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Abstract 
 
     Tornadic debris plays an important role in the study of tornadoes due to 

the dramatic threat it poses to human life, and the devastation it causes to 

commercial and residential property.  Radar cross section (RCS) modeling 

on plate-like and cylindrical objects is developed in this tornadic debris 

study. The sheets, plates, and cylinders used in this study are designed to 

represent leaves, wood board, flat building forms, metal rods, tree trunks, 

and branches, respectively.  

     Different techniques are evaluated in terms of the geometry of the 

object, accuracy, and math complexity and computation efficiency. 

Geometrical Optics (GO), Geometrical Theory of Diffraction (GTD), 

Finite Element Method (FEM), Finite Difference Time Domain method 

(FDTD), Moment of Method (MoM) and Physical Optics (PO) are 

introduced. Finally, the decision to use PO for deriving the formulation for 

plate-like objects throughout the dissertation was made. 

     Non-metal objects such as cylinder broadside, endcap, general circular 

sheets and plates, surface impedance circular plates, rectangular sheets and 

plates, as well as metal circular plates are derived by hand. Metal objects 

such as cylinder broadside and rectangular plates, as well as resistive 

rectangular thin sheet approximations, are verified and cited from 

published research books and papers. 
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     Full wave simulation Ansys HFSS validates the analytical results in 

most cases. FEKO commercial software is used to compare the analytical 

results for two layer plates with different media and leaf sample 

applications.  

     After testing, metal vs. non-metal plates and thin vs. thick plates are 

distinguished by 5 dB, 10 dB, and 20 dB from the simulation results, 

respectively; this fact confirms the accuracy and limitations of theory. By 

adding endcaps, one is able to compensate the deficiency from normal to 

the cap surface of the finite cylinder by at least several wavelengths in 

length and at least half of a wavelength in radius. The theoretical analysis 

of the extension of PO indicates that more accurate results appear as the 

incident angle gets closer to normal. The errors and limitations of PO are 

described and demonstrated by comparison plots of analytical results vs. 

HFSS throughout.   

     The leaf library and wood board (dry and wet) studies are performed as 

sample applications for “real” debris types under the radar coordinate 

transformation system for all polarizations at oblique TEM incident wave. 

     Research questions are answered in the conclusions.  
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Chapter 1       

Introduction 

     It is well-known that a tornado is one of the most threatening weather 

phenomena in the world. The introduction of the Weather Surveillance 

Radar 1988 Doppler (WSR-88D) network over two decades ago, 

significantly improved tornado lead time, and reduced storm-related  

fatalities and injuries (Simmons and Sutte 2005). The total estimated cost 

in damages from tornadoes in 2011 was $28 billion (NOAA National 

Climatic Data Center, 2011). Even though the polarimetric measurements 

of tornadoes offer new discoveries in terms of the capacities of severe 

weather formation, these measurements are still limited because the 

scattering characteristics of tornadic debris are poorly understood.  

     Traditionally, the detection capabilities of the radar cross section (RCS) 

are considered in the design and operation of military aircraft, ships, 

ground vehicles, tanks, etc., and have been developed since the 1950s and 

1960s (Jenn 2005). In weather radar applications, RCS is one of the most 

important considerations in the practical world. The electromagnetic 

characteristics of RCS make it very challenging to take multiple 

reflections into account from different debris objects while the co-

polarized and cross-polarized radar returns are measured. Here, RCS is 

applied for modeling individual tornadic debris scatterer, but without the 
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consideration of multiple reflections. Therefore, the RCS modeling will be 

starting from the importance of electromagnetic theory and simulation for 

individual scatterers in anticipation of multiple scattering capabilities in 

radar detection in the future.  

     Polarimetric radar variables build the bridge between the received radar 

signal and polarimetaic RCS values. Polarimetric radar features both 

horizontal and vertical operations to transmit and receive signals (Doviak 

et al. 2000). Polarimetric radar variables referred to the covariance matrix 

C (e.g. <ShvShh
*> or <ShhSvv

*>) can be calculated through the measurement 

of combinations of co-polarization and cross-polarization of the 

complexed radar signals received.  Radar reflectivity factor (Zhh, Zvv), 

differential reflectivity (ZDR), co-polar cross-correlation coefficient (ρHV), 

backscatter differential phase (δdp), and the linear (LDR) and circular 

depolarization ratio are all calculated by polarimetric radar variables. In 

terms of polarimetric RCS values, the amplitudes of co-polarization and 

cross-polarization can be calculated by formulating RCS for different 

debris objects. Therefore, the significance of polarimetric RCS modeling 

is that it generates predictions by emulating radar returns. 

     The tornadic debris signature (TDS) observed by weather radar has 

shown negative differential reflectivity (ZDR) and low co-polar cross-

correlation coefficient (ρHV) (Ryzhkov et al. 2005; Kumjian and Ryzhkov 

2008; Bodine et al. 2013, Palmer et al. 2011; Schultz et al. 2012a, b; 
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Bluestein et al. 2007; Snyder and Bluestein 2014) at different radar 

frequencies and a high horizontal radar reflectivity factor (Ryzhkov et al. 

2002, 2005). These variables, when combined with debris polarimetric 

scattering characteristics, are poorly understood due to the complexity 

associated with the variety of sizes, orientation, geometry and material 

compositions of tornadic debris. As such, debris polarimetric scattering 

characteristics may vary with different radar frequencies.  The features of 

tornadic debris make it possible to distinguish electromagnetic scattering 

characteristics from hydrometeors. Thus, debris from tornadoes exhibits 

unique characteristics such as rotation, frequency dependence, 

centrifuging velocity, wind field and debris loading. For example, the 

estimate error on debris centrifuging and debris-influenced radial velocity 

fields (e.g., Dowell et al. 2005), and the difference between dual-pol fields 

tornadic and non-tornadic storms with different dynamics and 

thermodynamics of the near-storm environment (e.g., Crowe et al. 2012), 

are still under investigation. The relationships between debris 

characteristics and polarimetric variables are therefore unknown. In other 

words, it is not understood how the size, concentration, and shape of 

different debris scatter affect polarimetric variables.  

     There are questions still unanswered. For example, “What debris types 

and characteristics lead to observed polarimetric scattering signatures?” 
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and “What types of debris can be reasonably approximated in a 

computationally-efficient way for the purposes of this research?”  

     If a relationship between debris characteristics and polarimetric radar 

variables can be investigated, it may be possible to develop new debris 

classification algorithms using polarimetric radar at multiple frequencies. 

     It is well known that weather radars have the advantage of monitoring a 

large area in real time and often provide qualitative measurements. 

However, the conversion of the radar measurement into meteorological 

quantities of the target is not unique. The radar simulator used in this study 

is able to distinguish between the different contributions of polarimetric 

data on the received echoes.  

     Polarimetric data have the potential to provide information on clouds, 

and the particle size, shape, and ice density of precipitate (Zrnic and 

Ryzhkov 1999). Simulation of weather radar signals can be based on 

physical models for backscattering of distributed targets (e.g., Capsoni and 

D’Amico 1998), which are related to the electromagnetic field. By 

developing the physically-based radar simulator LES model, time-series 

data can be produced. The dual polarimetry is able to perform 

hydrometeor classifications (Straka et al. 2000; Park et al. 2009) and 

therefore improve tornado detection. 

     As one part of the complete tornado debris study, the simulator is 

developed and able to generate realistic, three dimensional modeling and 
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time series data (Cheong et al. 2008). The function of the simulator is to 

emulate radar return signals by generating the time series data in a finite 

volume by employing Monte Carlo integration. The randomly oriented 

scattering pieces consist of two parts: one is background driven by the 

wind field generated from a Large Eddy Simulation (LES) model; and the 

other is vortex driven, moving scattering debris around. 

 The overall simulator process is indicated in Figure 1.1. In the radar 

coordinated system, the z axis is denoted by the radar direction. The 

simulator calculates the Euler rotation angles (α € [−180°, +180°] and β € 

[−90°, +90°]) as the orientation angles of each object. Taking advantage of 

the coordinate transformation equation S=T-1(γ) Slocal (α, β) T(γ), the 

scattering matrix Slocal (α, β)=                  can be transformed through the 

polarimetric transformation  to contribute  radar I/Q data. Thus, each 

dataset has an amplitude range of all polarizations relating to the local 

position and radar direction.   
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Figure 1.1: Conceptual diagram of the time series radar simulator. Each 

point scatterer represents a discrete position from which the transmit pulse 

is reflected. Meteorological parameters from the Advanced Regional 

Prediction (ARPS) model are used to derive the reflectivity and velocity of 

each discrete scatterer. All reflected echoes are integrated to obtain the 

composite returned signal. As the number of point increases, the 
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composite returned signal approximates well that which would be 

expected from volume scattering (Cheong 2008).  

     As indicated in Figure 1.1, the simulator emulates the radar return 

signal in terms of the parameters associated with rotation, orientation, 

frequency, wind field, velocity, position, etc. These radar parameters 

include transmit power, antenna gain, band frequency, location, 

atmospheric field, etc. In terms of electromagnetic scattering 

characteristics, RCS modeling is focused on the polarization, rotation, 

geometry, size, and material properties of each object. Therefore, RCS 

modeling is one of the more important aspects for better understanding 

polarimetric radar signatures. Furthermore, the scattering characteristics of 

RCS modeling, which include orientation angle (α, β), polarization 

(amplitude and phase), and debris type, can be shared with the simulator 

through an existing interface between them. RCS modeling for many 

objects requires a massive amount of theoretical derivation and simulation, 

and the simulator is therefore an efficient way to emulate the thousands of 

scatterers with the unique RCS signatures of each object indexed into the 

wind field generated from LES. Thus, building a library of RCS databases 

is necessary. Providing the RCS databases to the simulator makes it 

possible to generate realistic, three-dimensional dynamic polarimatric 

scattering radar I/Q data. The final goal of RCS modeling is to contribute 
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to a GPU-accelerated polarimetric radar time-series simulator that is 

necessary to further the study of tornadic debris.  

     The most common and important debris types are vegetation. A 

defining characteristic of debris scatterers is their geometric complexities, 

which impact the theoretic analysis and computational strategy. The 

electrical size and object geometry are crucial factors in determining 

which technique is suitable.  

     Electrically small particles, such as sand, dust, and raindrops, are 

modeled as spheroids in Rayleigh and Mie scattering regions using the T-

matrix method (Mishcheko et al. 2000; Bodine 2014).  

     For objects with electrically large diameters, such as cylindrical 

structures, twigs, straight branches, iron rods, etc., go to the object 

classification with electrically large diameters of cylindrical structures.  

     For objects that have a large electrical size, are flat, and either 

penetrable or non-penetrable plate-like structures, such as leaves, endcaps 

to cylinders, roof shingles, flat siding, metal plates, wood board, drywall, 

foam insulation, and other building materials, go to the object 

classification with a large electrical size of plate-like structures. 

     The plate-like and cylindrical objects are proposed to contribute to 

RCS modeling of tornado debris types. The overall goals are to understand 

the target signatures both physically and phenomenologically, using 

technology for controlling and measuring RCS to develop a geometric 
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RCS modeling database which is achieved by emulating the realistic 

debris objects, and, finally, to develop the radar polarimetic algorithm.  

     This dissertation will introduce the processes and efforts being made to 

advance RCS modeling of plate-like and cylindrical objects. In particular, 

this study has made an achievement by developing an RCS library, which 

will contribute to the field of tornado debris study. 

     Chapter 2 includes an overview of a complete RCS modeling of this 

tornadic debris study, including theory, simulation, and measurement. The 

critical part of theoretic analysis associated with techniques is the 

geometry of the target. Many techniques have been developed to provide 

realistic results. They can be based on exact methods such as integral 

equations (IE), method of moments (MoM), finite-difference time-domain 

(FDTD), and finite element method (FEM), among others.  

     Physical Optics (PO) and extension of PO methods are chosen from the 

overall techniques discussed, and is predominantly used in the rest of the 

dissertation. The HFSS (High Frequency Structural Simulator) modeling 

package associated with FEM is discussed in detail. The FEKO simulation 

tool referred by MoM is also introduced. GO (Geometrical optics) is 

commonly used for large optical objects. They all have drawbacks in 

terms of theoretical analysis, calculating complexity, simulation time, 

accuracy of data, and electrical size of objects. The motivation for future 
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work comes from the validation of analytical results and simulation data in 

comparison to verified measurements.  

      In Chapter 3, PO-based calculations of the RCS of plate-like objects 

are presented. This chapter will introduce the calculation of rectangular 

thin sheets, rectangular thick plates, circular sheets, and plate-like debris 

objects based on the literature (Sarabandi 1987; Jenn 2005; Balanis 2012). 

Both rectangular- and circular- shaped- objects are compared with metal 

(non-penetrable) and dielectric (penetrable) cases. In addition, general 

derivations of objects for both rectangular and circular plates are provided. 

These include rectangular thin sheet approximations (penetrable) from 

Senior and Sarabandi (1987), rectangular plate (non-penetrable) from 

publications (Jenn 2005), and multi-layered reflection coefficient 

calculations from previous research (Sections 5.5.2.D and 11.3.2 in 

Balanis 2012). Calculations for circular plates (penetrable and non-

penetrable) and rectangular plates (penetrable) are derived by hand. 

Furthermore, plots based on comparisons between HFSS and analytical 

results (MATLAB) for relatively small and large objects are presented.  

      In Chapter 4, PO-based calculations of the RCS of cylindrical objects 

are presented. Starting from infinitely long cylindrical broadside analysis 

in addition to endcaps, the finite cylindrical object modeling is derived.  

Plots based on comparisons between HFSS and analytical results 

(MATLAB) for relatively small and large cylinder objects are provided. 
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      In Chapter 5, a leaf library and wood board study are presented as 

examples for realistic tornadic debris applications. This chapter will 

discuss the radar coordinate transformation system using the 

transformation matrix T with P=Tp, where p is a vector in the “radar” 

system and P is a vector in the “local” system.  3D analytical results of a 

single leaf for all polarization under the radar coordinate transformation 

system are provided at 2.8 GHz and 10 GHz frequency, respectively. For 

comparison, FEKO simulations are provided by the same size used for the 

analysis of leaves. Finally, the square dry and wet wood board study from 

research (Bodine et al. 2016) is summarized by utilizing two different 

methods: thin sheet approximation (Senior and Sarabandi 1987) and 

reflection coefficient computation for multi-layer structures (Balanis 

2012). These methods are used for calculating RCS mean value of wood 

board.  

      Finally, the research questions are answered, and conclusions are 

presented in Chapter 6. 
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Chapter 2  

Background 

      Tornadic debris scatters include a wide range of sizes, geometry, 

material properties, and orientations that must be accounted for in the 

production of electromagnetic scattering characteristics. Scatterers could 

include small particles like sand or rain-drops, or include large objects like 

plywood boards, roof tiles, or tree trunks, twigs and branches. Based on 

documented tornado debris storm observations, tornadic debris features 

polarimetric characteristics that are very different from hydrometeors.  

      Radar cross-sections σ are the areas intercepting the amount of power 

that, when scattered isotopically, produces at the receiver a density equal 

to the density scattered by the actual target (Balanis 2012).  

      The formal definition of RCS is  

σ = power reflected to receiver per unit solid angle                                                                   
       incident power density/4π                                   
 

   =   
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      where Es and Ei denote the scattered and incident electric fields. In the 

far scattered field of the target Es~1/R2, RCS is range independent.    

      The RCS of a target is a fictional area that describes the amount and/or 

strength of the object scattering of the incident EM wave. 
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      The RCS is frequency-dependent to a high degree, and is also 

influenced by the size, shape, surface roughness, and material of the target 

(Knott 2006). 

      For convenience, it is better to specify the size of the object in terms of 

wavelength λ rather than in a physical unit (meters). For example, length = 

1.1 meters with radius = 0.033 meters of a cylinder at 2.8 GHz can be 

described as 10 λ by 0.3 λ.  The RCS of the cylinder will be calculated 

based on λ in that given frequency. This dimension expression is used 

through the rest of dissertation. 

      For electrically small objects, the RCS simulation tool most used is 

MATLAB.  For a larger and more complex debris scatterer, for which the 

RCS cannot be modeled analytically and efficiently, measurements and 

finite simulations in HFSS are necessary. However, the computational 

efficiency in terms of time and complexity is one of the most important 

factors in the decision making process.  If the dimension is much larger 

than the wavelength λ (for example, 1.5 λ in length by 30 λ in radius of a 

cylinder), then it may take several days to finish the modeling. This is the 

largest object that can be simulated through the fastest computer the lab 

supplies. It is not hard to understand that the computational cost of full-

wave analysis is too high if the dimension is above 50 λ by 50 λ.  

Therefore, non-full wave techniques such as approximate optics methods 

are used for larger objects.  GO, Geometrical Theory of Diffraction (GTD), 
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and Uniform Theory of Diffraction (UTD), among others, are very popular 

optics-like techniques that can better analyze larger objects which produce 

a tremendous amount of theoretical complexity. 

      Since the exact solutions to Maxwell's equations are known only for 

special geometries such as spheres, spheroids, or cylinders, approximate 

methods under certain conditions are required for a given target of 

arbitrary geometry. To illuminate electromagnetic scattering 

characteristics of different debris types, several techniques to compute the 

scattering of radiation can be applied for objects in association with 

geometry. PO, MoM, FEM, GTD, and GO will be described in detail in 

the following sections.  

      Other techniques may not meet the needs of modeling tornadic debris 

scatterers. For example, Discrete Dipole Approximation (DDA) computes 

the radiation of particles with an arbitrary shape and periodic structure 

with more accurate results; FDTD based on Maxwell’s curl equations in 

the time domain, however, involves some errors (staircase or grid 

dispersion) that are not easy to implement, or involve too many 

configuration steps in getting a scattered field for RCS calculation and 

computational implementation.  

      A complete study of RCS includes three important parts: theory, 

simulation and measurement. Analytical simulation (MATLAB) based on 



15 
 

theory will be validated with the full-wave simulation (HFSS) throughout 

the dissertation. In the case of a two-layer plate with different media, 

FEKO simulation software is used to construct the two-layer structures. 

Plots are illustrated for comparison. 

      Efforts were made to start from the electromagnetic theory and 

simulate in HFSS (FEKO is used occasionally).  When possible, the 

analytical results and simulation data, in which approximations and 

techniques are used, will be compared with measured RCS data. The goal 

is to establish the RCS library of different debris types at different 

wavelengths through measurement validation in order to supply this 

information into the radar simulator (Cheong et al. 2008, 2014), and 

emulate scattering characteristic from radar returns. 

2.1     Measurements  

      Since the techniques above have limitations mostly based on the 

geometry of the target, validation through measurements is necessary. 

Especially, for complex arbitrary objects or poorly known objects, for 

which RCS cannot be modeled analytically and computational efficiently 

(when supplying into larger electromagnetic database, computational 

efficiency is one of the important factors to consider), the choice of RCS 

data is the measurement. On the other hand, it is necessary to compare 

measurements to RCS modeling to make it a practical application, and to 
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determine which one is the best method for which types of scatterers. 

Particularly, processes that improve the accuracy of measurements will be 

leading the way to new scientific research. For example, if the result of the 

measurement is more exact, then mathematical modeling is required to 

check and modify. Alternately, measurements also present some degree of 

error; analytical calculation can be used to validate a measurement.  

      Evaluation of theory and simulation is another motivation to take 

measurements since they are used to understand basic scattering 

phenomena. The evaluation depends on the comparisons between 

measurement and predictions (Knott 2006). There is always the need to 

test theory or verify predictions and this can usually be accomplished only 

by means of measurements made on the test range (Knott 2006). 

      Measurement accuracy, in other words, is strongly dependent upon the 

accuracy of the instrumentation chosen. 

      In other situations, for example, measurement is not practical, such as 

when the antennas are mounted on large objects like ships, aircraft, and 

large man-made satellites. Also, measurement on a special object requires 

extensive modification, which is very expensive for large objects. 

      RCS measurements are closely associated with the terminals of the 

transmitted or received antenna, and contain fundamental considerations 

such as range far-field facility requirements and conditions, polarization, 

coordinate transformation systems, instrumentation sensitivity, etc. 
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Polarization plays an important role in RCS measurements; however, the 

process of separating targets from the positioner and surrounding 

background is complex. The solution was developed by Ruck (1970). 

Dimension scaling and operational frequencies are also important to RCS 

measurements. The scaling technique is manageable during the 

measurements. Increasing the frequency requires a smaller-sized facility 

(Blacksmith 1965).  Instrument sensitivity is a factor that can improve the 

accuracy of data with respect to the RCS measurement point of view. 

Alternately, the accuracy of analytical results in Chapter 4 will show how 

to obtain more accurate data by adding the endcaps to cylinders. For 

example, a power amplifier inside the pulse modulator (if used) will 

improve the sensitivity between 10-20 dB (Orbit/FR). 

  In addition, high resolution RCS measurement has been developed 

inside the anechoic chamber (Zhang et al. 2010). The problem of antenna 

coupling can be solved by the disposition of the transmitting antenna and 

receiving antenna. The wave method (continuous or not), frequency 

domain response or time-domain response, absorbing form, and technical 

function (inverse fast Fourier transform) used will all affect the accuracy 

of measurements taken. 

      Past studies indicated that a short cylinder has a higher monostatic 

RCS than a long cylinder with the same maximum dimension which 
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defines a bounding box as the limiting factor in far-field measurements 

since it  must fit within the measurement facility’s quiet zone.  

  A monostatic radar system uses the same antenna as the transmitter 

and receiver. A bistatic radar system consists of transmitting and receiving 

antennas located separately at large distances. In practice, the monostatic 

RCS measurement setup is 5° apart from the transmitting antenna and 

receiving antenna, which is viewed as quasi-bistatic, namely, the 

transmitter and receiver are slightly separated but still appear to be the 

same location as viewed from the target (Knott 2006).  

  Basically, two scans were made during the measurement, one with the 

antenna polarized with E polarization and the other with H polarization. 

The incident angle ɑ ranges from 0-90 degrees and β from -90 to +90 

degrees in each measurement scan, in steps, in the radar coordinate system, 

and in the anechoic chamber. The steps are chosen to cooperate with the 

radar emulator. Measurements will be conducted with calibration spheres 

through network analyzer-based instrumentation. 

2.2     Full-wave simulations 

      Theoretically,  full wave analysis can be used to solve Maxwell’s 

equations without any simplifications and assumptions. The 

electromagnetic E and H fields defined by the equations are time-variant 

and frequency-dependent. Unlike quasi-static analysis where the 
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Maxwell's equations are modified first with assumptions, in which the 

electromagnetic fields are supposed to be time-invariant and frequency-

independent, full wave analysis is suitable for dealing with electrically 

small objects (physical size is below 1/6 λ, 1/10 λ or even below 0.01 λ). 

One of the most famous simulation solvers is Ansoft SpiceLink 

(Q2D/Q3D). 

      Full-wave analysis is best described in contrast to static and quasi-

static methods, for its propagating speed in the media is the speed of light. 

Full-wave analysis is often used to analyze electrically large objects whose 

physical sizes are much larger compared to wavelength λ. Dimensions of 

objects range between 0.01 λ and 50 λ. This indicates that full-wave 

methods solve the problems at high frequency (GHz). Some famous full-

wave simulation solvers are: Ansoft HFSS, and CST Microwave Studio.     

2.2.1     Finite element method and HFSS modeling 

      The FEM is a numerical technique. The advantage of FEM is that it is 

able to solve the Maxwell's equations on an unstructured mesh that 

accounts for all the geometric detail of the object. FEM is able to generate 

sparse matrices results that are capable of applying a wide range of matrix-

based solvers. Finite element solvers always define derivative coupling 

terms in Maxwell's equations to be finite. FEM is used typically as a 

tetrahedral mesh element contained in the model. HFSS as a finite element 

simulation solver is originally based on FEM which is directly developed 
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from scattering wave equations. It applies PMLs (perfectly matched 

layers), upon which the impinging incident is completely transmitted with 

minimal reflections (Jenn 2005). PMLs are a common grid termination 

technique in which a grid is bounded by a layer of absorbing material.  

HFSS processes a discretized volume in the computational domain (free 

space), which makes it suitable for a wide range of geometry and object 

materials in terms of frequency and direction. It is an asymptotic solver 

option.  The PMLs must be placed at least one quarter of a wavelength 

from the scattering body inside PMLs to get more accurate results. HFSS 

is a more accurate approach for simulating polarimetric RCS modeling.  

      Since Faraday's Law and the displacement current become significant 

at high frequencies, the computational expense of the HFSS simulation 

must be investigated to obtain accurate results in terms of physical size of 

the object. 

      Here, HFSS simulation is compared with MATLAB modeling for RCS 

analysis for different debris types, since most of the debris sizes are within 

a suitable range for HFSS.   

2.2.2     MoM-based method 

      MoM is a numerical and frequency domain method. It is based on 

Maxwell Harmonic (Phasor) Equations. The advantage of MoM is that it 

can be applied to arbitrary bodies. It solves the matrix equations typically. 

The size of the matrix is proportional to the electrical size of the object. 
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The electrical current can be expressed as a series of unknown coefficient 

and basis functions. The selection of basis functions is very important 

because they should be mathematically easier to implement, and are 

consistent with the electrical current. The basis functions can be chosen 

typically from pulses, triangles, sinusoids, δ functions etc. and used as 

testing functions.  The current is obtained from the matrix form V=ZI, 

where Z represents the matrix with units of ohms and V represents 

excitation vector with the units of volts. The scattered E field can be 

obtained through the radiation integral. The MoM technique is a power 

tool that provides a rigorous solution for the induced current density on a 

body (Harrington 1961), but requires longer computational time when 

dealing with large matrices resulting from larger objects. The FEKO 

simulation tool is a commercial application of a MoM- based simulation 

solver, and prefers triangle and wire settings as the mesh solution.  

Frequency range must be set before meshes can be automatically 

generated. Electric material properties of the media are considered in all 

cases with the exception of infinite layer. A finer mesh is required for 

more accurate results. 

2.3     Analytical approaches 

2.3.1     PO  
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  PO provides an estimate for the unknown currents and gives relatively 

accurate results for electrically large bodies (Jenn 2005). The 

approximation becomes more accurate as the wavelength approaches zero, 

i.e., at high frequencies.  Therefore, this is also called a high frequency 

approximation.  

  The shortcoming of PO is that the current flowing in the shadow 

region drops to zero, and is nonzero in reality at the shadow boundary.  

