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Abstract 
 

Measurement invariance concerns whether the constructs’ measurement 

properties (i.e., relations between the latent constructs of interest and their observed 

variables) are the same under different conditions. Without establishing evidence of 

measurement invariance, corresponding cross-condition comparisons are questionable. 

Although different systems have been developed in conducting measurement invariance 

tests, a few important issues shared by those systems remain unsolved. The current 

dissertation tries to use Bayesian Structural Equation Modeling (BSEM) to address 

three major imperative issues in studying measurement invariance. First, a new, reliable 

measure is developed to select a proper (i.e. truly invariant) reference indicator. Second, 

the issue of locating non-invariant parameters is addressed by using the Bayesian 

Credible Interval (BCI). Third, posterior distribution is employed to evaluate empirical 

consequences of non-invariance; specifically, the aim is to interpret non-invariance in 

terms of expected differences in observed scores across levels of latent trait (or 

expected differences in latent trait conditioning on observed test scores), and to provide 

relevant confidence limits. A series of simulation analyses show that the proposed 

method performs well under a variety of data conditions. An empirical example is also 

provided to demonstrate the specific procedures to implement the proposed methods in 

applied research. Extensions and limitations are also pointed out.
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Chapter 1: Introduction 

 
Measurement invariance concerns whether the constructs’ measurement 

properties (i.e., relations between the latent constructs of interest and their observed 

variables) are the same under different conditions. Mellenbergh (1989) gave a formal 

definition of measurement invariance in terms of conditional probability distributions of 

the observed scores as shown in Eq. (1). 

)|(),|( WXfVWXf                                                                        (1)  

In general, measurement invariance means conditional independence of observed scores 

(X) given the underlying latent variable W, regardless of any different measurement 

conditions (V) of interest. In practice, these conditions could include different 

subgroups of a population (e.g., national cultures, ethnical groups, genders), occasions 

of measurement (e.g., repeated measure data), and different test settings (e.g., paper-

pencil vs. web-based test) (Meade & Wright, 2012). 

Without establishing measurement invariance, any observed differences across 

conditions may be simply a reflection of differences in the psychometrical properties of 

the measures under use, but not the actual differences in the constructs that researchers 

are desired to test. In this sense, measurement invariance is a very important issue to 

consider when a measure is applied across different conditions. For example, 

measurement invariance has been recognized as a prerequisite for examining mean 

differences across groups or mean changes over time. When invariance of factor 

loadings and intercepts holds across groups, subjects (from different groups) with the 

same levels of a latent construct have the same expected observed scores on the 

measures (Drasgow & Kanfer, 1985). Under this condition the cross-group difference in 
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observed means can be unambiguously interpreted as the true mean difference of the 

underlying construct. Otherwise, if measurement invariance is not tenable, the observed 

mean difference could be contaminated by the difference in the psychometric properties 

of the measures being used.  

Among the existing statistical approaches to testing measurement invariance, 

multiple-group confirmatory factor analytic (CFA; Jöreskog, 1971; McGaw & 

Jöreskog, 1971) approach has been widely used, with measurement invariance being 

tested from the perspective of factorial invariance. In general, assuming the observed 

variables are multivariate normally distributed, factorial invariance has implication for 

measurement invariance. A technical discussion of measurement invariance and 

factorial invariance can be referred to Meredith (1993). 

Over years, different systems in the framework of CFA have been developed to 

conduct factorial invariance tests. They differ in labels for different levels of invariance, 

order and procedures of the series of tests, etc. (see Vandenberg & Lance, 2000 for a 

comprehensive review). However, they share a few imperative issues that still remain 

unsolved (Millsap, 2005; Millsap & Meredith, 2007). Of the interest in this dissertation 

are three major imperative issues, including 1) how to select proper reference indicators; 

2) how to locate specific non-invariant parameters; and 3) how to evaluate the 

consequences of non-invariance. 

Those three issues perplex methodologists for many years, and directly obstruct 

the soundness of measurement invariance studies. First, in using multiple-group CFA 

techniques to test for factorial invariance, a common method of model identification is 

to set the factor loading (and intercept as well for model with mean structure) of a 
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particular item to be equal across groups (Reise, Widaman, & Pugh, 1993). The item 

chosen for this purpose is referred to as a reference indicator (RI). The latent factor is 

therefore scaled by the RI, and other factor parameters are then estimated in reference 

to the metric of the RI (Cheung & Rensvold, 1999; Johnson, Meade, & DuVernet, 

2009; Meade & Wright, 2012). However, “This creates a dilemma. The reason one 

wishes to estimate the constrained model in the first place is to test for factorial 

invariance, yet the procedure requires an a priori assumption of invariance with respect 

to the referents.” (Rensvold & Cheung, 1998). Selection of RIs has been shown to be 

critical in detecting invariance or non-invariance. When an inappropriate item is 

chosen to be a RI, severe Type I or Type II errors are expected in testing factorial 

invariance (e.g., Johnson, Meade, & DuVernet, 2009). It is obvious that how to 

appropriately select a RI determines whether the true status of invariance could be 

detected using the multiple-group CFA method.  

Second, Within the framework of multiple-group CFA, testing for factorial 

invariance involves fitting a series of models with stronger forms of equality 

constraints increasingly imposed.
1
 One can determine the tenability of a specific 

equality constraint by testing the significance of chi-square difference between the two 

nested models, one with the equality constraint imposed and the other without those 

constraints. If the test turns out to be non-significant, one can conclude no cross-group 

differences on the tested parameters. If the test is significant, cross-group difference 

exists in at least one of the parameters. When some but not all parameters are found 

invariant across groups, partial invariance is said to occur (Byrne & Shavelson, 1989; 

Widaman & Reise, 1997). Then one would need to locate specific unequal parameters 
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if they decide to allow those parameters to be freely estimated in the subsequent 

multiple-group analyses (Widaman & Reise, 1997). In fact, an increasing amount of 

empirical studies have provided provision for partial invariance (see Schmitt & 

Kuljanin, 2008; Vanderberg & Lance, 2000). Thus, how to locate nonequivalent 

parameters apparently becomes imperative in presence of partial invariance.    

Third, mainstream approaches for testing non-invariance rely on statistical 

significant tests, by which very tiny non-invariance is likely to be detected as sample 

size increases, even though it makes negligible practical influence. Thus, researchers 

have suggested that non-invariance should be understood as a “continuum”, rather than 

a dichotomous reject/not reject decision (Nye & Drasgow, 2011). Therefore, it is 

meaningful to differentiate between statistically significant non-invariance and 

practically significant non-invariance, especially from the applied users’ perspective. 

However, currently there is little literature focusing on evaluating empirical 

consequences of non-invariance. 

In summary, despite of their importance, the three (abovementioned) issues still 

remain under-addressed in both empirical and methodological work. The goal of this 

dissertation is to address these issues by using Bayesian approach in the context of 

multiple-group CFA. In the rest of this dissertation, I first briefly introduce multiple-

group CFA model and factorial invariance (Section 1.1). Then I focus on detailed 

discussions on the three issues, the current methods of dealing with each issue, and the 

pros and cons of each of the methods (Sections 1.2-1.4).  

In Chapter 2, I propose the Bayesian approach for solving the three 

abovementioned issues. The performances of the proposed BSEM methods are 
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evaluated and compared with existing approaches using three Monte Carlo simulation 

studies in Chapter 3. Specifically, in study I (Section 3.1), I focus on selecting proper 

(i.e. truly invariant) reference indicator by extending the approach of using informative 

priors with small-variance and zero-mean. In study II (Section 3.2), the issue of locating 

non-invariant parameters is addressed by using the Bayesian Credible Interval (BCI). 

With this approach, the non-invariant parameters can be located by fitting a single 

model, instead of running a series of models as other approaches do. In study III 

(Section 3.3), I investigate the usage of the Bayesian posterior distribution to evaluate 

empirical effect of non-invariance. The non-invariance is interpreted in terms of the 

expected differences in observed scores across levels of latent trait, as well as the 

expected differences in latent trait conditioning on the observed test (sum) scores. 

Different from the existing approaches, the Bayesian method could incorporate the 

information of sampling errors and provide relevant confident limits.  

In Chapter 4, an empirical example is provided to demonstrate the uses of the 

proposed BSEM methods with real data. Finally, in Chapter 5, I discuss the implications 

and possible extensions of the proposed BSEM methods. Limitations and future 

directions are also pointed out.  

1.1 Factorial Invariance and the Tests 

Confirmatory factor analytic models (CFA; Jöreskog, 1971; McGaw & 

Jöreskog, 1971) have been widely used to test for factorial invariance across groups or 

measurement occasions in past decades (refer to Millsap & Meredith (2007) for a 

thorough discussion on the historical issues of factorial invariance). A standard 
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multiple-group CFA model states the linear relationship between observed variables and 

latent factors for multiple groups simultaneously. The model can be expressed as 

)()()()()( jjjjj
εξλτy                                                          (2)   

where j represents group membership for the vector of observed variables of y , 

implying that all parameters in the model can differ across groups, τ represents the 

intercept vector, λ denotes the factor loading matrix, ξ is the latent score matrix, and ε 

represents the unique factor vector. Implied by the model, the means and covariances of 

the observed variables can be expressed, respectively, in matrix forms as:    

)()()()( jjjj
ταΛμ                                                       (3)

 

)()()()()( jjjjj
ΘΛΦΛΣ                                                      (4) 

where µ is a vector of population means of the observed variables, Λ is a matrix of 

factor loadings, α is the vector of the latent factor means, τ is a vector of intercepts, Σ is 

the population variance-covariance matrix for the observed variables, Φ is the 

covariance matrix for latent factors, and Θ is a variance-covariance matrix among the 

residuals.   

Many forms or levels of factorial invariance have been proposed in the literature 

(e.g., Byrne, Shavelson, & Muthén, 1989; Horn, McArdle, & Mason, 1983; Jöreskog, 

1971; Meredith, 1993; Steenkamp & Baumgartner, 1998; Widaman & Reise, 1997).  

The two general categories of factorial invariance include configural invariance and 

metric invariance. Configural invariance is met when same factor structure (i.e. same 

number of factors and same salient factor pattern) is found across different conditions. 

Within metric invariance are three commonly-used sublevels, including weak factorial 

invariance, strong factorial invariance, and strict factorial invariance, with an increasing 
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level of equality constrains added to each latter level of invariance. Specifically, weak 

factorial invariance holds when factor loadings (Λ) are found to be equal across 

conditions; strong invariance holds when factor loadings (Λ) and intercepts (τ) are both 

found to be equal, which implies that the observed mean differences (µ) are a reflection 

of true mean differences (α) on latent variables (see Equation 3); strict factorial 

invariance holds when factor loadings (Λ), intercepts (τ), and unique variance (Θ) are 

all equal across conditions, which implies that the differences in observed means (µ) 

and variances-covariances (Σ) reflect true differences in means (α) and variances of the 

latent variables (Φ), respectively (see Equation 4). Strict factorial invariance is regarded 

as a necessary condition of measurement invariance; however, it is also considered as 

too restrictive to be met in reality.  

In general, testing for factorial invariance involves a series of likelihood ratio 

tests (LRT, Kim & Yoon, 2011; Kim & Cohen, 1995). It begins with fitting a baseline 

model using one of the two available approaches: free baseline approach or constrained 

baseline approach. The free baseline approach allows all parameters being freely 

estimated except for those constrained for model identification purpose. A well-fitted 

baseline model supports configural invariance. Then metric factorial invariance tests are 

conducted in order of weak invariance, strong invariance, and strict invariance by 

adding the associated equality constrains. For example, in a test of weak invariance, one 

sets all factor loadings to be equal across conditions and then evaluates the significance 

of chi-square difference between this model and the baseline model using the likelihood 

ratio test. If the test indicates non-significance, which means the model with constrains 

fits the data as well as the baseline model, researchers would accept the constrained 
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model and continue to add further constrains to test a higher level of invariance. If the 

hypothesis of full weak invariance is not retainable, researchers may adopt partial 

invariance methodology, by which to locate the non-invariant indictor variables and to 

freely estimate their parameters. Detailed discussions on partial invariance are offered 

in a later section of this dissertation.   

In contrast to the free baseline approach, constrained baseline approach fits the 

baseline model by imposing full equality constrains on all model parameters; that is, it 

begins with fitting a strict factorial invariance model as the baseline. Then weaker forms 

of invariance are tested by increasingly relaxing those constrains and the chi-square 

differences between nested models are evaluated using LRT. The constrained baseline 

approach is used and recommended by some researchers (Kim & Yoon, 2011). 

However, one problem of the constrained baseline approach is that the non-invariant 

parameters (if present) are also fixed to be equal as baseline; therefore, the constrained 

baseline model may not produce a reasonably well fit to data. As noted by Maydeu-

Olivares and Cai (2006), a well-fitted baseline model is required as a statistical premise 

for the LRT; only under conditions which the baseline model fits well does the 

difference between the nested models follow a central chi-square distribution under the 

null hypothesis. In this sense, the free baseline approach is more appropriate from a 

statistical perspective. By comparing the two approaches, researchers also found that 

using the constrained baseline approach to test factorial invariance may produce 

unreliable conclusions, such as inflation of type I error rates (see Stark, Chernyshenko 

& Drasgow, 2006; Kim & Yoon, 2011 for more comparisons between these two 

approaches). In this dissertation, the goal is to address questions related to testing for 
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factorial invariance using the free baseline approach, namely, selecting referent 

indicators and locating non-invariant parameters.   

1.2 Selection of Reference Indicators 

Selection of RIs has been recognized as an important issue in the literature of 

factorial invariance. It is well known that in fitting a single-group CFA, the metric of 

latent variables needs to be set to make the model identified. One can either set the 

factor variance to unity or assign one of the factor loadings to unity (Bollen, 1989). 

When fitting a multiple-group CFA, there are multiple ways to identify the multiple 

group models, and these different methods are equivalent in terms of goodness of fit.
2 

However, for the purpose of studying factorial invariance, scaling factor variances to 

unity for both groups is not applicable. If the data do not support this equality 

constrain, the estimation of model parameters may be biased (Rensvold & Cheung, 

1998) and the true differences in between-group factor variances may be shifted to 

observed differences in between-group factor loadings. Therefore, this model 

identification method is not recommended to use for testing factorial invariance (Yoon 

& Millsap, 2007). Alternatively, one commonly-used method for multiple-group CFA 

identification is to use reference indicators (RI).Specifically, one can select one 

arbitrary group as the reference group and fix its factor variance to one. In addition, the 

factor loadings for the selected RI are constrained to be equal across groups. In doing 

this, there is only one set of estimated coefficients that reproduces the data optimally. 

