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Abstract 

 

Flotation tanks provide a unique environment for reducing the deleterious effects of 

stress on the human mind and body. As a result, biosensors capable of collecting 

objective physiological data during float sessions are needed to identify and quantify the 

resulting health effects. This thesis presents the selection and validation of off-the-shelf 

biosensors to investigate the physiological stress-reducing effects induced by this novel 

healthcare environment. The demands of the float environment required the biosensors 

to be wireless, waterproof, salt-proof, and minimally invasive. Interface and design 

modifications were made to the selected devices to ensure reliable operation in the 

unique conditions created by float tanks, and these modifications were tested for 

effectiveness in protecting the sensors, maintaining signal integrity, and reducing all 

forms of external sensory input that may detract from the float experience. As a result of 

the validation process, it was determined that the modified biosensors were capable of 

successfully recording movement, electrocardiograph (ECG), respiration, 

electroencephalograph (EEG), and blood pressure during float sessions. 

 

This thesis also investigated time synchronization and the analyses of biosensor outputs 

as they pertain to float research. A method to ensure time synchronization among 

sensors was developed and tested against an industry-leading physiological recording 

device to verify the accuracy of the biosensors’ timestamps. Additional experiments 

among sensors were conducted to further validate the technique and illustrate that a 

transient event can be identified across multiple data streams. A neural network was 



xi 

designed to facilitate the calculation of cardiac metrics such as heart rate and heart rate 

variability, and the results were analyzed to determine which methods provide the most 

useful information for float research. Data obtained from two accelerometer devices 

was also examined to determine optimal cut-points for classifying movement within the 

float tank, and measures of stillness and avoidance behavior were characterized. The 

proposed biosensors and methods were found to reliably and accurately measure 

changes in physiological variables during float sessions. This thesis documents the first 

successful implementation of collecting continuous physiological data during the float 

experience.
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Chapter 1: Introduction 

 

Float tanks, also referred to as isolation tanks, are lightless, soundproof tanks in which 

people float effortlessly in a dense salt water solution warmed to skin temperature. This 

unique environment reduces external sensory input (including visual, auditory, tactile, 

proprioceptive, and thermal sensory input) and is often described as sensory 

deprivation; however, this term can be misleading. Although float tanks reduce external 

sensory input, they often enhance internal sensory input, especially signals arising from 

the heart and respiration. This creates a peaceful meditative environment that naturally 

induces a state of relaxation. Objectively measuring this relaxation response has 

remained elusive, and past flotation research has failed to identify biosensors capable of 

recording signals in this unique environment. 

 

Float tanks come in various sizes and designs, but the basic components are the same. 

The two tanks used in this study are depicted in Figures 1 and 2 (Floataway, Norfolk, 

UK). Each circular pool is 2.5 m in diameter and contains roughly 1.25 kL of water 

mixed with 900 kg of Epsom salt (magnesium sulfate). This dense solution allows a 

person to float near the surface when in a supine position. The air in the rooms and 

water in the tanks are heated to skin temperature (34.5 oC), and the rooms in which the 

tanks are built are soundproof and devoid of light. These aspects of floating are 

responsible for the aforementioned reduction of external sensory input. 
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Research involving float tanks and sensory deprivation began in the 1950s but lacked 

technology capable of thoroughly investigating the resulting health effects [1], [2]. As a 

result, the field has remained relatively stagnant for the past half-century. The recent 

development of easy-to-use biosensors and the increased popularity of recreational 

floating have driven researchers and float tank entrepreneurs desiring to promote their 

businesses to revisit this topic of study. Early float research revealed that this 

therapeutic experience lowers levels of stress [3], [4], anxiety [5]–[7], and blood 

pressure [8], [9]. Today, people anecdotally report that floating alleviates chronic pain, 

depression, and eating disorders. Such reports have prompted business owners to add 

float tanks to their existing spa facilities, and clinical neuropsychologists are 

experimenting with float tanks as a type of therapy for reducing the negative effects of 

stress and anxiety.  

 

Since floating is returning as a form of treatment in a number of recreational and 

healthcare settings, biosensors that collect empirical data and examine float therapeutics 

are essential for accurately quantifying the resulting effects. Given the float tank’s 

unusual conditions, such devices must be waterproof and noncorrosive in the presence 

of salt. Furthermore, since floating is intended to minimize external sensations, devices 

must be minimally invasive and free of wires and attachments when possible. A form of 

wireless, real-time data transmission and viewing is also often desired to monitor 

participants during a float session. 
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Figure 1.  Open Float Tank 

 

 

Figure 2.  Enclosed Float Tank 

 

The objective of this thesis was to select and validate biosensors and their outputs for 

the study of float research. This involved: 

• Using selection criteria to select and modify devices. 

• Validating the general usability of devices in the float environment. 

• Analyzing device outputs to develop optimal metrics for float research. 
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For the selection of devices, off-the-shelf biosensors were chosen opposed to custom-

made devices available only to research institutes. Using readily available devices 

facilitates collaboration between researchers and float businesses where the increased 

resources of the businesses can be utilized to conduct studies on a larger scale. The 

selected devices in this study collect movement, electrocardiogram (ECG), respiration, 

electroencephalogram (EEG), and blood pressure data. Many of the wearable biosensors 

available to the public do not meet requirements necessitated by the float tank 

environment, so this thesis developed simple design modifications that can be easily 

implemented by other researchers and entrepreneurs alike.  

 

Following the modification process, initial testing was performed to determine the 

devices’ suitability and usefulness in float research. Various experiments were 

conducted to ensure that the biosensors operate in the float environment without 

experiencing physical damage or loss of data. Other tests investigated whether or not 

the proposed modifications altered the output of a device. The biosensors were also 

validated as a system. Protocols and tools for synchronizing devices were developed 

and analyzed to determine how data from separate devices can be compared. 

 

A comprehensive study of the devices’ outputs was then performed once the biosensors 

had been validated. Various cardiac metric algorithms and methods were analyzed to 

determine how to provide full access to the most useful information for float research. 

Devices that record movement data were compared to identify redundant information, 

and cut-points were optimized to classify movement. 
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The following list summarizes the contributions of this thesis: 

• Identified selection criteria and utilized it to select off-the-shelf biosensors for 

float research. 

• Developed easily reproducible modifications to devices to prevent physical 

damage, data loss, and excessive sensory input. 

• Validated the ability of each device to collect usable data during float sessions 

and characterized the effects that modifications have on the data. 

• Constructed a method of time synchronizing biosensors to enable the 

comparison of data from separate devices. 

• Designed a neural network to automatically detect R-peaks in ECG data. 

• Compared various cardiac metrics to determine which algorithms provide the 

most useful information for float research. 

• Analyzed data from multiple movement-tracking devices to identify 

redundancies and create cut-points for classification of movement. 

• Defined stillness and avoidance behavior to facilitate the study of movement. 

 

The remainder of this thesis is organized as follows. Chapter 2 presents an overview of 

related work. Chapter 3 details the biosensor selection and modification processes, 

along with validation of the usability of devices in the float environment. The 

instrumentation setup and time synchronization procedures are described in Chapter 4. 

Chapter 5 describes the neural network and provides an analysis of cardiac metrics and 

algorithms, identifying which are most useful for float research. Movement-tracking 

devices are compared in Chapter 6 to determine redundant devices and develop cut-
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points for accurate classification of movement. Chapter 7 offers a conclusion of the 

thesis and provides directions for future research. 
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Chapter 2: Related Work 

 

The work presented in this thesis built upon existing float studies and research 

involving the testing of devices and their outputs. This chapter presents an overview of 

related work and discusses physiological monitoring, various validation methods, and 

time synchronization. 

 

Previous float studies implemented measurement devices to examine the physiological 

effects of floating. The most common variable recorded was blood pressure. In an 

attempt to capture long-term effects, Fine et al. measured blood pressure prior to float 

sessions and in follow-up appointments [8]. Others [9]–[14] recorded blood pressure 

before and after each float to capture immediate results. In [15], [16], the authors 

collected blood pressure data only on non-float days, and another study measured blood 

pressure three times a day during the entire course of the experiment [17]. The literature 

certainly reveals that floating can decrease blood pressure, but no studies have 

attempted to monitor blood pressure continuously throughout the duration of float 

sessions. Thus, the changes that occur to blood pressure during the course of a float 

session are still largely unknown. 

 

Another common physiological variable studied in early float research is ECG. In [5], 

Forgays et al. used electrodes wired to a Narco Bio-Systems FM-1100 E2 transmitter 

and a matching biotelemetry FM-1100-7 receiver to record ECG before, after, and 

during float sessions; however, the authors discarded 30% of the data due to signal loss. 
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In a later study, they recorded ECG only before and after the float sessions [18]. In his 

master’s thesis, Steel successfully recorded ECG during floats to examine changes in T-

wave amplitude and heart rate [19]. He also tried to measure EMG but lost the data due 

to low signal-to-noise ratio. The authors of [20] measured heart rate before and after 

knee exercises and float sessions but not during the float sessions themselves. 

 

A few researchers recorded EEG during float sessions. One study used electrodes 

covered with a “mighty dry” diaper and surgical cap to continuously measure EEG 

without signal loss [21]. Fine et al. employed an Autogen 120 EEG device with wired 

electrodes to record average frequency, average amplitude, and percent time in filter 

range [22]. One electrode was placed on the forehead, while the other two were attached 

to nasal cartilage. 

 

Forgays et al. also measured breathing rate and frontalis muscle movement, but no 

analysis was presented [5]. No studies have thoroughly investigated the effects of 

floating in regards to breathing rates and body movement. 

 

Most wireless and mobile health sensors have gone through clinical testing to receive 

certification and FDA approval. When modifications are made to these devices to 

ensure compatibility with the float environment, additional validation is necessary. The 

Association for the Advancement of Medical Instrumentation (AAMI) often develops 

standards used in clinical validation. The standards stipulate test conditions, number of 



9 

subjects, and pass-fail criteria [23]–[25]. Such protocols can be adapted to validate 

modified devices. 

