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PREFACE 

A question that arises often in time series analysis is that whether the time series 

should be differenced. This is equivalent to asking if autoregressive (AR) part of the 

model being fitted has a unit root. Time series models with unit roots are known to 

provide good stochastic approximations for many nonstationary time series. The vector 

autoregressive moving average (ARMA) model has wide applications in various fields 

such as economics, engineering and survey sampling. Often the model parameters are 

restricted by a number of constraints. In this thesis a simple and easy-to-compute 

Newton-Raphson estimator (Shin and Sarkar, 1995) will be discussed that approximates 

the restricted maximum likelihood (RML) estimator and takes full advantage of the 

information contained in the restrictions. In order to obtain the initial parameter 

estimator in the Newton-Raphson iterative method, two stages of multivariate version of 

Hannan and Rissanen's (1982) procedure can be used to methods of both Kohn (1979) 

and Shin and Sarkar (1995). In the first part (Chapters 2, 3, 4) of this thesis we study the 

problem of testing for a unit root in an AR(p) signal observed with MA( q) noise by using 

three different estimation methods (Hannan-Rissanen, Kohn and Shin-Sarkar). 

In the second part of this thesis (Chapters 5 and 6) we study various model mis­

specification problems. Model misspecification is a common problem in statistical data 

analysis.. This is no exception in case of nonstationary time series data. A time series 
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model can be misspecified in various ways. One may regress a nonstationary time series 

on another umelated nonstationary time series; or one may misspecify the order of a 

nonstationary autoregressive or a polynomial regression model; or one may misspecify a 

deterministic trend as a nonstationary AR process or vice versa. In the misspecified 

models, inference using the usual statistics such as t, Durbin-Watson (DW) and R2 can be 

very often misleading. This topic of model misspecification is discussed in Chapter 5 and 

Chapter 6. 

This thesis consists of six chapters. The motivation and purpose of this research 

will be introduced in Chapter 1. Previous works in testing for a unit root without parame­

tric constraints in time series will be discussed in Chapter 2. The autoregressive moving 

average with nonlinear parametric restrictions will be introduced in Chapter 3 in case that 

parameters of both autoregressive part and moving average (MA) part are unknown. The 

general restricted model will be considered in Section 3.2 and three different estimation 

methods (Hannan-Rissanen, Kohn and Shin-Sarkar) will be introduced in Section 3.3. In 

Chapter 4 each method will be applied to test for a unit root in an AR(l) signal observed 

with MA(l) noise in a Monte Carlo experiment. 

In Section 5.1 general regression model with integrated errors and one system of 

integrated regressors will be introduced, the limiting distributions of least squares (LS) 

estimators and the usual LS statistics such as fl-, t, DW and R2 will be proposed in 

Section 5.2, and three different kinds of model misspecifications will be suggested. These 

are spurious regression problem, misspecification of nonstationary AR and polynomial 

regression models, and misspecification of orders in a nonstationary AR and polynomial 

regression models in Sections 5.3-5.5. In Chapter 6 we will analyze three different model 
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misspecification problems through a Monte Carlo study and examine each model 

misspecification problem by using the usual LS statistics as diagnostic tools. 
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CHAPTER I 

INTRODUCTION 

1.1. Unit roots tests and model specification problems 

Suppose a process has a mean that is different for each time period. How could we 

estimate these means ? As usual, we use sample information. However, typically we 

have only one observation per time period for time series data. Therefore, we have only 

one observation at time t to estimate the mean at time t, one observation at time t+ 1 to 

estimate the mean at time t+ 1, and so on. An estimate of a mean based on only one 

observation is automatically not useful. The situation gets much worse if the variance of 

the process also is not constant through time. In such cases an appropriate degree of 

differencing is to be considered to make the data stationary in mean. The reason for 

making data stationary is to obtain useful estimates of the parameters in the time series 

model. 

There are several ways to check the stationarity of a time series, i.e., to make a 

decision on the proper degree of differencing: 
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(1) Examine the realization visually (graphically) to see if either the mean or the 

variance appears to be changing over time. If different segments of each series behave 

much like the rest of the series after we allow for changes in level and/or slope, then this 

nonstationary realization can be transformed into a stationary series by differencing. In 

addition visual inspection of the data is perhaps the most practical way of measuring 

stationarity of the variance. 

(2) Inspect the estimated autocorrelation function (ACF) to see if the auto­

correlation move rapidly toward zero. In practice, "rapidly" means that the absolute t 

statistic values of the estimated autocorrelations should fall below approximately 1.6 by 

about lag 5 or 6 (Pankratz, 1983). These values are only guidelines, not the absolute 

rules. In general, if any examination of the ACF for a time series shows relatively large 

autocorrelations at high lags, differencing of the observations is probably appropriate. 

(3) Scrutinize the estimated autoregressive (AR) coefficients to see if they satisfy 

the stationarity conditions. 

However, the above methods have some drawbacks in the sense that they fail to 

quantify the extent of mean nonstationarity and they depend on subjective judgment. 

Moreover, the problem with determining the degree of differencing from plots is that in 

small samples the picture is often not clear cut. 

On the contrary, the unit root tests provide a more formal method for determining 

the degree of differencing and gives a quantitative and rigorous way to check whether or 

not the given AR model in time series is stationary. The presence of a unit root indicates 

that the time series is not stationary and that differencing will make it stationary. To make 

matters precise, the value of d in ARIMA(p,d,q), autoregressive integrated moving 
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average of order p, d, q, indicates the number of differencing necessary to make the series 

stationary and the number d also equals the number of unit roots in the autoregressive 

characteristic equation for the time series. Therefore, unit root tests provide a formal and 

quantitative method when the degree of differencing needs to be determined. Methods for 

detecting the presence of a unit root in parametric time series models have lately attracted 

a great deal of interest in both statistical theory and applications. One major field of 

application where the hypothesis of a unit root has important implications is economics. 

This is because a unit root is often a theoretical implication of models which postulate the 

rational use of information that is available to economic agents. Examples include various 

financial market variables such as futures contracts (Samuelson, 1965), stock price 

(Samuelson, 1973), dividends (Kleidon, 1986), spot and forward exchange rates (Meese 

and Singleton, 1983), and even aggregate variables like real consumption (Hall, 1978). 

Formal statistical tests of the unit root hypothesis are of additional interest to economists 

because they can help evaluate the nature of nonstationarity that most macroeconomic 

data exhibit. In particular, economists determine whether the trend is stochastic, through 

the presence of a unit root, or deterministic, through the presence of a polynomial time 

trend. 

Next we consider the topic of model misspecification. Model misspecification is 

a common problem in statistical data analysis. A time series model can be misspecified 

in a variety of ways. One may regress a nonstationary time series on another unrelated 

nonstationary time series; or one may misspecify the order of a nonstationary AR or a 

polynomial regression model; or one may misspecify a polynomial regression as a 

nonstationary AR model or vice versa. In the misspecified models inference using the 
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usual regression statistics such as t, Durbin-Watson (DW) and R2 can be very often 

misleading, and these statistics can be useful tools to detect the model misspecification at 

the same time. 

1.2. Research purpose 

We consider the following general restricted model. 

a(L)Yt = b(L)et, t = 1, 2, ... , n, 

where { ei} is a sequence of independent identically distributed (iid) random vectors with 

variance covariance matrix Q and L is the lag operator such that L \t = Yt-k, 

It is assumed that (p, q) are nonnegative integers and known, and A= (A1 IA2 j ... jAp), B = 

(B1 IB2 j ••• jBq) are respectively mxmp and mxmq matrices of unknown parameters. Let 

{yt}, t = 1, ... , n is the set ofmxl observation vectors and {et} is a sequence of iid m­

dimensional random vectors with mean zero and a nonsingular variance covariance 

matrix Q. For stationarity, invertibility and identifiability, all the roots of det[a(L)] are 

assumed to lie outside the unit circle and AP is of full rank. The vector of restrictions on 

parameters A, B and Q is defined as 
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f(A, B, Q) = 0 

where f is a k-dimensional vector of differential functions. 

There are two different situations which we may model with the above general 

restricted model as follows: 

Case 1. Testing for a unit root with parametric restrictions when parameters B in 

general restricted model are known. 

Case 2. Testing for a unit root with parametric restrictions when parameters B in 

general restricted model are unknown. 

As far as Case 1 is concerned, Shin and Sarkar (1994) showed that an ARIMA(p, 

1, 0) signal distributed by MA(q) noise is an ARIMA(p, 1, p+q+l) process restricted by 

nonlinear constraints on parameters and for this model with a unit root they presented a 

modified restricted maximum likelihood estimator (MRMLE)(Shin and Sarkar, 1994, p. 

2649), obtained by maximizing a modified likelihood function, that has the same limiting 

properties as the restricted MLE (Shin and Sarkar 1994, p. 2648) and is computationally 

much simpler. They showed that unit root tests based on the MRMLE perform very well 

in small samples and compare favorably with the Said and Dickey (1985) tests with 

respect to both sizes and powers through simulation study for the case p = 0 and q = 1. 

Shin and Sarkar (1995) considered the multivariate ARMA model with nonlinear 

parametric restriction in the context of Case 2 and proposed a simple and easy-to­

compute Newton-Raphson estimator that approximates the restricted ML estimator which 

uses fully the information contained in the restriction. 
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As an application of the general restricted model and restrictions on parameters, 

we consider the case with m = 1, p = 1, q= 1, i.e., we model z1 and llt as AR(l) and MA(l) 

respectively 

(1.2.1) 

where 

c(L) = 1 + C1L, a(L) = 1 + A1L (1.2.2) 

with backshift operator L. 

The model (1.2.1) can be expressed as follows: 

(1.2.3) 

subject to the restriction f = (f1, f2)' = (0, O)'. 

We will study through simulation experiments on model (1.2.1)-(1.2.3) the power 

functions of unit root tests based on the following estimation methods: 

(1) Hannan and Rissanen (1982)(HR) method. 

(2) Kohn (1979) method. 

(3) Shin and Sarkar (1995)(SS) method. 

In order to obtain the initial parameter estimates in the Newton-Raphson iterative 

procedure, the first and second stages of multivariate version of Hannan-Rissanen's 

procedure can be used to both Kohn's and Shin-Sarkar's methods respectively. 

Our objective is to consider the limiting null distribution of the unit roots and to 

check which of the above three different unit root tests perform well with respect to both 
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sizes and powers based on model (1.2.1)-(1.2.3) and thus apply these results to several 

fields such as the engineering science and economics. In chapter 3 and 4 three different 

estimation methods are introduced and each method will be applied to test for a unit root 

in an AR(l) signal observed with MA(l) noise, respectively. Finally, we will check the 

above three different unit root tests with respect to both sizes and powers based on the 

given model. Ten thousand replications will be simulated for sample size 25, 50, 100 and 

250, for the coefficient of autoregressive signal A1 = 1.00, 0.99, 0.95, 0.90, 0.80 and 0. 70 

(see equation (3.2.10), p. 62) and for nominal levels 1%, 5% and 10%. The normal 

random variables will be generated by the subroutine RNNOA of the IMSL subroutine 

library. The computed values of the tests n(A. 1-l) and i based on three different methods 

will be compared to the theoretical 1 %, 5% and 10% left tail critical values tabulated by 

Dickey and Fuller (see Fuller, 1976, p. 371). 

Next we discuss our research on model misspecification. Shin and Sarkar (1996) 

considered a general regression model with integrated errors and one system of integrated 

regressors and worked asymptotic properties of the conventional regression statistics 

under this model. Specifically, they discussed three types of model misspecifications as 

applications based on the analysis of the general regression model (5.1.1): (a) how to 

detect existence of cointegration; (b) how to decide whether a nonstationary AR(p) model 

or a polynomial regression model gives a good fit; ( c) the t-statistic has more power than 

its alternative test statistic discussed by Dickey and Fuller (1979) for testing the single 

unit root null hypothesis against the double unit roots hypothesis. They concluded that: 

the behavior of the regression statistics depends on whether the error term Ut,k is 

stationary or nonstationary. 
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Consider a general regression model 

(1.2.4) 

where 

Xt,i = X1J-1 + ... + Xt,i-1' j = 1, 2, ... , p, Xt,o = xt, 

n 

If (1.2.4) is misspecified then utk is nonstationary; fl= Iu; k /(n-p-1) diverges; DW = 
' . ' . ~1 

Icut,k -ut-1,k) 2 / Iu;,k ~O; pj diverges for j; if the probabilistic order of the 

regressors is not greater than that of the regression error, then the limit of 

is less than one, otherwise R 2 ~ 1; and the t-statistic diverges, implying misleading 

high significance of the t-statistics (Theorems 1-2 of Shin and Sarkar, 1996). On the 

other hand, if the stationarity of Yt is well explained by Xt,i 's then the error term Ut,k will 

be stationary. In this case p j is consistent; &2 converges; DW converges to a positive 

number; R2 ~ 1; t statistics converges (Theorem 3 of Shin and Sarkar, 1996). The 

above facts developed by Shin and Sarkar (1996) will provide the theoretical background 

for our simulation results. We will analyze the above three different situations through a 

Monte Carlo study and examine each model misspecification problem by using the usual 
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OLS statistics such as fl-, t, DW and R2 as diagnostic tools. Ten thousand samples will be 

simulated for sample sizes 25, 50, 100 and 250 using the normal random numbers will be 

generated by the subroutine RNNOA of the IMSL subroutine library. 

1.3. Some definitions 

(1) What is Stationarity ? 

When useful estimates of the parameters in time series process are expected to be 

obtained, the stationarity among a number of properties in satisfying the modeling are to 

be considered. Consider a finite set of random variables {Yt , ... , Yt } from stochastic 
I n 

process {Yt: t = 0, ±1, ±2, ... }. A process is said to be strictly n-th order stationary if the 

n dimensional distribution function Fis time invariant, i.e., F {Yt , ... , Yt } = F {Yt +k'" •. , 
I n I 

Yt +k} for V (t1 , .•• , 1:n), k is true for any n = 1, 2, .... However, there are some difficulties 
n 

in verifying a distribution function, particularly a joint distribution function from an 

observed time series. Therefore, we use a weaker sense of stationarity in terms of the 

moments of the model. That is, a process is said to be nth order weakly stationary if all 

its joint moments up to order n exist and are time invariant. Throughout this paper we 

use the terminology 'stationary' for covariance stationary, which has constant mean and 

variance with the covariance and the correlation being functions of the time difference 

alone, i.e., 

E(yJ = µ 

E[(Yt - µ)2] = cr/ = y(O) 
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and 

E[(Yt - µ)(Yt-m - µ)] = y(m), m=l, 2, .... 

(2) What is White Noise ? 

A time series in which successive values are highly dependent can be usefully 

regarded as generated from a series of independent shock et. These shocks are uncorre­

lated random variables from a fixed distribution, usually assumed normal and having 

mean zero and constant variance cr/. Such a sequence of random variables et, et-I,· .. is 

called a white noise process by engineers. Although this process hardly ever occurs in 

applied time series, it plays an crucial role as a basic building block in the construction of 

the time series model. 

(3) What is Random Walk? 

Consider the following ARIMA(p, d, q) model: 

where ~(L) = (1 - ~1L - ~2L 2 - ••. - ~PLI'), 8(L) = (1 - 81L - 82L2 - ... - 8qBq) with backshift 

operator Land 80 is a fixed value. If p = 0, d = 1, q = 0 in above ARIMA model, (1-L)Yt 

= et, Yt = Yt-I + et, then this model is called random walk. This behavior is similar to 

following a drunken man whose position at time tis his position at time (t-1) plus a step 

in a random direction at time t. Note that the random walk model is the limiting process 

of ARIMA(l, 0, 0), AR(l), process (1 - ~1L)Yt = et with ~1~1. Moreover, random walk 
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has the distinct characteristic of having stationary mean and nonstationary variance based 

on AR(l) model with ~1 = 1 and white noise e1• Finally, the random walk phenomenon 

can be characterized by large nonvanishing spikes in the same ACF of the original series 

{y1} and insignificant zero ACF for the differenced series { (1-L )y1}. 

(4) What is the Measurement Error Model? 

It is not always possible to observe a time series x1 directly. Instead of observing 

x1 one observes the sum 

(1.3.1) 

where lit is a N(O, o}) random variable, called measurement error. The observed variable 

Yt is sometimes called the manifest variable or the indicator variable. The unobserved 

variable x1 is called a latent variable in certain areas of application. Models with fixed x1 

are calledfunctional models, while models with random x1 are called structural models. 

As an example of a situation where x1 can not be observed, consider the relationship 

between the yield of com and available nitrogen in the soil. Assume that there is an 

adequate approximation to the linear relationship between yield and nitrogen. In order to 

estimate the available soil nitrogen, it is necessary to sample the soil of the experimental 

plot and to perform a laboratory analysis on the selected sample. As a result of sampling 

and of the laboratory analysis, we do not observe x1 but observe an estimate of x1• 

Therefore, we represent the observed nitrogen by y1, where Yt satisfies (1.3.1) and lit is the 

measurement error introduced by sampling and laboratory analysis. Estimation of the 

true value x1 is very important in signal measurement problems encountered in the 
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engineering sciences where Xt is known as signal and llt is known as noise. It is also 

important in survey sampling in the situation where a population is sampled at a sequence 

of time points according to a sample scheme. In a survey sampling, Yt, xt and ut denote 

observed direct survey estimates, unobservable population values and the sampling errors 

respectively. 

(5) What is the Autocovariance Generating Function? 

For each of the covariance..:.stationary processes for Yt, we calculate the sequence 

of autocovariances. If this sequence is absolutely summable, then one way of 

summarizing the covariances 1s through a scalar-valued function called the 

autocovariance generating function. Frequently this function is easy to calculate, in 

which case the autocovariance at lag k may be determined by identifying the coefficient 

of either l or z-k. If {Yt} is a stationary process with autocovariances, then its auto-

covariance generating function is defined by 

00 

g(z) = Lrjzj, 
j=-oo 

provided the series converges for all z in some annulus r-1 < izl < r with r > 1. 

For a covariance-stationary vector processes Yt with an absolutely summable 

sequence of covariance matrices, the analogous matrix-valued autocovariance generating 

function G(z) is defined as 

00 

G(z) = Iri, 
j=-00 
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where rj = E[(Yt - µ)(Yt-j - µ)'] with mean vector of Yt, µ. 

( 6) What are Integration and Cointegration ? 

If a series with no deterministic component has a stationary, invertible ARMA 

representation after differecing d times, it is said to be integrated of order d. If two series, 

Y1t and Yzt, are both I(d), it will normally be the case that any linear combination is also 

I( d). However, it is possible that there is a linear combination of the two series for which 

the order of the integration is smaller than d. In this case the series are said to be 

cointegrated. More generally, the components of the vector time series Yt are said to be 

cointegrated of order d, b if ( a) all components of Yt are I( d), and (b) there exists a non­

null vector, a, such that a'yt is I(d-b) with b > 0. Cointegration means that although many 

developments can cause permanent changes in the individual elements ofyt, there is some 

long-run equilibrium relation tying the individual components together, represented by 

the linear combination a'yt and thus certain constraints are needed to impose on the 

multivariate time series model. An example of such a system is the model of consumption 

spending. Although both consumption and income exhibit a unit root, over the long run 

consumption tends to be a roughly constant proportion of income, so that the difference 

between the log of consumption and the log of income appears to be a stationary process. 

(7) What is Brownian Motion ( or Wiener) process? 

A stochastic process [X(t), t 2:: O] is said to be a Brownian motion process if: 

(a) X(O) = O; 

(b) {X(t), t 2:: O} has stationary independent increments; 
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(c) for every t > 0, X(t) is normally distributed with mean O and variance c2t, where c is 

some positive constant. 

When c = 1, the process is often called standard Brownian motion. As any 

Brownian motion can always be converted to the standard process by looking at X(t)/c, 

we shall suppose throughout that c = 1. This process has been used beneficially in such 

areas as statistical testing of goodness of fit, analyzing the price levels on the stock 

market, and quantum mechanics. 



CHAPTER II 

PREVIOUS WORKS IN TESTING FOR A UNIT ROOT 

WITHOUT PARAMETRIC CONSTRAINTS IN TIME SERIES 

15 

There has been a huge amount of work done on unit roots tests so far, but only a 

few papers are reviewed in this chapter. Section 2.1 discusses statistical inference for 

ARIMA(p, 1, q) models and Section 2.2 for measurement error models. 

2.1. Previous results on ARIMA(p, 1, q) models 

In Section 2.1.1 we review unit roots tests in univariate time senes and m 

multivariate time series in Section 2.1.2. 

2.1.1. Unit roots in univariate time series 

Box and Jenkins (1976) proposed an "interactive modeling process" that consists 
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of model formulation ("identification"), estimation and diagnostic checking, one key 

element of which is the use of integrated, or "difference-stationary," ARMA models, 

(1 - L)d <D(L)yt = E>(L)et. 

Thus, although Yt is nonstationary, it is assumed that its d-th difference is a stationary 

ARMA process. The appropriateness of the Box-Jenkins tactic of differencing to achieve 

stationarity depends on the existence of one or more unit roots in the autoregressive lag 

operator polynomial. The desirability of specific tests for unit roots is therefore apparent. 

Dickey (1976) and Fuller (1976) used the Monte Carlo method to calculate the 

percentage points of the finite sample as well as the asymptotic distribution of the least 

squares (LS) estimator of the AR parameter as well as its "t-statistic," when the true AR 

parameter is positive or negative one. Specifically, they consider the null model 

2 
Ho: Yt = Yt-1 + et, et - NID(O, er ), Yo= 0 

and the alternative 

2 
Model 1: HA: Yt = PYt-l + et, et- NID(O, er), p -:f:. 1, Yo= 0 

and consider the LS estimator (which is also ML, under the normality assumption) 

A LYtYt-1 
PLS = L 2 , 

y t-1 

(2.1.1) 
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obtained from a sample of size n. Under the null hypothesis (PLs -1) = Op(n-1); the 

convergence is faster than for IPI < 1, in which case (PLs - p) = OP (n-112 ). It follows that 

the proper quantity for which percentage points should be calculated under the null is 

n(pLs -1). Dickey and Fuller (1979) tabulate the asymptotic as well as the finite sample 

percentage points of n(p-1) for various sample sizes. Under the null hypothesis of a unit 

root, the distribution of n(p-1) is skewed to the left, and limn~00P(p < 1) = 0.68. They 

also consider the usual "student's t" for testing p = 1, 

A p-1 
1'=-===== 

where 

n 

s2 = L(Yt - PY1-1) 2 I (n-2). 
!=2 

Under the null, i = OP(l), but it does not have the t distribution; again, they calculate its 

percentage points for various sample sizes using Monte Carlo simulation. Rewriting the 

first-order autoregression as 

Yt - Yt-1 = (p - 1 )Yt-1 + et. (2.1.2) 

Thus, i is the usual t-statistic in a regression of the first difference of Yt on the first lag of 
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Dickey and Fuller (1979) showed that i is a monotone function of the likelihood 

ratio for the null hypothesis of p = 1 vs. the two-sided alternative and they obtained the 

limiting distribution of n(p-1). Despite the non-standard properties of the LS estimator 

in a nonstationary AR(l) model, a test of the hypothesis that the process is a random walk 

against the alternative that it is stationary can be carried out using n(p-1) or the 

regression t-statistic i and comparing its value with tabulated percentiles of the 

distribution by Monte Carlo simulation. In a similar manner, unit root testing in two 

more general AR(l) model can also be developed: 

2 
Model 3: Yt - a - ht= p{yt-l - a - b(t - 1)} + et, t = 1, ... , where Yo= 0, et - NID(O, cr) 

and the limiting distributions of the three different LS estimators, p, Pµ, and P, 

respectively can be derived. The LS estimator p of Model 1 is given by (2.1.1) for the 

model when the true value of p is positive or negative· one. The limiting distribution of 

n(p-1) is 

where W(·) is the standard Brownian motion on [O, 1]. We could define the alternatives 

to H1: IPI < 1 or H1: IPI > 1. For either of these cases, one-sided test is appropriate. If the 

alternative is IPI < 1, then the model is asymptotically stationary, since the effect of the 
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fixed initial condition is transient. The alternative JpJ > 1, on the other hand, is non­

stationary for all sample sizes. Now consider allowance for a nonzero meanµ under the 

above alternative (Model 2), or Yt = a + PYt-I + et, where a = µ(1-p ). Ifµ were known, 

we could simply center the data and proceed as before. In practice, µ must be estimated 

along with the other parameters. Although a vanishes under the null hypothesis p = 1, it 

is nevertheless present under the alternative, and so an intercept is included in the 

regression. The corresponding statistics i µ and n(f\ - 1) have been tabulated under the 

null (a, p) = (0, 1) by Dickey (1976) and Fuller (1976). Similarly, the alternative might 

include a trend (Model 3), or Yt =a+ pt+ PYt-I + et where a= a(l-p) + bp and P = b(l­

p ). Under the null hypothesis that p = 1, 

Yt = b + Yt-1 + et, 

but under the trend-stationary alternative both the intercept and trend enter and so they 

must be included in the regression. Dickey (1976) and Fuller (1976) tabulated the 

distributions of normalized-bias and studentized statistics, i, and n(p, -1), respectively, 

under H0 : (a, P) = (0, 0). Furthermore, they showed that the null distributions of the two 

test statistics are unaffected by the value of b in Model 3 and the representations for the 

limit distributions of all the test statistics under the null are invariant to the choice of y0. 

Dickey and Fuller (1981) extended unit roots tests in AR(l) to higher order AR 

process. The AR(p) model may be reformulated as 
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(2.1.3) 

where p* = fpk, j = 1, 2, ... , p-1 and p* = fpk -1. When p* is zero, the model 
k=j+l k=l 

* reduces to an AR(p-1) in first differences, i.e., ARIMA(p-1, 1, 0). Thus, a test ofH0: p = 

0 is the unit root test, which is called "Augmented Dickey-Fuller (ADF) test." The test 

could also be carried out by regressing Yt on Yt-I to Yt-p and testing the restriction that the 

coefficients sum to one. The asymptotic distribution of the t-statistic associated with Yt-I 

in (2.1.3) is the same as that of (2.1.2). The t-statistics associated with the differenced 

variables in (2.1.3) are asymptotically standard normal, so that inference on the lags can 

be conducted in the usual way. In addition for the case of a nonzero mean, we have 

(Yt - µ) = ta/Yt-j - µ)+et' e1 - NID(O, cr\ Yo= 0. 
j=l 

We can put this in the form 

where k = µ(1- fa). Under the null of a unit root, the intercept vanishes because in 
j=l 

that case Ia j = -1. The distribution of the studentized statistic for testing p * = 1 in this 
j=l 
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regression is asymptotically identical to that of i µ. Consider the alternative of a linear 

trend, 

or 

(Yt - a- bt) + Ia/Yt-j - a- b(t - j)) + ei, et - NID(O, a\ Yo= 0. 
j=l 

k2 = 0. The use of AR processes as approximations raises the question of the applicability 

of the ADF test. In theory the ADF test is only valid if the underlying model is indeed a 

finite AR process. When an MA part is present in model, a bias is in general introduced 

into the test statistics. 

Said and Dickey (1984) made an initial attempt to extend the unit root tests to the 

general ARMA(p, q) case, where the p, q are unknown, by approximating the ARMA 

model as a finite autoregression and showed that as long as p goes to infinity sufficiently 

slow relative to n, then the OLS t test of p = 1 can continue to be compared with the 

Dickey-Fuller values (Table 8.5.2, Fuller, 1976). The Said-Dickey result permits the 

researcher to use a large value of p on which to base this comparison the larger is the 

sample size n. However, this has the problem that one loses the degree of freedom by 

having to both estimate a number of nuisance parameters and condition on increasing 

number of observations n. LS method can be used to estimate the coefficients, and this 

procedure produces test statistics whose limit distributions are the same as those tabulated 
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in Fuller (1976). It will prove convenient to consider first the simple case of H0 : 

ARIMA(l, 1, 1) vs. H1: ARMA(2, 1). Suppose that 

Yt = PYt-1 + xt, xt = axt-1 +et+ Pet-I, !al, IPI < 1, et - NID(O, cr\ Xo =Yo= 0. 

If IPI < 1, then {yt} is a stationary ARMA(2, 1) process except for transitory effects. On 

the other hand, if p = 1, then {Yt} is ARIMA(l, 1, 1). Now note that 

"' 
et= Ic-P)j(xt-j -axt-j-1) 

j=O 

We can use these results to write 

2 
Yt - Yt-1 = (p - l)Yt-1 +(a+ P)(xt-1 Pxt-2 + P xt-3 -... ) + et. 

Under the null hypothesis of p = 1, xt = Yt - Yt-I = ~Yt, and so we write 

We can then develop a test of the null by regressing ~Yt on Yt-I, ~Yt-I,· .. , ~Yt-k> where k = 

op(n 113). The LS estimates of p, a and p obtained by this technique are consistent under 

the null. However, the distribution of n(p-1) depends on the nuisance parameters a and 
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p and so it is not useful. On the other hand, the studentized statistic i associated with 

(p-1) does not involve any unknown parameters, and it has asymptotically the original 

Dickey-Fuller i distribution. Now consider the general ARMA(p+ 1, q) model, which is 

written as 

Yt = PYt-1 + xt, 

xt + Iaixt-i =et+ f pjet-j , x0 =Yo= 0, et - NID(O, cr\ 
i=l j=l 

where xt is stationary and invertible. Then we can proceed exactly as before, estimating 

by using regression 

We still get consistency under the null, and the distribution of the t-statistic on (p-1) is 

the same as before. Also, if the nonzero mean is allowed under the alternative, i µ may be 

used rather than i . 

Said and Dickey (1985) studied a one step Gauss-Newton procedure of estimating 

p starting with p = 1 based on ARIMA(p, 1, q) model with known p and q. The model 

they suggested is as 

p q 2 
Yt = PYt-I + Zt and z1 + Iaizt-i = e1 + If3A-i where Yo= 0, et - NID(O, cr ). 

i=l j=l 

(2.1.4) 

Associated with the above zt process are (1- a1L - ... - 3pLP), (1 - P1L- ... - PqLq), the roots 

of which are all assumed to be greater than one in absolute value. Viewing as a 
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difference equation subject to q initial conditions, eP = 61, ep-I = 62, .•. , ep-q+I = 6q holds, 

and thus model (2.1.4) can be rewritten as follows: 

(2.1.5) 

(2.1.6) 

where rt is the Taylor series remainder and - V1(8), - xi,/8), - wi,1(8), and - ,1.k,1 (8) are the 

derivatives of ei(8) with respect to p, ~. ~j and 6k, respectively, evaluated at 8. Ignoring 

the remainder term and rearranging (2.1.6) as 

(2.1.7) 

(2.1. 7) can be computed recursively as follows: 
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A 

- J3 q V t-q' 
A A A 

xi.t(8) =- f31xi,t-1 - ... - J3qxi,t-q - zH, 
A A A 

W j,t (8) = et-j - f31 W j,H - - J3q W j,t-q' 

and 

A A 

~k,t = f31~k,H -. · · - J3q~k,t-q 

where i = 1, ... , p; j = 1, ... , q and k = 1, ... , q. Computation is performed by taking the 

initial value of p to be 1 and using the method of moment estimator of (J3i, ... , f3q). 

Furthermore, since the limiting distribution of n(p-1) is identical to that of Dickey and 

Fuller (1979) and Fuller (1976), the tables suggested by them can also be applied. 

Phillips (1987) suggested a nonparametric approach with respect to nuisance 

parameters and thereby allows for a very wide class of time series models in which there 

is a unit root. This includes ARIMA models with MA part with heterogenously as well 

as identically distributed innovations. The basic idea is to estimate a non-augmented 

Dickey-Fuller regression, Yt = PYt-I + et and then to correct the Dickey-Fuller normalized-

bias n(p-1) and studentized statistic i for general forms of serial correlation and/or 

heteroskedasticity that might be present in et. Implicitly, the procedure amounts to 

semiparametric estimation of p, accounting for the infinite-dimensional nuisance 

parameter associated with et. Moreover, he modified the i, n(p-1) tabulated by Dickey-

Fuller when the data follow an ARMA(p, q) process, and developed new tests for unit 

roots that apply under general conditions. He defined the new statistics as 
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and 

(2.1.8) 

where 

n k n 

S!k = Le~ In+ 2Lmmk Le1e1_m In, 
t=l m=l t=m+l 

and 

Olmk = 1 - m/(1 + k). 

The cutoff point k of the weighted autocovariances should grow with sample size, but at a 

slower rate, to ensure convergence to the asymptotic Dickey-Fuller distribution. In this 

case, ZP is a transformation of the standardized estimator n(p-1) and Zr is a transfor-

mation of regression t statistic tP with 

~ t p = ---;==::::::::=====(p- 1) 

!CY1 - PY1-J2 In 
t=l 

and 

IY1-1CY1 -yt-1) In 
n(p-1) = 1=1 based on Yt = PYt-l + et, p = 1. 

2!y~_1 In 
t=l 
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The limiting distribution of Z, is the same as that of the regression t statistics as long as 

limn~oo { LE( e~ In)} = limn~oo { LE(S~ In)}. Without depending on strong assumptions 
t 

such as independence, homoskedasticity and normality, the given statistics Z" Z P allow 

for quite general weakly dependent and heterogenously distributed innovations based on 

an asymptotic theory for the LS regression estimators and the associated regression t 

statistics in (2.1.8). This method seems to have significant advantages when there are 

MA components in the time series and, at least in this respect, offers a promising 

alternative to the Dickey and Fuller (1979) and Said and Dickey (1984) procedures. 

Phillips and Perron (1988) extended the study of Phillips (1987) to the cases 

where (1) a random walk with a shiftt in mean included (2) a random walk with a shift in 

mean and a linear trend are included in the specified model and suggested a modified test 

statistic which employed a correction. The limiting distributions of the following new 

test statistics are expressed as functionals of standard Brownian motion and are identical 

to those given in Fuller (1976), and these tests may be used with existing tabulations even 

if they allow for much more general innovations specification (p. 341). 

zi> = n(p- 1) - 5:. I J.1\y, 

S 5:.&nl 
zt, = &nl tp - ~Il\,y ' 

X z_ = n(p-1)--
p M 



where 

M = (l-n-2 )mYY -12m~Y + 12(1 + n-1 )m1ymy -(4 + 6n-1 + 2n-2 )m!, 

i=(~1 -s2 )12, ~=il~p X=ca:i-s 2 )12, X=X1a:1 

based on the two LS regression equations 

Yt = µ+ PY1-1 + µt 

- 1 
Yi =µ+l3(t- 2n)+PY1-1 +µ1 

where(µ, p) and(µ, 13, p) are the least squares estimates. 
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Pantula (1991) characterized the asymptotic null distribution of a variety of unit 

root test statistics in the model 

as 8~1 with sample size. Specifically, let 8n = 1 - y/n8, where O < y < 2 and 8 ~ 0. As 8 

approaches unity, of course, the process approaches stationarity, since the first differ-

enced process would then have a unit MA root. The asymptotic null distributions of the 

various test statistics may then be shown to depend on the speed with which 8 ~ 1, i.e., 
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on the value of 8. Pantula's examination of asymptotic size in a sequence of null models 

getting arbitrarily close to the alternative nicely complements the "roots local to unity" 

literature, in which asymptotic power is investigated against a sequence of alternatives 

getting arbitrarily close to the null. 

Hall (1989) investigated a strategy for testing for a unit root in the situations 

considered by Phillips (1987) and Phillips and Perron (1988) where the innovations 

constitute a MA process of order q, denoted by MA( q). The rationale behind the test 

procedure is based on the observation that the generalization of the Dickey and Fuller 

(1981) tests to the random walk with the MA process is complicated by three factors: the 

unit root, the MA innovations, and the use of LS to estimate the model. He proposed 

instrumental variables (IV) estimator which uses Yt-k for k > q as the instrument on Yt-I 

when the underlying model is an ARIMA(O, 1, q). Let {yt} be a time series generated by 

the model 

Yt = PYt-1 + µt, t = 1, ... , n, p = 1 

where y0 has a fixed distribution independent oft, sample size, and 

It is assumed that {et}- iid(O, cl) for all t and supt{E(lµtJ13+6)} < oo for some 13 > 2, E > 0. 

Then the corresponding parameters for the three different models are estimated using the 

IV approach respectively are as follows, summations being over t = k, ... , n: 



(1) Y, = PY,-1 + µ, 

n 

n 
~(t--) 

2 
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It is apparent that the use of instrumental variables to reduce the bias in the LS estimates 

might deliver a test with improved finite-sample performance relative to the Said and 

Dickey (1984) and Phillips (1987) approaches. Furthermore, the limiting distribution of 

the estimator, properly normalized, of the coefficient of Yt-l converges to the distribution 

tabulated by Dickey (1976) and Fuller (1976) and when multiplied by a sample covar-

iance ratio t statistics for the coefficient on Yt-l converges to the distribution tabulated by 

Dickey (1976) and Fuller (1976). This test may performs relatively favorably because it 

uses more information on model structure than Phillips's (1987) approach and avoids the 

loss of information inherent in Said and Dickey (1984) approach. 

The Monte Carlo evidence in Schwert (1989) which examines the effects of 

model misspecification on the size of unit root tests for mixed ARIMA process indicated 

that the above modifications of test statistics may not be very successful. For instances, 

consider the ARIMA(O, 1, 1) model, Yt = Yt-l + et - 8et-1' t = -19, ... , n where the errors 

{ et} are serially uncorrelated standard normal variables, the data are generated by setting 

e_20 and y_20 equal to zero and creating n+20 observations, discarding the first 20 

observations to remove the effect of the initial conditions. A negative value of 8 close to 
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minus one means that the series is not too far from being stationary white noise. In this 

case, all the above tests reject the null hypothesis of a unit root much more frequently 

than they should. Thus for n = 100 and 8 = -0.8, Pantula (1991) showed that for a 

nominal test size of 0.05, the ADF tests based on AR models with p = 4 and p = 8 have 

empirical sizes of 0.36 and 0.11 respectively, Hall's (1989) IV test has a size of 0.22, 

while Phillips-Perron (1988) tests have sizes of over 0.85. And simulations in Schwert 

(1989) showed that the tests for a unit root developed by Dickey and Fuller (1979, 1981) 

are sensitive to the assumption that the data are generated by a pure AR process. When 

the underlying process contains a MA part, the distribution of the unit root test statistics 

can be much different from the distribution defined by Dickey and Fuller (1979, 1981). 

