin aluminum plate that was 

removed after consolidation. Other important aspects of dynamic centrifuge modeling 

have been explored by Wilson et al. (1997) and Ilankatharan and Kutter (2008) including 

dynamic characteristics of the container, soil-container interaction, undesirable vertical 

motions, and model uniformity.      
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The tests were performed at a centrifugal acceleration of 30 g. Therefore, 

prototype dimensions can be obtained by multiplying the model dimensions by 30. In 

addition to scaling the physical dimensions of a scaled centrifuge model, other quantities 

should be scaled according to the relations given in Table 2.1. These scale factors can be 

derived using either dimensional analysis or the governing differential equations (Taylor, 

1995). All the measurements reported hereafter will be in prototype units unless stated 

otherwise.  

2.2 Model preparation 

The centrifuge model layout is shown in Figure 2.4. The soil profile consisted of four 

horizontal clay layers underlain by two sand layers. Sand layers were dense Nevada sand, 

a fine uniform sand with D50 = 0.15 mm, emax = 0.887, emin = 0.511, and Gs = 2.67. The 

soft clay mixture was made using commercially available kaolin (No. 1 Glaze Clay from 

Old Hickory Clay Company in Hickory, Kentucky) and a fine sand (D50 = 0.14 mm) from 

George Townsend Co., Inc., in Oklahoma City (Quikrete Commercial Grade Fine White 

Sand, No. 1961-55). The mixture consisted of 1:1 kaolin/sand by dry weight mixed at a 

water content of 64% (twice the liquid limit). The sand was added to the soft clay mixture 

to increase the coefficient of consolidation of the mixture, which was found to be about 

4.5×10-8 m2/s.  The liquid limit and the plasticity index of the mixture were 32 and 17, 

respectively. Additional laboratory test results, including triaxial test results, for this 

mixture can be found in Thompson (2011).   

 Two layers of dense Nevada sand were prepared via pluviation through air. In this 

method, the sand is “rained” from a calibrated height through a slotted plate attached to 

the bottom of a suspended box while the box moves with a certain speed above the 
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centrifuge container (Figure 2.5). Different densities can be achieved by changing the 

height of the sand box and the opening size of the slotted plate. After the sand layers were 

constructed and instrumented, the container was sealed and the air inside the model was 

replaced with carbon dioxide. Then the sand layers were saturated with deionized water 

under a vacuum. 

After the sand layers were saturated, a soft clay mixture for the first clay layer 

was poured into the container and was consolidated in a press under a vertical effective 

stress of 190 kPa. To accelerate the consolidation process, filter papers were placed 

between the sand and the first clay layer and between the subsequent clay layers, as shown 

in Figure 2.6. After consolidation of each clay layer, the vertical load was removed and 

instruments were placed within the clay layer. The vertical effective stresses were chosen 

to make each clay layer lightly overconsolidated under the centrifugal acceleration of 30 

g. The initial stress states of the clay layers are shown in Figure 2.7. Using the information 

in Figure 2.7 and the laboratory oedometer test results for the clay shown in Figure 2.8, 

the initial state (stress, void ratio, and overconsolidation ratio) at any given point within 

the clay layer can be calculated.  

The improved soil, which simulates CDSM in the centrifuge test, was created as 

follows. First, the 1:1 (by weight) kaolin/sand dry soil mixture was created as mentioned 

above and then water was added to prepare a soft clay mixture at a water content of 34%, 

which represented the average water content of the centrifuge model clay layer after 

consolidation. Then a cement (Type I Portland Cement) slurry was prepared with 10% 

cement (by dry soil weight) and 1:1 cement/water (by weight) ratio. This slurry was 

finally added to the soft clay mixture to create a uniform cement-mixed soil. The final 
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mix design described above was determined after testing various cement contents and 

water cement ratios (Thompson, 2011), 

Ground improvement around the single piles consisted of one large 

(17D×17D×12D), two medium (13D×13D×9D), and two small (9D×9D×6D) zones, 

where D is the outer diameter of the pile (= 0.286 m). The dimensions of the improved 

zone are given as (length×width×depth). Due to limited available space in the container, 

only one pile was constructed in the large improved zone. Having two identical models 

for the piles improved by the small and medium zones allowed us to study the pseudo-

static and seismic responses on separate piles. 

After consolidation and instrumentation of the last clay layer, excavation was 

carried out for improved zones using molds made of thin aluminum sheets (Figure 2.9a). 

The instrumented piles were driven into the center of the excavation, and then the cement-

mixed soil was placed within the excavations around the piles (Figure 2.9b). The piles 

were fabricated using small steel tubes that closely matched the elastic and inelastic 

behavior of the steel pipe piles used in seismic regions by the California Department of 

Transportation (Caltrans). The yield and ultimate flexural moments of the steel tube, 

which are listed in Table 2.2, closely matched those of Caltrans pile PP14. The cement-

mixed soil was cured in situ for 10-16 days before being subjected to lateral loads. The 

variation in the shear strength of the cement-mixed soil with curing time is shown in 

Figure 2.10. In addition to five improved piles, two piles were placed in the unimproved 

soil. The water table was maintained at 1 cm (model scale) above the soil surface. 
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2.3 Instrumentation 

In the centrifuge model, a number of pore pressure transducers and accelerometers were 

placed in the soil deposit, as shown in Figures 2.11 and 2.12. Figure 2.11also shows the 

accelerometers attached to the top masses that were mounted on piles during the seismic 

load tests. Displacement transducers used to measure settlement at the soil surface and 

the lateral deflections of piles in seismic tests are depicted in Figure 2.13. Each pile was 

instrumented with a pair of strain gages in the half-bridge configuration at six different 

levels to quantify the bending moments along the pile. The locations of these strain gages, 

shown in Figures 2.14, were determined by performing preliminary analyses using the 

computer code LPILE to accurately capture the moment profile along the pile 

(Kirupakaran et al., 2010). The improved piles were labeled to indicate the depth of the 

improved zones (6D, 9D, 12D) as 6D-EF, 6D-GH, 9D-KL, 9D-IJ, and 12D-MN. The 

unimproved piles were called UI-AB and UI-CD (see Figure 2.4). 

2.4 Loading tests 

2.4.1 Pseudo-static loading tests 

The pseudo-static lateral loading tests were performed with an actuator in a displacement-

controlled mode in multiple steps. The loading started by moving the pile head from the 

initial position to a target displacement on the right side (which is towards the north side 

of the container in about 10 to 15 seconds) and maintaining this displacement for several 

minutes in order to send the command for the next step to the actuator. In the following 

step, the pile head was moved to the opposite side. Moving the pile from one side to the 

other side in one loading step took about 10-15 seconds, while a two- to three-minute 

pause between the loading steps was involved to set up the actuator for the next deflection. 
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Bending moments along each pile were measured using the calibrated strain 

gages, with one pair above the soil surface. The lateral deflection of pile outside the soil 

layer was measured at three different levels using three displacement transducers: one 

embedded in the actuator mounted on the piles top and two below the actuator and above 

the soil surface. The lateral load was measured by a load cell in the actuator. During 

pseudo-static loading, however, the piles in the large improved zones were subjected to 

limited displacements without inducing any damage to the pile or the improved soil so 

that the shaking test could be performed for the same pile. Pseudo-static lateral loading 

tests were conducted on piles UICD, 6DGH, 9DKL, 12DMN before the seismic testing 

and on UIAB, 6DEF after performing the seismic tests, because the bending moment 

measurements from the pseudo-static load tests on pile UICD and 6DGH were not 

collected due to an error in the first loading phase. The maximum displacement applied 

to 12D-MN was 0.2 m, about a third of the maximum displacements applied to other 

piles. This was done to prevent any damage to the ground improvement around this pile 

during pseudo-static loading and to preserve the system for seismic testing. After the third 

shaking event, piles UIAB and 6DEF were tested for pseudo-static loads. The results of 

these tests are presented in Chapter 3.  

2.4.2 Seismic loading tests   

After pseudo-static load testing, seismic masses (listed in Table 2.3) were attached to the 

top of the piles and the models were subjected to a series of base motions. The seismic 

masses shown on top of the piles in Figure 2.11 were attached to the piles to simulate the 

inertial loads from the superstructure during the seismic loading tests. The seismic masses 

were steel hollow cylinders made up of two halves bounded with two expansion screws. 
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Three base motions, with increasing intensity, were applied in sequence. Enough 

spinning time was allowed between shakes to dissipate the excess pore water pressure 

generated during shaking. The first two base motions were a scaled version of the 1989 

Loma Prieta earthquake in California, while the third base motion was the scaled 1995 

Kobe earthquake in Japan. The acceleration time histories of the base motions measured 

on the east and west sides of the container base plate were nearly identical. Figure 2.15 

presents the acceleration time histories of the three shaking events recorded on the west 

side of the container. Data measured during the shaking events are presented in Chapters 

4 and 5. 
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Table 2-1 Centrifuge Scaling Factors at a Centrifugal Acceleration of 30 g 
 

Quantity Prototype scale/model scale 

Length 30 

Time 30 

Frequency 1/30 

Acceleration 1/30 

Mass 303 

Force 302 

Moment 303 

Stress or pressure 1 

Density 1 

 

 

Table 2-2 Pile Properties 

Material 

Outside 

Diameter, 

D (m) 

Wall 

Thickness, 

(m) 

Length 

(m) 

Young’s 

Modulus, 

E  

(GPa) 

Yield 

Strength 

(MPa) 

Yield 

Bending 

Moment 

(kN.m) 

Steel tubes 

(A513 

Type 2, 

Grade 

1010) 

0.286 0.027 20.40 192.5 260.0 305 

 

 

Table 2-3 Top Masses 

Piles UIAB 6DEF 9DIJ 12DMN 

Top masses (kg) 661.5 656.1 661.5 664.2 
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Figure 2.1 Components of a centrifuge shake table (Ilankatharan and Kutter, 

2008) 

 

 

 

Figure 2.2 Flexible shear beam container 



18 

 

Figure 2.3 Shear rods located at both ends of the container 
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Figure 2.4 Centrifuge model layout (a) plan view (b) side view  

(in prototype dimensions) 
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Figure 2.5 Sand pluviation 

 

 

Figure 2.6 Preparation of a clay layer 
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Figure 2.7 Stress state in the clay layer 

 

 

 

Figure 2.8 Oedometer test result on soft clay 
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(a) 

 
(b) 

 

Figure 2.9 Construction of the improved zones (a) excavation (b) curing 
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Figure 2.10 Undrained shear strength vs. curing time for the improved soil 
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Figure 2.11 Accelerometer locations 

 

 

 

 

Figure 2.12 Pore water pressure transducer locations 
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Figure 2.13 Displacement transducer locations 

 

 

 

 

Figure 2.14 Strain gage locations 
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Figure 2.15 Acceleration-time histories of the base motion in the shaking events 
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CHAPTER 3: DEVELOPING P-Y CURVES FROM          

PSEUDO-STATIC LOADING EXPERIMENTS 
 

3.1 Previous work on the derivation of p-y curves 

In Beam on Nonlinear Winkler Foundation (BNWF) models, a pile is modeled as a beam 

resting on a bed of independent and closely spaced nonlinear springs whose force-

displacement relationships are expressed with p-y curves. Here, “p” represents soil 

reaction distributed along a unit length of the pile, and “y” is the lateral pile deflection. 

Observations from pile head load tests on full- or reduced-scale pile models were the 

primary sources used in developing mathematical expressions for the p-y curves. Despite 

the simple and convenient application of the BNWF model in commercial finite element 

or finite difference software, this approach has limitations with regard to the adequate 

modeling of the continuity of the soil mass, the shear transfer between the springs, and 

the vertical shear stresses induced between the soil and the sides of the pile (Gazioglu and 

O'Neill, 1984; Murchison and O'Neill, 1984).  

The most popular p-y models employed in engineering practice were established 

by Matlock (1970) for soft clay, by Reese and Welch (1975) and Reese and Cox (1975) 

for stiff clay, and by Reese et al. (1974) for sand, based on the results of field experiments 

on full-scale models of flexible piles with diameters up to 2 m. The derived curves were 

functions of depth, soil properties, and pile characteristics (diameter, material, and 

flexural stiffness). The conventional models have undergone extensive examination, and 

certain strengths and weaknesses in these models have been determined (Gazioglu and 

O'Neill, 1984; Murchison and O'Neill, 1984). A large majority of the published work on 

experimentally extracted p-y curves has been focused on piles embedded in homogenous 



28 

deposits (Ting et al., 1987; Dunnavant and O'Neill, 1989; Georgiadis, 1992a and 1992b; 

Dou and Byrne 1996; Wilson, 1998; El Naggar and Wei, 1999; Cho et al., 2007; Kim et 

al.,2009, Rovithis and Kirtas, 2009; Brandenberg et al., 2010). 

Georgiadis (1983) was one of the earliest researchers to offer a solution to the 

problem of modeling the layered soil by introducing the concept of equivalent depth. 

Another notable contribution to the problem of layered soil profiles has been reported by 

Yang and Jeremic (2005). Through a finite element study, they observed that the p-y 

curves close to the interface of intermediate layers between two sand layers and two clay 

layers were significantly different from those in homogenous soils. Movement of the soil 

at the interfaces into the upper and lower layers was identified as a major factor in 

propagating the layering effects further away from the interface. Ground improvement 

introduces a strong heterogeneity in the soil system, which introduces discontinuities in 

the soil reaction at the interface of the improved and unimproved soil. As described in the 

following sections, the proposed moment curve-fitting procedure in this study includes a 

new feature that accounts for the discontinuity of the shear forces in the pile and the lateral 

soil reaction acting on the pile at the interface of the layers with significantly different 

stiffness values. 

Soil reaction, p, and pile deflection, y, can be calculated using elastic beam theory, 

provided that the distribution of the bending moment is available and the pile behavior is 

within the elastic range. Interpolation techniques have been used to fit continuous 

functions to the discrete bending moment measurements, depending on the number and 

spacing of the measurements, criteria defined at boundaries, and the quality of the 

measurements. For instance, the derived pile deflection using polynomial functions can 
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deviate widely from known pile behavior below the level of the last measuring point 

(Scott, 1979). On the other hand, third-order polynomials used by El Naggar and Wei 

(1999) and Rovithis et al. (2009) resulted in reasonable lateral soil reaction distributions. 

Oldham (1984) and Geordiadis et al. (1992a) used fifth-order and fourth-order splines for 

laterally loaded piles in sand. The cubic spline fitting method was also used by Dou and 

Byrne (1995) to study the soil-pile interaction in a uniform sand under lateral base 

shaking. Different methods of curve fitting were compared by Brandenberg et al. (2010), 

who found that the weighted-residual method and cubic spline curve fitting yielded better 

results than polynomial regression. Ting et al. (1987), Sousa Coutinho (2006), and 

Brandenburg et al. (2010) have reported analytical problems with empirically derived p-

y curves such that any slight error in the bending moment data becomes greatly magnified 

during differentiation. Moreover, the centrifuge scaling exacerbates any uncertainties in 

the measurements. 

3.2 Proposed method for bending moment curve fitting 

Pile deflection, y, and soil reaction per unit length of the pile, p, as functions of depth, z 

(measured from the soil surface), can be obtained using the following equations. 

1

𝐸𝐼
∫(∫ 𝑀(𝑧) 𝑑𝑧) 𝑑𝑧 = 𝑦(𝑧)                     (3.1) 

𝜕2𝑀(𝑧)

𝜕𝑧2 = 𝑝(𝑧)                      (3.2) 

where EI is the flexural stiffness of the pile.  

In this study, the embedded length of the piles was divided into segments 

depending on the number of serviceable strain gages and the location of the soil layer 

interfaces between the improved clay and soft clay and between the soft clay and sand. 
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The traditional cubic spline curve fitting splices together third-order polynomials, 

provided that the continuity conditions are satisfied (Soltani and Muraleetharan, 2015). 

Adopting this method, bending moment within segment i at depth z was interpolated 

using a third-order polynomial, as presented by 

𝑀𝑖(𝑧) = 𝑎𝑖(𝑧 − 𝑧𝑖)
3 + 𝑏𝑖(𝑧 − 𝑧𝑖)

2 + 𝑐𝑖(𝑧 − 𝑧𝑖) + 𝑑𝑖,     (3.3) 

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖 are constant coefficients and 𝑧𝑖 is the distance between the pair of 

strain gages at the upper boundary of segment i and the soil surface. Various constraints 

can be incorporated into the procedure to solve for the unknown values (i.e. four constant 

coefficients of Eq. 3.3, in addition to 𝑒𝑖 and 𝑓𝑖 introduced later by twice integrating the 

bending moment in each segment to obtain pile deflection). At the layer interfaces, the 

distribution of soil reaction and shear force along the pile is not continuous. It was 

assumed in this study that the soil reaction at the interfaces is proportional to the soil 

layers modulus of elasticity and governed by the following equations 

(𝑎)  
𝑝𝑐𝑙𝑎𝑦(𝑧𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒)

𝑝𝑠𝑎𝑛𝑑(𝑧𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒)
=

𝐸𝑐𝑙𝑎𝑦

𝐸𝑠𝑎𝑛𝑑
= 0.12; (𝑏) 

𝑝𝐶𝐷𝑆𝑀(𝑧𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒)

𝑝𝑐𝑙𝑎𝑦(𝑧𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒)
=

𝐸𝐶𝐷𝑆𝑀

𝐸𝑐𝑙𝑎𝑦
= 13.2  (3.4) 

where 𝐸𝑐𝑙𝑎𝑦=6215 kPa, 𝐸𝐶𝐷𝑆𝑀=82217 kPa, and 𝐸𝑠𝑎𝑛𝑑=51164 kPa are the modulus of 

elasticity of the soft clay, improved clay, and the dense sand, respectively. The values for 

these moduli were determined using both laboratory tests conducted in this project and 

values reported in the literature. As for the boundary conditions, bending moment, shear 

force, and deflection associated at the pile toe along with the soil reaction were assumed 

to be zero. Applying the measurements regarding the pile displacement above the soil 

surface as additional constraints resulted in distortion of the interpolated bending moment 

around the pile toe and unusual shapes for the deflected piles. Therefore, the freestanding 
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portion of the pile above the soil surface was not included in the curve fitting process; 

however, the associated measurements were considered for validation of the derived 

deflection, as will be discussed in the next section. Boundary conditions at the soil surface 

were considered as a shear force equal to the applied lateral force and a bending moment 

calculated from the strain gage data at a depth of 35 cm within the improved soil. Because 

precise measurements regarding the location of the lateral force in the centrifuge model 

were not available, the bending moment derived from the lateral force was found to be 

inaccurate, even though it was used for pile UIAB with no serviceable strain gages close 

to the soil surface. The lateral soil reactions acting on the pile were estimated by twice 

differentiating the bending moment with respect to depth. Pile deflections were estimated 

by twice integrating the bending moment with depth. 

3.3 Details of the testing procedure 

The pseudo-static lateral loading test was performed with an actuator in a displacement-

controlled mode in multiple steps. The loading started by moving the pile head from the 

initial position to a target displacement on the right side (towards the north side of the 

box) and maintaining this displacement for several minutes in order to send the command 

for the next step to the actuator. In the following step, the pile head was moved to the 

opposite side. The applied displacements at the end of each step are shown in Table 3.1 

for pile 6DEF. Other piles followed the same loading pattern and target top 

displacements. The piles were subjected to a sequence of pseudo-static lateral loads 

applied incrementally to the pile head until a target deflection was achieved at the location 

of a loading point about 3.94 m above the soil surface (Figure 3.1). The positive 

displacement is to the right side. The deflections induced in the freestanding length of the 
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piles were measured at three levels using displacement transducers. In the next loading 

step, the pile head was moved to the opposite side. Moving the pile from one side to the 

other in one loading step took about 10-15 seconds, whereas a pause of two to three 

minutes between loading steps was required to set up the actuator for the next deflection. 

To derive the bending moments, data were collected from a group of electrical-resistant 

strain gages distributed along the piles: five pairs located below the soil surface and one 

pair above the soil surface.  

The improved and unimproved piles 6DEF, 9DKL, 12DMN, and UIAB 

experienced 0.606 m, 0.632 m, 0.189 m, and 0.594 m deflection on the right side of the 

piles, respectively at the piles tops, 3.94 m above the soil surface, in response to a 

maximum applied load of 143 kN, 188 kN, 120 kN, and 63 kN, respectively. The required 

lateral force for inducing nearly the same amount of top deflections increased as the 

improved zone became larger in size. Pile 12DMN was subjected to smaller 

displacements compared to other piles to prevent significant damage to the pile and the 

surrounding improved soil since there was only one pile with 12D improvement and this 

pile had to be protected for seismic loading.   

3.4 Primary results: distributions 

Lateral force-displacement curves measured at the pile tops for selected loading steps are 

shown in Figure 3.2. The arrows in these figures show the direction of the pile head 

displacement. The envelop curves shown in Figure 3.3 were generated by plotting the 

peaks of the load-displacement traces at the end of each loading step. The curves obtained 

from testing 6DEF and UIAB after seismic loading match those obtained before the 

shakings (UICD and 6DDGH) and confirm the visual observations that the piles and 
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CDSM block around 6DEF sustained no damage during shaking. Small-strain lateral 

stiffness values (at a lateral displacement of 0.05 m) for unimproved (UIAB), small 

improvement (6DEF), medium improvement (9DKL), and large improvement (12DMN) 

were 400 kN/m, 600 kN/m, 760 kN/m, and 880 kN/m, respectively. The ultimate lateral 

resistance (at a displacement of 0.6 m) of the unimproved pile was about 50 kN, whereas 

that of the pile in the medium improved zone was about 200 kN. Although the load-

displacement curves for 12DMN and 9DKL improvements appear similar up to 0.2 m of 

lateral displacement, the 12DMN pile likely would have provided somewhat higher load 

resistance than the 9DKL pile if the loading continued. The closeness of these two curves 

indicates that the full benefit of ground improvement may be achieved around 

17D×17D×12D improvement. That is, further ground improvement beyond this region 

will produce only negligible benefit to the lateral loading behavior of the pile for this soil-

pile system.  

The distributions of pile bending moments with depth are shown in Figure 3.4. 

The measured bending moments are shown by discrete points in these figures. The curves 

indicate that the piles in both improved and unimproved soils reached the yield bending 

moment (YBM) of 305 kN.m. The maximum bending moments for the unimproved pile 

UIAB occurred at 3 to 4 m below the ground surface. The maximum bending moments 

and shear forces (Figure 3.5) in the improved soil occurred within the improved zone. For 

a lateral displacement of about 0.2 m, the maximum bending moments in the unimproved 

as well as small, medium, and large improvement zones were, 184 kN.m, 238 kN.m, 460 

kN.m, and 616 kN.m, respectively. For the same lateral displacement, maximum shear 

forces were, 36 kN, 76 kN, 188 kN, and 376 kN. For a lateral force of about 60 kN, the 
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piles deflection at the soil surface were, 0.298 m, 0.015 m, 0.011 m, and 0.010 m, 

respectively while the measured displacement at the piles tops were, 0.510 m, 0.141 m, 

0.070 m, and 0.066 m, respectively as depicted in Figure 3.6. 

3.5 Secondary results: p-y curves 

The p-y curves were generated by plotting the peaks of the soil reaction–pile deflection 

traces at various depths. Figure 3.7 shows the derived curves at a depth of 0.5 m (1.75D). 

The loading steps in which the bending moment along the pile passed the yield point of 

305 kN.m are shown with large red circles. The loading steps beyond the yield points are 

removed, so the observed nonlinearity in the derived p-y curves is most likely due to the 

nonlinear soil-pile interaction rather than nonlinearities in the pile behavior. The lateral 

loads causing the bending moments in the piles to reach the yield moment are reported in 

Figure 3.7. In this figure, the curves on the right side of zero deflection are different from 

their counterparts on the left side. For a given displacement, more soil reaction develops 

on the right side than on the left side. The asymmetric response of the pile on the left and 

the right side of the center line can be explained by observed crack patterns in the CDSM 

block, as shown in Figures 3.8 and 3.9. These photographs were taken after stopping the 

centrifuge following the last loading step (Loading Step No. 20, Table 3.1). On the right 

half of the improved zone, a diagonal crack developed. On the left half, two perpendicular 

cracks can be seen; they appear to separate almost a quarter of the CDSM block from the 

rest of the improved zone. It is very likely that the separated zone provided less resistance 

during movements to the left side. Relaxation of the pile under sustained top deflection 

at the end of each step caused a gradual drop in the lateral soil reaction, as can be detected 

on the curves derived for 6DEF. Unlike piles 6DEF and 9DKL, no degradation in the 
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improved zone was observed, other than a slight separation of pile for 12DMN, as shown 

in the pictures in Figure 3.10. It should be noted here that the lateral displacements applied 

to pile 12DMN are much smaller than those applied to 6DEF and 9DKL. 

Figures 3.11 through 3.14 portray the p-y curves at various depths in the improved 

clay and soft clay. The extracted p-y curves are compared with conventional curves 

proposed by Reese and Welch (1975) for stiff clay with no free water within the improved 

zone, and by Matlock (1970) for soft clay, respectively. The conventional curves were 

drawn using the associated models available in LPILE (Ensoft, Inc., 2004) and referred 

to as the “built-in models.” Even though the centrifuge model was kept saturated by 

maintaining a one-centimeter-deep layer of free water above the soil surface, it was 

believed that the water could not cause considerable material degradation in the cemented 

soil and particularly in the gap between the improved soil and pile induced by repeated 

loading. Furthermore, the proposed p-y curves for stiff clay with free water by Reese and 

Cox’s (1975) showed that at a particular deflection the ultimate soil resistance was 

developed and beyond this point there was a reduction in soil resistance with continued 

deflection which did not agree with the characteristic shapes of the derived curves in the 

pseudo-static centrifuge tests.  

The results for each pile will be discussed below 

 Pile UIAB: The extracted p-y curves in soft clay within the top 1.5 m of the 

surface soil were difficult to interpret. At deeper layers, they exhibited hyperbolic shapes, 

as shown in Figure 3.11. The initial stiffness and the ultimate strength increased with 

depth. The conventional p-y curves using Matlock’s soft clay model underestimated the 
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ultimate strength and overestimated the initial stiffness at depths of 3.5 m and 5 m. The 

derived p-y curve at a depth of 2 m matched the conventional model at a depth of 3.5 m. 

 Pile 6DEF: The conventional model for stiff clay with no free water produced p-

y curves that varied proportionally with depth (i.e., both stiffness and strength increased 

with depth). Contrary to expectations, the ultimate strength of the p-y curves derived from 

experiment in the improved zone was inversely related to depth. Direct comparison of the 

derived p-y curves with the ones generated by the stiff clay model implies that the 

conventional model with the selected parameters, which will be discussed in detail in the 

next section, consistently overestimated the experimentally derived curves. Nonetheless, 

the characteristic shape of the p-y curves generated by the model agreed with those from 

the experiment, especially the point at which the curves reached their plateaus, near 0.05 

m. Below the interface of the improved and soft clay, the extracted p-y curves appear as 

expected, stiffer and stronger with depth. Similar to the UIAB, the soft clay model 

overestimated the soil reaction for pile deflections smaller than 2 cm. However, the 

congruity between the model and the experimental results increased at greater depths. 

