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Abstract

Many new and interesting radar operational modes and techniques are being

explored to maximize the efficiency and utility of next-generation radar sys-

tems while complying with increasingly stringent operational and budgeting

requirements. This dissertation’s aim is to analyze and present possible tech-

niques to help maximize the scientific value of measurements while complying

with operational requirements through methods of physical transmission and

exciting the target area, methods of processing the received waveforms, and

methods of designing waveforms for a given system.

In regard to methods of physical transmission and exciting the target

area, this dissertation addresses unique problems that will be faced by next-

generation radar systems utilizing simultaneous transmit and simultaneous re-

ceive operational modes in polarimetric active phased array architectures. This

is accomplished through establishing mathematical representations of the re-

ceived complex baseband waveforms for dual-polarimetric radar operation and

analyzing the predicted behavior versus traditional polarimetric radar alter-

nating transmit and simultaneous receive operation.

In regard to methods of processing the received waveforms, pulse compres-

sion will undoubtedly be widely utilized in future radar systems due to the
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increase in range resolution that it provides for a given pulse length. Addi-

tionally, matched filtering allows the realization of simultaneously transmitted

pseudo-orthogonal waveforms occupying the same spectral region that would

be otherwise impossible. As a result, the mathematical basis of pulse com-

pression is provided, and pulse compression effects are taken into account in

all relevant system analyses in this manuscript.

This dissertation arguably provides the most attention in regard to meth-

ods for designing and modifying waveforms for application in a given system.

An analysis of common pulse compression waveforms for suitability in pseudo-

orthogonal waveform sets is provided in addition to a novel method for design-

ing polyphase coded waveform and non-linear frequency modulated waveform

based pseudo-orthogonal waveform sets utilizing particle swarm optimization.

Additionally, for the first time, research is presented on the full design and

application methods for digital predistortion of wideband solid state radar

amplifiers. Digital predistortion methods and results are presented for both

the impedance matched high power amplifier case and for the varying load

impedance case that can be expected to be encountered in radar systems uti-

lizing electronic beamsteering in active phased array architectures.

Overall, this dissertation’s aim is to provide relevant results from conducted

research in the form of analysis and novel design methods that can be applied

in both the design and operation of next-generation radar systems to max-

imize utility and scientific data quality while operating within given system

and environmental specifications.
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Chapter 1

Introduction

Since its beginnings in the early 1900s, radar systems have proved to be of

great worth and valuable for a multitude of uses in tracking, mapping, naviga-

tion, and imaging [1]. However, growing expectations of future radar systems’

capabilities are at odds with increasingly stringent operational and budgeting

requirements [2]. As a result, many new and interesting radar operational

modes and techniques are being explored to maximize the efficiency and util-

ity of next-generation radar systems. Possible techniques to help maximize

the scientific value of the measurements while complying with operational re-

quirements include methods of physical transmission and exciting the target

area, methods of processing the received waveforms, and methods of designing

waveforms for a given system.

The method of physical transmission plays a pivotal role in the type of

scientific data a radar system can acquire. While radar systems can use any

type of electromagnetic radiating element, modern and next-generation radar

systems are becoming increasingly dependent upon the use of active phased ar-

ray antennas. A phased array antenna consists of multiple radiating elements

working together so that the transmitted electromagnetic waves constructively

1



interference at the intended angle relative to the array (the beamsteering an-

gle) and mostly destructively interfere at all other angles. Phased array an-

tennas offer multiple benefits over antennas consisting of a single radiating

element. These benefits include linear scalability in system power and cost,

graceful degradation, and rapid beamsteering [1]. Active phased array archi-

tectures differ from traditional phased arrays in that every antenna element

has a unique transmit/receive chain, allowing for the execution of advanced op-

erational modes such as multi-beam transmit and receive, the use of designed

wideband waveform sets that result in frequency-invariant beampatterns, and

simultaneous multi-mode operation that are desired in next-generation systems

[3]–[8]. Traditional radar systems only physically transmit a single polariza-

tion of electromagnetic waves. With increased interest in the second-order mo-

ments of the polarization scattering matrix and the unique information they

can provide about radar targets that can only be derived from examining the

effects of different polarizations’ excitations of a target, future radar systems

will undoubtedly utilize orthogonally polarized waveforms during transmission

[9]. While some existing radar systems utilizing orthogonally polarized wave-

forms exist that can capture the “full” polarization scattering matrix, these

systems tend to operate in an alternating transmit and simultaneous receive

mode. Future radar systems will likely operate in a simultaneous transmit and

simultaneous receive mode while retaining the capture of the full polarization

scattering matrix. The mathematical framework of a dual-polarization system

is outlined in Section 2.6.

The method in which received waveforms are processed can have a drastic

effect on the overall quality of the scientific data recovered. Pulse compression

2



of wideband waveforms through the application of a matched filter is becoming

a common method for increasing the range resolution for a given pulse length

[10]. After matched filtering, this effectively allows for the transmitted energy

of a long pulse while concentrating the energy into a much shorter duration

than the length of the pulse, giving a drastic improvement in performance

versus an unmodulated waveform. Pulse compression is becoming widespread

in modern radar systems and will undoubtedly be widely utilized in future

radar systems. The mathematical basis for pulse compression and its reliance

on cross-correlation is outlined in Section 2.3.

Designing the transmit waveform for a next-generation radar system is

crucial to the ultimate operational effectiveness and scientific quality of the

received data. Indeed, the majority of this dissertation is devoted to designing

or intelligently modifying the transmitted waveform to maximize its imple-

mented effectiveness in a given radar system. While many pulse compression

waveforms are already known, and several, such as linear frequency modulated

chirps, have been in widespread use for many years, choosing a waveform for a

next-generation simultaneous transmit and simultaneous receive radar system

is more complicated than simply choosing a desired time-bandwidth product.

For a simultaneous transmit and simultaneous receive operational mode to be

realized without sacrificing range resolution or increasing the necessary sys-

tem bandwidth (conflicting with strict spectral transmission requirements),

the waveforms being transmitted on the differing polarizations require that

another dimension of orthogonality be introduced in addition to polarization

orthogonality. This extra dimension of orthogonality is accomplished through

the use of specifically designed modulated waveform sets, referred to as pseudo-

3



orthogonal waveform sets. Pseudo-orthogonal waveform sets must be carefully

designed so that all individual waveforms within a set display desirable pulse

compression characteristics when processed with their own matched filter, but

display very low and uniform pulse compression responses when processed

with any other waveform’s matched filter in the set [11]. Pseudo-orthogonal

waveform sets are relatively difficult to create, but will be necessary as strictly

maintained orthogonality in both polarization and waveform modulation are

required in order to recover the polarization scattering matrix with high fi-

delity from a single measurement, as shown in Sections 2.2, 2.5, and 2.8. A

collection of common pulse compression waveforms are analyzed for their suit-

ability as pseudo-orthogonal waveform sets in Section 2.6, and a novel method

of generating pseudo-orthogonal waveform sets within a given set of opera-

tional bounds through particle swarm optimization is presented in Section 2.7.

While designing and choosing an adequate pseudo-orthogonal waveform set

for a radar system is crucial to the system’s ultimate operational effectiveness,

it must be addressed that there always lies a difference between the theoretical

data fidelity of the system and the actual data fidelity of the physical system.

While thermal noise does play a role in this degradation, a significant amount

of the variation is due to a difference between the ideal transmitted waveform

and the actual transmitted and received waveform. The disparity between

the ideal transmitted waveform and the physically transmitted waveform is

primarily due to non-linear behavior of the transmit chain, namely the high

power amplifier. Nearly all amplifiers experience non-linearities over their in-

put power range with the most drastic effects near the upper limit of output

power, which coincidentally is also the region of operation coinciding with the

4



amplifier’s highest power added efficiency [12]–[14]. Additionally, this non-

linear behavior changes as a function of frequency. The non-linearities in high

power amplifiers not only alter the expected behavior of the waveforms during

matched filtering, but also introduce spectral spreading where the transmitted

waveforms occupy more bandwidth than intended. While the transmit chain

of the amplifier can be made to exhibit more linear behavior by reducing the

input power for a given high power amplifier, the reduction in output power

results in a sub-optimal power added efficiency. For the first time, Chapters

3 and 4 present research toward methods for intelligently modifying an ideal

wideband radar transmit waveform so that the physically transmitted wave-

form is linearly reproduced by the system while still operating at the peak

power added efficiency, thus maximizing the utility of a system’s given hard-

ware while complying with strict spectral requirements. These methods are

referred to as digital predistortion. Chapter 3 presents a conceptual approach

to wideband digital predistortion, a generalized method for executing wide-

band digital predistortion utilizing the memory polynomial model for a single

high power amplifier, and simulated and measured results verifying the effec-

tiveness of the approach.

While the digital predistortion method in Chapter 3 effectively predis-

torts a single channel, in practice many next-generation radar systems will

be implemented with active array architectures. One of the main advantages

of phased array antennas is rapid electronic beamsteering, but changing the

beamsteering angle in a phased array antenna alters the coupling between an-

tenna elements which changes each antenna element’s apparent impedance as

seen by the amplifier [1], [15]. The non-linear behavior of high power ampli-

5



fiers also vary with the amplifiers’ load impedance, therefore the non-linear

behavior of each high power amplifier in an active array architecture depends

not only on the desired waveform, but also on the desired beamsteering angle

and its intrinsically related effective load impedance. Chapter 4 expands upon

Chapter 3 by presenting a modified wideband digital predistortion method

that also accounts for the variations in a high power amplifier’s non-linearities

as a function of the amplifier’s experienced load impedance. This digital pre-

distortion is accomplished through application of the impedance dependent

memory polynomial model, which was developed through this research. A

short description of mutual coupling and scan impedance effects is given, fol-

lowed by a conceptual approach to impedance dependent digital predistortion,

the mathematical framework for the impedance dependent memory polynomial

model, and measured results verifying the effectiveness of the approach.

Altogether, this dissertation’s aim is to help provide some of the neces-

sary framework for next-generation radar systems so that they can maximize

their potential impact by providing high fidelity scientific data while operat-

ing within strict operational and budgetary guidelines. This is accomplished

through the mathematical analysis of expected operational modes and through

processes for helping analyze, design, and intelligently modify potential wide-

band waveform sets.
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Chapter 2

Mathematical Basis for Dual-Polarimetric Operation

2.1 Introduction

From a scientific perspective, high resolution measurements of a target’s range,

velocity, and four-element polarimetric scattering matrix are desirable. In

order to support these kind of measurements, a wideband dual-polarimetric

radar system will need to implement several advanced operational, process-

ing, and design techniques, including simultaneous transmit and simultaneous

receive operation utilizing pseudo-orthogonal waveforms, pulse compression,

interferometry, and wideband beamforming. The following sections will aim

to establish the definitions and mathematical basis of several techniques in

order to verify their feasibility, to compare their operation with traditional

techniques (where applicable), and to present a novel design method utilizing

particle swarm optimization for the creation of pseudo-orthogonal waveform

sets.
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2.2 Dual-Polarimetric Radar Operation

From a science perspective, the desired measurements from a dual-polarimetric

system are the co-polar and cross-polar signal return characteristics from both

polarizations in regards to a target, preferably separable and measured at the

same instance in time. A dual-polarimetric radar has independent amplifiers

for each of the two antenna polarization ports. For true dual-polarimetric op-

eration, the radar system must effectively have two transmit-receive chains,

one for each antenna polarization port. This definition of “dual-pol” (similar

to Raney’s definition of “Full-Polarization” in [16]) will be used throughout

this document. For the proposed orthogonal coding use with simultaneous

transmit and simultaneous receive on both polarizations, it must be shown

that a dual-pol system is capable of discerning the desired signals from the

received signal.

In order to give the matrix-based mathematical formulation for a received

generic dual-pol signal, some assumptions and unit conventions must be stated.

The radar system is assumed to be a monostatic with coherent operation.

When in regards to signals handled inside the radar architecture, “Horizon-

tal” and “Vertical,” denoted by the subscripts H and V respectively, will refer

to the the transmit-receive chain connected to the antenna polarization feed

of the same name. When in regards to signals propagating to the target and

back, H and V will refer to the orthonormal basis describing the polarization

of transmitted fields, where H and V are aligned with the fixed antenna po-

larizations, and the plane formed by the orthonormal basis is perpendicular

to the direction of field propagation in the far-field. It is also assumed for

8



this problem that the physical antenna’s polarization elements are perfectly

physically orthogonal to one another. Co-pol gain mismatch and cross-pol

contamination at the antenna will still be taken into effect, though it will

be assumed that the cross-pol contamination (ignoring additional co-pol gain

mismatch factor) is the same between channels, and antenna effects will be the

same upon transmit and recieve. Finally, because these equations are framed

with the purpose of researching the feasibility of recovering signal information

rather than computing power losses, signal amplitude effects (due to antenna

gain, target range, system losses, etc...) that affect the H and V channels

equally will not be included in the equations.

The ideal transmit signal Tideal(t) can be shown as

Tideal(t) =

 |a1(t)| cos(2πf0t + θ1(t)) Ĥ

|a2(t)| cos(2πf0t + θ2(t)) V̂

 (2.1)

where a1(t), a2(t) ∈ C are the complex baseband modulation waveforms of

the H and V channels, respectively, a1(t) = |a1(t)|ej θ1(t), a2(t) = |a2(t)|ej θ2(t),

f0 is the carrier frequency, and Ĥ and V̂ are the basis vectors representing the

independent channels. The process of the antenna converting the signals on

each channel to transmitted signals (and back upon reception) contaminates

the signal, due primarily to co-pol gain mismatch and cross-pol contamination.

Using the horizontal channel to horizontally polarized transmitted signal con-

version as a reference (with a conversion factor equal to 1), the unitless factors

α and β can be used to represent the relative magnitude of cross-pol con-

tamination and co-pol gain mismatch effects, respectively. The contamination
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factors α and β are defined as

α =
magnitude of horizontal channel’s signal converted to vertical polarization

magnitude of horizontal channel’s signal converted to horizontal polarization
(2.2)

and

β =
magnitude of vertical channel’s signal converted to vertical polarization

magnitude of horizontal channel’s signal converted to horizontal polarization
(2.3)

where α, β ∈ R. Using these terms the unitless antenna contamination vector

Cant can be shown as

Cant =

 1 αβ

α β

 (2.4)

For correctly working antennas |α| < 1, and for antennas with high cross-pol

isolation |α| << 1. For antennas with low co-pol gain mismatch, β ≈ 1.

Therefore, the actual transmitted signal Ttrans(t) can be shown as

Ttrans(t) = CantTideal(t) =

=

 |a1(t)| cos(2πf0t + θ1(t)) + αβ |a2(t)| cos(2πf0t + θ2(t)) Ĥ

α |a1(t)| cos(2πf0t + θ1(t)) + β |a2(t)| cos(2πf0t + θ2(t)) V̂

 (2.5)

where Ĥ and V̂ are the polarization basis vectors.

For a given static line-of-sight target centered at range R, the unitless

matrix Γ represents the polarimetric shifts as well as the phase shifts due

to the transmitted fields’ reactions with the target. The accurate acquisition

of this matrix for further analysis of the target is one of the main scientific
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measurements of a dual-pol system (see pg. 239-242 of [9]). The matrix Γ can

be expanded as

Γ =

 ΓHH ΓHV

ΓVH ΓVV

 (2.6)

where ΓHH, ΓHV, ΓVH, ΓVV ∈ C, and the two subscripts denote the reflected

and incident polarizations, respectively. Additionally, ΓHH = |ΓHH|ej θHH ,

ΓHV = |ΓHV|ej θHV , ΓVH = |ΓVH|ej θV H , and ΓVV = |ΓVV|ej θV V . The reflected

signals are also dependent upon the target’s distribution in range, such that the

reflected signal can be represented as a convolution of the transmitted signal

with an envelope representing the magnitude of reflection at range. Assuming

a point target at range R, the reflected signal due to target range distribution

is shown as

Rrefl(t) = Ttrans(t) ⊗ δ(t − 2R

c
) = Ttrans(t −

2R

c
) = Ttrans(t

′) (2.7)

where ⊗ is the convolution operator (when a single function is convolved with

a matrix, the single function is independently convolved with each element in

the matrix to form a new matrix), t′ = (t − 2R
c
), c is the speed of light, and

(2R
c
) is the round trip time delay between the monostatic radar and the point

target. Therefore, the returned signal Rsurf(t) at the surface of the antenna

immediately before reception is shown as
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Rsurf(t) = ΓRrefl(t) = Γ(Ttrans(t) ⊗ δ(t − 2R

c
)) = ΓTtrans(t − 2R

c
) = ΓTtrans(t

′) = ΓHH ΓHV

ΓVH ΓVV


 |a1(t

′)| cos(2πf0t′ + θ1(t
′)) + αβ |a2(t

′)| cos(2πf0t′ + θ2(t
′)) Ĥ

α |a1(t
′)| cos(2πf0t′ + θ1(t

′)) + β |a2(t
′)| cos(2πf0t′ + θ2(t

′)) V̂

 =

=

 |ΓHH| [|a1(t
′)| cos(2πf0t′ + θ1(t

′) + θHH) + αβ |a2(t
′)| cos(2πf0t′ + θ2(t

′) + θHH)] +

|ΓVH| [|a1(t
′)| cos(2πf0t′ + θ1(t

′) + θV H) + αβ |a2(t
′)| cos(2πf0t′ + θ2(t

′) + θV H)] +

+ |ΓHV| [α |a1(t
′)| cos(2πf0t′ + θ1(t

′) + θHV ) + β |a2(t
′)| cos(2πf0t′ + θ2(t

′) + θHV )] Ĥ

+ |ΓVV| [α |a1(t
′)| cos(2πf0t′ + θ1(t

′) + θV V ) + β |a2(t
′)| cos(2πf0t′ + θ2(t

′) + θV V )] V̂


(2.8)

where Ĥ and V̂ are the polarization basis vectors. Upon reception by the

antenna, co-pol gain mismatch and cross-pol contamination affects the signals

again, leading to an actual measured signal Rmeas(t) that can be shown as
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Rmeas(t) = CT
antRsurf(t) = CT

antΓCantTideal(t
′) = Rmeas,H(t)

Rmeas,V(t)

 =

 1 α

αβ β


 ΓHH ΓHV

ΓVH ΓVV


 1 αβ

α β


 |a1(t′)| cos(2πf0t′ + θ1(t′)) Ĥ

|a2(t′)| cos(2πf0t′ + θ2(t′)) V̂

 =

 |ΓHH| [|a1(t′)| cos(2πf0t′ + θ1(t′) + θHH) + αβ |a2(t′)| cos(2πf0t′ + θ2(t′) + θHH)] +

αβ |ΓHH| [|a1(t′)| cos(2πf0t′ + θ1(t′) + θHH) + αβ |a2(t′)| cos(2πf0t′ + θ2(t′) + θHH)] +

+ |ΓHV| [α |a1(t′)| cos(2πf0t′ + θ1(t′) + θHV ) + β |a2(t′)| cos(2πf0t′ + θ2(t′) + θHV )] +

+ αβ |ΓHV| [α |a1(t′)| cos(2πf0t′ + θ1(t′) + θHV ) + β |a2(t′)| cos(2πf0t′ + θ2(t′) + θHV )] +

+ α|ΓVH| [|a1(t′)| cos(2πf0t′ + θ1(t′) + θV H) + αβ |a2(t′)| cos(2πf0t′ + θ2(t′) + θV H)] +

+ β |ΓVH| [|a1(t′)| cos(2πf0t′ + θ1(t′) + θV H) + αβ |a2(t′)| cos(2πf0t′ + θ2(t′) + θV H)] +

+ α|ΓVV| [α |a1(t′)| cos(2πf0t′ + θ1(t′) + θV V ) + β |a2(t′)| cos(2πf0t′ + θ2(t′) + θV V )] Ĥ

+ β |ΓVV| [α |a1(t′)| cos(2πf0t′ + θ1(t′) + θV V ) + β |a2(t′)| cos(2πf0t′ + θ2(t′) + θV V )] V̂


(2.9)

where [ · ]T denotes the transpose, and Ĥ and V̂ are the basis vectors repre-

senting the independent channels.

Once the signals have been received by the antenna, the channel corre-

sponding with each polarization goes to its respective quadrature receiver

chain, where each signal is split and mixed with a copy of the carrier in-

phase (I) and in quadrature (Q). It is assumed that there is no phase error in

the carrier, and that the carriers mixed in the I and Q channels for both polar-

ization channels have magnitude equal to twice the magnitude of the original

carrier that was mixed with the complex baseband modulating signals during

transmission. This can be shown by forming two new matrices representing
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the mixed received signals for the H and V channels, RM,H(t) and RM,V(t)

respectively, shown as

RM,H(t) = Rmeas,H(t)

 2 cos(2πf0t) Î

−2 sin(2πf0t) Q̂

 (2.10)

and

RM,V(t) = Rmeas,V(t)

 2 cos(2πf0t) Î

−2 sin(2πf0t) Q̂

 (2.11)

where Î and Q̂ are the basis vectors representing the in-phase and quadrature

channels, respectively. Low-pass filters can then be used to remove the high

frequency components of the signals, leaving the baseband signals to be digi-

tized by ADCs. These baseband signals, contained within the vectorsRBB,H(t)

and RBB,V(t), can be expanded to be shown as
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RBB,H(t) = |ΓHH|
[
|a1(t′)| cos(4πf0 R

c
− θ1(t′) − θHH) + αβ |a2(t′)| cos(4πf0 R

c
− θ2(t′) − θHH)

]
+

−|ΓHH|
[
|a1(t′)| sin(4πf0 R

c
− θ1(t′) − θHH) + αβ |a2(t′)| sin(4πf0 R

c
− θ2(t′) − θHH)

]
+

+ |ΓHV|
[
α |a1(t′)| cos(4πf0 R

c
− θ1(t′) − θHV ) + β |a2(t′)| cos(4πf0 R

c
− θ2(t′) − θHV )

]
+

− |ΓHV|
[
α |a1(t′)| sin(4πf0 R

c
− θ1(t′) − θHV ) + β |a2(t′)| sin(4πf0 R

c
− θ2(t′) − θHV )

]
+

+ α|ΓVH|
[
|a1(t′)| cos(4πf0 R

c
− θ1(t′) − θV H) + αβ |a2(t′)| cos(4πf0 R

c
− θ2(t′) − θV H)

]
+

− α|ΓVH|
[
|a1(t′)| sin(4πf0 R

c
− θ1(t′) − θV H) + αβ |a2(t′)| sin(4πf0 R

c
− θ2(t′) − θV H)

]
+

+ α|ΓVV|
[
α |a1(t′)| cos(4πf0 R

c
− θ1(t′) − θV V ) + β |a2(t′)| cos(4πf0 R

c
− θ2(t′) − θV V )

]
Î

− α|ΓVV|
[
α |a1(t′)| sin(4πf0 R

c
− θ1(t′) − θV V ) + β |a2(t′)| sin(4πf0 R

c
− θ2(t′) − θV V )

]
Q̂

 =

=

 |ΓHH|
[
|a1(t′)| cos(−4πf0

R
c

+ θ1(t′) + θHH) + αβ |a2(t′)| cos(−4πf0
R
c

+ θ2(t′) + θHH)
]

+

|ΓHH|
[
|a1(t′)| sin(−4πf0

R
c

+ θ1(t′) + θHH) + αβ |a2(t′)| sin(−4πf0
R
c

+ θ2(t′) + θHH)
]

+

+ |ΓHV|
[
α |a1(t′)| cos(−4πf0

R
c

+ θ1(t′) + θHV ) + β |a2(t′)| cos(−4πf0
R
c

+ θ2(t′) + θHV )
]

+

+ |ΓHV|
[
α |a1(t′)| sin(−4πf0

R
c

+ θ1(t′) + θHV ) + β |a2(t′)| sin(−4πf0
R
c

+ θ2(t′) + θHV )
]

+

+ α|ΓVH|
[
|a1(t′)| cos(−4πf0

R
c

+ θ1(t′) + θV H) + αβ |a2(t′)| cos(−4πf0
R
c

+ θ2(t′) + θV H)
]

+

+ α|ΓVH|
[
|a1(t′)| sin(−4πf0

R
c

+ θ1(t′) + θV H) + αβ |a2(t′)| sin(−4πf0
R
c

+ θ2(t′) + θV H)
]

+

+ α|ΓVV|
[
α |a1(t′)| cos(−4πf0

R
c

+ θ1(t′) + θV V ) + β |a2(t′)| cos(−4πf0
R
c

+ θ2(t′) + θV V )
]

Î

+ α|ΓVV|
[
α |a1(t′)| sin(−4πf0

R
c

+ θ1(t′) + θV V ) + β |a2(t′)| sin(−4πf0
R
c

+ θ2(t′) + θV V )
]

Q̂


(2.12)

and
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RBB,V(t) = αβ |ΓHH|
[
|a1(t′)| cos(4πf0 R

c
− θ1(t′) − θHH) + αβ |a2(t′)| cos(4πf0 R

c
− θ2(t′) − θHH)

]
+

−αβ |ΓHH|
[
|a1(t′)| sin(4πf0 R

c
− θ1(t′) − θHH) + αβ |a2(t′)| sin(4πf0 R

c
− θ2(t′) − θHH)

]
+

+ αβ |ΓHV|
[
α |a1(t′)| cos(4πf0 R

c
− θ1(t′) − θHV ) + β |a2(t′)| cos(4πf0 R

c
− θ2(t′) − θHV )

]
+

− αβ |ΓHV|
[
α |a1(t′)| sin(4πf0 R

c
− θ1(t′) − θHV ) + β |a2(t′)| sin(4πf0 R

c
− θ2(t′) − θHV )

]
+

+ β |ΓVH|
[
|a1(t′)| cos(4πf0 R

c
− θ1(t′) − θV H) + αβ |a2(t′)| cos(4πf0 R

c
− θ2(t′) − θV H)

]
+

− β |ΓVH|
[
|a1(t′)| sin(4πf0 R

c
− θ1(t′) − θV H) + αβ |a2(t′)| sin(4πf0 R

c
− θ2(t′) − θV H)

]
+

+ β |ΓVV|
[
α |a1(t′)| cos(4πf0 R

c
− θ1(t′) − θV V ) + β |a2(t′)| cos(4πf0 R

c
− θ2(t′) − θV V )

]
Î

− β |ΓVV|
[
α |a1(t′)| sin(4πf0 R

c
− θ1(t′) − θV V ) + β |a2(t′)| sin(4πf0 R

c
− θ2(t′) − θV V )

]
Q̂

 =

=

 αβ |ΓHH|
[
|a1(t′)| cos(−4πf0

R
c

+ θ1(t′) + θHH) + αβ |a2(t′)| cos(−4πf0
R
c

+ θ2(t′) + θHH)
]

+

αβ |ΓHH|
[
|a1(t′)| sin(−4πf0

R
c

+ θ1(t′) + θHH) + αβ |a2(t′)| sin(−4πf0
R
c

+ θ2(t′) + θHH)
]

+

+ αβ |ΓHV|
[
α |a1(t′)| cos(−4πf0

R
c

+ θ1(t′) + θHV ) + β |a2(t′)| cos(−4πf0
R
c

+ θ2(t′) + θHV )
]

+

+ αβ |ΓHV|
[
α |a1(t′)| sin(−4πf0

R
c

+ θ1(t′) + θHV ) + β |a2(t′)| sin(−4πf0
R
c

+ θ2(t′) + θHV )
]

+

+ β |ΓVH|
[
|a1(t′)| cos(−4πf0

R
c

+ θ1(t′) + θV H) + αβ |a2(t′)| cos(−4πf0
R
c

+ θ2(t′) + θV H)
]

+

+ β |ΓVH|
[
|a1(t′)| sin(−4πf0

R
c

+ θ1(t′) + θV H) + αβ |a2(t′)| sin(−4πf0
R
c

+ θ2(t′) + θV H)
]

+

+ β |ΓVV|
[
α |a1(t′)| cos(−4πf0

R
c

+ θ1(t′) + θV V ) + β |a2(t′)| cos(−4πf0
R
c

+ θ2(t′) + θV V )
]

Î

+ β |ΓVV|
[
α |a1(t′)| sin(−4πf0

R
c

+ θ1(t′) + θV V ) + β |a2(t′)| sin(−4πf0
R
c

+ θ2(t′) + θV V )
]

Q̂


(2.13)

Using Euler’s formula, cos(θ) + jsin(θ) = ej θ, the Î and Q̂ components

of RBB,H(t) and RCBB,V(t) can be used as the real and imaginary components,

respectively, to form the complex baseband signals, contained in the matrix

RCBB(t) with terms RCBB,H(t) and RBB,V(t) for the H and V channels, respec-
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tively. This is shown as

RCBB(t) =

 RCBB,H(t) Ĥ

RCBB,V(t) V̂

 (2.14)

Due to the length of RCBB,H(t) and RCBB,V(t), they are shown below individ-

ually as

RCBB,H(t) =

= |ΓHH|
[
|a1(t′)| ej(−4πf0

R
c + θ1(t

′)+ θHH) + αβ |a2(t′)| ej(−4πf0
R
c + θ2(t

′)+ θHH)
]

+

+ |ΓHV|
[
α |a1(t′)| ej(−4πf0

R
c + θ1(t

′)+ θHV ) + β |a2(t′)| ej(−4πf0
R
c + θ2(t

′)+ θHV )
]

+

+ α|ΓVH|
[
|a1(t′)| ej(−4πf0

R
c + θ1(t

′)+ θV H) + αβ |a2(t′)| ej(−4πf0
R
c + θ2(t

′)+ θV H)
]

+

+ α|ΓVV|
[
α |a1(t′)| ej(−4πf0

R
c + θ1(t

′)+ θV V ) + β |a2(t′)| ej(−4πf0
R
c + θ2(t

′)+ θV V )
]
=

= ΓHH

[
a1(t

′) e−j4πf0
R
c + αβ a2(t

′) e−j4πf0
R
c

]
+

+ ΓHV

[
αa1(t

′) e−j4πf0
R
c + β a2(t

′) e−j4πf0
R
c

]
+

+ αΓVH

[
a1(t

′) e−j4πf0
R
c + αβ a2(t

′) e−j4πf0
R
c

]
+

+ αΓVV

[
αa1(t

′) e−j4πf0
R
c + β a2(t

′) e−j4πf0
R
c

]
=

= [ΓHH a1(t
′) + β ΓHV a2(t

′)] e−j4πf0
R
c +

+ α [β ΓHH a2(t
′) + ΓHV a1(t

′) + ΓVH a1(t
′) + β ΓVV a2(t

′)] e−j4πf0
R
c +

+ α2 [β ΓVH a2(t
′) + ΓVV a1(t

′)] e−j4πf0
R
c (2.15)
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and

RCBB,V(t) =

= αβ|ΓHH|
[
|a1(t′)| ej(−4πf0

R
c + θ1(t

′)+ θHH) + αβ |a2(t′)| ej(−4πf0
R
c + θ2(t

′)+ θHH)
]

+

+ αβ|ΓHV|
[
α |a1(t′)| ej(−4πf0

R
c + θ1(t

′)+ θHV ) + β|a2(t′)| ej(−4πf0
R
c + θ2(t

′)+ θHV )
]

+

+ β|ΓVH|
[
|a1(t′)| ej(−4πf0

R
c + θ1(t

′)+ θV H) + αβ |a2(t′)| ej(−4πf0
R
c + θ2(t

′)+ θV H)
]

+

+ β|ΓVV|
[
α |a1(t′)| ej(−4πf0

R
c + θ1(t

′)+ θV V ) + β |a2(t′)| ej(−4πf0
R
c + θ2(t

′)+ θV V )
]
=

= αβΓHH

[
a1(t

′) e−j4πf0
R
c + αβ a2(t

′) e−j4πf0
R
c

]
+

+ αβΓHV

[
αa1(t

′) e−j4πf0
R
c + β a2(t

′) e−j4πf0
R
c

]
+

+ βΓVH

[
a1(t

′) e−j4πf0
R
c + αβ a2(t

′) e−j4πf0
R
c

]
+

+ βΓVV

[
αa1(t

′) e−j4πf0
R
c + β a2(t

′) e−j4πf0
R
c

]
=

=
[
β ΓVH a1(t

′) + β2 ΓVV a2(t
′)
]
e−j4πf0

R
c +

+ α
[
β ΓHH a1(t

′) + β2 ΓHV a2(t
′) + β2 ΓVH a2(t

′) + β ΓVV a1(t
′)
]
e−j4πf0

R
c +

+ α2
[
β2 ΓHH a2(t

′) + β ΓHV a1(t
′)
]
e−j4πf0

R
c (2.16)

The resulting signals from equations 2.15 and 2.16 clearly show the ne-

cessity of high cross-pol isolation as a large cross-pol contamination, reflected

in a large α value, removes the ability to accurately extract the Γ parameter

values with pulse compression or other forms of waveform control on a1(t) and

a2(t). As the cross-pol isolation is increased and the co-pol gain mismatch is

decreased, the ideal return signal is approached, shown as

lim
α→0

lim
β→1

RCBB(t) = RCBB,ideal(t) (2.17)

where
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RCBB,ideal(t) =

 [ΓHH a1(t
′) + ΓHV a2(t

′)] e−j4πf0
R
c Ĥ

[ΓVH a1(t
′) + ΓVV a2(t

′)] e−j4πf0
R
c V̂

 (2.18)

Now it can be easily seen that for very high cross-pol isolation and low co-

pol gain mismatch where RCBB(t) ≈ RCBB,ideal(t), the individual terms of

Γ can be recovered. This is relatively simple for the alternating H and V

transmit mode because for any given instance of RCBB(t) resulting from a

single measured pulse, either a1(t
′) = 0 or a2(t

′) = 0, leaving a single Γ

parameter in both H and V channels, and once a measurement from both

broadcast polarizations has been made, the full Γ matrix can be assembled.