Moreover the tests proposed by Said and Dickey (1984), Phillips (1987) and Phillips and 

Perron (1988) to correct the model misspecification problem do not appear to work well 

as long as the MA parameter is large. Both Pantula (1991) and Schwert (1989) 

recommended the ADF test, while conceding that the question of how to decide on 

appropriate value ofp is difficult one to determine. The ADF test remains attractive. 

Pantula and Hall (1991) suggested an approach based on an instrumental variable 

estimator for testing the null hypothesis that a process Yt is an ARIMA(p, 1, q) against the 

alternative that it is stationary ARIMA(p+ 1, 0, q) process, which is the extension of 

ARIMA(O, 1, q) in Hall (1989). They also considered the limiting distribution of the 

instrumental variable estimator when the estimated model is either (1) the true model, (2) 

the true model with a shift in mean included, or (3) the true model with a shift in mean 

and a linear time trend included. Their simulation showed that the criteria based on the 

IV approach seem to perform as well as or better than the existing methods when the 



32 

model is specified correctly ( or when p and q are known). However, if the model is 

overspecified, then empirical levels are higher than the nominal level in moderate-sized 

samples, whereas if the model is underspecified the IV estimators are inconsistent. 

Shin and Pantula (1993) proposed problem of testing for a unit root in an AR 

model where the data are available only from each s-th period, called systematic 

sampling. In some applications, the observations may be available only at periodic 

intervals. For example, economic data may suggest a monthly model but only quartile 

( or yearly) data are available; or in a manufacturing process the data are collected only at 

regular time intervals because of cost considerations. They consider an AR(p) process x1 

given by 

p 

xt = L~t-ixt-i + et where {e1} - iid(O, cr\ 
i=l 

Assume that Yi for only each s-th period y1 = X8, y2 = Xzs, ... , Yn = xns are available, where 

s is a positive integer. They show that Yt may be modeled by a ARMA(p, q) where q = 

max{q:q ::,; p - (s/p)}. Using a Monte Carlo study they compared the IV approach by 

Pantula and Hall (1991) and nonlinear least squares estimators by Said and Dickey (1985) 

and Shin and Fuller (1992) and obtained results that methods based on approximated 

ARMA(l, p-1) performed better than those based on ARMA(p, p-1). 

We now discuss recursive estimation of ARMA(p,q) stationary process suggested 

by Hannan and Rissanen (1982) for the purpose of comparative study in Chapter 3. They 

considered a ARMA(p, q) stationary process generating a sequence Yt according to the 
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ARMA model IajYt-j = IP/;t-i for certain values, p = p0, q = q0, aj = a 0,j, pj = Po,j of 
j=O i=O 

the coefficients. It is assumed that either a 0,P 0 or Po,qo is not zero with E(cJ = 0, and E(Es 

EJ = c\tci-2. In order to estimate Po, q0, a 0J and PoJ from observations y1, ... , YT, we assume 

for the true system that the polynomials 

have no common factors and that ao,z =/:- 0, bo,z =/:- 0 for izl ~ 1. Then in the first stage 

estimates, Et are found by fitting a high order AR model for the known Po, q0. Thus the Et 

n 

are formed, for n large, as Et = z)n,jYt-j , an,o = 1, where an,j are AR coefficients 
j=O 

1 T-t 
estimated through the Yule-Walker equations. If ct= - LYsYs+l' then an,j may be 

T s=1 

recursively calculated through the equations 

n-1 
an,n = -Ian-1,j cn-j I ~-I ' an,j = an-1,j + an,nan-1,n-j ' ~ = (1- a!,n) I ~-1 • 

j=O 

At this time, n is assumed to be chosen so as to increase slightly faster than logT but no 

faster than some power of logT by considering the criterion log~+ (mlogT) IT, 

provided n was not allowed to be too large, where m = max( n+p+ 1, n+q+ 1). In the 

second stage we calculate, for each (p, q) 
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Then (p, q) are chosen to minimize 

log cr;,q + (p + q) logT IT. (2.1.9) 

Once p, q are determined we may, at the third stage, use any of the available algorithms 

for the calculation of the maximum of the Gaussian likelihood, initiating the iterative 

calculation with the strongly consistent estimates, a i, Bi. The procedure should be 

iterated commencing from the produced regression coefficients a i , ~ i until the residual 

mean square stabilizes. They also showed that for p, q minimizing (2.1.9) and a i, Bi, 

~ ~ 1 1 ~ ~ ~ A P. (.t O d 1 T112( A ai,t-'i,amostsureyp-p 0 ,q-q0 ,ai-a0,i,ai-a0,i, l-'j-1-'o,i~ an aso ai-

a 0), T112 (Pi - Po) have the same asymptotic distribution as the maximum likelihood 

estimators, for p0, q0 known, on Gaussian assumptions. 
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2.1.2. Unit roots in multivariate time series 

There are two approaches used to investigate unit roots in vector time series: one 

is the approach of Engle and Granger (1987) and the other is that of Pountis and Dickey 

(1989). The main difference between two approaches is that Engle and Granger (1987) 

look for evidence of a single cointegrating vector vs. the null hypothesis that all linear 

combinations of the vector entries are nonstationary while Fountis and Dickey's (1989) 

approach tests a null hypothesis of a single unit root canonical series. In addition Fountis 

and Dickey's (1989) distributional results for the test statistic rely on the assumption that 

there is exactly one unit root and the remaining parameters less than 1 in magnitude. The 

null hypothesis indicates a single unit root series mixed, by way of linear combinations, 

with several stationary series. We now introduce some ideas from Fountis and Dickey 

(1989) and we will discuss Engle and Granger (1987) in Chapter 5. 

Let 

(2.1.10) 

where e1 is a dimension k multivariate normal column vector with mean ~ and variance 

covariance matrix L. Assume that A has one eigenvalue 1 and the rest less than 1 in 

magnitude. The right eigenvectors of A and A - I are identical, and there exists a matrix 

R such that R-1 (A - I)R has O everywhere in the first row and column. 

Let 
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where all eigenvalues ofV22 are less than 1 in magnitude. 

Regressing Yt on Yt-l produces the coefficient matrix 

where Y(-l) = (Y0, Yi, ... , Yn_1), Yeo)= (Y1, Y2, ••. , Yn). Notice that A is similar to R-1 

AR, where 

R-1 AR= [R-1 Y Y' (R-1)'][ R~1 Y Y' (R-1)']-1 
(0) (-1) (-1) (-1) , 

and so the eigenvalues of A are the same as those we would get ifwe could regress 

R-1Yco) on R-1Y(-l)· Thus if we can prove a distributional result for eigenvalues in this 

transformed regression it will also hold for the untransformed regression. Even though 

we do not know the true R we can act as if we do for the purpose of studying 

distributional properties of the eigenvalues. Thus we assume 

(2.1.11) 

is the true model on the transformed scale and estimate all estimates of the coefficient 

matrix (including the O's). Let 
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denote the estimate of the coefficient matrix as partitioned in (2.1.11 ). Each element of 

V12 is Op(n-1) and each element of V21 is Op(n-112). This implies that n(V11 -l) has the same 

limit distribution as that tabulated for n(p-1) in Fuller (1976). 

The characteristic equation expanded on the first row is 

" " " -3/2 IV -mll = (V11 -m) IV22 -mll + Op(n ) = 0, 

and since the eigenvalues of V22 are bounded away from 1, n large implies a solution m = 

in, which differs from vll by op (n-312). Thus 

showing that the distribution of in is also governed in the limit by the distribution for the 

Dickey-Fuller tests. 

This procedure easily extends to higher-order cases. Let 

where Yt is a dimension k column vector. Reparameterize this as 

where VYt-p = (Yt - Yt-p) and note that if the characteristic equation, 
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p p-1 " " -IL I - L A, - ... - AP I - 0, 

has a unique root L = 1 then the coefficient matrix on Yt-l is of rank k-1. If estimate Ai 

of Ai are calculated by least squares method from n observations, then the solution L = in 

of ILPI - Lp-l A, -... - A.Pl= 0 closest in magnitude to 1 provides a test since, under the 

null hypothesis of a single unit root, n(I in I - 1) has the same limit distribution as n( p- 1) 

given by Dickey and Fuller (1979). Computing the eigenvectors of (I - A, -... - AP) 

associated with in, we can construct R with the right eigenvector as its first column and 

the left eigenvector as the first row ofR-1• 

The following papers may provide the background to develop the unit roots in a 

vector process (Chapter 3). 

Reinsel et al. (1992) expressed the explicit form of the gradient vector and 

Hessian matrix of the log likelihood function for the multivariate ARMA model and an 

explicit description of the Gauss-Newton iterative procedure to get ML estimates of the 

parameters. Their resulting computational procedure has the form of a generalized least 

squares (GLS) estimation involving lagged values of the observed vector series and of the 

residual series as independent variables. This explicit representation of the estimation 

procedure provides not only a convenient and appealing computational scheme relative to 

the general nonlinear maximization algorithms which are commonly used, but also 

proves useful in understanding and interpreting properties of the ML estimators. Their 

presentation also allows for easy comparison of the ML procedure with the GLS 
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procedure of Koreisha and Pukkila (1989) in the univariate case. Furthermore, their 

approach displayed the stage three estimation procedure by Hannan and Rissanen (1982) 

and Hannan and Kavalieris (1984a) in the univariate ARMA model context, and the stage 

four procedure by Hannan and Kavalieris (1984b) for the vector ARMA model as 

corresponding to the ML Newton-Raphson iteration procedure as represented in the GLS 

form. Consider estimation of parameters in the multivariate ARMA model 

where Yt = (Yit, ... , yict)', Et= (Eit, ... , aict)' are k-component vectors, and Cl>1, ... , Cl>p, 81, ... , · 

Sq are kxk matrices of unknown parameters. The Et are assumed to be iid with mean 

vector zero and nonsingular covariance matrix L. All roots of det[Cl>(z)] = 0 and det[8(z)] 

= O are assumed to lie outside the unit circle, and the necessary conditions for the 

identification of parameters for the above model are satisfied. On the assumption of 

normality of the Et, since e = vec(a') is N(O, In®L), the approximate log likelihood 

function can be written as 

n 1 
1 = -2lo~LI - 2e' (In® L-1 ) 

= - ;1o~LI - ~ w'EY-1 (In® L-1)8-I w 

where w = y- :tee Y ® Ik)cj>i with Li Y = (Y1-i,· .. , Yn-i)' and y = vec(Y') = (Y/, ... , Yn\ 
i=l 

Defining the vector 8 = (cj>\, ... , cj>'p, 9'1, ... , 9'q)' with cl>i = vec (Cl>i) and ei = vec(8i), i = 
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1, ... , q and matrix Z = [(LY®IJ, ... , (L1Y®IJ, -(LE®IJ, ... , -(LqE®IJ], we can express 

these derivatives collectively in a convenient form as 

(2.1.12) 

or 

These likelihood equations (2.1.12) are highly nonlinear in the parameters o (unless q = 

0). Thus for q > 0 these equations need to be solved by iterative numerical procedures 

such as the Newton-Raphson equations for an approximate ML estimator B are 

(2.1.13) 

where 00 is an initial estimate of o and the estimate ~ = E'E In from a previous iteration is 

used for L. To carry out the iteration in (2.1.13) it is useful to have a convenient ex-

pression for the Hessian matrix of second partial derivatives. It can be shown that on 

neglecting terms which, when divided by n, converge to zero in probability as n ~ oo, we 

obtain the approximation 

-(:!.) -(:)(I.®>:-')(:;,) (2.1.14) 

= z,9,-t (In® L-1)0-1 Z 
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Z denote the matrix Z with LjE in place ofLjE,j = 1, ... , q. Then, using (2.1.12)-(2.1.14), 

,.. 
the modified Newton-Raphson equations for 8 have the solution of the form 

(2.1.15) 

where Z = 0-1 Z. Note that e = vec(e') is easily computed recursively from 

as 

with ?0 = E_1 = ... = E1_q = 0. In addition the ML-GLS estimation procedure provides 

asymptotically efficient estimators and it involves the same degree of GLS computations 

for the univariate model as are involved in the univariate GLS estimation procedure of 

Koreisha and Pukkila (1989). The ML estimation through the GLS estimation in (2.1.15) 

corresponds essentially to the procedure stated by Hannan and Kavalieris (1984b) as their 

Stage 4 procedure for estimation of vector ARMA with exogenous variables (ARMAX) 

models. The ML-GLS procedure provided very good estimates after only a few iterations 
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using reasonable initial estimates, and its performance was not dependent on the exact 

nature of the initial estimates used. 

Osborn (1977) worked exact and approximate ML estimators for vector MA 

processes, which is a generalization of that adopted by Box and Jenkins (1976) for the 

univariate case. Let a qth vector MA process be 

(2.1.16) 

where Wt and Et are gx 1 vectors of observations and disturbances respectively, while ej, i 

= 1, ... , q, are gxg matrices of MA coefficients. The disturbances are assumed to be 

independent normally distributed about zero with variance covariance matrix L. With n 

sample observations assumed to be available on Wt, we denote the vector of disturbances 

in (2.1.16) by E = ( E' l-q, •.. , E' 0, E' i, ••• , E' J'. This vector is normally distributed with zero 

mean vector and variance-covariance matrix Q = l®L. Then the exact likelihood function 

IS 

-~ I _2_ ( 1 ) (2 1 17) 
f(W)=(21t) 2 1wn IKw-1KI 2 exp -;(MW+Ke*)•tr1(MW+Ke*) .. 

where e· = (e;_q,··· ,e~)', w ={W{,···, W~)', e =MW+ Ke·. By using the following two 

facts, 

and 
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I I I I 

1nn:IK'(r1KP" = 1~:i-2(n+q) IK'(I® L-I )Kj-2, 

equation (2.1.17) can be replaced by the following function L1 * 

n 

L/ =-(n+q)loglLI - loglK'(l®L-1)KI - ~)~L-1 Et. 
t~l-q 

Therefore, exact ML estimates of L and Si, i = 1, ... , q, may be achieved by maximizing 

the function L1 * with respect to these parameters using an appropriate nonlinear 

optimization technique. Although this exact procedure may be preferred on the theoret-

ical grounds, the computational burden it imposes may make it impractical in some 

circumstances. 

Spliid (1983) suggested a very fast and simple algorithm for estimation of the 

parameters of large multivariate time series which includes distributed lag variables and 

showed that the distribution of the estimates are asymptotically normal and unbiased. 

Furthermore, the algorithm is applicable for estimation of large multivariate models 

where it is generally many times faster than maximization algorithms. In the model 

identification stage of the analysis of· multivariate time series it is often desirable to 

estimate a number of alternative models and for this purpose this algorithm is very well 

suited. Consider a general linear model that includes lagged regression variables is 

denoted as 

(2.1.18) 
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where P(L) =Po+ P1L + ... + Pr-Ic-1 is a kxm matrix polynomial and xt is an m-variate 

series disturbances and (2.1.18) can be rewritten in the equivalence forms: 

Y=U8+a (2.1.19) 

where U = (-A, Y, X), A= (La, L2a, ... , Lqa), Y = (Ly, L2y, ... , LPy), and X = (x, Lx, ... , 

c-1x) with the matrix of unknown residuals a. Introducing the four stage procedures 

based on the above models (2.1.19), we can take the following steps: 

Step 1. Construct W = (Ly, L2y, ... , Cy, X) wheres is a chosen order of the initial AR 

part of the model. Linear regression gives a0 = y- W(W'Wr1 W'y where a0 denotes 

the estimate of a obtained in iteration number 0. 

Step 2. Compute recursively residuals fort= 1, 2, ... , n: 

Step 3. Construct Ap recall Y and X, create V1, and compute new estimates by linear 

regression, by solving uj ir j 8 j+l = irj y. 

A A A A A A 

Step 4. If 8 j+t ct: 6 j, increase j by 1 and repeat steps 2 through 4. If 8 j+t = 6 j, let 6 = 6 j+t 

and stop. The algorithm stops if and only if the empirical autocorrelations and cross-

correlations are zero (UJ aj = 0). 

Koreisha and Pukkila (1989) considered explicit computation of the maximum 

likelihood estimation for the unrestricted multivariate model and presented three linear 

preliminary estimation method which, when used in conjunction with the exact ML 
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(Hillmer and Tiao, 1979), can reduce parameter estimation by more than an order of 

magnitude. Furthermore, because of the great speed and accuracy associated with 

parameter value calculations they can also be employed in process order identification, 

and these techniques are useful in the early model building-stage since they permit 

analysts to compare the characteristics of various competing models inexpensively. 
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2.2. Previous results on measurement error model 

While the functional model, which has a fixed xt in the time series, considered in 

the Section 2.1, the structural model with stochastic Xt in the time series can be applied to 

the following: 

(2.2.1) 

where lit is a measurement error. Estimation of the true value xt is very important in 

signal measurement problems encountered in the engineering areas where Xt is known as 

'signal' and lit as 'noise'. In addition, it is important in survey sampling in the situation 

where a population is sampled at a sequence of time points according to a sampling 

scheme and in macroeconomic survey data such as the Panel Study of Income Dynamics 

(PSID) and the U. S. Current Population Survey (CPS). We consider the measurement 

error model with the ARMA(p, q) process included. Some results on estimating the 

univariate version of model (2.2.1) available in the following literature. 

The problem of estimating the AR process parameters based on the data corrupted 

by the unknown white noise has been studied by many authors. This problem was first 

treated by Walker (1960). Later, Parzen (1967) proposed some methods to estimate 

process parameters (PP) and signal-to-noise ratio (SNR) by means of spectral density and 

third order correlation. Kashyap (1970) worked the ML method for more general vector 

ARMA model with additional white noise. 

Pagano (1974) suggested a two-stage nonlinear LS procedure to obtain consistent 

and efficient estimators with the situation where xt is AR(p) and lit is white noise: 



p 

L~ixt-i = et 
j=O 
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(2.2.2) 

where {xt} and {Ut} are independent, {Ut} and {et} are iid with N(O, o}), N(O, cr/), 

respectively, and ~o = 1, ~P * 0. His basic idea is to introduce the first (p+ 1) new 

parameters and obtain initial estimates of these new parameters and original (p+2) 

parameters on the basis that the model (2.1.1) and (2.2.2) are then transformed into a 

mixed ARMA model. Having obtained these initial estimates, we can get better estimates 

by expressing these parameters in terms of the original parameters. Therefore, model 

(2.2.1) and (2.2.2) are rewritten (Pagano, 1974, p. 100), as a mixed ARMA(p, q), 

(2.2.3) 

with y0 = 1 and Yq * 0, q ~ 1. In this reparameterization, we have gone from the original 

p+q+2 parameters to p+max(p,q)+ 1 parameters. Furthermore, Pagano presented the 

nonlinear regression method which is asymptotically consistent with the ML method and 

proved its properties (Theorem 4, p. 107). 

Sakai and Arase (1979) considered a modified LS procedures for the problem of 

estimating parameters of an AR process based on the data corrupted by unknown white 

noise. Assume that the time series {xt} is a zero mean Gaussianp-th order AR process, 

(2.2.2) where {et} is a sequence of white noise with E(eJ = 0 and E(etes) = cr/cSt,s· Denote 
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the noisy observation sequence by {Yt} with (2.2.1) where {Ut} is a Gaussian white noise 

sequence uncorrelated with {xt} and cr/ is known. There are several steps to develop the 

modified LS method so as to estimate ~i, ... , ~P, cr/ and cr/ recursively, when we haven 

successive samples y1, ... , Yn· Firstly, from (2.2.1) and (2.2.2), we get 

(2.2.4) 

or 

(2.2.5) 

n n 

where yt-1 = (Yt-1'"'' Yt-p)', <l> = (~r, ... , ~p)'. (LY1-1Y:_1)an = LY1-1Yt is obtained by 
t=l t=l 

applying the LS method to (2.2.5) where 

(2.2.6) 

t=l t=l 

and an is the LS estimate for <l>. Since the LS estimator is asymptotically biased, we may 

apply their recursive modified LS method to this situation, the estimator <l>n is defined by 

(2.2.7) 
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assumption that crn 2 is known. But in many practical cases it is necessary to estimate it 

since cr/ is not known. Therefore, (2.2. 7) can be modified to 

(2.2.8) 

Moreover, the recursive formulae for P n• an and I ~,n where the residual at time n is 
t=l 

~,n = y1 - v:_1an are given by (Sakai and Arase, 1979, p. 952). On the contrary, in the 

case that cr/ is known, we estimate~ , <l>n , and (&;)n as in (Sakai and Arase, 1979, p. 953). 

Finally, they showed that modified LS method dominates the Yuler-Walker and the 

bootstrap method for the problem of estimating AR process parameters based on the data 

corrupted by unknown white noise from the simulation results. 

Dunsmuir (1979) investigated central limit theorem for parameter estimation in 

stationary vector time series and discussed its application to models for a stationary signal 

observed with noise. Furthermore, he derived the strong consistency and the limiting 

distribution of estimators by maximizing a frequency domain approximation of the 

likelihood function. 

Binder and Hidiroglou (1987) considered model Yt = xt + lit where xt 1s a 

ARMA(p, q) and lit is a ARMA(p *, q *) and formulated it as a state space model and 

exploited an iterative numerical procedure to compute the MLE. The exact log likelihood 

function may be written as: 
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(2.2.9) 

where 

(2.2.10) 

based on the given model z0 - N(O, Lo), Zt = Ftzt-I + GtEt where Et - N(O, VJ and {Zt} is 

assumed to be a series ofr-dimensional vectors. The model formulation continues with 

where At= xt h' + kt. Maximizing this log likelihood function (2.2.9) with respect to 

a.1, ... , ap, f3 1, ... , f3q, ci and y1, ... , Ys (when ut = c/y for known cJ based on ARMA(p, q) 

process involves finding the first and second derivatives of (2.2.9) with respect to these 

parameters. Therefore, it is sufficient to get the first and second derivations of y tit-I and 

Wt/t-I with respect to the known parameters {a.1, ... , ap, f3 1, ... , f3q, ci, Yi,· .. , y5}. These can 

be obtained recursively by using the following along with (2.2.10): 

zl[O = 0, 

P110 = F1LoF{ + G1V1G;, 

,.. _ ,.. p A'W-1 ( " ) 
zt/t - ztlt-1 + tJt-1 t tlt-1 Yt - Y111-1 , 

z111+1 = Ft+lztJt• 

ptlt = ptlt-1 - ptlt-1A~W11{-1AtPtlt-1' 

pt+1ft = Ft+1P111F:+1 + Gt+1Vt+1G~+1. 
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CHAPTER III 

TESTING FOR A UNIT ROOT IN AN AR(p) SIGNAL WITH MA( q) NOISE 

Section 3.1 describes previous works in testing for a unit root with parametric 

constraints and general restricted model is introduced in Section 3 .2. In Section 3 .3 we 

discuss the asymptotic distributions both of parameter estimators and of the unit root test 

statistics under the null hypothesis. 

3 .1. Previous works in testing for a unit root with parametric constraints 

Shin (1993) considered ML estimation for stationary AR processes when the 

signal is subject to a MA noise, and also this ML estimator of the parameter vector was 

shown to be strongly consistent and to have a multivariate normal limiting distribution. 

The model which he suggested is 

Yt = Xt + Ut 

xt = PXt-1 + zt 

(3.1.0) 

(3.1.1) 
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for t = 1, ... , n, where p and q are known nonnegative integers and n is the sample size. In 

addition {yt} is a sequence of observations and {Et} and {wt} are iid N(O, cr/) and 

N(O,crw2) sequences respectively. The process {xt} is assumed to be stationary and Up* 0 

and B = (rJ1, ..• , Bq)' and crw2 are known. From (3.1.0) - (3.1.1) the following is obtained 

as 

(3.1.2) 

where a 0 = 1 and a_1 = Up+i = 0. Because the.autocovarinace function of the time series 

defined by the right hand side of (3 .1.2) is zero for lags greater than (p+q+ 1) it can be 

written as an MA(p+q+ 1) process: 

~ p~l 

La/Yt-j - PY1-,-j) = LYft-P 
(3.1.3) 

j=O j=O 

where { et} is a sequence of iid N(O, cr2) random variables, cr2 > 0 and y0 = 1. Let e = 

2 
(ai, ... , Up, Yi.· .. , Yp+q)', I; = (8', cr )', Y = (Yi,···, YnY and X = (xi, ... , XnY- Then the 

negative log likelihood function is 
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Ln(s) = Y'Var(Yr1Y + log[det(Var(Y)/cr2)] + nlogcr2. (3.1.4) 

The ML estimator is defined by minimizing LnCs) with respect to s under the following 

restriction on S, for h = 0, 1, ... , p+q, 

(3.1.5) 

where y0 = a 0 = 1 and Ooh is the Kronecker delta. The modified ML estimator is defined 

by minimizing 

M 2 2 2 Lu (s) = Z:et (Y, 8)/cr + nlogcre (3.1.6) 

under the above restriction of (3 .1.5) and it has the same limiting distribution as ML 

estimator based on (3.1.4) and is also strongly consistent. He showed that this modified 

ML estimator is much better than that of Said and Dickey (1984) in the sense that in 

general empirical powers are bigger and empirical sizes are much closer to the nominal 

levels through numerical results. 

Miazaki and Dorea (1993) considered univariate ARMA model with nonlinear 

restrictions for analyzing a single time series data set from rotational sampling. If the 

sampling at regular time intervals is designed such that samples drawn on different 

occasions partially overlap, we can have a rotational sampling scheme. Under a rotational 

sampling scheme, they extended the ideas of Pagano (1974) in the white noise u1 case to 
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the MA( q) lit case. Consider a signal detection model in which the signal xt is a pth order 

AR process: 

Yt = xt + lit, t = 1, ... , n, 

(3.1.7) 

where (et, vJ' is a sequence of independent N(O, :r) random vectors with :r = diag(a/, 

cr/). It is assumed that the roots of Ia).!= 0 and off bij = 0 are greater than one in 
i=O b=O 

absolute value. Then by Pagano's (1974) approach the model (3.1.7) can be written as an 

ARMA process, 

(3.1.8) 

with restrictions 

p p p+q 
ci. + LLapkY 0(k- j)-cr!LP~ = 0, 

j=O k=O j=O 

p p p+q-h 
LLapkY0(k-j+h)-d, LPiPi+h =0, h= 1, .. ·,p+q, 
j=O k=O j=O 

2 where yµ(h) = E(ZtZt+h). The new parameters 13 = (13 1, ... , 13p+q)' and crz = V(zJ are 

functions of a= (ar, ... , aP)' and cr/ from (3.1.7). Let e = (B', cr/)', c5 = (y', a/)', y = (a', 
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B')' and 7t = (a', cre2)'. Then we can develop a procedure to construct estimate of a and 

2 cre as follows. 

Ste,p 1. Consider the restricted model (3.1.8) and the problem of estimating 8. Assume 

one has an initial estimator y0 ofy. Let 

Expanding ztCY, y) in a Taylor series about y° and regressing on the vector of the partial 

derivatives of zi(Y, y) with respect toy, ui(Y, y), we obtain the one-step Gauss-Newton 

estimator of y: 

'{ - y' -( t, u,' (Y, y') u, (Y, r'iJ' & u,' (Y, y') z, (Y, y'). 
(3.1.9) 

Ste,p 2. Let 8° be an initial estimator of 8 and G0 be its estimated covariance matrix. To 

estimate consider the model: 

e: 8° = 8 + a subject to f(O) = 0, (3.1.10) 

where a is a random column vector with zero mean and covariance matrix G0• Find the 

value B that maximizes (8° - 8)'(G0r1(8° - 8) subject to f(O) = 0 and take~ such that 
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In order to find the GLS estimator 8 for (3 .1.10) the Gauss-Newton procedure for the 

model is proposed as 

where T'T = (G°r1, c is an arbitrary large number and (ar, a2)' is a random column vector 

with zero mean and identity estimated covariance matrix. Essentially, Steps 1-2 suggested 

by Miazaki and Dorea (1993) are Pagano's estimation method applied to model (3.1.1). 

It differs in that LS estimates are constructed in the first step and the set of statistics used 

at the second step are different. Pagano parameterized the unrestricted model in terms of 

a and covariance of ~j3jzt-j , !30 = 1 whereas y and cr/ are taken as parameters in 
j=O 

Miazaki and Dorea (1993). The parameterization suggested by Miazaki and Dorea (1993) 

has the advantage that the estimated covariance of y is obtained as a direct result of the 

computations when y is estimated in Step 1. 

Shin and Sarkar (1994) showed that an ARIMA(p, 1, 0) signal disturbed by 

MA( q) noise is a ARIMA(p, 1, p+q+ 1) process restricted by nonlinear constraints on 

parameters. They considered the following model: 

(3.1.11) 

(3.1.12) 

and 

(3.1.13) 
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fort= 1, 2, ... , n, where p and q are known nonnegative integers, a,,* 0, the ai and the Wt 

are independent unobservable processes, the ai are iid N(O, cr/) and the wt are iid N(O, 

crw\ The roots of A(m) = 1 - a 1L - ... - aPLP = 0 are assumed to lie outside the unit 

circle and P = (pi, ... , Pq)' and crw2 are assumed to be known. Without loss of generality, 

we assume cr/ = 1. From (3.1.0) and (3.1.11)-(3.1.13) we have 

(3.1.14) 

where a/= aj- paj_i,j = 0, 1, ... , p+l, a 0 = 1 and a_1 = ap+l = 0. Because the auto-

covariance function of the time series defined by the right hand side of (3 .1.14) is zero for 

lags greater than (p+q+ 1) it can be written as an MA(p+q+ 1) process: 

(3.1.15) 

where {et} is a sequence ofiid N(O, cr2) random variables, cr2 and y0 = 1. Equating the co-

variance function of the right hand side of (3.1.14) to that of the right hand side of 

(3.1.15), for h = 0, 1, ... , p+q+ 1, we get 

(3.1.16) 
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where ~o = 1, I0(h) = 1 for h = 0 and I0(h) = 0 for h =t:. 0. Thus the parameters (Yi,···, 

Yp+q+I, cl) are functionally related to (p, ai, ... , ap, cr/) and the reparameterized (3.1.15) is 

a restricted AR1MA model of order (p, 1, p+q+ 1 ). Therefore, the reparameterized model 

(3.1.15) of (3.1.0) and (3.1.11)-(3.1.13) is considered so that results for unrestricted 

ARIMA models can be used. Let 8 = (ai, ... , ap, y1, ... , Yp+q+1)', \If= (p, 8')'. The negative 

log likelihood function ofy = (y1, ... , yJ', conditional on Yo, up to a constant, is 

2 2 
L(s) = Q(\lf)/cr + loge{detr(S)} + nlogecr , 

where 

Q(\1.1) = (y - PY1)'r-1(8)(y- PY1), Y1 =(Yo,· .. , Yn-1)' 

and cr2 rn(8) is the nxn covariance of(Y1 - PYo,···, Yn - PYn-IY· Lets* denote as as-value 

that minimizes L(s) subject to the (p+q+ 1) restrictions on s defined by 

f = (fi, ... , :t;,+q+1)' = 0. (3.1.17) 

Then, s * is the restricted ML estimator (RMLE) of S· In addition, they considered an 

approximation Lm(S) of L(s) and the modified restricted ML estimator (MRMLE) which 

minimizes Lm(S) under restrictions (3 .1.17). The MRMLE is defined to be a value of s 

that minimizes 

(3.1.18) 
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subject to the restriction of (3.1.17), where S(\lf) = Ie/(y;\lf) with 

Furthermore, they showed that the MRMLE and the RMLE have the same limiting 

distribution and that this RMLE of the unit root parameter is strongly consistent and it 

has the same distribution as the LS estimator of the unit root parameter in an AR(l) 

model tabulated by Dickey and Fuller (1979). Their simulation study showed that unit 

root tests based on the MRMLE performed very well for small samples and compare 

favorably with the Said and Dickey (1985) tests with respect to both sizes and powers 

under model (3.1.0) and (3.1.11 )-(3.1.13) with p = 0 and q = 1. 

3.2. General Restricted Model 

To illustrate the general restricted model we first consider the vector version of 

the measurement error model 

(3.2.1) 

where 

(3.2.2) 
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and zt and ut are AR(p) and MA(q) processes respectively. The {Et} and {wt} are two 

independent sequences of iid mx 1 random vectors with variance covariance matrices QEE 

and Qww respectively. Assume that Qww is known and without loss of generality, we can 

assume Qww =I.For stationarity, invertibility and identifiability, all the roots of det[a(L)] 

are assumed to lie outside the unit circle, det[Oi;i;] -:/:. 0, and AP is of full rank. We can 

express the stationary process {Yt} of (3.2.1) as an ARMA process. Note that from 

(3.2.1), Yt = a-1(L)Et + c(L)wt and hence 

a(L)Yt = E1 + a(L)c(L)wt (3.2.3) 

Since the autocovariance function of the right hand side of (3 .2.3) is zero when the lag is 

greater than q = p+r, we can find a qth order moving average et+ IB jet-j whose 
j~I 

autocovariance function is the same as that of the right-hand side of (3.2.3). Hence we 

can write model (3.2.3) as a special case of the general restricted model 

a(L)Yt = b(L)et, t = 1, 2, ... , n, (3.2.4) 

where { et} is a sequence of iid random vectors with variance covariance matrix Q and L 

is the lag operator such that L \t = Yt-k, 

(3.2.5) 

It is assumed that (p, q) are nonnegative integers and known, and A= (A1 IA2 j ••• IAp), B = 

(B1 IB2 j ... jBq) are respectively mxmp and mxmq matrices of unknown parameters. Let 
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{Yt}, t = 1, ... , n is the set of mx 1 observation vectors and { et} is a sequence of iid m­

dimensional random vectors with mean zero and a nonsingular variance covariance 

matrix Q. Furthermore, the following regularity conditions Cl-C3 should be imposed to 

satisfy the stationarity, invertibility and identifiability of the model: 

C 1. All roots of det[ a(L)] and det[b(L)] lie outside the unit circle; 

C2. Suppose a(L) = c(L)a1(L) and b(L) = c(L)b1(L) for polynomials a1(L), b1(L) 

and c(L), then det[c(L)] is independent ofL; 

C3. The matrix [A I B] is of full rank. 

The condition for a(L) in Cl is a stationarity condition for the y1• The condition for b(L) 

in Cl is an invertibility condition for et to be expressed in terms of {Yt-j}, j = 0, ... , oo, 

through et= b-1 (L)a(L)Yt, and this is used to approximate the error et and the derivatives 

of the approximation. The role of conditions C2 and C3 is to make the parameters in A 

and B identifiable. Also, it is common to model the elements of Q as functions of a few 

parameters with some functional constraints. See Judge et al.(1985, Section 14.5.2). 

The vector of restrictions on parameters A, B and Q is defined as 

f(A, B, Q) = 0 (3.2.6) 

where f is a k-dimensional vector of differential functions. With the reparameterized 

model (3.2.4), we can exploit the vector ARMA estimation procedure which will be 

discussed in Section 3.3. Since b(L)et and Et + a(L)c(L)wt should have the same 

autocovariance generating function, it follows that 
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b(L)Q[b(L-1)]' - QEE - a(L)c(L)[c(L-1)]'[a(L-1)]' = 0. (3.2.7) 

As an application of the above model (3.2.1) and restriction (3.2.3), we consider the case 

with m = 1, p = 1, q= 1, i.e., we model zt and ut as AR(l) and MA(l) respectively 

(3.2.8) 

where 

(3.2.9) 

The model (3.2.8) can be expressed as follows: 

(3.2.10) 

subject to the restrictions f = (fi, f2)' = (0, O)'. 
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3.3. Parameter estimation 

In this section, three different methods are introduced to estimate unrestricted 

models and compared with one another so that we can take advantage of theoretical 

developments in a simulation study. Let a= (a'i, ... , a'p)', ai = vec(A\), f3 = (f3'i, ... , 

f3' q)', Bi = vec(B' i), 8 = (a', f3')' and~ = (a', f3', 11')'. Letting e1 = 0 fort ~ 0 and Im denote 

them-dimensional identity matrix, we can solve (3.2.4) to get 

(3.3.1) 

using vec(RST) = (T'@R)vec(S) (see Fuller, 1987, p. 387) with proper orders R, Sand T. 

In order to develop the conditional Gaussian likelihood of {y1}, t = 1, ... , n, the initial 

observations y0, Y-1>· .. , Yi-p are assumed to be available and fixed and also the initial 

disturbances e0, e_i, ... , e1_q are assumed to be zero, respectively (Reinsel et al., 1992). 

Then the negative logarithm of the conditional Gaussian likelihood function of {y1}, t = 

1, ... , n is approximated by (Shin, 1993) 

(3.3.2) 
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Based on the model (3.2.8)-(3.2.10) as a special case of (3.2.4)-(3.2.5) and (3.2.7) 

suggested by Shin and Sarkar (1994, p. 2646), (3.3.1) and (3.3.2) can be expressed as 

follows: 

(3.3.3) 

and 

(3.3.4) 

3.3.1. Hannan and Rissanen (HR)'s method 

As mentioned in Section 2.1.2, we may apply the first and second stages of the 

multivariate version of Hannan and Rissanen (1982) procedure in order to obtain an 

initial estimator ~ of~. In the first stage, regressing Yt on Yt-1'"·, Yt-s, where s is a 

suitably chosen lag size large enough for approximating Yt by previous observations, the 

residuals et are computed as estimates of the et. In the second stage, we estimate A and 

B by regressing Yt on {Yt-1'"'' Yt-p} and {et-l'"''el_q}. Then e = {(vec(A;))', ... , 

(vec(A~))',(vec(BD)' , ... , (vec(B~))'}, fi = n-1Let (9)e;(e) and ri = vech(fi). 

3.3.2. Kohn's method 

For a general vector linear time series model Kohn (1979) proved the strong 

consistency and asymptotic normality of parameter estimates obtained by maximizing a 
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particular time domain approximation to a Gaussian likelihood, where the observations 

are not necessarily assumed to be normally distributed. To solve the normal equations he 

set up a constrained Gauss-Newton iteration and obtained the properties of the iterates 

when the sample size is large. A Newton-Raphson procedure which takes restriction 

(3.2.6) into account is used to estimate the parameters based on model (3.2.4)-(3.2.6). In 

particular, an efficient estimator is obtained if we initialize the iteration with a J;;­

consistent estimator. 

