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Abstract 

Agroecosystem, or agricultural ecosystems, is the important anthropogenic 

ecosystem to meet the human demand for food, fiber, and feed, and it covers 

approximately 40-50% of the earth’s land surface. Accurate estimates of agricultural land 

use and land cover and Gross Primary Production (GPP) are indispensable for global food 

security and understanding variations in the terrestrial carbon budgets. This dissertation 

aimed to strengthen the capacities of remote sensing to produce the high-quality products 

of crop type maps and primary productivity on large regional scales.  

In chapter 2, we designed simple algorithms to identify paddy rice of two different 

phenological phases (flooding/transplanting and ripening) at regional scales using 30-m 

multi-temporal Landsat images. Sixteen Landsat images from 2010 - 2012 were used to 

generate the paddy rice map in the Sanjiang Plain, northeast China - one of the intensive 

paddy rice cultivation regions in Northern Asia. The user and producer accuracies of 

paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, 

respectively, and was an improvement over the paddy rice dataset derived through visual 

interpretation and digitalization on the fine-resolution satellite images and traditional 

agricultural census data. 

Chapter 3 evaluated the capacities of the temporal MODIS vegetation indices and 

the satellite-based Vegetation Photosynthesis Model (VPM) to describe phenology and 

model the seasonal dynamics of GPP for savanna woodlands in Southern Africa on the 

site level. The results showed that the VPM-based GPP estimates tracked the seasonal 

dynamics and interannual variation of GPP estimated from eddy covariance 

measurements at flux tower sites. This study suggests that the VPM is a valuable tool for 
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estimating GPP of semi-arid and semi-humid savanna woodland ecosystems in Southern 

Africa. 

Chapter 4 assessed the accuracies of air temperature and downward shortwave 

radiation of the North America Regional Reanalysis (NARR) by the National Centers for 

Environmental Prediction (NCEP), and evaluated impacts of the accuracies of regional 

climate inputs on the VPM-based GPP estimates for U.S. Midwest cropland. The results 

implied that the bias of NARR downward shortwave radiation introduced significant 

uncertainties into the VPM-based GPP estimates, suggesting that more accurate surface 

radiation datasets are needed to estimate primary production of terrestrial ecosystems at 

regional and global scales. 

 Chapter 5 presented independent and complementary analyses of the impact of 

2012 flash drought on productivity in the U.S. Midwest using multiple sources of 

evidences, i.e., in-situ AmeriFlux CO2 data, satellite observations of vegetation indices 

and solar-induced chlorophyll fluorescence (SIF), and scaled ecosystem modeling. The 

results showed that phenological activities of all biomes advanced 1-2 weeks earlier in 

2012 compared to other years of 2010-2014, and the drought threatened the U.S. Midwest 

agroecosystems. The growth of grassland/prairie and cropland was suppressed from June 

and it didn’t recover until the end of the growing season. As the frequency and severity 

of droughts have been predicted to increase in future, this study provides better insights 

into the impacts of flash droughts on vegetation productivity and carbon cycling of major 

biomes in the U.S. Midwest. 
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Chapter 1: Introduction 

1.1 Research background  

Agroecosystem, or agricultural ecosystems, is the important anthropogenic 

ecosystem to meet the human demand for food, fiber, and feed, and it covers 

approximately 40-50% of the earth’s land surface (Fuhrer 2003). Meanwhile, it is a major 

driver of global environment change through altering land cover pattern and modifying 

terrestrial ecosystem structure and function (Ramankutty and Foley 1998; Spiegelaar and 

Tsuji 2013; Tilman et al. 2001). Agricultural land largely contributes to global 

greenhouse gas (GHG) emission, accounting for around 60% and 50% of anthropogenic 

N2O and CH4 emission, respectively (Smith et al. 2007). In addition, agricultural 

expansion results in biodiversity loss (Donald 2004), water resource shortage (Hanjra and 

Qureshi 2010), and soil erosion (Montgomery 2007). Efforts to address food security 

along with the impacts of agriculture on environment need the accurate geospatial 

datasets of agricultural land use and land cover (Monfreda et al. 2008; Ramankutty et al. 

2008a).  

The agroecosystem’s role in the terrestrial carbon cycle is significant. A recent 

modeling study estimated a ~24% reduction in global vegetation carbon from agriculture 

(Alberte et al. 2007). However, carbon budget of cropland is still of great uncertainties 

due to different cultivation, and management practices, including biomass burning, 

residue removal, and crop-rotation, as well as soil erosion (Van Oost et al. 2007; West 

and Marland 2002). Gross Primary Production (GPP), the starting point of terrestrial 

ecosystem carbon, is the carbon uptake rate by terrestrial vegetation through 

photosynthesis (Suyker et al. 2005). Accurate estimates of GPP at canopy, ecosystem, 
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and landscape scales is imperative estimating agroecosystem carbon budgets and crop 

yield (Ciais et al. 2010; Moureaux et al. 2008; Zhangcai et al. 2012). The rate of 

photosynthesis at the chloroplast, leaf, and individual plant can be accurately measured 

using various instruments, such as potable photosynthesis system. However, how to scale 

up the estimates of GPP to the canopy and regional levels is still a challenging scientific 

question. 

Remote sensing has become an increasingly attractive technology in classifying 

and mapping land use and land cover changes (LULCC). Especially, for large-scale (i.e. 

regional, continental, global) LULCC, remote sensing is a practical, efficient, and 

economical approach due to its consistency, reproducibility, and data coverage in regions 

where ground knowledge is limited (DeFries et al. 1995). Enormous efforts have been 

made by research communities to produce global LULCC products, such as global land 

cover database for the year 2000 (GLC2000) based on SPOT/Vegetation (Bartholome 

and Belward 2005), 1 km IGBP-DISCover (Loveland et al. 2000) and Global Land Cover 

Facility (GLCF) datasets from NOAA/AVHRR (Hansen et al. 2000), 1 km and 500 m 

MODIS land cover type products from MODIS/Terra and Aqua (Friedl et al. 2002). 30 

m Finer Resolution Observation and Monitoring-Global Land Cover (FROM-GLC) from 

Landsat/ETM+ (Gong et al. 2013). However, the classification schemes of these LULUC 

datasets are either on biome-level or focus on the classification of natural land cover 

types, such as the types of forest and grassland, and define all crop types as one category.  

Timely crop-based LULUC datasets are limited in the intense agricultural regions, 

e.g. Northern and Southeast Asia, where detailed information of crop types are needed as 

inputs for studies of food security and biogeochemical models. Recently, efforts have 
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been made to generate remote sensing-derived crop maps over these regions, including 

paddy rice maps (Xiao et al. 2002a; Xiao et al. 2006a; Xiao et al. 2005a), and maize, 

wheat, and cotton maps (Ren et al. 2008; Zhang et al. 2008a). The classification accuracy 

of these crop datasets, however, was questionable due to the mixed pixels, as these 

datasets were mostly derived from satellite data with coarse spatial resolution (500 m to 

1 km). Thus, to obtain the fine-resolution and high-accuracy crop datasets using satellite 

data over large regions is still a challenging task. 

Remote sensing has been a useful tool to scale up the estimates of GPP from 

individual leaves to canopy, ecosystem, and landscape scales via the Production 

Efficiency Models (PEMs), which are based on the principle of radiation-use efficiency 

(RUE) or light-use efficiency (LUE). A number of PEMs have been developed to estimate 

gross primary production with the use of satellite and climate data (Field et al. 1995; 

Potter et al. 1993; Prince and Goward 1995; Running et al. 1994; Xiao et al. 2004c),  

including the Global Production Efficiency Model (GLO-PEM) (Prince and Goward 

1995), the Vegetation Photosynthesis Model (VPM) (Xiao et al. 2004a), the Terrestrial 

Uptake and Release of Carbon model (TRUC) (Ruimy et al. 1996), and the MODIS Daily 

Photosynthesis model (PSN) (Running et al. 2000b). The VPM is based on the conceptual 

partitioning of chlorophyll and non-photosynthetically active vegetation (NPV) in a 

canopy. It estimates GPP over the plant growing season at daily or weekly intervals. 

Studies have shown the capabilities of the VPM to model the GPP for rainfed and 

irrigated maize (Kalfas et al. 2011b; Wang et al. 2010b), soybean (Wagle et al. 2015), 

winter wheat (Yan et al. 2009), and grassland (Wagle et al. 2014; Wu et al. 2008) on in-
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situ levels; thus, one hypnosis is that the VPM has the potential to simulate seasonal 

dynamic and interannual variation of the GPP for agroecoystems over regional scales.  

1.2 Overall research objectives 

 The goal of this dissertation is to strengthen remote sensing’s capacities to 

produce high-quality products of crop types and primary productivity on regional and 

global scales. Especially, I am interested in exploring the potential of the multi-temporal 

Landsat imagery for mapping specific crop type at the spatial resolution of 30 m. I am 

also interested in improving the large-scale crop GPP modeling with satellite-driven 

PEMs. My dissertation focuses on three largest commodity crops (paddy rice, corn, 

soybean) and two dominant savanna woodlands across the typical agroecosystems of 

Northeast China, Southern Africa, and conterminous USA. 

1.3 Organization of the dissertation  

 This dissertation consists of one introductory chapter, four main chapters, and one 

summary chapter. Chapters 2, 3, 4 have been published on three peer-reviewed journals, 

and Chapter 5 will be submitted to one peer-reviewed journal.  

Chapter 2 aims to develop simple and robust algorithms to generate 30-m paddy 

rice map on the regional scale. This chapter identifies the unique spectral or phenological 

signatures of paddy rice across the entire rice growth stages using the multi-temporal 30-

m Landsat imagery, and develops the phenology-based and decision tree-based 

algorithms to classify paddy rice in the flooding/transplanting and ripening phases, 

respectively. The discussion focuses on the advantages and uncertainties of the resultant 

30-m Landsat-based paddy rice map, and the potential application of the algorithms over 

the entire Northern Asia.  
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Chapter 3 is a site-level study to evaluate the capacities of the temporal MODIS 

vegetation indices and the VPM to describe phenology and model the GPP seasonal 

dynamics of savanna woodlands in Southern Africa. Two savanna woodland species 

across a precipitation gradient were chosen in order to assess the VPM robustness. Model 

accuracy, parameter sensitivity as well as the improvements of the VPM over other 

satellite-based PEMs are discussed.  

Chapter 4 assesses the accuracies of climate variables from the North America 

Regional Reanalysis (NARR) by the National Centers for Environmental Prediction 

(NCEP), i.e. air temperature and downward shortwave radiation, which are two important 

model inputs of the VPM when simulating the GPP at regional and global scales.  It also 

investigates the uncertainties in GPP estimates from the VPM from climate inputs at 

seven sites in the U.S. Midwest region as compared with eddy covariance-based GPP. 

This chapter highlights the importance of accurate surface radiation datasets to estimate 

primary production of terrestrial ecosystems at regional and global scales. 

Chapter 5 develops the strategy to accurately model GPP over the U.S. Midwest, 

one of the most intense agricultural regions in the world. On the basis of regional GPP 

modeling, another objective is to quantify the impacts of 2012 flash drought on 

phenology, greenness and productivity of major biomes in the U.S. Midwest. 

1.4 List of Publications from the Dissertation 

Chapter 2  

Jin, C., Xiao, X., Dong, J., Qin, Y., & Wang, Z. (2015). Mapping paddy rice distribution 

using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China. Frontiers 

of Earth Science, 10, 49-62. 
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Chapter 3  

Jin, C., Xiao, X.M., Merbold, L., Arneth, A., Veenendaal, E., & Kutsch, W.L. (2013). 

Phenology and gross primary production of two dominant savanna woodland ecosystems 

in Southern Africa. Remote Sensing of Environment, 135, 189-201. 

Chapter 4  

Jin, C., Xiao, X.M., Wagle, P., Griffis, T., Dong, J.W., Wu, C.Y., Qin, Y.W., & Cook, 

D.R. (2015). Effects of in-situ and reanalysis climate data on estimation of cropland gross 

primary production using the Vegetation Photosynthesis Model. Agricultural and Forest 

Meteorology, 213, 240-250. 

Chapter 5 

Jin, C., Xiao, X.M., Zhang, Y., Wagle, P., Dong, J.W., Steiner J., & Basara, J.. (2016). 

The 2012 flash drought threatened the U.S. Midwest agroecosystems. (to be submitted) 
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Chapter 2: Mapping paddy rice distribution using multi-temporal 

Landsat imagery in the Sanjiang Plain, northeast China 

Abstract  

Information of paddy rice distribution is essential for food production and 

methane emission calculation. Phenology-based algorithms have been utilized in the 

mapping of paddy rice fields by identifying the unique flooding and seedling 

transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. 

In this study, we developed simple algorithms to identify paddy rice at a fine resolution 

at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 

2010 - 2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, 

northeast China - one of the major paddy rice cultivation regions in China. Three 

vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced 

Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify 

rice fields during the flooding/transplanting and ripening phases. The user and producer 

accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 

94%, respectively. The Landsat-based paddy rice map was an improvement over the 

paddy rice layer on the National Land Cover Dataset, which was generated through visual 

interpretation and digitalization on the fine-resolution images. The agricultural census 

data substantially underreported paddy rice area, raising serious concern about its use for 

studies on food security. 

2.1 Introduction 

Rice is the world’s second-largest crop and is a major food staple, feeding more 

than half of the world’s population (Nguyen and Ferrero 2006). It plays an important role 
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in ensuring global food security. Global rice consumption has been predicted to exceed 

rice production (Kuenzer and Knauer 2013). Approximately 95% of global rice is 

cultivated on flooded soil (Belder et al. 2004). Irrigation for rice cultivation requires large 

amounts of water and has an important impact on water quality. In addition, rice fields 

are one of the main sources of greenhouse gas emissions (Li et al. 2004). Therefore, 

accurate high-resolution maps of paddy rice distribution are critical for food production, 

water management, agriculture migration, and agriculture adaption under global climate 

change (Doll 2002). 

Remote sensing is an efficient tool for generating paddy rice maps. The potentials 

of fine-resolution satellite imagery, such as 20 m SPOT and 30/79 m Landsat, for 

classifying paddy rice fields have been explored (Laba et al. 1997; McCloy et al. 1987; 

Okamoto and Fukuhara 1996; Okamoto et al. 1998; Panigrahy and Parihar 1992; Turner 

and Congalton 1998). Single images were typically used in earlier studies due to the 

limited availability of satellite imagery. Rice fields were visually interpreted from color 

composite images, and their boundaries were then artificially digitalized onscreen (Liu et 

al. 2005; Qiu et al. 2003; Rao and Rao 1987). Other studies used the supervised or 

unsupervised classification algorithms to identify the spectral cluster of paddy rice (Laba 

et al. 1997; Okamoto et al. 1998; Panigrahy and Parihar 1992; Turner and Congalton 

1998). However, the application of these two approaches at regional or national scales is 

often labor-intensive and time-consuming. Changes in research personnel and methods 

over time make it particularly difficult to obtain consistent classification results in the 

projects that analyze multiple-year images. 
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The Moderate Resolution Imaging Spectroradiometer (MODIS) provides global 

coverage of imagery every 1- 2 days at 250 m, 500 m, and 1 km, and is free to the public. 

The phenology-based algorithm developed on the multi-temporal MODIS data has shown 

a great potential for tracking the dynamics of the vegetation-to-water ratio during the rice 

growth, and can consistently map the annual paddy rice distribution at regional scales 

(Biradar and Xiao 2011; Sakamoto et al. 2006; Sakamoto et al. 2009; Xiao et al. 2006a; 

Xiao et al. 2005a). However, the accuracy of the MODIS phenology-based paddy rice 

maps was still questionable due to the mixed pixels caused by the coarse spatial 

resolution; a problem especially relevant in Asia, with over 200 million smallholding 

farms, typically under 1 hectare (Sun et al. 2009; Xiao et al. 2006a). One solution is the 

use of multi-temporal high-resolution imagery (Xiao et al. 2006a). 

The United States Geological Survey (USGS) Earth Resources Observation and 

Science (EROS) Center has offered free historical and new Landsat imagery to the public 

since 2008. This provided a great opportunity for regional-scale land cover classification. 

One significant accomplishment was the capability to track forest cover dynamics by 

using multi-temporal Landsat imagery (Hansen et al. 2013). Some studies tracked the 

continuous dynamics of spectral features derived from all available Landsat imagery 

across multi-years to identify forest and forest disturbance (Huang et al. 2010a; Masek et 

al. 2008; Zhu et al. 2012). Several others extracted the annual trajectory of image features 

from yearly Landsat imagery, such as using one image within the peak of the annual 

growing season (Cohen et al. 2010; Kennedy et al. 2010). Another study evaluated the 

spectral features of the forest during different phenological phases, then screened the 
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specific phases when the forest showed spectral features that were distinguishable from 

other land types (Dong et al. 2013). 

The potential of multi-temporal Landsat imagery to monitor crops has been 

underestimated due to their spectral and phenological variability features (Zhong et al. 

2014). Recent studies have highlighted the capability of intra-annual Landsat to identify 

corn and soybean (Zhong et al. 2014). Therefore, we hypothesize that paddy rice 

distribution mapping will benefit from the phenological features captured by multi-

temporal Landsat imagery. We examined if single dates of phenological or spectral 

characteristics from the Landsat imagery with low-observation frequency could be 

extracted for paddy rice. For example, could multi-temporal Landsat imagery track the 

dynamics of the vegetation-to-water ratio for rice fields similarly to the use of MODIS 

data? 

The objective of this study is to: (i) develop the Landsat phenology-based scheme 

to identify paddy rice fields during two phenological (flooding/transplanting and 

ripening) phases at regional scales, and (ii) systematically evaluate the accuracy and 

uncertainties of the resultant Landsat-based paddy rice map. 

2.2 Materials and methods 

2.2.1 Study area 

The Sanjiang Plain is located in the northeast region of Heilongjiang Province, 

China (132.14°E‒133.94°E, 45.37°N‒46.61°N). It covers 23 counties with a total area of 

10.88 × 104 km2. Approximately 80% of the Sanjiang Plain is relatively flat with an 

elevation < 200 m (Figure 2.1(a)). The plain is characterized by a temperate and sub-

humid continental monsoon climate, with a mean annual precipitation of 500 - 650 mm, 
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the majority of which falls between July and September. The mean monthly temperature 

varies from ‒18°C in January to 22 °C in July. The typical land cover types were cropland, 

woodland, and natural wetland, accounting for 55.2%, 30.3%, and 7.4% of the entire area, 

respectively (Huang et al. 2010b). 

The abundant water resources and fertile soils, along with the flat topography, 

make the Sanjiang Plain favorable for paddy rice cultivation. Rice cultivation is relatively 

identical across the entire Sanjiang Plain. One rice crop per year is cultivated in this region 

with a rice growth cycle duration of approximately 140 - 150 days (Figure 2.2(a)). From 

mid-April to early May, rice fields are prepared by plowing, overturning, flooding, and 

leveling. In mid- to late May, rice seedlings are transplanted to flooded fields. During 

these two phases, rice fields are mostly dominated by water (Figure 2.2(b)). Rice canopy 

starts to rise rapidly during the vegetative growing phase (tillering and stem elongation) 

from mid-June to early July (Figure 2.2(c)), resulting in changes of the vegetation-to-

water ratio. The reproductive phase starts in mid-July (panicle initiation, Figure 2.2(d)), 

the vegetation-to-water ratio reaches its maximum value in late July, and then remains 

stable or slightly decreases during the ripening phase from late August to September 

(Figure 2.2(e)). Rice is harvested from late September to early October. 
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Figure 2.1(a) Geographic location of the Sanjiang Plain, northeast China; (b) 

location of all Landsat footprints, high-resolution images available on Google Earth, 

and ground truth pointes collected in 2011 

 

 
Figure 2.2(a) Rice cropping calendar in the Sanjiang Plain; (b) rice transplanting 

stage (06/18/2013); (c) stem elongation stage (07/10/2013); (d) panicle initiation stage 

(07/21/2013); (e) mature stage (08/24/2011) 
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2.2.2 Landsat images and preprocessing 

The Sanjiang Plain is covered by 13 Landsat footprints (Figure 2.1(b)). 119 L1T 

Landsat images from 2010 - 2012 were collected from http://landsat.usgs.gov/ and were 

used to extract the multi-temporal curves of the Landsat vegetation indices for typical 

land cover types. Sixteen images were eventually used to generate the paddy rice map 

after examining three criteria (Table 2.1): (1) image acquisition date was during the peak 

of the transplanting/flooding and ripening phases when paddy rice showed the 

distinguishably phenological or spectral features from other land types; (2) cloud 

coverage was less than 5%; and (3) the gap-filling strategy (see Section 2.5). 

Table 2.1 A list of Landsat images collected for mapping the paddy rice distribution 

in the Sanjiang Plain, northeast China 

Path/Row Sensor Date Year Cloud/% Rice growing phase 

113/026 TM September-19 2011 0 Ripening 

113/027 TM September-19 2011 0 Ripening 

114/027 
TM June-25 2011 1 Transplanting 

TM June-06 2010 0 Transplanting 

114/028 

TM June-25 2011 0 Transplanting 

ETM+ September-21 2011 0 Ripening 

ETM+ September-07 2012 0 Ripening 

114/029 TM June-25 2011 0 Transplanting 

115/027 
ETM+ August-27 2011 0 Ripening 

ETM+ June-26 2012 0 Transplanting 

115/028 
ETM+ September-12 2011 0 Ripening 

ETM+ September-09 2010 1 Ripening 

115/029 
ETM+ August-27 2011 3 Ripening 

ETM+ June-26 2012 0 Transplanting 

116/027 TM September-11 2011 0 Ripening 

116/028 TM September-11 2011 0 Ripening 

 

All images were first processed for atmospheric correction and converted to 

surface reflectance using the Landsat Ecosystem Disturbance Adaptive Processing 

Figure 2.3) (Masek et al. 2008; Vermote et al. 1997). Masks for 
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clouds, cloud shadows, clear water, and data gaps due to Landsat 7 ETM+ SLC-off (Scan 

Line Corrector failed) were created for each Landsat scene using the object-based cloud 

and cloud shadow algorithm, Fmask (Zhu and Woodcock 2012). 

