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Abstract 

A comprehensive organic geochemical analysis was performed on a suite of core 

samples from the Woodford Shale in Central Oklahoma with the aim of characterizing 

variations in organic matter source, depositional environments and thermal maturity. A 

total of 30 oils and condensates produced from the Woodford Shale and Mississippian 

Limestone in Central Oklahoma were analyzed to determine the origin of these liquids. 

A total of 168 core samples containing the Woodford and Mississippian sections from 14 

wells were subjected to total organic carbon (TOC) and Rock-Eval analysis for 

geochemical screening, and one sample from each well was analyzed for vitrinite 

reflectance (%Ro) measurement. Rock samples with good source rock potential 

(TOC>1.0% wt.) were selected for biomarker and isotope analyses. These analyses were 

carried out by means of gas chromatography (GC), gas chromatography-mass 

spectrometry (GC-MS), and gas chromatography-mass spectrometry- mass spectrometry 

(GC-MS/MS). 

Based on the organofacies classification of Pepper and Corvi (1995), the 

Woodford Shale in this study is a typical marine siliciclastic mudstone (organofacies B), 

which is supported by the evidence described herein. TOC and Rock-Eval parameters 

show that the Woodford Shale has excellent source rock potential and is dominated by 

Type II kerogen indicating a marine origin. Distributions of regular steranes, hopanes and 

monoaromatic steroids (MAS) point towards a marine siliciclastic depositional 

environment. Aryl isoprenoids and paleorenieratanes/isorenieratanes suggest the 

occurrence of episodic periods of photic zone anoxia (PZA) during deposition of the 

Woodford Shale in this study. In addition, n-alkanes, steranes distributions, and the 
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tentative identification of gammacerane suggest deposition under hypersaline conditions 

in Central Oklahoma. Source-dependent biomarker parameters indicate that in the area in 

the proximity of the Nemaha Uplift, the Woodford Shale was deposited under a condition 

rich in clay content, reflecting the influence of the paleo-Nemaha Uplift. Thermal 

maturity parameters indicate that the Woodford Shale is immature to marginally mature 

in Payne County, and shows a progressive increase in maturity towards the southwest 

following the regional dip. In the area in the proximity of the Nemaha Uplift, the 

Woodford Shale is in the main stage of oil generation. 

Geochemical logs of Pritchard-1 well show a minimal range of vertical variation 

within the Woodford Shale in this study. The Woodford Shale in this study was 

subdivided into middle and upper members without the lower member being present 

based on the integration of geochemical and geological data. The middle Woodford 

member has the higher TOC values. Pristane and phytane (Pr/Ph) and biomarker ratios 

suggest the establishment of stronger anoxic conditions during deposition of the middle 

Woodford member than the upper Woodford member, where the latter may have received 

an additional siliciclastic organic matter input. In the area in the proximity of the Nemaha 

Uplift, Pr/Ph ratios indicate deposition under suboxic to dysoxic conditions for the 

Woodford Shale interval analyzed. Isotope data indicates a marine organic matter source 

for the Woodford Shale, but δ13C values do not show significant variations in organic 

facies, depositional environment, or thermal maturity.  

Three conclusions regarding the origin of the liquids in this study are: (i) oils 

produced from the Woodford Formation and that from the overlying Mississippian 

Formation share very similar fingerprints suggesting the Woodford Formation and the 



 

xxvii 

overlying Mississippian Formation are connected; (ii) oils produced in the area in the 

proximity of the Nemaha Uplift (Logan and West Payne Counties) were not only 

Woodford sourced but also had a Mississippian source contribution based on the presence 

of abundant extended tricyclic terpanes and other source specific biomarker fingerprint 

characteristics; (iii) oils sampled from the East of the Cherokee Platform (Central-East 

Payne County) share strong Woodford source characteristics but were not generated in-

situ from the Woodford Shale, which is not mature enough in that area, but probably 

migrated from the Woodford Shale in the deeper part of the Anadarko Basin in Southern 

Oklahoma. The results of this research are consistent with some new findings reported by 

Devon geologists that abundant marine coarse-grained biogenic silica (radiolarian-rich 

chert facies) found in Woodford cores (Central-East Payne County) in this area may be a 

contributor to good reservoir petrophysical properties suggesting the Woodford 

Formation may not be the source rock in this area but simply a tight reservoir. 
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CHAPTER 1 

1. INTRODUCTION 

Since early 2000s, the "shale revolution" has stimulated tremendous production 

of oil and natural gas in the United States. Shale resource plays can be either shale-gas or 

shale-oil. These reservoirs are typically very tight with low porosity and ultra-low 

permeability values in the nanodarcy range. With the astounding success from shale-gas 

production in the U.S.A., gas prices have remained low particularly when compared to 

oil prices since 2009 (Jarvie, 2010). Therefore, subsequent work has been switched from 

the exploration and development of shale gas plays to shale oil plays (Jarvie, 2010), a 

“shale oil boom”, before crude oil price slumped in September 2014. 

According to a projection presented by the International Energy Agency (IEA) 

in April 2015, it is expected that there will be an increase in the total U.S. production 

from 11.8 MMBOE/D (million barrels of oil equivalent per day) in 2014 to 13.2 

MMBOE/D by 2020 making the U.S. to be the largest crude oil producer in the world 

instead of Saudi Arabia (IEA, 2015). The increase would be mainly contributed from 

unconventional resource plays. Shale oil plays are currently undergoing the fastest growth 

and will account for 18% of total U.S. production by 2030 (IEA, 2015). In the U.S., at 

least 21 shale oil basins in 20 states have been discovered (Figure 1; EIA, 2015). 

Oklahoma, with Woodford/Mississippian tight oil production, has been playing a 

significant role in U.S. total oil production. Excluding federal offshore areas, Oklahoma 

ranked fifth in crude oil production in the nation in 2014. Moreover, Oklahoma is one of 

the top natural gas-producing states in the nation, accounting for 7.4% of U.S. gross 

production and 7.4% of marketed production in 2014 (EIA, 2015). Shale oil has become 
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an important focal point for both geoscience academia and petroleum industry who have 

carried out vast amounts of research in order to improve exploration and production 

strategies.  

 

Figure 1. U.S. shale oil plays, lower 48 states (EIA, 2015). 

 

The Late-Devonian to Early-Mississippian Woodford Shale is an organic rich 

black shale widely distributed over the southern Mid-Continent (Comer and Hinch, 1987; 

Comer, 1992). It has been proven to be a world-class source rock responsed for 70% to 

85% of the conventional hydrocarbon reservoirs in Oklahoma and Kansas (Comer and 

Hinch, 1987; Burruss and Hatch, 1989; Philp et al, 1989; Jones and Philp, 1990; Comer, 

1992; Wang, 1993). Recently it has been an attractive target for unconventional oil and 

gas exploration and production in Oklahoma and West Texas due to its world famous 

source rock characteristics (Cardott, 2014a). 
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Woodford Shale has not only been proven to be an excellent source rock charging 

conventional reservoirs in Kansas and Oklahoma, but also a frontier for unconventional 

resource play exploration and production. The unconventional Woodford resource play 

in Oklahoma (Cardott, 2014a; Kvale and Bynum, 2014; Figure 2), encompasses four 

regions, namely Anadarko-Woodford, Arkoma-Woodford, Nemaha-Woodford and 

Southern Oklahoma-Woodford, was estimated to contain 0.24 × 1012 ft3 of natural gas in 

place and 70 × 109 bbl of oil in place on the basis of the mass balance calculation 

indicating a huge potential as unconventional hydrocarbon production target (Comer, 

2005). The field production results have already confirmed Comer’s estimation. As of 

July 2010, the cumulative Woodford-only production has been 932 Bcf of gas and 3.7 

Mbbl of oil (Cardott, 2012). The dominant hydrocarbon phases produced from the 

Woodford vary in different structural provinces in Oklahoma (Cardott, 2014a; Kvale and 

Bynum, 2014; Figure 2). In the Anadarko and Arkoma Basin, the Woodford horizontal 

wells produce mainly dry gas from over 14,000 ft deep (~4,300 m; ; Cardott, 2014a; Kvale 

and Bynum, 2014). In areas straddling between the basin and shelf, like the Cana-

Woodford Play in Figure 2, the Woodford produces wet gas and condensates. The oil has 

been commingled produced from the Woodford/Mississippian strata since 2010 on the 

Anadarko Shelf and Cherokee Platform. From 2004 to 2014 Q1, there were more than 

3,100 horizontal and vertical production wells producing hydrocarbon from the 

Woodford Formation in Oklahoma (Figure 3; Cardott, 2014a). Before the crude oil price 

plunge since late 2014, there was a sharp increase in the number of Woodford horizontal 

wells drilled in Oklahoma. As of 2014 Q3, four regions in Oklahoma, were the fastest 
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growing shale plays in North America, showing a 30% increase in production rates over 

the previous year (Menchaca, 2014). 

 

Figure 2. Composite Map of Different Woodford Unconventional Play “Provinces” 

with Max IP Oil (BOD) and General Thermal Maturity (Kvale and Jamar, 2014) 

 

 

Figure 3. Woodford Production Wells Distribution Map in Oklahoma (modified 

from Cardott, 2014a). 
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1.1 General Introduction of Tight Oil Production in Central Oklahoma 

In 2009, Devon Energy produced tight oil from the Woodford Formation in Logan 

and Payne Counties, North-Central Oklahoma (Coffey, 2015). As shown by the Devon 

operation report of the third quarter of 2014, the net production from the Mississippian-

Woodford play (Logan and Payne Counties; Figure 4) averaged a record 21,000 BOE 

(barrel of oil equivalent) per day, which is a 136% increase compared to the third quarter 

of 2013. Oil and NGL (natural gas liquid) accounted for nearly 75% of total production 

(DVN Operation Report Q3 2014). The other players in this area include Marathon, 

Continental, Sandridge and some other small-size operators. 

 

 

Figure 4. Devon Energy Mississippian-Woodford Tight Oil Play Joint Venture 

Acreage Map (Devon Acreage in yellow; DVN Operation Report Q3 2014) 
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1.2 Purpose of Study  

The primary objective of this study is to answer two questions: 1) what is the 

origin of the tight oils: are they generated in-situ from the Woodford Shale or migrated; 

2) if generated in-situ, how could they be generated from immature Woodford Shale; if 

migrated, how could they charge a very tight shale formation. To answer these questions, 

it is necessary to evaluate hydrocarbon generation potential of source rocks in the study 

area as well as examine a detailed geochemical characterization of both crude oils and 

source rocks to determine several key geochemical parameters including: a) organo- and 

litho-facies of the potential source rocks and their depositional environment; b) thermal 

maturity; c) oil-oil and oil-source rock correlations; d) biodegradation if any. The 

significance of this study for the oil industry will be related to the understanding of the 

mechanisms of shale oil formation, which in turn will further aid unconventional resource 

exploration. 

1.3 Previous Studies – Literature Review 

1.3.1 Previous Studies on General Geology and Petroleum Geology  

Since both the Anadarko Basin and Cherokee Platform in Oklahoma are mature 

giant oil and gas provinces and have been developed over 100 years from 1910s, intensive 

geological and geophysical studies have been carried out during that period. Those studies 

have significantly increased the knowledge and understanding of the basin-platform’s 

evolutionary history. 

Petroleum exploration in the Cherokee Platform Province began in the 1860's with 

drilling in Bourbon and Cherokee Counties, Kansas. The first discovery was in 1873 in 

Allen County, Kansas (Iola field) (Charpentier, 2001). The Anadarko Basin was first 
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defined in the literature by Gould (1924), although the earliest oil and gas discovery and 

production occurred in 1917 (Becker, 1927). The geological history, stratigraphy, and 

structure of the basin have been topics for geological study and speculation since early 

20th century (Freie, 1930). Detailed studies of the petrography, paleontology, and facies 

variation of the Woodford Shale have been conducted by many researchers (Urban, 1960; 

Hass and Huddle, 1965; Lewan, 1983; Sullivan, 1983; Perry, 1989; Denison et al., 1990; 

Kelley, 1991; Comer, 1992; Kareem, 1992; Comer, 2005; 2007; 2008; 2009; 2012). 

Recently many graduate students at the University of Oklahoma have chosen portions of 

the Woodford Shale in the Anadarko Basin and Cherokee Platform as their target areas 

for regional geological studies (Miller, 2006; Branch, 2007; Badra, 2011; Althoff, 2012; 

Chain, 2012; Kilian, 2012; Amorocho Sanchez, 2013; Bernal, 2013; Molinares Blanco, 

2013; Mann, 2014; McCullough, 2014; Treanton, 2014; Esther, 2015). An overview of 

the Woodford Shale from the platform to the basin can be obtained by putting these 

regional studies together.  

Johnson et al. (1989) presented a detailed description of lithology and depositional 

environments of formations in the Anadarko Basin. The plates (isopach maps of 

important formations) included in this reference provided valuable information about 

basin-wide investigation and evaluation of the formations. Rascoe and Hyne (1988) 

published a book entitled “Petroleum Geology of the Mid-Continent”, which provided 

specific information about the stratigraphic and structural data of oil and gas production 

of the Anadarko Basin and Cherokee Platform. Johnson made a comprehensive review 

of the geological studies at the Anadarko Basin Symposium held by the Oklahoma 

Geological Survey in 1988. Other papers presented (1989) at this symposium provided 
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valuable information, which covered many topics about the geology of the basin (Amsden, 

1989; Burruss and Hatch, 1989; Cardott, 1989; Schmoker, 1989; and Northcutt, 2001). 

Entering into 2000s when the unconventional resource plays became more and more 

actively exploited in U.S. the Woodford Shale, as one of the “hot shale” targets, was 

attracting more and more focus from various disciplines of geoscience. Carpentier (2001) 

presented a detailed description of each element of the major petroleum systems, 

including reservoirs, source rocks, traps, resource potential and exploration status, in the 

Cherokee Platform Province. Cardott (2005) made a comprehensive overview of the 

unconventional energy resource in Oklahoma, including the Woodford Shale, at the 

Unconventional Energy Resources in the Southern Midcontinent Symposium held by the 

Oklahoma Geological Survey in 2004.  

Many studies have shown that the Woodford Shale should account for more than 

85% of commercial oil produced from the conventional reservoirs in Oklahoma and 

Kansas (Welte et al., 1975; Lewan et al., 1979; Reber, 1989; Burruss and Hatch, 1989). 

But few publications have strong evidence to prove these oils originated from the 

Woodford Shale. Previous studies on the petroleum systems thought to be sourced by the 

Woodford Shale are summarized below. 

Comer and Hinch (1987) recognized the expulsion of oil from the Woodford 

Formation and age-equivalent rocks in Oklahoma and Arkansas by identifying numerous 

small-scale accumulations of rock extract within mature parts of the Woodford Formation 

including fractures, stylolites, burrows, nodules, and sandstone lenses, all of which are 

completely enclosed in the source rock. This work proved the primary migration 

(expulsion) of hydrocarbon generated from the Woodford Shale. 
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Another strong piece of evidence showing the Woodford Shale has generated oil 

in-situ is the work by Philp (2013, personal communication). Rock extracts were obtained 

from the surface fractures of the Woodford outcrop in the McAlister Cemetery Quarry, 

northern flank of Criner Hill. By correlation of single-ion-mass chromatograms from 

GCMS analysis, it was concluded that low-thermal-maturity “oil” (rock extract filled in 

the fractures) had originated from the local Woodford Shale (Cardott, 2014). 

Jones and Philp (1989) analyzed oil samples produced from multiple conventional 

reservoirs of different age and rock extracts of possible source beds. By investigating 

their GC and GC/MS fingerprint characteristics, it was believed most of these oil samples 

received a major contribution from the Woodford Shale in the Anadarko Basin and the 

Viola Group limestone was believed to be the source rock for the oil produced from the 

Viola Group reservoir (Jones, 1986; Jones and Philp, 1989). 

Burruss and Hatch (1989) undertook a detailed geochemical investigation of 104 

crude oils and 190 core samples of dark-colored shales from the Anadarko Basin. They 

distinguished three major oil types, which generally correlated with the reservoir and 

source-rock age. One of the crude oil types shared the characteristic stable carbon isotope 

signature and biomarker fingerprints with the Woodford source-rock extracts. This crude 

oil may have originated from the Woodford Shale in the deep Anadarko Basin (Burruss 

and Hatch, 1989).  

1.3.2 Previous Studies on Woodford Geochemistry 

Organic geochemical studies on the Woodford Shale have been conducted by 

several authors. The maturity of the Woodford Shale was investigated by several studies 

(Cardott and Lambert, 1985; Schmoker, 1986; Cardott, 1989; Pawlewicz, 1989; Hussain 
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and Bloom, 1991; Cardott, 2012; Cardott, 2013; Cardott, 2014a; 2014b). Lewan (1983) 

conducted a hydrous pyrolysis experiment on the Woodford Shale to study the effects of 

thermal maturation on stable organic carbon isotopes. Schmoker (1986) developed a 

maturity model for the Woodford Shale in the Anadarko Basin based on a modified 

Lopatin’s TTI (time-temperature index) method. Engel et al. (1988) conducted an organic 

geochemical correlation of Oklahoma crude oils using R- and Q- mode factor analyses. 

Hester et al. (1990) mapped TOC of the Woodford Shale in the northwestern part of the 

Anadarko Basin based on a well log derived TOC calculation method. Kirkland (1992) 

proposed the Woodford Shale sedimentation in the Anadarko Basin was controlled by the 

paleo-bathymetry. Lambert (1994) discussed the internal stratigraphy and organic facies 

of the Devonian/Mississippian Chattanooga (Woodford) Shale in Oklahoma and Kansas. 

Coming to the 21st century as the “shale boom” overwhelmingly swept across the whole 

country, the Woodford Shale was re-assessed as a resource play target and geochemistry 

was integrated with other geoscience disciplines, especially sequence stratigraphy and 

chemostratrigraphy. The most astonishing finding of this integration was the shale 

internal heterogeneity. Previously the shale was thought to be uniform stratigraphic 

sequences in terms of physical and chemical properties. However, more and more 

evidence demonstrated that a more detailed analysis of these very fine-grained mudrocks 

can provide greater insight about variations in the depositional and environmental factors 

that influenced source rock deposition (Hester et al., 1990; Hickey and Henk, 2007; 

Loucks and Ruppel, 2007; Singh, 2008; Comer, 2008; Slatt et al., 2009a, 2009b, 2009c, 

2009d). Several recent studies already demonstrated the usefulness of organic 

geochemistry as a tool for complementing and refining sequence stratigraphic 
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frameworks, especially in unconventional shale gas plays. Recently several graduate 

students at the University of Oklahoma have integrated biomarker analysis with sequence 

stratigraphy and chemostratigraphy for the Woodford Shale in the Anadarko Basin and 

Cherokee Platform to investigate the detailed depositional and environmental factors 

affecting the deposition of mudrocks (Miceli Romero, 2010; Connock, 2015; DeGarmo, 

2015). A representative work among these studies is done by Miceli Romero and Philp 

(2012). They found the presence and extent of photic zone anoxia (PZA) during the 

deposition of the Woodford Shale and demonstrated the significant lithologic and 

chemical variability that occurs within shales (Miceli Romero and Philp, 2012). 

Moreover, the oil industry and geoscience academia have worked together in 

order to evaluate the shale play characteristics, including shale type, organic contents, 

maturity, porosity, permeability, fracability, hydrocarbon content, reservoir thickness, 

volumetrics, to determine the “sweet spots”, play fairways, and producible areas of the 

potential shale plays (Schmoker, 2002; Schenk, 2005; Gale et al., 2007; Pollastro, 2007; 

Jarvie et al., 2007 and 2010; Jarvie, 2012a and 2012b). In this regard, geochemistry has 

played a key role in shale play evaluation. Hester et al. (1990) highly praised the use of 

organic geochemical data as one of the best tools for characterizing Woodford Shale 

internal facies. Different approaches and techniques have been used to determine the 

significant geochemical properties for shale resource play evaluation, including: organic 

matter type, quantity and provenance; thermal maturity; type of hydrocarbons generated; 

clay content. This information has been integrated with information from other 

geoscience and engineering disciplines such as geology, geophysics, petrophysics and 

reservoir/petroleum engineering to determine shale play potential and attempt to define 
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petroleum systems for these types of plays (Curtis, 2002; Jarvie et al., 2007; Hill et al., 

2007a and 2007b; Philp, 2007; Pollastro et al., 2007; Jarvie, 2012a and 2012b).  
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CHAPTER 2 

2. GEOLOGICAL FRAMEWORK 

2.1 The Geological Evolution of the Anadarko Basin, Nemaha Uplift and the 

Cherokee Platform 

2.1.1 Anadarko Basin 

During early Paleozoic time, three major tectonic/depositional provinces existed 

in Oklahoma (Figure 5): the Oklahoma Basin, the southern Oklahoma Aulacogen, and 

the Ouachita Trough. The Oklahoma Basin, initiated during continental breakup in the 

Late Precambrian (Miall, 2008), was a shelf-like area that received widespread and thick 

shallow-marine carbonates interbedded with thin marine shales and sandstones (Johnson 

et al., 1988; Northcutt et al., 2001). The southern Oklahoma Aulacogen, a west-

northwest-trending trough derived from one of the failed rifts during the breakup of the 

supercontinent Rodinia (Miall, 2008), was the depocenter for the Oklahoma Basin and 

the precursor of the Anadarko Basin (Johnson et al., 1989; Northcutt et al., 2001). The 

Ouachita Trough received deep-water sediments, which deposited along a rift located in 

the southern margin of the North American craton (Johnson et al., 1989; Northcutt et al., 

2001).  

From Silurian to Middle Devonian clean-washed skeletal limestones, argillaceous 

and silty carbonates, referred to as the Hunton Group in Oklahoma, were deposited in a 

shallow marine setting (Northcutt et al., 2001). Epeirogenic uplifts interrupted deposition 

resulting in two regional unconformities. One unconformity arose during pre-middle 

Early Devonian (pre-Frisco-Sallisaw unconformity) and the second one during pre-Late 

Devonian (pre-Woodford-Chattanooga unconformity; Figure 6; Johnson et al., 1989). In 
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southern Oklahoma the pre-Woodford-Chattanooga unconformity eroded to the Upper 

Ordovician and in northern Oklahoma the erosion sculpted out Upper Cambrian-Lower 

Ordovician rocks (Figure 6; Kirkland et al., 1992). 

 

Figure 5. Map of southwestern United States, showing approximate boundary of 

the Oklahoma Basin and other major features that existed in early and middle 

Paleozoic time (Northcutt et al., 2001) 

 

During Late Devonian the Woodford-Chattanooga Sea (Kirkland et al., 1992) 

transgressed from the south-southeast direction, overlying the erosional surface with 

dark-gray to black silts and clay throughout most of the Oklahoma Basin. The exception 

took place where the Woodford-Chattanooga Sea advanced across the paleo-highs, which 

were the source for the Misener Sands. The Misener Sands were derived most likely from 

reworking of Middle Ordovician Simpson sands in North-Central Oklahoma (Amsden 
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and Klapper, 1972; Kirkland et al., 1992) and incorporated into the basal sediments of the 

Misener-Woodford Formation. The Misener-Woodford interval represents an anoxic 

transgressional episode (Fritz and Beaumont, 2001). Throughout Mississippian time 

extensive epeirogenic movements continued on the southern Midcontinent (Miall, 2008). 

 

Figure 6. Generalized stratigraphic section for the pre-Pennsylvanian of southern 

Oklahoma showing periods of non-deposition (black) and extent of pre-Woodford 

unconformity (Kirkland et al., 1992). 

 

After the regression of the euxinic Woodford-Chattanooga Sea, a warm and oxygenated 

sea covered the continental region and favored the shallow-marine limestones, carbonate 

micrites, and later cherty-limestone to develop in this region (Kirkland et al., 1992; Miall, 

2008). The Oklahoma Basin, the Ozark Uplift, and the paleo-Nemaha Uplift were the 

most important structural features that influenced sedimentation during this time 

(Northcutt et al., 2001). Other regions were mostly low-energy shelves or platforms 
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(Northcutt et al., 2001). According to Northcutt et al. (2001), these three major Paleozoic 

structural provinces were finally modified during the Pennsylvanian. The Oklahoma 

Basin and the Southern Oklahoma Aulacogen evolved into restricted marine basins. The 

Ouachita Trough was destroyed by the uplift and northward thrusting associated with the 

Marathon-Ouachita Orogeny. The present-day structural provinces of Oklahoma were 

generated as a consequence of these events (Figure 7). 

 

Figure 7. Map showing major geologic provinces of Oklahoma (Cardott, 2012) 

 

2.1.2 Nemaha Uplift 

The Nemaha Uplift (also called the Nemaha Ridge or the Nemaha fault zone) is a 

buried range of the Ancestral Rocky Mountains associated with a granite high in the Pre-

Cambrian basement that extends from approximately Nebraska to Central Oklahoma 

(Figure 8; Gerhard, 2004). It is 550 km long, 30-50 km wide, and about 50 km east of the 

1.1 billion years old Midcontinent rift (Gao, et al., 2002). The Nemaha fault zone is the 

result primarily of transpressional stresses acting episodically over a very long time. The 

https://en.wikipedia.org/wiki/Granite
https://en.wikipedia.org/wiki/Pre-Cambrian
https://en.wikipedia.org/wiki/Pre-Cambrian
https://en.wikipedia.org/wiki/Basement_(geology)
https://en.wikipedia.org/wiki/Omaha,_Nebraska
https://en.wikipedia.org/wiki/Oklahoma_City,_Oklahoma


 

 17 

earliest known movement of the Nemaha fault zone occurred during the Ordovician, 

while the major deformation of the Nemaha Uplift took place in pre-Desmoinesian and 

post-Mississippian time (Lee, 1943; Merriam, 1963; Gerhard, 2004).  

 

Figure 8. Pennsylvanian tectonic settings in Kansas and Oklahoma 

showing the Nemaha Uplift Zone (modified from Merriam, 1963; 

Lardner, 1984; Logan and Payne Counties in light blue area). 
 

Whether or not a paleo-high existed in the vicinity of the present-day Nemaha 

Ridge zone is a key issue affecting the Woodford internal facies distribution across the 

Nemaha Uplift along E-W direction in Central Oklahoma. Because paleotopography was 
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an important factor in the distribution of the Woodford facies (Figure 9; Kvale and 

Bynum, 2014). The presence of the north-south trending paleo-Nemaha Ridge, which 

separated the proto-Anadarko Basin and the proto-Arkoma Basin, prevented the 

distribution of the chert-rich upwelling facies (A chert facies in Figure 9) into the 

Anadarko Basin but rich in the Arkoma Basin through most of the Woodford deposition 

(Figure 9; Kvale and Bynum, 2014). Consequently the deep upwelling chert-rich facies 

decreases rapidly from the Arkoma Basin northward onto the Cherokee Platform, which 

was also a positive topographic feature for much of the Woodford deposition (Figure 9; 

Kvale and Bynum, 2014). 

2.1.3 Cherokee Platform      

The Cherokee platform, extending from southeastern Kansas and part of 

southwestern Missouri to northeastern Oklahoma, could be considered as part of the 

stable shelf area of the Arkoma Basin throughout most of the Woodford deposition 

(Figure 5; Campbell and Northcutt, 2001). It is 235 miles long (north-south by 210 miles 

wide (east-west) and has an area of 26,500 sq. mi (Charpentier, 2001). In terms of 

Oklahoma geological history, major sedimentary basins in Oklahoma began to form in 

the latest Mississippian to earliest Pennsylvanian. In the Late Devonian, the Cherokee 

Platform was a broad shelf separated from the proto-Anadarko Basin by the paleo-

Nemaha Ridge (Figure 5; Northcutt and Campbell, 1996; Campbell and Northcutt, 2001). 

  



 

 

 

Figure 9. Cross Section extending from the Barbara 1-27 core in the West Cana, Anadarko Basin (left) to the Mr. Bill core to 

the east in the Arkoma Basin (Kvale and Bynum, 2014; the top of A chert facies marked by light green line, which refers to the 

chert-rich upwelling facies)

1
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2.2 The Geological Settings and Depositional Environment of the Woodford Shale 

2.2.1 Stratigraphy and Structure 

The Woodford Shale of Late-Devonian to Early-Mississippian age is an organic-

rich black shale widely distributed over the southern Mid-Continent from the Iowa Basin 

in Kansas to the Permian Basin in West Texas (Comer and Hinch, 1987; Comer, 1992). 

It was found to be distributed in most of Oklahoma including the Anadarko Basin, the 

Anadarko Shelf, Cherokee Platform and the Arkoma Basin. On the Cherokee Platform, 

the Woodford Shale was deposited on a major regional unconformity developed during 

the late Devonian (Figure 10; Amsden, 1975). It is conformably overlain by limestone 

and shale of Early Mississippian Age (Figure 10). 