Now we evaluate the first partial derivatives L~ = BLJB~ of Ln. Letting We,t = 

BetCS)/88', We,t = (Wa,t I W13,t) is a mx{m2(p+q)} matrix, and Le= BLJ88 = 1:W'e,t Q-1 

etC8). When the restriction (3.2.6) involves the elements of Q, estimates of a and p are 

functionally related to the parameter estimates of Q. In case ofp = q = 1 and QB1' = A1' 

the distribution of the estimator of A1 clearly depends on the distribution of the estimator 

of Q. This means that it may not be proper to follow the approach of finding a minimizer 

Q(8) of Lu(~) with respect to Q for a fixed 8, and then minimizing Lu(8, Q(8)), which 

works in the restricted case (Reinsel et al., 1992). Hence we need to find expressions and 

the asymptotic behavior of the derivatives L11 = BLJBri and L1111 = B2LJBriBri' with 

respect tori = vech(Q). In handling the derivatives L11 and L1111 our analysis is based on 

Theorem 4.B.2 of Fuller (1987, p. 398), which gives the limiting distribution of the ML 

estimator of the variance covariance matrix of the multivariate normal distribution based 

on iid observations. In the sequel, the range for t in the summations will be 1 to n. By 

(4.B.20) of Fuller (1987, p. 400), 



66 

L~ = -r-1 vech[:2:Ct(8)et'(8) - nO] 

where [' = 2'P(Q®~)'P' and 'I' is a transformation matrix defined by vech(Q) = 

'Pvec(Q). Let roiJ denote the (i, j)th element of Q, let oij be the Kronecker's delta such 

that oii = 0 and oij = 0 for i -:t:- j, and let 'P(ij, ks) be the element of 'I' corresponding to roij 

and ro1cs ofvech(Q) and vec(Q) respectively. Then, from (4.A.3) of Puller (1987) we have 

Therefore, 

L~ = diag[I:W'a,t 1-{vech(I:etCS) et'(S)-nQ}' r-1]'. 

A Newton-Raphson procedure for estimating the model (3.2.4)-(3.2.5), without restriction 

(3.2.6), is 

(3.3.5) 

where ~ is an initial estimator of I;. In order to get estimator ~, the first and second 

stages of multivariate version of Hannan-Rissanen (1982) procedure may be applied to 

(3.3.5) as mentioned in Section 3.2.1. Now we modify the Newton-Raphson estimator 

I;+ in (3.3.5) to accommodate the restriction (3.2.6). The Largrangian multiplier method 

for the vector linear time series models is to be used as a tool of developing the above 

estimators. The maximum likelihood estimator in this case minimize Ln subject to the 

restriction (3 .2.6) and can be obtained by minimizing 
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with respect to s and A. Setting the first partial derivatives of (Ln + f A) with respect to s 

and A to zero, we get 

Ls+G'')..=Oandf=O, (3.3.6) 

where G = 8f/8s'. Combining the Taylor expansions 

(3.3.7) 

we have 

and 

where ~ is an initial estimator, and L1;, L1;1;, G and I are the values of Ls, Lss, G and f 

evaluated at s = ~- Note that we have used f = 0. Therefore, the Newton-Raphson 

estimator is obtained as 

(3.3.8) 

In order for the square matrix in (3 .3 .8) to be nonsingular, we need to make an assump-

tion that G is of full rank, which is equivalent to there being no redundancy in f = 0. 
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When some parameters are restricted to zero, we need to remove only the rows and 

columns corresponding to the zero-restricted parameters in the vectors and matrices in 

(3.3.8) instead of incorporating the zero-restrictions into G and f. 

Applying above to the model (3.2.8)-(3.2.10), the following are obtained: 

(3.3.9) 

and by differentiating (3.3.3) the elements of WA 1 ,i, WB 1 , 1 and WB2 , 1 are computed 

recursively as 

W =y -BW -BW A1 ,t t-1 I A1 ,t-1 2 A1 ,t-2 

and 

Note that L1;1; = a2Li8~8~' can be expressed as follows: 

[p q'] 
L1;1;= q s , 

where 



[ 
L(W!,., +e:wwA,,,)ld, 

p = L(WA,,,WB,,t +e;wwA,,B,,t)/d, 

L(WA,,,WB,,t + e;wwA,,B,,t) Id. 

with 

and 

L(WA,,,wB,,t + e;wwA,,B,) Id. 
L(W:,., + e;wwa,.,) Id, 

L(Wa,,,WB,,t + e;wwB,,B,) Id. 

*2 23 22 s = L(et) /(cre) - n/(cre) , 

Furthermore, 

and 

I -1- 2A,C, cr2e + B2d-_e B,d-_e 
G= 8f/8'E;' = l -C, 0 cr! 
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I(WA,.,wa,., + e;wwA,,a,..> I d,l 
L(Wa,,,WB,,t + e;wwB,,B,) Id. 

rcw:, .• + e;wwB,,,) Id. 

Now we can compute an estimate for model (3.2.1), by applying (3.3.8) with G, f and L1;1; 

described above to the reparmeterized model (3.2.4). 
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3.3.3. Shin and Sarkar's method 

Based on the Kohn's method, Shin and Sarkar (1995) considered an approxi-

mation H ~~ of L~~ in (3.3.8), in order to compute an easier Newton-Raphson estimator 

that approximates the restricted ML estimator. They defined 

(3.3.10) 

Approximation }:W'e,1'l-1We,t of a2LJ8888' is well explained in Reinsel et al. (1992) and 

by (4.B.22) of Fuller (1987) L1111 = -nr-1 + op(n). Hence, L~~ = H~~ + op(n). Applying 

(3.3.10) to model (3.2.8)-(3.2.10), the following is obtained: 

f Lwt1,t I a; 

H~~ = I ~ 
l 0 0 

Therefore, by replacing L1;1; with its approximation H1;1;, the Newton-Raphson estimator 

is obtained as 

(3.3.11) 
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3 .4. The limiting distribution 

Assume that ../n(~ - s) = Op(l). Combining the Taylor expansion 

with (3.3.8) replaced L~~ by H~~ and f= 0, we get 

By Dunsmuir and Hannan (1976) together with theorem 4.B.2 of Fuller (1987), 

1 d d 1 p J;; Hi;-----? N(O, V) an n H1;1; ~ V, 

where V = diag[I(9), r-1] and 1(9) is the information matrix of 9 in the unrestricted model 

(3.2.4)-(3.2.5). The normality of the et is used for convergence in distribution ofn-112 H11 , 

the elements of n-112 H~ corresponding to the parameters Tl· Since G is a continuous 

function of s, G ~ G. Then from Shin and Sarkar (1995) the limiting distribution of 

A 

these estimator s follows. 
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Theorem 3.1. Assume that the model (3.2.4)-(3.2.6) holds with regularity 

conditions Cl-C3. And assume that the et's are normal, f is continuously differentiable 

A 

and G is nonsingular. Suppose that the initial estimator ~ of ~ satisfies 

,rn(~ - ~) = OP(l). Let (~, i) be as defined in (3.3.11). Then, 

(3.4.1) 

Using the formula for the inverse of a partitioned matrix (see, for example, Judge et al., 

1985, p. 947), it can easily be shown that 

(3.4.2) 

Note that the upper left block of the covariance matrix in the right hand side of 

[V G']-i 
(3.4.13) corresponding to~ is the same as the upper-left block of the matrix G 0 

Since 1(8) can be consistently estimated by Iw~,/r1w8,t' the variance covariance 

A r H1;1; c}l1 

matrix of ~ is estimated by the upper-left block of the matrix l G OJ Then the 
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limit distributions of n(A.1 -1) and i = A. 1 I s.e.(A.1) under the unit root null hypothesis 

are given by the following. 

Theorem 3.2. Given the model (3.2.10) with restrictions f = (fr, f2)' = (0, O)', 

the limiting distribution of n(A.1 -1) and i under the null hypothesis H0: A 1 = -1 are 

given by 
°i {W(l)2 -1} 

!w(r)2 dr 
and 

Brownian motion on [O, 1]. 

"i {W(1)2 -1} 

~ f w(r)2 dr 

respectively, where W(.) 1s the standard 

Observe that Theorem 3 .1 and Theorem 3 .2 give asymptotics of a unit root 

parameter estimator and unit root tests based on Shin and Sarkar's method. The limiting 

distributions of unit root tests are the same as in Theorem 3 .2 when unit root parameter 

estimates are based on Kohn's and Hannan-Rissanen's methods. 
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CHAPTER IV 

SIMULATION STUDY 

We now consider a Monte Carlo study on the power functions of our unit root 

tests under model (3.2.8)-(3.2.10). Ten thousand replications were simulated for sample 

sizes 25, 50, 100 and 250, for A1 = 1.00, 0.99, 0.95, 0.90 and 0.70, and for nominal levels 

1 %, 5% and 10%. The normal random numbers {Et} and {wt} were generated by the 

subroutine DRNNOA and the calculation of inverse matrix are performed by the 

subroutine DLINRG of the IMSL package. The value of cr/ was set to one. The value 

2 of C1 was set to -0.5, 0 and 0.5, and the value of cre was set to 0.2, 1.0 and 5.0. For 

different (n, Ci, cr/) combinations independent samples were used. The computed values 

of the tests n(A.1 -1) and i were compared to the theoretical I%, 5% and 10% left tail 

critical values tabulated by Dickey and Fuller (see Fuller 1976, p. 371 and p. 373). 

Section 4.1 discusses algorithms based on three different estimation methods in Section 

3.3, and Section 4.2 gives simulation results and conclusive remarks. 
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4.1. Algorithms 

Three different testing algorithms are introduced to perform the comparative study 

on the basis of Section 3.3. 

4.1.1. Kohn's method 

Step 1. Generate random numbers, {et} and {wt}, as follows: 

and {et} and {wt} are independent 

where t = 1, ... , n for cr/ = 0.2, 1.0, 5.0 and for sample size n = 25, 50, 100, 250. 

Step 2. Compute the following y/s based on random variables {et} and {wt} obtained in 

Step 1: 

0.9, 0.8 and 0.7, C1 = -0.5, 0.0 and 0.5. 

following steps: 

(3.1) Regress Yt on CYt-I, ... , Yt-s) to obtain the residuals, et> where 

e = Y-X(X'X)-1X'Y with Y = (yi, .. ,, yJ' and the X matrix, for s = 5 for example, is 

given by 
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0 0 0 0 0 

Y1 0 0 0 0 

Y2 Y1 0 0 0 

Y3 Y2 Y1 0 0 
X= 

Y4 y3 Y2 Y, 0 

Ys Y4 Y3 Y2 Y, 

Yn-1 Yn-2 Yn-3 Yn-4 Yn-s 

(3.2) Regress Yt on (Yt-P et-P et_2) to estimate the initial values (A"B"Bz) of 

(A1, Bi, B2), where {et} is obtained from Step (3.1). 

(3.3) Compute the initial estimate of cr/ as cre2 = ((e/)2 + ... + (e/)2)/n, t = 1, ... , n 

Stem 4. Obtain the final estimates~= (A1,B"B2,o;)' of~. by using the Newton-Raphson 

method (3.3.8) based on the initial estimates, ~ =(A"B"B2,cr:)' in Step 3. In the 

numerical computations, the following revised Newton-Raphson estimator instead of 

(3.3.8) will be examined: 

(4.1.1) 

where k is a scalar controlling the step length. We calculate the left-hand side and the 

associated value for the log likelihood for various values of k and choose as the estimate 

the left-hand side value that produces the biggest value for the log likelihood as defined 

in equation (3.3.2). 
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St<m 5. Compute statistics n(A.1 -1) and i and compare their values with the tabulated 

percentiles of the distribution given by Dickey and Fuller (1979) and check if the values 

of n(A. 1 -1) and i value are less than the corresponding tabulated percentiles. 

St<m 6. Repeat Step 1 through Step 5 ten thousand times and thus count the relative 

frequencies of n(A. 1 -1) and i smaller than the corresponding tabulated percentiles. 

4.1.2. Shin and Sarkar (SS)'s method 

All steps are the same as those ofKohn's method except that we replace L1;1; with 

its approximation H1;1; in (4.1.1). 

4.1.3. Hannan and Rissanen (HR)' s method 

We follow Steps 1, 2, 3, 5, and 6 of Kohn's (Section 4.1.1) method in obtaining 

the statistic n(A. 1 -1). In particular, in order to obtain the standard error of A.1 when i is 

1E1;1; G'l1 

calculated, the matrix l G O J of ( 4.1.1) is computed. 
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4.2. Results and Discussion 

Simulation results on the empirical level and power of the test statistics n(A.1 -1) 

and i are presented in Tables 4.1-4.28. Note that Tables 4.1-4.12 show the empirical 

powers of the two test statistics based on Hannan and Rissanen's method. In preparing 

for i, we needed to compute the standard error of A1• For Tables 4.4-4.6 these were 

done by using 

of ( 4.1.1) and for Tables 4.10-4.12 by using 

While Tables 4.13-4.18 present simulation numbers based on Kohn's method, and Tables 

4.19-4.24 based on Shin and Sarkar's method. We now discuss our findings based on the 

tables. 

Common points among three methods 

(1) When we fix n and increase cr/ or fix cr/ and increase n, the empirical powers 

are getting bigger and sizes are closer to the nominal level in terms of both n(A. 1 -1) and 

i . In particular, In case of large samples (n = 100, 250), the empirical sizes of each of 

three methods are almost close to the desired nominal levels except that cr/ = 0.2. 
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(2) For cr/ = 0.2 (i.e., when the signal is weak), especially when C1 = 0.5, the size 

tends to be larger than the nominal level. For fixed (n, Ci, cr/) the powers are monotone 

functions of A1• 

(3) The comparisons for nominal levels 1 %, 5%, and 10% are similar. 

What are the differences among three methods ? 

(1) For the "normalized" unit root test statistic n(A. 1 -1), the empirical sizes 

using Kohn's estimates are usually slightly smaller than those using Shin and Sarkar's 

estimates; and sizes are close to one another. As expected, the empirical powers based on 

Shin and Sarkar's method generally are larger than those based on Kohn's due to the 

larger empirical sizes. There is no big differences between tests based on Kohn's and 

Shin and Sarkar's estimates. 

(2) For the t-test statistic i, the sizes using Kohn's estimates are in general much 

smaller than those using Shin and Sarkar' s. The powers for Shin and Sarkar' s method 

become closer as the sample size gets larger and C1 gets smaller. 

Summary 

For small sample sizes (n = 25, 50), all three different methods (H-R, Kohn, S-S) 

lead to test statistics for which the tabulated critical values given by Dickey and Fuller 

(1979) are not appropriate. Numerical results of Schwert (1989) show that the distribution 

of unit root test statistics in unrestricted ARMA models ( containing a nonzero MA 

component) can be very different from those tabulated by Dickey and Fuller (1979). 

Therefore, we prepared Table 4.25 - Table 4.32 to obtain the empirical critical values for 
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both normalized unit root test statistic and t-test statistic in order to apply the unit root 

tests to real time series data. 

The advantage of using Shin and Sarkar's method lies in the fact that it is much 

easier than Kohn's for computation in terms of inverting the Hessian matrix. If p, q, m 

are bigger than the case considered in our simulation study (p= 1, q= 1, m= 1 ), gain in 

computational ease will be even more noticeable. In terms of statistic n( A 1 - 1), the Shin 

and Sarkar method can be a good alternative to the Kohn's method when we test for a 

unit root in an AR(l) signal observed with MA(l) noise. On the other hand, the Kohn's 

method is preferable while using the t-test statistic i . 
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Table 4.1 

Empirical power(%) of n(A. 1 -1) for nominal level 0.01 

cr/ = 0.2 2 a~ = 1.0 cr/ = 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A1 
1.00 17.1 18.6 20.9 6.9 7.5 8.8 3.6 4.2 4.3 
0.99 18.8 19.6 24.4 7.5 7.9 9.6 3.8 4.7 5.3 

25 0.95 26.5 28.0 35.8 11.7 11.3 14.5 6.5 6.5 7.4 
0.90 34.8 37.6 45.7 17.9 18.0 20.2 10.6 10.6 11.8 
0.80 46.3 55.7 66.1 29.0 31.2 38.5 19.8 21.2 23.1 
0.70 53.7 64.9 77.9 40.9 46.0 54.4 32.6 33.9 36.5 
1.00 11.4 10.4 12.8 4.2 4.1 4.5 2.4 2.6 2.7 
0.99 14.3 12.3 14.3 5.4 5.0 5.5 3.4 3.0 3.4 

50 . 0.95 26.8 23.1 28.6 10.9 10.0 11.5 6.7 6.5 6.9 
0.90 42.7 40.4 47.0 22.1 21.2 23.6 15.6 16.2 16.8 
0.80 63.6 64.8 72.1 47.4 48.5 53.2 40.8 41.2 42.5 
0.70 72.5 77.4 83.3 64.8 67.0 71.3 62.1 62.5 63.8 
1.00 6.3 5.5 7.7 2.6 2.4 2.8 1.9 1.6 1.8 
0.99 9.6 8.4 11.5 3.7 3.5 3.8 2.4 2.6 2.5 

100 0.95 29.8 27.9 34.5 15.4 14.5 16.3 11.9 11.5 12.0 
0.90 58.3 57.1 65.0 40.9 40.8 44.5 36.7 35.9 36.6 
0.80 80.6 84.3 88.3 79.0 80.8 83.8 81.3 81.8 81.8 
0.70 87.3 90.5 93.4 88.7 90.9 92.6 92.7 93.3 93.2 
1.00 2.8 2.3 3.2 1.4 1.5 1.3 1.3 1.2 1.0 
0.99 7.3 6.7 9.4 4.3 4.3 5.0 3.8 3.8 4.0 

250 0.95 54.2 53.5 60.4 50.5 50.8 52.0 49.1 49.3 49.2 
0.90 83.3 86.5 · 89.9 93.8 94.6 95.2 96.3 96.4 96.0 
0.80 91.8 94.5 95.7 99.3 99.7 99.7 100.0 100.0 100.0 
0.70 92.6 95.2 96.2 99.0 99.6 99.7 100.0 100.0 100.0 
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Table 4.2 

Empirical power(%) of n(A 1 -1) for nominal level 0.05 

2 cr, = 0.2 cr/ = 1.0 2 cr, = 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A, 
1.00 26.1 26.7 29.2 13.6 14.0 15.3 8.9 9.4 10.2 
0.99 29.2 28.5 33.1 14.7 14.6 16.4 10.0 10.3 11.1 

25 0.95 40.1 38.8 46.8 22.2 21.5 25.4 15.6 15.3 16.9 
0.90 50.4 50.9 58.3 32.8 30.9 34.7 24.4 23.0 24.5 
0.80 63.5 68.6 76.1 49.4 49.9 55.8 40.2 40.5 43.5 
0.70 69.5 75.6 84.1 61.7 64.8 70.4 55.3 56.8 58.8 
1.00 18.2 18.8 20.3 9.6 9.5 10.6 7.5 7.3 7.6 
0.99 22.7 20.1 23.3 12.4 11.5 12.4 9.9 8.8 9.3 

50 0.95 39.3 36.0 42.5 23.1 23.1 24.3 19.2 18.4 18.7 
0.90 57.7 55.3 60.9 42.2 41.6 44.3 37.3 37.8 37.8 
0.80 74.4 75.2 79.1 69.2 69.9 73.4 69.2 68.7 70.2 
0.70 80.1 82.7 86.7 79.3, 80.8 82.7 82.2 82.3 82.4 
1.00 13.0 11.7 14.9 7.7 6.8 8.1 6.6 5.6 6.3 
0.99 18.8 17.5 22.6 10.7 10.9 12.0 9.0 9.5 9.4 

100 0.95 49.3 48.3 55.5 37.6 37.8 40.3 34.5 34.8 35.0 
0.90 75.2 75.3 81.5 71.8 72.2 75.3 72.2 72.0 72.3 
0.80 87.7 90.5 92.3 92.4 94.1 95.3 95.9 96.5 96.3 
0.70 90.7 92.6 94.9 94.1 96.1 96.5 98.0 98.3 98.1 
1.00 7.9 7.1 8.5 5.9 5.7 6.0 5.5 5.4 5.3 
0.99 19.6 18.9 23.0 15.9 15.9 17.3 15.3 15.2 15.7 

250 0.95 76.9 79.6 84.2 86.1 86.5 86.9 87.7 87.3 86.8 
0.90 90.9 94.0 95.8 99.5 99.6 99.7 99.9 99.9 99.9 
0.80 93.7 95.9 96.9 99.8 99.9 99.9 100.0 100.0 100.0 
0.70 93.6 95.9 96.9 99.5 99.8 99.8 100.0 100.0 100.0 



83 

Table 4.3 

Empirical power(%) of n(A 1 -1) for nominal level 0.10 

l cr, = 0.2 l cr~ = 1.0 cr/ = 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A, 
1.00 32.1 32.3 34.8 18.5 19.1 20.2 14.0 14.6 14.8 
0.99 35.7 34.5 39.1 20.3 20.5 22.7 15.5 15.9 16.7 

25 0.95 47.6 45.9 53.7 30.0 29.4 33.6 23.7 23.1 24.9 
0.90 58.4 58.8 64.5 43.1 40.7 44.4 35.3 33.9 35.4 
0.80 71.2 74.2 80.2 60.6 60.5 65.9 53.8 54.0 56.6 
0.70 76.1 79.9 86.4 71.1 72.9 76.8 67.7 68.6. 69.9 
1.00 23.4 21.6 25.9 14.7 14.6 15.8 12.3 12.4 12.6 
0.99 28.9 25.7 29.7 19.0 17.6 19.0 15.9 14.8 15.6 

50 0.95 48.6 45.0 51.0 33.8 33.8 36.3 30.4 30.2 30.1 
0.90 66.2 63.6 68.1 55.9 55.8 57.9 54.0 54.4 53.6 
0.80 78.4 79.1 82.0 78.7 79.5 81.8 82.0 81.7 82.2 
0.70 82.4 84.8 87.8 84.2 85.6 86.5 88.9 89.0 88.6 
1.00 18.9 17.3 21.4 12.7 11.9 13.4 11.5 10.8 11.3 
0.99 26.3 25.2 31.2 18.5 19.0 20.2 16.6 17.0 17.1 

100 0.95 61.5 61.2 68.9 55.4 54.9 57.6 53.8 53.1 54.0 
0.90 81.9 83.1 87.7 85.1 86.3 88.1 87.5 87.8 87.8 
0.80 89.6 92.6 93.8 95.6 97.0 97.3 98.6 98.9 98.8 
0.70 91.9 93.5 95.4 95.8 97.3 97.6 99.0 99.2 99.0 
1.00 12.7 12.1 14.4 10.8 10.6 11.2 10.1 10.2 10.3 
0.99 31.4 30.5 35.4 28.9 28.5 29.5 27.6 27.3 28.5 

250 0.95 85.8 88.7 91.8 95.7 96.0 96.2 96.9 96.8 96.5 
0.90 93.3 95.8 97.2 99.9 99.9 99.9 100.0 100.0 100.0 
0.80 94.5 96.6 97.3 99.8 100.0 100.0 100.0 100.0 100.0 
0.70 93.9 96.2 97.1 99.6 99.9 99.9 100.0 100.0 100.0 
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Table 4.4 

Empirical power(%) of i for nominal level 0.01 

cr/ = 0.2 2 crl = 1.0 cr/ = 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A1 
1.00 12.3 6.7 11.6 5.5 3.1 3.3 3.4 3.2 2.5 
0.99 13.7 6.8 13.6 5.9 3.2 3.9 3.5 3.4 2.9 

25 0.95 18.5 10.0 19.6 9.1 4.6 5.6 6.0 4.6 4.3 
0.90 23.0 13.1 25.3 13.1 7.3 8.2 9.4 8.0 7.0 
0.80 27.8 20.0 40.0 20.2 13.5 15.9 17.7 16.3 15.3 
0.70 30.4 26.8 52.1 26.9 21.6 24.2 27.8 26.7 26.2 
1.00 6.7 2.3 3.5 2.8 1.5 1.8 2.1 2.0 1.7 
0.99 8.1 3.0 4.2 3.4 2.3 2.1 2.9 2.4 2.3 

50 0.95 15.1 6.2 8.8 7.0 4.1 4.4 6.0 5.2 4.8 
0.90 24.3 11.1 16.4 14.4 9.8 9.9 13.9 13.1 12.3 
0.80 35.3 21.5 32.5 30.4 25.3 26.7 36.4 35.5 34.0 
0.70 39.3 29.5 47.0 42.0 40.4 40.7 55.8 55.5 55.17 
1.00 2.7 1.2 2.6 1.8 1.2 1.6 1.7 1.4 1.4 
0.99 3.9 1.6 4.1 2.3 1.6 2.2 2.1 2.0 1.9 

100 0.95 12.4 6.5 11.6 9.5 8.1 9.8 10.5 9.6 9.5 
0.90 26.1 16.1 22.9 26.2 25.0 29.0 33.1 31.8 31.4 
0.80 44.4 32.7 37.8 57.2 61.0 66.3 76.7 77.1 75.6 
0.70 51.6 41.2 48.1 68.1 74.5 79.3 89.6 90.4 90.3 
1.00 1.1 0.9 3.0 1.1 1.0 0.9 1.2 1.0 0.9 
0.99 3.2 3.2 8.8 3.2 3.00 3.9 3.8 3.4 3.5 

250 0.95 27.5 31.3 52.3 41.2 42.2 45.1 47.8 47.7 46.6 
0.90 50.3 63.0 80.3 87.9 90.1 91.3 95.5 95.5 95.1 
0.80 62.1 71.3 81.0 97.9 99.1 99.3 100.0 100.0 100.0 
0.70 64.3 69.6 73.4 97.2 99.1 99.3 100.0 100.0 100.0 
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Table 4.5 

Empirical power(%) of i for nominal level 0.05 

2 
O'~ = 0.2 2 

O'~ = 1.0 2 
O'~ = 5.0 

Sample C1 -0.5 o.o 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 
Size A, 

1.00 18.5 11.6 16.5 10.4 7.8 8.0 8.3 8.1 7.7 
0.99 20.1 11.9 18.8 11.0 7.9 8.7 9.3 8.8 8.6 

25 0.95 26.6 17.3 27.2 16.5 11.8 13.7 14.5 13.1 12.8 
0.90 32.9 22.5 34.2 24.2 17.9 18.8 22.6 20.2 19.5 
0.80 38.6 33.1 49.6 33.9 29.6 32.8 36.9 35.9 36.5 
0.70 41.3 39.3 60.8 41.4 41.1 44.8 49.7 51.0 50.6 
1.00 11.1 7.0 9.7 7.3 5.9 6.9 6.9 6.6 6.4 
0.99 13.5 7.7 10.9 8.8 7.4 7.9 9.3 7.7 7.8 

50 0.95 24.3 14.8 20.4 17.0 15.3 16.2 17.8 16.5 16.1 
0.90 35.8 24.4 31.0 31.3 29.0 30.7 35.0 34.7 33.5 
0.80 48.3 38.8 47.9 52.8 53.3 56.9 65.5 65.1 64.8 
0.70 51.6 46.7 60.2 61.9 65.7 68.6 78.5 79.0 78.6 
1.00 7.0 5.5 12.0 6.1 5.2 6.6 6.1 5.3 5.7 
0.99 10.1 8.8 18.5 8.5 8.6 9.8 8.5 8.7 8.7 

100 0.95 27.7 26.0 41.7 30.1 30.8 34.4 33.2 33.3 32.8 
0.90 45.8 44.6 58.8 61.0 62.8 68.0 70.0 69.8 69.2 
0.80 59.2 59.2 65.2 84.0 88.3 91.0 94.8 95.3 95.1 
0.70 63.5 62.0 69.3 85.7 91.4 93.5 97.3 98.0 97.5 
1.00 4.9 5.4 9.4 5.1 5.1 5.5 5.3 5.2 4.9 
0.99 12.8 14.5 24.8 14.1 14.2 16.0 15.0 14.7 15.5 

250 0.95 61.6 69.4 81.6 82.5 82.9 84.6 86.9 86.4 85.8 
0.90 78.4 87.8 93.3 98.7 99.2 99.5 99.8 99.8 99.8 
0.80 78.6 88.4 91.2 99.5 99.8 99.9 100.0 100.0 100.0 
0.70 75.5 84.4 86.3 98.9 99.7 99.7 100.0 100.0 100.0 
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Table 4.6 

Empirical power(%) of i for nominal level 0.10 

2 
cr~ = 0.2 

2 
cr~ = 1.0 2 

cr~ = 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A, 
1.00 23.5 16.6 21.6 15.1 13.1 13.1 13.4 13.3 12.6 
0.99 25.5 17.3 24.4 16.2 13.5 14.9 14.9 14.4 14.5 

25 0.95 33.7 24.1 34.3 24.1 20.5 22.5 22.8 21.3 22.0 
0.90 40.6 31.1 41.6 34.0 28.6 30.5 33.9 31.8 31.6 
0.80 47.2 43.6 56.9 45.9 43.9 47.9 51.3 50.6 51.7 
0.70 49.8 49.0 66.9 53.2 55.1 59.5 63.4 64.6 65.2 
1.00 15.6 12.8 17.5 11.9 11.1 12.5 11.7 11.6 11.4 
0.99 19.0 14.0 19.6 15.4 13.8 15.1 15.6 13.9 14.3 

50 0.95 32.3 25.2 34.0 27.7 27.2 29.8 29.5 28.7 28.0 
0.90 45.2 37.7 45.1 47.0 46.0 48.9 52.4 52.3 51.0 
0.80 56.5 52.2 59.1 67.3 69.6 73.2 79.9 79.4 79.3 
0.70 59.0 58.3 68.9 72.2 77.0 78.7 86.7 87.0 86.8 
1.00 12.8 12.6 21.5 11.4 10.4 12.2 11.5 10.3 10.9 
0.99 18.3 · 18.6 31.2 16.4 16.8 18.8 16.5 16.7 16.4 

100 0.95 43.7 46.5 62.8 50.2 50.9 55.0 53.4 53.0 53.0 
0.90 61.4 64.8 77.0 80.3 81.9 85.3 86.5 86.9 86.4 
0.80 68.8 73.6 77.6 92.4 94.9 96.1 98.2 98.5 98.3 
0.70 70.8 73.2 78.7 91.7 95.3 96.1 98.6 98.9 98.7 
1.00 9.7 10.6 15.8 10.0 9.9 10.9 10.0 10.0 10.3 
0.99 24.7 27.1 38.6 27.4 27.4 29.1 27.9 27.4 28.0 

250 0.95 76.8 83.0 90.1 94.2 94.7 95.3 96.5 96.0 96.0 
0.90 87.3 92.9 95.7 99.7 99.8 99.9 100.0 100.0 100.0 
0.80 84.8 92.5 93.7 99.8 99.9 99.9 100.0 100.0 100.0 
0.70 80.8 89.4 90.3 99.3 99.8 99.8 100.0 100.0 100.0 
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Table 4.7 

Empirical power(%) of n(A. 1 -1) for nominal level 0.01 

2 cr~ = 0.2 cr/ = 1.0 cr/ = 5.0 
Sample c, -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A1 
1.00 17.0 19.5 23.6 6.9 7.5 9.5 3.6 4.2 4.4 
0.99 18.9 20.0 26.6 7.4 7.7 10.1 3.8 4.7 5.3 

25 0.95 26.3 28.6 37.9 11.6 11.2 15.3 6.5 6.4 7.4 
0.90 34.7 38.8 48.6 17.7 18.0 21.2 10.6 10.5 11.8 
0.80 45.9 54.6 68.9 28.6 30.9 39.7 19.7 21.1 23.0 
0.70 51.7 65.0 79.3 39.9 45.5 55.7 32.6 33.7 36.4 
1.00 11.5 10.3 12.0 4.2 3.8 4.7 2.5 2.6 3.0 
0.99 14.4 13.0 14.2 5.4 5.2 5.4 3.2 3.3 3.1 

50 0.95 25.4 23.7 27.4 10.7 9.5 11.7 6.5 6.4 7.1 
0.90 42.8 41.4 46.3 22.0 21.6 25.1 15.6 15.8 16.4 
0.80 62.3 65.0 72.9 47.6 48.3 53.9 41.0 40.9 43.2 
0.70 70.3 76.4 82.8 64.7 66.1 72.6 62.6 62.5 63.9 
1.00 6.4 5.4 6.4 2.6 2.4 2.7 1.9 1.6 1.8 
0.99 9.8 8.3 9.7 3.7 3.6 3.7 2.4 2.6 2.5 

100 0.95 29.9 27.9 30.2 15.3 14.7 16.2 11.9 11.5 12.0 
0.90 58.1 57.3 60.5 41.3 40.8 45.0 36.7 35.9 36.7 
0.80 80.6 83.5 86.7 79.0 81.2 84.5 81.3 81.5 81.8 
0.70 86.0 89.6 93.2 88.9 91.0 92.6 92.7 93.3 93.2 
1.00 2.9 2.2 3.1 1.4 1.5 1.3 1.3 1.2 1.1 
0.99 7~4 6.2 9.4 4.4 4.2 5.0 3.8 3.8 4.0 

250 0.95 54.4 51.6 59.8 50.5 50.6 52.3 49.1 49.3 49.2 
0.90 83.1 84.7 88.8 93.9 94.5 95.2 96.3 96.4 96.0 
0.80 91.3 93.7 94.6 99.3 99.7 99.7 100.0 100.0 100.0 
0.70 92.0 94.5 95.3 99.0 99.7 99.6 100.0 100.0 100.0 
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Table 4.8 

Empirical power(%) of n(A. 1 -1) for nominal level 0.05 

cr,.2 = 0.2 2 
crc = 1.0 2 

crc = 5.0 
Sample C1 -0.5 o.o 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A, 
1.00 25.8 27.8 31.2 13.6 13.9 15.9 8.9 9.4 10.2 
0.99 29.0 29.2 34.4 14.7 14.5 16.9 10.0 10.3 11.1 

25 0.95 39.7 39.5 47.7 22.1 21.5 26.0 15.5 15.3 17.0 
0.90 49.5 51.8 59.1 32.4 31.0 35.5 24.4 23.0 24.5 
0.80 62.6 67.4 76.8 49.0 49.7 56.9 40.2 40.5 43.5 
0.70 67.8 75.4 84.2 60.5 64.3 70.9 55.3 56.6 58.6 
1.00 18.5 16.3 18.5 9.5 9.4 10.1 7.4 7.5 7.6 
0.99 22.7 20.4 21.5 12.2 11.7 12.3 9.5 9.0 9.3 

50 0.95 38.5 36.0 39.6 23.4 22.4 24.1 18.9 18.6 18.9 
0.90 57.7 55.7 58.5 42.5 41.9 44.3 37.8 37.3 37.8 
0.80 73.8 74.3 78.9 68.8 69.9 73.4 69.1 69.1 69.3 
0.70 78.2 81.2 86.3 78.8 80.0 83.1 82.2 82.4 82.9. 
1.00 13.0 11.3 13.5 7.7 6.8 7.8 6.6 5.6 6.3 
0.99 18.9 17.0 20.9 10.7 10.9 11.9 9.0 9.5 9.4 

100 0.95 48.8 47.1 52.5 37.6 38.0 39.8 34.5 34.8 35.0 
0.90 74.4 74.3 78.7 72.0 72.2 75.3 72.2 72.0 72.3 
0.80 86.9 89.4 91.3 92.4 94.4 95.0 95.9 96.5 96.3 
0.70 89.1 92.2 94.7 94.2 95.9 96.5 98.0 98.3 98.1 
1.00 8.0 6.7 8.6 5.9 5.7 5.9 5.5 5.4 5.3 
0.99 19.7 17.7 23.0 15.8 15.9 17.0 15.3 15.2 15.7 

250 0.95 79.8 78.4 84.1 86.1 86.5 86.9 87.7 87.3 86.8 
0.90 90.6 93.3 95.2 99.5 99.6 99.7 99.9 99.9 99.9 
0.80 93.3 95.4 96.0 99.8 99.9 99.9 100.0 100.0 100.0 
0.70 93.2 95.5 95.9 99.4 99.8 99.8 100.0 100.0 100.0 
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Table 4.9 

Empirical power(%) of n(A 1 -1) for nominal level 0.10 

2 
(j~ = 0.2 2 

(j~ = 1.0 cr/ = 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A, 
1.00 31.7 33.3 36.0 18.5 19.1 20.8 14.0 14.6 14.8 
0.99 35.4 34.9 40.1 20.3 20.5 22.9 15.5 15.8 16.7 

25 0.95 46.6 46.1 54.1 29.9 29.4 34.0 23.7 23.0 24.9 
0.90 57.9 58.9 64.8 42.7 40.9 45.1 35.4 33.8 35.4 
0.80 69.9 74.1 80.0 60.2 60.2 66.4 53.8 54.0 56.5 
0.70 73.8 79.4 86.3 70.0 72.5 76.9. 67.5 68.5 69.7 
1.00 23.8 21.1 23.5 15.1 13.9 15.1 12.6 12.4 12.6 
0.99 28.8 26.7 28.4 18.5 17.7 18.8 16.0 15.3 15.7 

50 0.95 47.3 44.6 48.0 34.3 33.3 35.2 30.4 29.8 29.8 
0.90 65.9 63.5 65.5 55.9 56.8 57.9 53.8 54.3 53.8 
0.80 77.8 77.9 81.6 78.4 79.5 81.5 81.9 81.8 82.4 
0.70 80.5 83.2 87.4 83.8 84.9 86.7 88.7 88.8 89.1 
1.00 18.9 16.7 20.1 12.7 12.0 13.1 11.5 10.8 11.3 
0.99 26.5 24.5 29.4 18.5 19.0 19.9 16.6 17.0 17.1 

100 0.95 61.1 60.0 66.5 55.3 55.0 57.2 53.8 53.1 54.0 
0.90 80.8 82.2 85.9 85.3 86.3 88.0 87.5 87.8 87.8 
0.80 89.0 91.5 93.0 95.6 97.1 97.2 98.6 98.9 98.8 
0.70 90.3 93.1 95.3 95.6 97.1 97.5 99.0 99.2 99.0 
1.00 12.7 11.6 14.5 10.8 10.6 11.0 10.1 10.2 10.3 
0.99 31.3 29.1 35.4 28.8 28.4 29.2 27.6 27.3 28.5 

250 0.95 85.5 88.1 91.7 95.7 96.0 96.2 96.9 96.8 96.5 
0.90 92.9 95.0 96.6 99.9 99.9 99.9 100.0 100.0 100.0 
0.80 94.0 96.0 96.6 99.9 99.9 99.9 100.0 100.0 100.0 
0.70 93.6 95.8 96.1 99.6 99.9 99.8 100.0 100.0 100.0 
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Table 4.10 

Empirical power(%) of i for nominal level 0.01 

cr/ = 0.2 2 
crc = 1.0 2 

crc = 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A1 
1.00 21.1 26.3 31.0 8.1 9.5 14.1 4.0 4.6 5.5 
0.99 23.0 27.2 34.5 8.8 9.8 15.0 4.2 5.1 6.3 