 

Figure 2.3 Workflow for mapping paddy rice distribution using the multi-temporal 

Landsat images 

 

Three vegetation indices were calculated using surface reflectance (ρ) from the 

blue (B1), red (B3), NIR (B4), and SWIR (B5) bands: (1) Normalized Difference 

Vegetation Index (NDVI) (Tucker 1979b), (2) Enhanced Vegetation Index (EVI) (Huete 

et al. 2002; Huete et al. 1997a), and (3) Land Surface Water Index (LSWI) (Xiao et al. 

2004a). 
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         (2.1) 

         (2.2) 

        

 (2.3) 

2.2.3 Algorithm for mapping paddy rice during the flooding/transplanting phase 

We first chose one ground truth point for each land type, which was collected 

during the 2011 field investigation. Three vegetation indices were then extracted from 

multi-temporal Landsat imagery from 2010‒2012 for the pixel where the ground truth 

point was located (Figure 2.4). Paddy rice showed a unique inversion between LSWI and 

EVI (NDVI) during the flooding/transplanting period: LSWI was substantially higher 

than EVI (NDVI) during early May and late June. Thus, a pixel was paddy rice when the 

condition LSWI + 0.05 > EVI (NDVI) was met in the flooding/transplanting phase. This 

was consistent with the MODIS phenology-based algorithm (Xiao et al. 2006a; Xiao et 

al. 2005a). 

 

Figure 2.4 Seasonal dynamics of Landsat-based vegetation indices (NDVI, EVI, and 

LSWI) for typical land types 
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2.2.4 Algorithm for mapping paddy rice during the ripening phase 

Paddy rice also showed unique features during the ripening phase (Figure 2.4). 

From late August to late September, forest NDVI remained high (around 0.8). However, 

paddy rice NDVI fell below 0.8 (Figure 2.4(a) vs. 2.4(c)). Built-up had much lower LSWI 

(around 0) than did paddy rice (> 0.2) (Figure 2.4(c) vs. 2.4(e)). Paddy rice had smaller 

differences between EVI (NDVI) and LSWI. Thus, the rule-based decision trees were 

deployed on LSWI, NDVI, and (NDVI+EVI)/2-LSWI to map the ripening paddy rice. 

Here the image on the 254th day in 2011 for path/row=116/027 (116/027-254/2011) was 

used as an example to illustrate the procedures to build the decision rules and determine 

the optimal threshold values. 

Step 1 Selection of training regions of interest (ROIs): Homogenous ROIs were visually 

interpreted and digitalized on the Landsat false color composite (FCC) image of LSWI, 

NDVI, and (NDVI+EVI)/2-LSWI for paddy rice (22 ROIs with 1,077 pixels), dry 

cropland (22 ROIs with 1,077 pixels), forest (44 ROIs with 974 pixels), and built-up and 

bare land (21 ROIs with 989 pixels). 

Step 2 Evaluation of ROI separability: The Jeffries-Matusita (J-M) distances of the ROI 

pairs between paddy rice and other land types were calculated (John A. Richards and Jia 

1999). All J-M distances were above 1.9, which suggested that paddy rice had great 

separability from other land types using the training ROIs collected from the Landsat 

FCC image. 

Step 3 Statistical distribution of ROIs: Paddy rice showed distinguishable statistical 

distributions (Figure 2.5). The built-up and bare land LSWI ranged from ‒0.2 to 0.2 and 

was significantly lower than paddy rice (Figure 2.5(a)). The forest NDVI was above 0.7, 
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much higher than paddy rice (Figure 2.5(b)). The paddy rice (NDVI+EVI)/2-LSWI 

ranged below 0.2 and was lower than dry cropland. 

Step 4 Determination of the optimal thresholds: The optimal thresholds were calculated 

using regression trees from the training ROIs: Tbuilt-up/bare-land=0.2682 for LSWI, 

Tforest=0.6849 for NDVI, and Tdry-cropland=0.2219 for (NDVI+EVI)/2-LSWI. 

Step 5 Implementation of the decision rules: the decision rules and threshold values were 

deployed on LSWI, NDVI, and (NDVI+EVI)/2-LSWI. 

 

Figure 2.5 Statistic distribution of LSWI, NDVI, and (NDVI+EVI)/2-LSWI for 

paddy rice, dry cropland, forest, and built-up area on the 116/027-254/2011 (acc. 

represents accuracy). 

 

The steps above were implemented on the Landsat images during the ripening 

phase. The threshold values were calculated using regression trees in R Project, Version 

3.0.1 with a prediction accuracy above 95% (Table 2.2). 

The algorithm robustness was evaluated by the accuracy assessment for three 

Landsat scenes (116/027-254/2011, 114/028-264/2011, and 114/028-251/2012), which 

covered the main paddy rice cultivation region. For 116/027-264/2011, a total number of 

1,541 testing ROIs (24,656 pixels) was randomly generated within the subset region 

covered by the WorldView-2. As for 114/028-251/2012, 2,915 ROIs were randomly 

generated. 285 ROIs (167 for non-paddy rice and 118 for paddy rice) and 2,630 ROIs 
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(2,068 for non-paddy rice and 567 for paddy rice) were visually interpreted and 

digitalized onscreen from the high resolution images on Google Earth and the Landsat 

FCC image of 114/028-155/2012 (R/G/B=SWIR/NIR/Red), respectively. We used the 

same-year flooding/transplanting rice map (114/028-176/2011) as the ground truth 

reference to evaluate the accuracy of the ripening rice map on 114/028-264/2011. The 

accuracy assessment was summarized by the error matrixes along with user accuracy, 

producer accuracy, overall accuracy, and KAPPA coefficient for the ripening rice maps 

(Congalton, 1991). 

Table 2.2 The threshold values as the inputs of rule-bases decision trees for the 

Landsat images during the rice ripening phase 
Landsat Image Path/Row Date Image Features Threshold 

113/027-262/2010 

113/026-262/2010 

113/027 

113/026 

09/19/2010 LSWI 0.1158 

NDVI 0.7057 

(NDVI+EVI)/2-LSWI 0.2541 

114/028-264/2011 114/028 09/21/2011 LSWI 0.2035 

NDVI 0.6692 

(NDVI+EVI)/2-LSWI 0.2081 

114/028-251/2012 114/028 09/07/2012 LSWI 0.2702 

NDVI 0.7639 

(NDVI+EVI)/2-LSWI 0.2918 

115/027-239/2011 115/027 08/27/ 2011 LSWI 0.3422 

NDVI 0.8137 

(NDVI+EVI)/2-LSWI 0.2327 

115/028-255/2011 115/028 09/12/2011 LSWI 0.1984 

NDVI 0.7518 

(NDVI+EVI)/2-LSWI 0.2368 

115/028-252/2010 115/028 09/09/2010 LSWI 0. 2010 

NDVI 0.7090 

(NDVI+EVI)/2-LSWI 0.2566 

115/029-239/2011 115/029 08/27/2011 LSWI 0.3371 

NDVI 0.8339 

(NDVI+EVI)/2-LSWI 0.2721 

116/027-254/2011 

116/028-254/2011 

116/027 

116/028 

09/11/2011 LSWI 0.2682 

NDVI 0.6849 

(NDVI+EVI)/2-LSWI 0.2219 
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2.2.5 Implementation of algorithms 

The field surveys were carried out in 2011, thus it was used as the baseline year. 

Images in 2010 and 2012 were used to fill the gaps caused by clouds, cloud shadows, or 

Landsat 7 ETM+ SLC-off in the 2011 images. For each Landsat footprint, we assembled 

the flooding/transplanting and ripening paddy rice maps into one paddy rice map using 

the following rule: the 2011 flooding/transplanting map was the initial input. If the 2011 

flooding/transplanting map wasn’t available or if it contained data gaps, the gaps were 

filled using the first available rice map in the order of: 1) the 2011 ripening rice map, 2) 

the 2010 flooding/transplanting map, 3) the 2010 ripening rice map, 4) the 2012 

flooding/transplanting map, and 5) the 2012 ripening rice map. Finally, the paddy rice 

maps for 13 Landsat footprints were mosaicked into one preliminary paddy rice map for 

the Sanjiang Plain. 

The final Landsat rice map was generated by excluding the natural wetland and 

unsuitable terrain regions for rice cultivation. The 30 m Landsat-based natural wetland 

dataset, provided by the Northeast Institute of Geography and Agricultural Ecology, 

Chinese Academy of Sciences, includes six natural wetland types: river, lake, flooding 

wetland, forested wetland, shrub wetland, and grassland wetland. The overall accuracy 

of natural wetland was above 90% (Xie 2013). As paddy rice in the Sanjiang Plain is 

generally cultivated in the low-elevation region, a terrain mask was generated to exclude 

regions with an elevation > 150 m for the low-latitude region and > 500 m for the high-

latitude region using the 30 m ASTER Global Digital Elevation Model (DEM) 

(http://earthexplorer.usgs.gov/). 
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2.2.6 Validation of the Landsat-based paddy rice map of the Sanjiang Plain 

Extensive field surveys were carried out to collect the ground truth points (points 

of interest, referred as POIs) across the Sanjiang Plain in 2011. The geo-locations of POIs 

were recorded using a GPS device with a position precision of 3 - 5 m. There were 240 

POIs for paddy rice and 993 POIs for the other land cover types collected (487 POIs for 

dry cropland, 32 POIs for grassland, 90 POIs for natural wetland, 264 POIs for forest, 89 

POIs for built-up, 29 POIs for water, and 2 POIs for other land cover types) (Figure 

2.1(b)). 

In this study, the resultant 30 m Landsat-based paddy rice map (RICELandsat) was 

evaluated using three approaches. The first approach used a point (POI) to one pixel 

comparison. We overlaid the 1,233 POIs on the RICELandsat and counted the number of 

pixels that were classified as paddy rice and other land cover types, respectively. Note 

that some POIs were collected along the edges of the fields or on the roads; these pixels 

were typically mixed with multiple land types. Thus, there could be classification errors 

for the POIs on the RICELandsat. To overcome the issue, the second approach was to 

generate four buffering windows (15 m × 15 m, 30 m × 30 m, 45 m × 45 m, and 60 m × 

60 m) with the POI as the centers. 60 m was defined as the maximum buffering distance 

considering the farthest observation range during the field survey and the maximum 

distance among the rice field plots. We overlaid the buffering windows on the RICELandsat, 

and counted the numbers of POIs of both paddy and non-paddy rice that had been 

correctly identified from the RICELandsat under the two standards. In the first, a paddy rice 

POI was correctly identified as long as a RICELandsat paddy rice pixel occurred within the 

buffering window. In the second, a non-paddy rice POI was correctly identified once all 
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the RICELandsat pixels within the buffering window were identified as non-paddy rice. The 

third approach was to digitalize ROIs with the POIs as references. For each POI, we 

generated a ROI with an average area of 120 m × 120 m from the high-resolution imagery 

of Google Earth (Figure 2.1(b)) or Landsat FCC images (R/G/B=SWIR/NIR/Red) in late 

June as ground truth reference maps, on which paddy rice had either distinguishable 

spatial features or spectral patterns from other land types. 65 ROIs (1,052 pixels) of paddy 

rice and 227 ROIs (3,684 pixels) of other land cover types were collected from Google 

Earth from 2010‒2012. 175 ROIs (2,730 pixels) of paddy rice and 766 ROIs (12,216 

pixels) of other land cover types were interpreted from Landsat FCC images. The error 

matrix was calculated by overlaying ROIs on the RICELandsat. 

2.2.7 Comparison with other paddy rice datasets 

The National Land Cover Dataset (NLCD) is a 30 m vector database using a 

hierarchical classification scheme of 25 land-cover types. The NLCD was developed by 

visual interpretation and artificial digitalization from Landsat imagery (the primary base 

maps) at a scale of 1:100,000. Since the NLCD is only available to the public as areal 

fraction at 1 km resolution for each land type, we aggregated our RICELandsat to a 1 km 

grid and compared it with the 2010 NLCD paddy rice (RICENLCD). 

In addition, we collected the agriculture census records of rice cultivation area for 

17 counties from the agricultural statistical yearbooks of Shuanyashan City, Qitaihe City, 

Jixi City, and Jiamusi City in 2011 (RICECensus). We compared the county-level rice area 

between the RICELandsat and the RICECensus. 
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2.3 Results 

2.3.1 Maps of the flooding/transplanting phase of paddy rice 

Paddy rice showed as dark green across the Landsat FCC images 

(R/G/B=SWIR/NIR/Red) after two weeks of seedling transplanting in late June of 2011 

and 2012, and was easily identified from other land types (Figures 2.6(a)‒6(c)). The 

LSWI-EVI maps highlighted the spatial distribution of the rice fields under the 

flooding/transplanting phase (Figures. 2.6(d)‒2.6(f)). The pixels with LSWI-EVI> ‒0.05 

primarily represented the spatial pattern of paddy rice. However, the LSWI-NDVI was 

not as sensitive as LSWI-EVI; LSWI-NDVI of paddy rice was close to that of non-paddy 

rice (Figures. 2.6(g)‒2.6(i)). The spatial distribution of paddy rice on the resultant maps 

(Figures. 2.6(j)‒2.6(l)) corresponded well with the spatial pattern of paddy rice on the 

Landsat FCC images (Figures. 2.6(a)‒2.6(c)). 
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Figure 2.6 (a)‒(c), Landsat FCC images (R/G/B = SWIR /NIR/Red); (d)‒(f), LSWI-

EVI maps; (g)‒(i), LSWI-NDVI maps; (j)‒(l), flooding/transplanting rice maps for 

114/027-176/2011, 114/028-176/2011, and 115/027-178/2012 
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2.3.2 Maps of the ripening phase of paddy rice 

The paddy rice distribution on the resultant maps (Figures. 2.7(d)‒2.7(f)) were 

spatially consistent with the pattern of paddy rice on the Landsat FCC images (Figures. 

2.7(a)‒2.7(c)) on which paddy rice showed as orange tone, and was distinguishable from 

other land types. The ripening rice maps for 114/028-264/2011 and 114/028-251/2012 

had high classification accuracies. The overall accuracies and KAPPA coefficients were 

95% and 92% for 114/028-264/2011, and 96% and 91% for 114/028-251/2012. The user 

and producer accuracies were mostly above 90% for paddy rice and 95% for non-paddy 

rice on both maps. 

 

Figure 2.7 (a)‒(c), Landsat FCC images (R/G/B = LSWI / NDVI / (NDVI+EVI)/2-

LSWI); (d)‒(f), ripening rice maps for 116/027-254/2011, 114/028-264/2011, and 

114/028-251/2012 

 

The ripening rice map of 114/028-264/2011 had high spatial consistency with the 

flooding/transplanting rice map of 114/028-176/2011 with a correlation coefficient of 0.8. 
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The differences between the two rice maps were subtle and mainly distributed along the 

boundaries of rice fields. The overall accuracy and KAPPA coefficient of the ripening 

rice map of 114/028-264/2011 was 94% and 84% with a user and producer accuracy of 

89% and 87% for paddy rice, and 95% and 96% for non-paddy rice. 

2.3.3 Paddy rice map of the Sanjiang Plain and accuracy assessment 

The paddy rice area was 20,294 km2 in 2011, accounting for 19% of the total area 

of the Sanjiang Plain. Rice fields were mainly distributed at the alluvial plain of 

Heilongjiang, Songhua, and Ussuri Rivers in the northern region, the plains of Muleng 

River and Khank Lake in the southeast region, and the Woken River plain in the 

southwest region (Figure 2.8(a)). 

 

Figure 2.8 (a) 30 m Landsat-based paddy rice map (RICELandsat); (b) 1 km2 area 

fraction of paddy rice on the 2010 NLCD (RICENLCD); (c) 1 km2 area fraction 

difference map between the RICELandsat and the RICENLCD 

 

The accuracy of the RICELandsat paddy rice increased from 61% for the POIs to 

95% for the 60 m buffering distance (Figure 2.9). The paddy rice accuracy increased by 

11% as the buffering distance increased from 15 - 30 m and from 30 - 45 m. The accuracy 
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for the RICELandsat non-paddy rice decreased from 97% for the POIs to 89% for the 60 m 

buffering distance. 

The RICELandsat had a reasonably high overall accuracy of 97% and a KAPPA 

coefficient of 90% according to the error matrix calculated with the ROIs (Table 2.3). 

The user and producer accuracies were 90% and 94% for paddy rice and 98% and 97% 

for non-paddy rice. 

 

Figure 2.9 Classification accuracy based on POIs 

 

Table 2.3 Accuracy assessment of the 30 m Landsat paddy rice map in the Sanjiang 

Plain, northeast China 
   Paddy rice Non-paddy rice Total Producer accuracy/% 

Ground  

Truth Points 

Paddy rice 3535 247 3782 94 

Non-paddy rice 399 15501 15900 97 

Total  3934 15748   

User accuracy/%  90 98     

 

2.3.4 A comparison of the Landsat paddy rice map with the other paddy rice area estimate 

datasets 

In general, the spatial pattern on the RICELandsat was similar to that on the 

RICENLCD (Figures. 2.8(a) and 2.8(b)). However, there were still some significant 
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differences between the RICELandsat and the RICENLCD. The total rice area from the 

RICELandsat was 31% higher than that derived from the RICENLCD (15,465 km2). The 

northern region showed a significant discrepancy between the RICELandsat and the 

RICENLCD (Figure 2.8(c)). 

 

Figure 2.10 (a) County-level comparison of paddy rice area estimates between the 

RICELandsat and the RICENLCD; (b) county-level comparison of paddy rice area 

estimates between the RICELandsat and the RICECensus 

 

The RICELandsat had higher area estimates than the RICENLCD for Fujin (39%), 

Tongjiang (47%), Luobei (69%), Suibin (104%), and Fuyuan (258%) in the north region 

(Figure 2.10(a)). For the other counties, the RICELandsat rice area matched well with the 

RICENLCD estimates (the solid regression line in Figure 2.10(a)). The RICELandsat rice area 

correlated well with the estimates from the RICECensus with R2=0.85 (the solid regression 

line in Figure 2.10(b)). However, the RICELandsat rice area was about 128% higher than 

the RICECensus. The RICENLCD also estimated the rice area around 66% higher than the 

RICECensus with R2=0.63 (the dot regression line in Figure 2.10(b)). This result was 
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consistent with the previous conclusions of underreporting cropland area by the 

agricultural census report (Qiu et al., 2003; Liu et al., 2005). 

2.4 Discussion 

The integration of the Landsat flooding/transplanting-based and ripening-based 

algorithms introduced in this paper contributes to the efforts to improve the resolution 

and accuracy of paddy rice maps at the regional scale. The Landsat 

flooding/transplanting-based algorithm follows the MODIS phenology-based algorithm 

by identifying the temporary inversion between LSWI and EVI (NDVI) during the field 

flooding and seedling transplanting stages. Using the simple decision rules and training 

samples on LSWI, NDVI, and (NDVI+EVI)/2-LSWI, the Landsat ripening-based 

algorithm has shown the spatial and temporal robustness to extract the high-accuracy 

ripening rice maps. 

The minimum classification unit plays an important role in determining the 

precision of the RICELandsat and RICENLCD. The RICELandsat was generated by pixel-based 

classification, with a classification unit of 30 m × 30 m. The RICENLCD was generated by 

onscreen digitalization primarily from the 30 m Landsat at a scale of 1:100,000, with the 

minimum classification unit equivalent to 3×3 Landsat pixels. Thus, rice fields smaller 

than 3×3 Landsat pixels cannot be identified by the NLCD (Liu et al. 2005). In other 

words, the RICELandsat can show the spatial pattern of paddy rice in far more detail than 

the NLCD. 

Two sites were selected to evaluate the discrepancies between the RICELandsat and 

RICENLCD. Site 1 represents the case of RICELandsat = paddy rice and RICENLCD = non-

paddy rice. The high resolution image on 09/05/2010 shows that Site 1 was paddy rice in 



29 

2010 (Figure 2.11(a)). The temporal profiles of MODIS vegetation indices during 2000‒

2012 show the presence of the flooding/transplanting phases (LSWIMODIS+0.05 > 

EVIMODIS (NDVIMODIS)) in May and June from 2009‒2012 (highlighted in gray, Figure 

2.11(b)). This proves that Site 1 was paddy rice starting in 2009, which matches with the 

RICELandsat. Site 2 represents the case of RICELandsat = non-paddy rice and RICENLCD = 

paddy rice. The high resolution image on 08/22/2012 verifies that Site 2 was non-paddy 

rice in 2012 (Figure 2.11(c)). The temporal profiles of MODIS vegetation indices don’t 

show the presence of the flooding/transplanting phases in May and June of 2000‒2012 

(Figure 2.11(d)). This verifies that Site 2 was non-paddy rice from 2009‒2012, which 

also matches with the RICELandsat. In summary, the RICELandsat for Sites 1 and 2 agrees 

with the interpretation analysis from the high-resolution image and temporal MODIS 

vegetation indices. It can be concluded that the significant differences between the 

RICENLCD and the RICELandsat are most likely caused by the visual interpretation 

uncertainties on the RICENLCD. Two main factors contribute to the uncertainties of the 

RICENLCD. First, image selection determines the interpretation accuracy of paddy rice. 

The NLCD is produced based on a single FCC image (R/G/B=NIR/Red/Green) (Liu et 

al. 2005), on which paddy rice might show a similar image tone (red color) with other 

vegetation types. Adding the SWIR can increase visual interpretation accuracy of paddy 

rice (Li et al. 2012). Our results suggest that incorporating phenological information using 

the multi-temporal Landsat FCC images (R/G/B=SWIR/NIR/Red) during the 

flooding/transplanting and ripening phases should be considered for the rice 

interpretation of the NLCD. Secondly, the interpreter’s expertise, including a good 

knowledge of the study area and image features (tone, texture, spatial pattern, etc.) of 



30 

paddy rice, also plays an important role. However, the interpreter’s expertise is not 

objective and repeatable (Shalaby and Tateishi 2007), and the interpretation error cannot 

be predictable even across a large region. 