For an electrically large surface and near the specular direction, the error 

can be omitted. Other problems with PO include the infinite PEC surface 

and finite surface. For example, a reflection field is generated only when 

ir    and is zero elsewhere for an infinite PEC surface; but if the surface 

is finite, PO gives the reflected field in finite beam widths. Edge scattering 

is also not taken into account. The mathematical model for edge 

diffraction combined with PO creates another method called physical 

theory of diffraction (PTD). 

  PO is a current integral-based technique and is used for the RCS in the 

far zone from the observation point. Current flowing on the surface 

combines with the magnetic vector potential and electric vector potential, 

and the radiated electrical and magnetic field at the observation point can 

be derived based on this current.  
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  PO approximation is used to model flat, electrically large objects such 

as the resistive thin sheet (leaf) and plate-like objects (endcaps for metal 

and dielectric cylinders, wood board etc.) in the rest of the dissertation. 

2.3.2     GO 

      GO is the most common ray tracing theory (optics-like method) and 

has been used for centuries. It describes the reflection and refraction at the 

interface between two media. It is suitable for larger objects. However, 

similar to other theories, it has its own limitations and assumptions. The 

ray sources are far away from the reflection surface and radii of scattering 

curvature from the media are much large than the wavelength of the 

incident of TEM wave. The incident wave direction is illustrated along the 

normal to the eikonal surface.  In a homogenous medium, the ray travels 

in straight lines. The polarization of the traveling wave will not change 

after reflection if the medium is isotropic. Energy (or power) is conserved 

in a flux tube. GO shares some similarities with PO, which requires the 

specular presenting on large surface areas. Edge scattering effect is not 

taken into account.  When edge diffraction from an analytical model is 

combined with GO, it becomes another method called GTD. Again, GO 

has several problems. For the infinite PEC surface, GO agrees with PO, 

which gives zero beam width except when ir   . However, GO still 

gives the same solution for finite surfaces.  Again, in the shadow region, 
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GO shows zero fields, which is the same shortcoming observed of PO. If 

the size is much larger than the wavelength (above 50x50 wavelengths), 

then the computational cost of the full-wave methods is too high, and non-

full-wave methods such as GO or GTD should be used instead. For sizes 

above 50 λ, approximate optics-like methods (GO, GTD, UTD, etc.) are 

suitable. 

2.3.3     GTD 

      The GTD is a ray tracing technique that considers the edge diffraction, 

but it introduces a large amount of complexity in math for plate-like and 

cylindrical objects. It still suffers some shortcomings as an extension of 

the GO method.  A ray arriving at the observation point is not located in 

the same place as the first ray. It is possible that there is no scattered field 

at the observation point without a reflected ray coming back after 

significant diffraction, giving the sharp discontinuity of the scattered field 

strength. In practice, this is not true because the field is still continuous. 

Even the surface reflection and edge diffraction do not give a complete 

scattering due to a complex body, especially with corners and tips.  In this 

situation, the diffraction coefficient is relatively difficult to derive. 

2.4      Summary  

     Different techniques are evaluated in this dissertation based on the 

geometry and size of debris types, complexity of theoretical derivation, 
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and computational cost.  Because MoM and GTD consider edge effect, 

they will give more accurate results, especially for objects with corners 

and edges; but they also introduce a large amount of mathematical 

verification. As for GO, it is too imprecise for small objects in terms of 

wavelength and small debris types (small leaves, grass, rods etc.). The 

advantages and disadvantages of these methods were evaluated. PO was 

determined to be the best method for representing plate-like objects from 

thin sheets (leaves, endcaps), and thicker wood board towards the tornadic 

debris study. Since the goal of this study is to emulate the radar returns 

with integration and uncertainty of actual debris types, RCS modeling of 

individual scatter may not be very accurate. Even though PO is not as 

accurate as the MoM and GTD, it is sufficient to build a complete RCS 

library. 

      The analytical process using PO involves more complicated 

mathematical derivation, especially for dielectric objects such as endcaps 

of dielectric cylinders, leaves, wood boards or other lossy flat surface 

material. However, this process is necessary to achieve more accurate 

results by comparing full wave simulation, and through validation of the 

measurements. In turn, it helps us to better understand the fundamental 

theory. 
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Chapter 3 

PO-based calculations of the RCS of plate-like objects 

3.1     Literature review  

    The paper “Measuring and modeling the backscattering cross section of 

a leaf”, Senior and Sarabandi’s research on the application of RCS 

calculations for resistive thin sheets developed an RCS modeling of a leaf 

(1987). Resistive “sheets” are called infinitesimally thin penetrable plates 

with thickness t << λ. (Jenn 2005). A conductive sheet only supports 

magnetic currents for 0sJ ,  whereas  a resistive sheet only supports 

electric currents for 0msJ . The complex resistivity is specified by the 

moisture content of the leaf. The RCS is related to the leaf moisture 

content by the quantity R. The dielectric property ε (complex relative 

permittivity) plays an important role in the scattering characteristic of 

many types of vegetation. A leaf can be viewed as a resistive sheet which 

an electric current sheet whose strength is proportional to the local 

tangential electric field (Harrington and Mautz 1975) by a single quantity 

R. Starting from the infinite sheet by applying Maxwell’s equations and 

discontinuing boundary conditions to get the reflection coefficients for E 

and H polarizations, PO approximation is then used to integrate the 

induced surface current and is “truncated” to a finite rectangular 

dimension (4 cm x 6 cm). Further, modeling a leaf includes dielectric 
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property and certain parameters to be set up, including the moisture 

content, relative permittivity, relative permeability, thickness, and 

resistivity calculations. Finally, monostatic RCS can be formulated based 

on the scattered far-field amplitude generated.  

      Beyond RCS modeling of a leaf, one of the resistive sheets used is 

silvered mylar sheets, a resistive film for a very thin layer-“window tinting” 

which is applied to automobiles. 

      Sheets can also be extended to strips or plates of arbitrary shapes 

which multiply diffracted field appear for finite edges of strip (or plate). 

(Herman 1987) The GTD technique is involved in the diffraction solution 

instead of the PO method. Mutual edge effects dominate in the strip’s 

geometry. Non-optical behavior of the field exits the second edge after 

diffraction from the first one.  The uniform diffraction coefficient is 

calculated from the surface current on the oblique incidence half plane, of 

which the boundary condition is satisfied. For a perfectly conducting case, 

UTD was applied. (Kouyoumjian 1974)  The application of modeling strip 

is an extension of modeling a leaf for plate-like objects. Obviously, the 

edge effect and multi-diffraction give rise to more advanced techniques 

(GTD, UTD) and mathematical difficulty. 

3.2     Motivation for detailed analysis 
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     According to electrical size in terms of λ, the RCS modeling of debris 

type is divided into three different regimes: (a) D << λ lies in the Rayleigh 

region, where D is the diameter of the object and is suitable for modeling 

sand and dust; (b) D ≈ λ lies away from the Rayleigh region and beyond 

the optical region for medium-size objects, and is suitable for modeling 

leaves and twigs. Both specular reflection scattering and polarization 

behavior demonstrate in this region; (c) D >> λ lies closely to the optical 

region for larger objects and is suitable for modeling tree branches and 

roof shingles. Specular reflection scattering mainly demonstrated in this 

region. 

      By identifying different regimes, dust and sand can be modeled as 

electrically small spheroids using the T-matrix method (Mishcheko 2000; 

Bodine 2014), but this is not suitable for PO. Mostly flat and electrically 

large-diameter plate-like objects such as leaves, tree branches, endcaps for 

cylinders, wood boards, drywall, foam, metal plates, and other housing 

materials are suitable for PO.      

3.2.1     Circular vs. rectangular 

      Both circular and rectangular plates can be setup by two different 

paths with integrations and differentiation to calculate a radiation field; 

detailed analysis is in following sections. If both shapes are required to 

have a finite geometry, the upper and lower limit of a radiation integral is 

a fixed number called a “truncated” current. PO method is suitable for 



29 
 

both rectangular and circular geometries. The radiation field can be 

obtained by integrating the induced current on the surface. For 

convenience, the cylindrical coordinate system is used to set up geometry 

for RCS of the circular plate calculation. Similarly, the Cartesian 

coordinate system facilitates the RCS calculation for rectangular plates. 

3.2.2     Metal vs. dielectric (penetrable vs. non-penetrable) 

     Mathematically, the electric behavior of metal plates is very close to 

perfect electrical conducting (PEC) plates, and is much easier to derive in 

comparison to dielectric plates.  Instead of calculating the current from 

RCS calculations, the surface impedance concept is introduced and 

defined as the relationship between tangential components of E field and 

H field,  tantan / HEs  , 0/ssZ  ;  this is normal to free space  on surface 

S. Surface impedance is approximate to simplify the RCS calculations for 

complex objects represented by  both rectangular and circular plates. 

Surface impedance approximation is an extension of PO, which is 

modified based on the surface equivalence principle where the impedance 

boundary condition (IBC) is applied.   Surface impedance can be complex 

and a function of an incident angle; it is not necessary for there to be a 

“real” physical impedance. Although surface impedance is an 

approximation, it is a quite useful technique with the most accurate results 

at the normal incident angle.  
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      For metal plates, assume that there are no magnetic currents

00 tan  Es . For dielectric plates, there is an additional term 

magnetic current added in the far-field radiation integral. For TM 

polarization, the difference from the PEC plate has the extra term-

magnetic current added. Obviously, there is a loss in the radiation integral 

resulting in a loss within the radiation field.  

3.2.3     Thick plates vs. thin plates 

      By calculating the reflection coefficient on each boundary, it is 

possible to solve multilayered structures. The impedance on the right side 

of a single layer onto the first boundary is embedded within the calculation 

of the reflection coefficient in front of the second boundary. Therefore, the 

calculation of the reflection coefficient in the first interface leads to the 

total reflection coefficient of the single layer. The same rule is applied for 

multiple-layer structures through impedance calculations inside each layer, 

which calculate the reflection coefficient in front of the next boundary.  

Finally, the recursive process is formulated in Balanis’s research (Sections 

5.5.2.D in Balanis 2012) to calculate the overall reflection coefficient in 

the first interface for multi-layer structures. 

3.2.4     Electrically small vs. electrically-large objects  

      PO approximation provides an estimate for the unknown currents with 

relatively accurate results for electrically large bodies (Jenn 2005). When 
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determining the accuracy of the PO method, the electrical size should be 

carefully considered. The limitation of PO is that the edge diffraction 

effects are not taken into account. Other techniques such as GTD consider 

the edge effect, eliminating this limitation to improve the accuracy. 

However, considering the edge effect induces a large amount of derivation 

complexity in math.  

3.3     Generic derivation for metal (non-penetrable) objects- 

          rectangular and circular 

     The basic procedure of calculating RCS consists of differential or 

integral equation and boundary conditions. Figure 3.1 shows the basic 

geometry setup for the source and target. 

 

Figure 3.1: Illustration of setup for the source and target. 

(http://www.eecs.umich.edu/RADLAB/html/techreports/RL681.pdf) 
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Figure 3.2: Procedure of RCS estimation. 

(http://dspace.mit.edu/bitstream/handle/1721.1/61254/701906470.pdf) 

     After the induced current generated through the incident field is 

transmitted, the radiation field can be obtained by integrating this current.  

The current must radiate in an unbounded homogenous medium. The 

observation point can be anywhere.   
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Figure 3.3: Block diagram for computing radiated fields from electric and 

magnetic sources. (Source: C.A. Balanis, Antenna Theory: Analysis and 

Design.  3rd Edition, Copyright 2005, John Wiley & Sons, Inc.) 

     There are two paths to get the radiated field. The first path is to use the 

approximation in the radiation integral to get the radiation field.  

 

Figure 3.4: Target far-field geometry approximation 

(http://faculty.nps.edu/jenn/EC4630/TheoremsandConceptsV2.pdf) 

'ˆ' rrrrrR


                                                                               (3.1)        

wzvyuxr ˆˆˆˆ                                                                                                         (3.2) 

Because the observation point in RCS calculation is assumed in the far 

field, only the current flowing on the object in reality is of interest.  The 

distance R can be viewed approximately parallel to the direction of 

radiation.  
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u, v, w are the direction cosine described as: 

 cossincos  xu ,  sinsincos  yv ,                                            (3.3)      

Using the path 1 integration and (3.1), the radiation E field is: 
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The electrical tangential component in terms of spherical coordinate 

system can be obtained as: 
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where wzvyuxrrg '''ˆ' 


, the total field at the observation point is  

 
ˆ)(ˆ)()( PEPEPE 


                                                                                     (3.7) 

3.3.1     Generic derivation for metal (non-penetrable)-perfect 

             conducting rectangular plates  

     PO is used to derive the RCS of a perfect conducting rectangular plate 

in the x-y plane; the incident wave is arbitrarily polarized. (Jenn 2005) 
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The observation point at P(x, y, z) = P(r, , ) to get the PO current is: 
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The final expression for the PO current is 
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The  component of the scattered field is 
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For monostatic: iiiii wwvvuu   ,,,, , g=h                      (3.15) 
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For TM incidence wave: 0E =1,  0E =0                                              (3.17) 
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Applying RCS definition: 
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3.3.2     Generic derivation for metal (non-penetrable)-perfect 

             conducting circular plates  

     Assuming a surface circular plate of radius a lies in the x-y plane, the 

geometry setup is similar to Figure 3.4. A TM polarized plane wave is 

incident on the plane from the direction (  ,  ), and the wave is 

propagating  towards the origin                        ,                 .   Again, the 

physical optics approximation technique is used with these assumptions:   

                                                                                                                                        (3.22) 
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                                                                                                                                     (3.23) 

                           illuminated portion  

                                     shadowed portion                                               (3.24) 

 

                                                                                                   (3.25)                                     

Applying the component of electric field tangential to sphere at radius r 

(Jenn 2005): 
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the final RCS becomes 
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Due to the duality theorem, the magnitude is opposite by applying the  
 
 
 
 

                                                                                                                                     (3.32)                                     
 
 

The RCS for TE mode  
 

                                                                                              (3.33)                                     

                                                                                                                                             

                                                                                                              (3.34) 

      Phase shift cosjkLe  is applied to the RCS formula of a perfect circular 

plate. Formulation (3.34) is used for conducting cylinder endcap in 

Chapter 4.  

3.3.3     Simulation vs. analytical results-conducting circular 

             plates 

      Circular plates with a thickness of 0.001 wavelengths (λ), 0.1 

wavelengths (λ), and greater than one wavelength in diameter detour from 

the Rayleigh region; the analytical results of conducting circular thin 

sheets and plates are in good agreement with HFSS. Some examples of the 

comparison between HFSS simulation and MATLAB are demonstrated 

here.  

00 EH 

)sin2(
sin2

cos
),( 1

0 

 kaJe

r

jaE
H jkr







2

22
1

22

sin

)sin2(cos
),(

jkaJa 








2

2cos2
1

22

sin

)sin2(cos
),(

jkLjekaJa 




39 
 

      Metal thin sheet (0.0001 (~0.001 λ) meters) is very similar to a perfect 

conducting plate (0.01 (~0.1 λ) meters), as the incident  angle is less than 

40 degrees for HFSS except the incident angle is close to 90 degrees(edge) 

with different thickness. Analytical results for metal sheets and plates are 

the same. These differences indicate that edge effect has a contribution to 

RCS in HFSS simulation while it is ignored by PO.   

3.3.3.1     Small (radius < 0.5 λ) conducting circular plates 

For thickness at 0.0001 (~0.001 λ) meters: 

           

                  TE                                                           TM 

Figure 3.5: Amplitude comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.03 (~0.27 λ) 

meters in radius for a metal thin sheet ( r = 10^6) located in half of L = 

0.6 (~6 λ) meters). Amplitudes show a few dB differences for TE and TM. 
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                          TE                                                     TM 

Figure 3.6: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.03 (~0.27 λ) 

meters in radius for a metal thin sheet (= 10^6) located in half of L = 0.6 

(~6 λ) meters). The phase matches well for both TE and TM. 

For the same size with thickness at 0.01 (~0.1 λ) meters: 

           

                    TE                                                        TM 

Figure 3.7: Amplitude comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.03 (~0.27 λ) meters in 

radius for a perfect conducting plate located in half of L = 0.6 (~6 λ) 

meters). Amplitudes show a few dB differences for both TE and TM. 
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                  TE                                                          TM 

Figure 3.8: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.03 (~0.27 λ) meters in 

radius for a perfect conducting plate located in half of L = 0.6 (~6 λ) 

meters). The phase matches well for TE, and mismatches as the incident 

angle is close to 90 degrees for TM. 

3.3.3.2     Larger (radius >= 0.5 λ) conducting circular plates 

    Metal thin sheet r = 106 for thickness at 0.00011 (~0.001 λ) meters: 

             

                  TE                                                    TM 

Figure 3.9: Amplitude comparison for TE and TM mode in MATLAB and 

HFSS (0.00011 (~0.001 λ) meters in length by 0.055 (~0.5 λ) meters in 
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radius at r = 106 for a metal thin sheet at half of L = 0.11 (~1 λ) meters). 

Amplitudes overlap at 0 degrees for both TE and TM. 

          

                  TE                                                     TM 

Figure 3.10: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.00011 (~0.001 λ) meters in length by 0.055 (~0.5 λ) meters in 

radius at r = 106 for a metal thin sheet with endcap located at half of L = 

0.11 (~1 λ) meters). The phase matches closely for both TE and TM. 

For thickness at 0.0001 (~0.001 λ) meters: 

       

                      TE                                                         TM 

Figure 3.11: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.11 (~1 λ) 

meters in radius for a metal ( r = 10^6) thin sheet located in half of L = 
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1.1 (~10 λ) meters). Amplitudes match well as the incident angle is less 

than 30 degrees for both TE and TM. 

               

                     TE                                                      TM 

Figure 3.12: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.11 (~1 λ) meters 

in radius for a metal ( r = 10^6) thin sheet located in half of L = 1.1 (~10 

λ) meters). The phase shows a little mismatch for both TE and TM. 

       

                       TE                                                      TM 

Figure 3.13: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.11(~1 λ) meters 

in radius for a conducting thin plate located in half of L = 1.1 (~10 λ) 
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meters). Amplitudes match well as the incident angle is less than 30 

degrees for both TE and TM. 

        

                     TE                                                      TM 

Figure 3.14: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.11 (~1 λ) meters in 

radius for a conducting thin sheet located in half of L = 1.1 (~10 λ) 

meters). The phase shows a little mismatch for both TE and TM. 

For the same size as Figure 3.13 with thickness at 0.01 (~0.1 λ) meters: 

       

                      TE                                                      TM 

Figure 3.15: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.11 (~1 λ) meters 

in radius for a conducting thick plate located in half of L = 1.1 (~10 λ) 
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meters). Amplitudes match well as the incident angle is less than 20 

degrees for both TE and TM.  

       

                    TE                                                          TM 

Figure 3.16: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.11 (~1 λ) meters in 

radius for a conducting thick plate located in half of L = 1.1 (~10 λ) 

meters). Slight phase mismatch for TE and TM is observed. 

For thickness at 0.0001 (~0.001 λ) meters: 

            

                     TE                                                        TM 

Figure 3.17: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.165 (~1.5 λ) 

meters in radius for a metal thin sheet located in half of L = 3.3 (~30 λ) 
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meters). Amplitudes match well as the incident angle is less than 30 

degrees for both TE and TM.  

        

                   TE                                                       TM 

Figure 3.18: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.165 (~1.5 λ) 

meters in radius for a metal thin plate located in half of L = 3.3 (~30 λ) 

meters). The phase matches well for both TE and TM. 

For thickness at 0.0001 (~0.001 λ) meters: 

          

                    TE                                                        TM 

Figure 3.19: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.33 (~3 λ) 

meters in radius for a perfect conducting thin sheet located in half of L = 
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0.8 (~8 λ) meters). Amplitudes match well as the incident angle is less 

than 30 degrees for both TE and TM. This plate is relatively large in size 

and takes 1 hour for HFSS to simulate. 

        

                      TE                                                           TM 

Figure 3.20: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.33 (~3 λ) meters 

in radius for a perfect conducting thin sheet located in half of L = 0.8 (~8 λ) 

meters). The phase matches closely for both TE and TM.  This plate is 

relatively large in size and takes 1 hour for HFSS to simulate. 

For the same size as Figure 3.19 with the thickness at 0.001 (~0.1 λ) 

meters: 
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Figure 3.21: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.33 (~3 λ) 

meters in radius for a perfect conducting thin sheet located in half of L = 

0.8 (~8 λ) meters). Amplitudes match well as the incident angle is less 

than 30 degrees for both TE and TM. This plate is relatively large in size 

and takes 1 hour for HFSS to simulate.  

Phase term is the same as Figure 3.20. 

For the same size with the thickness at 0.01 (~0.1 λ) meters: 

          

                   TE                                                           TM 

Figure 3.22: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.33 (~3 λ) meters 

in radius for a perfect conducting plate located in half of L = 0.8 (~8 λ) 

meters). Amplitudes match well as the incident angle is less than 30 

degrees for both TE and TM. This plate is relatively large in size and takes 

1 hour for HFSS to simulate. 

Phase term is the same as Figure 3.20. 

3.3.4    Simulation vs. analytical results – conducting rectangular 
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             plates 

      Rectangular plates with a thickness 0.01 wavelength (λ), 0.1 

wavelength (λ), or with a length greater than one wavelength on each side, 

move away from the Rayleigh region and produce better results. Here, 

some examples of the comparison between HFSS simulation and 

MATLAB are demonstrated.  

      Metal thin plate (0.001 (~0.01 λ) meters) has very similar amplitude as  

metal  conducting plate (0.01 (~0.1 λ) meters) as suggested by the incident 

angle, which is less than 50 degrees in HFSS simulation, but they have  

different amplitudes as incident angles are close to 90 degrees (edge) in 

HFSS simulation.  

3.3.4.1     Small (a, b < 1 λ) conducting rectangular plates 

      For thickness at 0.01 (~0.1 λ) meters, 0.001 (~0.01 λ) meters: The 

phase is not accurate for this size. 

          

                     TE                                                      TM 

Figure 3.23: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness for a metal rectangular 
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plate at a = 0.04 (~0.4 λ) meters, b = 0.06 (~0.6 λ) meters located at 

origin). A few dB differences in amplitude are observed for both TE and 

TM. 

         

                      TE                                                      TM 

Figure 3.24: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness for a metal rectangular 

plate at a = 0.04 (~0.4 λ) meters, b = 0.06 (~0.6 λ) meters located at 

origin). The phase mismatch is observed for both TE and TM. 

            

                  TE                                                          TM 

Figure 3.25: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.001 (~0.01 λ) meters in thickness for a metal 

rectangular thin plate at a = 0.04 (~0.4 λ) meters, b = 0.06 (~0.6 λ) meters 
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located at origin). A few dB differences in amplitude are observed for both 

TE and TM. 

         

                     TE                                                        TM 

Figure 3.26: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.001 (~0.01 λ) meters in thickness for a metal rectangular 

thin plate at a = 0.04 (~0.4 λ) meters, b = 0.06 (~0.6 λ) meters located at 

origin). The phase mismatch is observed for both TE and TM. 

3.3.4.2     Large (a, b >= 1 λ) conducting rectangular plates 

For thickness at 0.01 (~0.1 λ) meters: 

          

          TE                                                     TM 

Figure 3.27: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness for a metal rectangular 
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plate at a = 0.11 (~1 λ) meters, b = 0.11 (~1 λ) meters located at origin). 

They match well as the incident angle is less than 30 degrees for both TE 

and TM. 

         

                     TE                                                         TM 

Figure 3.28: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness for a metal rectangular 

plate at a = 0.11 (~1 λ) meters, b = 0.11 (~1 λ) meters located at origin). 

The phase does not match well for both TE and TM.  

         

                   TE                                                     TM 

Figure 3.29: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness for a metal rectangular 

plate at a = 1.1 (~10 λ) meters, b = 0.5 (~5 λ) meters located at origin). 
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Amplitudes are in good agreement with HFSS as the incident angle is less 

than 40 degrees for both TE and TM.  

         

                    TE                                                         TM 

Figure 3.30: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness for a metal rectangular 

plate at a = 1.1 (~10 λ) meters, b = 0.5 (~5 λ) meters located at origin). 

The phase matches closely for both TE and TM. 

3.4     Generic derivation for penetrable objects- rectangular 

          and circular plates 

3.4.1     Thin sheet approximation - rectangular 

      As mentioned earlier, a leaf can be viewed as a resistive thin sheet for a 

common scatter type in the study of tornadic debris. The derivation of 

resistive thin sheet follows. 

     The moisture content of Mg is used to define water content as a 

fraction in the leaf to the total weight. In our simulation, Mg = 0.7. The 

dielectric constant at 2.8 GHz and room temperature (T = 22 °C) (Senior 

and Sarabandi 1987) is: 
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ε’ = 3.95 exp (2.79 Mg)-2.25                                              (3.33)                                     

                 ε” = 2.69 exp (2.15 Mg)-2.68                                              (3.34)                                     

The complex relative permittivity is ε = ε’-j ε”. A leaf can be modeled as 

an infinite resistive sheet with a thickness τ (mm) and resistivity R. The 

expressions of τ and R are given by the following  

τ = 0.032 Mg 2 +0.091 Mg +0.075                                      (3.35) 

 

               ,                                                                            (3.36) 

where Z (= 1/Y) is the intrinsic impedance and k is the propagation 

constant of the surrounding free space medium (Harrington 1975).  E 

polarization is based on the incident electric vector perpendicular to the xy 

plane, and is given as follows (Senior and Sarabandi 1987): 

                                                                                              

                                                                                                                (3.37) 

implying that,  

 

                                                                                                                (3.38) 

The reflected and the transmitted electric vector can be written as  

                                                                                                                (3.39) 
                                                     
 

                                                                                             (3.40) 
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The boundary conditions are                          where            represents the 

discountinuity across the sheet and                               ,where 

is the total electric current. 

By applying the boundary conditions, reflection and transmission 

coefficient constants ΓE and TE  can be obtained:  

                                                                                                               (3.41) 
 
 

                                                                                                               (3.42) 

 

The current density is                where                           ,                                                  

 

                                                                                                                (3.43) 
 

Superscript pc denotes the perfect conducting sheet for E polarization and 

ΓE =1 for a perfectly conducting case. 

Similarly, for H polarization in which the incident magnetic vector is 

perpendicular to the plane of incidence, the reflection and transmission 

coefficients ΓH and TH  are derived as 

                                                                                                                                                                                 (3.44) 
 
 

                                                                                                                (3.45) 

 

The current density is             , where                            ,                     (3.46)   
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Surface current zJ and xJ  come from the definition of physical optics 

approximation, 

                                     illuminated portion                                                                                  
                                     shadowed portion                                         (3.47)                     

Where      denotes incident magnetic field intensity at the surface, and                                        

denotes the local surface normal unit vector if  the surface is PEC. 