25 0.95 32.7 37.5 47.2 13.7 14.5 23.0 7.3 7.3 9.4 
0.90 42.4 49.6 58.4 20.7 22.2 31.9 11.7 11.7 14.2 
0.80 57.6 66.2 74.8 33.7 37.9 52.3 21.5 23.1 27.1 
0.70 64.9 74.9 82.3 46.6 54.0 66.8 35.1 36.9 41.2 
1.00 13.9 14.8 14.3 4.7 4.7 8.0 2.8 2.7 3.4 
0.99 17.6 18.6 17.2 6.1 6.4 9.3 3.4 3.5 3.8 

50 0.95 30.8 32.5 30.8 12.1 11.9 19.0 7.1 7.1 8.1 
0.90 50.8 52.6 47.6 25.1 26.5 36.4 17.1 17.4 18.8 
0.80 70.5 71.9 71.0 52.9 55.7 66.7 43.2 43.4 47.2 
0.70 77.2 78.5 80.7 70.2 73.0 78.6 64.8 64.9 68.0 
1.00 8.1 9.0 6.8 3.0 2.9 5.4 2.0 1.8 2.1 
0.99 12.3 13.4 10.9 3.9 4.5 7.6 2.60 2.7 2.6 

100 0.95 37.4 38.5 28.3 16.9 17.9 26.9 12.4 12.3 13.2 
0.90 67.0 62.0 49.8 44.9 47.5 60.9 37.8 37.5 39.5 
0.80 83.2 80.5 78.5 83.4 86.7 85.8 82.4 82.8 84.6 
0.70 86.6 87.2 89.9 91.2 91.9 89.8 93.6 94.1 94.4 
1.00 3.5 3.3 4.1 1.5 1.6 2.5 1.3 1.2 1.1 
0.99 9.1 8.5 11.8 4.7 4.8 8.2 4.0 3.8 4.2 

250 0.95 59.8 43.6 62.7 52.9 54.6 64.7 50.5 51.0 51.6 
0.90 80.4 72.7 84.8 94.7 96.1 91.9 96.4 96.7 96.6 
0.80 87.8 89.7. 89.5 99.1 99.2 97.5 100.0 100.0 100.0 
0.70 89.5 93.0 93.2 98.4 99.2 98.3 100.0 100.0 1000 
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Table 4.11 

Empirical power(%) of i for nominal level 0.05 

2 cr, = 0.2 2 cr, = 1.0 2 cr, = 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A, 
1.00 29.8 33.9 35.9 15.0 16.6 20.6 9.6 10.1 11.4 
0.99 33.0 35.4 40.0 16.1 17.3 22.6 10.5 11.1 12.5 

25 0.95 44.9 47.1 52.6 24.5 25.3 33.4 16.6 16.4 19.1 
0.90 56.2 59.9 63.3 36.1 36.2 44.8 26.0 25.0 27.6 
0.80 70.2 73.6 77.5 54.0 56.1 65.4 42.6 43.2 47.6 
0.70 75.0 79.2 84.1 66.0 69.6 76.2 57.8 59.4 62.7 
1.00 21.0 20.6 20.6 10.4 10.6 13.8 7.7 7.7 8.3 
0.99 25.9 25.8 24.1 13.2 13.3 16.7 9.9 9.4 10.0 

50 0.95 43.8 43.2 40.8 25.5 25.5 32.0 19.8 19.4 20.6 
0.90 63.4 61.3 56.5 45.6 47.3 53.7 39.7 39.2 40.7 
0.80 77.3 75.1 76.0 72.9 75.0 76.9 70.7 70.9 72.5 
0.70 80.0 80.4 83.9 81.7 82.7 82.9 83.4 83.6 84.9 
1.00 15.1 14.7 16.1 8.1 7.8 10.7 6.7 5.9 6.6 
0.99 22.1 21.1 24.2 11.5 12.4 16.1 9.2 9.9 10.0 

100 0.95 55.2 51.1 52.5 40.2 42.2 48.4 35.5 36.0 37.0 
0.90 77.1 71.1 72.8 74.8 77.2 79.5 73.2 73.2 74.3 
0.80 85.5 86.2 87.7 93;1 93.9 92.0 96.2 96.6 96.9 
0.70 87.9 90.5 93.2 93.9 94.8 94.8 98.1 98.4 98.2 
1.00 8.2 7.3 10.8 6.1 6.0 7.3 5.5 5.4 5.4 
0.99 21.3 18.1 28.3 16.4 16.9 20.8 15.5 15.3 16.3 

250 0.95 75.0 68.0 84.7 86.6 87.8 87.3 87.8 87.3 87.3 
0.90 86.2 87.4 92.8 99.4 99.5 97.2 99.9 99.9 99.8 
0.80 91.4 93.4 93.0 99.6 99.7 99.0 100.0 100.0 100.0 
0.70 91.8 94.5 94.8 99.2 99.6 99.1 100.0 100.0 100.0 
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Table 4.12 

'Empirical power (%) of i for nominal level 0.10 

2 cr, = 0.2 cr/ = 1.0 2 cr, = 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A1 
1.00 35.4 38.6 39.8 20.2 21.8 25.3 14.7 15.4 16.6 
0.99 39.1 40.4 44.1 22.2 23.2 28.0 16.5 16.9 18.4 

25 0.95 51.4 52.5 57.1 32.8 33.7 40.0 25.2 24.8 27.8 
0.90 63.3 64.9 67.0 46.3 46.3 53.3 37.6 36.3 39.0 
0.80 75.1 76.4 79.6 64.6 65.6 72.1 56.8 56.8 60.7 
0.70 78.5 80.7 85.4 74.1 76.0 80.1 69.4 70.7 73.0 
1.00 26.3 24.9 25.5 15.8 15.3 18.5 13.0 12.8 13.5 
0.99 32.1 30.9 30.3 19.6 19.6 22.8 16.2 15.9 16.9 

50 0.95 52.3 50.0 40.1 36.7 36.9 41.9 31.5 31.2 32.1 
0.90 69.4 65.6 62.4 59.2 60.9 63.8 55.5 56.0 56.5 
0.80 79.5 76.7 79.4 80.8 82.2 81.7 82.8 83.0 84.1 
0.70 81.0 81.8 85.8 84.8 85.3 85.2 89.2 89.4 89.9 
1.00 21.2 19.4 23.7 13.4 13.2 15.5 12.0 10.8 11.7 
0.99 29.8 27.7 34.3 19.5 20.8 24.1 17.3 17.8 18.0 

100 0.95 64.9 60.3 67.4 57.6 59.1 62.9 55.2 55.1 56.0 
0.90 80.6 78.0 82.7 87.2 88.3 87.4 88.0 88.5 88.7 
0.80 87.2 89.4 90.6 95.4 96.6 95.2 98.6 98.9 98.9 
0.70 88.9 92.1 94.3 95.1 96.3 96.4 98.8 99.1 98.9 
1.00 12.8 11.7 17.1 10.8 11.1 12.6 10.3 10.3 10.6 
0.99 32.0 28.3 41.0 29.5 29.8 32.9 28.4 27.9 29.0 

250 0.95 81.4 80.6 91.3 95.7 96.1 94.1 96.7 96.3 96.4 
0.90 89.5 91.5 94.7 99.8 99.8 98.6 100.0 100.0 100.0 
0.80 92.5 94.6 94.4 99.7 99.8 99.4 100.0 100.0 100.0 
0.70 92.6 95.1 · 95.3 99.4 99.7 99.4 100.0 100.0 100.0 
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Table 4.13 

Empirical power(%) of n(A. 1 -1) for nominal level 0.01 

cr/ =0.2 cr/ = 1.0 2 cr, = 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A, 
1.00 16.5 18.3 20.8 6.6 7.5 8.7 3.6 4.1 4.3 
0.99 18.1 21.8 28.8 7.3 8.2 10.3 3.8 4.7 5.3 

25 0.95 25.6 29.5 39.2 11.3 11.5 14.9 6.6 6.5 7.4 
0.90 32.3 39.3 49.2 17.2 18.0 20.8 10.5 10.6 11.7 
0.80 44.5 55.7 69.9 27.8 31.3 38.5 20.0 21.4 23.0 
0.70 50.9 65.9 80.1 39.7 45.5 54.3 ·33.2 34.0 36.2 
1.00 11.2 10.2 12.5 3.9 3.8 4.4 2.4 2.5 2.5 
0.99 14.2 14.2 18.4 5.5 5.1 5.6 3.4 3.2 3.5 

50 0.95 25.8 25.2 32.0 10.7 10.0 11.2 7.1 6.5 6.9 
0.90 41.7 42.7 51.0 22.0 21.3 23.2 16.1 16.0 16.1 
0.80 63.1 67.6 75.3 47.3 47.5 51.0 41.6 41.5 42.9 
0.70 71.3 78.3 85.1 64.7 66.7 70.1 62.8 62.9 64.5 
1.00 . 6.0 5.2 7.4 2.5 2.3 2.4 1.8 1.6 1.7 
0.99 9.3 8.1 11.1 3.6 3.4 3.5 2.5 2.7 2.5 

100 0.95 28.3 27.1 32.7 15.2 14.2 15.2 11.9 11.5 11.8 
0.90 56.7 55.8 62.6 40 .• 5 39.6 41.2 36.7 35.9 36.5 
0.80 80.3 84.9 87.9 79.2 80.4 82.2 81.4 81.6 81.8 
0.70 86.7 91.6 93.5 88.9 91.0 92.5 92.8 93.3 93.2 
1.00 2.4 2.0 2.5 1.3 1.4 1.2 1.3 1.1 1.0 
0.99 6.5 5.9 7.5 4.4 4.3 4.7 3.8 3.8 4.0 

250 0.95 . 51.5 51.0 55.0 50.5 50.5 50.6 49.2 49.3 49.1 
0.90 83.5 87.2 90.0 93.9 94.6 95.2 96.3 96.4 96.1 
0.80 92.1 94.7 96.0 99.3 99.7 99.7 100.0 100.0 100.0 
0.70 93.4 95.8 96.4 99.0 99.2 99.7 100.0 100.0 100.0 
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Table 4.14 

Empirical power(%) of n(A. 1 -1) for nominal level 0.05 

2 cr, = 0.2 2 cr, = 1.0 2 cr, = 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A, 
1.00 25.4 26.6 29.0 13.2 13.9 15.2 8.8 9.4 10.0 
0.99 28.2 30.6 37.3 14.6 14.9 16.7 10.1 10.5 11.0 

25 0.95 38.7 40.3 50.1 22.0 21.7 25.2 15.8 15.4 16.8 
0.90 48.3 52.9 61.9 32.3 30.6 34.9 24.5 23.3 24.5 
0.80 62.8 68.4 79.2 48.7 49.9 55.4 40.8 41.2 43.8 
0.70 67.5 76.6 86.0 61.1 64.6 70.0 56.3 57.6 59.2 
1.00 18.0 17.8 20.0 9.2 9.1 9.8 7.4 7.2 7.4 
0.99 22.1 22.1 27.4 12.2 11.3 12.2 9.6 9.1 9.2 

50 0.95 38.3 38.0 45.2 23.2 22.5 23.5 19.1 18.5 18.9 
0.90 57.2 58.1 64.5 42.0 41.7 43.1 37.5 37.7 37.7 
0.80 74.5 78.0 83.0 69.3 69.6 72.0 68.8 68.8 69.8 
0.70 79.1 84.2 89,0 79.6 81.8 83.6 82.2 82.7 83.1 
1.00. 12.3 10.8 13.7 7.5 6.6 7.3 6.5 5.5 6.2 
0.99 18.0 16.8 20.7 10.6 10.7 11.1 9.0 9.5 9.3 

100 0.95 47.4 46.6 51.5 37.3 37.3 38.2 34.6 34.8 34.9 
0.90 74.2 74.5 79.3 71.8 71.9 73.2 72.2 72.0 72.2 
0.80 87.8 91.4 92.8 92.5 94.1 95.1 96.0 96.5 96.3 
0.70 90.6 94.0 95.2 94.3 96.3 96.6 98.0 98.3 98.1 
1.00 7.1 6.5 7.3 5.8 5.6 5.9 5.4 5.3 5.2 
0.99 17.7 17.7 19.7 16.0 15.8 16.6 15.3 15.2 15.8 

250 0.95 76.8 79.6 82.6 86.4 86.6 86.5 87.7 87.3 86.9 
0.90 91.7 94.6 95.9 99.6 99.6 99.8 99.9 99.9 99.9 
0.80 94.2 96.1 97.1 99.8 99.9 99.9 100.0 100.0 100.0 
0.70 94.5 96.5 97.1 99.6 99.9 99.9 100.0 100.0 100.0 
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Table 4.15 

Empirical power(%) of n(A. 1 -1) for nominal level· 0.10 

cr/ = 0.2 cr/ = 1.0 cr/ = 5.0 
$ample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A, 
1.00 31.4 32.1 34.5 18.1 19.1 20.1 13.9 14.6 14.6 
0.99 34.6 36.6 43.4 20.1 20.9 22.6 15.7 16.0 16.7 

25 0.95 46.1 47.3 56.9 29.8 29.4 33.2 23.9 23.2 24.9 
0.90 57.0 60.5 69.3 42.7 40.5 44.4 35.4 34.2 35.4 
0.80 70.4 74.0 83.1 60.0 60.5 65.4 54.4 54.6 56.9 
0.70 73.8 80.8 88.4 70.5 73.0 76.8 68.4 69.3 70.4 
1.00 23.4 21.4 25.7 14.2 13.9 15.1 12.1 12.2 12.4 
0.99 28.3 27.9 33.5 18.5 17.4 18.3 15.7 15.0 15.5 

50 0.95 47.1 46.9 53.5 33.9 33.7 34.9 30.5 30.2 30.7 
0.90 65.4 66.4 71.5 56.0 56.0 56.6 54.0 54.7 54.1 
0.80 79.2 81.9 85.9 78.9 80.0 81.4 81.4 81.7 82.7 
0.70 81.8 86.4 89.8 84.7 86.7 88.1 88.7 89.1 89.4 
1.00 17.9 16.1 19.4 12.6 11.7 12.6 11.5 10.7 11.2 
0.99 25.0 24.0 28.5 18.4 18.8 19.2 16.6 17.1 17.1 

100 0.95 59.9 59.5 64.7 55.3 54.5 55.6 53.8 53.1 54.1 
0.90 81.6 83.0 86.6 85.2 86.3 87.1 87.5 87.8 87.9 
0.80 90.1 93.6 94.5 95.7 97.1 97.3 98.6 99.0 98.8 
0.70 92.0 94.9 95.8 95.9 97.5 97.7 99.0 99.2 99.0 
1.00 11.6 11.3 12.5 10.6 10.6 10.9 10.0 10.1 10.2 
0.99 29.1 29.3 31.6 28.9 28.4 29.0 27.7 27.4 28.5 

250 0.95 86.4 89.6 91.3 95.8 96.1 96.2 96.9 96.8 96.5 
0.90 93.9 96.3 97.3 99.9 99.9 100.0 100.0 100.0 100.0 
0.80 94.9 96.8 97.4 99.9 100.0 100.0 100.0 100.0 100.0 
0.70 94.8 96.8 97.2 100.0 100.0 100.0 100.0 100.0 100.0 
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Table 4.16 

Empirical power(%) of i for nominal level 0.01 

a/= 0.2 a/= 1.0 a/= 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A, 
1.00 11.8 6.5 11.5 5.2 3.1 3.3 3.3 3.1 2.4 
0.99 12.9 6.9 14.3 5.5 3.2 4.0 3.4 3.4 2.9 

25 0.95 17.1 9.2 19.1 8.7 4.5 5.5 6.0 4.5 4.2 
0.90 20.7 12.1 24.5 12.2 6.8 7.9 9.2 7.8 6.8 
0.80 25.7 17.9 39.2 18.7 12.7 15.0 17.6 16.0 14.7 
0.70 26.9 23.2 48.6 25.0 19.5 22.1 27.4 26.1 25.0 
1.00 6.6 2.2 3.4 2.5 1.3 1.5 2.1 2.0 1.7 
0.99 8.0 3.4 5.1 3.7 2.1 2.2 3.1 2.5 2.4 

50 0.95 14.1 6.0 8.9 6.8 4.5 4.8 6.3 5.2 4.5 
0.90 23.1 11.2 15.4 13.4 10.0 9.2 13.7 12.8 11.8 
0.80 33.3 20.2 30.9 29.8 24.8 25.0 36.9 35.4 33.5 
0.70 36.5 26.2 43.9 41.0 39.0 38.5 56.4 56.1 54.9 
1.00 2.6 1.1 2.5 1.7 1.1 1.3 1.6 1.4 1.4 
0.99 3.8 1.6 4.1 2.2 1.6 2.0 2.2 2.0 1.9 

100 0.95 11.8 6.4 10.9 9.3 7.9 8.9 10.5 9.6 9.4 
0.90 24.9 15.5 21.5 25.7 24.0 25.9 33.2 31.9 31.1 
0.80 42.9 32.0 36.5 56.6 59.5 62.0 76.8 77.1 75.5 
0.70 50.1 40.2 46.3 67.5 73.6 77.6 89.7 90.6 90.4 
1.00 1.0 0.8 2.0 1.0 1.0 0.9 1.1 1.0 1.0 
0.99 2.9 2.8 6.0 3.2 2.9 3.5 3.8 3.4 3.6 

250 0.95 24.6 27.8 41.9 40.8 41.8 43.0 47.8 47.7 46.4 
0.90 48.2 60.6 75.2 87.8 90.1 90.9 95.5 95.5 95.2 
0.80 60.6 71.0 81.7 97.9 99.1 99.3 100.0 100.0 100.0 
0.70 63.3 69.2 79.2 98.0 99.2 99.4 100.0 100.0 100.0 
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Table 4.17 

Empirical power(%) of i for nominal level 0.05 

cr/ = 0.2 cr/ = 1.0 2 cr, = 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A, 
1.00 17.6 11.4 16.2 10.0 7.8 7.8 8.2 8.0 7.5 
0.99 19.0 12.2 19.7 10.7 7.9 8.6 9.4 8.9 8.5 

25 0.95 24.9 16.5 26.9 15.9 11.7 13.3 14.6 13.0 12.7 
0.90 30.4 21.7 33.2 23.3 17.4 18.4 22.7 20.2 19.2 
0.80 36.2 30.1 48.7 32.5 28.6 31.2 37.2 36.1 36.0 
0.70 37.8 36.5 58.1 39.8 39.0 41.8 50.2 51.2 50.0 
1.00 10.7 6.9 9.6 6.6 5.6 6.2 6.8 6.4 6.2 
0.99 13.3 8.4 12.0 9.2 7.4 7.7 8.6 7.9 7.7 

50 0.95 22.4 14.8 20.2 16.6 14.7 15.1 18.0 16.6 15.8 
0.90 34.4 24.3 30.4 30.2 28.5 29.3 35.4 34.8 33.1 
0.80 46.1 36.7 46.6 52.5 52.0 53.4 65.5 64.9 63.9 
0.70 48.5 43.6 56.9 60.4 63.2 66.3 78.4 78.9 78.3 
1.00 6.6 5.0 9.4 5.8 4.9 5.7 6.0 5.2 5.6 
0.99 9.5 8.3 16.0 8.3 8.3 8.8 8.5 8.7 8.5 

100 0.95 25.9 24.6 36.7 30.0 29.9 31.6 33.3 33.3 32.6 
0.90 43.6 42.5 54.7 60.3 61.5 63.9 69.9 69.7 69.1 
0.80 57.4 58.4 64.0 83.9 88.0 89.7 94.8 95.3 95.1 
0.70 61.8 60.8 68.0 85.6 91.2 93.2 97.3 98.0 97.5 
1.00 4.3 4.7 7.0 5.0 5.0 5.3 5.2 5.1 4.9 
0.99 11.1 13.0 18.5 14.1 14.1 15.2 15.1 14.7 15.4 

250 0.95 58.8 66.4 74.9 82.5 83.0 83.6 86.9 86.5 85.8 
0.90 77.7 87.5 91.7 98.8 99.2 99.5 99.8 99.8 99.8 
0.80 77.8 88.7 91.4 99.5 99.8 99.9 100.0 100.0 100.0 
0.70 78.0 88.5 91.6 99.6 99.8 99.9 100.0 100.0 100.0 
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Table 4.18 

Empirical power(%) of i for nominal level 0.10 

2 
(J~ = 0.2 2 a, = 1.0 a/= 5.0 

Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 
Size A, 

1.00 22.5 16.5 21.3 14.6 12.9 12.7 13.3 13.2 12.3 
0.99 24.1 17.6 25.4 15.9 13.6 14.5 15.0 14.5 14.4 

25 0.95 31.6 23.4 33.8 23.7 20.6 21.7 22.9 21.3 21.7 
0.90 37.9 30.7 41.0 33.1 27.9 29.7 34.0 31.9 31.4 
0.80 44.8 40.3 56.1 44.4 42.8 45.8 63.8 50.9 51.4 
0.70 46.3 46.3 64.3 51.7 53.1 56.2 70.8 64.9 64.8 
1.00 15.3 12.0 17.0 11.7 10.6 11.6 11.5 11.5 11.2 
0.99 18.4 14.8 20.4 14.9 13.2 14.2 15.1 13.9 14.3 

50 0.95 30.5 24.9 32.4 27.5 26.5 27.4 29.4 28.6 28.2 
0.90 43.3 37.5 44.1 46.0 45.4 46.6 52.5 51.9 50.9 
0.80 54.5 49.1 57.7 66.8 68.7 70.1 79.3 79.4 79.5 
0.70 56.1 54.8 65.9 71.2 74.9 77.8 86.7 87.5 86.6 
1.00 11.9 11.4 18.4 11.2 10.1 11.1 11.4 10.2 10.8 
0.99 17.1 17.2 26.4 16.2 16.4 17.3 16.5 16.7 16.4 

100 0.95 41.0 43.6 55.3 49.7 50.1 52.0 53.4 52.9 52.9 
0.90 59.0 62.7 73.1 80.0 81.4 82.8 86.5 86.9 86.4 
0.80 67.2 73.1 77.1 92.4 94.9 95.7 98.2 98.5 98.3 
0.70 69.1 73.3 77.6 92.6 95.3 96.0 98.6 98.9 98.7 
1.00 8.9 9.5 12.4 10.0 9.9 10.5 10.0 10.0 10.2 
0.99 22.1 24.9 31.1 27.3 27.3 27.9 27.9 27.4 28.0 

250 0.95 75.5 81.9 86.2 94.2 94.7 95.0 96.5 96.0 96.0 
0.90 87.4 92.9 94.6 99.7 99.8 99.9 100.0 100.0 100.0 
0.80 87.5 92.8 93.8 99.8 99.9 99.9 100.0 100.0 100.0 
0.70 87.7 91.3 91.6 99.6 99.8 99.9 100.0 100.0 100.0 
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Table 4.19 

Empirical power(%) of n(A1 -1) for nominal level 0.01 

cr/ = 0.2 2 cr~ = 1.0 2 cr~ = 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A1 
1.00 17.0 19.5 23.6 6.8 7.4 9.5 3.6 4.1 4.3 
0.99 18.9 20.1 26.7 7.5 7.7 10.2 3.8 4.7 5.3 

25 0.95 26.4 28.6 38.1 11.6 11.3 15.4 6.6 6.4 7.4 
0.90 34.9 38.9 48.8 17.7 18.0 21.3 10.7 10.5 11.8 
0.80 46.0 54.8 69.1 28.7 30.9 39.7 19.8 21.1 23.0 
0.70 52.0 65.3 79.4 39.9 45.6 55.7 32.6 33.8 36.5 
1.00 11.5 10.3 12.0 4.1 3.8 4.7 2.5 2.5 2.9 
0.99 14.5 13.1 14.3 5.4 5.2 5.5 3.2 3.3 3.2 

50 0.95 25.4 23.7 28.0 10.7 9.5 11.7 6.5 6.4 7.2 
0.90 42.8 41.3 46.6 22.1 21.6 25.1 15.6 15.9 16.4 
0.80 62.3 65.8 72.9 47.7 48.3 53.9 41.0 40.9 43.2 
0.70 70.6 76.4 83.0 64.6 66.8 72.6 62.6 62.6 63.9 
1.00 6.3 5.3 6.1 2.6 2.4 2.7 1.9 1.6 1.8 
0.99 9.8 8.4 9.5 3.7 3.6 3.7 2.5 2.7 2.6 

100 0.95 29.8 27.9 29.8 15.4 14.7 16.2 11.9 11.6 12.0 
0.90 58.1 57.2 59.7 41.3 40.8 44.9 36.8 35.9 36.7 
0.80 80.6 83.5 86.0 79.0 81.3 84.1 81.3 81.6 81.8 
0.70 86.0 89.6 93.1 88.9 91.3 93.0 92.7 93.3 93.2 
1.00 2.8 2.1 2.9 1.4 1.4 1.2 1.3 1.1 1.1 
0.99 7.4 6.2 9.1 4.4 4.3 5.0 3.8 3.8 4.0 

250 0.95 54.1 51.6 58.6 50.5 50.6 52.3 49.2 49.3 49.2 
0.90 83.3 84.4 88.3 93.9 94.5 95.2 96.3 96.4 96.0 
0.80 91.5 93.9 94.8 99.3 99.7 99.8 100.0 100.0 100.0 
0.70 92.2 94.7 95.5 . 99.1 99.7 99.7 100.0 100.0 100.0 
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Table 4.20 

Empirical power(%) of n(A.1 -1) for nominal level 0.05 

. 2 
cr~ = 0.2 

2 
cr~ = 1.0 cr/ = 5.0 

Sample c, -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 
Size A1 

1.00 25.7 27.7 31.1 13.5 13.9 15.8 8.8 9.3 10.1 
0.99 28.9 29.2 34.4 14.7 14.5 16.9 10.1 10.3 11.1 

25 0.95 39.7 39.5 47.6 22.1 21.5 26.1 15.6 15.3 17.0 
0.90 49.6 52.0 59.1 32.4 31.0 35.5 24.5 23.0 24.5 
0.80 62.5 67.5 76.8 49.1 49.7 56.8 40.2 40.5 43.6 
0.70 67.8 75.7 84.1 60.5 64.5 70.9 55.3 56.6 58.7 
1.00 18.4 16.3 18.2 9.5 9.3 10.1 7.3 7.4 7.5 
0.99 22.7 20.3 21.2 12.2 11.7 12.3 9.5 9.0 9.3 

50 0.95 38.4 36.2 39.7 23.4 22.4 24.2 18.9 18.6 18.9 
0.90 57.6 56.1 · 58.6 42.5 41.8 44.3 37.8 37.3 37.8 
0.80 73.2 74.5 79.0 68.9 69.8 73.2 69.1 69.1 69.4 
0.70 78.4 81.5 86.2 79.2 80.8 82.9 82.2 82.4 82.9 
1.00 12.9 11.2 12.8 7.6 6.8 7.8 6.5 5.6 6.3 
0.99 18.8 17.0 19.9 10.7 11.0 11.9 9.0 9.5 9.4 

100 0.95 48.7 47.1 50.8 37.6 38.0 39.8 34.6 34.8 35.0 
0.90 74.2 74.3 77.5 72.0 72.2 75.3 72.2 72.1 72.3 
0.80 86.8 89.4 91.2 92.4 94.4 94.9 95.9 96.5 96.3 
0.70 89.2 92.2 94.9 94.2 95.9 96.7 98.0 98.3 98.1 
1.00 7.9 6.6 8.1 5.8 5.7 5.8 5.5 5.4 5.2 
0.99 19.8 17.8 22.0 15.9 15.9 17.0 15.3 15.2 15.8 

250 0.95 79.7 79.2 82.6 86.1 86.5 86.9 87.7 87.3 86.8 
0.90 90.8 93.7 95.9 99.5 99.6 99.7 99.9 99.9 99.9 
0.80 93.4 95.5 96.7 99.8 99.9 99.9 100.0 100.0 100.0 
0.70 93.5 95.7 96.4 99.4 99.8 99.9 100.0 100.0 100.0 
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Table 4.21 

A 

Empirical power(%) of n(A1 -1) for nominal level 0.10 

a/ =0.2 a/= 1.0 a/= 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A, 
1.00 31.5 33.2 35.7 18.4 19.1 20.7 13.9 14.6 14.7 
0.99 35.2 34.8 39.9 20.3 20.5 22.9 15.6 15.9 16.7 

25 0.95 46.6 46.0 53.6 29.9 29.4 34.1 23.8 23.1 24.9 
0.90 57.8 59.0 64.3 42.6 40.9 45.1 35.4 33.9 35.4 
0.80 69.9 74.1 80.0 60.2 60.2 66.3 53.8 54.1 56.5 
0.70 73.7 79.6 86.2 70.0 72.5 76.8 67.6 68.5 69.7 
1.00 23.7 21.0 22.8 15.1 13.9 15.1 12.6 12.3 12.6 
0.99 28.8 26.7 27.5 18.5 17.7 18.9 16.0 15.3 15.7 

50 0.95 47.1 44.6 47.3 34.2 33.2 35.2 30.4 29.9 29.8 
0.90 65.8 63.6 65.4 55.9 56.8 58.0 53.8 54.4 53.8 
0.80 77.8 78.0 81.5 78.4 79.5 81.3 81.9 81.8 82.4 
0.70 80.7 83.4 87.4 84.1 85.4 86.3 88.8 88.8 89.2 
1.00 18.8 16.5 19.0 12.6 11.9 13.0 11.5 10.7 11.3 
0.99 26.3 24.4 29.4 18.5 19.0 19.9 16.6 17.0 17.1 

100 0.95 60.7 59.6 66.5 55.4 54.9 57.1 53.8 53.1 54.0 
0.90 80.4 81.9 85.9 85.3 86.3 88.0 87.5 87.9 87.8 
0.80 88.9 91.4 93.0 95.9 97.1 97.3 98.6 99.0 98.8 
0.70 90.5 93.2 95.5 95.7 97.2 97.7 99.0 99.2 99.0 
1.00 12.6 11.5 13.8 10.7 10.6 10.9 10.0 10.1 10.2 
0.99 31.5 29.1 34.0 28.9 28.4 29.2 27.7 27.4 28.6 

250 0.95 85.5 88.4 91.0 95.7 96.1 96.2 96.9 96.8 96.5 
0.90 92.9 96.1 97.9 99.9 99.9 99.9 100.0 100.0 100.0 
0.80 94.1 96.3 97.5 99.9 100.0 100.0 100.0 100.0 100.0 
0.70 93.8 96.0 97.1 99.6 99.8 99.9 100.0 100.0 100.0 
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Table 4.22 

Empirical power(%) of i for nominal level 0.01 

cr/ = 0.2 cr/ = 1.0 
2 cri: = 5.0 

Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 
Size A, 

1.00 20.8 26.1 30.2 8.0 9.4 14.0 3.9 4.6 5.5 
0.99 22.8 27.1 33.8 8.8 9.7 15.0 4.2 5.1 6.3 

25 0.95 32.6 37.2 46.3 13.7 14.5 22.9 7.3 7.3 9.4 
0.90 42.4 49.5 57.5 20.6 22.1 31.8 11.7 11.7 14.2 
0.80 57.3 66.0 74.5 33.7 37.9 52.3 21.5 23.1 27.1 
0.70 64.9 74.8 81.9 46.4 54.0 66.7 35.2 . 36.9 41.2 
1.00 13.8 14.6 13.0 4.6 4.6 8.0 2.7 2.7 3.3 
0.99 17.6 18.4 15.9 6.1 6.4 9.3 3.4 3.5 3.8 

50 0.95 30.8 32.4 29.1 12.1 11.9 19.0 7.1 7.1 8.2 
0.90 50.8 52.2 46.7 25.1 26.5 36.4 17.1 17.4 18.8 
0.80 70.5 71.2 70.2 52.9 55.6 66.7 43.2 43.4 47.2 
0.70 77.2 78.5 80.6 70.1 73.5 78.6 64.8 64.9 68.0 
1.00 8.0 8.7 5.7 2.9 2.9 5.3 1.9 1.7 2.0 
0.99 12.1 13.2 9.4 3.9 4.5 7.6 2.60 2.7 2.6 

100 0.95 37.1 38.1 25.5 16.9 17.9 26.9 12.4 12.3 13.2 
0.90 66.6 61.6 69.8 44.9 47.5 60.9 37.8 37.5 39.6 
0.80 82.9 80.5 76.6 82.9 86.9 85.7 82.4 82.8 84.6 
0.70 86.6 86.9 89.5 91.2 92.2 89.8 93.6 94.1 94.4 
1.00 3.3 3.2 3.7 1.5 1.5 2.4 1.2 1.2 1.1 
0.99 9.7 8.5 11.1 4.7 4.8 8.3 4.1 3.9 4.3 

250 0.95 59.7 43.2 59.7 52.9 54.6 64.7 50.5 51.1 51.6 
0.90 80.6 71.2 82.5 94.7 96.1 91.9 96.4 96.7 96.6 
0.80 87.9 90.0 88.9 99.1 99.2 97.5 100.0 100.0 100.0 
0.70 89.7 93.2 93.4 98.6 99.2 98.3 100.0 100.0 1000 
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Table 4.23 

Empirical power(%) of i for nominal level 0.05 

cr/ = 0.2 
2 cr, = 1.0 cr/ = 5.0 

Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 
Size A, 

1.00 29.2 33.5 34.4 14.9 16.4 20.3 9.5 10.0 11.4 
0.99 32.5 35.1 38.6 16.0 17.2 22.5 10.5 11.1 12.5 

25 0.95 44.4 46.6 51.0 24.4 25.2 33.3 16.7 16.4 19.1 
0.90 55.8 59.5 61.7 35.8 36.0 44.6 26.0 25.0 27.6 
0.80 69.5 73.2 76.8 53.9 55.9 65.1 42.6 43.2 47.6 
0.70 74.4 78.7 83.4 65.9 69.4 75.9 57.8 59.4 62.7 
1.00 20.7 20.2 18.3 10.3 10.5 13.7 7.6 7.6 8.2 
0.99 25.6 25.4 22.0 13.2 13.3 16.7 9.9 9.4 10.0 

50 0.95 43.2 43.0 38.0 25.5 25.4 32.0 19.9 19.5 20.6 
0.90 63.7 61.5 54.6 45.5 47.2 53.5 39.7 39.2 40.7 
0.80 76.8 74.8 74.6 72.9 74.9 76.7 70.7 70.9 72.5 
0.70 79.9 80.3 83.7 81.9 82.9 81.7 83.4 83.6 · 84.9 
1.00 15.0 14.4 14.2 8.0 7.6 10.6 6.6 5.8 6.6 
0.99 22.0 20.6 21.4 11.6 12.5 16.1 9.2 9.9 10.0 

100 0.95 54.6 50.3 48.3 40.3 42.2 48.4 35.5 36.0 37.0 
0.90 76.5 70.4 69.8 74.7 77.2 79.4 73.2 73.2 74.3 
0.80 85.2 86.0 86.4 93.5 94.5 91.8 96.2 96.6 96.9 
0.70 88.0 90.3 92.8 93.6 95.0 94.5 98.1 98.4 98.2 
1.00 8.2 7.1 9.9 6.0 5.9 7.3 5.4 5.4 5.3 
0.99 22.0 18.0 26.4 16.5 16.9 20.8 15.6 15.3 16.3 

250 0.95 75.2 67.3 81.4 86.5 87.8 87.4 87.8 87.3 87.3 
0.90 86.4 87.1 91.0 99.4 99.5 97.2 99.9 99.9 99.8 
0.80 91.6 93.5 93.0 99.6 99.7 99.0 100.0 100.0 100.0 
0.70 92.1 94.7 95.1 99.2 99.6 99.1 100.0 100.0 100.0 
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Table 4.24 

Empirical power (%) of i for nominal level 0.10 

cr/ = 0.2 cr/ = 1.0 cr/ = 5.0 
Sample C1 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 

Size A, 
1.00 34.8 38.1 38.0 20.1 21.6 24.9 14.6 15.3 16.5 
0.99 38.5 39.9 42.2 22.1 23.1 27.8 16.5 16.9 18.4 

25 0.95 50.7 51.7 55.1 32.7 33.5 39.8 25.3 24.8 27.8 
0.90 62.8 64.4 65.0 46.0 46.1 52.9 37.6 36.3 39.0 
0.80 74.3 75.7 78.7 64.2 65.2 71.6 56.8 56.8 60.6 
0.70 77.6 80.1 84.7 73.7 75.7 79.5 69.4 70.6 72.9 
1.00 26.0 24.4 23.0 15.8 15.3 18.4 12.9 12.8 13.4 
0.99 31.7 30.5 27.8 19.6 19.6 22.9 16.2 15.9 16.9 

50 0.95 51.6 49.9 45.2 36.6 36.8 41.8 31.5 31.3 32.1 
0.90 69.1 65.6 60.9 59.2 60.9 63.5 55.5 56.0 56.5 
0.80 78.6 76.8 78.1 80.8 82.1 81.0 82.8 83.0 84.1 
0.70 80,7 81.7 85.7 85.2 85.5 84.3 89.2 89.4 89.9 
1.00 21.1 18.9 21.2 13.3 13.0 15.4 11.9 10.7 11.6 
0.99 29.6 27.1 31.0 19.5 20.8 24.1 17.3 17.8 18.0 

100 0.95 64.2 59.2 63.0 57.6 59.0 62.7 55.3 55.1 56.0 
0.90 80.0 77.1 79.7 87.1 88.2 87.3 88.1 88.5 88.6 
0.80 87.0 89.0 89.8 95.6 96.6 95.2 98.6 99.0 98.9 
0.70 89.0 91.9 94.1 94.9 96.3 96.2 98.9 99.1 98.9 
1.00 12.5 11.5 15.8 10.7 11.1 12.5 10.2 10.3 10.6 
0.99 32.9 28.1 38.4 29.5 29.8 32.8 28.4 27.9 29.1 

250 0.95 81.2 80.2 88.2 95.6 96.1 94.2 96.7 96.3 96.4 
0.90 89.7 91.8 93.7 99.8 99.8 98.6 100.0 100.0 100.0 
0.80 92.5 94.9 94.6 99.7 99.8 99.4 100.0 100.0 100.0 
0.70 93.4 95.8 96.2 99.4 99.7 99.4 100.0 100.0 100.0 
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Table 4.25 

Empirical cumulative distribution of n(A.1 -1) for A1 = 1 (N = 25) 