The downside of the alternating transmit approach is that the Γ matrix is

assumed to be for the target at an instantaneous moment in time, but the Γ

matrix is actually assembled from different measurements taken at minimum

one Pulse Repetition Time (PRT) apart. This is why the simultaneous H and

V transmit mode is more desired from a scientific standpoint, as the Γmatrix is

assembled from measurements truly taken at the same instance. The difficulty

of the simultaneous transmit mode is that the separation of individual Γ terms

is achieved completely through signal processing dependent on the modulating

waveforms a1(t) and a2(t). Therefore, a1(t) and a2(t) must be chosen so that

after pulse compression with one of the selected waveforms, there is a single

instantaneous high cross-correlation on the component multiplied by the same

waveform, and an extremely low cross-correlation at all time delays with the

component multiplied by the other waveform. Basically, a1(t) and a2(t) must

each have pulse compression outputs with low range sidelobes (see Section 2.3 )

as well as together form a pseudo-orthogonal set (see Sec. 2.4), which presents
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its own challenges, but is needed to achieve the desired scientific measurements.

Therefore, by processing the matched filters for a1(t) and a2(t) on both H and

V channels, the four elements of the Γ matrix can be obtained (ΓHH and ΓHV

from the H channel, and ΓVH and ΓVV on the V channel) to the degree that

the co-pol gain imbalance, cross-pol contamination, and pseudo-orthogonality

of the waveform set allows. The measured values of the Γ matrix, ΓMeas, can

be shown as

ΓMeas =


ΓHH,Meas

ΓHV,Meas

ΓVH,Meas

ΓVV,Meas


=


max (RCBB,H(t) ⊗ h1(t) )

max (RCBB,H(t) ⊗ h2(t) )

max (RCBB,V(t) ⊗ h1(t) )

max (RCBB,V(t) ⊗ h2(t) )


(2.19)

where h1(t) is the matched filter for waveform a1(t), h2(t) is the matched filter

for waveform a2(t), ⊗ is the convolution operator, max( · ) gives the value of the

point with the maximum magnitude in its argument, and ΓMeas is rearranged

from the intuitive [2 × 2] format into a [4 × 1] format for ease of display

due to the length of each expanded individual term.

2.3 Cross-Correlation and Pulse Compression

In order to understand the basis of pseudo-orthogonal waveform sets, the defi-

nitions and meanings of cross-correlation, matched filters, and pulse compres-

sion must be established.

The mathematical formula for continuous domain cross-correlation of x(t)

with y(t) is defined as
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sxy(τ) = E{x(t)y∗(t+ τ)} =

∫ +∞

−∞
x(t)y∗(t+ τ) dt −∞ < τ < +∞ (2.20)

where E{·} denotes the “expected value” as seen on pg 533 of [17], sxy(τ),

x(t), y(t) ∈ C, and t, τ ∈ R (and t and τ are commonly in units of seconds),

sxy(τ) is the continuous domain cross-correlation as a function of offset τ , x(t)

is a continuous signal as a function of t, and y∗(t + τ) is the complex conjugate

of y(t) with a difference in continuous variable by τ .

The mathematical formula for discrete domain cross-correlation of x[n]

with y[n] is defined as

sxy[k] = E{x[n]y∗[n + k]} =
+∞∑

n=−∞

x[n]y∗[n + k] −∞ < k < +∞ (2.21)

where sxy[k], x[n], y[n] ∈ C, and n, k ∈ Z (and n and k are commonly

unitless), sxy[k] is the discrete domain cross-correlation as a function of index

offset k, x[n] is a discrete signal with indexing n, and y∗[n + k] is the complex

conjugate of y[n] with indexing offset k.

It should be noted that if x(t) = y(t) in Eq. 2.20 or if x[n] = y[n] in Eq.

2.21, then the resulting cross-correlation would be more aptly referred to as

the autocorrelation. It should also be noted that the cross-correlation of x[n]

and y[n] is equal to the convolution of x[n] and y∗[−n] as shown on pg 35 of [10].

Cross-correlation is crucial from a signal processing perspective, as it forms

the basis of matched filtering and pulse compression.
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Pulse compression is defined by Richards [10] as “the process of designing

a waveform and its corresponding matched filter so that the matched filter

output in response to the echo from a single point scatterer concentrates most

of its energy in a very short duration, thus providing good range resolution

while still allowing the high transmitted energy of a long pulse.”

A traditional unmodulated fixed frequency radar transmits a constant mod-

ulus waveform for duration τ . This results in a minimum resolution in time of

τ seconds, while increasing the tradeoff between probability of detection and

probability of false alarm is directly related to increasing the Signal to Noise

Ratio (SNR), which is also directly related to increasing the pulse length τ .

This is because the SNR measured at a time TM is given by

SNR = =
|y(TM)|2

np
=

∣∣∣ 1
2π

∫ +∞
−∞ X(Ω)H(Ω)ejΩTM dΩ

∣∣∣2
N0

4π

∫ +∞
−∞ |H(Ω)|2 dΩ

(2.22)

where the spectrum of the receiver output y(TM) is Y (Ω) = H(Ω)X(Ω), X(Ω)

is the spectrum of the waveform, H(Ω) is the receiver frequency response, N0

is the power spectral density of white noise in the receiver, and np is the

total output noise power. By applying the Cauchy Schwarz inequality on the

numerator with the intention of finding the receiver frequency response that

maximizes the SNR, it is seen that it is necessary for H(Ω) = αX∗(Ω)e−jΩTM

(or h(t) = αx∗(TM − t) in the time domain) where α is an arbitrary scaling

factor. As an aside, the receiver frequency response that maximizes the SNR

for a given waveform is known as the matched filter, because it is specifically

matched to the used waveform. Using the matched filter leads to a simplified
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equation for SNR, shown as

SNR =
1

πN0

∫ +∞

−∞
|X(Ω)|2 dΩ (2.23)

Applying Parseval’s theorem
∫ +∞
−∞ |x(t)|2 dt =

∫ +∞
−∞ |X(Ω)|2 dΩ and the as-

sumption that x(t) has a fixed amplitude, it can be seen that the only way to

increase SNR, and thus the tradeoff between probability of detection and prob-

ability of false alarm, is to increase the pulse length time τ , which decreases

the possible range resolution for the unmodulated constant modulus waveform

[10]. The output of the matched filter y(t) is given by the convolution of the

matched filter with the received signal x′(t), shown as

y(t) =

∫ +∞

−∞
x′(s)h(t− s) ds = α

∫ +∞

−∞
x′(s)x∗(s + TM − t) ds (2.24)

Note that the equation for calculating the matched filter output (Eq. 2.24) is

actually the cross-correlation (see Eq. 2.20) of the received signal x′(t) with

the transmitted signal x(t). If the received signal were a perfect copy of the

transmitted signal, the matched filter output would be the autocorrelation of

the waveform. This is why cross-correlation is related to matched filtering, and

since matched filtering is needed to maximize the SNR of the receiver output,

matched filtering is needed to optimize the results of pulse compression.

Another way of examining the inverse relation between the range resolu-

tion and the possible SNR is by examining the time-bandwidth product, which

is given by TB = β τ , where TB is the time-bandwidth product, β is the

Rayleigh bandwidth (minimum resolvable bandwidth), and τ is the minimum

resolution in time at the matched filter output. For the simple unmodulated
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waveform the Rayleigh bandwidth is 1
τ
and the minimum resolution in time is

τ , which gives TB = 1. This relation between resolution and received power

can be mitigated to an extent, improving the receive characteristics and filter

output of the system by using a pulse compression waveform, which causes the

decoupling of energy (more specifically, the pulse length due to the assump-

tion of a constant modulus waveform) and resolution, which is accomplished

through mindful waveform design and the use of a matched filter. As a result,

a pulse compression waveform has TB >> 1 [10].

Pulse compression is well summarized by Skolnik on pg. 341 of [18], where

pulse compression is “described as the use of a long pulse of width T to ob-

tain the resolution of a short pulse by modulating the long pulse to achieve a

bandwidth B >> 1
T
, and processing the modulated long pulse in a matched

filter to obtain a pulse width τ ≈ 1
B
. Pulse compression allows a radar to

simultaneously achieve the energy of a long pulse and the resolution of a short

pulse without the high peak power required of a high-energy short-duration

pulse.”

Since the receiver output is the time convolution of the matched filter and

received signal, this is equivalent to the cross-correlation of the received sig-

nal with the transmitted signal (which should be very close to one another,

resulting in a maximum cross-correlation output at a delay of zero, similar to

the true autocorrelation case). While the effect of Doppler shift, amplitude

and phase errors, noise, and other received signal corruptions can and should

be taken into account in waveform development, pulse compression signals are

usually designed and analyzed initially with an ideal received signal, so that
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the matched filter output actually is the autocorrelation of the transmitted

signal.

Intuitively, this means that the autocorrelation of the waveform should

destructively interfere as much as possible at all delays except for delay zero

(which will already be the maximum as an inherrent property of the autocor-

relation function). This is accomplished through clever assignment of phase

shifts in the phase coding case, and is accomplished naturally in the frequency

modulation case (it is assumed the frequency modulated waveform changes fre-

quency monotonically) as different frequencies will increasingly destructively

interfere with one another as the difference in frequencies increases. Examples

of Linear Frequency Modulated (LFM) and biphase coded pulse compression

results versus equal length unmodulated waveform receiver outputs are shown

below in Figure 2.1 and Figure 2.2, respectively. A 13 bit Barker code was

chosen for the biphase coded waveform example (See Sec. 2.6). Note that

the peak autocorrelation of the unmodulated case is the same as the pulse

compression signal case for both examples, but in both examples the sidelobes

of the autocorrelation function are suppressed much lower for the modulated

waveforms than for the unmodulated case.

Frequency modulation based pulse compression, more specifically LFM

based pulse compression, has the benefits of easy generation and architecture

implementation, the option of easy analog or digital implementation of the

matched filter, and is very Doppler tolerant (meaning that the same matched

filter can be used for target detection, even when the received signal has a large

Doppler shift present). In addition, if stretch processing is utilized (where the
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Figure 2.1: Example of Pulse Compressed vs. Simple Waveform Receiver
Output: 10 MHz Bandwidth LFM Case
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Figure 2.2: Example of Pulse Compressed vs. Simple Waveform Receiver
Output: 13 bit Biphase Barker Coded Case

downconverted received signal is mixed with chirp based around a reference

position), then high resolution detection can be made, possibly even able to
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utilize an Analog to Digital Converter (ADC) with a more narrow bandwidth

than the originally transmitted signal. However, LFM waveforms, with a sinc

shaped autocorrelation output proportional to sin πBt
πBt

, have relatively high peak

sidelobes present which are only 13.2 dB lower than the autocorrelation peak,

however these can be lowered with windowing to 30 dB lower than the autocor-

relation peak if a loss of 1 dB can be tolerated [18]. Unwindowed Non-Linear

Frequency Modulated (NLFM) waveforms can lead to autocorrelation func-

tion outputs with very low peak sidelobes, but this is usually at the expense

of doppler tolerance.

Phase coding based pulse compression is usually divided into either biphase

codes or polyphase codes. Biphase codes are limited to two phase states that

are π radians out of phase. Arguably the most important biphase codes are

Barker codes and Minimum Peak Sidelobe (MPS) codes (see Sec. 2.6). In gen-

eral, biphase codes exhibit low, predictable sidelobe levels, and some biphase

codes result in the minimum peak sidelobe for a given code length [17]. How-

ever, biphase codes are very Doppler intolerant, and filter banks utilizing

matched filters with preset Doppler offsets must be utilized to detect sub-

stantially Doppler shifted targets in the received signal. Polyphase codes are

not limited to two phase states, and in general polyphase codes can produce

lower autocorrelation sidelobe levels and are more Doppler tolerant than equal

length biphase codes (see Sec. 2.6). While polyphase codes can have much

lower autocorrelation sidelobe levels than unwindowed (and also realistically

windowed) LFM waveforms as well as be more Doppler tolerant than biphase

codes, LFM waveforms are usually more applicable when detection of targets

with very large Doppler shifts may be present [1].
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2.4 Orthogonality and Waveform Pseudo-Orthogonality

As shown in Section 2.2, dual-polarized radar systems must utilize orthogo-

nality in both polarization and in waveform coding. From a linear algebra

perspective, the definition of orthogonal is given as Definition 5.4 by Kolman

in [19], stating “Let V be an inner product space. Two vectors u and v in V

are orthogonal if (u,v) = 0” where ( · ) denotes the inner product. Defini-

tion 5.5 in [19] states “Let V be an inner product space. A set S of vectors in

V is called orthogonal if any two distinct vectors in S are orthogonal. If, in

addition, each vector in S is of unit length, then S is called orthonormal.”

From a signal processing perspective, Oppenheim [20] states on pg. 273

that “Two functions u(t) and v(t) are said to be orthogonal over the interval

(a,b) if

∫ b

a

u(t)v∗(t) dt = 0 (2.25)

If, in addition,

∫ b

a

|u(t)|2 dt = 1 =

∫ b

a

|v(t)|2 dt (2.26)

the functions are said to be normalized and hence are called orthonormal. A

set of functions {ϕk(t)} is called an orthogonal (orthonormal) set if each pair

of functions in the set is orthogonal (orthonormal).”

From a radar signal processing perspective, Pace [11] states on pg. 361-362

that “An orthogonal waveform set is a group of waveforms in which each of
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the waveforms has nearly ideal noise-like aperiodic autocorrelation property

and any two of them have no cross-correlation.”

The definitions given by Kolman and Oppenheim imply that the true def-

inition of orthogonality only applies to the current simultaneous state of two

vectors (or functions), and does not take into account indexing or time lags

between the two. Notice the similarity between the condition of orthogonality

Eq. 2.25 and the definition of cross-correlation in Eq. 2.20. The condition for

orthogonality is basically the cross-correlation at zero delay, integrated over a

finite interval, equating to zero.

The definition of an orthogonal waveform set given by Pace requires that

“any two [codes] have no cross-correlation” as well be non-zero (implied by

the requirement that “each of the waveforms has nearly ideal noise-like ape-

riodic autocorrelation”). Pace’s definition has no implicit necessity that the

orthogonality is only evaluated at a single (zero) time lag, therefore it is as-

sumed to use the normal definition of cross-correlation, which as shown in

Eq. 2.20 implies that all time delays must be taken into account. As an

aside, it is technically impossible for finite length non-zero codes to have no

cross-correlation, so it is interpreted to mean very low cross-correlation for all

time delays. Therefore Pace’s presented definition of orthogonality does not

technically agree with the usual mathematical definition of orthogonality due

to taking into account all offsets between waveforms, and it is actually closer

to the understood definition of “nearly orthogonal,” here used synonymously

with “pseudo-orthogonal,” than true mathematical orthogonality.
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Using Pace’s definition of orthogonality for the definition of pseudo-orth-

ogonality, this means that a pseudo-orthogonal set of waveforms contains wave-

forms where each waveform exhibits desirable autocorrelation characteristics

(approaching that of white noise), and any two waveforms have very low cross-

correlation for any and all time or indexing delays between waveforms. White

noise is defined by Mitra [21] on pg. 901 as a “zero-mean Wide Sense Station-

ary (WSS) random process [that] has an autocorrelation sequence ϕXX [l] that

is an impulse sequence of amplitude σ2
x,” where σ2

x is defined to be the variance

of random variable X, and a random process where any pair of two different

samples from the process are uncorrelated. In order for the autocorrelation

of white noise to equal an impulse function, the sequence must be infinitely

long. This is not feasible in practice, and is why the approximation (rather

than matching) of a delta function in the autocorrelation function is one of

the criteria of the pseudo-orthogonal waveform set.

It should be noted that due to the the nature of radar operation, where the

delay between signal transmission and reception is directly due to target range,

where range is an unknown and continuous variable, a set of pseudo-orthogonal

waveforms is much more practical in usage than a set of truly mathematically

orthogonal waveforms. This is because orthogonal waveforms, while having

zero cross-correlation at zero delay, do not have defined characteristics for all

other delays. Pseudo-orthogonal waveforms, while they most likely have non-

zero cross-correlation at zero delay, almost assuredly have flatter and more

suppressed cross-correlation response across non-zero delays than the orthog-

onal waveform set. Due to the radar’s inability to sync demodulation with

the time delay due to the unknown target range, the overall cross-correlation
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characteristics of the pseudo-orthogonal set is much more desirable than the

zero-lag cross-correlation characteristic of the orthogonal set.

The white noise-like autocorrelation properties desired in the pseudo-orth-

ogonal waveform set means that white noise generated signals themselves can

be used as an example to show that a pseudo-orthogonal waveform set is pos-

sible. Consider two infinite sequences of white noise generated signal points.

Due to the quality of the white noise generated sequence that any two differ-

ent points are uncorrelated, because both infinite sequences are white noise

generated this means that any point in the first sequence will also be un-

correlated with any point in the second sequence. This also means that the

cross-correlation between the two sequences is zero at all time delays, effec-

tively making the two sequences truly orthogonal at all time delays. Therefore,

a set of two white noise generated infinite sequences meets both the require-

ments for pseudo-orthogonality as well as mathematical orthogonality (though

a = −∞ and b = +∞ in Eq. 2.25).

In the real world, infinite sequences are not possible, so finite sequences

must be used. However, in practice a very long finite sequence of white noise

will still result in an autocorrelation resembling a delta function, but with

very small non-zero values at non-zero delays rather than actual zero values

like in the ideal infinitely long sequence case. This means that as the length

is increased of the white noise generated sequence, the sequence continues to

approximate more closely the ideal infinitely long case, and the non-zero delay

autocorrelation values are suppressed accordingly. Creating a very (very) long

sequence of white noise could easily result in an autocorrelation function with
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a peak 50 dB greater than all other points. This is important because, due

to the quality of the white noise generated sequence that any two different

points are uncorrelated, a second equal length independently generated white

noise sequence will have an autocorrelation function with very similar overall

characteristics to those of the first function, but any point in the second se-

quence will be completely uncorrelated with any point in the first sequence.

The result is the cross-correlation of the two sequences at all points will resem-

ble the non-zero delay points in the autocorrelation of either of the sequences.

Therefore, if two independently generated white noise sequences each have

autocorrelations with peaks 50 dB greater than all other points, then they

should also have a cross-correlation that is 50 dB lower than the peak in the

autocorrelation functions.

While using white noise based sequences may not be practical or optimal

for most radar systems, it does show that it is possible for a set of finite se-

quences to be created where the cross-correlation (inner product at all time

lags) is tens of decibels lower than the autocorrelation peak of the individual

sequences. More elegantly created (and much shorter) waveform sets should

be possible with other forms of coding, but the difficulty in generation of these

sets led to the use of white noise as an example.
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2.4.1 Pseudo-Orthogonality of a Linear Frequency

Modulated Waveform Pair

A pair of linear frequency modulated (LFM) waveforms are commonly casu-

ally referred to as an orthogonal set. As shown in Eq. 2.25, two signals are

orthogonal if the cross-correlation at zero delay of the two signals is equal

to zero. Therefore, to determine if a pair of LFM waveforms with opposite

chirp directions and otherwise identical parameters form an orthogonal set, the

derivation of the matched filter result will be given for both the traditional

case of an upchirp with its matched filter as well as a downchirp with the up-

chirp’s matched filter [22]. It is assumed that the center frequency, bandwidth,

pulse duration, and all other parameters (with the exception of the direction

of changing frequency) are identical between the upchirp and downchirp. The

magnitude of the two responses relative to one another is desired rather than

the absolute magnitude, so equal normalization of both signals will take place

throughout the derivation.

The upchirp x1(t) and downchirp x2(t) are defined as

x1(t) = rect

(
t

T

)
ej2π(f0t+

k
2
t2) (2.27)

and

x2(t) = rect

(
t

T

)
ej2π(f0t−

k
2
t2) (2.28)

where f0 is the center frequency (or carrier) of the chirp, k = B
T
where B is

the bandwidth of the chirp and T is the duration in time of the chirp, and
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rect (x) =

 1 |x| < 1
2

0 otherwise
(2.29)

Therefore the upchirp matched filter y1(t) is given by

y1(t) = αx∗1(−t) = α rect

(
t

T

)
ej2π(f0t−

k
2
t2) (2.30)

where α is an arbitrary scaling vector, that will be set as α = 1 for simplifi-

cation (and because it will scale both cases equally). As referenced in Sec. 2.3

and shown in Eq. 2.24, the matched filter output is given by the convolution

of the received signal and the matched filter. Therefore, the matched filter

output of the matched upchirp case S11(t) is given by

S11(t) =

∫ +∞

−∞
x1(t − τ)y1(τ) dτ =

=

∫ +∞

−∞
rect

(
(t − τ)

T

)
ej2π(f0(t− τ)+ k

2
(t− τ)2) rect

( τ
T

)
ej2π(f0τ −

k
2
τ2) dτ =

= rect

(
t

2T

)
ej2π(f0t+

k
2
t2)

∫ +T
2

−T
2

e−j2πktτ dτ =

= rect

(
t

2T

)
ej2π(f0t+

k
2
t2)

[
e−j2πktτ

−j2πkt

]+T
2

−T
2

=

= rect

(
t

2T

)
ej2π(f0t+

k
2
t2) sin(πktT )

πkt
=

= rect

(
t

2T

)
ej2π(f0t+

k
2
t2) T sinc(πktT ) (2.31)

where sinc(x) = sin(x)
x

. Similarly S21(t), the receiver filter output when

a downchirp x2(t) is processed by the upchirp matched filter y1(t), can be

computed as
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S21(t) =

∫ +∞

−∞
x2(t − τ)y1(τ) dτ =

=

∫ +∞

−∞
rect

(
(t − τ)

T

)
ej2π(f0(t− τ)− k

2
(t− τ)2) rect

( τ
T

)
ej2π(f0τ −

k
2
τ2) dτ =

= rect

(
t

2T

)
ej2π(f0t−

k
2
t2)

∫ +T
2

−T
2

ej2π(ktτ − kτ2) dτ =

= rect

(
t

2T

)
ej2π(f0t−

k
2
t2)

[
1√
k

(
1

4
− j

4

)
ej

k
2
πt2 ×

×
(
Erf

[√
kπ

(
1

2
+
j

2

)
(T − t)

]
+ Erf

[√
kπ

(
1

2
+
j

2

)
(T + t)

])]
(2.32)

where Erf [ · ] is the complex error function, of which there are multiple solu-

tion methods [23].

Using assumed values of T = 20µs and B = 80MHz for the purpose of

arriving at example answers to compare, and assuming analysis of a complex

baseband signal (therefore f0 = 0), using Eq. 2.31 yields |S11(0)| = 2.0 ×

10−5 V and using Eq. 2.32 yields |S21(0)| = 3.5 × 10−7V . Due to S11(0)

being the peak value, it is chosen as the normalizing factor for the matched

filter outputs to give the normalized correlation functions S11,N(t) and S21,N(t)

(similar to pg. 36 in [10]), shown as

S11,N(t) =
S11(t)

S11(0)
(2.33)

and

S21,N(t) =
S21(t)

S11(0)
(2.34)
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Using the normalized correlation function, it is seen that |S11,N(0)| = 1, and

|S21,N(0)| = 0.018 . Therefore, because the cross-correlation at zero delay of

an upchirp and a downchirp is not zero, an upchirp and a downchirp do not

form an orthogonal signal set in the mathematical sense.

The decorrelation of the two signals at the autocorrelation peak is desired

in dB. Due to the signal, and ultimately matched filter output, being in units

of Volts (and P = V 2

Impedance
) [17], the ratio of instantaneous power of the two

matched filter outputs can be computed as P21,11,ratio(t) = 20Log10

(
|S21,N (t)|
|S11,N (t)|

)
. Therefore, the matched filter output decorrelation of the given upchirp

and downchirp at the autocorrelation peak (delay zero) is P21,11,ratio(0) =

20Log10

(
|S21,N (0)|
|S11,N (0)|

)
= 20Log10

(
0.018
1

)
= −35.1dB.