 

Other health devices, such as accelerometers that measure movement, do not require 

clinical validation. Instead, researchers often compare them to other devices or 

reference measures to determine accuracy. In [26], Esliger et al. used a mechanical 

shaker, a metabolic gas analyzer, and two additional accelerometers to validate the 

device under study. Using the shaker, they oscillated the accelerometers at specific 

frequencies and amplitudes and calculated standard deviation, coefficient of variation, 

and the Pearson product-moment correlation to determine the validity and reliability of 

the raw acceleration values. They then employed the gas analyzer to measure VO2 

during graded exercise, which was used to compute Pearson product-moment 

correlations for each accelerometer. Receiver-operator curves (ROC) were then 

analyzed to determine optimal cut-points to accurately classify activity levels using the 

accelerometers. The authors of [27] later tested these cut-points, again making use of 

oxygen uptake measurements for the analysis. 

 

Another study similarly compared two accelerometers by oscillating them with an 

orbital shaker [28]. The authors took this work a step further by developing models to 

classify activity levels from acceleration values. They attempted to train the models 

using data from one accelerometer and then apply them to data from the other. 

Classification accuracy decreased significantly when models were applied to data from 

a different device. 
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In the same way that movement-based metrics are often studied instead of raw 

acceleration values, cardiac metrics are analyzed to ensure accuracy and determine their 

meanings. In [29], heart rate variability (HRV) is defined along with various methods 

used to calculate it. The authors explain the aspects of HRV that each method 

emphasizes and propose guidelines for ensuring accurate HRV determinations. Such an 

analysis is necessary in float research to ensure the acquisition of metrics that yield the 

most useful information. 

 

Validating devices and their operation as a system greatly depends on time 

synchronization. For slow-changing physiological variables, it may be sufficient to use 

local timestamps to compare data between devices. For other variables, a more precise 

method is required. When the device being used is connected to the Internet, the 

Network Time Protocol (NTP) described in [30] ensures the precise time 

synchronization necessary when dealing with fast-changing variables. An NTP server 

regularly synchronizes clocks in its network to within a few milliseconds of 

Coordinated Universal Time (UTC).  

 

Unfortunately, many mobile health devices are not connected to an NTP server. These 

devices synchronize their real-time clocks (RTCs) to a computer when connected, but 

the RTCs have only one-second precision. Synchronizing these clocks with greater 

precision usually requires injecting a common signal into each data stream. Such a 

process is described in [31] by BIOPAC, a leader in the physiological data acquisition 

industry. BIOPAC injects a digital signal into its data streams in order to synchronize 
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stimulus presentations with multiple response recordings. Float research requires a 

similar method for experiments that measure fast-changing variables and response 

times. 
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Chapter 3: Selection and Modification of Devices 

 

The process of choosing biosensors for use in float research began with defining 

selection criteria. This chapter details these criteria and the resulting procedures used 

for selecting and modifying devices. This work focused on biosensors that monitor 

movement, ECG, respiration, EEG, and blood pressure since these measures are strong 

indicators of relaxation and are commonly studied in the literature. Each selected device 

was tested to determine its usability in the float environment. 

 

3.1 Selection Criteria 

 

The conditions of the float experience impose unique requirements on physiological 

devices used in float research. Float tanks contain an extremely dense salt-water 

solution and allow participants to float around unrestrained. The purpose of the 

environment is to reduce external sensory input. Based upon these characteristics, 

biosensors utilized in float research must be: 

• Waterproof 

• Non-corrosive in the presence of salt 

• Free of wires and attachments 

• Minimally invasive in terms of auditory, visual, and tactile stimulation 

In addition to these requirements, it is desirable for the devices to provide real-time data 

streaming to enable participant monitoring and provide biofeedback during float 

experiments. Unfortunately, few off-the-shelf devices meet these criteria. Devices that 
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meet these standards the closest must be identified and then modified to overcome their 

limitations. After reviewing various biosensors on the market, devices were selected for 

validation according to the selection criteria. 

 

3.2 The Kinect 

 

The Kinect (Microsoft, Redmond, WA) was initially chosen as the primary method of 

monitoring movement. The Kinect uses an infrared (IR) camera to noninvasively obtain 

depth images even in the absence of light, and the images are decomposed to provide 

skeleton joint points as xyz-coordinates [32]. The Kinect has been successfully used to 

analyze gait biometrics [33] and to track head motion [34]. It can be mounted above the 

float tank to avoid water damage, and it does not introduce any auditory or tactile 

stimuli into the float environment. The Kinect comes with many sample apps that allow 

users to display incoming RGB, depth, and skeletal data in real-time. Microsoft also 

provides a free software development kit (SDK) to create custom apps. For this work, 

the SDK was used to develop a Windows Forms application that displays joint points as 

a connected skeleton. The app also calculates the number of limb movements and the 

amount of time spent moving as illustrated in Figure 3. Since subjects usually float 

without clothing, the Kinect’s RGB data stream is disabled to protect participant 

privacy. Only skeletal data is collected and viewed. 
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Figure 3.  Kinect App to Monitor Movement 

 

The Kinect’s limitations are that the IR light is visible to the human eye and skeleton 

tracking does not work when a participant is upside down. A spectrum analyzer 

revealed that the IR light has a single wavelength of 830 nm, meaning that filters would 

completely block the light and prevent motion detection. As an alternative solution, the 

Kinect was covered with a clear dome, and pairs of magnets were placed on each side 

of the dome as illustrated in Figure 4. Magnets on the outside of the dome are held in 

place by magnets on the inside of the dome, and they can slide to any position to block 

the IR light from a participant’s view without negatively affecting movement tracking. 

In order for this method to work, a foothold system must be used to keep participants in 

a constant position. This is physically invasive but ultimately prevents participants from 

rotating in the tank and ensures that skeletal data can be collected. Certain float 

experiments require a constant head position anyway, so the Kinect can be employed in 

those studies without increasing the overall level of invasiveness. 
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Figure 4.  Dome and Magnet System Used to Block IR Light 

 

The Kinect was tested with three subjects to validate its usability in the float 

environment. It was mounted above the closed float tank and covered with the dome 

system previously described, and the devised foothold system was employed to place 

the participant’s head in a specific location to block the IR light from view. Notably, the 

foothold system can be adjusted in one inch increments, and the magnets can slide 

anywhere on the dome to ensure the IR light is blocked from view for participants of 

various heights. 

 

After positioning a participant, the skeleton tracking application was initialized, and 

data collection commenced. The Kinect locates an individual based on his or her 

distance from the background, so it had difficulty distinguishing an individual’s body 

from the water in the tank. To remedy this, participants were instructed to lift their arms 

out of the water towards the camera while at the same time moving their legs back and 

forth. These movements created distance between the subject and the water and aided 

the Kinect in locating the participant, and the app successfully displayed the resulting 

skeleton. Alternatively, the Kinect can be switched from default mode to seated mode. 
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This causes the Kinect to track only the upper body and uses movement to initially 

locate the participant instead of distance. Experimental results revealed that tracking in 

seated mode results in quicker detection. After being located, the participants were 

asked to move their limbs to specific positions to test whether or not the skeleton 

accurately reflected those positions. The skeleton mirrored all three participants’ 

movements without ever losing their locations. 

 

The Kinect was also tested without using the foothold, dome, and magnets. As 

mentioned previously, the Kinect was unable to accurately track someone upside down. 

If a participant floats into this position, the displayed skeleton becomes severely 

disfigured until the participant returns to the upright position. When floating without the 

dome and magnets, the three participants stated that the IR light was not noticeable as 

long as their eyes were closed. The proposed modifications can be implemented flexibly 

to align with various experimental designs. 

 

3.3 GENEActiv Original Accelerometers 

 

As a second tool for tracking limb movements, the GENEActiv Original accelerometer 

(GENEActiv, Cambridgeshire, UK) was selected. This device records raw acceleration 

in the xyz-directions and is waterproof. It can be somewhat invasive, especially to 

participants not accustomed to wearing wristwatches, but is a good alternative to the 

Kinect when movement data is needed for an entire float session that does not use the 
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foothold system. The device stores data locally and cannot transmit wirelessly. No 

modifications were made to this device. 

 

GENEActiv accelerometers were shown to be both reliable and valid in [26], [28]. To 

begin validating the devices in float tanks, 11 participants wore a GENEActiv 

accelerometer on each wrist during 2 90-minute floats. These experiments confirmed 

that the watches are not damaged by the salt solution and are waterproof. The collected 

data reflected movement occurring within the float sessions as depicted in Figure 5, and 

Chapter 4 presents some of this data as it pertains to time synchronization. Also, 

Chapter 5 uses this data as a reference to develop cut-points for another device. Initial 

testing verified that GENEActiv Original accelerometers are viable for use in the float 

tank environment. 

 

 

Figure 5.  One Subject’s Acceleration During a 90-minute Float Session 

 



18 

3.4 The BioPatch 

 

The BioPatch (Medtronic, Fridley, MN) consists of a small physiological monitoring 

module that attaches to the chest using standard ECG electrodes. It records ECG and 

breathing waveforms without the use of a chest strap by implementing a novel and 

proprietary measure of impedance, making it much less invasive than similar devices on 

the market. It also measures acceleration, posture, and skin temperature. The BioPatch 

stores data locally and can transmit one-second vitals via Bluetooth for real-time 

monitoring. The BioHarness, a similar device produced by the same company, uses a 

chest strap with embedded electrodes to measure the same variables. The validity and 

reliability of the BioHarness were proven in [35]–[37], and the results are applicable to 

the BioPatch since it uses the same algorithms. 

 

Although a participant’s chest usually remains above the water in a float tank, certain 

movements can cause the salt solution to reach the BioPatch electrodes and ruin the 

signal. The recent development of hydrophobic carbon electrodes that provide clean 

ECG signals in water-immersed conditions could easily solve this problem [38], but the 

BioPatch itself is not waterproof. Thus, Tegaderm (3M Healthcare Ltd., Loughborough, 

UK) is used to cover the BioPatch and prevent signal loss and physical damage in 

worst-case scenarios. The BioPatch also has flashing lights that must be covered with 

tape to ensure the device does not provide unwanted visual stimulation to participants. 
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To determine whether or not the BioPatch can record a usable ECG signal in the float 

environment, it was tested with 21 subjects during 90-minute float sessions. In all 21 

tests, the BioPatch successfully recorded ECG without signal loss or physical damage. 