Probability of a Smaller Value 
fo.2, C,) 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 
(0.2,-0.5) -46.78 -33.53 -25.30 -17.58 2.93 5.65 10.10 20.77 
(0.2, 0.0) -61.67 -42.89 -31.44 -21.93 2.84 5.63 10.47 20.42 
(0.2, 0.5) -57.06 -43.22 -35.27 -26.87 3.24 6.60 11.62 20.78 
(1.0,-0.5) -30.25 -20.47 -14.21 -9.32 1.63 2.51 3.57 6.13 
(1.0, 0.0) -32.31 -22.39 -15.72 -9.75 1.58 2.36 3.61 6.40 
(1.0, 0.5) -36.23 -25.48 -18.24 -11.42 1.58 2.42 3.65 6.26 
(5.0,-0.5) -21.78 -13.93 -10.15 -6.77 1.40 1.93 2.60 3.66 
(5.0, 0.0) -22.27 -15.42 -10.85 -7.02 1.39 1.95 2.57 3.57 
(5.0, 0.5) -22.89 -15.78 -11.13 -7.37 1.41 1.99 2.60 3.71 

Table 4.26 

Empirical cumulative distribution of n(A.1 -1) for A1 = 1 (N = 50) 

Probability of a Smaller Value 

(o/, C1) 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 
(0.2,-0.5) -58.75 -38.39 -25.78 -14.72 1.89 3.15 5.73 12.97 
(0.2, 0.0) -54.25 -35.53 -23.34 -13.30 1.84 3.05 6.03 11.93 
(0.2, 0.5) -61.03 -43.09 -29.56 -15.89 2.32 4.87 9.58 16.65 
(1.0,-0.5) -25.83 -16.61 -11.50 -7.45 1.19 1.67 2.21 2.90 
(1.0, 0.0) -24.29 -15.84 -11.03 -7.31 1.19 1.65 2.10 2.80 
(1.0, 0.5) -27.41 -17.84 -12.42 -7.75 1.22 1.70 2.25 3.08 
(5.0,-0.5) -18.78 -12.96 -9.44 -6.41 1.10 1.51 1.94 2.46 
(5.0, 0.0) -17.86 -13.02 -9.42 -6.32 1.12 1.54 1.91 2.46 
(5.0, 0.5) -18.63 -13.72 -9.76 -6.53 1.14 1.62 2.03 2.59 
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Table 4.27 

Empirical cumulative distribution of n(A.1 -1) for A1 = 1 (N = 100) 

Probability of a Smaller Value 
( a-_2, C,) 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 
(0.2,-0.5) -38.05 -24.53 -15.73 -9.77 1.16 1.67 2.22 3.02 
(0.2, 0.0) -32.98 -20.88 -14.00 -8.76 1.12 1.62 2.13 2.79 
(0.2, 0.5) -33.37 -20.89 -15.05 -9.57 1.06 1.54 2.09 3.04 
(1.0,-0.5) -19.60 -13.61 -9.95 -6.67 1.00 1.42 1.80 2.32 
(1.0, 0.0) -18.52 -13.07 -9.28 -6.24 1.01 1.43 1.89 2.34 
(1.0, 0.5) -19.72 -13.76 -10.10 -6.76 1.00 1.39 1.74 2.24 
(5.0,-0.5) -16.90 -11.72 -9.02 -6.19 1.00 1.39 1.76 2.23 
(5.0, 0.0) -15.84 -11.44 -8.39 -5.88 1.01 1.40 1.84 2.35 
(5.0, 0.5) -15.89 -11.92 -8.87 -6.09 1.0. 1.39 1.74 2.17 

Table 4.28 

Empirical cumulative distribution of n(A.1 -1) for A1 = 1 (N = 250) 

Probabilitv of a Smaller Value 
( a-_2, C,) 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

(0.2,-0.5) -20.53 -14.41 -1022 -6.76 1.04 1.44 1.87 2.39 
(0.2, 0.0) -17.86 -12.92 -9.46 -6.33 1.03 1.43 1.83 2.35 
(0.2, 0.5) -20.21 -14.24 -10.46 -7.02 0.97 1.39 1.78 2.31 
(1.0,-0.5) -15.25 -11.41 -8.59 -5.97 0.98 1.35 1.67 2.10 
(1.0, 0.0) -14.78 -11.17 -8.54 -5.91 0.95 1.33 1.72 2.14 
(1.0, 0.5) -14.62 -11.02 -8.54 -5.95 0.94 1.32 1.68 2.12 
(5.0,-0.5) -14.44 -11.05 -8.28 -5.73 0.97 1.34 1.65 2.06 
(5.0, 0.0) -14.28 -10.80 -8.26 -5.78 0.96 1.33 1.71 2.16 
(5.0, 0.5) -13.86 -10.45 -8.23 -5.80 0.96 1.32 1.67 2.09 
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Table 4.29 

Empirical cumulative distribution of i for A1 = 1 (N = 25) 

Probabilitv of a Smaller Value 
<cr.2, C,) 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 
(0.2,-0.5) -20.21 -9.47 -6.08 -4.17 4.34 20.11 74.92 4804 
(0.2, 0.0) -318.0 -15.72 -8.78 -5.63 4.06 17.90 70.03 4775 
(0.2, 0.5) -186.4 -28.78 -16.07 -10.22 4.80 23.64 109.2 12684 
(1.0,-0.5) -6.98 -4.41 -3.24 -2.40 1.92 3.59 7.90 25.87 
(1.0, 0.0) -7.79 -4.94 -3.67 -2.58 1.88 3.49 6.87 26.10 
(1.0, 0.5) -12.66 -7.29 -5.11 -3.39 1.81 3.23 6.28 22.32 
(5.0,-0.5) -4.33 -3.05 -2.45 -1.91 1.51 2.41 3.51 6.10 
(5.0, 0.0) -4.49 -3.35 -2.59 -1.96 1.57 2.57 3.64 6.30 
(5.0, 0.5) -5.00 -3.59 -2.73 -2.08 1.51 2.42 3.60 6.41 

Table 4.30 

Empirical cumulative distribution of i for A1 = 1 (N = 50) 

J:lrobabilitv of a Smaller Value 
( o._2, C,) 0.01 0.025 0.05 0.10 0.90 . 0.95 0.975 0.99 
(0.2,-0.5) -9.85 -6.37 -4.53 -3.16 2.21 4.90 20.79 217.5 
(0.2, 0.0) -10.04 -6.78 -4.97 -3.49 2.12 4.28 20.67 193.5 
(0.2, 0.5) -17.93 -11.97 -8.53 -4.18 2.80 15.86 96.14 9403 
(1.0,-0.5) -4.27 -3.20 .:2.55 -1.97 1.29 1.99 2.78 3.95 
(1.0, 0.0) -4.24 -3.21 -2.57 -2.00 1.25 1.88 2.62 4.09 
(1.0, 0.5) -5.86 -4.17 -3.24 -2.31 1.30 1.96 2.70 3.98 
(5.0,-0.5) -3.33 -2.67 -2.21 -1.78 1.12 1.70 2.28 2.97 
(5.0, 0.0) -3.23 -2.68 -2.22 -1.76 1.15 1.63 2.18 2.94 
(5.0, 0.5) -3.46 -2.86 -2.34 -1.81 1.17 1.71 2.23 3.01 
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Table 4.31 

Empirical cumulative distribution of i for A1 = 1 (N = 100) 

Probability of a Smaller Value 
(o}, C,) 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 
(0.2,-0.5) -5.35 -4.00 -3.15 -2.40 1.14 1.76 2.47 3.94 
(0.2, 0.0) -6.09 -4.72 -3.47 -2.44 1.11 1.73 2.31 3.33 
(0.2, 0.5) -7.92 -3.32 -2.71 -2.21 1.06 1.70 2.37 3.51 
(1.0,-0.5) -3.32 -2.71 -2.26 -1.81 1.00 1.52 1.96 2.54 
(1.0, 0.0) -3.32 -2.70 -2.21 -1.77 1.02 1.50 1.98 2.55 
(1.0, 0.5) -4.18 -3.29 -2.68 -2.00 1.00 1.46 1.93 2.52 
(5.0,-0.5) -2.95 -2.45 -2.10 -1.71 0.98 1.44 1.85 2.33 
(5.0, 0.0) -2.90 -2.41 -2.03 -1.67 1.01 1.46 1.86 2.41 
(5.0, 0.5) -2.92 -2.48 -2.12 -1.71 1.01 1.41 1.82 2.34 

Table 4.32 

Empirical cumulative distribution of i for A1 = 1 (N = 250) 

Prqbabilitv of a Smaller Value 
( a/, C,) 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 
(0.2,-0.5) -3.55 -2.85 -2.33 -1.84 0.98 1.44 1.89 2.42 
(0.2, 0.0) -4.00 -2.90 -2.20 -1.73 1.01 1.43 1.86 2.38 
(0.2, 0.5) -3.32 -2.82 -2.41 -1.95 0.96 1.44 1.89 2.39 
(1.0,-0.5) -2.77 -2.38 -2.04 -1.67 0:94 1.37 1.79 2.21 
(1.0, 0.0) -2.77 -2.37 -2.05 -1.68 0.94 1.33 1.74 2.15 
(1.0, 0.5) -3.13 -2.58 -2.17 -1.75 0.94 1.37 1.74 2.16 
(5.0,-0.5) -2.68 -2.32 -1.99 -1.63 0.93 1.35 1.76 2.17 
(5.0, 0.0) -2.65 -2.29 -1.99 -1.63 0.93 1.32 1.72 2.09 
(5.0, 0.5) -2.64 -2.26 -1.98 -1.65 0.93 1.35 1.71 2.11 
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CHAPTER V 

MODEL MISSPECIFICATION PROBLEMS 

A general regression model with integrated errors and one system of integrated 

regressors is introduced in Section 5.1. Section 5.2 develops the basic asymptotic results 

of parameter estimates and the usual OLS statistics, which is applied to subsequent 

Sections 5.3-5.5. Spurious regression problem is discussed in Section 5.3 and misspeci­

fication of nonstationary autoregresive and polynomial regression models considered in 

Section 5.4. Section 5.5 discusses underspecification of orders in nonstationary AR and 

polynomial regression models, 

5 .1. General Regression Model 

We consider a general regression model with integrated errors and one system of 

integrated regressors as follows: 

(5.1.1) 
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where Yt is the regressand, the regressors consist of an intercept and a system of 

integrated variables defined by 

xt,j = x 1,i_1 + ... + xtJ-1, j = 1, 2, ... , p, xt,o = xt, (5.1.2) 

for a given deterministic or random sequence {xt}, the regression error Ut,k is a k-

integrated error defined by 

ut,i = U1J-1 + ... + ut,j-1, j = 1, ... , k, ut,o = lit, · 

and p and k are the levels of integration. The two processes { xt} and { lit} are assumed to 

have certain limiting behavior based on the following Assumption 5 .1 suggested by Shin 

and Sarkar (1996, pp. 4-5). For simplicity of presentation, we discuss one system of 

integrated regressors. 

Assumption 5 .1. There exist sequences of real numbers an and dw and continuous non-

zero functions! and g on [0,1}, possibly random, such that as n-+ oo (1f xta;1 , I utd;1 ) 

t=l t=l 

converges in distribution to (g(r),f(s)), 0 sr, s s J, where [nr] denotes the largest integer 

not greater than nr. 

Usually, each of the functions g and fin Assumption 5.1 is either a deterministic 

function, or a standard Brownian motion. The latter holds with wt = xt or wt = lit under 

conditions such as 
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CCI. E(wJ = 0 for all t, Sup1Ejwtf+v < oo for some <; > 2 and v > 0, cl = limn---+rxE(w1 

+ ... +w,i In exists and cl > 0, {wJ is a strong-mixing with mixing coefficients lf/m 

',f'.,," '° 1-21,;< safls1yzng £.. lf/m oo; or 

oO 

CC2. wt = L </J 1et-J where {eJ is an iid sequence with E(eJ = 0, E(e/) = a/ < co, J;/ ¢/ 
}=0 

00 

< oo and a2 = a/ ("'f.. </J ) 2 > 0. 
}=0 

The conditions CCl and CC2 were formulated by Herrndorf (1984) and Phillips and Solo 

(1992) respectively. 

If Xt,I,· .. , Xt,p linearly explain nothing ofyt, then (Po+ P1Xt,l + ... + ppxt,p) is said 

to be totally misspecified and Ut,k represents the nonstationary process Yt· If Xt,I, ... , Xt,p 

explain the nonstationarity of Yt partially in the sense that Ut,k is still nonstationary with k 

< p. Then the model (5.1.1) is said to be partially misspecified. The conventional t 

statistics diverge asymptotically and the Durbin-Watson (DW) statistic converges in 

probability to zero in cases of totally or partially misspecified models. On the other hand, 

model (5.1.1) is said to be well specified when Yt is well explained by Xt,1'· .. , Xt,p in the 

sense that Utk is stationary with k = 0. In this case, t statistic has nondegenerate limiting , 

distributions and the limits of DW and R2 are positive and one respectively. If k = 0 in 

model (5.1.1) and xt = ut-l in (5.1.2), then model (5.1.1) becomes the AR model of order p 

(5.1.3) 
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where ~/s are linear combination of P/s whose characteristic roots are all one. Similarly, 

if k = 0 in model ( 5 .1.1) and x1 = 1 in ( 5 .1.2), then ( 5 .1.1) becomes the polynomial 

regression model 

y 1 = 80 + f8iti I j! +u1 
j=l 

where 8/s are linear combinations of P/s. 

5.2. Asymptotic properties 

(5.1.4) 

In this section we discuss the asymptotics of the LS estimator and other regression 

statistics in model ( 5 .1.1) under proper normalization. Assumption 5 .1 is imposed on the 

two processes {x1} and {u1} to derive the asymptotic results. 

n n 

J ... J Xn)', U = (U1,k,···, un,J', y= LYt In and U = Iut,k In. Then the LS estimator~ 
~I ~I 

of p satisfies 

(~ - P) = (X'Xr1 X'U. 

To establish the limiting distribution of suitably normalized (P- P), the joint limiting 

distributions of the elements in X'X and X'U of Lemma 5.1 below (Shin and Sarkar, 

1996, pp. 6-7) are exploited. 
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Lemma 5.1. Let model (5.1.1) hold with Assumption 5.1. Assume that k ~ 1 and p ~ 1. 

Then, jointly 

(1) -j+l -lx L ( ) · _ 1 . n ~ [nr]J ~ gj r, J - , ... , p, 

-k+ l ,1 -1 U L f, ( ) n "n [nr],k ~ k r ; 

n II 
(2) n-i-j+l ~-2 LXt,ixt,i~ gJr)g/r)dr, i, j = 1, ... , p; 

t=l 0 

1 r 

where g/r) = Jgi_i(s)ds, j = 2, ... , p, g1 (r) = g (r), f/r) = Jri-t (s)ds, j = 2, ... , k, f1 (r) = 
0 0 

f(r). 

Proof. Noting ~-l X[nrJ,l = ~-l Ixt ~ g1 (r) = g(r), we have 
t=l 

because of the continuity of the map g1(r) = Jgi(s)ds and the continuous mapping 
0 

theorem (Billingsley 1968, Theorem 5.1). The proof of part (1) is completed by 

repeatedly applying similar arguments. Let D be the set of all right continuous functions 

on [O, 1] having the left hand limits, equipped with Skorokhod topology. Then the proof 
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of parts (2), (3) and the joint convergence is verified by using part (1) and continuity of 

the map D2 ~ Dp+kxiRp(p+1) defined by 

I I 

3:(f, g) ~ [fi, ... , fb gi, ... , gp, ( Jgigjdr, i = 1, ... ,p, j = 1, ... ,p), ( Jg/kdr ,j = 1, ... ,p)] 
0 0 

and continuous mapping theorem. since (g(r), f(s)) is continuous, the convergence in 

Skorokhod topology is equivalent to the uniform convergence (Billingsley 1968, p. 112). 

Hence, it suffices to show the continuity of the map 3 in the uniform topology, which is 

I 

verified by observing that, for example, I JgAdr I ::;; llgigjll, where II · II is the uniform norm 
0 

llgll = sup0 5 tsilg(t)I that induces the uniform topology on C[0,1], the set of all continuous 

functions on [O, 1]. Since boundedness of a map on C[O, 1] to iR is equivalent to 

I 

continuity, the map (gi, gj) ~ Jgigjdr is continuous. Q.E.D. 
0 

Now let 

Ao= diag[l, '1u(l, n, ... , np-1)], G(r) = [1, gi(r), ... , gp(r)]', 

I I I 

H = JG(r)G(r)'dr, V = JG(r)fk(r)dr, z = fridr, 
0 0 0 

and let 

n 
A2 "A2 
cr = .L.i U 1 /(n-p-1) 

t=l 

(5.2.1) 
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where lJ t = Y t - Po -P1 xt,1 - ... - ppxt,p. Then, 

(n-p-1)&2 = U'U - U'X(X'Xr1X'U. 

Now from the above Lemma 5.1 it follows that 

and 

(5.2.2) 

We now define conventional regression statistics: the Durbin-Watson statistic 

the coefficient of determination 

and the t-statistic 

where s13i denotes the standard error of ~i. 
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Now we state three theorems containing the limiting properties of the parameter 

estimators and other conventional regression statistics, which are given by Shin and 

Sarkar (1996). 

Theorem 5.1. Let model (5.1.1) hold with Assumption 5.1. Assume k;?: 1, p;?: 1 and that 

H is nonsingular. Then 

,1 -l j-k (A A ) L (H-1V) £ . - 1 . 
Un 3nn Pj-1--'j ~ . j+l,l OrJ- , ... ,p, 

Theorem 5.2. Let model (5.1.1) hold with Assumption 5.1. Assume that k;?: 1, p;?: 1 and 

His nonsingular. also assume that fkis not a linear combination of gi, g2, ... , gP. Define 1: 

= 0 if 13 = 0, otherwise define,:= limn~00(nK3n)/(nk<lu) where K = max{O s j s p: l3j cf:. O} 

(1) DW~O; 

(2) if 1: = oo, R2 ~ 1; 

ifOs1:soo, 

I I 

R2 ~1-dh2 (r)dr-(Jh(r)dr) 2r 1[z-V1H-1V]; 
0 0 

(3) forj=l, ... ,p, 
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Proofof(l). Notethat 

Now 

n 

L(l\ - -01-1) 2 = u*,u* -2(P-P)'x*,u* + (P-P)'x*,x*{p- P) 
t=l 

where 

* * * * * * xt = (0, Xt, xt,1,···· xt,p-1)', X = (X1 I X2 1 ... 1 Xn )', and u = (U1,k-1'···, un,k-1)'. 

Then, by the continuous mapping theorem and (5.2.2) we have 

(5.2.3) 

and the result follows as a direct consequence of (5.2.3) and Theorem 5.1. Q.E.D. 

Proof of (2). Since y'y = y'y-(n-p-1)&2 , where y = (y1 , ... , y n)', R2 = 1- (y'y - ny2y1 

(n-p-1)&2 • By (5.2.2) and Theorem 5.1'"(2), (n-p-1) &2 is of the same order in probability 

as U'U. Now if't = oo, Yt ~ PKXtK and by Lemma 5.1-(1) , 

Hence by Theorem 5.1- (2) and the continuous mapping theorem 
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k-1r1 -1 ( K I kr1 ,A. 1-Kx 1-kr1 -iu 
n Un Y[nr] = n 8.n n ',i/t-'Kn [nr],K + n Un [nrJ,k 

(5.2.4) 

Hence, the limiting distribution of R2 follows from Theorem 5.1-(2) and (5.2.4) and 

continuous mapping theorem. Q.E.D. 

Proof of (3). The result follow from 

( j-1)2 {(X'X)-1}. . 1-2kd-2~ ' n ann J+l,J+l n n a 

(5.2.2) and Theorem 5.1. Q;E.D. 

The condition that fk is not a linear combination of gi, g2, ••• , gP is equivalent to the fact 

that model ( 5 .1.1) is misspecified in our sense as described in Section 5 .1 after two 

conditions are defined. If model (5.1.1) is totally or partially misspecified, then Ut,k is an 

integrated error representing the nonstationarity of Yt unexplained by the regressors. 

Therefore, fk can not be a linear combination of gi, g2, .•. , gp, which makes (z - V'H-1V) > 

0 and the limits in part (3) of Theorem 5.2 well defined. This is the case for all the 

misspecification examples considered in Sections 5.3, 5.4.1, and 5.5. In view of Lemma 
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5.1-(1), 't defined in the above Theorem 5.2 represents the probabilistic order of (Po + 

p1Xt,1 + ... + ppxt,p) relative to the error Ut,k· Hence 't = oo corresponds to the situation 

when the regressors have greater probabilistic order than the error, and in such a situation 

R2 --4 1. On the other hand, 0 ~ 't < oo corresponds to the case when the regressors do 

not have greater probabilistic order than the error and in such a case R2 converges to a 

random variable which is less than one. 

When ( 5 .1.1) is a well specified model in the sense that the nonstationarity of Yt is 

' ' 

captured by Xt,j s then the regression error Ut,k is a stationary process with k = 0. This 

situation can not be handled using Theorem 5 .1 and 5 .2 and to derive asymptotics in the 

case we need some additional conditions. 

Theorem 5.3. Let model (5.1) hold with Assumption 5.1. Assume that His nonsingular 

and also k = 0, p ~. 1, <lo = n112 and A/X!U/<lo converges in distribution to a nonzero 

finite random vector, say, <; and U'U/n converges in probability to a positive real number, 

say, 'V· Then 

(1) C. • 1 j-1/2 (A. A. ) L (H-1 ) 1.0rJ= , ... ,p,n anl-'j-1-'j~ <;j+l,!. 

(2) &2~ \jl; 

n 

(3) if LUt,Out-1,0 ~cp, then DW ~ 2(\jl- cp)/w; 
t=l 

(4) R.2~ 1; 
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Proof. Proof is similar to that of Theorem 5.1 and 5.2 and is, therefore, omitted. Q.E.D. 

As seen from the above theorems, the behavior of the regression statistics depends 

on whether the error term Ut,k is stationary or nonstationary. If model (5.1.1) is 

misspecified then Ut,k is nonstationary and Pj diverges for j such that~ nk-j /3n t oo; &2 

diverges; DW ~ 0. If the probabilistic order of the regressors is not greater than that 

of the regression error, then the limit ofR2 is less than one, otherwise R2 ~ 1; and t 13i 

diverges, implying misleading high significance of the t 13i. 

On the other hand, if the nonstaionarity of Yt is well explained by Xt,i 's then the 

error term Ut,k will be stationary. In this case Pj is consistent; &2 converges; DW 

2 p 
converges to the positive number because \If > cp; R ~ 1; t 13i converges. One 

implication is that a small value of DW along with a moderate R2 value may be taken as 

an indication of possible misspecification in the sense that the error term Ut,k in model 

(5.1.1) is nonstationary and needs to be explained further. Furthermore, we will state 

several corollaries based on the above three theorems in the next sections, which are 

given by Shin and Sarkar (1996). 
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5.3. Spurious regression problem 

5.3.1. Previous works 

A small value of DW together with a moderate R2 value may be taken as an 

indication of possible misspecification in the sense that the error term Ut k in model , 

(5.1.1) is nonstationary. Granger and Newbold (1974) showed, through simulation 

results, the danger of acceptance of spurious relationships if the traditional significant test 

statistics are used. If autocorrelated errors in time series regression equations are ignored, 

problem arise involving inefficient parameter estimates, and invalid significant tests and 

sub-optimal results when the fitted equations are used to derive forecasts. Provided that a 

regression equation relating variables is found to have strongly autocorrelated residuals, 

equivalent to a low Durbin-Watson value, the only conclusion that can be reached is that 

the equation is misspecified, whatever the value ofR2 observed. Furthermore, the form of 

the misspecification can be considered to be either (a) the omission of relevant variables 

or (b) the inclusion of irrelevant variables or ( c) autocorrelated residuals. There are three 

ways suggested by them in which the problems associated with spurious regression can 

be avoided. The first approach is to include lagged values of both the dependent and 

independent variable in the regression. A second approach is to difference the data before 

estimating the relation. A third approach is to assume a simple first-order autoregressive 

form for the residual of the equation. Because the second approach avoids the spurious 

regression problem as well as the nonstandard distributions for certain hypotheses, many 

researchers recommend routinely differencing apparently nonstationary variables before 
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estimating regressions. However, there are two different situations in which it might be 

inappropriate. First, if the data are really stationary, then differencing the data can result 

in a misspecified regression. Second, even if both series y11 and y21 are truly integrated of 

order 1 (1(1)), i.e., both series with no deterministic component has a stationary, invertible 

ARMA representation after differencing once, there is a class of models, so called 

cointegrated models, for which the bivariate dynamic relation between y11 and y21 will be 

misspecified if the researcher simply differences both y11 and y21. 

Newbold and Davies (1978) suggested that a reasonable alternative to AR(l), in 

certain circumstances, is the ARIMA(O, 1, 1) process in terms of error structure and that 

inference in regressions involving time series can be greatly affected by the error 

structure assumed. 

Phillips (1986) developed an asymptotic theory for regression with integrated 

processes that explains analytically the empirical findings of Granger and Newbold 

(1974) and furthermore worked the asymptotics of various statistics such as regression 

coefficients, t statistics and F statistics for the significance of the regression coefficients 

in a spurious regression , and showed that the usual t and F test statistics do not possess 

limiting distributions but actually diverge as the sample size n approaches oo. for 

illustration, consider the simplest case: 

Y1,t = Y1,t-1 + 811, 

Y2,t = Y2,t-1 + 821, 

Yt = (Y1t, Y2J' 
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where Bit's are iid with mean zero and variance o/, s2t's are iid with mean zero and 

variance cr/, and f:1t is independent of Bzt for all t. First, an OLS regression of Y1t on Yzt 

and a constant, 

(5.3.1) 

produces estimates an and Bn characterized by 

where J w* (r)dr ]-i [ J w· (r)dr ] 

J cw· (r)) 2 dr J cw· (r)) 2 dr 

and the integral sign indicates integration over r from O to 1, w*(r) and denotes scalar 

standard Brownian motion. Usually, the LS estimates are consistent with Bn ~O and 

must be multiplied by some increasing function of n in order to obtain a nondegenerate 

asymptotic distribution. Here, however, neither estimate is consistent-different arbitrarily 

A 

large samples will have randomly differing estimates Pn. Indeed, the estimate of the 

constant term an actually diverges, and must be divided by n112 to obtain a random 

variable with a well-specified distribution. The estimate an itself is likely to get farther 

and farther from the true value of zero as the sample size increases. Second, the usual LS 

estimate of the variance of et, ~ = (Residual SS)/(n-2), again diverges as n goes to 
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infinity. To obtain an estimate that does not grow with the sample size, the residual sum 

of squares has to be divided by n2 rather than n. In this respect, the residuals en from a 

spurious regression behave like a unit root process; if zt is a 1(1) series, then "Zz/ln 

diverges and "Zz/ ln2 converges. Third, OLS t or F tests based on the spurious regression 

(5.3.1) also diverge; the regression F-statistic must be divided by n to obtain a variable 

that does not grow with the sample size. Since an F test of a single restriction is the 

square of the corresponding t test, any t statistic would have to be divided by n 112 to 

obtain a convergent variable. Thus, as the sample size n becomes larger, it becomes 

likely that the absolute value of a t test statistic will exceed any arbitrary finite value. 

Note that above results can be obtained only when all of the elements of Yt are 1(1) with 

zero drift and when the vector Yt is not cointegrated. 

5 .3 .2. Spurious regression 

We now discuss a few of the implications of the unit root tests literature for 

regression with integrated variables. Suppose first that one is interested in making 

inference on a particular regression coefficient (which may be a vector). The following 

situations arise naturally: 

(1) If the distUrbance term is serially uncorrelated and uncorrelated with the regressors, 

and the coefficient(s) of interest can be expressed as coefficients on zero-mean stationary 

variables, then LS estimators are consistent and the standard asymptotic distribution 

theory applies. If, on the other hand, the coefficient(s) of interest cannot be expressed as 
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coefficients on zero-mean stationary variables, then consistency still obtains, but the 

asymptotic distribution is nonstandard. 

(2) If an integrated regressand is cointegrated with at least one regressor, so that the 

disturbance term is stationary but not necessarily serially uncorrelated or independent of 

the regressors, and if the coefficient(s) of interest can be expressed as coefficients on 

zero-mean stationary variables, then LS estimates are inconsistent. If, however, the 

coefficient of interest is on an integrated regressor and cannot be written as a coefficient 

on a zero-mean stationary variable, then the estimator is consistent (but it has a 

nonstandard asymptotic distribution). 

(3) If an integrated regressand is not cointegrated with any regressor, so that the 

disturbance term is integrated, then the LS estimates of coefficients on integrated 

regressors will be inconsistent; it is in this situation that the Granger-Newbold "spurious 

regression" phenomenon arises. 

We consider the general framework (5.1.1) in which a k-integrated series Yt is 

wrongly regressed on another p-integrated series Xt,p and its lags, i.e., v\t = lit, VPXt,p = 

xt, where V is the difference operator such that VXtJ = Xt,j - Xt-lJ· For simplicity of 

analysis and notation we assume that lit = 0 and xt = 0 fort :::;; 0. We also assume that both 

{xt} and {lit} satisfy the above condition CCl or CC2 for some a}> 0 and cr} > 0. Then 

application of Theorems 5.1 and 5.2 gives the following (Shin and Sarkar, 1996, p. 11). 
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Corollary 5.3. Under the assumptions of Section 5.3.2, pj diverges for j ::; k, while pj 

converges for j > k; &2 diverges; all the t-statistics diverges at the rate n112; DW ~ O; 

R2 has a nondegenerate limit which is less than one. 

Proof. We first give a proof for the case when {y1} and {x1} are independent. The true Yt 

satisfy model (5.1.1) with Ut,k = Yt = v-kllt and Po= P1 = ... =PP= 0, and Assumption 5.1 

is then satisfied with 

~ = n 112, dn = n 112, g(r) = crx Wx(r), f(r) = cru W\r), 

where W\r) and Wu(r) are two independent standard Brownian motions on [0,1]. There­

fore, the limiting distribution of the normalized LS estimator n-k+l-l/2(p 0 ,.Jnpi,Np2 , ••• , 

n-tl2+ppP) in the spurious regression is given by Theorem 5.1-(1) with 

where W{(r) is the j-fold integral ofWx(r), and Wku(r) is the k-fold integral ofWu(r). 

Therefore, p j diverges for j ::; k, while P j converges for j > k; also fi2 diverges. Since 

X1/s are independent ofy1 = Ut,k, Wku(r) is not a linear combination ofW/(r), ... , Wp\r), 

and since Po = P1 = ... = PP = 0, 't of Theorem 5.2 is zero. In this case the regressors do 

not explain nonstationarity of the regressand at all and Theorem 5.1-(1) holds and results 

follow from Theorem 5 .2. 
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Suppose next Xt,p and Yt are not independent. If k > p or Yt and Xt,p are not 

cointegrated, then Wk\r) is not a linear combination of W1\r), ... , W/(r) and the 

asymptotics of B, fl, t 13j 'sand DW are the same as those when Xt,p and its lags and Yt are 

independent. Q.E.D. 

Example 5.1. Engle and Granger (1987, Table IV) analyzed the US quarterly real per 

capita consumption on nondurables (CJ and real per capita disposable income (Y J from 

1947: I to 1981: II and they obtained C1 = 0.52 + 0.23Yt, & = 0.016, DW = 0.46, R2 = 

0.99. The moderate value ofDW and high value ofR2 indicate cointegration between Ct 

and Yt, supporting the conclusion of Engle and Granger who proposed to use DW as a 

test statistic for integration when p = k = 1. 
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5.4. Misspecification ofnonstationary AR and polynomial regression models 

In analyzing a time series showing some kind of a trend as in macroeconomic 

variables, the deterministic trend ( or polynomial regression) model and stochastic trend 

Yt, defined by Vs Yt = lit for some positive integer s, are two main alternatives for 

representing the trend. We consider the effect of misspecification on the asymptotic 

behavior of the LS estimate in which a polynomial regression model 

(5.4.1) 

is used to estimate a stochastic trend defined by the nonstationary AR model 

Yt = ~o + ~1 Vq-1Yt-1 + · · · + ~q-1 VYt-q+1 + ~qYt-q + flt (5.4.2) 

or vice versa. The Et and flt are the error components and are assumed to satisfy condition 

CCl or CC2 given in Section 5.1. For model (5.4.2) we also assume that the s roots of 

the polynomial A(L) = [1 - ~1(1 - Lt-1L - ... - ~qmq) lie on the unit circle and the 

remaining (q-s) roots lie outside the unit circle. 



129 

5 .4.1. Previous works 

Nelson and Plosser (1982) argued that a large number of macroeconomic 

aggregates are better modeled as random walks or integrated processes of order 1 (I(l) 

processes) rather than stationary processes with a trend. Furthermore, many variables 

such as real GNP and employment were found to be reasonably characterized as random 

walks with drift. 

Nelson and Kang (1984) investigated the properties of standard regression 

statistics including R2, t and sample autocorrelations of the residuals when time is the 

only explanatory variable, namely polynomial model of order one in time when in fact 

the time series we are interested in explaining belongs to the difference stationary process 

(DSP) class such as a driftless random walk. They explored the fact that this regression 

results in the inappropriate inference that the trend is significant. 

Durlauf and Phillips (1988) analyzed the effect of misspecification of the 

generating mechanism of a nonstationary time series in terms of deterministic trends and 

derived the limiting properties of the LS estimator in the linear time trend regression 

model when the true model is a random walk. In particular, the DW statistic is shown to 

possess promising asymptotic properties as a regression diagnostic tool in the sense that it 

converges to zero when an integrated process is erroneously treated as stationary. 
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5.4.2. Misspecification of a nonstationary AR model as a polynomial regression model 

Suppose the true Yt satisfies Vs Yt = 11 * with 11 * satisfying condition CCI or CC2 of 

Section 5.1 for some ci > 0, suppose model (5.4.1) is fit to the {Yt}:=1 series. Then 

applying Theorem 5.1 and 5.2 with xt = 1, k = s, and Ut,s = Yt we obtain the next result 

(Shin and Sarkar, 1996, p. 14). 

Corollary 5 .4.1. · Under the above assumptions of Section 5 .4.2, for j < s, 8 j diverges; all 

t-statistics diverges at the rate n112; DW converges to zero; R2 converges to a degenerate 

limit which is less than one. 

Proof. Regression (5.4.2) has the form of model (5.1.1) with true parameters 80 = 81 = op 

s * 2 1/2 = 0, xt = 1, k =sand regression error Ut,s = Yt = v-11t. Let 3.u = n, dn = (cr n) , g(r) = r, 

f(r) = W(r), 

An= diag(l, n, ... , nP), G = (1, r/1!, ... , r1'/p!)', fs (r) = Ws(r), 

where Ws (r) is the s-fold integral ofW(r). Then by Theorem 5.1-(1), upon evaluating the 

integrals, we obtain 

I 

n1-s(cr2nr112(80 'n81'" ., nP Pp)'~ K-1M 1 JG(r)Ws(r)dr' 
0 

where K = diag(l, 1/1 !, 1/2!, ... , lip!) and Mis a (p+ l)x(p+ 1) matrix with (i, j)th element 

= (i+j+1r1. Note that for j < s, 8j diverges. We have positive (z - V'H-1 V) in Theorem 
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5.1-(2) because W8 (r) is not a linear combination of (1, r/1!, ... , r1'/p!). Also -c in Theorem 

5.2 is zero because 80 = ... = 8P = 0. Therefore, the asymptotics of statistics follow from 

Theorem 5.2. Q.E.D. 

Note that this section is a case in which the regressors do not express non­

stationarity of Yt at all and hence the model is totally misspecified. 

Example 5.2. Consider the log of the US consumer prices analyzed by Nelson and 

Plosser (1982, Table 4). Their reported DW statistic value for this series in the regression 

Yt = 80 + 81 t is approximately 0.06, indicating a misspecification. However, the DW 

statistic value in the autoregressive fitting in Table 5 of Nelson and Plosser (1982) is 

2.12, which indicates a good fit. This leads to the same conclusion of Nelson and Plosser 

that log of consumer price is well represented by a unit root AR model instead of the 

trend regression model. 

5 .4.3. Misspecification of a polynomial regression model as a nonstationary AR model 

We assume that the true Yt is generate by model (5.1.1) with errors {Et} satisfying 

condition CCl or CC2 with some cr2 > 0, model (5.4.2) is fit to the {Yt}~=t series. 

Assume 8P * 0 and p ~ q ~ 1. Let xtj = 8p(tp-q+j/(p-q+j)!), j = 1, 2, ... , q. Then vq-jYt-j = 

Xtj + Op(np-q+j-1), uniformly int. Hence, the asymptotics in the estimated model (5.4.2) in 

the same as those in 
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and we have the following result (Shin and Sarkar, 1996, p. 15). 

Corollazy 5.4.2. Assume that the above assumptions of Section 5.4.2 hold 

(1) If 80 = 81 = ... = 8p-q = 0 then ~ j converges; &2 --~--H,2 ; tli>i converges; DW 

n 
P 2 2 ~ P 2 P 

------+ 2( cr - cp )/cr , where L..E1E1_ 1 ------+ cp; R ------+ 1. 
t=l 

(2) If some of 80, 81, ... , 8p-q are nonzero, then ~ j converges; fl diverges; 

DW~ O; R2 ~ 1; tYj diverges for j such that (H-1V)j+l,l * 0 where Hand V are as 

defined in (5.2.1) with 

G(r) = [1, r11-q+1/(p-q+ 1)!., ... , l/p!]', fk(r) = 8kl/k! 

where k = K = max{j: 8j "# 0, 0 ~j ~ p-q}. 

Proof. Observe that the true Yt in (5.4.1) can be written as 

Note that 

I x 1 /8Pnp-q+ 1 ~ g(r) = r11-q+ 1 /(p-q+ 1) ! 
t=l 

Therefore, with clu = 8Pnp-q+l, G(r) = [1, r11-q+1/(p-q+l)!, ... , 1/p!]. 
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The asymptotics depend on whether Ut = Et or not. 

First proof of part (1) is given. Assume 80 = 81 = ... = op-q = 0. Then Ut = Et and 

I 

conditions of Theorem 5.3 are satisfied with c; = JG(r)dW(r), \JI = (i. Hence, by 
0 

Theorem 5.3 

s: ( p-q+l j / 1/2 )(th s: s:-1) L (H-1 ) 
up n n cm 'I' j - up-q+jup ~ c; j+l,l' 

which is a normal distribution, and the results follow. Q.E.D. 

Now proof of part (2) is given. Assume some of the 8/s are not equal to zero. 

