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Abstract 

While initially thought to be laterally homogeneous, operators quickly realized 

that unconventional resource plays can exhibit considerable geologic heterogeneity. 

Since this realization, 3D surface seismic analysis has played a significant role in 

identifying drilling hazards and sweet spots. Much less effort, however, has been 

invested in mapping the heterogeneity of the drilling process itself, where some zones 

drill faster, some slower, and still others result in costly casing trips to change the bit. 

Given the current low oil price, there is an increased need for efficiency and cost 

reduction in the drilling process. A method to better predict drilling speed could make a 

significant impact.  

In this thesis, I correlate the rate of penetration to surface seismic measurements 

made over the heterogeneous Mississippi Lime resource play in Woods County, 

Oklahoma. 50 horizontal wells with mud logs measuring the rate of penetration (ROP) 

in minutes/foot fall within a 70 mi
2
 seismic survey. Exploratory data analysis shows that 

geomechanical attributes of P-impedance, inverted-porosity, λρ and µρ and the 

geometric attribute curvedness have good correlations with ROP. I then evaluate a 

Proximal Support Vector Machine (PSVM) and an Artificial Neural Network (ANN) to 

predict classifications of the speed of drilling – or cost of penetration in minutes per 

foot – for lateral segments of the wells. Because the objective is to develop a technique 

to reduce the cost of drilling, I weighted each well segment by the time it took to drill, 

and then defined discriminant boundaries between classes defined as equally weighted 

percentiles. I initially attempted to assign 40 of the wells, irrespective of driller, into 5-

class and 2-class PSVM and ANN models, but obtained poor validation with the 10 



xvii 

wells not used in the training. Hypothesizing that a given directional drilling company 

will follow consistent, if not rigid, company specific operating protocols, I used these 

smaller data sets to generate three 2-class (fast and slow) PSVM and ANN models. I 

obtained increased validation of 2-class PSVM of 17-32%; however, the results for the 

ANN were weaker with a decrease in validation for some cases. More specifically, the 

2-class PSVM correctness increased from 57% for the entire data set to 85%, 70% and 

70% when the data were separated by the three directional drillers. The 2-class ANN 

correctness changed from 66% for the entire data set to 73%, 64% and 66% when the 

data were separated by directional driller. 

In an effort to further lower drilling costs, I correlate bit trips in the lateral 

segments of wells to Gray Level Co-Occurrence Matrix (GLCM) texture attributes. 

Using eight GLCM attributes – contrast, correlation, dissimilarity, energy, entropy, 

homogeneity, mean and variance – and building off the knowledge that the directional 

driller had an effect on the results of the PSVM, I was able to obtain strong correctness 

for a 2-class (high number of bit trips and low number of bit trips) PSVM model. The 2-

class PSVM correctness obtained ranged between 90-93%. 
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Chapter 1: Introduction 

 The Mississippian Limestone carbonates in north-central Oklahoma have 

yielded stellar oil and gas reservoirs since the early 1900’s (Koch et al., 2014). While 

wildcatters once targeted geographic structural traps, the advent of unconventional 

drilling and completion techniques has allowed for the exploitation of stratigraphic traps 

by exploration and production companies (Lindzey, 2015). This thesis strives to 

improve well planning and reduce drilling costs through the use of mudlogs and 3D 

seismic data. 

In today’s industry, drilling a horizontal well is one of the largest expenses of 

the petroleum production process. The controlling factor in the cost of drilling a well is 

time and the majority of the time is consumed either while drilling or making a bit trip 

(Bourgoyne et al., 1986). More specifically, the time can be broken down into the 

rotating time, nonrotating time and trip time (Bourgoyne et al., 1986). Ideally, one 

would like to – safely and efficiently – drill the well as quickly as possible while 

maximizing rotating time and minimizing nonrotating and trip time to decrease the 

overall cost of drilling. Drilling rate in the petroleum industry is referred to as rate of 

penetration and primarily depends on weight on bit, speed of bit rotation, drilling fluid 

flow rate, and the drilled formation (Bourgoyne et al., 1986). Values of rate of 

penetration used in this thesis will be in units of minutes per foot and will be referred to 

herein as cost of penetration or COP (Qi et al., 2016). By predicting COP values and bit 

trips throughout the study area, my goal is to statistically analyze the cost of the drilling 

process for a given well trajectory. 
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 The basis for this thesis extends preliminary work done to predict COP by Qi et 

al. (2016). Juxtaposed with this thesis, some aspects remain the same; however, many 

changes were made in this study to further characterize the COP prediction and 

classification process. The two major points that remain constant between this thesis 

and the work done by Qi et al. (2016) are the use of the same geometric and 

geomechanical attributes and the use of a 2-class proximal support vector machine. The 

altered methods in this study differentiate the thesis. Data sampling in this project was 

defined to be that of the seismic bin size, in other words data samples for COP, 

geometric and geomechanical attributes were taken at every 110 ft, as opposed to every 

2 ft. Each data 3D voxel along the well was then classified by this upscaled COP. For 

this study, classification was also tested using an artificial neural network which was 

not used in the study by Qi et al. (2016). After preliminary exploratory data analysis, 

wells are segmented by their respective directional driller and COP is analyzed 

separately. Furthermore, bit trips in the lateral segments of wells are segmented by their 

individual directional driller and analyzed separately.  
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Chapter 2: Geologic Background 

Regional Geology 

The wells and seismic survey in this study lie in the northeastern corner of 

Woods County, Oklahoma. Figure 1 shows the surrounding structural members and 

study area within Woods County.  The study area is within the Anadarko Shelf and is 

bound by the Cimarron Arch to the west, the Anadarko Basin to the south and the 

Nemaha Uplift to the east. These structural elements formed primarily between the Late 

Cambrian and Early Pennsylvanian (Johnson and Luza, 2008). Figure 2 shows a cross 

section displaying structural features from southern Oklahoma up to the Anadarko Shelf 

in northern Oklahoma. Figure 3 shows a similar cross section; however, this figure runs 

from western Oklahoma through the Anadarko Shelf and to the eastern edge of the 

state. 