 

Figure 2.11 Evaluation of the discrepancy between the RICELandsat and the 

RICENLCD: (a) and (c), the high-resolution images on Google Earth; (b) and (d), 

seasonal dynamics of 500 m MODIS vegetation indices (NDVI, EVI, LSWI) during 

2000‒2012 

 

Several factors contribute to uncertainties in the flood/transplanting and ripening-

based algorithms using multi-temporal Landsat images to identify paddy rice on a large 

spatial scale, such as Southeast Asia—the global main rice cultivation region. Southeast 

Asia has variable landscapes, topography, and climate along with complex rice-growing 

ecosystems and multiple cropping intensities (Kuenzer and Knauer 2013; Xiao et al. 

2006a). The first factor is the similarity of the flooding/transplanting characteristics from 

other land types, including mangrove forests and the seasonally inundated natural 
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wetlands, which can be misclassified as paddy rice. The second factor is the intensive 

collection of training ROIs to implement the ripening-based algorithm. The third factor 

is the arbitrary thresholds for generating the terrain mask as rice cultivation terrain, which 

is variable across regions. Finally, Southeast Asia generally has a tropical monsoon 

climate with only a short dry season from November to March. Frequent rainfall during 

the long wet season significantly limits the availability of good-quality Landsat data. The 

inclusion of other fine-resolution satellite data will increase observation frequency and 

may help map rice distribution in monsoon Asia in the future. 

2.5 Conclusion 

Information on the spatial extent of paddy rice planting area is important for 

studies of rice growth and yield prediction, water resource management, and methane 

emission assessment. However, spatial datasets of paddy rice at a fine resolution with 

reliable accuracy are still not available at the regional scale. This study demonstrated the 

potentials of multi-temporal Landsat imagery in regional-scale rice classification by 

integrating the phenological and spectral features of paddy rice in the 

flooding/transplanting and ripening phases. The multi-temporal Landsat vegetation 

indices were sensitive to tracking the seasonal dynamics of the vegetation-to-water ratio 

of the rice fields during the flooding and seedling transplanting phases. The unique 

spectral features of the ripening paddy rice were spatially and temporally robust and can 

be used to identify paddy rice from other land cover types. However, future studies should 

investigate several factors such as non-cropland inundated land types, terrain conditions, 

and image availability when applying the methodology in this study to rice field 
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identification in other regions, particularly in Southeast Asia with its complex rice 

cultivation ecosystems. 
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Chapter 3: Phenology and gross primary production of two dominant 

savanna woodland ecosystems in Southern Africa 

Abstract  

Accurate estimation of gross primary production (GPP) of savanna woodlands is 

needed for evaluating the terrestrial carbon cycle at various spatial and temporal scales. 

The eddy covariance (EC) technique provides continuous measurements of net CO2 

exchange (NEE) between terrestrial ecosystems and the atmosphere. Only a few flux 

tower sites were run in Africa and very limited observational data of savanna woodlands 

in Africa are available. Although several publications have reported on the seasonal 

dynamics and interannual variation of GPP of savanna vegetation through partitioning 

the measured NEE data, current knowledge about GPP and phenology of savanna 

ecosystems is still limited. This study focused on two savanna woodland flux tower sites 

in Botswana and Zambia, representing two dominant savanna woodlands (mopane and 

miombo) and climate patterns (semi-arid and semi-humid) in Southern Africa. Phenology 

of these savanna woodlands were delineated from three vegetation indices derived from 

Moderate Resolution Imaging Spectroradiometer (MODIS) and GPP estimated from 

eddy covariance measurements at flux tower sites (GPPEC). The Vegetation 

Photosynthesis Model (VPM), which is driven by satellite images and meteorological 

data, was also evaluated, and the results showed that the VPM-based GPP estimates 

(GPPVPM) were able to track the seasonal dynamics of GPPEC. The total GPPVPM and 

GPPEC within the plant growing season defined by a water-related vegetation index 

differed within the range of ± 6%. This study suggests that the VPM is a valuable tool for 
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estimating GPP of semi-arid and semi-humid savanna woodland ecosystems in Southern 

Africa. 

3.1 Introduction 

Savannas are one of the most widely distributed vegetation types, covering one-

fifth of the earth land surface (Scholes and Hall 1996). A recent modeling study estimated 

an annual sum of about 30 Pg C gross primary production (GPP) from tropical savannas 

and grasslands, accounting for 25.7 % of the global terrestrial GPP (Beer et al. 2010). 

Africa, which is dominated by the largest area of savanna ecosystems in the world, is 

considered a main source of uncertainty in the global terrestrial carbon cycles (Weber et 

al. 2009; Williams et al. 2007). Current knowledge of Africa’s carbon fluxes and storage 

is still limited due to the spatial extent, fire disturbance, and high interannual variability 

in climate and productivity (Ciais et al. 2011; Williams et al. 2007; Woollen et al. 2012).  

Mopane and miombo woodlands in South and Central Africa covering 3.6 million 

km2 of land are the single largest dry woodlands in the world. Over the past decade, 

continuous fluxes of carbon, water, and energy between the land surface and the 

atmosphere, as measured with the eddy covariance technique, have been used to study 

the temporal dynamics and spatial pattern of the carbon cycle of savanna woodlands in 

Southern Africa (Archibald et al. 2009; Kutsch et al. 2008; Merbold et al. 2009; Merbold 

et al. 2011; Scanlon and Albertson 2004; Veenendaal et al. 2004; Williams et al. 2009). 

However, such measurements have been made at only a few sites and often over short 

time periods (Veenendaal et al. 2004).  

Satellite remote sensing at moderate spatial resolutions provides daily 

observations of land surface properties at the spatial scale compatible with the footprint 
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sizes of the eddy covariance observation sites. It has become a more and more important 

data source for the study of vegetation phenology (Alcantara et al. 2012; Brown et al. 

2012; Jones et al. 2012; Kim et al. 2012; Kross et al. 2011; White et al. 2009) and GPP 

estimates (Gitelson et al. 2012; Kalfas et al. 2011a; Peng et al. 2011; Sakamoto et al. 

2011; Sjostrom et al. 2009; Wang et al. 2010b; Wu and Chen 2012; Wu 2012; Zhang et 

al. 2012b).     

Vegetation phenology is a fundamental determinant affecting the ecosystem 

processes of carbon, water, and energy exchange (Larcher 2003). It determines the timing 

and duration of a photosynthetically active canopy and influences the magnitude of 

carbon and water fluxes throughout the plant growing season (Jolly and Running 2004). 

The vegetation indices calculated from the reflectance of spectral bands have been proved 

to effectively monitor the vegetation phenology (Bradley et al. 2007; Moody and Johnson 

2001; Sakamoto et al. 2005; Xiao et al. 2006b; Zhang et al. 2006). Earlier studies of 

phenology have focused on vegetation indices derived from visible and near infrared 

bands, for example, the Normalized Difference Vegetation Index (NDVI), which is 

calculated as a normalized ratio between near infrared and red spectral bands (Tucker 

1979a), and the Enhanced Vegetation Index (EVI), which is calculated from blue, red, 

and near infrared bands (Huete et al. 2002). Both NDVI and EVI have been shown to 

effectively track the seasonality and spatial patterns of savanna phenology (Archibald and 

Scholes 2007; Chidumayo 2001; Higgins et al. 2011; Huttich et al. 2011). It is well known 

that the shortwave infrared band (SWIR) is sensitive to water in vegetation and soil. One 

SWIR-based vegetation index is the Land Surface Water Index (LSWI), which is 

calculated from near infrared (NIR) and SWIR (Xiao et al. 2004b). It has successfully 
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been applied to vegetation phenology study and phenology-based land cover mapping 

(Cai et al. 2011; Chandrasekar et al. 2010; Park and Miura 2011; Xiao et al. 2006b; Xiao 

et al. 2004b). A prior study has already indicated that LSWI was sensitive to the wet and 

dry conditions in Africa (Tian et al. 2012). Therefore, whether the time-series LSWI data 

can effectively extract the phenological dynamics of savanna woodlands in Southern 

Africa across precipitation gradient and woodland species types is the first question 

addressed in this study. Water availability at the regional scale, an important seasonal 

driver for savanna vegetation growth, is the primary limit for predicting savanna 

phenology patterns (Archibald and Scholes 2007). 

A number of the satellite-PEMs have been developed to estimate GPP of 

vegetation as the product of the absorbed photosynthetically active radiation (APAR) and 

the light use efficiency (Coops 1999; Monteith 1972b; Potter et al. 1993; Prince et al. 

1995; Ruimy et al. 1996). In one group of PEMs, the greenness-related vegetation indices 

are used to estimate APAR by the canopy. NDVI is most commonly used in the earlier 

PEMs (Potter et al. 1993; Prince and Goward 1995; Ruimy et al. 1994; Running et al. 

2000b; Veenendaal et al. 2004; Yuan et al. 2007). In the other group of PEMs, 

chlorophyll-related vegetation indices such as EVI and chlorophyll index are used to 

estimate APAR by chlorophyll (Gitelson et al. 2006; Potter 2012; Sims et al. 2006; Xiao 

et al. 2004a; Xiao et al. 2004b).  

The Vegetation Photosynthesis Model (VPM) is the first satellite-based PEMs 

that used the concept of chlorophyll and light absorption by chlorophyll (Xiao et al. 

2004a; Xiao et al. 2004b). The VPM has been extensively verified for temperate, boreal 

and moist tropical evergreen forests (Xiao et al. 2004a; Xiao et al. 2004b; Xiao et al. 
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2005b; Xiao et al. 2005c), temperate and plateau grassland (Li et al. 2007; Wu et al. 2008) 

as well as agricultural ecosystems (Kalfas et al. 2011a; Wang et al. 2010b). However, its 

performance in simulating GPP of savanna woodland ecosystems is still unknown.  

The objectives of this study are twofold: (1) to evaluate the potential of remote 

sensing vegetation indices (NDVI, EVI, and LSWI) in identifying land surface phenology 

of savanna woodlands and determining the growing season length; and (2) to examine the 

potential of the VPM to simulate GPP of two dominant savanna woodland sites differing 

in annual precipitation and vegetation composition in Southern Africa. The leaf-on and 

leaf-off phenological phases need to be identified and then used to evaluate the 

performance of satellite-based PEMs that estimate GPP of savanna woodland ecosystems. 

Although a vast area in Southern Africa is covered with mopane and miombo woodlands, 

there are only two sites with continuous measurements of CO2 net exchange between the 

woodlands and the atmosphere by eddy covariance technique; and in this study we used 

data from the two sites, located in Botswana and Zambia. 

3.2 Materials and methods 

3.2.1 Study sites 

These two eddy covariance flux sites of savanna woodlands are within the 

Kalahari Transect (KT) in Southern Africa, one of the International Geosphere-Biosphere 

Program (IGBP) Transects for quantifying biogeochemistry and primary production, 

water and energy balance, ecosystem structure and function at the continental scale 

(Scholes and Archer 1997). Both sites are located along a precipitation gradient in the 

semi-arid and sub-humid regions of Southern Africa. The geo-locations and landscape 

features of these two sites are shown in Figure 3.1 and Table 3.1. Detailed descriptions 
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of the two sites can be obtained via FLUXNET - a global network of micrometeorological 

tower sites (http://www.fluxnet.ornl.gov/fluxnet/sitesearch.cfm) and site specific 

publications (Arneth et al. 2006; Merbold et al. 2011; Veenendaal et al. 2004; Veenendaal 

et al. 2008). 

 

Figure 3.1 A simple illustration of the study sites, including (a) geo-locations of both 

savanna woodland flux sites in Botswana and Zambia; (b) landscapes at the Mongu 

site, Zambia, background image - Google Earth on 09/18/2005; (c) landscapes at the 

Maun site, Botswana, background image – Google Earth on 07/06/2011. The red 

square line in (b) and (c) corresponds to the size of a MODIS image pixel at 500-m 

spatial resolution, and the red dots represent the locations of the flux towers. The 

website http://eomf.ou.edu/visualization/gmap/ provides visualization of flux tower 

site locations and MODIS pixel boundary 

 

Table 3.1 A summary description of the two savanna woodland flux tower sites 

Site Name Country 

Latitude 

(°) 

Longitude 

(°) 

Ecosystem 

C3/C4 

 

MAP 

(mm) 

MAT 

(°C) 

Flux 

measurements 

Maun Botswana -19. 9155 23. 5603 mopane woodland 80/20 464 22.6 1999 - 2001 

Mongu Zambia -15.4388 23.2525 miombo woodland 95/5 945 25 2007 - 2009 

MAP: Mean Annual Precipitation; MAT: Mean Annual Temperature  

 

3.2.2 Site-specific meteorological data and CO2 flux data 

All meteorological and CO2 flux data used in this study were downloaded from 

CarboAfrica data portal (http://gaia.agraria.unitus.it/newtcdc2/CarboAfrica_home.aspx). 

It provides the meteorological and CO2 flux datasets at half hourly, daily, 8-day, and 

Mongu 

Maun 

(b) (c) (a) 
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monthly intervals. CO2 fluxes and meteorological data of the two sites were available for 

the periods of 1999 - 2001 and 2007 - 2009, respectively (Figure 3.2 and Figure 3.3). The 

precipitation data in 2008/2009 at the Mongu site was incomplete due to a sensor 

malfunction. We used precipitation data from the Zambian Meteorological Department 

(20 km away) to replace the missing data. At the Maun site, precipitation started in late-

November and lasted until May of the next year. Annual rainfall was 197 mm in 

2000/2001 and 431 mm in 1999/2000, respectively. The wet season at the Mongu site 

was concentrated from mid-October to the end of March of the next year, and annual 

precipitation was 1160 mm in 2007/2008 and 1205 mm in 2008/2009 (Figure 3.2). 

 

Figure 3.2 Seasonal dynamics and interannual variations of precipitation (Precip), 

photosynthetically active radiation (PAR), soil water content at the upper 100 cm of 

soil (SWC), and air temperature (Tair) observed at the two savanna woodland flux 

sites in Africa. (a) Maun, Botswana, during 1999 - 2001; (b) Mongu, Zambia, during 

2007 - 2009 
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The 8-day Level 4 datasets contain air temperature, precipitation, PAR, GPP, and 

NEE. NEE is gap-filled by two mathematical algorithms: the Marginal Distribution 

Sampling (MDS) (Reichstein et al. 2005) and the Artificial Neural Network (ANN) 

approach as described in (Papale and Valentini 2003). In this study, we used the 

standardized GPP dataset partitioned from NEE generated with the MDS approach. We 

carefully evaluated the NEE and GPP data, and identified questionable observations 

(Figure 3.3). At the Maun site, three 8-day periods during December 2000 and January 

2001 showed extremely large variations of NEE and GPP (in the range of 40% to 100% 

in comparison with its neighboring 8-day periods), we treated them as outliers and 

excluded them in data analysis (Figure 3.3a).   

 

Figure 3.3 Seasonal dynamics and interannual variations of observed net ecosystem 

exchange of CO2 (NEEEC) and estimated gross primary production (GPPEC) at the 

two savanna woodland sites, with the growing seasons highlighted. (a) the Maun site, 

Botswana, during 1999 - 2001; (b) the Mongu site, Zambia, during 2007 - 2009 
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3.2.3 MODIS land surface reflectance, vegetation indices, and MODIS GPP products 

he Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra 

and Aqua satellites provide global coverage of imagery every one to two days from 36 

spectral bands. This study used the MODIS Land Surface Reflectance 8-Day L3 Global 

500 m products (MOD09A1, Collection 5). MOD09A1 provides land surface reflectance 

from seven spectral bands: Red (620 - 670 nm), NIR1 (841 - 876 nm), Blue (459 - 479 

nm), Green (545 - 565 nm), NIR2 (1230 - 1250 nm), SWIR1 (1628 - 1652 nm), and SWIR2 

(2105 - 2155 nm). There are forty-six MOD09A1 8-day composites within a year. The 

time-series MOD09A1data (2/2000 to 12/2011) for the Maun and Mongu sites were 

extracted from the MODIS data portal at the Earth Observation and Modeling Facility 

(EOMF), University of Oklahoma (http://www.eomf.ou.edu/visualization/manual/).  

For each MODIS 8-day observation of surface reflectance, three vegetation 

indices were calculated using surface reflectance () from the blue, green, red, NIR1, and 

SWIR1 bands: (1) NDVI (Tucker 1979b), (2) EVI (Huete et al. 2002; Huete et al. 1997b), 

and (3) LSWI (Xiao et al. 2004a; Xiao et al. 2005c). 

                    (3.1) 

                             (3.2) 

        (3.3) 

The vegetation indices calculated from surface reflectance contained noise caused 

by cloud, cloud shadow, atmospheric aerosols, and the large observing angle. The quality 

flags of MOD09A1 files showed many bad-quality observations over the course of the 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅1

−𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅1
+𝜌𝑟𝑒𝑑

 

𝐸𝑉𝐼 =
𝜌𝑁𝐼𝑅1

−𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅1
+6 × 𝜌𝑟𝑒𝑑 − 7.5 × 𝜌𝑏𝑙𝑢𝑒 + 1

 

𝐿𝑆𝑊𝐼 =
𝜌𝑁𝐼𝑅1

− 𝜌𝑆𝑊𝐼𝑅 1

𝜌𝑁𝐼𝑅1
+ 𝜌𝑆𝑊𝐼𝑅 1
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wet season for the Mongu site. If the quality flag of an observation listed cloud, cloud 

shadow, aerosol quality, or adjacency to cloud, the observation was marked as unreliable. 

Built upon the two-step gap-filling procedure reported in earlier studies (Xiao et al. 

2004a), we used a three-step gap-filling procedure to gap-fill vegetation index time series 

data. Step 1 deals with only one bad-quality observation (x(t)). We defined a filter with a 

three-observation moving window (x(t-1), x(t) and x(t+1)) and used data considered to 

be of  good quality or reliable observations to correct or gap-fill unreliable observations. 

If both x(t-1) and x(t+1) pixels were reliable and x(t) was unreliable, the average of x(t-

1) and x(t+1) was used to replace x(t). If only one observation (either x(t-1) or x(t+1)) 

was reliable and x(t) was unreliable, we used that observation to replace x(t). Step 2 

addresses the situation with two consecutive bad-quality observations ((x(t), x(t+1)). We 

defined a filter with a 4-observation moving window (x(t-1), x(t), x(t+1), x(t+2)). We 

calculated the difference between x(t-1) and x(t+2) values and added them as an 

increment to gap-fill x(t) and x(t+1). Step 3 deals with the situation with three or more 

consecutive bad observations. We used multi-year mean vegetation index data during 

2000 - 2011 to gap-fill those individual 8-day periods with bad quality. For example, the 

mean (M) and standard deviation (SD) of NDVI at individual 8-day periods over 2000 - 

2011 (12 years) were first calculated using the reliable observations in 8-day periods, 

which constructed a mean NDVI time series in a mean year. We then calculated 

differences of NDVI between reliable observations in a year (e.g., 2007) and the mean 

NDVI values (M) over 2000 - 2011 (i.e., the mean year). If a year was closer to the mean 

year, we used M values to gap-fill those 3 or more unreliable observations. If a year was 

close to the M-SD values, we used M-SD values to gap-fill those 3 or more unreliable 
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observations. The same rule was applied to M+SD case. Figure 3.4 shows a comparison 

between the raw vegetation index data and the gap-filled vegetation index data at these 

two sites. 16% and 35% of the vegetation index observations were gap-filled during the 

growing seasons of the study periods for the Maun and Mongu sites, respectively. 

 

Figure 3.4 Seasonal dynamics and interannual variations of three MODIS-derived 

vegetation indices at the two savanna woodland flux sites, with the growing seasons 

highlighted (a) the Maun site, Botswana, during 1999 - 2001; (b) the Mongu site, 

Zambia, during 2007 - 2009 
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(Zhao et al. 2006). The MODIS GPP product (GPPMOD17A2) were acquired from the Oak 

Ridge National Laboratory’s Distributed Active Archive Center website 
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3.2.4 The Vegetation Photosynthesis Model (VPM) 

The Vegetation Photosynthesis Model (VPM) is based on the conceptual 

partitioning of chlorophyll and non-photosynthetically active vegetation (NPV) in a 

canopy. It estimates GPP over the plant growing season at daily or weekly intervals (Xiao 

et al. 2004a) 

                       (3.4) 

where PAR is the photosynthetically active radiation (μmol photosynthetic photon flux 

density, PPFD), FPARchl is the fraction of PAR absorbed by chlorophyll in the canopy, 

and εg is the light use efficiency (µmol/µmol PPFD). 

The light use efficiency parameter (εg) is estimated by the theoretical maximum 

light use efficiency (ε0, umol/umol PPFD), air temperature (Tscalar), water condition of 

land surface (Wscalar) and vegetation growing stage (Pscalar):   

        (3.5) 

Tscalar is estimated at each time interval, using the formula developed for the 

Terrestrial Ecosystem Model (Raich et al. 1991): 

   𝑇𝑠𝑐𝑎𝑙𝑎𝑟 =
(𝑇−𝑇𝑚𝑖𝑛)(𝑇−𝑇𝑚𝑎𝑥)

[(𝑇−𝑇𝑚𝑖𝑛)(𝑇−𝑇𝑚𝑎𝑥)]−(𝑇−𝑇𝑜𝑝𝑡)2     (3.6) 

where Tmin, Topt, and Tmax are minimum, optimum, and maximum temperature for leaf 

photosynthetic activities, respectively. When air temperature falls below Tmin, Tscalar is set 

to zero. Considering optimum temperature ranges and the predominant climate at the two 

sites, the Tmin, Topt, and Tmax were set to 10˚C, 28˚C, and 48˚C, respectively (McGuire et 

al. 1992). 