In other words, the multiple-group model is identified. In the meanwhile, since other 

parameters are estimated in reference to the factor variance in group one and the 

selected RI, the scale of the multiple-multiple group model is set so that the 
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corresponding parameters are comparable across groups (Cheung & Rensvold, 1999; 

Johnson, Meade, & DuVernet, 2009; Meade & Wright, 2012). 

 Research has shown that if RIs are not truly invariant, factorial invariance tests 

can be jeopardized and the true state of invariance could be greatly obscured. For 

example, when an item that is not metrically invariant is inadvertently selected as a RI, 

truly invariant items could be erroneously detected as non-invariant items and truly 

non-invariant items could be erroneously detected as invariant (Johnson, Meade, & 

DuVernet, 2009). Thus, severe Type I or Type II errors are expected in factorial 

invariance tests when an inappropriate item is selected as a RI. Similarly, empirical 

analysis has shown that in fitting second-order growth curve models, choice of RIs 

could also have substantial influences on both model fit and estimates of growth 

trajectories, when full factorial invariance is not tenable (e.g., Ferrer, Balluerka, & 

Widaman , 2008; Widaman et al., 2010).  

Researchers have proposed different methods to deal with issues associated with 

selecting RIs. Cheung and Rensvold (1998) proposed the idea that instead of using one 

fixed item as a RI, each single item can serve as a RI in turn. At first, all possible non-

ordered pairs are generated by taking two items at a time without repetition. So for a 

measure with n items, one needs to generate a total of n (n-1)/2 such item pairs. Then a 

so-called factor-ratio test is conducted to identify invariant items; that is, within each 

pair, two models are fitted with either item as the RI to test the invariance of the other. 

A significant factor-ratio test suggests that at least one item within the tested pair is 

non-equivalent across groups; otherwise, this pair of items is considered invariant. 

After identifying all the non-invariant and invariant pairs, a stepwise partitioning 
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procedure is then used to screen out each item as invariant or non-invariant. Taking a 

four-item test as an example, if items (1, 2), (1, 3), and (1, 4) are non-invariant pairs, 

whereas rest of the pairs are invariant (i.e. items 2, 3; 2, 4; and 3, 4), then items 2, 3 

and 4 are concluded as the final set of invariant items. 

Cheung and Rensvold (1998)’s approach allows researchers to detect non-

invariance without using a specific item as the referent. Therefore, it reduces the 

possible negative influences associated with using non-invariant items as RIs. The 

utility of this approach was further supported by research using simulated data (French 

& Finch, 2008).  However, several disadvantages have prevented this approach from 

being widely used in real world research. First, the implementation of this approach 

requires fitting two models for each of the n (n-1)/2 item pairs, which could be labor 

intensive, especially under conditions with large number of items (French & Finch, 

2008; Yoon & Millsap, 2007; Cheung & Lau, 2012). Moreover, it is possible that no 

single set of invariant items can be determined conclusively with this method, as 

demonstrated by French and Finch (2008). In practice, any Type I or Type II error 

occurring in the factor-ratio tests could cause this indeterminate conclusion. For 

example, for a four-item test, if non-invariant pairs include items (1, 2), (1, 3), and (2, 

4), whereas the invariant pairs include items (1, 4) and (2, 3), then no single set of 

invariant items can be determined conclusively. 

 Later, Cheung and Lau (2012) proposed a new method aiming to overcome the 

drawbacks of Cheung and Rensvold (1998) procedure. Using this approach one needs 

to first create a new parameter that represents the between-group difference for each 

tested parameter, and then the bias-corrected bootstrap confidence interval is generated 
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for each of such differences. The multiple-group CFA model is identified by using an 

arbitrary item as the RI. For example, let λi1 and λi2 represent the factor loadings of the 

ith item for group 1 and group 2, respectively. Suppose researchers use item 1 as RI by 

imposing such constrains: λ11 = λ12 =1. In order to test invariance for the pairs 

containing items 1 and 2, a new parameter T12 needs to be created. T12 can be simply 

expressed as T12 = λ21- λ22, where λ21 and λ22 are factor loadings of item 2 estimated 

using item 1 as RI. If the 95% bootstrap confidence interval does not include zero, the 

pair of items (1, 2) is concluded as non-invariant. For pairs not including item 1, the 

corresponding parameters can be obtained using existing parameters analytically. For 

instance, T23, which is used to test invariance for pairs containing item 2 and item 3, 

can be expressed as: T23 = λ31/λ21- λ32/λ22 (refer to Cheung & Lau, 2012 for a detailed 

technical rationale).  

The major advantage of Cheung and Lau (2012)’s approach is that it allows the 

invariant and non-invariant item pairs to be detected by fitting a single multiple-group 

CFA model. Therefore, it greatly reduces the workload, compared to the Cheung and 

Rensvold (1998) approach, and can be conveniently generalized to test invariance for 

intercepts and latent means/variances. Nevertheless, the stepwise partitioning 

procedure is still required to screen out the set of invariant items. Therefore, it is 

subject to the same issue as the Cheung and Rensvold (1998) method; that is, 

identifying a conclusive set of invariant items is not guaranteed. In addition, the bias-

corrected bootstrap confidence interval may not perform sufficiently well under some 

conditions, such as small samples, as pointed out by Cheung and Lau (2012). 
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Constrained baseline approach is an alternative to selecting RIs (Stark, 

Chernyshenko & Drasgow, 2006; Kim & Yoon, 2011). In this approach, all items are 

constrained to be equivalent across groups in the baseline model. Then equality 

constraints are relaxed for the single tested item. The difference in the model fit 

between the two models is used to evaluate invariance of the tested item. This 

procedure is repeated for all of the other items. An item chosen to be RI is the one that 

yields non-significant cross-group differences but has the largest estimated factor 

loading. The constrained baseline approach implicitly uses all (other) items as RIs to 

test cross-group differences in items. The idea has been widely adopted in research of 

item response theory (IRT; Meade & Wright, 2012).  In multiple-group CFA analysis, 

however, research has shown that when the percentage of non-invariant items is large, 

this approach can yield inflated Type I error rate, that is, the chance of identifying truly 

invariant items as non-invariant is enhanced (Kim & Yoon, 2011).  

1.3 Locating Non-invariant Parameters 

Rejecting a null hypothesis of full invariance at any given level typically does 

not provide direct information on which specific parameters differ across groups. 

When factorial invariance does not hold, locating specific non-invariant parameters 

becomes necessary for at least two reasons. First, by knowing which parameters are 

non-invariant, researchers have an opportunity to explore potential causes of the 

detected non-invariance, which can be substantively meaningful in applied research. 

For example, unequal factor loadings implies that the association between the construct 

of interest and non-invariant items may be weaker (or stronger) in one group than the 

others being compared. The researchers may then be able to identify whether the lack 
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of invariance on loadings is due to inappropriate translation (e.g. in cross-cultural 

studies) or different understanding of item contents across groups. If the non-

invariance occurs in some of the measurement intercepts, the origin of items may be 

different across groups, and such non-invariance may be attributed to factors such as 

social desirability, usage of different reference frameworks, etc. (Chen, 2008).  

Secondly, locating unequal parameters is closely related to the practice of fitting 

models with partial measurement invariance. When full factorial invariance is not 

tenable, it is suggested that fitting models with partial invariance is useful in various 

empirical modeling settings. For example, studies have suggested that when testing for 

possible differences in latent means, latent variances, or structural relations with other 

constructs, fitting models with non-invariant parameters freely estimated would produce 

more accurate parameter estimates than the model with all parameters being constrained 

to equality (Shi, Song & Lewis, 2016; Muthén & Asparouhov, 2013). Using simulated 

data, Liao et al (2015) found that when fitting second-order latent growth curve models, 

if full factorial invariance was not fulfilled, models with partial invariance yielded less 

biased estimates than models with full invariance specified.  

In practice, locating non-invariant parameters is typically guided by model 

modification index (MI) in maximum-likelihood estimation. Each MI can be 

understood as a one-degree-of-freedom likelihood ratio test (LRT) performed between 

the models with and without a certain constraint. In the context of testing factorial 

invariance, rejecting a hypothesis of full invariance implies the presence of improper 

equality constraint(s) across groups. MI can be used to identify where each improper 

equality constraint is located in the model. For example, if the model with all factor 
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loadings set to be equal is not supported, one can first free the equality constraint 

imposed on the loading associated with the largest MI value. This procedure can be 

repeated until the model fit becomes acceptable, and there are no additional noticeably 

large MIs. Researchers have been concerned about the uses of MI in locating non-

invariant parameters (e,g., MacCallum, Roznowski & Neocowitz,1992)  and have 

found that MI does not perform efficiently in locating non-invariant parameters under 

such conditions as small sample size, small magnitude of non-invariance, and large 

number of non-invariant variables (Yoon & Millsap, 2007). In addition, since MI 

values change unceasingly at any time when a constraint is relaxed, using MI to locate 

non-invariant parameters typically requires fitting a series of models in many popular 

SEM software (e.g. Mplus), which could become tedious in some cases. 

1.4 Evaluating the Consequences of Non-Invariance 

Currently, the likelihood ratio test is the mainstream approach for testing non-

invariance. As discussed earlier, the likelihood ratio tests involve comparing two (or a 

series of) nested models which have different levels of constrains. The statistical 

decisions are made by the chi-square tests; if significant, the less constrained model is 

conclude to fit the data significantly better, and thus the hypothesis of factorial 

invariance would be rejected. Nevertheless, the usage of chi-square based tests has been 

questioned by methodologists. One major criticism on the usage of chi-square statistics 

is that the chi-square test is sensitive to sample size (N). As sample size (i.e. N-1) is a 

“multiplier” of the chi-square variate; with sufficiently large sample, even small 

differences between the hypothesized model and data would be statistically significant; 

and power to detect any trivial difference would approach to one as sample size 
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increases (Marsh, Hau & Grayson, 2005; West, Taylor, & Wu, 2012; Bentler & Bonett, 

1980). As a result, even if the non-invariance is minor and makes negligible practical 

influence, the hypothesis of factorial invariance is still very likely to be rejected as 

sample size increases. For example, as demonstrated by Meade (2010) in the context of 

Item Response Theory (IRT) models, even trivially small non-invariance often leads to 

statistically significant results with sample sizes reach 1,000 per group. Therefore, from 

the applied users’ perspective, in addition to testing the existence of non-invariance, it is 

also meaningful to considering the practical effect size of the detected non-invariance.    

Currently, there is little literature focusing on evaluating empirical consequences 

of non-invariance. One possible approach to evaluate the empirical consequences of 

non-invariance is to examine the purpose of the measure in use, and thus translating the 

non-invariance into practical outcomes. For example, Millsap and Kwok (2004) 

evaluated the impact of partial invariance on selection based on composite scores for 

two populations. The simulation study showed that departures from invariance 

weakened the accuracy of selection. 

 In addition, researchers also proposed several effect size indices for the purpose 

of evaluating and comparing the magnitude of non-invariance. Within the framework of 

SEM, Nye and Drasgow (2011) proposed an item-level effect size measure for 

measurement non-invariance (dMACA), which is defined as the following.  

   dfXX
SD

d FiFiR

pi

MACS )()|ˆˆ(
1 2                                (5) 

iRX̂  and iFX̂ represent the expected observed responses to item i with latent score   for 

the focal reference group and focal groups, respectively. )(Ff indicates the 
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distribution of the latent traits for the focal group. SDip represent the pooled standard 

deviation for item i across the reference and focal groups, given by  

)1()1(

)1()1(
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SDip .                                     (6) 

For both reference and focal groups, the expected overserved responses can be 

regressed on the latent factor scores as a linear function (see Equation 2) The dMACA 

measure can be roughly represent the area between the two regression lines, which 

express the “overall” amount of non-invariance across the domain of latent trait. In 

addition, after taking the pooled standard deviation into formulation, dMACA can be 

interpreted in the standardized metric and the magnitudes can be directly compared 

across different items and studies.  
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Chapter 2: Bayesian Structural Equation Modeling (BSEM) Approach 
 

2.1 Bayesian Structural Equation Modeling (BSEM) 

The differences between the traditional statistical methods with the frequentist 

view and the Bayesian methods have been discussed in many literatures (Brooks, 2003; 

Dienes, 2011; Kruschke, Aguinis & Joo, 2012). The traditional statistical methods rely 

on null hypothesis significance testing. Specifically, the frequentist statistics views the 

parameters as constants, and the significance tests for tested parameters focus on p 

values that is the probability of obtaining the observed data or something more extreme, 

if the null hypothesis were true. The Bayesian approach, however, aim to directly 

provide credibility of possible parameter values based on the observed data. The general 

idea of the Bayesian methods is to treat model parameters as variables, and thereby 

evaluating posterior distributions that are derived based on the Bayes’ Theorem for the 

parameters. 

In recent years, Bayesian approach has been increasingly applied for fitting 

complex models in behavioral sciences that involve latent variables and many 

parameters (e.g. Song & Ferrer, 2013; Lee & Song, 2004; Serang et al, 2015). As 

follows, a general Bayesian estimation procedure is briefly introduced in the context of 

SEM.  

Let M be an arbitrary SEM model with the unknown parameters in a vector θ, 

p(θ|M ) be the prior distribution of the parameter, and Y represent the observed data. A 

standard Bayesian approach requires the evaluation of the posterior distribution of θ 

given Y (i.e., p (θ|Y, M)). This can be obtained by )()( M|(θM)θ,|YMY,|θ PPP 

based on the Bayes’ Theorem, where p (Y| θ, M) is the likelihood of observing data Y 
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conditional on the parameters θ, and p (θ|M) is the prior probability of the parameters 

θ. Suppose the posterior distribution p (θ|Y, M ) is analytically obtained, numerical 

integration would be used to obtain the posterior mean and posterior variance for the 

model parameters. However, when the model involves latent variables and many 

parameters, the high-dimensional integration often times has no closed form and 

consequently, the posterior mean and variance cannot be obtained analytically. Markov 

Chain Monte Carlo (MCMC) method can be used to handle such otherwise intractable 

calculation. The basic idea is to repeatedly draw random numbers from (full or 

conditional) posterior distribution and empirically summarize those draws, thereby 

approximating the mean and variance of the target parameters (Martin, 2005). In 

Bayesian estimation of the measurement model in SEM, a data augmentation technique 

is used (see Tanner & Wong, 1987), by which factor scores are treated as unknown 

parameters and the observed data is “augmented” with factor scores to develop the 

Bayesian procedure.  Ultimately, the posterior distributions of all model parameters 

could be obtained.  