The predominant lithology of the Woodford Shale is black shale. Other common 

lithologies include chert, siltstone, sandstone, dolostone and light-colored shale (Amsden 

et al., 1967; Amsden, 1975; Comer, 1992). A typical core from the Woodford can contain 

30-50% quartz, 0-20% calcite/dolomite, 0-20% pyrite and 10-50% total clay, a variance 

in mineralogy that occurs on a regional scale and within the stratigraphic section. These 

differences can have an effect on the porosity and permeability of the interval as they are 

reported to range from 3-9% and 100 nd - 0.001 md, respectively (Comer, 1991). 

The Woodford Shale was uplifted and eroded due to the thrust faulting when the 

Gondwana Craton collided with the Laurentia Craton during the Ouachita-Marathon-

Orogeny (Starting from Middle-to-Late Pennsylvanian until Early Permian), which 

resulted in the Woodford Shale missing in the southern part of the “Oklahoma Basin”, 

which was the precursor of the present-day Anadarko Basin. The simplified structural 

cross section shown below (Figure 11), which is perpendicular to the Anadarko Basin 
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geometric axis, illustrates the present-day Woodford Shale generally dipping from 

Northeast to Southwest across the Anadarko Basin (Johnson, 1989). 

 

Figure 10. Stratigraphic chart for the Cherokee Platform, North-Central 

Oklahoma (Charpentier, 2001) 
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Figure 11. NE-SW structural cross section across the Anadarko Basin (Johnson et 

al., 1989) 

 

2.2.2 Thickness and TOC Distribution 

In Oklahoma, the total thickness of the Woodford Shale, combined with the basal 

Misener Sands, ranges from near zero to about 125 feet on the northern Anadarko Shelf, 

50-150 feet on the Cherokee Platform and increases to around 300 feet at maximum in 

the Arkoma Basin and more than 900 feet in the depocenter of the Anadarko Basin 

(Figure 12; Amsden, 1975; Hester et al., 1988; Comer, 1992; 2005; 2008). 

A general distribution of organic carbon of the Woodford Shale in Oklahoma is 

shown below (Figure 13). Except for some locations in the central part of the Ouachita 

tectonic belt, most of the Woodford contains greater than 0.5% TOC (Comer, 1992). The 

Anadarko, Marietta and Ardmore Basin, composing the ancestral “Oklahoma Aulacogen” 

(Ham et al., 1964; Walper, 1977), show a general trend of low TOC in the Northwest and 
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high (8-10%) in the Southeast (Comer, 1992). Medium TOC contents (4-6%) were found 

on the northern Anadarko Shelf, the Cherokee Platform, and the axial area of the 

depocenter of the ancestral “Oklahoma Aulacogen” (Comer, 1992), which is inconsistent 

with the previously expected TOC general distribution that TOC is usually richest in the 

depocenter of a basin and decreases from the slope to the shelf.  

 
Figure 12. Thickness map of the Woodford Shale in Oklahoma (Logan & Payne 

Counties in light orange; modified from Comer, 1992 in Comer, 2008). 

 

Figure 13. TOC map of the Woodford Shale in Oklahoma (Logan & Payne 

Counties in light orange; modified from Comer, 1992 in Comer, 2008). 
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The two parallel Northwest-Southeast trends of high TOC (6-10%) along the 

Anadarko Basin axis is seemingly consistent with the geometric linear accommodation 

space of the ancestral “Oklahoma Aulacogen” (Figure 13; Comer, 1992; Comer, 2008). 

Originating from a failed rift derived from the Pre-Cambrian, the ancestral “Oklahoma 

Aulacogen” has a Northwest- Southeast trending linear geometry during Late Devonian, 

which acted as the accommodation space for the Woodford Shale, resulting in the general 

high TOC distribution trending Northwest- Southeast as well (Figure 13). But the highest 

TOC band is not overlapping with the thickest Woodford area (Figure 12), which is the 

depocenter of the ancestral “Oklahoma Aulacogen”. On the contrary, the highest TOC 

band is parallel in between the two second highest TOC trends mentioned above (Figure 

13). The reason is probably that the Woodford Shale sedimentation was controlled by the 

bathymetry as well (Kirkland et al, 1992). It was assumed that the highest TOC was the 

synthetic result from an appropriate bathymetry, with enough organic matter input and 

good preservation conditions. In short, too deep a marine environment may bring ocean 

currents to destroy the organic matter by oxidation and/or dilute the organic richness by 

inorganic material with ocean currents (Comer, 1992; Comer, 2008). This phenomenon 

was also found in the Woodford in the Permian Basin (Comer, 1991; Comer, 2005).  

2.2.3 Paleogeography 

Paleogeography reconstruction of North America (Laurentia) at the beginning of 

Late Devonian (~385Ma) indicates that Laurentia moved northward during this time and 

the Southern Mid-Continent were located 15o to 20o south latitude along the western or 

southwestern continental margin (Figure 14; Blakey, 2008; Comer, 2008; Miall, 2008). 

Prior to that time, much of the Southern Mid-Continent was subaerially exposed resulting 
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in a major regional unconformity surface. Back to the beginning of Late Devonian 

(~385Ma), sea level started to rise as the consequence of the worldwide Late Devonian 

marine transgression (Haq and Schutter, 2008) and the Woodford was starting to be 

deposited in the ancestral “Oklahoma Basin” (Figure 14). The “Oklahoma Basin” at that 

time was a restricted basin developed in an epeiric sea within the passive margin (Figure 

14). Coming to Early Mississippian (~360Ma), sea level continued to rise (Haq and 

Schutter, 2008) and the Woodford Sea covered its maximum deposition area extending 

into parts of Kansas (Figure 15). The study area, north-central Oklahoma, was in a 

shallow marine environment, probably the toe of the slope to basin margin (Comer, 2008). 

 

Figure 14. Paleogeography of North America at the beginning of Late Devonian 

(385Ma) (Oklahoma in red solid line; modified from Blakey, 2013). 
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Figure 15. Paleogeography of North America at the beginning of Early 

Mississippian (360Ma) (Oklahoma in red solid line; modified from Blakey, 2013). 

 

Coastal upwelling along the Late Devonian continental margin were documented 

by the thick accumulations of biogenic silica (Arkansas Novaculite). The detrital 

sediments dispersed southward toward the ancestral Anadarko Basin from the paleohighs 

around the ancestral Ozark Uplift (Figure 16). The regional TOC distribution (Figure 13) 

can also be used to infer the Late Devonian paleogeography. In general, low TOC 

contents in the Ozark Uplift and adjacent Cherokee Platform are probably due to dilution 

by siliciclastic sediments (Figure 16; Comer, 1992; Comer, 2008), which is consistent 

with other evidence that black shales in this region contain the highest detrital quartz and 

clay mineral contents (Amsden and Klapper, 1972; Pittenger, 1988). Therefore it 

indicates the Ozark Uplift was a structural highland when the Woodford Shale deposited 

(Figure 16; Comer, 1992; Comer, 2008). Mixture of oil-prone type-II amorphous 
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kerogens and gas-prone type-III structured kerogens were found locally along the 

Nemaha Uplift indicating there was a topographical highland as terrestrial organic matter 

source during the Woodford time (Figure 16; Comer, 1992; Comer, 2008). Comer’s 

finding is consistent with Kvale and Bynum based on regional well log correlation of the 

Woodford internal facies distribution across the Nemaha Ridge zone along the East-West 

direction (Figure 9; Kvale and Bynum, 2014). 

2.2.4 Previous Depositional Models 

Numerous publications have interpreted the Woodford Shale as being primarily 

deposited in a deep marine environment under anoxic condition during global sea level 

transgression (Kirkland et al., 1992; Comer, 1992; O’Brien and Slatt, 1990; Miceli 

Romero and Philp, 2012). This interpretation is supported by fossil, sedimentary evidence 

and biomarker signatures. 

Fossil Evidence 

Hass and Huddle (1965) reported conodonts, lingula (brachiopods) in the 

Woodford samples and determined Woodford is of Late-Devonian to Early-Mississippian 

age based on the fish species the conodonts were derived from. Tasmanites, radiolaria, 

spores, and hystrichosphaerids (acritarchs) have been identified in the Woodford outcrop 

from the McAlister Cemetery Quarry, Southern Oklahoma (Kirkland, 1992; Slatt and 

O’Brien, 2011). These fossil records represent freely floating living creatures (algae and 

plankton) that sank onto the anoxic sea floor suggesting that the Woodford was deposited 

in a deep marine environment. 
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Figure 16. Facies distribution map from 385Ma to 360Ma in the Southern Mid-

Continent (modified from Blakey, 2008 in Comer, 2008). 
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Mineral Evidence 

Siliceous- and clay-rich sediments identified from the Woodford Shale samples 

were interpreted as deposited in a broad intracratonic sea (Figure 16) that was deeper to 

the southeast and shallower to the northwest (Kirkland et al., 1992; Blakey, 2008; Comer, 

2008). The sediments were deposited below storm wave base in an anoxic environment 

with water density stratification (Kirkland et al., 1992; Miceli Romero and Philp, 2012). 

Biomarker Signatures 

The molecular fossil records also support the deep marine anoxic environment 

contributing to the Woodford organic matter preservation. The presence of gammacerane 

identified from the Woodford Shale extracts indicates the high-salinity conditions and 

water density stratification in the water column as the organic matter sank to the sea floor 

(Miceli Romero and Philp, 2012). Moreover, the presence of PZA (Photic Zone Anoxia) 

in the water column was identified by the aryl isoprenoids found in the Woodford cores 

extracts (Miceli Romero and Philp, 2012). Aryl isoprenoids have been found derived from 

isorenieratene, a diaromatic carotenoid pigment derived from the green sulfur bacteria 

Chlorobiaceae (Brown and Kenig, 2004), which need an anoxic water column, hydrogen 

sulfide and sunlight to photosynthesize (Miceli Romero and Philp, 2012). 

Development of Anoxic Bottom Water in the Woodford Sea 

To discuss the Woodford depositional model, a key question is how the bottom 

waters of the shallow Woodford Sea had remained anoxic over ~105 square miles for 

25~30 millions of years. Three major models were developed to account for the anoxic 

bottom waters in the Woodford Sea: 
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A. Anoxic bottom water derived from oxygen-minimum zone of Late Devonian 

ocean (Comer and Hinch, 1981; Jones, 1983); 

In their model, oxygen-deficient water in the oxygen minimum layer intersects 

the continental margins most often on the upper slope, where the best potential source 

rocks are deposited. The modern analog to support this model is that oxygen-deficient 

water locally reaches onto the shelf, where the shallow upwelling of nutrient-rich water 

favors the high biological productivity, as in offshore southwest Africa. While, the 

modern analog to disfavor this model is that the oxygen-minimum zone, in modern 

oceans, has an oxygen concentration that is dysoxic but not anoxic; the top depth of the 

oxygen-minimum zone usually occurs at a depth of 1,500-6,500 ft (Schopf, 1980). If the 

top of the oxygen-minimum zone in the Woodford Sea was at a similar depth-range as in 

the modern oceans, the anoxic waters may have been at too great a depth to have 

transgressed far onto the continents (Kirkland et al., 1992). Moreover, currents to 

transport such water into the epicontinental seas were probably absent. Tyson (1987) 

argues that epeiric black shales do not represent an expansion of an oxygen-minimum 

zone into an epeiric sea. 

B. Anoxic bottom water developed when a persistent horizontal barrier within 

water mass, a thermocline, with persistent water column stratification (Hallam, 1967; 

Kirkland et al., 1992); 

The model modified from Hallam (1967) by Kirkland et al. (1992) was that anoxic 

bottom waters developed when a persistent vertical barrier within the water column 

prevented transfer of dissolved oxygen from the zone near the surface to the zone near 

the sea floor. Oxygen was incorporated into surface water by solution of atmospheric 
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oxygen, a by-product of photosynthesis. This dissolved oxygen was prevented from being 

carried to the bottom water by persistent density stratification of the water mass. The 

relative shallowness of the Woodford Sea couldn’t satisfy the horizontal ocean currents 

to occur, so such ocean currents were ineffective to transport the oxygen into the 

epicontinental Woodford Sea (Irwin, 1965; Hallam, 1981). If the Woodford Sea was 

much shallower, oxygen dissolved in the surface water might have been in contact with 

the sediments to degrade the organic matter; if the Woodford Sea was too deep, the ocean 

currents would have destroyed the euxinic conditions carrying oxygen to degrade the 

organic matter. Therefore in summary, an intracratonic euxinic Woodford sea with anoxic 

water bottom, water density stratification and an appropriate water depth (< 500 ft) 

contributed to the extremely organic-rich source beds in the Mid-Woodford age (Kirkland 

et al, 1992). 

Roberts and Mitterer (1992) proposed another local Woodford deposition model, 

which is similar to Kirkland’s model, to successfully interpret the organic-shale-chert 

“doublets” lamination commonly found in the Woodford Strata in southern Oklahoma. 

In their model the two alternating phases of sedimentation are illustrated (Figure 17). The 

Woodford Sea was a euxinic intracratonic sea with anoxic water bottom and “channels” 

to connect to the open ocean. Cherts were deposited during relatively short periods of 

high siliceous productivity as organic carbon-rich siliceous oozes. While, organic-rich 

shale were deposited over longer time periods with lower levels of siliceous productivity 

and less dilution of organic matter by siliceous sediments input (Figure 17; Roberts and 

Mitterer, 1992). 
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Figure 17. Depositional model for the Woodford Formation in the southern 

Oklahoma Aulacogen (Roberts and Mitterer, 1992) 

 

C. Upwelling model (Comer, 2008); 

Several versions of the upwelling model have been proposed with an attempt to 

explain the development of anoxic bottom water of the Woodford Sea (Heckel, 1977; 

Barron and Ettensohn, 1981; Parrish, 1982). The most recent modified upwelling model 

developed by Comer (2008) has been the most widely accepted model accounting for the 

Woodford deposition. Comer’s model (alternative fair weather and storm sedimentation) 

successfully explained the formation mechanisms of almost all of the rock records found 

in the Woodford Shale (Figure 18). Comer (1992; 2004; 2008) mentioned that the 

Woodford Sea was a classic epeiric sea that transgressed over the southern North 

American craton during Late Devonian (Figure 16). Deposition of thick novaculite 
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(biogenic silica) layers along the Late Devonian continental margin shows evidence of 

upwelling (Comer, 2008). Phosphate-rich strata commonly found in the upper Woodford 

were supportive evidence for upwelling as well (Kirkland et al., 1992). Comer believed 

it was not oceanic currents but the arid climate and evaporation of that time to drive 

upwelling (Comer, 2008; 2012) because the Woodford Sea was not deep enough (<600 

ft; Hallam, 1981; Shaw, 1964; Irwin, 1965) to allow the major ocean current systems to 

transfer large volume of waters. Therefore the Woodford Sea was interpreted as a euxinic 

intracratonic sea with restricted circulation. 

Slightly different from Comer’s upwelling model (Comer, 2008), Kvale and 

Bynum (2014) contributed the major driver on upwelling at that time in the Southern 

Mid-Continent was not aridity or high evaporation rates proposed by Comer (2008; 2012) 

but regional deep marine coastal upwelling, which is a function of Hadley circulation and 

a southeasterly Trade Wind (Kvale and Bynum, 2014). 
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Figure 18. Woodford depositional processes (Comer, 2008) 

 

2.2.5 Chemostratigraphy 

Slatt and his Woodford consortium in University of Oklahoma lead a study of 

Woodford facies variation based on integration of sequence stratigraphy with 

chemostartigraphy (Turner et al., 2015a and b). They applied recent advances in handheld 

XRF technology to develop sequence stratigraphic frameworks by comparing 

chemostratigraphic profiles directly to gamma ray logs and measured stratigraphic 

sections obtained from the same locations.  

In their work, the basic principle to identify a stratigraphic sequence for the 

Woodford Shale in Central Oklahoma is that an increasing upward gamma ray (GR) log 

can infer a sea level increase throughout the Middle and Upper Woodford members, and 

place the maximum flooding surface (MFS) at the GR “spike” between transgressive 

system tract (TST) and highstand system tract (HST) (Figure 19). A 2nd order MFS 
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divides rising and falling sea levels by recognition of a transition from a 2nd order TST to 

a 2nd order HST (Figure 19). Chemostratirgraphy profile with vertical variation of 

elemental concentration, as sediments source and depositional environmental proxies, 

refine the sequence stratigraphic framework by identification of 4th order parasequences 

that represent transgression and regression of the shoreline which occur during an overall 

higher order TST and HST. The basic idea to interpret a chemstratigraphic profile is that 

Titanium (Ti), Zirconium (Zr) are associated with deposits from continental source 

(Pearce and Jarvis, 1992; Pearce et al., 1999). Aluminum (Al) and Potassium (K) are 

associated with clay minerals and K-feldspar (Pearce and Jarvis, 1992; Pearce et al., 

1999). It is well accepted that in terms of hydrodynamics of sediments, clay minerals can 

travel to a more distal portion of the basin than K-feldsapr grains, which behave similar 

to sands and silts. Therefore as the concentration of Al and K increase and meanwhile Ti 

and Zr decrease, it can be interpereted that the depositional environment was increasingly 

more distal from the clastic detrital sediment source. Silicon (Si) is found in multiple 

sources, including detrital quartz, clay minerals, feldspars, and biogenic quartz (Pearce 

and Jarvis, 1992; Pearce et al., 1999). Therefore, it is more common to report the Si/Al 

ratio (Si/Al) as a supplemental sediment source proxy by integrating with other 

continental source proxies like the concentration of Ti, Zr, and/or K, Al (Pearce et al., 

1999). For example, if Si/Al increases without increasing in Ti or Zr, it can be interpreted 

as biogenic Si dominated within the measured section, which could be further interpreted 

as algal bloom if of short duration or a condensed section (CS) if of long time period 

(Turner et al., 2015a).  Strontium (Sr) and Calcium (Ca) are associated with carbonates 

and phosphates (Banner, 1995). Molybdenum (Mo) and Vanadium (V) are redox 
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condition indicators (Tribovillard et al., 2006; Algeo and Rowe, 2012). Generally, 

increases in concentration of Mo and V are associated with a more reducing water 

column. Sharp changes in the elemental proxies are potential indicators of a stratigraphic 

surface (Turner et al., 2015a).  

By applying this principle, one field site and three cores of the Woodford Shale 

have been scanned using the handheld XRF to develop a preliminary analysis of the 

regional variability of chemostratigraphic profiles for the Woodford Shale in Central 

Oklahoma and setup a regional Woodford sequence stratigraphic framework (Figure 19; 

Turner et al., 2015b). Esther (2015) used the handheld XRF to determine the elemental 

profiles for the Woodford core from Prtichard-1 well, which is one well in the data sets 

of this study and the same well in Turner’s regional Woodford sequence stratigraphic 

framework. She found Ti and Zr curve (continental proxies) both show decrease from 

5160 ft to 5155 ft and increase from 5155 ft to 5150ft right above the 2nd order MFS 

determined from the core GR (Turner et al., 2015b). The “turnover” in continental proxies 

indicative of a MFS at 5155 ft is consistent with the 2nd order MFS determined from the 

core GR. Sharp “turnover” found both in K and Al curve (clay proxies) at 5155 ft support 

the MFS at this depth as well. The concentration of Si covaries with Si/Al, both of which 

keep constant other than spike at 5155 ft. Si/Al increases from 5160 ft to 5155 ft with 

decrease in Ti, Zr, K and Al indicating significant biogenic Si within the measured 

Woodford section. Other than two spikes in calcium curve at 5152 t and 5156 ft, Sr and 

Ca (carbonate proxies) curve keep constant, which is consistent with that the Woodford 

in this well is composed of mainly quartz other than several depth from the minerology 

composition analysis by XRD (Esther, 2015). Regarding redox proxies, Mo curve keeps 
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relatively constant but V show a general increasing trend from Middle Woodford to 

Upper Woodford. Mo only precipitates under euxinic conditions (Tribovillard et al., 

2006), while V cannot accumulate in the sulfur-rich water column. Therefore this could 

indicate an upward decline in sulfur in this local Woodford deposition site. The author of 

this study used Turner’s subdivision of stratigraphic sequences and shoreline trajectory 

for the Woodford in Pritchard-1 to keep consistent with that of regional Woodford 

sequence stratigraphic framework (Figure 19; Turner et al., 2015b) and put those 

stratigraphic sequences and shoreline trajectory into the chemostratigraphic profile for 

Pritchard-1 (Figure 20), which is the referenced stratigraphic sequence to investigate the 

biomarker profile in Chapter IV. 

 

 



 

 

 

Figure 19. Regional Woodford Chemosequence Stratigraphic Framework in Central Oklahoma (Turner et al., 2015b; TST = 

2nd order transgressive system tract; HST = 2nd order highstand system tract; MFS = 2nd order maximum flooding surface)
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Figure 20. Chemostratigraphic profile of Pritchard-1 Woodford core showing clastic detrital components (Ti, Zr, and Si/Al), 

clay components (K, Al), carbonates and phosphates (Sr, Ca), and redox condition indicators (Mo, V), whereas green triangles 

refer sea level regression and red triangles for sea level transgression (RSL = Relative Sea Level) based on chemostratigrapy 

(elemental data courtesy of Esther, 2015; TST = 2nd order transgressive system tract; HST = 2nd order highstand system tract; 

MFS = 2nd order maximum flooding surface). 
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2.2.6 Thermal Maturity 

The thermal maturity trends of the Woodford Shale (Figure 21) approximately 

follow its structural trends. The highest maturities occur in the deep parts of the Anadarko 

Basin and the Arkoma Basin, which have been in the gas window with the corresponding 

vitrinite reflectance values as high as 4.0% Ro (Cardott and Lambert, 1985; Cardott, 

1989; 2012). The intermediate maturities corresponding to vitrinite reflectance values in 

the range of 0.6~1.1% VRo occur on the basin flanks and adjacent shelf settings (Cardott 

and Lambert, 1985; Cardott, 1989; 2012). The least mature areas are located on the 

structural highlands like the Nemaha Uplift, the area around Arbuckle Mountain Uplift 

and the Ozark Uplift (Cardott and Lambert, 1985; Cardott, 1989 and 2012). The 

northwestern Anadarko Shelf and the Cherokee Platform were reported as immature to 

early-mature based on sparsely distributed vitrinite reflectance measurements (Cardott 

and Lambert, 1985; Cardott, 1989; 2012). Recent measurements in this research 

associated with other geological/geochemical evidence suggest an updated Woodford 

thermal maturity map different from the previous one and will be discussed in detail in 

Chapter 4. 

 

 

 

 

 

 

 



 

 

 

Figure 21. Woodford vitrinite isoreflectance map of Oklahoma (without Woodford in Oklahoma panhandle; modified from 

Cardott, 2014) 
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CHAPTER 3 

3. SAMPLE PREPARATION AND EXPERIMENTAL METHOD 

3.1 Study area and sample locations 

In this study, a total of 168 oil and rock samples were collected from wells located 

throughout the Anadarko Basin, Nemaha Ridge Zone, Cherokee Platform in Central 

Oklahoma and Southern Oklahoma (Figure 22 and Figure 23, and Table 1). 5 Woodford 

cores located in the Devon focus production area provided by Devon from 5 different salt 

water disposal wells were sampled 100~200g of Woodford core plug every 6 feet per 

each well if allowed. 9 Woodford cores stored in OGS (Oklahoma Geological Survey) 

OPIC (Oklahoma Petroleum Information Center) core warehouse were sampled 

100~200g of Woodford core plug for each Woodford member per each well.  The 

geographic locations of these 9 OGS wells were preferred to choose surrounding the 

Devon focus production area with an attempt to determine the possible migration pathway 

if any by oil-to-source-rock correlation. 16 Tight oil samples produced either from 

Mississippian or Woodford Formation by Devon were sampled. 5 Condensate samples 

produced from Woodford Formation by Devon were sampled. 9 “Old” oil samples, 

previously produced from different conventional reservoirs by vertical wells in Southern 

Oklahoma stored in Dr. Philp’s laboratory, which have been proven to be sourced from 

the Woodford Shale, were analyzed with an attempt to do oil-to-oil correlation. 

 

 

 

 



 

 

 

Figure 22. Map of Central Oklahoma showing locations of the samples analyzed in this study (Well names in Table 1) 
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Figure 23. Map of Logan & Payne showing locations of the oil samples analyzed in this study (Well names in Table 1; Logan & 

Payne County shown in blue in Oklahoma State Map)
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Table 1. List of samples for organic geochemical analyses 

Well name Producing Formation Abbreviation 
Sample 

type 

# of 

samples 

Robberson 10-1 NA A-1 Core 7 

Dannehl 2-16 NA A-2 Core 5 

L A Chenoweth-1 NA A-3 Core 11 

Lewis F Pope-1 NA A-4 Core 10 

Effie B York-1 NA A-5 Core 5 

Pritchard-1 NA A-6 Core 10 

Mary Earp-5 NA A-7 Core 8 

Boyd Unit-1 NA A-8 Core 6 

Anderson 12-1 NA A-9 Core 21 

Frank 1-33 SWD NA 10 Core 11 

Wilma 1-16 SWD NA 11 Core 5 

Elinore 1-18 SWD NA 12 Core 8 

Winney 1-8 SWD NA 13 Core 19 

Adkisson 1-33 SWD NA 14 Core 7 

Wion 1-29H WOODFORD a Condensate 1 

Lingo 1-13H MISSISSIPPIAN b Condensate 1 

Dougherty Bros. 1-18H NA c Condensate 1 

Crystal MISSISSIPPIAN d Condensate 1 

York 1-2H WOODFORD e Condensate 1 

Johnson 1-33H MISSISSIPPIAN NA Oil 1 

Matthews 1-33H MISSISSIPPIAN NA Oil 1 

Wilma 1-16 SWD WOODFORD NA Oil 1 

Elinore 1-18H WOODFORD NA Oil 1 

Elinore 1-17H MISSISSIPPIAN NA Oil 1 

Winney 1-8H WOODFORD NA Oil 1 

Adkisson 1-33H WOODFORD NA Oil 1 

Winney 1-5H WOODFORD NA Oil 1 

Smith 1-14WH WOODFORD NA Oil 1 
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Smith 1-23MH MISSISSIPPIAN NA Oil 1 

Hopper 1-20 WH WOODFORD NA Oil 1 

Peach 1-20WH WOODFORD NA Oil 1 

Joyce 1-32 WH 
Pennsylvanian 

Unconformity Sand 
NA Oil 1 

Williams 1-24WH NA NA Oil 1 

Peach 1-19MH Bromide (?) NA Oil 1 

C. Matthews 1 WH Viola NA Oil 1 

Ford-1 NA NA Oil 1 

Thomas James 1-22 NA NA Oil 1 

Anadarko Taylor 2118 NA NA Oil 1 

“A” NA NA Oil 1 

Ellis Lewis Jet NA NA Oil 1 

ST Mary NA NA Oil 1 

Albert 1-9 NA NA Oil 1 

“F” NA NA Oil 1 

7-5N-5E NA NA Oil 1 
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3.2 Experimental 

Total Organic Carbon (TOC) determination and Rock-Eval pyrolysis analyses 

were performed on all rock samples available for this study (Table 1). The rock samples 

with TOC values greater than 1% were selected for soxhlet extraction. The rock extracts 

were separated into maltenes and asphaltenes by addition of excess n-pentane. The 

maltene fraction was further fractionated into saturates, aromatics, and NSO fraction by 

column chromatography. Screening analysis of the saturate and aromatic fractions was 

performed by gas chromatography (GC). Selected samples were analyzed by gas 

chromatography-mass spectrometry (GCMS) for biomarker analyses and bulk isotope 

analysis on isotope mass spectrometer. Oils and condensates were analyzed using GC and 

GCMS. Rock samples from eleven studied wells were chosen for vitrinite reflectance 

measurements. Rock-Eval pyrolysis and TOC analyses were carried out at GeoMark 

Research, Inc. in Humble, Texas and Core Laboratories in Houston, Texas. The 

remaining geochemical analyses were performed at the University of Oklahoma Organic 

Geochemistry Laboratories located in Norman, Oklahoma. A summary of the laboratory 

workflow used in this project is depicted in Figure 24. 

 

 

 

 



 

 

 

Figure 24. Schematic workflow used for laboratory analyses of the Woodford Shale, whole oil and condensate samples 

(modified from Miceli Romero and Philp, 2012)
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3.2.1 Pre-extraction rock sample treatments 

Each rock sample (~100g) was taken from the original core plug and washed with 

hot water, distilled water and a 1:1 mixture of dichloromethane (DCM) and methanol  to 

remove any possible contaminants (e.g. drilling mud). After the samples were air-dried 

completely, they were crushed by using a pestle in a porcelain mortar and ground into 60-

200 mesh for screening analysis (TOC and Rock-Eval) and soxhlet extraction. 

3.2.2 Total Organic Carbon (TOC) and Rock-Eval Analysis 

Leco-TOC (Total Organic Carbon) analysis and Rock-Eval pyrolysis were 

performed on 138 rock samples either at GeoMark Research, Inc. in Humble, Texas or 

Weatherford Laboratories in Houston, Texas. Approximately 2 grams of crushed rock 

were used for determination of TOC and Rock-Eval parameters. After pre-screening 

based on the results of these analyses, source rock samples were chosen for further 

bitumen extraction and maltenes fractionation. 

