LTAF NOMBERS AND VEGHTATVEP PRIOD

 OF ASORGHIM CROSS

LTAF NUMBERS AND VEGETATIVE PRRIOD

OF A
SORGHOM CROSS

By
THOMAS SIDNEY CUNNINGHAM
Bachelor of Science Oklahoma A. and M. College Stillwater, Oklahoma
1942

Submitted to the Department of Agronomy
Oklahoma Agricultural and Mechanical College
In Partial Fulfillment of the Requirements
for the Degree of
MASTHR OF SCIENCE
1944

The writer wishes to express sincere appreciation and gratitude to his major advisor, Mr. Frank F. Davies, Professor of Agronomy, for his advice, ready assistance, constructive criticism, and unfailing encouragement; to Mr. John B. Sieglinger, Agronomist of the United States Department of Agriculture, for his many helpful suggestions in planning the experiment, for furnishing the materials needed for the study, and constructive criticism in organizing the data; and to Dr. H. F. Murphy, Head of the Agronomy Department, for his cooperation in making this work possible and for his beneficial suggestions, and to all faculty members under whom the required work was done.

TABLE OF CONTPNTS

page
Picture of Material Under Observation 1
Introduction . 2
Review of Literature 5
Materials and methods of Procedure 5
Results Obtained . 7
Discussion . 10
Summary . 12
Tebles . 13
Rainfall Chart . 16
Bibliography 17

A--Early Juicy parent. B--Two rows of F2's. C-Nine rows of F3.

INTR ODUCTION

To understand better the genetic and physiological interrelationship of the leaf numbers on the matn stalk of sorchums (Sorghum vulgare Pers.) an intervarietal cross has been studied, in which careful leaf counts were made and the data anolyzed to determine the existing relationship.

The vegetative period of the sorghum crop is of considerable economic importanee to the grower. Apparent caswal observations indicate in a generel way that as the vegetative period increases, the yield of forage tends to become correspondingly greater. Not only is this expression of leafiness of interest to the producer, but also it is an important characteristic to be considered by the plant breeder.

The counting of leaves is not a nev study; however, the majority of workers on this subject have taken into consideration only those leaves that are above ground leval after the plant is approaching maturity. Obviously this method is lacking in exactness, since it is commonly known that the lower leaves die and dry up before the plant reaches maturity. Also in the process of cultivation it is not likely that the same number of leares on the individual stalks will be covered below ground level. The sorghum plant resembles other cereals in that the number of leavos is analogous with the number of nodes. Since loaves are easier to count and are more readily observed than nodes, they have been used for this study.

Sieglinger (8) had made a study of leaf numbers using standard varieties and an F3 popilation of a cross between Dwarf Freed sorgo and Warly dwarf feterita. The need for further investigations using controlled crosses was recognized and accordingly this study was inaugurated.

REVIETH OF LITRRAMUR

A study of the literature reveals that only a few workers have given consideration to the problem. Wajor contributions are found in the work of J. B. Sieglinger, of the United States Departmont of Agiculture, working at the Southern Great Piains Fiola Station, Woodward, Oklahoma. Sieglinger (8) notes that the number of leaves is not a fixed varietal characteristic, as had previously been assuned, but that the number varies with the date of planting, locality, and season aswell as variety, showing that enviroment is an important factor.

Vinall (10) in studying the efrect of temperature on the growth of sorghom, found a variation of three leaves in Blackhull kafir and six leaves in Sunac sorgo, both standard varioties, vhen grom under difPerent clinatic conditions. Fron this study he concluded that unfavorable conditions of growth cause a reduction in the number of leaves.

Rangaswami (5) suggests that the vegetative period is best expressed in terms of the number of days from planting to flowering of the first spikelets in the head. A modified form of this nethod, using the number of days from emergence to flowering of the first spikelets in the head, was used in this study.

Kuleshov (3) in working with corn, used the number of leaves on the main stem as an inder to the length of the vegetative period, recognizing it as being less variable than other methods of determination.

Sieglinger (8) found that the vegetative period increased from 2.8 to 5.5 days for each additional leaf a plant produces, with an average of 3.3 days per leaf for all varieties under observation. From a study of twenty-one varieties the relationship of leaf numbers to the vegetative period was shown by a high positive correlation of 0.853 ± 0.029.

Also studying a population from an FB gencration, he obtained a correlation of 0.866 ± 0.014. Davidowicz (1) reports a positive correlation of leaf numbers with the vegetative period in tobacco. Vinall (11) in describing varietal characteristics of sorghons states that the number of leaves is directly correlated mith the period of maturity of verieties. Rangaswami (6) noted that the number of nodes increases with the duration of time in melation to maturity.