A valuable characteristic of the BioPatch software is that it displays a heart rate 

confidence value between 0 and 100 in real time to signify whether or not the ECG 

signal is corrupted. As part of this study’s protocol, it is required that the heart rate 

confidence value reaches 100 before a participant can begin the float session, and the 

value is monitored as the participant enters the tank. When necessary, a participant can 

be asked to exit the tank and readjust the BioPatch and Tegaderm if the confidence 

value drops. In this way, it is ensured that the BioPatch successfully records ECG. An 

example signal taken from the end of a 90-minute float is depicted in Figure 6. 

 

 

Figure 6.  BioPatch ECG Signal at End of 90-minute Float Session 
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Along with ECG, the BioPatch successfully recorded posture, acceleration, skin 

temperature, and breathing rates during the 21 float sessions. The posture data is 

presented in Chapter 4 to illustrate time synchronization and event identification. 

Chapter 5 analyzes the acceleration data to determine optimal cut-points for movement 

classification. 

 

The accuracy of the BioPatch’s breathing rate values was evaluated in an additional 

experiment. A metronome was set to rates between 3 and 30 beats per minute, and 

participants were instructed to match their breathing to the rhythm while floating. When 

participants were able to sustain a breathing rate of 4 breaths per minute, the BioPatch 

accurately detected it as revealed in Table 1. Some participants were not able to 

maintain the lower breathing rates for the entire test duration. For those who did, the 

BioPatch was able to distinguish between most breathing rates between 4 and 30 

breaths per minute. Since this covers the typical breathing values expected in float 

research, it was determine that the BioPatch is a valid biosensor to monitor breathing 

during float sessions. 
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Table 1.  BioPatch Breathing Rates while Floating 

Metronome Rate 
(Beats per Minute) 

Average Breathing Rate 
(Breaths per Minute) 

10 9.95 
15 14.27 
5 5.37 
7 7.13 
3 4.83 
5 4.95 
4 4.12 
6 5.72 
20 18.40 
30 28.61 

 

 

3.5 The QardioArm 

 

After a testing a few different blood pressure devices, the QardioArm wireless blood 

pressure monitor (Qardio, Inc., San Francisco, CA) was selected to measure blood 

pressure and heart rate. This device uses Bluetooth Smart, which performs well when 

establishing and maintaining connections. The QardioArm pairs with and is controlled 

by a smart phone or tablet. After a measurement is taken, the controlling device stores 

the data locally and also uploads the information to a cloud server. Data can be 

downloaded as either a CSV or Excel file, and then loaded into an external application 

for further analysis. The QardioArm is smaller and quieter than other blood pressure 

monitors and stays powered on for 15 minutes before automatically shutting off. Other 

devices turn off within two to five minutes. 
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The QardioArm is not waterproof and thus cannot survive in the float environment. To 

solve this issue, LimbO cast protectors (Thesis Technology, Hampshire, UK) designed 

to keep arm and leg casts dry when an individual is taking a shower or swimming in a 

pool were purchased. The LimbO cast protector is placed over the blood pressure device 

and participant’s arm to create a watertight seal as shown in Figure 7. The QardioArm’s 

smaller size again offers a benefit in that it can more easily fit into the LimbO without 

applying additional pressure to a participant’s arm. 

 

 

Figure 7.  LimbO Cast Protector 

 

The QardioArm was clinically validated according to [23], [24], so initial tests were 

aimed at determining whether or not the device could survive in the float environment 

and maintain its Bluetooth connection. For 3 subjects, the device was triggered at 10-

minute intervals. The QardioArm successfully provided blood pressure and heart rate 

data at each interval during the float sessions, and the LimbO prevented water from 

damaging the device. Participants also reported that the Qardio Arm felt less invasive 

due to its smaller size. 
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A study in the literature compared the QardioArm to other smartphone compatible 

blood pressure monitors and found that the QardioArm’s mean diastolic blood pressure 

was 3.955 mmHg higher than that of one of the other devices [39]. Other differences 

were not statistically significant, and no standard reference device was used. To further 

investigate these mean differences and determine whether the LimbO cast protector 

adds to them, the QardioArm was tested against a reference device with 12 subjects. For 

each subject, six measurements were taken with the QardioArm, the QardioArm 

covered with a LimbO, and the CASMED 740 Select (CAS Medical Systems, Inc., 

Branford, CT) for a total of 18 measurements per subject. Each participant was given a 

five-minute rest period before measurements began, and the order of devices was 

selected to produce two tests for each of the six possible orders. One minute of rest was 

given between each measurement, and six measurements were taken with one device 

before switching to the next device.  

 

As Figure 8 reveals, the QardioArm’s mean systolic blood pressure was 5.723 mmHg 

higher than the reference device, and this difference increased to 7.250 mmHg when 

using the LimbO cast protector. For mean diastolic blood pressure, the QardioArm 

measured 1.611 mmHg higher than the reference without the LimbO and 4.000 mmHg 

higher with the LimbO. The standard deviation of systolic blood pressure was 7.708, 

9.979, and 7.345 mmHg for the QardioArm with LimbO, QardioArm without LimbO, 

and reference device, respectively. For diastolic blood pressure, the standard deviations 

were 8.179, 9.157, and 6.455 mmHg. This suggests that the QardioArm is best suited 

for measuring blood pressure differences instead of raw values. The differences in 
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average values mean that the QardioArm should not be used to group participants into 

hypertension categories, but the similar standard deviations mean that the QardioArm 

should measure changes in blood pressure values as effectively as the reference device. 

Thus, the QardioArm can be used to compare blood pressure differences throughout and 

between float sessions. 
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Figure 8.  Average Systolic Blood Pressure for 12 Subjects 

 

 

Figure 9.  Average Diastolic Blood Pressure for 12 Subjects 

 

The heart rate values of the QardioArm were compared to those of the BioPatch blood 

pressure device, and the results depicted in Figure 10 reveal that the two devices show 
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similar values and patterns. Differences are most likely due to the fact that the 

QardioArm takes a measurement at a single point in time, making it more susceptible to 

extreme changes and outliers. The QardioArm can be configured to take two or three 

measures and report the average to decrease this variability. 

 

 

Figure 10.  Comparison of One Subject’s Heart Rate Values 

 

3.6 The BrainStation 

 

The BrainStation (Neuroverse, Inc., San Diego, CA) consists of a small electronics 

module and sticker electrodes that attach to the forehead to record a participant’s EEG 

signal, which it transmits to a connected smartphone or tablet via Bluetooth. The data is 

then uploaded to a cloud server for further analysis. The BrainStation is not completely 

waterproof, but utilizes gold-plated electrodes embedded in a Tegaderm film to obtain 
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clean EEG data [40]. An additional Tegaderm patch is applied to the device to protect it 

from water during float sessions. 

 

Since the BrainStation was discovered at the end of this research, only initial usability 

tests were conducted. The device was tested with 5 subjects while floating for 60 to 90 

minutes. Initial testing verified that the Tegaderm protected the device and that EEG 

was recorded throughout the float sessions without signal loss while subjects were fully 

immersed in the float environment with ears under water. Figure 11 depicts an example 

of the EEG data collected during a 90-minute float. 

 

 

Figure 11.  BrainStation EEG Data 

 

3.7 Rejected Devices 

 

Other biosensors initially selected for this research did not pass general usability tests. 

The following subsections describe these devices and the limitations that eliminated 

them from being used in float research. 
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3.7.1 The EQ02 LifeMonitor 

 

The EQ02 LifeMonitor (Equivital, Inc., Cambridge, UK) was the original choice to 

obtain ECG and respiration data. This device also records body temperature, skin 

conductance, and acceleration. It has been used to monitor military performance [13], to 

acquire real-time data for preventive medicine [14], and to analyze physiological 

changes during high-altitude parachute jumps [15]. The LifeMonitor is composed of a 

belt containing embedded electrodes, a string gage, and sensors connected to a Sensor 

Electronics Module (SEM) for mobile monitoring. The system was advertised as 

waterproof and capable of transmitting data in real time. 

 

To obtain clean ECG signals free of noise in the float environment, the LifeMonitor’s 

electrodes must be isolated from the salt solution as much as possible. To this end, 

protective gaskets were fashioned out of silicone putty and placed around the electrodes 

as shown in Figure 12. The putty creates a watertight seal between the body and the 

electrodes, and electrode gel was applied to the electrodes to improve signal strength. 

 

      

Figure 12.  Silicone Putty Gaskets to Protect Electrodes 
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To test this solution, 5 participants floated for 60-minute sessions while wearing the 

LifeMonitor. Initially, two of the participants soaked the electrodes upon entering the 

tank, causing complete loss of the ECG signal. After training individuals to carefully 

enter the tank, three were able to keep chest electrodes relatively dry. Even in these 

situations, the signal became attenuated as more salt water saturated the fabric of the 

chest strap and eventually the electrodes. At the end of most sessions, the ECG signal 

was too weak to accurately calculate heart rates. 

 

To determine breathing measurement accuracy, the Equivital LifeMonitor was tested in 

a reclined chair and in the float tank with three subjects. For each test, participants were 

asked to match their breathing to the rhythm of a metronome. On one tone the 

participant was instructed to inhale, and on the next he or she was instructed to exhale.  

The LifeMonitor breathing rate measurements were then compared to the expected 

breathing rates to determine the accuracy. Results showed that Equivital calculations are 

accurate when participants breath between 6 and 25 breaths per minute. Outside this 

range, participants have difficulty maintaining the prescribed rate, making it difficult to 

determine whether the LifeMonitor is reporting incorrect values or the participants are 

breathing at the wrong rates. Table 2 displays the results of a participant breathing to the 

beat of a metronome at different rates for three-minute periods during a float session. 