The total energy of the resulting signals upon matched filtering can be

computed by taking the integral with respect to time of the squared magni-

tude of the matched filter output divided by the system impedance, which

is equivalent to examining the autocorrelation of each filtered signal at zero

delay and then dividing by the system impedance. Using the given parameters

and scaling (including assuming an impedance of 50Ω), E11 and E21, the total

energy of the upchirp using the upchirp matched filter output and the total

energy of the downchirp using the upchirp matched filter output, respectively,

were calculated as

E11 =
1

50

∫ +∞

−∞
|S11(t)|2 dt = 1.0× 10−19 Joules (2.35)

and
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E21 =
1

50

∫ +∞

−∞
|S21(t)|2 dt = 1.0× 10−19 Joules (2.36)

Notice that the total receiver filtered output energy is the same for both cases,

giving a relative total energy of the mismatched case to the total energy of the

matched case of 0 dB. These results (matched filter, decorrelation ratio, and

total energy of matched filter results) were calculated and verified in the con-

tinuous domain using Mathematica, as well as in the discretized domain (using

small time element spacing) in Matlab. All approaches resulted in agreeing

output values. The normalized receiver filtered outputs are shown in Figure

2.3, and magnified view of the correlation peak of the same outputs is shown

in Figure 2.4.
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Figure 2.3: Receiver Filter Response of Upchirp and Downchirp with an
Upchirp Matched Filter vs Time
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Figure 2.4: Magnified Receiver Filter Response of Upchirp and Downchirp
with an Upchirp Matched Filter vs Time

2.5 Example of Orthogonal Waveform Separability in a

Dual-Polarized Radar System

Given the matrix-based mathematical formulation for a received generic dual-

polarized signal in sec. 2.2 and the definition of a pseudo-orthogonal waveform

set in sec. 2.4, it is useful to examine the scientific impact of using orthogonal

waveforms in a dual-polarized radar system. For the given example case the

antenna cross-polarization isolation is set at 20 dB and the waveform set has

a set orthogonality of 40 dB. Two cases are analyzed for system improvements

through the use of pseudo-orthogonal waveforms, the first where the antenna

co-pol gain mismatch is set to 0 dB and the second where the antenna co-pol

gain mismatch is set to 0.5 dB.
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Using Eq. 2.15 and Eq. 2.16 from sec. 2.2, the polarimetric received

complex baseband signals for H and V channels (assuming no residual returns

from previous transmit-receive cycles) are shown as

RCBB(t) =

 RCBB,H(t) Ĥ

RCBB,V(t) V̂

 =

=

 [ΓHH a1(t
′) + β ΓHV a2(t

′)] +

[β ΓVH a1(t
′) + β2 ΓVV a2(t

′)] +

+ α [β ΓHH a2(t
′) + ΓHV a1(t

′) + ΓVH a1(t
′) + β ΓVV a2(t

′)] +

+ α [β ΓHH a1(t
′) + β2 ΓHV a2(t

′) + β2 ΓVH a2(t
′) + β ΓVV a1(t

′)] +

+ α2 [β ΓVH a2(t
′) + ΓVV a1(t

′)] Ĥ

+ α2 [β2 ΓHH a2(t
′) + β ΓHV a1(t

′)] V̂

 e−j4πf0
R
c =

=

 ΓHH [a1(t
′) + αβ a2(t

′)] + ΓHV [α a1(t
′) + β a2(t

′)] +

ΓHH [αβ a1(t
′) + α2 β2 a2(t

′)] + ΓHV [α2 β a1(t
′) + αβ2 a2(t

′)] +

+ ΓVH [α a1(t
′) + α2 β a2(t

′)] + ΓVV [α2 a1(t
′) + αβ a2(t

′)] Ĥ

+ ΓVH [β a1(t
′) + αβ2 a2(t

′)] + ΓVV [αβ a1(t
′) + β2 a2(t

′)] V̂

 e−j4πf0
R
c

(2.37)

A cross-pol isolation given in units of dB denotes the signal power transmit-

ted on the intended polarization versus the signal power transmitted on the

polarization orthogonal to the intended polarization. Therefore, a given cross-

pol isolation of x dB corresponds with α = 10−x/20, and the given cross-pol

isolation of 20 dB corresponds with α = 10−20/20 = 1
10
. A waveform set

with orthogonality of y dB denotes a waveform set where the highest point

in cross-correlation output of any of the waveforms is 10−y/20 times smaller
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than the peak autocorrelation output of any of the signals. Therefore, given

a waveform set with orthogonality of 40 dB, the maximum receiver filtered

outputs resulting from unmatched filters will be 10−40/20 = 1
100

times lower

than the maximum receiver matched filter outputs. Relating the given values

to Question #1 (sec. 2.2), specifically Eq 2.19, and assuming a co-pol gain

mismatch of 0 dB (giving β = 1), ΓMeas can be found for the alternating

transmit case ΓMeas,Alt, the simultaneous transmit case ΓMeas,Sim where the

same waveform is transmitted on both polarizations, and the simultaneous

transmit case ΓMeas,Orth where nearly orthogonal waveforms are transmitted

on each polarization. Due to the property of the convolution operator that

f ⊗ (g ⊗ h) = (f ⊗ g) ⊗ h and a(f ⊗ g) = (af) ⊗ g for any a ∈ C, the

given values for α, β, and the maximum values for the cross-correlation and

autocorrelation (both normalized, with autocorrelation peak equal to 1 and

the cross-correlation peak value set equal to maximum ratio value dictated by

the level of pseudo-orthogonality, giving the worst-case answer) can be directly

substituted into the expanded form of Eq. 2.19 to find the appropriate ΓMeas

values. The equations for ΓMeas,Alt, ΓMeas,Sim, and ΓMeas,Orth are shown below
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as

ΓMeas,Alt =


ΓHH,Meas,Alt

ΓHV,Meas,Alt

ΓVH,Meas,Alt

ΓVV,Meas,Alt


=


max (RCBB,H,Alt(t1) ⊗ h1(t1) )

max (RCBB,H,Alt(t2) ⊗ h2(t2) )

max (RCBB,V,Alt(t1) ⊗ h1(t1) )

max (RCBB,V,Alt(t2) ⊗ h2(t2) )


=

=


ΓHH + 0.1 · ΓHV + 0.1 · ΓVH + 0.01 · ΓVV

0.1 · ΓHH + ΓHV + + 0.01 · ΓVH + 0.1 · ΓVV

0.1 · ΓHH + 0.01 · ΓHV + ΓVH + 0.1 · ΓVV

0.01 · ΓHH + 0.1 · ΓHV + 0.1 · ΓVH + ΓVV


(2.38)

and

ΓMeas,Sim =



ΓHH,Meas,Sim

ΓHV,Meas,Sim

ΓVH,Meas,Sim

ΓVV,Meas,Sim


=



max (RCBB,H,Sim(t1) ⊗ h1(t1) )

max (RCBB,H,Sim(t1) ⊗ h1(t1) )

max (RCBB,V,Sim(t1) ⊗ h1(t1) )

max (RCBB,V,Sim(t1) ⊗ h1(t1) )


=

=



ΓHH [1 + 0.1] + ΓHV [0.1 + 1] + ΓVH [0.1 + 0.01] + ΓVV [0.01 + 0.1]

ΓHH [1 + 0.1] + ΓHV [0.1 + 1] + ΓVH [0.1 + 0.01] + ΓVV [0.01 + 0.1]

ΓHH [0.1 + 0.01] + ΓHV [0.01 + 0.1] + ΓVH [1 + 0.1] + ΓVV [0.1 + 1]

ΓHH [0.1 + 0.01] + ΓHV [0.01 + 0.1] + ΓVH [1 + 0.1] + ΓVV [0.1 + 1]


=

=



1.1 · ΓHH + 1.1 · ΓHV + 0.11 · ΓVH + 0.11 · ΓVV

1.1 · ΓHH + 1.1 · ΓHV + 0.11 · ΓVH + 0.11 · ΓVV

0.11 · ΓHH + 0.11 · ΓHV + 1.1 · ΓVH + 1.1 · ΓVV

0.11 · ΓHH + 0.11 · ΓHV + 1.1 · ΓVH + 1.1 · ΓVV


(2.39)
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and

ΓMeas,Orth =



ΓHH,Meas,Orth

ΓHV,Meas,Orth

ΓVH,Meas,Orth

ΓVV,Meas,Orth


=



max (RCBB,H,Orth(t1) ⊗ h1(t1) )

max (RCBB,H,Orth(t1) ⊗ h2(t1) )

max (RCBB,V,Orth(t1) ⊗ h1(t1) )

max (RCBB,V,Orth(t1) ⊗ h2(t1) )


=

=



ΓHH [1 + 0.001] + ΓHV [0.1 + 0.01] + ΓVH [0.1 + 0.0001] + ΓVV [0.01 + 0.001]

ΓHH [0.01 + 0.1] + ΓHV [0.001 + 1] + ΓVH [0.001 + 0.01] + ΓVV [0.0001 + 0.1]

ΓHH [0.1 + 0.0001] + ΓHV [0.01 + 0.001] + ΓVH [1 + 0.001] + ΓVV [0.1 + 0.01]

ΓHH [0.001 + 0.01] + ΓHV [0.0001 + 0.1] + ΓVH [0.01 + 0.1] + ΓVV [0.001 + 1]


=

=



1.001 · ΓHH + 0.11 · ΓHV + 0.1001 · ΓVH + 0.011 · ΓVV

0.11 · ΓHH + 1.001 · ΓHV + 0.011 · ΓVH + 0.1001 · ΓVV

0.1001 · ΓHH + 0.011 · ΓHV + 1.001 · ΓVH + 0.11 · ΓVV

0.011 · ΓHH + 0.1001 · ΓHV + 0.11 · ΓVH + 1.001 · ΓVV


(2.40)

where the subscript (·)Alt denotes the alternating transmit case, the subscript

(·)Sim denotes the simultaneous transmit case using identical waveforms, and

the subscript (·)Orth denotes the simultaneous transmit case using pseudo-

orthogonal waveforms for the applicable variable, and t1 and t2 are separated

by some non-zero multiple of the PRT. It is easily seen in Eq. 2.39 that the

ΓMeas values modifying the signals for a given receive polarization (the pair

ΓHH and ΓHV, and the pair ΓVH and ΓVV ) are inseparable when the same wave-

form is used on both transmit polarizations simultaneously. The introduction

of waveforms with orthogonality of 40 dB is shown in Eq. 2.40 to improve

the acquisition of science measurements ΓMeas by lowering the relative am-

plitude of the effect of all other Γ parameters for a given channel/matched
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filter combination. Using waveforms with orthogonality of 40 dB in a system

with cross-pol isolation of 20 dB, the cross-pol contamination is the main con-

taminating effect present in ΓMeas. Comparing the results of the alternating

transmit case in Eq. 2.38 with the simultaneous orthogonal transmit case

in Eq. 2.40, it is seen that the alternating transmit case results in a slightly

larger amplitude difference between the parameter of interest and all other pa-

rameters ( 1
0.1+0.1+0.01

= 4.7619 versus 1.001
0.11+0.1001+0.011

= 4.5274). However, as

mentioned in Sec. 2.2, it is desired from a scientific standpoint to assemble all

four elements of ΓMeas from measurements at the same instance in time, which

by nature the alternating transmit case cannot accomplish, leaving simulta-

neous transmission of orthogonal waveforms as the most desirable method of

operation for acquiring scientifically useful measurements.

A co-pol gain mismatch given in units of dB denotes the signal power trans-

mitted by an antenna on one polarization versus the signal power transmitted

by the other antenna on the orthogonal polarization. Using the horizontal

channel to horizontally polarized transmitted signal conversion as a reference,

and assuming that the gain on the H channel is larger than the V channel, a

given co-pol mismatch of z dB corresponds with β = 10−z/20, and the given co-

pol mismatch of 0.5 dB corresponds with β = 10−0.5/20 = 0.9441. Using the

same method as before, the equations for ΓMeas,Alt, ΓMeas,Sim, and ΓMeas,Orth

can be recalculated accounting for co-pol gain mismatch, shown below as
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ΓMeas,Alt =


ΓHH,Meas,Alt

ΓHV,Meas,Alt

ΓVH,Meas,Alt

ΓVV,Meas,Alt


=


max (RCBB,H,Alt(t1) ⊗ h1(t1) )

max (RCBB,H,Alt(t2) ⊗ h2(t2) )

max (RCBB,V,Alt(t1) ⊗ h1(t1) )

max (RCBB,V,Alt(t2) ⊗ h2(t2) )


=

=


1 · ΓHH + 0.1 · ΓHV + 0.1 · ΓVH + 0.01 · ΓVV

0.09441 · ΓHH + 0.9441 · ΓHV + 0.009441 · ΓVH + 0.09441 · ΓVV

0.09441 · ΓHH + 0.009441 · ΓHV + 0.9441 · ΓVH + 0.09441 · ΓVV

0.008913 · ΓHH + 0.08913 · ΓHV + 0.08913 · ΓVH + 0.8913 · ΓVV


(2.41)

and
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ΓMeas,Sim =



ΓHH,Meas,Sim

ΓHV,Meas,Sim

ΓVH,Meas,Sim

ΓVV,Meas,Sim


=



max (RCBB,H,Sim(t1) ⊗ h1(t1) )

max (RCBB,H,Sim(t1) ⊗ h1(t1) )

max (RCBB,V,Sim(t1) ⊗ h1(t1) )

max (RCBB,V,Sim(t1) ⊗ h1(t1) )


=

=



ΓHH [1 + 0.09441] + ΓHV [0.1 + 0.9441] +

ΓHH [1 + 0.09441] + ΓHV [0.1 + 0.9441] +

ΓHH [0.09441 + 0.008913] + ΓHV [0.009441 + 0.08913] +

ΓHH [0.09441 + 0.008913] + ΓHV [0.009441 + 0.08913] +

+ ΓVH [0.1 + 0.009441] + ΓVV [0.01 + 0.09441]

+ ΓVH [0.1 + 0.009441] + ΓVV [0.01 + 0.09441]

+ ΓVH [0.9441 + 0.08913] + ΓVV [0.09441 + 0.8913]

+ ΓVH [0.9441 + 0.08913] + ΓVV [0.09441 + 0.8913]


=

=



1.09441 · ΓHH + 1.0441 · ΓHV + 0.109441 · ΓVH + 0.10441 · ΓVV

1.09441 · ΓHH + 1.0441 · ΓHV + 0.109441 · ΓVH + 0.10441 · ΓVV

0.103323 · ΓHH + 0.098571 · ΓHV + 1.03323 · ΓVH + 0.98571 · ΓVV

0.103323 · ΓHH + 0.098571 · ΓHV + 1.03323 · ΓVH + 0.98571 · ΓVV


(2.42)

and
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ΓMeas,Orth =



ΓHH,Meas,Orth

ΓHV,Meas,Orth

ΓVH,Meas,Orth

ΓVV,Meas,Orth


=



max (RCBB,H,Orth(t1) ⊗ h1(t1) )

max (RCBB,H,Orth(t1) ⊗ h2(t1) )

max (RCBB,V,Orth(t1) ⊗ h1(t1) )

max (RCBB,V,Orth(t1) ⊗ h2(t1) )


=

=



ΓHH [1 + 0.0009441] + ΓHV [0.1 + 0.009441] +

ΓHH [0.01 + 0.09441] + ΓHV [0.001 + 0.9441] +

ΓHH [0.09441 + 0.00008913] + ΓHV [0.009441 + 0.0008913] +

ΓHH [0.0009441 + 0.008913] + ΓHV [0.00009441 + 0.08913] +

+ ΓVH [0.1 + 0.00009441] + ΓVV [0.01 + 0.0009441]

+ ΓVH [0.001 + 0.009441] + ΓVV [0.0001 + 0.09441]

+ ΓVH [0.9441 + 0.0008913] + ΓVV [0.09441 + 0.008913]

+ ΓVH [0.009441 + 0.08913] + ΓVV [0.0009441 + 0.8913]


=

=



1.0009441 · ΓHH + 0.109441 · ΓHV + 0.10009441 · ΓVH + 0.0109441 · ΓVV

0.10441 · ΓHH + 0.9451 · ΓHV + 0.010441 · ΓVH + 0.09451 · ΓVV

0.09449913 · ΓHH + 0.0103323 · ΓHV + 0.9449913 · ΓVH + 0.103323 · ΓVV

0.0098571 · ΓHH + 0.08922441 · ΓHV + 0.098571 · ΓVH + 0.8922441 · ΓVV


(2.43)

Similar to the case with no co-pol gain mismatch, even though each ΓMeas

value modifying the signals for a given receive polarization (the pair ΓHH and

ΓHV, and the pair ΓVH and ΓVV ) have slightly different relative magnitudes,

they are inseparable when the same waveform is used on both transmit po-

larizations simultaneously. Also similar to the no co-pol gain mismatch case,

comparing the results of the alternating transmit case with co-pol gain mis-

match in Eq. 2.41 with the simultaneous orthogonal transmit case with co-pol

gain mismatch in Eq. 2.43, it is seen that the alternating transmit case results
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Γ parameter Alternating Simultaneous Orthogonal
Transmit Transmit

ΓHH
1

0.1+0.1+0.01
= 1.0009441

0.109441+0.10009441+0.0109441
=

= 4.7619 = 4.5399

ΓHV
0.9441

0.09441+0.009441+0.09441
= 0.9451

0.10441+0.010441+0.09451
=

= 4.7619 = 4.5142

ΓVH
0.9441

0.09441+0.009441+0.09441
= 0.9449913

0.09449913+0.0103323+0.103323
=

= 4.7619 = 4.5399

ΓVV
0.8913

0.008913+0.08913+0.08913
= 0.8922441

0.0098571+0.0892241+0.098571
=

= 4.7619 = 4.5142

Table 2.1: Γ Parameter Separability Through Ratio of Desired Γ Parameter
to Sum of Other Γ Parameters for Example Alternating Transmit and
Simultaneous Transmit Cases

in a slightly larger amplitude difference between the parameter of interest and

all other parameters, as shown in Table 2.1.

Again, the alternating transmit case after matched filtering always results

in a larger difference between the parameter of interest and the sum of the other

parameters than the simultaneous orthogonal signal transmit case. However,

the simultaneous orthogonal transmit case has a slightly improved difference

for the signals transmitted on the channel with the larger gain and slightly

more degraded difference for the signals transmitted on the channel with with

the smaller gain. There is no real improvement (or serious degradation) to

the scientific measurements with the use of orthogonal waveforms in simulta-

neous transmit mode on an antenna with a small co-pol mismatch versus the

measurements with the use of orthogonal waveforms in simultaneous transmit

mode on an antenna with no co-pol mismatch. Therefore, the same arguments

presented previously for the use of orthogonal codes in simultaneous transmis-

sion versus alternating transmit for the co-pol gain matched case also apply

to the co-pol gain mismatched case.
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2.6 Analysis of Common Pulse CompressionWaveforms

and Their Utility as Pseudo-Orthogonal Waveform

Sets

There exist several classes of codes that have been identified as having desir-

able pulse compression characteristics. Among these are Barker codes, Biphase

MPS codes, and Polyphase Frank, P1, P2, P3, and P4 codes. These codes will

be analyzed along with their potential utility as pseudo-orthogonal waveform

sets. For this section, pseudo-orthogonality will be defined as having a max-

imum cross-correlation peak 40 dB lower than the autocorrelation peak. In

order to compare waveform types with definite values, a global pulse length

and bandwidth must be established. It is assumed for this section that all

waveforms will be analyzed with a pulse length T = 20µs and a bandwidth

of 80MHz. Due to this exact combination of time and bandwidth not always

being achievable for a given modulating waveform (code), it will be assumed

that the pulse length of 20µs is set and the bandwidth will be variable if a

compromise on system parameters is to be made.

Barker sequences are coded waveforms that exhibit a peak sidelobe to

mainlobe ratio of 1
N
, where N is the number of bits in the code. Although

both biphase and polyphase variations of Barker codes exist, the term “Barker

codes” commonly refers to biphase Barker codes unless otherwise specified.

Phase coded waveforms are assembled by concatenating N subpulses

(“chips”) of duration Tchip, where each chip (in a common constant modulus

waveform) is a constant modulus pulse with a selected phase so that the phase
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information stored in the individual chips of the final assembled waveform of

duration T contains the desired N bits of information (the N length code to

be transmitted). The −4 dB bandwidth Bchip of each chip is given by

Bchip =
1

Tchip
(2.44)

and the energy in a phase-coded waveform is proportional to the total pulse

duration T = N Tchip. Therefore, the time-bandwidth product of a phase-

coded waveform TB is equal to the number of bits in the code, given by

TB = T Bchip =
T

Tchip
= N (2.45)

Both biphase and polyphase Barker coded waveforms can be generated in

a radar system through digital waveform generators [17], but there exists a

clever method for the creation (as well as matched filter output assembly) of

biphase codes that can be used to create biphase Barker codes. This method

consists of utilizing a tapped delay line, where each tap spacing corresponds

with a delay of Tchip and each tap imparts a phase shift of either 0 or π radians

(corresponding with either +1 or −1 in the code, respectively). All tap outputs

are then summed and processed through a filter matched to the chip duration

Tchip. When an impulse is input into the delay line, the filtered summation

of the tap outputs results in the creation of the biphase code as specified by

the delay shifts of the individual taps. Similarly, the matched filter result of

the received signal can be created by inputting the received signal into the

delay line from the opposite end relative to the end used for initial waveform

creation, effectively convolving the received signal with a time-reversed copy

of the transmitted signal. Note that the matched filter result is the convolu-

tion of the received signal with the complex conjugate time-reversed copy of
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the transmitted signal (see Eq. 2.24). Due to the transmitted signal being

biphase, the lack of complex conjugate has no effect on the delay line gener-

ated matched filter results, but this does prevent the delay line matched filter

method from being used on any polyphase code (where the complex conjugate

would have an effect). An illustration of this tapped delay line method for

generation and matched filtering of biphase coded waveforms is shown with a

13 bit Barker code implemented on pg. 351 of [18].

Barker codes are useful because their matched filter output has low pre-

dictable sidelobes, with a maximum sidelobe to main peak ratio of 1
N
, giving

optimal peak sidelobe levels for a given number of bits. The downside of

Barker codes is that very few of these codes have been discovered, with a max-

imum known code length of N = 13 for biphase Barker code and N = 77 for

polyphase Barker code, corresponding with peak sidelobes of −22.28 dB and

−37.73 dB, respectively [24]. While Barker codes may result in the optimal

peak sidelobe levels for a given length of code, the relatively short code lengths

of the known Barker signals restricts their practical implementation in radar

systems. Barker codes are also very Doppler intolerant, with a common design

restraint on implemented biphase Barker codes that the Doppler phase rotation

be limited to one-quarter cycle or less, requiring that the maximum expected

Doppler shift and target velocity satisfy FD,max T ≤ 1
4

=⇒ vmax ≤ λ
8T

as

shown in [10], where FD,max is the maximum allowed Doppler frequency, vmax

is the maximum allowed radial velocity, and λ is the wavelength of the carrier

frequency.

There exists a combined, alternatively called “nested” or “compound,” ap-
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proach to generating combined Barker codes where the Kronecker product

of two Barker sequences is used to create the combined code. The resulting

combined Barker code has a larger time-bandwidth product than either of the

Barker codes used to produce it, but the peak sidelobe to main peak ratio of the

combined code is equal to the peak sidelobe to main peak ratio of the shorter

of the two Barker codes used to produce the combined code. Therefore, the

peak sidelobe to main peak ratio of a combined Barker code is still restricted

to the relatively large ratios present in the standalone Barker codes, providing

little help to radar systems when lower peak sidelobes for a given code length

(N > 13) are desired. While both biphase and polyphase Barker codes are

useful, the general consensus seems to be that the short code lengths available

and Doppler intolerance limit their practical use in radar systems, and the

lower sidelobes and better Doppler tolerance of polyphase codes (longer than

known Barker codes) are desirable if the radar system is capable of generating

them [1], [10], [11], [17], [18].

Polyphase coded waveforms can be physically generated in a radar sys-

tem through digital waveform generators [17], and the final bandwidth of the

transmitted signals can be calculated using Eq. 2.44. Polyphase Barker codes

are found through complicated search algorithms, while Frank, P1, and P2

codes are derived from step approximations of an LFM waveform, and P3

and P4 codes are derived from LFM waveforms [11], [17], [24]–[26]. There-

fore, polyphase Barker codes have a limited number of specific codes available,

whereas Frank, P1, P2, P3, and P4 codes do not have an inherent maximum

code length. The length of Frank, P1, and P2 codes must be a perfect square,

with the requirement that P2 code length be the perfect square of an even
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number for good sidelobe characteristics. The length of P3 and P4 codes are

not limited to perfect squares.

While polyphase Barker codes exhibit very good peak sidelobe levels rel-

ative to the length of the code, the limited number of codes available limits

the maximum sidelobe suppression possible. Polyphase Barker codes would be

a practical choice for limited bandwidth applications where a set of pseudo-

orthogonal waveforms is not needed. For the LFM derived polyphase codes,

Frank codes have had success in low probability of intercept radars, and P4

codes have had success in modern radars including orthogonal netted radar

systems and Multiple-Input-Multiple-Output (MIMO) radars [11], [27]–[29].

There are a limited number of polyphase Barker codes, with the three

longest known codes being length 77, 76 and 72 [24]. The T = 20µs length 77,

76, and 72 polyphase Barker codes, with bandwidths of 3.85MHz, 3.8MHz,

and 3.6MHz respectively, have peak sidelobe levels that are suppressed by

−37.73 dB, −37.62 dB, and−37.15 dB respectively as shown in Figure 2.5. Due

to the desire to find a set of pseudo-orthogonal waveforms (defined as −40 dB

cross-correlation), and seeing that even the longest available polyphase Barker

is unable to achieve −40 dB autocorrelation sidelobe suppression, −40 dB

cross-correlation suppression at all points between two polyphase Barker codes

will probably not be feasible. In addition, because there is only one known

code at each length, even if it were the case that two of the codes had good

cross-correlation characteristics, if two versions of the same code were not be-

ing used then the transmitted pulse length would have to be different for the

two codes so that the chip duration stays constant for processing (and main-
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tains consistent bandwidth between the two codes), meaning that more energy

would be transmitted on one code (and channel) than the other, making for a

very strange system. However, for comparison’s sake, the convolution of the

three codes were computed for the regular convolution case, the case where

one signal is time reversed, the case where one signal is complex conjugated,

and the case where one signal is time reversed and complex conjugated (the

traditional cross-correlation). These results, normalized by the magnitude of

the longer convolved code’s autocorrelation peak, are shown in Figure 2.5,

Figure 2.6, Figure 2.7, and Figure 2.8, where the peak sidelobe level refers

to the difference between the autocorrelation peak and the highest magnitude

sidelobe for the autocorrelation case, and refers to the difference between the

autocorrelation peak of the longer code and the highest magnitude point for

the cross-correlation case. The combination with the best cross-correlation

characteristics was the convolution of the length 77 code with itself, resulting

in a maximum normalized magnitude −15.34 dB lower than the autocorrela-

tion peak. Overall, the known polyphase Barker codes have very poor cross-

correlation characteristics and barring the discovery of future polyphase Barker

codes they make a poor choice for the construction of a pseudo-orthogonal

waveform set.
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Figure 2.5: Normalized Cross-Correlation Polyphase Barker Sequences
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Figure 2.6: Normalized Convolution of Time-Reversed Polyphase Barker
Sequences
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Figure 2.7: Normalized Convolution of Complex Conjugated Polyphase
Barker Sequences
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Figure 2.8: Normalized Convolution of Polyphase Barker Sequences
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Given the requirement for a pulse length of T = 20µs, a maximum (−4 dB)

bandwidth of B = Bchip = 80MHz, and Eq. 2.44, the maximum number of

allowed bits Nmax can be shown as

Nmax =
T

Tchip
= T ·Bchip = (20× 10−6) · (80× 106) = 1600 (2.46)

For Frank, P1, P2, P3, and P4 polyphase codes, the codes’ phases are de-

termined by formulas, do not have an upper bound on the number of phases

allowed, and 1600 phases (the calculated number of phases in Eq. 2.46 re-

quired to meet the desired system bandwidth) is a valid code length for all

five code types. As a result, Frank, P1, P2, P3, and P4 codes with a length of

1600 will be analyzed.

From sec. 2.4, it is seen that while not truly orthogonal, an LFM upchirp

and an LFM downchirp of the same frequency and bandwidth may be able to

form a pseudo-orthogonal set if the right system parameters are met. Frank,

P1, P2, P3, and P4 codes are all derived from LFM waveforms, therefore there

are both upchirp and downchirp forms of these codes. The formulas dictating

the phases of these waveforms given by Pace in [11] by default set Frank, P1,

P3, and P4 codes as approximations of upchirps, with P2 being an approxima-

tion of a downchirp. The phases of the P1, P2, and P4 codes can be negated

to give the opposite chirp case due to being approximations of a double side-

band detected LFM chirp. Frank and P3 codes are approximations of single

sideband detected LFM chirp, and due to having the same frequency char-

acteristics and autocorrelation as their double sideband detected counterpart

(P1 and P2 for Frank, and P4 for P3) as seen in Figure 2.9, the Frank and

P3 codes can be ignored in analysis without loss of information or possible
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solutions. Therefore the three codes to analyze are the upchirp and downchirp

forms of the P1, P2, and P4 codes. For a code of length Nc = M2, and

letting i be the number of sample in a given frequency, and j is the number of

frequency, the phase of the ith sample of the jth frequency of a P1 code ϕP1;i,j

and of a P2 code ϕP2;i,j can be shown as

ϕP1;i,j =
−π
M

[M − (2j − 1)][(j − 1)M + (i − 1)] (2.47)

and

ϕP2;i,j =
−π
2M

[2i − 1 − M ][2j − 1 − M ] (2.48)

where i = 1, 2, 3, ...,M and j = 1, 2, 3, ...,M , and where M must be even for

the P2 code [11]. The phase of the ith sample of a P4 code ϕP4;i can be shown

as

ϕP4;i =
π

M2
(i − 1)2 − π(i − 1) (2.49)

where i = 1, 2, 3, ...,M2. For the Frank, P1, P2, P3, and P4 codes, the pulse

compression ratio (alternatively called processing gain or pulse compression

gain), defined as the ratio of SNR at the output of the matched filter to that

prior to the filter, is M2 [11], [17]. The P1 and P2 codes are step approxi-

mations of an LFM waveform, where the P2 waveform uses different starting

phases at every frequency but has the same phase changes within each fre-

quency, and the P2 waveform has the requirement that the codelength be the

perfect square of an even number (for good autocorrelation behavior). The P4

waveform is an approximation of the quadratic phase in an LFM waveform,

and has more continuous appearing phase and frequency changes than the P1
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or P2 codes, as shown in Figure 2.10.
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Due to the P1, P2, and P4 codes being double sideband detected LFM

chirp approximations, taking the complex conjugate of the code switches the

phase sign and effectively flips the chirp direction. When calculating the iso-

lation between waveforms, the maximum magnitude of the cross-correlation is
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Figure 2.10: Normalized Convolution of Polyphase Barker Sequences

the determining factor, and it is desired to only calculate waveforms with op-

posite chirp directions to maximize isolation. Therefore comparing two codes

with opposite chirp directions (ex: P1 up and P2 down) will yield the same

magnitude results as those calculated when both codes’ chirp directions are

flipped (ex: P1 down and P2 up). Letting xup represent a double sideband

detected upchirp LFM approximation and letting ydown represent a double

sideband detected downchirp LFM approximation, this can be shown as

|xup ⊗ ydown| =
√

(xup ⊗ ydown) (xup ⊗ ydown)∗ = |(xup ⊗ ydown)
∗| =

= |x∗up ⊗ y∗down| = |xdown ⊗ yup| (2.50)

because x∗up = xdown and y∗down = yup due to x and y being centered at

complex baseband. Therefore, for the purpose of finding a pseudo-orthogonal

set where the maximum magnitude of the cross-correlation is the determining

factor, it is only necessary to calculate a pair of codes with one orientation of
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opposite chirp directions.

