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Abstract 

After Deoxyribonucleic Acid (DNA) was discovered, finding the similarities in proteins 

became a fundamental procedure. In recent years, there has been a rapid development in 

alignment technologies. Alignment is the basic operation used to compare biological 

sequences and to determine the similarities that eventually result for structural, 

functional, or biological process relationships. These new technologies produce data in 

the order of numerous gigabyte-pairs per day. With the use of a Graphics Processing 

Unit (GPU), these data can be solved. We can utilize a GPU in computation as a 

massive parallel processor because the GPU consists of multiple pips. This new 

hardware creates new opportunities to study and improve current algorithms that are 

used for research in DNA alignment. In this thesis, we proposed a new algorithm to 

tackle this problem. We matched blocks of reference and target sequences based on the 

similarities between their empirical transition probabilities matrixes. The computations 

were conducted on an NVIDIA GTX 760, equipped with 2GB RAM, running Microsoft 

Windows 8.1 Professional. Our experimental results show robustness in nucleotide 

sequence alignment, and the parallelized transition probability indexing on a GPU 

achieves faster results than a former study of a proposed sequential method on a 

CPU[1].  
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Chapter 1: Introduction 

With the rapid development of sequencing technologies, sequence alignment is 

crucial in any analysis of biological process relationships, because it helps to extract 

practical and even tertiary structure data from an organic compound sequence. The 

simplest way to find the relationships between two sequences would be by counting the 

number of identical and similar amino acids. However, the traditional technologies are 

too tedious to do the sequence alignment, and it is important to develop more effective 

sequence alignment techniques. Based on dynamic programming, the empirical 

transition probability indexing algorithm is one of the methods used to search for all 

possible alignments between two sequences to find the optimal local alignments. 

However, the empirical transition probability indexing algorithm is usually 

implemented with sequential calculations, and the computational complexity is 

proportional to the result of the lengths of the two sequences. Researchers often use 

high performance devices to reduce the computational complexity, but the drawbacks of 

this method are obvious. Sequencing alignments are very computation-intensive tasks, 

and expensive hardware is required to run these programs. Therefore, GPUs have been 

found to be good alternatives for solving sequencing alignments. 

 1.1 Motivation  

In recent years, new technologies have evolved dramatically, and enormous new 

databases containing gigabytes of data are created every day. However, the sequence 

analyses are slow and numerous, and using the traditional alignment tools, such as 

BWA, BFAST, and BLAST, have proven to be too time consuming. There are many 

new techniques available, such as transition probability indexing. However, this novel 
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technique is usually realized with a sequential calculation, whereas a GPU can be used 

to supply a powerful platform and reduce the computational time. 

Studying and analyzing the genetic make-up of each living being can be a way 

to understand ourselves. Thus, it is vital that these tools be further developed and 

improved. Parallel algorithms running on GPUs can often achieve speeds up to 100 

times faster than similar CPU algorithms, and there are many existing applications, 

including those relating to physics simulations, signal processing, financial modeling, 

neural networks, and countless other fields[2]. 

1.2 Objectives 

This thesis aims to implement the sequence alignment method and to improve 

the method by using the large multiprocessing capabilities provided by current GPUs. 

We present a new alignment method that uses empirical transition probability indexing 

to solve the alignment problem. Meanwhile, we are planning to do an analysis to 

determine whether or not GPUs can be adjusted to construct a quicker tool for this, 

since GPUs are a great tool for speeding up algorithms through enormous parallelism. 

1.3 Organization of the Thesis 

The rest of this thesis is organized as follows. Chapter 2 starts with the GPU 

architecture, including the GPU structure, the GK104 architecture, and the CUDA 

language. Chapter 3 presents a brief introduction to DNA sequence alignment and 

dynamic programming. Chapter 4 introduces the implementation of the empirical 

transition probability indexing on the GK104 with the CUDA language. Chapter 5 

discusses the experimental results and draws some conclusions for this work. 

  



3 

Chapter 2: GPU Architecture 

A GPU (Graphics Processing Unit) is a specialized processor for accelerating 

graphics representations in real time. Displaying graphics is a computationally heavy 

job, and implementing this in real time sets high requirements for the hardware. 

NVIDIA presented the application of the graphics processor for general purpose 

calculations that are traditionally treated by personal computers or workstations. Many 

more scientific applications have been accelerated by GPU. Almost all computational 

sellers started receiving this new technology since it has been given high-end services 

and improved industry principles. A large set of problems in molecular dynamics, 

physics simulations, and scientific computing have been tackled by mapping them onto 

a GPU[3]. 

