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ABSTRACT

For the dis*ribution problem in probabilistic linear
programming, no method exists for ranking the various feasible
bases in accordance with their respective probabilities of
being optimal; hence, no suitable approximation of the cumula-
tive distribution of the maximum value of the objective function
is possible. Present techniques generate the bases only in a
contiguous manner and require extensive probability calculations
for each basis. For a class of multivariate density functions,
this dissertation provides two solution methods for ranking
the optimal probabilities of the bases without performing any
probability computations. A fringe benefit of these methods
is that for PLP problems requiring a constant strategy, rather
than an approximation of the CDF, the solution is rapidly
obtained.

Both solution methods are geometrical and based on an
embedded hypersphere concept. Both methcds are exact for n = 2
and when certain conditions are satisfied, the first method is
also exact for n > 2. While sufficiency cannot be shown for
the second method for n > 2, it has withstood several attempts
to find a counterexample. Either method can be applied in a

heuristic sense to any size problem to achieve near optimal

iv



results. In addition to those PLP problems having appropriate
distributions, these solution methods will also provide usable
results over a wide range of joint probability density functions.
After appropriate theory and the two methods have been developed,

both techniques are then applied to the same example problem.
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CHAPTER 1
INTRODUCTION

The assumption made in linear programming that the
coefficients are constants is seldom satisfied in practice.
Since adequate statistical infcrmation about these coefficients
generally exists and will support an assumption of random
variation, much effort has been expended in designing algorithms
which incorporate this non-deterministic behavior. These
random coefficients are generally regarded as independent and
may or may not have identical distributions. This type of
problem will hereafter be referred to as probabilistic linear
programming, thereby saving the stochastic description for thosec
cases where the probability distribution function of the coeffi-
cients may change with time. The literature is somewhat lacking
in that this distinction between probabilistic and stochastic
programming is usually not made.

Various probabilistic programming problems have been
investigated, each with the obvious intent of achieving a mathe-
matical statement regarding the optimal value of the objective
function. In order to illuminate existing techniques and areas

of interest, consider the standard linear programming problem:



n
maximize z(x) = ) c.X. (1)
j=1 )
subject to
n
.X aijx. * XS b1’ i=1,2, , M (2)
j=1
xj 20, j=1,2, ..., n, ntl, ..., nm (3)
In the above problem some, or all, of the cj's, b;'s, or aij's may

be probabilistic. It is noted that if only the cj's or bi's

are random, then the dual problem has essentially the same form
as the primal and the treatment would be quasi-analogous. In
the event a significant number of aij's are random variables,
attempts to establish solution methods are generally unsuccessful
since the convex space will have a positive probability of being
empty or unbounded [8].

The initial efforts in probabilistic linear programming
were those of Dantzig and Ferguson [12], under the condition that
a discrete demand distribution existed. Later efforts by
Elmaghraby [15,16] treated the case where the distribution of the
bi's was continuous for the same multiperiod allocation problem.
Other applications include management decision problems ([29],
capital budgeting [27], and transportation problems [36,42].

In the event the random coefficients consist only of
aij's or bi's, the term chance-constrained programming has been
used to describe the PLP problem. For this case the constraints

in (2) become



n
Pr Z a_.x, sb.l2a,, i=1,2, ..., m
je1 77 i

where either the aij or the bi are given by some probability dis-
tribution and 0 < a, s 1. This type of problem was first intro-
duced by Charnes and Cooper [10] and later expanded by others [11,
20,25,35]. Recently, Seppala [33] showed how to construct sets
of uniformly tighter linear constraints to replace a chance con-
straint, in order to solve the problem by the simplex technique.
Another subordinate type of PLP is called aspiration criterion
programming [19], and in this instance (1) becomes
n
max Priz(x) = .Z cjlez z, where z_is constant.
j=1

In general, the solution of any PLP problem will be in
accordance with one of two approaches, active or passive. The
terminology here is due to Tintner [38]. The same two categories
are described by Madansky [22] as the "here-and-now" or "wait-
and-see" approaches. The active approach is characterized by a
basis being selected and fixed before the values of the random
coefficients are observed or known. Thus, a basic solution may
become nonoptimal or infeasible, depending on whether the cj's
or bi's are probabilistic. The passive approach allows the basis
to change with variations in the random values of the cj's or
bi's, thereby assuring that an optimal basis is selected.

The active approach usually leads to the development of
nonlinear programming problems, which can be described as ''deter-

ministic equivalents" and serve as approximations to the original



PLP problem. The solution technique involves the selection of
some criterion, usually optimizing the expected value of the
objective function, and then including a penalty function that
represents the cost associated with making an incorrect deci-
sion [32]. Ir the event some aij may be probabilistic, this
approach may lead to a form for (1) and (2) such as:

k where Ey[F(y)] implies the

max j£1 cjxj + Ey[F(y)] ,

expected value of F(y) wrt y.
subject to

k n
jzl a;5% * j=£+1 a;:¥; ¢ by, i=12, ..., m
where the aij’ j =k+#1, ..., n, or the bi's may be random varia-
bles. For examples using the active approach, see [13,14,23,39,
40,41,43,44,46) .

The passive approach gives rise to a specific type of prob-
lem which consists of determining the distribution of the optimal
value of the objective function when the distributions of the
random variables are known. The distribution problem was first
introduced by Tintner [38] as "passiVe stochastic programming".
The DP does not belong exclusively to the passive approach since,
in either case, the objective is to find a mathematical expression
for max z(x). Sengupta, Tintner, and Morrison (31] give rela-
tionships between max z(x) for the active and max z(x) for the

passive approaches. Also the distribution problem is stated for

the nonstationary stochastic case by Bereanu [8].



The realization of the distribution of objective function
values in closed form has been very elusive. Approximation tech-
niques ranging from the "method of sample points' [31] to enumera-
tion of extreme points (coupled with simulation) by Bracken and
Soland [9]) have been offered. - Closed forms have been obtained
for severely restricted cases by Babbar [1] and Prekopa [28].

The most significant contributions were by Bereanu, who in (4]
obtained a closed form expression for the distribution of max z(x)
for PLP problems having a single random variable, and in [6]
utilizes the Laplace transform to find the approximate distribu-
tion of max z(x). In a recent paper [7], Bereanu offers a ra-
ther unrestricted solution method and includes an example using
three random variable coefficients. The technique employed is
based on a Cartesian multidimensional quadrature formula (sce
Stroud and Secrest [34]), which in the limit becomes an exact
expression for the iterated integrals it represents. Since the
limit is apparently not approached, there is some doubt regarding
the exactness of the closed form distribution thus obtained.

Two recent dissertations by Zinn [47] and Ewbank [17]
have attacked the DP directly: Zinn describes an algorithm
that generates only the optimal simplex bases, which (in the case
of random cj's) means those feasible bases having a positive
probability of being optimal, and Ewbank shows how to calculate
the exact objective function cumulative distribution when given
those "optimal'" bases. Thus, Ewbank has accomplished a signifi-

cant breakthrough in that the iterated integral probability



statements, which have prevented determination of the exact dis-
tribution heretofore, can now be solved using the Jacobian trans-
formation of variables technique. Neither paper treats the case
of random aij and Ewbank's method is weak for those problems in-
volving both random cj's and bi's, but a solid beginning has fi-

nally been made.

Statement of Problem

The problem to be treated in this thesis is an outgrowth
of the work by Zinn [47] and Ewbank [17]. Assume the same passive
probabilistic programming problem in the following form:

n

max z(x) = C.X.
j=1 JJ

subject to

xj 20, j=1,2, ..., n, n+l, ..., nm

where the values of either the cj's or bi's are given in terms of
random variables, and the distribution of max z(x) as a function
of all values of the random coefficients is desired. The feasible
region is assumed non-empty and bounded, or in the case of random
bi's, the probability of such must be positive. Also, the joint
density function of the cj's or bi's is defined everywhere over
appropriate domain and assumed to be piece-wise continuous.
Ewbank's method must then be provided the distinct, "optimal"
bases and the cumulative distribution function of max z(x) can

be calculated. Zinn's technique can be used to enumerate those



required bases, but in the iterative simplex algorithm, many
probabilities involving the optimality criterion must be calcula-
ted. Furthermore, the iterative algorithm produces the bases
in a contiguous manner [47], instead of by a priority determina-
tion in accordance with their respective probabilities of being
optimal.

Consider the case of random cj's and let c be the row
vector (cl, Cos cees cn) and c' = (c,0,0, ..., 0n+m)' Define
Cg s the vector (cl,cz, ceey cm) such that c, = cj if xj is the
izh-element of the basis for j < n and c; = 0 if x_. is in the

basis for j > n. Denote by 5f the extreme point corresponding

(m+n) and x is defined

to basis t, where t = 1,2, ..., h for h < n

as the column vector (xl,xz, cees Xos xn+1, ceey X . )', where at

n+m
least n elements are zeros and the remaining m xj elements form
the basis Xg- The extreme points 5} are fixed in the case of
probabilistic cj's and the distribution of max z(x) is a function
of ¢ over the solution space. It is expressed as:

z(¢) = max|z(x) I_c_] ,

and for the tEE-basis becomes
t
z,(¢) = [Z(g)ls] :

Associated with each basis is a probability P that the tsh-basis
t

is optimal (optimality and feasibility criterion satisfied). Then

the distribution of the objective function is given by

where q represents the number of
z(c) = cll P z.(2),
t=1 "t feasible bases, and where E P =1.
t=1 Kt



Since the number of bases is finite, this sum presumably exists
and is likewise finite.

In order to generate the q bases, [47] uses the simplex
technique and requires extensive probability calculations. Also,
there is no assurance that those bases having the greater Pk will
not be generated last. Thus, this paper will develop techniques
to provide [17] the required bases by utilizing a more efficient
method, and more importantly, to generate first those bases having
the largest Pk' For many problems where a small number of bases
comprise the major pdrtion of the optimal probability space, it
is highly desirable to determine the CDF of max z(x) based on

just those few.



CHAPTER 11

CONCEPTUAL REQUIREMENTS

Geometry of Polyhedral Subspaces

Define Pj as the column vector (alj’aZj’ ceny amj)
associated with the decision variable xj, j =1,2, ..., n, ntl,
.., nsm. Denote as B the mxm basis matrix containing the ordered
Pj associated with Xy- For basis t, define At as the mxn matrix
containing those Pj columns corresponding to the non-basic xj, and
denote as Sy the 1xn row vector of their objective function co-
efficients. An "unprimed" t denotes quantities associated with
basic xj. Then, for deterministic linear programming, two condi-
tions must be met in order to realize the optimal solution:
(1) the product Bglg.must be 2 0 for the basic solution xg to be

feasible, and (2) the optimality criterion (for best 5?) requires

the quantities (c Bt A, _{,) to be non-negative for the maximi-

zation problem.
Consider the case of probabilistic cj's and let f(c) be
the continuous joint probability density function of the cj's.