𝐺𝑃𝑃 = 𝜀𝑔 × 𝐹𝑃𝐴𝑅𝑐ℎ𝑙 × 𝑃𝐴𝑅 

𝜀𝑔 = 𝜀0 × 𝑇𝑠𝑐𝑎𝑙𝑎𝑟 × 𝑊𝑠𝑐𝑎𝑙𝑎𝑟 × 𝑃𝑠𝑐𝑎𝑙𝑎𝑟   1 
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Instead of using soil moisture and/or water vapor pressure deficit (VPD), the VPM 

uses LSWI to estimate the effect of land surface water conditions on photosynthesis 

(Wscalar): 

𝑊𝑠𝑐𝑎𝑙𝑎𝑟 =
1+𝐿𝑆𝑊𝐼

1+𝐿𝑆𝑊𝐼𝑚𝑎𝑥
       (3.7) 

where LSWImax is the maximum LSWI during the growing season for an 

individual pixel (Xiao et al. 2004a). Equation 3.7 was proven to work well in vegetation 

with semi-humid and humid climate (Xiao et al. 2004a; Xiao et al. 2006b; Xiao et al. 

2004b; Xiao et al. 2005c) and we used it for the Mongu site in this study. LSWI of 

vegetation with arid and semi-arid climate could have very low values (-0.20 or lower). 

LSWI threshold value (LSWI >= -0.1) was used to delineate vegetation phenology in a 

dynamic system of bare soils and crops (John et al. 2013; Kalfas et al. 2011a). We 

proposed a slightly modified Wscalar (see Equation 3.8) and used it for the Maun site (the 

semi-arid site). In Equation 3.8, we added the absolute value of LSWI >= -0.1 into the 

denominator:  

        (3.8) 

Pscalar accounts for the effect of leaf longevity on photosynthesis on the canopy 

level. For deciduous trees, Pscalar is calculated at two different phases as linear function:  

 during bud emergence to full leaf expansion  (3.9) 

   after full leaf expansion             (3.10) 

FPARchl is estimated as a linear function of EVI (Equation 3.11) and the 

coefficient α is set to 1.0 in the current version of the VPM model (Xiao et al. 2004a):  

𝑊𝑠𝑐𝑎𝑙𝑎𝑟 =
1 − 𝐿𝑆𝑊𝐼

1 + 0.1 + 𝐿𝑆𝑊𝐼𝑚𝑎𝑥
 

𝑃𝑠𝑐𝑎𝑙𝑎𝑟 =
1 + 𝐿𝑆𝑊𝐼

2
 

𝑃𝑠𝑐𝑎𝑙𝑎𝑟 = 1 
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                   (3.11) 

3.3 Results 

3.3.1 Land surface phenology as delineated by CO2 flux data and vegetation indices 

The Maun Site 

GPPEC showed strong seasonal dynamics at the site (Figure 3.3a). GPPEC started 

to rise and exceeded 1 g C m-2 day-1 in late November 1999, increased rapidly and peaked 

in March 2000 (Figure 3.3a). After the peak, GPPEC gradually decreased and fell below 

1 g C m-2 day-1 again by July 2000. Similar seasonal dynamics also occurred in 

2000/2001. The leaf-on and leaf-off phases of mopane woodlands delineated by seasonal 

GPPEC occurred in November and July, respectively. 

At the end of the dry season in 1999/2000, NDVI, EVI, and LSWI remained low 

(< 0.3, < 0.2, and < -0.15) for about three months, followed by a rapid increase in early 

November of 2000/2001 (Figure 3.4a). The thresholds of NDVI, EVI, and LSWI, when 

GPPEC was above 1 g C m-2 day-1, were ≥ 0.3, ≥ 0.2 and ≥ -0.15 (Figure 3.4a). All three 

vegetation indices continuously increased to the maximum in late February. At the end 

of the wet season, when GPPEC began to decline to 1 g C m-2 day-1 and below, NDVI, 

EVI and LSWI decreased similarly (0.3, 0.2, and -0.1) during the leaf senescence and 

abscission stages. Therefore, compared with the seasonal dynamics and interannual 

variation of GPPEC, all three vegetation indices have the potential to identify the growth 

dynamics of mopane woodlands at the Maun site in Botswana. 

Table 3.2 summarizes the land surface phenology (leaf-on and leaf-off dates) as 

determined from GPPEC and vegetation indices at the Maun site. As defined by GPPEC (> 

1 g C m-2 day-1), the leaf-on and leaf-off dates of 2000/2001 were 11/08/2000 and 

𝐹𝑃𝐴𝑅chl = 𝑎 × 𝐸𝑉𝐼   
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07/12/2001, respectively. The leaf-on date of 2000/2001 defined by LSWI was the same 

as defined by GPPEC (11/08/2000); and the leaf-off date defined by LSWI (07/04/2000) 

differed from that defined by GPPEC (07/12/2001) by one week earlier. The total GPP 

over the growing season defined by LSWI (710 g C m-2) was about 1.5 % lower than the 

total GPP over the growing season defined by GPPEC (721 g C m-2). 

Table 3.2 Land surface phenology (leaf-on and Leaf-off dates) of the savanna 

woodland flux tower sites in Botswana and Zambia, as delineated by the estimated 

Gross Primary Production (GPP) data from the flux towers and a NIR/SWIR-based 

vegetation index (LSWI) 

Site 

Name 

GPPEC ≥  1 g C m-2 day-1 

Total  

GPPEC 

LSWI ≥ -0.1 or ≥ -0.15* 

Total 

GPPEC 

GPPEC 

%RE 
Leaf-on 

date 

Leaf-off 

date 

Leaf-on 

date 

Leaf-off 

date 

Maun 

12/11/2000 07/19//2000  N/A 07/11/2000* N/A N/A 

11/8/2000 07/12/2001 721 11/8/2000* 07/04/2001 710 -1.5% 

Mongu 

09/22/2007 08/20/2008 1789 09/22/2007 08/20/2008 1789 0% 

09/21/2008 07/12/2009 1510 09/29/2008 07/04/2009 1486 -1.5% 

* If LSWI time series data have values of < -0.15, we chose LSWI threshold value to be ≥ -0.15. Starting 

date for LSWI was the first date that has consecutive LSWI values ≥ -0.1/-0.15 over the period of late dry 

season to early wet season; Ending date for LSWI was the first date that has LSWI values ≥ -0.1/-0.15 over 

the period of late wet season and early dry season.  

The Mongu Site  

GPPEC had a strong seasonal dynamics at the site (Figure 3.3b), varying between 

0 and 9 g C m-2 day-1. GPPEC started to rise and exceeded 1 g C m-2 day-1 in late-September 

2007, and rapidly increased until peaking in December 2007 (Figure 3.3b). From June to 

August 2008, GPPEC continuously decreased and reached 1 g C m-2 day-1. Similar 

temporal dynamics occurred in 2008/2009. Therefore, the leaf-on phase began in 

September, and the leaf-off phase happened between June and August.  
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NDVI, EVI, and LSWI increased in late September and corresponded well with 

the timing of GPPEC increases. The thresholds of NDVI, EVI, and LSWI, when GPPEC 

was above 1 g C m-2 day-1, were ≥ 0.4, ≥ 0.3, and ≥ - 0.1, respectively (Figure 3.4b). 

NDVI, EVI, and LSWI peaked between November and January, and slowly decreased 

afterwards to 0.4/0.5, 0.3, and -0.1. The leaf-on and leaf-off dates defined by LSWI ( ≥ -

0.1) in 2007/2008 were the same as defined by GPPEC (Table 3.2), and the total GPP over 

the growing season defined by LSWI (1789 g C m-2) was the same amount as the total 

GPPEC (1789 g C m-2). For 2008/2009, the leaf-on date defined by LSWI was one 8-day 

interval later than the one defined by GPPEC whereas the leaf-off date was one 8-day 

interval earlier than the one defined by GPPEC. The total GPP over the growing season 

defined by LSWI (1486 g C m-2) was 1.5 % lower than the total GPP over the growing 

season defined by GPPEC (1510 g C m-2). 

3.3.2 Quantitative relationships between vegetation indices and GPPEC 

At the Mongu site (Figures 3.5a, b), simple linear regression models between 

vegetation indices (NDVI and EVI) and GPPEC during the growing season (LSWI ≥ -0.15 

or -0.1) show that NDVI and EVI accounted for 22 % and 67 % of GPPEC variances, 

respectively (Figure 3.5). Due to the sparse vegetation coverage with maximum leaf area 

index of 1.0 at the Maun site, NDVI can be easily influenced by soil background (Huete 

et al. 2002). Thus, the weak linear relationship between NDVI and GPPEC can be 

attributed to the NDVI sensitivity to soil background under the low vegetation coverage 

at the Maun site. EVI performs better to track the subtle changes of mopane woodlands 

at this site by correcting the impact of canopy background and atmosphere correction 

(Huete et al. 2002).  
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At the Mongu site (Figures 3.5c, d), NDVI and EVI accounted for 65 % and 68 

% of GPPEC variances, respectively. EVI had a slightly stronger linear relationship with 

GPPEC than NDVI. The relatively weak linear relationship between NDVI and GPPEC 

might be attributed to the NDVI saturation in dense canopies as found at the Mongu site. 

During the peak of growing season (GPPEC > 6 g C m-2 day-1), NDVI values concentrated 

from 0.7 to 0.8. However, EVI had the wider dynamic range of 0.3 - 0.5 and was more 

sensitive to the canopy changes of miombo woodlands.  

 

Figure 3.5 The relationships between two vegetation indices (NDVI, EVI) and gross 

primary production (GPPEC) during the vegetation growth season at the two 

savanna woodland flux sites. (a) and (b) the Maun site, Botswana, during 1999 - 

2001; (c) and (d) Mongu, Zambia, Africa, during 2007 - 2009 
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Note that NDVI accounted for 22% of GPPEC variance at the Maun site but 65% 

of GPPEC at the Mongu site. This large discrepancy in biophysical performance is 

attributed to the sensitivity of NDVI to soil background. LAI was much higher at the 

Mongu site than at the Maun site (see Section 3.2.1). This clearly suggests that for the 

study of sparse vegetation in arid and semi-arid climates, one needs to be cautious when 

using NDVI to estimate biophysical parameters such as GPP. 

3.3.3 Seasonal dynamics of GPP from the Vegetation Photosynthesis Model (GPPVPM) 

The Maun Site 

The seasonal dynamics of GPPVPM corresponded well with GPPEC over the period 

of February to July 2000 (Figure 3.6). The simple linear correlation analysis between 

GPPVPM and GPPEC showed that GPPVPM was strongly correlated with GPPEC during this 

period (R2 = 0.92, p < 0.001, (Figure 3.7a). The root mean square deviation value (RMSD) 

was 0.32 g C m-2 day-1 in 1999/2000 (Table 3.3). The sum of GPPVPM over the period 

with observations available was 468 g C m-2, which was about 0.6% higher than the sum 

of GPPEC (465 g C m-2).  

 

Figure 3.6 Seasonal dynamics and interannual variations of gross primary 

production at the Maun site, Botswana, during 1999 – 2001, with the growing 

seasons highlighted. GPPEC - estimated GPP from the flux tower data; GPPVPM - 

predicted GPP from the VPM model 
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During 2000/2001, the seasonal dynamics of GPPVPM tracked reasonably well 

with GPPEC except in January and July 2001 (Figure 3.6). The simple linear regression 

model between GPPVPM and GPPEC in 2000/2001 had a slope of 1.02 but R2 = 0.64 (p < 

0.001, Figure 3.7b), which suggested that GPPEC data in 2001 had much larger variation. 

The RMSD value was 0.67 g C m-2 day-1 in 2000/2001 (Table 3.3). The seasonal sum of 

GPPVPM in 2000/2001 was 753 C m-2, being 6.1 % higher than the seasonal sum of GPPEC 

(710 g C m-2). 

 

Figure 3.7 A comparison between GPPEC and GPPVPM at the Maun site, Botswana, 

during (a) 1999/2000, (b) 2000/2001 

 

Table 3.3 A summary of gross primary production (GPP) estimated from the flux 

tower measurements (GPPEC) and the predictions from the VPM model (GPPVPM) 

at the savanna woodland flux tower sites in Botswana and Zambia. GPPEC: seasonal 

sum of GPP estimated from the eddy covariance flux tower observations in g C m-2, 

GPPVPM: seasonal sum of GPP predicted by the VPM in g C m-2, GPP%RE: relative 

error in GPP sums calculated as [(GPPVPM - GPPEC)/GPPEC]×100, RMSD: Root 

Mean Squared deviation 
Site Name Plant Growing Season GPPEC GPPVPM GPP%RE RMSD 
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2000-2001 710 753 6.1 0.67 
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2008-2009 1487 1422 -4.4 0.90 

 

The Mongu Site 

 The seasonal dynamics of GPPVPM correlated well with GPPEC during 2007/2008 

(Figure 3.8). GPPVPM started to increase in late-September 2007, and reached the peak in 

December 2007. GPPVPM decreased gradually after January and fell below 1 g C m-2 day-

1 after July 2008. The simple linear correlation analysis showed that GPPVPM correlated 

well with GPPEC in 2007/2008 (R2 = 0.87, p < 0.001, Figure 3.9a). The RMSD value was 

0.76 g C m-2 day-1 over the period of 2007/2008. The seasonal sum of GPPVPM during 

2007/2008 was 1759 g C m-2, approximately 1.7% lower than the sum of GPPEC (1789 g 

C m-2). 

 

Figure 3.8 Seasonal dynamics and interannual variations of GPPEC and GPPVPM at 

the Mongu site, Zambia, during 2007-2009, with the growing seasons highlighted 

 

The seasonal dynamics of GPPVPM in the period of 2008/2009 showed the same 

trend as in 2007/2008. The simple linear correlation analysis showed that GPPVPM 

correlated well with GPPEC in 2008/2009 (R2 = 0.86, p < 0.001, Figure 3.9b). The RMSD 

value was 0.90 g C m-2 day-1 over the period of 2008/2009. The seasonal sum of GPPVPM 

Mongu

Time (8-day period)

01/01/07  07/01/07  01/01/08  07/01/08  01/01/09  07/01/09  01/01/10  

C
ar

b
o

n
 F

lu
x
e
s 

(g
 C

 m
-2

 d
ay

-1
)

0

2

4

6

8

10
GPP

EC

GPP
VPM



53 

during 2008/2009 was 1487 g C m-2, approximately 4.4 % lower than the seasonal sum 

of GPPEC (1422 g C m-2). 

 

Figure 3.9 Comparison between GPPEC and GPPVPM at the Mongu site, Zambia, 

during (a) 2007/2008, (b) 2008/2009 

 

3.4 Discussion 

The importance of phenology of savanna woodlands in relation to the seasonal 

variation of net primary production has been recognized in earlier studies (de Bie et al. 

1998). Several studies have evaluated and reported on the phenology of savanna 

vegetation (Chidumayo 2001; Fuller 1999; Fuller and Prince 1996; Hutley et al. 2011; 

Oliveira et al. 2012; Vrieling et al. 2011; Wagenseil and Samimi 2006). These studies 

found that NDVI had strong responses to phenological changes of savanna vegetation 

(Batista et al. 1997; Franca and Setzer 1998). For instance, Fuller (1999) and Fuller and 

Prince (1996) delineated leaf dynamics of savanna woodlands in Africa (including the 

mopane and miombo woodlands) with time series NOAA/AVHRR NDVI and rainfall 

data. The thresholds of average NDVI increase of 0.06 and average rainfall of 50 mm 

during September and October as an indication for vegetation growth status and water 
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content status were pre-defined to retrieve the early greening stage of savanna woodlands 

in the study (Fuller 1999; Fuller and Prince 1996). However, due to the effects of 

interception, run-off, and soil water movement, the threshold of the rainfall varying over 

space could not precisely represent the leaf water status. A few recent studies reported 

that EVI behaved better than NDVI to quantify the leaf dynamics of tropical savanna and 

could effectively describe the phenology (Bradley et al. 2011; Couto et al. 2011; Ferreira 

and Huete 2004; Ferreira et al. 2003; Hoffmann et al. 2005; Hüttich et al. 2009).  

In this study we used both an ecosystem-physiology approach and a remote 

sensing approach to delineate phenology of savanna woodlands, and the results clearly 

show the convergence between these two approaches. As shown in this study, EVI 

threshold values ranged from 0.2 to 0.3, which is smaller than the range of NDVI 

threshold values (0.3 to 0.5). These results confirmed that EVI was more stable (a smaller 

range of threshold values used for leaf-on and leaf-off phases) than NDVI for delineating 

phenology of savanna woodlands when the threshold method was used. In addition, our 

study also showed that LSWI was more stable than NDVI and EVI for delineating 

phenology of savanna woodlands. The LSWI threshold value (≥ -0.1) was used to 

determine the emergence (leaf-on) and harvest (leaf-off) of croplands (Kalfas et al. 2011a; 

Yan et al. 2009). In recent years, NIR/SWIR-based vegetation indices have received more 

attention for their potential in evaluating seasonal dynamics of vegetation canopy 

(Townsend et al. 2012; Xiao et al. 2002b).  

Simulations of satellite-driven Production Efficiency Models (PEM), including 

the VPM, are affected by model parameterization and calibration (Wu et al. 2011). 

Different definitions and choices of maximum light use efficiency (ε0) and environmental 
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factors are the main sources of PEM uncertainties. ε0 determines the potential conversion 

efficiency of absorbed photosynthetically active radiation under the ideal growing 

condition. The values of ε0 should be determined according to the vegetation function 

types (VFT). Some PEMs define ε0 as an global constant value for all vegetation types; 

and others used the theoretical values from experiment measurements; and some derived 

ε0 from the model fitting between NEE and PAR during the peak of growing season (Chen 

et al. 2011; Goerner et al. 2011; Wang et al. 2010a; Wu and Niu 2012; Xiao 2006; Zhu 

et al. 2006).   

The theorectical ε0 of C3, 0.9 g C mol PPFD-1 (Ehleringer and Björkman 1977) 

used in this simulation, is higher than the value in a previous study of tropical savanna in 

Northern Australia (0.63 g C mol PPFD-1 or 1.29 g C MJ-1) and the value used in the 

standard MODIS algorithm (MOD17) of 0.5 g C mol PPFD-1 or 1.03 g C MJ-1 for the 

grassy woodlands (Kanniah et al. 2011; Kanniah et al. 2009). The large variation of ε0 

values in the PEMs suggests that more investigations of LUE calculation for savanna 

ecosystems, the mixed biome of tree (C3) and grass (C4), are needed. Accurate estimation 

of light use efficiency of the tree and grass mixed ecosystems needs precise experiments 

and modeling of the physiological and biochemical processes on the stand, canopy, and 

landscape scales (Caylor and Shugart 2004; Ludwig et al. 2004; Scholes and Archer 1997; 

Skarpe 1992; Whitley et al. 2011).  

The VPM uncertainties also come from the two dominant down-regulation 

environmental factors related to water (Wscalar) and temperature (Tscalar). Here we report a 

model sensitivity analysis of the VPM: (1) without Wscalar (GPPVPM_w/o_Wscalar), (2) 

without Tscalar (GPPVPM_w/o_Tscalar), and (3) without both Wscalar and Tscalar 
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(GPPVPM_w/o_Wscalar_Tscalar) (Figure 3.10, Figure 3.11, Table 3.4). The effect of Wscalar on 

GPPVPM is relatively larger at the Maun site than at the Mongu site, which is likely related 

to lower annual precipitation at the Maun site (464 mm, semi-arid climate) than at the 

Mongu site (945 mm, semi-humid climate). The effect of Tscalar on GPPVPM is also much 

larger at the Maun site than at the Mongu site, which is likely related to the range of 

temperature variation at these sites (see Figure 3.2). When we compared the changes in 

slope (GPPVPM = a × GPPEC), Wscalar had a higher impact than Tscalar. When we compared 

the changes in R2, Wscalar had less impact than Tscalar. In the case without both Tscalar and 

Wscalar, the model overestimated GPP by 46% to 50% at the Maun site and by 13% to 

16% at the Mongu site, suggesting that it is important to consider both water and 

temperature in semi-arid climate. 

 

Figure 3.10 Sensitivity analysis of the VPM model at the Maun site, Botswana. It 

includes three cases of VPM simulations related to Wscalar and Tscalar: (1) without 

Wscalar, i.e., εg = ε0 × Tscalar;  (2) without Tscalar, i.e., εg = ε0 × Wscalar; and (3) without 

both Wscalar and Tscalar, i.e.,  εg = ε0. (a) 1999/2000 season; (b) 2000/2001 season, (c) 

both 1999/2000 and 2000/2001 seasons. See also Table 4 for the slopes and R2 values 

of individual simple linear regression models 
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Figure 3.11 Sensitivity analysis of the VPM model at the Mongu site, Zambia, 

including three cases of VPM simulations related to Wscalar and Tscalar: (1) without 

Wscalar, i.e., εg = ε0 × Tscalar × Pscalar;  (2) without Tscalar, i.e., εg = ε0 × Wscalar × Pscalar; 

and (3) without both Wscalar and Tscalar, i.e.,  εg = ε0 × Pscalar. (a) 2007/2008 season; (b) 

2008/2009 season, (c) both 2007/2008 and 2008/2009 seasons. See also Table 4 for the 

slopes and R2 values of individual simple linear regression models 
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large in 2000/2001. This could be explained by MODIS data and GPPEC data. One 

example is that GPPEC in January 2001 dropped to 2 g C m-2 day-1 (Figure 3.6), more than 

100% lower than the GPPEC value in December 2000. Note that soil moisture data in 

January 2001 also had a dramatic drop (Figure 3.2a) but NEE data had a dramatic increase 

(Figure 3.3a). As soil moisture data were used to estimate ecosystem respiration, 

consequently GPPEC dropped substantially in January 2001. However, the three 

vegetation indices did not drop accordingly in January 2001 (Figure 3.4a). If these 

observations of soil moisture and NEE data in January 2011 had no quality problem, one 

can speculate that the three vegetation indices are not able to reflect how short-term 

drought (flash drought) affected the vegetation. Another example is the discrepancy 

between GPPVPM and GPPEC in late May to June 2001. All three vegetation indices were 
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precipitation data do not support the short-term increases in vegetation indices in that 

period. As the 8-day MODIS composite images were used in this study, evaluation of the 

image compositing method and daily MODIS images in semi-arid climates might be 

needed in the future. 