Figure 4 shows the approximate location of the study area during the 

Mississippian Period. During the Paleozoic Mississippian (345 Ma), shallow seas 

covered the majority of Oklahoma (Johnson and Luza, 2008) and shallow-water 

carbonates were deposited (Figure 5) creating the Anadarko Shelf. Figure 6 shows the 

primary depositional environments during this time period – the inner, middle and outer 

ramp. Seven lithofacies are represented within this carbonate-ramp: argillaceous 

dolomitic mudstone, argillaceous dolomitic mudstone with chert nodules, clean 

dolomitic mudstone with chert nodules, nodular to bedded chert, autoclastic chert, 

autoclastic chert with clay infill and bioclastic wacke-grainstone (Watney et al. 2001). 
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Local Geology 

The stratigraphic units of interest for this study are from the Paleozoic Era. 

Figure 7 shows the established stratigraphic column in northeast Woods County and the 

series that are present in the study are the Kinderhookian, Osagean and Meramecian. 

Figure 5 shows that these Mississippian rocks are primarily limestone with minor 

amounts of chert, sandstone and shale. Thicknesses range between 400 feet and 1,400 

feet; this variability is due to erosion after the Mississippian period (Bowles Jr., 1961).  

The lower portion of the Kinderhookian series is characterized by the Woodford 

shale which is a brown, carbonaceous, shale. The upper portion of the Kinderhookian is 

a sucrosic limestone that is light-gray in color (Bowles Jr., 1961). Overlying the 

Kinderhookian series is the Osagean series. The Osagean is primarily dolomite and 

limestone; however, a characteristic feature for this series is the blue-gray chert 

contained within (Bowles Jr., 1961). The Meramecian series overlies the Osagean. It 

contains dolomite with interbedded chert at the base, but becomes a gray fossiliferous 

limestone at the top (Bowles Jr., 1961). 

The horizontal wells in the study area penetrate and produce mainly from the 

Osagean series – more specifically, from a section known as the Mississippi Chert or 

“chat.” The term “chat” is a colloquialism created by drillers due to the chattering sound 

the drill bit makes as it bounces of the Osagean Mississippi Chert. Subaerial exposure 

of the Mississippian Limestone caused porous and reworked chert to form which ranges 

between 50-70 feet (Bowles Jr., 1961). Chat is made through dissolution of excess 

amounts of calcite in meteoric waters (Rogers, 2001). Furthermore, the formation of 

chat is controlled by elevation and erosion; higher elevation areas allow for more 
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erosion to occur, regulating the distribution of carbonate that exists for later 

replacement by silica-saturated waters (Rogers, 2001). The Mississippi Chat is, 

therefore, only found in localized areas such as northeastern Woods County, Oklahoma.  
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Figure 2. Cross section through Oklahoma running from the Hollis Basin in the south, 

through the Anadarko Basin and up to the Anadarko Shelf in the North (Modified from 

Johnson and Luza 2008). 
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Figure 4. Paleogeographic map during the Paleozoic Mississippian (345 Ma). The red 

star shows the approximate location of the study area (Modified from Blakey, 2014).  
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Figure 5. A map displaying the Mississippian Period rock types deposited when 

shallow-water seas covered Oklahoma (Johnson and Luza, 2008). 
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Figure 6. A map displaying the carbonate facies of the Anadarko Shelf. Our study area 

contains majority middle ramp facies (Modified from Koch et al., 2014; Lane and 

DeKeyser, 1980; Watney et al., 2001). 
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Figure 7. A stratigraphic column of the study area. Units of interest are outlined by the 

red box (Modified from Mazullo, 2011). 
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Chapter 3: Data 

Data Available 

The 3D Survey for this project was provided by Chesapeake Energy Corporation 

and was processed by Kelman Technologies in 2011. The survey is approximately 70
 

mi
2
 and Figure 8 shows a time slice at the approximate Mississippian horizon through 

the seismic amplitude volume at t=1.02 s. The processing workflow carried out included 

gain recovery, spiking deconvolution, refraction statics, velocity analysis, residual 

statics, fxy pre-stack noise rejection, pre-stack Kirchhoff time migration, migration 

stretch mute, and a 6-12-80-90 Ormsby bandpass filter. Table 1 shows detailed survey 

parameters. The source and receiver spacing were 220 ft. The bin size was 110 ft x 110 

ft with a sampling increment of 2 ms. The wavelet amplitude is laterally continuous 

throughout the Mississippian Limestone unit, exhibiting a high signal to noise ratio. 

Well data, including open-hole logs and well logs, from 50 horizontal wells and 32 

vertical wells were included.   

Mudlogs 

The mudlog was the primary piece of data used in this study. A mudlog is a 

suite of data analyzed and compiled during a well’s drilling process by an on-site 

geologist better known as a mudlogger. Figure 9 shows a sample mudlog using 

WellSight Log Viewer courtesy of WellSight Systems. This figure shows COP, weight-

on-bit, gamma ray, depth, cuttings analysis, and mud cake analysis. Every piece of data 

is critical to the drilling process; however, the COP values are what is crucial to this 

study. 
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Table 1. 3D Survey Parameters. 
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Figure 9. An example mudlog. The suite of data shown was compiled and analyzed by 

the mudlogger while this well was drilled (Courtesy of WellSight Systems). 