For P1, P2, and P4 codes of pulse length T = 20µs, length 1600 (cor-

responding with −4 dB bandwidth of 80MHz), the peak sidelobes of the au-

tocorrelations are −41.98 dB, −41.98 dB, and −38.41 dB respectively. Due to

the unbounded nature of these codes and the pulse length and bandwidth of

the system, all three of these polyphase LFM approximation waveforms have

lower autocorrelation sidelobes than the best known polyphase Barker case.

The combination of codes with the best cross-correlation characteristics is the

P2 code with an opposite chirp P4 code, where the maximum magnitude of the

cross-correlation is 31.63 dB lower than the peak of the autocorrelation. For

the cross-correlation case where the same code type is used with opposite chirp

directions the P1 and P2 codes had practically equivalent 30.4 dB of suppres-

sion while the P4 code had 29.0 dB of suppression. These results are shown in

Figure 2.11, Figure 2.12, and Figure 2.13. Although the cross-correlation of

the P2 with the P4 code results in greater isolation by 1.2 dB, the peak side-

lobe level of the P4 code is 3.6 dB higher than the peak sidelobe of the P1 or

P2 code. This difference in sidelobe behavior, combined with different Doppler

sensitivity between the P1 and P2 codes versus the P4 code [17], means that

it would probably be wise to assemble a pseudo-orthogonal waveform set with

opposite chirp directions of the same code so that both waveforms have very

similar sidelobe, Doppler, and precompression band-limiting characteristics.

For a system with limited precompression band-limiting and low Doppler tol-

erance expectations, either a set of P1 or P2 codes would be the best choice.

For a system with more precompression band-limiting and/or larger Doppler

tolerance expectations, the P4 code, with better tolerance for both of these
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effects [17], may be a better choice even though its peak sidelobe level is 3.6 dB

higher and its isolation is 1.4 dB less.
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P4 Codes

In order to achieve a truly pseudo-orthogonal waveform set with 40.0 dB

of isolation in T = 20µs waveforms, the bandwidth must be increased drasti-

cally. It was found that the cross-correlation of the P2 and P4 codes are first

to surpass 40.0 dB of isolation first at 562MHz, and the cross-correlation of

the P4 code was the first similar code pair (upchirp and downchirp) to surpass

40.0 dB of isolation at 595MHz. These results are shown in Figure 2.14 and

Figure 2.15 respectively. These bandwidths are not practical for most radar

systems, and other modulation approaches will need to be examined to de-

termine the practicality of a pseudo-orthogonal waveform set with the given

system conditions.
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2.7 Low Sidelobe Pseudo-Orthogonal Code Sets Through

Particle Swarm Optimization

As seen in Section 2.6, while the concept of a pseudo-orthogonal waveform set

is easy to comprehend, an actual pseudo-orthogonal waveform set where all the

waveforms are assumed to operate simultaneously over the same bandwidth

is rather difficult to assemble. This difficulty stems from the dependence of

pulse compression on a cross-correlation and auto-correlation based process.

As a result, a direct optimization solution for pulse compressed waveforms has

not yet been found. Therefore, iterative optimization methods must be intro-

duced. This section proposes the use of particle swarm optimization for the

purpose of finding pseudo-orthogonal waveform sets within a given desired set

of system parameters. While particle swarm optimization has been previously

utilized for antenna array optimization [30]–[32] and detection and identifi-

cation of targets [33], [34], its application to the optimization of a variety

of pseudo-orthogonal code sets has been relatively unexplored. This section

closely follows the work presented by the author in [35] c⃝ 2016 IEEE.

2.7.1 Particle Swarm Optimization Background

The particle swarm methodology for the optimization of non-linear functions

was first proposed as a biologically inspired algorithm [36]. In these early de-

velopments, researchers realized that the overall algorithm, originally designed

to model the evolution of movement throughout flocks of birds or schools of

fish, could be adapted to optimizing multi-dimensional non-linear problems

through a process of intelligent progression of test points within an appropriate
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state space. This is accomplished by creating an overall fitness function that

is a function of all system variables, and that determines the desirability of the

overall system output given the current variable values. The fitness function is

then evaluated by a given number of particles, each at a different coordinates

within the multi-variate space, at each iteration of the algorithm. After each

iteration of the algorithm, the particles adjust their coordinates so that the

overall swarm of particles approaches the coordinates giving the most desir-

able known fitness function result, all the while more closely evaluating as-yet

untested coordinates close to the best known coordinates. This makes particle

swarm optimization extremely effective at navigating large multi-variate state

spaces and finding optimized solutions, whereas traditional techniques (e.g.

Newton-Raphson) more easily suffer from limitations due to local minimiza-

tion of an error function in non-convex problems.

At the initialization of the algorithm, a preset number of “particles,” or

fitness function evaluation points, are generated at random within the multi-

variate space. In addition to randomly generated coordinates, each particle

also has a randomly assigned “velocity,” or preset rate of change for each

variable dimension. The particles future positions are determined by their

calculated velocity at each iteration, effectively giving the particles an inertia

so that the overall swarm is not too easily swayed throughout evaluation of

the iterations. All of the particles current states are then evaluated by the

fitness function, and the lowest fitness function personal best seen by each

individual particle (and its associated coordinates) are saved. Additionally,

each particle also saves the coordinates giving the local best solution, which

is the position giving the best solution within the nearest subset of particles,

68



where the subset size is a predetermined fraction of the total particles in the

simulation. Each particle then evaluates its velocity vector, which determines

its coordinates for the next iteration. The velocity vector is determined by

summing a modifier based on the distance between the particles current co-

ordinates and the particles personal best coordinates, a modifier based on the

distance between the particles current coordinates and the particles local best

coordinates, and a weighted version of the previous iterations velocity vector.

The modifiers based on distance between coordinates each rely on the distance

multiplied by random samples from a uniform distribution between zero and

one, where the random sample for each modifier is regenerated every iteration.

For the iterations following the initial iteration, the coordinates of all the

points are updated with their individually calculated velocities from the pre-

vious iteration. If any of the new points fall outside the preset allowable range

of parameters, the violating coordinates are adjusted to satisfy the allowed

range. The fitness function is then evaluated for all particle coordinates. For

each particle, if its current coordinates result in a more desirable result than

the previously saved personal best, then the personal best is overwritten with

the current coordinates. Each particles local best is also reassessed, and the

velocity vector for each particle is recalculated for the next iteration. The

algorithm halts iterations either when the relative change in fitness function

over several iterations has decreased to nearly zero, or when a preset program

time limit has been reached.

69



2.7.2 Determining a Fitness Function

The actual execution of the particle swarm optimization algorithm lends itself

to application to a vast array of non-linear optimization problems. There-

fore, the main algorithm component that makes particle swarm optimization

relevant to a specific problem is the fitness function. Fitness functions are eval-

uated such that lower values equate to more desirable system solutions. While

some non-linear problems are relatively straightforward to determine the fit-

ness function and are easy to visualize, such as finding the minimum of a poly-

nomial based two dimensional surface, others are much more abstract and diffi-

cult to determine. For the purpose of finding pseudo-orthogonal waveform sets,

the types of waveforms desired and waveform characteristics to be optimized

must first be chosen. Next, the parameters needed to assemble the desired code

types that only affect the chosen characteristics must be chosen before the fit-

ness function can be determined. Possible fitness function characteristics to

be evaluated and optimized for determining pseudo-orthogonal waveform sets

can include maximizing main lobe power, minimizing beamwidth, minimizing

peak sidelobe (PSL) levels, and minimizing cross-correlation levels with other

codes’ matched filters within the set.

It is not required for a fitness function to be convex, but a non-convex

fitness function allows the possibility of the particles to coalesce around a co-

ordinate representing a local minima within the available coordinate space that

may not be the global minima. Therefore, it has been found to be beneficial

to execute particle swarm optimization several times for a given optimization

problem, saving the results for each overall optimization. The fitness func-

tion is then executed for each of the saved results, and the coordinates giving
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the best overall result are then saved as the optimal solution. This multiple-

optimization approach seems to be especially useful for non-convex fitness

functions where the number of a coordinate dimensions approaches a notice-

able fraction of the number of particles.

2.7.3 Optimized Polyphase Coded Pseudo-Orthogonal

Waveform Sets

The first attempt at creating a pseudo-orthogonal waveform set revolved around

creating a pair of length N constant modulus polyphase coded waveforms.

Similar to a previous approach, each bit in the code was treated as an indi-

vidual variable to be optimized [37], [38]. Each of the N bits was assigned

a variable representing that particular bit’s phase, with the final assembled

waveforms shown as

Rpoly,1 [k] = ejψ1[k] (2.51)

and

Rpoly,2 [k] = ejψ2[k] (2.52)

where 1 ≤ k ≤ N and 0 ≤ ψ1 [k], ψ2 [k] < 2. The collection of all the phase

variables compromised the coordinate space to be traversed by the particles.

The fitness function Fpoly was created by calculating the autocorrelation of

both waveforms, as well as the cross-correlation between the two waveforms.

The magnitude of the peak sidelobe levels from both autocorrelations were

summed with the maximum magnitude present in the cross-correlation to yield
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the fitness function, which is shown below

Fpoly = |PSL (S11 (Rpoly,1, Rpoly,1)) |

+ |PSL (S22 (Rpoly,2, Rpoly,2)) |

+max (|S12 (Rpoly,1, Rpoly,2) |) (2.53)

where Sxy is defined as the discrete cross-correlation, shown as

Sxy =
∑+∞

−∞ x [n] y∗ [n+ k] −∞ < k < +∞. (2.54)

This simple fitness function encourages a desirable pseudo-orthogonal wave-

form set by equally penalizing high peak sidelobes from either autocorrelation

as well as a high cross-correlation magnitude. This fitness function is not con-

vex though, so the multiple-optimization approach should be used to identify

as desirable a result as possible.

Using a multiple-optimization approach with 12 overall iterations, a pair of

length 800 polyphase coded waveforms was generated. A length 800 code was

chosen as this corresponds with a 20 µs pulse occupying a 40 MHz 4 dB band-

width. It was seen that the resulting waveforms displayed PSLs of -26.8 dB

and -25.9 dB respectively with a maximum cross-correlation response of -25.9

dB. These results are shown in Figure 2.16. While only a pair of polyphase

coded waveforms were generated for this example, it should be noted that ex-

tending this approach to generate pseudo-orthogonal waveform sets containing

more than two polyphase coded waveforms is relatively straightforward.
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Figure 2.16: Auto-Correlation and Cross-Correlation Results from Polyphase
Coded Pseudo-Orthogonal Waveform Set, Reprinted from Dunn et al. (2016)
c⃝ 2016 IEEE

2.7.4 Non-Linear Frequency Modulated Waveform Set

As addressed in Section 2.4.1, a common waveform set treated as “pseudo-

orthogonal” is the pairing of an upchirp and downchirp Linear Frequency

Modulated (LFM) waveform that each span the same bandwidth. It has been

shown that Non-Linear Frequency Modulated (NLFM) waveforms can result

in very low PSLs [1], [39]. It was hypothesized that an optimized pair of

upchirp and downchirp NLFM waveforms could result in an improved pseudo-

orthogonal set over the traditional LFM waveform pair. While the resulting

waveform pair should also have improved pseudo-orthogonal characteristics
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over a similarly optimized polyphase coded waveform set, by nature the ap-

proach of pairing of an upchirp with a downchirp is not easily modified to

generate NLFM pseudo-orthogonal waveform sets containing more than two

waveforms. Similar to a previous Genetic Algorithm-based approach [40], it

was decided to create NLFM waveforms by shaping the instantaneous fre-

quency with a spline function, where the points used to shape the spline were

used as the parameters to be optimized by the particle swarm optimization

method.

In order to minimize the number of variables needed to represent the in-

stantaneous frequency curve and enforce certain qualities, a novel method of

representing the spline points of an NLFM upchirp was devised. It was de-

cided that the parameters to be optimized would not be the spline coordinates

(Xsp [i] , Ysp [i]) themselves, but would be modifying factorsM [i] to be added to

baseline coordinates (Xbl [i] , Ybl [i]). In order to restrict the modifying factors

to a reasonable and repeatable range of possible values, the baseline coordi-

nates are normalized in both the time and frequency domains to span from

-1 to +1, and are multiplied back to their intended ranges after optimization

has taken place. The baseline coordinates representing the points to be inter-

polated by the spline function to form the instantaneous frequency curve are

normalized to span from -1 to +1 using p points, where p = N + 3 points and

N , an even number, is the number of parameters to be optimized. The three

additional points without associated modifying factors are due to fixing the

starting and ending baseline coordinate points at (Xbl [1] , Ybl [1]) = (−1,−1)

and (Xbl [p] , Ybl [p]) = (+1,+1) respectively, as well as fixing the middle point

at (Xbl [r] , Ybl [r]) = (0, 0) where r = p
2
+ 0.5. This ensures that the function
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covers the full bandwidth range, and that the complex baseband center fre-

quency occurs at the center of the waveform in the time domain. The other N

baseline coordinates linearly interpolate between the three fixed points, lead-

ing to the creation of an LFM waveform when all the modifying factors are

set equal to zero. The modifying factors themselves are distances from the

baseline coordinates, such that the final spline coordinates are given by

(Xsp [i] , Ysp [i]) = (Xbl [i]−M [i] , Ybl [i] +M [i]) . (2.55)

Additionally, there is a restriction on the modifying factors’ influence by

ensuring that the instantaneous frequency curve acts as a function of time

by preventing multiple possible frequencies for a given point in time. This is

enforced by the conditional statement

if

Xsp [i] < (Xsp [i− 1] +Dbuf ) (2.56)

then

(Xsp [i] , Ysp [i]) = (Xsp [i− 1] +Dbuf , Ysp [i− 1] + 2 Dsp −Dbuf ) (2.57)

where Dsp is the horizontal spacing between adjacent baseline coordinate

points, and Dbuf is a user-determined distance buffer in the normalized space

to prevent vertical segments in the instantaneous frequency plots.

Once the modifying factors have been found, a spline function is used to

smoothly interpolate between the spline coordinates. The resulting spline is

then renormalized in time to span the pulse length T , and the normalized
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frequencies are multiplied by one half the bandwidth, effectively creating the

waveform’s true instantaneous frequency as a function of time finst [t]. This

instantaneous frequency is then cumulatively summed and used as the phase

terms of the final upchirp and downchirp waveforms, shown below respectively

as

RNLFM,1 [t] = e
j2π

∑l=t

l=−T
2

(finst[l]) −T
2

≤ t ≤ +T
2

(2.58)

and

RNLFM,2 [t] = e
−j2π

∑l=t

l=−T
2

(finst[l]) −T
2

≤ t ≤ +T
2
. (2.59)

The fitness function is simply the maximum magnitude present in the cross-

correlation summed with the PSL, where the PSL is the highest magnitude

point outside the ideal main lobe. The ideal mainlobe width is determined by

a Gaussian curve approximation as described in [41]. The fitness function for

the NLFM particle swarm optimization is shown as

FNLFM =

|PSL (S11 (RNLFM,1, RNLFM,1)) |+max (|S12 (RNLFM,1, RNLFM,2) |) . (2.60)

Using a multiple-optimization approach with 12 overall iterations and N =

20, a pair of 5 µs 10 MHz NLFM waveforms was generated. It was seen that

the resulting waveforms display PSLs of -30.7 dB with a maximum cross-

correlation response of -17.5 dB. These results are shown compared to a tradi-

tional LFM pairing in Figure 2.17, and it is seen that while the cross-correlation

is only 0.05 dB lower than the traditional LFM case, the PSL is 17.2 dB lower

in the presented NLFM waveform set. These results help to demonstrate the
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viability of particle swarm optimization for the purpose of generating pseudo-

orthogonal waveform sets within a given bandwidth and set of parameters that

is much more desirable than the traditional LFM based waveform set.

2.7.5 Particle Swarm Conclusion

Particle swarm optimization offers a promising approach for generating pseudo-

orthogonal waveform sets under various constraints for next-generation radar

systems. This offers the possibility of creating waveform sets with optimal au-

tocorrelation and cross-correlation characteristics while satisfying restrictive

spectral requirements. This was demonstrated through a constant modulus

polyphase coded example, as well as a constant modulus NLFM waveform

created with a novel parametric methodology utilizing spline interpolation.

Therefore, through the construction and assignment of a clever fitness func-

tion, pseudo-orthogonal waveform sets can be easily and efficiently assembled

and utilized for MIMO, polarimetric, and other modern and emerging radar

architectures.
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Figure 2.17: Auto-Correlation and Cross-Correlation Results from NLFM
Pseudo-Orthogonal Waveform Set Compared with LFM Waveform Set. a)
Full View, b) Magnified View. Reprinted from Dunn et al. (2016) c⃝ 2016
IEEE
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2.8 Analysis of Range Resolution and Range Sidelobe

Characteristics as a Function of Orthogonality

Degradation

Using the mathematical basis established in sec. 2.2, the radar system de-

pends upon both polarization orthogonality as well as coding orthogonality to

recover the necessary scientific measurements by discriminating each Γ term

individually. This results in the need to characterize resolution and range

sidelobe characteristics for one receive channel’s matched filter output (using

one matched filter) as a function of two degrees of orthogonality degradation.

The H channel’s matched filter output (using the matched filter for the signal

transmitted on the H channel) will be used as the orthogonal radar return to

be analyzed.

As stated in sec. 2.2, the reflected signals are dependent upon the target’s

distribution in range, such that the reflected signal can be represented as a con-

volution of the transmitted signal Ttrans(t) with an envelope A(t) representing

the magnitude of reflection at range. Using the generalized reflection envelope

with Equations 2.2, 2.3, 2.4, 2.6, 2.7, 2.9, and 2.10 along with [ · ]LPF denoting

an applied lowpass filter, the received complex baseband signal RCBB(t) can

be shown as
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RCBB(t) =

 RCBB,H(t) Ĥ

RCBB,V(t) V̂

 =

=
[(
CT

antΓ [(CantTideal(t)) ⊗ A(t)]
)
2e−j2πf0t

]
LPF

= 1 α

αβ β

 ΓHH ΓHV

ΓVH ΓVV


 1 αβ

α β

 |a1(t)| cos(2πf0t + θ1(t)) Ĥ

|a2(t)| cos(2πf0t + θ2(t)) V̂

 ⊗ A(t)

 2e−j2πf0t


LPF

(2.61)

where a1(t), a2(t) ∈ C are the complex baseband modulation waveforms of

the H and V channels, respectively, a1(t) = |a1(t)|ej θ1(t), a2(t) = |a2(t)|ej θ2(t),

f0 is the carrier frequency, and Ĥ and V̂ are the basis vectors representing

the independent channels. As explained in sec. 2.3, pulse compression is the

convolution of the received (complex baseband) signal with the matched filter.

The pulse compression output of the orthogonal radar return on the H channel

using h1(t) as the matched filter for a1(t), RPC,HH(t), is given by

RPC,HH(t) = RCBB,H(t) ⊗ h1(t) (2.62)

For the point target case, the reflection envelope is given by

A(t) = δ(t − 2R

c
) (2.63)

and for the extended target (assuming constant return amplitude through

range) the reflection envelope is given by
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A(t) = rect

((
t − 2R

c

)
2L
c

)
(2.64)

where R is the range to the center of the target along the radial direction, L

is the length of distributed target along the radial direction, c is the speed of

light, (2R
c
) is the round trip time delay between the monostatic radar and the

center of the target along the radial direction, and the definition of rect (x) is

given in Eq. 2.29.

For this problem there is assumed to be no co-pol gain mismatch (resulting

in β = 1), and due to only wanting to examine pulse compression behavior

and the Γ terms being separable with orthogonal receive channels and orthog-

onal coding as shown in sec. 2.2, the individual Γ terms themselves are not

as important as the method of their retrieval. The α term is then treated

as a variable representing polarization orthogonality with α = 0 being total

orthogonality, and α = 1 being equal contribution from each “orthogonal”

polarization (full orthogonality breakdown). In addition, the coding orthog-

onality degradation dictated by the pulse compression matched filter outputs

must also be taken into account. It does not seem feasible to substitute gen-

eralized “normal-looking” matched filter outputs for analysis of orthogonality

degradation when distributed targets are to be analyzed, as the matched filter

output is the convolution of the matched filter with a summation of delayed

and phase shifted returns. Examining the H channel while assuming the V

channel is deactivated (α = β = 0), no polarization or phase shift happening

due to the target surface (ΓHH = 1 and ΓHV = 0), and an extended target

as shown in Eq. 2.64 time centered to zero offset (R = 0), the H matched
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filter output as shown in Eq. 2.61 and Eq. 2.62 collapses as shown below

RPC,HH(t) =

[(
|a1(t)| cos(2πf0t + θ1(t)) ⊗ rect

(
t
2L
c

))
2e−j2πf0t

]
LPF

⊗ h1(t) =

=

[(∫ +∞

−∞
|a1(τ)| cos(2πf0τ + θ1(τ))

∫ +L
c

−L
c

δ (t + x − τ) dx dτ

)
2e−j2πf0t

]
LPF

⊗ h1(t) =

=

[(∫ +L
c

−L
c

|a1(t + x)| cos(2πf0(t + x) + θ1(t + x)) dx

)
2e−j2πf0t

]
LPF

⊗ h1(t) =

=

∫ +L
c

−L
c

[
|a1(t + x)| cos(2πf0(t + x) + θ1(t + x)) 2e−j2πf0t

]
LPF

dx ⊗ h1(t) =

=

∫ +L
c

−L
c

[
|a1(t + x)|

(
ej(2πf0t+2πf0x+ θ1(t+ x))

2
+

+
e−j(2πf0t+2πf0x+ θ1(t+ x))

2

)
2e−j2πf0t

]
LPF

dx ⊗ h1(t) =

=

∫ +L
c

−L
c

|a1(t + x)| ej(2πf0x+ θ1(t+ x)) dx ⊗ h1(t) =

∫ +L
c

−L
c

a1(t + x) ej2πf0x dx ⊗ h1(t) =

=

∫ +∞

−∞

(∫ +L
c

−L
c

a1(τ + x) ej2πf0x dx

)
h1(t − τ) dτ =

=

∫ +L
c

−L
c

ej2πf0x

∫ +∞

−∞
a1(τ + x) h1(t − τ) dτ dx (2.65)

The final pair of manipulated equations shows that integrated time delayed re-

turns with phase shifts due to target range differences are convolved with the

matched filter. This result, unlike the autocorrelation and cross-correlation

of received signals from a point target, does not have a readily identifiable

expected shape of output. As a result the resolution and range sidelobe char-

acteristics cannot be readily characterized without specifying the modulating

waveforms a1(t) and a2(t) and the reflection envelope A(t). Eq. 2.65 can be
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generalized for the extended uniform target case and shown as

RPC,HH(t) =

=

∫ +L
c

−L
c

ej2πf0(−2R
c +x)

∫ +∞

−∞

(
ΓHH

[
a1(τ − 2R

c
+ x) + αβ a2(τ − 2R

c
+ x)

]
+

+ ΓHV

[
αa1(τ − 2R

c
+ x) + β a2(τ − 2R

c
+ x)

]
+

+ ΓVH

[
αa1(τ − 2R

c
+ x) + α2 β a2(τ − 2R

c
+ x)

]
+

+ ΓVV

[
α2 a1(τ − 2R

c
+ x) + αβ a2(τ − 2R

c
+ x)

])
h1(t − τ)dτ dx (2.66)

This generalized equation can be used for the uniform distributed target case

or for the point target case, where the point target case with target radial

length L = 0 results in

RPC,HH(t) =

= e−j4πf0
R
c

∫ +∞

−∞

(
ΓHH

[
a1(τ −

2R

c
) + αβ a2(τ −

2R

c
)

]
+

+ ΓHV

[
α a1(τ −

2R

c
) + β a2(τ −

2R

c
)

]
+

+ ΓVH

[
α a1(τ −

2R

c
) + α2 β a2(τ −

2R

c
)

]
+

+ ΓVV

[
α2 a1(τ −

2R

c
) + αβ a2(τ −

2R

c
)

])
h1(t − τ)dτ (2.67)

In order to actually show the effect of orthogonality degradation on resolution

and range sidelobe characteristics, the generalized Eq. 2.66 will be used in

simulations for both the point target and distributed target cases.

Due to the pulse compression output characteristics being dependent upon

the modulating waveform being used, it is more practical to examine some
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specific cases rather than attempt to characterize an equation that is too

generalized (Eq. 2.66). It was decided to examine polarization and coding

orthogonality degradation for a point target and a distributed target for two

cases with T = 20µs and −4 dB bandwidths of 80MHz, namely the LFM

chirp pair case as shown in sec. 2.4 and the P2 chirp pair case as shown in sec.

2.6. In order to highlight the effects of orthogonality degradation in the pulse

compression, all simulations were conducted with two targets of equal radial

length in the target area where the near target has scattering parameters Γ1

and the far target has scattering parameters Γ2, as shown below.

Γ1 =

 1 0

0 1

 (2.68)

Γ2 =

 0 1

1 0

 (2.69)

These scattering parameters indicate that target 1 (the near target) only re-

flects polarized fields equal to the incident polarized fields, whereas target 2

(the far target) reflects all horizontally incident fields vertically and reflects

all vertically incident fields horizontally. While these may not be realistic

scattering matrices for real-world targets, they will highlight the effects of or-

thogonality degradation. It should also be noted that the center range between

the targets was adjusted to zero for processing so that each target’s center is

equidistant from delay zero in the pulse compression output (R = 0 in Eq.

2.66 and Eq. 2.67). For simulations α was linearly varied between 0 and

1 to simulate polarization orthogonality breakdown, a2(t) was replaced with

d a1(t) + (1 − d) a2(t) where d was varied linearly between 0 and 1 to sim-

ulate coding orthogonality breakdown, the two target centers were separated
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by 600m, and the carrier frequency was set to 400MHz. Due to the the mod-

ulating waveform a1(t) and its matched filter h1(t) remaining unchanged as

the othogonality of polarization and coding is altered, the resolution (width of

the pulse compression peak) is expected to remain basically unchanged as the

orthogonality is altered. For the point targets case, the resolution is expected

to resemble the resolution present in the autocorrelation of a1(t). For the ex-

tended uniformly returning targets case where the target is longer than the

distance traveled in one period of the carrier frequency (0.75m for 400MHz),

the signal is expected to destructively interfere everywhere except the edges of

the target, resulting in the appearance of two discrete targets rather than one

continuous target, though the resolution of these “two” returns should still

resemble the resolution present in the autocorrelation of a1(t).

For the point targets case with polarization orthogonality degradation,

looking at Eq. 2.67 it is expected for the pulse compression output for both

the LFM and the P2 waveforms to resemble the summation of the a1(t) auto-

correlation with an offset convolution of a2(t) with h1(t) when the orthogonal-

ity is maximized, and to resemble the summation of the a1(t) autocorrelation

with the convolution of a2(t) with h1(t) at both target locations (which will

also result in a higher magnitude at each target peak) when the orthogonality

is minimized. This is verified for the LFM case in Figure 2.18 and for the P2

case in Figure 2.19.

It is seen that the target return peak increased by approximately 6 dB while the

general sidelobe level increased by approximately 11 dB at complete orthog-

onality loss. Additionally, the peak sidelobe behavior of the LFM waveform
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Figure 2.18: Pulse Compression Output: LFM Waveform Orthogonal
Polarization Degradation of Return from 2 Separated Point Targets

Figure 2.19: Pulse Compression Output: P2 Coded Waveform Orthogonal
Polarization Degradation of Return from 2 Separated Point Targets

only decreased by 0.5 dB. As expected for the point target case, the resolution

was virtually unchanged from that of the autocorrelation.
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For the point targets case with coding orthogonality degradation and α =

0, looking at Eq. 2.67 it is expected for the pulse compression output for both

the LFM and the P2 waveforms to resemble the summation of the a1(t) auto-

correlation with an offset convolution of a2(t) with h1(t) when the orthogonal-

ity is maximized, and to resemble the summation of the a1(t) autocorrelation

at both target locations (which should result in a relatively unchanged mag-

nitude at the first target peak) when the orthogonality is minimized. This is

verified for the LFM case in Figure 2.20 and for the P2 case in Figure 2.21.

Figure 2.20: Pulse Compression Output: LFM Waveform Orthogonal Coding
Degradation of Return from 2 Separated Point Targets
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Figure 2.21: Pulse Compression Output: P2 Coded Waveform Orthogonal
Coding Degradation of Return from 2 Separated Point Targets

It is seen that the target return peak for the first target had no appreciable

change (lowering of 0.1 dB at full orthogonality loss), the peak sidelobe levels

had no appreciable change (lowering of 0.3 dB at full orthogonality loss), and

the general sidelobe level decreased and began to resemble the autocorrelation

of a1(t) in shape due to the removal of the convolution of a2(t) with h1(t) at

complete orthogonality loss. As expected for the point target case, the reso-

lution was virtually unchanged from that of the autocorrelation.
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For the 60m extended targets case with polarization orthogonality degra-

dation, looking at Eq. 2.66 it is expected for the pulse compression output

for both the LFM and the P2 waveforms to resemble the summation of spread

and distorted a1(t) convolved with h1(t) with an offset convolution of spread

and distorted a2(t) with h1(t) when the orthogonality is maximized, and to

resemble the summation of the spread and distorted a1(t) convolved with h1(t)

with the convolution of spread and distorted a2(t) with h1(t) at both target

locations (which will also result in a higher magnitude at each target peak)

when the orthogonality is minimized. This is verified for the LFM case in

Figure 2.22 and for the P2 case in Figure 2.23.