Graphics chips designed by NVIDIA strained for a specific set of practicality, it 

serves an extremely parallel programming and computational environment. This was 

begun in the 1999-2000 timeframe, and domain scientists and computer researchers 

have started using GPUs for accelerating scientific applications and achieving efficient 

performance gains. This timeframe saw the advent of the movement referred to as 

GPGPU—General-Purpose computation on a GPU. GPU computing is the use of a 

GPU in conjunction with a CPU to accelerate general scientific and engineering 

applications. Now, the floating point performance of the GPU is higher than the 

performance of the CPU because the architecture of the GPU has been changed 

dramatically via improvement of the chip design and manufacturing technology[4]. 

Pioneered five years ago by NVIDIA, GPU computing has quickly become an 

industry standard, enjoyed by millions of users worldwide and adopted by virtually all 
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computing vendors[5]. From a user's point of view, applications simply run 

significantly faster. 

2.1 General GPU Architecture 

GPU architecture is built with a specialized circuit that can accelerate the output 

image in a frame buffer intended for output to the display. GPUs are very efficient at 

manipulating computer graphics and are generally more effective than general purpose 

CPUs for algorithms in which large blocks of data are processed in parallel. The basic 

GPU architecture is shown in Figure 1. 

 

Figure 1 Basic GPU Architecture 

 

The NVIDIA GPU architecture is constructed around a scalable array of 

multithreaded Streaming Multiprocessors (SMs). The increased flexibility and high 

computing capabilities of GPUs have led a new research field that explores the 

performance of GPUs for general purpose computation. GPU is mainly used for 

extremely parallel operations, whereas CPUs execute programs serially[6]. For this 
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reason, GPUs have several parallel execution units and better semiconductor device 

counts as compared to CPUs, which have few execution counts against greater clock 

speeds. The technology of the GPU has evolved into a multiple programming pipeline, 

and the graphics pipeline has been substituted by the user programmable vertex and 

pixel shaders. A programmer can now implement custom transformations, lighting, and 

texturing algorithms by writing programs called shaders[7]. This pipeline proceeds from 

host interface to memory interface. Host interface is followed by vertex processing later 

sets up the triangle finally pixel processing is finished before memory interface. 

2.2 GPU Hardware 

The NVIDIA GPU consists of Streaming Multiprocessors (SMs), each of which 

consists of many Streaming Processors (SPs). A multiprocessor device is designed to 

execute hundreds of thousands of threads at the same time. To manage such a large 

quantity of threads, it employs a singular design called SIMT (Single-Instruction, 

Multiple-Thread). The instructions are pipelined to leverage instruction-level 

correspondence within one thread, as well as thread-level parallelism extensively 

through simultaneous hardware multithreading. All instructions are issued in order and 

there is no branch prediction and no speculative execution. Current GPUs consist of a 

high number of section processors with high memory bandwidth. In some ways, the 

architecture of a current GPU is similar to a multiple processor that achieves higher 

parallel code performance for rasterization applications. This is in contrast with multi-

core CPUs, which include best single-thread performing cores. GPUs are primarily 

optimized for 2D arrays. Below is a high-level abstraction for CPU and GPU memory 

hierarchies. The GPUs (on the right) write to a high-bandwidth, high-latency video 



6 

memory using small, write-through caches. Caches on the GPU are shared by a large 

number of fragment processors (FPs). Differences in the architecture between CPUs and 

GPUs indicate that the code must be optimized differently for the GPU to achieve 

higher performance[8]. 

2.2.1 Fermi Architecture 

The first Fermi based GPU features up to 512 CUDA cores, which are organized 

in 16 SMs of 32 cores each. To build it, NVIDIA took all they learned from the two 

prior processors and all the applications that were written for them. Fermi’s 16 SMs are 

positioned around a common L2 cache. Each SM is a vertical rectangular strip that 

contains scheduler and dispatch, execution units, and register file and L1 cache. Fermi 

supports concurrent kernel execution, in which different kernels of the same application 

context can execute on the GPU at the same time, thus fully utilizing GPU capacity. 

Figure 3 shows a diagram of the general architecture[9]. 

2.2.2 Kepler Architecture 

NVIDIA’s Kepler architecture is built on the foundation of NVIDIA’s Fermi 

GPU architecture, initially established in 2010. The biggest modification with Kepler is 

that there is no longer a shader frequency. There is simply GPU frequency. This is often 

a compromise to create more space for more CUDA cores in the Kepler architecture, 

which can be clocked even higher than before. Each Stream Multiprocessor contains 96 

CUDA cores, in contrast to the 32-48 that Fermi had. 