The parameter estimates are then obtained as the empirical means, modes, or 

medians of the posterior distributions (Song & Lee, 2012). The Bayesian Credible 

Intervals (BCI) can be obtained based on percentiles of the posterior distribution, and 

directly interpreted in a probabilistic manner. For example, one can claim that there is 

a 95% chance that a parameter falls in the 95% BCI, which is generally believed to 

include the most credible values of the parameter. Therefore, as discussed in Kruschke, 

Aguinis and Joo (2012), besides serving as a summary of a posterior distribution, the 
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95% BCI can be used as a tool to decide which parameter values to reject, in analogous 

to confident interval, although the two differ on a philosophical basis.  

To implement MCMC, prior distributions need to be first supplied for the 

unknown model parameters so that posterior distributions can then be derived by 

modifying the data likelihood using the priors. Non-informative and informative priors 

are available. When information about the target population is not known, one 

typically uses non-informative priors. Examples of non-informative distributions are 

normal distributions with large variances. Larger variances are associated with larger 

uncertainty about the parameters. Since such priors carry little or no information about 

the parameter, the estimation is predominately determined by the data. On the other 

hand, informative priors refer to useful, prior knowledge of unknown parameters. They 

often reflect strong substantive beliefs about the parameters, and can be decided based 

on theory, knowledge of experts, or results from previous studies (Song & Lee, 2012). 

Muthén and Asparouhov (2012) recently proposed a new approach to SEM 

using Bayesian analysis, referred to as BSEM. The basic idea of BSEM is to use 

informative, small-variance priors to replace parameters fixed at zero under ML, 

thereby better reflecting substantive theories. Informative priors with small-variance 

and zero-mean express a relative strong belief that the parameters imposed with such 

priors are close enough to zero; meanwhile, those parameters are not fixed as exact 

zeros and therefore, they are still estimable and their significance can then be tested. 

Estimating those parameters under ML otherwise could lead to non-identified model. 

This idea of using Bayesian approximate constraints to replace exact constraints 

showed promising uses in estimating cross-factor loadings and correlated residuals in 
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CFA (Muthén & Asparouhov, 2012). In this dissertation, I extend the uses of the 

BSEM approach in selecting reference indicators, locating non-invariant parameters, as 

well as evaluating the consequences of non-invariance as conducting factorial 

invariance tests.  

2.2 The BSEM Approach for Studying Factorial Invariance 

I first define a new parameter, Dij, to represent the cross-group difference 
3
 in a 

specific parameter i for item j. For example, Dλ1 denotes the metric difference in the 

factor loadings for item 1 across groups that can be expressed as Dλ1= λ1 (1) – λ1 (2), 

where numbers in the parenthesis represent group membership. For simplicity, the 

population model is assumed to be a one-factor model with partial invariance in both 

factor loadings and measurement intercepts. If the factors in the multiple-group CFA 

model are properly scaled by using one or more truly invariant items as the RIs, the 

estimates of the factor loadings for the invariant items are expected to be 

approximately equal across groups. As a consequence, the estimates of Dλj for the 

invariant factor loadings are expected to be approximately zero. For those items with 

unequal factor loadings, however, the estimates of Dλj should noticeably depart from 

zero. The same difference parameters can also be defined for other model parameters 

such as for intercepts (Dτj). The first property of the difference measure (Dij) is 

summarized as follows: 

Property 1: If the latent variables in multiple-group CFA model are identified 

and scaled by using truly invariant items as the reference indicators, the estimates of 

Dij are expected to be approximately zero (i.e. 0ˆ ijD ) for invariant parameters, but 

noticeably different from zero (i.e. 0|ˆ| ijD ) for non-invariant parameters. 
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Property 1 suggests that the difference parameter can be used as a valid measure 

in detecting invariance and non-invariance. However, it holds under a rather restrictive 

condition, that is, only if truly invariant items are selected as the RIs. What would 

happen to the difference measure if truly invariant items are unknown, as often the case 

in real-data analysis? One way to scale the factor in this case is to set factor loadings of 

all items to be equal across groups. As a result, the metric of the latent factor and other 

parameter estimates are determined by both invariant and non-invariant items 

altogether. One would expect that the estimates of Dij are likely to deviate from those 

that would otherwise be obtained from the model only using invariant items as RIs. 

Nevertheless, as long as the majority of parameters are invariant, as expected in well-

developed instruments, it is reasonable to expect that the estimates of Dij would be 

closer to zero for invariant parameters than those for non-invariant parameters. Now 

the relative stances of the estimated Dij for invariant and non-invariant parameters 

would matter more than the individual estimate of Dij for each parameter. Property 2 

can therefore be specified as follows: 

Property 2: If the latent variables in multiple-group CFA model are scaled in 

the way that the metric of the model parameters can be considered as an good 

approximation to the metric otherwise set by truly invariant parameter(s) only, the 

estimates of Dij for invariant parameters should be much closer to zero, compared to 

those for non-invariant parameters, which can be expressed as 

iantinnonijiantinij DD varvar |ˆ||ˆ|  . 

Compared with non-invariant parameters, truly invariant parameters tend to 

produce smaller values on |ˆ| ijD  when all items are constrained to be invariant across 
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groups. So it is legitimate to expect that a truly invariant item (i.e., invariant in both the 

factor loading and the intercept) would be associated with the smallest |ˆ| ijD on both the 

factor loading and the intercept. I hereby proposed an item level selection index, Δj, to 

quantify a criterion for selecting invariant items that can be used as RIs in the 

subsequent analysis. The selection index can be expressed as a sum of two standardized 

difference measures, assuming Ds for loadings and intercepts are independent:  

j

j

j

j
sd

D

sd 





 |ˆ||D̂|
ˆ j

                                                                     (7) 

where jD
ˆ

 and jD
ˆ are the respective estimates of difference measures on the factor 

loading and the intercept for item j, and jsd and jsd are the corresponding standard 

deviations. The item that produces the smallest value of Δj is identified as an invariant 

item.  

The standard SEM approach cannot estimate the Dij and the selection index, 

because it requires fixing both Dλj and Dτj to be exact zero for the purpose of scaling the 

latent factors. In order to set the metric of the parameters properly and make those D 

parameters estimable as well, I proposed to impose the Bayesian approximate 

constraints on the D parameters; that is, instead of constraining those parameters to be 

zero, I impose informative priors with zero-mean and small-variance for Dλj and Dτj. As 

stated earlier, priors with zero-mean and small-variance ensure the latent factors to be 

properly scaled; on the other hand, Dλj and Dτj are not fixed and still can be estimated by 

the Bayesian method. Once Dλj and Dτj are estimated for each item, one can compute 

the selection index and evaluate its posterior distribution. The item that produces the 
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smallest posterior mean on Δ is considered to have the highest likelihood to be invariant 

across groups. 

After the identified invariant item is set as the RI, the next step is to locate 

possible non-invariance in other parameters (e.g., factor loadings and intercepts). 

Property 1 of the difference parameter states that if the scales of the latent variables in 

the multiple-group CFA model are set by truly invariant items, the estimates of the D 

parameters are expected to be significantly different from zero for non-invariant 

parameters. The significance of the D parameters is determined by examining the 95 

percent BCIs. If the interval for a Dλj excludes zero, one can conclude that the factor 

loading for item j is not equal across groups. Since one can obtain posterior 

distributions for all Dij simultaneously, locating non-invariant parameters can be done 

by fitting a single multiple-group CFA. 

Provided that the non-invariant parameters are successfully detected, the 

consequences of non-invariance can be evaluated in the following two ways. First, the 

cross-group differences on the observed scores for individuals with the same level of 

latent trait can be obtained. At the item level, the expected difference on observed 

responses )|( )2()1( jj XXE  , or EDOI can be expressed as
4
  

)()()|(: )2()1()2()1()2()1( jjjjjj XXEEDOI   .          (8) 

where  )1(j  and )2(j represent the factor loadings for item j in group 1 and group 2, 

respectively. )1(j and )2(j are the corresponding intercepts.   indicates the latent traits. 

The expected difference of the observed scores at the test (i.e. total score) level (EDOT) 

can be expressed in the similar manner as  
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)1(S  and )2(S represent the test score of the scale (total score across j items) for 

group 1 and group 2, respectively. Other notations are the same as defined previously. 

Using BSEM, for any given latent score, the two measures defined above can be treated 

as variables and the corresponding posterior distributions are obtained. In addition to 

the point estimate, the confident limits can be accessed from the posterior distributions. 

Therefore, the cross-group differences on observed scores (at both item and test levels) 

with confident limits can be obtained and plotted across different levels of latent trait.  

Secondly, the outcome of non-invariance can also be interpreted in terms of the 

expected differences on latent traits for individuals with the same test scores (EDLT). 

That is  
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All notations are the same as previously defined. Using BSEM, the cross-group 

differences on latent traits are treated as variables with posterior distributions. 

Consequently, for any given observed test score, the expected cross-group differences 

on latent traits with corresponding confident limits can be obtained. 

In the next chapter, I examine the performance of the proposed BSEM method 

in selecting invariant items, locating non-invariance, and evaluating the outcomes of 

non-invariance through simulation studies. 
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Chapter 3 Simulation Studies 
 

3.1 Study I: The Selection Index in Selecting an Invariant Item as RI 

Data Simulation 

The data were generated based on a population multiple-group CFA model with 

continuous indicators. We restrict the number of groups to two and the same number of 

items loaded on the same single factor in each group. One group serves as the reference 

group in which the factor mean and factor variance are set to be zero and one, 

respectively. In the reference group, all factor loadings are simulated with a population 

value of 0.80, and all intercepts are simulated to be 0 for simplicity. The other group is 

the focal group in which the population factor mean and factor variance are set to 0.5 

and 1.2, respectively. In the focal group, the factor loadings and intercepts are set to be 

equivalent as the reference group (i.e. factor loadings equal 0.8 and intercepts equal 0), 

except for the predetermined non-invariant parameters. The population values for the 

non-invariant factor loadings and intercepts in the focal group are determined according 

to different simulation scenarios as described below. For both reference and focal 

groups, the population values for all residual variances are set to 0.36. 

Five variables are manipulated in our data simulation: Sample size, number of 

items, percentage of non-invariant items, source of non-invariance, and magnitude of 

non-invariance.  

Sample size. The two groups are generated with equal number of observations. 

Sample sizes include 50, 100, 200, and 500 per group. Fifty observations per group are 

considered as extremely small samples and 500 per group are considered as large in 

standard SEM literature.  
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Number of items. We generate the factor models with either five or ten 

indicators. The numbers are considered to be consistent with the typical lengths for 

psychological measures in common use.  

Percentage of non-invariant items.  Two conditions are considered regarding 

percentages of non-invariant items. For the low contamination condition, 20% of the 

indicators contain non-invariant parameters. For the high contamination condition, the 

proportion of non-invariant items is 40%. Those percentages are chosen based on 

previous simulation studies on testing factorial invariance (French & Finch, 2008; 

Meade & Wright, 2012).  

Source of non-invariance. Non-invariance is simulated either on factor loadings 

or intercepts, not on both at the same time. All unique variances are simulated to be 

equivalent across groups. 

Magnitude of non-invariance. Under conditions with small cross-group 

differences, factor loadings in the focal group decrease by 0.2, or intercepts increase by 

0.3. Under the large difference conditions, factor loadings in the focal group decrease 

by 0.4, or intercepts increase by 0.6. The choices for the magnitudes are based on 

suggestions from previous literature (Kim & Yoon, 2011; Kim, Yoon & Lee, 2012; 

Meade & Lautenschlager, 2004).  

In total, sixty-four (4*2*2*2*2) different scenarios are considered in this study. 

For each simulation scenario, 500 replications are generated and analyzed with Mplus 

7.11(Muthén & Muthén, 1998-2012). 

Analysis 
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In order to select a proper RI, Bayesian multiple-group CFA models are fitted 

using Mplus 7.11. The generated reference group is intentionally selected as the 

reference group in which the latent factor was constrained to have zero mean and unit 

variance. The latent variables are scaled by imposing normal priors of zero-mean and 

small-variance on cross-group differences (Dij) for all the factor loadings and intercepts. 

Four different values of variances are considered, including 0.001, 0.01, 0.05, and 0.1. 

The choices of these prior variances reflect different levels of certainty on the parameter 

values. For example, if a prior is N (0, 0.001), it indicates the 95% interval of Dij lies 

between -0.06 and +0.06. Variances of 0.01, 0.05 and 0.1 produce 95% limits of ± 0.20, 

± 0.44, and ±0.62, respectively. All other parameters (include the factor mean and factor 

variance in the focal group, and all residual variances) are freely estimated with non-

informative priors imposed. The same models are fitted with 4 different informative 

priors under all simulated conditions.  The final MCMC chain runs for a minimum of 

50,000 and a maximum of 100,000 iterations. In order to control for auto-correlation 

among the MCMC iterations, only every 10
th

 iteration is recorded to describe the 

posterior distribution. Based on the posterior distributions of the D, the selection index 

(Δ) is then computed for each item. Finally, the item that produced the smallest estimate 

on Δ is selected as RI. All the above set-ups are applied to every simulated replication. 

Power rates are computed under each data condition, as the percentage of correctly 

selecting a truly invariant item as RI, to aid the performance evaluation. The procedure 

of computing Δ and power rates is automated using SAS 9.3 based on the Mplus outputs 

(Gagné & Furlow, 2009). Meanwhile, all the simulated data are analyzed using the 

constrained baseline approach proposed by Rivas, Stark, and Chernshenko (2009).
5 

The 
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power rates of selecting RI are compared between this approach and the BSEM under 

each condition.  