Figure 2.22: Pulse Compression Output: LFM Waveform Orthogonal
Polarization Degradation of Return from 2 Separated 60m Long Extended
Targets

It is seen that the target return peak increased by approximately 6 dB

while the general sidelobe level increased by approximately 10 dB at complete
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Figure 2.23: Pulse Compression Output: P2 Coded Waveform Orthogonal
Polarization Degradation of Return from 2 Separated 60m Long Extended
Targets

orthogonality loss. Additionally, the peak sidelobe behavior of the LFM wave-

form only decreased by 0.6 dB. As predicted for the extended target case, the

peaks corresponding with the extended targets’ locations resulted in the ap-

pearance of two separated peaks for each target, corresponding with the edges

of the targets, where the edge peak’s resolution was virtually unchanged from

that of the autocorrelation and the magnitude between the edge peaks was

much lower due to destructive interference of the uniformly returned signal.
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For the 60m extended targets case with coding orthogonality degradation,

looking at Eq. 2.66 it is expected for the pulse compression output for both

the LFM and the P2 waveforms to resemble the summation of spread and

distorted a1(t) convolved with h1(t) with an offset convolution of spread and

distorted a2(t) with h1(t) when the orthogonality is maximized, and to resem-

ble the summation of the spread and distorted a1(t) convolved with h1(t) at

both target locations (which should result in a relatively unchanged magnitude

at the first target peak) when the orthogonality is minimized. This is verified

for the LFM case in Figure 2.24 and for the P2 case in Figure 2.25.

Figure 2.24: Pulse Compression Output: LFM Waveform Orthogonal Coding
Degradation of Return from 2 Separated 60m Long Extended Targets

It is seen that the target return peak for the first target had negligible

change, the peak sidelobe levels had no appreciable change (lowering of 0.4 dB

at full orthogonality loss), and the general sidelobe level decreased and began

to roughly resemble the autocorrelation of a1(t) in shape due to the removal
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Figure 2.25: Pulse Compression Output: P2 Coded Waveform Orthogonal
Coding Degradation of Return from 2 Separated 60m Long Extended Targets

of the convolution of the spread and distorted a2(t) with h1(t) at complete

orthogonality loss. As predicted for the extended target case, the peaks cor-

responding with the extended targets’ locations resulted in the appearance

of two separated peaks for each target, corresponding with the edges of the

targets, where the edge peak’s resolution was virtually unchanged from that

of the autocorrelation and the magnitude between the edge peaks was much

lower due to destructive interference of the uniformly returned signal.

Overall it can be seen that the resolution is not appreciably affected by

the loss of orthogonality of either the coding or the polarization. This makes

sense as the resolution after pulse compression is determined by the wave-

form used and the matched filter, and since a1(t) is unchanged, the resolution

as the orthogonality is altered does not change. The resolution for the con-

stant magnitude reflection extended targets case does not produce a constant
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high-magnitude return as would be expected, but instead produces two high

magnitude peaks on each edge of the target with low magnitude return be-

tween the edges due to destructive interference. The resolution in the extended

target case is not appreciably affected by loss of orthogonality either. For the

unweighted LFM waveform the peak sidelobes remained relatively unchanged

as the orthogonality of both parameters was altered, though the general shape

of the sidelobes away from the peak would lower as the coding orthogonality

was reduced (and polarization orthogonality was maintained), and the general

shape of the sidelobes away from the peak would rise relative to the peak

as polarization orthogonality was reduced. For the P2 waveform the general

shape of the sidelobe behavior follows that of the LFM waveform, with the

exception that the peak sidelobe behavior also follows the general sidelobe be-

havior as the orthogonality of both parameters was altered (rather than being

relatively invariant as in the LFM case). From Eq. 2.66 and Figures 2.26, 2.27,

2.28, and 2.29 it is apparent that if both coding orthogonality and polariza-

tion orthogonality are lost simultaneously the result at full orthogonality loss

is equivalent to the degraded coding orthogonality case with the total return

magnitude increased.

While the resolution was basically unaffected and the sidelobe behavior

was moderately affected by orthogonality breakdown, the recovery and sepa-

ration of the individual Γ parameters suffers the most drastically as a degree

of orthogonality is lost. From Eq. 2.66 it can be seen that the recovery and

separation of the individual Γ parameters is completely based on the orthog-

onality of both the polarization and the coding. The separability is visualized

in Figures 2.18 through 2.29 as the peak height of the targets, with target 1
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Figure 2.26: Pulse Compression Output: LFM Waveform Orthogonal
Polarization and Coding Degradation of Return from 2 Separated Point
Targets

Figure 2.27: Pulse Compression Output: P2 Coded Waveform Orthogonal
Polarization and Coding Degradation of Return from 2 Separated Point
Targets
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Figure 2.28: Pulse Compression Output: LFM Waveform Orthogonal
Polarization and Coding Degradation of Return from 2 Separated 60m Long
Extended Targets

Figure 2.29: Pulse Compression Output: P2 Coded Waveform Orthogonal
Polarization and Coding Degradation of Return from 2 Separated 60m Long
Extended Targets
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representing ΓHH and target 2 representing ΓHV due to Eq. 2.68 and Eq. 2.69

respectively and processing the H channel with matched filter h1(t). Note that

in every simulation only target 1 had a pulse compression peak at no orthogo-

nal degradation and the magnitude of the target 2 peak increased rapidly until

both target 1 and target 2 had equal magnitude pulse compression peaks at full

orthogonal degradation (of either variable). This shows that the Γ parameters

are completely separable when orthogonality is maintained, but is completely

lost when only one degree of orthogonality is lost. Therefore, in order to

maintain a radar system that can make scientifically useful dual-polarization

measurements it must be ensured that orthogonality of both coding and of

polarization is maintained to a high degree.

2.9 Orthogonal Polarization Basis Transformation

As previously shown, polarization orthogonality is necessary for successful si-

multaneous transmit and simultaneous receive operation. This section serves

to show that any orthonormal polarization basis can be mathematically trans-

formed to serve as any other desired orthonormal polarization basis. This ef-

fectively allows a radar system with orthogonally polarized antenna elements

in a given orthonormal polarization basis to be capable of transmitting an

orthogonally polarized waveform set in any desired orthonormal polarization

basis. Conversely, this also allows received radar data captured in a given

orthonormal polarization basis to be processed and analyzed in any desired

orthonormal polarization basis following a mathematical transformation of the

captured data.
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An orthogonal basis is defined as set of vectors in a domain where any

two vectors are orthogonal to one another. If all vectors are of unit length in

the set then it is an orthonormal basis. In addition, the number of vectors

in the orthonormal set is equal to the order of the domain [19]. Therefore,

because the plane spanned by the antenna is two dimensional, the orthogonal

basis to describe polarization will be a set of two vectors. In addition, it is

assumed that the basis vectors will be of unit length making the polarization

basis an orthonormal set. The horizontal and vertical polarizations, H and

V respectively, will be used as the base basis, as the channels and physical

antennas on most common radar systems correspond with the physical H and

V orientations.

Any polarization can be represented as an elliptical polarization, with linear

and circular polarizations being special cases of elliptical polarizations. There-

fore transformation from the H and V basis to any other orthogonal basis can

be accomplished through use of a unitary generalized H and V to elliptical

transformation matrix [42]. This generalized H and V to e1 and e2 (linear-to-

elliptical) unitary transformation matrix Ue,hv is shown implemented on the

orthogonal basis unit vectors as

 ê1

ê2

 = Ue,hv

 ĥ

v̂

 (2.70)

and is expanded as

Ue,hv =
1√

1 + χχ∗

 ej ψ1 χ ej ψ1

−χ∗ ej ψ2 ej ψ2

 (2.71)
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where [ · ]∗ denotes the complex conjugate, ψ1 is the global phase shift added

to the elliptical basis’s first term, ψ2 is the global phase shift added to the

elliptical basis’s second term , and χ is the complex polarization ratio, show

below as

χ =
cos(τ) sin(ψ) + j cos(ψ) sin(τ)

cos(τ) cos(ψ) + j sin(τ) sin(ψ)
=

tan(ψ) + j tan(τ)

1 − j tan(ψ) tan(τ)
(2.72)

where −π
2

≤ ψ ≤ π
2
is the angular offset (orientation angle) between the Ĥ

axis and the major axis of the ê1 ellipse, and −π
4

≤ τ ≤ π
4
is the ellipticity

angle, defined as the inverse tangent of the ratio of the ellipse minor to major

axis. The ψ1 and ψ2 global phase shift terms affect the starting phase of each

basis vector in the transformed basis, and while these values need to be cho-

sen carefully if differential phases between different bases are to be compared,

the recommended simplest values to use for consistency between results are

ψ1 = ψ2 = 0 [42].

The transformation matrix Ue,hv as defined in Eq. 2.71 is unitary. It is

important for the trasformation matrix to be unitary as a unitary transfor-

mation matrix preserves the inner product between two vectors as they are

transformed between bases. This means that any polarization basis achieved

through a unitary transformation from the H and V basis will also be or-

thonormal because the H and V basis is orthonormal. For a transformation

matrix λ to be unitary (equivalent of orthogonal in the complex domain),

λH = λ−1, therefore λλH = I, where I is the identity matrix and where

[ · ]H denotes the transpose of the complex conjugate. Checking the generalized

linear to elliptical transformation matrix Ue,hv, it is shown that
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Ue,hvU
H
e,hv =

1

1 + χχ∗

 ej ψ1 χ ej ψ1

−χ∗ ej ψ2 ej ψ2

  e−j ψ1 −χ e−j ψ2

χ∗ e−j ψ1 e−j ψ2

 =

=
1

1 + χχ∗

 e0 + χχ∗ e0 −χ ej(ψ1 +ψ2) + χ ej(ψ1 +ψ2)

−χ∗ ej(ψ2 −ψ1) + χ∗ ej(ψ2 −ψ1) χχ∗ e0 + e0

 =

=
1

1 + χχ∗

 1 + χχ∗ 0

0 χχ∗ + 1

 =

 1 0

0 1

 (2.73)

which is expected with Ue,hv being a unitary matrix. Therefore, starting from

the H and V orthonormal basis, any other orthonormal basis can be achieved

by applying the applicable values of χ, ψ1, and ψ2 to the transform matrix

Ue,hv. Similarly, any orthonormal basis can be transformed back to the H and

V basis by applying the applicable values of χ, ψ1, and ψ2 to Uhv,e = UT
e,hv.

Therefore, any orthonormal basis can be transformed to any other orthonor-

mal basis by the successive multiplication of two transforms (initial elliptical

basis to H and V , then from H and V to final elliptical basis) as long as the

applicable values of χ, ψ1, and ψ2 are known for both the initial basis and the

final basis. This unitary basis transformation matrix approach also means that

any modulating waveforms (amplitude and phase) known in any orthogonal

basis can be converted to the appropriate modulating waveforms in any other

orthogonal basis.

Using the unitary transformation matrix Ue,hv to obtain some example po-

larization bases from H and V may be beneficial, so five example cases are

shown below.
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For the unitary transformation matrix Uhv,hv from the linear H and V to

linear H and V basis (no rotation), ψ = 0 and τ = 0, giving χ = 0. Setting

the phase shifts ψ1 = ψ2 = 0, the basis transformation is shown as

 l̂h

l̂v

 = Uhv,hv

 ĥ

v̂

 =
1√

1 + χχ∗

 ej ψ1 χ ej ψ1

−χ∗ ej ψ2 ej ψ2

 ĥ

v̂

 =

=
1√

1 + 0

 e0 0 e0

−0 e0 e0

 ĥ

v̂

 =

 1 0

0 1

 ĥ

v̂

 (2.74)

This transformation matrix makes sense, as there should be no shift present,

and appropriate values for χ, ψ1, and ψ2 result in the identity matrix. This

basis transformation can be seen in Figure 2.30.
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Figure 2.30: Transformation from H and V Basis to H and V Basis
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For the unitary transformation matrix U45,hv from the linear H and V to

the linear slant 45 basis (rotation of +45◦), ψ = π
4
and τ = 0, giving χ = 1.

Setting the phase shifts ψ1 = ψ2 = 0, the basis transformation is shown as

 l̂+45

l̂−45

 = U45,hv

 ĥ

v̂

 =
1√

1 + χχ∗

 ej ψ1 χ ej ψ1

−χ∗ ej ψ2 ej ψ2

 ĥ

v̂

 =

=
1√

1 + 1

 e0 1 e0

−1 e0 e0

 ĥ

v̂

 =
1√
2

 1 1

−1 1

 ĥ

v̂

 (2.75)

This transformation matrix makes sense, as the new basis should be a com-

bination of equally weighted, equally phase shifted (zero phase shift selected)

linear vectors, and appropriate values for χ, ψ1, and ψ2 result in a summation

and difference of the original H and V basis. This basis transformation can

be seen in Figure 2.31.
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Figure 2.31: Transformation from H and V Basis to Slant-45 Basis
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For the unitary transformation matrix Ucirc,hv from the linear H and V to

circular basis (right-hand circular and left-hand circular), ψ = 0 and τ = π
4
,

giving χ = j. Setting the phase shifts ψ1 = ψ2 = 0, the basis transformation

is shown as

 êr,circ

êl,circ

 = Ucirc,hv

 ĥ

v̂

 =
1√

1 + χχ∗

 ej ψ1 χ ej ψ1

−χ∗ ej ψ2 ej ψ2

 ĥ

v̂

 =

=
1√

1 + j(−j)

 e0 j e0

−(−j) e0 e0

 ĥ

v̂

 =
1√
2

 1 j

j 1

 ĥ

v̂

 (2.76)

This transformation matrix makes sense, as the new basis should be a combina-

tion of the equally weighted linear vectors where there is an equal magnitude

opposite direction phase difference imparted between the two components.

This basis transformation can be seen in Figure 2.32. It should be noted that

by choosing ψ1 = ψ2 = 0 the right-circular base vector aligns with the H

axis at time zero, and the left-circular base vector aligns with the V axis at

time zero. Other slightly different H and V to circular unitary transformation

matrices exist, but these only vary the starting position of the two circular

basis vectors [42].

104



−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5
H Polarization Basis and Transform

H axis

V
 a

xi
s

 

 

H
E1

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5
V Polarization Basis and Transform

H axis

V
 a

xi
s

 

 

V
E2

−1

0

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x 10
−5

 

H axis

H and V Basis vs. Time

V axis
 

T
im

e 
(s

)

H Code
V Code

−1

0

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x 10
−5

 

H axis

Circular Basis vs. Time

V axis
 

T
im

e 
(s

)

E1 Code
E2 Code

Figure 2.32: Transformation from H and V Basis to Circular Basis
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For the unitary transformation matrix Uehv,hv from the linear H and V to

elliptical basis where the major axis of the two elliptical vectors are aligned

with the original H and V basis (no major axis rotation) and the major axis

has twice the magnitude of the minor axis, ψ = 0 and τ = tan(0.5) =

0.546, giving χ = 0.608j. Setting the phase shifts ψ1 = ψ2 = 0, the basis

transformation is shown as

 êh

êv

 = Uehv,hv

 ĥ

v̂

 =
1√

1 + χχ∗

 ej ψ1 χ ej ψ1

−χ∗ ej ψ2 ej ψ2

 ĥ

v̂

 =

=
1√

1 + (0.608j)(−0.608j)

 e0 0.608j e0

−(−0.608j) e0 e0

 ĥ

v̂

 =

= 0.73

 1 0.608j

0.608j 1

 ĥ

v̂

 (2.77)

This transformation matrix makes sense, as the new basis should be a com-

bination of the phase shifted unequally weighted linear vectors where there is

an equal magnitude opposite direction phase difference imparted between the

two components. This basis transformation can be seen in Figure 2.33.
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Figure 2.33: Transformation from H and V Basis to Elliptical Basis
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For the unitary transformation matrix Ue45,hv from the linear H and V to

elliptical basis where the major axis of the two elliptical vectors are aligned

with a slant 45 basis (a +45◦ major axis rotation) and the major axis has 1.618

times the magnitude of the minor axis, ψ = π
4
and τ = tan( 1

1.618
) = 0.711,

giving χ = 0.149+0.989j (Note for this case that |χ| = 1). Setting the phase

shifts ψ1 = ψ2 = 0, the basis transformation is shown as

 ê+45

ê−45

 = Ue45,hv

 ĥ

v̂

 =
1√

1 + χχ∗

 ej ψ1 χ ej ψ1

−χ∗ ej ψ2 ej ψ2

 ĥ

v̂

 =

=
1√

1 + (0.149 + 0.989j)(0.149− 0.989j)
×

×

 e0 (0.149 + 0.989j) e0

−(0.149− 0.989j) e0 e0

 ĥ

v̂

 =

=
1√
2

 1 0.149 + 0.989j

−0.149 + 0.989j 1

 ĥ

v̂

 (2.78)

This transformation matrix makes sense, as the new basis should be a combi-

nation of both phase shifted and non-phase shifted unequally weighted linear

vectors where there is an equal magnitude opposite direction phase difference

imparted between the two phase shifted components and the sum and differ-

ence of the non-phase shifted components in the new basis vectors. In addition

it makes sense that there is equal magnitude contribution from each H and V

basis vector (|χ| = 1) in the creation of the new basis because ψ = π
4
. This

basis transformation can be seen in Figure 2.34.

The above examples were chosen to highlight the general use ofUe,hv to ob-

tain some commonly used (and not-so-commonly used) basis transformations.
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Figure 2.34: Transformation from H and V Basis to Slant-Elliptical Basis

Other transformations of vectors to (from) elliptical basis from (to) the H and

V basis can be accomplished by using the unitary transformation matrix Ue,hv

( UT
e,hv for elliptical to H and V ) given in Eq. 2.71 with the appropriate values

of χ, ψ1, and ψ2 for the ending (starting) basis.
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2.10 Conclusion

In conclusion, from a scientific perspective, the high resolution measurement

of a target’s range and velocity and the simultaneous formation of the four-

element polarimetric scattering matrix is desirable. This chapter established

the mathematical basis for dual-polarimetric radar operation in a simultane-

ous transmit and simultaneous receive operational mode and demonstrated

the importance of maintaining orthogonality in both polarization and in pulse

compression waveform coding. Common pulse compression waveforms were

analyzed for application in pseudo-orthogonal waveform sets before present-

ing a novel method for generating pseudo-orthogonal waveform sets utilizing

particle swarm optimization. In the next two chapters, novel methods of digi-

tal predistortion are presented to force the chosen waveform for a given radar

system to be linearly physically generated, ensuring that the measured results

from the radar system will as closely match the desired theoretical performance

as possible.
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Chapter 3

Modeling and Digital Predistortion of Broadband

Solid-State High Power Amplifiers

3.1 Introduction

As described and shown in the previous chapter, fully polarimetric radar opera-

tion with simultaneous transmit and simultaneous receive on both orthogonal

polarizations is the preferred operation mode to gain the most scientifically

valuable data capable of measuring the full polarimetric backscattering prop-

erties of the target area. The research contained in this dissertation is con-

ducted in support of the NASA EcoSAR project, a proposed P-band digital

beamforming polarimetric single pass interferometric synthetic aperture radar

(SAR) testbed system that will be capable of wideband fully polarimetric si-

multaneous transmit and simultaneous receive operation. In order to support

a wide range of advanced phased array techniques, such as wideband beam-

forming utilizing non-constant modulus waveforms, the EcoSAR employs a

powerful and advanced architecture with an independent arbitrary waveform

generator, analog to digital converter, and high power amplifier (HPA) for

every antenna element in the system. It should be noted that this chapter
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closely follows the work presented by the author in [43] c⃝ 2016 IEEE.

Increasingly stringent regulations on bandwidth allocation and manage-

ment are at odds with growing expectations of future radar system capabil-

ities [44], [45]. In radar systems such as EcoSAR utilizing coded waveforms

with wide instantaneous bandwidths, the fidelity of the transmitted signal is

crucial to the ultimate fidelity of the analyzed results of the received signal

as well as the amount of spectral leakage present in the transmitted signal.

With this in mind, the transmit chain of a radar system, specifically the main

HPA, must be fully characterized so that the final transmitted waveform can

be known relative to the desired output waveform. However, physical HPAs

exhibit non-linear behavior over their input power range, which becomes more

extreme as the amplifier nears its compression region where the power added

efficiency of the amplifier is maximized [12]–[14]. In addition, this non-linear

behavior also varies as a function of input frequency. As a result, HPA model-

ing can take several forms. The Volterra series is a convenient and “compact”

mathematical model that is capable of modeling systems with both non-linear

behavior and memory effects [46]–[51]. Non-linear variations over frequency

can be viewed, and thus modeled, as a result of memory effects. With certain

assumptions about the system to be modeled, even more compact forms of

the Volterra model can be applied. One of these such models, convenient for

use with non-linear and memory dependent systems with complex input and

output data, is the memory polynomial (MP) model. Utilizing the MP model,

it is possible to accurately model non-linear behavior and non-linear variation

across input frequency.
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While knowledge of the actual, distorted output waveform is useful in and

of itself, it would be better to use this knowledge to alter the input waveform

so that the final distorted output waveform is equal to the desired waveform.

The inversion of the HPA model for the purpose of linearizing and equalizing

the total system is known generically as predistortion [52]. Digital alteration

of an input signal so that the output distorted signal of a system equals the

true desired signal is known as digital predistortion (DPD). The model gov-

erning DPD for a given radar transmit chain is matched to each individual

HPA. Seeing that the DPD must be a non-linear function of input power and

input frequency, DPD can also be modeled with the MP model. DPD allows a

given amplifier to output signals that appear to be linearly amplified with min-

imal distortion, even while the amplifier is operated in its compression region,

thus maximizing power added efficiency and significantly reducing spectral re-

growth.

Recent advancements in the fields of solid-state amplifiers have led to the

practical implementation of the active array architecture [3]–[6], [53], [54] This

is in contrast to traditional passive array architecture, where all of the an-

tenna’s elements are connected to one power amplifier. Therefore, with each

antenna element having its own HPA, maximizing the utility and output of

HPAs on an element-by-element basis is crucial to maximizing the capability of

the overall wideband radar system. Digital predistortion would be ideal for use

in this type of architecture, as allowing each amplifier to operate in its compres-

sion region without spectral spreading or distortion of the output waveform

leads to the maximization of each amplifier’s power added efficiency. This also

allows the amplifier to give similar output characteristics of a larger amplifier
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for waveforms requiring linear amplification. By utilizing smaller amplifiers to

their full potential, the benefits of lower cost, lower weight, smaller hardware

footprint, easier heat management, smaller and less expensive power supplies,

and other associated hardware is quickly recognized. When these benefits

are multiplied over the number of antenna elements and transmit chains in a

given radar system, it can be seen that DPD can have a tremendous effect on

the utility of the overall radar system without making drastic and expensive

changes to the system’s hardware to achieve similar performance.

While digital predistortion has been utilized in communication systems, as

in [55]–[57], it does not have widespread use in radar applications. Whereas

adaptive predistortion of unpredictable and constantly changing waveforms is

not generally needed in radar systems, DPD in radar applications must apply

over a much larger bandwidth at higher power levels in addition to complying

with mandated lower sideband suppression than is common in communica-

tion systems [2]. This is especially true for wideband radar systems, such as

EcoSAR. Radar systems typically have a finite number of waveforms to be

used during operation, and the waveform to be transmitted is usually known

prior to transmission. As a result, adaptive predistortion is not needed at every

transmit pulse. Instead, the predistorted version of the input waveforms can be

saved into memory to be played out during operation. The desired waveform is

produced at the output of the amplifier even though this step only requires the

same amount of computational power as playing the non-predistorted wave-

form from memory. With this in mind, it can be seen that while conservative

implementation of DPD on an active phased array radar requires digital wave-

form creation, it does not require significant excess computational power. This
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makes it attractive for modern and emerging architectures in environments

where precise spectral usage is required [58], particularly for systems that can

utilize non-constant modulus waveforms with broad instantaneous bandwidth,

such as MIMO radar systems, Low-Probability of Intercept (LPI) radars, and

SAR systems similar to EcoSAR utilizing wideband beamforming. An exam-

ple of a non-constant modulus waveform for use in a wideband beamforming

algorithm proposed by [7] is shown in Figure 3.1.

Figure 3.1: Example of Non-Constant Modulus Waveform Single Channel
Output of Wideband Beamforming Algorithm As Shown In [7], Reprinted
from Dunn et al. (2016) c⃝ 2016 IEEE

3.2 Technical Approach to Modeling Amplifier and

Predistorter

3.2.1 Conceptual Approach to Digital Predistortion

As was previously stated, predistortion is effectively the inversion of a non-

linear HPA model for the purpose of linearizing the output power versus in-

put power relation for the total system. To get a better understanding of

what predistortion is actually doing, visual examples will be helpful. Output

power versus input power graphs of simulated well-behaved narrowband and
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measured wideband amplifier data with overlayed ideal outputs are shown in

Figure 3.2 and Figure 3.3 respectively.

At its core, predistortion is essentially remapping a given input signal to

a different input signal so that when altered by the HPA’s non-linear distor-

tion the desired ideal output signal is the result. This ideal output signal has

a linear output power versus input power relation with a gain that matches

the gain of the linear region of the measured amplifier, as well as a uniformly

flat group delay response. Consider the simulated narrowband (i.e., single

frequency) output power versus input power graph as shown in Figure 3.2.

Predistortion effectively takes the ideal output power versus input power re-

lationship and carefully and intentionally rescales the input power so that the

new output power versus input power relationship matches the measured non-

linear output power versus input power relationship of the amplifier. This

process is relatively simple for the narrowband case, as for each ideal out-

put power level, the same measured output power level corresponds with only

one measured input power level. The non-linear equation that determines

the particular horizontal stretch for a given input power is the predistortion

model. Note that the maximum output power of the ideal signal is equal to

the maximum output power of the measured signal. This means that the ideal

input signal to be predistorted must have an upper power limit corresponding

with the power that gives the maximum output power of the measured signal

when the gain of the ideal output power versus input power relation is applied.

However, determining the predistortion model for a given amplifier is more

complicated than it first appears due to the possibility of variation in non-linear
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Figure 3.2: Example of Power Out vs. Power In of Well-Behaved
Narrowband and Ideal Amplified Signals, Reprinted from Dunn et al. (2016)
c⃝ 2016 IEEE

behavior of the HPA over input frequency. The effect of this frequency depen-

dence is readily apparent in the measured wideband case (40 MHz bandwidth),

and can be seen in Figure 3.3 in the vertical width of the measured samples

range for a given input power. The overall shape of the output power versus

input power response samples can be thought of as the overlap of samples

from numerous power sweeps at constant frequencies ranging the calibration

data passband (this is not the case, but it is helpful to think of it this way for

this example). Again, predistortion effectively takes the ideal input signal and

rescales it so that the output power versus input power relationship matches

the measured non-linear output power versus input power relationship of the

amplifier. However, due to the wideband nature of the input signal and the

frequency dependence of the amplifier, there is a measured input power level

range that corresponds with any desired ideal output power level. The input

power level range for a single output power is composed of a single sample
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from each of the power sweeps at different frequencies. In order to map the

ideal input signal to the correct measured input signal, the “instantaneous”

frequency of the ideal input signal must be known. If frequency-based effects

were ignored, the vertical width of the predistorted amplified signal would

be largely unchanged from that of the measured samples. Note that in the

wideband case, the maximum output power of the ideal signal is equal to

the maximum vertical lower bound of the measured signal, which corresponds

with the “worst-case” maximum power for all frequencies present in the sig-

nal. This ensures that the ideal output signal is possible to produce given the

frequency effects present in the system. Furthermore, due to the fact that for

a given ideal input signal sample at a given frequency there is only one correct

measured input signal to which that point can be mapped, it is implied that

the measured signal data from which the specific predistortion relation and

model is derived must have a output power versus input power relation that

is monotonically increasing.

It was previously stated that non-linear variations over frequency can be

viewed, and thus modeled, as a result of memory effects. In the equations

used to model both the non-linear distortion of the amplifier as well as the

equations used to model the non-linear distortion of the predistorter, memory

terms are simply terms of the causal polynomial that are functions of one or

more delayed input signal samples. The presence of memory terms in a model’s

polynomial establishes effects within the output signal that are dependent

upon the relation between input samples at fixed time interval differences

(i.e., intervals of the sampling rate). The relation between input samples at

fixed time interval differences can be interpreted as being frequency related,
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Figure 3.3: Example of Power Out vs. Power In of Measured Wideband and
Ideal Amplified Signals, Reprinted from Dunn et al. (2016) c⃝ 2016 IEEE

and thus the introduction of memory terms allows frequency based effects to

be reliably modeled.

3.2.2 Volterra Series and MP Model

The Volterra series is useful for modeling systems with both non-linearities

and memory effects, and it is ideal for modeling the output of HPAs and their

associated predistortion models. The general form of the discrete Volterra

series is given by

yV (n) =
K∑
k=1

yk(n) (3.1)

where
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yk(n) =
M−1∑
m1

· · ·
M−1∑
mk

hk(m1, . . . ,mk)
k∏
l=1

x(n−ml) (3.2)

where yV (n) is the output sample, x(n) is the input sample, K is the order

of non-linearity of the system, M is the order of memory of the system, and

hk(m1, . . . ,mk) is a coefficient with set values as a function of k andm1 through

mk. The general form of the Volterra series is capable of modeling non-linear

systems with memory effects due to the extensive number of coefficients paired

with every combination of input sample and delayed input sample combina-

tions within the bounds of the specified non-linear order and memory order of

the model. The general form of the Volterra series is therefore able to model

systems with both large non-linearities and significant memory effects, and

higher precision and more accurate modeling can be provided by simply rais-

ing the non-linear and memory orders of the model. However, the number of

coefficients, and thus computational complexity in calculating the coefficients,

increases at a substantial rate as either the non-linear order or the memory

order of the model is increased. With this in mind, many simplifications of the

full Volterra model, with less coefficients and reduced complexity of calcula-

tion, have been devised and studied [59]–[61]. One of these simplified Volterra

based models that has had previous success modeling physical amplifiers at

complex baseband is the Memory Polynomial model [59], [62]–[65]. The MP

model is given by

y(n) =
K−1∑
k=0

M−1∑
m=0

hkmx(n−m)|x(n−m)|k (3.3)

where y(n) is the output sample, x(n) is the input sample, K is the order of

non-linearity of the system, M is the order of memory of the system, and hkm
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is a coefficient with set values as a function of k and m.