Similarly, superscript pc denotes the perfect conducting sheet for H 

polarization, and ΓH =1 for a perfectly conducting case. 

      Then the infinite sheet is truncated to a rectangular 4 cm x 6 cm finite 

dimension area. By using the physical optics approximation which 

integrates the surface current zJ and xJ  on an infinite sheet, the scattered 

electric Hertz vector is in the form of                 

                                                                                                              (3.48) 

where                                                    and                                                             (3.49) 

In the far field, the Hertz vector becomes  

                                                                                                                                (3.50) 

   

 

                                                                                                              (3.51) 

with the scattered electric field obtained from the Hertz vector                                          

                                                                                             (3.52) 
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The derivation of the monostatic amplitude and RCS can be calculated as 

below.                                                                                                                       

The far-field cross section σ is equal to                                               (3.53) 

where S is the far-field amplitude   

                                                                                                              (3.54) 

For monostatic E polarization, 

                                                                                                              (3.55)      

For monostatic H polarization,                                                       

                                                                                                              (3.56) 

                                                                                                              (3.57)                               

                                                                                                              (3.58) 

3.4.2     Multi-layered approach for thicker plates-rectangular 

     The goal is to figure out the reflection coefficient calculation toward 

the multi-layered approach of oblique-wave incidence; the idea was to 

start from the calculation of the reflection coefficient at the boundary of a 

single slab layer for normal incidence. Two sets of formulations can be 

used to solve the problem at normal incidence. First, the reflection 
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impedance on the right side of first boundary is embedded in the 

calculation of the reflection coefficient of the second boundary. Therefore, 

the reflection coefficient in the front of the first interface will be the total 

reflection coefficient of the single slab (wood board, for example (5-67c, 

Banalis 2012)). Another set of formulation is carried out to calculate the 

reflection coefficient individually on each boundary (5-67d, Banalis 2012). 

The two sets of formulation for a single slab layer are related to each other 

by the further deriving of one to the other:  
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This formula can also be further derived to  
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     The recursive process is introduced by Balanis (2012) for an oblique 

incidence of the multilayered approach. It is easy to get confused when 

implementing the recursive formula.   Recursive process is a very common 

technique in computer science, and it can be anything. Recursive process 

is an efficient approach for calculating the total reflection coefficient, 
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either with a single layer or multiple layers considering several parts, 

which include thickness, refraction angle inside the slab (can be complex 

for lossy material), phase term, Brewster’s angle, etc. 

     The concept of reflection coefficient calculation in the front of first 

planar interface of a single layer for a normal incidence helps us 

understand the physical meaning of reflection and refraction coefficients 

before matching them into the recursive formulation. By verifying the 

overall components from the recursive process, the overall reflection and 

transmission coefficients of the recursive process for perpendicular 

(horizontal) and parallel (vertical) polarization for multi-layer structures 

are: 

Perpendicular (Horizontal) TE polarization 
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Parallel (Vertical)   TM polarization 
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 Then, 0A ,  0B ,  0C ,  0D  can be found through the following recursive 

formula 
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j =complex angle of refraction in the  thj layer 
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0d  is the distance from the first interface as the reference to the calculation 

of the reflection and transmission coefficients.  

      Now, consider the surface impedance-loaded plate, TM polarization 

using the physical optics approximation. The electric current is given by 

equation (2.40, Jenn 2005) with 0E =0: 
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There is also a magnetic current on the surface: 

                                                                                                              (3.73) 

The far-field radiation integral has two terms: the electric current terms are 

the same as the PEC plate, and the magnetic current terms are as follows: 
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Separable integral results 
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Starting with the Fresnel reflection coefficient for TM polarization 

 

                                                                                                              (3.77) 
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and a PO modification based on IBC (impedance boundary condition) is 

applied. 

                                                                                                                                    (3.82)        

                                             ,                                                                        (3.83) 
 
                                   illuminated portion                                                                                    

                                         shadowed portion                                        (3.84)                               
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

as the PEC plate 
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There is also a magnetic current on the surface 
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The component of electric field tangential to sphere at radius r is below 

(Jenn 2005): 
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when 0 ,                                                                                                              (3.90) 
 

The final RCS for TM mode becomes 

                                                                     
 
                                                                                                                                                            
                                                                                                              (3.91) 
 
 
 
for  0 ,                                                                                              (3.92) 
 

where                       ,                                                                            (3.93) 

n1 and n2 are the refractive index of the surrounding medium and the 

inside of a cylinder. 

Due to the duality theorem, the magnitude is opposite by applying the  
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when  0 ,                                                                                         
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The final RCS for TE mode is 
 

    

                                                                                              (3.96)                                        

      A phase shift cosjkle  is added to the amplitude of RCS of endcaps for 

far-field. This formula is used for dielectric cylinder endcap in Chapter 4. 

3.4.3.2     General non-metal circular plates (sheets)   
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Since the Fresnel reflection coefficient for TM polarization is 

                                                                                                               

                                                                                                              (3.97) 

under the condition  cos,1cos,  stt Z  

compared to conducting circular plate (3.34), non-metal circular can be  

obtained approximately via: 

                                                                                                              (3.98)  

                                                                                                              (3.99) 

The conducting circular plate formula (3.34) is used to derive the non-

metal circular plate. The non-metal circular plate formula is derived as 

                                                                                                    

                                                                                                            (3.100)                                    

                  and          can be obtained from (3.61-3.71).  

The non-metal circular thin sheet        and        are the same as (3.41) and 

(3.44) 

3.4.3.3     Simulation vs. analytical results for non-metal circular  

                plates 

      Amplitudes for all selected sizes are in good agreement with HFSS as 

the incident angle is less than 40 degrees for TM; amplitudes are in good 

agreement with HFSS for TE. There is a little phase mismatch for TE and 

TM. 
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3.4.3.3.1     Small (radius < 0.5 λ) non-metal circular sheets  

For thickness at 0.0001 (~0.001 λ) meters: 

                                         

                     TE                                                       TM 

Figure 3.31: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.011 (~0.1 λ) 

meters in radius r  = 2.15 for a thin sheet located in half of L = 1.1 (~10 λ) 

meters). Amplitudes show a few dB differences for TE with HFSS, and 

match closely with HFSS as the incident angle is less than 40 degrees for 

TM. 

                

                   TE                                                    TM 

Figure 3.32: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.011 (~0.1 λ) 
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meters in radius dielectric r  = 2.15 for a thin sheet located in half of L = 

1.1 (~10 λ) meters). The phase shows a little mismatch for TE and TM. 

          

                       TE                                                      TM 

Figure 3.33: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.011 (~0.1 λ) 

meters in radius r  = 10-5j for a thin sheet located in half of L = 1.1 (~10 

λ) meters). Amplitudes show a few dB differences for TE with HFSS, and 

match closely with HFSS as the incident angle is less than 60 degrees for 

TM. 

                     

                     TE                                                       TM 

Figure 3.34: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.011 (~0.1 λ) 
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meters in radius dielectric r  = 10-5j for a thin sheet located in half of L = 

1.1 (~10 λ) meters). The phase shows a little mismatch for TE and TM. 

           

                    TE                                                           TM 

Figure 3.35: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.033 (~0.3 λ) 

meters in radius r  = 2.15 (wood) for a thin sheet located in half of L = 

3.3 (~30 λ) meters). Amplitude matches closely with HFSS as the incident 

angle is less than 70 degrees for TE, and is less than 40 degrees for TM. 

            

                     TE                                                         TM 

Figure 3.36: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.033 (~0.3 λ) 

meters in radius r  = 2.15 for a thin sheet located in half of L = 3.3 (~30 λ) 
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meters). The phase shows a little mismatch, as the incident angle is less 

than 20 degrees for both TE and TM. 

        

                   TE                                                         TM 

Figure 3.37: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.033 (~0.3 λ) 

meters in radius r  = 10-5j for a thin sheet located in half of L = 3.3 (~30 

λ) meters). Amplitudes show to be very close as the incident angle is less 

than 70 degrees for TE, and is less than 60 degrees for TM. 

                      

                     TE                                                         TM 

Figure 3.38: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.033 (~0.3 λ) 

meters in radius r  = 10-5j for a thin sheet located in half of L = 3.3 (~30 
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λ) meters). The phase has a little mismatch, as the incident angle is less 

than 20 degrees for both TE and TM. 

3.4.3.3.2     Larger (radius > 0.5 λ) non-metal circular sheets 

For thickness at 0.0001 (~0.001 λ) meters with r  = 2.15 and 10-5j for 

different sizes: 

          

                    TE                                                        TM 

Figure 3.39: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.055 (~0.5 λ) 

meters in radius r  = 2.15 for a thin sheet located in half of L = 1.1 (~10 λ) 

meters). Amplitude for TE is in good agreement with HFSS and matches 

well for TM with HFSS as the incident angle is less than 40 degrees. 
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Figure 3.40: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.055 (~0.5 λ) 

meters in radius r  = 2.15 for a thin sheet located in half of L = 1.1 (~10 λ) 

meters). The phase shows a little mismatch for both TE and TM. 

         

                     TE                                                      TM 

Figure 3.41: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.055 (~0.5 λ) 

meters in radius r  = 10-5j for a thin sheet located in half of L = 1.1 (~10 

λ) meters). Amplitude is in good agreement for TE with HFSS and 

matches well for TM with HFSS as the incident angle is less than 60 

degrees. 
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Figure 3.42: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.055 (~0.5 λ) 

meters in radius r  = 10-5j for a thin sheet located in half of L = 1.1 (~10 

λ) meters). The phase shows a little mismatch for both TE and TM. 

            

                      TE                                                        TM 

Figure 3.43: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.11 (~1 λ) 

meters in radius r  = 10-5j for a thin sheet located in half of L = 1.1 (~10 

λ) meters). Amplitudes for TE are in good agreement with HFSS and 

match well for TM with HFSS as the incident angle is less than 60 degrees. 
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Figure 3.44: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.11 (~1 λ) meters 

in radius r  = 10-5j for a thin sheet located in half of L = 1.1 (~10 λ) 

meters). The phase shows a little mismatch for both TE and TM. 

Dielectric thin sheet r  = 2.15 for thickness at 0.0002 (~0.002 λ) meters: 

        

                     TE                                                          TM 

Figure 3.45: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.0002 (~0.002 λ) meters in length by 0.33 (~3 λ) meters in 

radius at r = 2.15 for a dielectric thin sheet at L = 1.1 (~10 λ) meters). 

Amplitudes are almost in good agreement except at 80- 90 degrees for TE 

and TM. 
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Figure 3.46: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.0002 (~0.002 λ) meters in length by 0.33 (~3 λ) meters in radius 

at r = 2.15 for a dielectric thin sheet at L = 1.1 (~10 λ) meters). The 

phase is in good agreement with HFSS for both TE and TM. 

3.4.3.3.3     Small (radius < 0.5 λ) non-metal circular thicker plates 

For r = 2.15, thickness at 0.01 (~0.1 λ) meters: 

          

                  TE                                                         TM 

Figure 3.47: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.011 (~0.1 λ) 

meters in radius r  = 2.15 for a thicker plate located in half of L = 1.1 

(~10 λ) meters). Amplitudes for TE and TM are close as the incident angle 

is less than 40 degrees. 
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                   TE                                                        TM 

Figure 3.48: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.011 (~0.1 λ) meters in 

radius r  = 2.15 for a thicker plate located in half of L = 1.1 (~10 λ) 

meters). The phase shows a little mismatch, as the incident angle is less 

than 50 degrees for both TE and TM. 

For r = 10-5j, thickness at 0.01 (~0.1 λ) meters: 

          

                     TE                                                       TM 

Figure 3.49: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.033 (~0.3 λ) 

meters in radius r  = 10-5j for a thin plate located in half of L = 3.3 (~30 

λ) meters). Amplitudes for TE and TM match well as the incident angle is 

less than 40 degrees. 
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                    TE                                                       TM 

Figure 3.50: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.033 (~0.3 λ) meters in 

radius r  = 10-5j for a thin plate located in half of L = 3.3 (~30 λ) meters). 

The phase shows a little mismatch, as the incident angle is less than 40 

degrees for both TE and TM. 

3.4.3.3.4     Large (radius > 0.5 λ) circular non-metal thicker plates 

For thickness at 0.1 (~1 λ) meters: 
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Figure 3.51: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.1 (~1 λ) meters in thickness by 0.11 (~1 λ) meters in 
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radius r  = 2.15 for a thick plate located in half of L = 1.1 (~10 λ) meters). 

Amplitudes match closely as the incident angle is less than 30 degrees for 

both TE and TM.  

        

                    TE                                                       TM 

Figure 3.52: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.1 (~1 λ) meters in thickness by 0.11 (~1 λ) meters in radius 

r  = 2.15 for a thick plate located in half of L = 1.1 (~10 λ) meters). The 

phase matches well as incident angle is close to 90 degrees for TE and 60-

90 degrees for TM. 

3.4.3.4     Simulation vs. analytical results for non-metal rectangular 

                sheets 

     The amplitudes are in good agreement with HFSS for all plots. Phase 

terms closely matched for TE and TM. The thickness is 0.0001 (~0.001 λ) 

or 0.0002 (~0.002 λ) meters at r  = 2.15, r  = 34.56-12.34j,  r  = 10-5j for 

different sizes. 

3.4.3.4.1     Small (a, b < 1 λ) non-metal rectangular thin sheets 
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For thickness at 0.0001 (~0.001 λ) meters at r  = 2.15: 

          

         TE                                                    TM 

Figure 3.53: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.04 (~0.4 λ) 

meters by 0.06 (~0.6 λ) meters r  = 2.15 for a rectangular thin sheet 

located at origin). Amplitude matches well for TM as the incident angle is 

less than 40 degrees. Amplitude has a few dB differences from 0-90 

degrees for TE.  
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Figure 3.54: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.04 (~0.4 λ) 
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meters by 0.06 (~0.6 λ) meters r  = 2.15 for a rectangular thin sheet 

located at origin). The phase shows a big gap for both TE and TM. 

3.4.3.4.2     Large (a, b > 1 λ) non-metal rectangular thin sheets 

For thickness 0.0002 (~0.002 λ) meters at  r  = 34.56-12.34j, r  = 10-5j: 

          

                 TE                                                        TM 

Figure 3.55: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0002 (~0.002 λ) meters in thickness by 0.22 (~2 λ) 

meters by 0.14 (~1.27 λ) meters  r  = 34.56-12.34j (leaf) for a rectangular 

sheet located at origin). Amplitudes match well as the incident angle is 

less than 50 degrees for both TE and TM. 

               

                  TE                                                           TM 

0 10 20 30 40 50 60 70 80 90
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

Incident angle-degrees

R
C

S
 (

 E
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS

0 10 20 30 40 50 60 70 80 90
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Incident angle-degrees

R
C

S
 (

 H
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS

0 10 20 30 40 50 60 70 80 90
-200

-150

-100

-50

0

50

100

150

200

Incident angle-degrees

R
C

S
 (

 E
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS

0 10 20 30 40 50 60 70 80 90
-200

-150

-100

-50

0

50

100

150

200

Incident angle-degrees

R
C

S
 (

 H
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS



80 
 

Figure 3.56: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0002 (~0.002 λ) meters in thickness by 0.22 (~2 λ) meters 

by 0.14 (~1.27 λ) meters r  = 34.56-12.34j (leaf) for a rectangular sheet 

located at origin). The phase matches closely to both TE and TM. 

Same size for thickness at 0.0001 (~0.001 λ) meters at r  = 2.15: 

           

                    TE                                                       TM 

Figure 3.57: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.22 (~2 λ) 

meters by 0.14 (~1.27 λ) meters r  = 2.15 for a rectangular sheet located 

at origin). Amplitudes match closely as the incident angle is less than 50 

degrees for both TE and TM. 
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Figure 3.58: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.22 (~2 λ) meters 

by 0.14 (~1.27 λ) meters r  = 2.15 a rectangular sheet located at origin). 

The phase matches closely to both TE and TM. 

Same size for thickness at 0.0001 (~0.001 λ) meters at r  = 10-5j: 

           

                     TE                                                      TM 

Figure 3.59: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.22 (~2 λ) 

meters by 0.14 (~1.27 λ) meters r  = 10-5j for a rectangular sheet located 

at origin). Amplitudes match closely as the incident angle is less than 70 

degrees for both TE and TM. 
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Figure 3.60: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.22 (~2 λ) meters 

by 0.14 (~1.27 λ) meters r  = 10-5j for a rectangular sheet located at 

origin). The phase matches closely to both TE and TM. 

Size double for thickness at 0.0002 (~0.002 λ) meters at r  = 34.56-12.34j: 

          

                     TE                                                        TM 

Figure 3.61: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0002 (~0.002 λ) meters in thickness by 0.44 (~4 λ) 

meters by 0.28 (~2.54 λ) meters r  = 34.56-12.34j (leaf) for a rectangular 

sheet located at origin). Amplitudes match closely as the incident angle is 

less than 50 degrees for TE, and less than 70 degrees for TM. 
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Figure 3.62: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0002 (~0.002 λ) meters in thickness by 0.44 (~4 λ) meters 

by 0.28 (~2.54 λ) meters r  = 34.56-12.34j (leaf) for a rectangular sheet 

located at origin). The phase matches closely to both TE and TM.  

3.4.3.5     Simulation vs. analytical results for rectangular thicker 

                plates 

     The recursive formulation mentioned above is used to get the 

rectangular plates at oblique incidence for 1 and 2 layers. FEKO is used to 

simulate 2 layers with different media for comparison with analytical 

results. 

3.4.3.5.1     One layer non-metal rectangular plates 

     The amplitudes are in good agreement with HFSS for all plots. Phase 

terms are closely matched to TE and TM. The thickness is 0.01 (~0.1 λ) 

meters, 0.02 (~0.2 λ) meters, 0.001 (~0.01 λ) meters, or 0.1 (~1 λ) meters 

at r  = 2.15,   r  = 10-5j for different sizes. 

3.4.3.5.1.1     Small (a, b < 1 λ) non-metal plates 

For thickness 0.01 (~0.1 λ) meters at r  = 2.15: 
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               TE                                                       TM 

Figure 3.63: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.04 (~0.4 λ) meters 

by 0.06 (~0.6 λ) meters  r  = 2.15 for a rectangular thick plate located at 

origin). Amplitudes match closely as the incident angle is less than 40 

degrees for both TE and TM. 

         

                    TE                                                         TM 

Figure 3.64: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.04 (~0.4 λ) meters by 

0.06 (~0.6 λ) meters  r  = 2.15 for a rectangular thick plate located at 

origin). The phase shows a big gap for both TE and TM. 

0 10 20 30 40 50 60 70 80 90
-110

-100

-90

-80

-70

-60

-50

-40

-30

Incident angle-degrees

R
C

S
 (

 E
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS

0 10 20 30 40 50 60 70 80 90
-110

-100

-90

-80

-70

-60

-50

-40

-30

Incident angle-degrees

R
C

S
 (

 H
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS

0 10 20 30 40 50 60 70 80 90
-200

-150

-100

-50

0

50

100

150

200

Incident angle-degrees

R
C

S
 (

 E
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS

0 10 20 30 40 50 60 70 80 90
-50

0

50

100

150

200

Incident angle-degrees

R
C

S
 (

 H
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS



85 
 

Same size for thickness 0.02 (~0.2 λ) meters at r  = 2.15: 

        

                    TE                                                         TM 

Figure 3.65: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.02 (~0.2 λ) meters in thickness by 0.04 (~0.4 λ) meters 

by 0.06 (~0.6 λ) meters  r  = 2.15 for a rectangular thicker plate located at 

origin). Amplitudes match closely as the incident angle is less than 20 

degrees for both TE and TM.                 
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Figure 3.66: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.02 (~0.2 λ) meters in thickness by 0.04 (~0.4 λ) meters by 
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0.06 (~0.6 λ) meters  r  = 2.15 for a rectangular thick plate located at 

origin). The phase shows a big gap for both TE and TM. 

Same size for thickness 0.001 (~0.01 λ) meters at r  = 2.15: 

             

                  TE                                                             TM 

Figure 3.67: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.04 (~0.4 λ) 

meters by 0.06 (~0.6 λ) meters  r  = 2.15 for a rectangular thin plate 

located at origin). Amplitudes match closely as the incident angle is less 

than 40 degrees for both TE and TM.  
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Figure 3.68: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.04 (~0.4 λ) meters 

by 0.06 (~0.6 λ) meters  r  = 2.15 for a rectangular thin plate located at 

origin). The phase shows a large gap for both TE and TM. 

3.4.3.5.1.2     Large (a, b > 1 λ) non-metal thicker plates 

For thickness 0.1 (~1 λ) meters at r  = 2.15: 

          

                       TE                                                     TM 

Figure 3.69: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.1 (~1 λ) meters in thickness by 0.4 (~3.64 λ) meters by 

0.6 (~5.45 λ) meters  r  = 2.15 for a rectangular thick plate located at 

origin). Amplitudes match closely as the incident angle is less than 40 

degrees for both TE and TM. 
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                    TE                                                        TM  

Figure 3.70: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.1 (~1 λ) meters in thickness by 0.4 (~3.64 λ) meters by 0.6 

(~5.45 λ) meters  r  = 2.15 for a rectangular thick plate located at origin). 

The phase matches closely to TE and TM. 

For thickness 0.1 (~1 λ) meters at  = 10-5j: 

            

                    TE                                                         TM   

Figure 3.71: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.1 (~1 λ) meters in thickness by 0.4 (~3.64 λ) meters by 

0.6 (~5.45 λ) meters   = 10-5j for a rectangular thick plate located at 

origin). Amplitudes match closely as the incident angle is less than 30 

degrees. 
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                     TE                                                        TM 

Figure 3.72: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.1 (~1 λ) meters in thickness by 0.4 (~3.64 λ) meters by 0.6 

(~5.45 λ) meters   = 10-5j for a rectangular thick plate located at origin). 

The phase matches closely to TE and TM. 

Compare the two:  

           

                      TE                                                       TM 

Figure 3.73: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.1 (~1 λ) meters in thickness by 0.4 (~3.64 λ) meters by 

0.6 (~5.45 λ) meters   = 2.15 and  = 10-5j for a rectangular thick plate 

located at origin).  Resistance R at  = 2.15 is greater than resistance R at 

 = 10-5j, amplitudes for both analytical and HFSS are lower than  = 
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10-5j, which is consistent with previous research (Jenn 2005). Lower 

scattering amplitude for higher R accounts for more transmission and less 

reflection in the material.  

3.4.3.5.2     Multi-layer (two layers) rectangular thicker plates 

     Assume the first layer is water, = 80.4, and the thickness is 0.002 

(~0.02 λ) meters. The second layer is wood board = 2-0.2j, and the 

thickness is 0.01 (~0.1 λ) meters. 2 layer plates with a water layer on the 

top increases by 10 dB, and 5 dB more than 1 layer wood board, 

respectively. 

         

                   TE                                                      TM 

Figure 3.74: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (water with = 80.4, thickness 0.002 (~0.02 λ) meters on the 

top of wood board = 2.15, 0.01 (~0.1 λ) meters in thickness for 0.4 

(~3.64 λ) meters by 0.6 (~5.45 λ) meters rectangular 2-layer thick plate in 

comparison to 1 layer of the same size wood board = 2.15, 0.01 (~0.1 λ) 

meters in thickness, located at origin). The amplitude of two-layer water-
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coated wood board increases by 10 dB when compared to 1-layer wood 

board. 

        

                      TE                                                        TM 

Figure 3.75: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (water with = 80.4, thickness 0.005 (~0.05 λ) meters on the 

top of wood board = 2.15, 0.01 (~0.1 λ) meters in thickness by 0.4 

(~3.64 λ) meters by 0.6 (~5.45 λ) meters rectangular 2-layer thick plate in 

comparison to 1 layer of the same size wood board = 2.15, 0.01 (~0.1 λ) 

meters in thickness, located at origin). The amplitude of two-layer water- 

coated wood board increases by 10 dB when compared to 1-layer wood 

board. 
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Figure 3.76: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (water with = 80.4, thickness 0.005 (~0.05 λ) meters, 0.0001 

(~0.001 λ) meters, respectively, on the top of wood board = 2.15, 0.01 

(~0.1 λ) meters in thickness by 0.4 (~3.64 λ) meters by 0.6 (~5.45 λ) 

meters of rectangular 2-layer thick plate in comparison to 1 layer of the 

same size wood board = 2.15, 0.01 (~0.1 λ) meters in thickness, located 

at origin).  Wood board coated with a thicker layer of water increases 10 

dB more than 1-layer wood board. Wood board coated with a thin sheet 

layer of water shows some variation from 0-90 degrees. 
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Figure 3.77: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (water with = 80.4, thickness 0.005 (~0.05λ ) meters, 0.0002 

(~0.002 λ) meters, respectively, on the top of wood board = 2.15, 0.01 

(~0.1 λ) meters in thickness by 0.4 (~3.64 λ) meters by 0.6 (~5.45 λ) 

meters rectangular 2-layer thick plate in comparison to 1 layer of the same 

size wood board = 2.15, 0.01 (~0.1 λ) meters in thickness, located at 
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origin). Wood board coated with a thicker layer of water increases by 10 

dB when compared to 1-layer wood board. Wood board coated with a thin 

sheet layer of water shows some variation from 0-90 degrees. 
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Figure 3.78: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (2-layers of water with = 80.4, thickness 0.005 (~0.05 λ) 

meters, 0.0003 (~0.003 λ) meters, respectively, on the top of wood board 

= 2.15, 0.01 (~0.1 λ) meters in thickness by 0.4 (~3.64 λ) meters by 0.6 

(~5.45 λ) meters of rectangular thick plate in comparison to 1 layer of the 

same size wood board, located at origin). Water coated in 2 layers 

increases by 10 dB, and 5 dB when compared to 1-layer wood board, 

respectively. 

     The plots show that with 2 layers of water er1 = 80.4 on the top of 

wood board er2 = 2.15, the amplitudes go up more than 1 layer of wood 

board because er1 > er2, and the resistance of water R1 is less than wood 

board R2. The plots also show that the amplitude will go up unless the 
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thickness of water is less than 0.0003 (~0.003 λ) meters (sheet range). This 

is probably because the water sheet is more penetrable than a thicker plate.  
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Figure 3.79: RCS FEKO plots for 2 layers with different water coating 

thicknesses at 0.01 (~0.1 λ) meters, 0.005 (~0.05 λ) meters, 0.002 (~0.02 λ) 
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meters, 0.0003 (~0.003 λ) meters, 0.0002 (~0.002 λ) meters, 0.0001 

(~0.001 λ) meters on top of wood board with a thickness of 0.01 (~0.1 λ) 

meters. FEKO plots are very similar to analytical results for two layers. 