It is interesting to note that a machanical reduction of leaf area prolongs the vegetative period. Bidelman (2) working with weat showed that clippins off areas of leaves delayed the date of first blooming as much as eight days. Undoubtedly such a delay can only be due to a physiologicel disturbance of the normal plant processes, which is a point to be kept in mind, and should be taken into consideretion when destructive forces that oceur naturally, mutilate and reduce leaf area.

While the number of leaves is closely associated with maturity, there does not seen to be any correlation with arein yields. Swaneon (9) recorded a variation in lear numbers required to produce a bushel of grain, as varying from 4,000 to 11,400 , depending upon the variety and season.

Other related factors include Nuleshov"s (5) observation of the height in different varieties of com which tended to vary in rolation to the length of the groming season. Shafer (7) found a positive correlation between the total dry matter produced and the weight of dry shelled grain in Zea mays. Martin (4) found that the height of stalks of sorghum within g given vaxiety is highly correlated with grain yield. While these findings do not bear directly upon the problen at hand, they are elosely related and are worthy of recognition in a study of this type.

MATERIALS AND MEIHODS OF PROCEDURR

The data for this discussion were obtained at the Southern Great Plains Field Station, Woodward, Oklahoma, and is a compilation of two year's observations. The material studied consisted of a hybrid beginning in the F2 generation, and was carried into the F3. Both parents were used as checks. The F3 population consisted of nine selections which were made on the basis of plant height. The nine selections were planted by the head to row method which resulted in obtaining a heterogeneous distribution. The parents used in making this cross were Early Juicy sorghum and Big-seeded sorghum C. I. No. 692. Early Juicy is a fixed selection from a cross of Dwarf Freed sorgo, C. I. No. 971, and Early Dwarf feterita, C. I. $N_{0} .867$, and is characterized by being short, averaging from eighteen to twenty-four inches in height, having small white seed, a juicy stalk, and maturing in fifty to sixty days. Bigseeded sorghum, an introduction from tropical Africa, is a tall plant ranging up to one hundred inches or more in height. It has large yellow seed, a dry stalk, and is extremely late in maturity. Often it is so late that its growth is terminated by frost before it can mature seed. The two parents are representative of extremes in their varietal characteristics, making a wide intervarietal cross.

The stock seed for this work was furnished by Mr. John B. Sieglinger who made the original cross in 1940 and grew the Fl population in 1941.

In the two years 1942 and 1943 the planting was done on June 17 and 18 respectively. A stand was secured four days after planting in each year. In each year leaf counting began thirteen days after planting. It was necessary to begin at this early date as it is characteristic of the sorghum plant to shed its lower leaves as it progresses
toward maturity.
Disregarding the shedding of leaves it mas ilso desirable to make the initial count bofore the first cultivation, to insure against inaccuracy caused by a covering up of some of the lower leaves. In making the first count the fifth leaf was cut off at an oblique angle to the plant. This leaf stub was used as a marker for the beginning of subsequent counts. In order to mark later leaves in a way that they would be readily identified and still incur a minimur of damage to the plant, ticket punches with different shaped dios were used. In this maner the loth, 15 th, 20 th, and in some instances the $25 t h$, loeves were counted and punched on either side of the midrib. By this method it was possible to koop af accurate record of the individual plants. The final count was made when the flag leaf appeared, at which time each plant was taged and a daily inspection made thereafter with the following information recorded: (1) total number of leaves, (2) date of first blooming, and (3) height of plant.

From this information coefficients of comelation were obtained for three combinations of the leaf numbers, plant height, and the vesetative period, as recorded in the number of days from onergence to first blooming.

Table 1, page 13, shows the frequency distribution of leaves on the main stalk for the selections under observation. It will be noted that the Rarly Juicy parent in 194 ? had an average of 12.2 leaves per stalk as compared with 10.8 leaves in 1943 , a variation of 1.4 leaves for the parent or check variety. This variation could possibly be due to an insufficient population for the 1942 season, or which is more likely, a major difference in the environment for the two years under consideration. This seasonal difference is presented in Chart 1 on page 16. This chart gives the total amount of rainfall during the growing season, subdivided into periods of ten days each. A moving avorage over three ten day periods is used to smooth out the sharp erratic fluctuations. The F2 population averaged 21.6 leaves, and 21.1 leaves per stalk, respectively, for the two years with an overall variation from 10 to 35 loaves. The F3 population averaged 20.1 leaves per stalk in 1945 with a total variation from 9 to 30 leaves. There were no F3's grown in 1942. The Bigseeded sorghum giveraged 28.5 leaves per stalk in 1942. The adverse environnental conditions of 1943 depressed the growth of this hoavyfeeding, latematuring variety to such an extent that it failed to reach the fruiting stage. It will be noted that in the $F 2$ and $F 3$ population the extremes in the leaf number of the two parents were obtained.