3.2.3 Vitrinite Reflectance Measurements  

Organic petrography pellets for vitrinite reflectance measurement were prepared 

at the Oklahoma Geological Survey Organic Petrography Laboratories in Norman, 

Oklahoma under the guidance of Mr. Brian Cardott. The standard dispersed organic pellet 

were either made from a whole rock or a kerogen concentrate that had been treated with 

acids to remove minerals.  

The kerogen concentrates were made from a whole rock Woodford core sample 

of ~40g by following Herwig Ganz’s procedure. This procedure could be subdivided into 

several phases: 1) crush the whole rock sample into 18 mesh; 2) remove the bitumen by 
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Soxhlet extraction; 3) treat by hydrochloric acid (10% HCl) and subsequently 

hydrofluoric acid (10% HF) to remove carbonates and silicates minerals; 4) neutralize the 

acidic aqueous solution and filter; 5) air-dry the remaining kerogen grains, which are the 

kerogen concentrates.  

Preparation of dispersed organic pellets from whole rock or kerogen concentrates 

followed the procedures provided by Mr. Brian Cardott as described below. For each 

depth, two aliquots of whole rock samples of ~10 grams were ground into 18 mesh and 

placed in plastic ring forms. A mixture of epoxy resin and hardener (5:1) was centrifuged 

for 4 minutes to remove the air bubbles and poured into the ring forms until one third full. 

Each crushed rock sample was poured into its plastic ring form and mixed with the epoxy 

until all the grains were evenly distributed across the bottom of the ring form. Additional 

bubble-free epoxy was poured into the ring forms until full. The pellets were left 

overnight to harden at room temperature. 

Dispersed organic pellets were ground and polished using a Buehler Ecomet III 

Gridding and Polishing Apparatus to remove scratches and obtain a relief-free surface for 

microscopic analysis. Pellets were polished by using 320, 400, and 600 grit grinding 

papers with the pressure of 30 psi applied for 4 minutes and tap water as lubricant. Each 

sample was subsequently rinsed off by distilled water and thoroughly cleaned in an 

ultrasonic bath with distilled water for 2 minutes. Sample pellets were further polished 

by using a Buehler Texmet polishing cloth with Wendt Dunnington 0.3μm alumina slurry 

applied every 40 seconds and distilled water kept tapping as lubricant for 4 minutes. 

Pellets were then rinsed off with distilled water and thoroughly cleaned in the ultrasonic 

bath for 2 minutes. Then the pellets were rinsed off with distilled water and air-dried. 
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After this step, the pellets were polished with Wendt Dunnington 0.05μm alumina slurry 

following the same steps stated above, and finally placed in a desiccator overnight to dry. 

The random vitrinite reflectance measurements were performed using a Vickers 

M17 Research Model 1 Microscope under oil immersion and reflected white light 

following the ASTM (2011) organic petrography procedures at the Oklahoma Geological 

Survey Organic Petrography Laboratories in Norman, Oklahoma under the guidance of 

Mr. Brian Cardott. 

3.2.4 Bitumen Extraction and Fractionation 

Before bitumen extraction, the Soxhlet apparatus and cellulose thimbles were pre-

extracted for 24 hours using a 1:1 mixture of dichloromethane (CH2Cl2) and methanol 

(CH3OH) in order to remove contaminants. Then the source rock samples (60g 

approximately per sample) were introduced into the pre-extracted thimbles to be extracted 

by the mixture of DCM and methanol (1:1) for 48 hours. The solvent was removed by 

using a rotary evaporator and the residue containing soluble bitumen was transferred into 

a glass centrifuge tube. The extract was separated into maltenes and asphaltenes by adding 

an excess (40:1) of n-pentane (C5H12) and put in a refrigerator overnight to completely 

precipitate the asphaltenes. After centrifuging for 5 minutes, the maltene fractions were 

transferred to a 250mL round bottom flask to evaporate the excess solvent until a few 

milliliters remained which were transferred into a pre-weighed vial. The remaining 

solvent was finally evaporated until dryness by a gentle nitrogen flow. The asphaltenes 

remaining in the centrifuge tubes were dissolved in DCM and transferred into pre-

weighed vials. The solvent was evaporated and the asphaltene was weighed. 
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The maltene fraction was diluted in a ratio of 10mg sample per 60uL n-hexane 

(C6H14) for maltene fractionation by alumina column chromatography. Column 

chromatography was performed on alumina, which was activated at 550ºC before use and 

packed in 100ml glass columns.  Saturates, aromatics and NSO (nitrogen, sulfur, and 

oxygen) compounds were fractionated based on differences in polarity of different 

solvents mixtures and different flow rates. 

Columns were dry-packed with a piece of glasswool inserted at the bottom and 

then 7.5 g of activated alumina (A540-3) on top of the glasswool. Before loading the 

samples, the column was half filled with n-hexane. The column was gently tapped to 

remove the air bubbles, if any, in the alumina. The maltene fraction (~35mg) diluted 

within minimum n-hexane was introduced to the top of alumina. The saturate fraction 

was eluted by adding ~17 ml of n-hexane to the column without disturbing the alumina 

surface and then drained at 1 droplet/1.5 seconds; and then the aromatic fraction was 

eluted with 50 ml of n-hexane and DCM (7:3) and drained at 1 droplet/second; finally 

NSO compounds were eluted with 50ml of DCM and methanol (98:2). Each fraction was 

weighed on a balance after removing the solvents under nitrogen flow very gently. 

Saturate and aromatic fractions were diluted into a 3 mg/ml solution for further GC and 

GC-MS analysis.  

The branched and cyclic (B&C) fraction was obtained by removing the n-alkanes 

from the saturate fraction following the procedures modified by Dr. Nguyen after West 

et al. (1990) using the molecular sieve HI-SIV 3000 purchased from Zeolyst International. 

The hydrophobic molecular sieve HI-SIV 3000 is activated at 550oC overnight before it 

is used to remove n-alkanes from the saturate fraction. A glass wool-plugged Pasteur 
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pipette was packed with ~2g of HI-SIV 3000 powder and n-pentane was applied under 

pressure of water-free air to compress the HI-SIV 3000 powder. This step was repeated 

until the uncompressible HI-SIV 3000 section occupied nearly two-third of the column. 

Around 10 mg of saturate fraction was dissolved in 1 ml of n-pentane and transferred to 

the top of the HI-SIV 3000 section and stand for 2 minutes to let the molecular sieve 

absorb the n-alkanes completely. The water-free air was applied on top of the pipette such 

that the flow rate of filtrate was about 1 drop per second. The filtrate, which contains 

branched and cyclic alkanes (B&C fraction), was collected in a 4 ml vial located below 

the tip of the pipette and n-alkanes retained in the HI-SIV 3000 section. The B&C fraction 

was diluted into a 3 mg/ml solution for biomarker analyses. 

3.2.5 Stable Carbon Isotope Analysis 

For 19 crude oil samples, the stable carbon isotope ratios of saturate and 

aromatic fractions were measured by Mr. Rick Maynard in the isotope laboratory at the 

University of Oklahoma. Approximately 200-300 ug of each sample is analyzed in a 

Costech 4010 EA that is equipped with a furnace reactor column packed with the reagents 

chromium oxide (Costech 011001) and silvered cobalt oxide (Costech 011007) in 

accordance with the Costech 4010 manual at a furnace temperature of 1000oC. The 

reduction column is packed with copper reduced wire (Costech 011013) at a temperature 

of 650oC. The GC column is at a temperature of 55oC. 

The samples are weighed on a micro-balance and wrapped in tin capsule 

(Costech 04107) and then placed in sequence in a Costech zero blank autosampler which 

is mounted on the elemental analyzer. The samples are purged with high purity helium 

(99.9999%) to remove air and then analyzed by flash combustion. The resulting sample 
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peak is carried by a helium stream at a flow rate of 100 ml/min to a Thermo conflo III 

interface with dilution on which is connected to the ion source of a Thermo Delta V Plus 

isotope mass spectrometer. The relative stable carbon isotope ratio (δ13C) was reported 

relative to the Vienna Pee Dee Belemnite (VPDB) scale. 

3.2.6 Gas Chromatography (GC) 

For whole oil GC analysis, the crude oil sample was diluted into a 1mg/ml n-

hexane solution and analyzed on an Agilent 6890 series gas chromatograph with a 

split/splitless capillary injection system and a 100m × 0.25mm (i.d.) J&W Scientific DB-

Petro 122-10A6 fused silica capillary column coated with a 0.5µm liquid film. The 

temperature program started with an initial temperature of 40ºC and 1.5 minutes hold 

time and increased to 130ºC at a rate of 2ºC per minute and subsequently increased to 

300ºC at a rate of 4ºC per minute followed by an isothermal period of 26 minutes for a 

total run of 115 minutes. C7 light hydrocarbon analysis were performed using the GC data 

obtained from whole oil/condensates GC analysis stated above. The isolated fractions, 

saturates and aromatics respectively, were analyzed using an Agilent 6890 series gas 

chromatograph with a splitless capillary injector and a 30m ×  0.25mm (i.d.) J&W 

Scientific DB-5 122-5032 fused silica capillary column coated with a 0.25µm liquid film. 

The injector was set up in the splitless injection mode and the temperature was held at 

300ºC. The carrier gas was helium (He) with a flow rate of 1.4 ml/min. The temperature 

program started with an initial temperature of 40ºC held for 1.5 minute and increased to 

300ºC at a rate of 4ºC per minute followed by an isothermal period of 34 minutes for a 

total run time of 100.5 minutes. The flame ionization detector (FID) temperature was set 
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at 310ºC. n-Alkanes and isoprenoids were identified in each chromatogram by comparing 

their relative retention times with standards. 

3.2.7 Gas Chromatography-Mass Spectrometry (GC-MS) 

The GC-MS analyses of the branched and cyclic alkanes (B&C) and aromatic 

fractions were performed on an Agilent 7890A gas chromatography system coupled with 

an Agilent Technologies 5975C mass selective detector (MSD) using single ion 

monitoring (SIM, Table 2). The GC used a 60m x 0.25mm Agilent/J&W Scientific DB-

5 122-5562 fused silica capillary column coated with a 0.25µm liquid film. The injected 

volume of branched and cyclic and aromatic fractions was 1uL per run. The injector 

temperature was set at 300ºC. The GC temperature program started at 40ºC with 1.5 

minutes hold time and was later increased to 300ºC at a rate of 4ºC per minute and then 

held constant for 34 minutes for a total run time of 100.5 minutes. Samples were run in 

splitless mode and helium was used as the carrier gas at a flow rate of 1.4 ml/min. 

Biomarker compounds were determined from fragmentograms corresponding to each ion 

using relative retention times and by comparison with published data. 

For diamondoids analysis in crude oils/condensates, the sample was diluted with 

pentane in the concentration of 16 mg oil/ ml pentane. The pentane was reported to be a 

good solvent for adamantanes and diamantanes in terms of high solubility and low boiling 

point (Reiser et al., 1996).  The oil solution was well homogenized in ultrasonic bath for 

at least 1 min. 1 microliter of the resulting oil solution was injected to Agilent GC-MS to 

detect adamatanes and diamantanes using SIM mode and key ion fragments:135,136,149 

etc. and 188,187,201 etc., respectively. DB-5 MS 60 m x 0.25 mm x 0.25 micron in film 
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thickness was used. Temperature program started 40oC and hold it for 1.5 min before 

ramping 4oC/ min to 300oC and holding this temperature for 34 min. 

3.2.8 Gas Chromatography-Mass Spectrometry-Mass Spectrometry (GC-MS/MS) 

The GC-MS/MS analyses were carried out with a Thermo Scientific Trace 1310 

gas chromatography system coupled to Thermo Scientific TSQ 8000 Triple Quadrupole 

mass spectrometer. Selected parent and daughter ions (For steranes: 372→217; 

386→217; 400→217; 414→217; For hopanes: 370→191; 384→191; 398→191; 

412→191; 426→191; 440→191; 454→191; 468→191; For tricyclic terpanes: 

262→191; 276→191; 290→191; 304→191; 316→191; 318→191; 332→191; 

340→191; 360→191; 330→191; 374→191; 388→191; 402→191; 416→191; 

430→191; 444→191; 458→191; 444→191; 444→191; 444→191) were used to analyze 

samples in the selected reaction monitoring (SRM) mode. The GC temperature program 

is the same as that of the GC/MS system in section 3.2.7. The transfer line temperature 

was 310ºC. For the MS/MS, the scan time for each daughter ion is 0.025s. The ion source 

was operated in electron impact mode with a collision energy of 9 eV. The ion source 

temperature was 250 ºC. 

3.3 Quantitative Biomarker Analysis  

Quantitation was accomplished by using deuterated n-tetracosane (C24D50) as 

internal standard for the saturate fractions and deuterated phenanthrene (C14D10) for the 

aromatic fractions. Each fraction were quantitatively spiked with its internal standard 

solution before injecting into GC/MS. The relative concentration of the biomarker in the 

B&C or aromatic fraction was calculated by comparing the peak area of the appropriate 

biomarker relative to that of the co-injected deuterated internal standard. In this study, 
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since the ideal standards were not available for each biomarker, it was assumed that the 

response factors of the analyzed biomarkers on the mass detector would be similar to that 

of the corresponding internal standards used in this study. In a GC/MS mass 

chromatogram, the integrated area of each peak represents the abundance of that 

compound if no significant coelution. Assuming the peak area of internal standard is AISD, 

and the peak area of selected compound is Ax. The concentration of internal standard in 

the mixing solution is CISD mix, and the concentration of selected biomarker is Cx. Suppose 

the volume of sample in each injection was 1μl. The Cx could be calculated as: 

𝐶𝑥 =  𝐴𝑥𝐶𝐼𝑆𝐷 𝑚𝑖𝑥 𝐴𝐼𝑆𝐷⁄        [1] 

The concentration of the internal standard in the mixed solution before injected 

into GCMS (CISD mix) was calculated as: 

𝐶𝐼𝑆𝐷 𝑚𝑖𝑥 =  
𝐶𝐼𝑆𝐷  ×  𝑉𝐼𝑆𝐷

 𝑉𝐵/𝐴 + 𝑉𝐼𝑆𝐷 
          [2] 

CISD = Concentration of internal standard compound in the original internal 

standard solution before mixing with B&C or aromatic fraction 

VISD  = Total volume of internal standard added to the B&C or aromatic fraction 

VB/A = Total volume of B&C or aromatic fraction before mixing with internal 

standard 

In my experiments, CISD = 0.064mg/ml, VB/A = 200L and VISD= 15L, so: 

𝐶𝐼𝑆𝐷 𝑚𝑖𝑥 =  
0.064 𝑚𝑔/𝑚𝑙 ×  15μL

 200μL + 15μL 
= 0.00447𝑚𝑔/𝑚𝑙        [3] 

Introduced into equation [1], the concentration of biomarker in the saturate or 

aromatic fraction could be calculated as: 

For saturates,  
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𝐶𝑏𝑚 𝑠𝑎𝑡 =
𝐶𝐼𝑆𝐷 × 𝑉𝐼𝑆𝐷

𝐴𝐼𝑆𝐷 × 𝑉𝐵/𝐴
×

1

𝐶𝐵/𝐴
×  𝐴𝑏𝑚  ×  

𝑚𝐵&𝐶

𝑚𝑆𝑎𝑡
 ×  1 × 106   [4] 

For aromatics,  

𝐶𝑏𝑚 𝑎𝑟𝑜 =
𝐶𝐼𝑆𝐷 × 𝑉𝐼𝑆𝐷

𝐴𝐼𝑆𝐷 × 𝑉𝐵/𝐴
×

1

𝐶𝐵/𝐴
×  𝐴𝑏𝑚  ×  1 × 106   [5] 

 

where, 

Abm = Peak area of the biomarker for quantification 

CB/A = Concentration of the B&C or aromatic fraction solution 

WB&C = Weight of the B&C fraction obtained after the molecular sieving (in 

grams) 

WSat = Weight of the saturate fraction used for the molecular sieving (in grams) 

1x106 = Conversion factor from g to μg 

For source rocks extracts, the relative concentration of a specific biomarker is 

expressed in μg biomarker/g TOC; for crude oil samples, it’s expressed in μg biomarker/g 

whole oil. This allows the comparison of the concentration and distribution of an identical 

biomarker between oils and source rocks. Below is how to normalize the biomarker 

concentrations relative to 1g of TOC or whole oil, respectively: 

For source rock extracts: 

𝐶𝑏𝑚 =  
𝜇𝑔 𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟

𝑔 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑠
×

𝑊𝑆𝑎𝑡

𝑊𝑇𝑂𝐶
 

and 

𝑊𝑆𝑎𝑡

𝑊𝑇𝑂𝐶
=

𝑊𝑆𝑎𝑡

𝑊𝑀𝑎𝑙𝑡𝑒𝑛𝑒𝑠
×

𝑊𝑀𝑎𝑙𝑡𝑒𝑛𝑒𝑠

𝑊𝐸𝑥𝑡𝑟𝑎𝑐𝑡
×

𝑊𝐸𝑥𝑡𝑟𝑎𝑐𝑡

𝑊𝑅𝑜𝑐𝑘

𝑇𝑂𝐶(𝑤𝑡%)
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where 

𝑊𝑆𝑎𝑡

𝑊𝑇𝑂𝐶
 = Weight percentage of the saturate fraction in 1g of total organic carbon 

(TOC) 

𝑊𝑆𝑎𝑡

𝑊𝑀𝑎𝑙𝑡𝑒𝑛𝑒𝑠
 = Weight percentage of the saturate fraction recovered from the 

maltenes fraction 

𝑊𝑀𝑎𝑙𝑡𝑒𝑛𝑒𝑠

𝑊𝐸𝑥𝑡𝑟𝑎𝑐𝑡
 = Weight percentage of the maltenes recovered from the source rock 

extract 

𝑊𝐸𝑥𝑡𝑟𝑎𝑐𝑡

𝑊𝑅𝑜𝑐𝑘
 = Weight percentage of the rock extract recovered from the original 

source rock sample 

𝑇𝑂𝐶(𝑤𝑡%)  = Weight percentage of the total organic carbon contents measured 

in the source rock sample (in wt. %). 

For crude oil samples: 

𝐶𝑏𝑚 =  
𝜇𝑔 𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟

𝑔 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑠
×

𝑊𝑆𝑎𝑡

𝑊𝑊𝑂
 

and 

𝑊𝑆𝑎𝑡

𝑊𝑊𝑂
=

𝑊𝑆𝑎𝑡

𝑊𝑀𝑎𝑙𝑡𝑒𝑛𝑒𝑠
×

𝑊𝑀𝑎𝑙𝑡𝑒𝑛𝑒𝑠

𝑊𝑊𝑂
 

 

𝑊𝑆𝑎𝑡

𝑊𝑊𝑂
  = Weight percentage of the saturate fraction recovered from the one gram g 

of the whole oil. 

𝑊𝑆𝑎𝑡

𝑊𝑀𝑎𝑙𝑡𝑒𝑛𝑒𝑠
 = Weight percentage of the saturate fraction recovered from the 

maltenes fraction 
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𝑊𝑀𝑎𝑙𝑡𝑒𝑛𝑒𝑠

𝑊𝑊𝑂
   = Weight percentage of the Maltene obtained from the whole oil 

Attention should be paid herein is because errors may occur when quantifying 

biomarker relative concentration from multiple factors. For instance, errors could be 

introduced during the sample weighing and/or preparing the internal standards of the 

accurate absolute concentration. Errors may occur when fractionation by column 

chromatography as well, in which step the experimental operation would affect the 

relative percentage of each fraction. Moreover, errors could have been resulted from the 

difference in terms of response factors of the internal standard on the mass detector and 

each biomarker compound. Consequently, the concentrations of biomarkers in this study 

should be considered to be relative concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 61 

CHAPTER 4 

4. SOURCE ROCK ANALYSIS  

4.1 Source Rock Geochemical Screening Analyses 

Petroleum geochemistry research has centered on developing applicable criteria 

and methods to evaluate source rocks associated with exploration prospects or plays 

(Dembicki, 2009). To evaluate a source rock, three key parameters need to be assessed: 

1) what is the total organic carbon (TOC) or the organic richness of the source rock; 2) 

What is the kerogen type of the source rock and will it generate oil or gas or nothing; 3) 

What is the thermal maturity of the source rock. The first parameter, organic richness, is 

one of the prerequisites to determine whether or not it is a prolific source rock. A good 

source rock should have a high TOC, but not all organic matter is created equal. Some 

organic matter will generate oil, some will generate gas, and some will generate nothing 

(Tissot et al., 1974). What type of product would be generated is determined by the 

original kerogen type. The third parameter, thermal maturity of the source rock, 

determines the amount of hydrocarbons already generated and the types of hydrocarbons 

they are.   

Prior to any biomarker work to determine organic matter type, depositional 

environment, or thermal maturity of the source rock, prospective samples should be 

screened. An effective petroleum source rock must satisfy certain requirements in terms 

of quantity, quality and thermal maturity of organic matter. It is also considered that 

prospective source rock samples are free of any contamination from oil-based drilling 

additives or migrated oils. In the oil industry, a set of geochemical techniques are used 

for preliminary screening, including, total organic carbon (TOC), Rock-Eval pyrolysis, 
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vitrinite reflectance (Ro), and petrographic analysis of maceral composition (Philp, 

2003). 

Subsurface rock samples analyzed in this study were initially screened using 

Leco-TOC measurements and Rock-Eval pyrolysis. From these data, representative sets 

of samples were chosen for biomarker and isotope analyses. The definitions of Rock-Eval 

pyrolysis terms used in the discussion and presented in subsequent figures and tables are 

shown in Table 2.  

Table 2. Parameters, terms, and definitions derived from Rock-Eval pyrolysis 

analyses (modified from Peters, 1986 and Jarvie et al., 2007) 

TOC Total Organic Carbon wt.% 

S1  
Free volatile hydrocarbons thermally flushed from a 

rock sample at 300°C (free oil content) 
mg HC/g rock 

S2 
Products that crack during standard Rock-Eval 

pyrolysis temperatures (remaining potential) 
mg HC/g rock 

S3 Organic carbon dioxide released from rock samples mg CO2/g rock 

Tmax Temperature at peak evolution of S2 hydrocarbons °C 

HI Hydrogen Index = S2 x 100/TOC mg HC/g TOC 

OI  Oxygen Index = S3 x 100/TOC mg CO2/g TOC 

S1/TOC Normalized Oil Content = S1 x 100/TOC  

S2/S3 Describes type of hydrocarbons generated 
Values from 

0.00 to >5.00 

PI  
Production Index = S1/(S1+S2) (or transformation 

ratio) 

Values from 

0.00 to 1.00 

 

4.1.1 Organic Richness 

Throughout Oklahoma, the Woodford Shale proves to be an excellent potential 

source rock based on TOC, HI, and thermal maturity. The average TOC for the subsurface 

rock samples analyzed in this study was shown in Table 3. The spatial distribution of the 
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average TOC values for the Woodford rock samples from all of the wells in this study 

was shown in Figure 25. In general, the Woodford Shale shows good to excellent source 

rock potential based on the guidelines of Peters and Cassa (1994). 

Table 3. Average TOC values for the Woodford Shale subsurface rock samples 

analyzed in this study 

Well name 
# of 

samples 
Average TOC (wt. %) 

Frank 1-33SWD 21 3.4 

Elinore 1-18SWD 14 7.5 

Wilma 1-16SWD 13 5.9 

Winney 1-8SWD 11 3.4 

Adkisson 1-33 SWD 9 4.4 

Mary Earp – 5 2 7.1 

Boyd Unit-1 3 5.4 

Dannehl 2-16 5 6.6 

Pritchard-1 10 7.1 

Robberson Ranch 10-1 4 6.6 

Anderson 12-1 19 4.2 

Chenoweth-1 8 3.1 

York-1 3 4.9 

Pope Unit-1 1 5.5 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 25. Woodford Structural Map (in SSTVD) of Study Area with Woodford Rock Average TOC values (wt. %) 

(SSTVD = Sub Sea Total Vertical Depth in feet; TOC = Total Organic Carbon in weight percentage; CI = Contour Increment 

in feet)

6
4
 



 

 65 

4.1.2 Organofacies and Thermal Maturity Discussion based on Rock-Eval  

Before we discuss the organic matter type of the Woodford samples in this study, 

it is necessary to clarify the definitions of three concepts: organic matter type, kerogen 

type, and source rock facies. Organic matter type is the type of original organic source 

matter, such as marine algae or bacteria, freshwater algae or bacterial, and higher plant 

cuticle, resin or lignin. Kerogen type is the classification of kerogen based on the 

elemental composition of the hydrogen, carbon and oxygen (Jacobson, 1991). By plotting 

atomic H/C versus O/C of coal constituents (macerals), van Krevelen (1961) recognized 

each kind of coal maceral had consistent ratios. These ratios also reflect the hydrocarbon 

generative potential of the maceral type. Tissot and Welte (1984) extended van 

Krevelen’s work to potential petroleum source rocks by replacing the time-consuming 

elemental analysis with Rock-Eval analysis. The hydrogen index (HI) and oxygen index 

(OI) derived from Rock-Eval could be substituted for H/C and O/C to classify different 

kerogen types (Tissot and Welte, 1984). Source rock facies, also called “Organic Facies” 

(Jones and Demaison, 1982) or “Organofacies” (Pepper and Corvi, 1995), are mappable 

subdivisions of a designated stratigraphic unit, distinguished from adjacent subdivisions 

on the basis of their organic constituents, without regard to the inorganic aspects of the 

sediments based on Jones and Demaison’s definition (1982). Pepper and Corvi (1995) 

developed the concept of “organofacies” instead of “organic facies” based on their 

distinct kinetic behavior of typical organofacies. Different from kerogen type, the concept 

of organofacies is geologically mappable or seismically mappable, which is rarely found 

on a fine scale and represent sufficiently large stratigraphic thickness and areal extent and 

have similar organic geochemical properties. Therefore the concept of organofacies 
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reflects not only the original biological input type but also the preservation processes of 

the organic matter.  Since it has been widely accepted and applied in the oil industry, the 

concept and classification of organofacies is used in this study to type source rock facies.     

Rock-Eval parameters have been used for initial evaluation of the kerogen type 

and source rock potential by the oil industry for many years. The plot of hydrogen index 

(HI) versus oxygen index (OI) has been widely used to classify the kerogen types (Tissot 

et al., 1974; Hunt, 1979; Tissot and Welte, 1984). Therefore, in this study, initially this 

plot (Figure 26) was used to try to classify the kerogen types of the Woodford samples 

but failed since this HI vs. OI diagram shows significant variations of HI values among 

the Woodford samples. The reason why it is confusing for users to classify the kerogen 

types from a pseudo van Krevelan diagram is because it is a common pitfall to discuss 

kerogen type with source rock potential together simply by plotting the HI and OI of the 

source rock samples. However only when the source rock samples are still immature, can 

the original kerogen type be determined from the HI vs. OI diagram. Source rock potential 

is totally a different concept. For example, an immature type-III gas-prone kerogen would 

not have any oil generation potential whatever heat you apply to it (Pepper and Corvi, 

1995). It is highly recommended to discuss kerogen type and source rock potential 

separately. The significant variations of HI values among the Woodford samples in the 

HI vs. OI diagram could result from the differences in organofacies (Pepper and Corvi, 

1995) or differences in thermal maturity. The kerogen type developed by IFP (Tissot and 

Espitalie, 1975) is classified by the chemical composition, specifically, the HI and OI. If 

the source rock sample is still immature, the kerogen type could indicate the source rock 

potential,        
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Figure 26. Modified van Krevelen diagram for the Woodford Shale samples 

 

specifically, whether it would generate oil or gas or nothing. But the IFP kerogen type 

could not provide direct information on organic matter type and depositional 

environment. There is not a one-to-one relationship between IFP kerogen type and 

organofacies. An extreme case is you can find type I, II, III and even IV kerogens from 

an identical organofacies: lacustrine organofacies C (Schamel, 2015;  
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Figure 27). By IFP definition these are all Type I and Type III kerogens with possible 

terrestrial (coal/lacustrine) origins. While, the dataset is in fact the lower Green River 

Formation,  

 

Figure 27. HI vs. OI of Green River Formation lacustrine sediments (modified 

from Schamel, 2015) 

 

which is a world famous lacustrine mudrock. Based on Pepper’s experiments (1995), all 

these lacustrine mudrock samples have the same generation kinetics with expulsion 

behavior and proportion of oil to gas generated partly controlled by HI. The data points’ 

spread distribution is because of the samples oxidation. From this case, it is obviously the 

IFP kerogen type is not an indicator of the source rock depositional environment or source 
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rock organic matter input type. Therefore the concept of organofacies (Table 4), which is 

derived from source rock organic matter input type and source rock depositional 

environment (Figure 28), not only chemical composition, was used in this study to 

classify source rock facies. 