17 

Chapter 4: Methods 

Geometric Attributes 

 I hypothesize that natural fractures either impede or facilitate the cost of 

penetration. Nelson (2001) finds that in addition to lithology, natural fractures are also a 

function of strain. Curvature, computed from 3D seismic data, is a direct measure of 

strain, and commonly used as a proxy for fractures (Lisle, 1994; Ghosh and Mitra, 

2009). With no reason to favor most positive curvature, k1, over most negative 

curvature, k2, I combine them and use curvedness, C, defined by Chopra and Marfurt 

(2007) as 

𝐶 = √(𝑘1
2 + 𝑘2

1) ,        (1) 

I further hypothesize that textural homogeneity – or lack thereof – will have an 

effect on the ease of drilling. Texture will be analyzed through eight GLCM texture 

attributes – contrast, correlation, dissimilarity, energy, entropy, homogeneity, mean, 

variance – computed from 3D seismic data. The GLCM describes arrangements of gray 

levels that occur in a given space – providing quantitative texture measurements (Hall-

Beyer, 2007).  Gao (2004, 2007, 2009) has correlated these texture attributes to well 

logs using both supervised and unsupervised learning techniques. 

Geomechanical Attributes 

Gong and Zhao (2007) found that brittleness of a rock affected the rate of 

penetration for Tunnel Boring Machines. More specifically, as rock brittleness 

increased, rate of penetration increased. Geomechanical attributes can aid in the 

analysis of brittleness, and therefore in cost of penetration analysis. A simultaneous 

elastic inversion is generated on this data set in order to estimate values of porosity, λρ, 
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µρ and P-impedance using commercial software. These geomechanical attributes are 

used as inputs for classification as they relate to the lithology and brittleness of the 

drilled formation and, in turn, may have a direct effect on the COP. 16 wells with 

density and P-wave sonic logs are used; however, only one S-wave sonic log was 

available. Prior to the inversion, the data were preconditioned by applying a 10-15-110-

120 Hz bandpass filter, a parabolic Radon transform and trim statics, the latter to correct 

for alignment errors at far offsets. Correlations between the inverted and the upscaled, 

measured P- and S- impedance logs at individual well locations ranged between 0.964 

and 0.985 indicating a strong relationship.  

Time to Depth Conversion 

To relate seismically derived geometric and geomechanical attributes to cost of 

penetration, the volumes in the time domain must be converted to the depth domain. A 

velocity model was created for the Mississippian Limestone using built on interpreted 

seismic horizons in the time domain combined with well tops picked from logs in the 

depth domain. 

The target zone in this study is defined by the top of the Mississippian 

Limestone as the upper bound and the top of the Woodford Shale as the lower bound. 

Next, the well tops for the Mississippian Limestone and the Woodford Shale are entered 

as correction data. The well tops make alterations to the velocity model and create a 

more accurate model in the depth domain. The zone of the velocity model must next be 

defined. Because there is little compaction with depth for the Mississippi Lime 

Formation and dip was less than 2%, the velocity was chosen to be constant throughout 

the zone where 𝑉 = 𝑉0 = 𝑉𝑖𝑛𝑡.  
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The last step is to change the correction and output settings for the model. 

Tolerance for depth and time thickness of 60 ft and 40 ms were selected, respectively. 

The commercial software used disregards intervals where the difference between 

horizons is less than the tolerance. Surface interpolation increments of 500 ft were 

chosen for both X and Y. The interpolation method chosen was a moving inverse 

distance squared weighted average, such that closer points receive a higher weight than 

points further from the node.  

The resulting velocity model can now be used to convert the seismically derived 

geometric and geomechanical attributes from time to depth. Figure 10 shows the 

seismic amplitude in the time domain with a well that is stretched because it is in the 

depth domain. Figure 11 shows the seismic after being converted to the depth domain 

using the new velocity model. The well fits much better and is no longer stretched. This 

model can now be applied to the rest of the data.  

Correlation using a Support Vector Machine Training 

Support vector machine and artificial neural networks are both supervised 

learning techniques, wherein, the interpreter graphically (e.g by picking) or otherwise 

defines (e.g. by extracting voxel vectors about a well bore) a subset of the data that are 

correlated to “truth” data such as facies labels or well log measurements. In this work, 

the truth data will be a subset of the ROP measurements in the horizontal well logs. 

Voxels vectors are extracted along horizontal wellbore portions of 50 wells within the 

3D survey. 
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Proximal Support Vector Machine 

 Support vector machines were originally created as a means of non-

linear data classification (Cortes and Vapnik, 1995). Initially used for binary 

classification through the use of decision-boundaries (Figure 12), SVM’s have evolved 

into proximal support vector machines where classification is driven by the use of 

decision-planes (Figure 13) (Fung and Mangasarian, 2005). Support vector machines 

are more frequently being used as classification tools in geology and geophysics. 

SVM’s have recently been used as a method of lithofacies classification, a means to 

estimate TOC from well logs, a method to map mineral prospectivity, (Zhao et al., 

2014; Zhao et al., 2015; Zuo and Carranza, 2011). In this study, a PSVM will be used to 

classify drilling rate by analyzing the geometric and geomechanical attributes 

curvedness, P-impedance, λρ, µρ and inversion porosity.  