Since rK/K! is not a linear combination ofr11-q+1/(p-q+l)!, ... , r11/p!, condition of Theorem 

5.2 is satisfied. Therefore, by Theorem 5.1 and 5.2 

which is nonrandom; ~ j converges; &2 diverges; DW ~ O; tc!>i diverges for j such that 

(H-1 V)j+l,l * 0. Since Xt,p = tP/p! increases faster than Ut = oKt/K!, 'tin Theorem 5.2 is oo. 

2 p 
Hence, R ~ 1. Q.E.D. 
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In the case of part (1) of Corollary 5.4.2 the estimated model (5.4.2) is well 

specified model in the sense that all the nonstationarity of Yt is explained by the 

regressors. Whereas in the case of part (2) the model is partially misspecified in the sense 

that the trends ofyt of the order greater than (p-q) are explained by the regressors, the lags 

of Yt, while trends of the order less than or equal to K is still unexplained. 



5.5. Underspecification of orders in nonstationary autoregressive 

and polynomial regression models 
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The order values p and q in the polynomial regress10n and nonstationary 

autoregressive models (5.4.1) and (5.4.2) are usually not known and they might be 

overspecified or underspecified. 

5.5.1. Previous works 

Dickey and Pan~la (1987) developed a sequential testing procedure for testing 

three unit roots against two unit roots and then two unit roots against one unit root, which 

could be used to determine the number of unit roots. In addition Hasza and Fuller (1979), 

Sen and Dickey (1987) and Haldrup (1994) investigated tests for unit roots in the 1(2) 

time series. 

5.5.2. Underspecification of the order in a nonstationary autoregressive model 

If the data are underdifferenced, by which we mean that the AR model does in 

fact have some unit roots and/or cointegrating relationships but is nevertheless estimated 

completely in levels, so that no unit roots or cointegrating relationships are imposed on 

the data, then the unit roots and cointegrating relationships (if present) will nevertheless 
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be satisfied asymptotically (although some efficiency is lost in finite samples), and 

moreover, convergence is typically at rates faster than O(n112). The fact that the 

distribution theory for some of the estimated coefficients is nonstandard is of no 

consequence for construction of point forecasts. Thus, the costs of underdiffemcing are 

likely to be low. Overdifferencing, on the other hand, discards low-frequency information 

and destroys cointegrating relationships, and may cause difficulties for numerical 

estimation algorithm, due to the induced unit moving-average roots. 

Suppose the true Yt satisfies V8y1 = fl* with fl* satisfying condition CCI or CC2 

for some ci > 0 and is estimated by model (5.4.2) with q < s. In this case the model is 

partially misspecified. Using Theorem 5.1 and 5.2 we get the following (Shin and Sarkar, 

1996, p. 17). 

Corollary 5.5.1. Under the above assumptions of section 5.2, ~ j converges; &2 diverges 

at the rate n2<s-q); R2 ~ 1; DW ~ O; t4ii diverges at the rate n112• 

Proof. Let X\ = Vq-j Yt-j, Xtj = Vq-j Yt-l and x1 = Vq Yt· Then 

* _ G-1)/2 
X tj - X1j + OP (n ), 

which is of the form (5.1.1) with Ut,k = x1• Also observe that k = s - q because x1 = vq-jfl \. 

Since 
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-(s-q)( 2 )-1/2 ~ ~ W ( ) _ s-q( 2 )1/2 n er n Lxt----------, s-q+l r , 3.n - n er n 
t=l 

and 

G(r) = (1, Ws-q+i(r), ... , Ws(r))'. 

1 

Also, since Ut,k = vq-sYJ \ by Lemma 5 .1-(2), dn = 3.n and V = JG( r) Ws-q ( r )dr, z = 
0 

1 

Jws~q ( r )dr. By Theorem 5 .1 
0 

~ j converges; &2- diverges at the rate n2<s-q). Observe that Ws-q (r) is not a linear 

combination of Ws-q+1(r), ... , Ws(r), and since the probabilistic order of Xt,q = v-sYJ *t is 

greater than that ofUt,k = v-s+q11\ 'tin Theorem 5.2 is oo. Therefore, R2 ~ 1; also 

P . m 
DW ~ 0 and tc1,i diverges at the rate n . Q.E.D. 

We now consider,?Il application of the above. If one is fitting an AR(l) model to 

1 1 

an 1(2) process, then p = 1, s = 2, and G == (1, W2(r))' and V = JG(r)W(r)dr = ( Jw(r)dr, 
0 0 

1 

Jw(r)Wi(r)dr)'. Therefore, 
0 

1 1 

n(~ 1 -1)~ Jw(r)W2 (r)dr I Jw;(r)dr. 
0 0 
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Hence n(~ 1 -1) converges in distribution. However, tll>i = (~ 1 -1) Is~. diverges at the 

1/2 · rate n and tll>i is expected to reJect the single unit root hypothesis with higher 

probability than n(~ 1 -1). 

Example 5 .3. Consider the data on commercial bank real estate loans analyzed by Dickey 

and Pantula (1987). Dickey and Pantula argued that the series was well represented by an 

AR process with two unit roots. For testing Ho: one unit root vs. H1: not H0, after 

adjusting for the mean and lags of first differences, Dickey and Pantula (1987, Table 1) 

obtained 1.265 for the t-statistic i µ and 70x(0.006197) = 0.434 for n(i\-1). Using Tables 

8.5.1 - 8.5.2 of Fuller (1976) the n(i\-1) value is less than 97.5-th percentile point and 

i µ is much higher than the 99--th percentile point. Therefore, the t-statistic i µ has more 

power for the double unit roots alternative. In this example, i µ provides stronger 

evidence than n( p µ -1) against the single unit root null hypothesis. 

5.5.3. Underspecification of the order in a polynomial regression model 

We next consider the polynomial regression. Let the true model for Yt be a qth 

order polynomial regression Yt = o0 + o1t + o2(t2/2!) + ... + Dq(tq/q!) + Et, Oq -::f:. 0, and is 

estimated by the pth order polynomial regression y 1 = 80 + 81 t + 8 2 t2 I 2 !+ ... + 8P(t/p!), 
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where p < q. This is a case of a totally misspecified model. By Theorem 5 .1 and 5 .2 the 

following is obtained: 

Corollary 5.5.2. Under the assumptions of Section 5.5.3, all the 3 j's and &2 diverges; the 

. . d" th 112 DW O R2 1 . t-statlstlcs 1verge at e rate n ; converges to ; converges to a constant ymg 

strictly between zero and one. 

Proof. The pth order polynomial model can be considered as model ( 5 .1.1) with p = p, k 

zero as the true parameter values. Then, 

. G(r)=[l,r, ... ,r1'/p!]', fq(r)=rq/q! 

1 . 

and by Theorem 5.1 the limiting distribution of (n-q8 0 , n-q+I§i,···, n-q+p8P)' is c>q JG(r) 
0 

1 

G(r)'drr1dG(r) fq(r)dr]. We see that all the 8/s and fl diverge. Since U~,q = c>qtq/q!, 't 
0 

in Theorem 5.2 is zero. Also fq (r) is not a linear combination of 1, r, ... , r'/p!. Hence, by 

Theorem 5.2 the result follows. Q.E.D. 
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CHAPTER VI 

AN EMPIRICAL STUDY 

In this chapter we consider a Monte Carlo study based on Chapter 5 regarding the 

model specification problems. We generate 10,000 samples of size n for n = 25, 50, 100 

and 250. For a fixed sample size n, the corresponding empirical means of parameter 

estimates, &2 and other conventional regression statistics such as t-statistics, R2 and DW 

are considered. The subroutine DRNNOA is used to generate the normal random 

numbers. Section 6.1 discusses algorithms based on misspecified models in Sections 5.3-

5.5, and Section 6.2 contains Monte Carlo results and a discussion. 

6.1. Algorithms 

In this section several algorithms derived on the basis of corollaries from Chapter 

5 are introduced. 
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6.1.1. Spurious regression 

We consider the following special cases of the spurious regression based on v\t 

(A) k = 1 and p = 2 

(B) k = 2 and p = 1, and 

(C) k = 2 and p = 2. 

The following different algebraic equations will be used in data generation. 

t 

Vyt = lit ~ Yt = Yt-1 + lit ~ Yt = Lui 
i=l 

t-1 t-2 
V2Yt ~lit~ Yt = 2Yt-1 - Yt-2 +lit=} Yt = 2 Lui - Lui + ut 

i=l ·i=l 

t 

vxt,1 = xt ~ xt,1 = xt-1,1 + xt ~ xt,1 = Ixi 
i=l 

t 

vxt,2 = xt,1 ~ xt,2 = xt-1,2 + Xt,1 ~ Xt,2 = Ixi,1 
i=l 

t-1 t-2 
~ xt,2 = 2 Ixi,l - Ixi,1 + xt 

i=l i=l 

where xt =lit= 0, ift :s; 0. 

(6.1.1) 

(6.1.2) 

(6.1.3) 

(6.1.4) 

(6.1.5) 



A. Case 1: k = 1 and p = 2 

Algorithm: 
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(1) Generate random numbers u/s and x/s iid N(O, 1) or N(O, 5), respectively, where t = 

1, ... , n with n = 25, 50, 100 and 250. 

(2) Compute the Yt's, Xt,/s and Xt,2's based on equations (6.1.1) and (6.1.4), respectively. 

(3) Regress Yt on Xt,l and Xt,z where Yt =Po+ P1Xt,1 + P2Xt,z + Et. 

(4) Calculate regression coefficients and the usual OLS statistics, &2, t, DW and R2 based 

on the fitted model. 

(5) Repeat steps (1) - (4) ten thousand times. 

(6) Compute the corresponding empirical means of the statistics &2, DW and R2 

respectively through step (5). 

(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results 

of Corollary 5.3. 

B. Case 2: k = 2 and p = 1 

Algorithm: 

(1) Generate random numbers ni's and x/s iid N(O, 1) or N(O, 5), respectively, where t = 

1, ... , n with n = 25, 50,100 and 250. 

(2) Compute the Yt's and Xt,1 's based on equations (6.1.2) and (6.1.3), respectively. 

(3) Regress Yt on Xt,l where Yt = Po + P1Xt,1 + Et. 

(4) Calculate regression coefficients and the usual OLS statistics, &2, t, DW and R2 based 

on the fitted model. 

(5) Repeat steps (1) - (4) ten thousand times. 
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(6) Compute the corresponding empirical means of the statistics ci, DW and R2 

respectively through step (5). 

(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical 

results of Corollary 5.3. 

C. Case 3: k = 2 and p = 2 

Algorithm: 

(1) Generate random numbers 11t's and xt's iid N(O, 1) or N(O, 5), respectively, where t = 

1, ... , n with n = 25, 50, 100 and 250. 

(2) Compute the Yt's, Xt,1's and Xt/s based on equations (6.1.2) and (6.1.4), respectively. 

(3) Regress Yt on Xt,1 and Xt,2 where Yt =Po+ P1Xt,1 + P2Xt,2 + Et. 

(4) Calculate regression coefficients and the usual OLS statistics, &2, t, DW and R2 based 

on the fitted model. 

(5) Repeat steps (1) - (4) ten thousand times. 

(6) Compute the corresponding empirical means of the statistics &2, DW and R2 

respectively through step (5). 

(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results 

of Corollary 5 .3. 
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6.1.2. Misspecification of nonstationary AR and polynomial regression models 

We consider the case of p = q = 2 in models (5.4.1) and (5.4.2) to observe the 

empirical behavior of the regression statistics in misspecified models. 

A. Misspecification of a nonstationazy AR(2) model as a polynomial regression model of 

order 2 

True model: v2yt = lit ,i.e., a nonstationary AR(2) model 

Fitted model: Yt = 80 + 81 t + 8z(t2 /2) + Et, i.e., a polynomial regression model of order 2. 

Algorithm: 

(1) Generate random numbers ut - NID(O, 1) or N(O, 5), where t = 1, ... , n with n = 25, 

50, 100 and 250. 

(2) Compute the y/s based on the following: Yt = 2Yt-l - Yt-2 + lit where ut = Yt = 0 if t::;; 0. 

(3) Fit the data Yt generated by step (2) to the polynomial regression model of order 2. 

( 4) Calculate regression coefficients and the usual OLS statistics, &2, t, DW and R.2 based 

on the fitted model. 

(5) Repeat steps (1) - (4) ten thousand times. 

(6) Compute the empirical means of the statistics &2 , DW, t and R2 • 

(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results 

of Corollary 5.4.1. 
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B. Misspecification of a polynomial regression model of order 2 as a nonstationary 

AR(2) model 

True model: Yt = 80 + 81t + 82(t2/2) + Et with (80, 81, 82) = (0, 1, 1) or (0, 2, 2) or (0, 2, 1) 

Fitted model: Yt = ~o + ~1 VYt-I + ~2Yt-2 + 11t 

Algorithm: 

(1) Generate random numbers Et - NID(O, 1) or N(O, 5), where t = 1, ... , n with n = 25, 

50, 100 and 250. 

(2) Compute the yt' s based on the following: Yt = t + t2 /2 + Et where Et = Yt = 0 if t ~ 0. 

(3) Regress Yt on HYt-I - Yt-2), Yt-2} · 

(4) Calculate regression coefficients and the usual OLS statistics, 2;2, t, DW and R2 based 

on the fitted model. 

(5) Repeat steps (1) - (4) ten thousand times. 

(6) Compute the empirical means of the statistics &2, DW, t and R2. 

(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results 

of Corollary 5.4.2. 

6.1.3. Underspecification of the orders in nonstationary AR and polynomial 
regression model 

A. Underspecification of the order in a nonstationary AR model. 

Let the true generating mechanism for Yt be V2yt = 11/ , with 11/ satisfying 

condition CCl or CC2 for some ri > 0, and is estimated by model Vyt = 11t= 
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True model: V2yt = ut , i.e., nonstationary AR(2) model 

Fitted model: Yt = ~o + ~1Yt-1 + Et. 

Algorithm: 

(1) Generate random number ut - NID(O, 1) or NID(O, 5), where t = 1, ... , n with n = 25, 

50, 100 and 250. 

(2) Compute the y/s based on the following: Yt = 2Yt-l - Yt-2 + ut where ut = Yt = 0 if t :S: 0. 

(3) Regress Yt on Yt-1 · 

(4) Calculate regression coefficients and the usual OLS statistics, &2, t, DW and R2 based 

on the fitted model. 

(5) Repeat steps (1) - (4) ten thousand times. 

(6) Compute the empirical means of the statistics &2 , DW, t and R2. 

(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results 

of Corollary 5.5.1. 

B. Underspecification of the order in a polynomial regression model 

Let the true model for Yt be a second order polynomial regression and is estimated 

by the first order polynomial regression: 

* * *2 *. * * * True model: Yt = 8 0 + 8 1t + 8 z(t /2) + E t with (8 0, 8 i, 8 2) = (0, 1, 1) or (0, 2, 2) 

Fitted model: Yt = 80 + 81 t + Et. 

Algorithm: 

(1) Generate random number Et - NID(O, 1) or NID(O, 5), where t = 1, ... , n with n = 25, 

50, 100 and 250. 



(2) Compute the y/s based on the following: Yt = t + t2/2 + Et where Et= Yt = 0 ift ~ 0. 

(3) Regress Yt on t. 
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(4) Calculate regression coefficients and the usual OLS statistics, &2-, t, DW and R2 based 

on the fitted model. 

(5) Repeat steps (1) - (4) ten thousand times. 

(6) Compute the empirical means of the statistics &2 , DW, t and R2 • 

(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results 

of Corollary 5.5.2. 
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6.2. Results and Discussion 

In Chapter 5 a general regression model with integrated errors and one system of 

integrated regressors has been considered and asymptotic properties of the conventional 

regression statistics under this model have been discussed. Empirical results on model 

specification problems for nonstationary time series are presented in Table 6.1 through 

Table 6.7. 

Tables 6.1-6.3 show the empirical results in spunous regression against the 

theoretical background given by Corollary 5.3. The following common empirical results 

from Tables 6.1-6.3 can be seen: all the DW's appear to converge in probability to O; all 

&2's diverge; all the R2 's seem to have a nondegenerate limit which is less than one 

(0.49, 0.37 and 0.78 in Tables 6.1-6.3, respectively); all the t-statistics seem to diverge 

slowly; all the parameter estimates pi' s may diverge very slowly for j :s; k and converge 

very slowly for j > k. From these results we can observe the fact that LS statistics such as 

R2 and DW can be used as diagnostic tools to check the spurious regression in the sense 

that they can be used as remarkable symptoms of spurious regression when we obtain 

2 DW close to O and R much less than one. Furthermore, as the orders of k and/or p are 

getting larger, the rate of divergence for p / s and t 13i 's are getting faster. 

Table 6.4-Table 6.5 display the empirical results under misspecification of 

polynomial regression models and nonstationary AR against the theoretical backdrop 

provided by Corollary 5.4.1 and Corollary 5.4.2 respectively. From Table 6.4 the 

following can be observed: c\'s, for j = 0, 1, 2, diverge; all three t-statistics diverge; DW 
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seems to converge to O; R2 appears to converge to 0.96; &2- diverges. In addition, from 

Table 6.5 the following can be seen: ~1 appears to converge to 1.9 and ~2 to 1.00; DW 

seems to converge in probability to 3; cl appears to converge in probability to 4.01; R2 

seems to converge in probability to 1; t$1 and t$ 2 converge to numbers near 9.5 and 5.78 

respectively. All these empirical values in Table 6.4-6.5 fully support the theoretical 

results of Corollary 5.4.1 and Corollary 5.4.2 respectively. Similarly, LS statistics such as 

R2 and DW may be exploited to check for misspecification of polynomial regression 

models and nonstationary AR as follows: 

(1) If DW is close to O and R2 is close to 0.96, we can conclude that a 

nonstationary AR model has been misspecified as a polynomial regression model. 

(2) If DW is dose to 3 and R2 is close to 1.0, we can conclude that a polynomial 

regression model has been misspecified as a nonstationary AR model. 

Table 6.6-Table 6.7 give the simulation results under underspecification of the 

order in a nonstationary AR and underspecification of the order in polynomial regression. 

In these cases Corollary 5 .5 .1 and Corollary 5 .5 .2 respectively provide the theoretical 

background. From Table 6.6 the following can be observed: ~0 seems to converge to 0.01 

and ~1 to 1.00; 21- appears to diverge; R2 seems to converge in probability to 1; DW 

seems to converge in probability to O; two t-statistics appear to diverge. The following 

facts can be seen from Table 6.7: all the parameter estimates, &2- and two t-statistics seem 

to diverge; DW seems to converge in probability to O; R2 seems to converge in 

probability to 0.94. All these empirical values in Tables 6.6-6.7 fully support the results 

of Corollary 5.4.1 and Corollary 5.4.2 respectively. 
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In summary, it is observed from the simulation results that DW and R2 can be in 

general used as diagnostic tools to detect spurious regression, misspecification of non­

stationary AR and polynomial regression models. 
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Table 6.1 

SPURIOUS REGRESSION 1 (k = 1, p = 2) 

n 25 50 100 250 
statistics 

A 

-0.0000 0.0075 0.0292 0.0673 Pa 
A 0.0041 0.0001 -0.0118 -0.1915 P1 

A -0.0004 -0.0002 -0.0001 -0.0001 
P2 
tf3o -0.008 0.006 -0.022 0.092 

tf31 0.002 -0.003 -0.118 -0.249 

tf32 0.082 0.063 0.017 -0.271 

R2 0.497 0.496 0.490 0.489 
DW 0.907 0.486 0.253 0.104 

A2 

(J 1.768 3.339 6.572 16.218 
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Table 6.2 

SPURIOUS REGRESSION 2 (k = 2, p = 1) 

n 25 50 100 250 
statistics 

A 

0.185 -0.281 -1.569 -9.702 Pa 
A -0.063 -0.135 0.058 -0.090 P1 

tJ3o 0.039 0.026 -0.044 -0.142 

tJ31 -0.057 -0.024 -0.013 -0.001 
Rz 0.376 0.377 0.372 0.374 

DW 0.447 0.177 0.093 0.015 
A2 cr 360.4 2630.9 20221.2 307268.1 
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Table 6.3 

SPURIOUS REGRESSION 3 (k = 2, p = 2) 

n 25 50 100 250 
statistics 

A 

0.049 0.093 0.111 6.951 Po 
A -0.014 -0.002 0.001 0.149 P1 -0.011 -0.042 -0.090 -0.230 
P2 
tJ3o 0.013 -0.003 -0.171 -0.246 

tJ31 -0.018 0.005 0.067 0.165 

tJ32 0.038 -0.152 -0.536 -0.740 

Rz 0.774 0.786 0.781 0.780 
DW 1.001 0.318 0.103 0.033 

A2 cr 90.3 644.3 5020.1 74303.8 



n 
statistics 

c\ 
81 
82 
ta, 

ta, 

ta, 
Rz 

DW 
&2 

Table 6.4 

MISSPECIFICATION OF A NONSTATIONARY AR(2) AS 
A POLYNOMIAL REGRESSION MODEL 

OFORDER2 

25 50 100 250 

-0.028 -0.109 -0.147 -1.498 
0.026 0.010 0.025 0.121 

-0.001 0.001 0.000 -0.001 
-0.017 -0.022 -0.053 -0.189 
-0.123 0.005 0.147 0.857 
-0.015 0.027 0.182 0.308 
0.965 0.965 0.965 0.964 
0.414 0.113 0.028 0.004 
3.304 24.774 200.348 3070.343 

Table 6.5 

MISSPECIFICATION OF A POLYNOMIAL REGRESSION MODEL 
OF ORDER 2 AS A NONSTATIONARY AR(2) MODEL 

n 25 50 100 250 
statistics 

<l> 0 2.988 2.354 1.748 1.285 
<l>1 1.604 1.860 1.961 1.994 
~2 1.030 1.005 1.000 1.000 
tto 3.092 2.354 1.748 1.701 
tt, 10.240 9.658 9.585 9.526 
th 5.264 5.658 5.783 5.789 
Rz 0.998 0.998 0.998 0.999 

DW 2.759 3.222 3.411 3.415 
A2 cr 3.487 3.845 4.009 4.019 
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Table 6.6 

UNDERSPECIFICATION OF A NONSTATIONARY AR(2) MODEL 

n 25 50 100 250 
statistics 

$0 0.019 0.014 0.017 0.013 
$1 1.019 1.012 1.007 1.003 
tto 0.058 0.042 0.042 0.167 
tt, 93.065 257.153 704.187 2722.667 
R2 0.982 0.994 0.997 0.998 

DW 0.706 0.369 0.187 0.075 
A2 a 1.186 2.273 4.618 11.459 

Table 6.7 

UNDERSPECIFICATION OF A POLYNOMIAL REGRESSION MODEL 
OFORDER2 

n 25 50 100 250 
statistics 

go -58.497 -220.999 -858.501 -5271.000 
gl 14.000 26.500 51.500 126.500 
t6o -5.861 -8.094 -11.315 -17.756 
t6, 20.838 28.441 39.470 61.691 
R2 0.949 0.943 0.939 0.938 

DW 0.087 0.023 0.006 0.001 
A2 a 585.196 9018.000 141570.278 5468059.648 
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APPENDIX A 

FORTRAN PROGRAM FOR HANNAN AND RISSANEN'S METHOD 
BASED ON KOHN'S APPROACH 
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********************************************************* 
* Note that (N, S, a/)= (250, 4, 5.0) is considered as an example. * 
********************************************************* 

*********************** 
* MAIN PROGRAM * 
*********************** 

PROGRAM HR-KOHN 
PARAMETER(N=250, NUM=lOOOO, NN=254, NNN=252, N2=4, N3=3, N5=6) 
IMPLICIT REAL*8 (A-H, 0-Z) 
REAL*8 E(N), W(N), Z(N), U(N), Y(N) 
REAL *8 A1(6), Cl, Dl, D2 
REAL *8 R(NN), ETILDA(N), X(N,N2), T(NNN) 
REAL*8 RR(NNN), ABTILDA(N3), HAP, SIGMAET 
INTEGER ISEEDl, ISEED2 
EXTERNAL RNSET, DRNNOA, DLINRG 

DATA Al/l .0,0.99,0.95,0.90,0.80,0. 70/ 
ISEEDl = 13579 
CALL RNISD(ISEED 1, ISEED2) 

DO 260 I1 = 1, 6 
DO 255 Cl= -0.5, 0.5, 0.5 

ICOUNT=O 
COUNTl =0.0 
COUNT2=0.0 
COUNT3 =0.0 
COUNT4=0.0 
COUNTS =0.0 
COUNT6=0.0 

Dl = Al(Il) + Cl 
D2 = Al(Il) * Cl 

DO 100 I= 1, 18000 

CALL RNSET(ISEEDl) 
CALL DRNNOA(N,E) 
CALL RNGET(ISEED 1) 
CALL RNSET(ISEED2) 
CALL DRNNOA(N,W) 
CALL RNGET(ISEED2) 
Z(l) = E(l) * SQRT(5.0) 
U(l) = W(l) 
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Y(l) = Z(l) + U(l) 

DO 10 J=2, N 
Z(J) = -Al(Il)*Z(J-1) + E(J)*SQRT(5.0) 
U(J) = W(J) + Cl *W(J-1) 
Y(J) = Z(J) + U(J) 

10 CONTINUE 

DO 1 K= 1, N 
R(K +4) = Y(K) 

1 CONTINUE 

DO 3 K= 1, 4 
R(K) = 0.0 

3 CONTINUE 

CALL ETINIT(Y, R, X, N, NN, ETILDA) 

DO 5 K= 1, N 
RR(K +2) = ETILDA(K) 

5 CONTINUE 

DO 7 K= 1, 2 
RR(K) = 0.0 

7 CONTINUE 

CALL ABINIT(N, ABTILDA, R, RR, NN, NNN, N3) 

CALL SIGMAINIT(Y,R,T,N,NN,NNN,ABTILDA,N3,HAP,SIGMAET) 

CALL NRMETHOD(N,NN,NNN,N3,N5,R,T,ABTILDA,HAP,SIGMAET, 
I Cl,Dl,D2,ICOUNT,COUNT1,COUNT2,COUNT3,COUNT4, 
I COUNT5,COUNT6) 

IF (ICOUNT.GE.10000) GO TO 115 

100 CONTINUE 
115 CONTINUE 

PWRl = (COUNTl/NUM)*lOO.O 
PWR2 = (COUNT2/NUM)*100.0 
PWR3 = (COUNT3/NUM)*l00.0 
PWR4 = (COUNT4/NUM)*l00.0 
PWR5 = (COUNT5/NUM)*100.0 
PWR6 = (COUNT6/NUM)*100.0 
WRITE(*,*) 'Al=', Al(Il), 'Cl=', Cl 
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WRITE(*,*) COUNTl, PWRl 
WRITE(*,*) COUNT2, PWR2 
WRITE(*,*) COUNT3, PWR3 
WRITE(*,*) COUNT4, PWR4 
WRITE(*,*) COUNTS, PWR5 
WRITE(*,*) COUNT6, PWR6 

255 CONTINUE 
260 CONTINUE 

END 

********************** 
* SUBROUTINE 1 * 
********************** 
*** ESTIMATE INITIAL VALUE OF ET. 

SUBROUTINE ETINIT(Y, R, X, N, NN, ETILDA) 
P ARAMETER(LDA=4, LDAINV=4, N2=4) 
REAL *8 R(NN), A(LDA,LDA), B(N2), AINV(LDAINV,LDAINV) 
REAL*8 X(N,N2), Y(N), ETILDA(N), SUM1(N2) 

DO 210 I= 1, 4 
DO 200 J = 1, 4 

A(I,J) = 0.0 
200 CONTINUE 

B(I) = 0.0 
210 CONTINUE 

DO 250 L = 1, N 
A(l,1) = A(l,1) + R(L+3)*R(L+3) 
A(2,1) = A(2,1) + R(L+2)*R(L+3) 
A(3,1) =A(3,1) +R(L+l)*R(L+3) 
A(4,1) = A(4,1) + R(L)*R(L+3) 
A(2,2) = A(2,2) + R(L+2)*R(L+2) 
A(2,3) = A(2,3) + R(L+ l)*R(L+2) 
A(2,4) = A(2,4) + R(L)*R(L+2) 
A(3,3) =A(3,3) + R(L+l)*R(L+l) 
A(3,4) = A(3,4) + R(L)*R(L+ 1) 
A(4,4) = A(4,4) + R(L)*R(L) 
B(l) = B(l) + R(L+3)*R(L+4) 
B(2) = B(2) + R(L+2)*R(L+4) 
B(3) = B(3) + R(L+ l)*R(L+4) 
B(4) = B(4) + R(L)*R(L+4) 

250 CONTINUE 
A(l,2) = A(2,1) 
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A(l,3) =A(3,1) 
A(l,4) = A(4,1) 
A(3,2) = A(2,3) 
A( 4,2) = A(2,4) 
A(4,3) = A(3,4) 

CALL DLINRG(N2, A, LDA, AINV, LDAINV) 

DO 265 Kl = 1, 4 
DO 260 K2 = 1, N 

IF (K2.LE.Kl) THEN 
X(K2,Kl) = 0.0 

ELSE 
X(K2,Kl) = Y(K2 - Kl) 

END IF 
260 CONTINUE 
265 CONTINUE 

DO 280 LDAINVl = 1, 4 
SUM=O.O 

DO 270 LDAINV2 = 1, 4 
SUM= SUM+ AINV(LDAINV1,LDAINV2)*B(LDAINV2) 

270 CONTINUE 
SUMl(LDAINVl) = SUM 

280 CONTINUE 

DO 290 K3 = 1, N 
SUM2=0.0 

DO 285 K4=1,4 
SUM2 = SUM2 + X(K3,K4)*SUM1(K4) 

285 CONTINUE 
ETILDA(K3) = Y(K3) - SUM2 

290 CONTINUE 

RETURN 
END 

********************** 
* SUBROUTINE 2 * 
********************** 
*** ESTIMATE INITIAL VALUE OF Al, Bl AND B2. 

SUBROUTINE ABINIT(N,ABTILDA,R,RR,NN,NNN,N3) 
P ARAMETER(MDA=3, MDAINV=3) 
REAL *8 R(NN), RR(NNN), ABTILDA(N3) 
REAL *8 E(MDA,MDA), EINV(MDAINV,MDAINV), F(MDA) 
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DO 320 I= 1, 3 
DO 310 J = 1, 3 

E(I,J) = 0.0 
310 CONTINUE 

F(I) = 0.0 
320 CONTINUE 

DO 350 K= 1, N 
E(l,1) = E(l,1) + R(K+3)*R(K+3) 
E(2,1) = E(2,1) - R(K+3)*RR(K+ 1) 
E(3,1) = E(3,1) - R(K+3)*RR(K) 
E(2,2) = E(2,2) + RR(K + 1 )*RR(K + 1) 
E(2,3) = E(2,3) + RR(K)*RR(K + 1) 
E(3,3) = E(3,3) + RR(K)*RR(K) 
F(l) = F(l) - R(K+3)*R(K+4) 
F(2) = F(2) + R(K+4)*RR(K+l) 
F(3) = F(3) + R(K +4)*RR(K) 

350 CONTINUE 
E(l,2) = E(2,1) 
E(l,3) = E(3,1) 
E(3,2) = E(2,3) 

CALL DLINRG(3, E, MDA, EINV, MDAINV) 

DO 390 MDAINVl = 1, 3 
SUM3=0.0 

DO 370 MDAINV2 = 1, 3 
SUM3 = SUM3 + EINV(MDAINV1,MDAINV2)*F(MDAINV2) 

370 CONTINUE 
ABTILDA(MDAINVl) = SUM3 

390 CONTINUE 

RETURN 
END 

********************** 
* SUBROUTINE 3 * 
********************** 
*** ESTIMATE INITIAL VALUE OF cr/ 

SUBROUTINE SIGMAINIT(Y, R, T, N, NN, NNN, ABTILDA, 
I N3, HAP, SIGMAET) 

REAL*8 Y(N), R(NN), T(NNN) 
REAL*8 ABTILDA(N3), HAP, SIGMAET 
DO 400 L = 1, NNN 

T(L) = 0.0 
400 CONTINUE 
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HAP=O.O 
DO 430 L= 1,N 

T(L+2) = R(L+4) + ABTILDA(l)*R(L+3) - ABTILDA(2)*T(L+ 1) 
I - ABTILDA(3)*T(L) 

HAP = HAP + T(L+2)*T(L+2) 
430 CONTINUE 

SIGMAET = HAP/N 

RETURN 
END 

********************** 
* SUBROUTINE 4 * 
********************** 
*** NEWTON-RAPHSON METHOD BASED ON KOHN'S APPROACH 

SUBROUTINE NRMETHOD(N,NN,NNN,N3,N5,R, T,ABTILDA,HAP, 
I SIGMAET,Cl,Dl,D2, ICOUNT,COUNT1,COUNT2, 
I COUNT3,COUNT4,COUNT5,COUNT6) 

P ARAMETER(LDA=6, LDAINV=6, N6=6) 
REAL *8 A(LDA,LDA), AINV(LDAINV,LDAINV) 
REAL *8 R(NN), T(NNN), ABTILDA(N3) 
REAL*8 All, BU, B22, SIGMAET 
REAL*8 SSl, SS2 

Al 1 = ABTILDA(l) 
B 11 = ABTILDA(2) 
B22 = ABTILDA(3) 

WAl =0.0 
WBl =0.0 
WB2=0.0 
WAlWBl =0.0 
WA1WB2=0.0 
WBlWBl =0.0 
WB1WB2=0.0 
WB2WB2=0.0 

DO 510 I= 1, 6 
DO 500 J= 1, 6 

A(l,J) = 0.0 
500 CONTINUE 
510 CONTINUE 
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WlTEMP=O.O 
W2TEMP=O.O 
W3TEMP=O.O 
WABlTMP = 0.0 
W AB2TMP = 0.0 
WWBlTMP=O.O 
WB 12TMP = 0.0 
WWB2TMP = 0.0 
WAl TEMPI = 0.0 
WAl TEMP2 = 0.0 
WBl TEMPI= 0.0 
WB 1 TEMP2 = 0.0 
WB2TEMP1 = 0.0 
WB2TEMP2 = 0.0 
WABlTMPl = 0.0 
WAB1TMP2 = 0.0 
W AB2TMP1 = 0.0 
W AB2TMP2 =0.0 
WWBlTMPl = 0.0 
WWB 1 TMP2 = 0.0 
WB12TMP1 = 0.0 
WB12TMP2 = 0.0 
WWB2TMP1 = 0.0 
WWB2TMP2 = 0.0 

DO 550 L = 1, N 
WAl = R(L+3)-Bll *WAlTEMPl -B22*WA1TEMP2 
WBl =:;=-T(L+l)-Bll *WBlTEMPl -B22*WB1TEMP2 
WB2 = -T(L)-Bll *WB2TEMP1 -B22*WB2TEMP2 
WAlWBl =-WAlTEMPl -Bll*WABlTMPl -B22*WAB1TMP2 
WAl WB2 = -WAl TEMP2 - B 11 *W AB2TMP1 - B22*W AB2TMP2 
WBlWBl = -2*WB1TEMP1 -Bll *WWBlTMPl -B22*WWB1TMP2 
WB1WB2=-WB2TEMP1 -Bll*WB12TMP1 -WB1TEMP2 

I -B22*WB12TMP2 
WB2WB2 = -2*WB2TEMP2 - Bl 1 *WWB2TMP1 - B22*WWB2TMP2 

A(l,1) = A(l,l) + (WAl *WAl) 
A(2,2) = A(2,2) + (WBl *WBl + T(L+2)*WB1 WBl) 
A(3,3) = A(3,3) + (WB2*WB2 + T(L+2)*WB2WB2) 
A(4,4) = A(4,4) + (T(L+2)*T(L+2)) 
A(l,2) = A(l,2) + (WAl *WBl + T(L+2)*WA1WB1) 
A(l,3) = A(l,3) + (WAl *WB2 + T(L+2)*WA1WB2) 
A(l,4) = A(l,4) - (T(L+2)*WA1) 
A(2,3) = A(2,3) + (WBl *WB2 + T(L+2)*WB1WB2) 
A(2,4) = A(2,4) - (T(L+2)*WB1) 
A(3,4) = A(3,4) - (T(L+2)*WB2) 

169 



Wl TEMP= WAI TEMPI 
WAlTEMPl =WAI 
WAI TEMP2 = Wl TEMP 
W2TEMP = WB 1 TEMPI 
WBlTEMPl =WBl 
WBl TEMP2 = W2TEMP 
W3TEMP = WB2TEMP1 
WB2TEMP1 = WB2 
WB2TEMP2 = W3TEMP 
W ABl TMP = W ABl TMPl 
WABlTMPl =WAlWBl 
W AB 1 TMP2 = W ABl TMP 
W AB2TMP = W AB2TMP1 
W AB2TMP1 = WAI WB2 
W AB2TMP2 = W AB2TMP 
WWBl TMP = WWBl TMPl 
WWBlTMPl =WBlWBl 
WWB1TMP2=WWB1TMP 
WB12TMP = WB12TMPl 
WB12TMP1 =WB1WB2 
WB12TMP2 =WB12TMP 
WWB2TMP = WWB2TMP1 
WWB2TMP1 = WB2WB2 
WWB2TMP2 = WWB2TMP 

550 CONTINUE 
A(l,1)= A(l,1)/SIGMAET 
A(l ,2) = A(l ,2)/SIGMAET 
A(l,3) = A(l,3)/SIGMAET 
A(l,4) = A(1,4)/(S1GMAET**2) 
A(2,2) = A(2,2)/S1GMAET 
A(2,3) = A(2,3)/S1GMAET 
A(2,4) = A(2,4)/(S1GMAET**2) 
A(3,3) = A(3,3)/S1GMAET 
A(3,4) = A(3,4)/(S1GMAET**2) 
A(4,4) = A(4,4)*S1GMAET**3 - (N/(2*S1GMAET**2)) 
A(l,5) = A(l,5) - (1 +2*D2+Cl **2) 
A(l,6) = A(l,6) - Cl 
A(2,5) = A(2,5) + (1 +B22)*S1GMAET 
A(3,5) = A(3,5) + Bl 1 *SIGMAET 
A(3,6) = A(3,6) + SIGMAET 
A( 4,5) = A( 4,5) + B 11 *(1 +B22) 
A( 4,6) = A( 4,6) + B22 
A(2,1) = A(l,2) 
A(3,1) = A(l,3) 
A(4,1) = A(l,4) 
A(5,1) = A(l,5) 
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A(6,1) = A(l,6) 
A(3,2) = A(2,3) . 
A(4,2) = A(2,4) 
A(S,2) = A(2,S) 
A(4,3) = A(3,4) 
A(S,3) = A(3,S) 
A(6,3) = A(3,6) 
A(S,4) = A(4,S) 
A(6,4) = A(4,6) 