Organofacies can be thought to be a collection of kerogens derived from common 

organic precursors, deposited in similar environments, and exposed to similar early 

preservation histories (Pepper and Corvi, 1995). Different from the IFP kerogen type 

classified upon the chemical composition difference, the concept of organofacies is 

derived from integration of source rock organic matter input type and source rock 

depositional environment (Figure 28). For example, a typical organofacies A is marine 

clay-poor carbonate shale, like the Monterey Shale in California; a typical organofacies 

B is marine clay-rich siliciclastic shale, like the Woodford Shale in Oklahoma and the 

Bakken Shale in North Dakota; organofacies C is lacustrine shale, could develop in 

freshwater lacustrine or saline lakes; organofaices D/E is terrigenous non-marine organic 

matter rich in wax developed in some ever-wet coastal plains of Mesozoic and younger 

age; organofaices F is terrigenous organic matter rich in lignin developed in coastal plains 

of mostly Paleozoic age (Pepper and Corvi, 1995; Table 4).



 

 

 

Table 4. Organofacies classification (modified from Pepper & Corvi, 1995) 
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Figure 28. Organofacies depositional environments (modified from Pepper & Corvi, 1995)
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The Woodford Shale in Oklahoma is a typical organofacies B – marine clay-rich 

siliciclastic shale based on three key characteristics found in previous research: 1) marine 

non-calcareous siliceous mudstone (Amsden, 1975; Kirkland et al., 1992; Comer, 2008; 

Kvale and Bynum, 2014); 2) low-to-moderate sulfur contents (Jarvie et al., 2007); and 3) 

high clay mineral contents (Kirkland et al., 1992; Comer, 2008; Kvale and Bynum, 2014). 

The spread distribution in HI and OI of the Woodford rock samples in this study (Figure 

26) is not attributing to organofacies difference but the shale deposition heterogeneity and 

possible oxidation during organic matter preservation discussed later. Based on the Tmax 

vs. HI plot (Figure 29), rock samples from most of the studied wells, including Boyd 

Unit-1, Dannehl 2-16, Roberson Ranch 10-1, Anderson 12-1, Wilma 1-16 SWD, Winney 

1-8 SWD, Adkisson 1-33 SWD and some Frank 1-33 SWD show moderate HI values 

(300-500 mg HC/g TOC) indicating these samples are in the moderate maturity stage. 

The higher HI values (500-700 mg HC/g TOC) for the samples from Pritchard-1, Elinore 

1-18 SWD and Mary Earp-5 are thought to be a result of their low maturity dominantly 

and not only related to organic matter input. The low vitrinite reflectance values of the 

Woodford samples from these three wells support their relatively low maturity. In 

addition, these three wells are located in the east of the study area (Figure 22; on the 

Cherokee Platform east of the Nemaha Uplift) and the burial depth of the Woodford Shale 

in these three wells is shallower than in the rest of the wells (Figure 30), which could be 

additional supporting evidence that the high HI values are mainly as a result of maturity 

control but not source control. Therefore their major source rock facies is organofacies B 

of marine origin similar to the majority of the studied wells. The samples with low HI 

values (200-300 mg HC/g TOC) from Chenoweth-1, York-1 and Pope Unit-1 wells are 
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interpreted to be of high maturity confirmed by their high vitrinite reflectance values and 

their deeper Woodford burial depths resulting from the Woodford steeper dipping angle 

towards the Anadarko Basin (Figure 30). The high OI values for some Woodford samples 

from Frank 1-33 SWD (up to 140 mg CO2/g TOC; Figure 26) are probably the result of 

bioturbation during the Woodford deposition in this well. Another outlier is Anderson 12-

1. It is located on the Anadarko Shelf west of the Nemaha Uplift. Its VRo value is close 

to that from Chenoweth-1 and the location of these two wells are very close. The 

relatively high HI values (362 mg HC/g TOC in average) could be interpreted as not 

enough samples to give the true value. Following the dipping trend of the Woodford Shale 

structure, the Woodford in the studied wells show the lowest HI values (200-300 mg HC/g 

TOC) on the Anadarko Shelf west of the Nemaha Uplift, medium HI values (300-400 mg 

HC/g TOC) on the Cherokee Platform east of the Nemaha Uplift, and highest HI values 

on the Cherokee Platform further east of the Nemaha Uplift, which is eastern-most region 

of the study area (Figure 30). It seems to be a trend that the Woodford HI values decrease 

the Woodford burial depth increases, which is not surprising.



 

 

 

Figure 29. Tmax vs. HI plot showing maturity and kerogen type of the Woodford Shale samples.
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Figure 30.  Woodford Structural Map (in SSTVD) of Study Area with Woodford Rock HI and VRo (measured).
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4.1.3 Thermal Maturity from Vitrinite Reflectance Measurements 

Vitrinite reflectance (%Ro) has been used as a scale for source rock thermal 

maturity for years (Philp, 2003; Cardott, 2011, 2012 and 2013), even though there is still 

controversy on whether or not a vitrinite reflectance value of a source rock could represent 

its thermal maturity (Cardott, 2011). Two main controversies have been debated by 

geologists and geochemists in the oil industry. One is the Ro value measures the thermal 

stress of a source rock but not thermal strain (Cardott, 2011 and 2012). The other is the 

Ro value is valid only if it is measured from the original vitrinite formed in-situ without 

oxidation but not reworked vitrinite transported into the shale deposits (Cardott, 2011 and 

2012).  

The reason why the scholars differentiate thermal strain from thermal stress is 

because in the oil industry people care about thermal strain, which measures the extent of 

hydrocarbon generation (Is source rock mature enough to generate hydrocarbon? Did it 

generate oil or gas? How much oil/gas generated?), more than thermal stress, which 

measures how much heat is applied to the source rock. People found even with a same 

Ro value, different type of source rock has different thermal strain. For example, a marine 

carbonate, clay-poor, sulphur-rich source rock (organofacies A) with 0.5% Ro value has 

generated hydrocarbon but a terrestrial deltaic source rock (organofacies D/E) with 0.5% 

Ro value is still immature to generate anything (Hunt, 1979; Pepper and Corvi, 1995). 

That’s because vitrinite reflectance, originally derived from coal petrography, measures 

the percentage of incident light reflected from the surface of vitrinite particles in a 

sedimentary rock (Dow, 1977; Tissot and Welte, 1984), which is a direct measurement 

of thermal stress of source rock. The Tmax value, HI value and some biomarker thermal 
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maturity indicators are direct proxies of thermal strain of source rock. Because they are 

measured directly from “Products” not “Reactants”, if assuming hydrocarbon generation 

is a sort of chemical reaction.  

The other controversy was originally proposed by geologists. Originally Ro 

values were measured from vitrinites in coals. Obviously these vitrinites are formed in-

situ. Therefore their Ro values could scale real thermal stress of source rocks. For the 

other types of source rocks, like marine or lacustrine source rocks, the Ro values would 

be valid thermal stress proxy only if the vitrinites within them have not been reworked or 

oxidized before deposition (Cardott, 2012 and 2013).         

Vitrinite in the Woodford Shale, common in the lower Woodford member (Urban, 

1960; Cardott, 2012), is derived from woody tissue of the progymnosperm Archaeopteris 

(Beck and Wight, 1988 and Anderson et al., 1995). The reason why the author in this 

research still measured Ro values to represent thermal maturity is because the studied 

target, the Woodford Shale in North-Central Oklahoma, has been proven to be 

organofacies B of marine origin. Therefore, in other words, there would be no issues on 

whether or not thermal stress measured by Ro values is consistent with thermal strain. As 

long as confirming the vitrinites to be measured are of original status without reworking 

by organic petrography, the purpose of vitrinite reflectance (%Ro) measurements in this 

research is to establish a covary trend between Ro values and thermal strain proxies such 

as HI values.  Therefore, in this research, vitrinite reflectance (%Ro) measurements were 

attempted on more than twenty Woodford Shale samples from eleven different well 

locations: Pritchard-1, Mary Earp-5, Elinore 1-18 SWD, Frank 1-33 SWD, Adkisson 1-

33 SWD, Wilma 1-16 SWD, Winney 1-8 SWD, Chenoweth-1, Anderson 12-1, Dannehl 
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2-16 and York-1. However, the identification of vitrinite particles with good measurable 

quality from these whole rock samples, or their isolated kerogen was difficult owing to 

the scarcity of vitrinite in the Woodford samples. This fact was rather expected since 

vitrinite is mainly derived from land-plant material (ASTM, 2011). The Woodford Shale 

was deposited during late Devonian to early Mississippian period, as higher plants were 

evolving, leading to the low terrigenous input to the Woodford shale. Most of the vitrinite 

fragments identified were pitted and/or insufficiently-large to obtain a valid 

measurement. Pitted vitrinite usually shows lower reflectance values due to its pitted 

surface scattering the reflected light. In addition, it is rather difficult to find a sufficient 

number of the large vitrinite clasts whose size is greater than the measuring spot of the 

microscope used for the vitrinite analysis.  

From the requirement of organic petrography, a valid Ro value should be based 

on more than twenty random vitrinite reflectance measurements from a single rock pellet 

(Barker and Pawlewicz, 1993). Owing to the lack of good vitrinite reflectance 

measurements, two solutions were applied to obtain valid Ro values. One was to select 

the Lower Woodford member samples. Based on sequence stratigraphy, the Lower 

Woodford was deposited as the Woodford Sea started to transgress (Kirkland et al., 1992). 

In this period, Woodford deposition was relatively close to the land, so there was greater 

chance for deposition of higher plant derived organic matter input into the Woodford. 

More good quality of vitrinite fragments were found in the Lower Woodford samples 

than the Middle and Upper Woodford (Urban, 1960; Cardott, 2012). The other solution 

to obtain valid Ro values was to concentrate kerogen from the whole rock samples by 

removing the bitumen and then the mineral matrix with hydrochloric acid and 
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hydrofluoric acid. By concentrating the vitrinite in this manner, several valid Ro values 

were obtained based on more than twenty random vitrinite measurements. In the Frank 

1-33 SWD 5627.9 feet Woodford sample, thirty five (35) vitrinite clasts were identified 

and measured, ranging from 0.70 to 0.88%Ro with a random Ro measurement of 0.77%, 

indicating that in this area the Woodford Shale is approaching peak oil generation. A 

photomicrograph of a vitrinite clast (0.72%Ro), bitumen (0.44%Ro), and the histogram of 

random vitrinite reflectance measurement from the same sample is shown in Figure 31. 

This figure illustrates the variability of macerals and bitumen content observed in the 

Woodford Shale samples that could potentially lead to errors in the identification and 

measurement of vitrinite reflectance. One of these common errors would be misidentify 

bitumen as vitrinite, which would lead to a lower Ro value. This is one possible 

explanation why the thermal maturity of the Woodford Shale in this study area was 

underestimated by Cardott (2013 and 2014) compared to the measured results reported in 

this research.  

For the rest of the Woodford pellets, around ten Ro measurements were obtained 

per sample and could be counted as a qualitative Ro result. A Ro map of the study area 

was plotted by all the measured Ro values (Figure 30). A general Ro variation trend is 

obvious and consistent with the NE-SW dipping trend of the Woodford structure in 

Central Oklahoma. The Woodford in the studied wells show the highest Ro values (0.82-

0.86% Ro) on the Anadarko Shelf west of the Nemaha Uplift, medium Ro values (0.75-

0.78% Ro) on the Cherokee Platform east of the Nemaha Uplift, and lowest Ro values 

(0.48-0.59% Ro), which is the eastern-most region of the study area. The Anadarko Shelf 

and the Cherokee Platform are separated by the Nemaha Uplift Zone. It seems to be a 
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general trend that the Woodford Ro values increases as the Woodford burial depth 

increases, and the Woodford HI values decreases as the Woodford burial depth increases 

as discussed in section 4.1.2. These two trends may indicate the Woodford thermal status 

on the Anadarko Shelf and Cherokee Platform were controlled by the same tectonic 

events in the geological history.     

 

  



 

 

 

Figure 31. Photomicrographs from the Frank 1-33 SWD 5627.9 feet Woodford Shale sample
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4.1.4 Gas Chromatography 

4.1.4.1 n-Alkanes distributions 

The terrigenous to aquatic ratio (TAR), is a crude parameter used to evaluate the 

type of organic matter input that compares the high-odd-carbon-numbered n-alkanes 

(terrigenous organic matter) with the low-odd-carbon-numbered n-alkanes (marine 

organic matter; Bourbonniere and Meyers, 1996). The TAR ratio should be used with 

caution since it was derived from various recent sediment data and is sensitive to 

secondary processes including biodegradation and thermal maturation (Moldowan et al., 

1985; Derenne et al., 1988). The carbon preference index (CPI; Bray and Evans, 1961) 

compares the odd-carbon-numbered n-alkanes (n-C25-n-C33) against the even-carbon-

numbered n-alkanes (n-C24-n-C34). In general, n-alkanes derived from marine organic 

matter do not show carbon-number preference, whereas n-alkanes originating from 

terrigenous organic matter tend to show odd-carbon-number predominance. Some source 

rocks developed in hypersaline and carbonate settings at low maturity were reported to 

show low CPI values due to even-numbered n-alkane predominance (Mello et al., 1988). 

In some cases, CPI can be used to roughly assess thermal maturity. Oils and rock extracts 

showing CPI values significantly greater than 1.0 (odd predominance) tend to be 

indicative of low thermal maturity (Peters et al., 2005). In general, both the TAR and CPI 

ratios are influenced by source and thermal maturity, and additional geochemical 

parameters need to be incorporated with these ratios when characterizing oils and source 

rocks. 

For the rock samples in this study, gas chromatograms of the saturate fractions of 

the Woodford rock extracts show only small variations in composition between the 
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different depths (Figure 32). Several geochemical parameters calculated from the n-

alkane chromatograms of rock extracts are summarized in Table 5. In the case of the 

Woodford Shale samples, all of them shows a unimodal distribution towards the low-

carbon-number members, and without any preference of even-carbon-numbered n-

alkanes predominance (Figure 32; Table 5). The Woodford and the Mississippian rock 

extract samples show a maximum around n-C15 (Table 5). Several characteristics, 

including the unimodal n-alkanes distribution pattern, n-alkane maximum carbon number 

around n-C15 and average Pr/Ph ratio in the range of 1 - 2, all point towards a marine 

origin and the existence of reducing (anoxic) conditions during the source rock 

deposition. It seems that the TAR ratio of Mississippian extracts (Winney 1-8 SWD 

5155’, 5166’, and C8869 in Table 5) are higher than that from the Woodford. Considering 

the carbonate depositional settings of the Mississippian rock, this finding is consistent 

with the other previously reported carbonates source rock organic geochemical studies in 

Oklahoma and Texas, like the Eagle Ford Shale (Miceli Romero, 2014), the Lower 

Mississippian Limestone (Kim, 1999), and the Viola Limestone (Wang, 1993). The TAR 

ratio difference between the Woodford and Mississippian extracts may reflect the 

depositional environment changing from distal deep marine to proximal carbonate 

settings. The CPI values of all of the rock samples are close to 1 and could not be used to 

distinguish the relative amounts of marine/terrigenous input, since they have all already 

reached equilibrium by thermal maturation.  

4.1.4.2 Pristane and Phytane 

Pristane (Pr) and phytane (Ph) were identified in the gas chromatograms of the 

saturate fractions from both the rock extracts (Figure 32). The Pr/Ph ratio has been widely 
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used for evaluating redox conditions during source rock deposition since their origin is 

dependent on oxygen availability during diagenesis (Didyk et al., 1978; Sofer, 1984; 

Waples, 1985). Pr and Ph are primarily derived from the phytyl side chain of the 

chlorophyll-a in phototrophic organisms and bacteriochlorophyll in purple sulfur bacteria 

(Brooks et al., 1969; Powell and McKirdy, 1973). While, other likely sources, such as 

unsaturated isoprenoids in zooplankton, higher animals, and archaea, have been found to 

be precursors for Pr and Ph as well (Blumer et al., 1963; Blumer and Thomas, 1965; 

Goosens et al., 1984; Rowland, 1990; Bechtel et al., 2007).  

Pr and Ph can be generated by two different chemical reactions from the phytyl 

chain of chlorophyll. Under reducing or suboxic (high Eh) conditions, phytol undergoes 

hydrogenation and reduction to generate phytane. On the contrary, under oxic conditions 

(low Eh), pristane was produced by oxidation and decarboxylation of the phytol chain 

(Tissot and Welte, 1984). Based on this theory, Pr/Ph ratios less than 1 suggest anoxic 

conditions, whereas Pr/Ph greater than 1 are associated with oxic conditions. Therefore 

the Pr/Ph ratio could be a proxy in evaluating the redox condition of the depositional 

environment of the source rock (Didyk et al., 1978; Shanmugam, 1985). But the real 

world is more complex than the theory above. The utility of Pr/Ph ratio in describing the 

redox conditions of source rock depositional environment is limited by several factors, 
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Figure 32. Gas chromatograms of the saturate fractions for the Pritchard-1 

Woodford rock extracts (Pr = pristane; Ph = phytane, n-C15 = C15 normal alkane)



 

 

Table 5. N-Alkanes parameters derived from the saturate fraction of Woodford Shale and Mississippian Rock extracts 

Samples Formation Range 
n-alkane 

distribution 

n-alkane 

maximum 
Pr/Ph  TAR  CPI  

Frank 1-33 SWD Woodford n-C13-n-C26 unimodal n-C15 1.55-2.61 0.03-0.05 0.73-1.10 

Wilma 1-16 SWD Woodford n-C12-n-C29 unimodal n-C16 1.22-2.29 0.04-0.08 0.92-1.09 

Winney 1-8 SWD Woodford n-C12-n-C29 unimodal n-C16 1.80-1.89 0.05 1.06 

Elinore 1-18 

SWD 
Woodford n-C11-n-C29 unimodal n-C15 1.81-1.98 0.02-0.04 1.00-1.14 

Adkisson 1-33 

SWD 
Woodford n-C11-n-C29 unimodal n-C15 1.33-1.68 0.03-0.07 0.84-1.03 

Pritchard-1 Woodford n-C12-n-C35 unimodal n-C15 1.18-2.15 0.03-0.07 0.97-1.04 

Anderson 12-1 Woodford n-C11-n-C39 unimodal n-C14 1.31-1.91 0.05-0.09 0.99-1.02 

Chenoweth-1  Woodford n-C12-n-C38 unimodal n-C15 1.73 0.11 1.02 

York-1  Woodford n-C12-n-C36 unimodal n-C17 0.84-1.08 0.08-0.10 1.01-1.02 

Pope Unit-1  Woodford n-C11-n-C35 unimodal n-C15 2.24 0.05 1.03 

Winney 1-8 SWD 

5155 
Mississippian n-C12-n-C30 unimodal n-C15 1.27 0.22 1.11 

Winney 1-8 SWD 

5166 
Mississippian n-C12-n-C30 unimodal n-C15 1.46 0.23 1.06 

C8869 Mississippian n-C13-n-C33 unimodal n-C18 0.98 0.30 1.18 

8
6
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such as variable precursor origin, different rates of early generation, and interference by 

higher maturity. Therefore, for rock and oil samples within the oil window, Pr/Ph ratios 

in the range of 0.8-3.0 are not recommended to indicate specific redox conditions due to 

the limitation stated above (Peters et al, 2005). It is recommended that Pr/Ph values 

greater than 3 are associated with terrigenous organic matter input under oxic to suboxic 

conditions, while Pr/Ph values lower than 0.8 suggest anoxic, hypersaline or carbonate 

depositional environments (ten Haven et al., 1987).  

Overall, the majority of the rock extracts show low Pr/Ph ratios indicating the 

presence of reducing conditions (anoxia) during source rock deposition (Table 5). 

Another tool to evaluate variations in redox conditions, organic matter source, maturity, 

and alteration in source rock extracts and oils is the relationship between Pr, Ph, n-alkanes 

C17, and n-C18 (Shanmugam, 1985). A cross plot of Pr/n-C17 versus Ph/n-C18 for the rock 

extracts analyzed in this study is shown in Figure 33. This diagram indicates that these 

samples are mainly composed of marine organic matter mixed with terrigenous input, 

which is usually developed in a deltaic or near-shore depositional environment. The 

Woodford or Mississippian source rocks were not developed in a deltaic depositional 

environment. Moreover, from this plot, there is no obvious interrelationship between the 

locality of data points and their geographic aspects or geological aspects, either. Such 

plots derived from n-alkane distributions are affected by multiple indigenous and 

exogenous factors as stated before, which could mask the samples’ original geological 

and/or geochemical properties. Hence additional geochemical data are needed to reveal 

indigenous differences between samples.



 

 

 

Figure 33. Isoprenoids plot of Pristane/n-C17 versus Phytane/n-C18 showing redox conditions, maturity, and depositional 

environments for samples of the Woodford Shale (n-C17 = C17 normal alkane; n-C18 = C18 normal alkane) 

8
8
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4.2 Evaluation of Organic Matter Source and Depositional Environments 

4.2.1 Steranes (m/z 217) 

Steranes originate from sterols, which are compounds found in eukaryotic 

organisms, mainly algae and higher plants (Tissot and Welte, 1984). Four main families 

of sterols containing 27, 28, 29, 30 carbon atoms produce four families of regular steranes 

during diagenesis (Waples and Machihara, 1991). In this study identification of steranes, 

diasteranes, pregnanes and homopregnanes were performed on the B&C fractions of rock 

extracts by single ion monitoring (SIM) GC-MS through analysis of the m/z 217.3 ion 

(Figure 34). The m/z 217.3 ion mass chromatogram of the Prtichard-1 5147 ft Woodford 

rock extract shows the steranes distributions of a typical Woodford Shale extracts in the 

study area (Figure 34). Peak identifications are shown in Table 6. Formulas for 

calculation of geochemical ratios are displayed in Appendix A. Numerical values of the 

geochemical ratios calculated are in Appendix D. Biomarkers quantitation results are in 

Appendix F.  

 

Figure 34. SIM m/z 217.3 mass chromatogram showing distribution of steranes in 

the B&C fraction of Pritchard-1 Woodford rock extract. Peak identification is 

listed in Table 6. 
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Table 6. Identification of steranes in the SIM m/z 217.3 mass chromatogram of the 

B&C fraction of Pritchard-1 Woodford rock extract 

Peak # Compound 

C24D Deuterated n-tetracosane (ISTD) 

1 Diapregnane 

2 14β(H),17β(H)-Pregnane 

3 Diahomopregnane 

4 14β(H),17β(H)-Homopregnane 

5 13β(H),17α(H)-Diacholestane (20S) 

6 13β(H),17α(H)-Diacholestane (20R) 

7 13α(H),17β(H)-Diacholestane (20S) 

8 13α(H),17β(H)-Diacholestane (20R) 

9 24-Methyl-13β(H),17α(H)-Diacholestane (20S) 

10 24-Methyl-13β(H),17α(H)-Diacholestane (20R) 

11 24-Methyl-13α(H),17β(H)-Diacholestane (20S) 

12 14α(H),17α(H)-Cholestane (20S) 

13 24-Ethyl-13β(H),17α(H)-Diacholestane (20S) 

14 14β(H),17β(H)-Cholestane (20R) 

15 14β(H),17β(H)-Cholestane (20S) 

16 24-Methyl-13α(H),17β(H)-Diacholestane (20R) 

17 14α(H),17α(H)-Cholestane (20R) 

18 24-Ethyl-13β(H),17α(H)-Diacholestane (20R) 

19 24-Ethyl-13α(H),17β(H)-Diacholestane (20S) 

20 24-Methyl-14α(H),17α(H)-Cholestane (20S) 

21 24-Methyl-14β(H),17β(H)-Cholestane (20R) 

22 24-Ethyl-13α(H),17β(H)-Diacholestane (20R) 

23 24-Methyl-14β(H),17β(H)-Cholestane (20S) 

24 24-Methyl-14α(H),17α(H)-Cholestane (20R) 

25 24-Ethyl-14α(H),17α(H)-Cholestane (20S) 

26 24-Ethyl-14β(H),17β(H)-Cholestane (20R) 

27 24-Ethyl-14β(H),17β(H)-Cholestane (20S) 

28 24-Ethyl-14α(H),17α(H)-Cholestane (20R) 

29 24-Propyl-14α(H),17α(H) -Cholestane (20S) 

30 24-Propyl-14β(H),17β(H) -Cholestane (20R) 

31 24-Propyl-14β(H),17β(H) -Cholestane (20S) 

32 24-Propyl-14α(H),17α(H) -Cholestane (20R) 
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4.2.1.1 Regular steranes 

A ternary diagram based on the distributions of C27, C28 and C29 14α(H), 17α(H) 

20(R)  regular steranes (Figure 36) was used to assess possible variations in depositional 

environment of the Woodford Shale and Mississippian rock samples by applying a similar 

approach to that of Moldowan et al. (1985). The idea behind this ternary diagram is that 

C27 steranes (cholestane) are primarily derived from precursors found in plankton and 

marine invertebrates. C28 steranes (ergostane) also originate from similar precursors, 

although they can be generated from terrestrial organisms as well (Huang and 

Meinschein, 1979; Moldowan et al., 1985). Similarly, C29 steranes (stigmastane) are 

derived from terrigenous organic matter sources and marine algae (Volkman, 1986). The 

regular steranes ternary plot for the rock samples (Figure 36) shows that the Woodford 

and Mississippian rock samples are grouped in slightly different areas of the plot. Either 

the Mississippian rock samples or the Woodford rock samples are not exactly falling into 

their corresponding areas on Moldowan’s plot (1985; Figure 35), which may be attributed 

to the data sets for Moldowan to plot was limited back to that time. Data from the oils are 

discussed in section 5.2.2.1. 
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Figure 35. C27-C28-C29 regular sterane ternary diagram of oils from known source 

rocks (Moldowan et al., 1985) 

 

Figure 36. Regular sterane ternary diagram of rock samples using C27, C28, and 

C29 14α(H), 17α(H) (20R) regular sterane isomers 
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Another group of steranes used for characterizing marine organic matter source 

input are the 24-n-propylcholestanes. These C30 steranes were reported to originate from 

24-n-propylcholesterols, which are biosynthesized by Chrysophyte, a marine algae of the 

order Sarcinochrysidales, and common in marine invertebrates (Moldowan et al., 1990). 

As a consequence, C30 steranes are specific biomarkers for marine organic matter 

(Moldowan et al., 1985). C30 Steranes were detected in all of the Woodford rock samples 

analyzed but in variable concentrations.  

The internal vertical variation in the Woodford Shale has been discussed by Miceli 

Romero and Philp (2012). They found AIR (Aryl Isoprenoids Ratio) covaried with Pr/Ph 

within a core from Wyche Farm Quarry, Southern Oklahoma. Recently Slatt and his 

Woodford consortium conducted a group of studies of internal Woodford facies variation 

based on chemostartigraphy (Treanton, 2014; Turner et al., 2015a and b). The current 

study has attempted to correlate biomarkers variation with chemostratigraphy. The 

Woodford sub-members subdivision in this study is based on GR log and trace elements 

concentrations’ variation within a regional Woodford chemosequence stratigraphic 

framework setup by Turner et al. (2015a and b; Figure 19). The Woodford core from 

Pritchard-1 well has been sampled at 9 depths with an attempt to correlate the biomarker 

variation with chemostratigraphy. The chemostratigraphic profile of Pritchard-1 

Woodford core shows the Upper and Middle Woodford member subdivision and sea level 

Transgression/Regression (T/R) cyclicity during the Woodford Deposition (Figure 20). 

Screening the regular sterane based biomarker ratios within the geochemical log, it would 

be a farfetched attempt to make a correlation between any regular sterane based 

biomarker ratios’ variation and sea level fluctuation (Figure 37). There is not a clear trend 
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in terms of regular sterane based biomarker ratios’ variation changing from Middle 

Woodford to Lower Woodford probably due to not enough data points being sampled to 

observe the sea level fluctuations (Figure 37).  

The C30 sterane index, ratio of C30/(C27-C30) steranes, can be used to investigate 

marine organic matter input (Molodwan et al., 1985; Peters et al., 1986). Moldowan et al. 

(1992) found that many oils derived from source rocks deposited under restricted saline 

to hypersaline lagoonal conditions show lower C30/(C27-C30) steranes than those from 

open marine systems. Geochemical logs of C30 sterane index for the Woodford rock 

extracts show small variations within the Upper Woodford member (Figure 37) generally 

pointing to a great marine input in the Upper Woodford Member. 