Results 

The results are summarized in Table 1. In general, the selection index 

implemented by the BSEM method performs well for most of the simulation scenarios, 

especially under conditions with low percentage of non-invariance, large magnitude of 

non-invariance, and large sample size. Specifically, under conditions with 20% of non-

invariance, the power of correctly selecting RI is far higher than .90 for almost all 

cases, regardless of magnitude of non-invariance and sample sizes. Under the high 

contamination conditions (i.e., 40% of non-invariance), the power rates are still above 

.80 for most of cases; however, they decrease with decreasing magnitude of non-

invariance and decreasing sample sizes. The power rates improve noticeably as the 

sample size increase. It appears that sample sizes of 100 or above would make the 

power reach .80 or higher in the case of high contamination conditions. With respect to 

the number of items, the power rates are higher for the 5- item condition than the 10-

item condition when sample size is small. Once the sample size reaches 200 and above, 

the effect of number of items is no longer detectable. Finally, the choice of prior 

variances does not significantly affect the power rates when relatively smaller prior 

variances (i.e., 0.001 and 0.01) are utilized. When larger variances (i.e., 0.05 and 0.1) 

are used, the power rates are fairly close to those produced by smaller prior variances, 

except for the conditions where high proportions of small non-invariance are generated 

for the 10-item case--the power rates are even lower than selecting a correct RI 

randomly. 
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The BSEM is found to perform better than the constrained baseline approach, 

particularly when non-invariance occurs on item intercepts. As shown in Table 1, when 

percentage or magnitude of non-invariant intercepts is large, the constrained baseline 

approach fails to select truly-invariant items to be RIs. An extreme case is found when 

40% of the intercepts are coupled with large cross-group difference, in which the 

constrained baseline approach has power of zero to selecting the correct RIs at the 

sample size of 500. However, this approach seems to outperform the BSEM method 

when large amount of factor loadings is different across groups at small samples. This 

may be due in part to the fact the truly invariant items happen (by the simulation 

design) to have larger factor loadings, compared to those for non-invariant items in our 

simulated data. In this case, the constrained baseline approach, characterized by 

selecting an item with non-significant cross-group difference but the largest loading to 

be RI, would tend to have relatively high power to choose a truly invariant item to be 

RI.  

3.2 Study II: The BSEM Approach in Locating Non-invariance using RI 

Data Simulation 

The goal for the second set of analysis is to investigate the performance of using 

the BSEM for locating specific non-invariant parameters, given that an invariant item 

has already been correctly selected as RI. I consider the same simulation scenarios and 

thus use the same simulated datasets as in the first set of analysis.  

Analysis  

One of the truly invariant items is chosen as the RI in this set of analyses. All 

factor loadings and intercepts of the selected RI are fixed to be equal across groups. 
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The simulated reference group is still served as the reference group with factor mean 

fixed to be zero and variance to be one. All other parameters are freely estimated with 

non-informative priors (i.e., normal priors with large variances). Each MCMC chain 

runs for a minimum of 50,000 and a maximum of 100,000 iterations, and only every 

10th iteration is recorded to eliminate auto-correlations. The non-invariant parameters 

can be detected by checking the posterior distributions for the Dij. If the 95% BCI for a 

tested parameter does not include zero, this parameter is identified as non-invariant; 

otherwise, the parameter is considered to be invariant. So all parameters (except for 

parameters of the RI) can be tested for invariance simultaneously by fitting a single 

model

Type I error and power rates are calculated for performance evaluation. Type I 

error refers to the cases of incorrectly concluding invariant parameters as non-

invariant. In each replication, the Type I error rate is calculated as the number of 

invariant parameters detected as non-invariant divided by the total number of invariant 

parameters. Power, on the other hand, represents the probability of correctly detecting 

non-invariant parameters, which is calculated as the percentage of non-invariant 

parameters that are correctly detected. For each simulated scenario, power and Type I 

error rates are reported as the averages across all replications. Such definitions make 

the results easy to understand and interpret. For example, if the aggregated power rate 

equals 0.70, we can expect that 70% of the non-invariant parameters are be detected 

under that specific data condition. Aggregated Type I error rates and power have been 

used in many previous literature as well (e.g., Meade & Wright, 2012). Since not all 
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replications are successfully analyzed due to non-convergence of the MCMC chains, 

the admissible solution rates are also computed and reported.  

Results  

Table 2 shows the admissible solution rates, Type I error rates, and power for 

the 5-item and 10-item scenarios, respectively. All the models are successfully 

estimated except for those with small sample sizes of 50, for which the admissible 

solution rates range from 79% to 88% for the 5-item conditions and from 34% to 44% 

for the 10-item conditions. The Type I error rates are low across all simulation 

conditions with a range of 3% to 6%. So in general, as long as the models can be 

estimated with the Bayesian method, the chance of identifying an invariant parameter 

as non-invariant is low. The power rates are very similar between the 5-item and 10-

item scenarios under the same data conditions. In addition, the proportion of non-

invariant parameters seems not to influence the power rates. To detect large cross-

group differences, sample sizes of 100 or greater are needed to reach the power of 90% 

and above, which is the case for both the factor loadings and intercepts. However, 

detecting small differences requires much larger samples -- samples of 200 are large 

enough to detect small differences in the intercepts with powers greater than 80%, 

which is not large enough to detect small differences in the loadings, as the powers 

were around 65%. As shown, sample size of 500 produces power rates greater than 

95% across all examined data conditions.   

I compare the Type I error rates and power of locating non-invariant parameters 

between BSEM and ML-LRT approaches. Instead of performing LRTs on items as the 

standard ML-LRT does, I do it on specific tested parameters (i.e., intercepts and factor 
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loadings). Specifically, a series of one-degree LRT are conducted between a baseline 

model (where equality constraints are only added on the RIs for identification purpose) 

and a constrained model (where equality constraint is added to each tested parameter). 

Results in Table 2 indicate that compared to ML-LRT, the BSEM approach is more 

conservative for sample sizes of 200 or less in detecting truly non-invariant parameters, 

demonstrating smaller Type I error rates but lower power. However, the two 

approaches show comparable Type I error rates and power when sample size is greater 

than 200.  

3.3 Study III: The BSEM Approach in Evaluating the Consequences of Non-

Invariance 

Data Simulation 

In study III, I aim to investigate the performance of using BSEM to evaluate the 

consequences of non-invariance. The data were generated based on a population two-

group CFA model with five continuous indicators. For simplicity, I only considered the 

non-impact conditions where the reference group and focal group have the same 

population factor mean (e.g. 0.00), and variance (1.00). In the reference group, all factor 

loadings are simulated with a population value of 0.80, and all intercepts are simulated 

to be 0. In the focal group, the factor loadings and intercepts are set to be equivalent as 

the reference group (i.e. factor loadings equal 0.8 and intercepts equal 0) for the truly-

invariant item (i.e. item 1). The rest four items are simulated to be non-invariant across 

groups. The four non-invariant items vary in terms of the source and magnitude of non-

invariance. The population values for the non-invariant factor loadings and intercepts in 

the focal group are determined according to different simulation scenarios as described 
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below. For both reference and focal groups, the population values for all residual 

variances are set to 0.36. 

Three variables are manipulated in our data simulation: Sample size, source of 

non-invariance, and magnitude of non-invariance.  

Sample size. The two groups are generated with equal number of observations. 

Sample sizes include 100, 200, 500, 1000, and 2000 per group.  

Source of non-invariance. Non-invariance is simulated either on factor loadings 

or intercepts. All unique variances are simulated to be equivalent across groups. 

Magnitude of non-invariance. Under conditions with small cross-group 

differences, factor loadings in the focal group decrease by 0.2, or intercepts increase by 

0.3. Under the large difference conditions, factor loadings in the focal group decrease 

by 0.4, or intercepts increase by 0.6. The choices for the magnitudes are based on 

suggestions from previous literature (Kim & Yoon, 2011; Kim, Yoon & Lee, 2012; 

Meade & Lautenschlager, 2004). For each simulation scenario, 500 replications are 

generated and analyzed with Mplus 7.11(Muthén & Muthén, 1998-2012). 

In order to evaluate the consequences of non-invariance, for each simulated 

scenarios, I select three different locations from the distributions of the latent traits or 

the observed test scores. To be representative to the entire statistical distribution, the 

three points are selected from the center (i.e. z ≈ 0.00), tail (i.e. z ≈ +3.00) and 

somewhere in middle (i.e. z ≈ +1.00). Specifically, for EDOI and EDOT, I focus on 

conditions where the latent factor scores equal to 0.00, 1.00, or 3.00 (from a 

standardized normal distribution). EDLT are calculated for conditions where the (sum) 

test scores are 0.00, 5.00 and 15.00. In total, at the item level, sixty (5*2*2*3) different 
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conditions are considered in the study. When the analyses are conducted at the test 

(scale) level, items with different sources and magnitudes of non-invariance are 

summed up to create the test score. As a result, the number of conditions at the test 

level is fifteen (5*3).   

Analysis  

Assuming all non-invariant parameters are correctly detected, partial invariant 

multiple-group CFA models are fitted; that is, equality constrains only added to truly 

invariant parameters, whereas all non-invariant parameters are freely estimated with 

non-informative priors. Each MCMC chain runs for a minimum of 50,000 and a 

maximum of 100,000 iterations, and only every 10th iteration is recorded to eliminate 

auto-correlations. For each condition, the EDOI, EDOT, and EDLT with corresponding 

95% Bayesian Credible Interval (BCI) are obtained from the posterior distributions of 

the parameters created based on equations 8, 9, and 10.  

The true values for EDOI, EDOT and EDLT can be obtained by plugging the 

population parameter values into the equations (8, 9, and 10). For each of the three 

measures (EDOI, EDOT, and EDLT), I compute the mean, standard deviation, and 

mean squared errors (MSE) across all 500 replications. In order to better compare the 

estimated values with the true population values, relative differences (RD) were also 

computed as an indicator of estimation bias (e.g.,Widaman, 1993; Hoogland & 

Boomsma, 1998; Pornprasertmanit, Lee, & Preaher, 2014). In the current study, RD was 

defined as following: 

true

trueestRD


 
       (11) 



36 

Where est represents the mean of parameter estimates across all replications; true

indicates the true population value of the specific parameter. Therefore, RD evaluates 

the distance between the mean of estimates and the true population value relative to the 

population values, or the percentage of estimation bias with respect to the true values. In 

addition, for each condition, the 95% Coverage Rate (CR) is computed as the percent of 

replications where the 95% Bayesian Credible Interval (BCI) contains the true value.  

Results  

 The results for EDOI and EDOT are summarized in table 5-8. In general, the 

Bayesian estimates for EDOI and EDOT are close to their true population values, 

except for cases where the sample size is small, and the latent traits are less likely to 

observed (i.e. from the tail of latent variable distributions). For example, when sample 

size is 100 and the latent trait are three standardized deviation above its mean, the RD 

for EDOT is underestimated by 32.60 percent (with MSE 1.65). Similar results are 

observed for EDLT where the sample size is small and the observed (total) score are 

away from its mean. As shown in table 9, when sample size is 100, and the observed 

(total) test score is 15, the mean square error (MSE) is 0.22. However, the 95% 

Bayesian Credible Intervals (BCI) well cover the true population values across all 

conditions considered in the study. As demonstrated in the tables, the 95% coverage 

rates are between 93%-97%, even for conditions where the estimates of effect size 

measures are biased.  
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Chapter 4 Empirical Study 
 

In this chapter, I provide an empirical example to demonstrate the specific 

procedure of testing factorial invariance using the proposed Bayesian approach. First, 

an item with high likelihood to be truly-invariant is selected as RI. Second, based on the 

selected RI, non-invariant parameters are located. Finally, the consequences of non-

invariance are investigated.  

4.1 Measure and Data 

I use the items from the Center for Epidemiologic Studies Depression Scale 

(CES-D, Radloff, 1977). Subjects are asked to indicate how often they have felt certain 

types of symptoms during the past week. Responses were made on a four-point Likert-

type scale ranging from zero (Rarely or none of the time/Less than one day) to three 

(All of the time/5-7 days). The original version of the scale contains 20 items. In current 

study, a shortened (15-item), unidimensional version of the scale is used, as discussed in 

Edwards, Cheavens, Heiy and Cukrowicz (2010). The complete content of the measure 

are listed in Table 10.  

Data was obtained from the China Family Panel Studies (CFPS), a nationally 

representative survey launched in 2010 by the Institute of Social Science Survey (ISSS) 

of Peking University (Xie & Hu, 2014). Only adults (16-65 years old) who responded 

on all 15 items were included in the analysis (N=26,841). The average age of 

participants was 40.98 years (SD=13.57 years). Males made up approximately 48.56% 

of the sample whereas females composed 51.44% of the sample. The means, standard 

deviations, as well as the correlations among responses of the 15 items are shown in 

Table 11. The Cronbach’s alpha using the full sample in the current study is 0.88.  
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4.2 Analyses and Results 

4.21 Step 1: Selection of RI  

The factorial invariance test is conducted on the shortened version of CES-D 

across genders. First, I select a RI using the method introduced in Analysis I. 

Specifically, Using Mplus 7.11, a multiple-group BSEM model is fitted by using 

commands “TYPE=MIXTURE” and “KNOWNCLASS” (Muthén & Asparouhov, 

2012b for details). The difference measure (D) is defined as a difference between the 

same parameters across groups with the “NEW” option under “MODEL 

CONSTRAINT”. In order to properly set the scale for the latent variables in the 

multiple group models, informative priors with zero mean and small variance are 

introduced for all difference parameters (D) by using the “DIFF” option under 

“MODEL PRIOR”. To test the sensitivity to prior variances, I choose priors with four 

different values of variances, i.e., 0.0005, 0.001, 0.005 and 0.01, based on the results 

from the simulation experiment, which suggest that prior variances smaller than 0.01 

are preferable in power. The minimum (i.e., 50, 000) and maximum (i.e., 100, 000) 

numbers of iterations for the MCMC chain are specified using “BITERATIONS”. The 

thinning of MCMC chain is assigned with the command “THIN”. A complete Mplus 

syntax for the step 1 analysis is available in Appendix B. From the Mplus output, 

information of the posterior distributions for Dλj, and Dτj can be obtained, from which 

the selection index (Δj) is then computed. Relevant results are summarized in Table 12.  

According to the results, item 6 is identified as RI as using normal priors with 

variances 0.001 and 0.0005. When applying normally distributed priors with variances 

0.005 and 0.01, item 3 is suggested to be RI. However, item 3 and item 6 produce two 
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smallest values on Δj across all four different choices of priors. In the meanwhile, the 

selection indices for item 3 and 6 are noticeably smaller to those produced by other 

items. Therefore, both item 3 and 6 are eligible to be the RI. Besides produces small 

value on the selection index, by looking at its content representation, item 6 (i.e. I felt 

depressed) seems to be miniature of the measured construct (i.e. depression), which is 

considered as one of the guidelines for selecting RI (Karkee & Choi, 2005). Therefore, I 

select item 6 as the RI.    