Assuming a basis t such that B;ly‘z 0, Xg is an optimal solution
t

if and only if {c Bt A } 2 0. But since the cj's are random,

t' -t'

the nonnegativity of the optimality criterion can only be measured
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. cas s . -1
in a probabilistic sense. Define S = {EJ{gBtBt ALimCen) 2 Q},

then assuming feasibility, the probability that the tzh basis is

optimal is given by

- -1 =
Pkt = P[{EBtBt A S0} 2 é] = Ifb..f f(c)dc,,dc,, ... dc . (5)
t

Thus, the problem becomes that of finding those bases associated
with largest Pk’ without using Zinn's simplex algorithm which
must iterate over all feasible bases, and wherein probabilities
similar to (5) must be calculated each time the basis is changed
to determine the entering xj. To develop such a technique re-
quires first an investigation of the geometry of the space over

which (5) is integrated to obtain the {Pk }. In (4) it was stated
t

that the ? Pk = 1; this is only true if the "optimal' probabi-
t=1 t

lities associated with the feasible bases represent mutually exclu-
sive and exhaustive events. For the tEh-basis the n quantities

= 0} constitute hyperplanes in R" space,

given by {cg B;lAt,~£t,
t

where n = dim ¢ = dim{gs(_}gt,}, since all elements in ¢ are con-
t
tained in {EBdulst'}' For n=3 the resulting three hyperplanes,

regardless of the size of m, can be regarded as a convex polyhedron
in R3 which consists of three sides plus possible additional ones
imposed by D{f(c) }= D(cl) x D(cz) x D(cs), the Cartesian product

of the given domains of the random variables. Since the hyper-

planes defined by {cg B 1A

e Ag1=Cer = 0} are homogeneous, i.e.,
t

subspaces of R", a description as "polyhedral subspace' is appro-
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priate. We are assured the subspace is convex since {g_BtBt At"Et'
2 0} are linear inequalities (half-spaces), and the intersection
of halfspaces is convex {45, p. 26].

It is assumed that cj, j =12, ..., n, may have vector
representation. For example, if dim ¢ = 3, then the standard
basis unit vectors will be used to span R3; thus, the direction
c, would be denoted by the column vector (1,0,0)', c, by (0,1,0)",
and Cq by (0,0,1)', and a right-hand coordinate system would be
employed. For illustrative purposes, the case for n=3, with non-
negative domains on the cj's and with two distinct subspaces

formed by appropriate hyperplanes, could (for a specific problem)

appear as shown below:

The possibility of a degenerate polyhedron would exist

only for those cases where the subspace generated in R" conflicts
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with the D[f(c)]. At least two of the three hyperplanes,

-1 . : : '
{EB Bt Ao = 0}, for each basis t, contain exclusive c;'s and

are therefore linearly independent. In fact, by using vector tech-
niques, the hyperplanes associated with any basis (regardless of
feasibility) will be shown as linearly independent and thus span-
ning Rdim E-(see Theorem 5). If the basis contains the nonslack
variables, the argument for linear independence is based on the
fact that A, is made up of unit basis vectors, so that the pro-
duct BtlAt, cannot yield proportional vectors. However, 'trivial”
cases may be constructed where a degenerate polyhedron does

exist. For example, given the 'starting solution'" made up of all

. -1
slack variables then {EB Bt AL, -t'} becomes {-cl,-cz,-c } and if

the D[f(c)] is restricted to nonnegative values, then the subspace
formed is {g__[-cl,-cz,-c3 2 0}, which contains only the point
(0,0,0).

The mutual exclusiveness of the q polyhedrons is stated
as a theorem in Chapter III. This does not mean exclusive in the
strict sense; to be noted is that a common boundary, either a
hyperplane or the intersection of edges, is shared by at least
every two subspaces. But these mutual points are of probability
measure zero since a subspace cannot exist or be defined if any
SBB'IP.-C. is identically equal to zero. As previously defined,
let S_ = {EI{EBrB;lAr"E-r'} 2 g} and S_ = {cl{c B IAS e} 2 g};
then it must be shown that Sr and Ss intersect only in sets of

zero content [3], implying those common boundary points for adjacent
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subspaces (see Theorem 3). Zero content means that R" will not
be spanned by SrI\Ss, which means the dim (srn Ss) <n. To

demonstrate this exclusiveness property, consider the following

example:
max z(x) = clx1 + czx2 + c3x3
subject to
xl * 2x2 * x3 s 430 where xl,xz,x3 2 0,
3x + 2x, < 460
1 3 and cl,cz,c3 e R.
X + 4x2 < 420
The initial tableau becomes
x1 X, Xg X4 xs Xe
-c1 ~c2 -c3 0 0 0
X, 1 2 1 1 0 0 430
xs 3 0 2 0 1 0 460
x6 1 4 0 0 0 1 420

For the feasible basis (x4,x3,x6)', the polyhedral subspace is
defined by the linear inequalities

(3/2c l/2c3 2 0) (6)

37¢1°"C2>
For the feasible basis (XS’XS’xZ)" the polyhedral subspace is
defined by the linear inequalities

(1/4c2-cl+l/2c3,c3,1/4c2-1/2c3 2 0) (7)

Note that (6) defines a subspace exclusive of the subspace defined
when the basis is (x4,xs,x6)', except for boundary points when
Cg = 0. Consider now the subspaces (6) and (7) and note that the

bases are not sequential by the simplex generation technique. To
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show these subspaces intersect only in sets of zero content, let
the vector representation of the lines of intersection for each
set be expressed as (0,0,0)' + ri(g), where T, € R'. To obtain
these vectors requires the simultaneous solution of each pair of
intersecting hyperplanes to determine the vectors (of arbitrary
length) which represent the lines of intersection. The appropri-
ate direction for each vector is determined by first combining
the hyperplane normal vectors to obtain a point satisfying the
linear inequalities, and then equating this point with a linear
combination of the "intersection" vectors having nonzero scalar
coefficients:

(6) 3/2c3-c

v

10 20 3
implies a(o)

0

0 0
implies y l]
0

~-C

W

2
3/2c3-c

4

1
1/2c3

v

-C, 2 0 1
implies B[O]
l/2c3 >0 0
Let PN denote a point satisfying the inequalities as determined
by the normal vectors; then a linear combination yields
-1 0 0 -1/3
ry = 13[3) + 1/3() « 113fg) - (273
3/2 0 1 5/6

so that

3 0 1 -1/3 aeR
a[o] + y[l] + B[O] = [-1/2) implies {y e R_
2 0 0 S/ B eR

and the vectors representing of the lines of intersection for (6)

are given as
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llh o[

(7) In an analogous manner the subspace vectors associated

with the feasible basis (XS’XS’XZ)' are obtained as

RG]

If an interior point in subSpace7 can be C subspace6, then any
point in subspace7 must be expressible as a linear combination of

vectors defining subspace Such an arbitrary but fixed interior

6
point is (1/3,2,1/3)' and considering

[3] [ 0 -1 1/3
,|0] + 1 —1] + 1 [ g] = [ 2 ],
1, 2l 3 1/3

we find that T, < 0, indicating that the intersection of polyhedral
subspaces (6) and (7) is empty relative to interior points since
T, € R .

Consider now the linear inequalities for the infeasible
basis (xS’XS’x6)" which are (c3-c1,2c3-c2,c320). The subspace
they define includes interior points in subspaceG; for example,
the point (-1,-1,1)' is interior to both. Therefore, the exclu-
sive property does not exist when infeasible bases are permitted,

even though they may have a positive probability of the optimality

criterion being satisfied. For [ P = 1, t can only index over
t 't

subspaces associated with feasible bases.
Even though the xj's are normally restricted to nonnegative

values, this is not necessarily the case for the cj's. The given
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joint density function f(c) must state the appropriate domain, and
when accumulated over all c values, the sum will equal unity.

In the preceding examﬁle problem there were subspaces generated
by feasible bases which included both positive and negative do-
mains for cj. Thus, for a specific problem, there may be some

feasible bases with associated Pk = 0; but those remaining will
t

define the desired exclusive subspaces over D[f(c)] which have

associated positive probability of being optimal.

Subspaces and Optimality Probabilities

Since we are now directly interested in obtaining those
bases having the largest probability of being optimal, recall

that for the til feasible basis

P = [{c B, At, ~Cer} 2 o] =[f...] £(e)de; ... dc_
t S,

And it is obvious that the effect of f(c) must now be considered
jointly with the well defined polyhedral subspaces. It would be
highly desirable to develop a general algorithm which would generate
these bases independently of the given joint density function.

But it is shown in Chapter IV that such an algorithm is only
possible for a particular class of probability density functions.

In the calculation of {Pk } using Ewbank's transformation of
t

variables technique, the limits on the integrals become complicated
if f(c) changes functional form over different portions of R",
thereby causing multiple integrations over each of the regions.
Most desirable (if indeed not necessary) is a single functional

form for f(c) over D[f(c)]. This is not to be interpreted as
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highly restrictive since realistic problems meet this requirement,

e.g., the multivariate normal over all of Rn, or the negative

v

exponential over {c € R" | c 2 0}. But difficulties do arise,
even for f(c) of a single functional form, when the D[f(g)] is
given upper bounds such as {c € R" | 0 < c<ul. The effects of
various f(c) and D[f(c)] will be made clearer in the example
problem which will now be investigated.