The comparisons between the MODIS standard GPP product (GPPMOD17A2) with 

GPPEC showed that GPPMOD17A2 overestimated GPP at the Maun site, and underestimated 

GPP at the Mongu site (Sjostrom et al. 2011; Sjöström et al. 2013). Here we compared 

seasonal dynamics and interannual variation of GPPMOD17A2 and GPPVPM (Figure 3.12). 

At the Maun site, GPPMOD17A2 was substantially lower than GPPEC during the first half of 

the growing season but higher than GPPEC during the second half of the growing season 

(Figure 3.12a). At the Mongu site, GPPMOD17A2 was substantially lower (up to 50%) than 

GPPEC throughout the entire growing season (Figure 3.12b). In Wu et al. (2010), the 

underestimation of two PEMs (VPM and MOD17A2) happened among multiple-year 

simulations at a deciduous forest site. At the Mongu site in our study, it was found that 

both the GPP simulation from the VPM (GPPVPM) and MOD17A2 (GPPMOD17A2) at this 

site were underestimated compared to GPPEC, especially for GPPMOD17A2 (Figure 3.12b) 

which is consistent with Wu et al. (2010). A possible explanation might be that MODIS 

sensors are not able to sense the shaded leaves within the canopy, since the Mongu site is 

located in the Kataba Forest Reserve with a dense tree canopy, high LAI (the canopy 

height is above 10 m with the fractional canopy cover of 67%) and very sparse understory 

vegetation (section 3.2.1 and Figure 3.1c), and might be defined as “forest” to some 

degree. At the Maun site, both GPPVPM and GPPMOD17A2 didn’t show the significant 

underestimation compared with the Mongu site, and were closed to GPPEC (slightly 
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overestimated, Figure 3.12a). The Maun is characterized as a sparse woodland, with a 

canopy height of 5 - 10 m and fractional canopy cover of 36%. In this situation, the 

MODIS sensors may sense all leaves within the canopy. In addition, other factors, such 

as global climate datasets used in MOD17A2 product, maximum light use efficiency 

parameter, and the fraction of photosynthetic active radiation absorbed by vegetation 

canopy (FPARcanopy) further contribute to the large discrepancies between GPPMOD17A2 

and GPPEC (Wu et al. 2010). Detailed analysis of the MOD17A2 algorithm is beyond the 

scope of this paper, but it does suggest that validation of satellite-driven PEMs at 

individual flux tower sites of savanna woodlands is important. 

 

Figure 3.12 Comparison of GPPEC and GPPVPM as well as GPP derived from the 

MOD17A2 data product (GPPMOD17A2). (a) the Maun site, Botswana, during 1999 - 

2001; (b) the Mongu site, Zambia, during 2007 - 2009 
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3.5 Conclusion 

The information of land surface phenology growing season length is useful for 

simulations of satellite-based PEMs. In this study, the land surface phenology of savanna 

woodlands, described by the satellite vegetation indices, especially the NIR/SWIR- 

water-sensitive vegetation indices (e.g., LSWI), was proven to agree well with the 

phenology based on ecosystem physiology as measured by eddy covariance technique. 

Previous studies have shown that the Vegetation Photosynthesis Model (VPM) provides 

robust and reliable estimates of GPP across several biomes and geographic regions. This 

study has also demonstrated the potential of the VPM to estimate the GPP in two savanna 

woodland ecosystems in Botswana and Zambia. The simulation results showed that the 

VPM performs reasonably well in tracking the seasonal dynamics and interannual 

variation of GPP at these two savanna woodland sites. Further evaluation of the VPM 

simulations for other savanna vegetation types is necessary before it is applied to estimate 

GPP of savanna ecosystems in Southern Africa at regional and continental scales. 
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Chapter 4: Effects of in-situ and reanalysis climate data on estimation 

of cropland gross primary production using the Vegetation 

Photosynthesis Model 

Abstract  

Satellite-based PEMs often require meteorological reanalysis data such as the 

North America Regional Reanalysis (NARR) by the National Centers for Environmental 

Prediction (NCEP) as model inputs to simulate gross primary production (GPP) at 

regional and global scales. This study first evaluated the accuracies of air temperature 

(TNARR) and downward shortwave radiation (RNARR) of the NARR by comparing with in-

situ meteorological measurements at 37 AmeriFlux non-crop eddy flux sites, then used 

one PEM—the Vegetation Photosynthesis Model (VPM) to simulate 8-day mean GPP 

(GPPVPM) at seven AmeriFlux crop sites, and investigated the uncertainties in GPPVPM 

from climate inputs as compared with eddy covariance-based GPP (GPPEC). Results 

showed that TNARR agreed well with in-situ measurements; RNARR, however, was 

positively biased. An empirical linear correction was applied to RNARR, and significantly 

reduced the relative error of RNARR by ~25 % for crop site-years. Overall, GPPVPM 

calculated from the in-situ (GPPVPM(EC)), original (GPPVPM(NARR)) and adjusted NARR 

(GPPVPM(adjNARR)) climate data tracked the seasonality of GPPEC well, albeit with different 

degrees of biases. GPPVPM(EC) showed a good match with GPPEC for maize (Zea mays 

L.), but was slightly underestimated for soybean (Glycine max L.). Replacing the in-situ 

climate data with the NARR resulted in a significant overestimation of GPPVPM(NARR) 

(18.4/29.6 % for irrigated/rainfed maize and 12.7/12.5 % for irrigated/rainfed soybean). 

GPPVPM(adjNARR) showed a good agreement with GPPVPM(EC) for both crops due to the 
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reduction in the bias of RNARR. The results imply that the bias of RNARR introduced 

significant uncertainties into the PEM-based GPP estimates, suggesting that more 

accurate surface radiation datasets are needed to estimate primary production of terrestrial 

ecosystems at regional and global scales. 

4.1 Introduction 

Croplands cover 12 % of the global ice-free terrestrial surface (Ramankutty et al. 

2008b) and provide food for more than seven billion people in the world. Increasing 

demand for food under the changing climate is one of the great challenges in the coming 

decades (Guanter et al. 2014; Lobell and Asner 2003). Gross Primary Production (GPP) 

of croplands is the total carbon uptake through photosynthesis. A recent modeling study 

estimated that croplands have an annual sum of 11 Pg C yr-1 GPP, accounting for ~10 % 

of the global terrestrial GPP (Chen et al. 2014). Crop cultivation and production vary 

substantially over space and time. Thus, an accurate quantification of cropland GPP is 

critical for global food security (Wheeler and von Braun 2013), biofuel production 

(Landis et al. 2008), and understanding variations in the terrestrial carbon cycle (Haberl 

et al. 2007). 

Production Efficiency Models (PEMs) have been widely used to quantify the 

spatial-temporal GPP variations of terrestrial ecosystems using the satellite and climate 

data as inputs. The PEMs, originating from Monteith’s theoretical concept about light use 

efficiency (LUE) (Monteith 1972a; Monteith and Moss 1977), estimate GPP as the 

product of  the photosynthetically active radiation (PAR, MJ m-2), the fraction of PAR 

absorbed by the vegetation (fPAR), and the conversion efficiency of absorbed PAR for 

carbon fixation (ε, g C MJ-1) (GPP=ε×fPAR×PAR). The PEMs for croplands can be 
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classified into two categories based on fPAR and ε estimation methods. The first category 

calculates fPAR and ε separately. This approach has been applied in the Global 

Production Efficiency Model (GLO-PEM) (Prince and Goward 1995), the MODIS Daily 

Photosynthesis model (MODIS-PSN) (Running et al. 2000a), the C-Fix model 

(Veroustraete et al. 2002), and the Vegetation Photosynthesis Model (VPM) (Xiao et al. 

2004a; Xiao et al. 2004b). The second type of PEMs, referred as the Greenness and 

Radiation (GR) model, uses the chlorophyll-related vegetation indices (VIchl) as a proxy 

of ε×fPAR (𝐺𝑃𝑃 ∝ 𝑉𝐼𝑐ℎ𝑙 × 𝑃𝐴𝑅) (Gitelson et al. 2006; Peng and Gitelson 2011, 2012; 

Peng et al. 2011; Wu et al. 2009; Zhang et al. 2014a; Zhang et al. 2015). 

Challenges remain, however, in applying PEMs due to model structure and model 

inputs. Several attempts have been made to address the uncertainties from the PEM 

algorithm itself, including the assumption of linear response of photosynthesis to light 

intensity (Chen et al. 1999), constant maximum LUE for one ecosystem (Heinsch et al. 

2006), the impacts of diffuse radiation (He et al. 2013; Zhang et al. 2012a), and the 

incomplete integration of environmental regulations (temperature, water, phenology etc.) 

to photosynthetic processes (Dong et al. 2015; Yuan et al. 2014). Most uncertainty 

analyses overlooked the potential impacts of model inputs on the application of PEMs to 

regional or global primary production monitoring. 

Meteorological reanalysis data produces continuous and near real-time climate 

monitoring via data assimilation models, and has been the major climate input of PEMs 

for the large-scale primary production simulation (Feng et al. 2007; Running et al. 2004; 

Xiao et al. 2011; Yuan et al. 2010). Studies have reported that the meteorological 

reanalysis data can be spatially and temporally biased from the ground observations, in 
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particular for downward shortwave radiation when estimating PAR (Babst et al. 2008; 

Cai et al. 2014; Decker et al. 2012; Troy and Wood 2009; Zhang et al. 2007; Zhao et al. 

2013a; Zhao et al. 2006; Zib et al. 2012). PEMs have been found very sensitive to the 

accuracy of climate reanalysis variables (Cai et al. 2014; Heinsch et al. 2006; Zhang et 

al. 2007; Zhao et al. 2006). For example, Heinsch et al. (2006) reported that the errors 

associated with the standard MODIS GPP product were mainly attributed to the NASA’s 

Data Assimilation Office (DAO) reanalysis data. Previous sensitivity analyses of PEMs 

to climate inputs focused on global reanalysis data, the spatial resolution of which is too 

coarse to delineate the local climatic variations.  

The North America Regional Reanalysis (NARR) by the National Centers for 

Environmental Prediction (NCEP) is the only currently available long-term regional 

reanalysis data. Compared with the NCEP global reanalysis datasets, the NARR 

substantially improves the spatio-temporal resolutions along with the accuracy of climate 

variables (Mesinger et al. 2006) and could be an alternative climate driver of regional 

GPP estimates in particular for croplands, one of the most heterogeneous landscapes. 

There has been very limited research regarding the uncertainties of PEMs in relation to 

the NARR. Therefore, careful investigation of the accuracy of the NARR and its impacts 

on cropland GPP estimates at site level is an indispensable step prior to the large scale 

application of these tools.  

The objectives of this study were to: (1) evaluate the accuracy of the NARR (air 

temperature and downward shortwave radiation) as compared to the in-situ observations 

from the AmeriFlux network at 8-day intervals; (2) adjust the NARR based on the 

statistical differences from in-situ meteorological measurements; and (3) quantify the 
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impacts of different climate inputs (in-situ meteorological data and the original and 

adjusted NARR data) on the GPP simulation for maize and soybean using the VPM at 

seven AmeriFlux crop sites (40 site-years). 

4.2 Data and methods 

4.2.1 NARR 

The NARR is produced at a spatial resolution of 32 km and a temporal resolution 

of 3-hours. We obtained the NARR daily gridded air temperature (TNARR) and downward 

shortwave radiation (RNARR) from http://www.esrl.noaa.gov/psd/. The daily TNARR and 

RNARR for the pixels covering AmeriFlux sites were extracted for the available site-years 

at 44 AmeriFlux sites and were aggregated to 8-day intervals to match the temporal 

resolution of MODIS products. 

4.2.2 MODIS land surface reflectance, vegetation indices products   

This study used the 8-day 500 m MODIS Surface Reflectance product—

MOD09A1 to derive vegetation indices. The time-series MOD09A1 data for the crop 

sites were extracted from the MODIS data portal at the Earth Observation and Modeling 

Facility, University of Oklahoma (http://www.eomf.ou.edu/visualization/manual/). The 

Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) were calculated 

for every 8-day observation using equations (4.1) and (4.2).  

𝐸𝑉𝐼 = 2.5 ×
𝜌𝑁𝐼𝑅1−𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅1+6×𝜌𝑟𝑒𝑑−7.5×𝜌𝑏𝑙𝑢𝑒+1
    (4.1) 

𝐿𝑆𝑊𝐼 =
𝜌𝑁𝐼𝑅1−𝜌𝑆𝑊𝐼𝑅1

𝜌𝑁𝐼𝑅1+𝜌𝑆𝑊𝐼𝑅1

       (4.2) 

where 𝜌𝑁𝐼𝑅1
, 𝜌𝑟𝑒𝑑 , 𝜌𝑏𝑙𝑢𝑒 , and 𝜌𝐿𝑆𝑊𝐼  are the MOD09A1 surface reflectance for NIR1 

(841-876 nm), red (620–670 nm), blue (459–479 nm), and SWIR1 (1628–1652 nm), 

respectively. A two-step gap-filling procedure was applied to gap-fill bad-quality 
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observations within the time series of vegetation indices (Xiao et al. 2004a; Xiao et al. 

2004b). 

4.2.3 In-situ meteorological observations and CO2 flux data 

The AmeriFlux network consists of eddy covariance flux sites for monitoring the 

long-term ecosystem-scale exchange of carbon, energy, and water in North America 

(Baldocchi et al. 2001). Meteorological observations such as temperature, precipitation, 

and radiation are also collected at these sites.  

We obtained all available 8-day Level 4 data of the AmeriFlux sites covering the 

conterminous U.S. from http://ameriflux.lbl.gov/Pages/default.aspx (Figure 4.1). The 

Level 4 data included air temperature (TEC), downward shortwave radiation (REC), and 

CO2 flux data. This study used the standardized GPP (GPPEC), which was partitioned 

from net ecosystem CO2 exchange (NEE). By screening quality flags, only the most 

reliable observations were chosen for analysis. TEC and REC from 37 non-crop sites (139 

site-years) were used to evaluate and to adjust the NARR, if there were large biases. A 

total of 23 site-years of TEC and REC and 40 site-years of GPPEC from seven crop sites 

were used to validate the adjusted NARR and to evaluate the VPM-simulated GPP, 

respectively (Table 4.1). The crop sites were located in the U.S. Midwest corn and 

soybean belt, and were under different agricultural management practices. US-NE1 was 

a continuous irrigated maize site and US-NE2 was an irrigated maize/soybean rotation 

site. The other five sites were rainfed rotation sites. The detailed descriptions about these 

sites can be found in site specific publications (Griffis et al. 2005; Meyers and Hollinger 

2004; Verma et al. 2005). 
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Figure 4.1 Location of the AmeriFlux eddy flux sites. Circles denote the non-crop 

sites for accuracy assessment of the NARR and stars denote the crop sites used to 

evaluate the VPM-based GPP estimates. The base map is the 2013 Cropland Data 

Layer (CDL) from the National Agricultural Statistics Service (NASS) 

 

It is important to mention that a direct comparison between the in-situ AmeriFlux 

observations and the NARR data without considering the differences of spatial scales 

might introduce some uncertainties. The in-situ observations can be affected by local 

environment conditions (terrain, hydrology, land cover etc.), while the NARR might be 

too coarse to delineate local environment variations. However, the AmeriFlux is currently 

the best available dataset providing high-quality and synchronized observation of 

radiation, temperature, water and carbon fluxes under standard protocols. 
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4.2.4 The Vegetation Photosynthesis Model (VPM) 

The VPM is one PEM based on the conceptual partition of the light absorption by 

chlorophyll pigments and nonphotosynthetic vegetation (NPV such as branches, trunks, 

or senescent leaves) (Xiao et al. 2004a; Xiao et al. 2004b). The VPM defines the fPAR 

as the fraction of PAR absorbed by plant chlorophyll (fPARchl): 

G𝑃𝑃 =  𝜀 × 𝑓𝑃𝐴𝑅𝑐ℎ𝑙 × 𝑃𝐴𝑅      (4.3) 

   𝑓𝑃𝐴𝑅𝑐ℎ𝑙 = 𝐸𝑉𝐼       (4.4) 

𝜀 = 𝜀0 × 𝑇𝑠𝑐𝑎𝑙𝑎𝑟 × 𝑊𝑠𝑐𝑎𝑙𝑎𝑟          (4.5) 

where PAR is calculated as 0.45 × R (R, downward shortwave solar radiation);  𝑓𝑃𝐴𝑅𝑐ℎ𝑙 

is equivalent to EVI; Light use efficiency, 𝜀 , is estimated as a function of the maximum 

light use efficiency (𝜀0), temperature (Tscalar) and water condition (Wscalar). The 𝜀0 values 

of 3.12 g C MJ-1 for maize (Kalfas et al. 2011a) and 1.75 g C MJ-1 for soybean (Wagle et 

al. 2015) were used in this study. 

The effect of temperature scalar (Tscalar) on GPP is calculated using the equation 

from the Terrestrial Ecosystem Model (Raich et al. 1991): 

𝑇𝑠𝑐𝑎𝑙𝑎𝑟 = {

(𝑇−𝑇𝑚𝑖𝑛)(𝑇−𝑇𝑚𝑎𝑥)

[(𝑇−𝑇𝑚𝑖𝑛)(𝑇−𝑇𝑚𝑎𝑥)]−(𝑇−𝑇𝑜𝑝𝑡)2 , 𝑇𝑚𝑖𝑛 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥

0, 𝑇 ≤ 𝑇𝑚𝑖𝑛, 𝑇 ≥ 𝑇𝑚𝑎𝑥

  (4.6) 

where T is 8-day mean air temperature; Tmin, Topt, and Tmax are minimum, optimum, and 

maximum temperatures for vegetation photosynthesis, respectively, and were set to 10 

°C, 28 °C, 48 °C for maize (Kalfas et al. 2011a), and -1 °C, 28 °C, 50 °C for soybean 

(Wagle et al. 2015). 

The effect of water scalar (Wscalar) on GPP is calculated with LSWI:   

𝑊𝑠𝑐𝑎𝑙𝑎𝑟 = {

1+𝐿𝑆𝑊𝐼

1+𝐿𝑆𝑊𝐼𝑚𝑎𝑥
, 𝐿𝑆𝑊𝐼 > 0

𝐿𝑆𝑊𝐼 + 𝐿𝑆𝑊𝐼𝑚𝑎𝑥 , 𝐿𝑆𝑊𝐼 ≤ 0
    (4.7) 
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where LSWImax is the maximum LSWI during growing season.  

This study used the VPM to simulate three sets of GPPVPM: GPPVPM(EC), 

GPPVPM(NARR), and GPPVPM(adjNARR), using T and R from eddy flux sites (TEC, REC), the 

NARR (TNARR, RNARR), and the adjusted NARR (TNARR, RadjNARR), respectively. 

4.2.5 Statistical analysis  

To quantify the differences between TNARR and TEC, RNARR and REC, correlation 

coefficient (𝜌), ratio of standard deviation (𝜎𝑟𝑎𝑡𝑖𝑜), bias, and root-mean-square-error 

(RMSE) were calculated for each non-crop site-year. The histogram of each statistics 

was summarized for all non-crop site-years to characterize the overall accuracy of 

TNARR and RNARR.  

Mean Squared Error (MSE) was calculated for TNARR and RNARR of each site-

year, and decomposed into three terms (Decker et al. 2012; Gupta et al. 2009), such that  

𝑀𝑆𝐸 = 2𝜎𝑁𝐴𝑅𝑅𝜎𝐸𝐶  (1 − ρ) + (𝜎𝑁𝐴𝑅𝑅−𝜎𝐸𝐶)2 + (𝜇𝑁𝐴𝑅𝑅−𝜇𝐸𝐶)2  (4.8) 

where 𝜇𝐸𝐶  and  𝜎𝐸𝐶  are the mean and standard deviation for the in-situ observations, 

respectively. 𝜇𝑁𝐴𝑅𝑅 and 𝜎𝑁𝐴𝑅𝑅  are the mean and standard deviation for the NARR, 

respectively. The first, second, and third terms in equation (4.8) were represented in 

ternary diagrams to concisely visualized the contribution of correlation (𝜌), consistency 

of variation (𝜎𝑟𝑎𝑡𝑖𝑜), and bias (bias and RMSE) to the overall disagreements between 

TNARR and TEC and between RNARR and REC.  

The simple linear regression between REC and RNARR was also calculated for all 

non-crop site-years (REC = α × RNARR). On the basis of the spatial pattern of regression 

coefficients (α), an empirical ratio-based adjustment was applied to RNARR at the crop 

sites (RadjNARR). Relative error (RE), RMSE, regression coefficient (α), and coefficient of 
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determination (R2) of the simple linear regression between RNARR and REC, and RadjNARR 

and REC were obtained to quantify the adjustment performance. 

This study implemented a top-down strategy to evaluate the impact of different 

climate inputs on GPPVPM. First, the statistics factors described above were used to 

quantify how GPPVPM(EC), GPPVPM(NARR), and GPPVPM(adjNARR) matched GPPEC for 

individual crops. Second, the similarities between GPPVPM and GPPEC across individual 

crop-sites were evaluated using Taylor diagrams. Taylor diagrams provide a statistical 

summary of the similarity of variability pattern (𝜌), the agreement of the variability 

amplitudes (represented by the ratio of normalized standard deviation, 𝜎𝑟𝑎𝑡𝑖𝑜), and the 

centered RMSE between the modeled results and the observations (Gleckler et al. 2008; 

Taylor 2001). In addition, annual mean RMSE of GPPVPM was calculated for each crop 

site-year.  