To begin, a training file with a significant portion of the data is entered. 

Controlling parameters are chosen to define the misclassification rate and Gaussian 

kernel. Figure 14 shows a representative output. In this case, the application correctly 

classified 25 of the 40 testing points or 63% of the validation points.  

Artificial Neural Network 

Artificial neural networks are comprised of an arrangement of variables 

functioning simultaneously, and are considered to be similar to the human nervous 

system (Demuth and Beale, 1993). ANN’s are able to efficiently distinguish 

relationships between data that may, initially, seem to have no connection (Hsu et al., 

1995). Figure 15 shows the ANN training process. Inputs are entered into the neural 

network where they are weighted and linked creating an output. The output is then 
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compared to the target output and the neural network iterates by adjusting weights of 

each input variable until an optimal output is found. Figure 16 shows the structure of an 

ANN.  

I used a commercial Neural Pattern Recognition toolbox is used in this study as 

a means of classification for the data. The percentage of samples for the training, 

validation and testing steps are selected as well as the number of hidden neurons. The 

model is trained and iterates until the best possible result is reached. A generalized 

sample output is shown in Figure 17. The results for this test are poor; the cross-entropy 

values are too high meaning that the model is unsatisfactory. 

Statistics 

I use the four moments of statistics-mean, variance, skewness and kurtosis as 

well as the median to make compare variability and consistency between three 

directional drillers. This suite will help to give measures of center, spread and shape for 

our data (Hall, 2016).  

Seiler and Seiler (1989) define the first moment of statistics, mean, by 

 �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  ,        (2) 

The mean is the arithmetic average of the data samples. Variance is the second moment 

and is defined by 

 𝜎2 =
1

𝑛−1
∑ (𝑥𝑖 − �̅�)𝑛

𝑖=1
2
 ,       (3) 

Standard deviation, although not a moment of statistics, is important as it expresses the 

variability of the data in the same units as the data (Hall, 2016). It is defined as the 

square root of variance or 

𝜎 = √𝜎2 ,         (4) 
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The variance describes how the data are distributed about the mean (Seiler and Seiler, 

1989. The third moment of statistics is skewness, defined by 

𝑠𝑘𝑒𝑤 =
1

𝑛
∑ [

𝑥𝑖−�̅�

𝜎
]

3
𝑛
𝑖=1  ,       (5) 

and defines the asymmetry of the data about the mean (Seiler and Seiler, 1989). The 

fourth moment, kurtosis, measures the peakedness of a distribution of data (Seiler and 

Seiler, 1989) and it is defined by 

 𝑘𝑢𝑟𝑡 =
1

𝑛
∑ [

𝑥𝑖−�̅�

𝜎
]

4
− 3𝑛

𝑖=1  ,       (6) 

The median is computed by first ordering the samples xi from low to high values and 

then taking the middle sample of the ordered array as the result.  
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Figure 10. A cropped amplitude volume of the 3D seismic survey in the time domain. 

A single well displayed that is incorrectly lined up with the seismic. 
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Figure 11. A cropped amplitude volume of the 3D seismic survey after being converted 

to the depth domain. A single well is displayed and it is now correctly lined up with the 

seismic. 
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Figure 12. An example of a support vector machine in 2D space. The decision 

boundary, separating the two classes, is displayed by the solid green line. The margins 

are denoted by the dashed crimson line and the support vectors are highlighted by the 

blue boxes (After Cortes and Vapnik, 1995). 
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Figure 13. An example of a binary class PSVM. The upper graph is in 2D space and the 

decision boundary is defined by the red line. The lower picture shows a set of points in 

3D space where the decision boundary is now defined by the red plane (Modified from 

Zhao et al. 2014). 
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Figure 14. A sample PSVM output. In this test, the model successfully classified 25 of 

the 40 testing points, or about 63%. 
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Figure 15. A generalized ANN workflow. Inputs are entered into the network where 

hidden neurons are defined and weights are given to each input variable. The output is 

compared to the targets and the neural network completes iterations until an optimal 

model is created (Demuth and Beale, 1993). 
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Figure 16. A of the structure of an ANN. It is characterized by inputs, neurons, a 

hidden layer, variable weights and outputs (Wang, 2003). 
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Figure 17. An output from MATLAB’s Neural Pattern Recognition toolbox. “CE” 

stands for Cross-Entropy and values for this example are high meaning that this is a 

poor output model.  
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Chapter 5: Exploratory Data Analysis 

 The data for the following results and analysis was sampled at every 110 ft. Cost 

of penetration is sampled at every two feet; however, the seismic was sampled every 

110 ft. For this study, the COP data sample interval was upscaled to that of the seismic 

sample. Unlike ROP, the upscaled value of COP in (min/ft) is simply its arithmetic 

average (over 110 ft). Values of COP were estimated, through interpolation, at every 

110 ft and corresponding values for geomechanical and geometric attributes were found 

at each sample point. This constitutes the data for this thesis.  

Visualization 

The first step to understanding the data is through visualization. Figure 18 shows 

the entire raw and normalized COP histograms. Both histograms show that the COP is 

biased to the left, with about 66% of the total lateral length drilled faster than 1.82 

min/ft and 37% drilled slower than 1.82 min/ft This distribution will be used to 

determine the threshold COP (or discriminator) for each class.  

Figure 19 shows boxplots of the input geomechanical and geometric attributes 

for this data set. The histograms are broken up into five classes based on their respective 

COP value at each point - Class 1 representing low COP and 5 representing high COP. 

At first glance, it is difficult to discern between classes as there appears to be a great 

amount of overlap among all five classes. In other words, there is not a clear decision 

boundary.  