The change in layout of the CUDA cores and the clock frequency is most likely 

a way for NVIDIA to get more performance from the circuit. The 1536 CUDA core 

number has been quite interesting and it is basically three time more than what we had a 
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chance to see on the Fermi based GTX 680. This is without the shader frequency, which 

reduces the efficiency of each core. If you add every GPC up, you'll get a total of 4 

Raster Units, 8 Geometry Units, 32 ROPs, and 128 Texture Units. This doesn’t have to 

be bad, since the raster units in Kepler can be more efficient than those in Fermi. Figure 

4 shows the general architecture of Kepler. 

Kepler’s memory hierarchy is organized similarly to Fermi’s. The Kepler 

architecture supports a unified memory request path for loads and stores, with an L1 

cache per SMX multiprocessor[10]. Kepler GK104 also enables compiler-directed use 

of an additional new cache for read-only data, as described in Figure 2. 

 

Figure 2 Kepler Memory Hierarchy 

Table 1 Comparison of Fermi and Kepler architectures 

Model Fermi(GTX 580) Kepler(GTX 680) 

Node 40nm 28nm 
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CUDA cores 512 1536 

Streaming 

Multiprocessors(SM) 

16 8 

Cores per SM 32 192 

Warp Schedulers per SM 2 4 

L1 Cache per SM 64KB 64KB 

L2 Cache 768KB 512KB 
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Figure 3 Fermi streaming multiprocessor architecture[9] 
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Figure 4 Kepler GK104 streaming multiprocessor (SMX) architecture[10] 

2.3 GPU Programming Languages 

A GPU application has two parts: the CPU code and the GPU code. The CPU 

code, which its name implies, runs on the CPU and is that part of the application 

answerable for initializing the device, allocating memory, copying data from and to the 

GPU memory and conjointly launching the GPU code on the device. The software 

engineer specifies through the CPU code what number of threads ought to be launched 

on the GPU and how they should be organized[11]. 
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Figure 5 Typical GPU execution 

Figure 5 illustrates the most common cycle in a GPU application. The entire 

process, in a GPU application, revolves around a main cycle that, when initializing the 

device: 1) copies data to be processed into the GPU, 2) executes the kernel to process 

the data, and 3) copies the results from the GPU memory back to the host’s memory. 

Once there is no more data to process by the GPU, the memory is freed. 

There are several programming languages suitable for GPU programming. 

CUDA is an extended C language environment that unlocks the processing power of 

GPUs to solve the most complex computational problems. OpenCL is a language for 

GPU based on the C language and proposed by Apple in cooperation with others[12]. 

BrookGPU is the Stanford University graphics group’s stream-oriented language 

intended for stream processing that was developed for specialized high performance 

stream machines[13]. AMD Stream Computing SDK was their first production of a 
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GPU language, which was run on Windows XP. The SDK, which includes Brook+, is 

also open-sourced for stream computing[14]. 

 

2.4 CUDA 

The most popular framework for programming NVIDIA GPUs is CUDA[15], 

which presents the programmer with the illusion of a virtually unlimited set of threads.  

In 2006, NVIDIA broadcasted CUDA. CUDA is a general purpose parallel 

computing architecture that permits programmers to create enormously parallel code 

that runs on NVIDIA GPUs. CUDA is well-suited for programming on multiple 

threaded multi-core GPUs. Previously, this was only possible to realize through the use 

of graphic APIs. CUDA could be a giant step forward for making the programming of 

the GPU easier. The API and the general ideas behind it are described in the CUDA C 

Programming Guide[16].  

2.4.1 CUDA Architecture 

CUDA serves the efficient programming environment for a number of cores of 

graphics processors to run in parallel and provides a high number of computations. 

Applications that run on the CUDA architecture can take advantage of an installed base 

of over one hundred million CUDA-enabled GPUs in desktop and notebook computers, 

professional workstations, and supercomputer clusters. CUDA architecture splits the 

device into grids, blocks, and threads in a hierarchical structure. Since there are a 

number of threads in one block and a number of blocks in one grid and a number of 

grids in one GPU, the parallelism can be achieved by this hierarchical architecture[17]. 
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2.4.2 CUDA Programming Model 

NVIDIA CUDA is a general purpose, scalable, parallelized programming model 

for highly parallel processing applications. It enables a dramatic increase in computing 

performance by harnessing the power of the graphics processing unit (GPU). CUDA's 

hierarchy of threads maps to a hierarchy of processors on the GPU. A GPU executes 

one or more kernel grids. A GPU consists of multiprocessors that execute one or more 

thread blocks. CUDA cores, the processing elements within a multiprocessor, execute 

threads in groups of 32, called warps. The CUDA programming model enables the 

programmer to expose substantial fine-grained parallelism sufficient for utilizing 

massively multithreaded GPUs, while at the same time providing scalability across the 

broad spectrum of physical parallelism available in the range of GPU devices[18]. 