As can be seen, breathing rates below six breaths per minute do not match the 

metronome rates. Since normal resting rates vary from 12 to 25 breaths per minute, this 

limitation should not be a problem in most experiments. 
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Table 2.  LifeMonitor Breathing Rates while Floating 

Time Elapsed 
(Seconds) Average Breathing Rate (Breaths per Minute) 

30 9.95 7.45 7.30 5.15 3.00 
60 10.15 8.45 7.50 4.00 5.00 
90 9.90 8.45 5.95 4.50 4.50 
120 10.00 7.25 5.50 7.30 2.75 
150 9.90 8.15 5.65 8.70 3.65 
180 9.86 8.00 5.96 6.26 3.46 

      

Metronome Rate 
(Beats per Minute) 

10 8 6 4 2 

 

 

Heart rates calculated by the LifeMonitor were also compared to those measured by two 

wireless blood pressure monitors described later. Figure 13 shows that the LifeMonitor 

and Withings device yield similar results, with the exception of three outliers recorded 

by the LifeMonitor. These three extreme measurements reinforce the fact that the salt 

water more negatively affects the LifeMonitor than other devices. 
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Figure 13.  Heart Rate Comparison for One Subject 

 

Although the LifeMonitor is wireless and accurately measures breathing rates, its 

inability to measure ECG during float sessions makes it unusable for this research. This 

device is better suited for studies examining breathing rates and the associated 

waveforms. 

 

3.7.2 The iHealth and Withings Wireless Blood Pressure Monitors 

 

The iHealth (iHealth Labs, Inc., Mountain View, CA) and Withings (Withings, Issy-les-

Moulineaux, FR) wireless blood pressure monitors operate similarly to the QardioArm 

but automatically turn off after two to five minutes of not being used. This requires 

measurements to be taken much more frequently during float experiments, which is 

more invasive and disruptive to subjects. In contrast to the QardioArm and Withings 
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devices, the iHealth blood pressure monitor does not use Bluetooth Smart. The older 

version of Bluetooth prevents it from maintaining a connection during the float 

sessions, so it was quickly discarded in this work.  

 

The accuracy of the Withings wireless blood pressure monitor was previously validated 

in [18], so this study tested the device to evaluate whether or not it could collect data 

during 60-minute float sessions without loss of connection or automatically turning off. 

During these tests, participants were asked to float with the blood pressure device and 

LimbO cast protector while blood pressure and heart rate were measured at four-minute 

intervals. Since the Withings device turns off after 2 minutes of non-use, the device was 

triggered from a tablet in 2-minute intervals. For every other trigger, the test was 

manually canceled from the tablet before the blood pressure cuff began inflating and 

interrupting the participant. Using this method, data was collected for the full duration 

of the float sessions, but the repeated triggering of the device was tedious and 

cumbersome to the experimenter. 

 

Another drawback of the Withings device is its size. Compared to the QardioArm, it is 

much larger and more difficult to fit inside the LimbO without it applying additional 

pressure to a subject’s arm. Due to this and the quick shutoff timer, the Withings device 

was rejected in favor of the QardioArm. 
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3.7.3 The X4 Sleep Profiler 

 

For collecting EEG data, the X4 Sleep Profiler (Advanced Brain Monitoring, Inc., 

Carlsbad, CA) was initially chosen. Because Advanced Brain Monitoring specifically 

modified this device for float environments, initial alterations were not necessary. The 

X4 has an electronics module for data storage and transmission. The module is attached 

to a band with three electrodes, and the electrodes are placed on a participant’s forehead 

during a float session. Although other EEG devices on the market include an additional 

number of electrodes, the technology fails to maintain a watertight seal and prevent 

signal loss. The X4 is water-resistant and can be configured to transmit data wirelessly 

in real-time. 

 

The accuracy of the X4 in dry environments was validated in [16] and [17]; therefore, 

only the device’s ability to operate in the float environment and avoid signal loss was 

evaluated. The device was tested with and without a head pillow. The head pillow kept 

the participant’s head and the X4 out of the water, resulting in a protected device. 

Without the use of a head pillow, water damaged the device on two occasions and 

significant signal loss occurred. Few tests provided usable data without the use of a 

head pillow. Unfortunately, even with the head pillow most participants could not keep 

salt water from reaching the electrodes on their foreheads. This resulted in noisy EEG 

signals as illustrated in Figure 14. Since more than 50% of experiments failed to yield 

usable data, the X4 was abandoned in search of a new device. 
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Figure 14.  Noisy EEG Data from the X4 Sleep Profiler 
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Chapter 4: Instrumentation Setup 

 

Biosensors validated in the previous chapter can be used individually or collectively in 

float research. The following subsections describe protocols for both use cases and 

examine the validity of comparing data from separate devices to identify common 

events. 

 

4.1 Overall Setup 

 

As described before, the Kinect observes participants from above the float tanks. It can 

either be mounted to the ceiling of the room or the ceiling of the enclosed tank. The 

main limitation that dictates the Kinect’s placement is its field of view (FOV). If a 

participant does not fully fit in the FOV, joint points outside the FOV are often 

displayed with jitter, which leads to false positives when counting joint movements. For 

this reason, the Kinect must be placed high enough above the float tank to ensure a 

sufficiently wide FOV. 

 

According to [41], the Kinect’s FOV is 43o vertical by 57o horizontal. Since the float 

tanks are approximately 8 ft. in diameter, the smaller of the two viewing angles requires 

the Kinect to be placed 10.155 ft. feet above the surface of the water for the FOV to 

encompass the entire tank and participant. If the Kinect cannot be placed this high, as is 

the case with the enclosed tank, then joint points out of view must be estimated and 

filtered in order to remove noise and jitter. Another option is to switch the Kinect to 
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seated mode. This mode tracks only upper body joints and reduces the required height 

to 6.446 ft. 

 

The GENEActiv Original accelerometers come with straps so that they can be easily 

attached to the wrists or ankles. The straps can also be removed so that the device can 

be attached to other areas of the body such as the chest or hips. As shown in Figure 15, 

the pins of the device face the ground in order to correctly orient the xyz-directions. The 

only time this is different is when the accelerometer is placed on the left wrist. In this 

position, the pins should face upward to help differentiate the left wrist from the right 

wrist. Any number of GENEActiv accelerometers can be used to track movement and 

activity, but the level of invasiveness increases with each added device. For this work, 

one accelerometer is placed on each wrist. 
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Figure 15.  GENEActiv Accelerometer Placement [42] 

 

The packaging of the BioPatch instructs users to place the device on the chest above the 

sternum. Although the BioPatch successfully records ECG in other positions, it usually 

fails to capture a valid breathing waveform. Placing the device above the sternum 

ensures accurate collection of ECG and breathing waveforms while also preventing the 

device from being submerged in water. 

 

To validate the recommended placement, 21 subjects wore the device above the 

sternum for 2 90-minute float sessions each. One session was in the enclosed tank while 

the other was in a reclining chair. As described earlier, the BioPatch records a heart rate 

confidence value to characterize the signal-to-noise ratio of the ECG signal. It also 

produces a breathing rate confidence value, and the averages of these values throughout 
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the float session are depicted in Figure 16 and Figure 17. As can be seen, the average 

heart rate and breathing rate confidence values are always higher than 80, except when 

the subjects are initially entering the tank or getting seated in the recliner. The BioPatch 

manual states that heart rate can be accurately calculated as long as the confidence value 

is above 20 [43], and this threshold is maintained for all float sessions except four. In 

these sessions, there was no major difference between floating in the enclosed tank and 

sitting in the recliner, which suggested that the float environment was not the source of 

the noise. Even in these cases, the ECG signal was clean enough to visually identify key 

components of the waveforms. These results verified that placing the BioPatch above 

the sternum ensures successful collection of ECG and breathing waveforms. 

 

 

Figure 16.  Average Heart Rate Confidence for 42 Float Sessions 
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Figure 17.  Average Breathing Rate Confidence for 42 Float Sessions 

 

As recommended by most physicians and the provided user manual [44], the 

QardioArm blood pressure monitor is placed on the left arm at least an inch above the 

elbow. This position guarantees that the device is at the same height as the heart, 

especially when participants are floating in a supine position. Using the device on the 

left arm only for all participants removes the need to correct for lateral differences and 

simplifies data analysis. 

 

The BrainStation is always placed on the forehead. It is positioned as close to the 

eyebrows as possible to avoid contact with the salt solution in the tanks. This is the 

intended placement and allows collection of frontal EEG. 

 

These devices can be used separately to study one variable at a time or collectively to 

examine common effects and relationships between variables. Regardless of the use 

case, the placement of each device is the same. The main factor to consider when using 
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multiple devices is whether or not the participant is being removed from the float 

experience. In an experiment involving 21 subjects floating with the Kinect, 

GENEActiv accelerometers, and Biopatch, most people reported a decreased sense of 

relaxation compared to floating without any devices. For this reason, it is suggested to 

determine the level of invasiveness of devices before using them in a study. The overall 

setup of the biosensors is displayed in Figure 18. 

 

 

Figure 18.  Overall Setup of Biosensors 
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4.2 Time Sync Evaluation 

 

The following subsections detail the time synchronization protocols employed when 

using multiple devices simultaneously. For devices that require greater precision in 

timing, more advanced methods are developed and tested. 