For ease of illustration, consider the following simple

two variable PLP problem solved by the technique of [47]:

Xy -1/10c1
max z(x) = (c,,c,) , where: f(c,) =1/10 e
= 1’72 X, 1
-l/lOc2
f(cz) =1/10 e
cl,c2 20
s.t 1 2 Xy 10
23 ) o)
1 1 2
xl,x2 20
X x X X X
- P A—1 4 =
=< -c, 0 0 0
1 2 -1 0 0
2 0 1 0
1 0 0 1
P1 = P[-cl,-c2 20]=0
0 cllz—c2 0 c1/2 0
0 3/2 1 -1/2 0
1 1/2 0 1/2 0

0 1/2 0 -1/2 1
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P, = Plc

2 0]

1/2"%2°%1/2 2

Py = [T flcy)) [T flc))dc de, = 1/3

0
2c2

Xy X2 X3 X4 Xg
0 0 0 cl-c2 2c2-c1
0 0 1 1 -3
1 0 0 1 -1
0 1 0 -1 2

P3 = P[cl-c2,2c2--c1 > 0]

2c
_ 2 -
Py = {T £(c,) £ £(c,)dc,dc, = 1/6
2

2™"1 2
0 0 1 1 -3
1 0 -1 0 2
0 1 1 0 -1
P4 = P[cz-c1,2c1-c2 2 0]
2c1
P, = g” £(c)) { f(c,)dcdc, = 1/6
1
c2/2-c1 0 c2/2 0 0
3/2 0 -1/2 1 ]
1/2 0 -1/2 0 1
1/2 1 1/2 0 0
Pg = Pley,,-¢).65/, 2 0]

P = {r £(c;) é: £(c,)de,de, = 1/3
1

S o
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Note the entering xj for each iteration was determined as the
one having the greatest probability of its z(x) cocfficient being
nonpositive. This is a relatively simple problem in that the
optimality probabilities (and the cumulative distribution of

max z(x)) can be calculated without need of [17] . We also know

5

there are no other feasible bases since 2 Pk = 1. In accor-
t=1 t

dance with the theorems of Chapter III, thc polyhedral subspaces,

which in this example problem are planar areas, can be depic-

ted on the given D[f(c)] as follows:

To satisfy the problem stated by this thesis, the solu-
tion technique to be developed would first generate bases 2 and
S, since they have the greatest probability of being optimal.
Since larger values of Pk can presumably be obtained from the
subspaces having the larger D[f(c)] regions, we first determine
that basis for which the subspace angle is a maximum. The mea-

surement technique is the scalar product wherein the hyperplanes
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(lines) are represented as vectors. For the twc variable prob-
lem, we are concerned with one angie ai for each subspace.
.1 _ . .
Let e1 = [0) and e, = (g), the five vectors for the exam-

ple problem are then stated as e 2e1+e2, e,-€,, e1+2e2, and

1’
e,. The ei are calculated to be

6. = 8. = cos ! 2//% % 26.5°

cos™! 3//10 % 18.5°

[«
i
(1°4
H

And, at least for this particular PLP problem, the larger angles
do correspond to the larger Pk. To see what factors control

such an outcome, consider the same basic problem, only this time,
let the density functions be changed so they are no longer

identical. To get a pronounced effect, let f(cl) = l/ze'llzcl,

while the density function of c,y remains f(cz) = l/lOe“lllocz.
The feasible bases remain the same and therefore the subspaces

are also unchanged. But the {Pk } is altered significantly:

t
P =, P =2 ,P =-,andP, =32; § P, =1
L op o5 o oS -5, -1,
k, “TT° Pk, T 66 Tk, T 72 ke -7 L Pk

Thus, we see that the largest ei (92 and 65) no longer corres-

pond to the largest Pk (Pk and Pk ). The intervals of integra-
4 S

tion still have their '"fullest extent" for Pk and Pk , but the
2 S

new density functicn f(cl) now has more probability corcentrated
for small values of 3 than it did previcusly. (Note: All pro-
babilities are calculated assuming the random variables, < and

¢,, are independent.)
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Combining dissimilar density functions is not the only
way this same effect is produced. Changing the D[f(g)] can
create the same shift in optimal probabilities. To see this,
we change the domain D(¢c,) from {c, e R | ¢, 20} to {c; eR | o
$¢ s 10}, so the density function becomes f(cl) = 0.158e-l/10c1.

The probatiility that basis 2 is optimal (Pk ) now decreases from

2
0.333 ot 0.185, and again, Pk is greater than Pk even though
4 2
8, is greater than 6,. In fact, by restricting ¢, to {c, e R |
0<c -1/10c

] S 5}, for which f(cl) = 0.415e 1, the probability

that basis 2 is optimal is zero.



CHAPTER I1I

DEVELOPMENT OF BASIC THEORY

c_,}

. . -1
As previously defined, assume Sr = {gl{gBrBr Ar'-—r'

_ -1 .
2 Q} and Ss = {EJ{EBSBS As'-ss'} 2 Q} exist as two subspaces

associated with feasible bases r and s. Then, providing Sr and
SS are nonempty, the basic solutions represented by X, and X
will have a positive probability of being optimal. Investigation
of several pertinent areas is necessary prior to proving exis-
tence, nonemptiness, and that Srr\Ss = ¢ for all interior points.

An unbounded feasible region may exist for a specific

problem, but depending on the D[f(c)], the optimal value for z(x)
may still be finite. Recall that the attitude numbers of the
objective function hyperplane determine if z(x) is bounded in
the event the solution space is not.
Theorem 1: If z(x) is unbounded for some particular c,
z(x) need not be unbounded for all c.
Proof: Suppose z(x) is unbounded for a selection of
cj's forming the vector c¢c. Then associated with a non-

. . . = -1
basic xj is a z(x) coefficient SBB

1

P.-c. < 0 and the
|

column B~ Pj s 0. Let there be a change in ¢, changing

c to c'. Then the coefficient géB'le-ci may become

22
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nonnegative, while the column B'IPj remains nonpositive
since its value does not depend on c. Therefore, if
the solution space is unbounded z(x) necd not be for all
values of c. q.e.d.

The treatment for this case is straightforward. If for

any feasible basis t, B;le < 0 for some j then the probability

of Cg B;le-cj being nonpositive must be calculated. If

t

P[(EB B;IPj-cj) < 0] > 0, then the associated value of z(x) would
t

be unbounded. However, if the probability equals zero, the con-
straints on the domain of f(c) have intervened and the iteration
of feasible bases may continue.

Degeneracy for deterministic LP creates no special diffi-
culties since the optimal value of z(x) remains constant even
though the "optimal" basis is not unique. However, in PLP unique-
ness must exist else the exclusiveness of SrﬂSs = ¢ would not
occur. Thus, if more than m constraints pass through the same
point, not all elements of B'lg_will be nonzero. To prevent this,

some of the bi's, (bi , bi » «--s b. ), k < m, must be changed by

1 12 1y
arbitrarily small numbers (¢, , €. , ..., €. ), so that each op-
timal basis t will yield Xg 20. Proof of the sufficiency of this
t
technique is obvious. Since the values of the xj € Xp depend
t

directly on the magnitude of the bi € b, changing some bi

values will provide a lekf with nonzero values for Xg -
t

Alternative optimal solutions also prevent the desired

uniqueness of the feasible bases. However, unlike degeneracy,
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there is no convenient technique for preventing such occurrence.
For a given selection of cj's which form the vector c, if z(x)
is then parallel to an active constraint, the basis may be changed
without affecting the optimal value of z(x). Thus, the subspaces
defined by Sr and SS would both contain such points c¢c. Since the
cj's are random variables, it is not possible to modify their
values by arbitrarily small numbers as in the degenerate case.
As shown by the following theorem, the location of such points
relative to the subspaces is most fortunate.
Theorem 2: If for feasible basis r, a particular
selection of ¢ results in an alternative optimal z(x)
over feasible basis s, then such points _c_cSrﬂ Ss are
confined to the common boundaries of the subspaces
defined by Sr and Ss.
Proof: Assume a particular value for ¢ which yields
identical values for z(x) over feasible bases r and s.
Since the bases are distinct, one or more xj € X, are

2B

distinct from those in Xp - Then

200 =gy Xy =g Xg = 250

so that

Consider the change in z(x) when bases r and s are
adjacent and non-basic variable xj is selected for

entry:
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-1 -1 where 6 ¢ R* and chosen
Cp B, b-8(cg B Pj-c.),

cy B'b =
S T T ) to assure feasibility.

s

So only if there exists some nonbasic xj for which

-1 .
SBrBr Pj--cj = 0 would the variable xj be able to enter

the basis, thereby assuring that the condition
-1, -1, . . es
1‘Br b = EBSBS b is satisfied.

s
Therefore, for an assumed value of c, if there
exists in one basis one or more nonbasic xj for which

cBB"lPJ.-cj = 0, then there exists a different basis

having the same z(x) value, and {EISBkB-IAk'-Ek' 2 0}

will include only those points ¢ located on the bound-

aries. q.e.d. (Because these points have probability

measure zero, their inclusion in more than one subspace
is of no pertinent consequence.)

The two preceding theorems, coupled with the prescribed
treatment for degeneracy, enable the proof of the exclusiveness
theorem.

Theorem 3: If S, and S represent the subspaces asso-

ciated with feasible bases r and s, then S:/1S_ = ¢ for
all interior points c.

Proof: Assume the solution space'is bounded over all

feasible x. The proof is by contradiction: assume

for a particular value of ¢ € SrnS that the opti-

s’
mality conditions (linear inequalities) for both Sr
and Ss are satisfied, so that zr(x) = zs(x). But by

Theorem 2, this equality implies alternative optimal



26

solutions, and ¢ would be simply a common houndary point
in that event.

Let z& be an m+n component vector of the specific
values of x associated with basis r. And, similarly
define Z; for basis s. Then, z (x) = z_(x) if and only

if ¢* X_=¢' x_. This requires that x_ = x_ (except for
- &1 < =s -=r =
alternative optimals), which is not possible since r

and s are distinct bases, and thus, X and X contain
r s

different nonzero components.
For ¢ e S \S_, a third possibility is that X_ and

X in < i.e.

X each contain <m nonzero elements, i.e., Xp and Xg
T s

each contain at least one zero component. But this

is the degenerate case which is prevented by changing

b as previously shown.

58 and EB
T s

The only remaining alternative is that
do not represent extreme points, but rather a coinci-
dent convex point within the feasible region. The
proof that the optimum must occur at an extreme point
for random cj's is given in (47, p. 7].

Therefore, since ¢ is arbitrary but fixed, and
since r and s are arbitrary feasible bases, the original
assumption that c ¢ Srf\Ss is contradicted except in the
case of boundary points; thus, Srf]Ss = ¢ for all
interior points. q.e.d.

An equivalent statement of the preceding result is found

in [5], and utilizing the notation of this thesis, it would be
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expressed as P[{c|c € Sr/)Ss}] = 0. This statement is correct
since the sct of boundary points in common has zero content.
The exclusiveness of Srf]Ss proved in Theorem 3 tacitly assumed
that dim ¢ = n. The following corollary can also be stated:

Corollary 3.1: Let S; = {c|c € Sr/]Ss} where dim ¢ = n;

then all interior pointsCS. will have dimension < n

I
or S; will be empty.