4.22 Step 2: Locating Non-invariant Parameters  

Next, using item 6 as a RI, I further locate the non-invariant parameters based on 

the method discussed in Study II (Section 3.2). I fit a multiple-group BSEM model 

using the similar commands introduced above. However, instead of setting the scale of 

the latent variable by using informative priors, I use item 6 to identify the model and 

scale the latent variables by setting its factor loading and intercept equal across gender. 

Differences are examined for the remaining parameters by checking posterior 

distributions of the corresponding difference measures (Dij), which is defined under 

“MODEL CONSTRAINT”. A complete Mplus syntax for the step 2 analysis is 

provided in Appendix C. The results are summarized in Table 13.  

According to the results, most of the parameters are detected as non-invariant 

across genders. Item 3 is the only item found to be invariant in both factor loadings and 

intercepts, which is consistent with the finding from step 1 (i.e. item 3 is also suggested 

as RI in step 1). Other invariant parameters include factor loadings for item 1, 2, and 11, 

and intercepts for item 5.     

4.23 Step 3: Evaluating the Consequences of Non-invariance 



40 

 In step two, most of the parameters are concluded as non-invariant (i.e. 10/14 

factor loadings and 12/14 intercepts), and therefore the legitimation of using the current 

scale for making cross gender comparison may be questionable. Nevertheless, providing 

that the number of observations included in the analysis is large, the detected non-

invariance is likely to be caused by the trivial differences in parameter values, which 

makes no practical influences. Thus, I further evaluate the practical consequences of the 

non-invariant parameters.  

First, I investigate the expected cross-group difference on the observed values 

given different latent factor scores. Specifically, I use the latent mean for the female 

group as the reference (i.e. zero) point; the latent space of interest contains all possible 

factor scores within ±4 standard deviations
6 

around the reference point. Then 81 discrete 

points (i.e. scores) with equal interval (i.e. 0.1) are selected to approximate the 

continuous latent variable space. Based on the method introduced in Study III (Section 

3.3), for each selected values of latent scores, the expected gender differences on 

observed scores, as well as the corresponding 95% BCI are obtained. The above 

mentioned analysis is conducted at both item- and scale- (i.e. total score) levels (i.e. 

EDOI & EDOT). For each of the 13 non-invariant items (except for items 3 and 6), the 

expected the differences on observed item scores (and the corresponding 95% BCIs) 

along the latent space is shown in Figures 1-13. Figure 14 demonstrate the expected 

gender differences on the total test scores (and the corresponding 95% BCIs) across the 

selected values on the latent factor. The relevant Mplus syntax for the above mentioned 

analysis is provided in Appendix D and Appendix E.  
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 In addition, I explore the expected gender differences on the latent construct 

across a various values of the observed total scores. Since the scale has 15 items with 4 

response categories (i.e. 0, 1.2 and 3), the possible observed total scores include 46 

values (i.e. all integers from 0 to 45). Then the expected gender differences on the latent 

construct (with 95% BCI) for all 46 possible observed total scores are obtained using 

the method introduced in Study III (Section 3.3), and shown as Figure 15. The relevant 

Mplus syntax is provided in Appendix F.  

 At the item level, among the non-invariant items, item 1(“I was bothered by 

things that usually don't bother me”) and item 2 (“I did not feel like eating; my appetite 

was poor”) produce very trivial influences in terms of observed differences conditional 

on the values of the latent variable. As shown in Figure 1 and Figure 2, since non-

invariance only exist on intercepts, the lines indicate expected gender differences on 

observed scores across latent factors are parallel to the horizontal axis. Specifically, 

across the entire space of factor scores
 
considered in the analysis, females tend to have 

larger observed score than males. However, the differences are very small. Given the 

same level of the latent factor, there are 95% confident that the gender differences for 

the observed scores are within the intervals [0.013, 0.048] (item 1), and [0.023, 0.055] 

(item2).  For item 11 (“My sleep was restless”), females also always tend to produce 

about 0.1 points higher observed score (with 95% BCI [0.079, 0.117]). 

For item 5, females tend to have higher observed scores when the level of the 

latent variable (i.e. depression) is below the group mean for females; whereas at high 

depression level (i.e. above the group mean for females), females produce lower 

observed scores in relative to males. At 95% confident level, the group differences on 
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observed scores are less than 0.25 points across all levels of depression considered in 

the analysis. Similar pattern is observed for item 20; however, the threshold of 

depression level that suggests whether females have higher or lower observed scores 

(than males) is 0.50 (i.e. 0.5 stand deviations above the group mean for females).  

For items 7, 9, 13, 14 and 19, females tend to give responses with smaller 

observed scores than males, unless when the level of depression is low
7
. Opposite 

patterns are observed for items 10 and 18, where females have higher observed scores 

than males except for individuals whose level of depression is low
8
. Roughly speaking, 

the gender differences on observed scores for the above mentioned items are less than 

0.4 points across the entire latent variable space.  

The non-invariance on item 17 (“I had crying spells”) seems to make a great 

influence upon the conditional distributions of the observed response. Given the same 

level of depression, females tend to score higher on item 17 than males, except for 

individuals who have a low level of depression (i.e. 1.4 standard deviations below the 

group mean for female or less). In addition, the gender differences on observed scores 

can be relative large. For example, for individuals who suffer very high level of 

depression (3 standard deviation above the average depression level among females), 

females are expected to score 0.569 points higher on item 17 than males.  

 When calculating the total scores for all 15 items, as shown in Figure 14, 

females are expected to have higher total scores than males given the same level of 

depression. When depression is above the average level among females, the expected 

gender differences are small (i.e. about 0.10 points higher). However, for individuals 

whose depression symptom is below the average level among female population, 
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females are expected to score about 0.6 points higher than males in total observed 

scores. It is also noted that the standard errors for the expected gender difference are 

larger as the latent scores (i.e. depression) becomes more extreme, and therefore 

yielding wider 95% credible interval.  

Moreover, the expected gender differences on latent factor scores (i.e. 

depression) and corresponding 95% credible intervals across the space of observed total 

test scores are shown in Figure 15. Given an observed total test score, females are 

expected to have lower levels of the latent variable (i.e. depression) by about 0.01-0.02 

points. The 95% credible intervals become wider as the observed scores are more 

deviant from its mean. Nevertheless, when considering the widest credible interval, the 

gender differences on latent scores are within ±0.1 points; the influence is still quite 

small compared to the scale of the latent variables in the analysis
9
.  

4.3 Summary of Major Findings 

 This study (in Chapter 4) works as a pedagogical example for demonstrating the 

proposed BSEM approach in studying factorial invariance using real data. In the 

meanwhile, empirically, the current study contributes to better understand the usage of 

CES-D scale across genders. The major findings are summarized as follows.  1.) Items 

3 and 6 of the CES-D scale are (strong) invariant across genders. 2). Items 1, 2 and 11 

are (weak) invariant across genders. (3). At the item level, the influence of the non-

invariant items are generally small, except for item 17. Females tend to score higher on 

item 17 than males, unless the level of depression is low. (4). The non-invariance seems 

not to make a great influences at the total score level. For same level of depression, 

females tend to have higher observed total scores than males. However, the expected 
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gender differences are less than 1 point (with 95% confident). In addition, given an 

observed total score, being female implies that lower level of depression than males; but 

the expected differences are small in relative to the metric of latent variable 

(depression). 
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Chapter 5 Discussion 
 

5.1 Summary of Major Findings 

In this dissertation, I propose using the BSEM approach for solving the three 

important issues in studying factorial invariance, including 1) how to select a proper RI, 

2) how to locate non-invariant parameters given a RI has already been selected, and 3) 

how to evaluate the consequences of non-invariance. 

The first step is to select a proper RI. To do so, informative priors with zero 

mean and small variance are imposed on the difference measure (D) for all loadings and 

intercepts. Items with the smallest value on the selection index (Δj) are then chosen as 

the RI. Once the RI is selected, the second step is to locate non-invariant parameters by 

examining the posterior distributions of all parameters except for those constrained to 

be exact equal for the RI item. If the 95% BCI of a parameter does not include zero, this 

parameter is then considered to be non-invariant. Finally, after the non-invariant 

parameters are detected, the non-invariance can be interpreted in terms of the expected 

differences in observed scores across levels of latent variable , or expected differences 

in latent traits conditioning on observed test scores (i.e. EDOI, EDOT, & EDLT). By 

using the information from the posterior distributions, the relevant confidence limits can 

be provided.  

The BSEM approach for studying factorial invariance performs well with the 

simulated data. In the first step, it generally produces high power in detecting a truly 

invariant item. The power increases with decreasing proportion of non-invariance, 

increasing magnitude of non-invariance, and increasing sample size. In the second step, 

given that a truly invariant item is correctly chosen to be RI, the BSEM approach yields 
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low Type I error rates in locating non-invariant parameters. Moreover, the power of this 

approach is high for sample sizes of 200 or greater, and is higher in locating non-

invariance on intercepts than that on factor loadings. In the final step, for EDOI, EDOT 

and EDLT, the 95% Bayesian BCI shows well performance to cover the true population 

values across all simulated conditions considered in the study.  

For the first two steps, I also compare the BSEM approach with two other 

approaches in addressing specification search problems. In identifying an invariant item 

to be RI, I compare BSEM with the constrained baseline approach. In locating non-

invariant parameters given a correct RI, I compare BSEM with ML-LRT. The BSEM, 

the same as all other approaches, shows its own advantages and disadvantages. The 

BSEM approach greatly reduces workload by fitting one model in each step. It also 

performs sufficiently well across most of the investigated data conditions. The only 

downside I find is that small samples (200 or less) seem not preferable for BSEM in 

comparison with the other two. Specifically, compared to ML-LRT, the BSEM 

approach shows lower power in detecting truly non-invariant parameters, especially 

when sample size is 200 or less. This may limit its uses in studies with small samples, 

although sample size of 200 or more has long been suggested for typical SEM analysis 

in research. When sample size is more than 200, the BSEM method could demonstrate 

equivalent power as ML-IRT in locating non-invariant parameters. 

In summary, as demonstrated in the empirical study, the proposed BSEM 

approach provides an alternative and complete procedure of conducting measurement 

invariance study, which could produce useful guidelines for applied researchers. 
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5.2 Prior Selection 

An important feature of the BSEM approach is the use of informative priors. In 

practice, how to choose appropriate priors can be crucial in estimating any models using 

Bayesian methods (MacCallum, Edwards & Cai, 2012). Posterior distributions are 

obtained from modifying the likelihood using priors. Non-informative priors are often 

used when necessary population information is lacking. Since the prior carries little or 

no information about the parameter, the estimation is predominately determined by the 

data. In contrast, informative priors can reflect strong belief about parameters, thereby 

heavily influencing the posterior distributions. In Analysis I, I extend Muthén and 

Asparouhov (2012)’s idea of using informative priors of normal distribution with zero-

mean and small-variance to replace the parameter specification of exact zero. These 

prior distributions do not directly reflect the researchers’ prior knowledge and beliefs on 

the parameter of interests. Instead, the aim of utilizing the informative priors is to reach 

a goal that is not reachable using ML. That is, setting the difference parameters (D) 

close to zero so that the scale can be properly set. Meanwhile, by not strictly fixing 

those to zero, the difference parameters (D) can still be estimable and used as index for 

selecting RI. 

As demonstrated in Little (2006), choosing different prior information could 

lead to different answers in Bayesian analysis. Consistent with previous simulation 

studies (e.g., Muthén & Asparouhov, 2013), study I (Section 3.1) also shows that 

choices of informative priors could influence the power of detecting invariant items. 

When variances of the priors are small enough for the difference measure, such as 0.01 

and below, the power of correctly selecting an invariant item is consistently high and 
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not sensitive to the choices of prior variances; however, when larger prior variances are 

used, such as 0.10, low power rates are observed under several conditions. 

It has been suggested that if the variances of zero-mean priors are too small, the 

random draws in the posterior distributions are likely being pulled towards the zero 

prior mean; if the variances are too large, the random draws could become wild and 

produce undesirable estimates, and in some extreme cases, the models may become 

even unidentified (Muthén & Asparouhov, 2012). In the simulation studies, the prior 

with the largest variance of .10 is associated with less optimal results in terms of the 

power of detecting invariant items, compared with those obtained from priors with 

variances of .001, .01 and .05. Methodologists have recommended that sensitivity to 

prior variances should be examined by using priors with different variances in fitting 

BSEM models to real-world data (Muthén & Asparouhov, 2013). In the empirical 

analysis, we use informative priors with four different values of variances (i.e., 0.0005, 

0.001, 0.005 and 0.01) in selecting an invariant item using the selection index. All four 

priors lead to the same item(s) being identified as invariant. Although it is not clear 

whether other unexamined prior variances would produce the same result, the proposed 

selection index seems to be not very sensitive to the choice of priors as long as proper 

prior variances are used. This may be due in part to the way how the proposed selection 

index works -- it summarizes the standardized difference across the factor loading and 

intercept for each item, and the item with the smallest value in this selection index is 

chosen to be the RI. In comparison with checking if zero lies in the 95% BCI of the 

posterior distribution for each individual cross-group difference, the selection index is 
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less subject to the influence of the priors, because the RI is identified by comparing the 

magnitude of the selection index among all items.   

It should be noted that the proposed BSEM method is different in several ways 

from the method by Muthén and Asparouhov (2013) introduced as web notes, although 

they share certain similarities in terms of using informative priors. The goal of Muthén 

and Asparouhov (2013) was to compare factor means and variances across many groups 

or time points. For this purpose, they proposed a two-step procedure implemented by 

BSEM approach – step 1 to identify non-invariant parameters and step 2 to free those 

parameters, thereby estimating factor means and variances with approximate 

measurement invariance. Later they extended this idea and proposed the so-called 

alignment method to estimate group-specific factor means and variances with 

approximate measurement invariance (Asparouhov & Muthén, 2014). However, the 

goal in the first two studies in this dissertation is to solve two common issues in 

measurement invariance tests – how to select appropriate reference indicators and then 

how to locate non-invariant parameters, given the metric of latent constructs and other 

parameters is appropriately set by the reference indicators chosen in the first step. The 

first step in Muthén and Asparouhov (2013)’s method is to identify non-invariant 

parameters without using any reference indicator, but the step 1 in current study is to 

identify an item with highest likelihood to be invariant and then use such item as a 

reference indicator in subsequent analysis. Both methods use zero-mean and small-

variance priors; however, the selection criteria are constructed differently. The proposed 

method combines the standardized cross-group differences in both factor loadings and 

intercepts for each item, but their method focuses on raw difference between each 
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individual parameter and the group-mean of that parameter. These two methods may 

perform similarly in terms of identifying non-invariant parameters (what step 2 is for in 

the current study) under certain circumstances. However, systematic comparisons 

between these methods are out of scope of the current investigation.    