 

4.2.1 Time Synchronization Protocol 

 

Table 3 contains the physiological variables and waveforms examined in this study 

along with the frequencies at which they are sampled. As can be seen, the fast-changing 

waveforms are sampled at higher frequencies and then used to calculate metrics 

reported at lower frequencies. These slower-changing metrics do not usually require 

timing precision to the millisecond. For instance, there is no need to determine the exact 

millisecond that arm movement began and match it to the nearest R-peak in an ECG 

waveform. For these slower-changing variables, a simple protocol was developed to 

ensure at least one-second precision of time stamps among devices. 
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Table 3.  Biosensor Variables and their Frequencies 

Device Measure Frequency 
Kinect Joint Positions 30 FPS 

GENEActiv Accelerometer Acceleration 100 Hz 
Sum of Vector Magnitudes 1 Hz 

QardioArm Blood Pressure > 1 per Minute 
BrainStation EEG 250 Hz 

BioPatch 

ECG 250 or 1000 Hz 
Breathing Waveform 25 Hz 

Acceleration 100 Hz 
Heart Rate 1 Hz 

Heart Rate Variability 1 Hz 
Heart Rate Confidence 1 Hz 

Breathing Rate 1 Hz 
Breathing Rate Confidence 1 Hz 

Activity 1 Hz 
Posture 1 Hz 

 

 

The computers used in this thesis are connected to a Network Time Protocol (NTP) 

server, and the networked computers automatically synchronize their clocks to match 

the time of the NTP server. The BioPatch and GENEActiv accelerometers sync their 

clocks to whichever computer they are connected to, so this protocol requires that both 

devices be synchronized to the same computer prior to each float session. Skeleton joint 

points from the Kinect are time stamped with the time of the local computer, so it is 

mandatory that the Kinect be connected to the same computer that is used to 

synchronize the BioPatch and GENEActiv devices. The QardioArm and BrainStation 

timestamp each of their measurements using the smart phone or tablet to which they are 

connected, and these clocks should closely match the NTP server since they also sync to 
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an NTP server via WiFi or to a cellular tower. Syncing each clock to an NTP server or 

cellular tower in this way ensures similar timestamps between the BioPatch, 

QardioArm, BrainStation, GENEActiv accelerometers, and Kinect. 

 

To illustrate the usefulness of this protocol, 15 subjects participated in 2 float sessions 

each while wearing the BioPatch and GENEActiv accelerometers as stated in Chapter 3. 

In this experiment, participants were asked to stand for a three-minute baseline test 

before entering the float tank or sitting in the recliner. Throughout the remainder of the 

experiment, participants were led through various heartbeat counting tasks and asked to 

grab and discard an item used for a few of the tasks until the end of the test. The timings 

of these events are marked on the graphs of Figure 19.  

 

The lower graph of Figure 19 reveals that the GENEActiv accelerometers show 

significant amounts of acceleration at the times when participants transition from 

standing to lying down and when they are required to grab or discard the heartbeat-

counting object. Comparing this data to the upper graph of Figure 19 shows that quick 

heart rate changes typically induced by movement or changes of position occur at the 

same moments when the accelerometers show significant movement. From this it is 

apparent that the timestamps of the accelerometers are sufficiently synchronized with 

those of the BioPatch and that comparisons can be made between the time courses of 

the two biosensors. 
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Figure 19.  Comparing Average Heart Rate with One Subject’s Accelerometer Data 

 

Additionally, the timestamps of the BioPatch’s posture data can be used to determine 

when a participant lays down in the float tank or sits in the chair. Figure 20 is a plot of 

the posture of two participants, one in each scenario. The data reveals that the 

participant getting into the float tank required more time to transition to a supine 

position than the participant that sat in the recliner, which makes sense logically. The 

timestamps can be analyzed to determine when each participant actually began his or 

her float session. 
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Figure 20.  One Subject’s Posture Changes during Two Float Sessions 

 

Many of the devices mark data points with millisecond time stamps, but this can be 

misleading. The real-time clocks of these devices only keep track of time to the second, 

and milliseconds are counted up from zero each time a device is turned on. The 

implication is that timestamps can contain an inherent difference between their time and 

the computer’s time. This difference can vary anywhere from 1 to 999ms as explained 

in the next subsection. Since most variables do not change drastically from second to 

second, the effect of this difference is small. If devices require precision greater than 

one second, more complex synchronization methods must be devised. 

 

4.2.2 RR-Interval-Based Synchronization of ECG Waveforms 

 

Float research sometimes examines reaction times and biofeedback by comparing 

variables from separate devices. One such experiment studies subjects’ ability to sense 

their own heartbeat and requires a response each time a heartbeat is felt. In order to 
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calculate reaction times between the R-peak of the heartbeat and the response of the 

subject, millisecond time precision is required.  

 

To determine whether or not this requirement could be met by the previously described 

protocol, ECG waveforms were simultaneously recorded using the BioPatch and a 

BIOPAC ECG device. The BIOPAC system can be configured to record data at various 

sampling rates and serves as an industry leader for accurately collecting physiological 

data. After collecting and plotting multiple recordings, it was found that the waveforms 

of the two devices never align in time as can be seen in Figure 21. This held true for 10 

recordings, and in each one, the distance between corresponding R-peaks was different. 

To determine if the variable misalignment was at least constant within a test, each R-

peak from the BioPatch waveform was paired to the closest R-peak of the BIOPAC 

waveform, and the distance in samples between each pair was calculated. The standard 

deviation of each test’s distances was always greater than 50ms. This revealed that the 

time synchronization protocol was not sufficient for providing millisecond precision 

and suggested that the BioPatch clock may have an internal drift. These findings led to a 

discussion with the manufacturer of the BioPatch, and key details of the BioPatch’s 

real-time clock were discovered. 
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Figure 21.  Simultaneously Recorded ECG Waveforms 

 

The real-time clock of the BioPatch is synchronized to a computer anytime it is attached 

via USB, but it only tracks time to the second. This means that if the local computer 

time is 12:03:42.347, the clock of the BioPatch will be set to 12:03:42, and the 347 

milliseconds will be truncated. This creates an initial constant offset of 347 

milliseconds, and this offset is different each time the device is connected to the 

computer. The offset can vary anywhere between 0 and 999ms based on the local time 

of the computer when synchronization occurs. Additionally, another offset is introduced 

when the BioPatch is powered on. Since the real-time clock only keeps time to the 

second, the BioPatch software begins counting milliseconds starting at zero only when 

the device is turned on in order to timestamp data points with millisecond resolution. 

This means that if the device was turned on at 12:05:16.893, the BioPatch clock starts at 

12:05:16.000, and the software counts up one millisecond at a time. This creates another 
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constant offset of 893ms, creating a total offset of 1240ms. As before, the second offset 

can vary anywhere between 0 and 999ms based on when the BioPatch is powered on, 

meaning the total offset can vary between 0 and 1998ms. This explains why 

simultaneous recordings result in signals with variable offsets. 

 

Although the BioPatch maintains a wireless connection via Bluetooth, it is unable to 

utilize this connection to resynchronize its clock. Since there is no way to sync or probe 

the BioPatch’s clock and determine its time until after the device is turned off and data 

is downloaded, the offset has to be corrected in post processing. Usually such time 

synchronization is achieved in the BIOPAC system by injecting a digital signal into the 

data streams and using the start of the signal as time zero. In the case of the BioPatch 

and BIOPAC recordings, they already contain a common signal, the ECG waveform, 

but the morphologies of these two waveforms differ greatly and make it difficult to 

identify the same heartbeat in each signal. Simply shifting the waveforms left and right 

to align nearby heartbeats failed to align the signals as illustrated in the plots of Figure 

22. After two shifts of the waveforms, the distances between closest R-peaks were 

calculated by subtracting the locations of the BIOPAC R-peaks from those of the 

BioPatch R-peaks. For the first shift, the mean difference was -11ms with a standard 

deviation of 98ms. The second test yielded a mean difference of 10ms and a standard 

deviation of 67. This reinforced the possibility of a drift existing in the BioPatch’s real-

time clock. 

 



49 

    

Figure 22.  ECG Waveforms Shifted to Align R-peaks 

 

A drift in the real-time clock of the BioPatch would result in inaccurate RR-intervals, 

which are the distances between consecutive R-peaks in an ECG waveform. To 

examine this, the RR-intervals of each waveform were plotted, and the results are 

displayed in Figure 23. The figure reveals that the two RR-interval plots are nearly 

identical, but one is shifted by a specific number of samples. This verified that the 

BioPatch was recording without any drift in its real-time clock, and the shift revealed 

how to correctly align the two waveforms. If the number of samples between 

corresponding RR-interval plot points is three, this means that the distance between the 

first and second R-peaks of one waveform are equal to the distance between the fourth 

and fifth R-peaks of the other waveform. Thus, the first R-peak of the first waveform 

corresponds to the fourth R-peak of the second waveform. Due to the variation that 

exists in the offset of the BioPatch’s clock, the peaks that correspond to each other can 

vary for each recording. The RR-interval plots provide information about which 

heartbeats should be matched to align both waveforms. 
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Figure 23.  RR-interval Plots 

 

Using this information, a simple method to calculate the shift between RR-interval plots 

was developed and used to determine the number of samples to shift one waveform to 

align it with the other. For simultaneously recorded BioPatch and BIOPAC ECG 

waveforms, the RR-intervals of each signal are plotted together, and the graph is split 

into windows of 20 samples each as shown in Figure 23. The max value of each plot in 

each window is found, and difference between max points is calculated. Taking the 

mode of the differences of each window yields the RR-interval plot shift value. Using 

multiple windows reduces error caused by slight differences in RR-interval values. 

Once the shift value is determined, it is used to correctly match the R-peaks of one 

waveform to the R-peaks of the other, and the distance between matched peaks is 

calculated. The mean distance is the offset of the BioPatch’s clock and is used to shift 

one waveform to align with the other as displayed in Figure 24. For simplicity, the shift 
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is achieved in this plot by appending the correct number of samples with a value of zero 

to the beginning of the waveform being shifted. In this way, timestamps of the BioPatch 

can be corrected and used to accurately calculate response times in float studies 

involving heartbeat perception. 