Proof: By Theorem 3, Srf)ss = ¢ for R" space, but
Sr(\Ss may be nonempty for R". Therefore, since
SrnSs cannot contain an n-cube, SI = ¢ or constitutes
a set of zero content, that is, dim (Srllss) <n. q.e.d.

A more useful result of the exclusiveness theorem is pro-

vided by the next corollary:

Corollary 3.2: Since the convex subspaces associated

with the unique feasible bases are exclusive, the

P[an optimal basis exists] = g Pk .
t=1 t

Proof: Define 0t as the event the tEh-basis is optimal,

so that Pk = P(Ot). The probability of at least one
t

optimal basis, in accordance with existing laws of

probability, is given as

PLUY. 0,1 = tzl P(0,) [21, p. 7).

By assumption (Theorem 3) the subspaces over t are

exclusive so

PING. 0 = ¢1 = 1,
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and thereforc, the equality holds and we have
P[an optimal basis exists] = P[Ut -1 t] = 3 P . q.e.d.

The events of optimal bases are exhaustive since the num-
ber of possible feasible bases is finite and will occur. Also,

the polyhedral subspaces in R" have contiguous locations over

D(f(c)}. Thus, % P = 1 - P[no basis is optimal] = 1 - P.
t=1 t

The quantity P could be positive for a specific problem, due to
either the restrictions on D[f(c)] or the lack of any feasible
bases. Since such probability is primarily fiducial and would

always be zero for a practical problem, no extended treatment of

P will be undertaken. In order that g' P, =1, the summation
t=1 t

is restricted to include only those Pk associated with feasible
bases. This requirement is due to the following theorem:

Theorem 4: If bases r and s are feasible and infeasible,
respectively, then {c|c ¢ Sr(\Ss} may be nonempty relative
to interior points.

Proof: By example (see pp. 13-15).

Let St be the set of points ¢ contained in the polyhedral

subspace associated with basis t, so that St = { |{c Bt At' _{,}

2 2}. Define the probability subspace for basis t to be degenerate
(does nat exist) if St is empty or contains only boundary points.
The fact that St may be an open set due to infinite domains on

cj does not constitute degeneracy, and we consider those prob-

lems having empty S, due to a prohibitive domain D[f(c)] as
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special cases. For an St containing only boundary points, the
polyhedral subspace would be defined by at least two linearly

. - . . -1
dependent inequalities (of opposite signs) ;;{ Bt At' Cer

2 0}. Thus, to prove the existence of the subspaces for any
basis t, we must show that the defining hyperplanes in R" are
linearly independent and that the resulting subspace is nonempty.
The following existence theorem can now be stated:
Theorem S: If the domain D(cj) =R, j=1, ..., n,
3 a nondegenerate polyhedral subspace ¥ basis.
Proof: (Part I, Linear Independence): Let the set
of hyperplanes for the current basis t be given as

-1
Hy {E-B B Api=Ce

=0 | t=1,2,...,h}. It must be
shown that each Ht is a linearly independent set, and

. n .
then, since all cjc;{SBtL}Et'}’ we know that R will

be spanned for any basis t. Let {cj | j=1,...,n} be
regarded as unit basis vectors, a maximal linearly
independent set in R".

For any basis t, let the mxn matrix At' and the
corresponding 1xn row vector ¢ be ordered, ) the initial
columns C A = {P.lj represents a nonbasic, nonslack xj},
so that the initial elements (=Y

ficients of the same xj. Then, for a 'starting solu-

will be the cj‘coef-

tion," A,, = (P,, P ceny Pn) and €1 = (cl, Cys +aes C ),

1! 1’ "2 n
and if m=n (for a basis t containing all nonslacks),

Aev = 1oem and [ would be a row vector of zeroes.



30

In general, let ji and S5 denote nonslack and slack varia-

bles, respectively. Then Ht will be given as

-1
c, B, (P. , P, ceey P, I ey I ) -
_B t J » J » » J » S. ’ ’ s
t 1 2 k Jpsl n
(c. ,c. , «eo,c. , 0 y +e-5 0 ),
J J J S, S
1 2 k Iksl n
where P. = mxl column vector associated with nonbasic,
i
nonslack xj,
Is = mx]l identity vector associated with non-
i
basic, slack xj,
and ) 1 = n.

i
Since {cji | 1=l,2,...,k}ﬂ{cj | cj € EBt} = ¢, the

hyperplanes represented by {c, B;le -c
t i

. =01} i=1,2,...,k
iy | i }

will be linearly independent due to the exclusive c.'s.

Thus, we need to investigate only those n-k hyperplanes

given as {SB B-ll = 0 | i=zk+1,k+2,...,n}, all of which
t b Sy

have identical cj's since ¢_, consists of zero elements

Sor
for i > k.

We know that the m columns of matrix B, are linearly
independent ¥ selected basis. Also since Bt and Bthl

are nonsingular, so is B:l nonsingular (18, p. 90].

Clearly, all hyperplanesc:{gB B;lls | i=k+1,k+2,...,n}

t i
will have cj coefficients provided by distinct columns
of le, which is sufficient for linear independence

if [ is composed of all nonzero elements. Difficulty

t
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contains > 1 and -m-1 sltack vari-

is suspected if x _“ z

ables. To see this, consider the following example for

1 ]
n=m-=3 and let Xg = (xl,x4,x3) , S0 that (% (cl,o,c3).

Then
-1 _
EBB A-c = (c ,0 c3) b 12 13 0 0] - (c2,0 0),
21 22 23
31 32 33

where the bij matrix denotes B and the matrix opera-

tions yield two hyperplanes with the same €55 b12°1 +

b32c3 and b13c1 + b33c3 Now if b12 = —bl3 and b32 =
-b;z, the polyhedral subspace would have zero content
(consist only of boundary points). Thec opposite signs

may occur, but due to the nonsingularity of B, given as

ap 1 oayg) s Ibyy [ £ 1 b5 [and [ by, | #] byy .

3y 0 ayy

az; 0 agy

Checking; |b,,| = |b ;| implies azy = a,q, and |bg,| = |bs]
implies azy = 3595 which is prevented since the last two
rows of B cannot be proportional. Thus, for n=3, we are
assured of linear independence for {Ht} due to the non-
singularity of the B matrix.

This same result holds for n=4 (where x, contains 21

B¢

and <3 slack variables), but the calculations are tedious
and prohibit this method of proof for the general case.
So for n>4, the argument is similar to that of Theorem

8 (see p. 47). Assuming the extreme point (5})
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exists, it is defined by a particular set of the original
linearly independent constraints. These constraints act
as bounds on the magnitude of riSt if mapped onto the ¢
space. When certain conditions and operations are satis-
fied (see pp. 48-50), these Qriginal constraints can
define a space equivalent to S,. Since these sets of
constraints are independent over t for arbitrary n, the
supporting hyperplanes for {St} are also. Therefore, the
H, are linearly independent and R” is spanned for any
basis t. |

(Part II, Nonemptiness): 'We know that St is convex
and, from Part I, that the hyperplanes Ht are linearly
independent. Let {Ei | i=1,...,n} be selected points

satisfying H ) {Ei} constitutes a basis for S,. Let

n n
€= ) Ac.,where ] A. =1and A, > 0 for all i.
- . i=i . i i

i=0 i=0

To prove that St is nonempty, we must now show that E
lies in the interior of St‘ (A similar proof is re-
quired by the exercises on p. 17 of B. Grunbaum, Convex
Polytopes, Wiley, 1967).

Since St is a subspace by definition, let € = 0
and the <5 for i 2 1 will then constitute the basis.
Hence every point c in St is a unique linear combina-
tion of the c.'s. Suppose € is not in int S_ (interior

of S.)5 then there is a sequence {zk} (k=1,2,...) of

points not interior to S, 3 lim z, = c. Expressing

ko
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Z. =

k a.

1

Since zk is not in §

k
i

U e =

. . k .
. c; implies that {ui}zki for each 1 < i < n.

¢» Some a? = 0 for infinitely many
k. This implies the contradiction that some-ki = 0.
Thus, ¢ ¢ int S,-

Therefore, since the Ht are linearly independent and

since St is nonempty, we conclude that a nondegenerate

polyhedral subspace exists V basis. q.e.d.



CHAPTER IV
PROBABILITY SPACE SOLUTION METHOD

The intent of this chapter is to develop a solution tech-
nique when the polyhedral subspaces are defined by the known
linear inequalities associated with each feasible basis. A
polyhedral convex set is defined as the intersection of a fi-
nite collection of closed half-spaces. (In the event this set
is bounded, the points contained in the intersection of half-
spaces would define a convex polytope [24].) Since the half-
spaces we are concerned with are the set of linear inequalities

{c BtlAt' “Cer 2 0}, the term polyhedral subspace is most appro-

priate. And since there is a distinct set of linear inequali-
ties associated with each basis t, the probability space denoted
by R” is a finite collection of polyhedral subspaces.

The subspaces will be unbounded provided there are no
domain D[{f(c)] restrictions. This will be the general framework
for the following development since the typical joint probability
density functions, e.g., the multi-variate normal or exponential,
have either no bounds or simply a nonnegativity requirement on
the random variable domains. (In the case of the normal distri-

bution, the domain is R", while the domain of the exponential is

34
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restricted to R".) Since the vertex of the polyhedral subspace
is the origin in all cases, the nonnegative domains of the
exponential density function could affect only the geometry of
the subspace, not the unboundedness.

In accordance with the concepts stated in Chapter II,
the objective is to obtain that subspace having the largest rela-
tive interior, denoted by riSt, and then determine the class of
density functions for which this particular subspace also has
the largest probability (Pkt) of being optimal. (The term rela-
tive interior is used since a convex set does not have an interior
in the sense of the whole metric space, but rather an interior
relative to its convex hull.) Thus, the objective is to rank
the various Pk b} order of magnitude without requiring any

probability calculations.

Formulation of Subspace Hyperspheres

As before, let Ht denote the set of supporting hyperplanes

for riS_, the relative interior of the polyhedral subspace asso-

t)

ciated with feasible basis t, where H, = {c, BtlA = 0} and

t' —t'

-1 .
= {g'| Bt Aii=Cer 2 0} The set H . consists of n homogeneous

equations in the n random variables. Let the cj coefficients be

denoted by bij; then the linear inequalities may be expressed as

Z b. JcJ 20, i=1,...,n. Define Ei as the 1lxn row vector
j=1

(bil, bi2’ cees bin)’ so that in terms of the scalar product [30],

the linear inequalities become <£,2£7 >20,i=1, ..., n. The
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subspace thus defined is an area for n = 2, volume for n = 3, and
hypervolume for n > 3.