The p-y curves derived from testing 6DEF in soft clay appear to be softer than their 

counterparts obtained from testing UIAB.  

 Pile 9DKL: Extending the treated zone around the pile to larger lateral and 

vertical extents does not affect the curves produced by the stiff clay model, because the 

improved soil is treated as a semi-infinite layer in the conventional model. On the other 

hand, the experiment-based curves showed a stiffer and stronger behavior compared to 

6DEF curves (Figure 3.13a). The conventional model still overestimated the stiffness and 

ultimate strength. For example, the soil reaction at a depth of 0.5 m on pile 6DEF 
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increased from 150 kN/m to 280 kN/m on pile 9DKL. The inverse relationship with depth 

was also observed in the improved zone. Due to difficulties in interpreting the data for 

pile deflections smaller than 1 cm, the p-y curves in soft clay were plotted only at two 

depths, 3.5 m and 5 m, as shown in Figure 3.13(b). Interestingly, the conventional model 

underestimated the soil reaction in soft clay. It appears that the presence of the improved 

zone affected the behavior of the underlying soft clay and induced p-y curves stiffer and 

stronger than the curves at the same depths back-calculated for UIAB and 6DEF. Figures 

3.12 and 3.13 also show a smooth transition from the p-y curves in the improved zone 

(close to the interface of the improved zone and the soft clay) to the ones within the soft 

clay right below the interface (e.g. at depths of 2 m and 3 m, respectively for piles 6DEF 

and 9DKL). This is likely due to the fact that as the depth increases, the soil reactions are 

likely to be influenced more by the soft clay below the CDSM block. In other words, “p” 

values at a given depth do not depend only on the soil at that depth, as assumed by the 

theory, but also are affected by adjacent soil layers. This phenomenon is not captured by 

the conventional models. 

 Pile 12DMN: As was explained in Section 3.3, pile 12DMN experienced only 

very small loads, the largest of which was 130 kN. The derived p-y curves should 

represent the material behavior in the linear range within small displacements of up to 3 

cm at the soil surface. At a depth of 0.5 m, for displacements smaller than 0.01 m, a close 

agreement between the curves resulting from the experiment and from the stiff clay model 

was observed. Because the induced pile deflections inside the soft clay layer were less 

than 0.001 m, it was difficult to provide a meaningful interpretation of the results.  
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 For the sand layers (whose results are not shown here), where the pile deflection 

was less than 0.01 cm, the conventional model proposed by Reese et al. (1974) 

overestimated the derived curves, although both showed linear behavior.  

3.6 Validation of the conventional models 

This section details the implementation of the conventional and the experimentally 

derived p-y models in simulating the pile response under static top load in improved and 

unimproved soil using LPILE. The simulation results are compared with the bending 

moment and the deflection measured in the centrifuge tests.  

3.6.1 LPILE simulations using the conventional p-y curves 

The improved soil was modeled with Reese and Welch’s (1975) model for stiff clay with 

no free water. The underlying soft clay and sand were modeled using the p-y curves 

proposed by Matlock (1970) and Reese et al. (1974), respectively. Based on the available 

data and upon the judgment of the authors, the input values of these built-in models were 

selected following the recommendations available in the LPILE program manual. The 

soil was modeled as a horizontally layered system (an LPILE assumption). As a result, it 

did not allow for proper consideration of the improved zone’s lateral dimensions.  

In the conventional model calibration, ε50, the strain corresponding to one-half of the 

maximum deviatoric stress in triaxial tests, was selected as 0.002 and 0.004 for the 

unimproved and improved soft clay, respectively, according to the recommendations in 

the LPILE manual. The selected values were quite close to the results of triaxial tests, as 

plotted in Figure 3.15 (Thompson, 2011). The selected values for ε50 happened to agree 

with the values suggested in the LPILE manual. As explained in Section 2.2, the soft clay 

layer consists of four sublayers that were consecutively placed and consolidated during 
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construction of the centrifuge model. The required parameters concerning the effective 

unit weight, the consolidation stress, and the undrained shear strength of each soil layer 

are listed in Table 3.2. The undrained shear strength, 𝐶𝑢, of the soft clay was estimated 

based on the correlation relation proposed by Ladd and Foot (1974) as 

𝐶𝑢 = 0.22 ∗ 𝜎�́� ∗ 𝑂𝐶𝑅0.8                     (3.5) 

where σv́ is the effective vertical stress. OCR at the top and the bottom of each soil layer 

was calculated using the effective stress applied to the soil layers during the consolidation 

phase of the centrifuge model preparation and the state of stress in the centrifuge. Shear 

strength of the improved soil was estimated as 330 kPa, based on the unconfined 

compressive strength of cured samples measured in laboratory tests (Figure 2.10). The 

subgrade coefficient and the friction angle of the dense sand layer was selected, 

respectively, as 33900 kN/m3 and 38 degrees, based on the recommendations in the 

LPILE manual. 

3.6.2 LPILE simulations using the user-defined p-y curves 

The experimental p-y curves (see Figures 3.11 to 3.14) were assigned as user-defined 

curves to the soil layers in LPILE models at various depths. In LPILE simulations 

utilizing both the user-defined and the built-in p-y curves, the upper boundary condition 

was defined as a pure lateral force at 3.94 m above the soil surface, which is consistent 

with the boundary conditions assumed in the bending moment curve-fitting. 

Simulated bending moment, shear force, soil reaction, and pile deflection for a 

lateral force of 60 kN are plotted in Figures 3.16 through 3.19. Simulations were 

performed considering a lateral force of 60 kN, which seemed to be a reasonable choice 
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for comparing the behavior of unimproved and improved piles without yielding the pile 

itself. Therefore, the pile behavior was limited to the elastic region (Figure 3.7). Curves 

labeled “No. 1” and “No. 3” are associated with the built-in and the experimentally 

extracted p-y curves, respectively. Curves marked “No. 2” were back-calculated using 

the spline curve fitting of bending moments described in Section 3.4. The actual 

measurements are marked with filled squares on the graphs of bending moment and pile 

deflection. Curves marked ”No. 4” represent the simulation results where the E ratio in 

Eq. 3.4 was set to 1, which will be discussed in Section 3.7. 

The back-calculated p-y curves for UIAB predicted deflections in the freestanding 

length of the pile matching the values measured by the displacement transducers at two 

levels, as shown in Figure 3.16, whereas the Matlock soft clay model resulted in larger 

deflections. In general, the predicted bending moment, shear force, and soil reaction using 

the back-calculated p-y curves are consistent with those generated using the built-in 

models, except at the interface of the soft clay and sand, where the built-in models 

produced lower soil reaction. It should be noted that the sign convention used indicates 

that positive soil pressure is directed from left to right. The associated pile deflections at 

the soil surface were found to be compatible with the soil reactions which means a 

positive pile displacement to the right side generates a negative soil reaction and vice 

versa.  

Figure 3.17 shows that, for pile 6DEF, the simulated deflections outside the soil 

layer using the back-calculated curves lay between the measured values and the values 

predicted by the built-in models. For the zone of smallest improvement, the conventional 

models create a stiffer pile, because the LPILE models do not include the lateral extent 
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of the improved zone as an influencing factor on the overall stiffness. Because no 

measurement of bending moment was available within the improved zone, a linear 

distribution of soil reaction was obtained from the spline curve fitting (curve No. 2), 

which differs from the S-shaped distribution of the soil reaction produced by the built-in 

models (curve No. 1).  

The measured and LPILE-predicted deflections for 9DKL using the derived p-y 

curves compared quite well, as can be seen in Figure 3.18. Slight underestimation of the 

conventional models is believed to be related to the non-inclusion of the lateral extent of 

the improved zone. The sudden change in the soil reaction distribution at the interface of 

the improved and unimproved soft clay produced by LPILE and represented by curve No. 

1 is compatible with our assumption on the discontinuity of the soil pressure in Eq. 3.4. 

As depicted in Figure 3.19, the excellent match between the measured and the 

predicted deflections for pile 12DMN suggests that, for this configuration of the improved 

zone, practically identical results can be produced for the experimentally derived p-y 

curves and those based on the Reese and Welch model for stiff clay with no free water.  

Ultimately, for all piles in the improved soil, the LPILE-predicted bending 

moments using the conventional models at the interface of the improved and soft clay 

was smaller than the measured values. In addition, the predicted shear force in the 

improved zone using the conventional models was consistently higher than that of the 

user-defined curves. The under- and over-estimation of the conventional models might 

be of concern where they are employed for design purposes. Another important 

observation from the simulated responses is that the presence of the improved soil altered 

the distribution of the bending moment, shear forces, soil reaction, and pile deflection. 
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The maximum values were concentrated in the improved zones. The case with the zone 

of smallest improvement (6DEF) can be considered as a hybrid case, having the 

components of the unimproved and improved soils. 

3.7 Sensitivity analysis 

Increasing and decreasing the E ratio in part (b) of Eq. 3.4 by a factor of five in all 

improved cases did not noticeably affect the simulated pile responses except for pile 

9DKL. Setting the E ratios at the soil layer interfaces equal to one had minor effects on 

the distributions for piles UIAB, 6DEF, and 12DMN, as represented by curve No. 4 in 

Figures 3.16, 3.17 and 3.19. However, it significantly influenced the distributions for pile 

9DKL such that the pile deflection at the soil surface no longer agreed with the 

measurements above the soil surface (Figure 3.18). The insensitivity of the responses of 

piles 6DEF and 12DMN might be related to the smaller spacing between the strain gages 

and the location of the strain gages within the improved zone, which is another 

influencing factor that imposes constraints on the estimated bending moment distribution. 

The sensitivity analysis results confirmed that introducing discontinuities at the soil layer 

interfaces improved the quality of the derived quantities, including the pile deflections. 

3.8 Summary of the observations and conclusions 

 The bending moment curve-fitting procedure developed in this chapter takes into 

account the soil layering effects by including sharply varying soil reactions at the 

interface of improved and soft clay layers. This is a novel feature of the proposed 

approach. The close agreement of the estimated pile deflections with measurements 

confirmed that the adopted method significantly improved the accuracy of the 
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estimations, especially when the spacing between the strain gages was large, as was the 

case with pile 9DKL.  

 The one-dimensional soil model created in LPILE was not capable of 

incorporating the limited lateral extent of the improved zones; as a result, the built-in 

models overestimated both the stiffness and the ultimate strength of the improved soft 

clay for piles 6DEF and 9DKL. However, the agreement between the derived p-y curves 

and the conventional model curves and also the agreement between the measured and 

LPILE-simulated responses became closer as the size of the improved zone increased, 

such that close matches were observed for pile 12DMN. This behavior is expected 

because the one-dimensional soil model generated by LPILE can represent the behavior 

of the improved soil in the centrifuge experiment more accurately as its lateral extent 

increases and the influence of the surrounding soft clay vanishes as it moves deeper within 

the soil profile. 

 The conventional curves compared reasonably well with the derived curves in soft 

clay. 

 An inverse relationship of the derived curves with depth within the improved soil 

was observed for piles 6DEF and 9DKL.  

 As the size of the improved zone increased, more lateral resistance was provided 

inside the improved zone at the same lateral deflection. 

 The study evaluated the merits and limitations of the conventional p-y methods in 

modeling the pile behavior in three different configurations of the improved soil. The 

conventional models were found to be accurate for predicting the deflection response of 
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piles of 9D and 12D improvements, but inaccurate for 6D. The conventional models 

accuracy improves as the lateral extent of the treated zone increases. 

 Maximum bending moments and shear forces within piles was observed in the 

improved zones. The design implication of these findings is that for a given lateral load, 

ground improvement around a pile in soft clays can be used to reduce the corresponding 

lateral displacement considerably. The bending moments and shear forces generated 

within the piles for a given lateral displacement, however, will be significantly increased, 

especially within the improved soil regions. Therefore, appropriate dimensions for the 

piles should be selected so that any significant yielding or premature failure of the pile 

can be prevented, as assumed in routine seismic design practice, and the full potential of 

a pile can be realized. 

 The closeness of these force-displacement curves at pile tops indicates that the 

full benefit of ground improvement may be achieved in improvement zones of 

approximately 17D×17D×12D in size. That is, further ground improvement beyond this 

region will produce only negligible benefit to the lateral loading behavior of the pile for 

this soil-pile system.  

 Depending on the vertical and horizontal extents of the ground improvement area, 

the small-strain lateral stiffness and load resistance of a pile in improved soil subjected 

to cyclic loading increased from 2 to 8 times and 4 to 5 times, respectively, from those of 

a pile in the unimproved soil. 

 For a given lateral force, lateral displacements in improved soil can be reduced as 

much as 8 times compared to those in unimproved soil during cyclic loading. 
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 On the other hand, for a given lateral displacement, for a pile in improved soil, 

the maximum bending moments in piles increased by as much as 3 times, and the shear 

forces increased as much as 8 times, over that for a pile in unimproved soil.  

 Soil reaction at a given depth do not depend only on the soil properties at that 

depth, as assumed by the theory, but also are affected by adjacent soil layers. This 

phenomenon is not captured by the conventional models. 
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Table 3-1 Target Displacement on the Left and Right Sides for the Piles 

Lateral displacement 

Right side (m) Left side (m) 

(1)   0.039 (2)   0.049 

(3)   0.057 (4)   0.067 

(5)   0.077 (6)   0.087 

(7)   0.094 (8)   0.106 

(9)   0.142 (10)   0.148 

(11)   0.189 (12)   0.205 

(13)   0.287 (14)   0.300 

(15)   0.382 (16)   0.397 

(17)   0.511 (18)   0.525 

(19)   0.606 (20)   0.619 

 

Table 3-2 Input Parameters Used in LPILE Simulations 

Soil Layer 
Thickness 

(m) 

Effective unit 

weight (kN/m3) 

Consolidation 

stress (kPa) 

Undrained shear 

strength (kPa) 
𝜺𝟓𝟎 

Improved soft 

clay 

6DEF=1.71 

9DKL=2.58 

12DMN=3.42 

8.69 - 330 0.004 

Clay layer 4 2.742 8.18 25 
Top=2.78 

Bottom=5.38 
0.002 

Clay layer 3 2.490 8.68 45 
Top=8.61 

Bottom=9.86 
0.002 

Clay layer 2 2.250 9.05 70 
Top=14.03 

Bottom=15.15 
0.002 

Clay layer 1 2.520 9.28 95 
Top=19.34 

Bottom=20.57 
0.002 

Sand 6.396 10.88-10.44 - - - 
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Figure 3.1 Time histories of top displacement and the applied force for pile 6DEF 

in loading steps: (a) No. 11 and (b) No. 12 
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Figure 3.2 Lateral force-displacement curves measured at the pile tops for selected 

loading steps 
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Figure 3.3 Envelopes of the lateral load-displacement curves at the pile tops 
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Figure 3.4 Distribution of bending moment along the piles 
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Figure 3.5 Distribution of the shear force along the piles 
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Figure 3.6 Distribution of pile deflections 
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Figure 3.7 Soil reaction-pile deflection traces at the depth of 0.5 m (1.75D) 
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Figure 3.8 Location of the cracks in the cement treated zone around 6DEF 
 

 

 

Figure 3.9 Deterioration in the improved soil around pile 9DKL 
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Figure 3.10 Pile 12DMN after pseudo-static loading tests 
 

 

 

 

 

Figure 3.11 p-y curves derived from the experiment and the conventional model-

Pile UIAB 

(Solid black lines represent the conventional model for soft clay.) 
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Figure 3.12 p-y curves derived from the experiment and the conventional models-

Pile 6DEF 

(a) in improved clay (b) in soft clay (depth of improvement=1.71 m) 

(Broken lines represent the conventional model for stiff clay, and solid black lines 

represent the conventional model for soft clay.) 
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Figure 3.13 p-y curves derived from the experiment and the conventional models-

Pile 9DKL 

(a) in improved clay (b) in soft clay (depth of improvement=2.57 m 

(Broken lines represent the conventional model for stiff clay, and solid 

black lines represent the conventional model for soft clay.) 
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Figure 3.14 p-y curves derived from the experiment and the conventional models-

Pile 12DMN 

 (Broken lines represent the conventional model for stiff clay.) 

 

 

 

 
 

Figure 3.15 Results of the triaxial tests on unimproved and the improved soft clay 

(Thompson, 2011) 
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Figure 3.16 Distribution of pile deflection, bending moment, shear force, and soil 

reaction induced by lateral force=60kN on pile UIAB 
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Figure 3.17 Distribution of pile deflection, bending moment, shear force, and soil 

reaction induced by lateral force=60kN on pile 6DEF 
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Figure 3.18 Distribution of pile deflection, bending moment, shear force, and soil 

reaction induced by lateral force=60kN on pile 9DKL 
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Figure 3.19 Distribution of pile deflection, bending moment, shear force, and soil 

reaction induced by lateral force=60kN on pile 12DMN 
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CHAPTER 4: OBSERVATIONS AND INTERPRETATION OF 

SEISMIC TESTS RESULTS 
 

The measured data from the seismic testing of piles in unimproved and improved soft 

clay are discussed in this chapter. Also included in this chapter are an interpretation of 

the raw data and the back-calculated and derived quantities. The observations provide 

further insight into the load transfer mechanism between pile foundations and the 

improved ground.  

4.1 Model container effects 

The influence of the model container on the motion of the soil, particularly the motion of 

the surface layers, is an important consideration in centrifuge modeling. The container 

effects and the level of coherency of motion across the soil model and the container were 

evaluated by comparing the acceleration time histories recorded on the five rings of the 

container and the soil close to the south and north walls of the container. The rings shown 

in Figure 2.2 are stacked up in such a way that Ring 1 and Ring 5 are, respectively, the 

lowest and the highest ones above the baseplate. The container and the soil had similar 

responses to the applied excitations, as shown in Figure 4.1 for the third event, except for 

clay layer 4, where the maximum acceleration of the soft clay was three to four times 

smaller than that of the container at that level. In addition, at the surface, the soil motion 

had a lower frequency content compared to the container. Reduction in accelerations in 

clay layer 4 is likely due to softening of this layer during the strong third event. The 

acceleration response of A13 close to the shear rods on the north side showed several 

spikes that are likely due to the sand and soft clay boundary effects and the effects of the 

shear rods. 
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4.2 Top masses accelerations 

The peak superstructure acceleration has been employed to estimate inertial loads 

imposed on pile heads in static-seismic/pseudo-static design analysis (Abghari and Chai, 

1995; Liyanapathirana and Polous, 2005; Tabesh ans Poulos, 2001). Seismic masses (also 

called top masses) simulated the inertial effects of superstructures on the centrifuge model 

piles. Acceleration time-histories measured on the seismic masses during the three 

shaking events are shown in Figures 4.2 through 4.4. During Events 1 and 2 (Figure 2.15), 

the improvement around 9DIJ and 12DMN reduced the maxima of the top mass 

accelerations compared to the unimproved case. Conversely, the acceleration of the top 

mass mounted on 6DEF was amplified. Possible reasons for this unexpected behavior 

will be explained in Chapter 5 utilizing modal analysis methods. For the third shaking 

event, the maximum acceleration of top mass on UIAB, reached at 6 seconds, was 

reduced in all of the improved piles, but for pile 12DMN, significant amplification with 

respect to the unimproved pile was apparent at 10 to 12 seconds. Moreover, the 

accelerations of the top masses on piles 12DMN and 9DIJ had higher frequency content 

than the piles 6DEF and UIAB. The maximum accelerations measured on the seismic 

masses during the three events are compared in Figure 4.5, which shows that the 

efficiency of the ground improvement becomes more pronounced as the shaking event 

intensity increases. Various causes might have contributed to this behavior. Softening of 

the top clay layers could be the most likely reason. Another reason is believed to be the 

frequency content of the input motion and the natural frequencies of the piles; this will 

be explored in detail in Chapter 5. At this point, with regard to maximum accelerations, 

pile 9DIJ seems to have shown overall the best performance.  



65 

4.3 Pile deflections measured by displacement transducers 

The lateral deflection of the free length of the piles outside of the soil was measured by 

one displacement transducer. Because the transducers were supported by a reaction beam 

clamped to the uppermost ring of the container, the values recorded by these sensors 

represent the relative displacement between the piles and the last ring of the container (as 

shown in the photograph in Figure 4.6). 

Figures 4.7 through 4.9 compare the lateral deflection of the piles already 

subjected to pseudo-static loads with their counterparts saved for the seismic load tests. 

In these figures, DSS stands for the distance of the sensors from the soil surface. Notably 

larger displacements were recorded on the tested piles for the first and second events. 

However, in the third event, close displacement behavior was observed for the two groups 

of piles. This is likely due to the reason that during the stronger third event undisturbed 

soil was engaged by all the piles. In the first and second events, the largest displacement 

was recorded on 6DEF (Figure 4.10), whereas the second largest displacement was 

produced by UIAB. In the third event, the smallest displacements were recorded on piles 

9DIJ and 12DMN. Although the transducer measurements for 6DEF and 9DIJ look the 

same, 9DIJ’s was located at a higher elevation than 6DEF’s. Therefore, by comparison, 

9DIJ reduced the lateral deflection. The data acquired from the displacement transducers 

confirmed that improvement zones with depths of 9D and 12D can effectively reduce the 

pile displacements. 

Pile displacements above the soil surface also can be obtained from the measured 

acceleration of the top masses. After the base acceleration was subtracted from the top 

masses absolute accelerations shown in Figures 4.2 through 4.4, the relative accelerations 
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were double-integrated and drift-corrected using fourth-order band-pass Butterworth 

filters with cut-off frequencies in the range of approximately 0.3-8 Hz to obtain the 

displacement histories shown in Figures 4.11 through 4.13. Double integration gives only 

the dynamic component of the displacement. Permanent displacement is inherent in the 

low-frequency part of the acceleration signal, which was filtered out due to noise 

corruption. The acceleration-based displacement values shown in Figures 4.11 through 

4.13 represent the pile displacement with respect to the container base. To correct the 

displacements recorded by LPs attached to the pile tops to compensate for the motion of 

Ring 5, the relative displacement between the ring and the container base was calculated 

using the recorded accelerations of the ring and the base. Then, the derived displacements 

were added to the transducers’ measurements. In these figures, y(0) is the pile 

displacement at the soil surface which was be back-calculated from the bending moment 

measurements as discussed in Section 4.6. 

Because the accelerometers were located at higher elevations than the 

displacement transducers (as can be seen in the photograph in Figure 4.6), it was expected 

that the acceleration records would indicate larger displacements. However, the 

displacement derived from double integration of the filtered acceleration records was 

consistently smaller than the one derived from the LPs. It is to be noted that the 

acceleration-derived displacement contained only the transient component of the motion 

since the permanent component was filtered out. This complicates the interpretation of 

the derived displacements. Nevertheless, the displacements obtained from two different 

sensors compared reasonably well in terms of following the same trends as shown in 

Figures 4.11 through 4.13.  
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The derived displacements from LPs and top mass accelerometers again 

highlighted the poor performance of 6DEF in Events 1 and 2 and UIAB in Event 3 in 

reducing the lateral displacements. 

It should be noted that, during the third event, the pile head displacements did not 

exceed the largest displacement experienced by the piles in pseudo-static loads except in 

pile 12DMN. As mentioned earlier in Section 3.3, the improved and unimproved piles 

6DEF, 9DKL, 12DMN, and UIAB experienced 0.606 m, 0.632 m, 0.189 m, and 0.594 m 

deflection at the pile tops, 3.94 m above the soil surface, in response to maximum applied 

loads of 143 kN, 188 kN, 120 kN, and 63 kN, respectively. The maximum deflection for 

pile 12DMN derived from LP6 (slightly below the pile head) was 0.4 m which was almost 

twice the maximum pseudo-static displacement. 

The maximum inertial loads exerted by the top masses on piles in Event 3 (the 

largest shaking event) were 3.0 kN, 2.2 kN, 3.2 kN, and 4.3 kN, respectively, which were 

much smaller than the pseudo-static loads. This confirms the dominance of kinematic 

contributions for these piles in generating large top displacements during seismic shaking. 

4.4 Bending moment measurements 

Due to a malfunction in the data acquisition system, no data were recorded from the strain 

gages on piles UIAB, 6DEF, and 9DIJ in the first and the second shaking events. Figures 

4.14 and 4.15 show the time-histories of bending moments derived from the strain gages 

attached to pile 12DMN in the first two events. The maximum bending moment in the 

first event was observed at a depth of 3.46 m within the improved zone, whereas in the 

second event, the maximum value was pushed down deeper to a layer within the soft clay 

at a depth of 8.38 m, close to the interface of clay and sand. In the third event, the 
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maximum moment occurred at a depth of 3.46 m in 12DMN and at a depth of 8.35 m in 

6DEF and UIAB, while all happened around 7 seconds (Figures 4.16 through 4.18). In 

12DMN and 6DEF the bending moments at 0.34 m below the soil surface and 2.15 m 

above the soil surface contained higher frequencies. 

4.5 Dynamic BNWF 

The BNWF concept was extended to seismic problems as the decoupled analysis of near-

field soil-structure interaction response and free-field response. Two important features 

of seismic response are the kinematic interaction between the pile and the soil, and the 

inertial interaction consisting of the transferred superstructure inertial forces to the pile 

foundations. The presence of stiff foundation within the soil causes the foundation 

motions to deviate from the free-field motions. Scattering of seismic waves off of corners 

and asperities of the foundation can potentially contribute to such deviations. Therefore, 

the rigidity and size of the pile foundation as well as the spatial variation of earthquake 

ground motion are among the most influencing parameters. At a large distance from the 

foundations, soils are less affected by the structures, and the behavior of the soil can 

efficiently represent the soil response to one-dimensional shear wave propagation. The 

ground motion time histories along the depth of the free-field soil profile are applied to 

the support of the interaction springs/elements (Figure 4.19).  

In this study, the vertical array of accelerometers at the center of the container 

(DH3 in Figure 2.11) included the largest number of sensors and was at a large distance 

from the model boundaries. For these reasons, DH3 was employed to obtain the free-field 

soil displacement profile. Since DH3 lacked the acceleration data for the third clay layer, 

the data from A20 in the nearby array DH2 was employed to increase the resolution of 
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the free-field soil displacement profile. By subtracting the base motion acceleration from 

the recorded accelerations at the locations of the accelerometers in soil, relative 

accelerations of free-field motion with respect to the base were obtained. Then, the soil 

displacements with respect to the base of the model were calculated by double integration 

of the derived relative acceleration time-histories. As shown in Figure 2.11, the sensor 

numbers and the depths of these accelerometers are: A2, z=16.03 m; A6, z=12.04 m; A11, 

z=8.74 m; A16, z=6.34 m; A20, z=3.79 m; A26, z=1.24 m; and A32, z=0.2 m. In Figures 

4.20 through 4.24, the free-field soil displacements (curves drawn with solid lines) along 

with the piles displacements (curves drawn with broken lines), which will be discussed 

in Section 4.6 are plotted. The maximum displacement at the soil surface was 2 cm, 4 cm, 

and 25 cm in the first, second, and the third events, respectively. 