4.3 Results 

4.3.1 Comparison of air temperature 

TNARR agreed well with TEC for almost all non-crop site-years. TNARR was 

significantly correlated with TEC (𝜌 > 0.95 for 139 site-years, Figure 4.2). In addition, 

TNARR showed a similar amplitude of variation as in TEC, as ~82 % of site-years had 𝜎𝑟𝑎𝑡𝑖𝑜 

within ±10 % error. TNARR was mostly overestimated with a positive bias of 0.5–2.5 °C 

and a mean RMSE of 1.67 °C. The simple linear regression confirmed the good 

agreement between TNARR and TEC. TNARR showed a strong linear regression with TEC (α 

across 129 site-years was in a range of 1 ± 0.1, R2 > 0.95, p < 0.001). MSE was determined 

by both the bias and correlation, as the contribution of bias and correlation was over 0.8 

at 86 % of the site-years (Figure 4.3).  
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Figure 4.2 Distribution histograms of correlation coefficient (𝝆), ratio of standard 

deviation (𝝈𝒓𝒂𝒕𝒊𝒐), bias, root-mean-square-error (RMSE), and regression coefficient 

(α) for 8-day air temperature from AmeriFlux (TEC) and NARR (TNARR) across the 

non-crop site-years 

 

 

Figure 4.3 Contributions of correlation (𝝆), consistency of variation (𝝈𝒓𝒂𝒕𝒊𝒐), and 

bias to the Mean Squared Error (MSE) for the 8-day NARR air temperature 

(TNARR) across the non-crop site-years 

 

TNARR was also relatively accurate at the crop sites. The simple linear regression 

indicated that TNARR agreed well with TEC for all crop site-years (α = 1.04, RE = 11.6 %, 

RMSE = 1.4 °C, R2 = 0.99, Figure 4.4). TNARR accounted for over 98 % of the seasonal 
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dynamics of TEC for individual crop sites on annual scale (Table 4.2). α varied from 1.0 

to 1.1 among the crop sites. RE and RMSE were -1.4–7.3 % and 1.2–1.7 °C, respectively. 

Considering the relatively high accuracy at non-crop and crop site-years, the 8-day TNARR 

was used as the VPM input without any correction. 

 

Figure 4.4 Comparisons of 8-day air temperature between AmeriFlux (TEC) and 

NARR (TNARR) across all crop site-years 
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4.3.2 Comparison of downward shortwave radiation  

RNARR was well correlated with REC (𝜌 > 0.9 at 94 % of the non-crop site-years, 

Figure 4.5). However, it was overestimated with 𝜎𝑟𝑎𝑡𝑖𝑜 > 1.1 at 67 % of the site-years. 

The bias was positive across all site-years on an average of 3.55 MJ m-2 day-1. 60 % of 

the site-years had a RMSE of 3–5 MJ m-2 day-1. The bias was the dominant contributor 

to MSE (Figure 4.6). The contribution of bias was > 0.5 at 133 of 139 site-years, 

indicating the disagreement between RNARR and REC was systematic.  

 

Figure 4.5 Distribution histograms of correlation coefficient (𝝆), ratio of standard 

deviation (𝝈𝒓𝒂𝒕𝒊𝒐), bias, root-mean-square-error (RMSE), and regression coefficient 

(α) for 8-day downward shortwave radiation between AmeriFlux (REC) and NARR 

(RNARR) across the non-crop site-years 
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Figure 4.6 Contributions of correlation (𝝆), consistency of variation (𝝈𝒓𝒂𝒕𝒊𝒐), and 

bias to the Mean Squared Error (MSE) for the 8-day NARR downward shortwave 

radiation (RNARR) across the non-crop site-years 

 

RNARR showed a significant linear regression with REC at each non-crop site-year 

(Figure 4.5). However, α was quite variable (0.63–0.95). α slightly decreased with the 

latitude increasing or the longitude decreasing (Figure 4.7). α was more stable within the 

longitude range of 85–100 °W than it was across 40–47.5 °N for the region covering the 

crop sites (Figure 4.7 highlighted in gray). Thus, the median of α values (0.81) within the 

longitude of 85–100 °W was used as a ratio to adjust the bias of RNARR at the crop sites.  
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Figure 4.7 Spatial patterns of regression coefficient (α) between 8-day downward 

shortwave radiation from AmeriFlux (REC) and NARR (RNARR), with geographical 

distribution of crop sites highlighted: (a) α averaged along the 2.5° latitude gradient 

and (b) α averaged along the 5° longitude gradient 

 

 

Figure 4.8 Comparisons of 8-day downward shortwave radiation between 

AmeriFlux (REC) and the NARR before and after adjustment (RNARR, RadjNARR) for 

all crop site-years 
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The adjustment substantially reduced the bias of RNARR at the crop sites (Figure 

4.8). RNARR was overestimated by 28.2 % on average. RadjNARR evenly distributed along 

1:1 line and RMSE was reduced to 1.7 MJ-2 day-1.   

RNARR explained ~ 90 % of the variations of REC across each crop site (Table 4.2). 

Similar to the non-crop sites, RNARR was strongly overestimated (RE > 22 %) at the crop 

sites. The annual RMSE varied from 3.8 MJ m-2 day-1 to 4.9 MJ m-2 day-1. After the 

adjustment, α was close to 1, and RE and RMSE of RadjNARR decreased to -2.5–3 % and 

1.6–2 MJ m-2 day-1, respectively.   

4.3.3 Comparison of VPM-based (GPPVPM) and the flux tower-based (GPPEC) estimates 

The seasonal dynamics of GPPVPM(EC), GPPVPM(NARR), and GPPVPM(adjNARR) 

corresponded well with GPPEC for both maize and soybean (Figure 4.9). At the leaf-on 

stage during late-May to June, GPPEC started to exceed 1 g C m-2 day-1 and GPPVPM also 

rose rapidly, and both reached a maximum at the peak growing season during late-July to 

early-August. After the crops matured and approached the harvest date in September, 

both GPPEC and GPPVPM began to decrease and were lower than 1 g C m-2 day-1.  
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Figure 4.9 Seasonal dynamics and interannual variations of GPPEC, GPPVPM(EC), 

GPPVPM(NARR), and GPPVPM(adjNARR) for the crop site-years. The soybean site-years 

are highlighted 
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Figure 4.10 Comparisons of GPPVPM(EC), GPPVPM(NARR), and GPPVPM(adjNARR) with 

GPPEC for individual crop: (a) irrigated maize, (b) rainfed maize, (c) irrigates 

soybean, and (d) rainfed soybean 

 

The relationships between GPPVPM and GPPEC for individual crop types were 

evaluated through simple linear regression models (Figure 4.10). For irrigated and rainfed 

maize, both GPPVPM(EC) and GPPVPM(adjNARR) agreed well with GPPEC; but GPPVPM(NARR) 

was overestimated due to the positive bias of RNARR (Figures 4.10a and 4.10b). 

GPPVPM(EC) accounted for 89 % of the variations of GPPEC. GPPVPM(NARR) was also 

correlated well with GPPEC, but it was overestimated by 18.4 % and 29.6 % for irrigated 

and rainfed maize, respectively. After adjusting RNARR, α, RE, and RMSE for 

GPPVPM(adjNARR) were close to those of GPPVPM(EC). For irrigated and rainfed soybean, 

GPPVPM(EC) and GPPVPM(adjNARR) estimated GPP reasonably well with an underestimation 

<  -10 % (Figures 4.10c and 4.10d). GPPVPM(NARR) over-predicted GPPEC by ~13 % for 

irrigated and rainfed soybean.  
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rainfed maize across the sites (Figure 4.11a and 4.11b). Most sites had similar patterns 

and amplitudes of variability between GPPVPM(EC) and GPPEC (1 < 𝜎𝑟𝑎𝑡𝑖𝑜 < 1.05 and 0.95 

< 𝜌 < 0.98, Figure 4.11a) with low annual mean RMSEs (ca. 1.5–2.4 g C m-2 day-1, Table 

4.3). GPPVPM(EC) at RO1 and Bo1 didn’t appear to adequately capture the amplitudes of 

variability of GPPEC (𝜎𝑟𝑎𝑡𝑖𝑜= 0.7 and 1.3) as indicated by relatively low 𝜌 (0.92 and 0.82) 

and high RMSE (3.2 g C m-2 day-1 and 4.9 g C m-2 day-1). The discrepancies were due to 

the underestimation of GPPVPM(EC) during the peak growing season at RO1 and the 

significant overestimation of GPPVPM(EC) after the peak growing season at Bo1 (Figure 

4.9). GPPVPM(NARR) simulated the phasing and timing of GPPEC well (𝜌 was ca. 0.93–

0.98). The RMSE of GPPVPM(NARR) (ca. 4.2–6.4 g C m-2 day-1) was significantly higher 

than that of GPPVPM(EC) at most sites, indicating an overestimation caused the NARR. The 

adjustment of RNARR resulted in similar patterns of GPPVPM(adjNARR) and GPPVPM(EC) at all 

sites, with a slight increase of RMSE (ca. 1.6–3.1 g C m-2 day-1, Figures 4.11b and Table 

4.3).  
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Figure 4.11 Performances of the VPM driven by three climate datasets for 

individual crop-site: (a) and (b) GPPVPM(EC) vs. GPPVPM(NARR) and GPPVPM(EC) vs. 

GPPVPM(adjNARR) for the irrigated and rainfed maize; (c) and (d) GPPVPM(EC) vs. 

GPPVPM(NARR) and GPPVPM(EC) vs. GPPVPM(adjNARR) for the irrigated and rainfed 

soybean. The locations of the heads and tails of arrows quantify how GPPVPM 

matches with GPPEC, and the arrows show how the agreement of GPPVPM with 

GPPEC changes using different climate inputs. The distance to the origin is the ratio 

of the standard deviations of GPPVPM and GPPEC (Normalized standard deviation, 

𝝈̅𝒓𝒂𝒕𝒊𝒐). The azimuthal angle is the correlation (𝝆) showing the similarity of variation 

patterns between GPPVPM and GPPEC. The most ideal GPPVPM estimate is the point 

“observed” with 𝝈̅𝒓𝒂𝒕𝒊𝒐 = 1 and 𝝆 = 1 
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(a) GPPVPM(EC) vs. GPPVPM(NARR) (b) GPPVPM(EC) vs. GPPVPM(adjNARR)

(c) GPPVPM(EC) vs. GPPVPM(NARR) (d) GPPVPM(EC) vs. GPPVPM(adjNARR)
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Table 4.3 A summary of the performances of the VPM driven by three sets of 

climate inputs at the crop sites 

Site ID Crop type 

GPPVPM(EC)
a GPPVPM(NARR)

b GPPVPM(adjNARR)
c 

ρ 𝜎̅𝑟𝑎𝑡𝑖𝑜 RMSE ρ 𝜎̅𝑟𝑎𝑡𝑖𝑜 RMSE ρ 𝜎̅𝑟𝑎𝑡𝑖𝑜 RMSE 

US-NE1 Irrigated maize 0.95 1.03 2.4±0.7 0.93 1.25 5.0±1.1 0.93 1.00 2.7±0.6 

US-NE2 

 

Irrigated maize 0.96 1.02 2.2±0.8 0.95 1.24 4.8±0.6 0.95 0.99 2.3±0.6 

Irrigate soybean 0.91 1.00 2.0±0.6 0.91 1.18 2.3±0.7 0.90 0.94 2.0±0.6 

US-NE3 

 

Rainfed maize 0.95 1.00 2.1±0.5 0.95 1.26 4.2±1.3 0.95 1.01 2.2±0.5 

Rainfed soybean 0.91 0.89 2.6±0.4 0.91 1.05 2.2±0.3 0.90 0.84 2.8±0.5 

US-RO1 

 

Rainfed maize 0.92 0.7 3.2 0.93 0.86 4.8 0.93 0.69 3.1 

Rainfed soybean 0.92 1.06 1.4 0.92 1.27 3.4 0.92 1.02 1.5 

US-RO3 Rainfed maize 0.98 1.03 1.5 0.97 1.23 4.3 0.98 0.98 1.6 

US-IB1 

 

Rainfed maize 0.97 1.06 1.5 0.96 1.45 6.4 0.96 1.16 3.1 

Rainfed soybean 0.83 0.88 2.3 0.93 1.11 4.1 0.93 0.89 1.9 

US-Bo1 

 

Rainfed maize 0.82 1.31 4.9 0.78 1.66 8.6 0.78 1.33 5.5 

Rainfed soybean 0.93 0.86 2.0 0.91 1.03 2.5 0.91 0.83 2.3 

 

The relationships between GPPVPM and GPPEC were also evaluated for soybean 

through individual crop-sites and individual site-years (Figure 4.11c, 4.11d, and Table 

4.3). GPPVPM(EC) and GPPVPM(adjNARR) matched GPPEC reasonably well. The variability of 

GPPVPM(EC) was similar to that of GPPEC (0.83 < 𝜌 < 0.93, Figure 4.11c). NE2 and RO1 

had a good agreement between GPPVPM(EC) and GPPEC, as 𝜎𝑟𝑎𝑡𝑖𝑜 was close to 1 showing 

a low RMSE (1.4–2.0 g C m-2 day-1, Table 4.3). At other sites (NE3, IB1, and Bo1), 

GPPVPM(EC) underestimated the variability of GPPEC (0.85 < 𝜎𝑟𝑎𝑡𝑖𝑜 < 0.9, Figure 4.11c) 

with a high RMSE (2.0–2.6 g C m-2 day-1). GPPVPM(NARR) correlated well with GPPEC (0.9 

< 𝜌 < 0.94). However, the 𝜎𝑟𝑎𝑡𝑖𝑜 of GPPVPM(NARR) was larger than that of GPPVPM(EC) 

caused by the positive bias of RNARR. After adjusting the bias of RNARR, GPPVPM(adjNARR) 

matched GPPEC better than did GPPVPM(NARR) (Figure 4.11d).   
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4.4 Discussion  

4.4.1 Uncertainties of the NARR air temperature  

TNARR has been assumed to be relatively accurate in the studies of drought 

monitoring and the response of vegetation to climate change (Karnauskas et al. 2008; 

Karnieli et al. 2010; Wang et al. 2011). In this study, the 8-day TNARR was mostly 

overestimated with a mean bias of 0.62 °C. This was consistent with the previous finding 

that TNARR was biased warm at monthly intervals (Jiang and Yang 2012). In general, the 

8-day TNARR agreed well with the in-situ observations across non-crop and crop site-years 

with the mean RMSE of 1.67 °C and 1.4 °C, respectively, showing relatively higher 

accuracy than other global reanalysis datasets (DAO, ECMWF, NCEP, MERRA) 

investigated by Zhao et al. (2006) and Decker et al. (2012). 

4.4.2 Uncertainties of the NARR downward shortwave radiation 

This study made an assumption that REC were ground truth. However, the errors 

or uncertainties associated with in-situ radiation observations also contributed to the 

differences between RNARR and REC. REC at the AmeriFlux is measured by different 

pyranometers. The errors from pyranometers including instrument deployment and 

maintenance (leveling and shading) and sensor response errors such as thermal offset 

(Bush et al. 2000; Reda et al. 2005) determined the errors of REC. The errors of REC are 

subtle compared with the RNARR biases, but one shouldn’t neglected their impacts 

considering the significant decay of long-term sensor stability (Stanhill and Cohen 2001).  

A number of studies have evaluated the monthly RNARR at individual sites. Walsh 

(2009) evaluated the monthly RNARR at the Alaska Barrow site and found that it had a 

lower bias (2.6 MJ m-2 day-1) than did NCEP/NCAR (3.7 MJ m-2 day-1). Kennedy et al. 
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(2011) concluded that the bias of monthly RNARR varied with sky conditions at the 

Atmospheric Radiation Measurement Program (ARM) Southern Great Plain (SGP) site. 

Markovic et al. (2009) reported that a systematic bias of monthly RNARR in summer (5.3 

MJ m-2 day-1) was larger than that in winter (2.5 MJ m-2 day-1). These evaluations implied 

that RNARR had a large span of positive biases. However, their results cannot represent the 

overall accuracy of RNARR at continental scale using limited sites. A recent study did a 

large-scale assessment of monthly RNARR using 24 FLUXNET sites showing that RNARR 

exhibited a positive bias of 3.2 MJ m-2 day-1 (Zhao et al. 2013a). The ideal temporal 

interval of climatic drivers for ecological models should be finer, i.e. hourly, daily, or 

weekly intervals, to demonstrate the diurnal or seasonal dynamics of carbon and energy 

fluxes (Abatzoglou 2013; Huntzinger et al. 2013; Wei et al. 2013). Thus, we evaluated 

the accuracy of RNARR at 8-day intervals and regional scale using all available AmeriFlux 

sites. The 8-day RNARR well represented the seasonal dynamics of 8-day REC. Similar to 

monthly RNARR, the bias of the 8-day RNARR was positive and systematic with a large 

range across the U.S.. The systematic overestimation of RNARR is mainly caused by the 

insufficient simulation of light extinction caused by clouds, aerosols, and water vapor in 

the radiative transferring models (Kennedy et al. 2011; Markovic et al. 2009; Zhao et al. 

2013a), and other topographical factors (i.e. elevation, slope, and aspect).  

Empirical or semi-empirical approaches are applied to correct the bias of RNARR. 

The empirical approach develops the linear statistical regression model between the 

reanalysis and in-situ observations, then applies the model to other locations (Feng et al. 

2007; Qian et al. 2006; Xiao et al. 2014a). The empirical approach ignores the spatio-

temporal variations in the RNARR bias. Some studies developed the semi-empirical 
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approach to account the impacts of clouds and topographical factors in the regression 

models (Schroeder et al. 2009; Zhao et al. 2013a). We followed the empirical approach 

to calibrate RNARR, and meanwhile considered the spatial variation of regression models.  

Simply estimating PAR as a constant ratio of RNARR can introduce uncertainties 

to PAR. Theoretically, the band range of downward shortwave radiation (0.3–2.8 µm) 

doesn’t match that of PAR (0.4–0.7 µm) (Sakamoto et al. 2011). Moreover, the ratio of 

PAR to downward shortwave radiation is not constant, as it temporally changes with the 

local weather condition (Gonzalez and Calbo 2002; Jacovides et al. 2004; Papaioannou 

et al. 1993). Surface PAR datasets, such as the satellite-derived Global Land Surface 

Satellite (GLASS), might be an alternative PAR input for the regional and global 

ecological modeling (Cai et al. 2014; Eck and Dye 1991; Frouin and Pinker 1995; Jin et 

al. 2013; Pinker et al. 2010; Rubio et al. 2005; Zhao et al. 2013b). 

 4.4.3 Sensitivity of PEMs to various climate inputs  

All analyses about the sensitivity of PEMs to climate inputs were focused on the 

PEM of the standard MODIS GPP product—the MODIS-PSN (Heinsch et al. 2006; 

Zhang et al. 2007; Zhao et al. 2006). These studies found that radiation, air temperature, 

and vapor pressure deficit (VPD) of the global reanalysis data were largely biased, and 

introduced significant errors to the standard MODIS GPP product. For instance, Zhao et 

al. (2006) found that the MODIS GPP showed significant differences when driven by 

DAO, NCAR, and ECMWF (> 20 Pg Cyr-1). Heinsch et al. (2006) collected 38 site-years 

of GPPEC from 15 AmeriFlux sites to evaluate the accuracy of MODIS GPP driven by 

DAO and in-situ meteorology, and annual GPP derived from DAO was 23 % higher than 

GPPEC and the RE of the GPP derived from DAO was much larger than that of the GPP 
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derived from the in-situ meteorology. Note that these evaluations were conducted at 

monthly or longer intervals. Analyses on finer temporal scales such as weekly interval 

are needed in order to accurately evaluate the seasonal dynamics of the uncertainties of 

PEMs to climate data. Thus, we focused on quantifying the uncertainties of GPPVPM to 

in-situ and NARR climate data at 8-day interval. The 8-day GPPVPM driven by the in-situ 

meteorology, original and adjusted NARR data traced over 83–98 % of GPPEC variations 

for individual site-years, confirming their capabilities to simulate the response of crop 

photosynthesis to the environment change (i.e. light, temperature, and water), and tracked 

the phenological phases well (i.e. leaf-on and leaf-off stages). Similar to the MODIS-

PSN, climate inputs had a strong impact on the VPM for cropland GPP estimates. 

GPPVPM(EC) well estimated GPPEC for individual crops, sites, and site-years. 

GPPVPM(NARR) significantly overestimated GPPEC as RNARR was positively biased. This 

study addressed two climate inputs of air temperature and downward shortwave radiation 

for the VPM. The accuracies of other climate variables (VPD, precipitation etc.) in 

reanalysis products might be more variable (Decker et al. 2012). Therefore, more 

uncertainties might be introduced to the PEMs that are driven by multiple climate 

variables.   

4.4.4 Challenges in comparing GPPVPM with GPPEC  

In one study like ours using GPPEC to validate or constrain the GPP estimates from 

PEMs, two assumptions are often made: (1) GPPEC is assumed to be accurate as the 

ground truth and (2) The eddy flux tower footprint is approximately equivalent to the 

image pixel. The uncertainties associated with these two assumptions, however, can 
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contribute to the discrepancies between the PEM-based GPP estimates (GPPVPM in this 

study) and GPPEC.  

There are a number of errors or uncertainties (random and systematic) from eddy 

covariance measurements. Random errors are attributed to the stochastic nature of 

turbulence, sampling errors, instrument system, and variations in the flux footprint 

(Richardson et al. 2012). Systematic errors arise from the combination of the unmet 

underlying theoretical assumptions, instrument calibration, and data processing 

techniques (Falge et al. 2001; Papale et al. 2006; Richardson et al. 2012). Furthermore, 

the eddy covariance provides direct measurement of NEE and GPPEC is estimated as the 

difference between NEE and ecosystem respiration (Reco) using flux-partitioning 

approaches, which may also introduce large uncertainties in GPPEC (Desai et al. 2008; 

Reichstein et al. 2005; Stoy et al. 2006). For example, Desai et al. (2008) found annual 

GPPEC varied ~ 100 g C m-2 year-1 among 23 partitioning methods. Thus, more efforts 

are needed to improve partitioning NEE into its gross components to help validate GPP 

in PEMs and other land surface models (Baldocchi et al. 2015). 