4.2.1.2 Diasteranes (rearranged steranes) 

Diasteranes are formed by chemical reduction of diasterenes, which are derived 

from sterols during diagenesis. This conversion is thought to be catalyzed by acidic sites 

on clay minerals (Rubinstein et al., 1975), such as montmorillonite or illite, and promoted 

by acidic (low pH) and oxic (high Eh) conditions in the depositional environment 

(Moldowan et al., 1986; Moldowan et al., 1991). Therefore, the ratios of 

diasteranes/steranes are moderately specific for indicating source rock lithology and 

redox conditions, but are also affected by source rock maturity (Seifert and Moldowan, 

1978). At high levels of thermal maturity, rearrangements of steroids to diasterene 

precursors may become possible, even without clays (van Kaam-Peters et al., 1998). The 

C27 diasterane/C27 sterane ratio can help differentiate carbonate and siliciclastic source 

rocks samples at similar level of thermal maturity (Mello et al., 1988). Low C27 

diasterane/C27 sterane ratios (<0.30) were found to be associated with anoxic clay-poor 
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or carbonate source rock; whereas high ratios usually indicate clay-rich siliciclastic 

source rocks. While, this finding is not always true because significant amounts of 

diasteranes have been reported to be found in some clay-poor carbonate environments 

(Clark and Philp, 1989), this lithology and redox proxy needs to be used with caution and 

to be incorporated with other geochemical parameters. 

Geochemical logs of C27 diasterane/C27 sterane for the Woodford Shale samples 

show lower values of this ratio in the Middle Member, suggesting that this interval has 

lower clay content relative to the other members (Figure 37). These observations are 

consistent with the previous findings on the relatively low clay content in the Middle 

Woodford Member compared to the other members (Bernal, 2013; Molinares Blanco, 

2013). Based on the idea of clastics sequence stratigraphy, the Lower Woodford Member 

was deposited during a transgressive system tract (TST), when the Woodford deposition 

site was relatively closer to the shoreline, so the Lower Woodford Member has a greater 

chance to receive clay-rich terrigenous deposits compared to the Middle Woodford 

Member. It is possible that these clays catalyzed rearrangements of steroids to diasterene 

precursors.  

 

 



 

 

 

Figure 37. Geochemical logs of steranes ratios for Pritchard-1 Woodford rock samples. Formulas for calculation of ratios are 

displayed in Appendix A. 

9
6
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4.2.1.3 Pregnanes 

Significant amounts of pregnane (C20 sterane) and homopregnane (C21 sterane) 

have been detected in bitumen extracted from source rocks deposited in the hypersaline 

depositional environments (ten Haven et al., 1986). Wang (1993) analyzed rock extracts 

from the Springer Formation in the Anadarko Basin, Oklahoma and found that pregnanes 

were more resistant to weathering than regular steranes and diasteranes. Pregnanes can 

also be produced by degradation of the higher carbon numbered steranes at high maturity 

levels. Geochemical logs of the pregnane/sterane ratio (Formula for calculation of this 

ratio is displayed in Appendix A) for the Pritchard-1 well samples show higher 

pregnane/sterane ratios in the Upper Woodford member, indicating the possibility of 

hypersaline, anoxic conditions present in the water column during deposition of this unit 

(Figure 37). Enrichment of pregnane may be attributed to high thermal maturity as 

reported by Zhang et al. (2014). But in the case of Prichart-1 Woodford samples analyzed, 

the relatively higher pregnane/sterane ratios associated with the Upper Woodford 

Member should have nothing to do with high maturity because the Woodford in this well 

is still immature or at most early mature as discussed in Section 4.1.3. Therefore the 

higher values for the pregnane/sterane ratio in the Upper Woodford are more likely to 

represent episodes of higher salinity in the water column during Upper Woodford 

deposition. 

4.2.2 Terpanes (m/z 191) 

Terpanes found in petroleum constitute several homologous series of compounds 

mainly originating from bacterial (prokaryotic) membrane lipids (Ourisson et al., 1982; 

Alexander, 1983; Tissot and Welte, 1984). Terpane compounds include acyclic, bicyclic, 
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tricyclic, tetracyclic, and pentacyclic homologous series. Tri-, tetra-, and pentacyclic 

terpanes were identified in the Woodford Shale rock extracts by analysis of their B&C 

fractions through SIM/GC-MS of the m/z 191.3 ion. Fragmentograms of these compounds 

are presented in Figure 38 and peak identifications are given in Table 7. Formulas for 

calculation of geochemical ratios are displayed in Appendix A. Geochemical ratios of 

terpanes and their relationships with other biomarker groups helped in assessing 

variations in organic matter source, depositional environment, redox conditions, and 

thermal maturity for the Woodford Shale rock extracts. 

 

Figure 38. SIM m/z 191.3 mass chromatograms showing distributions of terpanes 

in the B&C fractions of the Pritchard-1 5119 ft Woodford extract. Red brackets 

denote tricyclic terpane isomers and purple brackets denote homohopane isomers. 

Peak identification is presented in Table 7. 

 

Table 7. Identification of terpanes in the SIM m/z 191.3 mass chromatograms of 

the B&C fractions 

Peak # Compound 

C24D Deuterated n-tetracosane (ISTD) 

1 C20 Tricyclic terpane (Cheilanthane) 

2 C21 Tricyclic terpane (Cheilanthane) 

3 C22 Tricyclic terpane (Cheilanthane) 

4 C23 Tricyclic terpane (Cheilanthane) 
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5 C24 Tricyclic terpane (Cheilanthane) 

6 C25 Tricyclic terpanes (Cheilanthanes 22S and 22R) 

7 C24 Tetracyclic terpane 

8 C26 Tricyclic terpanes (Cheilanthanes 22S and 22R) 

9 C28 Tricyclic terpanes (Cheilanthanes 22S and 22R) 

10 C29 Tricyclic terpanes (Cheilanthanes 22S and 22R) 

11 C27 18α(H)-22,29,30-Trisnorneohopane (Ts) 

12 C30 Tricyclic terpanes (Cheilanthanes 22S and 22R) 

13 C27 17α(H)-22,29,30-Trisnorhopane (Tm) 

14 C31 Tricyclic terpanes (Cheilanthanes 22S and 22R) 

15 C29 17α(H),21β(H)-30-Norhopane 

16 C29Ts 18α(H)-30-Norneohopane 

17 D30 15α-methyl-17α(H)-27-Norhopane (Diahopane) 

18 C30 17α(H),21β(H)-Hopane 

19 C33 Tricyclic terpanes (Cheilanthanes 22S and 22R) 

20 C31 17α(H),21β(H)-Homohopanes (22S & 22R) 

21 C34 Tricyclic terpanes (Cheilanthanes 22S and 22R) 

22 C32 17α(H),21β(H)-Bishomohopane (22S & 22R) 

23 C35 Tricyclic terpanes (Cheilanthanes 22S and 22R) 

24 C33 17α(H),21β(H)-Trishomohopane (22S & 22R) 

25 C36 Tricyclic terpanes (Cheilanthanes 22S and 22R) 

26 C34 17α(H),21β(H)-Tetrakishomohopane (22S & 22R) 

27 C35 17α(H),21β(H)-Pentakishomohopane (22S & 22R) 

28 C38 Tricyclic terpanes (Cheilanthanes 22S and 22R) 

29 C39 Tricyclic terpanes (Cheilanthanes 22S and 22R) 

G Gammacerane 

4.2.2.1 Tricyclic terpanes 

Since there were probably different biological precursors for tricyclic terpanes 

less than C30  and those greater than  C30, according to Wang (1993) and Kim (1999), in 

this study tricyclic terpane series would be discussed as tricyclic terpanes (<C30) and 

extended tricyclic terpanes respectively (> C30). Tricyclic terpanes (cheilanthanes) are 

thought to be derived from algae and bacterial precursors (Aquino Neto et al., 1981; 
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Ourisson et al., 1982; Volkman et al., 1989). However, high concentrations of tricyclic 

terpanes and their aromatic analogs were found in Tasmanites-rich rocks, suggesting the 

Tasmanites algae as the origin for tricyclic terpanes (Volkman et al., 1989; Azevedo et 

al., 1992; Simoneit et al., 1993). Philp and Gilbert (1986) identified significant amounts 

of tricyclic terpanes in marine oils. Moreover, high amounts of C19 and C20 tricyclic 

terpanes were reported to be associated with lacustrine saline and marine carbonate 

environments (Mello et al., 1988). Compared to the hopanes, tricyclic terpanes are highly 

resistant to thermal maturation and biodegradation. For that reason, these compounds are 

widely used in source rock characterization, thermal maturity assessment, and oil-to-

source rock correlations (Zumberge, 1987). Ratios of tricyclics/17α-hopanes and C23 

tricyclic/C30 hopane have been widely used to differentiate organic matter type by 

comparing bacterial and/or algal input (tricyclic terpanes) versus prokaryotic contribution 

(hopanes) in source rock extracts and oils (Waples and Machihara, 1990). SIM m/z 191.3 

mass chromatograms show distributions of tricyclic terpanes in the B&C fractions of the 

Mississippian and Woodford rock extracts in this study (Figure 39). The Woodford rock 

extracts show higher C23 tricyclic/C30 hopane ratios in the Middle Woodford Member 

Shale (Figure 40), indicating a greater marine organic matter input during deposition of 

this unit, as previously discussed in section 4.2.1. 

Biomarker ratios based on tricyclic terpanes are also helpful in investigating 

depositional environments and differentiating source rock lithology. For example, the 

C22/C21 and the C24/C23 tricyclic terpane ratios favor in the identification of rock extracts 

and oils generated from carbonate source rocks. Rock extracts and oils derived from 

carbonate source rocks typically show high C22/C21 and low C24/C23 tricyclic terpane 
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ratios, while marine shale source rocks show low C22/C21 (0.20-0.50) and high C24/C23 

(0.50-1.00) tricyclic terpanes (J.E. Zumberge, 2000, personal communication in Peters et 

al., 2005, p. 558). A plot of C22/C21 versus C24/C23 tricyclic terpane ratios for source rock 

extracts from the Woodford Shale was shown in Figure 41. From this graph it is suggested 

that most of these samples are derived from marine shales, with exception of a few 

Pritchard-1 rock extracts, which are falling in the region of carbonate source rocks. 

In this study, the tricyclic terpanes with carbon numbers greater than C30 are 

defined as extended tricyclic terpanes. Their origin is still controversial (Wang, 1993; 

Kim, 1999; Dutta et al., 2006). The unusually abundant distribution of extended tricyclic 

terpanes has been reported as one of the most distinct characteristics of Mississippian 

source rock extracts and Mississippian-sourced oils in Oklahoma (Wang, 1993; Kim, 

1999). Kim (1999) preferred to believe the relative abundance of extended tricyclic 

terpanes (>C30) over homohopanes (C31~C35) appeared to be associated with several 

events of algal bloom during the deposition of Lower Mississippian Limestone (Kim, 

1999). The precursors of the tricyclic terpanes were previously thought to be present in 

Tasmanites. But the tricyclic terpanes associated with the Tasmanites are tricyclic 

terpanes containing the carbon number up to C30 (Volkman et al., 1989; Azevedo et al., 

1992; Simoneit et al., 1993). The extended tricyclic terpanes (>C30) may be derived from 

different organisms than hopanes or tricyclic terpanes (<C30) (Wang, 1993; Kim, 1999). 

The biological precursors for extended tricyclic terpanes (>C30) appeared to be related to 

archaebacterial or algal lipids, whereas specific prokaryotes (primitive organisms) are the 

major source for sedimentary hopanoids (Peters & Moldowan, 1991).  



 

 

 

Figure 39. SIM m/z 191.3 mass chromatograms showing distributions of tricyclic terpanes in the B&C fractions of the 

Mississippian and Woodford rock extracts. Red brackets denote tricyclic terpane isomers (TT = Tricyclic Terpane) and purple 

brackets denote homohopane isomers (HH = Homohopane) (IS: Internal Standard). Peak identification is presented in Table 

7. 
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Figure 40. Geochemical logs of biomarker ratios of terpanes for Pritchard-1 Woodford samples. Formulas for calculation of 

ratios are displayed in Appendix A.
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Figure 41. Plot of C22/C21 versus C24/C23 tricyclic terpanes shows source rock 

depositional environments for Woodford Shale rock extracts (Dotted lines are used 

as a guide. Plot template from Peters et al., 2005) 

 

The SIM m/z 191.3 mass chromatograms of two rock extracts are shown in Figure 

39, namely Winney 1-8 SWD 5155 ft Mississippian Limestone and 5360 ft Woodford 

Shale from the same well. From the SIM m/z 191.3 mass chromatograms of the 

Mississippian rock extract, several characteristics need to be documented: 1) extended 

tricyclic terpanes (TT33 ~ TT39) dominate over homohopanes (H31 ~ H35) (Appendix 

G); 2) very abundant tricyclic terpanes (TT28~TT31) (Appendix G). These 

characteristics are consistent with those previously observed for the Mississippian rocks 

in Oklahoma by Wang (1993) and Kim (1999).       
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4.2.2.2 Tetracyclic terpanes 

The exact biological origin of tetracyclic terpanes was controversial (Trendel et 

al., 1982; Aquino Neto et al., 1983; Connan et al., 1986; Clark and Philp, 1989) until 

Grice et al. (2001) performed the CSIA (compound specific isotope analysis) on C24 

tetracyclic terpane. What she found is that the stable carbon isotopic composition of the 

C24 tetracyclic terpane is consistant among torbanites from boghead coals, suggesting an 

origin from hopanoids or terrigenous precursors.  Therefore it has been well accepted 

tetracyclic terpanes derive from hopanes or precursor hopanoids by thermal or microbial 

cracking. Many publications stated these compounds are more resistant to thermal 

maturity and biodegradation compared to hopanes (Aquino Neto et al., 1983; Palacas et 

al., 1984; Connan et al., 1986; Clark and Philp, 1989; Grice et al., 2001). Tetracyclic 

terpanes range from C24 to C27 with tentative evidence for its homologs up to C35, where 

the C24 homolog has a widespread occurrence (Aquino Neto et al., 1983). Abundant C24 

tetracyclic terpanes were believed to be indicative of carbonate and evaporite depositional 

environments (Palacas et al., 1984; Clark and Philp, 1989). However, this compound was 

found to be overwhelmingly present compared to the C19~C29 tricyclic terpanes in the 

crude oil samples from the Gippsland Basin (Australia) and was incorrectly believed to 

originate from terrigenous organic matter (Philp and Gilbert, 1986). Generally, the C24 

tetracyclic terpane is commonly found, but not that abundant, in most marine oils 

generated by mudstone to carbonate source rocks (Peters et al., 2005).   

In this study, the C24 tetracyclic terpane was identified in all of the analyzed rock 

extracts and oils, and the C24 tetracyclic terpane/C30 hopane ratio showed small variations 

within the different Woodford members (Figure 40). Because of the deep marine 
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depositional environment of the Woodford Shale it is unlikely that the presence of the C24 

tetracyclic terpane be related to a significant higher plant input. It is possible that these 

variations are more dependent on lithology than organic facies variations. Significant 

amounts of C24 tetracyclic terpane was reported to be associated with the siliciclastic 

facies of La Luna Formation (Rangel et al., 2000). A correlation between C24 tetracyclic 

terpane/ C30 hopane ratio and C27 diasteranes/C27 steranes was observed in the Upper and 

Middle Woodford Member (Figure 37 and Figure 40), suggesting that in this case, the 

presence of C24 tetracyclic terpane may be dependent on clastic input. 

4.2.2.3 Pentacyclic terpanes (Hopanes) 

Hopanes are pentacyclic terpanes (Van Dorsselacer et al., 1977) that originate 

from hopanoids present in prokaryotes (bacteria and cyanobacteria) and higher plants but 

appear to be absent in eukaryotic algae (Ourisson et al., 1979). Bacteria are the major 

source for sedimentary hopanoids and hence hopanes are found to be ubiquitous in rock 

extracts and oils worldwide (Peters and Moldowan, 1991). The 17α(H)-norhopane (H29) 

and the 17α(H)-hopane (H30) are usually the prominent peaks in the m/z 191 GC/MS 

trace and these biomarkers have been used as potential source rock depositional 

environmental indicators (Waples and Machihara, 1991). All of the Woodford Shale 

samples analyzed have H29/H30 hopane ratio values lower than 1.0 (Appendix E). When 

plotted against the C35S/C34S hopanes ratio, the plot of H29/H30 vs. C35S/C34S hopanes 

can help identify source facies of oils and extracts (Figure 42). According to Peters et al. 

(J.E. Zumberge, 2000, personal communication in Peters et al., 2005, p. 571), the majority 

of oils and rock extracts generated from marine carbonates have high C35S/C34S and 

H29/H30 ratios (>0.8 and >0.6 respectively). Even though this relationship is not clear in 
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the studied samples (Figure 42), this plot suggests most of the Woodford Shale rock 

samples are of marine origin.  

The C31 22R/C30 hopane ratio (31R/30H) is applied to differentiate source rocks 

of marine versus lacustrine origin. C31 22R/C30 hopane ratios greater than 0.25 are 

associated with marine shale, carbonate, and marl source rocks (p. 569 in Peters et al., 

2005; originally from J.E. Zumberge, personal communication, 2000 in Peters et al., 

2005). Geochemical logs of this ratio for the Woodford Shale extracts (Figure 40) do not 

show much variation between the different members. Combination of this ratio with the 

C26/C25 tricyclic terpane ratio, which helps distinguishing marine (0.50-1.40) from 

lacustrine source rocks (>1.0 J.E. Zumberge, personal communication, 2000 in Peters et 

al., 2005), the plot of C26/C25 tricyclic terpane versus C31R/C30 hopane suggests the 

majority of samples have a marine origin (Figure 43). 
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Figure 42. Plot of C35S/C34S homohopanes (H35S/H34S) versus 30-Nor/C30 hopane 

(H29/H30) suggest most of the Woodford Shale rock samples are of marine origin 

(Dotted lines are used as a guide and do not represent fixed fields on the diagram. 

Plot template from Peters et al. 2005) 
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Figure 43. Plot of C26/C25 Tricyclic Terpane versus C31R/C30 Hopane shows that 

the Woodford Shale rock extract are mainly of marine origin (Dotted lines are 

used as a guide. Plot template from Peters et al., 2005) 

 

Distribution patterns of the extended hopanes or homohopanes (C31-C35) have 

been widely used to infer redox conditions during source rock deposition. These 

compounds were thought to be derived from bacteriohopanetetrol or other C35 hopanoids 

(Peters and Moldowan, 1991; Waples and Machihara, 1991). Similar homohopane 

distribution patterns suggest, but do not prove, a genetic relationship among oil samples. 

The C35 homohopane index, also expressed as C35/C34 homohopanes ratios or C35S/C34S 

hopanes, could be used as an indicator of redox potential in marine sediments during 

diagenesis. Many published papers suggest high C35 homohopanes were indicative of 

marine carbonates or evaporites (Boon et al, 1983; Connan et al., 1986; Fu Jiamo et al., 
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1986; Clark and Philp, 1989). However, many other studies prefer to believe high C35/C34 

homohopanes ratios are interpreted to be associated with highly reducing (low Eh) marine 

conditions during deposition (Peters and Moldowan, 1991) due to preferential 

preservation of the C35 homolog (Peters and Moldowan, 1991; Moldowan et al., 1992). 

Plots of homohopane distributions for the Elinore 1-18 SWD rock samples 

analyzed (Figure 44) do not show C35 homohopane predominance in any of the Woodford 

samples. Mississippian Limestone sample (4453 ft) from Elinore 1-18 SWD shows C35 

homohopane predominance over C34. This finding is consistent with the observation that 

high C35/C34 homohopanes ratios are generally related to marine carbonates source rocks, 

like the same homohopane distribution pattern found in the Eagle Ford Shale (Miceli 

Romero, 2014), which is a well-known carbonate source rock in South Texas. Therefore 

in this study, the C35 homohopane predominance is not only associated with anoxic 

conditions but also the source rock lithology.   

Gammacerane, a C30 triterpane, was tentatively identified in all the Woodford 

Shale samples analyzed (Figure 38) but coeluted with C34 22(R)-tricyclic terpanes 

(Cheilanthanes 22R) in most of the samples.  Although the origin of gammacerane is still 

uncertain, this compound may be formed by reduction of tetrahymanol during diagenesis 

(ten Haven et al., 1989). The precursor of tetrahymanol was reported to be associated 

with Tetrahymena, a fresh water ciliated protozoan (ten Haven et al., 1989). 

Consequently, gammacerane is used as a specific biomarker for water-column 

stratification and hypersaline conditions in marine and non-marine environments 

(Sinninghe Damsté et al., 1995). The occurrence of gammacerane in the Woodford Shale 

samples suggests that regional hypersaline conditions and water stratification may have 
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developed during deposition of these sediments. This observation positively correlated 

with the low Pr/Ph ratios (section 4.1.4.2) and the predominance of the ββ steranes over 

the αα steranes (Appendix D), which were reported to be associated with hypersalinity 

(ten Haven et al., 1988).  

4.2.2.4 Diahopanes 

The chemical structure of 17α-diahopanes suggests they are probably rearranged 

products from 17α-hopanes (Corbett and Smith, 1969). It was reported the C30 17α-

diahopanes in oil samples may be related to bacterial hopanoid precursors that have 

undergone oxidation in the D-ring and rearrangement by clay-mediated acidic catalysis 

(Corbett and Smith, 1969; Moldowan et al., 1991). Many terrigenous source rocks were 

deposited under oxic to suboxic conditions and are clay-rich. Therefore, it has been 

widely accepted that 17α-diahopanes originated from bacterial input to sediments 

containing clays deposited under oxic to suboxic conditions (Volkman et al., 1983). This 

interpretation is also consistent with the type of highly terrigenous oils found in the 

Gippsland Basin (Philp and Gilbert, 1986). Therefore the 17α-diahopane/17α-hopane 

ratio has been widely used as an oxic-suboxic/clay-rich depositional environmental 

indicator. 

A composite map of the Woodford Shale Structure (in SSTVD: Subsea Total 

Vertical Depth) in Central Oklahoma with average 17α-diahopane/hopane ratios of 

Woodford cores is shown in Figure 45. These data points could be divided into two 

groups: Group-A, six wells far from the paleo-Nemaha Uplift, including Elinore 1-18  



 

 

 

Figure 44. Homohopanes distributions for Woodford rock extracts from Elinore 1-18 SWD well compared with that from the 

Eagle Ford Shale (Miceli Romero, 2014)
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SWD, Mary Earp-5, Pritchard-1, Boyd-1, Roberson Ranch 10-1, and Dannehl 2-16, with 

a diahopane/hopane ratio below 0.40; and Group-B, the other eight wells closer to the 

paleo-Nemaha Uplift with a diahopane/hopane ratio greater than 0.40. It would be 

geologically reasonable to interpret the relatively higher diahopane/hopane ratios from 

the wells in Group-B to result from the relatively greater amounts of clay-rich terrigenous 

sources shed from the paleo-Nemaha Uplift into the Woodford deposits at that time. 

Alternatively, in addition to the clay content necessary to catalyze the acidic 

arrangements, thermal energy, most probably from the Woodford subsidence, is also a 

significant control on the transformation. The two wells, Pope Unit-1 and York-1, which 

were closer to the paleo-Nemaha Uplift and buried deeper towards the Anadarko Basin, 

have both enough clay source and thermal energy to experience more extensive 

rearrangement to form diahopanes. 

4.2.3 Aryl Isoprenoids and Isorenieratane related compounds (m/z 133+134) 

Isorenieratane and many mono-, di-, tri-, and tetra-aromatic compounds originate 

from the C40 diaromatic carotenoid hydrocarbon isorenieratene in green and purple sulfur 

bacteria in marine sedimentary environments (Grice et al., 1996; Brocks and Summons, 

2013). Green sulfur bacteria (GSB) are anoxygenic phototrophs that fix carbon dioxide 

using the reverse tricarboxylic acid cycle (TCA), leading to biomass that is enriched in 

13C (Koopmans et al., 1996a and 1996b). Thus, when 13C-rich isorenieratane and related 

compounds occur in rock extracts or crude oils, they indicate photic zone anoxia (PZA) 

during source rock deposition (Summons and Powell, 1987; Clifford et al., 1997). 

Aryl isoprenoids found in the source rocks have been reported to originate from 

Chlorobiaceae (green sulfur bacteria) growing under photic zone anoxia (PZA) condition



 

 

 

Figure 45. Composite map of the Woodford Shale Structure (in SSTVD) in Central Oklahoma with C30 17α-

Diahopane/Hopane ratios of the Woodford cores in this study (SSTVD = Sub Sea Total Vertical Depth in feet; Devon 

condensates not shown due to this ratio couldn’t be measured)
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(Summons and Powell, 1987; Clark and Philp, 1989; Requejo et al., 1992; Hartgers et al., 

1994; Grice et al., 1997; Brown and Kenig, 2004; Schwark and Frimmel, 2004; Miceli 

Romero and Philp, 2012). Chlorobiaceae undergoes photosynthesis within light-

penetrating, H2S-saturated, anoxic waters. Therefore, aryl isoprenoids are good indicators 

for photic-zone anoxia (PZA), and can be used as a geochemical parameter in 

paleoenvironmental studies. 

Analysis of aryl isoprenoids was performed on the B&C fractions of rock extracts 

and oils by SIM/GC-MS using ions m/z 133.1 and 134.1 (Figure 46). Identification of 

these compounds was achieved by comparison with reference mass chromatograms 

published by Brown and Kenig (2004); Schwark and Frimmel (2004); Miceli Romero 

and Philp (2012). Because of the long acyclic substituent, aryl isoprenoids tend to elute 

into the saturate fraction, although these compounds have an aromatic ring in their 

structure (Brown and Kenig, 2004). The compounds identified from the rock extracts in 

this study included a series of C13-C31 aryl isoprenoids. The 2,3,6-trimethyl substituted 

aryl isoprenoids (m/z = 133) were the most abundant in all of the samples, with the 3,4,5-

trimethyl isomers (m/z = 134) present in lower concentrations. Possible variability of PZA 

in the Woodford Shale could be characterized by using the aryl isoprenoid ratio (AIR; 

Appendix A). Schwark and Frimmel (2004) introduced this ratio by analyzing the ratio 

of the proportions of the short-chain (C13-C17) versus intermediate-chain (C18-C22) aryl 

isoprenoids. High AIR (3.0) ratios are thought to be associated with episodic PZA, which 

leads to degradation of the long- and intermediate-chain aryl isoprenoids. Conversely, 

low AIR (0.5) indicates persistent PZA, which results in preservation of the long-chain 

aryl isoprenoids (Schwark and Frimmel, 2004). 
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Most of the samples show AIR greater than 1 or close to 1 suggesting that the 

Woodford Shale experienced episodic periods of PZA, where shifts of the chemocline 

occurred periodically but at relatively lower frequency. However, the origin of aryl 

isoprenoids are still controversial. Koopmans et al. (1996) determined aryl isoprenoids 

could also have at least two precursors, isorenieratene or β-isorenieratene in 

Chlorobiaceae and β-isorenieratene in the ubiquitous β-carotene. Only if the 2,3,6 

trimethyl-substituted aryl isoprenoids are enriched in δ13C, they are indicative of PZA. In 

the present study, the δ13C values for the aryl isoprenoids were not determined. 

Nevertheless, geochemical logs of AIR for the Woodford Shale samples show a positive 

correlation with Pr/Ph and RSL (relative sea level) change (Figure 47), and aryl 

isoprenoids were used to tentatively evaluate variations and degree of PZA as a result of 

sea level fluctuation. As sea level transgressed, both the corresponding Pr/Ph ratio and 

AIR decreased, which may indicate persistent PZA occurred during the sea level 

transgressional tract; as sea level regressed, both the corresponding Pr/Ph ratio and AIR 

increased, indicating episodic PZA (Figure 47). 

 

 

 



 

 117 

 

Figure 46. Summed mass chromatograms of m/z 133, 134 of the B&C fractions 

showing the aryl isoprenoids distributions of the Pritchard-1 well Woodford 

samples (filled squares = 2,3,6-trimethyl substituted aryl isoprenoids, filled circles 

= 3,4,5- trimethyl substituted aryl isoprenoids. Number of carbon atoms is 

indicated above each peak) 

 



 

 

 

Figure 47. Geochemical logs of aryl isoprenoids ratio for Woodford Shale extracts from Pritchard-1 well. 
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Isorenieratanes and paleorenieratane, whose detection needed high-temperature 

GCMS conditions (started at 40ºC with 1.5 minutes hold time and was later increased to 

320ºC at a rate of 4ºC per minute and then held constant for 34 minutes for a total run 

time of 105 minutes), were identified in the aromatic fractions of selected oil samples and 

rock extracts. Analysis of paleorenieratanes and isorenieratanes was performed on the 

aromatic fractions of the oils by SIM/GC-MS using the ion m/z 134.1 (Figure 48). 