4.6 Back-calculation of soil reactions and pile deflections 

The methodology described in Chapter 3, Section 3.2, was adopted to curve-fit the 

bending moment data measured during the base shaking events. The upper boundary 

condition, the shear force in the pile at the soil surface level, was set to the inertial loading 

of the top mass: the product of the top mass and its absolute acceleration. The boundary 

conditions at the pile tip were defined as zero for bending moment, shear force, soil 

reaction, and pile deflection with respect to the soil. However, it was assumed that the 

sand around the pile tip 1.6 m above the base followed the same motion as the base. 

In Dynamic BNWF, the soil exerts resisting forces against lateral pile movement, 

applied through distributed interaction elements, combinations of springs and dashpots, 

as will be explained in Chapter 6. Dynamic equilibrium of a pile resting against a uniform 
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distribution of the interaction elements can be expressed by a fourth-order partial 

differential equation as 

𝐸𝐼
𝜕4𝑦𝑝(𝑧,𝑡)

𝜕𝑧4 + 𝑚
𝜕2𝑦𝑝(𝑧,𝑡)

𝜕𝑡2 + 𝐹𝑒(𝑦𝑝 − 𝑦𝑠) = 0        (4.1) 

Here, 𝑦𝑝 is the transverse deflection of the pile and 𝑦𝑠 is the soil displacement with respect 

to the base. 𝐹𝑒 is the soil reaction per unit length of the pile which is a function of pile-

soil relative displacement. 𝐸𝐼= 3.54×104 (kN.m2) is the flexural stiffness of the pile, 𝑚 is 

the mass per unit length of the pile, and 𝑧 denotes the depth measured from the soil 

surface. Double integration of bending moment gives the displacement of the pile with 

respect to the pile tip. As can be inferred from Eq. 4.1, the first term can be obtained by 

multiple differentiation of 𝑦𝑝(𝑧) derived from curve-fitting of the bending moment, called 

p in Chapter 3. However, in using the same methodology for curve fitting, it should be 

noted that the derived p for seismic loading is in equilibrium with inertial load of the pile 

itself and the forces in the interaction elements. In this study, it was assumed that the 

effects of pile masses were insignificant, and therefore the second term of Eq. 4.1 was 

neglected.  

The derived pile deflection at the soil surface y(0) was compared with the 

measured deflections by LPs in Figures 4.11, 4.12, and 4.13. As the results show, the 

estimated pile deflections at the soil surface followed the trends in LPs measurements. 

The pile deflection at the soil surface derived for 12DMN in the third event (20 cm) was 

half that of piles 6DEF and UIAB (40 cm). The soil improvement apparently reduced the 

pile deflection at the soil surface, with the lowest deflection belonging to pile 12DMN. 

It was expected that pile deflections at the soil surface would be smaller than the 

LP’s measurements; however, in the first and second events, the deflection of pile 
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12DMN at the soil surface exceeded the LP’s measurements. It is not clear why the 

estimated pile deflections were larger. In the third event, the difference between the 

estimated pile deflection at the soil surface and the LPs’ measurements increased as the 

improved zone became larger. The data acquired from two pairs of embedded strain gages 

on 9DIJ had a very small signal-to-noise ratio. As a result of the missing measurements, 

no estimation for y(0) could be provided for pile 9DIJ. The back-calculated pile deflection 

at the soil surface, y(0), for piles UIAB and 6DEF were the first and second largest values, 

respectively in Event 3 which agreed with the results of Figure 4.5.  

Free-field soil was found to move in the same direction as the piles down to depth 

6.34 m. However, at the depth of 8.74 close to the interface of the soft clay and sand 

layers they became out of phase (Figures 4.20 through 4.24). Time histories of soil 

reactions and pile deflections shown in Figures 4.25 to 4.27 are in phase at some depths 

and out of phase at some other depths.  

4.7 Distributions  

Distributions of bending moment, shear force, soil reaction, and the displacement profile 

of the free-field and the piles are plotted in Figures 4.28 through 4.33 for the timing of 

peaks in the positive and negative peak base accelerations (Tb (P)=9.32 s; Tb (N)=9.14 s), 

in the free-field displacement (Tf=6.97 s), and in the inertial forces induced by the top 

masses (Tm (UIAB)=5.97 s; Tm (6DEF)=9.55 s; Tm (12DMN)=10.69 s). In pseudo-static 

foundation design approach (Abghari and Chai, 1995; Tabesh and Poulos, 2001), it is 

important to estimate the timing of the maximum inertial forces transmitted from the 

superstructure onto the head of the pile and the timing of the peak kinematic loads induced 

by the ground motions. 
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At time Tb (N)=9.14 s (Figure 4.28) and at time Tb (P)=9.32 s (Figure 4.29) the 

soil and pile displacements are 180 degrees out of phase. Disagreements between the 

displacements of the piles and the soil profile is a sign for the kinematic interaction. 

Disagreement between the pile displacements at the soil surface and LP measurements 

was observed at Tb (N)=9.14 s (Figure 4.28), at Tb (P)=9.32 s (Figure 4.29), and at Tm 

(6DEF)=9.55 s (Figure 4.32).  

Maxima of bending moments and shear forces appear to occur at different 

locations. The maximum soil reaction occurred at the interface of the improved and soft 

clay at Tf =6.97 s, Tm (UIAB)=5.97 s, and Tm (12DMN)=10.69 s and , whereas it moved 

further down, close to the interface of the soft clay and sand, at Tb (P)=9.32 s, Tb (N)=9.14 

s, and Tm (6DEF)=9.55 s. Comparing the distributions associated with the static and 

seismic loadings revealed that the direction of the dynamic soil reaction is not necessarily 

compatible with the direction of the pile-soil relative displacement at a given level. 

The envelopes of the maximum pile deflection, bending moment, shear force, and 

soil pressure for Event 3 are shown in Figure 4.34. As seen in this figure, the improved 

clay effectively restrained the motion of pile 12DMN for the positive deflections, whereas 

pile 6DEF followed the same deflection as the unimproved pile UIAB. The bending 

moment envelop for pile UIAB showed one broad peak approximately at the middle of 

the soft clay. The improved pile 6DEF’s peak bending moment occurred about 2 m above 

the clay-sand interface. Pile 12DMN showed an additional larger peak at the interface of 

improved and soft clay, which is where the pile started to yield. The maximum of the 

shear force in pile UIAB appeared to be close to the soil surface and the clay-sand 

interface, whereas it moved to the middle of the improved zone for the improved piles 
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6DEF and 12DMN, although a second, smaller peak appeared in the middle of soft clay. 

The maxima of soil reaction occurred for the improved and unimproved piles at the 

interface of the improved and soft clay, and 2 m above and below the interface of clay 

and sand, respectively. Unlike in the static case, the clay-sand interface happened to be 

the location for some of the maxima. The active length of the piles also tended to increase 

beyond the static values. It is believed that in kinematic interaction dominated vibration, 

deeper parts of the piles were involved. 

Nikolaou et al. (2001) observed that maximum kinematic bending moment occurs at 

the interface between two consecutive soil layers with considerable contrast in stiffness. 

The peak bending moment happens when the lateral ground displacements and the inertia 

loads are both large and act in the same direction, which is dependent on the natural period 

of the soil and structure. The timing of the peak bending moments in the piles which was 

around 7 s in Event 3 agreed with that of the free-field soil peak acceleration, Tf=6.97 s. 

This finding shows that the interaction between the soil and piles was controlled by the 

soil motion known as kinematic interaction. In this study, the seismic masses were not 

large enough to appreciably contribute in deforming the piles through inertial interaction. 

The dependency on the natural period of the soil and structure will be investigated in 

Chapter 5. 

4.8 Seismic load transfer curves  

Soil-structure interaction can be evaluated by back-calculating the p-y loops. Figure 4.35 

illustrates the soil reaction vs. relative pile-soil displacement in Event 3 at the depths of 

free-field accelerometers for a time window starting at 5 seconds and ending at 15 

seconds, containing the peaks of the base acceleration. Inside the improved soil, piles 
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6DEF and 12DMN showed S-shaped pinched hysteresis p-y loops at depths of 0.2 m and 

1.24 m. The nearly flat part in the middle is an indication of pile-soil separation. The load-

transfer curves for pile 12DMN showed more stiffness than pile 6DEF. 

At a depth of 3.79 m in soft clay, load-transfer curves derived for 6DEF became 

very irregular. Oval-shaped loops were observed for 6DEF and 12DMN at deeper layers 

in soft clay, at depths of 6.34 m and 8.74 m. Significant softening behavior was observed 

on the curves for 6DEF at the depth of 6.34 m whereas the loops for 12DMN showed 

much stiffer behavior at the same depth. This behavior might be explained by the fact that 

the p-y springs cannot be considered as uncoupled elements, because the improved clay 

with the depth of 12D affected the load-transfer behavior of the underlying soft clay. A 

transition from oval-shaped loops in the soft clay to bilinear loops in the dense sand was 

observed in the loops at the depth of 12.04 m.  

A comparison of the experimentally derived p-y curves in the improved soil from 

pseudo-static load tests on pile 6DEF shown by red lines in Figure 4.35 and the seismic 

p-y curves showed that the back-bone curves of the seismic loops were much softer 

reflecting significant material deterioration occurring in the shaking events. On the other 

hand, the conventional p-y curves for soft clay appeared to be a reasonable representative 

for the back-bone curves of the loops derived for 12DMN at the depth of 6.34 m and for 

6DEF at the depth of 8.74 m. The conventional model for sand highly overestimated the 

stiffness. The discrepancy between the static and dynamic p-y curves was also observed 

by Brandenburg et al. (2005) and Rovithis et al. (2009), who obtained, respectively, softer 

and stiffer dynamic back-bone curves compared to the static curves. 
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4.9 Pore water pressure data interpretation  

Generation and dissipation of excess PWP due to seismic loading affects the stiffness and 

strength of the soil. Here, the magnitude of the excess PWP is expressed as the ratio of 

excess PWP over the initial effective vertical stress �́�𝑣0 ; this is called the PWP ratio. 

In the first and second events, PWP in the third clay layer close to the container 

walls (P9, P13) was 180 degree out of phase. That is, during the main excitation, one 

showed positive excess PWP while the other one showed a negative value (Figures 4.36 

and 4.37). PWP records showed that the ratio in the surface clay layer close to the 

container’s wall, P14 and P16 (Figure 2.12), was quite high in all three earthquake 

motions. In calculating �́�𝑣0 for the surface layer errors are likely due to small variations 

in the recorded depth of the transducers. The high PWP in the upper-most soft clay layer 

close to the wall could also be explained by the discrepancy between the accelerations of 

the soil and the container observed in Figure 4.1. Large acceleration spikes appearing on 

the acceleration-time history recorded by A13 (Figure 4.1) could be tracked by 

simultaneous drops in PWP in the vicinity of the wall (Figure 4.38).  

Although the PWP showed a monotonic accumulation of pressure, with some 

transient drops and oscillations in sand layers (P1, P2, P4), the PWP in clay layers showed 

almost no accumulation) Excess pore pressure increased rapidly in sands over the first 

few cycles of the motion and leveled off at an excess PWP ratio of 0.6 and 0.8 (Figure 

4.38) in the first and second sand layers, respectively, during the last event. The PWP 

dissipated at a slow rate after the main excitation. No liquefaction was induced in the sand 

layers, although the PWP ratio reached the maximum of 0.8. The cyclic component of the 

PWP time histories in soft clay was a feature distinguishing the PWP trends in clay from 
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those of sand. Continuous oscillation between the positive and negative values was 

observed.  

It was revealed that the load-transfer curves reversal points in clay were correlated 

with the local peaks and drops in the PWP time histories. In addition, soil reaction and 

PWP followed a very similar trend though they were more in phase for 12DMN than for 

6DEF and UIAB as depicted in Figure 4.39. Due to the similarity between the load-

transfer curves of 6DEF and UIAB at the depth of 6.34 m only the curves for 6DEF are 

shown. The phase difference between the soil reaction and the PWP could be a possible 

reason for the softening behavior observed in the load-displacement loops of 6DEF and 

UIAB. On the other hand, as expected the maxima of PWP and the free-field soil 

displacement at this level happened almost at the same time (Figure 4.39). 

4.10 Summary and conclusions 

 The maximum values of static bending moment and soil reaction were 

concentrated within the improved zones, whereas distribution of these quantities 

along the pile during seismic loading showed that the peaks occurred at the 

interface of the improved and unimproved soil as well as within a region around 

the interface of the soft clay and dense sand.  

 The experimentally derived p-y curves in the improved soil from static loading 

tests appeared to represent a stiffer behavior than those of the p-y traces in the 

seismic loading. However, the conventional model seemed to be able to represent 

the back-bone curves of the derived seismic loops in soft clay. 
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 The directions of estimated soil reaction along the piles was found to be 

incompatible with the corresponding estimated relative pile-soil displacement at 

the same depth.  

 The influence of the improved zone on the behavior of the underlying soft clay 

layer and vice versa was detected, suggesting that the p-y springs close to soil 

layer interfaces functioned as coupled elements. 

 The similar seismic performance of 9DIJ and 12DMN indicates that the full 

benefit of ground improvement may be realized in improvement zones with 

depths of 9D and 12D. Although it is possible for ground improvement around a 

pile to produce larger pile top accelerations and lateral displacements, as observed 

for 6DEF, they generally will be smaller in the improved soil-pile system.  

 In the uppermost clay layer close to the container wall, the PWP ratio was quite 

high in all shaking events. 

 The load-transfer curves’ reversal points are correlated with the local peaks and 

drops in the PWP time histories. 

 The accelerations of the top masses on piles 12DMN and 9DIJ had higher 

frequency content than the piles 6DEF and UIAB. 

 The maximum moment occurred at a depth of 3.46 m in 12DMN and at a depth 

of 8.35 m in 6DEF and UIAB, while all happened at 7 seconds which agreed with 

the free-field soil peak acceleration time, Tf=6.97 s. This finding shows that the 

interaction between the soil and piles was controlled by the soil motion known as 

kinematic interaction. In this study, the seismic masses were not large enough to 

appreciably contribute in deforming the piles through inertial interaction. 
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 The bending moment envelop for pile UIAB showed one broad peak 

approximately at the middle of the soft clay. The improved pile 6DEF’s peak 

bending moment occurred about 2 m above the clay-sand interface. Pile 12DMN 

showed an additional larger peak at the interface of improved and soft clay, which 

is where the pile started to yield. 

 The maximum of the shear force in pile UIAB appeared to be close to the clay-

sand interface, whereas it moved upward to the middle of the improved zone for 

the improved piles 6DEF and 12DMN, although a second, smaller peak appeared 

in the middle of soft clay. 

 Inside the improved soil, piles 6DEF and 12DMN showed S-shaped pinched 

hysteresis p-y loops at depths of 0.2 m and 1.24 m. The nearly flat part in the 

middle was an indication of pile-soil separation. 
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Figure 4.1 Absolute acceleration-time histories of the container rings and the soil 

close to the south and north walls in Event 3 
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Figure 4.2 Acceleration time-histories of the seismic masses (Event 1) 
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Figure 4.3 Acceleration time-histories of the seismic masses (Event 2) 
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Figure 4.4 Acceleration time-histories of the seismic masses (Event 3) 
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Figure 4.5 Maximum horizontal pile top accelerations in all shaking events 

 

 

 

Figure 4.6 Displacement transducer setup in the seismic loading events 
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Figure 4.7 Comparison of seismic displacement-time histories (transducer 

readings) of piles tested in prior pseudo-static loading with those not subjected to 

prior loading-Event 1 (DSS=Distance from the Soil Surface) 
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Figure 4.8 Comparison of seismic displacement-time histories (transducer 

readings) of piles tested in prior pseudo-static loading with those not subjected to 

prior loading-Event 2 (DSS=Distance from the Soil Surface) 
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Figure 4.9 Comparison of seismic displacement-time histories (transducer 

readings) of piles tested in prior pseudo-static loading with those not subjected to 

prior loading-Event 3 (DSS=Distance from the Soil Surface) 
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Figure 4.10 Time histories of the displacements recorded by transducers in all 

shaking events (DSS=Distance from the Soil Surface) 
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Figure 4.11 Displacements with respect to the base derived from displacement 

transducers and top mass accelerometers (Event 1) 
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Figure 4.12 Displacements with respect to the base derived from displacement 

transducers and top mass accelerometers (Event 2) 
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Figure 4.13 Displacements with respect to the base derived from displacement 

transducers and top mass accelerometers (Event 3) 
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Figure 4.14 Time histories of bending moments measured along pile 12DMN- 

Event 1 

(z is depth from the ground surface; negative value implies above the ground.) 
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Figure 4.15 Time histories of bending moments measured along pile 12DMN- 

Event 2 

 (z is depth from the ground surface; negative value implies above the ground.) 
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Figure 4.16 Time histories of bending moment measured along pile 12DMN-Event 

3 

(z is depth from the ground surface; negative value implies above the ground.) 
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Figure 4.17 Time histories of bending moment measured along pile 6DEF-Event 3 

 (z is depth from the ground surface; negative value implies above the ground.) 
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Figure 4.18 Time histories of bending moment measured along pile UIAB-Event 3 

 (z is depth from the ground surface; negative value implies above the ground.) 
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Figure 4.19 BNWF model for a pile excited by vertically propagating shear waves 

(Nikolaou et al., 2001) 
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Figure 4.20 Soil and pile displacements with respect to the base 12DMN (Event 1) 
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Figure 4.21 Soil and pile displacements with respect to the base 12DMN (Event 2) 
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Figure 4.22 Soil and pile displacements with respect to the base UIAB (Event 3) 
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Figure 4.23 Soil and pile displacements with respect to the base 6DEF (Event 3) 
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Figure 4.24 Soil and pile displacements with respect to the base 12DMN (Event 3) 
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Figure 4.25 Time histories of soil reaction on UIAB-Event 3 

 (Pile displacements are with respect to the free-field) 
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Figure 4.26 Time histories of soil reaction on 6DEF-Event 3 

 (Pile displacements are with respect to the free-field) 
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Figure 4.27 Time histories of soil reaction on 12DMN-Event 3 

 (Pile displacements are with respect to the free-field) 
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Figure 4.28 Bending moment, shear force, soil reaction and pile displacement 

profiles at the time instant corresponding to the negative peak of base acceleration 

Tb(N)=9.14 s (Event 3) 
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Figure 4.29 Bending moment, shear force, soil reaction and pile displacement 

profiles at the time instant corresponding to the positive peak of base acceleration 

Tb(P)=9.32 s (Event 3) 
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Figure 4.30 Bending moment, shear force, soil reaction and pile displacement 

profiles at the time instant corresponding to the peak free-field displacement 

Tf =6.97 s (Event 3) 
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Figure 4.31 Bending moment, shear force, soil reaction and pile displacement 

profiles at the time instant corresponding to peak top mass acceleration 

Tm (UIAB)=5.97 s (Event 3) 

 

 

   

 



109 

     

 

 

 

Figure 4.32 Bending moment, shear force, soil reaction and pile displacement 

profiles at the time instant corresponding to peak top mass acceleration 

Tm (6DEF)=9.55 s (Event 3) 
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Figure 4.33 Bending moment, shear force, soil reaction and pile displacement 

profiles at the time instant corresponding to peak top mass acceleration 

Tm (12DMN)=10.69 s (Event 3) 
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Figure 4.34 Envelopes for Event 3 
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Figure 4.35 Load transfer curves at the depths of free-field accelerometers-Event 3 
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Figure 4.36 PWP time histories-Event 1 
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Figure 4.37 PWP time histories-Event 2 
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Figure 4.38 PWP time histories-Event 3 
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Figure 4.39 Timing of the load-transfer curves reversal points 
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CHAPTER 5: MODAL IDENTIFICATION OF                       

SOIL-PILE-SUPERSTRUCTURE SYSTEM 
 

5.1 Overview 

Modal analysis of vibrating structures has been widely applied in diverse areas including 

aerospace and aeronautical engineering, civil engineering, and the automotive industries. 

The objective of modal analysis is to identify the modal parameters of a structure, 

including natural frequencies, modal damping ratios, and mode shapes, from 

measurements of its response to an external excitation.  

Over the past 20 years, system identification has received increasing attention in 

experimental and operational modal analysis of instrumented bridges and buildings. 

Many parametric and nonparametric system identification methods have been well-

stablished and applied successfully to structural systems (Alvin et al., 2003). The 

fundamental objective of any system identification analysis is to evaluate the properties 

of an unknown system given a known input into, and output from, that system. In most 

of these methods, the structural response recorded during vibrations induced by wind, 

traffic, earthquake, impact loads, etc. is employed to identify a predicting mathematical 

model from which the modal parameters are extracted. The mass, stiffness and damping 

properties of the structure required for many analytical models can also be estimated 

using system identification methods (Alvin and Park, 1994; Lus et al., 1999).  

One important application of modal parameters is in model validation. For 

example, analytical or numerical models such as finite element models are often validated 

by comparing their modal data with those acquired from system identification results 

(Mottershead, 1993). In designing a vibrating system, it is required to prevent the 
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coincidence of the system modal frequencies and its operational frequencies such as the 

case with machine foundations and wind turbines. Similar guidelines are available for 

structures designed to resist earthquakes, winds, and ocean waves. In other words, modal 

identification helps in reducing the damage accumulation due to amplifications likely to 

occur during lifetime of a structure. Another benefit of the modal analysis is that the 

response to an arbitrary excitation can be obtained simply by super position of the 

significantly contributing modes. This has been done by synthesizing predicting models 

using the modal parameters (Alvin et al., 2003). Studying the variations in modal 

parameters over a structure’s lifetime induced by material aging and severe excitations 

has been considered as an effective tool in health monitoring and assessment (Arici and 

Mosalam, 2005; Fraraccio et al., 2008). 

Susceptibility of a structure to dynamic loads is not only determined by the modal 

characteristics of the structure itself, but also by the modal characteristics of the 

underlying soil. The natural frequencies and damping properties of the soil become 

extremely important in evaluating vibration-induced interactions between the soil, 

foundation, and superstructure. Many analytical and experimental identification methods 

have been developed to find reliable estimations of soil modal properties. This chapter 

provides a brief background on the theory of spectral analysis and subspace-state space 

system identification methods which are employed later in the analyses of the free-field 

soil and soil-foundation-structure (SFS) systems. The identified values are validated 

using available analytical methods. 



119 

5.1.1 System identification methods applied to soil systems 

In site response analysis, a great deal of effort has been invested to estimate the soil modal 

parameters from vertical accelerometer array data acquired in seismically active regions 

or in simplified models used in centrifuge and shake table tests (Dobry and Whitman, 

1969; Gazetas, 1982; Zeghal and Elgamal, 2000; Elgamal et al., 1996 ;Hadjian, 2002; 

Brennan at al., 2005; Conti and Viggiani, 2012; Afacan et al., 2014). The most widely 

used methods in this area include traditional correlation analysis, spectral analysis, and 

the shear beam method. These techniques estimate the natural frequencies and damping 

coefficients using data from a pair of accelerometers, where both accelerometers may be 

embedded in the soil or one may be embedded with the other placed at the surface. The 

magnitude of the soil surface acceleration, amplification or attenuation, is of great 

importance in free-field analysis. 

Glaser (1996) and Glaser and Baise (2000) advocated the application of system 

identification techniques through implementing a variety of time invariant and time 

varying parametric models where the estimated model parameters were mapped to the 

mechanical parameters of a lumped-mass oscillator. These models proved surprisingly 

effective for predicting soil response to earthquakes. However, it should be noted that 

model order selection was difficult in these methods and only was achieved by 

empirically matching the model response to recorded data. Another interesting feature of 

this method is that the modal parameters of systems with general viscous damping can be 

identified, thereby providing a more realistic approximation of the damping mechanism 

in layered soils.  
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5.1.2 Modal identification methods applied to SFS systems 

Various methods have been proposed to determine the natural frequencies and damping 

properties of soil-foundation-superstructure (SFS) systems through experimental, 

numerical, and simplified analytical modeling. The experimental methods consist mainly 

of free-vibration and forced-vibration tests that excite either the entire SFS system (e.g., 

by seismic loading) or only the superstructure. The structural response in time or in 

frequency domain is then used to identify the modal parameters of the SFS system. 

Several analytical procedures are also available for computing the modal properties of 

structures supported on shallow or deep foundations; many of these results are 

summarized in a report by Stewart et al. (1998). In the case of deep foundations, the basic 

concept is to replace the pile/pile group with springs and dashpots at the soil surface on 

which the foundation slab of the superstructure is situated, as illustrated schematically in 

Figure 5.1. The stiffness and damping of the springs and dashpots in the translational, 

rotational, and coupled vibration modes are expressed as functions of loading frequency 

and are called the impedance functions. The dynamic stiffness of a single pile is 

formulated as the product of the static stiffness and a dynamic modifier. The static 

stiffness of the pile head at the soil surface depends on the ratio of the pile’s Young’s 

modulus to that of the soil, the ratio of the pile length to the diameter (which has been 

often called the slenderness ratio), and some weighting factors (Poulos and Davis,1980; 

Scott, 1981; Mylonakis, 1995). The dynamic modifier, on the other hand, is a function of 

the soil’s and the pile’s mass densities and elastic moduli, as well as a dimensionless 

frequency parameter that itself depends on the loading frequency and the soil shear 

velocity. After the stiffness vlaues of the springs have been determined, the modal 
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parameters of the structure can be modified accordingly. Veletsos’ (1977) two-DOF 

model is among the most widely used simplified solutions for investigating the effect of 

soil–structure interaction (SSI) on the frequency content of recordings in the 

superstructure. The period-lengthening phenomena is, in fact, a result of incorporating 

the foundation flexibilities into the equations used for calculating the fundamental period 

of the superstructure.  

Dou and Byrne (1995) and Damgaard et al. (2014) performed modal identification 

in time domain by carrying out free-vibration tests on scaled model piles in sand. The 

natural frequencies of the soil-pile system was found to be dependent on the amplitude of 

the vibration. A vast body of literature is available regarding identification methods in 

the frequency domain. For example, an early study by Gazetas (1984) using FE analyses 

employed the ratios of pile motion to bedrock and free-field motion to identify resonance 

frequencies. The results showed that the frequency range between the fundamental 

frequencies of the soil and the superstructure was substantially amplified. Flores-

Berrones and Whitman (1982) and Mylonakis et al. (1997) employed steady-state transfer 

functions relating bridge and foundation response amplitudes to those of the rock outcrop 

and the free-field. The resulting transfer functions indicated a resonance at the 

fundamental frequency of the soil stratum. Makris (1997) used the ratio of pile 

displacement at various depths to ground motion amplitude where the model was 

subjected to harmonic motions in shake table tests. Two major peaks were observed, one 

at the natural frequency of the soil deposit and the other at the natural frequency of the 

superstructure. Stewart and Fenves (1998) considered parametric and non-parametric 

system identification methods using the motion records at the free-field, building roof, 
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and foundation level to estimate the modal parameters associated with fixed-base and 

flexible-base conditions.  