A CUDA program consists of at least 2 parts: a main program that runs on the 

CPU (host code) that supplies and retrieves data from the GPU, and a kernel (device 

code) that runs on the GPU. The GPU does not usually have access to the memory on 

the host computer, but it has its own device memory that the host code can transfer data 

to. Figure 6 shows the CUDA programming structure.  
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Figure 6 CUDA Programming Architecture 

Kernels are similar to normal functions in C but they have a given prefix: 

“_global_”. Executing a kernel program on the GPU is a relatively time-consuming 

operation. By default, kernel calls are asynchronous, which means that a CUDA 

program will proceed with consecutive instructions before the kernel really completes 

execution. However, most CUDA programs launch a kernel and then immediately 

transfer back the result. 

When calling a kernel function, it will run multiple times in parallel. And the 

arrangement of the dimension for CUDA is determine the exact times running in kernel. 

Inside the kernel functions you have access to a few extra structs: 

 gridDim: the x and y dimensions of the grid. Grids cannot be 

tridimensional, and therefore z is always 1. 

 blockDim: the x, y and z dimensions of the block (3-dimensional vector). 
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 blockIdx: the index of the block within the gridDim (3-dimensional 

vector). 

 threadIdx: the index of the thread within the block (3-dimensional 

vector). 

 

2.4.3 CUDA Memory Model 

In the CUDA parallel programming model various memory spaces exist[9]. The 

GPU has several different types of memory available, and they all have different access 

times and size limitations, as on a CPU. However, unlike when coding for the CPU one 

has more control of what memory type to use in the code. The 3 most important types of 

memory are register, shared memory, and global memory, as shown in Figure 7. 
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Figure 7 Memory Hierarchy[19] 

Threads might access data from multiple memory areas throughout their 

execution. Every thread includes private memory. Each thread block has a shared 

memory visible to all or any threads of the block and with the equivalent lifetime as the 

block. Finally, all of the threads can access the same global memory. There are extra 

memory spaces accessible by all threads: the constant, texture, and surface memory 

spaces. Constant and texture memory are read-only; surface memory is readable and 

writable. The on-chip memories, such as registers and shared memory, can be accessed 

at very high speeds. The registers are allocated to the individual threads and have a 

lifetime of thread execution. 
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The register is built in each thread. Generally, accessing a register consumes 

zero extra clock cycles per instruction. However, delays might occur due to register 

memory bank conflicts and register read-after-write dependencies. 

Shared memory is memory shared by all of the threads in an exceedingly block 

and resides on-chip within the SM. Because it is on-chip, shared memory have much 

higher bandwidth and lower latency than global or local memory, provided there are no 

bank conflicts between the threads. Threads inside the same block can only access-

shared memory. Shared memory is often used for exchanging information between 

threads and to store values needed by all the threads in a block. Access to shared 

memory is slower than the register. 

Global memory is the device memory. All blocks can share data via GPU global 

memory. This memory type is the slowest type of GPU memory. Global memory is 

cached when running on hardware with compute capability 2.0 or higher. The data can 

be transferred directly from the host memory to the global memory. The size of the 

global memory is much larger than the size of the register and shared memory. The 

lifetime of global memory is from CPU using cudaMalloc until cudaFree. 

The local memory is part of the global device memory. Local memory is ‘local’ 

to an individual thread, that is, it is accessible only by the thread that declares it. 

Variables which kernel function using, are often placed in the register. However, if the 

variable were too big to fit in, the compiler would place it in local memory. Local 

memory can reside in the registers in the SM on the hardware or in the global memory. 

The compiler decides where to place the local memory at compile time. The local 
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memory in the registers is the fastest possible memory on the GPU. Local memory is 

mostly used as working memory for different kind of threads. 

To make the best use of the GPU, it is important to use the correct type of 

memory for every variable, and to reduce the use of global memory as much as 

possible. The most common way to avoid this problem is to place the variables that 

more than 1 thread will use into the shared memory early, and then sync all of the 

threads. 