      Since HFSS has no function to construct two overlapping layers with 

different mediums, the FEKO application software was used to generate 

the plots in order to compare with analytical results. FEKO is limited to a 

thickness on the top layer of less than 0.0003 (~0.003 λ) meters by testing.  

3.5     The errors and limitations  

     The circular plates with at least 1 wavelength in diameter show more 

accuracy by PO. The rectangular plates with at least 1 wavelength on each 

side show more accuracy and amplitudes begin to oscillate. The phase 

term especially shows little to no accuracy at small sizes. A better 

understanding of the limitation of theory and HFSS by validation with 

measurements is still necessary. Therefore, detailed comparisons with 

measurements and the demand for calibration are necessary in future work.  

     The limitation for electrically-small objects is that the current at the 

edge remarkably affects the scattered field when the PO method is applied. 

PO is more accurate for an electrically large object at a high frequency. 

The error will be observed by the cases such as metal vs. non-metal, and 

thick vs. thin through HFSS vs. MATLAB in the following sections. This 
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limitation is extended to endcap on the finite cylindrical objects detailed in 

Chapter 4. 

     All plots show the errors as close to 90 degrees. There are two reasons: 

for this: first, PO method ignores the edge effect;  and  second, more 

accurate results occur as the incident angle approaches the normal 

incidence for non-metal rectangular and circular plates under the certain 

conditions  cos,1cos,  stt Z  resulting from the surface 

impedance restrictions. Most of the plots, when compared to HFSS, show 

that more accurate results are obtained when the incident angle is less than 

40 degrees. This is in agreement with surface impedance limitations. 

3.5.1     Metal vs. non-metal – PO vs. simulations 

3.5.1.1     Metal vs. non-metal for circular plates 

      Non-metal material has dielectric constant considered as lossy material; 

therefore, reduced reflection and increased transmission are expected as 

energy loss in the media than metal plates. For an electrically small plate, 

the errors of PO become obvious and comparisons to analytical results 

with HFSS simulations do not match well. 

     As shown in Section 3.3.3, the MATLAB vs. HFSS results for 

conducting sheets and plates further confirm that the errors shown on the 

edges are omitted by PO. The limitation of PO is that more accurate 
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oscillating results are observed for plates with a larger radius (1.5 λ vs.0.1 

λ). 

     The results reveal another phenomenon, which is that the RCS of a 

conducting plate is the same as a conducting sheet. This fact is confirmed 

by existing research (Jenn 2005).   

     One example: PO (MATLAB) vs. simulation (HFSS) of non-metal 

amplitude and phase at r = 2.15  with 0.0001 (~0.001 λ) meters, 0.001 

(0.01 λ) meters, 0.01 (~0.1 λ) meters of 3 different thicknesses at 0.11 (~1 

λ) meters in radius, produce a difference roughly 20 dB in amplitude for 

different . Amplitude in metal is about 10 dB greater when compared to 

non-metal. 

For thickness at 0.0001 (~0.001 λ) meters r  = 2.15:  

         

                      TE                                                        TM 

Figure 3.80: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.11 (~1 λ) 

meters in radius r  = 2.15 for a thin sheet located in half of L = 1.1 (~10 λ) 
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meters). Amplitude for TE is in good agreement with HFSS, and matches 

well for TM as the incident angle is less than 60 degrees. 

         

                    TE                                                           TM 

Figure 3.81: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.11 (~1 λ) meters 

in radius r  = 2.15 for a thin sheet located in half of L = 1.1 (~10 λ) 

meters). The phase shows a little mismatch for both TE and TM. 

For thickness at 0.001 (~0.01 λ) meters r  = 2.15:  

           

                         TE                                                   TM 

Figure 3.82: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.11 (~1 λ) 
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meters in radius  = 2.15 for a thin plate located in half of L = 1.1 (~10 λ) 

meters). Amplitudes match well as the incident angle is less than 50 

degrees for both TE and TM.  

               

                   TE                                                      TM 

Figure 3.83: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.11 (~1 λ) meters in 

radius  = 2.15 for a thin plate located in half of L = 1.1 (~10 λ) meters). 

The phase matches well to both TE and TM.  

For thickness at 0.01 (~0.1 λ) meters r  = 2.15: 
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Figure 3.84: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.11 (~1 λ) meters 
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in radius  = 2.15 for a thick plate located in half of L = 1.1 (~10 λ) 

meters). Amplitudes match well as the incident angle is less than 50 

degrees for both TE and TM.  

               

                       TE                                                       TM 

Figure 3.85: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.11 (~1 λ) meters in 

radius  = 2.15 for a thick plate located in half of L = 1.1 (~10 λ) meters). 

The phase matches well as the incident angle is between 60-90 degrees for 

both TE and TM.  

Compare all of 3 different thicknesses: 
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Figure 3.86: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ), 0.001 (~0.01 λ), and 0.01 (~0.1 λ) 

meters in 3 different thicknesses by 0.11 (~1 λ) meters in radius  = 2.15 

for plates located in half of L = 1.1 (~10 λ) meters). Each thickness 

produces roughly 20 dB of amplitude difference. Because there is more 

transmission and less reflection in thinner plates, a thinner thickness 

corresponds to lower amplitude. 

     The following figures compare metal case in section 3.3.3: Figure 3.15 

has the same thickness 0.01 (~0.1 λ) meters, while Figure 3.13 has a 

thickness of 0.001 (~0.01 λ) meters: 
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Figure 3.87: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.11 (~1 λ) meters 

in radius for metal and non-metal  = 2.15 for thick plates located in half 

of L = 1.1 (~10 λ) meters). Amplitude in metal is about 10 dB greater than 

non-metal due to more reflection and less transmission in the metal plate. 
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                     TE                                                       TM 

Figure 3.88: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.11 (~1 λ) 

meters in radius for metal and non-metal  = 2.15 for thick plates located 

in half of L = 1.1 (~10 λ) meters). Amplitude in metal is about 30 dB 

greater than non-metal due to more reflection and less transmission in the 

metal plate. 

For the same thickness (0.01 (~0.1 λ) meters or 0.001 (~0.01 λ) meters) 

with different = 2.15 and = 10-5j: 
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Figure 3.89: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.11 (~1 λ) meters 
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in radius for   = 2.15 and  = 10-5j for a thick plate located in half of L 

= 1.1 (~10 λ) meters). There is about 10 dB difference in amplitude for 

different . The higher the resistance R for  = 2.15, the lower the 

amplitude.   

         

                     TE                                                        TM 

Figure 3.90: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.11 (~1 λ) 

meters in radius for   = 2.15 and  = 10-5j for a thick plate located in 

half of L = 1.1 (~10 λ) meters). An approximate 20 dB differences in 

amplitude for different are observed.  The higher the resistance at  

=2.15, the lower the amplitude.   

3.5.1.2     Metal vs. non-metal for rectangular plates  

     The following is a comparison of two different sizes for non-metal-

rectangular plates at = 2.15 or = 10-5j vs. metal rectangular plates 

with the same thickness at 0.01 (~0.1 λ) meters. The amplitudes are in 

r r

r r

0 10 20 30 40 50 60 70 80 90
-140

-120

-100

-80

-60

-40

-20

0

Incident angle-degrees

R
C

S
 (

 E
 p

ol
ar

iz
at

io
n 

co
-p

o)
,d

B
sm

 

 

MATLAB er=2.15 th=0.001m

HFSS er=2.15 th=0.001m
MATLAB er=10-5j th=0.001m

HFSS er=10-5j th=0.001m

0 10 20 30 40 50 60 70 80 90
-140

-120

-100

-80

-60

-40

-20

0

Incident angle-degrees

R
C

S
 (

 E
 p

ol
ar

iz
at

io
n 

co
-p

o)
,d

B
sm

 

 

MATLAB er=2.15 th=0.001m

HFSS er=2.15 th=0.001m

MATLAB er=10-5j th=0.001m

HFSS er=10-5j th=0.001m

r r

r r

r r



106 
 

good agreement with HFSS for all plots. Phase terms are closely matched 

to both TE and TM.  

For metal rectangular plate at thickness 0.01 (~0.1 λ) meters:

           

                 TE                                                      TM 

Figure 3.91: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness for a metal rectangular 

plate at a = 0.4 (~4 λ) meters, b = 0.6 (~6 λ) meters). Amplitudes match 

well as the incident angle is less than 30 degrees for both TE and TM. 
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Figure 3.92: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness for a metal rectangular 
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plate at a = 0.4 (~4 λ) meters, b = 0.6 (~6 λ) meters). The phase matches 

closely for both TE and TM. 

For non-metal rectangular plate at 0.01 (~0.1 λ) meters at = 2.15:  

                  

                       TE                                                       TM 

Figure 3.93: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.4 (~3.64 λ) meters 

by 0.6 (~5.45 λ) meters  = 2.15 for a rectangular thick plate located at 

origin). Amplitudes match well as the incident angle is less than 50 

degrees for TE, and closely matches to TM. 
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Figure 3.94: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.4 (~3.64 λ) meters by 
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0.6 (~5.45 λ) meters   = 2.15 for a rectangular thick plate located at 

origin). The phase matches closely to both TE and TM. 

In a comparison of metal to non-metal plates at the same thicknesses  = 

2.15: 
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Figure 3.95: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.4 (~3.64 λ) meters 

by 0.6 (~5.45 λ) meters  = 2.15 for a metal rectangular thick plate at the 

same thickness located at origin). The amplitude for metal is 10 dB greater 

than non-metal as a consequence of more reflection and less transmission 

in metal. 

For a different size metal rectangular plate with a thickness of 0.01 (~0.1 λ) 

meters at = 10-5j: 
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                     TE                                                       TM 

Figure 3.96: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness for a metal rectangular 

plate at a = 0.33 (~3 λ) meters, b = 0.33 (~3 λ) meters). Amplitudes are in 

good agreement with HFSS as the incident angle is less than 30 degrees 

for both TE and TM. 
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Figure 3.97: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness for a metal rectangular 

plate at a = 0.33 (~3 λ) meters, b = 0.33 (~3 λ) meters). The phase matches 

closely to both TE and TM. 
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For the same size non-metal rectangular plate with a thickness of 0.01 

(~0.1 λ) meters at = 10-5j: 

        

                       TE                                                       TM 

Figure 3.98: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness 0.33 (~3 λ) by 0.33 (~3 

λ) meters at = 10-5j for a rectangular thick plate located at origin). 

Amplitudes are in good agreement with HFSS as the incident angle is less 

than 30 degrees for both TE and TM. 
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Figure 3.99: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness 0.33 (~3 λ) by 0.33 (~3 λ) 

r

0 10 20 30 40 50 60 70 80 90
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

Incident angle-degrees

R
C

S
 (

 E
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS

0 10 20 30 40 50 60 70 80 90
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

Incident angle-degrees

R
C

S
 (

 H
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS

r

0 10 20 30 40 50 60 70 80 90
-200

-150

-100

-50

0

50

100

150

200

Incident angle-degrees

R
C

S
 (

 E
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS

0 10 20 30 40 50 60 70 80 90
-200

-150

-100

-50

0

50

100

150

200

Incident angle-degrees

R
C

S
 (

 H
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS



111 
 

meters at = 10-5j for a rectangular thick plate located at origin). The 

phase matches closely to TE and TM. 

To compare metal with non-metal plate at the same thicknesses  = 10-5j:

           

                 TE                                                      TM 

Figure 3.100: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness 0.33 (~3 λ) by 0.33 (~3 

λ) meters at = 10-5j for a metal rectangular thick plate located at origin). 

Amplitude in metal is higher than non-metal materials because of more 

reflection and less transmission in metal. Amplitude of a metal rectangular 

plate is close to a non-metal plate at a relative permittivity of 10-5j.   

     In this comparison of PO vs. simulation (metal vs. non-metal (wood 

= 2.15)), again, errors are shown due to edge effect at angles close to 90 

degrees for both metal and non-metal plates. Also, the RCS amplitudes of 

metal plates for both MATLAB and HFSS are higher than non-metal 

plates, as was expected. These phenomena are due to greater transmission 

and less reflection on non-metal plates. Examples for non-metal plates 
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with different thicknesses (0.0001 (~0.001 λ) meters, 0.001 (~0.01 λ) 

meters, and 0.01 (~0.1 λ) meters) indicate that values of HFSS simulation 

and MATLAB are getting higher as thicknesses increase. This is due to 

the correlation to thinner plates, which provide less reflection and more 

penetration.  

3.5.2     Thick vs. thin – PO vs. simulations 

 The results show that metal cases match well between HFSS and 

MATLAB for larger sizes. The amplitudes are in good agreement with 

HFSS as the incident angle is less than around 50 degrees for non-metal 

plots. Phase terms are closely matched to both TE and TM.  

3.5.2.1     Thin vs. thick for circular non-metal plates 

     The following examples compare a dielectric thin sheet of three 

different thicknesses: thickness = 0.0001 (~0.001 λ) meters at  = 2.15 by 

0.165 (~1.5 λ) meters in radius; the same size dielectric thin plate where 

thickness = 0.001 (~0.01 λ) meters at  = 2.15; and the same size 

dielectric thick plate where thickness = 0.01 (~0.1 λ) meters at  = 2.15. 

The resulting plots show that there are about 20 dB differences between 

each scale. 

For a dielectric thin sheet with a thickness of 0.0001 (~0.001 λ) meters at 

 = 2.15: 
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                      TE                                                        TM 

Figure 3.101: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.165 (~1.5 λ) 

meters in radius r  = 2.15 for a thin sheet located in half of L = 3.3 (~30 λ) 

meters). Amplitudes for TE and TM match closely as the incident angle is 

less than 50 degrees. 

             

                      TE                                                        TM 

Figure 3.102: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.165 (~1.5 λ) 

meters in radius r  = 2.15 for a thin sheet located in half of L = 3.3 (~30 λ) 

meters). The phase shows a little mismatch for TE and TM with an 

incident angle of less than 20 degrees. 
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For the same size dielectric thin plate with a thickness of 0.001 (~0.01 λ) 

meters at  = 2.15: 

           

                     TE                                                       TM 

Figure 3.103: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.165 (~1.5 λ) 

meters in radius  = 2.15 for a thin plate located in half of L = 3.3 (~30 λ) 

meters). Amplitudes are in good agreement with HFSS as the incident 

angle is less than 50 degrees for both TE and TM. 
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Figure 3.104: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.165 (~1.5 λ) meters 

in radius  = 2.15 for a thin plate located in half of L = 3.3 (~30 λ) 

meters). The phase shows mismatch as the incident angle is less than 20 

degrees. 

For the same size dielectric plate with a thickness of 0.01 (~0.1 λ) meters 

at  = 2.15: 
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Figure 3.105: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.165 (~1.5 λ) 

meters in radius  = 2.15 for a thick plate located in half of L = 3.3 (~30 

λ) meters). Amplitudes are in good agreement with HFSS as the incident 

angle is less than 50 degrees for both TE and TM. 
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                      TE                                                     TM 

Figure 3.106: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.165 (~1.5 λ) meters in 

radius  = 2.15 for a thick plate located in half of L = 3.3 (~30 λ) meters). 

The phase shows mismatch as the incident angle is less than 20 degrees. 

The following figures compare all three thicknesses: 
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Figure 3.107: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters, 0.001 (~0.01 λ) meters, and 

0.01 (~0.1 λ) meters in thickness by 0.165 (~1.5 λ) meters in radius  = 

2.15 for a thin plate located in half of L = 3.3 (~30 λ) meters). The plots 
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for both HFSS and the analytical results demonstrate that amplitude differs 

by about 20 dB as scales increase in thickness by multiples of ten.  

     Another set of examples compare three dielectric plates of varying 

thicknesses: dielectric thin sheet where thickness = 0.0001 (~0.001 λ) 

meters at r  = 10-5j by 0.165 (~1.5 λ) meters in radius; the same size 

dielectric thin plate where thickness = 0.001 (~0.01 λ) meters at  = 10-5j; 

and the same size dielectric thick plate where thickness = 0.01 (~0.1 λ) 

meters at  = 10-5j: 

For dielectric thin sheet at thickness 0.0001 (~0.001 λ) meters at  = 10-

5j: 
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Figure 3.108: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.165 (~1.5 λ) 

meters in radius r  = 10-5j for a thin sheet located in half of L = 3.3 (~30 

λ) meters). Amplitudes are in good agreement with HFSS as the incident 

angle is less than 50 degrees for both TE and TM. 
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Figure 3.109: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.165 (~1.5 λ) 

meters in radius r  = 10-5j for a thin sheet located in half of L = 3.3 (~30 

λ) meters). The phase shows a little mismatch for TE and TM, as the 

incident angle is less than 20 degrees. 

For a dielectric thin plate with a thickness 0.001 (~0.01 λ) meters at  = 

10-5j: 
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λ) meters). Amplitudes match well as the incident angle is less than 50 

degrees for both TE and TM. 

                  

                         TE                                                  TM                  

Figure 3.111: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.165 (~1.5 λ) meters 

in radius  = 10-5j for a thin plate located in half of L = 3.3 (~30 λ) 

meters). The phase shows mismatch as the incident angle is less than 20 

degrees. 

For a dielectric thin plate with a thickness of 0.01 (~0.1 λ) meters at  = 

10-5j: 
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Figure 3.112: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.165 (~1.5 λ) 

meters in radius  = 10-5j for a plate located in half of L = 3.3 (~30 λ) 

meters). Amplitudes match well as the incident angle is less than 30 

degrees for both TE and TM. 
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Figure 3.113: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.165 (~1.5 λ) meters in 

radius  = 10-5j for a thin plate located in half of L = 3.3 (~30 λ) meters). 

The phase shows mismatch as the incident angle is less than 20 degrees. 

The following figures compare all three different thicknesses: 
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                     TE                                                          TM 

Figure 3.114: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters, 0.001 (~0.01 λ) meters, and 

0.01 (~0.1 λ) meters in 3 different thicknesses by 0.165 (~1.5 λ) meters in 

radius  = 10-5j for plates located in half of L = 3.3 (~30 λ) meters). It 

appears that amplitude differs by about 10 dB when comparing 

thicknesses of 0.001 (~0.01 λ) meters and 0.01 (~0.1 λ) meters, and 

amplitude differs by about 20 dB when comparing thicknesses of 0.0001 

(~0.001 λ) meters and 0.001 (~0.01 λ) meters.  

3.5.2.2     Thin vs. thick for circular metal plates 

     When comparing examples of a small circular plate with a radius of 

0.03 (~0.3 λ) meters for different thickness, including 0.0003 (~0.003 λ) 

meters, 0.003 (~0.03 λ) meters, and 0.03 (~0.3 λ) meters located at origin, 

the amplitudes for different thickness are closer to one another. The phase 

terms are the same as those illustrated in Figure 3.8.  
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Figure 3.115: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0003 (~0.003 λ) meters in thickness by 0.03 (~0.3 λ) 

meters in radius for a conducting thin sheet located at origin). Amplitude 

differs by a few dB for both TE and TM. 

        

           TE                                                     TM 

Figure 3.116: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.003 (~0.03 λ) meters in thickness by 0.03 (~0.3 λ) 

meters in radius for a conducting thin plate located at origin). Amplitude 

differs by a few dB for both TE and TM. 
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Figure 3.117: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.03 (~0.3 λ) meters in thickness by 0.03 (~0.3 λ) meters 

in radius for a conducting thick plate located at origin). Amplitude 

matches well for TE as the incident angle is less than 40 degrees, and 

matches closely for TM as the incident angle is less than 20 degrees. 
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Figure 3.118: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.03 (~0.3 λ) meters and 0.003 (~0.03 λ) meters in 2 

different thicknesses by 0.03 (~0.3 λ) meters in radius for a conducting 

thick plate located at origin). Amplitude is greater for thicker plates when 

compared to thinner plates as a consequence of more penetration in 

thinner plates. 

The following figures compare all 3 different thicknesses: 
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                        TE                                                       TM 

Figure 3.119: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.03 (~0.3 λ) meters, 0.003 (~0.03 λ) meters, and 0.0003 

(~0.003 λ) meters in 3 different thicknesses by 0.03 (~0.3 λ) meters in 

radius for a conducting thick plate located at origin). HFSS shows little 

difference for varying thickness.  

     When thickness increases, HFSS simulation is close to the analytical 

results for both TE and TM for a smaller circular plate at 0.03 (~0.3 λ) 

meters in radius, but shows a small gap for other thicknesses. This is 

because HFSS is not suitable for electrically small objects. 

     In another example of a larger circular plate with a radius of 0.3 (~3 λ) 

meters located at origin, and at different thicknesses from 0.0002 (~0.002 

λ) meters, 0.002 (~0.02 λ) meters, and 0.02 (~0.2 λ) meters, the phase 

terms are the same as those illustrated in Figure 3.20. Amplitudes match 

well as the incident angle is less than 30 degrees for both TE and TM. 
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                      TE                                                     TM 

Figure 3.120: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0002 (~0.002 λ) meters in thickness by 0.3 (~3 λ) 

meters in radius for a conducting thin sheet located at origin). Amplitudes 

match well as the incident angle is less than 30 degrees for both TE and 

TM. 
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Figure 3.121: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.002 (~0.02 λ) meters in thickness by 0.3 (~3 λ) meters 

in radius for a conducting thin plate located at origin). Amplitudes match 

well as the incident angle is less than 30 degrees for both TE and TM. 
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Figure 3.122: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.02 (~0.2 λ) meters in thickness by 0.3 (~3 λ) meters in 

radius for a conducting plate located at origin). Amplitudes match well as 

the incident angle is less than 30 degrees for both TE and TM. 

The following figures compare all different thicknesses: 
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Figure 3.123: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.02 (~0.2 λ) meters, 0.002 (~0.02 λ) meters, and 0.0002 

(~0.002 λ) meters in 3 different thicknesses by 0.3 (~3 λ) meters in radius 

for conducting plates located at origin). Amplitudes match well for all 
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three thicknesses as the incident angle is less than 30 degrees for both TE 

and TM. 

     The plots shown above indicate that amplitudes for a conducting 

circular thicker plate are the same as a conducting sheet for several 

wavelengths in radius. This phenomenon is consistent with published 

research (Jenn 2005), and is due to the non-penetrative characteristic of 

PEC material. The analytical plots are almost the same as HFSS for a 

larger circular plate across all thicknesses at radius 0.3 (~3 λ) meters. The 

errors are obvious as the incident angle is above 50 degrees. 

3.5.2.3     Thin vs. thick for rectangular non-metal plates 

     For rectangular plates measuring 0.4 (~3.64 λ) meters by 0.6 (~5.45 λ) 

meters at = 2.15 with thicknesses of 0.01 (~0.1 λ) meters (Figure 3.93, 

Figure 3.94), 0.001 (~0.01 λ) meters, and 0.0001 (~0.001 λ) meters, 

amplitudes vary by about 20 dB for each scale change in thickness (ten 

times bigger from thin to thick) for both MATLAB and HFSS. 
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Figure 3.124: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.4 (~3.64 λ) 

meters by 0.6 (~5.45 λ) meters  = 2.15 for a rectangular thin plate 

located at origin). Amplitudes match well as the incident angle is less than 

50 degrees for both TE and TM. 
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Figure 3.125: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.4 (~3.64 λ) meters 

by 0.6 (~5.45 λ) meters  = 2.15 for a rectangular thin plate located at 

origin). The phase matches closely to both TE and TM. 
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Figure 3.126: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.4 (~3.64 λ) 

meters by 0.6 (~5.45 λ) meters r = 2.15 for a rectangular thin sheet 

located at origin). Amplitudes match closely to both TE and TM as the 

incident angle is less than 50 degrees. 
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Figure 3.127: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.4 (~3.64 λ) 

meters by 0.6 (~5.45 λ) meters  = 2.15 for a rectangular thin sheet 

located at origin). The phase matches closely to both TE and TM. 

The following figures compare all three different thicknesses: 
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                     TE                                                          TM 

Figure 3.128: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters, 0.001 (~0.01 λ) meters, and 

0.01 (~0.1 λ) meters in 3 different thicknesses by 0.4 (~3.64 λ) meters by 

0.6 (~5.45 λ) meters  = 2.15 for rectangular plates located at origin). 

Amplitudes vary by about 20 dB for each scale change in thickness (ten 

times bigger from thin to thick) for both MATLAB and HFSS. 

For different thicknesses at 0.01 (~0.1 λ) meters  = 10-5j, amplitudes 

have less than 10 dB or 20 dB differences between two plates. 
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Figure 3.129: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.22 (~2 λ) meters 

by 0.22 (~2 λ) meters  = 10-5j for a rectangular thick plate located at 

origin). Amplitudes match closely as the incident angle is less than 30 

degrees for both TE and TM. 
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Figure 3.130: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness by 0.22 (~2 λ) meters by 

0.22 (~2 λ) meters r  = 10-5j for a rectangular thick plate located at 

origin). The phase matches closely to both TE and TM. 

        

                 TE                                                        TM 

Figure 3.131: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.22 (~2 λ) 

meters by 0.22 (~2 λ) meters  = 10-5j for a rectangular thin plate 

located at origin). Amplitudes match closely as the incident angle is less 

than 30 degrees for both TE and TM. 
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Figure 3.132: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.001 (~0.01 λ) meters in thickness by 0.22 (~2 λ) meters by 

0.22 (~2 λ) meters  = 10-5j for a rectangular thin plate located at origin). 

The phase matches closely to both TE and TM. 
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Figure 3.133: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.22 (~2 λ) 

meters by 0.22 (~2 λ) meters  = 10-5j for a rectangular sheet plate 

located at origin). Amplitudes match closely as the incident angle is less 

than 50 degrees for both TE and TM. 
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Figure 3.134: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness by 0.22 (~2 λ) meters 

by 0.22 (~2 λ) meters  = 10-5j for a rectangular sheet located at origin). 

The phase matches closely to both TE and TM. 

The following figures compare all three different thicknesses: 
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Figure 3.135: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters, 0.001 (~0.01 λ) meters, and 

0.01 (~0.1 λ) meters in 3 different thicknesses by 0.22 (~2 λ) meters by 

0.22 (~2 λ) meters  = 10-5j for a rectangular plate located at origin). 

Amplitudes have less than a 10 dB difference between two plates at 0.001 
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(~0.01 λ) meters and 0.01 (~0.1 λ) meters thicknesses. The amplitude for a 

“sheet” at 0.0001 (~0.001 λ) meters in thickness is 20 dB or 30 dB lower 

than the other two plates.  