 

 

Figure 24.  Synchronized Waveforms Using RR-Interval-Based Method 

 

This method was validated in 6 90-minute simultaneous recordings. After shifting the 

waveforms of each test to align properly, the mean, standard deviation, maximum, and 

minimum of differences were calculated for corresponding R-peaks, and their values are 

displayed in Table 4. As can be seen, each shift resulted in a mean difference between 

corresponding R-peaks of less than 0.3ms with standard deviation below 2ms, which 

verified the accuracy of the method. 
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Table 4.  Delay Stats for Matched Waveforms 

Delay (ms) Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 

Mean -0.205 0.168 0.123 0.137 0.149 0.271 

SD 1.367 1.502 1.374 3.183 1.749 1.985 

Max 4 5 6 27 6 56 

Min -4 -5 -5 -136 -7 -9 

 

 

The drawback of this method is that it requires simultaneous recordings to be obtained 

before each experiment. This adds to the total experiment time and to the overall 

analysis process. For these reasons, an additional method was developed and validated 

by comparing it to the RR-interval-based method. 

 

4.2.3 Parallel-Port-Based Synchronization of ECG Waveforms 

 

As stated in the previous subsection, the BIOPAC system uses a digital signal to 

synchronize simultaneously collected data. A parallel port produces this digital signal, 

and a time stamp can be recorded when the signal is injected. This time stamp can be 

compared to the time stamp of a device that receives the signal to determine the offset 

of the device’s clock. Using the parallel port, a prototype was designed to inject a 

digital signal into the ECG waveform of the BioPatch. 

 

The prototype depicted in Figure 25 consists of ECG electrodes, wire connectors, and 

the parallel port and its connector. The wire connectors run from pins of the parallel 
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port connector to the ECG electrodes to inject the digital signal into the BioPatch when 

it is connected to the electrodes. The computer saves the time at which the signal is 

injected, and this time stamp is compared to the time stamp of the BioPatch to 

determine the offset. 

 

 

Figure 25.  Parallel Port Prototype for Synchronization 

 

This method was tested by powering on the BioPatch device, injecting the 5V digital 

signal into its ECG waveform, and then recording ECG simultaneously with the 

BioPatch and BIOPAC devices. After data collection, the portion of the BioPatch ECG 

waveform containing the digital signal was used to determine the offset. As Figure 26 

reveals, injection of the digital signal drives the ECG waveform to a max value. The 

time stamp that matches the sample with this max value was identified and compared to 
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the time stamp of the digital signal to calculate an offset value of 400ms. The offset was 

then used to correct the time stamps of the BioPatch’s ECG waveform. 

 

 

Figure 26.  ECG Waveform with Digital Signal 

 

The RR-interval-based method was also used for this test and resulted in an offset time 

of 398ms. Using the offsets, the waveforms were plotted for each method, and distances 

between corresponding R-peaks were calculated as before. Figure 27 depicts the 

synchronized waveforms. The mean difference in R-peaks was 0.307ms with a standard 

deviation of 0.930ms for the parallel-port-based method as compared to a mean of 

0.284ms with standard deviation of 0.914ms for the RR-interval-based method. 

Although the parallel-port-based method yields slightly less accurate results, it 

ultimately provides a way to synchronize the BioPatch clock without requiring 
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simultaneous ECG recordings. Either of these methods can be used to synchronize the 

BioPatch’s clock as the researcher sees fit. 

 

 

Figure 27.  Synchronized Waveforms Using Parallel-Port-Based Method 
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Chapter 5: Using a Neural Network to Calculate Cardiac Metrics 

 

Cardiac metrics such as heart rate and heart rate variability (HRV) often provide 

information about the circulatory, respiratory, and nervous systems [29], [45]. 

Unfortunately, the BioPatch’s cardiac algorithms lose some of this data. These 

algorithms filter and smooth the ECG signal and calculate variables using methods that 

fail to characterize respiratory-linked variability and cardiac vagal control. In order to 

regain this information, this chapter develops an artificial neural network (ANN) to 

automatically detect the R-peaks in raw ECG signals. These R-peaks are then used to 

illustrate how researchers can calculate heart rate and HRV using methods that yield the 

most useful information for float research. 

 

5.1 A Neural Network for Automatic Detection of R-peaks 

 

ECG signals represent the electrical activity of the heart and contain a repeating P-

wave, QRS complex, and T-wave as shown in Figure 28. The peak of the QRS complex 

is known as the R-peak and is used to calculate heart rate, HRV, and RR intervals. The 

shape and amplitude of each wave or complex in the ECG signal depends on electrode 

placement, patient physiology, and noise. Variation in these parameters makes 

automatic R-peak detection difficult.  

 

Various algorithms have been developed to automatically identify cardiac events. In 

[46], the authors build upon common thresholding techniques to create an adaptive 
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double threshold method for R-peak detection in real time, and the authors of [47] use 

the Pan-Tompkins algorithm, which also employs multiple thresholds, combined with a 

wavelet transform to increase detection accuracy. Since these methods rely heavily on 

amplitude thresholds, they often perform poorly in the presence of noise and artifacts. 

 

 

Figure 28.  Components of an ECG Signal 

 

Other studies have shown that neural networks deal well with noise and baseline drift. 

Szilagyi compared neural-network-based adaptive filtering and the wavelet transform to 

detect R-peaks [48]. The wavelet transform magnifies QRS complexes at finer scales, 

while the neural network removes noise via whitening. Both methods use a thresholding 

technique to find R-peaks in the final signal, and it was shown that neural networks 

usually outperform wavelet-based methods. A more complex adaptive filter is presented 

in [49]. This method uses two neural networks; the first acts as an adaptive filter to 
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whiten the ECG signal, and the second is used in a matched filter that outputs a signal 

with well-defined QRS complexes. Thresholding is performed on this final signal to 

detect R-peaks. This type of filtering requires a large amount of training data. 

 

A simpler neural network presented in [50] is a two-layer tan-sigmoid/linear network. It 

uses amplitude, differentiation, duration, RR interval, a zero-crossing flag, and a first-

element flag as inputs and updates weights via back propagation. It outputs a 1 for an R-

peak and a 0 for not an R-peak instead of filtering the ECG signal. It is applied in real-

time and provides an accurate method of detecting R-peaks.  

 

Since the literature revealed neural networks to be effective in dealing with nonlinear 

background noise and baseline drift, this study designed one to automatically detect R-

peaks. The following subsections detail the neural network’s design and the results of 

testing it with ECG signals collected during float experiments. 

 

5.1.1 Network Design 

 

Figure 29 illustrates the structure of the designed neural network. The hidden layer uses 

a tan-sigmoid function to model nonlinear data, while the output layer is linear. There 

are 4 inputs to the system and 9 hidden neurons. The number of hidden neurons was 

determined using the 2m + 1 rule, where m is the number of normalized inputs when the 

network has only one hidden layer [51].  
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The inputs of the network are amplitude, RR interval, duration above a threshold, and a 

first-element flag. The network in [50] has two additional inputs, differentiation and a 

zero-crossing flag. The differentiation did not seem to contribute much to the network’s 

ability to distinguish between peaks in this work, and using the network in post-

processing removed the need to segment the ECG signal and check if end points were 

zero-crossing points. Peaks are provided to the network using a generic peak-detection 

algorithm that finds max points preceded by points below a specified threshold [52]. 

Additionally, there is a bias node in the input and hidden layers with constant values of 

one. 

 

 

Figure 29.  Neural Network Structure 
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Each input and bias of a network layer is connected to each neuron of the next layer, 

and each connection has a corresponding weight. The notation wij
(n) represents the 

weight in layer n of input i to neuron j of the next layer. These weights are updated via 

standard back-propagation with an added momentum variable to help avoid local 

minimums. The output neuron simply sums the weighted inputs of the previous layer, 

and a threshold of 0.5 is used to output a 1 for R-peaks and a 0 for all other points. 

 

To obtain ECG data to train and test the network, 21 subjects spent 1 session in the float 

tank and another in a reclining chair while wearing the BioPatch. The sessions were 

each 90 minutes long, but 40 minutes in the middle were allotted as a rest period with 

no activity. These 40-minute periods were used to collect data to train and test the 

neural net. From the resulting 42 ECG signals, 10 were chosen for training, 10 for 

validation, and 15 for testing. Signals with greater amounts of noise and baseline drift 

were placed in the testing set to determine the limitations of the neural network. For 

each of the ECG signals, the first 10 seconds were used for training and validation. 

Initial testing also used the first 10 seconds of the signals, but later tests used the full 40 

minutes to test the network’s ability to work with data recorded for longer periods of 

time. 

 

5.1.2 Training and Validation 

 

The network was trained using 10 10-second signals recorded while participants were in 

the float tank or reclining chair. Each point in the signals was manually labeled as either 
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a 1 for an R-peak or a 0 for not an R-peak. Using the peak-detection algorithm with a 

low threshold value, peaks were detected, and then their amplitude, RR interval, 

duration, and first-element flag were determined. The RR interval is defined as the 

interval from the current peak to the last R-peak. The duration is calculated as the 

distance between the points to the left and right of the current peak that are half the 

peak’s amplitude. The first-element flag is a 1 if the detected peak is the first R-peak or 

any peak that occurs before the first R-peak and a 0 otherwise.  

 

After all the inputs are extracted for each detected peak in each signal, they are 

normalized. This prevents large values from saturating the neurons. There were 

approximately 629 example peaks, and the network was given the inputs and target 

output of each for training. The network randomly selects examples and updates its 

weights using back-propagation of the network error. After training the network for 800 

epochs, the weights that achieved the lowest mean squared error (MSE) were saved and 

used with the validation and test datasets. 

 

A validation dataset of 10 additional 10-second signals was used to determine what 

threshold value to use with the peak-detection function during testing. This function 

takes in a threshold value as input and returns peaks that have a max value preceded by 

a value lower than the threshold. The threshold was set to a very low value to obtain 

many peaks for training data, but its value should be tested to optimize accuracy during 

testing. Using a validation dataset to select the threshold serves this need while 

preventing contamination of the test dataset. To measure the results of each threshold 
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value, accuracy was defined in terms of sensitivity and positive predictivity. These 

measures prevent false positives from resulting in traditional accuracy scores greater 

than 100%. Sensitivity and positive predictivity are defined as 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =    !"
!"!!"

             (5.1) 

and 

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =    !"
!"!!"