Assuming cj eR, j=1, ..., n, the subspaces have infi-
nite relative interiors; consequently, a relative volume measure

between subspaces must be defined. The unit sphere with center

n

at the origin is given by z c? =1, Let An denote the surface
j=1

area of the sphere and As denote the sphere surface area for the

t

now bounded St. Then the relative volume measure for St is defined as

A
S

7r£-for a particular n and basis t. This ratio will be referred to
n

as relative portion of R" for a particular subspace and denoted
by rpRn. Thus, for example, if rpRn = 1 for basis t, then riSt = R".
To be noted is that the quantity rpRn is theoretical since

its value cannot be calculated. As is analogous to the solid
t

angle and would provide a comparative measure over t of the
various rpR", but again, it cannot be determined since the dif-
ferential element (dA), say for n=3, would be triangular rather
than four-sided as required for the solid angle. In what follows,
it is convenient to consider rist as synonymous with rpRn for

any basis t.

As previously stated then, the basis t having associated
subspace with largest riS, also defines the largest rpR".

The approximate measure of A_ to be used is r,, the radius of

t t’
" the hypersphere contained by the polyhedral subspace relative to

the vertex. Then the Se with largest r, will be the subspace
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having largest riSt and the feasible bases may be ranked accordingly.
For compafétivc purposcs, the various r, must be determined at the
same fixed distance from the vertex for all subspaces.

Theorem 6: Under the conditions stated by Part II of
the proof’,' then given {St|t=l,.. .»q} such that 3 {rt}, if
the radius rg 2 sup{rt|t=1,...,q, t#s}, then riSg 2
sup{rist|t=l,§..,q, t#s).

Proof: Geometrically inscribe a closed hyperspheré in
polyhedral subspace Ss' Let ﬁ; be the vector from the ver-
tex passing through the center of the sphere. Let P be
the point on ;; one unit from the vertex and let H_, e H_.
Then r_ = |11, - p ]|, the ] distance from the point p_
to the points of tangency with H,. Let the tangent points
be denoted by hsi’ i=1, ..., n. The proof is in two
parts.

Part I (n=2): Let {eili =1, ..., q} be the vertex
angles formed by the two hyperplanes (lines) associated
with each basis. The hypersphere for n=2 is simply a

circle as shown below:
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The riSS is directly proportional to the magnitude of BS for
each basis s. The vector W; bisects 8_ and the radius of the

hypersphere is determined by r_ =||h - P_||. For the

sl,2
90° triangle, 65;3;;, T, is the length of the side opposite
the vertex angle 95/2. Thus any change in the magnitude

of 0 is reflected by corresponding change in Te» and since
riSs is proportional to 0> the larger r_ implies the

larger riSs. Therefore, if r.2 sup{rt|t=l,...,q, t#s}, then
ris_ 2 sup{riSt|t=1,...,q, t#s}. q.e.d.

Part II (n > 2): As previously defined, {Ei|i=l,...,n}
are the normal vectors to the associated set of supporting
hyperplanes for the subspace Sg. Let {aii' | i#i' and ii’
= i'i} be the (2) angles determined by the scalar products
of the normal vectors for basis s. The following three cases
may arise: (1) the (g) angles remain constant over t;

(2) any (g) - 1 of {a,;,} remain constant over t; or (3)
less than (g) - 1 of {a,.,} remain constant. Note that
rotation of the subspaces in R" is permitted by these cases;
the angular requirements only affect the geometry of {St}.

The first case is trivial since all St would have equal

risS

t* Due to the linear independence of each H_, a conve-

t)

nient check exists: for a particular t, determine {aii,}
s

and then, if any n-1 of these angles repeat over t where

either the i or i' value appears in all n-1 angles for

each t, the riSt remains constant.
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The second case permits only one of {“ii'} to vary over
t, where the distinct LT in each sect has arbitrary 1,i°.
Consider a cross-section passing thru the hypersphere,

{hsi}, and bounded by the intersection with Hs. It could

appear as follows for n=3:

When only one @i varies, the cross-section vertex angles
remain.constant. Since the areas of the cross-sections over
t are a direct measure of {riSt}, and since the magnitude of
re changes directly with the cross-section area for fixed
vertex angles, if T 2 sup{rt}, then riS_ 2 sup{riS }.
For the third case, when less than (2) - 1 of thea,.,
are constant, we cannot show in general that increasing T,
implies increasing riSt over t. The changes now permitted
in the geometry of the subspaces make attempts at quantifi-

cation most difficult. It must be assumed by conjecture

that the theorem as stated is true in this case so that if
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re 2 sup{rt | t=1, ..., q, t # s} then riSs > sup{riSt

| t=1, ..., q, t #s}.

Applicable Joint Probability Density Functions

Since the polyhedral subspaces can be ranked according
to riSt, t=1,...,q, we now determine under what conditions the
largest riSt corresponds to the basis t having the largest pro-
bability of being optimal. The domain D[f(c)] is identically
(S,}, so that the larger riS_ implies greater domain for the
values of the random variables.

The probability that the feasible basis t is optimal is
given by

P, = .o f(c)de, ... dc
K, Hstl_l n

where the product dc1 cer dcn is a differential element of volume
and St defines the subspace over which dV is accumulated. Since
the subspaces are contiguously located with vertices at the
origin in R", the subspace with greater rpRn would always have
larger Pk only if the product f(g)dcl con dcn is constant for a
given distance from the origin. To illustrate this consider the
case for n=3, and since the subspaces are unbounded, transform
the problem into the equivalent one using spherical coordinates.

Then the probability that g;:St is given alternatively by

- [ff £(r,08,¢)r’sinedod¢dr ,
t volt

Pk
where rzsineded¢dr is the differential volume in spherical coor-

dinates. We see that for the larger P, to correspond to the
t
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subspace having larger volt, the functional values of f(r,0,¢)
must be independent of the angles (0,¢) and thus a function of
r only. Then the subspace with largest integration intervals on
(0,¢) will yield the largest Pk' For n>3, wherein an additional
angle represents each additional dimension, the argument is ana-
logous. The following theorem can now be stated:
Theorem 7: For unbounded polyhedral subspaces, if f(c)
is independent of the content of St’ which implies f(c)
constant for a fixed distance from the origin, then
largest Pkt corresponds to that basis t having largest
riSt.
Proof: Assume a joint density function of the form
2

2 2.p
—kz(cl tCy ...t )

f(c) = kle , where k., k

1* 72
are nonzero constants, p ¢ R+, and cj ¢ R, then f(c) is
spherically symmetric since it can be expressed as

~k, (r%)P
f(r,0,¢, ...) = f(r) = kle . Thus, since the
density functional values depend only on r, dV = rzsineded¢dr

and de = f(r)rzsineded¢dr, where the values of the domain
t

D(r) are identical over all bases t. The differential solid

angle is given by dQ = 2%- = sineded¢. This implies that
T

the largest riSt will be that subspace having largest domain
Dt(e,¢), since the difference in values of the various Pk

is dependent only on the differences in their respective

domains D(6,¢). Therefore, the largest Pk corresponds to
t
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largest riSt for unbounded subspaces. q.e.d.

Notice that the joint density function in Theorem 7 cannot
be allowed utilizing Zinn's technique [47], and even though it is
theoretically covered by Ewbank's solution method [17], it is
computationally infeasible (see p. 54). As previously discussed,
Zinn's technique requires probability calculations in order to
generate the bases in a contiguous manner. Variable limits are
required on some or all of the integrals at each iteration, and
for the multivariate normal distribution, this prevents exact
evaluation. The same difficulty exists using Ewbank's method,
even though the Jacobian transformation enables constant limits
on the integrals. The resulting integrand then contains not only
squared terms but also cross product terms in most cases. Nu-
merical integration techniques would be required for evaluation,
but since infinite limits are involved, the usefulness of any such
approximation would be highly questionable. Thus, this disser-
tation enables a new class of PLP problems to be treated.

As indicated by the preceding discussion, Theorem 7 (for
p=1) holds for the symmetrical multivariate normal distribution
vwherein the cj are independent. Thus, we have a well quantified

joint density function for which the Pk may always be ranked
t

according to magnitude without making any probability calcula-
tions. Also the standard exponential density function, where the

cj 2 0, could easily be adapted to take advantage of Theorem 7,

- + + ...+ C
since the basic difference between f(¢c) = e (cp + <2 n)

-(cq2 2 2
e (€17 + €% ¢ o b %) 4 only the rate

and f(s_) = -(—ﬂ;i—)—m



43

of decay for increasing cj values. Consequently, the reguirements
of Theorem 7 are not viewed as restrictive providing the random

variables have no upper bounds. So in lieu of extensive probabi-
lity computations we can use the convenient geometrical technique

of determining the embedded hypersphere radius r,.

Solution Method 1

Prior to stating the general algorithm, the case for n=2
is treated separately. The supporting hyperplanes for a given
subspace (basis t) become Ht = {<23§4> . <Ea§g> = 0}. The rpR2
between subspaces is simply measured by the angle 0, formed by the
two linear inequalities defining each St’ so that larger et cor-
responds to larger riSt. Denote the vector representations of the
two lines (Ht) as u, and Vs where the magnitude is arbitrary

and thus u, and v, may be regarded as extreme rays (half-lines

emanating from the origin). We then calculate 0, for each basis

t by

and rank the subspaces accordingly (see example, pp. 17-20).

For the general case, define c, as a particular point ¢ S,

and define htl, i=1, ..., n, as the ishvhyperplane € Ht' As

before, denote Ei ,i=1, ..., n, as in the tEh-row vector of
t

the cj coefficients. Suppressing the subscript t, define dEhi
as the distance from the point‘E:to the hyperplane hi. This

distance is given by
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where llgill = (8)

j

a.
e}
-
[
A
[2)
»
J?
v
Gose
~ S
—
o
N

|12y 1

Note that {b, | 1 = 1, ..., n} are the respective normal vectors
for {hl | 1 =1, ..., n}. Define E; as the point equidistant from
all hi and located one unit from the origin. As before, let w be
the ray from the origin which represents the locus of points equi-
distant from all hi, so that E-e € w. Then the desired radius of
the unit hypersphere is the distance from Ee to any hi, that is,
r, = d_ i for basis t.

c h

~e t

Let c, = (cl,cz, ceey cn) € St be a particular point equi-

distant from {hi | i =1, ..., n} for basis t. Then for each
feasible basis, the steps of the algorithm can be stated as:

Step 1: To determine the point :, equate

{dg 4 | i=1, ..., n} given by (8) as follows:

<c,b,> <c b > <c,b >

b
L

[Ty 1T ™ TiepIT ™ " ™ Tikyl]

This yields n equations in the unknowns (2'1,2'2,...5“ 2Y).