5.3 Selection Index Using Factor Loading Only 

As discussed earlier, there are different levels of factorial invariance. In practice, 

strong factorial invariance is required in many situations, such as comparing 

latent/observed means (Steinmetz, 2013) and fitting latent growth models (Ferrer, 

Balluerka, & Widaman, 2008). Therefore, I focus on selecting RI with both equal factor 

loadings and equal intercepts, and consider items which are invariant in both factor 

loadings and intercepts as truly invariant items. However, if one is only interested in 

testing for weak invariance, items with equal factor loadings only can be considered as 

truly invariant. Accordingly, a simplified selection index, which includes information 

on factor loadings only, can be used. The modified section index can be expressed as: 

j

j
sd

 |D̂|
ˆ j




       (12) 

An additional simulation study is conducted to investigate the performance of 

the modified BSEM method on selecting an RI with invariant factor loading only. The 

data simulation procedure and population parameters settings are the same as Study I 

(Section 3.1). Specifically, I only consider the simulation conditions where non-

invariance only exists on factor loadings. The RI is selected using the BSEM method 

with the modified selection index. Two different informative priors (i.e. Prior1~N (0, 

0.001) and Prior2~N (0, 0.01)) are used to properly scale the latent variables in the 

multiple group model. The power rates of the modified BSEM method across 
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simulation conditions were reported in Table 14. The results show that the BSEM 

method still works well with the modified selection index. The power rates for correctly 

selecting an RI are larger than 93% as the sample size exceeds 200. Therefore, the 

proposed BSEM methods can be easily transformed to fit situations where researchers 

need to select RI with equal factor loadings only. 

5.4 Revisiting the Comparison between BSEM and the Constrained Baseline 

Approaches on Selecting RI 

 In study I (Section 3.1), the proposed BSEM method is found to be superior to 

the constrained baseline approach under several simulation conditions. Under 

conditions where the amount or percent of non-invariance was large, as sample size 

increase, the constrained baseline approach tended to reject the truly-invariant items 

during the screening phase. For example, when 40% of intercepts were contaminated 

with large amount of non-invariance; as sample size reached 500, the constrained 

baseline approach produced a power rate of zero by rejecting every item as invariant.   

However, when the sample size is small (i.e. less than 200), the constrained 

baseline model seemed to gain higher power compared to the BSEM approach. As 

discussed hereinbefore, the power rates for the constrained baseline approach reported 

in Study I (Section 3.1) may be overestimated caused by the simulation design. That is, 

in the simulation study I, for the non-invariant item(s), their factor loadings decreased in 

the focal group. As a result, when adding the equality constraints, the truly invariant 

items happen to have larger factor loadings, compared to those for non-invariant items 

in our simulated data. In this case, the constrained baseline approach, characterized by 

selecting an item with non-significant cross-group difference but the largest loading to 
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be RI, would tend to have relatively high power to choose a truly invariant item to be 

RI. 

In order to investigate the possible overestimation of power rates for the 

constrained baseline approach caused by the simulation design, I conduct an additional 

simulation to further compare the BSEM and constrained baseline approaches on 

selecting RI. For simplicity, I only consider cases where small amount of non-

invariance existed on factor loadings. In addition, the factor loadings for non-invariant 

items increased in the focal group. The population values of factor loadings for 

invariant items are set to be 0.6 in both reference and focal groups. However, for the 

non-invariant items, the factor loadings for the reference group are set to be 0.8; for the 

focal group, the population values for factor loadings are still 0.6. The set-up for other 

parameters is the same as discussed in Section 3.1. The power rates for the proposed 

BSEM method across simulation conditions are reported in Table 15, and compared to 

the power of the constrained baseline approach. 

In the additional simulation, the BSEM method showed better performance than 

the constrained baseline approach across all conditions, including conditions where the 

sample size is small. For example, under the condition that 20% of the factor loadings 

are with small amount of non-invariance, when sample size is 50, the power rate for 

correctly selecting RI is greater than 90% by using the BSEM approach. However, the 

constrained baseline approach only yields 56% probability to select a correct RI.  

5.5 Extensions 

A few other possible extensions could be made to widen the uses of the BSEM 

approach through borrowing lessons from the IRT literature. One lesson is that among 
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items with similar non-significant cross-group differences, choosing items with the 

strongest relationship with the factor would produce greater power in subsequent 

identification of non-invariant parameters (Meade & Wright, 2012). Another lesson is 

that a large number of studies have suggested that using more than one RI results in 

greater power in subsequent invariance tests (Meade & Wright, 2012). In the SEM 

literature, however, much less is known about whether the above mentioned 

conclusions hold for multiple-group CFA analysis. Therefore, I conduct additional 

simulations to verify the effects of number of RI and the magnitude of factor loadings 

on the power to detect non-invariance within the SEM framework. Two additional 

simulation conditions were considered.  

1.) Number of RI in use (One RI vs. Three RIs) 

2.) Magnitude of the selected RI’s factor loading (0.8 vs. 0.4)  

The two additional conditions were then fully nested to the existing simulation 

scenarios discussed on Section 3.2, resulting in 256 (2*2*64) conditions. The type I 

error rates and power rates for both BSEM and likelihood ratio tests are calculated and 

reported in tables 16-19. As showed in Table 16-19, for both BSEM method and 

likelihood ratio test under MLE, higher power rates to detecting non-invariant 

parameters are observed when more RI(s) are included, and(or) item with larger factor 

loading is used as RI. For example, for the BSEM method, the power rate for correctly 

detecting small amount of non-invariance on factor loadings (2/10 factor loadings are 

non-invariance) with sample size 200 is 0.12 using only one RI with population factor 

loadings 0.4. However, the power increases to 0.56 when using one RI with population 

factor loading 0.8. Using three RIs with population factor loadings 0.4 also improves 
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the power to 0.50. The largest power rate (i.e. 0.80) is observed when using multiple 

(i.e. three) RIs with larger factor loadings (i.e.0.8). In addition, for the BSEM method, 

when sample size was small, more RI and larger factor loadings of RI leaded to higher 

admissible solution rates. Therefore, in order to achieve higher power rate, it is more 

ideal to select more than one RI and RI with larger factor loadings. I further explore the 

possibilities to extend the BSEM method in order to incorporate the above conclusions.  

5.5.1 Selecting More than One RI(s) 

According to the BSEM approach, small selection index indicating high 

likelihood for an item to be truly invariant. Therefore, a natural idea for selecting 

multiple RIs is to select a subset of items which produce smallest values on the 

selection index. In the current section, I conduct simulation study to investigate the 

performance of the modified BSEM method on selecting more than one (i.e. three) RIs.  

For simplicity, I focus on selecting RIs with non-invariant factor loadings only. The set-

up for parameter values and simulations conditions are the same as Section 5.4. For the 

BSEM method, three items with smallest selection indices were selected as RIs. The 

power rates of the modified BSEM method were reported in Table 20, and compared to 

the constrained baseline approach. 

As showed in table 20, the power rates for the modified BSEM method to select 

three RIs are superior to the traditional constrained baseline approach across all 

simulated conditions. The BSEM method performs well especially under conditions 

where the percentage of non-invariance is low. For example, when percentage of non-

invariance is low, the BSEM method has more than 90% probability to selecting all 

three RIs correctly if the sample size reaches 200.  
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5.5.2 Selecting RI with Larger Communalities 

In this section, I investigate a possible way to increase the chance for the BSEM 

method to select a truly invariant item with larger factor loadings as RI. According to 

property 2, the non-invariant item(s) are expected to be associated with noticeably 

larger selection indices ( ĵ ), compared to those produced by the truly invariant items. 

The differences of the magnitude of selection indices ( ĵ ) among truly invariant items, 

however, are anticipated to be much smaller, and only subject to the random errors. 

Given two truly invariant items, it is possible that one with smaller factor loadings 

produced the smallest selection index; the other item with higher factor loadings, even 

has a fairly close (but slightly larger) selection index, is not selected as RI. In order to 

distinguish the “large” difference on selection index caused by non-invariance and the 

variabilities due to random errors, an empirical tolerance level (TOL) is proposed and 

can be expressed as  

   
c

MinMax
TOL

jj )()( 
      (13) 

The tolerance index takes the difference between the largest and the smallest 

selection index, and divides it by a constant c. If several items produced selection 

indices ( ĵ ) which are similar to the smallest one, such that the differences are smaller 

than the pre-determined tolerance level, or  

TOLMin jj  )ˆ(ˆ ,      (14) 

item with higher factor loadings is suggested as RI. The choice of the tolerance level 

(thus value of c) could be subjective; the tolerance level is expected to be large enough 

to count for the variabilities of selection index among truly invariant items. In the 
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meanwhile, it should not be too inflated; otherwise the non-invariant item(s) would not 

be detectable.  

I further investigate the performance of using TOL to select RI with larger 

communalities using a small scaled simulation. For simplicity, I only consider the cases 

of selecting RI with invariant factor loadings. In order to evaluate the performance of 

the modified BSEM method on selecting RI with the larger factor loadings, I further 

manipulate the magnitude of factor loadings for the truly invariant items. Specifically, 

under 5-item conditions, when the percent of non-invariance was large, we set the factor 

loadings for the three truly invariant items to be 0.4, 0.6 and 0.8 respectively; for cases 

with small percent of non-invariance, half of the invariant items had population factor 

loadings 0.8, whereas the other half had factor loadings of 0.4. When the total number 

of item was 10, half of the factor loadings for truly invariant items were set to be 0.8, 

whereas population loadings for the other half were set as 0.4. The set-up for other 

parameters and simulation conditions can be referred to the Section 3.1. In this pilot 

analysis, I used c=2 based on a rough observation of the empirical distributions of the 

selection index between non-invariant and invariant items. Among the items that 

produced selection index satisfied: 

2

)()(
)ˆ(ˆ jj

jj

MinMax
Min


 ,    (15) 

 

I select the item with largest factor loading as RI. The power rates for the modified 

BSEM method on selecting RI with different factor loadings were reported in Table 21.  

As shown in Table 21, in most of the cases, using selection index with tolerance 

level increase successfully increase the chance for the BSEM method to select an 
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invariant item with relative larger factor loadings as RI, while still keep a low level of 

Type I error rate (i.e. chance of incorrectly choosing RI). For example, when 4 out of 10 

factor loadings are infected with large magnitude of non-invariance with sample size 

200, the BSEM method using tolerance level yields 90% probability to correctly chose 

invariant items with higher factor loading (i.e. 0.8) as RI. The probability of correctly 

choosing an RI which is truly invariant but with smaller factor loading (i.e. 0.4) is much 

lower (i.e. less than 3%); so is the probability of incorrectly choosing a non-invariant 

item as RI (less than 7%). Nevertheless, when 2 out of 5 factor loadings are infected 

with small magnitude of non-invariance, using selection index with tolerance level 

could increase the chance of making type I error rate, especially when sample size is 

small; for example, when sample size is 50, the type I error rate is inflated to more than 

30%.  

In summary, in the Section 5.5, I heuristically explore several possible 

extensions to the proposed selection index. These extensions can facilitate researchers 

to select RI which is not only truly-invariant, but also possible to generate higher power 

in the subsequent analysis for locating non-invariant parameters. Using small scaled 

simulations, these extensions could show promising performance to select more than 

one RIs and RI with larger factor loadings. Future studies are expected to further 

investigate and develop upon these extensions in a more systematic manner and thus 

better resolve the specification search issues in studying factorial invariance.  

5.6 Supporting Null Hypothesis 

By obtaining the complete posterior distribution, more can be learned from the 

parameter estimates using the Bayesian methods. Therefore, the Bayesian approach 
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could provide more useful information in studying measurement invariance, comparing 

to the traditional ML methods. Specifically, if the ML-based LRT test turns out to be 

non-significant, researchers tend to conclude no cross-group differences on the tested 

parameters (i.e. factorial invariance holds across groups). Despite often reported by 

applied researchers (e.g. Liu, Borg, & Spector, 2004; Shevlin & Adamson, 2005), the 

above statement is subject to one of the most common misinterpretations in the 

framework of null hypothesis significance test. That is, failing to reject provides no 

basis about accepting the null hypothesis (Cohen, 1994).  

The Bayesian methods, however, provide possible tools for researchers to accept 

a null value, and thereby offer direct evidence for supporting factorial invariance. For 

example, Verhagen, Levy, Millsap and Fox (2015) proposed tests based on Bayes 

factors to evaluate the evidence in favor of the null hypothesis of invariance in IRT 

models. Another possible way is to establish a region of practical equivalence (ROPE) 

around zero for the difference parameter (D). For example, suppose researchers decide 

that any absolute differences less than 0.05 in factor loadings could make no practical 

significant (i.e. can be practically treated as invariant). Therefore, the ROPE for the 

difference parameter (D) on factor loadings is [-0.05, 0.05]. If the 95% BCI falls 

completely inside the ROPE, researchers would more confidently conclude that 

factorial invariance holds for factor loadings, because the 95 percent of the most 

credible values for the difference in factor loadings are practically zero. These 

advantages of using the Bayesian framework could lead possible extensions for using 

BSEM to study factorial invariance, which deserve more attention for future 

investigations. 
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5.7 Limitation and Other Future Directions 

Some limitations need to be noted about this study. In the simulation analyses, I 

assume the direction of non-invariance is uniform, that is, the non-invariant loadings or 

intercepts always take higher values for one group than the other. Since all non-

invariant parameters have a uniform direction across groups, using all parameters (as 

reference) to scale the latent variable could produce poor approximation to the 

appropriate metric that is otherwise set by using truly invariant parameters only. Things 

could be even worse if the non-invariance is also proportional in magnitude (Yoon & 

Millsap, 2007). Under this condition, the non-invariant loadings would share a common 

(biased) metric, and impacts of the non-invariant loadings are expected to be 

superposed in the adjusted metric of latent constructs. The more favorable type of non-

invariance would be mixed in direction of non-invariance, in which one group has 

greater values on some of the parameters but lower values on the others than other 

groups. Since the non-invariant parameters differ across groups with opposite 

directions, adverse impact of the non-invariance on the adjusted metric of latent 

constructs could be counteracted. Second, I do not investigate the performance of 

BSEM in the case where both intercepts and factor loadings are different for items at 

the same time. I anticipate that the selection index would be much more effective in this 

case because the overall cross-group difference should be greater than that for the case 

with either one to be different. Cases like this are worthy of systematic examination in 

the future. Third, in current study, I first focus on selecting RIs and then assuming the 

RIs are correctly selected, I investigate the power of locating non-invariant parameters. 