CALL DLINRG(N6, A, LDA, AINV, LDAINV) 

IF (AINV(l,l).GT.0.0) THEN 
SS1 = N*(Al 1 ~ 1.0) 
SS2 = (Al I - 1.0)/SQRT(AINV(l,1)) 

IF (SS1.LT.-S.7) THEN 
COUNTI = COUNT! + 1.0 

END IF 
IF (SSI.LT.-8.0) THEN 

COUNT2 = COUNT2 + 1.0 
END IF 

IF (SSI.LT.-13.6) THEN 
COUNT3 =COUNT3 + 1.0 

END IF 
IF (SS2.LT.-l.62) THEN 

COUNT4 = COUNT4 + 1.0 
END IF 

IF (SS2.LT.-l.9S) THEN 
COUNTS =COUNTS+ 1.0 

END IF 
IF (SS2.LT.-2.S8) THEN 

COUNT6 = COUNT6 + 1.0 
END IF 

!COUNT = !COUNT + 1 
END IF 

RETURN 
END 

* END OF PROGRAM 
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APPENDIX B 

FORTRAN PROGRAM FOR HANNAN AND RISSANEN'S METHOD 
BASED ON SHIN AND SARK.AR'S APPROACH 
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****************************************************************** 
* Note that (N, S, cr/) = (250, 4, 5.0) case is considered as example. * 
* In addition, only Subroutine 4 is described because the rest of all subroutines * 
* and main program are exactly the same as those of HR-KOHN. * 
****************************************************************** 

********************** 
* SUBROUTINE 4 * 
********************** 

SUBROUTINE NRMETHOD(N,NN,NNN,N3,N5,R, T,ABTILDA,HAP, 
I SIGMAET,Cl,Dl,D2,ICOUNT,COUNT1,COUNT2, 
I COUNT3,COUNT4,COUNT5,COUNT6) 

P ARAMETER(LDA=6, LDAINV=6, N6=6) 
REAL *8 A(LDA,LDA), AINV(LDAINV,LDAINV) 
REAL *8 R(NN), T(NNN), ABTILDA(N3) 
REAL*8 All, Bll, B22, SIGMAET, SSl, SS2 

Al 1 = ABTILDA(l) 
B 11 = ABTILDA(2) 
B22 = ABTILDA(3) 

WAl =0.0 
WBl =0.0 
WB2=0.0 
WlTEMP=O.O 
W2TEMP=O.O 
W3TEMP=O.O 
WAl TEMPl = 0.0 
WAl TEMP2 = 0.0 
WB 1 TEMPl = 0.0 
WBl TEMP2 = 0.0 
WB2TEMP1 = 0.0 
WB2TEMP2 = 0.0 

DO 510 I= 1, 6 
DO 500 J = 1, 6 

A(l,J) = 0.0 
500 CONTINUE 
510 CONTINUE 

DO 550 L= 1, N 
WAl = R(L+3) - B 11 *WAl TEMPl - B22*WA1 TEMP2 
WB 1 = -T(L+ 1) - B 11 *WB 1 TEMPl - B22*WB 1 TEMP2 
WB2 = -T(L) - B 11 *WB2TEMP1 - B22*WB2TEMP2 
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A(l,1) = A(l,1) + WAl *WAl 
A(2,2) = A(2,2) + WB 1 *WB 1 
A(3,3) = A(3,3) + WB2*WB2 
Wl TEMP= WAl TEMPl 
WAlTEMPl =WAl 
WAl TEMP2 = Wl TEMP 
W2TEMP = WB 1 TEMPl 
WBlTEMPl =WBl 
WB 1 TEMP2 = W2TEMP 
W3TEMP = WB2TEMP1 
WB2TEMP1 = WB2 
WB2TEMP2 = W3TEMP 

550 CONTINUE 
A(l,1) = A(l,1)/SIGMAET 
A(2,2) = A(2,2)/SIGMAET 
A(3,3) = A(3,3)/SIGMAET 
A(5,1) = A(5,1) - (1 + 2*D2 + Cl **2) 
A(2,5) = A(2,5) + (1 + B22)*SIGMAET 
A(3,5) = A(3,5) + Bl 1 *SIGMAET 
A(6,1)' = A(6,1) - Cl 
A(3;6) = A(3,6)+ SIGMAET 
A(4,4) = A(4,4)- N/(2*(SIGMAET**2)) 
A( 4,5) = A( 4,5) + B 11 *(1 + B22) 
A( 4,6) = A( 4,6) + B22 
A(l,5) = A(5,1) 
A(l,6) = A(6,1) 
A(5,2) = A(2,5) . 
A(5,3) = A(3,5) 
A(6,3) = A(3,6) 
A(5,4) = A(4,5) 
A(6,4) = A(4,6) 

CALL DLINRG(N6, A, LDA, AINV, LDAINV) 

IF (AINV(l,1).GT.0.0) THEN 
SS1 = N*(Al 1 - 1.0) 
SS2 == (Al 1 - 1.0)/SQRT(AINV(l,1)) 

IF (SSl.LT.-5.7) THEN 
COUNTl = COUNTl + 1.0 

END IF 
IF (SSl.LT.-8.0) THEN 

COUNT2 = COUNT2 + 1.0 
END IF 

IF (SSl.LT.-13.6) THEN 
COUNT3 = COUNT3 + 1.0 

END IF 
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IF (SS2.LT.-1.62) THEN 
COUNT4 = COUNT4 + 1.0 

END IF 
IF (SS2.LT.-1.9S) THEN 

COUNTS = COUNTS + 1.0 
END IF 

IF (SS2.LT.-2.S8) THEN 
COUNT6 = COUNT6 + 1.0 

END IF 
!COUNT =!COUNT+ 1 

END IF 

RETURN 
END 

* END OF PROGRAM 
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APPENDIX C 

FORTRAN PROGRAM FOR KOHN'S METHOD 



*********************************************** 
* (N, S, cr/) = (250, 4, 5.0) is considered as an example. * 
*********************************************** 

*********************** 
* MAIN PROGRAM * 
*********************** 

PROGRAM KOHN 
PARAMETER(NUM=lOOOO, N= 250, NN=254, NNN=252, N2=4, N3=3, N5=6) 
IMPLICIT REAL*8 (A-H, 0-Z) 
REAL*8 E(N), W(N), Z(N), U(N), Y(N) 
REAL*8 A1(6), Cl, Dl, D2 
REAL*8 T(NNN), TT(NNN), Tl(NNN) 
REAL*8 R(NN), ETILDA(N), X(N,N2), FL_EST(lO) 
REAL*8 RR(NNN), ABTILDA(N3), C(N5), HAP, ZIGMAET, SIGMAET 
REAL*8 CMINl, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6 
INTEGER ISEEDl, ISEED2 
EXTERNAL RNSET, DRNNOA, DLINRG 

DATA Al/l.0,0.99,0.95,0.90,0.80,0.70/ 

ISEEDl = 13579 
CALL RNISD(ISEEDl, ISEED2) 

DO 260 I1 = 1, 6 
DO 255 Cl = -0.5, 0.5, 0.5 

ICOUNT=O 
COUNTl =0.0 
COUNT2=0.0 
COUNT3 =0.0 
COUNT4=0.0 
COUNTS =0.0 
COUNT6=0.0 

Dl = Al(Il) + Cl 
D2 = Al(Il) * Cl 

DO 100 I= 1, 18000 
CALL RNSET(ISEEDl) 
CALL DRNNOA(N,E) 
CALL RNGET(ISEED 1) 
CALL RNSET(ISEED2) 
CALL DRNNOA(N,W) 
CALL RNGET(ISEED2) 

177 



10 

1 

3 

5 

7 

Z(l) = E(l) * SQRT(5.0) 
U(l) = W(l) 
Y(l) = Z(l) + U(l) 

DO 10 J=2,N 
Z(J) = -Al(Il)*Z(J-1) + EG)*SQRT(5.0) 
U(J) = W(J)+ Cl *W(J-1) 
Y(J) = Z(J) + U(J) 

CONTINUE 

DO 1 K= 1, N 
R(K +4) = Y(K) 

CONTINUE 

DO 3 K= 1, 4 
R(K)=O.O 

CONTINUE 

CALL ETINIT(Y, R, X, N, NN, ETILDA) 

DO 5 K=l,N 
RR(K+2) = ETILDA(K) 

CONTINUE 

DO 7 K=l,2 
RR(K)=O.O 

CONTINUE 

CALL ABINIT(N, NN, NNN, N3, R, RR, ABTILDA) 

CALL SIGMAINIT(Y, R, T, N, NN, NNN, N3, ABTILDA, 
I HAP, ZIGMAET) 

CALL NRl(N, NN, NNN, N3, NS, R, T, TT, Cl, Dl, D2, C, 
I ABTILDA, HAP, ZIGMAET, FL-EST, CMINl, CMIN2, 
I CMIN3,CMIN4,CMIN5,CMIN6) 

CALL NR2(N, NN, NNN, N3, NS, R, Tl, Cl, Dl, D2, SIGMAET, 
I CMINl, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6, 
I ICOUNT, COUNT!, COUNT2, 
I COUNT3, COUNT4, COUNTS, COUNT6) 

IF (ICOUNT.GE.10000) GO TO 115 

100 CONTINUE 
115 CONTINUE 
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PWRl = (COUNTl/NUM)*lOO.O 
PWR2 = (COUNT2/NUM)*100.0 
PWR3 = (COUNT3/NUM)*l00.0 
PWR4 = (COUNT4/NUM)*100.0 
PWR5 = (COUNT5/NUM)*100.0 
PWR6 = (COUNT6/NUM)* 100.0 

WRITE(*,*) 'Al=', Al(Il), 'Cl=', Cl 
WRITE(*,*) COUNTl, PWRl 
WRITE(*,*) COUNT2, PWR2 
WRITE(*,*) COUNT3, PWR3 
WRITE(*,*) COUNT4, PWR4 
WRITE(*,*) COUNTS, PWR5 

WRITE(*,*) COUNT6, PWR6 

255 CONTINUE 
260 CONTINUE 

END 

********************* 
* SUBROUTINE 1 * 
********************* 
*** ESTIMATE THE INITIAL VALUE OF et. 

SUBROUTINE ETINIT(Y, R, X, N, NN, ETILDA) 
P ARAMETER(LDA = 4, LDAINV = 4, N2 = 4) 
REAL *8 R(NN), A(LDA,LDA), B(N2), AINV(lLDAINV,LDAINV) 
REAL *8 X(N,N2), Y(N), ETILDA(N), SUM1(N2), SUM, SUM2 

DO 200 I= 1, 4 
DO 210 J = 1, 4 

A(I,J) = 0.0 
210 CONTINUE 

B(I) = 0.0 
200 CONTINUE 

DO 250 L= 1,N 
A(l,1) = A(l,1) + R(L+3)*R(L+3) 
A(2,l) = A(2,1) + R(L+2)*R(L+3) 
A(3,1) = A(3,1) + R(L+ l)*R(L+3) 
A(4,1) = A(4,1) + R(L)*R(L+3) 
A(2,2) = A(2,2) + R(L+2)*R(L+2) 
A(2,3) = A(2,3) + R(L+l)*R(L+2) 
A(2,4) = A(2,4) + R(L)*R(L+2) 
A(3,3) =A(3,3) + R(L+l)*R(L+l) 
A(3,4) = A(3,4) + R(L)*R(L+ 1) 
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A(4,4) = A(4,4) + R(L)*R(L) 
B(l) = B(l) + R(L+3)*R(L+4) 
B(2) = B(2) + R(L+2)*R(L+4) 
B(3) = B(3) + R(L+l)*R(L+4) 
B(4) = B(4) + R(L)*R(L+4) 

250 CONTINUE 
A(l,2) = A(2,1) 
A(l,3) = A(3,1) 
A(l,4) = A(4,1) 
A(3,2) = A(2,3) 
A(4,2) = A(2,4) 
A(4,3) = A(3,4) 

CALL DLINRG(N2, A, LDA, AINV, LDAINV) 

DO 260 Kl= 1,4 
DO 265 K2 = 1, N 

IF (K2.LE.Kl) THEN 
X(K2,Kl) = 0.0 

ELSE 
X(K2,Kl) = Y(K2-Kl) 

END IF 
265 CONTINUE 
260 CONTINUE 

DO 270 LDAINVl = 1, 4 
SUM=O.O 

DO 280 LDAINV2 = 1, 4 
SUM= SUM+ AINV(LDAINV1,LDAINV2)*B(LDAINV2) 

280 CONTINUE 
SUMl(LDAINVl) = SUM 

270 CONTINUE 

DO 285 K3 = 1, N 
SUM2=0.0 

DO 290 K4 = 1, 4 
SUM2 = SUM2 + X(K3,K4)*SUM1(K4) 

290 CONTINUE 
ETILDA(K3) = Y(K3) - SUM2 

285 CONTINUE 

RETURN 
END 
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********************** 
* SUBROUTINE 2 * 
********************** 
*** ESTIMATE THE INITIAL VALUE OF Al, Bl AND B2. 

SUBROUTINE ABINIT(N, NN, NNN, N3, R, RR, ABTILDA) 
P ARAMETER(MDA=3, MDAINV=3) 
REAL *8 R(NN), RR(NNN), ABTILDA(N3) 
REAL *8 E(MDA,MDA), EINV(MDAINV,MDAINV), F(MDA) 
REAL*8 SUM3 

DO 310 I= 1, 3 
DO 320 J = 1, 3 

E(I,J) = 0.0 
320 CONTINUE 

F(I) = 0.0 
310 CONTINUE 

DO 350 K= 1,N 
E(l,1) = E(l,1) + R(K+3)*R(K+3) 
E(2,1) =·E(2,1)- R(K+3)*RR(K+l) 
E(3,1) = E(3,l) - R(K +3)*RR(K) 
E(2,2) = E(2,2) + RR(K+l)*RR(K+l) 
E(2,3) = E(2,3)+ RR(K)*RR(K+l) 
E(3,3) = E(3,3) + RR(K)*RR(K) 
F(l) = F(l) - R(K+3)*R(K+4) 
F(2) = F(2) + R(K +4)*RR(K + 1) 
F(3) = F(3) + R(K +4)*RR(K) 

350 CONTINUE 
E(l,2) = E(2,1) 
E(l,3) = E(3,1) 
E(3,2) = E(2,3) 

CALL DLINRG(3, E, MDA, EINV, MDAINV) 

DO 390 MDAINVl = 1, 3 
SUM3 =0.0 

DO 370 MDAINV2 = 1, 3 
SUM3 = SUM3 + EINV(MDAINV1,MDAINV2)*F(MDAINV2) 

370 CONTINUE 
ABTILDA(MDAINVl) = SUM3 

390 CONTINUE 

RETURN 
END 
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********************** 
* SUBROUTINE 3 * 
********************** 
*** ESTIMATE THE INITIAL VALUE OF cr/_ 

SUBROUTINE SIGMAINIT(Y, R, T, N, NN, NNN, N3, ABTILDA, 
I HAP, ZIGMAET) 

REAL*8 Y(N), R(NN), T(NNN) 
REAL*8 ABTILDA(N3), HAP, ZIGMAET 

DO 400 L = 1, NNN 
T(L) = 0.0 

400 CONTINUE 

HAP=O.O 
DO 430 L= 1,N 

T(L+2) = R(L+4) + ABTILDA(l)*R(L+3) - ABTILDA(2)*T(L+ 1) 
I - ABTILDA(3)*T(L) 

HAP= HAP+ T(L+2)*T(L+2) 
430 CONTINUE 

ZIGMAET = HAP/N 

RETURN 
END 

********************** 
* SUBROUTINE 4 * 
********************** 
*** NEWTON-RAPHSON METHOD BASED ON KOHN'S. 

SUBROUTINE NRl(N, NN, NNN, N3, N5, R, T, TT, Cl, Dl, D2, C, 
I ABTILDA, HAP, ZIGMAET, FL_EST, 
I CMINl, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6) 

PARAMETER(LDA=6, LDAINV=6, N6=6) 
REAL *8 A(LDA), AINV(LDAINV,LDAINV), B(N6), C(N5) 
REAL *8 R(NN), T(NNN), TT(NNN), ABTILDA(N3) 
REAL *8 D(N6), HAPl 
REAL*8 CCl(lO), CC2(10), CC3(10), CC4(10), CC5(10), CC6(10) 
REAL*8 FL_EST(lO), FMIN 
REAL *8 CMINl, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6 

Al 1 = ABTILDA(l) 
Bl 1 = ABTILDA(2) 
B22 = ABTILDA(3) 
C(5) = 0.0 
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C(6) = 0.0 
WAl =0.0 
WBl =0.0 
WB2=0.0 
WAlWBl =0.0 
WA1WB2=0.0 
WBlWBl = 0.0 
WB1WB2=0.0 
WB2WB2=0.0 

DO 500 I= 1, 6 
DO 510 J = 1, 6 

A(I,J) = 0.0 
510 CONTINUE 

B(I) = 0.0 
500 CONTINUE 

WlTEMP=O.O 
W2TEMP=O.O 
W3TEMP=O.O 
WABlTMP = 0.0 
W AB2TMP = 0.0 
WWB 1 TMP = 0.0 
WB 12TMP = 0.0 
WWB2TMP = 0.0 
WAlTEMPl == 0.0 
W Al TEMP2 = 0.0 
WBl TEMPl = 0.0 
WBl TEMP2 = 0.0 
WB2TEMP1 = 0.0 
WB2TEMP2 = 0.0 
WABlTMPl = 0.0 
WABl TMP2:::; 0,0 
WAB2TMP1 = 0.0 
W AB2TMP2 =0.0 
WWBl TMPl = 0.0 
WWB1TMP2 = 0.0 
WB12TMP1 = 0.0 
WB12TMP2 = 0.0 
WWB2TMP1 = 0.0 
WWB2TMP2 = 0.0 

DO 550 L= 1,N 
WAl = R(L+3) - Bl l *WAl TEMPl - B22*WA1 TEMP2 
WBl =-T(L+l)-Bll*WBlTEMPl -B22*WB1TEMP2 
WB2 = -T(L) - Bl 1 *WB2TEMP1 - B22*WB2TEMP2 
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WAlWBl =-WAlTEMPl -Bll*WABlTMPl -B22*WAB1TMP2 
WA1WB2 =-WA1TEMP2-Bll*WAB2TMP1 -B22*WAB2TMP2 
WB 1 WB 1 = -2*WB 1 TEMPI - B 11 *WWB 1 TMPl - B22*WWB 1 TMP2 
WB1WB2=-WB2TEMP1 -Bll*WB12TMP1 -WB1TEMP2 

I - B22*WB 12TMP2 
WB2WB2 = -2*WB2TEMP2 - Bl 1 *WWB2TMP1 - B22*WWB2TMP2 

A(l,1) = A(l,1) + (WAl *WAl) 
A(2,2) = A(2,2) + (WBl *WBl + T(L+2)*WB1WB1) 
A(3,3) = A(3,3) + (WB2*WB2 + T(L+2)*WB2WB2) 
A(4,4) = A(4,4) + (T(L+2)*T(L+2)) 
A(l,2) =A(l,2) + (WAl *WBl + T(L+2)*WA1WB1) 
A(l,3) = A(l,3) + (WAl *WB2 + T(L+2)*WA1WB2) 
A(l,4) = A(l,4) - (T(L+2)*WA1) 
A(2,3) = A(2,3) + (WBl *WB2 + T(L+2)*WB1 WB2) 
A(2,4) = A(2,4)- (T(L+2)*WB1) 
A(3,4) = A(3,4) - (T(L+2)*WB2) 
B(l) = B(l) + WAl *T(L+2) 
B(2) = B(2) + WBl *T(L+2) 
B(3) = B(3) + WB2*T(L+2) 
B(4) = B(4) + T(L+2)*T(L+2) 

Wl TEMP= WAl TEMPI 
WAlTEMPl =WAl 
WAl TEMP2 = Wl TEMP 
W2TEMP = WB 1 TEMPI 
WBlTEMPl =WBl 
WBl TEMP2 = W2TEMP 
W3TEMP = WB2TEMP1 
WB2TEMP1 = WB2 
WB2TEMP2 = W3TEMP 
W ABl TMP = W ABl TEMP 
WABlTMPl =WAlWBl 
W AB 1 TMP2 = W ABl TMP 
W AB2TMP = W AB2TMP1 
WAB2TMP1 = WA1WB2 
W AB2TMP2 = W AB2TMP 
WWB 1 TMP = WWB 1 TMPl 
WWBlTMPl =WBlWBl 
WWB1TMP2 = WWBlTMP 
WB12TMP = WB12TMP1 
WB12TMP1 =WB1WB2 
WB 12TMP2 = WB 12TMP 
WWB2TMP = WWB2TMP1 
WWB2TMP1 = WB2WB2 
WWB2TMP2 = WWB2TMP 
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550 CONTINUE 
A(l,1) = A(l,1)/ZIGMAET 
A(l ,2) = A(l ,2)/ZIGMAET 
A(l,3) = A(l,3)/ZIGMAET 
A(l,4) = A(l,4)/(ZIGMAET**2) 
A(2,2) = A(2,2)/ZIGMAET 
A(2,3) = A(2,3)/ZIGMAET 
A(2,4) = A(2,4)/(ZIGMAET**2) 
A(3,3) = A(3,3)/ZIGMAET 
A(3,4) = A(3,4)/(ZIGMAET**2) 
A(4,4) = A(4,4)*ZIGMAET**3 - (N/(2*ZIGMAET**2)) 
A(l,5) = A(l,5) - (1 +2*D2+Cl **2) 
A(l,6) = A(l,6) - Cl 
A(2,5) = A(2,5) + (l+B22)*ZIGMAET 
A(3,5) = A(3,5) + Bl 1 *ZIGMAET 
A(3,6) = A(3,6) + ZIGMAET 
A( 4,5) = A( 4,5) + B 11 *(1 +B22) 
A( 4,6) = A( 4,6) + B22 
B(l) = B(l)/ZIGMAET 
B(2) = B(2)/ZIGMAET 
B(3) =B(3)/ZIGMAET 
B(4) = (-B(4)/(2*ZIGMAET*ZIGMAET)) + (N/(2*ZIGMAET)) 
B(5) = ZIGMAET*(l+B22)*Bl 1 - Dl *(l+D2) 
B(6) = ZIGMAET*B22 -D2 
A(2, 1) = A(l ,2) 
A(3,1) = A(l,3) 
A(4,1) = A(l,4) 
A(5,1) =A(l,5) 
A(6,l)=A(l,6) 
A(3,2) = A(2,3) 
A(4,2) = A(2,4) 
A(5,2) = A(2,5) 
A(4,3) = A(3,4) 
A(5,3) = A(3,5) 
A(6,3) = A(3,6) 
A(5,4) = A(4,5) 
A(6,4) = A(4,6) 

CALL DLINRG(N6, A, LDA, AINV, LDAINV) 

DO 580 LDAINVl = 1, 6 
SUM=O.O 

DO 570 LDAINV2 = 1, 6 
SUM= SUM+ AINV(LDAINV1,LDAINV2)*B(LDAINV2) 

570 CONTINUE 
D(LDAINVl) = SUM 
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580 CONTINUE 

DO 700 K= 1, 10 
C(l) = Al 1 - (1/K.)*D(l) 
C(2) = B 11 - (1/K.)*D(2) 
C(3) = B22 - (1/K.)*D(3) 
C(4) = ZIGMAET- (1/K.)*D(4) 
C(5) = C(5) - (1/K.)*D(5) 
C(6) = C(6) - (1/K.)*D(6) 
HAPl =0.0 

DO 600 I1 = 1, NNN 
TT(Il) = 0.0 

600 CONTINUE 

DO 650 12 = 1, N 
TT(I2+2) = R(I2+4) + C(l)*R(I2+3) - C(2)*TT(I2+ 1) - C(3)*TT(I2) 
HAPl = HAPl + TT(I2+2)*TT(I2+2) 

650 CONTINUE 
FL_EST(K) = (1/(2*C(4)))*HAP1+ (N/2)*LOG(C(4)) 
CCl(K) = C(l) 
CC2(K) = C(2) 
CC3(K) = C(3) 
CC4(K) = C( 4) 
CC5(K) = C(5) 
CC6(K) = C( 6) 

700 CONTINUE 

M=l 
DO 750 I3 =2, 10 

IF(I3.EQ.O.OR.FL _ EST(I3).GE.FL _ EST(M)) GO TO 750 
M=I3 

750 CONTINUE 
FMIN = FL_EST(M) 
CMINl = CCl(M) 
CMIN2 = CC2(M) 
CMIN3 = CC3(M) 
CMIN4 = CC4(M) 
CMIN5 = CC5(M) 
CMIN6 = CC6(M) 

RETURN 
END 
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********************** 
* SUBROUTINE 5 * 
********************** 

SUBROUTINE NR2(N, NN, NNN, N3, N5, R, Tl, Cl, Dl, D2, SIGMAET, 
I CMINl, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6,ICOUNT, 
I COUNTl, COUNT2, COUNT3, COUNT4, COUNT5, COUNT6) 

PARAMETER(LDA = 6, LDAINV = 6, N6 = 6) 
REAL *8 A(LDA,LDA), AINV(LDAINV,LDAINV) 
REAL*8 R(NN), Tl(NNN) 
REAL *8 CMINl, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6 
REAL*8 AAl, Bl, B2, SIGMAET 
REAL*8 SSl, SS2 

AAl =CMINl 
Bl =CMIN2 
B2=CMIN3 
SIGMAET = CMIN4 

DO 800 L= l,NNN 
Tl{L) = 0.0 

800 CONTINUE 

DO 830 L = 1, N 
Tl{L+2) = R(L+4) + AAl *R(L+3)- Bl *Tl(L+l)- B2*Tl(L) 

830 CONTINUE 

WAl =0.0 
WBl =0.0 
WB2=0.0 
WAlWBl =0;0 
WA1WB2=0.0 
WBlWBl =0.0 
WB1WB2=0.0 
WB2WB2=0.0 

DO 870 I= 1, 6 
DO 850 J= 1, 6 

A{I,J) = 0.0 
850 CONTINUE 
870 CONTINUE 

WlTEMP=O.O 
W2TEMP=O.O 
W3TEMP=O.O 
WABlTMP = 0.0 
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W AB2TMP = 0.0 
WWBlTMP = 0.0 
WB 12TMP = 0.0 
WWB2TMP = 0.0 
WAlTEMPl =0.0 
WAI TEMP2 = 0.0 
WB 1 TEMPI = 0.0 
WB1TEMP2 = 0.0 
WB2TEMP1 = 0.0 
WB2TEMP2 = 0.0 
WABlTMPl =0.0 
WAB1TMP2 ~ 0.0 
WAB2TMP1 = 0.0 
WAB2TMP2 =0.0 
WWBlTMPl =0.0 
WWB 1 TMP2 = 0.0 
WB12TMP1 = 0.0 
WB12TMP2 = 0.0 
WWB2TMP1 = 0.0 
WWB2TMP2 = 0.0 

DO 900 L= 1,N 
WAI =R(L+3)-Bl*WA1TEMP1-B2*WA1TEMP2 
WBl = -Tl(L+l) - Bl *WBlTEMPl - B2*WB1TEMP2 
WB2 = -Tl(L) - Bl *WB2TEMP1 - B2*WB2TEMP2 
WAlWBl =-WAlTEMPl -Bl*WABlTMPl -B2*WAB1TMP2 
WAI WB2 = -WAI TEMP2 - B 1 *W AB2TMP1 - B2*W AB2TMP2 
WBlWBl =-2*WB1TEMP1 -Bl*WWBlTMPl -B2*WWB1TMP2 
WB 1 WB2 = -WB2TEMP1 - B 1 *WB 12TMP1 - WB 1 TEMP2 

I -B2*WB12TMP2 
WB2WB2 = -2*WB2TEMP2 - Bl *WWB2TMP1 - B2*WWB2TMP2 

A(l,1) = A(l,1) + (WAI *WAI) 
A(2,2) = A(2,2) + (WBl *WBl + Tl(L+2)*WB1WB1) 
A(3,3) = A(3,3) + (WB2*WB2 + Tl(L+2)*WB2WB2) 
A(4,4) = A(4,4) + (Tl(L+2)*Tl(L+2)) 
A(l,2) = A(l,2) + (WAI *WBl + Tl(L+2)*WA1WB1) 
A(l,3) = A(l,3) + (WAI *WB2 + Tl(L+2)*WA1WB2) 
A(l,4) =A(l,4)-(Tl(L+2)*WA1) 
A(2,3) = A(2,3) + (WBl *WB2 + Tl(L+2)*WB1WB2) 
A(2,4) = A(2,4)- (Tl(L+2)*WB1) 
A(3,4) = A(3,4) - (Tl(L+2)*WB2) 

Wl TEMP= WAI TEMPI 
WAlTEMPl =WAI 
WAI TEMP2 = Wl TEMP 
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W2TEMP = WB 1 TEMPI 
WBlTEMPl =WBl 
WBl TEMP2 = W2TEMP 
W3TEMP = WB2TEMP1 
WB2TEMP1 = WB2 
WB2TEMP2 = W3TEMP 
WABlTMP = WABlTMPl 
WABlTMPl =WAlWBl 
W ABl TMP2 = W ABl TMP 
W AB2TMP = W AB2TMP1 
WAB2TMP1 =WA1WB2 
W AB2TMP2 = W AB2TMP 
WWB 1 TMP = WWBl TMPl 
WWBlTMPl =WBlWBl 
WWB 1 TMP2 = WWB 1 TMP 
WB12TMP = WB12TMP1 
WB12TMP1 =WB1WB2 
WB12TMP2 = WB12TMP 
WWB2TMP = WWB2TMP1 
WWB2TMP1 = WB2WB2 
WWB2TMP2 = WWB2TMP 

900 CONTINUE 
A(l,1) = A(l,1)/SIGMAET 
A(l,2) = A(l,2)/SIGMAET . 
A(l,3) = A(l,3)/SIGMAET 
A(l,4) = A(l,4)/(SIGMAET**2) 
A(2,2) = A(2,2)/SIGMAET 
A(2,3) = A(2,3)/SIGMAET 
A(2,4) = A(2,4)/(SIGMAET**2) 
A(3,3) = A(3,3)/SIGMAET 
A(3,4) = A(3,4)/(SIGMAET**2) 
A(4,4) = A(4,4)*SIGMAET**3 - (N/(2*SIGMAET**2)) 
A(l,5) = A(l,5) - (1 +2*D2+Cl **2) 
A(l,6) = A(l,6) - Cl 
A(2,5) = A(2,5) + (1 +B2)*SIGMAET 
A(3,5) = A(3,5) + Bl *SIGMAET 
A(3,6) = A(3,6) + SIGMAET 
A( 4,5) = A( 4,5) + B 1 *(1 +B2) 
A( 4,6) = A( 4,6) + B2 
A(2,1) = A(l,2) 
A(3,1) = A(l,3) 
A(4,1) = A(l,4) 
A(5,1) = A(l,5) 
A(6,1) = A(l,6) 
A(3,2) = A(2,3) 
A(4,2) = A(2,4) 
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A(S,2) = A(2,S) 
A(4,3) = A(3,4) 
A(S,3) = A(3,S) 
A(6,3) = A(3,6) 
A(S,4) = A(4,S) 
A(6,4) = A(4,6) 

CALL DLINRG(N6, A, LDA, AINV, LDAINV) 

IF (AINV(l,1).GT.0.0) THEN 
SS1 = N*(AAl - 1.0) 
SS2 = (AAl - 1.0)/SQTR(AINV(l,1)) 

IF (SSLLT.-S.7) THEN 
COUNTl = COUNTl + 1.0 

END IF 
IF (SSl.LT.-8.0) THEN 

COUNT2 = COUNT2 + 1.0 
END IF 

IF (SSl.LT.-13.6) THEN 
COUNT3 = COUNT3 + 1.0 

ENDIF ·. 
IF (SS2.LT.-l.62) THEN 

COUNT4 = COUNT4 + 1.0 
END IF 

IF (SS2.LT.-l.9S) THEN 
COUNTS = COUNTS + 1.0 

END IF 
IF (SS2.LT.-2.S8) THEN 

COUNT6 = COUNT6 + 1.0 
END IF 

ICOUNT = !COUNT + 1 
END IF 

RETURN 
END 

* END OF PROGRAM 
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FORTRAN PROGRAM FOR SHIN AND SARKAR'S METHOD 



192 

********************************************************************** 
* Note that (n, s, cr/) = (250, 4, 5.0) is considered as an example. * 
* This program is the same as that ofKohn's except Subroutine 4 and 5 and thus * 
* we have only to replace Subroutine 4 and 5 in Kohn's with these two subroutines. * 
********************************************************************** 

******************** 
* SUBROUTINE 4 * 
******************** 
*** NEWTON-RAPHSON METHOD BASED ON SHIN AND SARKAR'S 

SUBROUTINE NR1(N,NN,NNN,N3,N5,R,T,ABTILDA,HAP,ZIGMAET,TT, 
I Cl,Dl,D2,C,FL_EST,CMIN1,CMIN2,CMIN3,CMIN4,CMIN5,CMIN6) 

P ARAMETER(LDA=6, LDAINV= 6, N6=6) 
REAL *8 A(LDA,LDA), B(N6), C(N5), AINV(LDAINV,LDAINV) 
REAL *8 R(NN), T(NNN), ABTILDA(N3), TT(NNN) 
REAL *8 D(N6), HAPl 
REAL*8 CCl(lO), CC2(10), CC3(10), CC4(10), CC5(10), CC6(10) 
REAL*8 FL_EST(lO), FMIN 
REAL*8 CMINl, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6 

Al 1 = ABTILDA(l) 
B 11 = ABTILDA(2) 
B22 = ABTILDA(3) 
C(5) = 0.0 
C(6) = 0.0 

WAl =0.0 
WBl =0.0 
WB2=0.0 
WlTEMP=O.O 
W2TEMP=O.O 
W3TEMP=O.O 
WAlTEMPl =0.0 
WAl TEMP2 = 0.0 
WB 1 TEMPl = 0.0 
WB1TEMP2 = 0.0 
WB2TEMP1 = 0.0 
WB2TEMP2 = 0.0 

DO 510 I= 1, 6 
DO 500 J= 1, 6 

A(I, J) = 0.0 
500 CONTINUE 

B(I) = 0.0 
510 CONTINUE 



DO 550 L= 1, N 
WAl =R(L+3)-Bll*WA1TEMP1-B22*WA1TEMP2 
WBl =-T(L+l)-Bll*WBlTEMPl -B22*WB1TEMP2 
WB2 =-T(L)-Bll*WB2TEMP1 -B22*WB2TEMP2 
AA(l,1) = AA(l,1) + WAl *WAl 
AA(2,2) = AA(2,2) + WB 1 *WB 1 
AA(3,3) = AA(3,3) + WB2*WB2 
BB(l) = BB(l) + WAl *T(L+2) 
BB(2) = BB(2) + WBl *T(L+2) 
BB(3) = BB(3) + WB2*T(L+2) 
BB(4) = BB(4) + T(L+2)*T(L+2) 
Wl TEMP= WAl TEMPl 
WAlTEMPl =WAl 
WAl TEMP2 = Wl TEMP 
W2TEMP = WB 1 TEMPl 
WBlTEMPl =WBl 
WB 1 TEMP2 = W2TEMP 
W3TEMP = WB2TEMP1 
WB2TEMP1 =WB2 
WB2TEMP2 = W3TEMP 

550 CONTINUE 
A(l,1) = A(l,1)/ZIGMAET 
A(2,2) = A(2,2)/ZIGMAET 
A(3,3) = A(3,3)/ZIGMAET 
A(5,1) = A(5,1) - (1 +2*D2 + Cl **2) 
A(2,5) = A(2,5) + (1 +B22)*ZIGMAET 
A(3,5) = A(3,5) + B 11 *ZIGMAET 
A(6,1) = A(6,1) - Cl 
A(3,6) = A(3,6) + ZIGMAET 
A(4,4) = A(4,4) - N/(2*(ZIGMAET**2)) 
A( 4,5) = A( 4,5) + B 11 *(1 +B22) 
A( 4,6) = A( 4,6) + B22 
B(l) = B(l)/ZIGMAET 
B(2) = B(2)/ZIGMAET 
B(3) = B(3)/ZIGMAET 
B(4) = (-B(4)/(2*ZIGMAET*ZIGMAET))+(N/(2*ZIGMAET)) 
B(5) = ZIGMAET*(l +B22)*B 11 - Dl *(1 +D2) 
B(6) = ZIGMAET*B22 - D2 
A(l,5) = A(5,1) 
A(l,6) = A(6,1) 
A(5,2) = A(2,5) 
A(5,3) = A(3,5) 
A(6,3) = A(3,6) 
A(5,4) = A(4,5) 
A(6,4) = A(4,6) 
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CALL DLINRG(N6, A, LDA, AINV, LDAINV) 

DO 580 LDAINVl = 1, 6 
SUM=O.O 

DO 570 LDAINV2 = 1, 6 
SUM= SUM+ AINV(LDAINV1,LDAINV2)*B(LDAINV2) 

570 CONTINUE 
D(LDAINVl) = SUM 

580 CONTINUE 

DO 800 K= 1, 10 
C(l) = Al 1 - (1/K)*D(l) 
C(2) = B 11 - (1/K)*D(2) 
C(3) = B22 - (1/K)*D(3) 
C(4) = ZIGMAET- (1/K)*D(4) 
C(5) = C(5) - (1/K)*D(5) 
C(6) = C(6) - (1/K)*D(6) 

HAPl =0.0 
DO 650 11 = 1, NNN 

TT(Il) = 0.0 
650 CONTINUE 

DO 700 12 = 1, N 
TT(I2+2) = R(I2+4) + C(l)*R(I2+3) - C(2)*TT(I2+ 1) - C(3)*TT(I2) 
HAPl = HAPl + TT(I2+2)*TT(I2+2) 

700 CONTINUE 
FL_EST(K) = (l/(2*C(4)))*HAP1 + (N/2)*LOG(C(4)) 
CCl(K) = C(l) 
CC2(K) = C(2) 
CC3(K) = C(3) 
CC4(K) = C(4) 

· CC5(K) = C(5) 
CC6(K) = C( 6) 