3.5.2.4     Thin vs. thick for rectangular metal plates 

The following are examples of a metal rectangular plate with a thickness 

of 0.01 (~0.1 λ) meters: 

           

                    TE                                                      TM 

Figure 3.136: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.01 (~0.1 λ) meters in thickness for a metal rectangular 

plate at a = 0.5 (~5 λ) meters, b = 0.5 (~5 λ) meters). They match well as 

the incident angle is less than 30~40 degrees for both TE and TM. 
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                     TE                                                        TM 

Figure 3.137: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.01 (~0.1 λ) meters in thickness for a metal rectangular 

plate at a = 0.5 (~5 λ) meters, b = 0.5 (~5 λ) meters). The phase matches 

closely for both TE and TM. 

        

                    TE                                                       TM 

Figure 3.138: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.001 (~0.01 λ) meters in thickness for a metal 

rectangular thin plate at a = 0.5 (~5 λ) meters, b = 0.5 (~5 λ) meters). 

Amplitudes match well as the incident angle is less than 40 degrees for 

both TE and TM. 

         

                       TE                                                        TM 

0 10 20 30 40 50 60 70 80 90
-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Incident angle-degrees

R
C

S
 (

 E
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS

0 10 20 30 40 50 60 70 80 90
-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Incident angle-degrees

R
C

S
 (

 H
 p

ol
ar

iz
at

io
n)

,d
B

sm
 

 

MATLAB

HFSS

0 10 20 30 40 50 60 70 80 90
-200

-150

-100

-50

0

50

100

150

200

Incident angle-degrees

R
C

S
 (

 E
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS

0 10 20 30 40 50 60 70 80 90
-200

-150

-100

-50

0

50

100

150

200

Incident angle-degrees

R
C

S
 (

 H
 p

ol
ar

iz
at

io
n)

,d
B

sm

 

 

MATLAB

HFSS



136 
 

Figure 3.139: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.001 (~0.01 λ) meters in thickness for a metal rectangular 

thin plate at a = 0.5 (~5 λ) meters, b = 0.5 (~5 λ) meters). The phase 

matches closely for both TE and TM. 
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Figure 3.140: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters in thickness for a metal 

rectangular thin sheet at a = 0.5 (~5 λ) meters, b = 0.5 (~5 λ) meters). 

Amplitudes match closely as the incident angle is less than 40 degrees for 

both TE and TM. 
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Figure 3.141: Phase comparison for TE and TM mode in MATLAB and 

HFSS (offset 0.0001 (~0.001 λ) meters in thickness for a metal rectangular 

thin sheet at a = 0.5 (~5 λ) meters, b = 0.5 (~5 λ) meters). The phase 

matches closely for both TE and TM. 

The following figures compare all three thicknesses:  

       

                  TE                                                    TM 

Figure 3.142: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (offset 0.0001 (~0.001 λ) meters, 0.001 (~0.01 λ) meters, and 

0.01 (~0.1 λ) meters in 3 different thicknesses by 0.5 (~5 λ) meters by 0.5 

(~5 λ) meters for metal rectangular plates located at origin). 

      Analytical results for the amplitude and phase of metal did not change. 

Theoretically, R→0 for perfect conducting plates, as all incident waves are 

reflected.  Resistance R of a plate is greater at  = 2.15 than resistance R 

at r  = 10-5j; therefore, RCS is higher at  r  = 10-5j. This means that 

more energy is stored in non-metal plates for higher R at  = 2.15. RCS 

with both MATLAB and HFSS simulation changed when the thickness 
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increased from 0.0001 (~0.001 λ) meters, 0.001 (~0.01 λ) meters, and to 

0.01 (~0.1 λ) meters. Amplitudes changed by approximately 20 dB 

differences when the thicknesses increased from 0.0001 (~0.001 λ) meters 

to 0.001 (~0.01 λ) meters, and by approximately 10 dB when the thickness 

increased from 0.001 (~0.01 λ) meters to 0.01 (~0.1 λ) meters = 10-5j 

for non-metal plates. 

      Both thin and thicker plates show errors between 60 to 90 degrees, 

which confirms that the edge effect is ignored by PO.   

3.6     Summary  

      For thin vs. thick plates, a difference of approximately 10 to 20 dB is 

observed as the thickness increases from 0.001 λ to 0.1 λ at 2.8 GHz for 

 = 2.15 or  = 10-5j. Analytical results are in good agreement with 

HFSS, which indicates that accuracy is sufficient. In general, as the 

thickness increases (no more than 0.01 (~0.1 λ) meters), the amplitude 

becomes higher for the same non-metal material. This is because sheet 

(~0.001 λ) is more penetrable than plates (~0.1 λ).    

      For metal vs. non-metal plates, the amplitude of metal is higher than 

non-metal. The differences (10 dB or 30 dB) between them depend on the 

relative permittivity of non-metal plates. This is because there is more 

reflection in metal plates when compared to non-metal plates. This fact 

can be extended to non-metal vs. non-metal with different relative 

r

r r
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permittivity. The resistance of a plate at  = 2.15 is higher than it is at  

= 10-5j, and the amplitude is lower by about 10 dB or 20 dB depending on 

the relative permittivity.   

     Surface impedance has restrictions:  a) more accurate results appear as 

the incident angle approaches the normal; b) Z s << 1; c) the surface is flat; 

and d) under the conditions  cos,1cos,  stt Z is used  to derive 

the reflection coefficient for non-metal plates. The analytical plots for all 

rectangular and circular non-metal plates in comparison to HFSS have 

demonstrated that more accurate results are observed when the incident 

angle is less than approximately 40 degrees, which is close to normal. 

These comparisons further confirmed the theoretical limitations described 

above.  

      In terms of computational efficiency, all small sizes for metal and non-

metal plates take a few seconds to simulate for both MATLAB and HFSS 

simulation tools. However, the computational time may vary from size to 

size for large objects. For thicker large plates (thickness >= 0.1 (~10 λ) 

meters, radius above 2 wavelength), HFSS may take one to several hours. 

For example, for a circular plate at radius = 3 λ, HFSS takes at least 30 

minutes to get the solution resolved for a thickness of = 0.001 (~0.01 λ) 

meters.  In this case, using MATLAB for calculations is the best choice. 

r r
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The same challenge will reappear for long and large radius cylinders in 

Chapter 4. 

      Finite cylindrical objects encounter challenges when “truncated” from 

infinite long cylinders. This requires the use of flat and electrically large 

surface plate-like endcaps by “truncating” equivalent surface current using 

PO. The broadside (curved surface) of a dielectric cylinder will be 

evaluated based on literature review (Wait 1955) in Chapter 4. The 

circular conducting and dielectric plates used in Chapter 3 will be added to 

cylinders in Chapter 4 to produce more accurate results for the scattering 

angle between 0-60 degrees. The challenges of modeling cylindrical 

objects are similar to those encountered modeling plate-like objects in PO-

based approximation. The edge effect will introduce the error by PO on 

the edge between endcap and broadside.  
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Chapter 4 

PO-based calculations of the RCS of cylindrical objects 

4.1     Review of standard results and current  

          implementation of these standard results (PO) 

      Based on the literature for cylinder-based RCS, researchers have 

presented different implementation frameworks. For example, 

a. Most papers described electromagnetic scattering between  two 

adjunct objects (Sarabandi 1994), multiple cylinder interaction 

(Elsherbeni 1992), or non-interaction multiple cylinders echo width 

(Henin 2007); 

b. The cylinders interact with rough surfaces (i.e. ground surface) (Chiu 

1999; Karam 1988); 

c. Most literature presented the scattering features of infinite long 

cylinders (Liou 1972). 

      Most of the literature (or textbook) begins with infinite long cylinders 

which can be directly applied to the boundary conditions of the interface 

between two media. Therefore, RCS modeling on cylindrical objects is 

commonly calculated as infinitely long for 2D solutions. No directly 

analytical answer to RCS prediction for the finite cylinder is found, 

especially in penetrable media. The 3D far-field RCS implementation for 

finite dielectric solutions will be further formulated. Fortunately, a clue for 
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finite formulation on a single circular cylinder was discovered. The 

scattering of oblique electromagnetic plane waves on a single dielectric 

circular cylinder (Wait 1955) and a conducting circular cylinder (Balanis 

2012) has been studied for many years, and is referenced often in literature. 

Both RCS formulations are performed by “truncating” the infinite 

dimension to finite geometry.  

4.2     Motivation for detailed analysis 

      Currently, sand and dust are considered to be electrically small 

spherical objects, and are modeled as spheroids near the Rayleigh region 

using the T-matrix method (Mishcheko 2000). Raindrops near the Mie 

scattering region are modeled as prolate and oblate spheroidal objects with 

flat surfaces using T-matrix (Bodine 2014); this has also been studied 

extensively.  

      When ka << 1 electrically small objects lying in the Rayleigh region, 

PO is not suitable. Therefore, it is necessary to distinguish which method 

is best to use for cylinders of varying sizes that are very small (0.01 (λ) 

wavelength to 0.1 (λ) in length, 0.0001 (λ) wavelength to 0.001 (λ) in 

radius). Conducting sphere calculations is an alternative way to replace the 

cylindrical objects in the Rayleigh region.  

      Away from the Rayleigh region, RCS modeling on cylindrical objects 

shows promise for representing electrically larger (D > λ) dimensions such 
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as stems, twigs and branches. Regardless, PO is not suitable for curved 

cylindrical broadside surfaces. 

      In electromagnetic theory, basic scattering fields are described from 

the Maxwell equations. When dealing with a cylinder or sphere, the 

Maxwell equations become more complicated in cylindrical and spherical 

coordinate systems when compared to Cartesian coordinate system. More 

specifically, the scattering field has to be involved in tackling the Henkel 

function, Bessel function, and any other polynomials to the second order 

for a curved surface.  

      The infinitely long conducting cylindrical formulation can be viewed 

as the starting point for understanding Maxwell’s equations in the 

cylindrical coordinate system in order to set up the geometry for solving 

the dielectric cylinder problem. The formulation for a conducting circular 

cylinder from Balanis’s book (section 11.5.3-11.5.4 in Chapter 11, 2002) 

is able to implement the RCS of cylindrical broadside. However, to obtain 

the RCS formulation of a single dielectric cylinder broadside, derivation 

by hand is necessary. Further, Maxwell’s equations in the cylindrical 

coordinate system are used to verify the coefficients for TE and TM 

polarization first based on research (Wait 1955), and then used as a model 

solution. As such, RCS for finite dielectric cylinder broadside is 

formulated by the definition of RCS in the far-field. In addition, by 

“truncating” equivalent surface currents in the radiation integral, the RCS 
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modeling of circular plates (endcaps) can be derived for a metal cylinder. 

Furthermore, by applying the surface impedance principle of PO, the RCS 

modeling of circular plates (endcaps) can be derived for a dielectric 

cylinder as well (derived and demonstrated in Chapter 3). Edge 

diffractions are not taken into account by PO.  

      After the formulation was created, the electrical behavior for selected 

small-size dielectric cylinders was tested. It was found that oblate spheroid 

is another choice for small cylinders in the Rayleigh region using T-matrix 

(Bodine 2014) calculations. Even further, because cylinders with 1 λ in 

length and radius are smaller than 0.5 λ (which lies in the Mie region), the 

results found were not accurate. 

4.2.1     Metal vs. Non-metal (dielectric) cylinders 

     Metal cylinders are also considered to be non-penetrable since most 

incident scattering is reflected from the conducting body with less 

refraction. Dielectric cylinders are considered to be penetrable media since 

dielectric properties cause the energy (stored) inside the cylinder body to 

be lost. Both cylinder RCS calculations are suitable to the length 1 λ, and 

become more accurate as cylinder length increases.   

4.2.2     Long vs. short cylinders  

      In this chapter, the analytical results are shown for comparison 

between HFSS and MATLAB for long (above 10 λ in length) and thin (0.1 

λ to 1.5 λ in radius) cylinders with and without endcaps, and thin sheet 
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results for short and fat cylinders. Based on the results for different cases 

described in this dissertation, a determination is made based on which 

technique is chosen. In most cases, PO is the best choice for electrically 

large, flat, cylindrical plate (endcaps) geometries.  

      Based on the comparison of simulation vs. analytical results, for thin 

cylinders longer than 5 λ in length and above 0.3 λ in radius, HFSS 

matches MATLAB well at the range from 60 to 90 degrees. The results 

still show a large gap for theta at the 0- to 60- degree range; endcaps for 

both metal and penetrable cylinders are added up to compensate for these 

technical deficiencies. The results with endcaps are much more accurate 

than those produced without endcaps. This further confirms that the 

analytical derivation by hand is correct. For dielectric circular plates 

(endcaps), PO is modified using the surface equivalent principle with IBC 

(impedance boundary condition), which is called the extension of PO. 

Both conducting and dielectric endcap formulations are derived and 

verified by adding them up to the broadside of corresponding cylinders.  

Since the centers of endcaps are displaced from the origin, a phase shift 

e^(j*k*l*cos(θ)) must be added to  the  amplitude of  a RCS  formulation 

for a plate located at half of the length (L) of the cylinder, centered at the 

origin as a target observed from far-field.  The results show that they 

match pretty well at 0 degrees between HFSS simulation and MATLAB. 

They present even overlap from each other for some selected sizes of 
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cylinders. By testing circular plates at r = 2.15 and r = 10-5j in Chapter 

3, when the thickness > 0.01 (~0.1 λ) meters for λ = 0.11 meters at 

frequency 2.8 GHz, a short cylinder with a radius that is at least the same 

as the thickness should be used instead. The thickness of 0.01 (~0.1 λ) 

meters is a point that distinguishes the plate and the short dielectric 

cylinder. 

4.3     Generic derivation for metal cylinders 

4.3.1      Generic derivation for metal cylinders broadside 

      Assume a TMz oblique incident plane wave traveling parallel to xz 

plane is incident upon a circular cylinder of a radius. (Balanis 2012)  

                                                                                                                (4.1) 

Using the transformation, the z component can be also expressed as  

                                                                                                                                       (4.2) 

 

The z component of the scattered field can be written as 
 
 

                                                                                                                         (4.3)                           
 

    The tangential component of the incident electrical field and scattered 

field are decomposed into     and    ,     and      , respectively. The boundary 

conditions in the cylindrical coordinate system are: 
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                                                                                                                         (4.4) 
 

                                                                                                                         (4.5) 
 

By applying the boundary above, the scattered field for TMz can be 

written as 

 

                                                                                                                         (4.6) 
 
 

                                                                                                                         (4.7) 
 
 

                                                                                                                         (4.8) 
 
 

                                                                                                                        (4.9) 
 

                                                                                                                      (4.10) 
                                                                               

                                                                                                                      (4.11)  
                                                 
 

                                                                                                                      (4.12) 
 

Then, applying the far-zone Henkel function and its derivative  
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The two-dimensional target (also called scattering width) can be expressed 

as 
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                                                                                                                                        (4.16) 

 

where                                                                                                                             

                                                                                                        n=0      

                                                                                       nǂ0                    (4.17)                                     

The three-dimensional radar cross section for oblique incident wave 

refers to two-dimensional scattering width and can be expressed as 

 

                                                                                                                  

   

 

 

 

                                                                                                                                        (4.18) 

 

Similarly, for the TEz oblique incidence plane wave scattering by 

conducting circular cylinder, the scattered fields can be expressed by the 

given incident magnetic field for an oblique plane wave traveling      
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                                                                                                                 (4.19)                                 

 

                                                                                                                                        (4.20) 

Following the same procedure by applying the Maxwell equations and        

boundary conditions of a cylindrical coordinate system, the E and H field        

can be obtained as follows: 
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Then, apply the Hankel function and its derivative in the far-zone scattered 

field: 
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                                                                                                  n=0     

                                                                                                   n≠0                      (4.28) 

                                                                                                 

 

                                                                                                                                        (4.29) 

 

      A phase shift 2/je  is added to the broadside of cylinder RCS 

amplitude. This appears to agree with HFSS. A phase shift cosjkle  is 

added to the amplitude of RCS for endcaps. 

4.3.2     Simulation vs. analytical results for metal large, thin cylinders 

             with and without endcaps 

      Conducting cylinders without endcaps with a size > 0.4 (~3.64 λ) 

meters in length and > 0.02 (~0.2 λ) meters in radius have amplitudes that 

show big gaps at 0 degrees without endcaps, but are in good agreement 

with HFSS with endcaps. Phase shows the same. 
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Figure 4.1: Amplitude comparison for TE and TM mode in MATLAB and 

HFSS (0.4 (~3.64 λ) meters in length by 0.02 (~0.2 λ) meters in radius for 

a conducting cylinder without endcap). Amplitudes overlap at the peak of 

90° for both TE and TM. 

            

                     TE                                                        TM 

Figure 4.2: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.4 (~3.64 λ) meters in length by 0.02 (~0.2 λ) meters in radius for 

a conducting cylinder without endcap). The phase shows mismatch for 

both TE and TM. 

For the same size conducting cylinder with endcap: 
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Figure 4.3: Amplitude comparison for TE and TM mode in MATLAB and 

HFSS (0.4 (~3.64 λ) meters in length by 0.02 (~0.2 λ) meters in radius for 

a conducting cylinder with endcap). Amplitude increases 70 dB in TE at 

0°.  Amplitude increases 16 dB in TM at 0°. 

         

                      TE                                                         TM 

Figure 4.4: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.4 (~3.64 λ) meters in length by 0.02 (~0.2 λ) meters in radius for 

a conducting cylinder with endcap). The phase matches closely for both 

TE and TM. 

For a conducting cylinder without endcap: 
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Figure 4.5: Amplitude comparison for TE and TM mode in MATLAB and 

HFSS (0.6 (~5.5 λ) meters in length by 0.03 (~0.3 λ) meters in radius for a 

conducting cylinder without endcap). Amplitudes overlap at the peak of 

90° but show big gaps at 0° for both TE and TM. 
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Figure 4.6: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.6 (~5.5 λ) meters in length by 0.03 (~0.3 λ) meters in radius for a 

conducting cylinder without endcap). The phase shows mismatch between 

0-60° for both TE and TM. 

For the same size conducting cylinder with endcap: 
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Figure 4.7: Amplitude comparison for TE and TM mode in MATLAB and 

HFSS (0.6 (~5.5 λ) meters in length by 0.03 (~0.3 λ) meters in radius for a 

conducting cylinder with endcap). Amplitude increases 80 dB in TE at 0°. 

Amplitude increases 15 dB in TM at 0°. 

           
              
            TE                                                                  TM 
 

Figure 4.8: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.6 (~5.5 λ) meters in length by 0.03 (~0.3 λ) meters in radius for a 

conducting cylinder with endcap). The phase matches well in both TE and 

TM. 

For a conducting cylinder without endcap: 
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Figure 4.9: Amplitude comparison for TE and TM mode in MATLAB and 

HFSS (0.8 (~7.27 λ) meters in length by 0.01 (~0.1 λ) meters in radius for 

a conducting cylinder without endcap). Amplitudes overlap at the peak of 

90°, but show big gaps at 0° for both TE and TM. 
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Figure 4.10: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.8 (~7.27 λ) meters in length by 0.01 (~0.1 λ) meters in radius for 

a conducting cylinder without endcap). The phase shows mismatch for TE 

and TM. 

For the same size conducting cylinder with endcap: 
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Figure 4.11: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.8 (~7.27 λ) meters in length by 0.01 (~0.1 λ) meters in radius 

for a conducting cylinder with endcap). Amplitude increases 50 dB in TE 

at 0°.	Amplitude increases 5 dB in TM at 0°. 
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Figure 4.12: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.8 (~7.27 λ) meters in length by 0.01 (~0.1 λ) meters in radius for 

a conducting cylinder with endcap). The phase matches closely for both 

TE and TM. 

For a conducting cylinder without endcap: 
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Figure 4.13: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.8 (~7.27 λ) meters in length by 0.03 (~0.3 λ) meters in radius 

for a conducting cylinder without endcap). Amplitudes overlap at the peak 

of 90°, but show big gaps at 0° for both TE and TM. 
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Figure 4.14: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.8 (~7.27 λ) meters in length by 0.03 (~0.3 λ) meters in radius for 

a conducting cylinder without endcap). The phase shows mismatch 

between 0-60° for both TE and TM. 

For the same size conducting cylinder with endcap: 
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Figure 4.15: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.8 (~7.27 λ) meters in length by 0.03 (~0.3 λ) meters in radius 

for a conducting cylinder with endcap). Amplitudes match closely for both 

TE and TM.  

        

                   TE                                                       TM 

Figure 4.16: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.8 (~7.27 λ) meters in length by 0.03 (~0.3 λ) meters in radius for 

a conducting cylinder with endcap). The phase matches well for TE, and 

matches closely for TM. 

For a conducting cylinder without endcap: 
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Figure 4.17: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.8 (~7.27 λ) meters in length by 0.04 (~0.36 λ) meters in 

radius for a conducting cylinder without endcap). Big gaps are observed at 

0° and overlap at 90° for both TE and TM. 

        

                     TE                                                         TM 

Figure 4.18: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.8 (~7.27 λ) meters in length by 0.04 (~0.36 λ) meters in radius 

for a conducting cylinder without endcap). The phase shows mismatch 

between 0-60°. 

For the same size conducting cylinder with endcap: 
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Figure 4.19: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.8 (~7.27 λ) meters in length by 0.04 (~0.36 λ) meters in 

radius for a conducting cylinder with endcap). Amplitudes match well for 

both TE and TM. 

             

                  TE                                                         TM 

Figure 4.20: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.8 (~7.27 λ) meters in length by 0.04 (~0.36 λ) meters in radius 

for a conducting cylinder with endcap). The phase matches well for both 

TE and TM. 

For a conducting cylinder without endcap: 
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Figure 4.21: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.8 (~7.27 λ) meters in length by 0.06 (~0.55 λ) meters in 

radius for a conducting cylinder without endcap). Amplitudes show big 

gaps at 0° and overlap at 90° for both TE and TM. 
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Figure 4.22: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.8 (~7.27 λ) meters in length by 0.06 (~0.55 λ) meters in radius 

for a conducting cylinder without endcap). The phase shows mismatch 

between 0-60° for both TE and TM. 

For the same size conducting cylinder with endcap: 
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Figure 4.23: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.8 (~7.27 λ) meters in length by 0.06 (~0.55 λ) meters in 

radius for a conducting cylinder with endcap). Amplitudes show good 

agreement with HFSS for both TE and TM. 
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Figure 4.24: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.8 (~7.27 λ) meters in length by 0.06 (~0.55 λ) meters in radius 

for a conducting cylinder with endcap). The phase shows good agreement 

with HFSS for both TE and TM. 

For a conducting cylinder without endcap: 
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Figure 4.25: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.011 (~0.1 λ) meters in radius 

for a conducting cylinder without endcap). Amplitudes show big gaps at 0° 

and overlap at 90° for both TE and TM. 
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Figure 4.26: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.011 (~0.1 λ) meters in radius for 

a conducting cylinder without endcap). The phase shows mismatch 

between 0-60° for both TE and TM. 

For the same size conducting cylinder with endcap: 
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Figure 4.27: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.011 (~0.1 λ) meters in radius 

for a conducting cylinder with endcap). Amplitudes have differences of 

less than 10 dB at 0° for both TE and TM. 
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Figure 4.28: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.011 (~0.1 λ) meters in radius for 

a conducting cylinder with endcap). The phase matches closely for both 

TE and TM. 

For a conducting cylinder without endcap: 
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Figure 4.29: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

for a conducting cylinder without endcap). Amplitudes show big gaps at 0° 

and overlap at 90° for both TE and TM. 
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Figure 4.30: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.055 (~0.5 λ) meters in radius for 

a conducting cylinder without endcap). The phase shows mismatch 

between 0-60° for both TE and TM.  

For the same size conducting cylinder with endcap: 
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Figure 4.31: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

for a conducting cylinder with endcap). Amplitudes show very few 

differences at 0° for both TE and TM. 
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Figure 4.32: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.055 (~0.5 λ) meters in radius for 

a conducting cylinder with endcap). The phase is in good agreement with 

HFSS for both TE and TM. 

For a conducting cylinder without endcap: 
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Figure 4.33: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.11 (~1 λ) meters in radius for 

a conducting cylinder without endcap). Amplitudes show big gaps at 0° 

and overlap at 90° for both TE and TM. 
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Figure 4.34: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.11 (~1 λ) meters in radius for a 

conducting cylinder without endcap). The phase shows mismatch between 

0-60° for both TE and TM. 

For the same size conducting cylinder with endcap: 
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Figure 4.35: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.11 (~1 λ) meters in radius for 

a conducting cylinder with endcap). Amplitudes almost overlap at 0⁰ for 

both TE and TM. 
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Figure 4.36: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.11 (~1 λ) meters in radius for a 

conducting cylinder with endcap). The phase is in good agreement with 

HFSS for both TE and TM. 

For a conducting cylinder without endcap: 
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Figure 4.37: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (3.3 (~30 λ) meters in length by 0.033 (~0.3 λ) meters in radius 

for a conducting cylinder without endcap). Big gaps are shown at 0° for 

both TE and TM. 
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Figure 4.38: Phase comparison for TE and TM mode in MATLAB and 

HFSS (3.3 (~30 λ) meters in length by 0.033 (~0.3 λ) meters in radius for 

a conducting cylinder without endcap). The phase shows mismatch 

between 0-60° for both TE and TM. 

For the same size conducting cylinder with endcap: 
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Figure 4.39: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (3.3 (~30 λ) meters in length by 0.033 (~0.3 λ) meters in radius 

for a conducting cylinder with endcap). Only a very slight amplitude 

difference is shown at 0⁰ for both TE and TM. 
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Figure 4.40: Phase comparison for TE and TM mode in MATLAB and 

HFSS (3.3 (~30 λ) meters in length by 0.033 (~0.3 λ) meters in radius for 

a conducting cylinder with endcap). The phase is in good agreement with 

HFSS for both TE and TM. 

For a conducting cylinder without endcap: 
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Figure 4.41: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (3.3 (~30 λ) meters in length by 0.165 (~1.5 λ) meters in radius 

for a conducting cylinder without endcap). Amplitudes overlap at the peak 

of 90°, but there are large gaps at 0° for both TE and TM. 

           

                        TE                                                       TM 

Figure 4.42: Phase comparison for TE and TM mode in MATLAB and 

HFSS (3.3 (~30 λ) meters in length by 0.165 (~1.5 λ) meters in radius for 

a conducting cylinder without endcap). The phase shows mismatch for 

both TE and TM.  