The second assumption is questionable in heterogeneous landscapes. Limited by 

data availability, most PEMs are performed on 1 km spatial resolution of satellite images 

and might not represent the crop fields that towers are located in due to the mixed signals 

from other sub-pixel components. In this study, an in-situ landscape analysis showed that 

the heterogeneity of 500 m MODIS pixels was much improved over that of 1 km MODIS 

pixels at seven crop sites (Figure S4.1). 500 m MODIS pixels were mainly covered by 

the crop fields that the towers measured except US-RO3 and US-Bo1. Even though the 

uncertainties of the GPP comparison caused by heterogeneous landscapes were 
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diminished to some extent using the 500 m MODIS data in this study, further evaluations 

using high resolution images along with the downscaling techniques are required for 

implementing PEMs, especially at heterogeneous landscapes.  

4.5 Conclusion  

This study evaluated the uncertainties of the NARR surface meteorology and 

quantified the sensitivity of the VPM to the in-situ and NARR climate inputs at seven 

AmeriFlux crop eddy flux sites. Our results indicated that the bias of NARR resulted in 

considerable uncertainties in cropland GPP estimates. The 8-day NARR air temperature 

matched well with in-situ observations, but the NARR downward shortwave radiation 

showed large positive bias and led to the overestimation of GPPVPM. An empirical 

correction of the NARR radiation improved the model performance.  

The findings of this study confirm the good performance of the VPM on 

estimating maize and soybean GPP as long as meteorological inputs are accurate, and 

imply that the capability of the satellite-based PEMs for regional productivity monitoring 

at heterogeneous landscapes would be enhanced if the radiation of the regional reanalysis 

product can be improved to resolve the impacts of cloud cover and terrain. The proposed 

method to correct NARR radiation is limited to the crop sites in this study, and might not 

be applicable for other regions due to the large spatial variations of the NARR radiation 

bias. In addition to the meteorological data, further research is required to address the 

uncertainties of the PEM-based GPP estimates caused by other model inputs such as 

satellite data.   
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Supplementary materials 

 

Figure S4.1 Landscape analyses for seven crop sites. (a) - (g) are landscapes from 

the high-resolution Google Earth images; (h) - (n) are land cover maps from the 

2011 Cropland Data Layer (CDL), which are crop classification maps derived from 

high-resolution (30 m or 56 m) satellite data. The polygons with red and blue outlines 

are 1 km and 500 m MODIS pixels covering flux towers, respectively 
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Chapter 5: The 2012 flash drought threatened the U.S. Midwest 

agroecosystems 

Abstract  

In the summer of 2012, the United States (U.S.) Midwest, the most productive 

agricultural region in the world, experienced the most intense and widespread drought on 

record for the past hundred years. The 2012 summer drought, characterized as a “flash 

drought”, developed in May with a rapid intensification afterwards and peaked in mid-

July. Approximately 76 % of crop region and 60 % of grassland and pasture regions were 

under moderate to severe drought conditions. This study used multiple sources of 

evidence, i.e., in-situ AmeriFlux CO2 data, spaital satellite observations of vegetation 

indices and solar-induced chlorophyll fluorescence (SIF), and scaled ecosystem 

modeling, to provide independent and complenmentary analyses of the impact of 2012 

flash drought on productivity of major biomes in the U.S. Midwest. Three datasets 

consistently showed that (1) phenological activities of all biomes advanced 1-2 weeks 

earlier in 2012 compared to other years of 2010-2014, (2) the drought had a more severe 

impact on agroecoystems (crop and grassland) than on forests, and (3) the growth in 

agroecosystems was suppressed (i.e., reduction in vegetation indices, SIF, and gross 

primary production, GPP) from June to the end of the growing season. The Midwest-wide 

GPP modeling results showed that total regional GPP in 2012 was 1.76 Pg C year-1, 63 

Tg C year-1 less than the mean GPP for 2010-2014. Agroecosystems, which accounted 

for 84 % of regional GPP assimilation, were impacted the most by 2012 drought with 

total GPP reduction of 9%, 7%, 6%, and 29% for maize (Zea mays L.), soybean (Glycine 

max L.), cropland, and grassland, respectively. As the frequency and severity of droughts 
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have been predicted to increase in the future, this study provides better insights into the 

impacts of flash droughts on vegetation productivity and carbon cycling of major biomes 

in the U.S. Midwest.  

5.1 Introduction 

Drought as an intermittent climate disturbance plays an important role in the earth 

systems, and its severity and frequency is predicted to increase in the future (Breshears et 

al. 2005; Dai 2011, 2013). Drought impacts on the structure, composition, and function 

of terrestrial ecosystems are often diverse and difficult to determine (Frank et al. 2015; 

Reyer et al. 2013; van der Molen et al. 2011). These drought associated impacts are not 

only immediate, for example via directly affecting plant photosynthesis and respiration 

(Ciais et al. 2005), but can exhibit time-lagged effects, such as increasing pest and 

pathogen-caused vegetation mortality, and changing plant species composition (Allen et 

al. 2010; Bigler et al. 2007; Phillips et al. 2010).  

Recently, a term ‘flash drought’ recently became widely used to refer to the  

droughts with a rapid onset and intensification rate (Svoboda et al. 2002). Unlike those 

droughts that develop slowly, most climate models failed to early predict flash droughts 

(Hoerling et al. 2014). Moreover, flash droughts are likely to occur during the active 

growing season - the sensitive stage of crop development, and allow less time for 

agricultural community to respond to the changing conditions (Otkin et al. 2013). Thus, 

flash droughts are extremely devastating to agriculture. In 2012, the U.S. Midwest, one 

of the most intense agricultural areas in the world, experienced severe flash drought 

during the summertime. The extreme drought condition destroyed the major field crops, 

particularly field corn and soybeans, and caused large loss in livestock producers due to 
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forage and feed decreasing (Boyer et al. 2013; Mallya et al. 2013). Several studies have 

examined the impacts of droughts on vegetation greenness and productivity, and 

terrestrial carbon budgets at the regional and subcontinental scales (Ciais et al. 2005; Liu 

et al. 2014; Schwalm et al. 2012; Zhang et al. 2012c; Zhao and Running 2010). These 

studies, however, focused on the slowly developed droughts, and the assessment of the 

impacts of flash droughts on ecosystems is still lacking.  

In general, three approaches have been applied to study the ecosystems’ responses 

to drought: in-situ eddy flux data (Dunn et al. 2007; Granier et al. 2007; Noormets et al. 

2010; Wolf et al. 2013), spatial satellite observations (e.g. vegetation indices) (Asner and 

Alencar 2010; Ji and Peters 2003; Vicente-Serrano 2007), and scaled ecosystem 

modelling (Liu et al. 2014; Williams et al. 2014; Zhao and Running 2010; Zscheischler 

et al. 2014). All of these approaches, however, have their own limitations. Although the 

eddy flux data can provide a relatively precise picture on the stand–scale functional 

response of vegetation to droughts, the number of sites is limited when spatially assessing 

the larger-scale drought impact, such as scales larger than flux tower footprints. While 

remote sensing and ecosystem modelling seem best suited to investigate large-scale 

drought effects, remote sensing can only show a view via the spectral reflectance changes 

expressed as vegetation indices instead of direct indicators of vegetation leaf area, 

biomass, and physiological functions. In addition, some ecosystem models have difficulty 

in accurately capturing the response of vegetation physiological processes to 

environmental stressors due to model structure and temporal and spatial resolution. 

Hence, an integrated analysis of in-situ eddy flux data, spatial remote sensing 

observations, and scaled ecosystem modelling approaches can overcome shortcomings of 
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each approach, and is indispensable to comprehensively reveal the cross-scale response 

of ecosystems to drought (Reichstein et al. 2007; Reyer et al. 2013).  

Thus, the objectives of this study were to (1) evaluate the timing, severity, and 

spatial extent of 2012 flash drought over the U.S. Midwest and (2) investigate the impact 

of 2012 flash drought on the U.S. Midwest ecosystems with an integrated analysis of in-

situ eddy flux data, spatial remote sensing observations, and scaled ecosystem modelling 

5.2 Materials and methods 

5.2.1 In-situ climate and CO2 flux data from the AmeriFlux data 

The AmeriFlux is an extensive network of eddy covariance flux sites that provide 

high-quality and synchronized observations of ecosystem-scale CO2, water, and energy 

fluxes over North America. Sites in the U.S. Midwest were selected based on two criteria: 

1) the landscape of site-located 500 m MODIS pixel was homogeneous  and 2) data were 

available for both drought (2012) and non-drought years during 2010–2014. As no 

grassland AmeriFlux site was located in the U.S. Midwest, we used a nearby AmeriFlux 

grassland site (US-Kon) at the Konza Prairie, Kansas as a proxy. We obtained the gap-

filled half-hourly Level-2 product of climate variables, soil water content (SWC), and 

CO2 fluxes for four different-biome sites from the AmeriFlux website 

(http://ameriflux.lbl.gov/) (Figure 5.1, Table 5.1). We aggregated half-hourly data to 8-

day intervals to match the temporal resolution of MODIS observations.   
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Figure 5.1 Land use and land cover map of the U.S. Midwest. Red circles represent 

AmeriFlux eddy covariance sites. Vegetation type is coded according to IGBP 

designations: ENF - evergreen needle forest, DBF - deciduous broadleaf forest, MF 

- mixed forest, GRA - grassland, CRO - cropland, and CRO/NVM - 

cropland/natural vegetation mosaic 

 

5.2.2 The regional data for the 2012 drought assessment 

We used spatial climate data from the PRISM (Parameter-evaluation Regressions 

on Independent Slopes Model) climate mapping program to delineate 2012 anomalous 

climate. The PRISM provides a set of fine-scale daily to annual climate variables from 

1895-present, primarily for the Conterminous United States (Daly et al. 2000). The daily 

4 km mean air temperature and precipitation during 2010–2014 were acquired from 

PRISM website (/www.prism.oregonstate.edu/), then were aggregated to 8-day intervals.  

The Standardized Precipitation Index (SPI) was also used to quantify the drought 

intensity of the 2012 growing season. The SPI is a measure of probability of the observed 

precipitation based on historical records at a variety of time scales for both short- and 

long-term droughts (McKee et al. 1993). As this study focused on the short-term 

agricultural applications, the 1-month SPI (0.4 ° resolution) from the National Drought 
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Mitigation Center was obtained from the Western Regional Climate Center 

(http://www.wrcc.dri.edu/spi/spi.html). Based on the U.S drought classification scheme 

(http://droughtmonitor.unl.edu/aboutus/classificationscheme.aspx), a drought event 

occurs when the SPI reaches an intensity of -0.5 or less, and value ranges of -0.5 to -0.8, 

-0.8 to -1.3, - 1.3 to -1.6, -1.6 to -2.0 refer to abnormal, moderate, severe, and extreme 

drought, respectively.   

5.2.3 The regional data for GPP estimation of the Vegetation Photosynthesis Model 

(VPM) 

NCEP/NARR climate data. The North American Regional Reanalysis (NARR) by 

the National Centers for Environmental Prediction (NCEP) is a long-term regional 

reanalysis of the near-surface meteorological variables over North America (Mesinger et 

al. 2006). The NARR is produced at a spatial resolution of 32 km and a temporal 

resolution of 3-hours. We obtained the NARR 3-hourly air temperature and downward 

shortwave radiation from http://www.esrl.noaa.gov/psd/. The 3-hourly NARR data were 

aggregated to 8-day intervals and were spatially interpolated to 500 m (see Zhang et al. 

(2016) for interpolation algorithm in detail). As the NARR downward shortwave 

radiation is systematically positive biased, we further calibrated it (RadjNARR = 0.81 × 

RNARR) as proposed by Jin et al. (2015).  

MODIS surface reflectance and vegetation indices. Three vegetation indices, the 

Normalized Difference Vegetation Index (NDVI) (Tucker 1979b), Enhance Vegetation 

Index (EVI) (Huete et al. 1997a), and Land Surface Water Index (LSWI) (Xiao et al. 

2004b), were calculated from the 8-day 500 m MODIS Surface Reflectance products 

collection 5 (MOD09A1 C5). 
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NASS Cropland Data Layer. The Cropland Data Layers (CDLs) provided by the 

US Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) 

are the satellite-based crop-specific land cover datasets at a fine spatial resolution of 30 

m or 56 m. The classification accuracies for maize and soybean on the CDLs are above 

90 % (Boryan et al. 2011). The annual CDLs of 2010–2014 were aggregated to 500-m 

spatial datasets of areal fraction for maize and soybean.  

MODIS land cover product. The MODIS Land Cover Type product (MCD12Q1 

C5) describes land cover properties derived from annual satellite observations on Terra- 

and Aqua-MODIS. MCD12Q1 was used as base map to assign biome parameters when 

estimating GPP for non-maize/soybean crops and non-crop biomes, including 

pasture/grassland, mixed forest (MF), and deciduous broadleaf forest (DBF). 

5.2.4 Other regional datasets   

GOME-2 sun-induced chlorophyll fluorescence (SIF). SIF is derived from the 

spectral radiance at 740 nm measured by the Global Ozone Monitoring Experiment 2 

(GOME-2) onboard the MetOp-A platform. GOME-2 SIF has shown a linear relationship 

with GPP for crop and grassland on both in-situ and regional levels (Guanter et al. 2014; 

Wagle et al. 2016; Zhang et al. 2014b).We used the weekly and monthly level 2 GOME-

2 SIF (version 2.6) as an indirect indicator of the Midwest-wide GPP. Detailed description 

about the GOME-2 SIF retrievals can be found in Joiner et al. (2013). 

USDA NASS agricultural inventory data (YieldNASS). State-level yield statistics of 

maize, soybean, and pasture/grassland were acquired from the USDA NASS Quick Stats 

database (http://quickstats.nass.usda.gov/). 
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5.2.5 Regional GPP estimation of the VPM 

The VPM simulates the terrestrial ecosystem GPP upon the concept of the light 

absorption by canopy greenness or chlorophyll (Xiao et al. 2004a; Xiao et al. 2004b): 

   𝐺𝑃𝑃 =  𝜀 × 𝑓𝑃𝐴𝑅𝑐ℎ𝑙 × 𝑃𝐴𝑅      (5.1)

   𝜀 = 𝜀0 × 𝑇𝑠𝑐𝑎𝑙𝑎𝑟 × 𝑊𝑠𝑐𝑎𝑙𝑎𝑟      (5.2) 

where PAR is the photosynthetically active radiation; fPARchl is the fraction of PAR 

absorbed by canopy greenness or chlorophyll. 𝜀 is the light use efficiency - a function of 

the maximum light use efficiency (𝜀0), temperature (Tscalar), and water (Wscalar) stress 

conditions. The VPM parameters were derived from the satellite (fPARchl, Wscalar) and 

climate reanalysis (PAR, Tscalar) datasets. The details of VPM parameter estimations have 

been presented in Xiao et al. (2004b) and Xiao et al. (2004a). 

For regional GPP simulation, the NASS CDLs allowed us to separate GPP 

contributions from maize and soybean for each 500 m pixel. To consider the differences 

in photosynthetic capacity between maize (C4) and soybean (C3) we applied in-situ 

derived ε0 values of 3.12 g C MJ-1 (Kalfas et al. 2011a) for maize and 1.75 g C MJ-1 for 

soybean (Wagle et al. 2015). A biome parameter lookup table containing values of ε0 and 

biome-specific physiological parameters for other vegetation types were referred to 

Zhang et al. (2016). The GPP of one pixel was estimated by area-weighted averaging the 

GPP contributions of sub-pixel components based on the area fraction maps of maize and 

soybean and MCD12Q1 land use datasets: 

𝐺𝑃𝑃𝑉𝑃𝑀 =  ∑ 𝑓𝑖 × 𝜀0𝑖 × 𝑓𝑃𝐴𝑅𝑐ℎ𝑙 × 𝑃𝐴𝑅𝑖           (5.3) 
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where 𝑓𝑖 and 𝜀𝑖 are the area fraction and light use efficiency for maize, soybean, and other 

vegetation types (crop, grassland, DBF, MF, etc.). We simulated GPP over the U.S. 

Midwest from 2010 to 2014.  

5.2.6 Data analysis 

We compared 8-day daily air temperature and precipitation in 2012 with the mean 

values for 2010-2014 (excluding 2012) to track the onset and persistence of 2012 drought 

over the U.S. Midwest agroecosystem region. We also calculated the mean and minimum 

values of 1-month SPI and temperature and preciptiation anomalies to quantify the spatial 

extent and severity of drought in the 2012 growing seasoon. 

The drought impact on ecoystems was first evluated at four AmeriFlux sites by 

analyzing the differences in climates, soil water, plant phenolgoy, and carbon fluxes 

duirng the 2012 growing season relative to mean values for 2010-2014. As long-term 

obervations are ususually not avaliable at the AmeriFlux sites, we used the mean of 2010–

2014 (excluding 2012) or previous or later normal year in case of unavailability data for 

multiple years) as a proxy of ‘normal’ condition.  

Multiple regional datasets, including the satellite-derived vegetation indices 

(NDVI, EVI, and LSWI), SIF, terrestrial carbon cycle simulations (GPPVPM), and 

agricultural inventory (YieldNASS), were applied to investigate the Midwest-wide 

ecosystem responses to drought. We quantified change in magnitudes and response dates 

of vegetation greenness and productivity during the 2012 drought compared to 2010–

2014 at biome and pixel levels. The response date was defined as the first DOY, day of 

year, when vegetation indices, SIF, and GPPVPM were lower than 2010 – 2014 mean 

(excluding 2012) for two or more consecutive 8-day intervals.  
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5.3 Results 

5.3.1 Assessment of 2012 flash drought based on climate data 

The spring of 2012 was the warmest spring since record in the U.S. Midwest. Air 

temperature averaged over the U.S. Midwest was 4 °C (February) and 9 °C (March) 

higher than the 2010–2014 means (Figure 5.2). After a period of near to normal early 

spring precipitation, drought rapidly developed in late spring/early summer (May). 

Drought severity abruptly intensified and continued to increase because of the significant 

precipitation deficit and heat wave. The drought peaked in June and July with the 

decreased precipitation by 62 % and 54 %, respectively, and increased temperature by 

1.5 °C and 3 °C, respectively, relative to the 2010–2014 means. From September 2012, 

drought severity began to ameliorate due to near-normal precipitation. Overall, the 

accumulated precipitation during the 2012 growing season averaged over the U.S. 

Midwest was 235 mm (46 % below the 2010–2014 mean). 

 

Figure 5.2 Comparison of time series of 8-day average air temperature (a) and 

precipitation (b) from PRISM over the U.S. Midwest between a drought year of 2012 

and the mean for 2010-2014 (excluding 2012). Vertical error bars indicate mean ± 

standard deviation; shade areas represent 2012 anomalies relative to the mean 

values for 2010–2014 
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The severity of the 2012 growing season drought varied spatially across the U.S. 

Midwest (Figure 5.3). Most of the region, except the upper Great Lakes region and eastern 

states (Figure 5.3a), was abnormally dry and experienced extreme droughts due to the 

concurrence of high temperature and large water deficit (Figure, 3d, e). The southern 

region (~ 46 % of the U.S. Midwest), including large extents of South Dakota, Nebraska, 

Iowa, Missouri, Illinois, Indiana, and Kentucky, experienced extreme drought in June or 

July (Figures. 3b-c). In particular, 76 % of maize/soybean region suffered moderate to 

extreme drought with temperature and precipitation anomalies of 1.2 °C and -221 mm, 

respectively. Similarly, 59 % of grassland/pasture region was under extreme drought with 

temperature and precipitation anomalies of 1.8 °C and -267 mm, respectively.  
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5.3.2 Impacts of droughts on the U.S. Midwest ecosystems at AmeriFlux sites 

We compared climate conditions, soil moisture, vegetation growth (phenology), 

and CO2 fluxes between 2012 and normal condition (2010–2014 mean) at AmeriFlux 

sites (Figure 5.4 and Table 5.1). Drought assessment of 2012 at AmeriFlux sites showed 

consistent results as mentioned above for the PRISM climate dataset. All AmeriFlux sites 

experienced warm temperature (ΔT > 0) and water deficit (ΔP, ΔSWC < 0) in the 2012 

growing season. Particularly, SWC was significantly lower in 2012 compared to 2010–

2014 means for soybean (-38 %) and grassland (-31 %) sites. 

Four sites showed a uniform phenological response to 2012 extreme climate. SOS, 

MAXT, and EOS in 2012 were 1 or 2 weeks earlier compared to 2010–2014 means (Table 

5.1). Soybean and grassland were significantly affected as GPP, NEE, and Reco decreased 

significantly (p < 0.001, paired t test, n = 10) in parallel with soil water reduction in early 

July and June, respectively, and didn’t recover afterwards (Figures 5.4a–b). The seasonal 

GPP was reduced by approximately 30% in soybean and grassland (-324 g C m-2 and -

357 g C m-2, respectively) relative to 2010–2014 means. In contrast, drought had less 

impact on carbon fluxes at forest sites. At US-Syv, a dry spell of 2012 in late August 

didn’t cause the significant difference in ecosystem productivity compared to the 2010-

2014 mean (p = 0.31, paired t test, n = 10) (Figure 5.4c), and seasonal GPP slightly 

increased (~75 g C m-2 above mean) in 2012 due to warmer spring. At US-MMS, GPP 

began to decrease from mid-June 2012, then recovered by mid-August (Figure 5.4d). The 

warmer spring with advanced SOS (~14 days earlier) and higher ecosystem productivity 

compensated the impact of summer drought on carbon uptake, resulting in only ~12 % 

decline in GPP at US-MMS. 
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Figure 5.4 Observed climate, soil water content, and CO2 fluxes at four AmeriFlux 

sites 
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5.3.3 Impacts of droughts on the U.S. Midwest ecosystems at regional scale 

Figure 5.5 compares seasonal dynamics (8-day intervals) of four spatially 

averaged satellite-based vegetation biophysical parameters and GPP for different biomes 

between a drought year of 2012 and the mean for 2010-2014 (excluding 2012). For 

individual biome, we found good agreements among the responses (i.e., response timing 

and change in magnitudes) of NDVI, EVI, LSWI, SIF, and GPPVPM, and SIF to 2012 

drought. Shaded areas in Figure 5.5 show that all biomes experienced advanced 

phenology in 2012 and the largest reduction in NDVI, EVI, LSWI, SIF, and GPPVPM 

occurred in August. Consistent with in-situ observations in section 3.2, agricultural 

biomes (maize, soybean, overall crop, and grassland) were more affected than forests. 