,   (5.2) 

where TP is the number of true positives, FN is the number of false negatives, and FP is 

the number of false positives. 

 

The threshold was varied from 0.1% to 100% of the max amplitude of the signal in 

increments of 0.1%, and the average sensitivity and positive predictivity were 

calculated for each threshold. As shown in Figure 30, both the sensitivity and positive 

predictivity have max values from threshold values of 5% to 10%. At about 15%, both 

values drop and plateau until 75% for sensitivity and 87% for predictivity, and then they 

fall rapidly with further increases in the threshold value. The high accuracy at such low 

threshold values is most likely do to the fact that many of the BioPatch ECG waveforms 

contain large T-waves and very small R-peaks. To ensure detection of these low-

amplitude R-peaks, the threshold was set to 7.5% of the maximum amplitude for the test 

dataset. This low threshold also ensures that the neural network’s ability to distinguish 

between types of peaks will be tested instead of relying only on the peak-detection 

function. 
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Figure 30.  Validation Results of Neural Network 

 

5.1.3 Test Method and Results 

 

The neural network was first tested in 15 experiments, each with a different 10-second 

signal. Each of the signals contained varying amounts of noise and artifacts and 

presented different challenges for detection. Figure 31 illustrates the method used for 

testing new signals.  

 

First, the algorithm loads an ECG signal and determines its max amplitude. Using 7.5% 

of the max amplitude as a threshold, the peak-detection algorithm identifies peaks in the 

ECG signal. For each detected peak, the input features are calculated and saved. 

Initially, only the first detected peak has a 1 for the first-element flag feature, and the 

RR interval of each peak is the distance between it and the previous peak. For the first 

peak, the RR interval is simply the distance from the peak to the first point in the signal. 
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All of the input features are normalized using the mean and standard deviation of the 

training data, and then the first peak and its features are given to the neural network.  

 

The neural network then uses the saved weights from training to determine whether the 

peak is an R-peak or not. If the first peak is not an R-peak, the first-element flag of the 

next peak is changed to a 1. This is repeated until the first R-peak is found. When an R-

peak is successfully found, the RR interval of the next peak is updated to reflect its 

distance from this R-peak. This ensures that accurate RR intervals are calculated. Each 

time an input is changed, it is normalized before being given to the network. This 

process is repeated until there are no more detected peaks in a signal. After the last peak 

has been classified, the sensitivity and positive predictivity of the experiment is 

calculated, and then the next signal is loaded. Once all the signals have been tested, the 

algorithm is terminated. 
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Figure 31.  Neural Network Flowchart 

 

The average sensitivity and positive predictivity were 67.0% and 82.8%, respectively, 

and the results for each of the 15 experiments are displayed in Table 5. The results 

reveal that the neural network is very effective with certain signals while ineffective 
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with others. When the R-peaks are dominant, as in Figure 32, the network easily detects 

them. With significant baseline drift, the network missed an R-peak but was able to 

recover as seen in Figure 33. Figure 34 illustrates that when the R-peak is very low in 

amplitude and the T-wave resembles the R-peak, the network confuses each T-wave for 

an R-peak. Arguably, these can still be used to calculate accurate heart rates and HRV. 

In the worst case, the R-peak is low and the T-wave does not resemble an R-peak. This 

results in the network not detecting any R-peaks at all as shown in Figure 35. These 

results imply that the current network is best suited for cleaner ECG signals and can 

handle moderate noise and baseline drift. With additional training data, the network can 

be applied to more signals with greater variety and noise. 

 

Table 5.  Accuracy of Neural Network 

Experiment Number Number of R-Peaks Sensitivity Positive Predictivity 
1 10 100% 50% 
2 14 85.7% 100% 
3 14 85.7% 100% 
4 11 9.1% 100% 
5 16 0% 0% 
6 12 100% 100% 
7 13 92.3% 92.3% 
8 12 100% 100% 
9 11 45.5% 100% 
10 11 0% 0% 
11 13 100% 100% 
12 13 76.9% 100% 
13 12 100% 100% 
14 11 100% 100% 
15 11 100% 100% 
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Figure 32.  Clean ECG in Experiment 8 

 

 

Figure 33.  Baseline Drift in Experiment 7 
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Figure 34.  T-wave Confusion in Experiment 5 

 

 

Figure 35.  No Detections in Experiment 10 
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Since the ultimate goal of the network is to detect R-peaks for the calculation of heart 

rate and HRV from ECG signals recorded during float sessions, the network was tested 

on 4 of the 40-minute signals. One of these signals was obtained from the training set, 

two from the validation set, and one from the testing set. This tested the network’s 

ability to work with both familiar and unfamiliar data for longer periods of time. 

 

The results of testing these four signals are displayed in Table 6. As can be seen, there 

are no more than 6 missed detections out of more than 2100 peaks. One of the signals 

contained significant baseline drift, which resulted in 45 false detections. Since heart 

rate and HRV values are usually averaged over large windows containing many peaks, 

these missed and false detections should have minor effects on the calculated cardiac 

metrics. The next section uses these detected R-peaks to determine such metrics and 

proves that the network’s error has little effect on the end results. 

 

Table 6.  Results of Testing 40-minute Signals 

Experiment Number Number of Peaks Missed Detections False Detections 
1 3052 0 2 
2 2999 1 10 
3 2189 1 2 
4 2318 6 45 
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5.2 Calculation of Cardiac Metrics 

 

The BioPatch algorithms use unknown smoothing and filtering techniques before 

calculating heart rate and HRV. This often removes variability and other information. 

Using the neural network presented in the previous section, R-peaks can be detected and 

used to calculate cardiac metrics without the loss of data. This provides full access to 

the data collected in float research. 

 

5.2.1 Heart Rate 

 

According to the BioPatch’s log description manual, ECG is filtered and smoothed to 

account for missed R-peak detections, and heart rate is calculated using a moving 

window of 15 seconds [43]. These processes yield heart rate values resembling average 

heart rate and suppress variability. Since it is more common to calculate heart rate on a 

beat-by-beat basis, R-peaks detected by the neural network can be used to do so without 

losing information via filtering. 

 

Using the 40-minute signal from experiment 1, the heart rate was calculated for each R-

peak by dividing the number of samples in one second by the current peak’s RR 

interval. The results are displayed in Figure 36. The neural network’s two false 

positives result in the two extreme heart rate values shown in the end of the plot, but 

such outliers can be removed. Figure 37 illustrates the heart rate values reported by the 

BioPatch. The BioPatch plot appears to be a smoothed version of the neural network 
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plot, reinforcing the fact that information is lost when smoothing and filtering is used. 

These results demonstrate how the neural network can be used to calculate heart rate 

without losing data. This provides researchers with full access to the data. 

 

 

Figure 36.  Neural Network Heart Rate for One Float Session 

 

 

Figure 37.  BioPatch Heart Rate for One Float Session 
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5.2.2 Heart Rate Variability 

 

As with heart rate, the BioPatch reports HRV once per second using a moving window 

instead of on a beat-by-beat basis. Its algorithm calculates a 300 heartbeat SDNN value, 

which is the standard deviation of RR intervals. Using the neural network’s detected R-

peaks, SDNN can be calculated for each peak instead of each second. Like the 

BioPatch’s algorithm, a 300-heartbeat window is used and moved one peak at a time 

instead of one second at a time. Figures 38 and 39 show the results of calculating 

SDNN using both methods. As before, the BioPatch yields a smoothed version of the 

HRV plot. Using the neural network provides more data.  

 

In addition to calculating HRV using the SDNN method, HRV can also be measured 

using the root mean squared of successive differences (RMSSD). The RMSSD value 

reflects respiratory-linked changes in the heart. Using detected R-peaks, the RMSSD 

was calculated, and the results are displayed in Figure 40. 
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Figure 38.  BioPatch SDNN Values for One Float Session 

 

 

Figure 39.  Neural Network SDNN Values for One Float Session 
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Figure 40.  Neural Network RMSSD Values for One Float Session 

 

Although HRV values can be calculated on a second-by-second or beat-by-beat basis, 

the literature recommends either calculating a single value for the entire recording or 

calculating a value for each five-minute period [29]. Using the second method, eight 

SDNN and eight RMSSD values were calculated for the 40-minute recording period 

and are shown in Table 7.  

 

Table 7. Neural Network’s SDNN and RMSSD Values 

Bin Number SDNN (ms) RMSSD (ms) 
1 39.92 

 

24.13 
2 36.33 16.77 
3 34.11 14.78 
4 34.21 15.92 
5 36.61 19.39 
6 44.19 25.56 
7 35.73 25.58 
8 52.7 58.55 
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Once HRV values are calculated for multiple subjects or sessions, various time-domain 

and frequency-domain analyses can be performed to compare results [29]. The purpose 

of this study is to demonstrate how the neural net provides complete access to cardiac 

metrics, so these analyses are not performed here. Future research can utilize the neural 

net developed in this chapter to analyze the effects that floating has on both heart rate 

and HRV.   
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Chapter 6: Measures of Movement – Stillness and Avoidance 

 

For the first time, flotation researchers can study movement throughout float sessions 

using the Kinect and the accelerometers of the BioPatch and GENEActiv devices. The 

aim of this chapter is to take the beginning steps in analyzing movement data and 

develop metrics to characterize it. Using data from the GENEActiv accelerometers, 

activity thresholds are developed and applied to the BioPatch to provide a measure of 

stillness throughout float sessions. Additionally, a measure of avoidance behavior is 

characterized using joint data from the Kinect. 

 

6.1 Stillness 

 

Although three of the selected biosensors are capable of monitoring movement, it is 

often desirable to use one at a time to reduce overall invasiveness. Since the BioPatch 

does not require use of a foothold system and is placed in a single location on the body, 

it is the optimal choice for monitoring stillness. In order to determine whether or not the 

BioPatch is sufficient for measuring stillness, a receiver operator characteristic (ROC) 

curve analysis was performed using data recorded with the GENEActiv accelerometers. 