Ashlock and Pak (2009) identified vertical, horizontal, and rocking modes of 

single piles through small-strain forced vibration tests with random and impact loads. The 

modal parameters, including the natural frequencies and the associated damping ratios, 

were estimated by deriving the “accelerance functions,” i.e., the ratio of pile acceleration 

to the applied force in the frequency domain. The peaks of these functions represented 

the natural frequencies of the SFS system. The derived accelerance functions shared 

similar features: a sharp peak in the low-frequency range and a gentle broad peak at higher 

frequencies. A similar methodology was employed by Lombardi and Bhattacharya (2014) 

to identify the natural frequencies of soil-pile-top mass systems under vertical vibration. 

Observations showed that the first natural frequency of the system was reduced as the 

shaking intensified and there was a progressive reduction of soil stiffness due to 

liquefaction. Ashford and Juirnarongrit (2003) used the same method to analyze the 

vibration-induced responses of cast-in-drilled-hole piles with various diameters. Rovithis 

et al. (2009) introduced the notion of two dominant frequencies—effective natural 

frequency and pseudo-natural frequency—and discussed these frequencies’ role in the 

seismic response of pile foundations. At the effective natural frequency, the pile response 

was amplified, whereas at the pseudo-natural frequency, a significant de-amplification of 

the pile head motion with respect to the free-field was observed.  

In analyzing the piles dynamic response, the non-parametric identification method 

(spectral analysis method) proposed by Stewart et al. (1998) will be employed (see 

Section 5.3.2) because it was found to be very effective in answering some of the 
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questions that arose in Chapter 4 regarding the unexpected displacement and acceleration 

responses of piles UIAB and 6DEF. 

5.2 Methods of modal identification 

5.2.1 Spectral analysis method 

To provide context, it is helpful to begin with a brief overview of spectral analysis method 

used for estimating the transfer functions. Transfer functions (commonly referred to as 

frequency response functions) are used to examine the response of dynamic systems and 

are estimated given a pair of input-output signals. Transfer function of a system shows 

how the magnitude and phase of the input signal in the frequency domain are changed by 

the system. The plot of the transfer function magnitude depicts those frequencies that 

were amplified or attenuated by the system and thereby allowing for identification of the 

natural frequencies. That is why it is sometimes called the amplification function. 

In principle, a single-input/single-output linear time-invariant dynamic system 

can be characterized completely by its transfer function 𝐻(𝜔) given by  

𝐻𝐹(𝜔) =
𝑌(𝜔)

𝑈(𝜔)
 , or         (5.1) 

|𝐻𝑃(𝜔)| =
𝑃𝑆𝐷𝑦(𝜔)

𝑃𝑆𝐷𝑢(𝜔)
 .             (5.2) 

Fundamentally, 𝐻𝐹(𝜔) in Eq. 5.1 represents the ratio of the Fourier transform of the 

output signal 𝑦(𝑘) to that of the input signal 𝑢(𝑘). Here, k denotes the time instant. It is 

assumed that the input and output signals are deterministic discrete-time data sequences 

with length N. The N-point Fourier transform of the output signal is defined as 

𝑌(𝑛) = ∑ 𝑦(𝑘)𝑒−𝑖𝜔𝑘𝑁
𝑘=1 ,   𝜔 =

2𝜋

𝑁
𝑛,   k=1, 2, 3 …N;     (5.3) 
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the input Fourier transform is defined analogously. The physical frequency 𝛺 with units 

of cycle per sampling interval (𝑇𝑠) is related to 𝜔 as 

 𝛺 = 𝜔/𝑇𝑠.          (5.4) 

For a random input signal it is very likely that its Fourier transform does not exist 

(i.e. zero amplitude) or is very small at some frequencies, causing the 𝐻𝐹(𝜔) ratio to be 

undefined or unreasonably large. For this reason, transfer function is usually computed 

from power spectral density (PSD) functions of the input and output signals, which 

always exist (Pandit, 1991). The magnitude of the transfer function as expressed in Eq. 

5.2 is the ratio of the power spectral density of the output signal 𝑃𝑆𝐷𝑦(𝜔) and that of the 

input signal 𝑃𝑆𝐷𝑢(𝜔). The PSD is real-valued, positive and even, and it gives the 

distribution of energy per unit of frequency. Here, PSD is defined as the Fourier transform 

of the auto-correlation function 𝑟(𝑘): 

𝑃𝑆𝐷(𝜔) = ∑ 𝑟(𝑘)𝑒−𝑖𝜔𝑘𝑁−1
𝑘=−(𝑁−1)  ,           (5.5) 

where the auto correlation function for the output signal is given by 

𝑟(𝑘) = ∑ 𝑦(𝑖)𝑦(𝑖 − 𝑘)𝑁
𝑖=1  .         (5.6) 

The autocorrelation of the input is defined similarly. The statistical variability of 

the estimated PSD due to poor accuracy of the auto correlation function for large time 

lags close to the signal length can be alleviated by forcing the end of the correlation 

function to zero. This can be achieved by windowing the auto correlation function in the 

time domain using a lag window (Safak, 1997; Stoica and Moses, 2005; Mikami et al., 

2008). In the frequency domain, this is equivalent to applying a locally weighted average 

of the PSD around a certain frequency. This can be achieved by implementing the 

Blackman-Tukey Spectral estimator (Stoica and Moses, 2005) as follows: 
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𝑃𝑆𝐷𝑤(𝜔) = ∑ [𝑤(𝑘)𝑟(𝑘)]𝑒−𝑖𝜔𝑘𝑁−1
𝑘=−(𝑁−1) = 2𝑅𝑒{∑ [𝑤(𝑘)𝑟(𝑘)]𝑒−𝑖𝜔𝑘𝑁−1

𝑘=0 } − 𝑤(0)𝑟(0)        

                                                        (5.7) 

where 𝑤(𝑘) is the lag window with length 2M+1 such that 𝑤(0)=1 and 𝑤(𝑘)=0 for |𝑘| ≥

𝑀. It can be thought of as a moving average filter by assigning a weighted sum of 2M+1 

values around a certain point. The smaller the length of the lag window in time domain, 

less band limited the smoothing window would be in frequency domain. Many smoothing 

windows are popular, including Parzin, Hanning, Hamming, and Bartlett (Stoica and 

Moses, 2005). Figure 5.2 compares the two transfer functions obtained implementing 

Eqs. 5.1 and 5.2 and labeled as unsmoothed and smoothed, respectively, on earthquake 

induced input and output signals. Small frequency content of the input signal at certain 

frequencies caused spurious peaks in the transfer function spectra using Eq. 5.1 which 

were removed applying a smoothing window. 

Despite the easy implementation of the methods described for deriving the 

transfer functions, there exist a number of potential issues such as leakage due to non-

periodicity of the signal and sensitivity to the measurement noise. Moreover, with spectral 

analysis, a successful identification cannot be guaranteed unless excitations are wideband 

and rich in frequency stationary signals (Glaser, 1995). It should be emphasized that 

spectral analysis methods result in accurate estimations provided that the system behavior 

remains linear during low amplitude excitations and the peaks of the transfer function are 

well separated. Resonant frequencies of system appears around the peaks of the transfer 

function amplitude. The associated damping can be calculated using the half-power 

bandwidth method; however, poor estimation of damping is expected due to the 

sensitivity of the transfer functions to the shape and the length of the smoothing windows. 
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Consequently, alternative methods have been proposed to overcome these inherent 

problems of the frequency domain techniques such as state-space identification methods. 

The following section briefly reviews the theoretical foundations of state-space modeling 

as applied to general mechanical systems and introduce the well-known subspace state 

space system identification (4SID) algorithm that will be used in Section 5.4 to identify 

the modal parameters of the free-field soil. 

5.2.2 Subspace state-space system identification method 

State space techniques for representing general mechanical systems are briefly reviewed 

in Section 5.2.2.1 followed by the theory of 4SID method in Section 5.2.2.2. 

5.2.2.1 State space representation of equation of motion in mechanical systems 

The coupled second-order differential equations for the motion of a mechanical system 

with N DOFs (i.e., 𝑴�̈�(𝑡) + 𝑳�̇�(𝑡) + 𝑲𝑑(𝑡) = 𝜷𝑢(𝑡)) can be represented by a collection 

of first-order differential equations called “state equations.” By defining a physical state 

vector 𝑥𝑝(𝑡) = [𝑑(𝑡)𝑇 �̇�(𝑡)𝑇]𝑇 ∈ ℝ2𝑁 containing the displacement 𝑑(𝑡) ∈ ℝ𝑁 and 

velocity �̇�(𝑡) of all DOFs, the corresponding state space representation becomes 

[
𝑳 𝑴
𝑴 𝟎

] �̇�𝑝(𝑡) = [
−𝑲 𝟎

𝟎 𝑴
] 𝑥𝑝(𝑡) + [

𝜷
𝟎

] 𝑢(𝑡),     (5.8) 

with mass matrix 𝑴 ∈ ℝ𝑁×𝑁, damping matrix 𝑳 ∈ ℝ𝑁×𝑁, and stiffness matrix 𝑲 ∈

ℝ𝑁×𝑁. The input influence matrix 𝜷 ∈ ℝ𝑁×𝑟 relates the excitation forces in vector 𝑢(𝑡) ∈

ℝ𝑟 to the corresponding DOFs (Alvin et al., 2003). The response of the mechanical 

system  𝑦(𝑡) measured at m DOFs can be expressed in terms of 𝑚 × 𝑁 displacement, 

velocity and acceleration output influence matrices 𝑯𝒅, 𝑯𝒗, and 𝑯𝒂 according to 

𝑦(𝑡) = [𝑯𝒅 − 𝑯𝒂𝑴−𝟏𝑲 𝑯𝒗 − 𝑯𝒂𝑴−𝟏𝑳]𝑥𝑝(𝑡) + 𝑯𝒂𝑴−𝟏𝜷𝑢(𝑡).   (5.9) 



127 

In cases, where only acceleration measurements are acquired, 𝑯𝒅 and 𝑯𝒗 become 

identically zero. The order of the state space model is defined as the number of state 

variables in the state vector, i.e. two times the number of DOFs.  

The modal parameters of the system can be obtained by solving the symmetric 

eigenvalue problem associated with Eq. 5.8. The eigenvalue problem can be diagonalized 

simultaneously if the eigenvectors are normalized with respect to the physical properties 

of the system i.e., 𝑴, 𝑳, and 𝑲. The resulting diagonal matrices are given by 

[
𝝍

𝝍𝜦
]

𝐓

[
𝑳 𝑴
𝑴 𝟎

] [
𝝍

𝝍𝜦
] = 𝑰                     (5.10) 

[
𝝍

𝝍𝜦
]

𝐓

[
−𝑲 𝟎

𝟎 𝑴
] [

𝝍
𝝍𝜦

] = 𝜦,                  (5.11) 

where 𝜦𝜖ℂ2𝑁×2𝑁 is a diagonal matrix with complex eigenvalues 𝜆𝑖, and 𝑽 =

[𝝍𝑻 (𝝍𝜦)𝑻]𝑻 is a 2𝑁 × 2𝑁 matrix containing the corresponding complex eigenvectors 

𝜓𝑖 , 𝑖 = 1 …  2𝑁. Other forms of scaling the eigenvectors are discussed in Balmes (1997). 

By changing the state vector to 휂(𝑡) given by 𝑥𝑝(𝑡) = [𝝍𝑻 (𝝍𝜦)𝑻]𝑻휂(𝑡) the system 

states are transferred to the modal space. The system equations in the modal form become 

휂̇(𝑡) = 𝜦휂(𝑡) + 𝝍𝑇𝜷𝑢(𝑡),                   (5.12) 

𝑦(𝑡) = 𝑯𝒂𝜦𝟐𝝍휂(𝑡) + 𝑯𝒂𝑴−𝟏𝜷𝑢(𝑡),                 (5.13) 

where 𝑯𝒂 is an identity matrix for the case of acceleration measurements at all DOFs. 

The columns of 𝝍 in Eqs. (5.12) and (5.13) are the complex displacement mode shapes. 

For underdamped systems, modes appear in complex conjugate pairs. A complex 

conjugate pair of eigenvalues accompanied by the corresponding complex conjugate pair 

of eigenvectors belong to one vibration mode. From the complex conjugate eigenvalue 
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pairs the natural frequencies 𝑓𝑖 and damping ratios 𝜉𝑖 of each mode can be retrieved using 

the following equations (Alvin et al., 2003) 

𝑓𝑖 =
|𝜆𝑖|

2𝜋
 ,                       (5.14) 

𝜉𝑖 =
−𝑅𝑒(𝜆𝑖)

|𝜆𝑖|
 .                      (5.15) 

The real-valued undamped or normal mode shape 𝝓 can be extracted from the complex 

eigenvector 𝝍 given in Eqs. (5.12) and (5.13) (Alvin et al., 1997). To this end, we assume 

that the external forces in 𝑢(𝑡) are imposed on the system at 𝑟 DOFs. However, in base 

excitation problems the external force at each DOF is modeled as a mass at that DOF 

multiplied by the base acceleration in the opposite direction. Thus, in Eq. 5.8, β becomes 

a vector containing the masses of all DOFs and 𝑢(𝑡) is simply the negative of the base 

acceleration. As a result, 𝑦(𝑡) in Eq. 5.13 represents the acceleration with respect to the 

base. In the next section, we will show how the state space model described in Eqs. (5.12) 

and (5.13) can be identified provided that the mass matrix, the base acceleration, and the 

structural response are available.  

5.2.2.2 Subspace state space system identification (4SID) 

In control and system theory, dynamic systems are modeled by differential or difference 

equations in the time domain. The system may be interpreted simply as a block that 

executes a prescribed set of mathematical operations on externally supplied inputs to 

calculate the outputs. The measured inputs and outputs of a discrete-time, linear, time-

invariant, system can be fit into a discrete-time state space model  

𝑥(𝑘 + 1) = 𝑨𝒅𝑥(𝑘) + 𝑩𝒅𝑢(𝑘)                    (5.16) 

𝑦(𝑘) = 𝑪𝒅𝑥(𝑘) + 𝑫𝒅𝑢(𝑘),                  (5.17) 
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where 𝑨𝒅 ∈ ℝ𝑛×𝑛 is the state matrix, 𝑩𝒅 ∈ ℝ𝑛×𝑟is the input matrix, 𝑪𝒅 ∈ ℝ𝑚×𝑛 is the 

output matrix, 𝑫𝒅 ∈ ℝ𝑛×𝑟 is a matrix through which inputs are directly fed into the 

outputs, and subscript d denotes discrete time. The state vector 𝑥(𝑘) ∈ ℝ𝑛 includes n 

state variables that describe the internal states of the system. The input is a deterministic 

vector 𝑢(𝑘) ∈ ℝ𝑟 including 𝑟 input measurements at time instant 𝑘 and 𝑦(𝑘) ∈ ℝ𝑚 is the 

corresponding output vector including 𝑚  output measurements at the same time.  

The goal of system identification is to determine the constant matrices 𝑨𝒅, 𝑩𝒅, 𝑪𝒅 

and 𝑫𝒅 given 𝑢(𝑘) and 𝑦(𝑘) measured in an experiment. For state space identification of 

a controllable and observable system, a wide variety of methods are available (Viberg, 

1995). In this dissertation the focus will be on 4SID, a relatively new technique which 

has been successfully employed recently in modal identification of a variety of complex 

structures including bridges (Peeters and Ventura, 2003; Siringoringo and Fujino, 2008; 

Weng et al., 2008; He et al., 2009). The objective in this section is not to provide a 

rigorous detailed treatment of 4SID, but rather to convey the basic ideas of the approach 

in an accessible way. Interested readers are referred to work of Viberg (1995) for a 

comprehensive overview of data-driven or direct subspace identification methods and to 

the book published by Van Overschee and De Moor (1996) for a detailed treatment of 

4SID. 

Subspace state space methods begin by constructing the block Hankel matrices 

from the measured data samples. The past input and the past output block Hankel matrices 

are defined by 

𝑼0|𝑖−1 = [

𝑢0 𝑢1 … 𝑢𝑗−1

𝑢1 𝑢2 … 𝑢𝑗

⋮ ⋮ ⋮ ⋮
𝑢𝑖−1 𝑢𝑖 … 𝑢𝑖+𝑗−2

], 𝒀0|𝑖−1 = [

𝑦0 𝑦1 … 𝑦𝑗−1

𝑦1 𝑦2 … 𝑦𝑗

⋮ ⋮ ⋮ ⋮
𝑦𝑖−1 𝑦𝑖 … 𝑦𝑖+𝑗−2

],                    (5.18) 
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respectively. The block Hankel matrix of the future inputs 𝑼𝑖|2𝑖−1and the future outputs 

𝒀𝑖|2𝑖−1 are formed in a similar way by adopting proper indices where the first number 

specifies the subscript of the entry in the first row of the first column while the second 

number specifies the subscript of the entry in last row of the first column. On the other 

hand, the subscript of the matrix entries identifies the data sample number. It is to be 

noted that each column is a time-shifted version of the previous column, and the 

distinction between the past and future can be assessed by checking the corresponding 

columns of 𝑼0|𝑖−1 and 𝑼𝑖|2𝑖−1 that they have no common entries. Here, 𝑖 is the number 

of block rows in the block Hankel matrices and is a user defined parameter. The value of 

this parameter is selected to be greater than the model order, but much smaller than the 

number of columns, 𝑗 (Van Overschee and De Moor, 1996). The number of columns can 

be calculated known 𝑖 and the total number of time samples. By stacking the block Hankel 

matrices corresponding to the past data over the ones associated with the future data, 𝑼 

and 𝒀 matrices are constructed as  

𝑼 = [
𝑼0|𝑖−1

𝑼𝑖|2𝑖−1
],       𝒀 = [

𝒀0|𝑖−1

𝒀𝑖|2𝑖−1
].                 (5.19) 

For consistent identification of a linear system it should be verified whether the 

input signal is persistently exciting. This condition is satisfied if the rank of 𝑼 is equal to 

2𝑖𝑟 (Van Overschee and De Moor, 1996). The performance of 4SID algorithm heavily 

relies on the assumptions imposed on the input data. A broadband and stationary signal 

with a high signal to noise ratio is ideal for a successful identification. Therefore, 

checking the input data for these assumptions is a crucial step. 

System identification using subspace methods implements two approaches to 

estimate the matrices in the state space model defined by Eqs. (5.16) and (5.17): the shift 
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invariance approach and the least-squares estimates of the system matrices provided that 

the state sequence 𝑿𝑖 = [𝑥𝑖 𝑥𝑖+1 ⋯ 𝑥𝑖+𝑗−1] is known. Geometric operations of 

subspaces spanned by the column or row vectors of block Hankel matrices formed by the 

input and output data is used to estimate the state sequence. In this study, the latter method 

where 𝒀 is decomposed into orthogonal matrices one of which is the product of the 

extended observabiliy matrix and the state sequence is used. Singular value 

decomposition (SVD) of the product of the extended observabiliy matrix and the state 

sequence determines the optimal order of the system. For an ideal noise-free data, the 

number of singular values greater than zero is the minimum model order whereas for 

noise-corrupted data with a low level of noise, the number of singular values above a 

noise threshold specifies the system order. Once the state sequence is estimated the 

system matrices �̂�𝒅, �̂�𝒅, �̂�𝒅, and �̂�𝒅 can be extracted from  

[
𝑥𝑖+1 𝑥𝑖+2 ⋯ 𝑥𝑖+𝑗

𝑦𝑖 𝑦𝑖+1 ⋯ 𝑦𝑖+𝑗−1
] = [

�̂�𝒅 �̂�𝒅

�̂�𝒅 �̂�𝒅

] [
𝑥𝑖 𝑥𝑖+1 ⋯ 𝑥𝑖+𝑗−1

𝑢𝑖 𝑢𝑖+1 ⋯ 𝑢𝑖+𝑗−1
].             (5.20) 

When the number of data points 𝑗 → ∞ the optimization problem of determining the 

system matrices is solved in a least squares sense. A finite number of data points, presence 

of high noise level or over estimation of the system order might give rise to unstable 

models. For the detailed explanation of the identification algorithm and the geometric 

interpretation of the subspace method the readers are referred to Van Overschee and De 

Moor (1996) and Kim and Lynch (2012a). 

The estimated system matrices can be transformed to their continuous time 

counterparts 𝑨𝒄, 𝑩𝒄, 𝑪𝒄 and 𝑫𝒄 using the zero-order hold assumption (Juang, 1993) in 

order to be consistent with the state space representation of the physical system in Eqs. 

(5.8) and (5.9). Note that 𝑪𝒄 = �̂�𝒅 and 𝑫𝒄 = �̂�𝒅. Using the eigenvectors of 𝑨𝒄, denoted 
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by 𝝋𝒄, the identified continuous time system can be converted to its modal 

coordinates 𝜇(𝑡) as defined by 𝑥(𝑡) = 𝝋𝒄𝜇(𝑡) 

�̇�(𝑡) = 𝜦𝒄𝜇(𝑡) + 𝝋𝒄
−𝟏𝑩𝒄𝑢(𝑡),                    (5.21)  

𝑦(𝑡) = 𝑪𝒄𝝋𝑐𝜇(𝑡) + 𝑫𝒄𝑢(𝑡),                  (5.22) 

where 𝜦𝒄 is a diagonal matrix containing eigenvalues of 𝑨𝒄. The eigenvalues of the 

continuous time model 𝜆𝑐 are related to the eigenvalues of the discrete time model  𝜆𝑑 

through 

𝜆𝑐 = ln( 𝜆𝑑) /𝑇𝑠.                         (5.23) 

where 𝑇𝑠 is the sampling interval. However, both the discrete and continuous time models 

have the same set of eigenvectors (Juang, 1993). It worth mentioning that the eigenvectors 

of the state space model represented by Eqs. (5.12) and (5.13) are normalized with respect 

to the mass matrix. De Angelis and Imbimbo (2012) showed that in base excitation 

problems, scaling the mode shapes can be performed having the mass of one DOF known 

a priori. The proposed scaling approach also demands a complete set of mode shapes in 

which the number of sensors or the elements in each mode shape vector is equal to the 

number of identified modes. For lumped-mass systems, this implies that all vibration 

modes are adequately excited and identified. Once the eigenvectors are scaled, the entire 

mass matrix as well as the stiffness and damping matrices of the system can be derived 

as (De Angelis et al., 2002) 

𝑴 = (𝝍𝜦𝝍𝑇)−1, 𝑳 = −𝑴𝝍𝜦2𝝍𝑇𝑴, 𝑲 = −(𝝍𝜦−1 𝝍𝑇)−1.              (5.24) 
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5.3 Application of system identification procedures-Spectral analysis 

5.3.1 Free-field soil system 

Soil motion at seven different depths recorded by accelerometers A2, A6, A11, A16, A20, 

A26, and A32 (Figure. 2.11) were selected as outputs, and the base acceleration measured 

by A46 was introduced as input. The transfer functions were computed from the power 

spectral density (PSD) of the soil acceleration at a specific depth (i.e. the output) over the 

PSD of the base motion (i.e. the input). Small frequency content of the input base motion 

at certain frequencies (Figure. 5.3) caused spurious peaks in the transfer function spectra 

as already shown in Figure 5.2. Bartlett lag windows with lengths 700 were employed to 

remove the fictitious peaks in the transfer functions. 

As shown in Figure 5.3, the first and second events are characterized by a 

predominant frequency at 2.4 Hz. However, in the third event the majority of the base 

motion energy is carried by the harmonic components with lower frequencies between 

0.5 to 1.5 Hz. The frequency at which the spectral peaks occur, referred to as the 

predominant frequency of ground motion which is generally controlled by the tectonic 

regime, earthquake magnitude, and site-source distance in real world.  

The transfer function amplitude for each pair of base and soil acceleration data 

acquired from the first and second events are shown in Figure 5.4a and 5.4b, respectively. 

Two important observations can be made from these graphs. First, the amplification in 

deeper layers occurs at frequencies greater than 2 Hz, while in the uppermost layer 

amplification is pronounced at lower frequencies around 1 Hz. This behavior is expected 

since soil layers act as low-pass filters removing the high frequencies in the propagating 

waves. The natural frequencies of the soil system are identified as the peaks of the transfer 
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functions at 1 Hz, 2.8 Hz and in the frequency range of 5-6 Hz. The transfer function for 

the pair A46-A2 and pair A46-A6 have values close to unity, indicating a negligible 

amplification of response within the dense sand layer. The above observation implies that 

the soil profile is likely responding as a single inhomogeneous layer where the response 

is dominated by the upper soft clay layer.  

The transfer function spectra obtained for the second and third shaking events 

depicted in Figure 5.4 showed noticeable changes compared to the first event reflecting 

the nonlinearity in the soil system. For instance, the second and third natural frequencies 

in the first event around 2.8 Hz and in the range of 5-6 Hz were shifted towards lower 

frequencies of 2.2 Hz and 4-5 Hz. Moreover, transfer functions in the third event differ 

from the first two in that there is essentially only one significant peak in the first two 

events while in the third event, multiple peaks with nearly the same magnitude were 

observed. Transfer functions at deeper layers (i.e. TF A46-A2, TF A46-A6, TF A46-A11) 

peaked at 1.5 Hz, 3.5 Hz, 5.7 Hz, 6.7 Hz, and 9 Hz whereas the ones corresponding to the 

surface layers showed only one peak at about 0.3 Hz. 

5.3.2 Soil-pile-top mass system 

Under seismic excitations, two different interaction mechanisms, known as inertial and 

kinematic interactions, can be idealized between the superstructure above the ground 

surface and the foundation at or below the soil surface. This an idealization. In reality 

these two effects are always present and coupled together. Inertia developed in the 

superstructure due to its own vibrations gives rise to base shear and over-turning moment 

at the interface of the superstructure and the foundation. Those in turn lead the foundation 

to experience translational and rotational displacements relative to the free-field. 
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Kinematic interaction, on the other hand, involves the response of a hypothetical system 

different from the actual system in that the superstructure and the foundation slab are 

assumed to be massless. The presence of a stiff foundation on or within the soil causes 

the foundation motions to deviate from the soil motions in free-field. The response of the 

superstructure can be estimated by superposition of these two effects even in the presence 

of slight nonlinearities (Stewart et al., 1998). 