Apparently, these two steps are separate in our design, that is, the results of Analysis II 
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are not conditional on Analysis I. In practice, if an error is made in the first step (i.e. 

select a wrong RI), the performance of the BSEM method to locate non-invariant 

parameters requires further investigations. Finally, in the simulation analyses, I consider 

only the situation where the majority of parameters were invariant, as the case for most 

well-developed instruments. I show that the proposed BSEM approach still performed 

reasonably well under conditions of uniform non-invariance. However, it is not clear 

how this approach would behave in selecting invariant and detecting non-invariant 

parameters if the majority of parameters are non-invariant, uniform in direction, and 

proportional in magnitude. More research would be needed to investigate such extreme 

cases.  
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Table 1: Power Rates of Selecting a Reference Indicator (5 Items) 
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Table 2: Power Rates of Selecting a Reference Indicator (10 Items) 
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Table 3: Admissible Solution Rates, Type I Error Rates, and Power Rates in 

Locating Non-invariance (5 Item) 
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Table 4: Admissible Solution Rates, Type I Error Rates, and Power Rates in 

Locating Non-invariance (10 Item) 
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Table 5: Expected Difference of Observed Scores Conditional on Latent Trait 

(Epsilon =0) at Item Level (EDOI) 
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Table 6: Expected Difference of Observed Scores Conditional on Latent Trait 

(Epsilon=1) at Item Level (EDOI) 
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Table 7: Expected Difference of Observed Scores Conditional on Latent Trait 

(Epsilon =3) at Item Level (EDOI) 
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Table 8: Expected Difference of Observed Scores Conditional on Latent Traits at 

Test (Sum Score) Level (EDOT) 
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Table 9: Expected Difference of Latent Traits Conditional on Observed (Sum) 

Scores (EDLT) 
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Table 10: Content of the Shortened Version of the CES-D Scale (15 Items) 
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Table 11: Descriptive Statistics and Correlation Coefficients between Items 
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Table 12: Values of Selection Index in Selecting RI in the Empirical Analysis 
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Table 13: Locating Non-invariant Parameters in the Empirical Analysis 
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Table 14: Power Rates of Selecting a Reference Indicator with Invariant Factor 

Loading Only. 
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Table 15: Power Rates of Selecting a Reference Indicator 
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Table 16: Admissible Solution Rates, Type I Error Rates, and Power Rates in 

Locating Non-invariance (1 RI with Factor Loading of 0.4) 
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Table 17: Admissible Solution Rates, Type I Error Rates, and Power Rates in 

Locating Non-invariance (1 RI with Factor Loading of 0.8) 
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Table 18: Admissible Solution Rates, Type I Error Rates, and Power Rates in 

Locating Non-invariance (3 RIs with Factor Loadings of 0.4) 
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Table 19: Admissible Solution Rates, Type I Error Rates, and Power Rates in 

Locating Non-invariance (3 RIs with Factor Loadings of 0.8) 
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Table 20: Power Rates of Selecting Three Reference Indicators 
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Table 21: Power Rates of Selecting RI with Different Factor Loadings 
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Figure 1: Plots of EDOI for Item 1 

 

 

 

 

 

Figure 2: Plots of EDOI for Item 2 
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Figure 3: Plots of EDOI for Item 5 

 

Figure 4: Plots of EDOI for Item 7 
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Figure 5: Plots of EDOI for Item 9 

 

 

Figure 6: Plots of EDOI for Item 10 
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Figure 7: Plots of EDOI for Item 11 

 

 

 

 

Figure 8: Plots of EDOI for Item 13 
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Figure 9: Plots of EDOI for Item 14 

 

 

Figure 10: Plots of EDOI for Item 17 
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Figure 11: Plots of EDOI for Item 18 

 

 

Figure 12: Plots of EDOI for Item 19 
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Figure 13: Plots of EDOI for Item 20 

 

 

Figure 14: Plots of EDOT 
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Figure 15: Plots of EDLT 
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Appendices 

 
Appendix A: Footnotes  

1. Alternatively, one can begin the tests by fitting a model with all parameters 

constrained to be equal, and then progressively relaxing certain equality 

constraints. More discussions between these two approaches are discussed in the 

later section, and can be found in Stark, Chernyshenko and Drasgow (2006) and 

Kim and Yoon (2011).  

2. See Little, Slegers and Card (2006) for a detailed discussion on the issue of 

identifying and scaling latent variables in multiple-group models. 

3. In this study, we focus on testing measurement invariance across two groups. 

The proposed BSEM method can be naturally extended to testing for 

longitudinal factorial invariance.   

4. Equations 8-10 can be derived from Equation 2.  

5. The other methods, such as those we reviewed in the manuscripts, are not quite 

comparable to the BSEM method regarding to the selection of RI. In general, 

those methods attempt to avoid using a specific RI for invariance test. Therefore, 

selecting RIs is not their goal to achieve. For example, Cheung and Lau (2012)’s 

method detects non-invariance without selecting specific RIs. Therefore, no 

additional simulations can be done to compare the BSEM with other methods 

like Cheung and Lau’s.  

6. The standard deviation for the female group is set to be one.  
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7. The thresholds of depression level that suggesting whether females have higher 

observed scores (than males) are -1.2 (item 7), -2.8(item 9), -2.6 (item 13), -1.2 

(item 14), and -2.1 (item 19).  

8.  The thresholds of depression level that suggesting whether females have lower 

observed scores (than males) are -1.8 (item10), and -1.4 (item 18). 

9. For the group of females, the latent trait (depression) has mean 0 and variance 1, 

for males, the latent trait (depression) has mean -0.281 and variance 0.752. 
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Appendix B: Mplus Syntax for selecting RI 

TITLE: This is an example of selecting RI for a fifteen-

item scale 

DATA: FILE IS data.dat; 

VARIABLE: NAMES ARE x1 x2 x3 x5 x6 x7 x9 x10 x11 x13 x14 

x17 x18 x19 x20 sex; 

CLASSES=c(2); 

KNOWNCLASS=c(sex=1 2); 

 

ANALYSIS: 

type=mixture; 

estimator=bayes; 

proc=2; 

thin=10; 

biterations =100000(50000); 

 

MODEL: 

%OVERALL% 

f BY x1 x2 x3 x5 x6 x7 x9 x10 x11 x13 x14 x17 x18 x19 x20; 

[x1*]; 

[x2*]; 

[x3*]; 

[x5*]; 

[x6*]; 

[x7*];   

[x9*];   

[x10*];   

[x11*]; 

[x13*];   

[x14*];   

[x17*];  

[x18*];   

[x19*];  

[x20*]; 

x1*; 

x2*; 

x3*; 

x5*; 

x6*; 

x7*; 

x9*; 

x10*;  

x11*; 

x13*; 

x14*; 

x17*;  
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x18*;  

x19*; 

x20*; 

 

%c#1% 

f BY   x1*(A1) 

       x2*(B1) 

       x3*(C1) 

       x5*(D1) 

       x6*(E1) 

       x7*(F1) 

       x9*(G1) 

       x10*(H1) 

       x11*(I1) 

       x13*(J1) 

       x14*(K1) 

       x17*(L1) 

       x18*(M1) 

       x19*(N1) 

       x20*(O1); 

      [x1*](P1) 

      [x2*](Q1) 

      [x3*](R1) 

      [x5*](S1) 

      [x6*](T1) 

      [x7*](U1) 

      [x9*](V1) 

      [x10*](W1) 

      [x11*](X1) 

      [x13*](Y1) 

      [x14*](Z1) 

      [x17*](AA1) 

      [x18*](BB1) 

      [x19*](CC1) 

      [x20*](DD1); 

      f@1; 

      [f@0]; 

      x1*; 

      x2*; 

      x3*; 

      x5*; 

      x6*; 

      x7*; 

      x9*; 

      x10*;  

      x11*; 

      x13*; 
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      x14*; 

      x17*;  

      x18*;  

      x19*; 

      x20*; 

%c#2% 

f BY   x1*(A2) 

       x2*(B2) 

       x3*(C2) 

       x5*(D2) 

       x6*(E2) 

       x7*(F2) 

       x9*(G2) 

       x10*(H2) 

       x11*(I2) 

       x13*(J2) 

       x14*(K2) 

       x17*(L2) 

       x18*(M2) 

       x19*(N2) 

       x20*(O2); 

      [x1*](P2) 

      [x2*](Q2) 

      [x3*](R2) 

      [x5*](S2) 

      [x6*](T2) 

      [x7*](U2) 

      [x9*](V2) 

      [x10*](W2) 

      [x11*](X2) 

      [x13*](Y2) 

      [x14*](Z2) 

      [x17*](AA2) 

      [x18*](BB2) 

      [x19*](CC2) 

      [x20*](DD2); 

      f*; 

      [f*]; 

      x1*; 

      x2*; 

      x3*; 

      x5*; 

      x6*; 

      x7*; 

      x9*; 

      x10*;  

      x11*; 
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      x13*; 

      x14*; 

      x17*;  

      x18*;  

      x19*; 

      x20*; 

 

MODEL CONSTRAINT: 

    new(Dif1-Dif30*0); 

     Dif1=A1-A2; 

     Dif2=B1-B2; 

     Dif3=C1-C2; 

     Dif4=D1-D2; 

     Dif5=E1-E2; 

     Dif6=F1-F2; 

     Dif7=G1-G2; 

     Dif8=H1-H2; 

     Dif9=I1-I2; 

     Dif10=J1-J2; 

     Dif11=k1-k2; 

     Dif12=L1-L2; 

     Dif13=M1-M2; 

     Dif14=N1-N2; 

     Dif15=O1-O2; 

     Dif16=P1-P2; 

     Dif17=Q1-Q2; 

     Dif18=R1-R2; 

     Dif19=S1-S2; 

     Dif20=T1-T2; 

     Dif21=U1-U2; 

     Dif22=V1-V2; 

     Dif23=W1-W2; 

     Dif24=X1-X2; 

     Dif25=Y1-Y2; 

     Dif26=Z1-Z2; 

     Dif27=AA1-AA2; 

     Dif28=BB1-BB2; 

     Dif29=CC1-CC2; 

     Dif30=DD1-DD2; 

MODEL PRIOR: 

    DIFF(A1,A2)~N(0,0.01); 

    DIFF(B1,B2)~N(0,0.01); 

    DIFF(C1,C2)~N(0,0.01); 

    DIFF(D1,D2)~N(0,0.01); 

    DIFF(E1,E2)~N(0,0.01); 

    DIFF(F1,F2)~N(0,0.01); 

    DIFF(G1,G2)~N(0,0.01); 
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    DIFF(H1,H2)~N(0,0.01); 

    DIFF(I1,I2)~N(0,0.01); 

    DIFF(J1,J2)~N(0,0.01); 

    DIFF(K1,K2)~N(0,0.01); 

    DIFF(L1,L2)~N(0,0.01); 

    DIFF(M1,M2)~N(0,0.01); 

    DIFF(N1,N2)~N(0,0.01); 

    DIFF(O1,O2)~N(0,0.01); 

    DIFF(P1,P2)~N(0,0.01); 

    DIFF(Q1,Q2)~N(0,0.01); 

    DIFF(R1,R2)~N(0,0.01); 

    DIFF(S1,S2)~N(0,0.01); 

    DIFF(T1,T2)~N(0,0.01); 

    DIFF(U1,U2)~N(0,0.01); 

    DIFF(V1,V2)~N(0,0.01); 

    DIFF(W1,W2)~N(0,0.01); 

    DIFF(X1,X2)~N(0,0.01); 

    DIFF(Y1,Y2)~N(0,0.01); 

    DIFF(Z1,Z2)~N(0,0.01); 

    DIFF(AA1,AA2)~N(0,0.01); 

    DIFF(BB1,BB2)~N(0,0.01); 

    DIFF(CC1,CC2)~N(0,0.01); 

DIFF(DD1,DD2)~N(0,0.01); 
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Appendix C: Mplus Syntax for locating non-invariant parameters 

TITLE: This is an example of locating non-invariant 

parameters(using Item 6 as RI) 

 
DATA: FILE IS data.dat; 

VARIABLE: NAMES ARE x1 x2 x3 x5 x6 x7 x9 x10 x11 x13 x14 

x17 x18 x19 x20 sex; 

CLASSES=c(2); 

KNOWNCLASS=c(sex=1 2); 

 

ANALYSIS: 

type=mixture; 

estimator=bayes; 

proc=2; 

thin=10; 

biterations =100000(50000); 

 

MODEL: 

%OVERALL% 

f BY x1 x2 x3 x5 x6 x7 x9 x10 x11 x13 x14 x17 x18 x19 x20; 

[x1*]; 

[x2*]; 

[x3*]; 

[x5*]; 

[x6*]; 

[x7*];   

[x9*];   

[x10*];   

[x11*]; 

[x13*];   

[x14*];   

[x17*];  

[x18*];   

[x19*];  

[x20*]; 

x1*; 

x2*; 

x3*; 

x5*; 

x6*; 

x7*; 

x9*; 

x10*;  

x11*; 

x13*; 

x14*; 
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x17*;  

x18*;  

x19*; 

x20*; 

 

 

    %c#1% 

  f BY x1*(A1) 

       x2*(B1) 

       x3*(C1) 

       x5*(D1) 

       x6*(E1) 

       x7*(F1) 

       x9*(G1) 

       x10*(H1) 

       x11*(I1) 

       x13*(J1) 

       x14*(K1) 

       x17*(L1) 

       x18*(M1) 

       x19*(N1) 

       x20*(O1); 