  



19 

Chapter 3: Sequence Alignment 

Sequence alignment is a way of arranging two sequences to identify regions of 

similarity[20]. Sequence alignment attempts to find similarities between two sequences 

in protein or nucleotide databases, which can help researchers find the functional, 

structural, or evolutionary relationships between the sequences. Sequence alignment 

algorithms are mostly used to align two sequences at one time. Aligning two sequences 

can be done with recursively replacing, inserting, or removing an element. The quality 

of the alignment is represented as an associated score. Sequence alignment algorithms 

find the optimal alignment that maximizes the score. 

 

3.1 Bioinformatics  

Bioinformatics has been defined as a means of analyzing, comparing, 

graphically displaying, modeling, storing, systemizing, searching, and ultimately 

distributing biological information, which includes sequences, structures and functions. 

Due to the rapidly increasing quantities of biological data, high computational resources 

are required in research to reduce the time of analysis. Bioinformatics is a serious 

attempt to understand what it means when we say that genes code for physiological 

traits, like intelligence, brown hair, or susceptibility to cancer. Bioinformatics strives to 

further our knowledge of biological systems and the capacity to interpret biological 

processes for utilization in different applications. This is evidenced by its development 

and the use of computationally intensive techniques. That said, common activities 

include: 
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 Mapping and analyzing DNA, RNA, Protein, Amino Acid, and Lipid 

sequences. 

 Sequence Alignment and Analysis. 

 Creation and Visualization of 3-D structure models of biological 

molecules of significance, e.g., proteins. 

 Genome Annotations. 

3.2 DNA Sequencing 

DNA sequencing is the process of determining the precise order of the 

nucleotide bases within a DNA molecule. It includes any method or technology that is 

used to determine the order of the four bases: Adenine (A), Guanine (G), Cytosine (C), 

and Thymine (T). The advent of rapid DNA sequencing methods has greatly accelerated 

biological and medical research and discovery. 

Knowledge of DNA sequences has become indispensable for basic biological 

research, and for numerous applied fields. The rapid speed of sequencing attained with 

modern DNA sequencing technology has been instrumental in the sequencing of 

complete DNA sequences, or genomes of numerous types and species of life, including 

the human genome and other complete DNA sequences of many animal, plant, and 

microbial species. 

The first DNA sequences were obtained in the early 1970s by academic 

researchers using laborious methods based on two-dimensional chromatography. 

Following the development of fluorescence-based sequencing methods with automated 

analysis, several notable advances in DNA sequencing were made during the 1970s. 

Frederick Sanger developed rapid DNA sequencing methods at the MRC Centre, 
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Cambridge, UK, and published a method in 1977[21]. Walter Gilbert and Allan Maxam 

at Harvard also developed sequencing methods, including one for DNA sequencing by 

chemical degradation[22].  

DNA sequencing may be used to determine the sequence of individual genes, 

larger genetic regions, full chromosomes, or entire genomes. Depending on the methods 

used, sequencing may provide the order of nucleotides in DNA or RNA isolated from 

the cells of animals, plants, bacteria, or virtually any other source of genetic 

information. The resulting sequences may be used by researchers in molecular biology 

or genetics to further scientific progress or may be used by medical personnel to make 

treatment decisions or aid in genetic counselling. 

Sanger sequencing was the most popular technology before the 21st century[23]. 

Since the beginning of the 21st century, Next-generation sequencing (NGS) has become 

widely popular. Table 2 shows the comparison of these two techniques. 

Table 2 Comparison of Sanger and NGS 

 Sanger NGS 

Sequencing Samples Clones, PCR DNA Libraries 

Sample Tracking Many samples in 96, 384 

well plates 

Few 

Preparation steps  Few, Sequencing reactions 

clean up 

Many, Complex 

procedures 

Data Collection Samples in plates 96, 384 Samples on slides 1-16 

Data One read/sample Thousands and Millions of 

reads/Samples 
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3.3 Sequence Alignment Algorithms 

Sequence alignment is the procedure of comparing two (pair-wise alignment) or 

more sequences by searching for a series of individual characters or patterns that are in 

the same order in the sequences. This is useful because sequences with high similarity 

have a good chance to be related according to functional, structural, or evolutionary 

aspects.  