In analysis of superstructures supported on “fixed bases,” zero displacements and 

zero rotations are assumed at the foundation level. Approximate methods based on the 

equivalent single degree of freedom (SDOF) models have been used to effectively 

demonstrate the interaction mechanisms in SFS systems, as illustrated schematically in 

Figure 5.5 (Rovithis et al., 2009). The lateral deflection of a SDOF fixed-base structure 

with respect to an inertial frame of reference 𝑈𝑠 consists of the displacement relative to 

the base 𝑈𝑠,𝑟𝑒𝑙 and the displacement of the free-field soil 𝑈𝑓𝑓 (Figure 5.5a). The 

superstructure stiffness determines the value of 𝑈𝑠,𝑟𝑒𝑙. The ground motions 𝑈𝑓𝑓 can be 

measured directly in the free-field or predicted by estimating the rock motion for the site 

and then performing a site response analysis. In contrast, in analyzing structures with 

“flexible bases,” the foundation is allowed to have translational displacement 𝑈𝑝 and 

rotational displacement 휃𝑝 with respect to the free-field, which contribute to the 

superstructure’s total displacement (Figure 5.5b). In calculating the superstructure 

motion, pile-head motion (calculated through kinematic interaction analysis) is applied 

to the support ends of the foundation springs and dashpots (as discussed earlier) as the 

foundation input motion. This analysis assumes that foundation input motion is not 

altered by inertial effects of the superstructure.  
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Stewart et al. (1998) introduced three sets of input–output data that can be used to 

estimate the natural frequencies of a superstructure associated with a flexible-base, a 

pseudo-flexible base, and a fixed-base (Table 5.1). The pseudo-flexible-base case applies 

to conditions of partial base flexibility and considers only the effects of foundation 

rocking at the soil surface. This case is important because the actual flexible-base 

parameters are often well-approximated by pseudo-flexible-base parameters, especially 

when the free-field motion is not available. Stewart et al. (1998) noted that the flexible-

base first modal frequency is smaller than the pseudo-frequency, and the pseudo-

frequency is smaller than that of the fixed-base. Because it is assumed that the behavior 

of the entire system remains in the elastic realm, the results should be the same regardless 

of whether displacement or acceleration data are used. 

5.3.2.1 Application 

By assigning the absolute acceleration of free-field soil measured by A32 as the input 

(Figure 5.6) and that of the top masses as the outputs (Figures 4.2-4.4), the flexible-base 

transfer functions were derived for all three shaking events. However, because direct 

measurements of pile displacements (or accelerations) and rotations at the soil surface 

were not available, the transfer functions associated with the pseudo-flexible base and the 

fixed-base were not estimated. The results are discussed in the following section. 

5.3.2.2 Observations and interpretation of results 

Before discussing the transfer functions, it is worth examining the frequency contents of 

the base motion along with those of the input and output signals. It is to be noted that the 

selected frequency bandwidth of the filters used in processing the accelerometer data was 

0.3 Hz to 7 Hz in the first and second events, whereas it was expanded to approximately 
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0.25 Hz to 10 Hz in the third event due to different characteristics of the noise present in 

the measurements which were found to be dependent on the excitation level.  

The compatibility of the soil motion recorded at the surface and at a depth of 0.2 

m was inspected by comparing the frequency contents of the acceleration records at the 

corresponding locations. As Figure 5.7 shows, similar trends with slight differences 

between the maximum values were observed, confirming the adequacy of A32 in the 

vertical array of DH3 as a representative for free-field soil motion. 

As shown in Figure 5.8, in the first event, significant de-amplification of the 

motion on top masses with respect to the free-field motion is evident for all piles in the 

frequency range of 0.3-2.2 Hz, but with a lower extent for 6DEF. In other words, if a 

harmonic excitation with a frequency in this range is introduced as the free-field motion, 

the amplitude of the motion on the top masses will be reduced. The fundamental 

frequency of the soil system also emerged in this range (Figure 5.4). It is noteworthy that 

the frequency content of the free-field soil and top masses were almost identical from 2.2 

Hz to 3.4 Hz except in the case of 6DEF, which showed considerable amplification. 

Amplification in the other piles occurred at higher frequencies: for UIAB, a sharp peak 

appeared at 3.8 Hz; and for 12DMN, multiple peaks occurred in the range of 3.6 Hz to 

4.2 Hz. For 9DIJ, mild amplification was noticed, with several peaks in a wider range of 

3.5 Hz to 7 Hz (the higher half of the frequency range of interest).  

In the second event, the same patterns of de-amplification and amplification were 

observed (Figure 5.9). The highest peaks of the Fourier spectra were observed at 4.1 Hz 

for UIAB, 9DIJ, and 12DMN, and at 2.5 Hz for 6DEF. The common peak at 4.1 Hz was 

in the vicinity of the third vibration mode of the soil system, which will be estimated 
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analytically later in Section 5.5.1. A second peak with smaller magnitude was also 

detected in both UIAB and 6DEF around 3.4 Hz. In general, in the first two events, no 

amplification appeared in the vicinity of the first mode of the soil about 1.2 Hz; however, 

in this frequency range, the smallest de-amplification occurred in 6DEF. On the other 

hand, significant amplification in 6DEF occurred at frequencies that coincided with the 

second mode of the free-field soil at around 2.8 Hz while amplification in other piles took 

place in higher frequencies and around higher vibrational modes of the free-field soil. 

In the third event, the Fourier transform of the free-field soil motions (Figure 5.7c) 

showed that most of the incident energy was carried by the harmonic components with 

frequencies smaller than or about 1.6 Hz. For frequencies exceeding 1.6 Hz, the free-field 

input motion became very weak. As evident in Figure 5.10, significant amplifications 

occurred for UIAB in the frequency range of 0.2 Hz to 2 Hz, including its highest peak 

at 1 Hz. Within the same frequency range, weaker or even no amplifications were 

observed for 6DEF, 9DIJ and 12DMN. Another observation from this figure is that the 

frequency range carrying the main part of the motion energy was gradually shifted 

towards higher frequencies as the size of the improved zone increased.  

The frequency content of the top mass motions with respect to the free-field 

motion revealed that the role of the soil’s fundamental frequency (at 1.2 Hz) was less 

significant in the first and the second events (excluding 6DEF) compared to the third 

event, where the response of UIAB appeared to be dominated by the soil characteristics. 

This might explain the amplified acceleration response of UIAB in the third event and of 

6DEF in the first and second events. The amplified frequencies are summarized in Table 

5.2. 
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Although not measured in this experiment, the response of the improved soil 

(ground) to earthquake motion far away from the piles could be very insightful in defining 

the appropriate free-field motion. A question that naturally arises here is, if the input 

motion is set to be the base motion, how will this change the main characteristic features 

of the top mass acceleration responses relatively? The main and seemed to be the only 

difference recognized by inspecting Figures 5.11 through 5.13 was that the significant de-

amplification in the frequency range of 0.3-2.2 Hz previously observed for the first and 

second events vanished and instead, remarkable amplification happened for 6DEF. 

However, outside of this range, the peak values were quite the same as the values reported 

in Table 5.2. The reason that 6DEF showed the largest acceleration and displacement 

responses in the first and second events (Figures 4.5 and 4.10) is most likely related to 

the vicinity of the first and second natural frequencies of the free-field soil and those of 

the soil-pile 6DEF-top mass system. In the third event, almost no amplification was 

shown for 9DIJ. This justifies the desirable performance of 9DIJ in comparison with the 

other piles, as observed in Figure 4.5. In contrast, the amplification of motion in piles 

UIAB and 12DMN, respectively around the first (1 Hz) and the second (2.8 Hz) modes 

of the soil system, explains their amplified responses in the third event. 

Investigation of the Fourier spectra of the input and output motions provided 

insights in interpreting the associated transfer functions, as presented in Figures 5.14 to 

5.15. First, the flexible-base transfer functions (Table 5.1) are discussed; these are drawn 

as black lines in the figures. 

 In the first and second events, the transfer functions for unimproved pile peaked 

at 3.9 Hz and 4.1 Hz, respectively, which agrees with the values in Table 5.2. An 
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additional peak occurred at 6.2 Hz, which is suspected to be related to the one of 

the vibration modes of the soil that will be estimated as being close to 6.2 Hz in 

Sections 5.4 and 5.5.1 using the identification methods and an analytical solution, 

respectively. This peak was not visually detected in the previous investigation of 

the Fourier spectra. In addition to the peaks close to the vibration modes of the 

soil, an additional peak with smaller amplitude was detected in the second event 

at 3.3 Hz.  

 Multiple peaks with the same amplitude appeared in the transfer function of 6DEF 

in the first event with the lowest frequencies of 2.9 Hz and 3.4 Hz. However, two 

peaks were observed in the second event at 3.1 Hz and 4.1 Hz. A broad peak with 

a lower amplitude was detected in the frequency range of 5 Hz to 7 Hz. 

 For 9DIJ, the highest peaks in the frequency range of 0 Hz to 7 Hz emerged at 5.9 

Hz in the first event and at 6 Hz in the second event. A second peak with a smaller 

amplitude at 4.2 Hz was also present.  

 In the transfer function derived for 12DMN for the first event, the peaks at 3.6 Hz 

and 4.1 Hz appeared to be the highest in the first event, whereas in the second 

event, in addition to the peak at 4.2 Hz, another peak with slightly larger amplitude 

arose at 5.7 Hz. 

 In the second event, an increase in the size of the improvement zone resulted in a 

gradual shift of the transfer function peak located at 6.2 Hz for UIAB towards 

smaller frequencies such as 5.7 Hz in the case of 12DMN. 

 In the third event, two major peaks were observed in transfer functions for all 

piles. The first peak within lower frequencies showed a gradual shift from 2.8 Hz 
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for UIAB, to 3.4 Hz for 6DEF, to 4 Hz for 9DIJ, and finally to 4.2 Hz for 12DMN; 

this reflects the direct effect of the improvement zone size on the magnitude and 

frequency of the lower frequency peak. However, the opposite was observed on 

the second peak as it moved from 8.2 Hz for UIAB towards the lower frequencies 

to 7 Hz for 12DMN as the improvement zone became larger in size. The intensity 

of the second peak was also reduced compared to the first peak, to the extent that 

the transfer function for 12DMN could be effectively characterized by only one 

relatively sharp peak at 4.3 Hz. The derived transfer functions for soil shown in 

Figure 5.4 suggest that the second peak could be a result of the soil vibration 

modes in the frequency range of 5 Hz to 10 Hz. The first mode of vibration 

became more prominent when soil was improved and when the size of the soil 

improvement zone was increased. Shifting of the second mode to the lower 

frequencies was also observed in the second test. 

 The top mass transfer functions with respect to the base excitation are depicted in 

the same figures by orange lines. Several observations were made from these 

figures. First, in the first and second events, changing the input to the base 

acceleration caused the first two natural frequencies of the soil deposits to emerge 

on the graphs. Second, both groups of transfer functions showed peaks at 4 Hz, 

with an especially good agreement for all piles in the second event. 

In summary, the flexible-base modal frequencies of the soil-pile-top mass systems 

appeared to be approximately the same as the modal frequencies of the free-field soil. In 

the second event, modal frequencies at about 4 Hz and 6 Hz appeared in all transfer 

functions with nearly the same amplitudes for each pile. The amplitudes increased with 
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the size of the improved zone, except for 6DEF, where the highest amplitude peak 

occurred at 3.1 Hz. This mode with a lower amplitude was also identified for UIAB. The 

results suggest that a lower frequency mode (at about 3.1 Hz) contributed to the response 

of UIAB and 6DEF; this does not seem to have been in effect in determining the responses 

of 9DIJ and 12DMN. This mode is close to the second mode of the soil. Introducing the 

CDSM apparently filtered out this low-frequency mode. There was also observed an 

evolving mode in the first and second events moving from 6.2 Hz to 5.8 Hz with increase 

in size of the improved zone. In the third event, this mode moved from 8 Hz for UIAB to 

7 Hz for 12DMN. The identified natural frequencies of the flexible-base transfer 

functions are listed in Table 5.3. 

5.3.3 Soil-pile-top mass system-simplified methods 

The fundamental frequency of the super structure can be estimated using a SDOF fixed-

base idealized model as depicted in Figure 5.5. The super structure is characterized by its 

mass, 𝑚𝑠𝑡𝑟, its height, 𝐻𝑠𝑡𝑟, and its bending stiffness, (𝐸𝐼)𝑠𝑡𝑟. The natural frequency of 

a fixed-base structure depends exclusively on the structure’s mass and stiffness as 

𝑓𝑓𝑖𝑥𝑒𝑑 =
1

2𝜋
√

𝑘𝑠𝑡𝑟

𝑚𝑠𝑡𝑟
 .                                                                                                            (5.25) 

Using the deflection formula of a cantilever beam subjected to a concentrated transverse 

force (Beer et al., 2008), the stiffness 𝑘𝑠𝑡𝑟 was estimated as 

 𝑘𝑠𝑡𝑟 =
3 𝐸𝐼𝑠𝑡𝑟

 𝐻𝑠𝑡𝑟
3 = 173 × 104 (

𝑘𝑁

𝑚
)                  (5.26) 

where 𝐸𝐼𝑠𝑡𝑟 = 3.54 × 104 kN.m2 based on the pile properties in Table 2.2 and 𝐻𝑠𝑡𝑟=3.94 

m, the distance of the top mass center from the soil surface. After substituting 𝑘𝑠𝑡𝑟 and 
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𝑚𝑠𝑡𝑟 (reported in Table 2.3) in Eq. 5.25 the fundamental frequency of the fixed-base 

superstructure was obtained as 8 Hz.  

In another approach, 𝑘𝑠𝑡𝑟 was obtained from the force-displacement relationships 

at the piles’ top resulting from the pseudo-static loading tests (Figure 3.3). Lateral 

stiffness of the soil-pile systems estimated at the displacement of 5 cm along with the 

associated fundamental frequencies are listed in Table 5.5. Comparing these values with 

those estimated from the flexible-base transfer functions summarized in Table 5.3 showed 

that the SDOF model with the lateral stiffness estimated from the pseudo-static tests 

results over estimated the lowest natural frequency of the soil-pile-top mass systems by 

40% for the unimproved soil and about 35% for the improved soils. 

5.4 Application of system identification procedures-4SID 

As the first step, the input data Hankel matrices 𝑼0|𝑖−1 and 𝑼𝑖|2𝑖−1 were constructed using 

the base acceleration recorded by A46 according to Eq. 5.19. In a similar way, the 

acceleration time histories of the embedded sensors (A2, A6, A11, A16, and A26) with 

respect to the base were used to form the Hankel matrices of the past and future output 

data, 𝒀0|𝑖−1 and 𝒀𝑖|2𝑖−1, respectively. A32 at the soil surface was not included in the 

analysis due to its vicinity to the soil surface. Since A20 was not aligned with the other 

accelerometers in DH3 it was excluded as well.  

Implementing 4SID requires two parameters to be determined a priori: the number 

of block rows 𝑖 and the appropriate model order 𝑛. Examining the rank of the input 

Hankle matrix 𝑼 in Eq. 5.19 for different values of the block rows showed that row blocks 

higher than 12 would result in rank deficient 𝑼 matrix; therefore, 𝑖 was selected as 12. 

The performance of the state space identification methods depends greatly on how well 
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the input excitation meets the underlying assumptions. When the excitation is narrowband 

and non-stationary, which is the case for earthquake excitations, the identified values 

depend on the length of the data used in the identification (Lus et al., 1999; Siringoringo 

and Fujino, 2008). Herein, different lengths of data were used in the identification. The 

number of columns 𝑗 depends on the number of selected data points contained in the 

Hankel matrices. In order to determine the model order, which corresponds to twice the 

number of structural modes, we started by inspecting the singular values of the product 

of the extended observabiliy matrix and the state sequence. From the singular values plot 

in Figure 5.16, it is clear that the number of significant singular values is not sensitive to 

the number of data points. These graphs show that except the fourth or fifth singular 

value, the rest are of very small values suggesting that two or three modes are present in 

the data.  

In modal analysis, when trying to estimate the modal parameters from real data, 

especially in experimental modal analysis of large scale structures where the selection of 

the model order is difficult, it is a standard practice to over specify the model order above 

what is implied by the singular value plot (Reynders, 2012). This helps to detect the 

weakly excited system modes that appear only in systems with high orders. Although 

over specification helps to capture all the excited modes and reduces the bias in the 

estimated parameters, it creates a set of non-physical or mathematical modes due to the 

measurement noise or nonlinearities in the system. To distinguish between the true modes 

and the spurious modes, stabilization diagram were introduced which are the plots of 

modal parameters identified from the state space models with increasing order against the 

corresponding model order. These diagrams have been widely used in modal 
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identification of bridges and shear-frame structures (Lus et al., 1999; Siringoringo and 

Fujino, 2007; Fraraccio, 2008; He et al., 2009; Peeters and Ventura, 2003; Reynders and 

De Roeck, 2008; Kim and Lynch, 2012a, 2012b). Not only the effect of the model order 

on the identified modal parameters is explored in these graphs, but also the effect of data 

length is considered as studied in (Lus et al., 1999; Siringoringo and Fujino, 2007). In 

stabilization diagrams a true mode of the system lines up along the nearly same frequency 

as the model order increases. It also shows up with consistent damping and mode shapes. 

On the other hand, spurious modes are expected to show erratic behavior. These modes 

can be detected and removed by setting a validation criterion such that if the difference 

between the eigen frequencies of the two consecutive model order is larger than a pre-set 

value, these modes can be marked as spurious modes.  

In developing the stabilization diagrams, discrete-time state space models with 

the model order changing from 2 to 12 (corresponding to systems with 1 to 6 modes) were 

identified while the model order was increased in steps of 2. The upper bound limit on 

the model order was imposed by the maximum number of rows in the Hankel matrix 𝑼. 

In addition, the effect of data length was also studies by increasing the number of time 

samples introduced to the identification algorithm counted from the beginning of the 

excitation. The natural frequencies 𝑓𝑖 and damping ratios 𝜉𝑖 were extracted using Eqs. 

5.14 and 5.15. As the number of time samples increased, the identified parameters became 

stabilized at certain frequency ranges as shown in Figure 5.17. The number of stable 

modes in models with the order of 4 and 6 were so small that no stabilization diagram 

could be created. Therefore, only the parameters of the models with orders 8, 10 and 12 

are presented in the figure. The magnitude and phase of the associated complex mode 
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shapes are depicted in Figure 5.18. In order to improve the clarity of these diagrams, the 

unstable modes with negative damping ratios and modes with frequencies higher than 

7Hz (i.e. the upper cutoff frequency of the applied Butterworth filter) were excluded. It 

is a well known fact that constraints such as finite number of the samples/data points, 

modeling errors, plant and measurement noise can result in unstable modes and therefore 

unstable �̂�𝐝 matrix (Eq. 5.20), even though the system being modeled in real world is 

stable. According to the definition (Juang, 1993) a discrete state space model is stable if 

and only if all the poles or the eigenvalues of matrix �̂�𝐝 lie inside the unit circle. To date, 

various methods have been proposed to force a stable identification of  �̂�𝐝 (Lacy and 

Bernstein, 2003) which is not the focus of this study.  

5.4.1 Observations and interpretation of results 

The diagrams for natural frequencies in Figure 5.19 imply that three modes around 1 Hz, 

3 Hz and in the frequency range of 5-6 Hz were excited. There is a good agreement 

between the results of two different identification approaches, 4SID in the time domain 

and the spectral analysis using the transfer functions in the frequency domain. The 

stabilization diagrams for modal damping ratios (Figure 5.17) show higher uncertainties 

in the estimated values. Difficulties in identification of modal damping ratios has been 

experienced and commonly reported in the structural identification literature (Lus et al., 

1999; Siringoringo and Fujino, 2007; He et al., 2009; Reynders and De Roeck, 2008; Kim 

and Lynch, 2012a and 2012b). In all these studies it was found that the uncertainty in 

estimation of damping ratios is high relative to the uncertainty in estimated natural 

frequencies. As stated in the aforementioned studies, small valued damping ratios are 

sensitive to non-stationary nature of seismic excitation and the presence of noise. This 
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can partly explain the observed scatter in the damping ratio stabilization diagram. In order 

to facilitate easy interpretation of the stabilization diagrams of natural frequencies and 

damping ratios, modal parameters associated with a certain model order that varied 

between appropriately chosen threshold values as a result of increase in data length were 

grouped together. A total of 15 groups were detected including 3 groups of the identified 

vibration modes around 1 Hz, 7 groups around 3 Hz,  and 5 groups in the frequency range 

of 5-6 Hz. From each group one representative complex mode shape was selected and 

used in the validation phase of this study as reported later in Section 5.5.2. 

5.5 Validation 

5.5.1 Natural frequencies of free-field soil 

The identified natural frequencies were verified against the natural modes of an 

inhomogeneous viscoelastic soil layer over a rigid rock. Various research efforts on 

response of continuously inhomogeneous soils to vertically propagating shear waves have 

resulted in closed-form solutions for natural frequencies, mode shapes and base-to-

surface amplification functions (Dobry et al., 1976; Schulze, 2005; Rovithis et al., 2011; 

Vrettos, 2013). Exponential and power law variations of the shear wave velocity with 

depth are the special cases that simplify the solutions of the wave propagation differential 

equation in terms of Bessel functions or power series solutions. The shear wave velocity 

profile calculated from the cross-correlation of all combinations of two embedded 

accelerometers in the soil model (shown by circles) is shown in Figure 5.20. This profile 

suggests that an exponential function can reasonably represent the variation in the shear 

wave velocity or the shear stiffness with depth 𝑧 as 

𝑉𝑠(𝑧) = 𝑉0𝑒𝑎𝑧.                             (5.27) 
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Velocity at the soil surface 𝑉0 and the inhomogeneity rate parameter 𝑎 were estimated 

using the least squares fit as 11.43 m/s and 0.24, respectively.  

The response of a viscoelastic soil layer to a harmonic base motion with circular 

frequency 𝜔 is governed by the following differential equation  

𝑑

𝑑𝑧
(𝐺(𝑧)

𝑑𝑢

𝑑𝑧
) + 𝜌𝜔2𝑢 = 0                      (5.28) 

where 𝑢 is the horizontal displacement of the soil at a certain depth; 𝐺(𝑧) is the 

continuously varying shear modulus with depth which can be obtained from the shear 

wave velocity profile knowing the soil mass density 𝜌 using  

𝑉𝑠 = √
𝐺

𝜌
                      (5.29) 

The solution of Eq. 5.28 is provided by Schulze (2005) where it is assumed that the mass 

density of the soil is constant throughout the layers. A mass density of 973 𝑘𝑔/𝑚3 was 

estimated based on the weighted average mass density of the soil layers. The material 

damping is accounted for by replacing 𝐺(𝑧) by its complex counterpart as 

𝐺(𝑧) → 𝐺(𝑧)(1 + 2𝛽𝑖)                   (5.30) 

where β is the linear hysteresis damping coefficient which was assumed as a constant for 

the entire soil profile. The natural frequencies are determined by assuming zero 

displacement at the interface of the soil and the bedrock. The natural frequencies of the 

soil model in the frequency range of interest 0-7 Hz (i.e. the band-pass frequency of the 

filters used to process the acceleration data in soil in the first event) were calculated 

solving  

𝐽1 (𝑓�̅�
𝜋

2

1

�̅�
) 𝑁0 (𝑓�̅�

𝜋

2

𝑒�̅�

�̅�
) − 𝐽0 (𝑓�̅�

𝜋

2

𝑒�̅�

�̅�
) 𝑁1 (𝑓�̅�

𝜋

2

1

�̅�
) = 0                (5.31) 
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for the normalized frequency 𝑓�̅� =
2

𝜋
 𝑘𝑛𝐻𝑒−�̅� (Schulze, 2005). Here, �̅� = 𝑎𝐻, where 𝐻 

is the soil layer thickness, and 𝑘𝑛 =
𝜔𝑛

𝑉0
, where 𝜔𝑛 is the soil natural frequencies. 𝐽0() and  

𝐽1( ) denote the Bessel functions of the first kind of order 0 and 1, respectively. Similarly, 

𝑁0() and  𝑁1( ) denote the Bessel functions of the second kind.  

The amplification function of the soil model was obtained using the following 

equation  

𝒜 =  
2𝑎

𝜋𝑘0𝑒−𝑎𝐻[𝐽1(±
𝑘0
𝑎

𝑒−𝑎𝐻)𝑁0(
𝑘0
𝑎

)−𝐽0(
𝑘0
𝑎

)𝑁1(±
𝑘0
𝑎

𝑒−𝑎𝐻)]
                 (5.32) 

which expresses the ratio of the displacement at the soil surface to that of the base 

(Schulze, 2005). 

In the analytical method, all modes possess the same damping ratio. Implementing 

Eqs. 5.31 and 5.32 the first five natural frequencies were calculated as 1.08, 2.48, 3.90, 

5.34, 6.76 Hz for the selected values of the fitting parameters 𝑉0 and 𝑎. However, the 

exponential analytical model of shear wave velocity in Eq. 5.27 is very sensitive to the 

values of the parameters 𝑉0 and a. The estimated value of 𝑉0 (i.e. 11.43 m/s) is quite low 

for real soils. Therefore, a sensitivity analysis was performed by increasing the shear 

velocity estimated at the soil surface from 12 to 20 while 𝑎 was changed accordingly to 

produce the best match with the original least-squares fit. The calculated shear wave 

velocity profiles for five different combinations of  𝑉0 and a are shown in Figure 5.21.  

The impacts of the fitting parameters variation on the estimated natural 

frequencies can be observed on the corresponding amplification functions plotted in 

Figure 5.22. The resulting functions showed that slight changes in the fitting parameters 

can cause significant changes in the natural frequencies (i.e. the peaks of the amplification 
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functions). An increase in 𝑉0 shifts the natural frequencies towards higher frequencies 

while it spread the same number of modes over a broader frequency band such that for 

the case with 𝑉0 = 20 m/s only three modes with frequencies of 1.60, 3.68, and 5.79 Hz 

were situated within the frequency range of interest. Among the various cases considered 

in the sensitivity analysis, the case with 𝑉0= 14 m/s and 𝑎 = 0.235 produced the closest 

match with the first and the second identified frequencies as 1.25 Hz and 2.89 Hz from 

4SID and the peaks of the transfer function in Figure 5.19; therefore, the parameters of 

the shear wave velocity model were updated to 𝑉0= 14 m/s and 𝑎 = 0.235. 

Amplification functions for various damping coefficients: β=0.01, 0.02, 0.05, and 

0.1 are plotted in Figure 5.23. The stabilization diagram and the transfer functions for 

deeper layers such as TF A46-A6, TF A46-A11, and TF A46-A16 in the first drew 

attention to existence of some mode(s) in the frequency range of 4-6.5 Hz. However, due 

to the multiband-band limited nature of the applied earthquake motion and its low 

frequency content in this range the third and the forth analytical modes at 4.53 and 6.18 

Hz were not adequately excited to be identified with confidence. 

5.5.2 Mode shapes of the free-field soil 

The validity of the identified complex mode shapes and be validated by extracting their 

real-valued counterparts known as normal mode shapes and compare them against those 

calculated using available closed-form solutions proposed for simplified soil models in 

literature (Dobry et al. 1976; Schulze, 2005; Rovithis et al., 2011; Vrettos, 2013). Normal 

modes are defined for structures with no damping or small damping. The phase angle 

distribution along the modal vector is either zero or 180 degree. The computation of 

normal modes from the identified complex modes for lightly damped structures or 
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structures with proportional damping is a straight forward task as detailed in Alvin et al., 

(1994) and Alvin et al., (1997). The challenge arises when the system is non-

proportionally damped, and/or the set of identified modes is incomplete. Many studies 

have been published on non-proportionally damped systems where the number of DOFs 

and the identified modes were equal (Balmes, 1997; De Angelis and Imbimbo, (2012). 