Due to the MP model being linear with respect to the coefficients, it can

be represented efficiently in matrix form. This applies both to the amplifier

model and its associated predistortion function. These matrix representations

readily allow the coefficients to be determined for either case by using a set of

measured input and output data, as detailed herein. Because the MP model

is fundamentally composed of a summation of coefficients that are each paired

with delayed powers of the input waveform, it can be represented efficiently

in matrix form as y = XθMP . This matrix representation can be expanded to

be shown as

y =


y(M)

...

y(N)

 = X



h00
...

h0m
...

hk0
...

hkm


(3.4)

where the matrix X =


x(M) · · · x(1) · · · x(M)|x(M)|k · · · x(1)|x(1)|k

...
...

...
...

x(N) · · · x(N −M + 1) · · · x(N −M + 1)|x(N −M + 1)k · · · x(N −M + 1)|x(N −M + 1)|k



where X is an [A × B] matrix called the delay matrix, y is an [A × 1] col-
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umn vector containing the calculated outputs of the MP model, and θMP is a

[B × 1] column vector containing all the coefficients hkm. It should be noted

that N is equal to the length of the input vector x, B is equal to the number

of coefficients for a given non-linear order and memory order of the MP model,

while A = N − (M − 1), which ensures that any generated output in y was

calculated with populated values for the necessary delayed input terms. The

delay matrix is composed of the varying combinations of input terms that are

both delayed and not delayed associated with the B coefficients for each of

the A output samples to be created. This means that the delay matrix can

be created given only the input sample array and the order of non-linearity

and memory order of the MP model to be used. The [B× 1] model coefficient

column vector θMP contains the unknown coefficients hkm that collectively

capture HPA behavior over the power and frequency ranges of interest. High

fidelity measurements of the amplifier output, excited by a strategically cho-

sen and well known input signal, are required to estimate the coefficients in

θMP . This pair of data is known as the calibration data, and it should be

chosen so that the input signal excites across the entire bandwidth and power

ranges over which the amplifier is to be modeled [66]. A good way to capture

as much of the non-linearity effects and memory effects as possible is to gen-

erate a random signal spanning the desired power range before filtering the

signal to the desired bandwidth. This random signal approach creates many

combinations of input power and frequencies that help to excite the ampli-

fier in as many different states as possible, leading to more behavior of the

amplifier being recorded. As a result, when using the frequency filtered ran-

dom signal approach to generating calibration data, the longer the signal is

in time, the better the system will be characterized. With this in mind it is
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useful to choose calibration data containing a large number of sample points,

although the length of the calibration input signal is practically limited by the

computational power needed to analyze the calibration data when calculating

the MP model coefficients. Once a suitable calibration dataset is acquired

for an HPA and the order of non-linearity and order of memory for the MP

model is chosen, the coefficient column vector θMP can be calculated. This is

accomplished by minimizing the squared error with respect to the coefficient

vector, where the error is defined as the difference between the calculated cal-

ibration output samples and the measured calibration output samples. This

least-squares minimization problem is shown as

min
θMP

∥ycal −XcalθMP∥2 =

= min
θMP

[
yH
calycal − yH

calXcalθMP − θH
MP XH

calycal + θH
MPX

H
calXcalθMP

]
(3.5)

where ycal is the measured output signal column vector of the calibration data,

Xcal is the delay matrix formed by the calibration data input signal xcal, and

[ ]H is the complex conjugate transpose operator. Setting the derivative of (3.5)

equal to zero and solving for θMP yields the least-squares solution, shown as

θMP = (XH
calXcal)

−1XH
calycal. (3.6)

This well known solution is referred to as the Moore-Penrose pseudoinverse

[67], [68]. See Appendix A for a more complete solution. Once the coefficients

of the MP model have been found, if an adequate order of non-linearity and

order of memory were selected, and the range of input power levels and range

of frequencies present in an input signal array fall within those represented

by the calibration data input signal, then the realistic output of the HPA can
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be simulated. It should be noted that if θMP remains unchanged throughout

simulations following calibration, the method used to assemble the calibration

data delay matrix given the calibration data’s input signal should be used to

assemble all future delay matrices given a desired input signal. This will ensure

that the MP model coefficients for the given model are always correctly paired

with their associated delayed and non-delayed input signal combinations.

It is desired not only to create a realistic model of a HPA, but also a model

of an associated predistortion function that can be used in conjunction with

the HPA to create an overall linearly behaving system. More specifically, when

the DPD is paired with the HPA, the desired signal input into the DPD will be

reproduced at the output of the HPA multiplied only by the gain corresponding

with the linear region of the HPA. Therefore, the model of the DPD is basically

an inverse of the model of the HPA. Due to the HPA exhibiting both non-

linearities and memory effects, the DPD will need to account for both non-

linearities and memory effects. However, because the HPA is successfully

modeled by the MP model, this also means that the HPA’s associated DPD

can also be successfully modeled using the MP model, given by y = XθPD,

where y is the DPD output signal column vector, X is the delay matrix formed

by the DPD input signal, and θPD is a column vector containing all the MP

model coefficients of the DPD. The order of non-linearity and order of memory

for the DPD may differ from the order of non-linearity and order of memory

used in the model of the HPA. The coefficients of the MP model for the DPD

can be calculated similarly to the method used to find θMP using the Moore-

Penrose pseudoinverse and a set of calibration data. In order to calculate the

values of the coefficient column vector θPD so that the DPD will be a match
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with the given amplifier, the same set of calibration data is used, but it is

scaled and used in reverse order. The calibration data input signal column

vector xcal remains unscaled, but the calibration data output signal ycal is

rescaled so that the maximum magnitude equals the magnitude that when

multiplied by the HPA’s linear region gain equals the maximum magnitude of

the measured calibration data input signal. The Moore-Penrose pseudoinverse

is executed and the coefficient column vector θPD is found by

θPD = (YH
calYcal)

−1YH
calxcal (3.7)

where Ycal is the delay matrix formed by the rescaled calibration data output

signal ycal. Once the coefficients of the MP model for the DPD have been

found, if an adequate order of non-linearity and order of memory were se-

lected, and the range of input power levels and range of frequencies present in

the input signal array fall within those allowed by the calibration data, then

the necessary predistorted signal can be simulated. It should be noted that

the allowed range of frequencies for the input signal is equal to the range of

frequencies represented by the calibration data. However the allowed range of

amplitudes is limited by the maximum magnitude of the rescaled calibration

data output signal ycal that was used to solve for θPD , which was previously

decided to be the magnitude that, when multiplied by the HPA’s linear region

gain, equals the maximum magnitude of the calibration data input signal. It

should also be noted that in the way the DPD coefficient column vector θPD

was found, these coefficients are actually the necessary coefficients for a MP

model post-inverse filter. However, due to the inherent quality of the Volterra

series that the p
th

order post-inverse of a Volterra series is equal to the p
th

order pre-inverse of a Volterra series, the coefficients found for the post-inverse

125



model can be used as the coefficients of a pre-inverse model instead [69]. There-

fore, by using two different realizations of the MP model simplification of the

Volterra series and a single set of calibration data, it is possible to not only

successfully model the output of a HPA given an input signal, but it is also

possible to find the necessary DPD model that, when used in series with the

HPA, will make the overall transmit chain behave as a linear system.

In summary, the DPD process requires a measured set of calibration data

with a known linear region, pre-defined orders of non-linearity and memory

for both the amplifier and DPD models, and a desired input signal. The DPD

process results in the creation of the amplifier and DPD model coefficients,

predistorted input waveform, simulated predistorted amplified output wave-

form, and the measured predistorted amplified output waveform. This process

is visually summarized in Figure 3.4.
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Figure 3.4: Flow Chart Summary of Digital Predistortion Process, Reprinted
from Dunn et al. (2016) c⃝ 2016 IEEE

126



3.2.3 Weighting for Numerical Stability of Least-Squares

Model Solution

When the specified order of non-linearity of the HPA or DPD model is large,

numerical instabilities can begin to arise when solving for the model coefficients

by executing the Moore-Penrose pseudoinverse. While other approaches have

been proposed to make the pseudoinverse more numerically stable for large

order polynomials by modifying the MP model itself [70], it was decided in this

context to normalize the delay matrices of both the HPA model and the DPD

model by dividing each individual term of the delay matrix by the maximum

magnitude of the calibration input signal for that particular delay matrix to

the power corresponding with the order of non-linearity of the particular term

in the delay matrix. This can be represented by introducing a weighting matrix

W, substituting Xw for X in (3.4) and (3.6), where

Xw = XW. (3.8)

Similarly for (3.7), Ycal,w is substituted for Ycal, where Ycal,w = YcalW. The

elements Wi,j of the square weighting matrix W of dimensions [B × B] are

represented by

Wi,j =


1

(xcal,max)
Kj

for i = j

0 for i ̸= j

(3.9)

where xcal,max is the maximum instantaneous magnitude present in the cali-

bration data signal used to assemble the delay matrix, and Kj is the order of

non-linearity associated with the jth coefficient term in the selected MP model.
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This results in each individual term of the delay matrix being scaled so

that, for a given input time signal, the range of typical values spanned by

the varying non-linear terms is reduced by several orders of magnitude. As a

result, when this normalized delay matrix is used in the Moore-Penrose pseu-

doinverse for finding the coefficients of the model, the least-squares solution

for the coefficients is produced with a much more balanced importance be-

ing placed on each term as the order of non-linearity associated with that

term changes. This normalization process effectively creates a weighted least-

squares approach, with more accurate and numerically stable HPA simulation

and DPD results than previous approaches, such as [51].

The stability of the Moore-Penrose pseudoinverse can be inspected quanti-

tatively by the matrix condition number, more specifically the condition num-

ber of the delay matrix. The condition number is a common linear algebra

tool for examining the sensitivity of a solution of a system of linear equations

to error [71]–[73]. In the case of the amplifier MP model, the condition number

can be thought of as the maximum ratio of the relative error in the coefficients

divided by the relative error in the measured output signal. A matrix is said

to be well conditioned if the condition number is close to 1, and said to be ill

conditioned if the condition number is extremely large. Using a set of calibra-

tion data measured through a Specwave QBH-7-4012 amplifier, the condition

number of the delay matrix was calculated using both the unweighted and

weighted least-squares approaches. In order to examine various ranges of pos-

sible calibration data input values and their effect on the calculated condition

number, the input and output calibration data was rescaled at decade incre-
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ments from -30 dB to +30 dB. At each level of scaled calibration data, the

delay matrix condition number was calculated for various model parameters,

specifically for all permutations of models with order of nonlinearity equal to

three, five, seven, or nine and with order of memory equal to one, three, or

five. These calculations were made for both the amplifier and DPD delay ma-

trices. The comparison between the weighted and unweighted approaches can

be seen in Figure 3.5. It is observed that for both the amplifier and DPD cases

the weighted least-squares based approach results in relatively low condition

numbers that remain very stable as the magnitude of the calibration data is

altered, whereas the unweighted least-squares based approach can have largely

varying condition numbers result that are nearly always orders of magnitude

larger than those computed with the weighted approach.

In general, for both the weighted and unweighted approaches, the matrix

condition number increases as the number of coefficients in the MP model

increases. Our successful measured results utilizing the weighted least-squares

approach, presented later in Section 3, confirm our theoretical formulations.

3.2.4 Bayesian Analysis for Model Parameter

Refinement and Slowly Changing Systems

While the Moore-Penrose pseudoinverse method of finding the least-squares

solution is used in the previous sections for finding the coefficient values for

both the amplifier model and the predistortion function, there are other meth-

ods available for calculating non-linear model parameters that offer benefits

[74], [75]. One of these methods is Bayesian analysis utilizing Gibbs sampling,
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Figure 3.5: Delay Matrix Condition Number for Amplifier and DPD MP
Models As a Function of Number of Model Terms. Note that the condition
numbers resulting from the weighted approach are more stable regardless of
scaling. Reprinted from Dunn et al. (2016) c⃝ 2016 IEEE

which is a form of Markov chain Monte Carlo (MCMC) algorithm that ap-

proximates the multivariate probability distribution of the model parameters.

Whereas the Moore-Penrose least-squares solution uses all available measured

calibration data each execution to find parameter values, Bayesian analysis
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uses only the latest acquired calibration set of data in conjunction with a mul-

tivariate probability containing all prior knowledge of the system, known as

a prior, to construct probabilities of the model parameters. Once the poste-

rior conditional probabilities of the parameters are found, the mean of each is

calculated to give point estimates for the parameters. Under the belief that

the best model parameters are chosen when the greatest amount of calibra-

tion data is utilized, the Bayesian approach offers a significant computational

advantage if the system continually acquires calibration data throughout op-

eration. In addition, the Bayesian approach can result in parameters that are

capable of accurately tracking the best underlying model in the presence of

slowly varying system conditions [76]. The inherent ability of the Bayesian

approach to correctly alter amplified non-linear model parameters as the sys-

tem changes is in contrast to the previous least-squares only approach, such

as [77], [78], that in a changing system environment with continuous training

data acquisition can only result in a parameter set that is the least-squares

solution to the system state that is essentially the average of all measured

system states, rather than the current system state.

The model used for Bayesian analysis is based on the unweighted MP model

shown in (3.3), but due to the Gibbs sampling program operating only on real

numbers, the original complex MP model is converted into two real equations

representing the real and imaginary components individually. These equations

are shown as

ŷr[n] =
K−1∑
k=0

M−1∑
m=0

(
(hkm,rxcal,r[n−m]− hkm,ixcal,i[n−m]) ×

×
√
x2cal,r[n−m] + x2cal,i[n−m]

k)
(3.10)
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and

ŷi[n] =
K−1∑
k=0

M−1∑
m=0

(
(hkm,ixcal,r[n−m] + hkm,rxcal,i[n−m]) ×

×
√
x2cal,r[n−m] + x2cal,i[n−m]

k)
(3.11)

where ŷ[n] is the calculated MP model values with ŷ[n] = ŷr[n] + j ŷi[n], the

measured input calibration signal xcal[n] = xcal,r[n]+j xcal,i[n], and the complex

MP model coefficients hkm = hkm,r+j hkm,i. The measured output calibration

signal is defined to be the result of a compound Normal distribution, shown

as

ycal,r[n] ∼ N(µ = ŷr[n], τ = τy,r) (3.12)

and

ycal,i[n] ∼ N(µ = ŷi[n], τ = τy,i) (3.13)

where the measured output calibration signal ycal[n] = ycal,r[n] + j ycal,i[n],

the distribution’s mean is the MP model value ŷ[n] calculated using the mea-

sured input calibration signal, and the distribution’s precision τ is a model

variable itself. Once the multivariate posterior probability distribution of the

model’s variables has been calculated, the point estimate of each conditional

probability is calculated, giving the MP model coefficient estimates as well as

the precision of the compound Normal distribution approximating the model

about the measured data. The distribution approximating the model output is

compound Normally distributed due to the precision itself being an unknown

distribution.
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Figure 3.6: Measured Amplifier Data versus Least-Squares and Bayesian
Model Results, Reprinted from Dunn et al. (2016) c⃝ 2016 IEEE

A single set of calibration data with a bandwidth of 40 MHz was used,

implying the underlying assumption of a completely steady-state system. Ad-

ditionally, all parameters for the Bayesian algorithm were initialized with un-

informative priors, and it was found that the weighted least-squares approach
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generated model parameters that had slightly better results than those gener-

ated by the Bayesian generated coefficients. This resulted in amplifier models

with results closer to measured values and DPD models that resulted in less

spectral spreading. However, when amplifier characteristics changed due to

changing unmodeled system parameters, such as the temperature of the am-

plifier, the Bayesian generated coefficients gave much more satisfactory results

as the system was able to track with the changes while still incorporating and

adding to historical data about the amplifier. These results are seen in Fig-

ure 3.6, which shows the K = 9, M = 5 amplifier models generated by both

the least-squares and Bayesian analysis approaches as the amplifier undergoes

a temperature shift, with each subsequent row representing a progression in

amplifier state. The predicted output power versus input power for both ap-

proaches is plotted in addition to the current measured amplifier output power

versus input power in the left column of Figure 3.6. The difference between

both modeled amplifier output powers and the current measured amplifier out-

put power is plotted in the right column of Figure 3.6. It can be easily seen

that the difference between the measured and modeled results is less for the

least-squares approach when the system is stable, but is less for the Bayesian

generated approach as the system changes. The calibration data was formed

by concatenating four calibration data sets that were each recorded during the

warm-up period of a Specwave QBH-7-4012 amplifier, with the four 40 MHz

bandwidth measurements taken at delays of zero, one, five, and ten minutes

after amplifier activation, respectively.
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3.3 Predistortion of Digitally Coded Waveforms

Simulations and tests were conducted on a representative non-constant mod-

ulus waveform that spans the power and bandwidth of a possible wideband

radar waveform, as well as a constant modulus constrained coded waveform

typical of a wideband radar. The P4 coded waveform was chosen to represent a

typical wideband constant modulus radar waveform, as it is a polyphase code

with broad instantaneous bandwidth. Although polyphase codes have been

known for some time, P4 codes have gained in popularity over the last several

years as they are efficient to digitally synthesize and have unique applica-

tions in modern radars, for example [27]–[29] and others. New classes of good

polyphase code sets can be generated using pieces of P4 polyphase codes, and

these code sets are suited for many applications including orthogonal netted

radar systems (ONRS) and MIMO radars [28]. Under the cross-correlation

elimination (CCE) condition many monostatic radar waveforms can be di-

rectly used in the MIMO radar system, such as P4 codes [27]. As noted by

Lewis and Kretschmer [79], the P4 polyphase pulse compression code is very

Doppler tolerant, can provide large pulse compression ratios, and is tolerant

of precompression bandwidth limitations. Therefore, the P4 code and its re-

sults represent any typical wideband constant modulus radar waveform with

wide instantaneous bandwidth, including but not limited to Frank, P1, P2,

P3, biphase, or polyphase modulated waveforms.

The non-constant modulus waveform chosen to represent any possible wide-

band radar waveform within the system’s filtered bandwidth range consists of

a randomly generated complex baseband signal filtered to the bandwidth that

135



the system is to be characterized. Although the available test setup hard-

ware limited the calibration waveform to a relative bandwidth that was not

overly large, the chosen bandwidth was sufficient to capture wideband effects

of the amplifier. This is demonstrated by the large vertical width of the out-

put power for a single input power as seen in Section 3.3.4. Therefore, this

randomly generated code and its results represent any radar waveform with

wide instantaneous bandwidth and non-constant modulus. Waveforms with

these attributes could be encountered in more specialized and advanced radar

system roles, such as MIMO systems, LPI radars, and SAR wideband beam-

forming applications. Due to the assumption of a steady-state system, these

waveforms were predistorted utilizing the weighted least-squares based method

described in Section III, and the simulated and measured results were com-

pared to the respective non-predistorted cases. This was done to test the

ability of the DPD to match the final distorted output waveform to the de-

sired output waveform in a steady-state system, and to quantify the effect on

spectral spreading behavior while the amplifier is operating in its compression

region. Through trial and error, it was found that K = 9 and M = 5 for the

MP DPD orders provided optimal performance for the given test datasets.

For both the constant modulus and non-constant modulus waveforms tests,

it was expected that the simulated predistorted results would have slightly bet-

ter suppressed spectral spreading than their physically measured counterparts.

This is due to the fact that the predistorted and non-predistorted signal in a

physically measured test is being applied to a real system with nonlinear char-

acteristics, rather than a known model approximating a system with nonlinear

characterisitics. Therefore, when a simulation is executed, the exact nonlinear
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behavior of the simulated amplifier is already known, whereas the measured

test will have some element of noise or unmodeled and unaccounted for effect

present simply due to the fact that a physical amplifier’s nonlinear behavior

cannot be perfectly known. This expectation was confirmed, and for both the

constant modulus and non-constant modulus waveform tests, the magnitude

of the spectral spreading was slightly lower for the simulated case than for the

respective physically measured case.

3.3.1 P4 Waveform Simulation

A simulated system was analyzed using calibration data measured through a

Specwave QBH-7-4012 amplifier and a constant modulus 20 MHz P4 coded

waveform filtered to a bandwidth of 40 MHz. A 40 MHz filter was chosen in

order to capture the null-to-null waveform information. The waveforms had

a pulse width of 84 µs and a maximum input voltage equal to the maximum

allowed magnitude as specified by analysis of the calibration data. Using an

HPA model with K = 9 andM = 5, it was seen that the digitally predistorted

signal was nearly an exact match to the desired output signal. The non-

predistorted signal, which was equal to the DPD input signal and scaled so that

its maximum magnitude corresponded with the predistorted signal’s maximum

magnitude, experienced non-linear distortion and compression across the span

of the waveform. The spectral spreading of the non-predistorted output signal

was much larger than that of the predistorted signal after being distorted by

the HPA. This is seen in Figure 3.7. With these results in mind, it can be

seen that using the DPD model on the input waveform leads to a much more

desirable simulated result, closely matching the ideal output signal, and with
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a much smaller degree of spectral spreading than would be present without

digital predistortion.

Figure 3.7: Power Spectral Density of Simulated Predistorted and
Non-Predistorted P4 Coded Waveforms after HPA Distortion, Reprinted
from Dunn et al. (2016) c⃝ 2016 IEEE

3.3.2 P4 Waveform Test in Hardware

The same P4 coded waveform used in simulation was generated with a center

frequency of 1.2 GHz and amplified through a Specwave QBH-7-4012 amplifier

and tested both with and without DPD. Using a pulse width of 84 µs and a

maximum input voltage equal to the maximum allowed magnitude as specified

by analysis of the calibration data, it is seen in Figure 3.8 that the digitally

predistorted signal had much lower measured spectral spreading than the non-

predistorted signal. This demonstrates DPD’s potential impact on modern

wideband radar signals, where high gain systems utilizing waveforms with
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Figure 3.8: Power Spectral Density of Measured Predistorted and
Non-Predistorted P4 Coded Waveforms after HPA Distortion, Reprinted
from Dunn et al. (2016) c⃝ 2016 IEEE

broad instantaneous frequency can be predistorted to have much improved

spectral characteristics.

3.3.3 Non-Constant Modulus Waveform Simulation

A simulated system was analyzed using calibration data measured through a

Specwave QBH-7-4012 amplifier and a representative non-constant modulus

test signal composed of a randomly generated complex baseband signal filtered

to a bandwidth of 40 MHz, a pulse width of 25 µs, and a maximum input

voltage equal to the maximum allowed magnitude as specified by analysis of

the calibration data. Using an HPA model with K = 9 andM = 5, it was seen

that the digitally predistorted signal was nearly an exact match to the desired

output signal. However, the non-predistorted signal, which was equal to the

139



DPD input signal and scaled so that its maximum magnitude corresponded

with the predistorted signal’s maximum magnitude, experienced non-linear

distortion and compression across the span of the waveform. It was also seen

that the spectral spreading of the non-predistorted output signal was much

larger than that of the predistorted signal after being distorted by the HPA.

This is seen in Figure 3.9. With these results in mind, it can be seen once

again that using the DPD model on the input waveform leads to a much more

desirable simulated result, closely matching the ideal output signal, and with

a much smaller degree of spectral spreading than would be present without

digital predistortion.

Figure 3.9: Power Spectral Density of Simulated Predistorted and
Non-Predistorted Signals after HPA Distortion, Reprinted from Dunn et al.
(2016) c⃝ 2016 IEEE
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3.3.4 Non-Constant Modulus Waveform Test in

Hardware

The same non-constant modulus representative test signal used in simulation

was generated with a center frequency of 1.2 GHz and amplified through a

Specwave QBH-7-4012 amplifier and tested both with and without DPD. Using

a pulse width of 25 µs and a maximum input voltage equal to the maximum

allowed magnitude as specified by analysis of the calibration data, it is seen

in Figure 3.10 that the digitally predistorted signal had much lower measured

spectral spreading than the non-predistorted signal.

Figure 3.10: Power Spectral Density of Measured Predistorted and
Non-Predistorted Signals after HPA Distortion, Reprinted from Dunn et al.
(2016) c⃝ 2016 IEEE

It can be seen in Figure 3.11 that the measured predistorted signal closely

matches the ideal linear gain across the output power range. The large vertical

width of the measured non-predistorted signal for a given input power is due

to the wideband nature of the waveform in conjunction with the frequency
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dependency of the amplifier. The vertical narrowing of the predistorted signal

is due to frequency dependency correction, demonstrating that the order of

memory chosen for the model is sufficient to correct the system’s wideband ef-

fects. This frequency dependency correction is also apparent when comparing

the passband group delay of the measured digitally predistorted signal to that

of the measured non-predistorted signal, as seen in Figure 3.12.

Figure 3.11: Power Out vs. Power In of Measured Predistorted and
Non-Predistorted Signals after HPA Distortion, Reprinted from Dunn et al.
(2016) c⃝ 2016 IEEE

While the particular amplifier under test had an overall relatively flat group

delay response over the given frequency range, there was still a fair amount

of variance present. The predistorted signal maintained the overall flat group

delay response in addition to significantly suppressing the variance throughout

the passband, thus significantly improving the accuracy of the overall predis-

torted system. By producing a linear power out versus power in response,

as well as a flat group delay response in the passband, the predistortion ap-
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Figure 3.12: Passband Group Delay of Measured Predistorted and
Non-Predistorted Signals after HPA Distortion, Reprinted from Dunn et al.
(2016) c⃝ 2016 IEEE

proach presented is shown to be able to accurately reproduce a desired com-

plex baseband waveform. These results found using a wideband non-constant

modulus waveform with broad instantaneous bandwidth verify that the DPD

approach presented is not constrained to the traditional constant modulus

class of radar waveforms. This opens the possibility of significantly improved

generated signal fidelity and greatly reduced spectral leakage in modern and

emerging broadband radar systems that may be dependent upon non-constant

modulus waveforms, such as MIMO radar systems, LPI radars, and SAR sys-

tems utilizing wideband beamforming.
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3.4 Conclusion

In conclusion, it has been shown that the Volterra series, more specifically

the MP model, is able to accurately model the non-linear effects and mem-

ory effects of both high power amplifiers and their associated predistortion

models in wideband radar systems. The predistortion model can be imple-

mented digitally in a system and shows potential for significant improvements

in radar spectral performance and overall waveform fidelity. These improve-

ments have significant potential impact when used in conjunction with phased

array radar architectures utilizing solid-state amplifiers and waveform gener-

ators at every antenna element. In the past, least-squares approaches have

been shown to be useful to solve DPD model parameters, primarily within

the communication community. The newly presented weighted least-squares

approach for predistortion and modeling of wider band radar signals is more

numerically stable than previous approaches. In addition, for the first time,

a Bayesian approach is proposed that allows the models to track with slowly

changing system parameters to maintain the best current model. Laboratory

testing has confirmed the efficacy of this approach. When system data is con-

tinuously recorded for system characterization the Bayesian approach offers

long-term computational benefits. DPD allows the radar system to linearly

amplify and transmit waveforms over the entire HPA’s output power range,

maximizing power added efficiency, minimizing spectral spreading, and have

an overall performance similar to that of a much larger and more costly radar

system that does not utilize digital predistortion. These qualities make DPD

a strong contender not only for EcoSAR, but also for modern phased array

radar systems that require high fidelity generation of eccentric or non-constant
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modulus waveforms, such as MIMO radar systems, LPI radars, and SAR sys-

tems utilizing wideband beamforming.

In the next chapter, several sets of proposed wideband beamforming wave-

forms for EcoSAR are introduced with both alternating transmit simultane-

ous receive and simultaneous transmit simultaneous receive operation modes

in mind. In addition to their method of generation and simulated ideal com-

bined beam-pattern, the calculated beam-pattern is also shown for the cases

where each waveform is physically generated, amplified, and measured, as well

as digitally predistorted using the previously described approaches, physically

generated, amplified, and measured. The calculated beam-patterns generated

from the non-predistorted and predistorted measured waveforms are then an-

alyzed for suitability of application in EcoSAR.
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Chapter 4

An Impedance Dependent Memory Polynomial Model

for Wideband Digital Predistortion of Solid-State

Radar Amplifiers

4.1 Introduction

Modern and emerging radar systems are increasingly utilizing wideband wave-

forms in active array architectures, in which each individual antenna element

is associated with its own unique high power amplifier (HPA) and transmit

and receive chain [3], [4]. In addition to phased array radar systems, active

array architectures will solve unique problems in high-traffic next-generation

communication systems, such as the 5G wireless network [80]–[84]. In addition

to the benefits of traditional phased arrays, such as rapid beamsteering and

graceful degradation, an active array architecture also allows for the execution

of unique radar operational schemes, such as multi-beam transmit and receive,

the use of designed wideband waveform sets that result in frequency-invariant

beampatterns, and simultaneous multi-mode operation [5]–[8]. These opera-

tional modes are often dependent on the use of non-constant modulus wave-

forms, and the success of the operational scheme often hinges on the accurate
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generation of these very specifically defined waveform sets, both in their output

power versus input power relationships as well as in their spectral footprint.

It is well documented that HPAs operate non-linearly over their input power

range, as well as that their highest power added efficiency occurs well into the

non-linear region [12]–[14]. The non-linear behavior exhibited by amplifiers

results in an effect known as spectral spreading, where the intended signal’s

spectral shape is corrupted by the addition of power outside the intended band

of usage. Increasingly stringent requirements imposed on bandwidth alloca-

tion and management in conjunction with the high fidelity waveform creation

required in next-generation active array radar systems necessitates that a sys-

tem’s HPAs linearly reproduce the system’s intended signals. In order for a

HPA to linearly reproduce its input signal, the input signal must be restricted

to a constant modulus, the input signal’s power level must remain well below

the maximum input power of the amplifier to coincide with the linear region

of the HPA and operate at a sub-optimal power added efficiency, or the input

signal should be predistorted so that the non-linear effects of the amplifier ulti-

mately result in a linearly amplified signal over the full output power range of

the amplifer. Digital alteration of an input signal so that a system’s distorted

output signal equals the true desired signal is known as digital predistortion

(DPD). Due to active array architectures containing a HPA at each antenna

element, the cost incurred through requiring larger and more powerful am-

plifiers, along with the larger associated heat management and power system

requirements, in order to operate the amplifiers at less than maximum input

power would be unreasonable and would linearly increase with the number of

number of antenna elements. As a result, it is much more desirable to uti-

lize a form of DPD to maximize the effectiveness of the HPAs in a given system.
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It is well documented that in addition to amplifiers exhibiting non-linear

characteristics over their input power range, amplifiers also exhibit non-lin-

earities over their input frequency range. In order for modern radar systems

to accurately predistort non-constant modulus wideband waveforms in each

transmit/receive chain, the amplifier must be carefully characterized as a func-

tion of both input power and input frequency. The memory polynomial (MP)

model has been shown to be capable of successfully modeling non-linear and

memory dependent systems with complex input and output data [59], [62]–

[65]. In previous work, the MP model has been shown to produce satisfac-

tory results when applied to wideband digital predistortion of radar amplifiers

[77], [78]. It should be noted that non-linear variations over frequency can be

viewed, and thus modeled, as a result of memory effects.