=Y

The number of unknowns exceeds the number of equations; how-
ever, since ¢ is contained by the locus of points equidistant
from all hi, a particular E; may be assigned a value consistent
with the set of linear inequalities. If this choice is not
obvious, a linear combination of {b;} will yield a point

¢ s, from which an arbitrary E} may be chosen. Thus,

there are n nonhomogeneous equations in n unknowns, which

can be solved by numerous existing techniques. In the

event a solution of this system does not exist, one or more
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of the n equations would be ignored, thereby causing the
method to become heuristic. (Dropping an equation would

correspond to removing one of the hyperplanes defining

the subspace S.)

Step 2: The ray w = t(Ei,Eé, cees E;), so that E;, the

point one unit from the origin, is given (for x=1) by

Ee= = - n - 1/2 (—61'?2' cees €p)
Irw“ X -62 n
5

Step 3: The comparative measure of riS, the radius r
of the hypersphere one unit from the origin, is now calcula-
ted. Since E; is equidistant from all hi, r is identical
for aill hi; thus

<'§e ,b.>
r = —=———— for an arbitrary i.

i
112511
Step 4: Repeat steps 1, 2, and 3 for each basis t and
then rank the r, by order of magnitude. As previously in-
dicated, this ranking will have the same order as would

{P, }, the probabilities that the various bases are optimal.
t .

The degree of difficulty in performing the calculations
required by the algorithm is very low; only the first step presents
some involved algebraic operations. Programming this algorithm
to handle large problems will be a relatively easy task. These

same comments apply to Solution Method II presented in Chapter V.



CHAPTER V
FEASIBLE SPACE SOLUTION METHOD

This chapter develops a solution technique utilizing the
supporting hyperplanes for the feasible space, rather than the
hyperplanes which define the probability space. The premise is

that for Pkt = ff.g. ] f£(c)dc, ... dc_, and for appropriate f(c),
t

the basis t having largest P, will be that basis for which the

l(t
intervals of integration are a maximum. Such an event would re-
late to that extreme point, 5?, where the objective function has
maximum freedom of angular rotation prior to a different extreme
point becoming optimal. The angular degrees of freedom for the
linear functional rotation equals n, since the number of constraint
hyperplanes necessary to define an extreme point in R" is exactly
n. (The context will make it clear whether R" refers to the pro-
bability or feasible space.)

Analogous to Solution Method I, the technique now being
developed is based on the same rpRn concept, and therefore, applies
to those problems having an f(c) in accordance with the require-
ments of Theorem 7. However, the possible exactness of Solution

Method I, due to the exclusiveness of {St}’ can only be shown for

the present method for n=2. Perhaps this technique should be

46
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titled as a heuristic, but since no counterexample has been found,
this technique will be referred to as Solution Method II.
The linear inequalities we are now concerned with are

n

given by -] a..x. + b, 20,i=1, ..., m and x. 20, j =1,
j=1 157 j

..., n. It is assumed the feasible space thus defined is nonempty
and closed. Since each 5F is considered independently, the inter-
section of n linear inequalities with vertex 5F constitutes a
polyhedral space in R" providing the domain D(xj) = R for all j.
Thus, the nonnegative restrictions on the xj are dropped, and since
we are interested in the geometry of‘§F and not its location, we
perform a translation to the origin by setting all bi to zero.
Therefore, each set of n linear inequalities associated with each
5} may now be described as a polyhedral subspace, unbounded and
containing the appropriate points x. Let the set of n hyperplanes

with vertex xt be defined by G, = PS\IQS, where

Z a,

L3 x5 = 0]s=1,...,k} and Q = {x x5 = 0]s=k+1,...,n}.

S

Then deflne F, = {EJE.C G, 2 0}, the unbounded convex subspace
associated with basis t wherein the x have no requirement for be-
ing feasible.

Recalling that S {clc Bt A > 9}, consider the

t! —t'
riFt in the same sense as the previously defined riSt, that is,
the measure of the relative interior being the radius of the em-
bedded hypersphere located one unit from the vertex. The follow-
ing theorem can be stated:

Theorem 8: Given St and Ft associated with feasible ba-

sis t, then riSt is inversely proportional to riFt.
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Proof: Let the n angular degrees of freedom about 5?

for the linear functional, zt(g) = [Z(£F)|EJ = clx; + ... +

t .
c X, be represented by ¢, = {4, | i

1, ..., n}, where ¢i

is the interior angle between zt(g) and gi € Gt and 0 < ¢i < 1.

n
(The domain D[zt(E)] would be R" for Z ¢i = nll, since Ft
i=1

would then have zero content.)
n
The magnitude of [ s for basis t is bounded by G, >
i=1
the supporting hyperplanes for F.- Thus, if riF is large,

n
the D[zt(g)] is limited since z ¢i will be restricted.
i=1

n
In fact, if Z ¢i = 0, then EF vanishes. Therefore, since
i=1

D[zt(g)] is a direct measure of riS_, the quantities riFt

t’

and riSt are inversely proportional. q.e.d.

An extension of the preceding theorem is necessary. As-

suming we have a suitable mapping function o:R2+R:, so that riSt

can bc measured on the same space as riFt, S

The angular rotation of z(c) about 3? is bounded by G

¢ can be exactly stated.

¢’ thus, there

would be no region allotted St contained by either Ft or its mirror

image. Let F} = x| xe G, < 0}, then the equivalent riS, would

be exactly equal to kri(Ftl.l Ft,), denoted hereafter as risi.

Since ris, and riFt are inversely related, it would appear

a ready technique is available for ranking the various Pk . Let

t

ry denote the hypersphere radius associated with F, in the present

development. Then, where decreasing r, over feasible t in Solution

Method I corresponds to decreasing Pk , the same ranking should
t
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now be obtained by arranging the values of ré in increasing order.

This is not the case since {Ft} are obviously not exclusive, i.e.,

fH Ft # ¢. Thus, Solution Method II concentrates on ranking
t=1

{S:}, the set equivalent of {S }. The ranking of the P, will then

t
be in accordance with decreasing values of the r  belonging to {S:}.
And as exhibited by the example in Chapter VI, there is no require-

ment that {S:} be necessarily exclusive.

Formulation of Extreme Point Hyperspheres

Consider the two variable problem where {5F} are defined
by the intersection of two constraints. Then for a particular
5?, G, will contain two hyperplanes (lines) and riFt will be an
unbounded planar subspace. If either one of the linear inequa-
lities defining F, is then reversed, the resulting subspace is
the desired S:. For this simple case, we see that riSz = riSt;
however, for n>2, the technique to be used is more complex.

Define 3; as the normal vector to the iEb-linear inequa-
lity associated with-ff, so that (suppressing the t notation)

ay = {a; | i=1,...,n}. Thus a, = (-aisl, cens -aisn), s=1,...,k,

and a. = (1, ) for s = k+1, ..., n. Let {o,., | i #i' and ii' =
S

i'i} be the (g) angles formed by the normal vectors and calculated
by the scalar product <a;,a;,>. The procedure again is to reverse
one of the n linear inequalities to obtain Si, but the choice of

which one is determined by the following sequential rules:
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Rule 1: I[f any <a,,3; yields eii' = NI/2, reverse the 8; 840
€ Gt 2 0 of greater dimension. If no eii' =1/2,
select Rule 2 or 3 as appropriate.

Rule 2: If £0.., > (;)%-, reverse the B;:851 € G, 2 0 of
greater dimension associated with largest eii"

Rule 3: If Z8,., < (g]g-, reverse the g.,g., € G, 2 0 of
greater dimension associated with smallest eii"

*Using the appropriate rule, if a tie exists regarding dimen-

sion, the choice of which inequality to reverse is arbitrary.

Using the preceding selection rules, the choice of which g; € Gt 20
to reverse is determined and S: is obtained. Thus, if g, is
reversed, then S: = {x | g; 20, i=1, ... s-1, s+1, ..., n and
-8 2 0}.

Since S: and St are analogous as polyhedral subspaces,
and since dim S: = dim St = n for all feasible bases, the develop-
ment of the embedded hypersphere concept is the same as before

(see Ch. 4, pp. 35-37). The measure for riSi will be r_, the

t’
radius of the hypersphere with center on the locus of points equi-
distant from G , the supporting hyperplanes. Justification of this

technique requires only trivial modification of Theorem 6.

Solution Method 11

Since the case for n=2 involves only the comparison of
t angles, it will not be stated separately (see p.43) for analo-
gous treatment). Define 3; as a particplar point € S:; as pre-
viously defined let 3; denote the iEE-row vector of the Xs coef-

ficients. Let h: denote the ish-supporting hyperplane ¢ G, 2 0,
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then suppressing the subscript t, the distance from the point X

to h' is given by

<Z;§i> 2
d_ ., TR where ||a, || = 3 (9)

Xh Iléi j=1

18

Define tx, 1eR’, as the ray equidistant from all h', where

- e —- = - - - - .
X € St = (xl,xz, ceny xn), and X, € TX, ) X, is located one unit

from the origin. Then T, = d_ i for basis t and arbitrary i.
x_h
et

The steps of the algorithm for each basis t may be stated as

follows:

Step 1: Xp implies the modified active constraintsc:Gt > 0.
t

Reverse the g; € Gt > 0, where selection of the parti-

cular g, is in accordance with the previously stated

rules (see p. 50). Let G{ denote the set of inequa-
- i set

lities after the reversal; then {h'} = G; = 0.

Step 2: To determine the ray, 1x, equate {d_ ; | i=1,...,n}
xh

as given by (9), where Ri is chosen to satisfy G{ > 0.
(See Step 1, p. 44.)
Step 3: Determine the point 3; by obtaining X as a unit vec-
tor. (See Step 2, p. 45.)
Step 4: Calculate L P the relative measure of riSi, by
<§;,2:>

ht Izl

Step 3, p. 45.)