The standard method of representing strings—for example, a consecutive chain 

of characters—is terribly slow for string matching issues. Solving the string matching 

issue using strings involves checking one of the strings (the reference string) for the 

locations where the first character of the second string (the target string) appears and in 

those locations apply the same method for the second character and so on until all 

characters of the second string have been used. But this type of method can be less 

efficient when the data size becomes bigger. Pairwise sequence alignment can be 

generally classified as global alignment and local alignment. Given two sequences, A = 

{ACTAGC} and B = {TATCTGCCGT}, it is possible to align them globally or locally, 

as shown in Figure 8. 
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Figure 8 Global and Local alignment 

3.3.1 Global Alignment 

When aligning sequences globally, the optimal alignment is the alignment in 

which the overall number of matches is maximal. All of the characters in each sequence 

participate in the alignment. This method is beneficial when comparing closely related 

sequences. The Needleman-Wunsch algorithm, proposed in 1970 by Saul B. Needleman 

and Christian D. Wunsch, was one of the first applications of dynamic programming to 

biological sequence comparison[24]. This algorithm uses the sequence representation 

for DNA and builds a matrix of n by m dimensions, where n is the size of the reference 

sequence and m is the size of the target sequence. This algorithm fills the matrix with 

the following functions: 

𝐹𝑖,0 = −𝑖𝐺, 0 ≤ 𝑖 ≤ 𝑚 

𝐹0,𝑗 = −𝑗𝐺, 0 ≤ 𝑗 ≤ 𝑛 

𝐹𝑖,𝑗 = 𝑚𝑎𝑥 {

𝐹𝑖−1,𝑗−1 + 𝑠(𝐴𝑖, 𝐵𝑗)

𝐹𝑖−1,𝑗 − 𝐺

𝐹𝑖,𝑗−1 − 𝐺
, 1 ≤ 𝑚, 1 ≤ 𝑛 

Where F is the 𝑚 × 𝑛 matrix, A and B are the 2 sequences, m and n are the 

lengths of A and B, G is the gap penalty function, and S is the similarity score function, 

defined as: 
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𝑠(𝐴𝑖 , 𝐵𝑗) =  {
> 0, 𝐴𝑖 = 𝐵𝑗 𝑀𝑎𝑡𝑐ℎ

       < 0, 𝐴𝑖 ≠ 𝐵𝑗, 𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ
 

The Time complexity of Needleman-Wunsch algorithm is 𝑂(𝑛𝑚). 

3.3.2 Local Alignment 

Local alignment is used to seek out related regions in two sequences. This 

method is much more flexible than the global alignment method. Related regions that 

appear in different orders can still be identified as being related, whereas this is often 

not possible with the global alignment method. One of the most well-known dynamic 

programming algorithms for local DNA alignment is the Smith-Waterman 

algorithm[25]. This algorithm works by filling the sequence alignment matrix with 

scores. One sequence is placed at the top of the sequence alignment matrix, and another 

is place at the left side of the matrix. The cells in the first row and the first column are 

filled with 0 for initialization of the sequence alignment matrix. The Smith-Waterman 

algorithm fills the matrix with following functions: 

𝐹𝑖,𝑗 = 0, {
  0 ≤ 𝑖 ≤ 𝑚
0 ≤ 𝑗 ≤ 𝑛

 

𝐹𝑖,𝑗 = 𝑚𝑎𝑥

{
 

 
𝐹𝑖−1,𝑗−1 + 𝑠(𝐴𝑖, 𝐵𝑗)

𝐹𝑖−1,𝑗 − 𝐺

𝐹𝑖,𝑗−1 − 𝐺

0

, 1 ≤ 𝑚, 1 ≤ 𝑛 

Where F is the 𝑚 × 𝑛 matrix, A and B are the 2 sequences, m and n are the 

lengths of A and B, G is the gap penalty function, and S is the score matrix described 

above. 

The Time complexity of Smith-Waterman algorithm is 𝑂(𝑛𝑚). 
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Chapter 4: Transition Probability Indexing Based on CUDA 

In this chapter, we describe the Transition Probability Indexing Algorithm for 

sequence alignment, and we focus on the implementation of the parallelized algorithm 

adapted to the GPU.  

4.1 Transition Probability Indexing 

In this section, we present our genome indexing and alignment framework in 

detail. We will introduce the indexing: index matching. In this report, we refer to 

“reference sequence” as the base-line sequence and try to align a “target sequence” 

against the base-line sequence. After introducing the idea of our algorithms, we will 

describe the different between a C-implemented program and a CUDA-implemented 

program. 

4.1.1 Indexing 

Compared with current genome indexing methods, our indexing process 

provides a faster and light-weight alternative for index generation, which is similar to 

the big data retrieval systems. These indices can reduce the search space and provide an 

estimation of the target sequence locations in the reference sequence. Our implemented 

genome indexing technique models a nucleotide sequence as a graph by counting the 

transitions between each pair of nucleotides. To be more specific, as shown in Figure 9, 

we take a graph with four states according to the different types of nucleotides and 

sixteen vertices according to all possible transitions between nucleotides. We read the 

first nucleotide of the sequence and treat it as the initial state. Then, we move from one 

state to the other state by scanning the next nucleotide repeatedly until the end of the 

sequence. Afterwards, we calculate the number of nucleotide transitions (we count how 
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many times we pass one vertex in the graph) and store them in a 4 × 4 matrix. Finally, 

we normalize the resulting matrix as follows: 𝑘𝑠𝑤 is the number that has the S-type 

nucleotide immediately before the W-type nucleotide. 