For the same size conducting cylinder with endcap: 
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Figure 4.43: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (3.3 (~30 λ) meters in length by 0.165 (~1.5 λ) meters in radius 

for a conducting cylinder with endcap). Amplitudes overlap at 0° for both 

TE and TM. 

            

                    TE                                                        TM 

Figure 4.44: Phase comparison for TE and TM mode in MATLAB and 

HFSS (3.3 (~30 λ) meters in length by 0.165 (~1.5 λ) meters in radius for 

a conducting cylinder with endcap). The phase is in good agreement with 

HFSS for both TE and TM. 

4.4     Generic derivation for dielectric cylinders 

4.4.1     Generic derivation for dielectric cylinders broadside 

      If we assume an incident plane wave is scattering obliquely on the 

infinite circular dielectric cylinder, then the z component of electric field 

is given by (Wait 1955): 

                                                                                                                                     (4.30) 
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The z component of the incident electric field can also be expressed as by 

applying the addition theorem 

                                                                                                                               (4.31) 

The z component of scattered field of the surrounding medium can be 

written                                            

                                                                                                                               (4.32) 

     

The Hankel function of the second kind of order n guarantees that the 

cylinder behaves properly at infinity. 

The z component of internal electric field is 

                                                                                                                               (4.33) 

 

Where the Bessel function of the first kind of order n makes sure that the 

electric field is finite at the origin. It follows that the z component of 

incident and internal magnetic fields are 

                    for TM mode                                                                          (4.34) 

 

                                                                                                                                        (4.35) 

where s
na and s

nb specify the magnitude of TM and TE mode of the        

surrounding medium of the cylinder; na and nb are the same except for the 

internal field. 
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                                                                                                                 (4.36) 
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The tangential fields can be calculated based on the equations above from 

the Maxwell equations in cylindrical coordinate system, which assures the 

simplicity and convenience for the geometry of a cylinder. 
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                                                                                                                                     (4.53) 
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as  ,the terms in z component of both E and H scattered field 

become zero after derivation since it is in the denominator. As such, only 

the other term is taken into account. 
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From (11-139 Balanis 2012) and for monostatic, 3D RCS is reduced to  
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3D co-pol TM mode RCS becomes 
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For TM cross-pol, process is similar, 

                                                                                                                 (4.61) 
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3D cross-pol TM mode RCS becomes 
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3D RCS becomes 

                                                                                                                                        (4.68) 

 

                                                                                                                                      

                                                                                                                                        (4.69) 

Similarly, the cross-pol of TE mode is 

                                                                                                              (4.70)      
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      In this case, TM cross-pol is not necessarily equal to the TE cross-pol. 

A phase shift 2/je  is added to the broadside of the cylinder RCS 

amplitude. This appears to be in good agreement with HFSS. 
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broadside amplitude equations above, the complete finite dielectric 

cylinder model has been established. Furthermore, by observing the 

amplitudes at 0 degrees of the incident angle for both conducting and 

dielectric cylindrical broadside, the conducting and surface impedance 

circular plates are added to endcaps. All plots indicate that amplitudes 

increase dramatically with endcaps. Some plots show overlap at 0 degrees 

of the incident angle. The phase term for endcaps added at the half length 

(L) of a cylinder is used to match the phase in the same location of the 

cylinder simulated in HFSS when the RCS cylinder with an endcap is 

calculated in the far-field. 

4.4.3     Simulation vs. analytical results for dielectric large, thin 

             cylinders with and without endcaps 

      Dielectric cylinders at r = 2.15 without and with endcaps 1.1 (~10 λ) 

meters in length by > 0.011 (~0.1 λ) meters in radius have amplitudes 

showing big gaps at 0 degrees but are in good agreement with HFSS with 

endcaps. Phase shows the same. 
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                      TE                                                       TM 

Figure 4.45: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.011 (~0.1 λ) meters in radius 

at r = 2.15 for a dielectric cylinder without endcap). Amplitudes have less 

than 20 dB differences at 0° for both TE and TM. 

         

                        TE                                                    TM 

Figure 4.46: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.011 (~0.1 λ) meters in radius at 

r = 2.15 for a dielectric cylinder without endcap). The phase shows 

mismatch for both TE and TM. 

For the same size dielectric cylinder at r = 2.15 with endcap: 
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Figure 4.47: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.011 (~0.1 λ) meters in radius 

at r = 2.15 for a dielectric cylinder with endcap). Amplitude almost 

overlaps at 0° for TE. Amplitude matches closely for TM. 

                

                       TE                                                      TM 

Figure 4.48: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.011 (~0.1 λ) meters in radius at 

r = 2.15 for a dielectric cylinder with endcap). The phase is in good 

agreement with HFSS for both TE and TM. 

For a dielectric cylinder at r = 10-5j without endcap: 
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Figure 4.49: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.011 (~0.1 λ) meters in radius 

at r = 10-5j for a dielectric cylinder without endcap). Big gaps are 

observed at 0° for both TE and TM. 

        

                     TE                                                        TM 

Figure 4.50: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.011 (~0.1 λ) meters in radius at 

r = 10-5j for a dielectric cylinder without endcap). The phase shows 

mismatch for both TE and TM. 

For the same size dielectric cylinder at r = 10-5j with endcap: 
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Figure 4.51: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.011 (~0.1 λ) meters in radius 

at r = 10-5j for a dielectric cylinder with endcap). Amplitude has less 

than 10 dB difference at 0° for TE. Amplitude has less than a 10 dB 

difference at 0° for TM. 

                         

                    TE                                                        TM 

Figure 4.52: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.011 (~0.1 λ) meters in radius at 

r = 10-5j for a dielectric cylinder with endcap). The phase is in good 

agreement with HFSS for both TE and TM. 

For a dielectric cylinder at r = 2.15 without endcap: 
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Figure 4.53: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

at r = 2.15 for a dielectric cylinder without endcap). Big gaps are 

observed at 0° for both TE and TM. 

         

                 TE                                                         TM 

Figure 4.54: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.055 (~0.5 λ) meters in radius at 

r = 2.15 for a dielectric cylinder without endcap). The phase shows 

mismatch for both TE and TM. 

For the same size dielectric cylinder at r = 2.15 with endcap: 
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Figure 4.55: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

at r = 2.15 for a dielectric cylinder with endcap). Amplitudes show a few 

dB differences for both TE and TM at 0°. 

        

                     TE                                                        TM 

Figure 4.56: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.055 (~0.5 λ) meters in radius at 

r = 2.15 for a dielectric cylinder with endcap). The phase is in good 

agreement with HFSS for both TE and TM. 

For a dielectric cylinder at r = 10-5j without endcap: 
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Figure 4.57: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

at r = 10-5j for a dielectric cylinder without endcap). Big gaps are 

observed at 0° for both TE and TM. 

        

                   TE                                                         TM 

Figure 4.58: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.055 (~0.5 λ) meters in radius at 

r = 10-5j for a dielectric cylinder without endcap). The phase shows 

mismatch between 0-60° for both TE and TM. 

For the same size dielectric cylinder at r = 10-5j with endcap: 
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Figure 4.59: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

at r = 10-5j for a dielectric cylinder with endcap). A couple of dB 

differences are observed for both TE and TM. 
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Figure 4.60: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.055 (~0.5 λ) meters in radius at 

r = 10-5j for a dielectric cylinder with endcap). The phase is in good 

agreement with HFSS for both TE and TM. 

For a dielectric cylinder at r = 2.15 without endcap: 
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Figure 4.61: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.11 (~1 λ) meters in radius at 

r = 2.15 for a dielectric cylinder without endcap). Big gaps are observed 

at 0° for both TE and TM. 

                  

                  TE                                                       TM 

Figure 4.62: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.11 (~1 λ) meters in radius at r = 

2.15 for a dielectric cylinder without endcap). The phase shows mismatch 

for both TE and TM. 

For the same size dielectric cylinder at r = 2.15 with endcap: 
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Figure 4.63: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.11 (~1 λ) meters in radius at 

r = 2.15 for a dielectric cylinder with endcap). Amplitudes have less than 

5 dB differences at 0° for both TE and TM. 

        

                    TE                                                        TM 

Figure 4.64: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.11 (~1 λ) meters in radius at r = 

2.15 for a dielectric cylinder with endcap). The phase is in good agreement 

with HFSS for both TE and TM. 

For a dielectric cylinder at r = 10-5j without endcap: 
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Figure 4.65: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.11 (~1 λ) meters in radius at 

r = 10-5j for a dielectric cylinder without endcap). Big gaps are observed 

at 0° for both TE and TM. 
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Figure 4.66: Phase comparison for TE and TM mode in MATLAB and 

HFSS (1.1 (~10 λ) meters in length by 0.11 (~1 λ) meters in radius at r = 

10-5j for a dielectric cylinder without endcap). The phase shows mismatch 

for both TE and TM. 

For the same size dielectric cylinder at r = 10-5j with endcap: 
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Figure 4.67: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.11 (~1 λ) meters in radius at 

r = 10-5j for a dielectric cylinder with endcap). Amplitudes are in good 

agreement with HFSS for both TE and TM. 
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Figure 4.68: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (1.1 (~10 λ) meters in length by 0.11 (~1 λ) meters in radius at 

r = 10-5j for a dielectric cylinder with endcap). Phase is in good 

agreement with HFSS for both TE and TM. 

For a dielectric cylinder at r = 2.15 without endcap: 
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Figure 4.69: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (3.3 (~30 λ) meters in length by 0.033 (~0.3 λ) meters in radius 

at r = 2.15 for a dielectric cylinder without endcap). Big gaps are 

observed at 0° for both TE and TM. 
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Figure 4.70: Phase comparison for TE and TM mode in MATLAB and 

HFSS (3.3 (~30 λ) meters in length by 0.033 (~0.3 λ) meters in radius at 

r = 2.15 for a dielectric cylinder without endcap). The phase shows 

mismatch for both TE and TM. 

For the same size dielectric cylinder at r = 2.15 with endcap: 
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Figure 4.71: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (3.3 (~30 λ) meters in length by 0.033 (~0.3 λ) meters in radius 

at r = 2.15 for a dielectric cylinder with endcap). Only a few amplitude 

differences are observed at 0° for both TE and TM. 
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Figure 4.72: Phase comparison for TE and TM mode in MATLAB and 

HFSS (3.3 (~30 λ) meters in length by 0.033 (~0.3 λ) meters in radius at 

r = 2.15 for a dielectric cylinder with endcap). The phase is in good 

agreement with HFSS for both TE and TM. 

For a dielectric cylinder at r = 10-5j without endcap: 
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Figure 4.73: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (3.3 (~30 λ) meters in length by 0.033 (~0.3 λ) meters in radius 

at r = 10-5j for a dielectric cylinder without endcap). Big gaps are 

observed at 0° for both TE and TM. 
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Figure 4.74: Phase comparison for TE and TM mode in MATLAB and 

HFSS (3.3 (~30 λ) meters in length by 0.033 (~0.3 λ) meters in radius at 

r = 10-5j for a dielectric cylinder without endcap). The phase shows 

mismatch for both TE and TM. 

For the same size dielectric cylinder at r = 10-5j with endcap: 
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Figure 4.75: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (3.3 (~30 λ) meters in length by 0.033 (~0.3 λ) meters in radius 

at r = 10-5j for a dielectric cylinder with endcap). Amplitudes have a 

very few dB difference at 0° for both TE and TM. 
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Figure 4.76: Phase comparison for TE and TM mode in MATLAB and 

HFSS (3.3 (~30 λ) meters in length by 0.033 (~0.3 λ) meters in radius at 

r = 10-5j for a dielectric cylinder with endcap). The phase is in good 

agreement with HFSS for both TE and TM. 

For a dielectric cylinder at r = 2.15 without endcap: 
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Figure 4.77: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (3.3 (~30 λ) meters in length by 0.165 (~1.5 λ) meters in radius 

at r = 2.15 for a dielectric cylinder without endcap). Big gaps are 

observed at 0° for both TE and TM. 
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Figure 4.78: Phase comparison for TE and TM mode in MATLAB and 

HFSS (3.3 (~30 λ) meters in length by 0.165 (~1.5 λ) meters in radius at 

r = 2.15 for a dielectric cylinder without endcap). The phase shows 

mismatch for both TE and TM. 

For the same size dielectric cylinder at r = 2.15 with endcap: 
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Figure 4.79: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (3.3 (~30 λ) meters in length by 0.165 (~1.5 λ) meters in radius 

at r = 2.15 for a dielectric cylinder with endcap). Amplitudes show 

differences of less than 10 dB at 0° for both TE and TM. 
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Figure 4.80: Phase comparison for TE and TM mode in MATLAB and 

HFSS (3.3 (~30 λ) meters in length by 0.165 (~1.5 λ) meters in radius at 

r = 2.15 for a dielectric cylinder with endcap). The phase is in good 

agreement with HFSS for both TE and TM. 

For a dielectric cylinder at r = 10-5j without endcap: 

         

                     TE                                                        TM 

0 10 20 30 40 50 60 70 80 90
-200

-150

-100

-50

0

50

100

150

200

Incident angle-degrees

R
C

S
 (

 E
 p

ol
ar

iz
at

io
n 

co
-p

o)
,d

B
sm

 

 

MATLAB

HFSS

0 10 20 30 40 50 60 70 80 90
-200

-150

-100

-50

0

50

100

150

200

Incident angle-degrees

R
C

S
 (

 H
 p

ol
ar

iz
at

io
n 

co
-p

o)
,d

B
sm

 

 

MATLAB

HFSS

0 10 20 30 40 50 60 70 80 90
-100

-80

-60

-40

-20

0

20

Incident angle-degrees

R
C

S
 (

 E
 p

ol
ar

iz
at

io
n 

co
-p

o)
,d

B
sm

 

 

MATLAB

HFSS

0 10 20 30 40 50 60 70 80 90
-120

-100

-80

-60

-40

-20

0

20

Incident angle-degrees

R
C

S
 (

 H
 p

ol
ar

iz
at

io
n 

co
-p

o)
,d

B
sm

 

 
MATLAB

HFSS



198 
 

Figure 4.81: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (3.3 (~30 λ) meters in length by 0.165 (~1.5 λ) meters in radius 

at r = 10-5j for a dielectric cylinder without endcap). Big gaps are 

observed at 0° for both TE and TM. 
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Figure 4.82: Phase comparison for TE and TM mode in MATLAB and 

HFSS (3.3 (~30 λ) meters in length by 0.165 (~1.5 λ) meters in radius at 

r = 10-5j for a dielectric cylinder without endcap). The phase shows 

mismatch for both TE and TM. 

For the same size dielectric cylinder at r = 10-5j with endcap: 
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Figure 4.83: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (3.3 (~30 λ) meters in length by 0.165 (~1.5 λ) meters in radius 

at r = 10-5j for a dielectric cylinder with endcap). Amplitudes have 

differences of less than 5 dB at 0° for both TE and TM. 
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Figure 4.84: Phase comparison for TE and TM mode in MATLAB and 

HFSS (3.3 (~30 λ) meters in length by 0.165 (~1.5 λ) meters in radius at 

r = 10-5j for a dielectric cylinder with endcap). The phase is in good 

agreement with HFSS for both TE and TM.  

4.5     Short and fat dielectric cylinders 

The relatively short and fat cylinders are 0.11 (~1 λ) meters in length 

by 0.055 (~0.5 λ) meters in radius; 0.1 (~1 λ) meters in length by 0.11 (~1 

λ) meters  in radius; 0.1 (~1 λ) meters in length by 0.33 (~3 λ) meters in 

radius. The discussion begins with small dimensions and moves to larger 

dimensions at different relative permittivity, as shown below. 
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4.5.1     Analytical vs. simulated results with and without  endcaps 

Thickness is the same as diameter in a dielectric cylinder with radius = 0.5 

λ at r = 2.15 without endcap: 

         

                  TE                                                          TM 

Figure 4.85: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.11 (~1 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

at r = 2.15 for a dielectric cylinder without endcap). Big gaps are 

observed at 0° for both TE and TM. 
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Figure 4.86: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.11 (~1 λ) meters in length by 0.055 (~0.5 λ) meters in radius at 
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r = 2.15 for a dielectric cylinder without endcap). The phase shows 

mismatch for both TE and TM. 

For the same size dielectric cylinder with radius = 0.5 λ at r = 2.15 with 

endcap: 

        

                       TE                                                      TM 

Figure 4.87: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.11 (~1 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

at r = 2.15 for a dielectric cylinder with endcap). Amplitudes have a few 

dB differences for both TE and TM. 
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Figure 4.88: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.11 (~1λ) meters in length by 0.055 (~0.5 λ) meters in radius at r
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= 2.15 for a dielectric cylinder with endcap). The phase matches closely 

for both TE and TM. 

For a dielectric cylinder with radius = 0.5 λ at r = 10-5j without endcap: 

         

                     TE                                                        TM 

Figure 4.89: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.11 (~1 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

at r = 10-5j for a dielectric cylinder without endcap). Amplitudes show 

big gaps at 0° for both TE and TM. 
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Figure 4.90: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.11 (~1 λ) meters in length by 0.055 (~0.5 λ) meters in radius at 

r = 10-5j for a dielectric cylinder without endcap). The phase shows 

mismatch for both TE and TM. 

For the same size dielectric cylinder with radius = 0.5 λ at r = 10-5j with 

endcap: 

        

                     TE                                                        TM 

Figure 4.91: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.11 (~1 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

at r = 10-5j for a dielectric cylinder with endcap). Amplitudes show a few 

dB differences for both TE and TM. 
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Figure 4.92: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.11 (~1 λ) meters in length by 0.055 (~0.5 λ) meters in radius at 

r = 10-5j for a dielectric cylinder with endcap). The phase matches 

closely for both TE and TM. 

For the same size metal cylinder with radius = 0.5 λ at r = 106 without 

endcap: 

         

                       TE                                                      TM 

Figure 4.93: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.11 (~1 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

at r = 106 for a metal cylinder without endcap). Big gaps are observed at 

0° for both TE and TM. 
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                      TE                                                       TM 

Figure 4.94: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.11 (~1 λ) meters in length by 0.055 (~0.5 λ) meters in radius at 

r = 106 for a metal cylinder without endcap). The phase shows mismatch 

for both TE and TM. 

For the same size metal cylinder with radius = 0.5 λ at r = 106 with 

endcap: 

           

                         TE                                                     TM 

Figure 4.95: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.11 (~1 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

at r = 106 for a metal cylinder with endcap). Amplitudes match well at 0° 

and 90°. 
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                       TE                                                         TM 

Figure 4.96: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.11 (~1 λ) meters in length by 0.055 (~0.5 λ) meters in radius at 

r = 106 for a metal cylinder with endcap). The phase matches closely for 

both TE and TM. 

For a dielectric cylinder with a diameter two times bigger than the 

thickness with radius = 0.11 (~1 λ) meters at r = 10-5j without endcap: 
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Figure 4.97: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at 
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r = 10-5j for a dielectric cylinder without endcap). Big gaps are observed 

at 0° for both TE and TM. 

         

                      TE                                                        TM 

Figure 4.98: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at r = 

10-5j for a dielectric cylinder without endcap). The phase shows a gap at 0° 

for TE, and matches closely for TM. 

For a dielectric cylinder with a diameter two times bigger than the 

thickness with radius = 0.11 (~1 λ) meters at r =10-5j with endcap: 
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Figure 4.99: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at 
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r = 10-5j for a dielectric cylinder with endcap). Amplitudes match closely 

for both TE and TM. 
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Figure 4.100: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at r = 

10-5j for a dielectric cylinder with endcap). The phase matches closely for 

both TE and TM. 

For a dielectric cylinder with a diameter two times bigger than the 

thickness with radius = 0.11 (~1 λ) meters at r = 2.15 without endcap: 
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Figure 4.101: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at 

r = 2.15 for a dielectric cylinder without endcap). Big gaps are observed 

at 0° for both TE and TM. 
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Figure 4.102: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at r = 

2.15 for a dielectric cylinder without endcap). Big gaps are observed at 0° 

and 90° for both TE and TM. 

For a dielectric cylinder with a diameter two times bigger than the 

thickness with radius = 0.11 (~1 λ) meters at r = 2.15 with endcap: 
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Figure 4.103: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at 

r = 2.15 for a dielectric cylinder with endcap). Gaps appear at 90° for 

both TE and TM. 

         

                      TE                                                      TM 

Figure 4.104: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at r = 

2.15 for a dielectric cylinder with endcap). Gaps appear at 90° for both TE 

and TM. 
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Figure 4.105: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at 
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r = 106 for a metal cylinder without endcap). Big gaps are observed at 0° 

for both TE and TM. 
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Figure 4.106: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at r = 

106 for a metal cylinder without endcap). Big gaps are observed at 0° for 

both TE and TM. 
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Figure 4.107: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at 

r = 106 for a metal cylinder with endcap). Big gaps are observed at 0° for 

both TE and TM. 
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Figure 4.108: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at r = 

106 for a metal cylinder with endcap). Big gaps are observed at 0° for both 

TE and TM. 

For a dielectric cylinder with radius = 1.5 λ at r = 2.15 without endcap: 

        

                     TE                                                        TM 

Figure 4.109: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.165 (~1.5 λ) meters in radius 

at r = 2.15 for a dielectric cylinder without endcap). Amplitudes show 

large gaps for both TE and TM. 
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Figure 4.110: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.1 (~1 λ) meters in length by 0.165 (~1.5 λ) meters in radius at r

= 2.15 for a dielectric cylinder without endcap). The phase shows a big 

gap for both TE and TM. 

For a dielectric cylinder with radius = 1.5 λ at r = 2.15 with endcap: 

        

                    TE                                                        TM 

Figure 4.111: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.165 (~1.5 λ) meters in radius 

at r = 2.15 for a dielectric cylinder with endcap). Amplitudes have a few 

dB differences at 0° for both TE and TM. 
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Figure 4.112: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.1 (~1 λ) meters in length by 0.165 (~1.5 λ) meters in radius at r

= 2.15 for a dielectric cylinder with endcap). The phase matches closely at 

0° for both TE and TM. 

For a dielectric cylinder with radius = 1.5 λ at r = 10-5j without endcap: 

         

                     TE                                                        TM 

Figure 4.113: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.165 (~1.5 λ) meters in radius 

at r = 10-5j for a dielectric cylinder without endcap). Amplitudes show 

big gaps at 0° for both TE and TM. 
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Figure 4.114: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.1 (~1 λ) meters in length by 0.165 (~1.5 λ) meters in radius at r

=10-5j for a dielectric cylinder without endcap). The phase shows a big 

gap at 0° for both TE and TM. 

For a dielectric cylinder with radius = 1.5 λ at r = 10-5j with endcap: 
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Figure 4.115: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.165 (~1.5 λ) meters in radius 

at r = 10-5j for a dielectric cylinder with endcap). Amplitudes are in good 

agreement with HFSS for both TE and TM. 
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Figure 4.116: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.1 (~1 λ) meters in length by 0.165 (~1.5 λ) meters in radius at r

= 10-5j for a dielectric cylinder with endcap). The phase is in good 

agreement with HFSS for both TE and TM. 

For a dielectric cylinder with radius = 3 λ at r = 2.15 without endcap: 
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Figure 4.117: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.33 (~3 λ) meters in radius at 

r = 2.15 for a dielectric cylinder without endcap). Big gaps are observed 

at 0° for both TE and TM. 
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Figure 4.118: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.1 (~1 λ) meters in length by 0.33 (~3 λ) meters in radius at r = 

2.15 for a dielectric cylinder without endcap). The phase shows mismatch 

for both TE and TM. 

For the same size dielectric cylinder with radius = 3 λ at r = 2.15 with 

endcap: 
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Figure 4.119: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.33 (~3 λ) meters in radius at 
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r = 2.15 for a dielectric cylinder with endcap).  Amplitudes have a few 

dB differences at 0° for both TE and TM. 

         

                      TE                                                       TM 

Figure 4.120: Phase comparison for TE and TM mode in MATLAB and 

HFSS (0.1 (~1 λ) meters in length by 0.33 (~3 λ) meters in radius at r = 

2.15 for a dielectric cylinder with endcap). The phase is in good agreement 

with HFSS for both TE and TM. 

4.5.2     Comparing short cylinders to thin sheet results  

      Thin sheets measuring 0.00011 (~0.001 λ) meters in depth by 0.055 

(~0.5 λ) meters in radius have a thickness that is 1000 times smaller than 

the thickness of a short dielectric cylinder measuring 0.11 meters by 0.055 

meters. The length of the same dielectric cylinder is also 2 times bigger 

than the radius at r = 10-5j. when comparing the two, amplitude of a thin 

sheet (Figure 3.41) is lower than a short dielectric cylinder by about 25 dB 

for both TE and TM, as shown in Figure 4.121; and amplitude for a thin 

sheet (Figure 3.39) is lower than a short dielectric cylinder by about 40 dB 
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at r = 2.15 for both TE and TM, as shown in Figure 4.122. Amplitude for 

a metal thin sheet (Figure 3.9) overlaps at 0° with a metal cylinder, but has 

a gap with a metal cylinder at 90°, as shown in Figure 4.123. 

         

                  TE                                                          TM 

Figure 4.121: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.11 (~1 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

at r = 10-5j for a dielectric cylinder with endcap in comparison to a sheet 

0.00011 (~0.001 λ) meters in thickness by 0.055 (~0.5 λ) meters in radius). 

Amplitude shows 25 dB differences for both TE and TM. 
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Figure 4.122: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.11 (~1 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

at r = 2.15 for a dielectric cylinder with endcap in comparison to a sheet 

0.00011 (~0.001 λ) meters in thickness by 0.055 (~0.5 λ) meters in radius). 

Amplitudes show 40 dB differences for both TE and TM. 
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Figure 4.123: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.11 (~1 λ) meters in length by 0.055 (~0.5 λ) meters in radius 

at r = 10^6 for a metal cylinder with endcap in comparison to a sheet 

0.00011 (~0.001 λ) meters in thickness by 0.055 (~0.5 λ) meters in radius). 

Amplitudes for a metal thin sheet overlap with a metal cylinder at 0°, but 

have a gap with a metal cylinder at 90° for both TE and TM. 
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by 0.11 (~1 λ) meters in radius with a  length that  is the same as radius at 
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r = 10-5j. When comparing the two, the amplitude of a thin sheet (Figure 

3.43) is lower by about 30 dB for TE and TM when compared to a short 

cylinder, as shown in Figure 4.124; and amplitude for a thin sheet (Figure 

3.80) is lower by about 40 dB at r = 2.15 for TE and TM when compared 

to a short cylinder, as shown in Figure 4.125. Amplitudes for a metal thin 

sheet (Figure 3.11) overlap at 0° with a metal cylinder, but show a gap 

with a metal cylinder at 90 °, as shown in Figure 4.126. 