Incomplete sets of identified modes are commonly encountered in the analysis of 

continuous structures. In principal, all structures are considered as spatially distributed 

systems with an infinite number of DOFs. When a distributed system is approximated by 

a lumped parameter system with countable number of DOFs, various incompleteness 

issues are often encountered as stated in Mukhopadhyay et al. (2014). Since it is not 

feasible to instrument all the DOFs, the identified mode shapes are only available at the 

measured DOFs. It is also possible that some modes are not excited or observed properly 

at the measuring points along the structure. Therefore, the number of identified modes 

could be larger or smaller than the number of sensors. The measurement locations 

certainly affect the quality and the spatial resolution of the identified mode shapes. The 

sensor location selection is an active research topic in modal testing, and well-studied 

methods have been published in this area Udwadia (1994). The optimal sensor selection 

is not within the scope of this study; however, some attention will be paid to this subject. 

A review on the existing methods treating different cases of incompleteness can be found 

in the work of Ibrahim (1983), Ibrahim and Fuellekrug (1990), Alvin et al. (1995), Lus et 

al. (2003a, 2003b), and Fuellekrug (2008). All the proposed methods for extracting the 

normal modes from an incomplete set of identified complex modes are approximate to 

some extent. In this study, a reduction transformation proposed by Ibrahim and 
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Fuellekrug (1990) and Fuellekrug (2008) was implemented to estimate the normal modes 

from the three identified complex modes measured at five locations (A2, A6, A11, A16, 

A26). Herein, the number of sensors was higher than the number of identified modes. The 

reduction transformation solves the problem of modal truncation by reducing the number 

of eigenvector elements to the number of identified modes. The transformation matrix is 

obtained using the SVD technique which helps in finding and extracting the linear 

dependencies in the identified mode shapes.      

As explained earlier, the identified modes were divided into 14 groups based on 

the similarities between their frequencies. Using a representative from each group, a total 

of 32 sets of complex mode shapes with 3 members were created so that each member 

falls into one of the three groups of identified modes around 1 Hz, 3 Hz and in the 

frequency range of 4.5-6.5 Hz. Using the reduction transformation the associated normal 

mode shapes were estimated, and it was found that only the normal mode shapes of the 

first two identified modes associated with lower frequencies could be estimated with 

reasonable accuracy as plotted in Figure 5.24 labeled with “I”. In another attempt, two-

member sets with complex modes belonging to the first and second modes around 1Hz 

and 3 Hz were considered and the third mode in the frequency range 4.5-6.5 Hz was 

ignored. No two-member set was able to yield a reliable estimate of the second mode 

shape which implies that although the third identified mode was weakly excited it has a 

significant impact on the identification of the second mode. Of these 32 sets, one set was 

qualified upon evaluating the response prediction of the soil system as will be discussed 

in details in the Section 5.4. In this set the first and the second modes were selected from 

the diagrams for the model order 8 while the third mode was selected from the diagrams 



153 

for the model order 12 where 2000 samples were used in the identification. The selected 

modal parameters listed in Table 5.5 show that the complex displacement mode shapes 

at the sensor locations are neither in phase nor 180-degrees out of phase. The associated 

normal modes extracted by implementing the reduced transformation are drawn with 

markers at the accelerometers locations in Figure 5.24. The mode shape amplitudes at 

soil surface was obtained by extrapolation.  

The analytical normal mode shapes of displacement were calculated using the 

following equation 

𝛷𝑛(𝑧) =
𝜋𝑘0𝑛𝑒−𝑎𝑧[𝐽1(±

𝑘0𝑛
𝑎

𝑒−𝑎𝑧)𝑁0(
𝑘0𝑛

𝑎
)−𝐽0(

𝑘0𝑛
𝑎

)𝑁1(±
𝑘0𝑛

𝑎
𝑒−𝑎𝐻)]

2𝑎
               (5.33) 

derived by Schulze (2005). Comparing the identified normal modes with the analytical 

mode shapes 𝛷𝑛(𝑧) labeled with “A” in Figure 5.24 revealed that the first and second 

modes of the layered soil resembled the first and the second modes of the inhomogeneous 

soil model. However, the peak displacement for the second identified mode shape 

occured in deeper layers compared with its analytical counterpart. Sparse instrumentation 

in the upper soil layers specifically between A16 and A26 forced the peak of the second 

identified mode shape to occur at the location of A16. Insufficient number of sensors in 

the upper soil layers where the third and higher analytical modes show a great deal of 

variation in the amplitude and sign can explain the reason why the third analytical mode 

was missed out by the 4SID algorithm. This emphasizes the impact of spatial distribution 

of sensors on the quality of the identified mode shapes. Another difference between the 

analytical mode shapes and their identified counterparts was observed as small 

fluctuations in the identified mode shapes close to the interface of the clay and sand 

layers. This is likely due to the strong stiffness contrast between the soft clay layer and 
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the underlying dense sand layer as reflected in the shear wave velocity profile shown in 

Figure 5.20. Also it should be noted that in obtaining the analytical mode shapes identical 

damping ratios was assumed for all modes (1%) while the damping ratio of the first and 

second identified modes was estimated as 13% and 36%, respectively. The analytical 

mode shapes were found to be less sensitive to the variations in the parameters of the 

exponential model of the shear wave velocity profile as opposed to the analytical natural 

frequencies. Changing 𝑉0 from 12 to 20 m/s did not cause a significant change in the 

location of the maximum displacements as illustrated by the curves in Figure 5.24.  

Validation of the identified parameters presented in this section highlights the 

benefit in considering a combination of analytically and experimentally identified models 

for validating the results and thereby avoiding the missing modes.  

5.6 Prediction models 

In synthesizing the state space prediction model described in Eqs. 5.12 and 5.13 from the 

identified modes two obstacles were confronted. First, the set of the identified complex 

mode shapes as mentioned in the previous section was incomplete and as a result the 

scaling of the complex mode shapes in Eqs. 5.3 and 5.4 could not be performed. Second, 

the input influence matrix 𝜷 containing the lumped masses at the measured DOFs was 

unknown. The first issue was overcome by taking only three elements of the complex 

eigenvectors (Table 5.5) into account as if the soil response was recorded by only three 

sensors. Accordingly, eight different sensor combinations named as Trials 1-8 listed in 

Table 5.6 were selected. As shown by De Angelis and Imbimbo (2012) a complete set of 

mode shapes can be scaled provided that the mass of only one DOF is known. A priori 

knowledge of the mass matrix, even partially, was also realized by Kim and Lynch 
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(2012b) for conversion of an identified black-box state space model to its physically 

meaningful gray-box model. In this regard, to treat the second issue, the lumped mass at 

only one sensor location was approximated based on the unit weight and the thickness of 

the corresponding soil layer. Following the procedure detailed in De Angelis and 

Imbimbo (2012), the resultant mass matrices estimated from the scaled mode shapes as 

stated in Eq. 5.24 for all trials appeared with one or two negative diagonal entries. This 

implies that the selected set of measurements in the trials could not be generated by a 

3DOFs lumped mass system. In other words, synthesizing the state space prediction 

model using the incomplete set of modal parameters results in a model which may not 

correspond to a physical system. This depends on the contribution of the missed out 

modes in the system response. Yet, using the calculated mass matrix containing the 

negative entries and the scaled complex mode shapes, the state space model of each trial 

was synthesized and utilized to predict the soil response at the selected sensor locations 

as depicted in Figure 5.25.  

Those models that reproduced the peak accelerations within 5-10 % error and the 

lowest root mean square of the residual between the measured and predicted values were 

selected as successful trials. As can be seen in Figure 5.25 time histories at A2 in Trial 3, 

A6 and A26 in Trial 5, and A11 and A16 in Trial 6 were closely approximated by the 

corresponding models. It is noteworthy to mention that another set of analyses were 

performed considering only the first two identified modes and the response at all sensor 

locations were predicted using the two-sensor combinations. Overall no remarkable 

difference was observed between the two cases; however surprisingly no two-sensor 

combination could result in an acceptable prediction at A2 in the first sand layer. It can 
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be inferred that the third identified mode played a major role in the response of this sensor. 

The contributions of individual modes to the overall response at each location are 

illustrated in Figure 5.26. In spite of the fact that the first mode did not contribute 

appreciably to the responses at A2, A6, A11 and A16, it predicted the total response at 

A26 very well. Examination of the transfer functions in Figure 5.26a confirms that first 

mode is more pronounced in the response of the soil in the upper most layer while in the 

deeper layers the second and the third modes were more influential. 

The most basic use of an identified system is to simulate the system response to 

various inputs. To validate our identified models in each trial shown in Table 5.6, the 

response of the soil system to the second and the third shaking events were simulated 

using the predictive models. The simulated time histories and the corresponding Fourier 

amplitude spectra are compared against the measured responses in Figures 5.27 and 5.28 

for the second and the third events, respectively. The results indicate that the identified 

models from the first event can predict the soil response at A2, A6 in the dense sand 

layers, and A11 in the first clay layer very well in the second event while the prediction 

accuracy is lower for shallower sensors A16 and A26 in the second and fourth clay layers, 

respectively. For the third event, the models were able to capture the maximum 

acceleration along with the frequencies carrying the major part of the energy at A2, A6 

and A11 very well, the response at A16 and A26 were, however, highly over estimated. 

Overall, the prediction capabilities of the models can be considered reasonable 

except in the upper clay layers and under strong motion such as the third shaking event. 

It should be pointed out here that the range of application of the identified models is 

limited to linear systems, while the soil deposit, particularly in the upper layers under 



157 

strong excitation, is expected to behave in a nonlinear and time-varying manner. 

Moreover, relatively higher frequency content of the third event beyond 4 Hz and the 

absence of the higher modes in this frequency range except the third identified mode at 

frequency 6.2 Hz is another reason for the poor prediction of response in the Kobe shaking 

event. 

5.7 Summary and conclusions 

 Effects of inertial and kinematic interactions on seismic behavior of piles were 

investigated. In most seismic design codes, pile foundations are designed only 

against inertial forces of superstructures transmitted to the pile heads where free-

field motions are used as superstructure base acceleration. It was shown that the 

input motion exciting the superstructure could be remarkably different due to the 

soil-structure interaction. Thus, the free-field motion cannot be used as foundation 

input motion.  

 In the second event, pseudo-flexible transfer functions peaked at about 4 Hz and 

6 Hz with nearly the same amplitudes for all piles. The amplitudes increased with 

the size of the improved zone, except for 6DEF, where the highest amplitude peak 

occurred at 3.1 Hz close to the second natural frequency of the soil. This might 

explain the amplified acceleration response of 6DEF in the first and second 

events. 

 The soil fundamental frequency (at 1.2 Hz) played a less significant role in the 

first and the second events compared to the third event, where it appeared as an 

influential mode in determining the amplified acceleration response of UIAB.  
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 In the third event, two major peaks were observed in the pseudo-flexible transfer 

functions for all piles. The first peak within lower frequencies showed a gradual 

shift from 2.8 Hz for UIAB, to 3.4 Hz for 6DEF, to 4 Hz for 9DIJ, and finally to 

4.2 Hz for 12DMN; this reflects the direct effect of the improvement zone size on 

the magnitude and frequency of the lower frequency peak. However, the opposite 

was observed on the second peak as it moved from 8.2 Hz for UIAB towards the 

lower frequencies to 7 Hz for 12DMN as the improvement zone became larger in 

size. The results indicated that the lowest natural frequency of the system 

increased with increasing its stiffness. 

 The SDOF model with the lateral stiffness estimated from the pseudo-static tests 

results over estimated the lowest natural frequency of the soil-pile-top mass 

systems by 40% for the unimproved soil and about 35% for the improved soils. 

 In the unimproved soil the kinematic interaction was more pronounced at the first 

vibration mode of the soil while in the improved soil the second mode was 

predominant.  

 In spite of the difficulty in obtaining the necessary parameters for the soil 

analytical model, the first and second identified frequencies matched their 

counterparts calculated from the analytical model. The identified normal mode 

shapes of the free-field soil agreed with the analytical solutions in a qualitative 

sense. 

 Comparison of the identified and theoretical amplification functions revealed the 

weakly excited modes in the identification process due to the insufficient 

instrumentation and narrow-band frequency content of the excitation motions. A 
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denser array of accelerometers particularly in the middle and in the surficial layers 

would have resulted in better estimate of modal quantities 

 The assembled state space models using the incomplete set of identified modes 

were utilized to predict the responses during three shaking events. The models 

predicted the acceleration-time histories and the corresponding Fourier response 

spectra reasonably well for the small first and moderate second shaking events. 

Although the proposed models prediction accuracy was lower in the upper layers 

for the strong third shaking event, it was still able to predict the behavior of the 

deeper layers reasonably well. 

 Relatively higher frequency content of the third event beyond 4 Hz and the 

absence of the third analytical mode in the identified modal parameters set is one 

reason for the poor prediction of response in the third shaking event. It is also 

believed that the upper soft clay layers behaved in a nonlinear and time-varying 

manner during the third event. 

 The results highlight the benefit in considering a combination of an analytical 

model and an experimentally identified model for validating the results and 

thereby avoiding missing modes. 
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Table 5-1 Input-Output Data Sets Used in Identification of Natural Frequencies of 

Structures with Different Fixity Conditions at Base 
 

Natural 

frequencies of 
Input Output 

Flexible-base 
free-field ground motion 

(𝑈𝑓𝑓) 

total motion at the top mass 

(𝑈𝑓𝑓+𝑈𝑝+휃𝑝𝐻𝑠𝑡𝑟+𝑈𝑠,𝑏𝑒𝑛𝑑) 

Pseudo 

flexible-base 

total base translation 

(𝑈𝑓𝑓+𝑈𝑝) 

total motion at the top mass 

(𝑈𝑓𝑓+𝑈𝑝+휃𝑝𝐻𝑠𝑡𝑟+𝑈𝑠,𝑏𝑒𝑛𝑑) 

Fixed-base 

total base translation and the contribution 

of pile rocking at soil surface 

(𝑈𝑓𝑓+𝑈𝑝+휃𝑝𝐻𝑠𝑡𝑟) 

total motion at the top mass 

(𝑈𝑓𝑓+𝑈𝑝+휃𝑝𝐻𝑠𝑡𝑟+𝑈𝑠,𝑏𝑒𝑛𝑑) 

 

 

Table 5-2 Frequencies at Which the Free-Field Motion Was Amplified at the Top 

Masses 
 

Input: Free-field 

motion 

Depth of ground improvement 

UI 6D 9D 12D 

Amplified frequencies 

Event 1 (Hz) 
3.8 2.2 - 3.4 3.5 - 7 3.6 - 4.2 

Amplified frequencies 

Event 2 (Hz) 
4.1, 3.4 2.5, 3.4 4.1 4.1-7 

Amplified frequencies 

Event 3 (Hz) 
1 2.3 2.8, 3.2 2.8-3.8 

 

 

Table 5-3 Identified Flexible-Based Natural Frequencies 
 

Events 
Depth of ground improvement 

UI 6D 9D 12D 

Amplified frequencies 

Event 1 (Hz) 
4, 6.5 

3, 3.4, 4.1, 4.6, 

6.2 
5.9 3.6, 4.1, 6.2 

Amplified frequencies 

Event 2 (Hz) 
3.4, 4.1, 6.2 3.1, 4.1 4.2, 6 3.7, 4.2, 5.7 

Amplified frequencies 

Event 3 (Hz) 

1.8, 2.8, 6.4, 

8.2  
2.8, 3.4, 7.5  4, 5, 7, 8.2 4.3, 7 
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Table 5-4 Fundamental Frequencies of Pile-Soil Systems 
 

Super structure 

properties 

Depth of Ground Improvement 

UI 6D 9D 12D 

𝑚𝑠𝑡𝑟 (kg) 661.5 656.1 661.5 664.2 

𝑘𝑠𝑡𝑟  (kN/m) 400 600 760 880 

𝑓𝑓𝑖𝑥𝑒𝑑 (Hz) 3.9 4.8 5.4 5.8 

 

Table 5-5 Identified Modal Parameters from Event 1 (4SID Method) 
 

Modes First mode Second mode Third mode 

Undamped 

frequencies 
1.35 2.87 6.20 

Damping ratio 0.13 0.36 0.37 

Sensors 

Complex 

mode shape 

Complex 

mode shape 

Complex 

mode shape 

Amp. phase Amp. phase Amp. phase 

A26 1 0 0.67 155.30 0.32 29.88 

A16 0.33 19.20 1 0 1 0 

A11 0.09 72.29 0.40 48.11 0.37 124.38 

A6 0.06 87.65 0.25 61.31 0.22 152.90 

A2 0.04 93.00 0.10 72.63 0.08 172.11 

 

 

Table 5-6 Sensor Configuration 
 

Trials Sensor combinations Satisfactory predictions 

Trial 1 Triple (A2, A6, A26) - 

Trial 2 Triple (A2, A11, A26) - 

Trial 3 Triple (A2, A16, A26) A2 

Trial 4 Triple (A6, A11, A26) - 

Trial 5 Triple (A6, A16, A26) A6, A26 

Trial 6 Triple (A11, A16, A26) A11, A16 

Trial 7 Triple (A2, A6, A16) - 

Trial 8 Triple (A2, A11, A16) - 
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Figure 5.1 Simplified model for analysis of soil-structure interaction 

(1) model parameters, (2) displacement and rotation with respect to an inertial 

frame of reference (Mylonakis et al., 1997) 

 

 

 

 

Figure 5.2 Comparison of transfer functions derived with and without smoothing 

 



163 

 

 

Figure 5.3 Frequency content of the base motion in the shaking events 
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Figure 5.4 Smoothed transfer functions derived using free-field soil accelerometers 

in (a) Event 1, (b) Event 2, and (c) Event 3 
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Figure 5.5 Deflection components for a SDOF super structure supported by (a) a 

fixed foundation and (b) a flexible foundation (Rovithis et al., 2009) 

 

 

 

 

 
 

Figure 5.6 Acceleration time histories of the free-field soil surface (A32) 

(a) Event 1, (b) Event 2, (c) Event 3 
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(a) Event 1 

 

 

(b) Event 2 

 

 

(c) Event 3 

Figure 5.7 Frequency content of the soil acceleration close to the soil surface 
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Figure 5.8 Frequency content of the motion recorded by accelerometers on top 

masses and free-field soil (Event 1) 
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Figure 5.9 Frequency content of the motion recorded by accelerometers on top 

masses and free-field soil (Event 2) 
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Figure 5.10 Frequency content of the motion recorded by accelerometers on top 

masses and free-field soil (Event 3) 
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Figure 5.11 Frequency content of the motion recorded by accelerometers on top 

masses and the model container base (Event 1) 
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Figure 5.12 Frequency content of the motion recorded by accelerometers on top 

masses and the model container base (Event 2) 
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Figure 5.13 Frequency content of the motion recorded by accelerometers on top 

masses and the model container base (Event 3) 
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Figure 5.14 Flexible-base transfer functions (a) Event 1, (b) Event 2 
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Figure 5.15 Flexible-base transfer functions of Event 3 
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Figure 5.16 Singular values plot (number of row blocks=12) 
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Figure 5.17 Stabilization diagrams of modal frequencies and damping ratios for 

Event 1 

 (a) base motion-time history, (b) model order=8, (c) model order=10, (d) model 

order=12 
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Figure 5.18 Stabilization diagrams of complex mode shapes 

(First number in the legend specifies the model order and second number specifies 

the data length), (a) model order=8, (b) model order=10, (c) model order=12 
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Figure 5.19 Identified natural frequencies of the free-field soil using 4SID method 

for various data length and model order 

  

 

 

 

Figure 5.20 Estimated shear wave velocity profile (V0=11.43 m/s, a =0.24) 
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Figure 5.21 Shear velocity profile for five different cases 

(The solid black line represents the least squares fit.) 
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Case 1  

Case 2  

Case 3  

Case 4  

Case 5  

               Frequency (Hz) 
 

Figure 5.22 Evolution of amplification functions with variations in V0 and a 
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Figure 5.23 Amplification functions of the soil model derived from the analytical 

solution for various damping ratios 
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Figure 5.24 Evolution of normal mode shapes with changing V0 and a shown by 

green curves 

 (Damping ratios was assumed for all modes as 1%.) 
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Figure 5.25 Response predictions for Event 1 

(a) Trial 1, (b) Trial 2, (c) Trial 3, (d) Trial 4, (e) Trial 5, (f) Trial 6, (g) Trial 7, (h) 

Trial 8 



187 

  
 

   
 

 

 



188 

 
 

Figure 5.26 Responses of individual modes in Event 1 

 (a) A2, (b) A6, (c) A11, (d) A16, (e) A26 
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Figure 5.27 Response predictions for Event 2 

 (a) time histories (b) Fourier amplitude spectra 
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Figure 5.28 Response prediction for Event 3 

 (a) time histories (b) Fourier amplitude spectra 
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CHAPTER 6: DEVELOPING A MACRO-ELEMENT FOR  

SOIL-PILE INTERACTION 
 

6.1 Modification of Winkler springs for dynamic and cyclic lateral loads 

The Winkler foundation method can also be considered in modeling the hysteretic 

reactions between soils and piles, provided that appropriate modifications are applied. In 

real structures, several mechanisms can generate hysteretic behavior, including friction 

at connections and joints, friction between the structure and non-structural members, 

opening and closing of the cracks, and permanent deformations. The response of a 

hysteretic system depends on both the instantaneous displacement and the history of the 

displacement. Other components of the dynamic response that should be accounted for in 

a soil-pile interaction model include 1) formation of a gap between soil and pile, 2) 

stiffness and strength degradation of soil and pile, 3) the rules for unloading and 

reloading, 4) rate-dependent radiation damping, and 5) pile inertial effect (Matlock et al., 

1978; Badoni and Makris, 1996; Boulanger et al., 1999; Gerolymos and Gazetas, 2005; 

Allotey and El Naggar, 2008a, 2008b). In the following sections, each component will be 

discussed briefly. 

6.1.1 Inclusion of gap 

Gap formation has been modeled in the literature with the aid of detachable Winkler 

springs at the front and the rear sides of the pile (Matlock et al., 1978; Pranjoto and 

Pender, 2003; El Naggar and Bentley, 2000). As shown in Figure 6.1, detachment of the 

springs causes less (or no) resistance against movement of the pile head. Under repeated 

cyclic loading, springs are repeatedly detached and reattached. As the number of cycles 

of loading increases, the disengagement position can either move further away from the 



192 

initial position, or it can remain unchanged, which determines the gap width at the ground 

surface and the gap depth from the soil surface. Matlock et al. (1978) considered the depth 

of the gap to be the same as that defined by Matlock (1970): the depth at which the surface 

effects no longer influence the pile lateral behavior. As can be seen in Figure 6.1(b), the 

gap shows up in the load-displacement curves as a flat region with low (or no) resistance. 

 In cohesive soils, a steady-state gap is likely to form as the number of loading 

cycles increases. It has been reported that gapping can reduce the lateral stiffness of the 

pile head by half (Pranjoto and Pender, 2003). Ignoring the soil-pile separation 

overestimated the ultimate lateral load capacity by about 43% in a single-pile test 

conducted by Hussien et al. (2010). Formation of a residual gap causes a section of the 

pile near the ground surface to be unsupported, which produces pinched lateral load-

deformation loops in that section. Moreover, gap development transfers the soil resistance 

from the surface layers to the deeper layers. Gapping in cohesive foundation soils affects 

not only the soil reaction but also the radiation damping in dynamic loadings, which will 

be discussed later. Cohesionless soils, on the other hand, tend to flow into the gap, and 

they sometimes result in stiffness hardening of the pile response under cyclic loading due 

to densification of the sand (Allotey and El Naggar, 2008b). This behavior is shown 

schematically in Figure 6.2. In contrast, when liquefied sand fills the separation gap 

between the pile and soil, the response of the mixture during flow is most likely softer 

than the original soil.  

Interaction elements developed by Blaney (1986) – including viscous dashpot, 

coulomb blocks, and sliding elements – were used to reproduce the results of a dynamic 

load test on a full-scale pile with superstructure mass. Nogami et al., (1992) formulated a 
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model consisting of near-field and far-field elements. The near field was simulated by 

nonlinear springs and masses representing the soil adjacent to the pile. The far field was 

modeled with a linear spring in parallel with a dashpot to represent the linear stiffness 

and radiation damping. Figure 6.3 shows the procedure of modifying the p-y curves to 

model the gap formation in cyclic loadings. 

A nonlinear p-y element was developed by Boulanger et al., (1999) and was 

incorporated into a finite-element program to study the seismic behavior of single piles 

in soft clay overlaying a dense sand layer. As depicted in Figure 6.4, this nonlinear p-y 

element consisted of elastic, plastic, and gap components connected in series. The gap 

component models the influence of a physical gap and the undrained hysteretic behavior 

of the soil. The gap applies a residual resistance that acts as a drag force on the sides of 

the pile when it moves within the gap. The transition from gap behavior to contact 

behavior was made smooth by including a nonlinear closure spring parallel to a nonlinear 

drag spring. The resulting p-y curve closely reproduced the backbone curve 

recommended by Matlock (1970) for soft clay. Although promising in several cases, the 

implementation, calibration, and numerical robustness of this model for a broad range of 

soil and pile properties have not been fully addressed. For example, in a study by Rahmani 

et al. (2012), Boulanger’s model resulted in underestimation of the peak bending 

moments when compared with measured values in two centrifuge experiments. 

6.1.2 Inclusion of stiffness and strength degradations 

The degradation in the ultimate capacity and stiffness of the p-y elements has been 

modeled through various methods. Matlock et al. (1978) simulated the strength 

degradation by applying a degradation factor to the ultimate plastic resistance of each 
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sub-element. To model strength degradation in cohesive soils, exponential models 

(Dunnavant and O’Neill, 1989) and hyperbolic models (Georgiadis et al., 1992a) have 

been adapted, respectively for submerged stiff clay and soft clay. Rajashree and 

Sundaravadivelu (1996) and Hussien et al. (2010) considered a degradation factor as a 

function of the number of cycles and the deflection at the first loading cycle. The 

degradation factor reduced the ultimate resistance of the soil at various depths. 

Degradation can also be caused by hydraulic scour (Dunnavant and O’Neill, 1989) and 

the seismically induced pore water pressure, as studied by Varun et al. (2013).   

6.1.3 Unloading and reloading curves 

Where the virgin loading curve is defined (e.g., by the conventional p-y curves), all 

subsequent unloading and reloading force-displacement paths afterward can be assumed 

to follow the extended Masing (1926) criteria. According to Masing’s hypothesis, the 

curve between the reversal points for the positive and negative displacements are the 

scaled and shifted version of the back-bone curve. Other forms of algebraic nonlinear 

models that have been proposed for describing the hysteretic behavior include the 

Ramberg-Osgood model (1943) illustrated in Figure 6.5 and the Menegotto-Pinto model 

(1973). Multilinear hysteresis models also have been developed; one such model is the 

Medina-Krawinkler (2003) model illustrated in Figure 6.6. Allotey and El Naggar 

(2008b) developed a multilinear model with prescribed rules for loading, unloading, and 

reloading applied to a problem of soil-pile interaction (Figure 6.7).  