Identification of these compounds was achieved by comparison with reference mass 

chromatograms published by Brown and Kenig (2004); Schwark and Frimmel (2004); 

Miceli Romero and Philp (2012); and Connock (2015).  Paleorenieratanes and 

isorenieratanes were found either in Woodford extracts or Mississippian extracts (Figure 

48), which suggests paleorenieratanes and isorenieratanes are not source-specific only for 

the Woodford Shale but PZA may occur not only during the deposition of the Woodford 

Shale but also the Mississippian Limestone as well. 
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Figure 48. Mass chromatograms of m/z 134 of the aromatic fractions showing the 

paleorenieratane and isorenieratane related compounds distributions of the rock 

extracts in this study (P = Paleorenieratane; I = Isorenieratane)
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4.3 Evaluation of Thermal Maturity 

4.3.1 Steranes (m/z 217) 

Biological precursors of steranes, which are sterols in living organisms, only 

have the R configuration at C-20. The R isomer gradually converted to a mixture of 

R (biological product) and S (thermal product) during source rock thermal maturation. 

The sterane isomerization ratio, reported as the C29 20S/(20S+20R) sterane ratio 

provides a useful tool for thermal maturity assessment. The C29 20S/(20S+20R) 

sterane ratio increases from 0 to about 0.5 with increasing thermal maturity, and 

reached equilibrium at 0.52 to 0.55 (Seifert and Moldowan, 1986). This ratio is not 

recommended for use within the oil window but is more specific for immature to early 

mature stages. Moreover, organic facies variation and secondary alteration, such as 

weathering and biodegradation, may also influence this maturity parameter. Another 

maturity proxy based on sterane ratios, the C29 ββ/(ββ+αα) sterane ratio, does not have 

this problem. Furthermore, its equilibrium would be reached at higher maturity levels 

compared to the C29 20S/(20S+20R) sterane ratio. With increasing thermal stress, the 

C29 ββ/(ββ+αα) ratio would increase from near-zero to about 0.7 with equilibrium 

being reached at about 0.67 to 0.71. Correlation between the C29 ββ/(ββ+αα) and C29 

20S/(20S+20R) sterane ratios are commonly used to assess thermal maturity of oils 

and rock extracts (Figure 49; Seifert and Moldowan, 1986). From the cross plot 

(Figure 49), there is not a good correlation between these two maturity parameters in 

this study area. The data points are for the most part separated due to difference in the 

C29 ββ/(ββ+αα) ratio rather than C29 20S/(20S+20R) sterane ratios. One interpretation 

is that organic facies change may affect the C29 20S/(20S+20R) sterane ratios, which 

mask the true maturity variations. After plotting the C29 ββ/(ββ+αα) sterane ratios on 

the map, a geological reasonable interpretation is apparent.      



 

 122 

 

Figure 49. Plot of C29 20S/(20S+20R) steranes versus C29 ββ/(ββ+αα) steranes 

showing variations in thermal maturity for the Woodford Shale source rocks 

and liquids (Gray area represents end points of isomerization. Plot template 

from Peters, 1999) 

 

The composite map of the Woodford Shale Structure (in SSTVD: Sub Sea 

Total Vertical Depth in feet) in Central Oklahoma with  HI values and C29 ββ/(ββ+αα) 

steranes ratios (Figure 50) divides the samples into three groups: the Woodford Shale 

in four wells, including Elinore 1-18 SWD, Mary Earp-5, Pritchard-1 and Boyd-1, 

which are located in the eastern-most region of the study area, are less mature than 

the others based on their  C29 ββ/(ββ+αα) steranes ratio (0.44) and their HI values. 

Among the other ten wells, the Woodford samples in the four Devon wells located 

besides the Nemaha Uplift have an intermediate C29 ββ/(ββ+αα) sterane ratio of 0.56, 

and those Woodford samples in the western most five OGS wells have the relatively 

highest C29 ββ/(ββ+αα) sterane ratio of 0.58. Generally, C29 ββ/ (ββ+αα) sterane ratio 

increases as the Woodford burial depth increases, which suggests the Woodford 

structure is the primary control on maturity. The vitrinite reflectance (VRo) values 
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measured from the Woodford cores also support this conclusion as discussed in 

section 4.1.3. The Woodford Shale in the studied wells show the relatively highest Ro 

values (0.82-0.86% Ro) on the Anadarko Shelf west of the Nemaha Uplift, medium 

Ro values (0.75-0.78% Ro) on the Cherokee Platform right besides east of the Nemaha 

Uplift, and show the lowest Ro values (0.48-0.59% Ro) on the Cherokee Platform, 

east of the Nemaha Uplift, consistent with the C29 ββ/ (ββ+αα) sterane ratios. The 

Anadarko Shelf and the Cherokee Platform is separated by the Nemaha Uplift Zone. 

The Woodford in these two structural provinces may have gone through different 

thermal histories. There may not be 1:1 correlation between Ro value and the C29 

ββ/(ββ+αα) sterane ratio for the Woodford samples in the study area, But it shows a 

general trend of the C29 ββ/(ββ+αα) sterane ratios covarying with the measured 

vitrinite reflectance.



 

 

 

Figure 50. Composite map of the Woodford Shale Structure (in SSTVD) in Central Oklahoma with  HI values and C29 

ββ/(ββ+αα) sterane ratios showing variations in thermal maturity for the Woodford Shale source rocks (SSTVD = Sub Sea 

Total Vertical Depth in feet; CI = Contour Increment in feet)
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Table 8. Average sterane isomerization ratios for the Woodford Shale rock 

extracts and liquids (ND = not determined; *not averaged) 

Sample 
# of 

samples 

C29 

20S/(20S+20R) 

C29 

ββ/(ββ+αα) 

Adkisson 1-33 SWD 6 0.46 0.56 

Elinore 1-18 SWD 7 0.50 0.48 

Frank 1-33 SWD 9 0.42 0.56 

Wilma 1-16 SWD 5 0.45 0.56 

Winney 1-8 SWD 5 0.40 0.58 

Mary Earp-5 2 0.50 0.39 

Boyd Unit-1 2 0.41 0.43 

Dannehl 2-16 3 0.40 0.60 

Pritchard-1 9 0.46 0.50 

Roberson Ranch 10-1 2 0.41 0.60 

Anderson 12-1 3 0.42 0.60 

Chenoweth-1 1 0.43 0.60 

York-1 2 0.42 0.56 

Pope Unit-1 1 0.40 0.60 

Adkisson 1-33H * 0.46 0.67 

Smith 1-14H * 0.43 0.64 

Winney 1-8H * 0.40 0.64 

Elinore 1-18H * 0.43 0.53 

Johnson 1-33H * 0.48 0.63 

Smith 1-23MH * 0.48 0.66 

Wilma 1-16SWD * 0.39 0.62 

Winney 1-5H * 0.41 0.65 

Matthews 1-33H * 0.40 0.67 

Williams 1-24 WH * 0.44 0.69 

Peach 1-19 MH * 0.41 0.65 

Joyce 1-32 WH * 0.46 0.56 

Hopfer 1-20 WH  * 0.45 0.67 

Peach 1-20 WH * 0.45 0.68 

C. Matthews 1-8 WH * 0.46 0.64 

Ford-1 * 0.42 0.56 

Thomas James 1-22 * 0.44 0.60 

Anadarko Taylor 

2118 
* 0.48 0.61 
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A * 0.47 0.62 

Ellis Lewis Jet * 0.43 0.60 

F * 0.44 0.61 

7-5N-5E * 0.40 0.57 

 

4.3.2 Terpanes (m/z 191) 

4.3.2.1 Hopanes 

The C32 22S/(22S+22R) ratio is a maturity parameter based on the change in 

epimer ratios of the C32 17α(H)-homohopanes during source rock thermal maturation. 

The biological configuration of the homohopane precursor is the 22R and during the early 

stages of source rock maturation, isomerization at the C-22 position gradually converted 

the C32 homohopanes to a mixture of 22R and 22S epimers (Peters and Moldowan, 1991). 

The 22S/(22S+22R) ratio increases from 0 to equilibrium ratios of approximately 0.57 to 

0.62 (early oil window) with no additional thermal maturity information being available 

after equilibrium is reached. Almost all of the Woodford Shale samples (Figure 51) show 

their 22S/(22S+22R) ratios in the range of 0.53-0.59 (Table 9) to be approaching to the 

equilibrium range in the early oil window. From the other biomarker maturity proxies and 

maturity indicators, it is reasonable to infer the samples’ maturity in this study have all 

entered the early oil window.  

Table 9. Average C32 22S/(22S+22R) hopane ratios for the Woodford Shale rock 

extracts and the studied oils (*not averaged) 

Sample # of samples C32 22S/(22S+22R) 

Adkisson 1-33 SWD 6 0.53 

Elinore 1-18 SWD 7 0.55 

Frank 1-33 SWD 9 0.56 

Wilma 1-16 SWD 5 0.53 

Winney 1-8 SWD 5 0.55 
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Mary Earp-5 2 0.55 

Boyd Unit-1 2 0.59 

Dannehl 2-16 3 0.56 

Pritchard-1 9 0.55 

Roberson Ranch 10-

1 
2 0.57 

Anderson 12-1 3 0.59 

Chenoweth-1 1 0.56 

York-1 2 0.53 

Pope Unit-1 1 ND 

Adkisson 1-33H * 0.61 

Smith 1-14H * 0.56 

Winney 1-8H * 0.57 

Elinore 1-18H * 0.59 

Johnson 1-33H * 0.64 

Smith 1-23MH * 0.63 

Wilma 1-16SWD * 0.61 

Winney 1-5H * 0.69 

Matthews 1-33H * 0.59 

Elinore 1-17H * 0.61 

Peach 1-19 MH * 0.56 

Joyce 1-32 WH * 0.59 

Hopfer 1-20 WH  * 0.62 

Peach 1-20 WH * 0.56 

C. Matthews 1-8 

WH 
* 0.62 

Ford-1 * 0.60 

Thomas James 1-22 * 0.60 

Anadarko Taylor 

2118 
* 0.60 

A * 0.54 

Ellis Lewis Jet * 0.58 

F * 0.59 

7-5N-5E * 0.59 
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Figure 51. Composite map of the Woodford Shale Structure (in SSTVD) in Central Oklahoma with HI values and C32 

22S/(22S+22R) hopane ratios showing thermal maturity of the Woodford Shale source rocks (SSTVD = Sub Sea Total Vertical 

Depth in feet; CI = Contour Increment in feet; HI = Hydrogen Index; Devon condensates not shown due to this ratio couldn’t 

be measured) 
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The abundance of hopanes in m/z 191 trace could be used as a crude thermal 

maturity proxy for the Woodford rock extract as well. Regular hopanes have been found 

to be depleted compared to other terpane compounds in extracts of the Woodford Shale 

by several published papers (Jones, 1989; Wang, 1993; Kim, 1999). The hopane depletion 

in the Woodford extracts was thought to be associated with the types of source materials, 

which are living organisms that contain abundant long-chain lipids that yield large 

amounts of normal alkanes and aromatics but contain low concentrations of terpane or 

sterane precursors (Wang, 1993). Immature Woodford outcrop samples (Miceli Romero, 

2012) and early mature subsurface Woodford cores in this study (for example, Mary Earp-

5, Pritchard-1 and Elinore 1-18 SWD) contain more abundant regular hopanes than 

mature Woodford cores (Table 10). Screening a series of Woodford rock extracts of 

different thermal maturity (Figure 52; Table 10), the preliminary conclusion based on the 

variation in terms of the absolute concentration of terpanes of the Woodford core extracts 

with different thermal maturity is that the regular hopanes (H29 ~ H35) have been 

thermally degraded during source rock maturation (Figure 52). The data sets of this study 

provided a good chance to investigate relative concentration changes with thermal 

maturation of the regular hopanes (Figure 52). It suggests the relative proportion of 

regular hopanes (H29 ~ H35) versus tricyclic terpanes (TT23 ~ TT29) decreases as 

maturity increases since tricyclic terpanes are known to be more thermal resistant than 

the regular hopanes (Aquino Neto et al., 1983; Peters et al., 1990).



 

 

 

Figure 52. SIM m/z 191.3 mass chromatograms showing hopanes relative concentration change with thermal maturation in the 

B&C fractions of the Woodford rock extracts 

1
3

0
 



 

 

Table 10. Absolute Concentrations of Terpanes (m/z 191) of selected Woodford cores extracts with different thermal maturity 

(Concentrations are expressed as μg biomarkers/g TOC) 
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4.3.2.2 Ts and Tm 

17α-22,29,30-trisnorhopane (Tm) and 18α-22,29,30-trisnorneohopane (Ts) are 

two terpanes frequently used to assess maturity level from immature to postmature stage 

(Seifert and Moldowan, 1978). Tm becomes less stable than Ts as thermal maturity 

increases. Consequently, the Ts/(Ts+Tm) ratio can be used as a maturity proxy, but with 

strong dependence on source. For example, this ratio was observed to increase at lower 

Eh and decrease at higher pH in terms of depositional environment for the Lower 

Toarcian marine shales from southwestern Germany (Moldowan et al., 1986). It has been 

also observed that oils from carbonate source rocks were shown to have unusually low 

Ts/(Ts+Tm) ratios compared with those from siliciclastic shales (McKirdy et al., 1983; 

1984; Rullkötter et al., 1985) Therefore this ratio is better to be used for samples of similar 

lithology and organic facies (Moldowan et al., 1994).  

The composite map of the Woodford Shale Structure (in SSTVD: Sub Sea Total 

Vertical Depth in feet) in Central Oklahoma with HI values and Ts/(Ts+Tm) ratios 

(Figure 53) shows the Ts/(Ts+Tm) ratio increases as HI decreases and the Woodford 

burial depth increases, acting like the C29 ββ/(ββ+αα) sterane ratio discussed in section 

4.3.1, which suggests the Woodford structure is the primary control on maturity as 

mentioned before.



 

 

 

Figure 53. Composite map of the Woodford Shale Structure (in SSTVD) in Central Oklahoma with HI values and Ts/(Ts+Tm) 

ratios showing thermal maturity of the Woodford Shale source rocks (SSTVD = Sub Sea Total Vertical Depth in feet; CI = 

Contour Increment in feet; HI = Hydrogen Index; N/A = Not Available) 
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4.3.3 Phenanthrenes 

Phenanthrenes, methylphenanthrenes and dimethylphenanthrenes were 

determined in the aromatic fraction of rock extracts and oils by SIM/GC-MS monitoring 

the ions m/z 178.3, 192.3, and 206.3 (Figure 54). A number of ratios derived from the 

distributions of phenanthrenes and substituted phenanthrenes have been widely used as 

biomarker thermal maturity indicators (Radke and Welte, 1981; Radke et al., 1984 and 

1986). The methylphenanthrene indices (MPI-1 and MPI-2) are the most commonly used 

ratios. The ratio of the 2- and 3-methylphenanthrenes relative to the 1- and 9-

methylphenanthrenes increase with increasing temperature and burial (Radke et al., 

1982). Radke and Welte (1981) found a positive correlation between MPI-1 and vitrinite 

reflectance for samples within the oil window (0.65-1.35%Ro), and a negative correlation 

for samples of high thermal maturity (1.35-2.00%Ro). Based on these observations, 

Radke and Welte (1981) derived two equations for Ro calculation, which can be used to 

estimate thermal maturity for rock extracts and oils (Appendix A). 

MPI-1: 

𝑀𝑃𝐼 1 = 1.5 × 
[2 − 𝑀𝑃 + 3 − 𝑀𝑃]

[𝑃 + 1 − 𝑀𝑃 + 9 − 𝑀𝑃]
 

 

Calculated vitrinite reflectance: 

For 0.65 to 1.35%Ro:  Rc = 0.60 MPI-1 + 0.40 

For 1.35 to 2.00%Ro:  Rc = -0.60 MPI-1 + 2.30 

Values of MPI-1 ratios were obtained for the Woodford rock samples in this study, 

and used to calculate a vitrinite reflectance equivalent (Rc) value (Figure 55). The 

equation from Radke and Welte (1981) which corresponded to low maturity levels was 

used to calculate vitrinite reflectance values for the Woodford rock samples. The vitrinite 
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reflectance equivalent (Rc) values calculated from the MPI-1 parameters of the Woodford 

rock samples in this study show no covariance with any geological or geochemical 

parameters (Figure 55). This anomalous behavior may be attributed to the fact that the 

relationship between MPI-1 and vitrinite reflectance was based on shale and coals 

containing type III organic matter (Radke and Welte, 1983). As a result it may not be 

directly applicable for the other types of source rocks, such as the Woodford Shale, 

containing mainly type II organic matter. Lithology of the source rock can also affect 

MPI ratios. It was reported by Cassani et al. (1988) that high MPI-1 values corresponded 

to high carbonate content in the La Luna Shale but did not reflect the true maturity level.  

 

 

Figure 54. Summed mass chromatograms of m/z 178.2, 192.3, 206.3, 188.2 ions 

showing distributions of phenanthrenes compounds in the aromatic fractions of 

sample Adkisson 1-33 H Oil. Peak identification is presented in Table 11. 
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Table 11. Identification of phenanthrenes in the SIM mass chromatograms of m/z 

178.3, 192.3, 206.3 of the aromatic fractions 

Peak # Compound 

D-10 P Deuterated Phenanthrene (ISTD) 

P Phenanthrene 

3-MP 3-Methylphenanthrene 

2-MP 2-Methylphenanthrene 

9+4-MP 9+4-Methylphenanthrene 

1-MP 1-Methylphenanthrene 

1 Dimethylphenanthrene 

2 Dimethylphenanthrene 

3 Dimethylphenanthrene 

4 1,3+2,10+3,9+3,10-Dimethylphenanthrene  

5 1,6+2,9+2,5-Dimethylphenanthrene 

6 1,7-Dimethylphenanthrene 

7 2,3-Dimethylphenanthrene 

8 1,9+4,9+4,10-Dimethylphenanthrene 



 

 

 

Figure 55. Composite map of the Woodford Structure (in SSTVD) in Central Oklahoma with HI values and the vitrinite 

reflectance equivalent (Rc) values calculated from the MPI ratios of the Woodford Shale samples (SSTVD = Sub Sea Total 

Vertical Depth in feet; CI = Contour Increment in feet; HI = Hydrogen Index)
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CHAPTER 5 

5. OIL GEOCHEMISTRY  

5.1 Oil Geochemical Screening Analyses 

5.1.1 Gas Chromatography 

5.1.1.1 n-Alkanes distributions 

For the crude oil samples, the gas chromatograms of the saturate fractions show 

only small variation in composition (Figure 56). Several geochemical parameters 

calculated from the n-alkane chromatograms of crude oil samples are summarized in 

Table 12. The crude oil samples show a unimodal distribution towards the low-carbon-

number members, and without any preference of even-carbon-numbered n-alkanes 

predominance (Figure 56). The oil samples have n-alkanes maximum around either n-C14 

or n-C15. The other characteristics, including the unimodal n-alkane distribution pattern, 

n-alkane maximum carbon number around n-C14 or n-C15 and average Pr/Ph ratio around 

1.5 (Table 12), all suggest these crude oils have a marine origin, deposited under a 

reducing (anoxic) conditions.  

5.1.1.2 Pristane and Phytane 

Overall, the majority of the oil samples show low Pr/Ph ratios indicating the 

presence of reducing conditions (anoxia) during source rock deposition (Table 12). The 

cross plot of Pr/n-C17 versus Ph/n-C18 for the rock extracts and oils analyzed in this study 

was shown in Figure 57. This diagram indicates that these samples are mainly composed 

of marine organic matter mixed with minor amounts of terrigenous input.  
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Figure 56. Gas chromatograms of the saturate fractions of two Woodford tight oil 

samples (Pr = pristane; Ph = phytane, n-C15 = C15 normal alkane)



 

 

Table 12. n-Alkanes parameters derived from the saturate fraction of the oils (ND = not determined) 

Samples Range 
n-alkane 

distribution 

n-alkane 

maximum 
Pr/Ph TAR CPI 

Smith 1-23H n-C11-n-C30 unimodal n-C15 1.41 0.17 0.98 

Wilma 1-16H n-C11-n-C30 unimodal n-C15 1.51 0.20 0.96 

Matthews 1-33H n-C11-n-C30 unimodal n-C15 1.41 0.31 0.99 

Winney 1-5H n-C11-n-C30 unimodal n-C15 1.50 0.23 0.97 

Smith 1-14H n-C11-n-C30 unimodal n-C15 1.50 0.18 0.96 

Johnson 1-33H n-C10-n-C30 unimodal n-C14 1.50 0.44 1.00 

Elinore1-18H n-C11-n-C30 unimodal n-C15 1.45 0.21 0.99 

Winney 1-8H n-C11-n-C30 unimodal n-C15 1.52 0.18 0.98 

Adkisson 1-33H n-C10-n-C30 unimodal n-C15 1.49 0.32 0.99 

Elinore 1-17H n-C12-n-C30 unimodal n-C16 1.53 0.22 0.98 

Williams 1-24WH n-C11-n-C30 unimodal n-C14 1.52 0.14 0.97 

Peach 1-19H n-C12-n-C30 unimodal n-C15 1.55 0.20 1.02 

Joyce 1-32H n-C12-n-C30 unimodal n-C15 1.68 0.28 1.05 

Hopfer 1-20H n-C11-n-C30 unimodal n-C15 1.69 0.21 0.94 

Peach 1-20WH n-C11-n-C30 unimodal n-C15 1.51 0.24 0.94 

C. Matthews 1-

8WH 
n-C11-n-C30 unimodal n-C15 1.51 0.27 0.98 

Williams 1-24WH n-C11-n-C30 unimodal n-C14 1.52 0.14 0.97 

1
4

0
 



 

 

Ellis Lewis Jet n-C11-n-C30 unimodal n-C15 1.63 0.07 0.96 

Thomas James 1-

22 
n-C11-n-C30 unimodal n-C15 1.49 0.19 ND 

F n-C11-n-C30 unimodal n-C15 1.38 0.19 1.01 

7-5N-5E n-C11-n-C30 unimodal n-C15 1.14 0.19 0.92 

Ford-1 n-C11-n-C30 unimodal n-C15 1.14 0.27 0.91 

1
4
1

 



 

 

 

Figure 57. Isoprenoids plot of Pristane/n-C17 versus Phytane/n-C18 showing redox conditions, maturity, and depositional 

environments for samples of the Woodford Shale (n-C17 = C17 normal alkane; n-C18 = C18 normal alkane)
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5.1.1.3 C7 Light hydrocarbon analysis 

Light hydrocarbons (C4-C9) are a significant portion of most crude oils but they 

are not biomarkers since their carbon skeletons are too short to preserve the 

origin/precursor information on their parent organic molecules in living organisms (Hunt, 

1984 and 1995). Most light hydrocarbons form by breakdown of larger molecular 

precursors during catagenesis (Mango, 1990 and 1994; Walters et al., 2003). Some 

isomers may have direct biological origins or may be cleaved from biomarkers, but there 

are so many possible precursors that they cannot be traced to a specific biological origin 

(Mango, 1994). Nevertheless, light hydrocarbons contain considerable information on 

their source, thermal maturity and their post-expulsion history (Mango, 1997). Thermal 

maturation can change the composition of light hydrocarbons, such as iso-alkanes convert 

to n-alkanes during maturation (Hunt, 1984; Mango, 1991 and 1997). Other than that, 

various secondary processes can change the abundance of light hydrocarbons in crude 

oils. Late-stage generation, reservoir cracking, and various migration processes, including 

evaporative fractionation, phase separation, and admixture of condensates, can increase 

light hydrocarbons (Mango, 1997). On the contrary, biodegradation, water washing, 

thermochemical sulfate reduction (TSR), and evaporation can remove light hydrocarbons 

(Mango, 1997).  

Many C6-C7 light hydrocarbons can be used to determine thermal maturity, and 

indicate various reservoir alteration processes. Thompson (1987) B-F diagram 

summarized several reservoir alteration factors, namely evaporative fractionation, 

maturation, water washing and biodegradation, in a plot of aromaticity ratio (toluene/n-

heptane, B) versus paraffinity ratio (n-heptane/methylcyclohexane, F). Thompson 
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proposed that evaporative fractionation initially results in a decrease in F and an increase 

in B. Subsequent evaporative fractionation will result in a rapid increase in B. The other 

alteration processes can also be characterized by applying the same idea, like iso-alkanes 

convert to n-alkanes during thermal maturation, water washing will prefer to remove 

toluene than n-heptane, and n-heptane will be biodegraded prior to methylcyclohexane.  

Compared to the Devon tight oils falling into the unaltered “Normal Oil” field, the 

Woodford-sourced oils produced in conventional reservoirs from Southern Oklahoma 

have been altered and are more mature based on the Thompson B-F diagram (Figure 59), 

which is consistent with the observation from the isoheptane versus n-heptane ratio 

diagram (Figure 60).  

Walters et al. (2003) proposed an empirical isoheptane ratio (I) versus heptane 

ratio (H) diagram based on the C7 ratios measured for oils/condensates from the North 

Sea to investigate the thermal maturity of oils/condensates in a plot of isoheptane ratio 

(2-methylhexane + 3-methylhexane)/∑(dimethylcyclopentanes)) versus heptane ratio 

(100*n-C7/∑ (cyclohexane through methylcyclohexane) , H). This diagram (Figure 60) 

shows all of the Devon tight oils are in the range of 0.85 ~ 1.1 %Ro. Most of the 

conventionally produced oils from Southern Oklahoma are in the range of 1.1 to 1.5%Ro 

except Anadarko Taylor 2118, which is a condensate, close to 1.5%Ro. These 

observations seem reasonable since the conventionally produced oils from the Pauls 

Valley, Southern Oklahoma were thought to be migrated from deep part of the Anadarko 

Basin (Jones, 1989). In other words, they were generated at a higher thermal stage. 

Another possibility would be the composition of light hydrocarbons already changed 

during over twenty year’s storage. 
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Figure 58. Whole oil gas chromatogram of Winney 1-5H oil showing light 

hydrocarbon distribution (Peak identification is listed in Table 13) 

 

Table 13. Light hydrocarbon compounds identification 

Peak # Compound Abbreviation 

1 n-Hexane n-C6 

2 2,2-Dimethylpentane 2,2-DMP 

3 Methylcyclopentane MCP 

4 2,4-Dimethylpentane 2,4-DMP 

5 Benzene B 

6 3,3-Dimethylpentane 3,3-DMP 

7 Cyclohexane CH 

8 2,3-Dimethylpentane 2,3-DMP 

9 2-Methylhexane 2-MH 
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10 1,1-Dimethylcyclopentane 1,1-DMCP 

11 3-Methylhexane 3-MH 

12 Cis-1,3-Dimethylcyclopentane C1,3-DMCP 

13 Trans-1,3-Dimethylcyclopentane T1,3-DMCP 

14 Trans-1,2-Dimethylcyclopentane T1,2-DMCP 

15 3-Ethylpentane 3-EP 

16 2,2,4-Trimethylpentane 2,2,4-TMP 

17 n-Heptane n-C7 

18 2,2-Dimethylhexane 2,2-DMH 

19 Cis-1,2-Dimethylcyclopentane C1,2-DMCP 

20 Methylcyclohexane MCH 

21 Ethylcyclopentane ECP 

22 2,5-Dimethylhexane 2,5-DMH 

23 2,4-Dimethylhexane 2,4-DMH 

24 1,2,4-Trimethylcyclopentane 1,2,4-TMCP 

25 1,2,3-Trimethylcyclopentane 1,2,3-TMCP 

26 2,3,4-Trimethylpentane 2,3,4-TMP 

27 2,3,3-Trimethylpentane 2,3,3-TMP 

28 Toluene Tol 

29 Isooctane i-C8 

30 n-Pentane n-C5 

31 2,2-Dimethylbutane 2,2-DMB 

32 2,3-Dimethylbutane 2,3-DMB 

33 2-methylpentane 2-MP 

34 3-methylpentane 3-MP 
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Figure 59. Thompson B-F Diagram summarizing reservoir alteration factors for 

the oils 

 

Figure 60. Isoheptane versus heptane ratio diagram showing the maturity of the oil 

samples (plot template from Walters, 2003; 5 condensates at high maturity stage 

out of scope) 
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5.1.2 Isotope Analysis  

Stable carbon isotopes have been widely used to correlate crude oils and source 

rock extracts. Physical and chemical processes during organic matter production and 

preservation cause variations in stable isotope composition. Bulk stable carbon isotope 

composition analysis of saturate and aromatic fractions for crude oils and source rock 

extracts have been widely used to indicate the source of crude oils. Different organic 

matter types have distinct responses in the stable isotope composition (Sofer, 1984; 

Andrusevich et al., 1998). 