In addition to HPA performance being a function of the input power and

frequency, HPA behavior is also affected by the complex load impedance ex-

perienced at the output port of the amplifier [85], [86]. This is important in

active phased array architectures as the complex load impedance experienced

by the HPA at each antenna element will vary as a function of scan angle [1],

[15]. This change in impedance as a function of scan angle is aptly known

as scan impedance. This work differs from previous radar-centric wideband

digital predistortion research in that it is desired to not only predistort HPAs

as a function of input power and input frequency, but also as a function of

the load impedance experienced by the HPA. This is accomplished through

the proposal of a novel modified MP model, henceforth referred to as the

impedance dependent memory polynomial (IDMP) model. While digital pre-
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distortion has been utilized in communication systems, as in [55]–[57], it does

not have widespread use in radar applications. While adaptive predistortion

of unpredictable and constantly changing waveforms is not generally needed

in radar systems, DPD in radar applications must apply over a much larger

bandwidth at higher power levels in addition to complying with mandated

lower sideband suppression than is common in communication systems [2].

Modern and emerging radar systems typically utilize a finite number of pre-

known wideband waveforms to be used during operation. Therefore, adaptive

predistortion is not required at every transmit pulse. Instead the predistorted

versions of the input waveforms can be saved into memory as a function of scan

angle to be recalled during operation. In active phased array architectures,

this method of generating pre-saved waveforms requires the same computa-

tional power as generating non-predistorted waveforms. This makes digital

predistortion utilizing the IDMP model desirable for modern and emerging

radar systems, especially for beamsteering systems that may require the us-

age of wideband non-constant modulus waveforms, such as in MIMO radar

systems, Low-Probability of Intercept (LPI) radars, SAR systems utilizing

wideband beamforming, and systems executing simultaneous multi-mode op-

eration. This chapter closely follows the work presented by the author in [87]

c⃝ 2017 IEEE.
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4.2 Technical Approach to Modeling Amplifier and

Predistorter

4.2.1 Mutual Coupling and Scan Impedance in Phased

Arrays

When antennas are transmitting near each other in an array, radiated energy

from each antenna invariably ends up at every other transmitting antenna el-

ement to some extent. This unwanted energy can be absorbed, rescattered,

or reradiated, again slightly affecting all other antenna elements in the array.

This effect of unintentionally trading energy throughout an antenna array

through secondary transmission effects is known as mutual coupling [88]. En-

ergy absorbed through mutual coupling between antenna elements can lead to

effectively changing the antenna element’s impedance. Changing an antenna

element’s impedance is the same as changing its reflection coefficient. For the

generalized example case of a two-dimensional uniform array, the array scan

reflection coefficient Γ for the 00 antenna element can be represented as

Γ =
P−1∑
p

Q−1∑
q

S00,pq
Apq
A00

(4.1)

where P is the number of rows of elements in the array, Q is the number of

columns of elements in the array, S is the s-parameter between the 00 element

and the pq element, and Apq is the complex excitation coefficient of the pq

element [89]. While the coupling coefficient is determined from the impedance

matrix, the excitation coefficient is set by the radar system’s intended scan
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angle. Therefore, due to the mutual coupling, reflection coefficient, and ef-

fective antenna impedance being dependent upon all the other active antenna

elements and the radar system’s intended scan angle, the effective antenna

impedance for a given element is called the scan impedance. Scan imped-

ance effects are widely recognized in phased array systems [1], [88]–[90]. For

an array that has matched elements at broadside the array can be expected

to experience a voltage standing wave ratio (VSWR) of at least 2:1 over a

normal operational scanning range, which corresponds with a scan reflection

coefficient that does not produce a loss exceeding -10 dB. [1]. Additionally, due

to being a function of frequency and the chosen transmit beamsteering direc-

tion, the scan impedance characteristics remain consistent for a given antenna

array. This means that during initial calibration of the radar system the scan

impedance characteristics of the antenna array can be related as a function of

excitation frequency and beamsteering angle, thus allowing the creation of a

method for the direct mapping of an individual antenna element’s, and thus

individual HPA’s, load impedance to the desired beamsteering angle. For the

remainder of this chapter only the HPA load impedance will be addressed for

modeling purposes, and it will be assumed that the scan impedance is known

versus scan angle and that the array is well-characterized enough that the scan

impedance for a given scan angle is consistent across all antenna elements. The

primary purpose of this chapter is to demonstrate that wideband impedance-

dependent corrections are possible and effective on the testbed scale. Future

research goals involve expanding and applying the presented DPD approach

to a larger array, as well as successfully mapping the intended transmit beam-

steering angle to HPA load impedance for each antenna element in a finite

phased array antenna.
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4.2.2 Conceptual Approach to Impedance Dependent

Digital Predistortion

As was previously stated, digital predistortion is the digital alteration of an

input signal so that a system’s distorted output signal equals the ideal output

signal. The ideal output signal is defined as being the input signal multiplied

only by a linear gain. Alternatively, the ideal output to input relation is that

of a linear output power versus input power relation, a gain matching that of

the linear region of the amplifier, and a uniformly flat group delay response.

Consider the narrowband impedance matched case of amplifier predistortion,

where the measured non-linear output power versus input power relationship

is fairly straightforward as there is only one output power for any given in-

put power. For the narrowband case, predistortion is relatively intuitive, as

it simply consists of carefully and intentionally rescaling the input power so

that the ideal output power versus input power relation is remapped to the

measured non-linear output power versus input power relation. The equation

governing the rescaling of the input power is the predistortion model. Note

that in order for the ideal output power versus input power relation to be suc-

cessfully remapped to the measured output power versus input power relation,

the maximum output power must be equal in both cases.

Consider the wideband impedance matched case of amplifier predistortion,

where the measured non-linear output power versus input power relationship

has an added level of complexity as the non-linear output power versus input
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power relationship of the amplifier is also dependent upon frequency. This

means that for a wideband input signal, multiple output powers correspond

with any given input power. Therefore in order to map the ideal input signal

to the correct measured input signal, the frequency based effects must be taken

into account. A more in-depth analysis of wideband digital predistortion in

impedance matched radar systems can be found in [43], [77], [78].

In addition to having output power versus input power relationships as a

function of input power and input frequency, a high power amplifier’s out-

put characteristics are also a function of their complex load impedance. For

the wideband load impedance varying case of amplifier predistortion, the non-

linear output power versus input power relationship, with multiple output

powers corresponding with any given input power due to frequency dependent

effects, as a whole changes non-linearly as a function of load impedance. As

an example, the average of the highest 5% magnitude samples per impedance

measurement from a MACOM MAAP-010171 high power amplifier are shown

in Figure 4.1 with the magnitude plotted as a function of the impedance’s

resulting complex reflection coefficient. It can be easily seen that a high power

amplifier’s load impedance does indeed affect the amplifier’s output character-

istics. Whereas the wideband matched impedance case’s predistortion model

only requires a time-dependent input signal, the impedance dependent model

requires the addition of another parameter to address the extra dimension

based on the amplifier’s load impedance. This parameter can be the ampli-

fier’s load impedance, the complex reflection coefficient calculated using the

system’s characteristic impedance, the complex voltage standing wave ratio

(VSWR), or any other parameter that results in a one-to-one mapping from
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the complex load impedance. Note that in order for the ideal output power

versus input power relation to be successfully remapped to the ideal output

power versus input power for the impedance dependent case, the maximum

output power of the ideal output must equal the maximum lower bound of the

measured output power over all the possible load impedances. By ensuring

that the maximum ideal output signal does not exceed the lowest maximum

power for all frequencies and load impedances that can be experienced by the

system, this ensures that it will be possible to recreate the ideal output sig-

nal. Alternatively, if the highest output power at each scan angle is desired at

the expense of uniform output power across scan angles, then the same model

could be utilized in conjunction with a maximum ideal output power that is

a function of load impedance. For the remainder of this chapter it is desired

that the output power be uniform across input power, frequency, and load

impedance, therefore the ideal output power for a given HPA will be assumed

to be a constant.

4.2.3 Memory Polynomial Model and Impedance

Dependent Memory Polynomial Model

As previously stated, the memory polynomial model, itself a simplification of

the Volterra series [59], has been shown to produce satisfactory results when

applied to complex baseband modeling of physical amplifiers. The MP model

is given by

y(n) =
K−1∑
k=0

M−1∑
m=0

hkmx(n−m)|x(n−m)|k (4.2)
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Figure 4.1: Various Perspectives of Mean of Top 5% Maximum Magnitudes
per Load Impedance vs. Complex Reflection Coefficient, Reprinted from
Dunn et al. (2017) c⃝ 2017 IEEE

where y(n) is the output sample, x(n) is the input sample, K is the order of

non-linearity of the system, M is the order of memory of the system, and hkm

is a coefficient with set values as a function of k and m.

When the specified order of non-linearity or order of memory is large in

a DPD model, numerical instabilities can begin to arise when solving for the

coefficients of the model. While approaches have been proposed to mitigate

instabilities by modifying the MP model itself [70], previous work by the au-

thors found success through normalizing the terms of the MP model. This
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normalization was executed through weighting by dividing each term of the

MP model by the maximum magnitude of the calibration input signal for the

particular modeling scenario to the power corresponding with the current or-

der of non-linearity for that particular model term. Therefore, the weighted

memory polynomial model can be fully represented as

y(n) =
K−1∑
k=0

M−1∑
m=0

hkmx(n−m)|x(n−m)|k 1

(xcal,max)k+1
(4.3)

where xcal,max is the maximum instantaneous magnitude present in the cali-

bration data signal used for the model. This weighted MP model was demon-

strated to accurately model a wideband radar amplifier and its associated

DPD model for a matched impedance system while remaining stable relative

to changes in model size [43].

This chapter expands previous work through the inclusion of load imped-

ance dependent effects. As mentioned previously, the formation of a load

impedance dependent non-linear model requires the addition of another pa-

rameter to address the extra dimension due to the inclusion of the amplifier’s

load impedance’s effect on the model. Using the weighted memory polyno-

mial model as the starting point, a satisfactory impedance dependent memory

polynomial (IDMP) model was developed by this research that could model

the necessary DPD function at complex baseband. This IDMP model can be

shown as

y(n) =
K−1∑
k=0

M−1∑
m=0

C−1∑
p=0

C−1∑
a=0

(
Φkmpax(n−m)|x(n−m)|kλRλI+

jΨkmpax(n−m)|x(n−m)|kλRλI
) 1

(xcal,max)k+1Γp+amax

(4.4)
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where

λR =


1 for p = 0

ΓR [n] |ΓR [n] |p−1 for p > 0

(4.5)

and

λI =


1 for a = 0

ΓI [n] |ΓI [n] |a−1 for a > 0

(4.6)

where C is the user selected order of impedance dependency and Φkmpa and

Ψkmpa are complex coefficients with set values as a function of k, m, p, and

a. All impedances present in the calibration dataset are used to compute all

the corresponding complex reflection coefficients Γ [n] = ΓR [n] + jΓI [n] us-

ing a standard characteristic impedance of 50 Ω. The complex term Γmax is

given by Γmax = max (|Re {Γ [n]} |) + jmax (|Im {Γ [n]} |), where “max ( )” re-

turns the maximum of the input vector, “| |” denotes the magnitude operator,

“Re {}” denotes the real component, and “Im {}” denotes the imaginary com-

ponent. The proposed IDMP model captures the complex relations between

the complex input signal and the complex reflection coefficient, as well as all

the complex cross terms resulting from a non-linear function of Γ [n] by manu-

ally separating the real and imaginary components of the resulting Γ [n] cross

terms. This manual separation of the complex equation results in a model

with 2×K ×M × C2 coefficients overall.

Due to the IDMP model being linear with respect to the coefficients, it

can be represented efficiently in matrix form as y = XθIDMP . This matrix
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representation can be expanded to be shown as

y =


y(M)

...

y(N)

 = X



Φ0000

...

Φkmpa

...

Ψ0000

...

Ψkmpa


(4.7)

where the [A×B] matrix X is called the delay matrix, and is best represented

as the result of submatrices, shown as X = [XRW jXRW]. It should be

noted that N is equal to the length of the input vector x and B = 2KMC2

is equal to the total number of coefficients for a given order of non-linearity

K, order of memory M , and order of impedance dependence C. Therefore the

complex coefficients Φkmpa and Ψkmpa are both of size
[
B
2
× 1
]
. The length of

the output vector is given by A = N − (M − 1) to ensure that any generated

output in y is calculated with populated values for all of the needed delay

terms. The
[
A× B

2

]
submatrix XR can be partially expanded to be shown as

XR =


x(M) · · · x(1)|x(1)|kΓR|ΓR|C−1ΓI |ΓI |C−1

...
...

x(N) · · · x(N −M + 1)|x(N −M + 1)|kΓR|ΓR|C−1ΓI |ΓI |C−1


(4.8)

and the
[
B
2
× B

2

]
square submatrix W handles the model weighting for nu-
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merical stability, shown as

Wi,j =


1

(xcal,max)
kj Γ

pj+aj
max

for i = j

0 for i ̸= j

(4.9)

where kj is the order of non-linearity, pj is the order of impedance dependency

on the real term of the complex reflection coefficient, and aj is the order of

impedance dependency on the imaginary term of the complex reflection coef-

ficient associated with the jth coefficient term in the selected IDMP model.

It can now be seen that the delay matrix X is composed of varying combi-

nations of the input vector x that are both delayed and not delayed, multiplied

by the appropriate Γ values, to be associated with the B coefficients used to

create the A output samples in y. Therefore X can be assembled given only

the input sample array, the load impedance state associated with each input

sample, and the specified orders of non-linearity, memory, and impedance de-

pendence for the given IDMP model to be used. As a result, the only DPD

model component that is not specifically set or determined by the user is the

[B × 1] model coefficient column vector θIDMP that embodies the non-linear

characteristics of the system over the desired input power, input frequency,

and load impedance ranges. In order to estimate the coefficient vector θIDMP ,

high precision output measurements through the device to be characterized or

predistorted must be acquired using a well known excitation signal. The exci-

tation signal should be strategically chosen to excite the device over the desired

input power and frequency ranges, and the measurements of the excitation sig-

nal should be taken throughout the expected range of load impedances using
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an appropriate test setup. This pair of input and measured signals is known

as the calibration signal. One method of capturing as much of the non-linear

behavior as possible with a single excitation waveform is to generate a complex

baseband waveform that is randomly generated in time and phase, and then

to filter the waveform so that it occupies the desired bandwidth. This helps to

generate as many random combinations of input power and frequency as pos-

sible in a given pulse length to excite the amplifier. This filtered waveform can

then be used to assemble a bank of amplifier measurements with the amplifier’s

load impedance varied across the range it is to be characterized. This bank of

input and amplified measured waveforms are then concatenated into two iden-

tical dimension vectors containing all of the measured input waveforms and all

of the measured amplified waveforms, respectively. Additionally, a third vec-

tor is created with a length equal to the total number of samples in one of the

first two vectors, and each element of the vector contains the load impedance

experienced by the amplifier at that same index in the amplified measured

output vector. These three vectors together form a calibration dataset that

captures enough of the amplifier’s non-linearities across the ranges of interest

of input power, frequency, and load impedance to model the system or the

system’s DPD model to a satisfactory degree.

Once a satisfactory calibration dataset has been acquired and the desired

order of non-linearity, order of memory, and order of load impedance have

been chosen, the IDMP model coefficient vector θIDMP can be calculated.

The DPD model coefficients are found using a method similar to that used

to solve for the MP model coefficient vector in [43], [51], [77], [78], where the

calibration data is used to solve for the coefficients of a post-inverse filter for
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the system’s HPA. Due to the IDMP model being formed from the Volterra

series, the Volterra series property that any system’s pth order post-inverse

filter is equivalent to the same system’s pre-inverse filter still holds true [69].

This property is visualized for a simplified one-to-one linearization case in

Figure 4.2.
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Figure 4.2: Visualization of Volterra Series Post-Inverse A) to Pre-Inverse
B) Equivalency Property, Reprinted from Dunn et al. (2017) c⃝ 2017 IEEE

In practice, it is desired for the DPD to be implemented as a pre-inverse

filter, with the pre-inverse filter and HPA pair itself being treated as a black-

box amplifier with ideal linear amplification. In order for the pre-inverse filter

to remove the non-linear effects of the HPA without removing the desired

gain from the HPA, the coefficients of the post-inverse filter (used in practice

as the pre-inverse filter) must be solved using the calibration data where the

measured output calibration waveform has been rescaled so that its maximum

magnitude does not exceed the system’s maximum allowed input magnitude.

The maximum allowed input magnitude is the magnitude that, when multi-

plied by the linear region gain of the HPA, equals the maximum magnitude
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of the measured calibration data output signal. This method of pairing the

DPD and the HPA as a black-box ideal amplifier is shown in Figure 4.3 where

subplot A) helps visualize the system non-linearities compensated by the so-

lution of the post-inverse filter, subplot B) helps visualize that the system’s

post-inverse filter is equivalent to the system’s pre-inverse filter, and subplot

C) helps visualize the implementation of the pre-inverse filter in practice.
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Figure 4.3: Visualization of Calibration Post-Inverse A) to Calibration
Pre-Inverse B) and Implemented Pre-Inverse C) Equivalency Property in
Black-Box Linear Amplifier Method, Reprinted from Dunn et al. (2017) c⃝
2017 IEEE

Utilizing the matrix representations of the IDMP model shown in Equa-

tions 4.7 through 4.9, the least-squares solution to the IDMP model coefficient

vector θIDMP characterizing the post-inverse filter for a given HPA is found
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through the Moore-Penrose pseudoinverse [67], [68], shown as

θIDMP = (XH
calXcal)

−1XH
calycal (4.10)

where ycal is the measured input signal column vector of the calibration data,

Xcal is the delay matrix formed by the rescaled calibration data output signal

xcal, and [ ]H is the complex conjugate transpose operator. See Appendix A

for a more complete solution of the Moore-Penrose pseudoinverse. Once the

post-inverse (DPD model) coefficients have been found, if adequate model or-

ders have been chosen and the desired system input signal is within the input

power, input frequency, and load impedance ranges characterized by the cali-

bration dataset, then properly predistorted signals for that particular system

can be created. It should be noted that the input power range is limited to the

maximum magnitude of the rescaled calibration output signal used to create

the delay matrix used in the Moore-Penrose pseudoinverse, but the frequency

range and load impedance range coincide with those encountered during cali-

bration data acquisition.

In summary, the DPD process utilizing the IDMP model requires a mea-

sured set of calibration data including load impedance information, user-

defined orders of non-linearity, memory, and impedance dependency, and a

desired ideal input signal and amplifier load impedance in order to create a

properly predistorted input signal for the system that will result in a linearly

amplified version of the desired ideal input signal at the system output. A

high-level flowchart of the implemented DPD process for the IDMP model is

shown in Figure 4.4, and an overview of the process for implementing DPD

using the IDMP model is listed below.
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Predistortion Process, Reprinted from Dunn et al. (2017) c⃝ 2017 IEEE

Steps for Practical Implementation of DPD Using the IDMP Model

1. Create non-constant modulus wideband calibration excitation waveform

that will encompass desired ranges of input power and operating fre-

quency.

2. Set load impedance of HPA to desired complex impedance.

3. Generate calibration waveform at arbitrary waveform generator and mea-

sure resulting non-amplified and amplified calibration data at the se-

lected HPA load impedance.

4. Repeat steps 2-3 over sufficiently dense grid of output impedances to

characterize the desired range of load impedances.

5. Find maximum magnitude of measured amplified calibration signal for

each measured load impedance case.
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6. Concatenate measured non-amplified calibration signals into a single

data vector, concatenate measured amplified calibration signals into a

single data vector, and concatenate load impedance per sample point

into a single vector so that the full calibration dataset is represented as

three vectors.

7. Examine output power versus input power relation of the calibration

dataset and select output power threshold for defining the linear region

of the amplifier.

8. Use least-squares regression to calculate the linear region gain of the

amplifier using only calibration data corresponding with the linear region

of the amplifier as determined by the selected output power threshold.

9. Find minimum value of the previously calculated maximum magnitudes

for each load impedance, convert minimum of the maximum magnitudes

to units of power, and divide by calculated linear region gain of amplifier

to obtain the maximum allowed input power level.

10. Select order of non-linearity K, order of memory M , and order of im-

pedance dependence C to use in the desired IDMP model.

11. Scale measured amplified calibration signal vector so that the maximum

magnitude matches the maximum allowed input power.

12. Use rescaled calibration data vector and the tested load impedances vec-

tor to assemble the delay matrix Xcal in accordance with Equations 4.4

through 4.9 and the selected orders of non-linearity, memory, and im-

pedance dependency.
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13. Execute Moore-Penrose pseudoinverse using the measured non-amplified

calibration signal vector and Xcal in accordance with Equation 4.10 to

assemble the IDMP model coefficient vector θIDMP .

14. Create desired excitation waveform to be used in the system (within

the input power and operating frequency ranges characterized by the

calibration dataset).

15. Determine expected HPA load impedance for the desired beamsteering

angle.

16. Rescale desired excitation waveform so that its maximum magnitude

corresponds with the maximum allowed input power.

17. Use rescaled desired waveform and the expected HPA load impedance

for the desired beamsteering angle to assemble the delay matrix X in

accordance with Equations 4.4 through 4.9 and the selected orders of

non-linearity, memory, and impedance dependency.

18. Matrix multiply delay matrix X with the IDMP model coefficient vec-

tor θIDMP in accordance with Equation 4.7 to obtain the predistorted

waveform.

19. The predistorted waveform is now ready for generation in the character-

ized system.
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4.3 Predistortion of Digitally Coded Waveforms

Tests were conducted on a representative non-constant modulus waveform

spanning the power and bandwidth of a possible radar waveform. This repre-

sentative waveform was tested on an amplifier with a varying load impedance,

where the impedance range resulted in a range of VSWR’s that could be rea-

sonably expected due to scan impedance effects in a well matched active array

radar antenna (e.g. 2:1 VSWR). Digital predistortion was executed on the

ideal input signal using the IDMP method described in Section 4.2.3, DPD

was executed on the ideal input signal using the 50 Ω matched impedance in-

dependent MP model utilized in [43], and a non-predistorted ideal input signal

was used as a control.

A testbed was constructed consisting of a Tektronix AWG7122C Arbitrary

Waveform Generator capable of generating samples at 12 GS/s and a Tek-

tronix DPO70604 Digital Phosphor Oscilloscope with a 25 GHz sampling rate.

A two-stage pre-amplifier was assembled, consisting of a Mini-Circuits ZX60-

V82-S+ wideband amplifier feeding a Spanawave SSA-26034 general purpose

amplifier. The two-stage pre-amplifier chain was assembled to ensure that an

extremely linear reproduction of the desired input signal was produced at the

necessary power level at the input to the HPA, a MACOM MAAP-010171

2-stage, 8 W saturated S-band amplifier. The HPA amplifier required pulsed

power on the drain pin during operation, and this was accomplished with the

use of a pulsed power board produced in-house. This pulsed power board can

be seen being held close to the HPA by the adjustable circuit board mount

in Figure 4.6. Both the arbitrary waveform generator and the pulsed power
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board were remotely triggered by a Stanford Research Systems DG535 Digital

Delay Generator to ensure that the amplifier was sufficiently powered when the

modulated waveforms were to be amplified. All amplifiers and equipment have

a characteristic impedance of 50 Ω. A Weinschel Engineering DS-109 double-

stub tuner was placed at the output of the HPA, and a large attenuator and

load were placed on the opposite end of the double-stub tuner. Double-stub

tuning is a common and basic method of impedance matching circuits [91],

but in this case the double-stub tuner allows the amplifier’s load impedance

mismatch to be carefully and specifically set through a calibration with S11

measurements on a network analyzer. Two directional couplers were placed

in the system chain, with one preceding the first pre-amplifier, and the sec-

ond in-line between the HPA output and the double-stub tuner input. These

two directional couplers give the measured input signal and the measured am-

plified output signal. A directional coupler ensures that the amplified signal

being captured is due primarily to the amplifier’s output characteristics and

not an unweighted combination of the amplified and reflected signals due to

the double-stub tuner’s impedance mismatch. A high-level flowchart of the ex-

perimental test setup used is shown in Figure 4.5 and a photograph is shown

in Figure 4.6.
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Generator
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Delay 
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Figure 4.5: Flowchart of Experimental Testbed Utilized, Reprinted from Dunn
et al. (2017) c⃝ 2017 IEEE

168



Figure 4.6: Photograph of Experimental Testbed Utilized, Reprinted from
Dunn et al. (2017) c⃝ 2017 IEEE

A waveform generator sample generation frequency of 12 GHz was selected

along with a digital oscilloscope sampling rate of 25 GHz. Additionally, an

“Analyze” frequency of 1.0 GHz was selected for the actual processing and

calculations of the measured and predistorted waveforms in order to help min-

imize required computational resources by reducing the needed number of com-

puted points for a given pulse length. Another parameter, an integer referred

to as the delay-multiple, was used in processing to help minimize required com-

putational resources by spacing the delayed samples to be used as the delayed

memory terms in the IDMP model. Representing the delay-multiple with d,

this is equivalent to replacing m and M in Equations 4.4 through 4.8 with dm

and dM , respectively. The delay-multiple allows a wide range of frequency

characteristics within the complex baseband to be modeled using a smaller
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number of delay terms than would be necessary if every sample between the

zero-delay term and the maximum time-delayed term were also used. A 40

MHz waveform was randomly generated using the method described in Sec-

tion 4.2.3, and a center frequency of 2.7 GHz was selected. An IDMP model

was assigned a delay-multiple of 7, along with an order of non-linearity of 9,

an order of memory of 5, and an order of impedance dependency of 3. The

impedance independent MP model was assigned the same parameters (with

the exception of the order of impedance dependency).

A calibration dataset was compiled utilizing the method described in Sec-

tion 4.2.3. The 40 MHz randomly generated waveform was measured in the

system with the double-stub tuner pre-set to a variety of impedances, and

the calibration dataset was compiled by concatenating the waveform mea-

surements from each of the different impedance settings. The impedances

were chosen so that, in addition to the 50 Ω matched case giving a VSWR

of 1:1, VSWRs of 1.25:1, 1.5:1, and 2.0:1 would result at phase angles of qπ
8

for q = 0 to 15. Two exceptions to this pattern occurred at the points corre-

sponding with VSWR = 2:1 and phase angles π
4
and 3π

8
where the double-stub

tuner was unable to create the desired impedance. As a result, the impedances

resulting in VSWRs of 1.75:1 and 1.7:1 were used at phase angles π
4
and 3π

8

respectively. The test waveform was measured at twelve random impedances

of roughly equal distribution within the 2:1 VSWR circle on the Smith chart.

Four of the evaluation impedances were randomly chosen to coincide with

impedances used in assembling the calibration dataset, and eight of the evalu-

ation impedances did not coincide with the calibration points. A depiction of

the impedances used in assembling the calibration dataset and the evaluation
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dataset is shown in Figure 4.7. A depiction of the impedance-based effects

on the maximum 5% of magnitudes for each impedance measurement point in

the calibration dataset can be seen in Figure 4.1. Note that the magnitudes

roughly trend as an inclined plane with an overlayed parabolic-like effect across

the measured region. The impedance independent MP model was calculated

using only the calibration data acquired when the double-stub tuner was set

to 50 Ω.
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Figure 4.7: Calibration Dataset and Evaluation Dataset Impedance Test
Points, Reprinted from Dunn et al. (2017) c⃝ 2017 IEEE

The resulting power spectral densities from the measured waveforms can

be seen in Figure 4.8. Both the IDMP DPD method and the 50 Ω MP method

result in very similar reductions in spectral spreading, with the MP method
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giving 8.2 dB of suppression and the IDMP method giving 8.5 dB of sup-

pression. Both methods still result in waveforms with spectral spreading that

is approximately 3.5 dB greater than the ideal (non-amplified) waveform’s

power spectral level outside the waveform’s intended bandwidth. The real im-

provement of the IDMP method over the MP method can be easily seen in

the output power versus input power graph shown in Figure 4.9. It is eas-

ily seen that the 50 Ω matched MP model still provides a drastically more

linear output than results from the non-predistorted output, but the IDMP

DPD model provides a significantly more linear output than that resulting

from the impedance independent MP model (see more details in the following

paragraph). It should be noted that when comparing the relative linearity of

the output power versus input power relation resulting from the IDMP DPD

model outputs does not appear as “tightly” linear as previous impedance inde-

pendent MP DPD model outputs in a system with stationary load impedance,

such as in [43], [77], [78]. This slightly divergent behavior is to be expected

as the IDMP model incorporates an extra dimension of dependency, thus at-

tributing to greater compounding errors overall throughout the measurement

process. This compounding error could be theoretically combated by assem-

bling a much greater calibration dataset for a given model size so that random

errors would destructively interfere when solving for the model coefficients,

but the additional time and processing requirements needed to acquire and

utilize a significantly larger dataset in exchange for a minor increase in model

performance was deemed an inefficient use of time and resources for the pur-

poses of this chapter.

The improvement of the IDMP DPD model over the MP DPD model
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is reinforced by examining the calculated error for the non-predistorted, the

MP DPD model, and the IDMP DPD model outputs as seen in Figure 4.10.