6.1.4 Radiation damping 

Material damping and radiation damping are two fundamentally different damping 

phenomena associated with soil-pile interaction. Material damping is a measure of the 
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loss of energy in the soil solely as a function of cyclic strain, independent of the vibration 

frequency. This type of damping, more pronounced at low frequencies, can be modeled 

using the area enclosed by the force-displacement loops. Radiation damping on the other 

hand, represents the loss of energy due to outgoing stress waves transmitted from a 

vibrating pile to the soil. The relative motion of the pile against the surrounding soil 

generates stress waves at the contact surface. Radiation damping increases with frequency 

(Gazetas, 1984). At frequencies below the fundamental frequency of the unperturbed soil 

deposit, no radiation damping occurs. However, when the loading frequency is increased 

beyond the fundamental frequency of the soil, the damping ratio increases with depth.  

Gazetas and Dobry (1984) obtained radiation dashpot coefficients for a linear elastic soil 

as a function of the loading frequency, the geometry of the soil-foundation system, and 

the stress-strain behavior of the soil.  

In the dynamic BNWF method, energy loss through radiation damping has been 

modeled by two main approaches. In the first method (Kagawa and Kraft, 1980), the 

effect of radiation damping on pile response was assessed by including a linear viscous 

dashpot in parallel with the nonlinear p-y elements, as shown in Figure 6.8(a). In the other 

approach (Novak and Sheta, 1980; and Nogami et al., 1992), damping in the near field 

with strong soil nonlinearity was modeled with a nonlinear hysteretic element, while the 

damping in the far field was modeled with a linear visco-elastic dashpot in series with the 

hysteretic element (see Figure 6.8b). Using the centrifuge test of a single pile in 

seismically loaded soft clay and the BNWF method, Wang et al. (1998) compared the 

two different implementations of the radiation damping. The numerical simulations 

showed that parallel radiation damping restricts the lateral movement of the pile head and 
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thus results in a stiffer system response than that for the series radiation damping. 

However, in series radiation damping, the predicted response is sensitive to the stiffness 

of the p-y curve, and the dashpot force does not influence the p-y springs. It was 

concluded that series radiation damping is technically superior to parallel radiation 

damping because it avoids the unrealistically large damping forces. Further studies 

showed that radiation damping is strongly influenced by the geometric and material 

nonlinearity in the soil-pile system. Gerolymos and Gazetas (2005) and Varun et al. 

(2013) proposed formulations for a visco-plastic dashpot that could capture the coupling 

between the plastic deformation and the radiation damping.  

6.2 Hysteresis Bouc-Wen model overview 

The basic version of the Bouc-Wen models was originally proposed by Bouc (1967) and 

later extended by Wen (1976). It was represented by a first-order nonlinear differential 

equation that related the input displacement to the output restoring force in a rate-

independent way. The Basic Bouc-Wen model (as it has been called in the literature) does 

not account for the degradation and gapping phenomena occurring in all structures when 

subjected to cyclic loadings. Evolution and changes in hysteresis loops reflect the 

degradation in the system. Baber and Wen (1981) were the first researchers to incorporate 

strength and stiffness degradation into the Basic Bouc-Wen model associated with the 

energy dissipated in the structure. Sues et al. (1988) added a new feature to the Basic 

Bouc-Wen model to account for displacement-dependent degrading behavior observed in 

reinforced concrete structures. Baber and Noori (1985) and Foliente (1995) introduced 

the pinching effect, a sudden or gradual loss of stiffness due to opening and closing of 

cracks in wooden, steel, or concrete structures. These extended Bouc-Wen models are 
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often called Bouc-Wen type models or the Generalized Bouc-Wen (GBW) models. The 

GBW models have proven capable of reproducing a wide range of displacement-force 

traces matching the behavior of a variety of hysteretic systems such as wooden structure 

(Figure 6.9). They have been employed in structural control, damage detection, and health 

monitoring (Ma et al., 2004; Loh and Chung, 1993; Sengupta and Li, 2013), in addition 

to being implemented in simulating the seismic and cyclic responses of hysteretic 

structures. 

The GBW models are attractive for behavior prediction of inelastic systems, but 

calibrating their control parameters is known to be time- and labor-intensive. A common 

approach in identifying the parameters is to use a set of experimental input-output data 

and tune the parameters in such a way that the output of the model matches the measured 

response. Because this model is an empirical one and cannot be derived from the 

fundamental postulates of mechanics, the exact physical meanings of the parameters are 

not yet understood fully. Few studies have been performed to clarify their roles in 

characterizing the response and to identify the degree of their sensitivity (Ajavacom et 

al., 2008, Sengupta and Li, 2013). The parametric identification methods in the literature 

include ordinary least squares (Sues et al., 1988), modified Gauss-Newton approach 

(Kunnath et al., 1997), least-squares-based adaptive identification algorithm (Smyth et 

al., 1999), Extended Kalman Filter (Hoshiya and Sutoh, 1992; Loh and Chung, 1993; 

Zhang et al., 2002; Lin and Zhang, 1994), Unscented Kalman Filter (Wu and Smyth, 

2008), genetic evolution algorithm (Ajavakom et al., 2008), and multi-objective 

optimization (Ortiz et al., 2013). 
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In the area of foundation engineering, the Bouc-Wen model has been of interest 

in predicting the dynamic nonlinear response of pile foundations under lateral and vertical 

loads. Trochanis et al. (1991) were the first to implement the GBW model to simulate the 

pile response to static and cyclic loading. The hysteresis model was used to represent the 

force-displacement relationship of the nonlinear p-y springs distributed along the pile. 

Badoni and Makris (1996) simulated the dynamic soil-pile reactions with hysteresis 

springs and frequency-dependent viscous dashpots connected in parallel in a one-

dimensional finite element formulation. The parameters of the model were calibrated 

using five well-instrumented full-scale experiments. Gerolymos and Gazetas (2005) 

validated a Bouc-Wen type model by simulating the response of flexible piles under three 

types of cyclic loadings in a centrifuge test. The developed model was used to model 

cyclic and dynamic responses of a rigid caisson foundation in soft soil under lateral 

loading (Gerolymos and Gazetas, 2006). The model was validated against the results of 

in-situ static load tests and predictions of a 3-D finite element model. No degradation or 

pile-soil separation were included in the model. Soneji and Jangid (2008) modeled the 

seismic soil-pile interaction in an isolated cable-stayed bridge by using continuously 

distributed basic Bouc-Wen hysteretic springs and viscous dashpots placed in parallel. 

Varun et al. (2013) established a Bouc-Wen type model to predict the behavior of piles 

in liquefiable soils under seismic motions; this model parameters were calibrated based 

on experimentally extracted p-y curves and measured soil properties.  

As discussed earlier, the parameters of these models can be identified using robust 

identification methods and data from full-scale and reduced-scale experiments or 

numerical analysis, but it is desirable to identify the relationship between the model 
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parameters and the soil properties, such as Young’s modulus and undrained shear strength 

(Badoni and Makris,1996; Gerolymos and Gazetas, 2006). The following sections will 

discuss formulation of a GBW model and calibration of the shape parameters in a seismic 

soil-pile interaction problem. 

6.3 Formulation 

The macro-element representing the seismic soil-pile interaction in this study consists of 

a hysteresis spring and a viscous dashpot connected in parallel (Figure 6.10). The 

displacement experienced by this setup is the relative displacement between the pile and 

the free-field soil 𝑦𝑝−𝑠 at a given level. The pile displacement with respect to the base, 

𝑦𝑝, is obtained from the bending moment curve-fitting already performed for each time 

instant (detailed in Chapter 4) and the corresponding soil displacement, 𝑦𝑠, derived from 

double integration of the free-field acceleration relative to the base. The resultant resisting 

forces induced in the macro-elements, the forces in the nonlinear hysteretic spring 𝐹𝑠, and 

the forces in the viscous dashpot 𝐹𝑑, are acting as the soil reaction distributed along the 

pile. Dynamic equilibrium of a pile resting against the interaction elements is given by 

this fourth-order partial differential equation, 

𝐸𝐼
𝜕4𝑦𝑝(𝑧,𝑡)

𝜕𝑧4 + 𝑚
𝜕2𝑦𝑝(𝑧,𝑡)

𝜕𝑡2 + 𝐹𝑠(𝑧, 𝑡) + 𝐹𝑑(𝑧, 𝑡) = 0                 (6.1) 

where 𝐸𝐼 is the bending stiffness of the pile, 𝑚 is the mass per unit length of the pile, and 

𝑧 is the location along the pile measured from the soil surface. In this chapter, the inertial 

force caused by the pile mass is not considered in the formulations. Therefore, the second 

term in Eq. 6.1 is removed. It is to be noted that in the back-calculation of 𝑦𝑝 from the 

bending moment data, the pile mass was ignored as well. With this assumption, the first 

term of Eq. 6.1 is the soil reaction per unit length of the pile 𝑝(𝑧, 𝑡), which has been 
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estimated already (as reported in Chapter 4) and which is the resultant of the normal and 

shear stresses along the perimeter for a unit length of the pile. The goal is to calibrate the 

interaction elements such that the distributed forces in the nonlinear spring and the 

dashpot would be equal to the soil reaction 𝑝(𝑧, 𝑡): 

𝑝(𝑧, 𝑡) = −𝐹𝑠(𝑧, 𝑡) − 𝐹𝑑(𝑧, 𝑡).                    (6.2) 

6.3.1 Formulation of the hysteresis component 

The restoring force in the nonlinear spring 𝐹𝑠 at depth 𝑧 is expressed as the sum of an 

elastic and a hysteretic component: 

𝐹𝑠(𝑡) = 𝛼𝑘𝑦𝑝−𝑠 + (1 − 𝛼)𝑘𝑦0𝑟.                                                                                                   (6.3) 

The restoring force is associated with 𝑦𝑝−𝑠, the pile deflection with respect to the free-

field at the location of the spring and the dimensionless hysteresis state variable 𝑟. The 

parameter 𝛼, sometimes referred to as the rigidity ratio, is the ratio of the post-yield 

stiffness to the initial elastic stiffness 𝑘; therefore, it is dimensionless. Small-amplitude 

elastic distributed stiffness 𝑘 has the unit of stiffness per unit length. It corresponds to the 

traditional subgrade modulus multiplied by the diameter of the pile. The soil reaction and 

pile deflection at the initiation of yielding in soil, 𝑝0 and 𝑦0, respectively, are related 

through the initial elastic stiffness as 𝑝0 = 𝑘𝑦0. The hysteretic state variable 𝑟(𝑡) can be 

calculated by solving the nonlinear differential equation 

�̇�(𝑡) = ℎ(𝑡)
𝐴�̇�𝑝−𝑠−𝜐(𝑡)(𝛽|�̇�𝑝−𝑠||𝑟(𝑡)|𝑛−1𝑟(𝑡)+𝛾�̇�𝑝−𝑠|𝑟(𝑡)|𝑛)

𝜂(𝑡)
                                                                (6.4) 

known the time history of 𝑦𝑝−𝑠 . 

𝜐(𝑡) = 1 + 𝛿𝜐휀(𝑡)                                                                                                                       (6.5) 

휂(𝑡) = 1 + 𝛿𝜂휀(𝑡).                                                                                                                     (6.6) 
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Here, 𝜐(𝑡) and 휂(𝑡) are called the degradation shape functions which are controlled by 

the amount of dissipated energy 휀(𝑡), the rate of strength degradation 𝛿𝜐, and the rate of 

stiffness degradation 𝛿𝜂. These functions define the progressive loss of stiffness and 

strength as the cyclic loading proceeds. Because degradation depends on the response 

duration and the severity of the excitation, the dissipated energy has been selected as a 

suitable representative in formulation of both stiffness and strength degradations. The 

area enclosed by a complete hysteresis loop (𝐹𝑠 vs. 𝑦𝑝−𝑠) is the measure of the energy 

dissipated in that cycle, expressed as 

휀 = (1 − 𝛼)𝑘 ∫ 𝑟 𝑦0 𝑦𝑝−𝑠̇  𝑑𝑡
𝑡𝑐

𝑡0
       (6.7) 

which is a continuous integral of the hysteresis force over the relative displacement 𝑦𝑝−𝑠. 

The dissipated energy 휀 defined in Eq. 6.7 represents only the loss of energy through 

hysteresis between the initial time 𝑡0 and the current time 𝑡𝑐 and does not include the 

energy absorbed by the radiation damping through the viscous dashpot. The unit of 휀 in 

this formulation is kN.m/m, assuming 𝑘 is represented in kN/m/m and all the 

displacement values are measured in meters.  

The pinching function ℎ(𝑡) describing growth in the width and severity of the gap 

between the pile and the soil is defined as follows (Foliente, 1995): 

ℎ(𝑡) = 1 − 휁1(𝑡)exp (−
(𝑟(𝑡)𝑠𝑖𝑔𝑛(�̇�𝑝−𝑠 )−𝑞𝑟𝑢)2

(𝜁2(𝑡))2
)                                                                          (6.8) 

where 

𝑟𝑢 = √
𝐴

𝜐(𝑡)(𝛽+𝛾)

𝑛
                                                                                                                           (6.9) 

휁1(𝑡) = 휁0(1 − exp (−𝜌휀(𝑡)))                                                                                                  (6.10) 

휁2(𝑡) = (𝜓0 + 𝛿𝜓휀(𝑡)) (𝜆 + 휁1(𝑡)).                                                                                          (6.11) 
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In Eq. 6.8, sign is the signum function of  𝑦𝑝−𝑠̇ (𝑡), and 𝑟𝑢 is the ultimate value of  

𝑟 that can be obtained by setting  �̇�(𝑡) = 0. The time-varying parameters 휁1(𝑡) and 휁2(𝑡) 

control the progress of pinching. The continuous nature of the pinching function in this 

formulation allows for a gradual transition from almost zero to maximum stiffness in 

pinched hysteresis loops without causing any numerical instability. The pinching function 

includes six control parameters: 휁0, 𝜓0, 𝛿𝜓, 𝜆, 𝜌, and 𝑞, which must be calibrated. 

6.3.2 Formulation of the radiation damping 

Radiation damping represents loss of energy due to the outgoing stress that a vibrating 

pile transmits to the soil, and it increases with frequency. In Figure 6.10, radiation 

damping is modeled by the dashpot placed in parallel with the nonlinear spring. Based on 

the work of Gazetas and Dobry (1984), the radiation damping can be represented by a 

linear viscoelastic dashpot as 

𝐹𝑑(𝑧, 𝑡) = 𝑐𝑥
𝑑𝑦𝑝−𝑠

𝑑𝑡
, 𝑐𝑥 = 2 [1 +

3.4

𝜋(1−𝜐)
]

1.25

(
𝜋

4
)

0.75

(
𝜔𝑑

𝑉𝑠
)

−0.25

𝜌𝑠  𝑉𝑠 𝑑,                  (6.12) 

where 𝑐𝑥 is the damping coefficient for small-amplitude motions, 𝜐 is the Poisson’s ratio 

of the soil, 𝑉𝑠 is the shear velocity of the soil, 𝑑 is the pile diameter, and 𝜔 is the angular 

frequency of a harmonic excitation. 

Because the gapping not only affects the soil reaction but also has a strong effect 

on the radiation damping, the coupling between the radiation damping and the hysteretic 

soil response has been realized by Gerolymos and Gazetas (2006) and Varun et al. (2013). 

The radiation damping was modified to account for the reduction in damping as a result 

of prevailing nonlinearity in the soil-pile system. The visco-plastic dashpot force was 

expressed as 
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𝐹𝑑(𝑧, 𝑡) = 𝑐𝑥  [𝛼 + (1 − 𝛼)𝑦0
𝑑𝑟

𝑑𝑦𝑝−𝑠
]

𝑐𝑠 𝑑𝑦𝑝−𝑠

𝑑𝑡
                (6.13) 

where 𝑐𝑠 is a visco-plastic parameter that controls the coupling between the nonlinearity 

in the hysteresis spring and the radiation damping. This parameter has been reported by 

Gerolymos and Gazetas (2006) in the range of [0, 0.5]. As can be deduced from Eq. 6.13, 

the visco-elastic damping coefficient is modified by the tangent modulus of the hysteresis 

force-displacement loops (i.e., 
𝑑𝐹𝑠

𝑑𝑦𝑝−𝑠
×

1

𝑘
). 

6.4 Calibration and implementation of the macro-elements 

6.4.1 Interpretation of the GBW model parameters 

 The parameter 𝛼 in Eq. 6.3, as defined earlier, is the post-yield stiffness over the 

initial elastic stiffness 𝑘. Using the experimentally derived p-y curves from the 

pseudo-static tests and/or the conventional p-y curves, 𝑘 and 𝛼 can be properly 

calibrated. When 𝛼 = 0, no strength hardening develops after the yield point and 

during soil-pile separation, whereas increasing 𝛼 introduces strength hardening, 

as depicted in Figure 6.11. Setting 𝛼 as zero induces a pure plastic behavior after 

yielding, which is in compliance with the characteristics of the conventional p-y 

curves for both soft and stiff clays without free-water. 

 In Eq. 6.4, 𝑛 controls the smoothness of the transition from linear elastic behavior 

to plastic behavior. As 𝑛 increases, the transitions becomes sharper (Figure 6.12). 

A special bilinear case occurs theoretically for 𝑛 going to infinity; however, in 

practice, values greater than 10 produce a similar behavior. Wen (1976) assumed 

integer values for 𝑛, but non-integer values have also been reported in literature.  
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 Parameter 𝐴 in Eq. 6.4, which was introduced in Bouc and Wen’s original paper 

published in 1981, was proved redundant by Ma et al. (2004). In this chapter, 𝐴 is 

assumed to be 1. 

 Parameters 𝛽 and 𝛾 in Eq. 6.4 control the size and shape of the unloading and 

reloading branches of the hysteretic loops. The parameter 𝛽 must be positive as a 

necessary condition for the Bouc-Wen model to generate stable hysteretic loops. 

Thermodynamic admissibility issues require the inequality 𝛽 ≥ 𝛾 to be satisfied 

(Ismail et al., 2009). Setting 𝛽 = 𝛾 = 0.5 means that the stiffness of the unloading 

curve after reversal is equal to the initial stiffness, which satisfies the Masing rule 

(Figure 6.13). The assumption that 𝛽 + 𝛾 = 1 has been used in base isolation 

problems (Kunnath et al., 1997), simulating a pure visco-plasticity condition on 

the behavior. Basic hysteresis shapes produced by different interactions of the 

parameters 𝛽 and 𝛾 are illustrated in Figure 6.14. In this chapter, it is assumed 

that 𝛽 = 𝛾 = 0.5. 

 When the system exhibits no degradation, 𝛿𝜐 and 𝛿𝜂 can be set to zero. To simplify 

calibration, it is assumed initially that the degradation in the soil stiffness and 

strength are negligible. If it is difficult to reproduce the soil reaction, degradation 

can be incorporated into the model and the associated parameters can be estimated 

by trial and error. 

 The most important part of the calibration process is finding reasonable estimates 

of the control parameters of the pinching function: 휁0, 𝜓0, 𝛿𝜓, 𝜆, 𝜌, and 𝑞. 

Parameters 𝛿𝜓 and 𝜆 are the least sensitive parameters, and 휁0 is the most sensitive 

parameter, according to the results of studies undertaken by Ma et al. (2004) and 
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Sengupta and Li (2013), as reported in Table 6.1. The parameter 𝑞 simulates the 

drag force on the pile when it moves into the gap. It is expressed as a percentage 

of the ultimate soil strength. The qualitative roles of all the parameters involved 

in the GBW model are also included in Table 6.1. 

 According to the previous work on the application of Bouc-Wen model for the 

reinforced concrete structures and wood structures, ranges of the control 

parameters were reported by Ma et al. (2004) and Sengupta and Li (2013), which 

are listed in Table 6.2. 

6.4.2 Calibration of dampers 

Unlike a harmonic motion consisting of one frequency, the applied excitations in the 

shaking events involved a frequency spectrum that had to be characterized with a single 

frequency, 𝜔, in Eq. 6.12. Makris et al. (1993) defined the “predominant frequency” 𝑓𝑝 

of a seismic motion as the frequency at which the amplitude of the Fourier spectrum, as 

depicted in Figure 5.3 in the previous chapter, reaches its maximum. In another approach, 

Rathje et al. (1998) defined the predominant frequency as the weighted average of the 

frequencies in the frequency band of interest, expressed by 

𝑓𝑝 =
∑ 𝑤𝑖

2𝑓𝑖𝑖

∑ 𝑤𝑖
2

𝑖
                     (6.14) 

where 𝑓𝑖 represents the discrete frequency (which was explained in Section 5.2) and 𝑤𝑖 

represents the amplitude of the Fourier spectrum at 𝑓𝑖. The fundamental frequencies using 

the former and latter methods are listed in Table 6.3 under Method 1 and Method 2, 

respectively. 

Soil shear wave velocity 𝑉𝑠 is another parameter of Eq. 6.12 that had to be 

determined a priori. Here, the estimated shear wave velocity profile shown in Figure 5.20 
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was used. The Poisson’s ratio of the soil 𝜐 was set to 0.4. The density of the improved 

and unimproved soil 𝜌𝑠 was estimated as 1.8 ton/m3. The pile diameter 𝑑 was 0.286 m. 

6.4.3 Implementation 

The state variable of the hysteresis spring 𝑟(𝑡) was obtained by solving a system of 

differential equations expressed as 

{
�̇�(𝑡) = ℎ(𝑡)

𝐴�̇�𝑝−𝑠−𝜐(𝑡)(𝛽|�̇�𝑝−𝑠||𝑟(𝑡)|𝑛−1𝑟(𝑡)+𝛾�̇�𝑝−𝑠|𝑟(𝑡)|𝑛)

𝜂(𝑡)

휀̇(𝑡) = (1 − 𝛼)𝑘𝑟 𝑦𝑝−𝑠̇
                  (6.15) 

by utilizing numerical integration methods, such as Runge-Kutta method or central finite 

difference methods. In Eq. 6.14, 𝑦𝑝−𝑠(𝑘) was available at each time instant as previously 

back-calculated (detailed in Chapter 4), and �̇�𝑝−𝑠(𝑘) was calculated as 

�̇�𝑝−𝑠(𝑘) =
𝑦𝑝−𝑠(𝑘)−𝑦𝑝−𝑠(𝑘−1)

𝑇𝑠
 , 𝑇𝑠=0.007323 sec.               (6.16) 

After the time history of 𝑟(𝑡) at each time instant was calculated, the restoring force in 

the hysteresis spring 𝐹𝑠(𝑡) was obtained by substituting for the values in Eq. 6.3. In 

deriving the viscous damping force 𝐹𝑑 in Eq. 6.13, the term 
𝑑𝑟

𝑑𝑦𝑝−𝑠
 was obtained using the 

numerical differentiation techniques. One approach employed to identify the remaining 

control parameters was to use trial and error until a good agreement was achieved between 

the back-calculated (Chapter 4) and the simulated soil reactions using Eq. 6.3. However, 

this approach did not lead to a unique solution, because a large number of combinations 

of the parameters could provide a reasonable match with the back-calculated responses.  

6.5 Results and discussion 

The developed General Bouc-Wen model was used to simulate the soil reaction on pile 

6DEF in Event 3 at two depths: 0.2 m within the improved soil and 6.34 m within the soft 
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clay. The results were compared with their counterparts, which were back-calculated 

from the bending moment curve-fitting methods detailed in Chapter 4 (Figures 4.27 and 

4.35).  

6.5.1 Simulated soil reaction in improved soil at z=0.2 m 

The parameters 𝑦0 and 𝑘 were first estimated from the derived p-y curve at the depth of 

0.2 m as recommended by Foliente (1995) in Figure 6.15. The initial stiffness was 

estimated as 7900 kN/m/m close to the Young’s modulus of the soil reported in Chapter 

3 and the yield displacement was estimated to be about 0.025 m (Figure 6.16). The 

maximum relative soil-pile displacement, at the depth of 0.2 m, was 0.2 m (Figure 4.35), 

which is slightly larger than the maximum back-calculated pile deflection in the pseudo-

static load test.  

The p-y curves derived for the improved soft clay reflected a very small post-yield 

stiffness. In this case, it was assumed that 𝛼=0, similar to the value recommended by 

Trochanis et al. (1991), Gerolymos and Gazetas (2006), and Varun et al. (2013). To 

simplify the process of parameter calibration, the other parameters associated with the 

back-bone curves were set as 𝑛=1 and 𝛽=𝛾=0.5. 

 To investigate the effects of 𝑘 and 𝑦0 on the resultant force of the macro-element, 

trials with various combinations of these parameters were conducted as shown in Figure 

6.17. The red curve represents the derived p-y curve from the pseudo-static load tests. In 

this set of simulations, the radiation damping, soil-pile separation, and material 

degradation were not included. Increasing 𝑦0 while keeping 𝑘 constant increased the 

amplitude of the loops. On the other hand, decreasing 𝑘 while keeping 𝑦0 constant at 

0.025 m seemed to reduce the amplitude of the simulated loops and the dissipated energy. 
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Among these trials, the one with the 𝑘 and 𝑦0 directly estimated from the pseudo-static 

p-y curve was selected as the best candidate for investigating the effects of the remaining 

control parameters of the GBW model and the radiation damping model. 

 The effects of increasing 휁0, known as the most sensitive parameter in the 

pinching function, were investigated next. Figure 6.18 shows that increasing 휁0 simulated 

wider slips and thinner loops with smaller amplitudes. According to Foliente (1995), the 

pinching function is active only during the reloading branches of the loops. Thus, a 휁0 

parameter in the range of 0.9 to 0.95 seemed appropriate. In the following simulations, a 

constant 휁0=0.9 was implemented.  

 The effects of increasing 𝜓0, the pinching magnitude and the second most 

sensitive parameter of the pinching function, was evaluated as shown in in Figure 6.19. 

Changing 𝜓0 from 0.01 to 0.6 squeezed the loops together in the middle. The case with 

𝜓0=0.4 produced loops with reasonable agreements. At this point, it is noteworthy that 

the back-calculated loops for the negative displacements in the second and third quadrants 

appeared with almost no stiffness, which is very close to the characteristic of the behavior 

inside a gap formed between the improved soil and pile. Figure 6.20 shows the effects of 

variations in the pinching rate, 𝛿𝜓. The case with 𝛿𝜓=0.01 was selected as the best 

representative of pinching rate for the subsequent trials.  

Degradation of the stiffness 𝛿𝜂 and the strength 𝛿𝜐 were assessed, as shown in 

Figure 6.21. The combined effects of both degradation factors were also reported in this 

figure. The case with 𝛿𝜐=𝛿𝜂=0.01 was selected for the following simulations. 