Figure 20 displays box plots for P-impedance, inverted porosity, curvedness, λρ, 

and µρ. Two classes are displayed; Class 1 representing low COP while class 2 
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represents high COP. The classes are easier to distinguish in these figures; however, 

there still does not appear to be high amounts of separation within the data.  

Proximal Support Vector Machine 

Five Classes 

The first set of data tested in the PSVM was the collection broken up into five 

classes. Figure 21 shows the results between the training and testing data. The PSVM 

correctly classified 67 of the 292 data points, or about 23%. The results of this test are 

disappointing.77% of the time, the PSVM misclassified the points based on the input 

values. In an attempt to increase the correctness, the range of classes was decreased 

from 5 to 2.  

Two Classes 

Figure 22 displays the results from a 2-class PSVM test on the entire data set. 

The model created correctly classified 154 of the 292 data points. About 53% of the 

times, the model will correctly classify points based on the input variables. While this is 

an increase of 30% from the 5-class model, it is still inadequate for the purpose of 

classification.  

Artificial Neural Network 

Five Classes 

Figure 23 shows output confusion matrix from an artificial neural network that 

created a 5-class model. The model used 70%, 15% and 15% of the data for training, 

validation and testing, respectively. The confusion matrix shows that the ANN correctly 

classified the data points about 24% of the time. Figure 24 shows that the cross-entropy 

for this model is 0.78, 1.36 and 1.43 for the training, validation and testing data, 
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respectively; an ideal value for cross-entropy is 0 meaning no error. Following suit, a 2 

class model was developed in an effort to increase the classification correctness.  

Two Classes 

An ANN was used to create a 2 class COP model for the data. The model used 

70%, 15% and 15% of the data for training, validation and testing, respectively. Figure 

25 shows an output confusion matrix for this set of data. The model correctly classified 

about 66% of the tested data, but incorrectly placed almost every class 2 point. In 

addition, the cross-entropy shown in Figure 26 is about 0.45, 0.68 and 0.68 for the 

training, validation and testing data, respectively. 

Discussion 

 Overall, the results for the initial exploratory data analysis were unfortunately 

poor. Both 5-class models performed significantly worse than the 2-class models. This 

is most likely due to the inability for the PSVM and ANN to create a decision boundary 

between the classes of data. In other words, it is more difficult to cluster data split into 5 

classes than it is to cluster data split into 2 classes. Another issue may be due to drilling 

techniques. If a well is drilled in a different manner, or with a separate set of standards 

than another well, the COP could vary accordingly making the classification technique 

more difficult.   
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Figure 18. Two histograms showing the distribution (upper) and normalized 

distribution (lower) for cost of penetration. Both graphs are skewed right showing that 

the majority of the values of COP are on the lower end of the distribution. 
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Figure 21. Output for the 5-class PSVM. This model correctly classified 67 of the 292 

testing points, or about 23%. 
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Figure 22. Output for the 2-class PSVM. This model correctly classified 154 of the 292 

testing points, or about 53%. 
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Figure 23. Confusion matrix for the 5-class ANN. This model correctly classified about 

24% of the testing points.  
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Figure 24. Output results for the 5-class ANN. The cross-entropy for the training, 

validation and testing data is about 0.78, 1.36 and 1.43, respectively. 
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Figure 25. Confusion matrix for the 2-class ANN. This model correctly classified about 

66% of the testing points. 
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Figure 26. Output results for the 2-class ANN. The cross-entropy for the training, 

validation and testing is 0.45, 0.68 and 0.68, respectively. 

  



43 

Chapter 6: Directional Driller Analysis 

One variable not used in the previous chapter was that of the directional drilling 

company. Many oil and gas service companies contract out directional drillers to drill 

the lateral segments of wells. Different companies may have different drilling practices, 

or the drillers they employ may have differing amounts of experience than other drillers 

in the area. That being said, COP rates may vary greatly between directional drilling 

services. When time is of the essence, and time is money, the most efficient directional 

drilling service is a sought-after asset.  

This chapter seeks to remove the directional drilling factor by looking at three 

individual sets of wells drilled by three different directional drillers. By doing so, wells 

that were drilled in similar fashion will be compared with each other. Previously, the 

conglomerate of wells compared had been drilled by many different companies and, 

most likely, with different drilling practices. In multivariate statistical analysis, the 

drilling company is another attribute that needs to be addressed. Classes will be defined 

by mean COP. By doing this, we can visualize the percentage of time – or cost – that is 

spent drilling Class 1 and Class 2 portions of a drillers lateral wellbore. 

Directional Driller 1 

Visualization 

Directional Driller 1 drilled five laterals in the study area (Figure 27). The 

distribution for COP and normalized COP can be seen in Figure 28. Combining this 

with Table 2, Directional Driller 1 can be better characterized. We can see that 

Directional Driller 1 spent 50% of the time drilling on 27% of the lateral segments of 

the five wells. This driller had a mean COP of 0.99 min/ft and a median of 0.63 min/ft. 
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The standard deviation was about 0.96 min/ft. The COP is skewed right with a 

skewness of 3.47. Hypothetically, Directional Driller 1 would be able to drill a 5000 ft 

lateral in 3.44 days.  

Two classes, high and low COP, were defined by the mean COP value for each 

set of wells. Figure 29 displays five input boxplots for Directional Driller 1.Visual 

decision boundaries are more evident than in the previous chapter for the data points. 

This should yield an increase in correctness.  