The calculated voltage error per point for the non-predistorted, the MP DPD

model, and the IDMP DPD model was also calculated for the measurement

samples over various thresholds of the normalized input power. These voltage

error per point calculations demonstrate that the IDMP DPD model provides

notable improvement over the MP DPD model, and the IDMP DPD model’s

output demonstrates increasingly better accuracy performance over the MP

model as the average input magnitude of the calculated samples is increased.

These voltage errors per calculated power level threshold for the three different

measured cases are shown in Figure 4.11. Therefore it is seen that the IDMP

DPD model is capable in practice of successfully linearizing the wideband out-
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Figure 4.9: Output Power Versus Input Power of Measured Non-Predistorted,
Predistorted, and Ideal Waveforms, Reprinted from Dunn et al. (2017) c⃝
2017 IEEE

put of a HPA with varying load impedance, providing much more satisfactory

results than those generated using previous load impedance independent DPD

methods.

4.4 Conclusion

In conclusion, the newly introduced impedance dependent memory polynomial

model has been developed and demonstrated as a feasible method of digitally

predistorting wideband waveforms in a high power amplifier experiencing load

impedance mismatches that would be typical of beamsteering-induced scan

impedance effects experienced in an active phased array architecture. While

the IDMP DPD model and the MP DPD model result in similar suppression
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of spectral spreading, it can be easily seen that the output power versus in-

put power relation of the system utilizing IDMP is significantly more linear

than that produced by the impedance independent method presented previ-

ously. Reduced resultant mean error per sample point is verified in the imple-

mented IDMP DPD model versus the implemented MP DPD model. Versus

non-predistorted systems, the IDMP DPD model stands to provide greatly

improved transmission characteristics through reduced spectral spreading and

consistent amplified linear behavior while still operating at maximum power

added efficiency when implemented in modern and emerging active phased ar-

ray radar systems. Possible future extensions of this research involve testing
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the presented IDMP model on larger arrays, testing the IDMP DPD model

over wider ranges of VSWR, quantifying the effects of IDMP DPD on common

radar waveform ambiguity functions, comparing and contrasting the IDMP

DPD method versus phased array applicable adaptive DPD methods common

in communication systems, and mapping the intended transmit beamsteering

angle to the amplifier load impedance on an element by element basis for finite

phased array antennas.
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Chapter 5

Conclusion

Overall, this dissertation has served to help provide some necessary framework

for next-generation radar systems so that they can maximize their potential

impact by providing high fidelity scientific data while operating within strict

operational and budgetary guidelines. Chapter 2 demonstrated the necessity

of maintaining a high degree of orthogonality in order to successfully recover

quality scientific information within a simultaneous transmit and simultane-

ous receive operational mode. This began with a generalized matrix-based

mathematical expansion of the expected received complex baseband wave-

forms for a dual-polarimetric radar system in Section 2.2. A brief background

on cross-correlation and pulse compression was provided in Section 2.3 before

explaining the application of pseudo-orthogonality in waveform sets in Section

2.4 and computing an example case in Section 2.5. While common pulse com-

pression waveforms were analyzed for their suitability as pseudo-orthogonal

waveforms in Section 2.6, Section 2.7 presented a unique method for designing

specific pseudo-orthogonal waveforms sets utilizing particle swarm optimiza-

tion. It was demonstrated that particle swarm optimization could be utilized

to create polyphase coded pseudo-orthogonal waveform sets of arbitrary size,

as well as a pseudo-orthogonal waveform set consisting of a pair of non-linear
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frequency modulated waveforms utilizing a novel parameterization method.

Chapter 2 maintained a focus on the importance of maintaining orthogonality,

and Section 2.8 provided analysis on pulse compression characteristics in a few

common pseudo-orthogonal waveform sets as a function of both polarization

orthogonality degradation and of waveform coding orthogonality degradation.

Chapter 2 was ended with Section 2.9 providing the mathematical transfor-

mations necessary to convert from any orthonormal polarization basis to any

other orthonormal polarization basis, which helps to broaden the potential

utility of any radar system utilizing independent arbitrary waveform genera-

tors in orthogonal polarizations.

Chapter 3 presented a method for digitally predistorting a desired wide-

band waveform for solid-state high power radar amplifiers utilizing the memory

polynomial model. Digital predistortion allows a radar system to maximize its

implemented utility by forcing the physically transmitted waveform to match

the ideal transmitted waveform while still operating at the high power am-

plifier’s maximum power added efficiency. A conceptual approach to both

narrowband and wideband predistortion was provided prior to a presentation

of the math background and utilization of the memory polynomial model in

Section 3.2. A weighting approach for enhancing the numerical stability of the

memory polynomial approach was also provided in Section 3.2.3. Additionally,

a novel Bayesian approach for digital predistortion of slowly changing systems

and supporting simulated results was also provided in Section 3.2.4. Simu-

lated and measured results verifying the success of the memory polynomial

digital predistortion approach for both a P4 polyphase coded waveform and

a non-constant modulus instantaneously wideband waveform were provided
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in Section 3.3. As a whole, Chapter 3 serves to provide the necessary back-

ground and processes necessary to successfully digitally predistort wideband

waveforms for use in a radar system with a high power amplifier and digital

waveform creation at each channel.

Chapter 4 expanded upon the wideband digital predistortion method pro-

vided in Chapter 3 by also taking into account amplifier non-linear effects due

to changing amplifier load impedances that would likely be experienced due to

scan impedances in an active phased array architecture. A brief background

on mutual coupling and scan impedance characteristics of active phased array

architectures was provided in Section 4.2.1 before a conceptual approach to

impedance dependent wideband predistortion was provided in Section 4.2.2.

The expansion of the memory polynomial model into the novel impedance de-

pendent memory polynomial model, as well as the mathematical techniques

needed for solving and implementing the model, was provided in Section 4.2.3.

Measured results verifying the success of the impedance dependent memory

polynomial digital predistortion approach were provided in Section 4.3. As a

whole, Chapter 4 serves to provide the background and novel processes neces-

sary to successfully digitally predistort wideband waveforms for use in radar

systems utilizing electronic beamsteering in active phased array architectures

where varying load impedances will be experienced by the high power ampli-

fiers at each channel.

Altogether, this dissertation’s aim is to help provide some of the neces-

sary framework for next-generation radar systems so that they can maximize

their potential impact by providing high fidelity scientific data while operating
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within strict operational and budgetary guidelines. Mathematical analysis of

expected radar operational modes and unique processes for helping analyze,

design, and intelligently modify potential wideband waveform sets were pro-

vided to this end. While this research should be very helpful in the design and

implementation of next-generation radar systems in its own right, future work

always remains. Possible future extensions of the presented research include:

• Expanding the particle swarm optimization waveform design method

to design and compare varying waveform types for a given set of system

parameters before returning an optimal pseudo-orthogonal waveform set.

• Expanding the analysis of pulse compression characteristics as a function

of orthogonality degradation to address non-uniform extended targets,

such as those that may be encountered in synthetic aperture radar op-

eration.

• Modifying the memory polynomial digital predistortion model presented

in Chapter 3 and the impedance dependent memory polynomial digital

predistortion model presented in Chapter 4 to address non-linear ampli-

fier effects as a function of temperature.

• Changing the impedance dependent memory polynomial model’s maxi-

mum allowed power from a single value to a function of load impedance,

effectively trading uniform linearly amplified waveform outputs across

beamsteering angles in exchange for the maximum linearly amplified

waveform output at each beamsteering angle.

• Developing a method for mapping the intended beamsteering angles to

the experienced load impedances at each antenna element for infinite

and finite active phased array antennas.
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• Testing the memory polynomial and impedance dependent memory poly-

nomial digital predistortion methods implemented on larger active phased

array radar systems and quantifying the results.

• Testing the impedance dependent memory polynomial model over an

increased range of VSWR.
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Appendix A

Moore-Penrose Pseudoinverse as Least-Squares Solution

It is commonly known that the Moore-Penrose Pseudoinverse is the least-

squares (or minimum Euclidean norm) solution to a system of linear equations.

This section aims to explain this commonly accepted truth. The system of

linear equations can be represented as

y = XA (A.1)

and using this notation, the classic Moore-Penrose Pseudoinverse is defined as

A =
(
XHX

)-1
XHy (A.2)

where y is a [N × 1] matrix, X is a [N ×C] matrix, and A is a [C× 1] matrix.

For the common case of y as the output vector of a system model, X as the

expanded input values matrix, and A as the vector containing the coefficients

of the model, the least-squares difference between the predicted model values

and the measured values is shown as

min
A

∥y −XA∥2 (A.3)

The Euclidean norm can be expanded as
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∥y −XA∥ 2 =
√
(y −XA)H(y −XA)

2
=

= yHy − yHXA−AH XHy +AHXHXA (A.4)

where [ ]H represents the complex conjugate transpose operator.

The least-square difference is desired, so the derivative of Equation A.4

with respect to the vector A is needed. Assuming the denominator layout

matrix convention, remember the following properties

d
dA

CA = CH and d
dA

AHC = C (A.5)

where C is not a function of A and [ ]H represents the complex-conjugate

transpose operator.

Using the properties expressed in Equation A.5, the least-squares solution

can be found by setting the derivative of Equation A.4 with respect to vector

A equal to zero. This is shown below.

d

dA

[
yHy − yHXA−AH XHy +AHXHXA

]
= 0 =

= 0−XHy −XHy +
[
XHXA+XHXA

]
= −2XHy + 2XHXA (A.6)

Rearranging the result from Equation A.6, the matrix A giving the least-

squares solution can be shown as

192



2XHXA = 2XHy

⇒ XHXA = XHy

⇒ A =
(
XHX

)-1
XHy (A.7)

where [ ]-1 represents the inverse of a matrix. Note that the result of Equation

A.7 exactly matches the definition of the Moore-Penrose Pseudoinverse as

shown in Equation A.2. Therefore, the Moore-Penrose Pseudoinverse has been

demonstrated to give the least-squares solution to a system of linear equations.
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Appendix B

Matlab Code for Digital Predistortion

B.1 Digital Predistortion Utilizing Memory Polynomial

Model

Due to the excessive length of the generalized digital predistortion Matlab

code, a pseudo-code consisting of explanations and selected highlights of the

code utilized are given in this section instead.

The implemented digital predistortion process is began by acquiring a set

of calibration data as described in Section 3.2.2. The column vectors con-

taining the measured non-amplified signal and the measured amplified signal,

which have been time aligned with each other and resampled to the arbitrary

waveform generator’s sampling rate, are given by the variables “siginresam”

and “sigoutresam” respectively. The maximum allowed input power “PLimIn”

is then found using the following code:

% Find gain of linear region of amplifier, using measured data

% upper threshold for determining the linear region

% of the measured amplifier
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LinGainCutoffH = 0.5;

% lower threshold for determining the linear region

% of the measured amplifier

LinGainCutoffL = 0.1;

GainInd = (((abs(sigoutresam).^2)<...

(LinGainCutoffH*max(abs(sigoutresam).^2)))&...

((abs(sigoutresam).^2)>...

(LinGainCutoffL*max(abs(sigoutresam).^2))));

% Max Power Input to Amp (W)

PMaxIn = (max(abs(siginresam)).^2)/(2*Z0);

% Max Power Output of Amp (W);

PMaxOut = (max(abs(sigoutresam)).^2)/(2*Z0);

% Find LMS regression solution for linear region

% w/ forced 0 intercept

Glin = ((abs(siginresam(GainInd).^2)/(2*Z0)))\...

(abs(sigoutresam(GainInd).^2)/(2*Z0));

% Calculate Limit for Power in to not exceed

% training data range

PLimScaleDown = 1.0;

PLimIn = PLimScaleDown*(PMaxOut)/Glin; % Max Power in (W)

The amplifier model coefficient vector θMP and the amplifier digital pre-

distortion coefficient vector θPD can then be calculated (represented by “Am-

pCoeffs” and “PDCoeffs”, respectively) according to Equations 3.6 and 3.7,
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respectively. Note that calculation of the model coefficient vectors requires

consistent assembly of the delay matrix, therefore the separate Matlab func-

tion “MPDelayMatrixGenerator” was created to ensure consistent assembly

of the memory polynomial delay matrix. The Matlab function “MPDelayMa-

trixGenerator” is given in its entirety in Section B.2. The code that solves for

the model coefficients is given below:

% Find Amplifier and DPD Model Coefficients

CaliSignal = siginresam;

CaliOutputSignal = sigoutresam;

AmpMaxNormMag = max(abs(CaliSignal));

AmpCalDelayMatrix = ...

DelayMatrixGenerator02(CaliSignal,K,M,...

AmpMaxNormMag,DelayMultiple);

AmpCoeffs = ...

((AmpCalDelayMatrix’)*AmpCalDelayMatrix)\...

((AmpCalDelayMatrix’)*CaliOutputSignal(...

(DelayMultiple*(M-1)+1):end));

PDMaxNormMag = ...

sqrt(PLimIn/PMaxOut)*max(abs(CaliOutputSignal));

PDCalDelayMatrix = ...

DelayMatrixGenerator02(sqrt(PLimIn/PMaxOut)*...

CaliOutputSignal,KPD,MPD,PDMaxNormMag,DelayMultiple);

PDCoeffs = ...
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((PDCalDelayMatrix’)*PDCalDelayMatrix)\...

((PDCalDelayMatrix’)*CaliSignal(...

(DelayMultiple*(MPD-1)+1):end));

Once the digital predistortion coefficient vector has been found, the digi-

tally predistorted version of the ideal input waveform can be created. Given an

ideal input waveform “FSSigInFreqAnalyze” that has a maximum magnitude

less than or equal to the maximum magnitude of “siginresam”, a correctly

digitally predistorted input waveform “FSPDSigInFreqAnalyze” is created by

the code below:

PDDelayMatrix = ...

DelayMatrixGenerator02(sqrt(PLimIn/PMaxIn)*...

FSSigInFreqAnalyze,KPD,MPD,...

PDMaxNormMag,DelayMultiple);

FSPDSigInFreqAnalyze = (PDDelayMatrix*PDCoeffs);

Following resampling to the waveform generator’s sampling rate and mixing

from complex baseband to the carrier frequency, the predistorted waveform is

ready for generation by the arbitrary waveform generator.

B.2 Memory Polynomial Delay Matrix Formation

Function

The function “MPDelayMatrixGenerator” returns the memory polynomial de-

lay matrix as seen in Equation 3.4. The variable “tempInput” is a column

vector of the complex signal from which the delay matrix is to be formed.

The variables “tempK” and “tempM” are the chosen orders of non-linearity
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and memory, respectively. The variable “MaxNormMag” is the selected max-

imum magnitude of the input signal, as seen in Equation 3.9. The variable

“DelayMultiple” is the delay-multiple, as described in Section 4.3. While the

variables “MaxNormMag” and “DelayMultiple” are optional, all other input

variables are required for delay matrix formation.

function [DelayMatrix] = MPDelayMatrixGenerator(tempInput,tempK,tempM,...

MaxNormMag,DelayMultiple)

% If MaxNormMag value not given, assume unweighted calculation

if nargin == 3

MaxNormMag = 1;

DelayMultiple = 1;

elseif nargin == 4

DelayMultiple = 1;

elseif nargin ~= 5

error(’Incorrect Input Values for Delay Matrix Generation’);

end

tempDelayMatrix = ...

zeros(length(tempInput((DelayMultiple*(tempM-1)+1):end)),...

tempK*tempM);

for ctK = 0:(tempK-1)

for ctM = 0:(tempM-1)

MDelay = ctM*DelayMultiple;

MIndStart = DelayMultiple*(tempM-1) + 1;
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tempDelayMatrix(:,ctK*tempM+ctM+1) = ...

(tempInput((MIndStart-MDelay):(end-MDelay))...

.*abs(tempInput((MIndStart-MDelay):(end-MDelay))).^ctK)...

./(MaxNormMag^(ctK+1));

end

end

DelayMatrix = tempDelayMatrix;

end

B.3 Digital Predistortion Utilizing Impedance

Dependent Memory Polynomial Model

Due to the excessive length of the generalized impedance dependent digital

predistortion Matlab code, a pseudo-code consisting of explanations and se-

lected highlights of the code utilized are given in this section instead.

The implemented digital predistortion process is began by acquiring a set

of calibration data as described in Section 4.2.3. The calibration data con-

sists of a pair of column vectors from each tested load impedance, where each

pair contains the measured non-amplified signal and the measured amplified

signal which have been time aligned with each other, resampled to the ar-

bitrary waveform generator’s sampling rate, and converted to complex base-

band. In each measured load impedance dataset, the signals resulting from the

non-amplified and the amplified measurements are “CaliNonAmpedFreqSam-

CBB” and “CaliAmpedFreqSamCBB”, respectively. The impedance depen-

dent memory polynomial model uses the concatenation of all the measured
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load impedance cases to form the three vectors comprising the calibration

dataset. These three vectors are the non-amplified complex baseband mea-

sured signal resampled to the waveform generator’s sampling rate, the ampli-

fied complex baseband measured signal resampled to the waveform generator’s

sampling rate, and the vector containing the amplifier load impedance corre-

sponding with the instantaneous load impedance at each sample, represented

by “siginresamCon”, “sigoutresamCon”, and “sigZ0Con”, respectively. The

Matlab code used for assembly of the calibration dataset, given the cell array

“ImportFiles” containing the file names of all the measured load impedance

cases, is shown below:

%%

tempIndOffset_1 = ones(1,length(ImportFiles));

siginresamCell = [];

sigoutresamCell = [];

sigZ0 = [];

for ctLoad = 1:length(ImportFiles)

tempName = ImportFiles{ctLoad};

tempImportData = load(tempName);

CaliNonAmpedFreqSamCBB = tempImportData.CaliNonAmpedFreqSamCBB;

CaliAmpedFreqSamCBB = tempImportData.CaliAmpedFreqSamCBB;

tempZ0 = tempImportData.Z0;

if ctLoad == 1

200



CaliSignalExportCBB = tempImportData.CaliSignalExportCBB;

end

tempCorr = xcorr(CaliNonAmpedFreqSamCBB,CaliSignalExportCBB);

tempIndOffset = ...

fix(length(tempCorr)/2 - find(abs(tempCorr)==...

max(abs(tempCorr))));

tempInd = (1:length(CaliSignalExportCBB))-tempIndOffset;

siginresamCell{ctLoad} = ...

CaliNonAmpedFreqSamCBB(tempInd-tempIndOffset_1(ctLoad));

sigoutresamCell{ctLoad} = ...

CaliAmpedFreqSamCBB(tempInd-tempIndOffset_1(ctLoad));

sigZ0Cell{ctLoad} = tempZ0*ones(1,length(tempInd));

clear CaliNonAmpedFreqSamCBB CaliAmpedFreqSamCBB

clear tempImportData tempZ0

end

%%

% Initialize concatenated calibration data vectors

siginresamCon = [];

sigoutresamCon = [];

sigZ0Con = [];
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for ctC = 1:length(siginresamCell)

siginresamCon = [siginresamCon siginresamCell{ctC}];

sigoutresamCon = [sigoutresamCon sigoutresamCell{ctC}];

sigZ0Con = [sigZ0Con sigZ0Cell{ctC}];

end

Once the impedance dependent calibration dataset is formed, the maxi-

mum allowed input power “PLimIn” is then found using the following code:

% set calibration scaled, resampled signals

siginresam = siginresamCon;

sigoutresam = sigoutresamCon;

siginresam = siginresam(:);

sigoutresam = sigoutresam(:);

% Find gain of linear region of amplifier, using measured data

% upper threshold for determining the linear region

% of the measured amplifier

LinGainCutoffH = 0.5;

% lower threshold for determining the linear region

% of the measured amplifier

LinGainCutoffL = 0.1;

GainInd = ...

(((abs(sigoutresam).^2)<...

(LinGainCutoffH*max(abs(sigoutresam).^2)))&...

((abs(sigoutresam).^2)>...
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(LinGainCutoffL*max(abs(sigoutresam).^2))));

% Rescale to not exceed lowest max magnitude

% for load impedance/frequency combination

PMaxOutInputScaledown = 0.925;

% Find PMaxIn and PMaxOut for lowest case based on Z0

PMaxIn = [];

PMaxOut = [];

tmpPMaxInBest = max(abs(siginresam)).^2/(2*Z0_orig);

tmpPMaxOutBest = max(abs(sigoutresam)).^2/(2*Z0_orig);

for ctF = 1:length(sigZ0unique)

tmpPMaxIn = ...

(max(abs(siginresam(sigZ0Con==sigZ0unique(ctF))))...

.^2)/(2*Z0_orig); % Max Power Input to Amp (W)

tmpPMaxOut = ...

(max(abs(sigoutresam(sigZ0Con==sigZ0unique(ctF))))...

.^2)/(2*Z0_orig); % Max Power Output of Amp (W)

if tmpPMaxIn < tmpPMaxInBest

tmpPMaxInBest = tmpPMaxIn;

end

if tmpPMaxOut < tmpPMaxOutBest

tmpPMaxOutBest = tmpPMaxOut;

end

end
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PMaxIn = tmpPMaxInBest;

PMaxOut = PMaxOutInputScaledown*tmpPMaxOutBest;

% Find LMS regression solution for linear region

% w/ forced 0 intercept

Glin = ...

((abs(siginresam(GainInd).^2)/(2*Z0_orig)))\...

(abs(sigoutresam(GainInd).^2)/(2*Z0_orig));

% Calculate Limit for Power in to not exceed training data range

PLimScaleDown = 1.0;

PLimIn = PLimScaleDown*(PMaxOut)/Glin; % Max Power in (W)

The amplifier digital predistortion coefficient vector θIDMP , represented

by “PDCoeffs”, can then be calculated according to Equation 4.10. Note that

calculation of the model coefficient vectors requires consistent assembly of the

delay matrix, therefore the separate Matlab function “IDMPDelayMatrixGen-

erator” was created to ensure consistent assembly of the memory polynomial

delay matrix. The Matlab function “IDMPDelayMatrixGenerator” is given in

its entirety in Section B.4. The code that solves for the digital predistortion

model coefficients is given below:

% Find Amplifier Model Coefficients (at FreqAnalyze)

% Resample to FreqAnalyze

temp_tSam = (0:1:(length(siginresam)-1))*(1/FreqSam).’;

temp_tAnalyze = (0:(1/FreqAnalyze):max(temp_tSam)).’;

CaliSignal = ...
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interp1(temp_tSam,real(siginresam),temp_tAnalyze) +...

1i*interp1(temp_tSam,imag(siginresam),temp_tAnalyze);

CaliOutputSignal = ...

interp1(temp_tSam,real(sigoutresam),temp_tAnalyze) +...

1i*interp1(temp_tSam,imag(sigoutresam),temp_tAnalyze);

sigZ0FreqAnalyze = ...

interp1(temp_tSam,real(sigZ0Con),temp_tAnalyze) +...

1i*interp1(temp_tSam,imag(sigZ0Con),temp_tAnalyze);

% Convert load impedance to reflection coefficient

GammaFreqAnalyze = ...

(sigZ0FreqAnalyze - Z0_orig*ones(size(sigZ0FreqAnalyze)))...

./(sigZ0FreqAnalyze + Z0_orig*ones(size(sigZ0FreqAnalyze)));

% Assemble maximum gamma for calibration dataset

PDMaxGamma_r = AmpMaxGamma_r;

PDMaxGamma_i = AmpMaxGamma_i;

PDMaxGamma = PDMaxGamma_r + 1i*PDMaxGamma_i;

sigZ0unique = unique(sigZ0Con.’,’rows’,’stable’);

PDMaxNormZ = max(abs(sigZ0unique));

PDMaxNormMag = sqrt(PLimIn/PMaxOut)*max(abs(CaliOutputSignal));

PDCalDelayMatrix = ...

IDMPDelayMatrixGenerator(sqrt(PLimIn/PMaxOut)*...

CaliOutputSignal,GammaFreqAnalyze,ZPD,KPD,MPD,...

PDMaxNormMag,PDMaxGamma,DelayMultiple);
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PDCoeffs = [];

PDCoeffs = ...

((PDCalDelayMatrix’)*PDCalDelayMatrix)\...

((PDCalDelayMatrix’)*CaliSignal(...

(DelayMultiple*(MPD-1)+1):end));

clear PDCalDelayMatrix

Once the digital predistortion coefficient vector has been found, the digi-

tally predistorted version of the ideal input waveform can be created. Given an

amplifier load impedance associated with the desired array beamsteering an-

gle and an ideal input waveform “FSSigInFreqAnalyze” that has a maximum

magnitude less than or equal to the magnitude corresponding with “PMaxIn”,

a correctly digitally predistorted input waveform “FSPDSigInFreqAnalyze” is

created by the code below. The variable “FSPDSigInFreqAnalyze” is then re-

sampled to the arbitrary waveform generator’s sampling rate and mixed from

complex baseband to the carrier frequency in variable “txPDrpreRef”, which

is ready for generation by the arbitrary waveform generator:

InputScaledown = 1.0;

PDScaledInputSignal = sqrt(PLimIn/PMaxIn)*FSSigInFreqAnalyze;

PDDelayMatrix = ...

IDMPDelayMatrixGenerator(...

PDScaledInputSignal,...

((Z0-Z0_orig)/(Z0+Z0_orig))*...

ones(size(PDScaledInputSignal)),...

ZPD,KPD,MPD,PDMaxNormMag,...

PDMaxGamma,DelayMultiple);
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FSPDSigInFreqAnalyze = (PDDelayMatrix*PDCoeffs);

% Convert from FreqAnalyze to FreqSam while at CBB

tFreqAnalyze = ...

0:(1/FreqAnalyze):...

((length(FSPDSigInFreqAnalyze)-1)/FreqAnalyze);

tFreqSam = ...

min(tFreqAnalyze):(1/FreqSam):max(tFreqAnalyze);

FSPDSigIn = ...

interp1(tFreqAnalyze(:),...

real(FSPDSigInFreqAnalyze(:)),...

tFreqSam(:)) + ...

1i*interp1(tFreqAnalyze(:),...

imag(FSPDSigInFreqAnalyze(:)),tFreqSam(:));

tPD = (0:(1/FreqSam):((length(FSPDSigIn)-1)/FreqSam)).’;

txPDrpreRef = real(FSPDSigIn.*exp(1i*2*pi*FreqCarrier*tPD));

B.4 Impedance Dependent Memory Polynomial Delay

Matrix Formation Function

The function “IDMPDelayMatrixGenerator” returns the impedance depen-

dent memory polynomial delay matrix as seen in Equation 4.7. The vari-

able “tempInput” is a column vector of the complex signal from which the

delay matrix is to be formed, and the variable “tempInputGamma” is a col-

umn vector of the complex reflection coefficient due to the load impedance
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experienced by the amplifier at each sample point. The variables “tempZ”,

“tempK”, and “tempM” are the chosen orders of impedance dependency, non-

linearity, and memory, respectively. The variable “MaxNormMag” is the se-

lected maximum magnitude of the input signal, as seen in Equation 4.9. The

variable “MaxGamma” is the selected maximum complex reflection coefficient

Γmax as discussed in Section 4.2.3. The variable “DelayMultiple” is the delay-

multiple, as described in Section 4.3. While the variables “MaxNormMag”,

“MaxGamma”, and “DelayMultiple” are optional, all other input variables are

required for delay matrix formation.

function [DelayMatrix] = IDMPDelayMatrixGenerator(...

tempInput,tempInputGamma,tempZ,tempK,tempM,MaxNormMag,...

MaxGamma,DelayMultiple)

% If MaxNormMag value not given, assume unweighted calculation

if nargin == 5

MaxNormMag = 1;

MaxGamma = 1;

DelayMultiple = 1;

elseif nargin == 6

MaxGamma = 1;

DelayMultiple = 1;

elseif nargin == 7

DelayMultiple = 1;

elseif nargin ~= 8

error(’Incorrect Input Values for Delay Matrix Generation’);
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end

tempDelayMatrix = ...

zeros(length(tempInput((DelayMultiple*(tempM-1)+1):end)),...

2*tempZ^2*tempK*tempM)*NaN;

for ctGR = 0:(tempZ-1)

for ctGI = 0:(tempZ-1)

for ctK = 0:(tempK-1)

for ctM = 0:(tempM-1)

MDelay = ctM*DelayMultiple;

MIndStart = DelayMultiple*(tempM-1) + 1;

% Complex Reflection Coefficient parameterization

if ctGR == 0

tempGR = 1;

else

tempGR = ...

real(tempInputGamma(...

(MIndStart-MDelay):(end-MDelay)))...

.*(abs(real(tempInputGamma(...

(MIndStart-MDelay):(end-MDelay))))...

.^(ctGR-1));

end

if ctGI == 0

tempGI = 1;

else
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tempGI = ...

imag(tempInputGamma(...

(MIndStart-MDelay):(end-MDelay)))...

.*(abs(imag(tempInputGamma(...

(MIndStart-MDelay):(end-MDelay))))...

.^(ctGI-1));

end

tempDelayMatrix(:,...

ctGR*tempZ*tempK*tempM+...

ctGI*tempK*tempM+ctK*tempM+ctM+1) = ...

((tempInput(...

(MIndStart-MDelay):(end-MDelay)))...

.*abs(tempInput(...

(MIndStart-MDelay):(end-MDelay)))...

.^ctK).*(tempGR.*tempGI)...

./(MaxNormMag^(ctK+1)...

*MaxGamma^(ctGR+ctGI)); % Real Component

tempDelayMatrix(:,...

tempZ^2*tempK*tempM + ...

ctGR*tempZ*tempK*tempM+...

ctGI*tempK*tempM+ctK*tempM+ctM+1) = ...

((tempInput(...

(MIndStart-MDelay):(end-MDelay)))...

.*abs(tempInput(...

(MIndStart-MDelay):(end-MDelay)))...
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.^ctK).*(1i*tempGR.*tempGI)...

./(MaxNormMag^(ctK+1)...

*MaxGamma^(ctGR+ctGI)); % Imag Component

end

end

end

end

DelayMatrix = tempDelayMatrix;

end
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