 

To collect data, 11 participants floated for 2 90-minute sessions wearing the BioPatch 

and a GENEActiv accelerometer on each wrist. One session was in the float tank, while 

the other was in a reclining chair. After collection, the GENEActiv data was converted 

into one-second epochs. The BioPatch activity data is reported once per second by 
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default. Using the timestamps of each device, the 90-minute sections of data were 

extracted and synchronized in time. 

 

In [26], three thresholds were defined to separate sedentary activities from more than 

sedentary activities using the GENEActiv accelerometers. Since the aim of this 

investigation was to measure whether a person is still or not still, similar binary 

thresholds were desired for the BioPatch. The value used with the GENEActiv devices 

to characterize movement is the gravity-subtracted sum of vector magnitudes and is 

calculated as: 

𝑆𝑉𝑀!" =    [ 𝑥! + 𝑦! + 𝑧!
!
! − 1𝑔]      (6.1) 

with a unit of g-seconds (g·s). After categorizing activity using oxygen uptake values, 

the authors of [26] performed an ROC curve analysis with one-minute epochs and chose 

the thresholds for the left wrist, right wrist, and waist accelerometers to be 217, 386, 

and 77 g·min, respectively. These values can be divided by 60 seconds to obtain 

thresholds applicable to 1-second epochs. This results in values of 1.28, 3.62, and 6.43 

g·s. 

 

Each of these thresholds was applied to the GENEActiv accelerometer data to create 

three ROC curves for the BioPatch. For each second of data, the higher of the two 

values from each GENEActiv accelerometer was compared to the threshold to 

categorize the second as either still or moving. The resulting data was used to determine 

the optimal threshold to use for the BioPatch. 
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The BioPatch reports activity in vector magnitude units (VMU) calculated as: 

𝑉𝑀𝑈 =    (𝑥! + 𝑦! + 𝑧!),     (6.2) 

where x, y, and z are the averages of the three axial acceleration magnitudes over the 

previous one second. The reported values ranged from 0 to 1g in the 90-minute floats. 

ROC curves are produced by incrementing the threshold of a binary classifier and 

plotting the false positive rate (false positives / (false positives + true negatives)) versus 

the true positive rate (true positives / (true positives + false negatives)), so the threshold 

was tested from 0 to 1g in increments of 0.01g. For each threshold, the BioPatch’s 

VMU values were compared to the threshold to categorize each second as still or 

moving. The results were then compared to the GENEActiv classifications to calculate 

the number of true positives, false positives, true negatives, and false negatives. These 

were then used to plot an ROC curve for each of the three tests, and the results are 

displayed in Figure 41. 

 



79 

 

Figure 41.  ROC Curves 

 

From the ROC curves of Figure 41, it is apparent that the BioPatch accuracy increases 

with more lenient thresholds placed on the GENEActiv accelerometers. The area under 

the curve (AUC) for GENEActiv thresholds of 1.28, 3.62, and 6.43 g·s is 0.567, 0.784, 

and 0.920, respectively. Optimal thresholds are typically those that maximize the true 

positive rate while minimizing the false positive rate. For the ROC curve with the 

maximum AUC, the first false positive rate with a value below 0.10 is 0.046 and yields 

a true positive rate of 0.742. This occurs at a threshold value of 0.03g. Unfortunately, 

this threshold results in the BioPatch categorizing 4779 more seconds as moving than 

do the GENEActiv accelerometers. At a threshold of 0.06g, the BioPatch reports 

93.93% of the movement time that the accelerometers do, but the true positive rate 

drops to 0.400. 
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As discussed in Chapter 4, the real-time clocks of these devices can have an offset up to 

1998ms. This may cause movement seen in one device to appear later in another device, 

which would result in errors reported during classification. For this reason, it may be 

more appropriate to select thresholds for the BioPatch that maximize the percent of 

movement time found by the GENEActiv accelerometers instead of thresholds that 

correctly label each second of data. Also, since [27] found the GENEActiv cut-points to 

be somewhat inaccurate, further research is needed to validate the thresholds of both the 

BioPatch and GENEActiv accelerometers. 

 

To briefly analyze the types of body movement the GENEActiv accelerometers and 

BioPatch can detect, one subject floated in the float tank wearing all three devices and 

sustained specific body movements for 1.5 minutes each. For each of the body 

movements, the middle one minute of data was extracted for analysis. As before, the 

GENEActiv data was summed to create one-minute epochs, and the BioPatch VMUs 

were averaged over each minute. Since the values of each device have drastically 

different ranges, the BioPatch data was scaled for visualization. The values for each 

device were then plotted together to illustrate the relative levels of activity seen in each 

device for each body movement. The results are displayed in Figure 42, and Table 8 

serves as its key. 
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Figure 42.  Relative Activity Levels of Accelerometers 

 

Table 8. Description of Movement Numbers 

Movement Number Type Distance Speed 
1 None None None 
2 

Left Arm 
Short Slow 

3 Fast 
4 Long Slow 
5 Fast 
6 

Right Arm 
Short Slow 

7 Fast 
8 Long Slow 
9 Fast 
10 

Both Arms 
Short Slow 

11 Fast 
12 Long Slow 
13 Fast 
14 Left Leg Short Slow 
15 Long Fast 
16 Right Leg Long Slow 
17 Fast 
18 Both Legs Long Slow 
19 Fast 
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As the graph shows, the activity of the left wrist accelerometer increases with larger 

movements and more activity of the left arm. It shows little activity when only the right 

arm is moving, but shows moderate activity when the legs are moving. The same is true 

for the right wrist accelerometer. Interestingly, the BioPatch detects most movement in 

the arms and legs. It does not seem to notice small, light movements of the arms, but it 

detects most movements of the legs. These results suggest that the BioPatch can be used 

to measure stillness during float sessions. More research is needed to determine 

thresholds that can be used to distinguish between types of body movements. 

 

6.2 Avoidance 

 

Avoidance behavior was characterized in a brief experiment using the Kinect since 

some float studies seek to examine it in participants exposed to certain stimuli. During 

the float sessions, participants are held in place with the foothold system so that their 

heads remain in the same location. A stimulus can be delivered in various levels of 

intensity to the left, right, or center of the participant’s head. In these tests, researchers 

want to determine if participants exhibit avoidance behavior by moving in the opposite 

direction of stimulus delivery. 

 

Such an experiment is fitting for the Kinect since the foothold system is already 

required. To test the Kinect’s ability to monitor avoidance behavior, a participant 

floated in the tank and moved his head to the left and right after collecting a baseline 

measure of head position. The first of these movements was made by simply rotating 
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the head left and right while keeping the rest of the body still. The second test required 

the participant to move his entire body left and right while keeping his feet on the 

foothold system. With small head movements, the x-coordinate of the head ranged from 

219 to 278 pixels. For large movements, it ranged from 162 to 327 pixels. This 

confirmed that the Kinect can detect both types of head movements, and the reported 

locations can be used to measure avoidance. 

 

One simple measure of avoidance is distance traveled from the center or baseline 

position. The participant was able to move his head left or right 29.5 pixels from the 

center for the experiment with small head movements and 82.5 pixels left and right with 

large movements. Such travel distances can be separated into categories and used to 

define varying levels of avoidance. 

 

Avoidance can also be characterized in degrees shifted away from the centerline. Using 

the neck or waist as a hinge point, the head location can be used to measure how many 

degrees it is away from the centerline. This again can be broken into categories to 

describe multiple levels of avoidance. Since values will vary from person to person 

based on body type, future research should investigate methods to standardize these 

measures across participants. 
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Chapter 7: Conclusion 

 

Float tanks are returning as a form of therapeutic treatment in many recreational and 

healthcare settings. This thesis presented the selection and validation of off-the-shelf 

biosensors to aid researchers and float tank entrepreneurs investigate the effects of this 

novel healthcare environment. Modifications to the selected devices were developed to 

ensure usability in the unique environment created by float tanks, and these 

modifications were tested to determine their effectiveness in protecting the devices and 

minimizing invasiveness. After an initial process of validation, it was determined that 

the modified biosensors could successfully and continually monitor movement, ECG, 

respiration, EEG, and blood pressure during float sessions. 

 

After initial validation, a protocol and two techniques were developed to ensure time 

synchronization between devices. These were tested against an industry-leading 

physiological recording device, and the results verified the effectiveness of the methods 

to ensure accuracy of the biosensors’ timestamps. Additional experiments between 

devices further validated the methods and illustrated how an event can be identified in 

multiple data streams. Additionally, an artificial neural network was designed to 

automatically detect R-peaks in ECG signals. This gives researchers full access to the 

ECG data, enabling them to calculate cardiac metrics as they see fit. Using 

accelerometer data from two devices, optimal cut-points were determined to classify 

movement and establish a measure of stillness for float research. 
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Future work should focus on determining the invasiveness of each biosensor. Such a 

study would reveal which devices or combination of devices remove participants from 

the float experience. Other research could develop more efficient methods of finding R-

peaks in ECG signals. Since the accuracy of automatic detectors can only be calculated 

after collecting ground-truth data, an automated method of annotating R-peaks would 

help provide more training data for a neural network or other machine-learning agents. 

Improvements are also needed to design better algorithms for detecting movement. 

Lastly, data from various sensors should be combined into patient reports. One of the 

goals of float research is to develop treatments for mentally ill patients, and reports 

would empower patients to take ownership of their treatment by tracking their progress. 

 

Float research will also benefit from advancements in industry. Personal health devices 

are becoming more available, but manufacturers need to improve their devices’ abilities 

to synchronize with devices of other companies. This may be solved by utilizing a 

common platform or tool to collect and analyze data from multiple biosensors. 

Allowing users to easily and flexibly insert timestamps into each data stream would also 

aid the synchronization process. Companies designing biosensors specifically for the 

float environment should strive to fully waterproof their devices and limit points of 

entrance by implementing wireless charging and data transmission. Although 

physiological monitoring devices have progressed greatly since flotation research 

began, many tested in this thesis still failed to survive in the float tank’s harsh 

environment. Nevertheless, this work presented the first successful implementation of 

collecting continuous physiological data during the float experience.  
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