         

                      TE                                                       TM 

Figure 4.124: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at 

r = 10-5j for a dielectric cylinder with endcap in comparison to a sheet 

0.0001 (~0.001 λ) meters in thickness by 0.11 (~1 λ) meters in radius). 

Amplitudes differ by about 30 dB for both TE and TM. 
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                    TE                                                         TM 

Figure 4.125: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at 

r = 2.15 for a dielectric cylinder with endcap in comparison to a sheet 

0.0001 (~0.001 λ) meters in thickness by 0.11 (~1 λ) meters in radius). 

Amplitudes differ by about 40 dB for both TE and TM. 
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Figure 4.126: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.11 (~1 λ) meters in radius at 

r = 10^6 for a metal cylinder with endcap in comparison to a sheet 

0.0001 (~0.001 λ) meters in thickness by 0.11 (~1 λ) meters in radius). 
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Amplitudes for a metal thin sheet overlap with a metal cylinder at 0°, but 

show a gap with a metal cylinder at 90° for both TE and TM. 

     When comparing a thin sheet 0.0001 (~0.001 λ) meters in depth by 

0.165 (~1.5 λ) meters in radius whose thickness is 1000 times smaller than 

the thickness of a short dielectric cylinder that measures 0.1 (~1 λ)  meters 

in thickness by 0.165 (~1.5 λ) meters in radius which its length is 0.6 

times smaller than radius at r = 10-5j, amplitude of a thin sheet (Figure 

3.108) is lower by about 25-30 dB for both TE and TM when compared to 

a short cylinder, as shown in Figure 4.127; and amplitude for a thin sheet 

(Figure 3.102) is lower by about 40 dB at r = 2.15 for both TE and TM 

when compared to  a short cylinder, as shown in Figure 4.128. Amplitudes 

for a metal thin sheet (Figure 3.17) overlap at 0° with a metal cylinder, but 

a gap is apparent with a metal cylinder at 90°, as shown in Figure 4.129. 

        

                   TE                                                        TM 

Figure 4.127: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.165 (~1.5 λ) meters in radius 
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at r = 10-5j for a dielectric cylinder with endcap in comparison to a sheet 

0.0001 (~0.001 λ) meters in thickness by 0.165 (~1.5 λ) meters in radius). 

Amplitudes differ by about 25-30 dB for both TE and TM. 

         

                      TE                                                       TM 

Figure 4.128: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.165 (~1.5 λ) meters in radius 

at r = 2.15 for a dielectric cylinder with endcap in comparison to a sheet 

0.0001 (~0.001 λ) meters in thickness by 0.165 (~1.5 λ) meters in radius). 

Amplitudes differ by about 40 dB for both TE and TM. 
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Figure 4.129: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.165 (~1.5 λ) meters in radius 

at r = 10^6 for a metal cylinder with endcap in comparison to a metal 

sheet 0.0001 (~0.001 λ) meters in thickness by 0.165 (~1.5 λ) meters in 

radius). Amplitudes for a metal thin sheet overlap with a metal cylinder at 

0°, but have gap with a metal cylinder at 90° for both TE and TM. 

     For a thin sheet (Figure 3.45) that measures 0.0002 (~0.002 λ) meters 

in depth by 0.33 (~3 λ)  meters in radius, its thickness is 500 times smaller 

than the thickness of a short dielectric cylinder, which measures  0.1 (~1 λ) 

meters in thickness by 0.33 (~3 λ) meters in radius with a  length 0.3 times 

smaller than radius at r = 2.15. When comparing the two, amplitude for a 

thin sheet is lower than a short dielectric cylinder by about 30 dB at r = 

2.15 for both TE and TM.  

        

                   TE                                                    TM 

Figure 4.130: Amplitude comparison for TE and TM mode in MATLAB 

and HFSS (0.1 (~1 λ) meters in length by 0.33 (~3 λ) meters in radius at 

0 10 20 30 40 50 60 70 80 90
-120

-100

-80

-60

-40

-20

0

20

Incident angle-degrees

R
C

S
 (

 E
 p

ol
ar

iz
at

io
n 

co
-p

o)
,d

B
sm

 

 

MATLAB sheet th=0.0002m, er=2.15

HFSS sheet th=0.0002m, er=2.15

MATLAB cylinder th=0.1m, er=2.15

HFSS cylinder th=0.1m,er=2.15

0 10 20 30 40 50 60 70 80 90
-250

-200

-150

-100

-50

0

50

Incident angle-degrees

R
C

S
 (

 E
 p

ol
ar

iz
at

io
n 

co
-p

o)
,d

B
sm

 

 

MATLAB sheet th=0.0002m, er=2.15

HFSS sheet th=0.0002m, er=2.15

MATLAB cylinder th=0.1m, er=2.15

HFSS cylinder th=0.1m, er=2.15



226 
 

r = 2.15 for a dielectric cylinder with endcap in comparison to a sheet 

0.0002 (~0.002 λ) meters in thickness by 0.33 (~3 λ) meters in radius). 

Amplitudes differ by 30 dB for both TE and TM. 

4.5.3     Summary 

     For a limiting case, as the skin depth th→0, surface resistivity Rs → , 

the reflection coefficient would be zero. Resistive thin sheets have a 

penetrable surface; here thickness = 0.001 λ or 0.002 λ << λ resulting in 

more transmission going through the material and less reflection.  

     A short cylinder for r = 10-5j shows better results than r = 2.15 in 

terms of overlapping for all sizes tested. This is because cylindrical 

material property on broadside mainly contributes to the RCS of the whole 

body with specular scattering domination and depolarization 

characteristics. However, a thin sheet still has a gap at 90 degrees due to 

edge effect not being taken into account by PO. 

     The amplitude of a dielectric thin sheet is lower by 20-40 dB when 

compared to a short cylinder at different relative permittivity. This is 

because sheets are more penetrable than cylinders.  

     The results also show that metal thin sheet analytical results match 

HFSS well at 0°, and the same fact seems to apply to the metal cylinders. 

This is because of the incident wave reflecting from a conducting body 

with a reflection coefficient near 1. A metal thin sheet behaves the same as 
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a metal plate (Jenn 2005) since there is no possible transmission through 

the material. However, as the incident angle approaches to 90 degrees, a 

gap appears for a metal sheet because the edge effect is ignored by PO. In 

this scenario, a metal cylinder is a better choice when compared to a metal 

thin sheet for modeling circular shaped RCS. 

       It is better to analyze the dimension of an object between 0.01 λ and 

50 λ comparable to the wavelength by full wave simulation such as HFSS. 

All comparison to MATLAB in this dissertation shows that HFSS gives 

more accurate results. Both HFSS and analytical methods are more 

suitable at this dimension range. For radius > 1 λ, all plots for MATLAB 

simulation take a few minutes, while HFSS takes at least 30 minutes for 

short cylinders (0.1 (~1 λ ) meters in length), and may take several days 

for longer cylinders (3.3 (~30 λ)  meters in length by 0.165 (~1.5 λ)  

meters in radius). MATLAB takes less time than HFSS, but HFSS 

presents more precise results. 
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Chapter 5 

Example applications 

5.1     Leaf library generation examples 

5.1.1     Describe and discuss the coordinate transformations to  

             generate a library 

      The purpose of the coordinate transformation system is to set up a 

laboratory reference frame from which the orientation of the object can be 

illustrated. The direction of polarization E and H fields and wave vector k 

can also be specified with it.  

      The radar is located at the origin of the spherical polar (R, θ, φ) 

coordinate system, where R is the distance between the source and 

observer. Figure 1 (Jenn 2005) specifies the electromagnetic wave in the 

spherical coordinate system, and Figure 2 (Mishchenko 2000) illustrates 

the transformation of the laboratory reference system xyz into the radar 

reference coordinate system x′ y′ z′. If p represents a vector in the “radar” 

system and P represents a vector in the “local” system, the transformation 

relationship between the two vectors using T matrix are P=Tp.  We 

specify radar H-pol pointing in the X-direction denoted as x_ hat, and V-

pol pointing in the Y-direction denoted as y_ hat. Based on the 

transformation relationship, the local polarizations can be transformed to 

the radar scattering polarizations. 
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   Figure 5.1                                          Figure 5.2 

 

Figure 5.1: Spherical coordinate system used to specify the direction and 

the polarization state of a transverse electromagnetic wave. (Mishchenko 

2000) 

Figure 5.2: Transformation of the laboratory reference system xyz into the 

particle reference frame x′ y′ z′. (Mishchenko 2000) 

Figure 5.2 can also be illustrated in detail with three axis (xyz) rotation as 

a whole transformation of the coordinate system.  
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Figure 5.3: Rotation of three axises for radar-laboratory tansformation system. 
 

 
 

 
Figure 5.4: Rotation of three axises for radar-laboratory tansformation system. 

 

      There are three steps to show how the transformations system works. 

Rotating three Euler angles of rotation α, β and γ for each time, the  
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laboratory reference system xyz can be translated into the radar system x′ 

y′ z′.  

      First, by rotating the z axis, which is accomplished by moving the x 

and y axis through the angle α counter-clockwise in the x y plane, the x 

and y axis become a new x″ (α) axis and a new y″ (α) axis. 

     Second, by rotating the new y″ (α) axis, which is accomplished by 

moving the z axis and the new x″ (α) axis through the angle β counter-

clockwise in the z x″ (α) plane, the z axis and the x″ (α) axis become the 

new z′ (β) and the new x‴ (β). The z′ (β) is therefore simplified to z′ axis. 

  Third, by rotating the new z′ (β) axis, which is accomplished by 

moving the new x‴ (β) and the new y″ ( α) axis through angle γ counter-

clockwise in the x‴ (β) y″ ( α) plane, the new x‴ (β) and the new y″ ( α) 

axis become x′ (γ) and y′ (γ), simplified to  x′ axis and y′ axis. 

  Here, x″ (α), y″ (α), x‴ (β) are used as transaction states for each step 

of the movement of each axis.  

5.1.2     Analytical simulation for a single leaf 

      The complex RCS of scattering matrix S with four complex elements 

is denoted to specify the amplitude of co-pol and cross-pol for TE 

(horizontal) and TM (vertical) scattering polarization return signal, as 

shown below (Kahny 1988):  
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Figure 5.5: Leaf rotations under the coordinate transformation system. 

      The analytical simulation for the different sizes of a single leaf (from 

big to small), with all polarizations under the radar transformation systems 

at 2.8 GHz and 10 GHz, are shown below. The “real” leaf combines two 

individual objects: a dielectric thin sheet to simulate a leaf body and a long 

thin cylinder to simulate a stem. FEKO simulations are followed by each 

analytical simulation for the purpose of comparison. The results show that 

they are very similar for the same size. 

Co-pol and Cross-pol polarization of a leaf at 2.8 GHz 
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Figure 5.6: An example of the RCS database for a maple leaf, which is 

comprised of the co-pol amplitude of E polarization SHH (top), co-pol 

amplitude of H polarization SVV (middle), and cross-pol amplitude of E 

polarization SHV (bottom) of far-field RCS for a resistive sheet with stem 

(cylinder) (width = 14 cm, height = 22 cm, thickness = 0.2 mm, stem 

length = 280 mm, stem diameter = 3.0 mm, moisture content: 80%) at 2.8 

GHz. The red and blue arrows represent the horizontal and vertical 

polarizations, respectively. 

FEKO simulation: 
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Figure 5.7: FEKO simulation for RCS of the same size leaf at a different 

polarization angle (total, theta, phi) at 2.8 GHz. 
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Co-pol and Cross-pol polarization of a leaf at 10 GHz 

      

  

 

Figure 5.8: An example of the RCS database for a maple leaf, which is 

comprised of the co-pol amplitude of E polarization SHH (top), co-pol 

amplitude of H polarization SVV (middle), and cross-pol amplitude of E 

polarization SHV (middle) and H polarization SVH (bottom) of far-field 

RCS for a resistive sheet with a stem (cylinder) (width = 14 cm, height = 

22 cm, thickness = 0.2 mm, stem length = 280 mm, stem diameter = 3.0 

mm, moisture content: 80%) at 10 GHz. The red and blue arrows represent 

the horizontal and vertical polarizations, respectively. 

FEKO simulation: 
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Figure 5.9: FEKO simulation for the RCS of the same size leaf at a 

different polarization angle (total, theta, phi) at 10 GHz. 

         Co-pol and Cross-pol polarization of a leaf at 2.8 GHz 
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Figure 5.10: An example of the RCS database for a leaf, which is 

comprised of the co-pol amplitude of E polarization SHH (top), co-pol 

amplitude of H polarization SVV (middle), and cross-pol amplitude of E 

polarization SHV (bottom) of far-field RCS for a resistive sheet with stem 

(cylinder) (width = 6 cm, height = 8 cm, thickness = 0.2 mm, stem length 

= 120 mm, stem diameter = 1.5 mm, moisture content: 80%) at 2.8 GHz. 

The red and blue arrows represent the horizontal and vertical polarizations, 

respectively.  (Cheong, Bodine, Zhu et al. 2015) 

FEKO simulation: 
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Figure 5.11: FEKO simulation for the RCS of the same size leaf at a 

different polarization angle (total, theta, phi) at 2.8 GHz. 

Co-pol and Cross-pol polarization of a leaf at 10 GHz 
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Figure 5.12: An example of the RCS database for a leaf, which is 

comprised of the co-pol amplitude of E polarization SHH (top), co-pol 

amplitude of H polarization SVV (middle), and cross-pol amplitude of E 

polarization SHV  (bottom) of far-field RCS for a resistive sheet with a stem 

(cylinder) (width = 6 cm, height = 8 cm, thickness = 0.2 mm, stem length 

= 120 mm, stem diameter = 1.5 mm, moisture content: 80%) at 10 GHz. 

The red and blue arrows represent the horizontal and vertical polarizations, 

respectively. 

FEKO simulation: 
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Figure 5.13: FEKO simulation for the RCS of the same size leaf at a 

different polarization angle (total, theta, phi) at 10 GHz. 

Co-pol and Cross-pol polarization of a leaf at 2.8 GHz 
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Figure 5.14: An example of the RCS database for a leaf, which is 

comprised of the co-pol amplitude of E polarization SHH (top), co-pol 

amplitude of H polarization SVV (middle), and cross-pol amplitude of E 

polarization SHV  (bottom) of far-field RCS for a resistive sheet with a stem 

(cylinder) (width = 4 cm, height = 6 cm, thickness = 0.2 mm, stem length 

= 100 mm, stem diameter = 1.2 mm, moisture content: 80%) at 2.8 GHz. 

The red and blue arrows represent the horizontal and vertical polarizations, 

respectively. 

FEKO simulation: 
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Figure 5.15: FEKO simulation for the RCS of the same size leaf at a 

different polarization angle (total, theta, phi) at 2.8 GHz. 

Co-pol and Cross-pol polarization of a leaf at 10 GHz 
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Figure 5.16: An example of the RCS database for a leaf, which is 

comprised of the co-pol amplitude of E polarization SHH (top), co-pol 

amplitude of H polarization SVV (middle), and cross-pol amplitude of E 

polarization SHV  (bottom) of far-field RCS for a resistive sheet with a stem 

(cylinder) (width = 4 cm, height = 6 cm, thickness = 0.2 mm, stem length 

= 100 mm, stem diameter = 1.2 mm, moisture content: 80%) at 10 GHz. 

The red and blue arrows represent the horizontal and vertical polarizations, 

respectively.   

FEKO simulation: 
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Figure 5.17: FEKO simulation for the RCS of the same size leaf at a 

different polarization angle (total, theta, phi) at 10 GHz. 

Co-pol and Cross-pol polarization of a leaf at 2.8 GHz 
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Figure 5.18: An example of the RCS database for a leaf, which is 

comprised of the co-pol amplitude of E polarization SHH (top), co-pol 

amplitude of H polarization SVV (middle), and cross-pol amplitude of E 

polarization SHV  (bottom) of far-field RCS for a resistive sheet with a stem 

(cylinder) (width = 2 cm, height = 4 cm, thickness = 0.2 mm, stem length 

= 80 mm, stem diameter = 1.0 mm, moisture content: 80%) at 2.8 GHz. 
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The red and blue arrows represent the horizontal and vertical polarizations, 

respectively.   

FEKO simulation: 
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Figure 5.19: FEKO simulation for the RCS of the same size leaf at a 

different polarization angle (total, theta, phi) at 2.8 GHz. 

Co-pol and Cross-pol polarization of a leaf at 10 GHz 
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Figure 5.20: An example of the RCS database for a leaf, which is 

comprised of the co-pol amplitude of E polarization SHH (top), co-pol 

amplitude of H polarization SVV (middle), and cross-pol amplitude of E 

polarization SHV  (bottom) of far-field RCS for a resistive sheet with a stem 

(cylinder) (width = 2 cm, height = 4 cm, thickness = 0.2 mm, stem length 

= 80 mm, stem diameter = 1.0 mm, moisture content: 80%) at 10 GHz. 

The red and blue arrows represent the horizontal and vertical polarizations, 

respectively. 

FEKO simulation: 
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Figure 5.21: FEKO simulation for the RCS of the same size leaf at a 

different polarization angle (total, theta, phi) at 10 GHz. 

Co-pol and Cross-pol polarization of a leaf at 2.8 GHz 

         

         

-0.5

0

0.5 -0.5

0

0.5

0

0.5

1

y

S
HH

 in dB for leaf at 2.8 GHz

x
0 100 200 300

0

10

20

30

40

50

60

70

80

90  

alpha, deg.

S
HH

 in dB for leaf at 2.8 GHz

 

be
ta

, d
eg

.

-100

-90

-80

-70

-60

-50

-40

-30

-20

-0.5

0

0.5 -0.5

0

0.5

0

0.5

1

y

S
VV

 in dB for leaf at 2.8 GHz

x
0 100 200 300

0

10

20

30

40

50

60

70

80

90  

alpha, deg.

S
VV

 in dB for leaf at 2.8 GHz

 

b
et

a
, d

eg
.

-100

-90

-80

-70

-60

-50

-40

-30

-20



256 
 

         

Figure 5.22: An example of the RCS database for a leaf, which is 

comprised of the co-pol amplitude of E polarization SHH (top), co-pol 

amplitude of H polarization SVV (middle), and cross-pol amplitude of E 

polarization SHV (bottom) of far-field RCS for a resistive sheet with stem 

(cylinder) (width = 1 cm, height = 3 cm, thickness = 0.2 mm, stem length 

= 60 mm, stem diameter = 0.8 mm, moisture content: 80%) at 2.8 GHz. 

The red and blue arrows represent the horizontal and vertical polarizations, 

respectively. 

FEKO simulation: 
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Figure 5.23: FEKO simulation for the RCS of the same size leaf at a 

different polarization angle (total, theta, phi) at 2.8 GHz. 

Co-pol and Cross-pol polarization of a leaf at 10 GHz 
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Figure 5.24: An example of the RCS database for a leaf, which is 

comprised of the co-pol amplitude of E polarization SHH (top), co-pol 

amplitude of H polarization SVV (middle), and cross-pol amplitude of E 

polarization SHV  (bottom) of far-field RCS for a resistive sheet with a stem 

(cylinder) (width = 1 cm, height = 3 cm, thickness = 0.2 mm, stem length 

= 60 mm, stem diameter = 0.8 mm, moisture content: 80%) at 10 GHz. 

The red and blue arrows represent the horizontal and vertical polarizations, 

respectively. 

FEKO simulation: 
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Figure 5.25: FEKO simulation for the RCS of the same size leaf at a 

different polarization angle (total, theta, phi) at 10 GHz. 

5.2     Mean RCS of wood board study  

5.2.1     Motivation 

     RCS calculations are required for the comparison of transmission 

matrix calculations (Waterman 1969, 1971) and electromagnetic scattering 

calculations using PO “Simulated frequency dependence of radar 

observations of tornadoes” (Bodine et al. 2015). This is one of the RCS 

applications towards tornadic debris scatterers. My contribution in a 
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previously published work as a co-author is to calculate the mean RCS 

value of wood board. 

      The purpose of the comparison is to examine some problems with the 

T-matrix calculations. One problem is that the T-matrix is not able to 

converge on very large sized particles, or particles with large eccentricities 

and high refractive indices. The T-matrix also cannot compute irregular 

size objects with sharp edges. The T-matrix is successful in obtaining 

accurate results for spheroids, but this is an idealized debris type. In the T-

matrix calculation, an equivalent reflectivity factor  eZ  is calculated  from 

rain concentrations at different radar frequencies with the equation, 
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,   where λ is the radar wavelength, Kw is a 

function of the refractive index of water (Doviak and Zrnic´ 1993), )(Db

is the mean value of  backscattering RCS,  D is the particle diameter,  and 

N(D) is the  particle size distribution.  

     A wood board has the same volume of a sphere with a radius varying 

linearly from 9.5-95 mm for 10 sizes (r = 9.5, 19, 28.5, ..., 95 mm) at five 

different higher frequencies: f = 2.8 GHz, 5.5 GHz, 9.7 GHz, 37.5 GHz, 

and 100 GHz. The thickness of thin wood board ranges from less than a 

few 10th of a wavelength to 10 times that of a wavelength with λ = 0.11 

meters. In terms of specific measurements, the lengths of the square wood 
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board used are 41.57 mm, 83.14 mm, and so on up to 415.7 mm; and the 

thickness is relative to length, measuring 1/20 of the board length (2.08 

mm, 4.16 mm, and so on up to 20.79 mm). A complex relative permittivity 

r is defined as 2 - 0.2j, which is broadly consistent with values measured 

by Daian (2006) and Nawfal (2011). Based on the request of reviewers, 

the wet wood board r is calculated by 4.65-1.46j with 20% moisture 

content.    

5.2.2     Calculation of the mean value of RCS for wood board  

  First, how does one determine the  reflection and transmission  of the 

electromagnetic field when electromagnetic wave scattering in the lossless 

or lossy and infinitely long media (two-dimensional geometry) by a planar 

boundary for one single layer? Several things need to be considered: 

1. How the direction of a traveling wave refers to the angle of incidence 

(normal or oblique incidence), the rough or planar interface between 

two media, whether these media are lossless or lossy, and wave 

polarization. These are the main factors required to determine the 

reflection and transmission coefficient.  In general, the reflection and 

transmission coefficients are complex. Oblique incidence wave and 

lossy media will cause even more complexity for the calculation. 

2. For convenience, if separating electrical field traveling to the boundary 

into two polarizations can be accomplished, perpendicular and parallel 
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individually, then the total transmitted and reflected field will be the 

sum of the two polarizations.      

3. Reflection and transmission coefficients are derived by applying 

boundary conditions, in which the tangential components of electric 

and magnetic fields are continuous at the boundary. In other words, the 

total of the incident and the reflected tangential components of 

electrical and magnetic fields are equal to the transmitted tangential 

components of the field. 

4. The transmitted angle in lossy media is complex, but for a good 

conductor, cos t  is 1(real) not complex for lossy media, as indicated 

by an example 5-8 in Chapter 5 in Banalis’s research (2012). 

5. Snell’s law and Fresnel’s law can be applied in any media (lossless or 

lossy), and from this the reflection coefficient and transmission 

coefficient can be calculated. 

6. Critical angle can be neglected because the source wave is a radar 

beam. If the source beam incident is in the high-density medium layer 

between the air, then this angle will allow the total internal reflection 

of energy. In other words, the incident wave will not come out and 

travel inside the medium as a waveguide. 

7. The Brewster angle matters because it will allow total transmission in 

the layer. The Brewster angle is important in the RCS measurement in 
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the anechoic chamber because it significantly reduces reflection. 

Theoretically, the incident Brewster angle exists only if the 

polarization of the wave is parallel (vertical); no real incidence angle 

will reduce the reflection coefficient for perpendicular polarization to 

zero. 

8. A wood board is considered to be lossy media due to the dielectric 

property, which results in dielectric loss in the media.  

     Next, there were two ways to calculate the RCS for wood board: 

approximation and non-approximation. Approximate reflection coefficient 

formulation (Senior et al. 1987) for resistive thin sheets is the starting 

point for determining the approximate amplitude of RCS wood board.  

     The non-approximated calculation formulation was drawn from 

Balanis’s book (2012), Chapter 5 (a typo-corrected version of 5.5.2.D) and 

11 (Section 11.3.2). This recursive process for multi-layer structures can 

be applied to the wood board to determine the reflection and transmission 

coefficients with oblique incidence wave. The recursive process for multi-

layer structures is based on the calculations of the reflection coefficient 

using PO in the front of interface of an infinite half-plane, on which the 

uniform plane wave at an oblique incident angle is polarized. The 

recursive technique is employed as a common method to formulate a 

process, in which the impedance calculation in the media is embedded in 

the reflection coefficient calculation for each boundary. This leads to the 
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overall reflection coefficient calculations in front of the first boundary. 

The recursive formulation makes the calculation process much easier, 

especially given the several considerations detailed above.  

     Next, each RCS value calculated by the method above is entered in the 

coordinate transformation radar system. Radar direction with 651 points 

uniformly distributed over a far-field sphere pointing to each wood board 

with a set of discrete, sufficient oblique incident angles, which verify the 

overall convergence after averaging the RCS value of each object.  

     Table 5.1 and Table 5.2, which illustrate both approximation and non-

approximation calculations, are presented for comparison. The wood 

boards are dry wood with r  = 2-0.2j. The values for both calculations are 

small, but later calculations seem more reasonable for targets 40 feet away 

from the radar, based on two-way plane wave with a round trip phase. The 

new RCS values for wet wood board with r  = 4.65-1.46j are calculated 

by 20% moisture content, and are presented in Table 5.3. 

                                       

                                    Figure 5.26: Sphere for radar direction pointing to the wood slab with 651 

points.  
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           Dry wood board                                  Wet wood board 

Figure 5.27: RCS TE polarization on dry wood board (0.04157x 0.04157 

meters) (left) and RCS TE polarization on wet wood board (0.04157x 

0.04157 meters) (right) with two incident angles theta and phi scattered. 

                  

            Dry wood board                                  Wet wood board 

Figure 5.28: RCS TM polarization on dry wood board (0.04157x 0.04157 

meters) (left) and RCS TM polarization on wet wood board (0.04157x 

0.04157 meters) (right) with two incident angles theta and phi scattered. 