Proximal Support Vector Machine 

Figure 30 displays the output from the PSVM for Directional Driller 1. The 

input variables are P-impedance, inversion porosity, curvedness, λρ and µρ. The PSVM 

correctly placed 34 of the 40 testing points into the correct class. This corresponds to a 

correctness of about 85%. This is a significant increase from the previous models 

generated with the PSVM. 

Artificial Neural Network 

Figure 31 shows the output confusion matrix of an ANN created for Driller 1. 

The model correctly classified 73% of the data, but misclassified every class 2 point. 

The cross-entropy for the training, validation and testing data was 0.46, 0.73 and 0.75, 

respectively, as shown by Figure 32. This shows a correctness increase from the 

previous ANN; however, the cross-entropy values for the validation and testing samples 

increases.   
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Directional Driller 2 

Visualization 

Five laterals were drilled by Directional Driller 2 in the study area (Figure 33). 

Figure 34 displays the distribution and normalized distribution of COP for these wells. 

Table 3 displays a statistical breakdown for the COP. We can see that Directional 

Driller 2 spent 50% of the time drilling on 36% of the lateral segments of the five wells. 

Directional Driller 2 had a mean COP of 1.16 min/ft, a median of 0.98 min/ft and a 

standard deviation of 0.80 min/ft. Theoretically, Directional Driller 2 would drill a 5000 

ft lateral in approximately 4.03 days. 

Figure 35 shows five boxplots for the input geomechanical and geometric 

attributes for this driller. As with Directional Driller 1, decision boundaries have 

become clearer – the data is more easily separated.  

Proximal Support Vector Machine 

The results of the 2-class PSVM for Directional Driller 2 are shown in Figure 

36. Of the 40 testing points, the PSVM correctly classified 28, or about 70%. The 

PSVM correctness for Directional Driller 2 is lower than the correctness for Directional 

Driller 1. Again, this is an increase from the PSVM model created using the entire set of 

data.  

Artificial Neural Network 

The confusion matrix displayed in Figure 37 shows that the model created by 

the ANN correctly classified 64% of the data, but misclassified every class 2 point. 

Figure 38 shows that the cross-entropy for the training, validation and testing data was 

0.45, 0.69 and 0.69, respectively. The correctness values are lower than those of 
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Directional Driller 1. This model has a decrease in correctness from the ANN model 

created using the whole data set, but the cross-entropy values remain about the same.  

Directional Driller 3 

Visualization 

Directional Driller 3 drilled the lateral portion of seven wells in this study area 

(Figure 39). Figure 40 shows the distribution of COP as well as the normalized 

distribution of COP. We can see that Directional Driller 3 spent 50% of the time drilling 

on 32% of the lateral segments of the seven wells. Statistical parameters for the COP of 

this driller are displayed in Table 4. Directional Driller 3 has a mean, median and 

standard deviation COP of 2.91 min/ft, 2.03 min/ft and 2.77 min/ft, respectively. This 

Direction Driller could drill a 5000 ft lateral in about 10.1 days.  

Figure 41 displays five boxplots for the input attributes from these seven wells. 

Similar to the input histograms for Directional Driller 1 and Directional Driller 2, it is 

discriminators between the two classes are easier to visualize.  

Proximal Support Vector Machine 

Figure 42 shows the results from the 2-class PSVM for Directional Driller 3. 

The PSVM correctly classified 28 of the 40 testing points or about 70%. The 

correctness is similar to Directional Driller 2 and an increase from the PSVM created 

for the entire data set. 

Artificial Neural Network 

Figure 43 displays the confusion matrix from an ANN for Directional Driller 3; 

the network makes correct classifications about 66% of the time; however, the model 

misclassified almost every class 2 point. The cross-entropy displayed in Figure 44 
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shows that the values for the training, validation and testing data is 0.45, 0.69 and 0.69, 

respectively. These values are comparable to Directional Driller 2 mentioned 

previously, but this is not improvement from the 2-class ANN created for the entire data 

set.  

Discussion 

With the hypothesis that different drilling companies follow different drilling 

protocols and safety procedures that effect weight on bit and other parameters, I 

conducted a simple statistical analysis as well as PSVM and ANN prediction of COP 

for the three directional drilling companies. By separating the drillers and using a 2-

class PSVM and ANN, I found that the classification correctness increased from the 2-

class PSVM and ANN used to classify COP in the previous chapter.  

 Statistically, the COP varied between the three directional drillers. Direction 

Drillers 1, 2 and 3 had mean COP of 0.99, 1.16, and 2.91 min/ft, respectively. Median 

values of COP for these drillers are 0.63, 0.98 and 2.03 min/ft, respectively. Standard 

deviation of COP was 0.96, 0.80 and 2.77 min/ft, respectively. The variability in mean, 

median and standard deviation of COP between the 3 drillers supports the idea that 

there are differing variable affecting the speed of the drillers and therefore the 

directional drillers should be evaluated separately.  

 When using the PSVM as a classification tool, the correctness for Directional 

Drillers 1, 2 and 3 is about 85%, 70% and 70%, respectively. This is an increase of 

32%, 17% and 17% for Directional Driller 1, 2 and 3, respectively from the PSVM 

classification for the entire data set. The increase in correctness was significant. 
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Results were not as strong when using the ANN. The ANN generated for 

Directional Drillers 1, 2 and 3 classified points with correctness of about 73%, 64% and 

66%, respectively. The correctness from the 2-class ANN used on the entire data set 

increased for driller 1, decreased for driller 2, and remained constant for driller 3. The 

increase in correctness was not as significant as the increase with PSVM. The results 

using the ANN lead me to believe that the PSVM is a stronger tool for classification. 