, where i is now arbitrary. (See

Step 5: Repeat steps 1, 2, 3, and 4 for each basis t and then

rank the r, by order of magnitude. As in Solution
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Method I, this ranking should yield thc same ordering

of {P, | t=1,...,q}, the probabilities the various
t
bases are optimal.



CHAPTER VI
JACOBIAN TRANSFORMATION AND EXAMPLE PROBLEM

The two solution methods (Chapters IV and V) are now
illustrated by application to an example problem where the dis-
tribution of the random variables is given by the multivariate
normal density function. The results are verified by simulation

to obtain estimates of the various Py - Simulation is required

t
since exact evaluation of the iterated integrals representing {Pk }
t
is not possible. Since, in general, some of the limits of inte-
gration for a particular St are variable, we obtain constant
limits by using the Jacobian transformation of integrals (see
n
{3, pp. 335-336]). Expressing Z bijcj >0, i=l,...,n, in
j=1

matrix notation, we have

Bc =520
so that

c=87s
Recalling that P, = If...f £(c)de,dc,...dc (10)

t S

t

the transformation yields
-1
p, =ff ... [ EB "5 | J_ | dsids,...ds (11)
kt s20 s 1772 n

where

53
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acl acl
as1 asn
. . -1
Js = det . . = det(B )
d9c ac
D -
as-1 asn

Thus, if possible, (11) would be used for each basis t for exact
verification of the solution methods. Note in the following
example problem that evaluation of the integral expressions is not
possible. Therefore, it is typical of a class of problems which
can now be solved due to the techniques of this dissertation.

It is shown that the obtained rankings of the various P, are iden-
tical using either solution method. The PLP problem is stated as:

max z(x) = C,X, + C, X, + C,.X

11 7 C%2 * C3%3

s.t. x, + 2x2 * Xg < 430
3x1 +2x3 < 460

X, ¢ 4x2 < 420

xj > 0; ‘cj random independent variables (Mil;0,0)

The joint probability density function is given by [26,
p. 211] as

172 E}V’{g

1
T '

where V is the covariance matrix, which, for independent <5 and

symmetrical f(c), implies o,, = Ogg = ++e =0 and °ij = 0 for

11
i # j. Thus, for our example problem



and (10) becomes

o
fff e i dc.dc.dc, ,
t (2no )32 17727°3

and (11) becomes

1
20

11
EEE;—___7_ ] e

s20

3
) 8]’

i=1

k, |J5|dsldszd53

The pertinent data for each of the eight feasible bases

1 1
are as follows where a = and b = :
(2nall)372 20y,
(o) ( A
Xy 430 -c1 20
581 = |xg| = [460 5, = {e} > -¢, 20
Lxﬁj L4ZOJ -63 >0
ra (g )
¢ 5y
| = |52 9,1 =
c -S
(73} (73
o b(sz+s g)
Pkl = a J g@ gm dsldszds3 % 0.118
] 1 -
(xz 105 ac, + ¢, >0
582 = %] = 220 S, = {c} 2 -¢cg20
.xSJ 460 c, 20
rcl1 "45 1 + !iS
c,| = Sg 19,1= 174
f3) | %2
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= - n,
pkz =3 [: " [ e ds,ds,ds; % 0.162
'xl’ (1533/10 2¢, -3c520
583 = Ix4] = 2767/10 S3 = {S} 3 -¢, >
x,) (2667/10 ¢ 2
( 3 (
© 3
c,| = -, 951 = 1/3
(C2) L'1/352"2/353
2.2 2
-b[s +s,+(2/3s,-1/3s5,)"]
_a (= o 371 3 2
Pk3 =3 jo j: [ ds ds,ds; % 0.175
r 3
X 230 -2(:l +3c3 >0
-’584 = [X4] = 200 54 = {c} 3 -¢, >
(xg) 1420 cg2 0
r 1 r-,
< zsl+3/253
c,| = -s, l3,1 =172
kCSJ \ S
D o m w -bU3/255-1/25 ) 2es2esl]
- = N\
pk4 =5 {) i fo e ds ds ds; ¥ 0.206
(x.) ( - -
X 100 4c1 c, + 6c3 >
EBS = |x5| = |230 Sg = {c} 3 -cy)+ 2z 2
»x6J L 20 Cz 2
[ V_]/ 1
cll 4s | 4155 ,+3/45
c,| = S, l9g|=1/8
€3] | syt
2 ermpe DI(s 437850 %4524 (55,0455 ) %)
ke =8 [o IOIO e ds ds ds; % 0.146
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sz 105 --4c1 tc, 2c3 >
586 = |%5| = 220 86 = {c} ) c,y - 2c3 20
20 c, 20
(X ) k 32
) (1
1 45)*5y*4s3
| = | 2s,tsq |J6| = 1/4
(€3 { Sy
2 2 2
~b[ (-%s,+s +%s.) “+(2s,+s,) “+s_]
_a qwmmo 17°27%°3 2773 2
pks =37 fojo jo e ds ds,ds; % 0.042
h ( _
x, 1533/10 dcy - ¢, - 6Cg 2
5-87 = I%,] = 667/10 S, = {c} 3 4c, - ¢, 2
x,)  11434/10 c, 2
r (1, 1L
| iSytass
c,| = S5 9,1 = 1/24
€3 L—1/6sl+1/6s2
2,21 1 .2
-b[ (4s.,+%s,) “+s+(55,-25,)°)
_a_ (oo 273 7°37%6°276"1 n
pk7 = % /OIO‘”IO e ds ds,ds; ¥ 0.142
4 h r _
X, 10 «‘lc1 tc,t 6c3 20
_)_(_BB = |x,] = 205/2 58 = {c} J 4c1 - ¢y - 2c3 20
Xz 1215 4c; + ¢, - 6cg 2
r 3. r!,
<y 451+3/852+1/853
c,| = ks +hs g |J8| = 1/32
LCSJ L !&514!152
3.1 .2 ., 2 2
p _ —a_ w!“!” e-b[(;‘sl*gsz*'gs3) "'(151'.'!!53) +(%sl+!‘sz) ]ds ds ds
kg 32 { 0 17°27°3

% 0.009
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"The values of {Pk |t=1,...,8} listed above were obtained
t

by simulation, wherein 2000 random triples belonging to the given
density functions were generated. Boundary ﬁoints were not
counted in order that the 2000 triples would represent only inter-
ior pointsc:{St}. The ranking of the subspaces by the magnitude

a» 532 Sp» Sg» 575 515 g0 Sg-
Note that the exact probability for P

of their respective Pk yields S,, S S
t

K is 0.125, whereas the simu-
1

lation produced 0.118. In the two solution methods which follow,

S, is placed in the fourth position and this represents the only

change from the simulation ranking.

Solution Method 1

Basis 1
Step 1: {d .} under equality implies -c, = -C, = -C
E'hl 1 2 3
Let c, = -1, then Cy = Cq = -1.
Step 2: W =TC = 1(-1,-1,-1)
o = (-0.576,-0.576,-0.576) .
Step 3: ry = d . = 0.576.
=i
c h
—e
Basis 2 _
-4c +c2 _ _
Step 1: {d_ .} under equality implies ——— = -c; = ¢
ch! 17 572
Let c, = 1, then cg = -1, ¢ = -0.78.

Step 2: w = t¢ = 1(~-0.78,1,-1)

(0.482,0.62,-0.62).

i
[=%

. = 0.62.

Step 3:
i
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Basis 3

Step 1: {d i} under equality implies

= -C, =Cc,.

3 2 1

= 1, then c, = -1, Cg = -0.535.

=
o
~t
g
|

Step 2: w = tc = t(1,-1,-0.535)

c = (0.66,-0.66,-0.353).
-—e
Step 3: r,=d . =0.66
3 -E- hl
-e
Basis 4

Step 1: {d i} under equality implies

ch
2ats - L2
/i3 2 3
Let 3 = 1, then c, = -1, ¢, = -0.303.

Step 2: w = tc = 1(-0.303,-1,1)

_E_e = (-0.21,-0.692,0.692).
Step 3: T, = d_ 3 = 0.692.
ch
)
Basis 5
Step 1: {4-1} under equality implies
ch
-4cl-c2+6c3 i --c2+2c3 =
/53 3 2
Let ¢, = 1, then c; = 1.618, c| = 0.355.
Step 2: w = tc = 1(0.355,1,1.618)
:c’e = (0.183,0.516,0.835).
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Step 3: r_=d . = 0.516.

40!

Basis 6

Step 1: {d_ i} under equality implies

ch
-4cl+c2+2c3 c2-2c3

= =E-3
/21 /5
Let c3 = 1, then c, = 4.236, c1 = 0.414.

Step 2: W = 1C

7(0.414,4.236,1)

:é:e = (0.095,0.97,0.229).
Step 3: e = d_ i= 0.229.
ch
—e
Basis 7

Step 1: {d i} under equality implies

—

ch
4c1- 2-6c3 i 4cl-c2 =
/53 /7 2
Let c, = 1, then ¢, = 1.28, Cg = -2.23.

Step 2: w = tc = 1(1.28,1,-2.23)

(0.464,0.362,-0.808).

Step 3: r 0.362.

Basis 8

Step 1: {d i} under equality implies

ch
-4c1+c2+6c3 ) 4c1-c2-2c3 i} 4c1+c2-6c3
/53 21 /53

LeF cz = 20, then ¢, = 30, ¢, = 49,
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*Since an arbitrary value for a particular E} is not

obvious in this case, the value of 20 for ES was

determined by forming a linear combination of the
vectors normal to {h;}. The point obtained in this
manner (38) must be € 58.
Step 2: w = tc = 1(30,49,20)

c_ = (0.494,0.805,0.329).
—e
Step 3: ?é = 0.112.