 

4.1.2 Indexing matching 

The goal of this step is to find similar indices based on the information of the 

sequence. We define a symmetric distance function between two index matrices I and J 

as follows: 𝐷𝑀𝑆𝐸(𝐼, 𝐽) = ‖𝐼 − 𝐽‖𝑓, where ‖∙‖𝑓 is the Frobenius norm of the matrix. 

After generating the indices of the reference sequence and the target sequence, 

the 𝐷𝑀𝑆𝐸  distances to all of the reference sequence indices are calculated, where the 

best similar indices in terms of 𝐷𝑀𝑆𝐸  is chosen as our location. 
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Figure 9 The transition diagram between nucleotides 

A summary of the main procedure for our proposed alignment method is shown 

in Algorithm 1. 

Algorithm 1 Proposed nucleotide sequence alignment algorithm for finding the location 

of the input sequence. 

Inputs: a reference sequence 𝑥 ∈ ℝ𝑀, a target sequence 𝑦 ∈ ℝ𝑁. 

Initialize: a 4×4 state matrix 𝐼 storing the numbers of nucleotide states. 

Fill the reference state matrix 

Fill the target state matrix 

Find the best similar subsequence from the reference sequence 

Output: the estimated location of the target sequence in the reference sequence. 

 

4.2 Transition Probability Indexing CUDA System 

The Transition Probability Indexing implementation consists of 5 modules: 

sequence reading module, pre-processing module, CPU Transition Probability Indexing 
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processing module, GPU Transition Probability Indexing processing module, and 

output display module. Figure 10 shows the CUDA system below. 

 

Figure 10 Diagram of Transition Probability Indexing CUDA system 

The sequence reading module loads the reference sequence file from a database. 

It checks to see whether this file is a correctly loadable DNA sequence. It loads the 

protein sequences from the file and stores the sequences in an array. 
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The second module is the pre-processing module. This module prepares all of 

the required variables. It initializes the sequence transition matrix, and changes the 

sequence character to a number, which makes it easier to use in computations. 

The CPU Transition Probability Indexing is the third module. It uses the classic 

serial method in the implementation. 

The GPU Transition Probability Indexing is the fourth module. The code is 

written in CUDA, using multiple threads to calculate the transition matrix. Single 

Programming Multiple Data is allowed in CUDA and GK104. 

The last module is the output display. It shows the results of the alignment: the 

number of matched or mismatched sequences, the total running time, and the kernel 

running time. 

4.3 CUDA Implementation 

The proposed algorithm for DNA alignment is based on exact and approximate 

string matching. One of the advantages of using CUDA is that GK104 supports many 

simultaneous threads. The basic concept of our implementation is to process more 

transition matrixes at the same time using threads.  

4.3.1 Preprocessing 

Before the GPU kernel function performs the alignment, some preparation is 

needed. Considering that the GPU kernel cannot access the host memory, the device 

memory should be allocated and the data should be copied explicitly from the host to 

the device before running the kernel. 

GPU memory allocation and regular memory allocation work in a very similar 

way. A vital aspect to take into consideration is that the kernel will require memory 
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space to save the data results. Considering that each query is run by one thread and will 

return a single result, each thread will require a single memory position to save its 

result. These memory positions must be allocated prior to running the kernel. 

Otherwise, an error will occur when attempting to write the data into device memory 

that has not been allocated. 

The actual memory copy operation is very simple and requires a single 

command to copy one block of data from the host to the device memory. The kernel 

cannot begin until all of the data have been copied to the device. It is sometimes helpful 

to use asynchronous memory copying, so the CPU will continue the processing while 

the copying takes place.  

After the memory has been successfully allocated and all of the necessary data 

have been copied from the host to the device, it is necessary to call the exact matching 

kernel function. The detail of the implementation of the algorithm is described below.  