By separately analyzing the three directional drillers, correctness for the PSVM 

increased; however, in some instances, the correctness of the ANN decreased. 

Previously, the data was analyzed without factoring in the directional driller. 

Accounting for the directional driller in the analysis helps to remove differences in 

drilling practices which, in turn, may affect the overall COP. This leads to – in four of 

the six cases – more correct classification results as can be seen in the previous 

discussion. 
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Figure 27. Cropped amplitude slice showing the location of Directional Driller 1’s five 

lateral wells. 
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Figure 28. Two histograms showing the distribution (upper) and normalized 

distribution (lower) for cost of penetration for Directional Driller 1. Both graphs are 

skewed right showing that the majority of the values of COP are on the lower end of the 

distribution.  
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Table 2. Basic statistics for cost of penetration of Directional Driller 1. Values to better 

characterize the center, spread and shape of the distribution are shown. 
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Figure 30. Output for the 2-class PSVM for Directional Driller 1. This model correctly 

classified 34 of the 40 testing points, or about 85%. 
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Figure 31. Confusion matrix for the 2-class ANN for Directional Driller 1. This model 

correctly classified about 73% of the testing points. 
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Figure 32. Output results for the 2-class ANN for Directional Driller 1. The cross-

entropy for the training, validation and testing data is about 0.46, 0.73 and 0.75, 

respectively.  
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Figure 33. Cropped amplitude slice showing the location of Directional Driller 2’s five 

lateral wells. 
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Figure 34. Two histograms showing the distribution (upper) and normalized 

distribution (lower) for cost of penetration for Directional Driller 2. Both graphs are 

skewed right showing that the majority of the values of COP are on the lower end of the 

distribution.  



58 

 
Table 3. Basic statistics for cost of penetration of Directional Driller 2. Values to better 

characterize the center, spread and shape of the distribution are shown. 
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Figure 36. Output for the 2-class PSVM for Directional Driller 2. This model correctly 

classified 28 of the 40 testing points, or about 70%. 
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Figure 37. Confusion matrix for the 2-class ANN for Directional Driller 2. This model 

correctly classified about 64% of the testing points. 
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Figure 38. Output results for the 2-class ANN for Directional Driller 2. The cross-

entropy for the training, validation and testing data is about 0.45, 0.69 and 0.69, 

respectively. 
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Figure 39. Cropped amplitude slice showing the location of Directional Driller 3’s 

seven lateral wells. 
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Figure 40. Two histograms showing the distribution (upper) and normalized 

distribution (lower) for cost of penetration for Directional Driller 3. Both graphs are 

skewed right showing that the majority of the values of COP are on the lower end of the 

distribution. 
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Table 4. Basic statistics for cost of penetration of Directional Driller 3. Values to better 

characterize the center, spread and shape of the distribution are shown.  
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Figure 42. Output for the 2-class PSVM for Directional Driller 3. This model correctly 

classified 28 of the 40 testing points, or about 70%. 
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Figure 43. Confusion matrix for the 2-class ANN for Directional Driller 3. This model 

correctly classified about 66% of the testing points. 
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Figure 44. Output results for the 2-class ANN for Directional Driller 3. The cross-

entropy for the training, validation and testing data is about 0.45, 0.69 and 0.69, 

respectively. 
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Chapter 7: Bit Trip Analysis 

Tripping in and out of the borehole to replace a drill bit is a costly process when 

drilling a well. Bourgoyne et al. (1986) outlined the drilling cost equation as 

𝐶𝑓 =
𝐶𝑏+𝐶𝑟(𝑡𝑏+𝑡𝑐+𝑡𝑡)

𝛥𝐷
 ,        (7) 

where Cf is the drilled cost per unit foot, Cb is the cost of drill bits, Cr is the fixed 

operating cost, tb is the rotating time, tc is the nonrotating time, tt is the trip time and ΔD 

is the change in measured depth. When a bit breaks or fails and the operator must trip 

out of the borehole the trip time, tt, increases and, with that, so does the overall cost. As 

an operator, minimizing the number of bit failures and bit trips can help to decrease 

drilling costs. 

This chapter seeks to quantify bit trips in the lateral for two sets of horizontal 

wells drilled by two different directional drillers. As with the previous chapter, this 

seeks to minimize the amount of human error and differences between directional 

drillers. Class 1 is defined as 2-5 bit trips in the lateral and Class 2 is defined as 6-9 bit 

trips in the lateral (Figure 45). Using these two classes, Directional Driller 1 and 

Directional Driller 3 from the previous chapter are analyzed using a PSVM with inputs 

of eight GLCM texture attributes. One well was removed from the analysis on 

Directional Driller 3 as I believe the reported data on bit trips may be incorrect. 

Directional Driller 2 was removed from this Chapter as all of their wells fell within 

Class 1. 
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Directional Driller 1 

Visualization 

Two classes were defined for bit trips. Figure 46 shows the distribution of the 

eight input GLCM texture attributes by bit class. The input variables are GLCM 

contrast, correlation, dissimilarity, energy, entropy, homogeneity, mean and variance. 

Visually, differences in these input values can be made for Class 1 and Class 2 points 

from the boxplots. This allows for easier discrimination between the two classes. 

Proximal Support Vector Machine 

Figure 47 shows the results from the 2-class PSVM for Directional Driller 1. 

The PSVM correctly classified 37 of the 40 testing points or about 93%. This is a very 

strong correctness factor which means the accuracy for a bit trip model would be quite 

high. 