      [x1*](P1) 

      [x2*](Q1) 

      [x3*](R1) 

      [x5*](S1) 

      [x6*](T1) 

      [x7*](U1) 

      [x9*](V1) 

      [x10*](W1) 

      [x11*](X1) 

      [x13*](Y1) 

      [x14*](Z1) 

      [x17*](AA1) 

      [x18*](BB1) 

      [x19*](CC1) 

      [x20*](DD1); 

      f@1; 

      [f@0]; 

      x1*; 

      x2*; 

      x3*; 

      x5*; 

      x6*; 

      x7*; 

      x9*; 

      x10*;  
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      x11*; 

      x13*; 

      x14*; 

      x17*;  

      x18*;  

      x19*; 

      x20*; 

 

   %c#2% 

  f BY x1*(A2) 

       x2*(B2) 

       x3*(C2) 

       x5*(D2) 

       x6*(E1) 

       x7*(F2) 

       x9*(G2) 

       x10*(H2) 

       x11*(I2) 

       x13*(J2) 

       x14*(K2) 

       x17*(L2) 

       x18*(M2) 

       x19*(N2) 

       x20*(O2); 

      [x1*](P2) 

      [x2*](Q2) 

      [x3*](R2) 

      [x5*](S2) 

      [x6*](T1) 

      [x7*](U2) 

      [x9*](V2) 

      [x10*](W2) 

      [x11*](X2) 

      [x13*](Y2) 

      [x14*](Z2) 

      [x17*](AA2) 

      [x18*](BB2) 

      [x19*](CC2) 

      [x20*](DD2); 

      f*; 

      [f*]; 

      x1*; 

      x2*; 

      x3*; 

      x5*; 

      x6*; 

      x7*; 
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      x9*; 

      x10*;  

      x11*; 

      x13*; 

      x14*; 

      x17*;  

      x18*;  

      x19*; 

      x20*; 

 

  MODEL CONSTRAINT: 

    new(Dif1-Dif28*0); 

     Dif1=A1-A2; 

     Dif2=B1-B2; 

     Dif3=C1-C2; 

     Dif4=D1-D2; 

     Dif5=F1-F2; 

     Dif6=G1-G2; 

     Dif7=H1-H2; 

     Dif8=I1-I2; 

     Dif9=J1-J2; 

     Dif10=k1-k2; 

     Dif11=L1-L2; 

     Dif12=M1-M2; 

     Dif13=N1-N2; 

     Dif14=O1-O2; 

     Dif15=P1-P2; 

     Dif16=Q1-Q2; 

     Dif17=R1-R2; 

     Dif18=S1-S2; 

     Dif19=U1-U2; 

     Dif20=V1-V2; 

     Dif21=W1-W2; 

     Dif22=X1-X2; 

     Dif23=Y1-Y2; 

     Dif24=Z1-Z2; 

     Dif25=AA1-AA2; 

     Dif26=BB1-BB2; 

     Dif27=CC1-CC2; 

     Dif28=DD1-DD2; 
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Appendix D: Mplus Syntax for Estimating EDOI (Item17,  =-4.00) 

DATA: FILE IS data.dat; 

VARIABLE: NAMES ARE x1 x2 x3 x5 x6 x7 x9 x10 x11 x13 x14 

x17 x18 x19 x20 sex; 

CLASSES=c(2); 

KNOWNCLASS=c(sex=1 2); 

 

ANALYSIS: 

type=mixture; 

estimator=bayes; 

proc=2; 

thin=10; 

biterations =100000(50000); 

 

MODEL: 

%OVERALL% 

f BY x1 x2 x3 x5 x6 x7 x9 x10 x11 x13 x14 x17 x18 x19 x20; 

[x1*]; 

[x2*]; 

[x3*]; 

[x5*]; 

[x6*]; 

[x7*];   

[x9*];   

[x10*];   

[x11*]; 

[x13*];   

[x14*];   

[x17*];  

[x18*];   

[x19*];  

[x20*]; 

x1*; 

x2*; 

x3*; 

x5*; 

x6*; 

x7*; 

x9*; 

x10*;  

x11*; 

x13*; 

x14*; 

x17*;  

x18*;  

x19*; 
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x20*; 

 

    %c#1% 

  f BY x1*(A1) 

       x2*(B1) 

       x3*(C1) 

       x5*(D1) 

       x6*(E1) 

       x7*(F1) 

       x9*(G1) 

       x10*(H1) 

       x11*(I1) 

       x13*(J1) 

       x14*(K1) 

       x17*(L1) 

       x18*(M1) 

       x19*(N1) 

       x20*(O1); 

      [x1*](P1) 

      [x2*](Q1) 

      [x3*](R1) 

      [x5*](S1) 

      [x6*](T1) 

      [x7*](U1) 

      [x9*](V1) 

      [x10*](W1) 

      [x11*](X1) 

      [x13*](Y1) 

      [x14*](Z1) 

      [x17*](AA1) 

      [x18*](BB1) 

      [x19*](CC1) 

      [x20*](DD1); 

      f@1; 

      [f@0]; 

      x1*; 

      x2*; 

      x3*; 

      x5*; 

      x6*; 

      x7*; 

      x9*; 

      x10*;  

      x11*; 

      x13*; 

      x14*; 

      x17*;  
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      x18*;  

      x19*; 

      x20*; 

 

   %c#2% 

  f BY x1*(A1) 

       x2*(B1) 

       x3*(C1) 

       x5*(D2) 

       x6*(E1) 

       x7*(F2) 

       x9*(G2) 

       x10*(H2) 

       x11*(I1) 

       x13*(J2) 

       x14*(K2) 

       x17*(L2) 

       x18*(M2) 

       x19*(N2) 

       x20*(O2); 

      [x1*](P2) 

      [x2*](Q2) 

      [x3*](R1) 

      [x5*](S1) 

      [x6*](T1) 

      [x7*](U2) 

      [x9*](V2) 

      [x10*](W2) 

      [x11*](X2) 

      [x13*](Y2) 

      [x14*](Z2) 

      [x17*](AA2) 

      [x18*](BB2) 

      [x19*](CC2) 

      [x20*](DD2); 

      f*; 

      [f*]; 

      x1*; 

      x2*; 

      x3*; 

      x5*; 

      x6*; 

      x7*; 

      x9*; 

      x10*;  

      x11*; 

      x13*; 
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      x14*; 

      x17*;  

      x18*;  

      x19*; 

      x20*; 

 

  MODEL CONSTRAINT: 

    new(Dif1*0); 

Dif1=-4*(L1-L2)+(AA1-AA2); 
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Appendix E: Mplus Syntax for Estimating EDOT ( =-4.00) 

DATA: FILE IS data.dat; 

VARIABLE: NAMES ARE x1 x2 x3 x5 x6 x7 x9 x10 x11 x13 x14 

x17 x18 x19 x20 sex; 

CLASSES=c(2); 

KNOWNCLASS=c(sex=1 2); 

 

ANALYSIS: 

type=mixture; 

estimator=bayes; 

proc=2; 

thin=10; 

biterations =100000(50000); 

 

MODEL: 

%OVERALL% 

f BY x1 x2 x3 x5 x6 x7 x9 x10 x11 x13 x14 x17 x18 x19 x20; 

[x1*]; 

[x2*]; 

[x3*]; 

[x5*]; 

[x6*]; 

[x7*];   

[x9*];   

[x10*];   

[x11*]; 

[x13*];   

[x14*];   

[x17*];  

[x18*];   

[x19*];  

[x20*]; 

x1*; 

x2*; 

x3*; 

x5*; 

x6*; 

x7*; 

x9*; 

x10*;  

x11*; 

x13*; 

x14*; 

x17*;  

x18*;  

x19*; 
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x20*; 

 

    %c#1% 

  f BY x1*(A1) 

       x2*(B1) 

       x3*(C1) 

       x5*(D1) 

       x6*(E1) 

       x7*(F1) 

       x9*(G1) 

       x10*(H1) 

       x11*(I1) 

       x13*(J1) 

       x14*(K1) 

       x17*(L1) 

       x18*(M1) 

       x19*(N1) 

       x20*(O1); 

      [x1*](P1) 

      [x2*](Q1) 

      [x3*](R1) 

      [x5*](S1) 

      [x6*](T1) 

      [x7*](U1) 

      [x9*](V1) 

      [x10*](W1) 

      [x11*](X1) 

      [x13*](Y1) 

      [x14*](Z1) 

      [x17*](AA1) 

      [x18*](BB1) 

      [x19*](CC1) 

      [x20*](DD1); 

      f@1; 

      [f@0]; 

      x1*; 

      x2*; 

      x3*; 

      x5*; 

      x6*; 

      x7*; 

      x9*; 

      x10*;  

      x11*; 

      x13*; 

      x14*; 

      x17*;  
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      x18*;  

      x19*; 

      x20*; 

 

   %c#2% 

  f BY x1*(A1) 

       x2*(B1) 

       x3*(C1) 

       x5*(D2) 

       x6*(E1) 

       x7*(F2) 

       x9*(G2) 

       x10*(H2) 

       x11*(I1) 

       x13*(J2) 

       x14*(K2) 

       x17*(L2) 

       x18*(M2) 

       x19*(N2) 

       x20*(O2); 

      [x1*](P2) 

      [x2*](Q2) 

      [x3*](R1) 

      [x5*](S1) 

      [x6*](T1) 

      [x7*](U2) 

      [x9*](V2) 

      [x10*](W2) 

      [x11*](X2) 

      [x13*](Y2) 

      [x14*](Z2) 

      [x17*](AA2) 

      [x18*](BB2) 

      [x19*](CC2) 

      [x20*](DD2); 

      f*; 

      [f*]; 

      x1*; 

      x2*; 

      x3*; 

      x5*; 

      x6*; 

      x7*; 

      x9*; 

      x10*;  

      x11*; 

      x13*; 
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      x14*; 

      x17*;  

      x18*;  

      x19*; 

      x20*; 

 

  MODEL CONSTRAINT: 

    new(Dif1*0); 

Dif1=P1-P2+Q1-Q2-4*(D1-D2+F1-F2+G1-G2+H1-H2+J1-J2+K1-

K2+L1-L2+M1-M2+N1-N2+O1-O2)+U1-U2+V1-V2+W1-W2+X1-X2+Y1-

Y2+Z1-Z2+AA1-AA2+BB1-BB2+CC1-CC2+DD1-DD2; 
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Appendix F: Mplus Syntax for Estimating EDLT (Sum Test Score=7) 

DATA: FILE IS data.dat; 

VARIABLE: NAMES ARE x1 x2 x3 x5 x6 x7 x9 x10 x11 x13 x14 

x17 x18 x19 x20 sex; 

CLASSES=c(2); 

KNOWNCLASS=c(sex=1 2); 

 

ANALYSIS: 

type=mixture; 

estimator=bayes; 

proc=2; 

thin=10; 

biterations =100000(50000); 

 

MODEL: 

%OVERALL% 

f BY x1 x2 x3 x5 x6 x7 x9 x10 x11 x13 x14 x17 x18 x19 x20; 

[x1*]; 

[x2*]; 

[x3*]; 

[x5*]; 

[x6*]; 

[x7*];   

[x9*];   

[x10*];   

[x11*]; 

[x13*];   

[x14*];   

[x17*];  

[x18*];   

[x19*];  

[x20*]; 

x1*; 

x2*; 

x3*; 

x5*; 

x6*; 

x7*; 

x9*; 

x10*;  

x11*; 

x13*; 

x14*; 

x17*;  

x18*;  

x19*; 
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x20*; 

 

    %c#1% 

  f BY x1*(A1) 

       x2*(B1) 

       x3*(C1) 

       x5*(D1) 

       x6*(E1) 

       x7*(F1) 

       x9*(G1) 

       x10*(H1) 

       x11*(I1) 

       x13*(J1) 

       x14*(K1) 

       x17*(L1) 

       x18*(M1) 

       x19*(N1) 

       x20*(O1); 

      [x1*](P1) 

      [x2*](Q1) 

      [x3*](R1) 

      [x5*](S1) 

      [x6*](T1) 

      [x7*](U1) 

      [x9*](V1) 

      [x10*](W1) 

      [x11*](X1) 

      [x13*](Y1) 

      [x14*](Z1) 

      [x17*](AA1) 

      [x18*](BB1) 

      [x19*](CC1) 

      [x20*](DD1); 

      f@1; 

      [f@0]; 

      x1*; 

      x2*; 

      x3*; 

      x5*; 

      x6*; 

      x7*; 

      x9*; 

      x10*;  

      x11*; 

      x13*; 

      x14*; 

      x17*;  
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      x18*;  

      x19*; 

      x20*; 

 

   %c#2% 

  f BY x1*(A1) 

       x2*(B1) 

       x3*(C1) 

       x5*(D2) 

       x6*(E1) 

       x7*(F2) 

       x9*(G2) 

       x10*(H2) 

       x11*(I1) 

       x13*(J2) 

       x14*(K2) 

       x17*(L2) 

       x18*(M2) 

       x19*(N2) 

       x20*(O2); 

      [x1*](P2) 

      [x2*](Q2) 

      [x3*](R1) 

      [x5*](S1) 

      [x6*](T1) 

      [x7*](U2) 

      [x9*](V2) 

      [x10*](W2) 

      [x11*](X2) 

      [x13*](Y2) 

      [x14*](Z2) 

      [x17*](AA2) 

      [x18*](BB2) 

      [x19*](CC2) 

      [x20*](DD2); 

      f*; 

      [f*]; 

      x1*; 

      x2*; 

      x3*; 

      x5*; 

      x6*; 

      x7*; 

      x9*; 

      x10*;  

      x11*; 

      x13*; 
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      x14*; 

      x17*;  

      x18*;  

      x19*; 

      x20*; 

 

  MODEL CONSTRAINT: 

    new(Dif1*0); 

Dif1=(7-P1-Q1-R1-S1-T1-U1-V1-W1-X1-Y1-Z1-AA1-BB1-CC1-

DD1)/(A1+B1+C1+D1+E1+F1+G1+H1+I1+J1+K1+L1+M1+N1+O1)-(7-P2-

Q2-R1-S1-T1-U2-V2-W2-X2-Y2-Z2-AA2-BB2-CC2-

DD2)/(A1+B1+C1+D2+E1+F2+G2+H2+I1+J2+K2+L2+M2+N2+O2); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