                                    The five figures illustrate the radar polarization and RCS values for one 

dry or wet wood board at 0.04157 by 0.04157 meters at 2.8 GHz. The 

following 9 sizes can also be generated accordingly.  (Table 5.1, Table 5.2 

and Table 5.3)    
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                               5.2.3     The list of wood to a typical house and  

                                                 establishing an RCS  library   

     A board foot is a standard measure for wood lumber. For example, a 

piece of  lumber one-inch thick (depth), one foot wide, and one foot long 

can be written as 1" x 12" x 12’ as a board foot. 

For example, an average 2,000 square foot home requires 13,000 board 

feet of lumber. This number is calculated by considering lumber of 

different sizes, as follows: 

2x6 lumber 13,000 feet long = 1625x8’ 2x6 = 6500x2’ 2x6; 

2x4 lumber 19,500 feet long = 2437.5x8’ 2x4 = 9750x2’ 2x4; 

1x12 lumber 13,000 feet long = 1625x8’ 1x12 = 6500x2’ 1x12; 

3x4 lumber 13,000 feet long = 1625x8’ 3x4 = 6500x2’ 3x4; 

3x6 lumber 8,666.67 feet long = 1083.3x8’ 3x6 = 4333.33x2’ 3x6 etc. 

      A study from Dr. Paul Emrath for the National Association of Home 

Builders reports the average size house built in 2011 was 2,480 square feet, 

while the median size house built in 2011 was 2,233 square feet. The 

typical 2,400 square foot, single-family home requires about 16,000 board 

feet of framing lumber, and over 14,000 square feet of other wood 

products, including plywood, oriented strand board, glulam beams, wood 

I-joists, laminated veneer lumber, hardboard, particleboard and medium-

density fiberboard (MDF).  
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     In order to establish the RCS library, the wood board should be divided 

by wood type and size. For example, how many tree species for different 

lengths of 2x4 wood lumbers are required to compile a representative 

sample? To establish an RCS library for framing lumber, three things 

require specification and verification from the following picture. First, 

there are two grades to classify moisture content: S-dry and S-Grn (for 

green). S-dry means the board has water weight less than 19%. S-Grn 

means the board has water weight over 19%. 

     Second, species is a category that requires consideration for the RCS. 

This study addresses four species: Southern Pine, Spruce-Pine-Fir, 

Douglas Fir, and Hem-Fir. Each has a different dielectric property and 

structural strength. 

     Finally, there are four lumber grades that are used in most homes: SEL 

STR, No.1, No.2 and No.3. SEL STR (select structural) is nearly knot-free 

lumber. The remaining three lumber grades are designed by how many 

defects or knots the boards have, as this affects the lumber’s strength and 

properties. 
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Figure 5.29 Four lumber grades of lumber that homeowners need to see. 

(http://www.oldhouseweb.com/how-to-advice/buying-guides/what-to-
look-for-when-buying-framing-lumber.shtml) 
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Table 5.1:  Approximation of RCS values for dry wood board for 10 square 

sizes at 5 different frequencies (2.8, 5.5, 9.7, 37.5, and 100 GHz).   

Frequencies     
         /mean  
              RCS 
 
Dimensions 
(meters) 

λ=107 mm 
f=2.8 Ghz 
TE               TM 

λ=55 mm
f=5.5 Ghz 
   TE          TM 

λ =31 mm
f=9.7 Ghz 
   TE           TM 

λ =8 mm
f=37.5 Ghz 
   TE           TM 

 λ =3 mm 
f=100 Ghz 
  TE            TM 

0.04157x 
0.04157 

3.36 
e‐06 

1.48 
e‐06 

1.17
e‐05 

8.59
e‐06 

3.46
e‐05 

2.95
e‐05 

2.91
e‐04 

2.85 
e‐04 

6.2 
e‐04 

6.18
e‐04 

0.08314x 
0.08314 

4.87 
e‐05 

3.58 
e‐05 

1.72
e‐04 

1.52
e‐04 

4.61
e‐04 

4.34
e‐04 

0.0021 0.0021  0.0030  0.0030

0.12471x 
0.12471 

2.33 
e‐04 

1.97 
e‐04 

7.94
e‐04 

7.37
e‐04 

0.0019 0.0018 0.0058 0.0058  0.0074  0.0074

0.16628x 
0.16628 

7.13 
e‐04 

6.3 
e‐04 

0.0022 0.0021 0.0048 0.0047 0.0113 0.0113  0.0141  0.0141

0.20785x 
0.20785 

0.0017  0.0015 0.0049 0.0047 0.0095 0.0094 0.0185 0.0185  0.0232  0.0232

0.24942x 
0.24942 

0.0033  0.003  0.0090 0.0087 0.0161 0.0160 0.0276 0.0276  0.0336  0.0336

0.29099x 
0.29099 

0.0057  0.0054 0.0147 0.0144 0.0246 0.0244 0.0388 0.0388  0.0439  0.0439

0.33256x 
0.33256 

0.0092  0.0088 0.0222 0.0218 0.0349 0.0347 0.0523 0.0523  0.0699  0.0699

0.37413x 
0.37413 

0.0140  0.0134 0.0315 0.0311 0.0471 0.0469 0.0683 0.0683  0.1171  0.1171

0.4157x 
0.4157 

0.0200  0.0193 0.0427 0.0423 0.0612 0.0610 0.0867 0.0867  0.1773  0.1773
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Table 5.2:  Non-approximation of RCS values for dry wood board for 10 

square sizes at 5 different frequencies (2.8, 5.5, 9.7, 37.5, and 100 GHz).  

 Frequencies     
      /mean 
        RCS        

          
Dimen‐ 
sions 
(meters) 

λ=107 mm 
f=2.8 Ghz 
TM               TE 

λ=55 mm
f=5.5 Ghz 
   TM             TE 

λ =31 mm
f=9.7 Ghz 
   TM             TE 

λ =8 mm
f=37.5 Ghz 
   TM              TE 

 λ =3 mm
f=100 Ghz 
  TM              TE 

0.04157x 
0.04157 

1.1653 
e‐06 

3.3361 
e‐06 

7.6325
e‐06 

1.1333
e‐05 

2.5193
e‐05 

3.1131
e‐05 

4.4810
e‐05 

4.7935 
e‐05 

6.4121 
e‐06 

6.9383
e‐06 

0.08314x 
0.08314 

3.1854 
e‐05 

4.7135 
e‐05 

1.2587
e‐04 

1.5091
e‐04 

2.7773
e‐04 

3.0533
e‐04 

2.5639
e‐04 

2.6183 
e‐04 

5.5906 
e‐05 

5.7025
e‐05 

0.12471x 
0.12471 

1.7033 
e‐04 

2.1527 
e‐04 

5.2645
e‐04 

5.8924
e‐04 

6.8277
e‐04 

7.3144
e‐04 

2.2187
e‐04 

2.2519 
e‐04 

1.4710 
e‐04 

1.4882
e‐04 

0.16628x 
0.16628 

5.1943 
e‐04 

6.1936 
e‐04 

0.0012 0.0013 6.1761
e‐04 

6.6218
e‐04 

1.6886
e‐04 

1.7504 
e‐04 

2.7508
e‐04 

2.7765
e‐04 

0.20785x 
0.20785 

0.0012  0.0013  0.0020 0.0021 9.3155
e‐05 

1.1170
e‐04 

8.3099
e‐04 

8.4033
e‐04 

7.6276
e‐04 

7.6550
e‐04 

0.24942x 
0.24942 

0.0022  0.0024  0.0023 0.0025 5.5712
e‐04 

5.7095
e‐04 

0.0013 0.0013  0.0015  0.0015

0.29099x 
0.29099 

0.0034  0.0038  0.0020 0.0021 0.0025 0.0025 9.1410
e‐04 

9.2371
e‐04 

0.0025  0.0025

0.33256x 
0.33256 

0.0049  0.0053  9.9573
e‐04 

0.0011 0.0041 0.0042 0.0010 0.0011  0.0041  0.0042

0.37413x 
0.37413 

0.0064  0.0070  2.1121
e‐04 

2.6239
e‐04 

0.0033 0.0034 0.0017 0.0017  0.0068  0.0068

0.4157x 
0.4157 

0.0078  0.0083  6.5480
e‐04 

6.8752
e‐04 

0.0011 0.0011 0.0017 0.0017  0.0101  0.0101
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Table 5.3: Non-approximation of RCS values for wet wood board for 10 square 

sizes at 5 different frequencies (2.8, 5.5, 9.7, 37.5, and 100 GHz). (Moisture 

content 20%, r =4.6500 - 1.4600i) 

 

  Frequencies    
  /mean 
           RCS 

Dimen‐ 
sions 
(meters) 

λ=107 mm 
f=2.8 Ghz 
TM                   TE 

λ=55 mm
f=5.5 Ghz 
   TM              TE 

λ =31 mm
f=9.7 Ghz 
   TM             TE 

λ =8 mm
f=37.5 Ghz 
   TM             TE 

 λ =3 mm
f=100 Ghz 
  TM              TE 

0.04157x 
0.04157 

1.6198 
e‐05 

3.6280 
e‐05 

7.9515
e‐05 

1.0242
e‐04 

1.8251
e‐04 

2.0562
e‐04 

8.3258
e‐05 

8.6074 
e‐05 

1.1101
e‐04 

1.1252
e‐04 

0.08314x 
0.08314 

3.2846 
e‐04 

3.3300 
e‐04 

8.2706
e‐04 

9.1555
e‐04 

9.6061
e‐04 

0.0010 5.0180
e‐04 

5.0994 
e‐04 

4.6650
e‐04 

4.6968
e‐04 

0.12471x 
0.12471 

0.0014  0.0016  0.0023 0.0024 6.8124
e‐04 

7.2152
e‐04 

0.0012 0.0012  8.9782
e‐04 

9.0264
e‐04 

0.16628x 
0.16628 

0.0034  0.0037  0.0033 0.0035 0.0016 0.0016 0.0020 0.0020  0.0015  0.0015

0.20785x 
0.20785 

0.0061  0.0066  0.0025 0.0027 0.0044 0.0045 0.0030 0.0030  0.0038  0.0038

0.24942x 
0.24942 

0.0091  0.0097  0.0018 0.0019 0.0046 0.0047 0.0042 0.0042  0.0072  0.0072

0.29099x 
0.29099 

0.0117  0.0123  0.0046 0.0048 0.0047 0.0048 0.0054 0.0055  0.0119  0.0119

0.33256x 
0.33256 

0.0128  0.0135  0.0099 0.0101 0.0086 0.0088 0.0064 0.0064  0.0200  0.0201

0.37413x 
0.37413 

0.0118  0.0124  0.0142 0.0145 0.0109 0.0110 0.0068 0.0068  0.0323  0.0323

0.4157x 
0.4157 

0.0092  0.0098  0.0151 0.0155 0.0111 0.0113 0.0074 0.0074  0.0484  0.0484
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Chapter 6 

Conclusions 

     The final decision for choosing a PO technique is based on the 

geometry of the debris types, as well as the complexity, limitation, and 

accuracy of the analytical method. Even though PO is not as accurate as 

other approaches like MoM,  GTD, etc., these methods require an 

excessive computation in terms of time and math complexity; the benefits 

of using PO outweigh these shortcomings. Moreover, edge diffraction is 

not taken into account for PO. PO is sufficiently able to analyze plate-like 

objects.  

      Calculating and simulating the polarimetric RCS of simple objects, 

such as plate-like (including sheets) and cylindrical objects with endcaps, 

works reasonably. Plots further confirmed theoretical limitations and 

approximations.  

      For non-penetrable plate-like objects, amplitudes for sheets are the 

same as plates, as formulation indicated. HFSS is not in good agreement 

with analytical results, as the incident angle approaches to 90 degrees due 

to the edge effect not being taken into account for PO.  

      For penetrable plate-like structures, all rectangular and circular plots 

match well as the incident angle is less than 40 degrees. This observation 

confirms the theoretical limitation and approximation that more accurate 
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results appear as the incident angle becomes closer to normal due to the 

restriction of surface impedance principle. 

  Two-layer plate structures are calculated towards multilayer 

approaches. FEKO is utilized to construct two layers with different media 

since HFSS has no such function. The plots generated from FEKO are in 

good agreement with analytical results. 

  RCS amplitudes for thin and thicker plates are compared and 

distinguishable. The difference is as large as about 20 dB at r  = 2.15, or 

10 dB at r  = 10-5j between each thickness (0.001 λ, 0.01 λ, and 0.1 λ) on 

selected plate sizes. 

      Unlike the sphere, whose symmetry allows an exact RCS solution for 

the wave equation, a finite cylinder has no such solution. The solution for 

the broadside of the finite conducting cylinder formulated in Balanis’s 

research (2012) is not as accurate when compared to the infinite long 

cylinder. The plots show gaps at 0° (more than 20 dB) between MATLAB 

and HFSS for the most selected sizes of cylinders. 

      This study took advantage of theoretical accuracy for a circular plate 

by adding the endcap, which compensated the deficiency of the cylinder’s 

amplitude since the incident wave approaches normal at the endcap 

surface.  The results become more accurate when the radius is larger than 

0.3 λ and the length is larger than 6 λ. This is indicated from the RCS 
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modeling developed. Some selected cylinders almost perfectly overlap at 

the range of 0-90 degrees in terms of scattering angle. Although there are 

still gaps between 40-50 degrees for incident angle on the selected sizes of 

cylinders, this is most likely because the edge between endcap and 

cylinder broadside is ignored by PO approximation, and because the 

amplitude increases significantly between the ranges of 0 to 60 degrees of 

the incident angle.  This study also found that amplitudes of cross-pols of 

TE and TM for a dielectric cylinder are imperceptibly low, falling within  

a range of -200 to -400 dB. The analytical plots for cross-pols are not 

shown in the dissertation.  

      The benefit discovered through the use of endcaps marks a pivotal 

moment in this study, and exemplifies the spirit and passion that 

foregrounds this dissertation. The process of finding methods that yield 

more accurate results for RCS modeling helps us better understand the 

limitations for the PO technique.  

      In terms of computational time, cylindrical objects (λ = 0.11 meters, 

for example) with radii at 0.1 λ, 0.2 λ, 0.3 λ, 0.36 λ, 0.5 λ, 0.55 λ, 1 λ, 1.5 

λ and lengths of 3.64 λ, 5.5 λ, 7.27 λ, 10 λ, 30 λ are examples of thin, long 

cylinders (several λ’s in length). The MATLAB calculations for RCS 

modeling on the selected sizes require less time than HFSS simulations. 

Plate-like objects also require less time in MATLAB calculations when 

compared to HFSS, especially for a short, fat cylinders with up to 3 λ in 
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radius and 1 λ in length. HFSS simulation takes over 30 minutes, whereas 

MATLAB only takes a few minutes. 

      A further motivation for completing this study is to validate modeling 

with measurements. Past studies indicated that a short cylinder has a 

higher monostatic RCS than a long cylinder of the same maximum 

dimensions, which defines a bounding box as a limiting factor in far-field 

measurements since it must fit within the measurement facility’s quiet 

zone.  

      For complex shapes, examples of Japanese roof tiles are given: 

 Length 0.375 meters, Thickness 0.0219 meters; L/T = 19 

 Length 0.175 meters, Thickness 0.0109 meters 

 Length 0.075 meters, Thickness 0.0055 meters 

(75 mm-375 mm lengths, 5.5 mm-21.9 mm thickness)  

      These objects increase math complexity because the surface is not flat 

and has holes. If these variations make the object too computationally 

intensive, then measurement is a good choice.  

      Toward the end of this dissertation, examples of applications of “real” 

debris scatterer using radar coordinate transformations systems for a single 

leaf and wood board study are presented. The “real” leaf modeling 

combines a thin flat sheet (to represent the leaf body) (Senior 1987) and a 

long thin finite cylinder (to represent the stem), thereby developing a new 

approach for making more complex objects for modeling purposes. The 
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leaf sizes are designed to represent a range of leaves from small to large in 

order to establish a “real” leaf RCS library. FEKO simulation is used to 

compare with analytical results, since this software makes it easy to 

combine two objects as a whole. The RCS values for all polarizations in 

the dry wood board study are calculated starting from 651 points 

uniformly distributed over a far-field sphere. The radar will point to each 

wood board with a set of discrete, sufficient angles to ensure the 

convergence of overall RCS mean values for each object. The study 

requires a set of high frequencies at 2.8, 5.5, 9.7, 37.5, 100 GHz, and so on. 

The reflection coefficient for each RCS value is calculated from a 

recursive process formulation in Balanis’s research (2012). The thickness 

of the wood boards (square plates) are 1/20 of their length, which range 

approximately from a few 10th’s of a wavelength (λ = 0.11 meters at 2.8 

GHz, for example) to 10 times a wavelength for 10 values at each 

frequency. Wood boards (0.01 meters (~0.1 λ) in thickness) with a 

uniformly coated water layer on the top make the amplitude of RCS go up 

by about 10 dB or 5 dB, except when the thickness of water is less than 

0.0003 meters. Uniformly wet wood boards in 10 different thicknesses 

with 20% moisture content make the amplitude of RCS increase by about 

6 dB when compared to dry wood boards. 
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      Answering the poorly understood research questions that this 

dissertation poses makes an invaluable contribution to the field of tornadic 

debris study, and helps us clarify some fundamental concepts.  

In terms of answering fundamental questions in this dissertation:  

a. What debris types and characteristics lead to observed polarimetric 

      scattering signatures? 

      Based on tornado debris storm observations, tornadic debris features 

polarimetric characteristics. These may vary in the size, geometry and 

concentration on debris types.  In most cases, lofted sand and dust particles 

and wood debris comprise the visible debris around the tornado. Currently, 

T-matrix calculations are performed for dust, sand particles, and spheroid 

wood debris, all which lead to observed polarimetic scattering signatures 

(Bodine 2014). As described, dust in the range 10 to 10^4 μm, sand 

diameter D > 0.1 mm, and prolate or oblate spheroids in a range of 0-160 

mm with axis ratios of 3 and 1/3 wood spheroids have been evaluated for 

ZHH and correlation coefficient. Both were performed in the Rayleigh and 

Mie regions. These debris types lead to observed polarimetric scattering 

signatures since their sizes are dominant factors that affect polarimetric 

variables. However, T-matrix calculations have limitations or errors for 

objects associated with dimensions and shapes. 
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      Compared to these scatterers, RCS modeling on similar sizes of plate-

like and small cylindrical objects, which T-Matrix cannot do, will be 

significant in the study of electromagnetic scattering characteristics. 

Therefore, RCS modeling is best represented by radar signature in terms 

of size-based theoretical analysis. For example, leaves (4 cm x 6 cm, 

0.0001 meters in thickness), metal circular plates (> 0.3 λ in radius), non-

metal circular plates (> 1 λ in radius), conducting cylinders (> 0.3 λ in 

radius, > 6 λ in length) and dielectric larger cylinders (> 0.5 λ in radius, > 

1 λ in length) are in good agreement for both E and H polarizations with 

HFSS (λ = 0.11 meters at 2.8 GHz). By further validating with 

measurements, conclusions will be drawn based on selected-sizes of 

objects leading to a polarimetric scattering signature.  

b. What types of debris can be reasonably approximated in a 

       computationally-efficient way for the purposes of this research?  

i. RCS modeling of plate-like objects, as question (a) indicated. 

ii. RCS modeling of perfect conducting cylinders with endcaps, > 

0.3 λ in radius with the same length 7.3 λ (0.8 meters) can be 

reasonably approximated. (For example, 0.04 (~0.3 λ) meters 

in radius by 0.8 (~7.3 λ) meters in length, and 0.06 (~0.55 λ) 

meters in radius by 0.8 (~7.3 λ) meters in length).  

iii. RCS modeling of metal cylinders with endcaps 0.5 λ (0.055 

meters) in radius with 10 λ (1.1 meters) in length; 1 λ (0.11 
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meters) in radius with 10 λ (1.1 meters) in length; 0.3 λ (0.033 

meters) in radius with 30 λ (3.3 meters) in length; and 1.5 λ 

(0.165 meters) in radius with 30 λ (3.3 meters) in length all 

performed well. 

iv. RCS modeling of dielectric cylinders at relative permittivity r

= 10-5j, dielectric cylinders > 0.5 λ (0.055 meters) in radius 

with 10 λ (1.1 meters) in length; > 1 λ (0.11 meters) in radius 

with 10 λ (1.1 meters) in length; and > 1.5 λ (0.165 meters) in 

radius with 30 λ (3.3 meters) in length all performed well. 

      These selected sizes of plate-like and cylindrical objects require less 

time in MATLAB when compared to full-wave simulation HFSS, and are 

in good agreement with HFSS. Therefore, they are better options for a 

computationally-efficient way to obtain results for the purposes of this 

research.  

c. How should one determine which approach to use when adding the 

RCS database to a simulator?   

     When modeling the polarimetric RCS of simple objects (such as plate-

like, cylindrical objects) based on the theories and research published, the 

goal is to emulate the radar return signal with thousands of different debris 

scatterers. In general, computer modeling is able to provide a variety of 

plots from 2D to 3D, which are also visualized. The analytical data 



282 
 

obtained from programming may easily be processed by the central 

computer facility (GPU) available at the University of Oklahoma.  

      RCS modeling can be used in the event that the measurement of an 

antenna is not feasible. Certain situations that cause any instability in the 

surrounding environment, such as being in moving vehicle, may cause 

inaccurate experiment data. In other words, if there is instability, the data 

analysis cannot be done in real time, and requires the data to be treated for 

statistical analysis later. It is very dangerous physically, for example, to 

capture the real data from the radar vehicle when it is moving closer to a 

tornado. Measurement accuracy is strongly dependent on the accuracy of 

the chosen instrumentation and method.  Therefore, modeling based on 

theory and simulation has an advantage of obtaining more accurate data 

over the measurement.  

      On the other hand, when adding RCS data into a larger data processing 

network, computational efficiency is one of the most important factors to 

consider. When computational efficiency from modeling larger objects 

derived from theory and simulation is not high enough, measurement 

becomes necessary. Moreover, if RCS modeling differences between 

theoretical analysis and full-wave simulation HFSS are not trivial, 

measurement becomes a crucial component for obtaining accurate data. 

      Ultimately, any decision regarding obtaining accurate results must 

consider how well theory, simulation and measurement agree with one 
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another. By controlling and measuring the RCS of a single scatterer, the 

ultimate goal is to incorporate common objects with unique characteristics 

through the RCS database into the radar simulator. 

d. In terms of accuracy, is the approach of simulating individual 

scatterers more suitable for answering the fundamental research 

questions posed in this dissertation? 

      A good advantage for simulating individual scatterers is that the 

detailed distinguishable analytical scattering characteristic becomes 

relatively easy if multiple scattering involves thousands to millions of 

angle combinations when the cross-polarized return signal is involved. 

Thus, the RCS database can be built with a unique characteristic for each 

object. In addition, as illustrated by the “real” leaf in Chapter 5, a single 

object can be combined to model more complex objects.  

      In addition, the complex received radar signals in the radar system are 

the sum of the signals of the individual debris object. The approach of 

modeling RCS of individual scatterers is more efficient to estimate the 

errors for the signals of the individual object. Therefore, RCS prediction is 

more accurate when considering polarimetric variable measurements by 

evaluating these errors.  

      Simulating individual scatterers is more suitable in terms of accuracy 

when compared to measurement; this is because RCS measurement does 
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not require high accuracy due to many errors and approximations from 

measurement instrumentation and method.  

      The basic nature of RCS modeling on discrete objects without multiple 

reflections is the science of fundamental electromagnetic scattering. 

Simulating the individual scatterer requires a strong knowledge of 

fundamental theory to serve as a starting point for solving more 

challenging, complex problems. 

      Analytical simulation and HFSS simulation are two major tools used 

in this doctoral study. Future work includes anechoic chamber 

measurements are the next exciting steps towards determining how well 

theory calculation for individual scatterer compares to radar returns.       
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Appendix A 

List of Acronyms 

ARPS                Advanced Regional Prediction  

DDA                  Discrete Dipole Approximation  

FDTD                Finite-difference time-domain  

PEC                   Perfect electrical conducting  

FEKO                FEldberechnung für Körper mit beliebiger Oberfläche 

FEM                  Finite element method  

FDTD                Finite Difference Time Domain method 

PTD                   Physical theory of diffraction 

GO                    Geometrical optics 

GPU                  Graphics processing unit 

GTD                  Geometrical Theory of Diffraction  

HFSS                 High Frequency Structural Simulator 

IE                       Integral equations  

LES                   Large Eddy Simulation 

MoM                 Method of moments 

PO                     Physical optics 

RCS                   Radar Cross Section  

TDS                   Tornadic debris signature  

UTD                  Uniform Theory of Diffraction  



294 
 

Appendix B 

List of Symbols 

D             Diameter of target (m) 

Es            Scattering electric field (V m-1) 

Ei             Incident electric field (V m-1) 

Hi            Incident magnetic field (V m-1) 

Hs            Scattered magnetic field (V m-1) 

Js             Surface current 

k              Propagation constant (m-1) 

Kw                Function of the refractive index of water 
 
LDR                Linear depolarization ratio (dB) 

N (D)       Particle size distribution 
 
R              Resistivity (ohm) 
 
r               Radius (m) 
 
S              Scattering matrix 

Shh               Amplitude of  horizontal co-polarization (dBsm)    

Shv                  Amplitude of  horizontal cross-polarization (dBsm)     

Svv            Amplitude of  vertical co-polarization (dBsm)    

Svh            Amplitude of  vertical cross-polarization (dBsm)    

T              T matrix 

TE            E polarization of transmission coefficient 
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TH                  H polarization of transmission coefficient 

eZ               Equivalent radar reflectivity factor (dBZ) 

ZDR                Differential reflectivity threshold (dB) 

ZHH          Horizontal radar reflectivity factor (dBZ) 

ZVV           Vertical radar reflectivity factor (dBZ) 

Z (1/Y)     Intrinsic impedance  

Zs             Normalized surface impedance (ohm) 

ρHV           Co-polar cross-correlation coefficient 

δdp            Backscatter differential phase (◦) 

α (φ)        Orientation angle in xy polarization plane (◦) 

β (θ)         Orientation angle in zx polarization plane (◦) 

γ               Orientation angle in yx polarization plane (◦) 

σ              Radar cross-sections (m2) 

λ              Wavelength (m)  
 
n̂                 Unit vector normal to the surface  
 

E               E polarization of reflection coefficient 
  

H              H polarization of reflection coefficient 
 
εr              Complex relative permittivity   
 

s                Surface impedance (ohm) 

 
as

n                  TM polarization coefficient 
 
bs

n                  TM polarization coefficient 
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σb                 Backscatter cross-section (m2) 
 
μ              Relative permeability 
 
ρ              Cylindrical radius (m) 
 
Jn                   Bessel function of first kind 
 
H(2) n            Hankel  function of second kind 
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