The ranking of the subspaces by decreasing magnitude of
their respective r, is S4, 83, SZ’ Sl, SS’ S7, S6’ 58. And the
position of Sl, relative to the various Pk , 1s the fourth rather

t
than the sixth position as predicted by simulation of the proba-
bility functions. Theorem 6 does not resolve this discrepancy,
rather we are only assured that {81,82,83,84} is correctly ranked

by Sy, Sg. S,, S,

Solution Method II

Basis 1
—_— X4 xlzo
Step 1: X3 = |%4 implies G1 = szO
1
X xszo
8)p = 875 = 053 = Nn/2, so reversal by Rule 1
is arbitrary and yields X, 2 0
|
Gl =1X, 2 0
32 0

Step 2: {d;hi} under equality implies x, = x, = -X

Let Xz = -1, then X, =X, = 1.
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Step 3: 1x = t(1,1,-1); ge = (0.576,0.575,-0.576) .
Step 4: r, = d . = 0.576.
-, 1
x h
—r
Basis 2
X, -X; - 4x2 2
Step 1: 582 = [%4 implies G2 =1 % 2
Xg Xy 2
613 = /2, so reversal by Rule 1 yields
X, + 4x2 2 0
Gi =14 20
Xz 2 0
Step 2: {d_ i} under equality implies
xh
x1+4x2 _ _
= x]_ = x3
Y17
Let X = 1, then X, = 0.78, Xy = 1.
Step 3: 1x = 1(1,0.78,1); ge = (0.62,0.483,0.62)
Step 4: r, = d_ i = 0.62.
x h
-
Basis 3
Xy -3x1 - 2x3 2
Step 1: 583 = |%4 implies G3 = Xy 2
X, Xz 2
8y = n/2, so reversal by Rule 1 yields

3x1 + 2x3 2 0

G% = X, 2 0
xz 2 0
Step 2: {d_ .} under equality implies

xh
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—_— 2 =X =X
/i3 2 3
Let X, = 1, then Xy = 1, X, = 0.535.
Step 3: 1x = 7(0.535,1,1); 'ge = (0.353,0.66,0.66)
Step 4: r,=d_ . = 0.66.
3 X hl
—e
Basis 4
Xq -3xl - 2x3 2
Step 1: x, = |x,| implies G, = X 2
—84 x4 4 1 § .
6 2
63 = N/2, so reversal by Rule 1 yields
.'Sxl + 2x3 20
Ga =1 % 20
X, 20

Step 2: {d .} under equality implies

xh'
3xl+2x3 _ _
———— 2 xl = xz
/13
Let X, = 1, then X, = 1, Xz = 0.3025.
Step 3: x = 1(1,1,0.3025); '_ie = (0.692,0.692,0.209)
Step 4: r, =d_ . = 0.692,
x h
-
Basis 5
X, - X - 2x2 - x3 20
Step 1: x5 = [Xg implies Gg = —3xl - 2x3 2 0
5
X6 23 2 0
- -] — -] - o,
912 = 5§5.5°, 013 = 114°, 623 = 146.4°;



Step 2:

Step 3:

Step 4:

Basis 6

Step 1:

Step 2:

Step 3:
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6 = 315.9° > 270°, so reversal by Rule 2 yields
- Xy - 2x2 - x3 2
G% = 3x1 + 2x3 2
X, 2

{d_ i} under equality implies
xh

I W M S Wt W
/6 /13 !

Let X, = 1, then Xz = 0.3025, Xy = -1.874.

™ = v(1,-1.874, 0.3025); g; = (0.466,-0.872,0.141).
T = d_ i = 0.466.
x h
-—C
=X = 2x, - Xz 2
586 = %3 implies G6 =1-% - 4x2 2
Xg Xy >
- -] - ] - o,
912 = 27°, 613 = 114°, 023 = 104°;
I8 = 245° < 270°, so reversal by Rule 3 yields
x1 + 2x2 + X302 0
Gé =1% - 4x2 2 0
Xy 20
{d_;} under equality implies
xh
xl+2x2+x3 _ -x1-4x2 .z
3 /T 1
Let Xy = 1, then x, = -1.28, Xz = 4.01

x = 1t(1,-1.28,4.01); ge = (0.231,-0.295,0.926).
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Step 4: ro = d_ i = 0.231
x h
—-e
Basis 7
X -3xl - 2x3 >
Step 1: X = %, implies G7 =1 % - 4x2 2
7
X, Xg 2
923 = /2, so reversal by Rule 1 yields
—3x1 - 2x3 2
| .
G7 = X, * 4x2 2
Xz 2
Step 2: {d—-i} under equality implies
xh
-3x,-2x, X, +4x

1 73 1 72 =

»”

VA v S

Let Xg = 1, then X, = 1.497, x; = -1.868.
Step 3: tx = t(-1.868,1.497,1); ze = (-0.72,0.576,0.386)
Step 4: 1, =d_ i = 0.386.
x h
—
Basis 8
Xy - X - 2x2 - Xg 2 0
Step 1: 588 = (%X, implies 68 = --3xl - 2X5 2 0
Xz - X - 4x2 2 0
—_ (-] - -] - o,
8, = 55.5°, 6,5 = 27°, 8,5 = 77.6°;
£0 = 160.1° < 270°, so reversal by Rule 3 yields
X ¢ sz + Xz 2 0
Gé = -3x1 - 2x3 20
- X - 4x2 >0

Step 2: {d .} under equality implies

xh
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x1+2x2+x3 ) - x1-2x3 _ -x1-4x2
/6 /13 Y17
Let x1 = -1, then X, = 0.087, Xy = 1.215.
Step 3: tx = 1(-1,0.087,1.215); §§e = (-0.635,0.551,0.451)
Step 4: Tg = d_ i = 0.1006
x h
-

The ranking of the subspaces, {S:}, by decreasing magni-

tude of T yields the solution S4, SS’ SZ’ Sl’ SS’ S7, S6’ 58’

which is the same ranking obtained by Solution Method I. Thus,

without any probability calculations, the {Pk } may be ordered ac-
t

cordingly.



SELECTION OF THE SOLUTION METHOD

There are three primary factors affecting the choice of
which solution method to use for a particular problem:

1. The joint probability density function of the random
variables.

2. The size of the problem, implying the relative magnitude
of m+n.

3. The size of the m relative to n, regardless of the magnitude
of m+n.

When the given density function belongs to the class
stated by Theorem 7, the last two factors will determine the
solution method to be used. However, even when the density
function does not belong, the choice may still be arbitrary.

The example problem (p. 17), for which the probability function
is the joint exponential, is correctly solved by either method.
(This may be slightly misleading since the joint exponential is
essentially symmetric and could be classified as a quasi-member
of the set in Theorem 7.) Regardless of such cases, though, it
is noted that since Solution Method I is shown to be exact under
certain conditions for n22, it would be the best choice when a
particular probability distribution does not belong to the

class covered by Theorem 7.
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Using either technique for large problems, say m>6, n>12,
a computer program should be used to generate the required data
(which is similar for both methods). Balinski [2] describes such
a program, which, for an LP problem of 65 variables and 35 con-
straints, required only 496 pivot operations to generate the 31
extreme points. Thus, if the problem is large and a computer is
available, the possible exactness of Solution Method I makes it
most desirable. If the size of the problem is relatively small,
however, Solution Method II is best since fewer numerical calcula-
tions are required to determine the n linear inequalities; that
is, the inequalities are immediate for Method II, while in Method
I they are obtained from the matrix operations required by
B A -c20.

Considering the third factor, there is a clear choice if
m is significantly less than n, say m < %n, regardless of the
size of the problem. The reference here is to the dimension of
the n linear inequalities. For Solution Method II in this case,
at least half of the inequalities for each basis would be of

dimension one, thereby greatly simplifying the calculations to

obtain the radii of the unit hyperspheres.



CONCLUSION AND RECOMMENDATIONS FOR FURTHER RESEARCH

The theory and solution methods developed in this disser-
tation apply to those PLP problems having random objective func-
tion coefficient vectors (5), or random resource vectors (b).
(The primal-dual equivalency properties would be used to restate
the problem in case of random b.) Further research to extend
existing concepts should be directed toward a solution mcthod
for those problems having cj and bi as simultaneous random varia-
bles, and finally to permit the inclusion of some or all random
aij’

Further research to enhance the strength of this disser-
tation should concentrate on the ramifications of Theorems 6 and
7. Existing mathematical theory regarding the intent of Theorem
6 is severely limited. The embedded hypersphere technique should
always be a good method for providing an ordinal ranking of the
interiors of polyhedral spaces in Rn, but intensive research may
disclose a method for which a stronger result could be proved.

At the very least, this research should extend the cases covered
by Theorem 6.

Regarding Theorem 7, initial research efforts should be

directed toward inclusion of the general case of the multivariate

normal density function. Assuming only that the cj are independent,
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{c.|j=1,...,n} equals {o0.z, + u.|j=1,...,n}, where z. is the
;19 q 5% * vl } ;

standardized normal deviate with v, 0, o, = 1, and the zj are
3 j
independent. The objective function is then the maximization of

n

)) (ojzj + uj)xj, and S_ (analogous to Chapter IV), given by
j-_-.

n
Y b..c. 20, i=1,...,n, or B,c 2 0 in matrix notation, becomes

t -t- t
'01 0 0 )
0 02 . 0
| J— = '
v 0 s 2= (2,250,200,
LO 0 om

and _Is_t is a nx1l column vector of linear combinations of the various

u,o
J

To orientate this discussion with the theory in Chapter
III, we know that B V'z 2 5t is a convex space in R" and interest now
concerns the rpRn of each space. To ease the calculation of the
hypersphere radius, and to form the subspace, translate the ver-
tex of the polyhedron to the origin by setting _l_(_t = 0 to obtain
BtV'_z_ 2 0.

Considering V' as a linear map: R" > R, if 6, =0, =

- = 0., then V' is called a homothety (stretching); thus Btg_ 20

and B V'z 2 0 define identical subspaces. In this case (5.} are
unchanged by the transformation from the ¢ to z random vector space.

Therefore, the theory developed regarding {St} applies and (B V' z}

are exclusive. If o # °j for i # j, then V' is still constant
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over all t, but Bt is transformed and not necessarily equivalent
to BtV'. Even though the transformation is invariant on t,
{BtV'g} will not necessarily be exclusive and the magnitude of
the relative interiors may have changed; hence, we have identified
the first area for investigation.

Then notice that

P, =ff ... [f(c)de, ... dc_ = [f i
ke 5,20 =1 n B,V'z2K, f(z)dz, ... dz_,

where f(z) satisfies the requirements of Theorem 7 since w, = 0
j

and o, = 1 for j=1,...,n. However, for the largest Pk to cor-
j t
respond to that basis t having largest ri(BtV'E_zEt), the theorem

requires that the subspace be unbounded. Since K, may effect
bounds on {z}, we have the second area for investigation. Re-
search should disclose the conditions necessary for Solution
Method I to provide optimal or near optimal results for this
general case of the multivariate normal.

Finally, further investigation should be conducted to
enumerate the density functions for which this dissertation will
provide useable results. In this context, a measure of effi-

ciency should then be devised to give some assurance regarding the

accuracy of the rankings obtained.
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