Directional Driller 3 

Visualization 

Figure 48 displays eight input boxplots for Directional Driller 3. Visual decision 

boundaries are evident between the two classes. As with Directional Driller 1, this 

should be indicative of higher PSVM correctness results. 

Proximal Support Vector Machine 

Figure 49 displays the output from the PSVM for Directional Driller 3. The 

PSVM correctly placed 36 of the 40 testing points into the correct class. This 

corresponds to a correctness of about 90%. As with Directional Driller 1, these are 

strong results. 
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Discussion 

Through the use of a PSVM, I was able to correlate the number of bit trips in the 

lateral to GLCM texture attributes. By separating the drillers and using a 2-class PSVM, 

I found that the classification correctness to be 93% for Directional Driller 1 and 90% 

for Directional Driller 3. As with the previous chapter, I believe that the results would 

have been significantly weaker had I carried out this analysis on the data set as a whole.  

By successfully correlating these eight attributes with number of bit trips, an operator 

could better predict the number of bit trips and bits a specific driller would use when 

drilling a specific area.   
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Figure 45. Two histograms showing the distribution (upper) and normalized 

distribution (lower) of bit trips for the 50 horizontal wells in the survey. Class 1 

corresponds to wells that had 2-5 bit trips in the lateral, while Class 2 corresponds to 

wells that had 6-9 bit trips in the lateral.  
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Figure 47. Output for the 2-class PSVM for Directional Driller 1. This model correctly 

classified 37 of the 40 testing points, or about 93%. 
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Figure 49. Output for the 2-class PSVM for Directional Driller 3. This model correctly 

classified 36 of the 40 testing points, or about 90%. 
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Chapter 8: Conclusions 

Using a Proximal Support Vector Machine to predict cost of penetration has the 

potential to improve drilling practices not only in this study area, but in other fields as 

well. I believe that further research into this subject could yield stellar results. By 

removing the factor of the directional driller, I was able to increase the correctness by 

about 17-32% for a 2-class PSVM, but the 2-class ANN was not as strong. Through 

further analysis of drilling practices and input geomechanical and geometric attributes, 

this correctness would likely increase. 

A Proximal Support Vector Machine is also a strong tool for predicting the 

number of bit trips in a lateral. When the factor of the directional driller was removed, I 

was able to achieve correctness of 90-93% for a 2-class PSVM. Similar to the COP 

analysis, I believe that additional investigation into other drilling parameters could yield 

stronger models with more classes.  

I believe that this workflow can be used to statistically predict drilling costs for 

an operator who is established in a specific area. PSVM predictions, based on 

geomechanical and geometric attributes and updated with mudlog data from new wells, 

can provide the operator with statistical data to better estimate drilling costs. An 

operator, coupling these data with estimates of TOC and completion success, could 

better plan their drilling schedule and location of wells.  

Recommendations for Future Work 

 I believe that further study into this subject could produce strong results and 

change the way wells are planned and drilled in the future. I suggest that the following 

things ideas be evaluated: 
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1. Capture directional driller and service company name in addition to rig name to 

better classify COP and bit trips, 

2. Explore factors such as drill bit design, drilling fluid and pump operation, 

3. Evaluate correlation with 3D lithologic geocellular models, 

4. Correlate bit wear to lithologic facies, and 

5. Correlate fracture density from image logs to COP and bit trips. 
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Appendix A: Petrel – Time to Depth Conversion 
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Appendix B: AASPI – Generate Training File 

 
Figure A 2. A sample input well path file for the AASPI Generate Training File 

program. Column 1 corresponds to the X coordinates. Column 2 corresponds to the Y 

coordinates. Column 3 corresponds to the Z coordinate. Column 4 corresponds to the 

well number.
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Figure A 3. A sample output file from the AASPI Generate Training File program. 

Column 1 through 6 corresponds to the extracted geometric and geomechanical 

attributes. Column 7 is the well number of each point.
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Figure A 4. AASPI window showing the inputs and settings for the Generate Training 

File program. 1) Input well path file. 2) Choose the amount of well path files to use. 3) 

Insert the AASPI format 3D seismic volumes to have values extracted. 4) Give the 

output a filename. 5) Choose the number of input attributes. 6) Change point file to 

“SINGLE” and coordinates to “X,Y”. 7) Change values to correspond with their 

respective columns. 8) Change the vertical axis scale ratio to match the data. 
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Appendix C: AASPI – PSVM Welllogs 

 
Figure A 5. Sample PSVM training data. The first five columns represent input 

geomechanical and geometric attributes, while column 6 is the defined class of the well 

– in this case, high or low COP.
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Figure A 6. Sample PSVM testing data. The first five columns represent input 

geomechanical and geometric attributes to be tested with the model created from the 

inputs. Column 6 is compared to the testing outputs created from the training model. 
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Figure A 7. AASPI window showing the inputs and settings for a PSVM test. 1) Enter 

the training points. 2) Enter the testing points. 3) Name the output file. 4) Skip header 

lines. 5) Choose the number of input variables. 6) Choose the number of classes. 7) Pick 

the testing mode. 8) Define the parameter for misclassification. 9) Define the Gaussian 

kernel parameter. 10) Choose the number of samples to use when generating the 

decision boundary. 
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Appendix D: MATLAB – Artificial Neural Network Inputs 

 
Figure A 8. Sample ANN input values. Columns 1 through 5 represent input geometric 

and geomechanical values. 
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Figure A 9. Sample ANN target values. Columns 1 through 5 represent classes 1 

through 5, respectively. A value of “1” indicates true, while a value of “0” indicates 

false. 