Maize emerged ~2 weeks (DOY = 137 when greenness and production started to 

increase) earlier than soybean (DOY = 153). However, lack of precipitation and extreme 

heat suppressed maize, soybean, and crop growth after July. Compared to a multi-year 

average, three vegetation indices, SIF, and GPPVPM of pasture/grassland began to 

decrease around late-May (DOY = 145) with total reduction up to 24 % (NDVI), 22 % 

(EVI), 217 % (LSWI), 22 % (SIF), and 33 % (GPPVPM). NDVI, EVI, LSWI, SIF, and 

GPPVPM showed subtle decrease for both MF (-9 % to -2 %) and DBF (-8 % to -2 %) after 

July on biome scale, which were slightly different from in-situ observations. 
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Figure 5.6 shows the Midwest-wide change in magnitudes of vegetation greenness 

and production during April – June (AMJ), July – September (JAS), and growing season 

(GS) of 2012, and  vegetation response dates to 2012 drought on 500 m or 0.5 ° pixel 

level. In AMJ, vegetation greenness, SIF, and GPPVPM over half of the U.S. Midwest 

apparently increased (RC > 0 %), whereas the mixed prairie region, including 

southwestern North Dakota, main South Dakota, and western Nebraska, experienced the 

largest reduction (Figure 5.6a). In JAS, the crop region was suppressed by drought as well 

as the west prairie. ~ 80 % of the U.S. Midwest showed decline in NDVI, EVI, LSWI, 

SIF, and GPPVPM except the forest regions in the upper northern Great Lakes, southeast 

Missouri, and Kentucky, and parts of agriculture regions in the Minnesota River basin, 

and James and Red River basins of North Dakota (Figure 5.6b). Overall, the main 

agroecosystems of U.S. Midwest were the most drought-affected areas during the 2012 

growing season, covering North Dakota, South Dakota, Nebraska, Iowa, Missouri, 

Illinois, and Indiana (Figure 5.6c). The reduction in vegetation greenness and productivity 

in these regions followed the drought pattern exhibited in Figure 5.3. For example, 

Nebraska was continuously under severe to extreme drought conditions during the 2012 

growing season, and its agroecosystems experienced at least one-month extreme drought, 

mainly occurring in June or July (Figure 5.3b, c). Accordingly, the vegetation indices, 

SIF, and GPPVPM of the Nebraska agroecosystems were significantly lower than the 2010 

– 2014 mean.  

Vegetation response timing to 2012 drought also spatially varied across the U.S. 

Midwest, and its spatial pattern was relatively consistent among five vegetation 

biophysical parameters (Figure 5.6). The prairie region responded the earliest, and 
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vegetation indices, SIF, and GPPVPM started to drop below the multi-year averages in May 

and June. The major crop regions responded to drought mainly in August except northern 

Missouri (June and July). This finding agreed with USDA NASS Crop Progress Report 

when comparing Missouri with other states. The forests in upper Great Lakes and 

southeast Kentucky did not show clear reduction in vegetation indices, SIF, and GPPVPM 

during the drought, whereas they decreased in July in deciduous forest regions in the 

southern Missouri and Indiana.    

 

Figure 5.6 Midwest-wide relative change rate (RCR, %) and response date of 8-day 

MODIS vegetation indices (NDVI, EVI, LSWI) and productivity (GPPVPM and SIF) 

during a drought year of 2012 relative to the mean for 2010–2014 (excluding 2012?). 
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RCR during April–June (AMJ, a), July–September (JAS, b), and growing season 

(GS, c). Response date to drought (d) - the first date when three 8-day composites in 

2012 were continuously lower than the mean values for 2010–2014. The insets show 

the frequency histograms of RCR and response date 

 

Total regional GPPVPM in 2012 was the lowest (1.76 Pg C year-1) compared to 

other years from 2010 to 2014 (Table 5.2), and drought reduced total GPP by 63 Tg C 

year-1 (3.5%) in 2012 compared with the 2010–2014 mean GPP. Agroecosystems, which 

accounted for 84 % of regional GPP, were the most impacted by the 2012 drought. Maize, 

soybean, cropland, and grassland exhibited the lowest annual/total GPP in 2012 with 

reductions of 9%, 7%, 6%, and 29%, respectively, for annual GPP and 3%, 10%, 4%, and 

28%, respectively, for total GPP. Grassland showed rapid recovery of carbon assimilation 

following drought, and annual GPP in 2013 for grassland was similar to annual GPP in 

2010 (0.69 kg C m-2 year-1). Annual GPP of maize, soybean, and crop gradually increased 

during 2013 – 2014, but it was still lower than in 2010. In contrast, annual/total GPP in 

2012 for forests was higher than the 2010-2014 mean GPP. Surprisingly, annual GPP was 

lower in 2013 and 2014 than in 2012 for MF and DBF.  

 

Table 5.2 Annual and total GPP estimates for each biome of the U.S. Midwest from 

2010 to 2014 

biome  2010 2011 2012 2013 2014 2012 AC 2012 RC 

maize 

area 232644 249535 263390 257493 243753   

annual GPP 1.61 1.55 1.42 1.53 1.58 -0.15 -9 

total GPP 0.37 0.39 0.37 0.39 0.39 -11 -3 

soybean 

area 192304 191286 188958 193132 214248   

annual GPP 0.91 0.88 0.83 0.87 0.90 -0.06 -7 

total GPP 0.17 0.17 0.16 0.17 0.19 -18 -10 

maize and soybean total GPP 0.55 0.55 0.53 0.56 0.58 -29 -5 

CRO 

area 779765 769556 786575 769695 769696   

annual GPP 1.11 1.07 1.03 1.07 1.09 -0.06 -6 

total GPP 0.86 0.82 0.81 0.83 0.84 -31 -4 
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area (km2), area over 500 m pixels, for maize and soybean, pixels with area fraction over 20 %.  

annual GPP (kg C m-2 year-1), spatially averaged annual GPP 

total GPP (Pg C year-1), spatially integrate annual GPP 

2012 AC (Tg C year-1), actual change of total GPP in 2012 relative to the other-year mean of 2010–2014 

2012 RC (%), relative change rate of total GPP in 2012 relative to the other-year mean of 2010–2014.  

 

Agricultural harvest data in 2012 also show the impact of drought on 

agroecosystem productivity and carbon cycles. Agricultural harvest data showed negative 

anomalies of YieldNASS for maize and soybean in 2012 over most Midwest states except 

North Dakota (ND) and Minnesota (MN), consistent with the patterns of GPPVPM (Figures 

5.7a-b, Figure 5.6c). YieldNASS and GPPVPM for pasture/grassland declined over three 

main growing states (Figure 5.7c).  

GRA 

area 265315 264856 275767 281087 281085   

annual GPP 0.69 0.68 0.49 0.69 0.70 -0.20 -29 

total GPP 0.18 0.18 0.14 0.19 0.20 -52 -28 

CRO/NVM 

area 420092 418490 384771 403613 403613   

annual GPP 1.27 1.23 1.27 1.21 1.22 0.04 3 

total GPP 0.53 0.51 0.49 0.49 0.49 -18 -4 

MF 

area 127428 141064 143788 139160 139160   

annual GPP 0.97 1.01 1.05 0.92 1.00 0.08 8 

total GPP 0.12 0.14 0.15 0.13 0.14 18 14 

DBF 

area 112175 106294 113332 109645 109652   

annual GPP 1.44 1.41 1.53 1.39 1.37 0.13 9 

total GPP 0.03 0.03 0.04 0.03 0.03 4 13 

all biomes  total GPP 1.87 1.81 1.76 1.79 1.82 -63 -4 
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Figure 5.7 Relative change (%) of GPPVPM and NASS yield statistics (YieldNASS) over 

Midwest states for maize (a), soybean (b), and pasture/grassland (c). To avoid 

statistic errors in regions with sparse agriculture cultivation, analyses are limited to 
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states where maize, soybean, or pasture/grassland account for > 20% of the total 

state area 

 

5.4 Discussion 

5.4.1 The 2012 flash drought in the U.S. Midwest 

The 2012 flash drought in the U.S. Midwest was one of the worst on record with 

comparable severity and spatial extent of those in 1930s, 1950s, and 1980s (Hoerling et 

al. 2014; Kellner and Niyogi 2014). It was characterized by both moisture deficit and 

abnormally high temperature, moreover, it wasn’t captured by the U.S. Drought Monitor 

(USDM) until late June due to its rapid onset in May. Mallya et al. (2013) concluded that 

the weak winter storms in previous winter triggered by anomalous tropical sea surface 

temperatures (SSTs), La Niña, was the main cause of the 2012 flash drought. Two recent 

studies, however, showed that the 2012 drought more likely related to natural weather 

variations causing the reduction of cyclone and frontal activity in late spring, and the 

decrease of moisture transportation from Gulf of Mexico instead of SST anomalies 

(Hoerling et al. 2014; Kumar et al. 2013). The probability of severe droughts and heat 

waves are predicted to increase over the continental United States in future according to 

multimodel projections (Basara et al. 2013; Cook et al. 2015; Wehner et al. 2011; 

Wuebbles et al. 2014). Hence, the drought extremes will continue to significantly affect 

the terrestrial ecosystems in future by altering productivity and ecosystems’ responses to 

drought. For example, a previous data-driven diagnostics showed that drought was a 

major factor contributing to the interannual variability in carbon fluxes over North 

America during 2000 to 2010 (Xiao et al. 2014b).    
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5.4.2 Impacts of 2012 flash drought on the U.S. Midwest ecosystems 

This study, using multiple sources of evidences, showed that the 2012 flash 

drought significantly affected ecosystems in the U.S. Midwest by changing vegetation 

function, structure, and phenology. Similar to slowly-developed or prolonged drought, 

flash drought causes direct effects on ecosystem function by modifying carbon 

assimilation (GPP) and release. Higher temperature and vapor pressure deficit (VPD), 

and water-limited conditions during droughts lead to stomatal closure, membrane 

damage, and disturbing activities of photosynthetic enzymes, and subsequently reduce 

carbon uptake by the ecosystems (Farooq et al. 2009; Reddy et al. 2004; Wagle and 

Kakani 2014). In addition, drought can trigger changes in vegetation structure, such as 

the decrease of green leaf area due to leaf angle change within canopy and leaf 

senescence, and shorten growing season length, and thus indirectly causing further 

decline in carbon assimilation (van der Molen et al. 2011). During the 2012 drought, in-

situ observations, vegetation indices, and ecosystem modeling results showed the relative 

consistency in changing trends of vegetation phenology, greenness, and productivity 

across stand, biome, and regional levels. In spring, warm weather and close-to-normal 

precipitation triggered the growth of natural vegetation and encouraged farmers' planting 

activities resulting to the earlier shifting of planting and emergence dates for agricultural 

crops. In summer, on the other hand, high temperature and VPD, and soil water deficits 

inhibited plant photosynthesis and caused early senescence of vegetation, leading to 

lower productivity. Even though the warm spring with higher vegetation greenness and 

productivity offset the impact of summer drought in 2012, the summer drought caused 
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significant negative effects in vegetation greenness and productivity for both summer and 

the entire year in the U.S. Midwest.  

The vegetation greenness and productivity reacted differently to the 2012 flash 

drought depending on ecosystem and land cover types. Grassland and prairie regions 

rapidly responded as soon as drought started to develop (May), and exhibited the largest 

declines in greenness and productivity. For agricultural crops, even short periods of 

intense water stress can cause productivity reduction and yield loss if the stress happen 

during sensitive stage of crop development. Studies have reported soil water stress, 

happening at particular stages (i.g. sixth leaf stage, silking, blister, or dough stages), can 

reduce maize grain yield by up to 40 % - 80% (Cakir 2004; Calvino et al. 2003; Earl and 

Davis 2003; Hunt et al. 2014). In 2012 summertime, the simultaneous occurrences of soil 

water depletion and heat wave turned into stresses to crop growth from July in the U.S. 

Midwest, and their impacts on plant growth was more significant than the impact when 

stresses happens individually. Significant negative effects of drought were not found in 

forest ecosystems. One reason is that deep rooting system of forest ecosystems could 

relieve drought stress, and other factors, such as drought severity, timing of drought, 

drought-associated higher incident radiation, and dominant species, should also be 

accounted (Shi et al. 2014; Zeng et al. 2008). For example, forest ecosystems only 

experienced abnormal or moderate dry conditions in 2012. 

5.4.3 Challenges in terrestrial ecosystem models for agroecosystems   

Numerous studies have estimated ecosystem productivity at large scales and 

projected its changes in response to climate change and climate variability using either 

semi-empirical diagnostic models or process-based biogeochemistry models (Ciais et al. 
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2005; Reichstein et al. 2007; Sitch et al. 2008; Zhao and Running 2010). However, a large 

range of uncertainties related to cropland in these models were often ignored (Schwalm 

et al. 2010; van der Molen et al. 2011; Xiao et al. 2014a). One main reason is that these 

models fail to take into account specific crop growth modules, such as C4 crops. For 

example, it has been widely verified that MODIS standard GPP product (MOD17) assigns 

a universal ε0 (1.04 gC MJ-1) for all crop species under different photosynthetic pathway 

(C3 and C4) resulting to largely underestimate GPP for C4 crops (Wagle et al. 2014; Xiao 

et al. 2014a; Xin et al. 2015; Zhang et al. 2008b). An intercomparison of 26 terrestrial 

ecosystem models in part by the North American Carbon Project (NACP) found that all 

models performed the worst when modeling GPP for crop and grassland (Schaefer et al. 

2012). Recently, Guanter et al. (2014) inferred that the crop GPP derived from GOME-2 

SIF datasets were 50 – 75% higher than GPP estimates from state-of-art carbon models 

over US Corn Belt, including ten process-based DGVMs (Dynamic Global Vegetation 

Models), MPI-BGC (Max Planck Institute for Biogeochemistry) model, and MOD17. To 

simulate regional GPP, this study used fine-resolution (30 m or 56 m) crop-specific land 

use maps from the NASS CDL for each calendar year to improve the parameterization of 

ε0 in the VPM model for maize (C4) and soybean (C3), and took account for the sub-pixel 

variability for C3 and C4 photosynthetic pathways within individual 500 m pixel. The 

results indicated not only the great potential of VPM to reproduce the observed eddy-

covariance GPP for maize, soybean, MF, DBF at site levels (Figure S5.1), but also the 

consistency of regional GPP estimates with GOME-2 SIF dataset on biome- and 0.5° 

grid- levels in 2010 - 2012 (see supplementary Figures. S5.2–S5.3). We further compared 

GPP estimates from three diagnostic models (VPM, MOD17, and MPI-BGC), four 
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DGVMs as part of the Trendy project (“Trends in net land-atmosphere carbon exchange 

over the period 1980−2010”) with SIF measurement in July 2010 over the US (Figure 

5.8). SIF measurement showed that the US Corn Belt, the intensively cultivated and 

highly productive region, had extremely high SIF signals in July, similar to the global 

analyses of Zeng et al. (2014) and (Guanter et al. 2014). Only the VPM and VEGAS 

captured this SIF pattern over the US Corn Belt, but not by other five models. In addition, 

the magnitudes of GPP derived from VPM in the primary maize production area was 

closer to the tower-derived GPP (12 – 18 g C m-2 day-1) than the VEGAS GPP estimates 

(9 – 12 g C m-2 day-1). Hence, results of this study illustrate that the incorporation of crop-

specified module or parameterization can help improve the terrestrial ecosystem models 

for more accurate projections of agricultural productivity and the impacts of climate 

change on agroecosystems. 
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Figure 5.8 Comparison of GOME-2 SIF and GPP estimates from three diagnostic 

models (VPM, MOD17, and MPI-BGC), and four process-based DGVMs 

(ORCHIDEE, JPL_GUESS, JPL, and VEGAS - as part of TRENDY project, 

http://dgvm.ceh.ac.uk/node/21) in July 2010 

 

5.5 Conclusion 

The 2012 flash drought in the U.S. Midwest, characterized by high temperature, 

large cumulative rainfall deficit, and rapid depletion of soil moisture, was the most severe 

summer drought over the past hundred years. This study used an integrated spatial remote 

sensing observations, and scaled ecosystem modelling approaches, and demonstrated that 

the large-scale meteorological anomalous patterns in the 2012 growing season 

significantly affected the U.S. Midwest ecosystems, in particular agroecosystems. These 

extreme drought events in future will likely offset the enhancement effects of increased 

atmospheric CO2 concentration, extended growing season length due to global warming, 

cultivar improvements, and higher sowing density on regional agriculture productivity. 

This study only investigated the direct and concurrent impacts of flash drought on 

ecosystems (i.e. phenology, vegetation greenness, and photosynthesis). Ecosystem 

responses, however, can exceed the duration of climate extremes through the time-lagged 

http://dgvm.ceh.ac.uk/node/21
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effects, especially forest ecosystems. Thus, the underlying mechanisms of long-term 

consequences of flash droughts on ecophysiology and ecosystem dynamics, such as 

reduced plant growth and increase mortality, the changes in species competition, and the 

pest and pathogen outbreaks in the years following flash droughts, should be better 

understood in future studies.  

Supplementary materials 

 

Figure S5.1 Seasonal dynamics of 8-day GPP at the AmeriFlux sites in the U.S. 

Midwest. US-Ne1, US-Ne2, US-Ne3, US-Ro1, US-Ro3, US-IB1, and US-Bo1 are 

CRO sites for maize and soybean (soybean was highlighted in grey); US-Syv is MF 

site; US-MMS, US-WCr, and US-UMB are DBF sites. GPPEC - estimated GPP from 

in-situ eddy tower data; GPPVPM - simulated GPP from the VPM 

 

 

2000  2001  2002  2003  2004  2005  2006  2007  
0

10

20

2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  

G
P

P
 (

g
 C

 m
-2

 d
ay

-1
)

0

10

20

30

2001  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  
0

10

20

30

2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  
0

10

20

30

2005  2006  2007  
0

10

20

30

2005  2006  2006  2007  2002  2003  2006  2007  

US-IB1 US-Bo1US-Ro3US-Ro1

US-Ne3

US-Ne2

US-Ne1

US-Bo1

2002  2003  2004  2005  2006  2007  
0

10

20
US-Syv

2002  2003  2004  2005  2006  
0

10

20
US-WCrUS-MMS

2000  2001  2002  2003  2004  2005  2006  2007  
0

10

20
GPP

EC

GPP
VPM

Year

US-UMB



122 

 

 

 



123 

 

 

Figure S5.2 Scatter plot of biweekly SIF vs. GPPVPM averaged for each biomes 

during 2010 – 2014 
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Chapter 6: Conclusions and perspectives 

Remote sensing has been a useful tool of mapping land use and land cover change 

and simulating seasonal dynamics and interannual variations of primary productivity over 

agricultural regions. My dissertation selected three case studies, which related to three 

largest commodity crops (paddy rice, maize, soybean) and two dominant savanna 

woodlands across the typical agroecosystems of Northern Asia, Southern Africa, and 

Northern America, to highlight the potentials and strengthen the capacities of remote 

sensing to produce the high-quality products of crop type maps and primary productivity 

over large regions.  

Chapter 2 demonstrated the potentials of 30 m multi-temporal Landsat imagery in 

regional-scale rice classification by integrating the phenological and spectral features of 

paddy rice in the flooding/transplanting and ripening phases. Future studies should 

investigate several factors such as non-cropland inundated land types, terrain conditions, 

and image availability when applying this methodology to rice field identification in other 

regions, particularly in Southeast Asia with its complex rice cultivation ecosystems. In 

addition to paddy rice, to acquire high-accuracy and high-spatial resolution LULCC maps 

for other main crops over large regions should also be explored in future.  

The VPM has been proved to robust and reliable estimates of GPP across several 

biomes and geographic regions. Chapter 3 is the first study to evaluate the potential of 

the VPM to estimate the GPP in savanna woodland ecosystems. The results showed that 

the VPM well simulated the seasonal dynamics and interannual variation of GPP at two 

in-situ sites. However, savanna is a complex ecosystem, further evaluation of the VPM 
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for other savanna vegetation types is necessary before its application on savanna 

ecosystems at regional scales. 

Chapter 4 emphasized the impacts of the accuracy of regional climate inputs on 

the PEM-based GPP simulation. The results showed that the NARR air temperature was 

accurate. The NARR radiation, however, was positively biased, and led to the 

overestimates of GPP by the VPM. It implies that the capability of the satellite-based 

PEMs for regional productivity monitoring would be enhanced if the radiation of the 

regional reanalysis product can be improved. Future research is required to address the 

uncertainties of the PEM-based GPP estimates caused by other model inputs such as 

satellite data.   

Chapter 5 first demonstrated that the VPM was capable to accurately simulate 

seasonal dynamics, spatial variation, and interannual variation of GPP over the U.S. 

Midwest. With an integrated spatial remote sensing observations, and scaled ecosystem 

modelling approaches, this study then demonstrated that the large-scale meteorological 

anomalous patterns during 2012 flash drought significantly affected the U.S. Midwest 

ecosystems, in particular agroecosystems. Future studies should better understand the 

underlying mechanisms of long-term consequences of flash droughts on ecophysiology 

and ecosystem dynamics in the years following flash droughts.  
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