In this study the bulk stable carbon isotope composition of saturate and aromatic 

fractions were measured for 10 Devon oils and 7 conventionally produced Woodford-

sourced oils. Cross plots of δ13C of aromatic fractions versus δ13C of saturate fractions 

for the oil samples were used to correlate with the possible source rocks in Oklahoma 

based on their data points locality in this plot (Figure 61). In terms of stable carbon isotope 

signature, the extracts of Simpson group shales are characterized by both saturate and 

aromatic fractions having values in the range of -32 to -29 per mil, although two samples 

have values of about -27 per mil (Figure 61). The origin of this wide range of carbon 

isotope values has been discussed by Hatch et al. (1987). In their opinion, the wide range 

in δ13C for oils and rock extracts reflect a major, positive excursion (6-9 per ‰) in organic 

matter δ13C composition in late Middle Ordovician rocks (Hatch et al., 1987). The 

positive excursion in organic matter δ13C is a possible result of increased organic matter 

productivity and/or preservation during that time (Hatch et al., 1987).  The Woodford 

Shale extracts show the carbon isotope composition of the saturate and aromatic fractions 

ranges from -30 to -29 per mil and the carbon isotope composition of the Pennsylvanian 
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shale extracts is relatively enriched in δ13C values for saturate and aromatic fractions 

ranging from -29 to -25 per mil. Two Mississippian Limestone extracts show the δ13C 

values around -30.4 per mil for the saturate and the aromatic fractions. These two 

Mississippian Limestone data points are encompassed by the Woodford Shale data points. 

The majority of 10 Devon crude oils and 7 conventionally produced Woodford-sourced 

oils share the carbon isotope composition of the saturate and aromatic fractions ranging 

from -31 to -30 per mil, which is within the approximate range of the Woodford Shale 

extracts’ δ13C values. The conclusion here is the oil samples analyzed in this study more 

closely resemble the Woodford/Mississippian rocks than the Simpson Group or the 

Pennsylvanian shale in terms of stable carbon isotope composition. 

 

Figure 61. Carbon stable-isotope compositions of saturated- and aromatic-

hydrocarbon fractions of rock extracts and crude oils from the Anadarko Basin 

and Cherokee Platform, grouped by geologic age of source rock (template and 
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data points of Simpson Group, Woodford Shale and Pennsylvanian rock extracts 

from Burruss and  Hatch, 1989) 

 

5.2 Evaluation of Organic Matter Source and Depositional Environments 

5.2.1 Steranes (m/z 217) 

The mass chromatogram of m/z 217.3 for the 7-5N-5E Woodford-sourced oil 

sample shows the steranes distributions of a typical Woodford-sourced oil produced from 

the conventional reservoirs in Southern Oklahoma (Figure 62). The stereoisomers of C27-

C30 steranes and diasteranes are resolved with help of GC-MS/MS (Figure 63). Peak 

identification is shown in Table 6. Formulas for calculation of geochemical ratios are 

displayed in Appendix A. Numerical values of the geochemical ratios calculated are in 

Appendix D. Biomarkers quantitation results are in Appendix F. 

5.2.1.1 Regular steranes 

The regular 14α(H), 17α(H) (20R) steranes ternary plot for the oil samples (Figure 

64) shows that the oils produced in Payne County and the “Old Woodford Oils” produced 

in Southern Oklahoma are grouped together falling into the Woodford extract area 

(denoted by red dash line) of the plot, indicating a common genetic relationship. The oils 

produced in Logan County cluster in the Mississippian extract area (denoted by blue dash 

line) of the plot except several oil samples, namely C. Matthews 1-33H, Adkisson 1-33H, 

Johnson 1-33H and Smith 1-14H, are in the boundary between the Mississippian and 

Woodford extracts areas, which suggest these oils have both the Woodford and  

Mississippian source contribution. More of the correlation studies are discussed in section 

5.4.  
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Figure 62. SIM m/z 217.3 mass chromatogram showing distributions of steranes in 

the B&C fraction of 7-5N-5E oil sample. Peak identification is listed in Table 6. 

 

 

Figure 63. GC-MS/MS chromatograms showing the distributions of C27-C30 

steranes in the B&C fraction of the 7-5N-5E oil sample. Peak identification is 

presented in Table 6. 
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Figure 64. Regular sterane ternary diagram of oil samples using C27, C28, and C29 

14α(H), 17α(H) (20R) regular sterane isomers 

 

C30 Steranes (24-n-propylcholestanes) were detected in all of the crude oil 

samples analyzed but in variable concentrations (Appendix F), which indicates at least 

the source rock of these oil samples have marine organic matter input. By plotting the 

data points of this study onto the %C34 Homohopanes vs. % C30/(C27-C30) steranes 

crossplot (Figure 65), and considering no significant evaporitic interval found in the 

proximity of the Mississippian/Woodford formations in the study area, these oil samples 

(whatever source rock generated them) are not the typical oil sourced by evaporitic 

hypersaline source rocks, as reported by Moldowan et al. (1992). It is more geologically 

reasonable to interpret the possible source rocks for these studied oil samples are falling 
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in the transition zone from open marine to increasing restricted depositional 

environments.  

 

Figure 65. Plot of %C34 Homohopanes versus % C30/(C27-C30) steranes shows the 

possible source rocks’ depositional environments for the oil samples in this study 

(Dotted lines are used as a guide. Plot template from Moldowan et al., 1992) 

5.2.1.2 Diasteranes (rearranged steranes) 

The majority of the C27 diasterane/C27 sterane ratios of the studied oil samples are 

within the range of 0.40~0.60, typical for marine siliciclastic shales (0.30~0.80) as 

reported by Mello et al., (1988). By plotting this ratio onto the well location map there is 

not an obvious relationship between the ratios and their geographic locations or 

geological aspects (Figure 66). Considering the possibility of multiple sources for the oil 

samples and multiple factors (including clay content, thermal maturity and/or 
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biodegradation) affecting this ratio, it’s problematic to infer the lithology or source rock 

type only based on the C27 diasterane/C27 sterane ratios of oil samples here. 

 

Figure 66. Map of Logan and Payne with C27 diasterane/C27 sterane ratios of the 

oil samples in this study 

 

5.2.2 Terpanes (m/z 191) 

Tri-, tetra-, and pentacyclic terpanes were identified in the studied oils by analysis 

of their B&C fractions using SIM/GC-MS of the m/z 191.3 ion. Fragmentogram of these 

compounds is presented in Figure 67. Peak identifications are in Table 7. Formulas for 

calculation of geochemical ratios are given in Appendix A. Geochemical ratios of 

terpanes and their relationships with other biomarker groups helped in assessing 

variations in organic matter source, depositional environment, redox conditions, and 

thermal maturity for the studied oils. 
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Figure 67. SIM m/z 191.3 mass chromatograms showing distributions of terpanes 

in the B&C fractions of the Adkisson 1-33H oil sample. Red brackets denote 

tricyclic terpane isomers and purple brackets denote homohopane isomers. Peak 

identification is presented in Table 7. 

 

5.2.2.1 Tricyclic terpanes 

A plot of C26/C25 TR versus C31R/C30 Hopane for the oil samples in this study was 

shown in Figure 68. From this graph it is suggested that all of these oil samples are 

generated from marine shale, carbonates or marls but not lacustrine source rocks. A plot 

of C22/C21 versus C24/C23 tricyclic terpane ratios for the oil samples in this study was 

shown in Figure 69. From this graph it is suggested that all of these oil samples are 

generated from marine shale. These two commonly used plots based on the tricyclic 

terpanes (<C30) could only differentiate the oil samples sourced by marine versus non-

marine at the bulk property level. A detailed characterization of the possible source rocks’ 

organic matter input and depositional environments for the oil samples in this study was 

carried out by investigating the extended tricyclic terpanes (>C30) discussed below. 
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Figure 68. Plot of C26/C25 TR versus C31R/C30 Hopane shows the possible source 

rock depositional environments for the oil samples in this study (Dotted lines are 

used as a guide. Plot template from Peters et al., 2005) 

 



 

 157 

 

Figure 69. Plot of C22/C21 versus C24/C23 tricyclic terpanes shows the possible 

source rock depositional environments for the oil samples in this study (Dotted 

lines are used as a guide. Plot template from Peters et al., 2005) 

 

The SIM m/z 191.3 mass chromatograms of three oil samples were shown in 

Figure 70: including two recently produced tight oil samples from Devon Energy, namely 

Adkisson 1-33H oil, Elinore 1-17H oil, and a typical Woodford-sourced oil produced in 

conventional reservoir from Southern Oklahoma. These two oil samples are two 

representative end-members in terms of their m/z 191 fingerprints. One end-member is 

Adkisson 1-33H oil. The other end-member is Elinore 1-17H oil. The characteristics of 

m/z 191 fingerprints of Adkisson 1-33H oil include: 1) extended tricyclic terpanes (TT33 

~ TT39) dominate over homohopanes (H31 ~ H35) in the same chromatographic region 

(Appendix G); 2) unusually abundant tricyclic terpanes (TT28 ~ TT31) (Appendix G); 3) 
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relatively higher (29Ts+D30)/H30 ratio (Appendix F). While, comparing with Adkisson 

1-33H oil, the characteristics of m/z 191 fingerprints of Elinore 1-17H oil are: 1) extended 

tricyclic terpanes (TT33 ~ TT38) could be detected until C38 but homohopanes (H31 ~ 

H35) still dominate over extended tricyclic terpanes (TT33 ~ TT38) in this range 

(Appendix G); 2) abundant tricyclic terpanes (TT19 ~ TT31), especially distinct 

distribution pattern of TT28 ~ TT31 (Appendix G); 3) Ts/Tm ratio close to 1; 4) relatively 

lower (29Ts+D30)/H30 ratio and C30 diahopane sparsely detectable than C30 regular 

hopane. 7-5N-5E oil, as one of the representative Woodford-sourced conventionally  

produced oil in Southern Oklahoma, shows the characteristics of a typical Woodford-

sourced oil, similar to the Elinore 1-17H oil. As discussed previously in section 4.2.2.1, 

several characteristics documented from the SIM m/z 191.3 mass chromatograms of the 

Mississippian rock extracts in this study are: 1) extended tricyclic terpanes (TT33 ~ 

TT39) dominate over homohopanes (H31 ~ H35) (Appendix G); 2) very abundant 

tricyclic terpanes (TT28 ~ TT31) (Appendix G) are consistent with that of the 

Mississippian rock in Oklahoma reported by Wang (1993) and Kim (1999). The 

unusually abundant distribution pattern of extended tricyclic terpanes has been suggested 

as one of the most diagnostic characteristics of Mississippian source rock extracts and 

Mississippian-sourced oils (Wang, 1993; Kim, 1999). The tricyclic terpanes abundance 

and distribution patterns found in the oil samples of this study are source specific, which 

suggests the oil with abundant extended tricyclic terpanes, like the Adkisson 1-33H oil, 

have Mississippian source rock contribution. On the contrary, the oil without abundant 

extended tricyclic terpanes, like the Elinore 1-17H oil, does not have significant 

Mississippian source rock contribution.      



 

 

 

Figure 70. SIM m/z 191.3 mass chromatograms showing distributions of terpanes (tricyclic terpanes and homohopanes) in the 

B&C fractions of the studied oil samples. Red brackets denote tricyclic terpane (TT) isomers and purple brackets denote 

homohopane (HH) isomers. 
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5.2.2.2 Pentacyclic terpanes (Hopanes) 

All of the oil samples analyzed have H29/H30 hopane ratio values lower than 

0.60. When compared to the C35S/C34S hopanes ratio, the H29/H30 can help identify 

source facies of oils and extracts (Figure 71). This plot suggests most of the oil samples 

in this study are of marine shale origin (Figure 71).  

 

Figure 71. Plot of C35S/C34S homohopanes versus 30-Nor/C30 hopane suggest most 

of the oil samples in this study are of marine shale origin (Dotted lines are used as 

a guide and do not represent fixed fields on the diagram. Plot template from Peters 

et al. 2005) 

 

From the plots of homohopane distributions some oil samples show strong C35 

homohopane elevation, including: Matthews 1-33H, Winney 1-8H, Smith 1-23MH, 

Peach 1-19MH, Wion 1-29WH; some show mild C35 homohopane  elevation, including: 
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Adkisson 1-33H, Peach 1-20WH; and some show stair-like pattern, including: Joyce 1-

32WH, Peach 1-20WH, Elinore 1-17H, and Elinore 1-18H. Besides C35 elevation, some 

show C32 elevation as well, like Winney 1-5H, Wilma 1-16SWD, Peach 1-19MH, Smith 

1-14H (Figure 72).   

From the plots of homohopane distributions for the Woodford-sourced oil 

samples produced in Southern Oklahoma (Figure 72) only one oil sample, Ellis Lewis 

Jet, shows strong C35 homohopane elevation; the others all show mild C35 homohopane  

elevation, including: Ford-1, “F”, 7-5N-5E, “A”, and Thomas James 1-22. In terms of 

C31-C34 homohopanes distribution patterns, they all show a commonly found stair-like 

pattern. Since we already know these oils were sourced by the Woodford, a commonly 

found stair-like pattern in C31-C34 homohopanes distribution with a mild C35 elevation 

would be suggested as a homohopane distribution characteristic for a typical Woodford-

sourced oil. Based on that, Joyce 1-32WH, Peach 1-20WH, Elinore 1-17H, and Elinore 

1-18H share more of the “Woodford-sourced oil” pattern. The other oil samples either 

have a strong C35 elevation, which may relate to highly reducing environment or marine 

carbonate source rock; or have a C32 elevation, which may suggest another oil family. 

Gammacerane, a C30 triterpane, was tentatively identified in all of the oil samples 

in this study but coeluted with C34 (22R)-Tricyclic terpanes (Cheilanthanes 22R) in most 

of the oil samples. The occurrence of gammacerane in these oil samples suggests that 

regional hypersaline conditions and water stratification may have developed during 

deposition of their source rocks. This observation positively correlated with the low Pr/Ph 

ratios (section 4.1.4.2) and the predominance of the ββ steranes over the αα steranes 
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(Appendix D), which were reported to be associated with hypersalinity (ten Haven et al., 

1988).  

5.2.2.3 Diahopane 

Based on the C30- diahopane/hopane ratios on the map (Figure 73), it is clear that 

tight oil samples can be divided into two groups: Group A clusters the three samples in 

the eastern-most region of the study area with diahopane/hopane ratio below 0.10, 

including Joyce 1-32 WH, Elinore 1-17 H and Elinore 1-18 H; and Group B encompasses 

the fourteen oil samples located closer to the Nemaha Uplift with a diahopane/hopane 

ratio above 0.10. The oils produced in southern Oklahoma, which have been reported to 

be sourced from the Woodford Shale (Jones and Philp, 1990), have an average 

diahopane/hopane ratio of 0.10, which is closer to that of the three oil samples in the 

eastern-most region of the study area. Since this ratio is probably indicative of source 

rock lithology (clay content) as discussed previously in section 4.2.2.4, this observation 

may suggest the possible source rocks for the oils with low diahopane/hopane ratios, 

including Joyce 1-32 WH, Elinore 1-17 H, Elinore 1-18 H and the oils produced in 

southern Oklahoma, were deposited under clay-poor environment, while the source rocks 

for the oils with higher diahopane/hopane ratios, which were produced in the proximity 

of the paleo-Nemaha Uplift, were deposited under clay-rich environment.   

 



 

 

 

Figure 72. Homohopanes distributions for the oil samples in this study (Plot template from Picha and Peters, 1998
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Figure 73. Map of Logan and Payne with C30 diahopane/C30 hopane ratios for the tight oil samples (condensates not shown due 

to this ratio couldn’t be measured) 
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5.2.3 Isorenieratane and related compounds (m/z 134) 

Analysis of paleorenieratanes and isorenieratanes was performed on the aromatic 

fractions of the oils by SIM/GC-MS using the ion m/z 134.1 (Figure 74). Identification of 

these compounds was achieved by comparison with reference mass chromatograms 

published by Brown and Kenig (2004); Schwark and Frimmel (2004); Miceli Romero 

and Philp (2012), and Connock (2015). The compounds identified in this study were 

paleorenieratane (P) and isorenieratane (I), the origin of which and their indicative of 

PZA have been discussed in section 4.2.3. The paleorenieratanes were in high abundance 

in all of the analyzed oil samples, whereas the isorenieratanes were present in lower 

concentrations. Attention should be paid to the fact that those Woodford-sourced oil 

samples produced from Southern Oklahoma contain abundant paleorenieratane and 

isorenieratane as well, including: Ford-1, “A”, “F”, and Thomas James 1-22. The 

condensate, Lingo 1-13WH, has no paleorenieratane nor isorenieratane detected but alkyl 

benzenes probably attributing to its high maturity. The tight oil samples, including: C. 

Matthews 1-8WH, Hopfer 1-20WH, Joyce 1-32WH, and Peach 1-20Wh, all have 

detectable paleorenieratane and isorenieratane. Since paleorenieratane and isorenieratane 

found in both the Woodford and Mississippian extracts as discussed previously in section 

4.2.3, these two compounds are not Woodford source-specific. Therefore, the 

identification of these compounds do not help grouping the oil families in this study but 

suggest the PZA occurred within the water column during deposition the of the possible 

source rock for the oils in this study. 
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Figure 74. Mass chromatograms of m/z 134 of the aromatic fractions showing the 

aryl isoprenoids and isorenieratane related compounds distributions of the oil 

samples in this study (P = Paleorenieratane; I = Isorenieratane)
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Figure 75. Mass chromatograms of m/z 134 of the aromatic fractions showing the 

aryl isoprenoids and isorenieratane related compounds distributions of the oil 

samples in this study (P = Paleorenieratane; I = Isorenieratane)
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Figure 76. Mass chromatograms of m/z 134 of the aromatic fractions showing the 

aryl isoprenoids and isorenieratane related compounds distributions of the oil 

samples in this study (P = Paleorenieratane; I = Isorenieratane) 
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5.2.4 Monoaromatic Steroids (m/z 253) 

Monoaromatic steroids (MAS) are a group of biomarkers derived from sterols 

containing a side-chain double bond during diagenesis (Riolo et al., 1986; Moldowan and 

Fago, 1986). These biomarkers were identified in the B&C fraction of Woodford Shale 

rock extracts and oils through SIM/GC-MS by analysis of the m/z 253.3 ion (Figure 77). 

The ternary diagram of C27, C28, and C29 monoaromatic steroids (MAS) has been used to 

characterize the variations in depositional environments, and are particularly useful for 

distinguishing marine from non-marine oils (Moldowan et al., 1985). Moldowan et al. 

found the oils and rock extracts derived from marine organic matter contain greater 

amounts of C28 MAS than those of non-marine origin. In addition, Moldowan et al. (1985) 

observed that some oils derived from marine carbonate source rocks contain higher 

amounts of C29 MAS than that from marine shale. The Woodford rock extracts and the 

tight oil samples have a greater concentration of C28 MAS, followed by C27 and C29 MAS 

and their distributions are similar to that of the regular steranes (Figure 78), indicating a 

marine source for these samples. 
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Figure 77. SIM mass chromatograms of the m/z 253.3 ion showing distributions of 

the monoaromatic steroids (MAS) in the B&C fractions of Joyce 1-32 WH oil. 

Peak identification is presented in Table 14. 

 

Table 14. Identification of monoaromatic steroids (MAS) in the SIM m/z 253.3 

mass chromatogram of the B&C fractions 

Peak # Compound 

1 C21 Pregnane 

2 C22 20-Methylpregnane 

3 C27 5β-Cholestane 20S 

4 C27 Diacholestane 20S 

5 C27 Monoaromatic steroid 

6 C28 5β-Ergostane 20S + C28 Diaergostane 20S 

7 C27 5α-Cholestane 20R 

8 C28 5α-Ergostane 20S 

9 C28 5β-Ergostane 20R + C28 Diaergostane 20R 

10 C29 5β-Stigmastane 20S + C29 Diastigmastane 20S 

11 C29 5α-Stigmastane 20S 

12 C28 5α-Ergostane 20R 

13 C29 5β-Stigmastane 20R + C29 Diastigmastane 20R 

14 C29 5α-Stigmastane 20R 
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Figure 78. Ternary diagram of C27, C28, and C29 monoaromatic steroids for the 

Woodford Shale rock extracts and oils (Plot template from Moldowan et al., 1985) 

 

5.3 Evaluation of Oil and Condensates Thermal Maturity 

5.3.1 Steranes (m/z 217) 

The map of Logan and Payne with C29 ββ/(ββ+αα) sterane ratios of the tight oil 

samples (Figure 79) shows the variation of thermal maturity for these oils. Devon oil 

samples can be divided into two groups: the eastern most three samples with C29 

ββ/(ββ+αα) sterane ratios below 0.60, equivalent to the beginning of oil window, include 

Joyce 1-32 WH, Elinore 1-17 H and Elinore 1-18 H, and the fourteen oil samples located 

closer to the Nemaha Uplift have C29 ββ/(ββ+αα) sterane ratios above 0.60, which are 

more mature than the eastern most three ones. The oils produced in southern Oklahoma, 

which have been reported to be sourced from the Woodford Shale, have an average C29 
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ββ/(ββ+αα) sterane ratio of 0.43, which is closer to that of the eastern most three oil 

samples. 

5.3.2 Terpanes (m/z 191) 

5.3.2.1 Hopanes 

All of the oil samples show their 22S/(22S+22R) ratio (0.57-0.62; Table 9) 

approaching to the equilibrium range (early oil window). While, from the other biomarker 

maturity proxies, such as C29 ββ/(ββ+αα) sterane ratio, it is reasonable to infer the 

majority of the sample sets are equivalent to around 0.80% Ro. Therefore the 

22S/(22S+22R) ratio couldn’t give additional thermal maturity information on the oils.  

5.3.2.2 Ts and Tm 

The oil samples could be divided into two groups based on their Ts/(Ts+Tm) 

ratios (Figure 81): the three oil samples in the eastern-most region of the study area with 

Ts/(Ts+Tm) ratio below 0.50, equivalent to the beginning of oil window, including Joyce 

1-32 WH, Elinore 1-17 H and Elinore 1-18 H, and the fourteen oil samples located closer 

to the Nemaha Uplift with Ts/(Ts+Tm) ratio above 0.60, which are more mature. The oils 

produced in southern Oklahoma, which have been reported to be sourced from the 

Woodford Shale, have an average Ts/(Ts+Tm) ratio of 0.43, which is closer to that of the 

three oil samples in the eastern-most region of the study area. 
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Figure 79. Map of Logan and Payne with C29 ββ/(ββ+αα) steranes ratios of the oil samples showing variations in thermal 

maturity (Condensates not shown due to this ratio couldn’t be measured) 
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Table 15. Average C32 22S/(22S+22R) hopane ratios for the Woodford Shale rock 

extracts and the studied oils 

Sample C32 22S/(22S+22R) 

Adkisson 1-33H 0.61 

Smith 1-14H 0.56 

Winney 1-8H 0.57 

Elinore 1-18H 0.59 

Johnson 1-33H 0.64 

Smith 1-23MH 0.63 

Wilma 1-16SWD 0.61 

Winney 1-5H 0.69 

Matthews 1-33H 0.59 

Elinore 1-17H 0.61 

Peach 1-19 MH 0.56 

Joyce 1-32 WH 0.59 

Hopfer 1-20 WH  0.62 

Peach 1-20 WH 0.56 

C. Matthews 1-8 

WH 
0.62 

Ford-1 0.60 

Thomas James 1-

22 
0.60 

Anadarko Taylor 

2118 
0.60 

A 0.54 

Ellis Lewis Jet 0.58 

F 0.59 

7-5N-5E 0.59 



 

 

 

Figure 80. Map of Logan and Payne with C32 22S/(22S+22R) hopanes ratios of the oil samples showing thermal maturity 

(Devon condensates not shown due to this ratio couldn’t be measured)
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Figure 81. Map of Logan and Payne with Ts/Tm ratios of the oil samples showing variation in thermal maturity (Devon 

condensates not shown due to this ratio couldn’t be measured) 
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5.3.3 Phenanthrenes 

Phenanthrenes and methylphenanthrenes were determined in the aromatic fraction 

of the oils by SIM/GC-MS monitoring the ions m/z 178.3, 192.3, and 206.3 (Figure 82). 

Values of MPI-1 ratios were obtained for the oil samples in this study, and used to 

calculate a vitrinite reflectance equivalent (Rc) values (Figure 82). The equation from 

Radke and Welte (1981), corresponding to low maturity levels, was used to calculate 

vitrinite reflectance (Rc) values for the oil samples. The vitrinite reflectance equivalent 

(Rc) values calculated from the MPI-1 parameters of the oil samples in this study show 

no trend covary with any geological or geochemical parameters (Figure 83). This 

anomalous behavior may be attributed to the oil samples not being derived from a single 

source or the fact that the MPI-1 and vitrinite reflectance relationship was based on shale 

and coals containing type III organic matter (Radke and Welte, 1983). As a result it may 

not be directly applicable for the other types of source rocks, such as the Woodford Shale, 

containing mainly type II organic matter. Lithology of the source rock can also affect 

MPI ratios. It was reported by Cassani et al. (1988) that high MPI-1 values corresponded 

to high carbonate content in the La Luna Shale but did not reflect the true maturity level. 

A hypothesis to interpret the anomalous behavior of MPI in these oil samples would be 

they are not single sourced and may have contributions from carbonate sources, or more 

mature oils, accounting for the high MPI-1 values.  
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Figure 82. Summed mass chromatograms of m/z 178.2, 192.3, 206.3, 188.2 ions 

showing distributions of phenanthrenes compounds in the aromatic fractions of 

sample Adkisson 1-33 H Oil. Peak identifications are presented in Table 11. 

 

Table 16. Calculated vitrinite reflectance (Rc) for the studied oils from MPI-1 

values 

Sample Rc 

Adkisson 1-33H 0.75 

Smith 1-14H 1.03 

Winney 1-8H 0.85 

Elinore 1-18H 0.83 

Johnson 1-33H 0.90 

Smith 1-23MH 0.77 

Wilma 1-16SWD 0.76 

Winney 1-5H 1.03 

Matthews 1-33H 1.12 

Elinore 1-17H 0.79 

Williams 1-24 WH 0.77 

Peach 1-19 MH 0.76 

Joyce 1-32 WH 0.74 

Hopfer 1-20 WH  0.74 

Peach 1-20 WH 0.73 
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C. Matthews 1-8 

WH 
0.73 

Ford-1 0.74 

Thomas James 1-22 0.81 

Anadarko Taylor 

2118 
0.90 

A 0.71 

Ellis Lewis Jet 0.82 

F 0.88 

7-5N-5E 0.79 
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Figure 83. Map of Logan and Payne with the vitrinite reflectance equivalent (Rc) values calculated from the MPI ratios of the 

oil samples showing variation in thermal maturity (Condensates are not shown due to lack of phenanthrenes) 
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5.3.3 Diamondoids 

Diamondoids are rigid fused-ring cycloalkanes with a diamond-like structure that 

shows high thermal stability initially and commonly precipitate directly from the gas to 

the solid phase during crude oil production (Williams et al., 1986; Wingert, 1992; Lin 

and Wilk, 1995; Dahl et al., 2002). Diamondoids are not found in living organisms but 

have been demonstrated to be synthesized from a wide variety of organic precursors via 

Lewis acid catalysis (Schleyer, 1990; Wingert, 1992). Considering their ubiquitous 

occurrence, even in oils of low thermal maturity, this mode of formation suggests 

diamondoids form by hydrocarbon rearrangement reactions on acidic clay minerals in 

petroleum source rocks (Schleyer, 1990). Unlike biomarkers, diamondoids in crude oils 

and source rocks are structurally very different from their probable precursors in living 

organisms. Diamondoids are good thermal maturity indicators for high-maturity samples 

(over 1.1% Ro) when biomarker thermal maturity indicators already thermally destroyed. 

Diamondoids are more applicable as thermal maturity proxies (Sweeney and Burnham, 

1990; Dahl et al., 1999), although they were reported to be able to distinguish rock 

extracts from different organofacies (Schulz et al., 2001). Various diamondoid maturity 

parameters have been proposed to measure highly mature samples (Sweeney and 

Burnham, 1990; Dahl et al., 1999), but their usefulness remains unclear. A representative 

work was Chen et al. (1996) used two diamondoid indices, methyladamantane index 

(MAI) and methyldiamantane index (MDI), to evaluate the thermal maturity of crude oils 

and condensates from several basins in China. MAI showed a better linear relationship 

related to VRo than MDI in his study, especially in the highly mature section (Ro > 2.0%).   
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In this study the condensate sample Wion 1-29 H with predominance of the 

admantanes in the detected key ion fragmentograms (m/z 136.1, 135.1, 149.1, 163.1, 

177.1) was used as reference sample (Figure 84). Identification of the admantanes in the 

reference sample was performed by direct comparison in distributions of the admantanes 

in the reference sample at the key ion fragments with those published by Wingert et al. 

(1992). Subsequently, the reference sample was then used for the diamondoid 

identification of the other oil/condensate samples by matching retention time (Figure 85). 