The picture on page 1 gives a view of the veriation in plant height and leafiness. Because of the untimely termination of growth in the Big-seeded parent no picture could be made of it; however some of the taller plants in the FR rows are approaching the characteristics of the late parent.

The distribution of plants according to the length of the vegetative
period is shown in Table 2, page 14. The average length of the vegetative poriod for the early parent in 1942 and 1943 was 36.4 and 35.7 days respectively. For the F2 the average time was 55.0 days in 1942 and 55.3 days in 1943. The $\mathbf{F 3}$ had an average vogetative period of 54.0 days in 1943, while the average for the late parent in 1942 was 80.4 days.

Considering only the number of leaves on the main stem, Table 3, page 15 , shows the everage number of days required par loaf for the plant to reach maturity. In general the early parent with an average of 11.5 leaves required 2.99 days per leaf in 1942, and 3.31 deys per leaf in 1943. In the 12, 2.54 days per leaf were required in 1942, with a slight increase, up to 2.62 days per leaf in 1943. The F3 required 2.68 days per leaf and the late parent 2.92 days. Here is shown a snaller average per leaf for the hyorids than for either of the parents.

From the data presented coefficionts of correlation were celculated to determine the true relationship of leaf numbars to the other factors. A definite relationship of leaf number to the vegetative period is shown by the following high coefficients.

1. Using tio Early Juicy parent
in 1943, $x^{1}=0.927 \pm 0.011$.
2. Using the Fa population
in 1942, $r=0.903 \pm 0.008$;
in 1943, $r=0.845 \pm 0.019$.
3. Using the population
in 1945, $r=0.820 \pm 0.011$.
other coefficients of correlation wore determined using the F2 population only. For the relationship of plant height to leaf mambers in 1942 the value ror r was 0.649 ± 0.025 which is a coefficient that has sighificance. In 1945 for the same factors, the value for r was

[^0]0.435 ± 0.056 which probably has some significance but is at variance with the one for the preceding season.

Another conbination investigeted was plent height to the vegetative poriod. In 1942 the value for r was 0.654 ± 0.024, while in 1943 the value was $0.207+0.059$. Obviously there is in existence same reason which would explain such a vaxiation. It is generally aceepted that the climatic conaitions are responsible ior a great numer of pluctuations in piant responses. From the rainfall chart in this discussion it is obvious that while the 1942 season was alnost optimun, at least average, and favored nomel plant development, the 19 se season was somemat abnomal and had its depregsing effects. Whethor this factor alone would explain the variation in the value of the coefficients of correlation \hat{i} or the two factors in the different years cannt be definitely show from the data presented. Furthers study alons thece lines would possibly reveal some information woxthy of considaration.

DISCUSSION

The results obtained show that there exists a definite relationship between leaf numbers and the vogetative period of sorghun plants. A high positive correlation between these factors is apparent under diverging types of environnent, showing that the relationship of the two factors continues to exist even though outside influeaces weigh heavily upon them. Conditions which affect one factor likewise affect the other. Therefore, it may be concluded, on the basis of the data presented, that leaf numbers of a variety may be used as an index for the vegetative period of that variety.

Fron this study it is apparent that although leaf number and the vegetative period has a stable relationship, such is not true of other factors studied. The number of leaves has been suggested to heve been correlated with plant height. Fron the first year's observations that relationship was true; however under the adverse enviromental conditions of 1943 , in which there was a low rainfall, accompaniod with low humidity during the growing season, that relationship was greatly altered. This suge ests that the expression of the factor for plant height was subject, within limits, to the influencing enviromental conditions. That the expression of the height factor is to some degree controlled by enVironment is further shovin in the study of this factor and its relation to the vegetative period. The high correlation under good groving conditions would lead one to believe that such a relationship did exist, whereas under less optimum conditions the very low correlation would indicate that such a relationship is nil.

Considering the opposing results from the two year's data, it appears that while lear number may be associated with height, it is not a
stabilized relationship, and that the expression of the height factor is modified somewhat by environment.