As explained earlier in this chapter, the residual resistance inside the gap or slip 

is simulated by the parameter 𝑞. The results in Figure 6.22 show that the cases with 𝑞=0.1 



209 

and 𝑞=0.4 produced loops that were the most similar to the measured loops; 𝑞 selected as 

0.1 for the following simulations. The effects of parameter 𝑝 on the hysteresis loops were 

evaluated for values changing from 0.5 to 9 as shown in Figure 6.23. A 𝑝 value of 6 

produced the a reasonable match. The last parameter 𝜆 was found to be the least sensitive 

parameter (Figure 6.24); it was set as 0.6 for the rest of the simulations.  

 Adding viscoelastic and viscoplastic radiation damping to the simulations was 

performed by activating the dashpot connected in parallel to the hysteresis spring. The 

coupling between the radiation damping force and the plastic deformation in the spring 

is controlled by the parameter 𝑐𝑠 in Eq. 6.13. Force-displacement loops with lower 

dissipated energy and thinner shapes corresponded to higher values of 𝑐𝑠, as shown in 

Figure 6.25. On the other hand, a linear viscoelastic dashpot with 𝑐𝑠=0 produced nearly 

oval-shaped loops (𝐹𝑑 vs. 𝑦𝑝−𝑠).  

  Table 6.4 shows the list of the parameters used in three trials selected for 

simulating the improved soil reaction at the depth of 0.2 m. The simulated hysteresis 

loops along with the time-histories of the simulated soil reaction and the dissipated energy 

in the macro-element were compared against the corresponding back-calculated values 

as shown in Figures 6.26 through 6.37. The simulated responses for individual cycles 

defined in Figure 6.29 were depicted in Figures 6.29, 6.33 and 6.37 for Cases 1, 2 and 3, 

respectively. Comparing the loops in the first and second cycles reveals an increase in the 

stiffness in the second cycle which is a sign of material hardening. The developed BW 

model with the defined progressive degradations in the stiffness and the strength is not 

able to capture this behavior. However, based on the visual inspections of the plots the 
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selected models produced some of the peaks and trends in the back-calculated soil 

reactions. 

6.5.2 Simulated soil reaction in improved soil at z=6.3 m 

A similar procedure was undertaken for estimating the parameters of the back-bone 

curves in soft clay. The derived p-y curves inside the soft clay 6.3 m below the soil surface 

were compared with those from the traditional model (Figure 6.38). Due to the small 

displacements of pile 6DEF in pseudo-static tests, the derived p-y curve was limited to 

lateral displacement of 0.01 m while in shaking Event 3, the maximum relative 

displacement between the pile and the free-field soil reached to 0.15 m. Therefore, the 

parameters 𝑦0 and 𝑘 were estimated from the conventional p-y curve for soft clay. The 

conventional and the experimentally derived p-y curves showed a very close initial 

stiffness. However, the initial stiffness and the yield displacement were found to be 

overestimated and underestimated, respectively, and therefore they were adjusted. The 

pinching function for the soft clay model was set to 1, because formation of any gap 

between the soil and the pile at 6.3 m depth was expected to be unlikely. The degradation 

and radiation damping were included in the model. After running many trials, the model 

parameters were estimated as 𝑘=700 kN/m/m, 𝑦0=0.05 m, α=0, β=γ=0.5, n=1, 

𝛿𝜈=𝛿𝜂=0.25, 𝐶𝑠=0.25, 𝑓𝑝=2.57 Hz. The simulation results using the winning trial are 

shown in Figures 6.39 to 6.41, which show that the force-displacement behavior could be 

characterized with oval shaped loops inside the soft clay 6.34 m below the soil surface. 

The calibrated model for the soft clay overestimated the soil reaction at the beginning of 

the excitation; however, it followed the trends and captured the peaks for most parts of 

the excitation. Another observation made from these figures is that contribution of the 
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radiation damping in the simulated reaction of the soft clay was much more significant 

than that of the improved soil. 

6.6 Summary and conclusions 

 An extended version of the GBW model was employed to simulate the seismic 

soil-pile reaction in the third shaking event. 

 The developed model was capable of simulating gap formation between the 

improved soil and pile as well as the degradation in the stiffness and strength of 

the soil. 

 Both radiation and material damping in the soil were explicitly accounted for by 

using distributed dashpots attached in parallel to the hysteresis springs formulated 

by the GBW model.  

 Inclusion of the radiation damping with the hysteresis unit increased the soil 

resistance especially in soft clay whereas it had a minor effect on simulation of 

the response in improved soil possibly due to the gap formation. 

 Incorporating the coupling between the radiation damping and the hysteresis force 

was necessary for reproducing the back-calculated soil reactions.  

 Uncertainty in the various model parameters influenced the predicted soil reaction 

to varying degrees. Variations in some input parameters may heavily influence 

analysis results, while variations in others may affect analysis results very little. 

Identifying the most influential parameters on the results of the analyses is 

important because it allows users to focus their efforts on accurately 

characterizing the most important properties. 
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 The calibrated model for the soil reaction at a depth of 0.2 m within the improved 

clay was able to reproduce the soil response in the last three cycles while it was 

unable to capture the hardening occurred in the second cycle. 
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Table 6-1 Sensitivity Analyses on the GBW Model Parameters 
 

Parameters Role 

Local 

sensitivity 

rank 

(Ma et al., 

2004) 

Global 

sensitivity 

rank 

(Ma et al., 

2004) 

Sensitivity 

rank 

(Sengupta 

and Li, 

2013) 

α 
Ratio of the post yield to pre yield 

stiffness 
1 2 7 

β Hysteresis shape control 5 4 3 

γ Hysteresis shape control 6 5 8 

n Sharpness of the yield 8 7 2 

𝛿𝜈 Strength degradation 12 9 6 

𝛿𝜂 Stiffness degradation 4 8 5 

𝑝 Pinching slope 3 10 12 

휁0 Measure of the total slip 2 1 1 

𝜓0 Pinching magnitude 7 3 4 

𝛿𝜓 Pinching rate 11 12 9 

𝜆 
Pinching severity. the amount and the 

spread of pinching in the loop 
10 11 10 

𝑞 Pinching initiation 9 6 11 
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Table 6-2 Ranges of Control Parameters Reported by Ma et al. (2004) and 

Sengupta and Li (2013) 
 

Parameters (reinforced concrete joint)  

Sengupta and Li (2013) 

Parameters (wood structure)  

Ma et al. (2004) 

0.005<α<0.07 0<α<0.1 

0.04<β<0.06 0.5<β<1.5 

-0.02<γ<-0.01 -0.3<γ<0.5 

1<n<1.1 0<n<3 

0.00005<𝛿𝜐<0.00008 0<𝛿𝜐<0.05 

0.005<𝛿𝜂<0.002 0<𝛿𝜂<0.3 

0.04<𝑝<0.09 0<𝑝<5 

0.85<휁0<0.98 0.7<휁0<1 

0.75<𝜓0<0.95 0<𝜓0<0.2 

0.1<𝛿𝜓<0.2 0<𝛿𝜓<0.01 

0.1<𝜆<0.12 0<𝜆<1 

0.03<𝑞<0.08 0<𝑞<0.3 

 

 

 

Table 6-3 Predominant Frequency of Base Motion in Shaking Events 
 

                    Frequency (Hz) 

Events  
Method 1 Method 2 

Event 1 2.37 2.4 

Event 2 2.52 2.56 

Event 3 0.64 2.57 
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Table 6-4 Selected Trials 
 

Parameters 
Case 1 

Improved clay 

Case 2 

Improved clay 

Case 3 

Improved clay 
Soft clay 

𝑘 (kPa) 7900 7900 7900 700 

𝑦0 (m) 0.025 0.025 0.025 0.05 

α 0 0 0 0 

β 0.5 0.5 0.5 0.5 

γ 0.5 0.5 0.5 0.5 

n 1 1 1 1 

𝛿𝜈 0.01 0.05 0.05 0.25 

𝛿𝜂 0.01 0.05 0.05 0.25 

휁0 0.9 0.9 0.9 0 

𝜓0 0.4 0.4 0.4 - 

𝛿𝜓 0.01 0.01 0.01 - 

𝜆 0.6 0.6 0.6 - 

𝑞 0.1 0.1 0.4 - 

𝑝 6 6 6 - 

𝜐 0.4 0.4 0.4 0.4 

𝑑 (m) 0.286 0.286 0.286 0.286 

𝜌𝑠 (ton/m3) 1.8 1.8 1.8 1.8 

𝑉𝑠 (m/s) 20 20 20 20 

𝑓𝑝 (Hz) 2.57 2.57 2.57 2.57 

𝐶𝑠 0.5 0.5 0.5 0.25 
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Figure 6.1 Soil reaction model, (a) multiple sub-elements at a single node 

 

 

 

 

 

 

Figure 6.2 Response of a cohessionless soil (left) and a cohesive soil (right) 
 (Gerolymos and Gazetas, 2005) 
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Figure 6.3 Correction of cyclic p-y curves to construct artificial hysteresis loop 

with gap (Nogami et al., 1992) 

 

 

 

Figure 6.4 Characteristics of non-linear p-y element a) components b) behavior of 

the components (Boulanger et al. 1999) 
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Figure 6.5 Ramberg-Osgood model (Carr, 2003) 

 

 

 

 
 

Figure 6.6 Multilinear hysteresis models (a), bilinear (b) peak oriented, (c) 

pinching model (Medina and Krawinkler, 2003) 
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Figure 6.7 Developed model by Allotey and El Naggar (2008b) for cyclic and 

dynamic soil-pile interaction 

 

 

 

         

(a)                                                                      (b) 

Figure 6.8 Soil-pile-structure model with (a) parallel damping (b) series damping 

(Wang et al., 1998) 
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Figure 6.9 Typical hysteresis shapes for wood joints: (a) joint with Yielding Plate, 

(b) joint with yielding nail, (c) joint with yielding bolt (Dowrick, 1986) 
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Figure 6.10 Schematic illustration of the macro-elements in the Winkler 

foundation model 
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Figure 6.11 Effects of increasing α on the shape of the monotonic loading curve 

(Gerolymos and Gazetas, 2005) 

 

 

Figure 6.12 Effects of increasing n on the shape of the monotonic loading curve 

(Gerolymos and Gazetas, 2005) 

 

 

Figure 6.13 Masing rule simulated by β=γ=0.5 (Gerolymos and Gazetas, 2005) 
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(a)                                (b) 

 

(c)                                      (d) 

 

 
(e) 

 

Figure 6.14 Hysteresis shapes for different values of β and γ 

(a) weak softening (b) weak softening with mostly linear unloading (c) strong 

softening (d) weak hardening (e) strong hardening (Baber and Wen, 1980) 
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Figure 6.15 Estimation of initial and post-yield stiffness, ki and kf, and the yield 

displacement uy from the back-bone curves 

(a) z- 𝒖 plane and (b) 𝑭𝑻-u plane (Foliente, 1995). (Note that in these graphs 𝒖, 𝒖𝒚, 

z, and 𝑭𝑻 correspond to 𝒚𝒑−𝒔, 𝒚𝟎, r, and 𝑭𝒔, respectively.) 

 

 

 

 
 

 

Figure 6.16 Derived p-y curve at z=0.2 m from pseudo-static load tests on pile 

6DEF 
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Figure 6.17 Effects of variations in k and y0 on the hysteresis loops at the depth of 

0.2 m within the improved soil (pile 6DEF in Event 3) 
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Figure 6.18 Effects of adding pinching to the hysteresis loops, variations in 

parameter ζ0 

(𝝍𝟎=0.4, 𝜹𝝍=0.01, 𝒒=0.1 𝝀=0.1, 𝝆=1, 𝜹𝝊= 𝜹𝜼=0) 
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Figure 6.19 Effects of adding pinching to hysteresis loops, variations in parameter 

ψ0 

(𝜻𝟎=0.9, 𝜹𝝍=0.001, 𝒒=0.1, 𝝀=0.1, 𝝆=1, 𝜹𝝊= 𝜹𝜼=0) 
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Figure 6.20 Effects of adding pinching to hysteresis loops, variations in parameter 

δψ 

(𝜻𝟎=0.9, 𝝍𝟎=0.4, 𝒒=0.1, 𝝀=0.1, 𝝆=1, 𝜹𝝊= 𝜹𝜼=0) 

 

 

 



230 

   

 

 



231 

 

 

Figure 6.21 Effects of adding pinching and degradation to hysteresis loops, 

variations in parameters δυ and δη 

 (𝜻𝟎=0.9, 𝝍𝟎=0.4, 𝜹𝝍=0.01, 𝒒=0.1 𝝀=0.1, 𝝆=1) 
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Figure 6.22 Effects of adding pinching and degradation to hysteresis loops, 

variations in parameter q 

(𝜻𝟎=0.9, 𝝍𝟎=0.4, 𝜹𝝍=0.01, 𝝀=0.1, 𝝆=1, 𝜹𝝊= 𝜹𝜼=0.01) 
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Figure 6.23 Effects of adding pinching and degradation to hysteresis loops, 

variations in parameter ρ 

 (𝜻𝟎=0.9, 𝝍𝟎=0.4, 𝜹𝝍=0.01, 𝒒=0.1, 𝝀=0.1, 𝜹𝝊= 𝜹𝜼=0.01) 
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Figure 6.24 Effects of adding pinching and degradation to hysteresis loops, 

variations in parameter λ 

(𝜻𝟎=0.9, 𝝍𝟎=0.4, 𝜹𝝍=0.01, 𝒒=0.1, 𝝆=6, 𝜹𝝊= 𝜹𝜼=0.01) 
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Figure 6.25 Effects of adding radiation damping to the hysteresis loops, variations 

in parameter cs 

 (𝜻𝟎=0.9, 𝝍𝟎=0.4, 𝜹𝝍=0.01, 𝒒=0.1 𝝀=0.6, 𝝆=6, 𝜹𝝊= 𝜹𝜼=0.01) 
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Figure 6.26 Hysteresis loops produced by selected trials (Case 1) 
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Figure 6.27 Time-histories of the soil reaction produced by different components of 

the macro-element (Case 1) 

 

 

 

 

 
 

 

Figure 6.28 Time history of the dissipated energy in the macro-element (Case 1) 
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Figure 6.29 Hysteresis loops in the selected cycles (Case 1) 
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Figure 6.30 Hysteresis loops produced by selected trials (Case 2) 

 

 

 

 

 

 



240 

 

 
 
 

Figure 6.31 Time-histories of the soil reaction produced by different components of 

the macro-element (Case 2) 

 

 

 

 

 
 
 

Figure 6.32 Time history of the dissipated energy in the macro-element (Case 2) 
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Figure 6.33 Hysteresis loops in the selected cycles (Case 2) 
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Figure 6.34 Hysteresis loops produced by selected trials (Case 3) 
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Figure 6.35 Time-histories of the soil reaction produced by different components of 

the macro-element (Case 3) 

 

 

 

 

Figure 6.36 Time history of the dissipated energy in the macro-element (Case 3) 
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Figure 6.37 Hysteresis loops in the selected cycles (Case 3) 
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Figure 6.38 p-y curves at z=6.3 m from pseudo-static load tests on pile 6DEF 

 

 

 

 

Figure 6.39 Time-histories of the soil reaction produced by different components of 

the macro-element (soft clay) 
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Figure 6.40 Time history of the dissipated energy in the macro-element (Soft clay) 
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Figure 6.41 Hysteresis loops in the selected cycles (Soft clay) 
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CHAPTER 7: SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORK 
 

7.1 Summary and conclusions 

This research assessed the pseudo-static and seismic responses of single piles in partially 

improved ground. In professional practice, a variety of strategies are used to address 

excessive lateral deflection of pile foundations in soft soils. Increasing the number of 

single piles and using piles with larger diameters or stiffer material are among the more 

expensive recommended methods. As construction methods develop and contractors’ 

capabilities broaden, engineers and contractors are likely to deploy soil improvement 

techniques as an alternative to more costly solutions. Such methods also have been 

considered as options for retrofitting aging structures. However, relatively little is known 

about the complex behavior of structures supported on improved ground, especially 

during seismic loading, and this lack of knowledge has impeded the application of such 

methods in areas with soft or weak soils. In response to this challenge, this project 

proposed a cement deep soil mixing method and tested it through centrifuge modeling 

and numerical modeling as a way to strengthen foundations against pseudo-static and 

seismic lateral loads. Improvements of three different sizes were considered, with the 

sizes named for the depth of the improvement zone: 6D, 9D, and 12D, with D representing 

the outside pile diameter. The soil profile consisted of a 10 m soft clay over an 8 m dense 

sand. The pile tips penetrated into the dense sand layer and the pile heads were free to 

rotate. The model piles were subjected to a series of pseudo-static and seismic lateral 

loads. The results of the tests suggested several general guidelines that can be 
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implemented in the construction of highway bridges, pile-supported wharf structures, oil 

and gas production platforms, and other offshore structures in seismically active regions.  

7.1.1 Single piles subjected to pseudo-static loads 

A series of pseudo-static loading tests with increasingly large target displacements at the 

pile heads were performed on the improved and unimproved piles; these data are 

presented in Chapter 3. The novel bending moment curve-fitting procedure detailed in 

Chapter 3 takes into account the soil layering effects by including sharply varying soil 

reactions at the interface of improved and soft clay layers. Using this method, the pseudo-

static p-y curves were back-calculated and compared with the conventional models for 

soft and stiff clays. The close agreement of the estimated pile deflections with the 

measurements confirmed that the adopted method for deriving the p-y curves 

significantly improved the accuracy of the prediction, especially when the spacing 

between the strain gages was large. 

 Some of the software commonly used for analyzing piles response to lateral loads, 

such as LPILE, are not capable of incorporating limited lateral extents of the improved 

zones; as a result, they overestimate both the stiffness and the ultimate strength of the 

improved soft clay. However, the agreement between the simulations and the 

measurements became closer as the size of the improved zone increased. Close 

agreements were observed for pile 12DMN. This behavior was expected because the one-

dimensional soil model generated by LPILE represented the behavior of the improved 

soil in the centrifuge experiment more accurately as its lateral extent increased and the 

influence of the soft clay at deeper depths vanishes.   
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The experimentally derived p-y curves using the developed curve-fitting method 

showed similar characteristics, but different values compared with the conventional 

models for stiff and soft clays. It is therefore recommended that scaling factors be applied 

to the “p” and “y” values of the conventional models to account for the limited lateral and 

vertical extents of the improved ground.  

Maximum bending moments and shear forces within the piles were observed in the 

improved soil. The design implication of these findings is that for a given lateral load, 

ground improvement around a pile in soft clays can lead to considerable reduction in the 

corresponding cyclic lateral displacement. On the other hand, for a given lateral 

displacement, the induced bending moments and shear forces can increase significantly, 

especially within the improved soil regions. Therefore, appropriate dimensions for the 

piles should be selected so that any significant yielding or premature failure of the pile 

can be prevented and the full potential of a pile can be realized. 

Results of the pseudo-static tests revealed that the small-strain lateral stiffness and 

load resistance of piles in improved soil increased from 2 to 8 times and 4 to 5 times, 

respectively, over those of a pile in unimproved soil.  

7.1.2 Single piles subjected to seismic loads 

Scaled Loma Prieta and Kobe earthquakes were applied in sequence to the centrifuge 

model of piles that did not experience previous pseudo-static loads. The pile supported 

by the largest improvement zone was, however, subjected to a small magnitude pile top 

displacements. The displacements between the pile and the free-field soil were larger than 

that observed in the pseudo-static load tests at the soil surface. One of the important 
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findings of this research is that the motions of the piles and the free-field soil in all of the 

improved cases followed the same pattern and direction. 

The distribution of bending moments along the piles during seismic loading 

showed that the peaks occurred at the interface of the improved and unimproved soil as 

well as within a region around the interface of the soft clay and dense sand. The maximum 

moment occurred at the same time as the free-field soil peak displacement. This finding 

shows that the interaction between the soil and piles was controlled mainly by the 

kinematic interaction. The inertial interaction caused by the top mass was very small. The 

location of the maximum pile shear force in the unimproved pile appeared to be close to 

the clay-sand interface, whereas it moved upward to the middle of the improved zone for 

the improved piles. 

In general, the p-y curves derived experimentally from pseudo-static loading tests 

in the improved and unimproved soft clay appeared to represent the back-bone curves of 

the seismic hysteresis loops reasonably well. The study detected an influence of the 

improved zone on the derived p-y curves of the underlying soft clay layer, and vice versa, 

suggesting that the p-y springs close to soil layer interfaces functioned as coupled 

elements.  

In the uppermost clay layer, high pore water pressures (PWP) were recorded in 

all shaking events. Pore pressure records showed that the dense sand layer did not liquefy 

in all the shaking events.  

As detailed in Chapter 6, an extended version of the Bouc-Wen model was 

employed to simulate the hysteretic seismic reaction between the soil and the pile in the 

largest improved zone in the third shaking event. The developed model was capable of 



252 

simulating gap formation between the improved soil and the pile as well as degradation 

in the stiffness and strength of the soil; however, it did not capture the hardening behavior 

of the hysteresis loops in the improved soil at the beginning of the shaking Event 3. 

Radiation damping was included in the interaction macro-elements using a viscus dashpot 

in parallel with the hysteresis spring. In modeling the radiation damping in the system, it 

was found that incorporating the coupling between the radiation damping and the plastic 

deformations in the hysteresis unit was necessary for reproducing the back-calculated soil 

reactions. Contribution of the radiation damping in the simulated reaction of the improved 

soil was almost insignificant compared to that of the soft clay. The discrepancy between 

the simulated and the derived values in soft clay might be explained by loss of strength 

due to pore water pressure generation which was not accounted for in the macro-element 

model. The calibrated model for the soft clay overestimated the soil reaction at the 

beginning of the excitation; however, it followed the trends and captured the peaks for 

most parts of the excitation.  

7.1.3 Identification of soil-pile-top mass system 

To identify the modal frequencies of the soil-pile-top mass system, pseudo-flexible 

transfer functions were derived utilizing spectral analysis method. In the third event, two 

major peaks were observed in the pseudo-flexible transfer functions for all piles. The first 

peak within lower frequencies showed a gradual shift from 2.8 Hz for UIAB, to 3.4 Hz 

for 6DEF, to 4 Hz for 9DIJ, and finally to 4.2 Hz for 12DMN; this reflects the direct 

effect of the improvement zone size on the magnitude and frequency of the lower 

frequency peak. However, the opposite was observed on the second peak as it moved 

from 8.2 Hz for UIAB towards the lower frequencies to 7 Hz for 12DMN as the 
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improvement zone became larger in size. The results indicated that the lowest natural 

frequency of the system increased as its stiffness increased. The SDOF model, with the 

lateral stiffness estimated from the pseudo-static test results, has been used as a simplified 

method of estimating the natural frequencies of the soil-pile system. This method 

overestimated the lowest natural frequency of the soil–pile-top mass systems by 40% for 

the unimproved soil and about 35% for the improved soils, which is further evidence for 

the softer behavior of the system in seismic events. 

The soil fundamental frequency played a less significant role in the first and the 

second events than in the third event, where it appeared as an influential mode in 

determining the amplified acceleration response of the unimproved pile. These findings 

show that the frequency content of the input motion and the frequencies at which the 

maximum energy is carried along with the natural frequencies of the free field soil are 

very effective in the amplification of the motion on the top mass or super structures.  

The modal identification results in Chapter 5 highlight the benefits of combining 

an analytical model and an experimentally identified model for validating the results and 

thereby avoiding missing modes. 

In engineering practice, it is generally desirable to employ the simplest methods 

possible for achieving a given goal, so it would be beneficial if future investigations 

sought ways to simplify the design methods for piles in improved soil. Nevertheless, some 

primary steps towards this goal were taken in this research. Many of the guidelines used 

in this study were developed by first adopting existing guidelines for static pile loading 

conditions and subsequently modifying them for seismic loading, as discussed in 

Chapters 5 and 6 with regard to estimating the natural frequencies of the soil-pile system 
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and calibrating the Bouc-Wen model. However, the results revealed that the soil-pile 

system had a less stiff behavior in the seismic events which is possibly due to material 

degradation, development of the PWP and rigid body movement of the improved zones 

into the soft clay and following the motion of the surficial soft clay layer.  

7.2 Future work 

The accuracy of the derived p-y curves could be enhanced considerably by experimenting 

with denser arrays of strain gages, especially within the improved soil; employing 

displacement transducers close to the soil surface; and equipping the piles with pressure 

transducers for direct measurement of the soil pressure. The bending moment curve-

fitting method should be modified to account for the inertial effects of the pile. In 

addition, deploying accelerometers attached to the pile could be considered for direct 

measurement of the pile acceleration.  

Another potential direction for future work is refinement of the generalized Bouc-

Wen model developed in this project by calibrating it for several depths in soil and then 

integrating it into a finite element model to directly predict the pile deflection response 

for other free-field motions. The parameters of the model for the same kind of soil could 

be compared for different depths to identify the effect of depth on the parameters.  

According to the results reported in Chapter 5, the kinematic interaction was the 

predominant mechanism in determining the pile response. Experiments with larger top 

mass could be carried out to provide greater understanding of the induced inertial lateral 

loads and overturning moments produced by the superstructure dynamic response on the 

piles.  
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A comparison of the identified and theoretical amplification functions for the free-

field soil revealed that all the vibration modes in the frequency band of interest were not 

either sufficiently excited or identified due to the insufficient instrumentation and the 

narrow-band band-limited frequency content of the excitation motions. Therefore, using 

a denser array of accelerometers, particularly in the middle and in the surficial layers, 

would provide a better estimate of modal quantities. In addition, the outcomes of the 

modal identification could be significantly improved by excitations with white noise 

motions that carry nearly the same amount of energy for the frequencies in the band of 

interest. 

In the current project, the control parameters of the extended Bouc-Wen model 

were calibrated through trial and error. However, it was found that this approach did not 

lead to a unique solution, because a large number of combinations of the parameters could 

provide a reasonable match with the back-calculated or measured responses. Thus, using 

robust system identification methods for retrieving an optimized set of parameters is 

recommended, although a preliminary calibration, such as the one detailed in Chapter 6, 

could provide insight into the possible range of the control parameters. Moreover, efforts 

should be made to correlate the identified parameters and the physical and mechanical 

properties of the soil and pile material. The possible influence of PWP on the soil response 

is another factor that should be considered in modeling the seismic soil-pile interaction. 

Instrumenting the soil adjacent to the piles with PWP transducers would allow for such 

analysis.  

It would be worthwhile for future research to study the behavior of piles in 

improved soil under more extreme dynamic loading conditions in which failure of pile 
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structure or soil system or both could be investigated. The performance of the improved 

soil under repeated loading and the severity and distribution of damage in the improved 

soil and piles are the subjects that call for more research.  

It is preferable to keep the piles in the elastic range, but when a limited amount of 

yielding is allowed in the pile, this reduces the cost of material. The present work was 

limited to linear piles. To provide greater insight for performance-based design, it could 

be useful to conduct nonlinear analysis of the pile structure for cases where the pile 

bending moment reaches the yield moment outside but near the soil surface. 
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