4.3.1 CUDA Kernels 

The kernel does a simplified transition probability indexing algorithm on all 

threads. The separate threads in a block work on separate positions for the same read 

simultaneously. We use the same CUDA kernel function for all calculations. To 

evaluate the robustness of the proposed method, we generate indices for long human 

genome sequences (i.e., 5 ×  108 nucleotides). For an ideal rate, we divided the 

reference sequence into subsequences with a length of 104, so we picked 105 

subsequences. And we randomly picked one subsequence as our target sequence. We 

applied the proposed algorithm to all of the subsequences into the CUDA kernel. We 

calculated 105 subsequences in the CUDA kernel at each time, which means that we 
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counted ten subsequences in a kernel at one time. Each subsequence has a transition 

matrix, and we compared each transition matrix with the target sequence transition 

matrix. 

In filling the transition matrix, we used shared memory to update the matrix.  

In matching indexes, we paralyzed the input data and used scatter to match the 

target sequence with each potential query subsequence.  

Finally, the result with the most similar indices was the location of the target 

sequence in the reference sequence. Figure 11 shows the basic kernel structure.  

 

Figure 11 Basic kernel structure 

Here is a simplified pseudo-code style version of the GPU kernel code. 
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__device__ int index(index for matrix) 
__device__ void Normal_Matrix() 
__device__ float MSE(two Matrix) # calculate MSE between target and subreference 
sequence 
 
__global__ FUNCTION (alignment kernel) 
{ 
 <copy read into shared memory> 
 <Initialize memory and get parameters> 
 __syncthreads(); 
 <For loop to get target transition matrix> 
 //constructing transition matrix for target sequence 
 for (position) 
 { 
  row = ref_seq[index]; 
  column = ref_seq[index]; 
   
     atomicAdd(&(ref_Tran_Mat1D[index(i, row, column)]), 1.0); 
 } 
 //calculate the transition matrix for each subsequence 
 for (postion) 
 { 
  <change dimension from 1D to 2D> 
 } 
 __syncthreads(); 
 Normal_Matrix(ref_Tran_Mat2D); 
 Normal_Matrix(tar_Tran_Mat); 
 measure = sqrt(MSE(ref_Tran_Mat2D, tar_Tran_Mat)); 
 //compare two transition matrix and get MSE of each pair 
 <return result sequence back to host> 
} 
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Chapter 5: Results and Conclusions 

The performance of the GPU implementation of the transition probability 

indexing is affected by the number of simultaneous threads and the time used for data 

transfers between the host and the device. Moreover, the implementation is constrained 

by several hardware specific properties of the GK104 and the CUDA language. In the 

current work, we attempted to reduce the runtime by using parallel calculations. In this 

thesis, we also implemented the sequential code for the proposed algorithm based on the 

C program. 

5.1 Environment 

We implemented the proposed algorithm with both the C program and the 

CUDA program. The details of the environment are as follows: 

C-program      CUDA-program 

IDE: Code::Blocks    Visual Studio 2013 

Compiler: mingw32-gcc    CUDA 6.5 

CPU/GPU: intel i7    intel i7 + GeForce GTX 760 

System: windows 8 64bit    windows 8 64bit 

 

5.2 Results 

We designed our experiments based on the assumption we discussed above. We 

used the digits 0, 1, 2, 3 to represent the bases A, C, G, T. We found that the CUDA-

based program ran faster than the sequential C program. Also, we optimized the 

algorithm by using shared memory allocation. Our optimized algorithm performs better 

than our original algorithm. We have drawn Figure 12 and Figure13 below. 
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Figure 12 The cost time running in C 

 

Figure 13 The cost of kernel time running on CUDA 

The results from the runtime analysis for the long human genome sequences 

(5 × 108 nucleotides), as listed in Table 3, show the results of the CUDA based 

algorithm compared to sequential results achieved by former researchers[1]. Due to the 

I/O operations of the sequential algorithm, the sequential algorithm is much slower than 

the parallel algorithm based on CUDA. 
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Table 3 Results for sequential and parallel 

Length of sequence Sequential Parallel based on CUDA 

5 ×  106  21 seconds 1.45 second 

5 ×  107  24 minutes  21 seconds 

5 ×  108  5 hours 223 seconds 

 

5.2 Conclusions 

In this thesis, we focused on parallelizing the transition probability indexing 

algorithm with the following results. First, we presented a simple approach to 

parallelize the proposed method. Our algorithm builds a transition matrix based on the 

neighboring nucleotides of a reference sequence. Second, we compared short sequences 

(105) for both the serial and parallel methods. Third, we conducted preliminary 

experiments for long human genome sequences (108) and found that the parallelized 

transition probability indexing algorithm on the GPU is at least 10 times faster than the 

sequential algorithm. Finally, the proposed method, based on GPUs, can process much 

longer sequences than the previous approach. 
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