SUMMMARY

A cross of Early Juicy and Big-seeded sorghum was grown and studied for number of leaves and length of vegetative period.

The parents used represent extremes in leaf numbers. The Early Juicy parent averaged 11.5 leaves per plant. The Big-seeded parent averaged 28.5 leaves per plant.

The average number of leaves for the F2 population was 21.6 and 21.1 leaves per plant for the two years. The F3 population, grown only one year, averaged 20.1 leaves per plant.

The average length of the vegetative period was from 2.54 days per leaf for the F2 to 3.31 days per leaf for the early parent.

The number of leaves and the vegetative period were highly correlated. Coefficients of correlation obtained from different populations were as follows:

Farly Juicy	$r=0.917 \pm 0.011$
F2	$r=0.903 \pm 0.008$
	$r=0.845 \pm 0.019$
F3	$r=0.820 \pm 0.011$

The relationship of leaf number to height as well as the interrelationship of plant height and the vegetative period seem to be modified by environment.

Table 1. Showing the frequency and distribution of leaves on the main stalk

Selection	Year	Classes for number of leaves per main stalk																										$\begin{array}{\|l} \text { Plants } \\ \text { total } \end{array}$	$\begin{array}{\|c\|} \hline \text { Mean } \\ \text { leaves } \\ \hline \end{array}$
			910	1	11.	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33		
Sarly Juicy	1942		- 1	1	8	21	10	2	2	-	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	43	12.2
Early Juicy	1943		687	75	56	35	20	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	228	10.8
Hybrid F2	1942		-		-	5	13	28	34	29	18	16	24	25	33	56	54	51.	31		45	33	5	3	1	-	1	556	27.6
Hybrid F2	1943		-	2	-	4	3	7	15	19	11	4	7	6	12	15	31	26	20		13	6	2	-	-	-	-	213	21.1
Aybrid F3	1943		2	61	19	12	24	36	80			16	,	29	41		106	99	66		24	14	10	5	-	-	-	855	20.1
Big-seed. \#692	1942		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	16	20	14	8	5	2	1	69	28.5

Table 2. Showing the distribution of plants according to time of blooming

Table 3. Showing the average number of days required per leaf from emergence to date of flowering.

Chart 1. Showing the rainfall data for the growing season on the basis of a moving average over three ten-day periods.

BIBLIOGRAPHY

1. Davidowiez, S. B. Bxperiments on the Geneties and Culture of Tobacco. Sta, Acelim, Lening. Agri. Inst.: Bul. No.7, 1928. Abstract Exp. Sta. Record, 60:688. 1930
2. Eidleman, Z. N. Bffect of Mechanical Reduction of Leaf Area upon Growth and Development of Cultivated Plants in Connection with Methods of Appraising Injuries from Disease, Trudy po Zasch. Rast. Series 3, No. 3. 1933.
3. Kuleshov, M. N. World Diversity in Phenotypes in Maize, Jour. Amer. Soc. of Agron., 25:688. 1933.
4. Martin, John H. Plant Characters and Yield in Grain Sorghum. Jour. Amer. Soc. of Agronomy, 20:117-1182. 1928.
5. Rangaswami, G. N., Ayyanger, Ayyar, Sankar, M. A., and Nambiar, A. Kanhikoran. The Inheritance of Height Cum Duration in Sorghum. The Madris Agri. Jour., 25:No. 4. 1937.
6. \qquad Rao, V. Pandurango, and Reddy, T. Venkataramana. Studies in Sorghum -- Internodes and Leaf Sheaths. Proc. di Ind. Acad. of Sci., 7: No. 4. 1938.
7. Shafer, John Jr., and Wiggans, R. G. Correlation of Total Dry Matter with Grain Yields in Maize. Jour. Amer. Soc. of Agron., 33:927. 1941.
8. Sieglinger, John B. Leaf Number of Sorghum Stalks. Jour. Amer. Soc. of Agron., 28:636. 1936.
9. Swanson, A. R. Relation of Leaf Area to Grain Yields in Sorghum. Jour. Amer. Soc. of Agron., 33:908-914. 1941.
10. Vinall, H. N., and Reed, H. R. Effect of Temperature and Other Meteoroligical Factors on the Growth of Sorghums. Jour. of Agri. Res., 13: No. 2. 1918.
11.

, Stephens, J. C., and Martin, J. H., Identification,
History, and Distribution of Comnon Sorghum Varieties. U. S. D. A.
Teck. Bul. 506 , (page 30). 1936.

Typed by:
Ann Brown

[^0]: $1_{r}=$ coefficiont of corrolation.