Determination of the diamondoid ratios such as MAI (1-MA/(1-MA + 2-MA)) was 

conducted using peak areas. The formula, Rc = 3.27*MAI - 0.86, to calculate Rc (vitrinite 

reflectance equivalent) from MAI was courtesy of Dr. Thanh Nguyen (University of 

Oklahoma). The formula was obtained from the fitting curve between measured VRo and 

MAI of the original data sets published by Chen et al. (1996). It was not surprisingly 

observed Rc from MAI is out of the maturity scope of regular oils, therefore the majority 

of Devon tight oils are around 0.9%Ro, the tiny difference between which couldn’t be 

resolved by MAI. Not surprisingly either to observe the Rc of Devon condensates are 

over 1.2% Ro and seems to increase towards the deep part of the Anadarko Basin 

following the regional dip of the Woodford Shale. 
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Figure 84. Mass chromatograms of m/z 136.1, 135.1, 149.1, 163.1, 177.1 ions 

showing distributions of adamantanes in the Wion 1-29H condensate 

 

Table 17. Diamondoid hydrocarbon compounds identification 

Peak # Compound 

1 Adamantane 

2 l-Methyladamantane 

3 1,3-Dimethyladamantane 

4 1,3,5-Trimethyladamantane 

5 1,3,5,7-Tetramethyladamantane 

6 2-Methyladamantane 

7 1,4-Dimethyladamantane, cis 

8 1,4-Dimethyladamantane, trans 

9 1,3,6-Trimethyladamantane 

10 1,2-Dimethyladamantane 

11 1,3,4-Trimethyladamantane, cis 

12 1,3,4-Trimethyladamantane, trans 

13 1,2,5,7-Tetramethyladamantane 

14 1-Ethyladamantane 

15 1-Ethyl-3-methyladamantane 

16 l-Ethyl-3,5-dimethyladamantane 

17 2-Ethyladamantane 
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Figure 85. Mass chromatograms of m/z 135.1 ion showing distributions of 

adamantanes in the whole oil of representative crude oils and condensates 

 

 

Figure 86. Devon oils & condensates sample location map with Rc (Vitrinite 

Reflectance calculated) from MAI (Methyl Adamantane Index) (oils denoted by 

black triangles; condensates denoted by pink dots) 
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Table 18. Rc of Devon oils & condensates calculated from MAI 

Sample Status MAI Rc 

Adkisson 1-33H Oil 0.59 1.1 

Smith 1-14H Oil 0.58 1.0 

Winney 1-8H Oil 0.57 1.0 

Elinore 1-18H Oil 0.61 1.1 

Johnson 1-33H Oil 0.60 1.1 

Smith 1-23MH Oil 0.58 1.0 

Winney 1-5H Oil 0.57 1.0 

Matthews 1-33H Oil 0.53 0.9 

Elinore 1-17H Oil 0.63 1.2 

Williams 1-24 WH Oil 0.54 0.9 

Peach 1-19 MH Oil 0.54 0.9 

Joyce 1-32 WH Oil 0.54 0.9 

Hopfer 1-20 WH  Oil 0.54 0.9 

Peach 1-20 WH Oil 0.54 0.9 

C. Matthews 1-8 WH Oil 0.55 0.9 

Thomas James 1-22 Oil 0.62 1.2 

A Oil 0.56 1.0 

Ellis Lewis Jet Oil 0.62 1.2 

F Oil 0.56 1.0 

7-5N-5E Oil 0.62 1.2 

Crystal 1-28H Condensate 0.72 1.5 

York 1-2H Condensate 0.64 1.2 

Wion 1-29H Condensate 0.77 1.7 

D. Bros. 1-18H Condensate 0.64 1.3 

Lingo 1-13H Condensate 0.67 1.3 

 

5.4 Oil-Oil and Oil-Source Rock Correlations 

5.4.1 Oil-Oil Correlations  

The data sets of this study provide a very good chance to investigate whether the 

oils produced from the horizontal well drilled into the Mississippian strata are genetically 

related to the oil produced from the horizontal well drilled into the Woodford Shale at a 
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same well site. The three well locations shown on the map in Figure 87 are: Winney 1-

5H, a horizontal well drilled into the Woodford Shale; Winney 1-8H, a horizontal well 

drilled into the Mississippian Limestone overlying the Woodford Shale from the same 

well site; and Winney 1-8 SWD, a vertical well drilled into the Arbuckle Group 

carbonates for salt water disposal, with the Mississippian and Woodford cores samples at 

several depth. Oil samples were obtained from Winney 1-5H and 1-8H. 

The SIM m/z 191.3 and m/z 217.3 ion mass chromatograms of two oils were 

shown below (Figure 88): Winney 1-5H oil produced from Woodford and Winney 1-8H 

oil from Mississippian. By comparing their fingerprints, these two oils’ terpanes and 

steranes characteristics are almost exactly the same. Taking into account of these three 

wells are drilled from a same well site, only 12 meters apart, it’s reasonable to infer the 

overlying Mississippian strata is connected with the Woodford Shale in this well.  

If these two oils originate from a same source, what is that source: Woodford, 

Mississippian, or some other source? The similarity of m/z 191 traces of Winney 1-5H 

oil, Winney 1-8 SWD 5155’ Mississippian rock extract and Winney 1-8 SWD 5360’ 

Woodford rock extract were compared in Figure 89. It would appear that the oil more 

closely resembles the Mississippian extract than the Woodford extract. Several 

characteristics of the Winney 1-8 SWD 5155 ft Mississippian rock extract in terms of m/z 

191 traces are consistent with that from the Mississippian rock in Oklahoma reported by 

Wang (1993) and Kim (1999). These characteristics include: 1) extended tricyclic 

terpanes (TT33 ~ TT39) dominate over homohopanes (H31 ~ H35); 2) very abundant 

tricyclic terpanes (TT28 ~ TT31); 3) C30 diahopane moderately detectable (C30 17α-

diahopane/hopane ratio around 0.20). As discussed in the section 4.2.2, Kim (1999) 
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proposed the relative abundance of extended tricyclic terpanes (> C30) over homohopanes 

(C31 ~ C35) appeared to be associated with several events of algal bloom during deposition 

of the Lower Mississippian Limestone. Wang (1993) and Kim (1999) found dominant 

extended tricyclic terpanes are diagnostic biomarker fingerprints for the Lower 

Mississippian Limestone in the Anadarko Basin. Based on these findings, the oils contain 

significant Mississippian source contribution.       

Very similar terpanes and steranes fingerprints (Figure 91) between two oils 

produced from Woodford and Mississippian from a same well site were also observed in 

the center of Payne County with the well locations shown in Figure 90. From the SIM 

m/z 191.3 mass chromatograms, several characteristics can be documented: 1) extended 

tricyclic terpanes (TT33 ~ TT38) could be detected until C38 but homohopanes (H31 ~ 

H35) still dominate over extended tricyclic terpanes (TT33 ~ TT38) in this range (Table 

19); 2) abundant tricyclic terpanes (TT19 ~ TT31), especially distinct distribution pattern 

of TT28 ~ TT31 (Table 19); 3) Ts/Tm ratio close to 1; 4) C30 diahopane almost non-

detectable compared to C30 regular hopane  (C30 17α-diahopane/hopane ratio around 

0.05).  Taking into account that these three wells are drilled at a same well site, only about 

10 meters apart, it’s reasonable to infer that the overlying Mississippian strata is 

connected with the Woodford Shale in this well.



 

 

 

Figure 87. Map of Logan and Payne with the well site highlighted for oil-to-oil correlation study and the well log of Winney 1-8 

SWD showing Mississippian and Woodford rock sampling depth 
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Figure 88. Correlation between an oil produced from the Woodford Shale and an oil produced from the Mississippian 

Limestone at a same well site (Red brackets denote tricyclic terpane (TT) isomers and purple brackets denote homohopane 

(HH) isomers; Steranes peak identification is listed in Table 6) 
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Figure 89. SIM m/z 191.3 mass chromatograms showing distributions of terpanes in the B&C fractions of the oil samples and 

rock extract (Red brackets denote tricyclic terpane (TT) isomers and purple brackets denote homohopane (HH) isomers)
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Figure 90. Map of Logan and Payne with the well site highlighted for oil-to-oil correlation study and the well log of Elinore 1-

18 SWD showing the Mississippian and Woodford rock sampling depth 
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Figure 91. Correlation between an oil produced from the Woodford Shale and an oil produced from the Mississippian 

Limestone at a same well site 
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Table 19. Absolute Concentrations of Terpanes (m/z 191) of the oils and rock extracts in Figure 90 (Concentrations are 

expressed as μg biomarkers/g TOC) 
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Figure 92. SIM m/z 191.3 mass chromatograms showing distributions of terpanes in the B&C fractions of the studied oil 

samples and rock extract
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If these two oils are from a same source, what is that source: Woodford, 

Mississippian, or some other source? The similarity of m/z 191 traces of Elinore 1-17H 

oil, Elinore 1-18 SWD 4453 ft Mississippian rock extract and Elinore 1-18 SWD 4486 ft 

Woodford rock extract were compared in Figure 92. It’s hard to determine whether the 

oil fingerprints resembles the Mississippian rock extract or the Woodford rock extract. 

From the tricyclic terpanes (TT28-TT29 and (TT30-TT31) distribution pattern, the oil 

neither resemble the Mississippian nor the Woodford.  Moreover, the extended tricyclic 

terpanes (TT33 ~ TT39) are not that abundant as the Mississippian rock extract but are 

more detectable than the Woodford rock extract (Table 19). Lastly the C30 diahopane is 

more abundant in the Mississippian and Woodford rock extract but not in the oil sample 

(Table 19). By checking the maturity of these two source beds, both of them contain a 

very high HI value. Moreover the VRo measured from the Woodford Shale in the Elinore 

1-18 SWD has a value of 0.56% Ro, which is lower than the Rc of the oil sample 

calculated from any biomarker maturity parameter. Moreover, the oil is around 45 oAPI 

gravity, which is lighter than a typical early mature petroleum product if expelled from 

the early mature source bed in-situ. From the reservoir quality perspective, it was recently 

reported by Kvale (2014) that abundant marine coarse-grained biogenic silica were found 

in the Woodford cores in this area. These coarse-grained materials may be the contributor 

to the good reservoir petrophysical properties suggesting the Woodford Formation may 

not be the source rock in this area but simply a tight reservoir.  By integrating all of these 

facts, it is proposed that the oil produced from this well site are not generated in-situ either 

from the Woodford Shale or the Mississippian carbonate source rock but migrated from 

the Woodford Shale in some other places. The reason why the oil fingerprints looks like 
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in between these two source beds may be attributed to the fact that the migrated oil 

dissolved portions of both of the two sources’ extracts as discussed below. 

5.4.2 Oil-Source Rock Correlations 

The distributions of steranes and terpanes have been widely used as correlation 

tools (Moldowan et al., 1985; Volkman, 1988; Philp et al., 1989; and Moldowan et al., 

1992). Since steranes and terpanes are very common biomarkers existing in almost all of 

the source rocks and oils, there are possibilities that oils sourced from different source 

rocks may have similar distributions of hopanes and steranes. If the correlation can be 

supported by additional geochemical information, such as the results of carbon isotopic 

analysis, absolute concentration of biomarkers, the correlation will be less ambiguous. 

Special biomarkers and/or biomarker distributions are even better correlation tools. 

Genetic relationships between an oil and a suspected source rock can be 

established by comparing the similarity of their fingerprints. The SIM m/z 191.3 mass 

chromatograms of three oils and two source rocks were displayed in Figure 93, including 

two oil samples, namely Adkisson 1-33H oil, Elinore 1-17H oil, and a typical Woodford-

sourced oil produced from a conventional reservoir in Southern Oklahoma, and two 

source rocks, Winney 1-8 SWD 5155 ft Lower Mississippian Limestone rock extract and 

Mary Earp-5 4093 ft Woodford Shale rock extract and well locations shown in Figure 94. 

The Winney and Adkisson oils are two representative end-members in terms of their m/z 

191 fingerprints. The other oils are intermediate between these end-members. One end-

member is Adkisson 1-33H oil. The characteristics of m/z 191 fingerprints of Adkisson 

1-33H oil include: 1) extended tricyclic terpanes (TT33 ~ TT39) dominate over 

homohopanes (H31 ~ H35) in the same chromatographic region; 2) unusually abundant 
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tricyclic terpanes (TT28 ~ TT31); 3) relatively higher (29Ts+D30)/H30 ratio. While, 

comparing with Adkisson 1-33H oil, the characteristics of m/z 191 fingerprints of Elinore 

1-17H oil are: 1) extended tricyclic terpanes (TT33 ~ TT38) could be detected until C38 

but homohopanes (H31 ~ H35) still dominate over extended tricyclic terpanes (TT33 ~ 

TT38) in this range; 2) abundant tricyclic terpanes (TT19 ~ TT31), especially distinct 

distribution pattern of TT28 ~ TT31; 3) Ts/Tm ratio close to 1; 4) relatively lower 

(29Ts+D30)/H30 ratio and C30 diahopane almost non-detectable compared to C30 regular 

hopane. 7-5N-5E oil, as one of the representative Woodford-sourced oil produced from a 

conventional reservoir in Southern Oklahoma, shows the characteristics of a typical 

Woodford-sourced oil, which are very similar to that of the Elinore 1-17H oil. 

Adkisson 1-33H oil resemble the Winney 1-8 SWD 5155 ft Mississippian rock 

extract rather than Mary Earp-5 4093 ft Woodford rock extract in terms of their 

fingerprints, including: 1) extended tricyclic terpanes (TT33 ~ TT39) dominate over 

homohopanes (H31 ~ H35) in the same chromatographic region; 2) unusually abundant 

tricyclic terpanes (TT28 ~ TT31); and 3) relatively higher (29Ts+D30)/H30 ratio. The 

Elinore 1-17H oil appears to be genetically related to 7-5N-5E Woodford-sourced oil and 

Mary Earp-5 Woodford rock extract. The reason why an immature-to-early-mature 

Woodford rock extract, like the Mary Earp-5 4093 ft sample, was chosen to be compared 

for correlation is because, as discussed before in section 4.2.2.3, the regular hopanes, 

especially the homohopane series, in the Woodford source rock seriously thermally 

degraded during source rock maturation. Only a low-maturity ranking Woodford sample, 

like the Mary Earp-5 4093 ft, could show the original 
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Figure 93. SIM m/z 191.3 mass chromatograms showing distributions of terpanes in the B&C fractions of the studied oil 

samples and rock extract. 



 

 

 

Figure 94. Map of Logan and Payne with the well site highlighted for oil-to-source rock correlation study 
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hopanes distributions for correlation with oil samples. Therefore, in summary, Adkisson 

1-33H oil appears to have a great contribution from the Mississippian source rock and 

Elinore 1-17H oil is sourced primarily from the Woodford Shale.   

The organic matter source and depositional environment information reflected by 

the biomarker distributions support this correlation as well. The unusually abundant 

distributions of extended tricyclic terpanes has been reported as one of the most 

diagnostic characteristics of Mississippian source rock extracts and Mississippian-

sourced oils (Wang, 1993; Kim, 1999). As discussed before in the section 4.2.3, Kim 

(1999) proposed that the relative abundance of extended tricyclic terpanes (> C30) over 

homohopanes (C31 ~ C35) appeared to be associated with several events of algal bloom 

during the Lower Mississippian Limestone deposited (Kim, 1999). Another obvious 

characteristics in terms of m/z 191 fingerprints is the (29Ts+D30)/H30 ratios in the 

Winney 1-8 SWD 5155 ft Mississippian rock extract and Adkisson 1-33H oil are higher 

than those in the other samples in Figure 93. 18α-30-norneohopane (29Ts) and C30 17α-

diahopane (D30) are two rearranged hopanes. They were thought to be rearranged from 

regular hopanes and the rearrangement chemical reaction appeared to be associated with 

clay and/or acidic catalysis. Therefore the relatively high (29Ts+D30)/H30 ratio in either 

the Mississippian rock extracts or the Mississippian-sourced oil may infer that the clay 

content and/or acidity level of the Mississippian source rock depositional environment 

(Kim, 1999).    

By applying the extended tricyclic terpanes vs. homohopanes ratio (TT33-

TT39/H31-H35: the sum of C33 to C39 tricyclic terpanes divided by the sum of C31 to C35 

homohopanes) as the correlation tool, sixteen Devon produced tight oil samples could be 
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subdivided into two major groups: Group-A gathers Elinore 1-17H, Elinore 1-18H and 

Joyce 1-32H, which are located in the eastern-most region of the study area and most far 

away from the Nemaha Uplift; and Group-B encompasses the left thirteen wells, which 

are closer to the Nemaha Uplift Zone towards the West (Figure 95). The oil samples in 

Group-A have no Mississippian source characteristics but the typical Woodford-sourced 

oil characteristics. The oil samples in Group-B have the Mississippian source 

characteristics in variable extents, which infer at least these oil samples have the 

Mississippian source contribution but the Woodford source contribution couldn’t be 

excluded. 

The terpane series biomarker distributions of either oil samples (Figure 96) or 

source rock samples (Figure 97) support the oil-to-source rock correlation as well. In this 

type of figure, more biomarkers are utilized as correlation tools. The idea is the data points 

of the genetically related samples should fall into an “envelope” in this type of figure. In 

Figure 96, it’s obvious to subdivide the data points into two “envelopes”. Envelope-A 

gathers the majority of the tight oil samples with the Mississippian source contribution 

and Envelope-B encompasses the Woodford-sourced oils. Not only the genetically related 

oil samples fall into the same envelope, the genetically related source rock samples should 

fall into the same envelope as well. In Figure 97, it’s interesting to see the two 

Mississippian rock extract encompass the majority of the tight oil samples with the 

Mississippian source contribution. While, in the other envelope, the Woodford-sourced 

oils are within the Woodford source rock data points approximately.
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Figure 95. Well Location Map of Logan and Payne with the extended tricyclic terpanes vs. homohopanes ratios 

(TT33~TT39)/(H31~H35) for oil-to-source rock correlation 



 

 

 

Figure 96. Biomarker (Terpanes) distributions of the studied tight oil samples for oil-oil correlation 
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Figure 97. Biomarker (Terpanes) distributions of the studied tight oil samples and source rock extract for oil-to-source rock 

correlation
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6. CONCLUSIONS 

The Woodford Shale in central Cherokee Platform is a typical marine siliciclastic 

mudstone with excellent source rock potential demonstrated by the TOC and Rock-Eval 

parameters. Biomarker distributions of regular steranes, hopanes and monoaromatic 

steroids (MAS) are consistent with an interpretation that the Woodford Shale was 

deposited generally in a marine siliciclastic depositional environment. Aryl isoprenoids 

and paleorenieratanes/isorenieratanes detected in the Woodford extracts indicate the 

occurrence of episodic periods of photic zone anoxia (PZA) during deposition of the 

Woodford Shale. In addition, n-alkane and sterane distributions, and the tentative 

identification of gammacerane suggest deposition of the Woodford Shale under 

hypersaline conditions in Central Oklahoma. Source-dependent biomarker parameters, 

including diasteranes and diahopanes, indicate that in the area in the proximity of the 

Nemaha Uplift, the Woodford Shale was deposited under a condition rich in clay content, 

reflecting the influence of the paleo-Nemaha Uplift. Thermal maturity parameters based 

on the measured vitrinite reflectance values (% Ro), Rock-Eval and biomarker maturity 

parameters indicate that the Woodford Shale is immature to marginally mature in Payne 

County, and show a progressive increase in maturity towards the southeast following the 

regional dip. In the area in the proximity of the Nemaha Uplift, the Woodford Shale is in 

the main stage of oil generation. 

Analysis of the geochemical profile shows a minimal range of vertical variation 

within the Woodford Shale in this study. The Woodford Shale in this study was 

subdivided into middle and upper members without a lower member found based on the 

integration of geochemical and geological data. The middle Woodford member has the 
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higher TOC values. Pristane and phytane (Pr/Ph) and biomarker ratios suggest the 

establishment of stronger anoxic conditions during deposition of the middle Woodford 

member than the upper Woodford member, where the latter may have received an 

additional siliciclastic organic matter input. In the area in the proximity of the Nemaha 

Uplift, Pr/Ph ratios indicate deposition under suboxic to dysoxic conditions for the 

Woodford Shale interval analyzed. Isotope data indicates a marine organic matter source 

for the Woodford Shale, but δ13C values do not show significant organic facies, 

depositional environment, or thermal maturity changes.  

The origin of the oils and condensates sampled in this study were related to their 

possible source beds based on oil-oil and oil-source rock correlation by comparing 

biomarker fingerprints. Three major conclusions were made: (i) oils produced from the 

Woodford Formation and that from the overlying Mississippian Formation share very 

similar fingerprints suggesting the Woodford Formation and the overlying Mississippian 

Formation are connected in the study area; (ii) oils produced in the area in the proximity 

of the Nemaha Uplift (Logan and West Payne Counties) were not only sourced by 

Woodford but also had a significant Mississippian source contribution based on the 

presence of abundant extended tricyclic terpanes and other source-specific biomarker 

characteristics; (iii) oils sampled from the East of the Cherokee Platform (Central-East 

Payne County) share strong Woodford source characteristics but were not generated in-

situ from the Woodford Shale since the Woodford in that area is not mature enough. 

Therefore, the oil produced there may probably be migrated from the Woodford Shale in 

the deeper part of the Anadarko Basin in Southern Oklahoma. The results of this research 

are consistent with some new findings reported by the Devon geologists that abundant 
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marine coarse-grained biogenic silica (radiolarian-rich chert facies) found in Woodford 

cores (Central-East Payne County) in this area may be a contributor to good reservoir 

petrophysical properties suggesting the Woodford Formation may not be the source rock 

in this area but simply a tight reservoir. 
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8. APPENDIX 

A. Abbreviations and formulas used for calculation of geochemical 

biomarker ratios 

 

n-Alkanes 

Carbon Preference Index (CPI) 

𝐶𝑃𝐼 =  
1

2
[
𝐶25 + 𝐶27 + 𝐶29 + 𝐶31 + 𝐶33

𝐶26 + 𝐶28 + 𝐶30 + 𝐶32 + 𝐶34
+

𝐶25 + 𝐶27 + 𝐶29 + 𝐶31 + 𝐶33

𝐶24 + 𝐶26 + 𝐶28 + 𝐶30 + 𝐶32
] 

 

Terrigenous/Aquatic Ratio (TAR): 

𝑇𝐴𝑅 =  [
𝐶27 + 𝐶29 + 𝐶31

𝐶15 + 𝐶17 + 𝐶19
] 

Steranes 

C27%, C28%, C29% = C27, C28, C29 [14α(H),17α(H)- + 14β (H),17β (H)-Cholestane 

(20S+ 20R)] 

 

C29 20S/(20S + 20R) = C29 [14α(H),17α(H)-Cholestane (20S)]/[14α(H),17α(H)-

Cholestane (20S+20R)] 

 

C29 ββ/(ββ + αα) = C29 [14β(H),17β(H)-Cholestane (20S+20R)]/[14β(H),17β(H)- + 

14α(H),17α(H)-Cholestane (20S+20R)] 

 

Preg/Ster = C21 14β(H),17β(H)-Pregnane/C27 14α(H),17α(H)-Cholestane (20R) 

 

C27 Dia/C27 Sterane = [C27 13β(H),17α(H)- + C27 13α(H),17β(H)-Diacholestane 

(20S+20R)]/[C27 14α(H),17α(H)- + 14β(H),17β(H)-Cholestane (20S+20R)] 

 

C27 Dia/(Dia+Reg) = [C27 13β(H),17α(H)- + 13α(H),17β(H)-Diacholestane 

(20S+20R)]/ [C27 13β(H),17α(H)- + 13α(H),17β(H)-Diacholestane (20S+20R) + C27 

14α(H),17α(H)- + 14β(H),17β(H)-Cholestane (20S+20R)] 
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Sterane Index = C30/(C27-C30) = [C30 14α(H),17α(H)- + 14β(H),17β(H)-Cholestane 

(20S+20R)]/ C27, C28, C29, C30 [14α(H),17α(H)- + 14β(H),17β(H)-Cholestane 

(20S+20R)] 

 

Hopanes 

Sterane/17α-Hopanes = [C27, C28, C29, C30 14α(H),17α(H)- + 14β(H),17β(H)-

Cholestane (20S+20R)]/[C29 17α(H),21β(H)-30-Norhopane + C30 17α(H),21β(H)-

Hopane + C31+C32+C33 17α(H),21β(H)-Homohopanes (22S+22R)] 

 

TR/17α-H = C28 + C29 Tricyclic terpanes (20S+20R)/17α-Hopanes 

 

C22/C21TR = C22/C21 Tricyclic terpanes 

 

C24/C23TR = C24/C23 Tricyclic terpanes 

 

C26/C25TR = C26/C25 Tricyclic terpanes 

 

C23TR/30H = C23 Tricyclic terpanes/C30 17α(H),21β(H)-Hopane 

 

C24TT/30H = C24 Tetracyclic terpane/C30 17α(H),21β(H)-Hopane 

 

H29/H30 = C29 17α(H),21β(H)-30-Norhopane/C30 17α(H),21β(H)-Hopane 

 

31R/30H = C31 17α(H),21β(H)-Homohopane (22R)/C30 17α(H),21β(H)-Hopane 

 

35S/34S = C35 17α(H),21β(H)-Pentakishomohopane (22S)/C34 17α(H),21β(H)-

Tetrakishomohopane (22S) 

 

HH Index = C35/(C31 – C35) = C35 17α(H),21β(H)-Pentakishomohopane  

(22S+22R)/[C31+C32+C33+C34+C35 17α(H),21β(H)-Homohopanes (22S+22R)] 

 

C31 22S/22S+22R = C31 [17α(H),21β(H)-Homohopanes (22S)/17α(H),21β(H)-

Homohopanes (22S+22R)] 
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Aryl Isoprenoids 

Aryl Isoprenoid ratio (AIR): 

AIR = (C13-C17)/(C18-C22) 2,3,6-trimethyl substituted aryl isoprenoids 

 

Aromatics 

MPI-1: 

𝑀𝑃𝐼 1 = 1.5 × 
[2 − 𝑀𝑃 + 3 − 𝑀𝑃]

[𝑃 + 1 − 𝑀𝑃 + 9 − 𝑀𝑃]
 

 

Calculated vitrinite reflectance: 

For 0.65 to 1.35%Ro:  Rc = 0.60 MPI-1 + 0.40 

For 1.35 to 2.00%Ro:  Rc = -0.60 MPI-1 + 2.30 

 

MA(I): 

𝑀𝐴(𝐼) =  ∑ 𝐶27 − 𝐶29 𝑀𝐴𝑆 

 

MA(II): 

𝑀𝐴 (𝐼𝐼) =  ∑ 𝐶21 − 𝐶22 𝑀𝐴𝑆 

 

MA29 = C29 [5α- + 5β-Stigmastane (20S+20R)] 

 

%C27, %C28, %C29 MAS = ΣC27, ΣC28, ΣC29 MAS 

 

 

B. Total Organic Carbon (TOC) and Rock-Eval (RE) parameters for the 

Woodford Shale  and Mississippian Limestone samples 
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C. Gas chromatograms of the saturate fractions for the Woodford Shale 

samples analyzed in this study (Pr = pristane; Ph = phytane, n-C25 = 

C25 normal alkane) 

 

Pritchard-1 core (Woodford Formation) 
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Frank 1-33 SWD core (Woodford Formation) 

 

 

Wilma 1-16 SWD core (Woodford Formation) 
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Adkisson 1-33 SWD core (Woodford Formation) 

 

Elinore 1-18 SWD core (Woodford Formation) 
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Ranch 10-1 core (Woodford Formation) 
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Anderson 12-1 core (Woodford Formation) 

 

Chenoweth-1 (Woodford Formation) 
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York-1 (Woodford Formation) 

 

Pope Unit-1 (Woodford Formation) 
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Mississippian cores 

 

Smith 1-23 KO oil 
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Wilma 1-16H oil 

 

Matthews 1-33H oil 

 

Winney 1-5H oil 

 

 

 

 

 

 



 

 261 

Smith 1-14H oil 

 

Johnson 1-33H oil 

 

Elinore 1-18H oil 
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Winney 1-8H oil 

 

Adkisson 1-33H oil 

 

Elinore 1-17H oil 
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Williams 1-24WH oil 

 

Peach 1-19H oil 

 

Joyce 1-32H oil 
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Hopfer 1-20H oil 

 

Peach 1-20WH oil 

 

C. Matthews 1-8 oil 
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“A” oil 

 

Ellis Lewis Jet oil 

 

Anadarko Taylor 2118 oil 
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“F” oil 

 

7-5N-5E oil 

 

Ford-1 oil 
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ST Mary Condensate 
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D. Geochemical ratios of steranes for the branched and cyclic fractions 

(B&C) of the Woodford/Mississippian extracts, oils, and condensate 

samples (N.D. = not determined) 
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E. Geochemical ratios of terpanes for the branched and cyclic fractions 

(B&C) of the Woodford Shale extracts, oils, and condensates samples 

(ND = not determined) 
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F. Quantitative biomarker analysis results for steranes (Concentrations 

are expressed as μg biomarkers/g TOC or μg biomarkers/g whole oil; 

ND = not determined) 
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G. Quantitative biomarker analysis results for terpanes (Concentrations 

are expressed as μg biomarkers/g TOC or μg biomarkers/g whole oil; 

ND = not determined) 
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