800 CONTINUE 

M=l 
DO 850 13 = 2, 10 

IF(I3.EQ.O.OR.FL _ EST(I3).GE.FL _ EST(M)) GO TO 850 
M=I3 

850 CONTINUE 
FMIN = FL_EST(M) 
CMINl = CCl(M) 
CMIN2 = CC2(M) 
CMIN3 = CC3(M) 
CMIN4 = CC4(M) 
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CMIN5 = CC5(M) 
CMIN6 = CC6(M) 

RETURN 
END 

********************** 
* SUBROUTINE 5 * 
********************** 

SUBROUTINE NR2(N,NN,NNN,N3,N5,R,Tl,Cl,Dl,D2,SIGMAET, 
I CMIN1,CMIN2,CMIN3,CMIN4,CMIN5,CMIN6,ICOUNT, 
I COUNT1,COUNT2,COUNT3,COUNT4,COUNT5,COUNT6) 

P ARAMETER(LDA=6, LDAINV=6, N6=6) 
REAL *8 A(LDA,LDA), AINV(LDAINV,LDAINV) 
REAL*8 R(NN), Tl(NNN). 
REAL*8 AAl, Bl, B2, SIGMAET 
REAL*8 CMIN1,CMIN2,CMIN3,CMIN4 
REAL*8 SSl, SS2 

AAl =CMINl 
Bl =CMIN2 
B2=CMIN3 
SIGMAET = CMIN4 

DO 900 L= 1,NNN 
Tl(L) = 0.0 

900 CONTINUE 

DO 930 L= 1,N 
Tl(L+2) = R(L+4) + AAl *R(L+3) - Bl *Tl(L+l}- B2*Tl(L) 

930 CONTINUE 

DO 950 I= 1, 6 
DO 940 J= 1, 6 

A(I,J) = 0.0 
940 CONTINUE 
950 CONTINUE 

WAl =0.0 
WBl =0.0 
WB2=0.0 
WlTEMP=O.O 
W2TEMP=O.O 
W3TEMP=O.O 
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WAlTEMPl =0.0 
WAl TEMP2 = 0.0 
WB 1 TEMPI = 0.0 
WB1TEMP2= 0.0 
WB2TEMP1 = 0.0 
WB2TEMP2 = 0.0 

DO 980 L= 1, N 
WAl =R(L+3)-Bl*WA1TEMP1-B2*WA1TEMP2 
WBl =-Tl(L+l)-Bl*WB1TEMP1-B2*WB1TEMP2 
WB2 = -Tl(L) - Bl *WB2TEMP1 - B2*WB2TEMP2 
A(l,1) = A(l,1) + WAl *WAl 
A(2,2) = A(2,2) + WB 1 *WB 1 
A(3,3) = A(3,3) + WB2*WB2 
Wl TEMP= WAl TEMPI 
WAlTEMPl =WAl 
WAl TEMP2 = Wl TEMP 
W2TEMP = WB 1 TEMPI 
WBlTEMPl =WBl 
WB 1 TEMP2 = W2TEMP 
W3TEMP = WB2TEMP1 
WB2TEMP1 = WB2 
WB2TEMP2 = W3TEMP 

980 CONTINUE 
A(l,1) = A(l,1)/SIGMAET 
A(2,2) = A(2,2)/S1GMAET 
A(3,3) = A(3,3)/S1GMAET 
A(5,1) = A(5,1)- (1+2*D2 + Cl **2) 
A(2,5) = A(2,5) + (1 +B2)*S1GMAET 
A(3,5) = A(3,5) + Bl *SIGMAET 
A(6,1) = A(6,1) - Cl 
A(3,6) = A(3,6) + SIGMAET 
A(4,4) = A(4,4)-N/(2*(S1GMAET**2)) 
A( 4,5) = A( 4,5) + B 1 *(1 +B2) 
A( 4,6) = A( 4,6) + B2 
A(l,5) = A(5,1) 
A(l,6) = A(6,1) 
A(5,2) = A(2,5) 
A(5,3) = A(3,5) 
A(6,3) = A(3,6) 
A(5,4) = A(4,5) 
A(6,4) = A(4,6) 

CALL DLINRG(N6, A, LOA, AINV, LDAINV) 

IF (AINV(l,1).GT.0.0) THEN 
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SS1 = N*(AAl - 1.0) 
SS2 = (AAl - 1.0)/SQRT(AINV(l,1)) 

IF (SS1.LT.-S.7) THEN 
COUNTl =COUNTl + 1.0 

END IF 
IF (SSl.LT.-8.0) THEN 

COUNT2 = COUNT2 + 1.0 
END IF 

IF (SSl.LT.-13.6) THEN 
COUNT3 =COUNT3 + 1.0 

END IF 
IF (SS2.LT.-l.62) THEN 

COUNT4 = COUNT4 + 1.0 
END IF 

IF (SS2.LT.-1.9S) THEN 
COUNTS = COUNTS + 1.0 

END IF 
IF (SS2.LT.-2.58) THEN 

COUNT6 = COUNT6 + 1.0 
END IF 

!COUNT =!COUNT+ 1 
END IF 

RETURN 
END 

* END OF PROGRAM 

197 



APPENDIX E 

FORTRAN PROGRAM FOR 
EMPIRICAL CUMULATIVE DISTRIBUTION OF 

UNIT ROOT TEST STATISTICS 
BASED ON 

SHIN AND SARKAR'S METHOD 
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*********************************************** 
* (N, S, cr/) = (250, 4, 5.0) is considered as an example. * 
*********************************************** 
************************ 
* MAIN PROGRAM * 
************************ 

PROGRAM MAIN 
P ARAMETER(N=250,NUM=l OOOO,NN=254,NNN=252,N2=4,N3=3,N5=6) 
P ARAMETER(Il =1 OO,I2=250,I3=500,I4=1000) 
P ARAMETER(I5=9000,I6=9500,I7=9750,I8=9900) 
IMPLICIT REAL*8 (A-H, 0-Z) 
REAL*8 E(N), W(N), Z(N), U(N), Y(N) 
REAL*8 STATl(NUM), STAT2(NUM), SS1, SS2 
REAL*8 Al, Cl, Dl, D2 
REAL*8 FL_INIT, FL_EST(lO) 
REAL*8 T(NNN), TT(NNN), Tl(NNN) 
REAL *8 R(NN), ETILDA(N), X(N,N2) 
REAL*8 RR(NNN), ABTILDA(N3), C(N5), HAP, SIGMAET,.ZIGMAET 
REAL*8 CMINl, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6 
INTEGER ISEED1,ISEED2 
EXTERNAL RNSET,DRNNOA,DLINRG 

Al= 1.0 
ISEEDl = 13579 
CALL RNISD(ISEED1,ISEED2) 

DO 260 Cl = -0.5, 0.5, 0.5 

ICOUNT=O 
Dl =Al +Cl 
D2=Al * Cl 

DO 100 I= 1, 18000 
CALL RNSET(ISEEDl) 
CALL DRNNOA(N,E) 
CALL RNGET(ISEEDl) 
CALL RNSET(ISEED2) 
CALL DRNNOA(N,W) 
CALL RNGET(ISEED2) 

Z(l)= E(l) * SQRT(5.0) 
U(l) = W(l) 
Y(l) = Z(l) + U(l) 

DO 10 J=2,N 
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Z(J) = -Al *Z(J-1) + E(J)*SQRT(5.0) 
U(J) = W(J) + Cl *W(J-1) 
Y(J) = Z(J) + U(J) 

10 CONTINUE 

DO 1 K= 1,N 
R(K+4) = Y(K) 

1 CONTINUE 

DO 3 K= 1, 4 
R(K) = 0.0 

3 CONTINUE 

CALL ETINIT(Y,R,X,N,NN,ETILDA) 

DO 5 K= 1, N 
RR(K+2) = ETILDA(K) 

5 CONTINUE 

DO 7 K= 1, 2 
RR(K) =0.0 

7 CONTINUE 

CALL ABINIT(N,ABTILDA,R,RR,NN,NNN,N3) 

200 

CALL SIGMAINIT(Y,R,T,N,NN,NNN,ABTILDA,N3,HAP,SIGMAET,FL_INIT) 

CALL NR1(N,NN,NNN,N3,N5,R,T,ABTILDA,HAP,SIGMAET, 
I TT,Cl,Dl,D2,C,FL_INIT,FL_EST, 
I CMINl ,CMIN2,CMIN3,CMIN4,CMIN5,CMIN6) 

CALL NR2(N,NN,NNN,N3,N5,R,Tl,Cl,Dl,D2,ZIGMAET, 
I CMINl ,CMIN2,CMIN3,CMIN4,CMIN5,CMIN6, 
I ICOUNT,SS1,SS2) 

STATl(ICOUNT) = SS1 
STAT2(ICOUNT) = SS2 

IF (ICOUNT.GE.10000) GO TO 112 

100 CONTINUE 
112 CONTINUE 

CALL SORT(NUM,STATl) 
CALL S0RT(NUM,STAT2) 



PRINT*,Il,'-th SMALLEST=', STATl(Il) 
PRINT*,12,'-th SMALLEST=', STAT1(I2) 
PRINT*,B,'-th SMALLEST=', STAT1(I3) 
PRINT*,14,'-th SMALLEST=', STAT1(I4) 
PRINT*,15,'-th SMALLEST=', STAT1(I5) 
PRINT*,16,'-th SMALLEST=', STAT1(I6) 
PRINT*,17,'-th SMALLEST=', STAT1(I7) 
PRINT*,18,'-th SMALLEST=', STAT1(I8) 
PRINT*,Il,'-th SMALLEST=', STAT2(Il) 
PRINT*,12,'-th SMALLEST=', STAT2(I2) 
PRINT*,B,'-th SMALLEST=', STAT2(I3) 
PRINT*,14,'-th SMALLEST=', STAT2(I4) 
PRINT*,15,'-th SMALLEST=', STAT2(I5) 
PRINT* ,16,'-th SMALLEST=', STAT2(I6) 
PRINT*,17,'-th SMALLEST=', STAT2(I7) 
PRINT*,18,'-th SMALLEST=', STAT2(I8) 

260 CONTINUE 

END 

************************ 
* SUBROUTINE 1 * 
************************. 

*** ESTIMATE THE INITIAL VALUE OF ET. 

SUBROUTINE ETINIT(Y,R,X,N,NN,ETILDA) 
P ARAMETER(LDA=4, LDAINV=4, N2=4) 
REAL *8 R(NN), A(LDA,LDA), B(N2), AINV(LDAINV,LDAINV) 
REAL *8 X(N,N2), Y(N), ETILDA(N), SUM1(N2) 

DO 200 I= 1, 4 
DO 210 J= 1, 4 

A(I,J) = 0.0 
210 CONTINUE 

B(I) = 0.0 
200 CONTINUE 

DO 250 L= 1,N 
A(l,l) = A(l,1) + R(L+3)*R(L+3) 
A(2,1) = A(2,1) + R(L+2)*R(L+3) 
A(3, 1) = A(3, 1) + R(L+ 1 )*R(L+ 3) 
A(4,l) = A(4,1) + R(L)*R(L+3) 
A(2,2) = A(2,2) + R(L+2)*R(L+2) 
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A(2,3) = A(2,3) + R(L+ l)*R(L+2) 
A(2,4) = A(2,4) + R(L)*R(L+2) 
A(3,3) = A(3,3) + R(L+l)*R(L+l) 
A(3,4) = A(3,4) + R(L)*R(L+l) 
A(4,4) = A(4,4) + R(L)*R(L) 
B(l) = B(l) + R(L+3)*R(L+4) 
B(2) = B(2) + R(L+2)*R(L+4) 
B(3) = B(3) + R(L+l)*R(L+4) 
B(4) = B(4) + R(L)*R(L+4) 

250 CONTINUE 
A(l,2) = A(2,1) 
A(l,3) = A(3,1) 
A(l,4) = A(4,1) 
A(3,2) = A(2,3) 
A(4,2) = A(2,4) 
A(4,3) = A(3,4) 

CALL INVMAT(AINV,A,4,4) 

DO 260 Kl= 1, 4 
DO 265 K2 = 1, N 

IF (K2.LE.Kl) THEN 
X(K2,Kl) = 0.0 

ELSE 
X(K2,Kl) = Y(K2-Kl) 

END IF 
265 CONTINUE 
260 CONTINUE 

DO 270 LDAINVl = 1, 4 
SUM=O.O 

DO _ 280 LDAINV2 = 1, 4 
SUM= SUM+ AINV(LDAINV1,LDAINV2)*B(LDAINV2) 

280 CONTINUE 
SUMl(LDAINVl) = SUM 

270 CONTINUE 

DO 285 K3 = 1, N 
SUM2=0.0 

DO 290 K4 = 1, 4 
SUM2 = SUM2 + X(K3,K4)*SUMl(K4) 

290 CONTINUE 
ETILDA(K3) = Y(K3) - SUM2 

285 CONTINUE 
RETURN 
END 
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************************ 
* SUBROUTINE 2 * 
************************ 
*** ESTIMATE THE INITIAL VALUE OF Al, Bl AND B2. 

SUBROUTINE ABINIT(N,ABTILDA,R,RR,NN,NNN,N3) 
P ARAMETER(MDA=3, MDAINV=3) 
REAL*8 R(NN), RR(NNN), ABTILDA(N3) 
REAL *8 A(MDA,MDA), AINV(MDAINV,MDAINV), F(MDA) 

DO 310 I= 1, 3 
DO 320 J = 1, 3 

A(I,J) = 0.0 
320 CONTINUE 

F(I) = 0.0 
310 CONTINUE 

DO 350 K= 1, N 
A(l,1) = A(l,1) + R(K+3)*R(K+3) 
A(2,1) = A(2,1)- R(K+3)*RR(K+l) 
A(3,1) = A(3,1) - R(K+3)*RR(K)' 
A(2,2) = A(2,2) + RR(K + 1 )*RR(K + 1) 
A(2,3) = A(2,3) + RR(K)*RR(K + 1) 
A(3,3) = A(3,3) + RR(K)*RR(K) 
F(l) = F(l) - R(K+3)*R(K+4) 
F(2) = F(2) + R(K+4)*RR(K+l) 
F(3) = F(3) + R(K +4)*RR(K) 

350 CONTINUE 
A(l,2) = A(2,1) 
A(l,3) = A(3,1) 
A(3,2) = A(2,3) 

CALL INVMAT(AINV,A,3,3) 

DO 370 MDAINVl = 1, 3 
SUM3 =0.0 

DO 390 MDAINV2 = 1, 3 
SUM3 = SUM3 + AINV(MDAINV1,MDAINV2)*F{MDAINV2) 

390 CONTINUE 
ABTILDA(MDAINVl) = SUM3 

IF (ABTILDA(l).LT.-2.0) THEN 
ABTILDA(l) = -2.0 

ELSE IF (ABTILDA(l).GT.2.0) THEN 
ABTILDA(l) = 2.0 

END IF 
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370 CONTINUE 

RETURN 
END 

************************* 
* SUBROUTINE 3 * 
************************* 
*** ESTIMATE THE INITIAL VALUE OF SIGMAET. 

SUBROUTINE SIGMAINIT(Y,R, T,N,NN,NNN,ABTILDA,N3,HAP, 
I SIGMAET,FL_INIT) 

REAL*8 Y(N), R(NN), T(NNN) 
REAL*8 ABTILDA(N3), HAP, SIGMAET 

DO 400 L = 1, NNN 
T(L) = 0.0 

400 CONTINUE 

HAP=O.O 
DO 430 L= 1,N 

T(L+2) = R(L+4) + ABTILDA(l)*R(L+3)-ABTILDA(2)*T(L+l) 
I - ABTILDA(3)*T(L) 

HAP = HAP + T(L+2)*T(L+2) 
430 CONTINUE 

SIGMAET = RAPIN 

IF (SIGMAET.LT.EXP(-100.0)) THEN 
SIGMAET = EXP(-100.0) 

ELSE IF (SIGMAET.GT.EXP(lO.O)) THEN 
SIGMAET = EXP(lO.O) 

END IF 
FL_INIT = (1/(2*SIGMAET))*HAP + (N/2)*LOG(SIGMAET) 

RETURN 
END 

************************* 
* SUBROUTINE 4 * 
************************* 
*** NEWTON-RAPHSON METHOD BASED ON SS'S APPROACH. 

SUBROUTINE NRl(N,NN,NNN,N3,N5,R,T,ABTILDA,HAP,SIGMAET,TT, 
I Cl,Dl,D2,C,FL_INIT,FL_EST, 
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I CMINl ,CMIN2,CMIN3,CMIN4,CMIN5,CMIN6) 
P ARAMETER(LDA=6, LDAINV=6, N6=6) 
REAL *8 A(LDA,LDA), B(N6), C(N5), AINV(LDAINV,LDAINV) 
REAL *8 R(NN), T(NNN), ABTILDA(N3), TT(NNN) 
REAL*8 D(N6), HAPl 
REAL*8 CCl(lO), CC2(10), CC3(10), CC4(10), CC5(10), CC6(10) 
REAL*8 FL_EST(lO), FMIN, FL_INIT 
REAL*8 CMINl, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6 

Al 1 = ABTILDA(l) 
B 11 = ABTILDA(2) 
B22 = ABTILDA(3) 
C(5) = 0.0 
C(6) = 0.0 
WAl =0.0 
WBl =0.0 
WB2=0.0 

DO 500 I= 1, 6 
DO 510 J = 1, 6 

A(l,J) = 0.0 
510 CONTINUE 

B(I) = 0.0 
500 CONTINUE 

WlTEMP=O.O 
W2TEMP=O.O 
W3TEMP=O.O 
WAlTEMPl =0.0 
WAl TEMP2 = 0.0 
WB 1 TEMPI = 0.0 

· WB 1 TEMP2 = 0.0 
WB2TEMP1 = 0.0 
WB2TEMP2 = 0.0 

DO 550 L= 1,N 
WAl =R(L+3)-Bll*WA1TEMP1 -B22*WA1TEMP2 
WB 1 = -T(L+ 1) - B 11 *WB 1 TEMPI - B22*WB 1 TEMP2 
WB2 = -T(L)- Bll *WB2TEMP1 - B22*WB2TEMP2 
A(l,1) = A(l,1) + WAl *WAl 
A(2,2) = A(2,2) + WB 1 *WB 1 
A(3,3) = A(3,3) + WB2*WB2 
B(l) = B(l) + WAl *T(L+2) 
B(2) = B(2) + WBl *T(L+2) 
B(3) = B(3) + WB2*T(L+2) 
B(4) = B(4) + T(L+2)*T(L+2) 
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Wl TEMP= WAl TEMPl 
WAlTEMPl =WAl 
WAl TEMP2 = Wl TEMP 
W2TEMP = WB 1 TEMPl 
WBlTEMPl =WBl 
WBl TEMP2 = W2TEMP 
W3TEMP = WB2TEMP1 
WB2TEMP1 = WB2 
WB2TEMP2 = W3TEMP 

550 CONTINUE 
A(l,1) = A(l,1)/SIGMAET 
A(2,2) = A(2,2)/SIGMAET 
A(3,3) = A(3,3)/SIGMAET 
A(5,1) = A(5,1)- (1+2*D2+Cl **2) 
A(2,5) = A(2,5) + (1 +B22)*SIGMAET 
A(3,5) = A(3,5) + Bl 1 *SIGMAET 
A(6,1) = A(6,1) - Cl 
A(3,6) = A(3,6) + SIGMAET 
A(4,4) = A(4,4)- N/(2*(SIGMAET**2)) 
A( 4,5) = A( 4,5) + B 11*(1 +B22) 
A( 4,6) = A( 4,6) + B22 
B(l) = B(l)/SIGMAET 
B(2) = B(2)/SIGMAET 
B(3) = B(3)/SIGMAET 
B(4) = (-B(4)/(2*SIGMAET*SIGMAET)) + (N/(2*SIGMAET)) 
B(5) = SIGMAET*(l +B22)*Bl 1 - Dl *(1 +D2) 
B(6) = SIGMAET*B22-D2 
A(l,5) = A(5,1) 
A(l,6) = A(6,1) 
A(5,2) = A(2,5) 
A(5,3) = A(3,5) 
A(6,3) = A(3,6) 
A(5,4) = A(4,5) 
A(6,4) = A(4,6) 

CALL INVMAT(AINV,A,6,6) 

DO 570 LDAINVl = 1, 6 
SUM=O.O 

DO 580 LDAINV2 = 1, 6 
SUM= SUM+ AINV(LDAINV1,LDAINV2)*B(LDAINV2) 

580 CONTINUE 
D(LDAINVl) = SUM 

570 CONTINUE 

DO 600 K= 1, 10 
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C(l) = Al 1 - (1/K)*D(l) 
C(2) = B 11 - (1/K)*D(2) 
C(3) = B22 - (1/K)*D(3) 
C(4) = SIGMAET- (1/K)*D(4) 
C(5) = C(5) - (1/K)*D(5) 
C(6) = C(6) - (1/K)*D(6) 
HAPl =0.0 

DO 650 11 = 1, NNN 
TT(ll) = 0.0 

650 CONTINUE 

DO 700 12 = 1, N 
TT(l2+2) = R(I2+4) + C(l)*R(l2+3)- C(2)*TT(I2+1) 

I - C(3)*TT(l2) 
HAPl =; HAPl + TT(I2+2)*TT(I2+2) 

700 CONTINUE 

IF (C(4).LT.EXP(-100.0)) THEN 
C(4) = EXP(-100.0) 

ELSE IF (C(4).GT.EXP(10.0)) THEN 
C( 4) = EXP(l 0.0) 

END IF 

FL_EST(K) = (l/(2*C(4)))*HAP1 + (N/2)*LOG(C(4)) 
CCl(K) = C(l) 
CC2(K) = C(2) 
CC3(K) = C(3) 
CC4(K) = C(4) 
CC5(K) = C(5) 
CC6(K) = C( 6) 

600 CONTINUE 

M=l 
DO 800 13 = 2, 10 
IF(I3 .EQ.O.OR.FL _ EST(I3).GE.FL _ EST(M)) GO TO 800 
M=I3 

800 CONTINUE 
FMIN =FL_ EST(M) 
CMINl = CCl(M) 
CMIN2 = CC2(M) 
CMIN3 = CC3(M) 
CMIN4 = CC4(M) 
CMIN5 = CC5(M) 
CMIN6 = CC6(M) 
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RETURN 
END 

************************ 
* SUBROUTINE 5 * 
************************ 

SUBROUTINE NR2(N,NN,NNN,N3,N5,R,Tl,Cl,Dl,D2,ZIGMAET, 
I CMIN1,CMIN2,CMIN3,CMIN4,CMIN5,CMIN6,ICOUNT,SS1,SS2) 

P ARAMETER(LDA=6, LDAINV=6, N6=6) 
REAL *8 A(LDA,LDA), AINV(LDAINV,LDAINV) 
REAL*8 R(NN), Tl(NNN) 
REAL*8 AAI, Bl, B2, ZIGMAET 
REAL*8 CMINI, CMIN2, CMIN3, CMIN4 
REAL*8 SSI, SS2 
AAI =CMINI 
Bl =CMIN2 
B2=CMIN3 
ZIGMAET = CMIN4 

DO 400 L = 1, NNN 
Tl{L) = 0.0 

400 CONTINUE 

DO 430 L= 1, N 
Tl{L+2) = R(L+4) + AAI *R(L+3) - Bl *Tl(L+l)- B2*Tl(L) 

430 CONTINUE 

DO 500 I= 1, 6 
DO 510 J = 1, 6 

A(I,J) = 0.0 
510 CONTINUE · 
500 CONTINUE 

WAI =0.0 
WBI =0.0 
WB2=0.0 
WITEMP=O.O 
W2TEMP=O.O 
W3TEMP=O.O 
WAI TEMPI = 0.0 
WAI TEMP2 = 0.0 
WBI TEMPI = 0.0 
WB 1 TEMP2 = 0.0 
WB2TEMP1 = 0.0 
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WB2TEMP2 = 0.0 

DO 550 L= 1, N 
WAl =R(L+3)-Bl*WA1TEMP1 -B2*WA1TEMP2 
WBl =-Tl(L+l)-Bl*WBlTEMPl -B2*WB1TEMP2 
WB2 = -Tl(L) - Bl *WB2TEMP1 - B2*WB2TEMP2 

A(l,1) = A(l,1) + WAl *WAl 
A(2,2) = A(2,2) + WB 1 *WB 1 
A(3,3) = A(3,3) + WB2*WB2 
Wl TEMP= WAl TEMPI 
WAlTEMPl =WAl 
WAl TEMP2 = Wl TEMP 
W2TEMP = WB 1 TEMPI 
WBlTEMPl ;,WBl 
WBl TEMP2 = W2TEMP 
W3TEMP = WB2TEMP1 
WB2TEMP1 = WB2 
WB2TEMP2 = W3TEMP 

550 CONTINUE 
A(l,1) = A(l,1)/ZIGMAET 
A(2,2) = A(2,2)/ZIGMAET 
A(3,3) = A(3,3)/ZIGMAET 
A(5,1) =A(5,1)- (1+2*D2+C1**2) 
A(2,5) = A(2,5) + (1 +B2)*ZIGMAET 
A(3,5) = A(3,5) + Bl *ZIGMAET 
A(6,1) = A(6,l) - Cl 
A(3,6) = A(3,6) + ZIGMAET 
A(4,4) = A(4,4)- N/(2*(ZIGMAET**2)) 
A( 4,5) = A( 4,5) + B 1 *(1 +B2) 
A( 4,6) = A( 4,6) + B2 
A(l,5) = A(5,1) 
A(l,6) = A(6,1) 
A(5,2) = A(2,5) 
A(5,3) = A(3,5) 
A(6,3) = A(3,6) 
A(5,4) = A(4,5) 
A(6,4) = A(4,6) 

CALL INVMAT(AINV,A,6,6) 

IF (AINV(l,1).GT.0.0) THEN 
SS1 = N*(AAl-1.0) 
SS2 = (AAl-1.0)/SQRT(AINV(l,1)) 

!COUNT= !COUNT + 1 
END IF 
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RETURN 
END 

************************ 
* SUBROUTINE 6 * 
************************ 

SUBROUTINE SORT(N,DATA) 

* LOG-SPACE QUICK-SORT 
PARAMETER (MAXSTK=lO) 

* MAX. DATA (ARRAY) SIZE: {MAXSTK + 1 )-TH POWER OF 2 
INTEGER N 

************************************** 
*DATA TYPE 

REAL *8 DATA(N), PIVOT, TEMP 
************************************** 

INTEGER I, J, LEFT, RIGHT, L, R 
* STACK FRAMES AND POINTER 

INTEGER LSTACK(MAXSTK), RSTACK(MAXSTK), SP 
* 

SP=O 
* 

LEFT= 1 
RIGHT=N 

* 

210 

* RECURSIVE CALL ENTRY (CALL RETURNS HERE IF STACK NOT EMPTY) 
1000 CONTINUE . 

* 

* 

I=LEFT 
J=RIGHT 
PIVOT= DATA(INT((I+'J)/2)) 

2000 CONTINUE 

* 
100 IF (DATA(I).LT.PIVOT) THEN 

I=I+l 
GOTO 100 

END IF 

* 
200 IF (DATA(J).GT.PIVOT) THEN 

J =J-1 
GOTO 200 

END IF 

* 
IF (I.LE.J) THEN 



* SWAP 
TEMP = DATA(I) 
DATA(I) = DATA(J) 
DATA(J) = TEMP 
I= I+l 
J = J-1 
END IF 

IF (I.LE.J) GOTO 2000 
* RECURSIVE CALL 

R=RIGHT-I 
L=J -LEFT 
IF (R.GE.L) THEN 
IF (L.GT.O) THEN 

* PUSHSTACK 
SP= SP+ 1 
LSTACK(SP) = I 
RSTACK(SP) = RIGHT 
RIGHT=J 
GOTO 1000 
ELSE IF (R.GT.O) THEN 
LEFT=I 
GOTO 1000 
END IF 
ELSE 
IF (R.GT.O) THEN 

* PUSHSTACK 

* 

SP= SP+ 1 
LSTACK(SP) = LEFT 
RSTACK(SP) = J 
LEFT=I 
GOTO 1000 
ELSE IF (L.GT.O) THEN 
RIGHT =J 
GOTO 1000 

END IF 
END IF 

* RECURSIVE RETURN 
IF (SP.GT.O) THEN 

* POP STACK 
RIGHT= RSTACK(SP) 
LEFT= LSTACK(SP) 
SP= SP - 1 
GOTO 1000 
END IF 
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RETURN 
END 

************************* 
* SUBROUTINE 7 * 
************************* 
*** COMPUTE INVERSE OF A MATRIX. 

SUBROUTINE INVMAT(AINV,A,N,NMAX) 
REAL *8 A(NMAX,NMAX), L(NMAX,NMAX), U(NMAX,NMAX) 

212 

REAL *8 AINV(NMAX,NMAX), UINV(NMAX,NMAX), LINV(NMAX,NMAX) 
CALL LUDCOM(L,U,A,N,NMAX) 
DO 100 I= 1, N 

100 LINV(l,I) = 1.0 
DO 110 I = 1, N-1 

DO 110 J = I+ 1, N 
110 LINV(l,J) = 0.0 

DO 130 J= 1, N-1 
DO 130 I= J+ 1, N 

SUM=O.O 
DO 120K=J+l,I-1 

120 SUM= SUM+ L(l,K)*LINV(K,J) 
LINV(I,J) = -L(l,J) - SUM 

130 CONTINUE 
DO 140 I= 1, N 

140 UINV(l,I) = 1/U(I,I) 
DO 150 J = 1, N-1 

DO 150 I=J+l,N 
150 UINV(I,J) = 0.0 

DO 170 I= N-1, 1, -1 
DO 170 J=N,I+l,-1 
SUM=O.O 
DO 160 K = I+ 1, J 

160 SUM= SUM+ U(I,K)*UINV(K,J) 
UINV(I,J) = UINV(I,I)*(-SUM) 

170 CONTINUE 

* 

CALL PROMAT(AINV,UINV,LINV,N,NMAX) 
RETURN 
END 

* LU-DECOMPOSITION ROUTINE 
SUBROUTINE LUDCOM(L,U,A,N,NMAX) 

REAL *8 L(NMAX,NMAX), U(NMAX,NMAX) 
REAL *8 A(NMAX,NMAX), WM(NMAX,NMAX) 

DO 100 K= 1, N 



L(K,K) = 1.0 
U(l,K) = A(l,K) 

100 CONTINUE 
DO 150 I=2, N 
DO 120 J = 1, I-1 

WM(I,J) = 0.0 
DO 110 M = 1, J-1 

110 WM(I,J) = WM(I,J) + L(I,M)*U(M,J) 
L(I,J) = (A(I,J) - WM(I,J))/U(J,J) 

120 CONTINUE 
DO 140 J=I, N 

WM(I,J) = 0.0 
DO 130 M = 1, I-1 

130 WM(I,J) = WM(I,J) + L(I,M)*U(M,J) 
U(I,J) = A(I,J) - WM(I,J) 

140 CONTINUE 
150 CONTINUE 

RETURN 
END 

* 
* MATRIX MULTIPLICATION (C =A* B) 

SUBROUTINE PROMAT(C,A,B,N,NMAX) 
REAL *8 C(NMAX,NMAX), A(NMAX,NMAX), B(NMAX,NMAX) 
DO 100 I= 1, N 

DO 100 J= 1,N 
C(I,J) = 0.0 

DO 100 K= 1,N 
C(I,J) = C(I,J) + A(I,K)*B(K,J) 

100 CONTINUE 
RETURN 
END 

* END OF PROGRAM 
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APPENDIX F 

FORTRAN PROGRAM FOR SPURIOUS REGRESSION 



***************************************** 

* SPURIOUS REGRESSION: K = 1, P = 2 * 
***************************************** 
*********************** 
* MAIN PROGRAM * 
*********************** 

PROGRAM MAIN 
PARAMETER(N=250, NUM=lOOOO, N2=3) 
IMPLICIT REAL *8 (A-H,0-Z) 
REAL *8 U(N), X(N), XTl(N), XT2(N), Y(N) 
REAL *8 XX(N,3), RESID(N), SUMGAMMA(N2) 
REAL *8 EPGAMMAl, EPGAMMA2, EPGAMMA3 
REAL *8 EPRSQ, EPDW, EPSGSQ 
REAL*8 EPTl, EPT2, EPT3 
EXTERNAL· RNSET,RNNOA 
ISEEDl= 13579 

CALL RNISD(ISEED1,ISEED2) 

DO 300 I= 1, NUM 

CALL RNSET(ISEEDl) 
CALL DRNNOA(N,U) 
CALL RNGET(ISEEDl) 
CALL RNSET(ISEED2) 
CALL DRNNOA(N,X) 
CALL RNGET(ISEED2) 

DO 100 J= 1,N 
SUMI =0.0 
SUM2=0.0 
DO 50 K=l,J 

SUMI = SUMI + U(K) 
SUM2 = SUM2 + X(K) 

50 CONTINUE 
Y(J) = SUMI 
XTl(J) = SUM2 

100 CONTINUE 
XT2(1) = X(l) 
XT2(2) = 2*X(l) + X(2) 

DO 250 J=3,N 
SUM3 =0.0 
D0200K=l,J-2 

SUM3 = SUM3 + XTl(K) 
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200 CONTINUE 
SUM4 = SUM3 + XTl(K+l) 
XT2(J) = 2*SUM4 - SUM3 + X(J) 

250 CONTINUE 

CALL GAMMA(N,N2,XT1,XT2,Y,XX,RESID,SUMGAMMA,SUMRSQ, 
I SUMDW,SUMSGSQ,SUMTl ,SUMT2,SUMT3) 

300 CONTINUE 
EPGAMMAl = SUMGAMMA(l)/NUM 
EPGAMMA2 = SUMGAMMA(2)/NUM 
EPGAMMA3 = SUMGAMMA(3)/NUM 
EPRSQ = SUMRSQ/NUM 
EPDW = SUMDW/NUM 
EPSGSQ = SUMSGSQ/NUM 
EPTl = SUMTl/NUM 
EPT2 = SUMT2/NUM 
EpT3 = SUMT3/NUM 

WRITE(*,*) EPGAMMA1,EPGAMMA2,EPGAMMA3 
WRITE(*,*) EPT 1,EPT2,EPT3 
WRITE(*,*) EPRSQ,EPDW 
WRITE(*,*) EPSGSQ 

END 

********************** 
* SUBROUTINE 1 * 
********************** 
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SUBROUTINE GAMMA(N,N2,XT1,XT2,Y,XX,RESID,SUMGAMMA,SUMRSQ, 
I SUMDW,SUMSGSQ,SUMT1,SUMT2,SUMT3) 

P ARAMETER(MDA=3, MDAINV=3, P=2) 
REAL *8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA) 
REAL *8 XTl(N), XT2(N), XX(N,3), Y(N), GAMMAHAT(MDA), RESID(N) 
REAL *8 SUMGAMMA(N2), SQY, YBAR, RSQDENO, RSQNUM, RSQUARE 
REAL *8 DENO, DNUM, DW, SUMDW 
REAL*8 SUM, SUM2, SUM3, SUMRSQ 
REAL*8 T_STATl, T_STAT2, T_STAT3 
REAL*8 SUMTl, SUMT2, SUMT3 
REAL *8 SIGMASQ 

SQY=O.O 
DO 150 Kl= 1, 3 

DO 120 K2 = 1, 3 



A(Kl,K2) = 0.0 
120 CONTINUE 

B(Kl) =0.0 
150 CONTINUE 

***** OLS, R-SQUARE(DENOMINATOR), T-STATISTICS 
DO 200 L= 1, N 

A(l,2) = A(l,2) + XTl(L) 
A(l,3) = A(l,3) + XT2(L) 
A(2,2) = A(2,2) + XT1(L)**2 
A(2,3) = A(2,3) + XT1(L)*XT2(L) 
A(3,3) = A(3,3) + XT2(L)**2 
B(l) = B(l) + Y(L) 
B(2) = B(2) +XTl(L)*Y(L) 
B(3) = B(3) + XT2(L)*Y(L) 
SQY = SQY + Y(L)*Y(L) 

200 CONTINUE 
A(l,1) = N 
A(2,l) = A(l,2) 
A(3,1) = A(l,3) 
A(3,2) = A(2,3) 
YBAR = B(l)*B(l)/N 
RSQDENO = SQY - YBAR 

CALL INVMAT(AINV,A,3) 

DO 240 L2 = 1, N 
XX(L2,1) = LO 
XX(L2,2) = XT1(L2) 
XX(L2,3) = XT2(L2) 

240 CONTINUE 

DO 280 MDAINVl = 1, 3 
SUM=O.O 

DO 250 MDAINV2 = 1, 3 
SUM= SUM+ AINV(MDAINV1,MDAINV2)*B(MDAINV2) 

250 CONTINUE · 
GAMMAHAT(MDAINVl) = SUM 

280 CONTINUE 
SUMGAMMA(l) = SUMGAMMA(l) + GAMMAHAT(l) 
SUMGAMMA(2) = SUMGAMMA(2) + GAMMAHAT(2) 
SUMGAMMA(3) = SUMGAMMA(3) + GAMMAHAT(3) 

***** RESIDUAL, R-SQUARE(NUMERATOR) 
SUM3 =0.0 
DO 320 Ml = 1, N 
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SUM2=0.0 
D0300M2=1,3 

SUM2 = SUM2 + XX(Ml ,M2)*GAMMAHAT(M2) 
300 CONTINUE 

SUM3 = SUM3 + Y(Ml )*SUM2 
RESID(Ml) = Y(Ml) - SUM2 

320 CONTINUE 
RSQNUM = SUM3 - YBAR 
RSQUARE = RSQNUM/RSQDENO 
SUMRSQ = SUMRSQ + RSQUARE 

*** DW, SIGMASUARE HAT 
DENO=O.O 
DNUM=O.O 
DO 350 M3 = 1, N-1 

DNUM = DNUM + (RESID(M3+1)-RESID(M3))**2 
DENO = DENO + RESID(M3+ 1 )**2 

350 CONTINUE 
DENO= DENO+ RESID(1)**2 
DW = DNUM/DENO 
SIGMASQ = DENO/(N-P-1) 
T_STATl = GAMMAHAT(l)/SQRT(AINV(1,1)*SIGMASQ) 
T_STAT2 = GAMMAHAT(2)/SQRT(AINV(2,2)*SIGMASQ) 
T_STAT3 = GAMMAHAT(3)/SQRT(AINV(3,3)*SIGMASQ) 
SUMTl = SUMTl + T STATl 
SUMT2=SUMT2+T STAT2 
SUMT3=SUMT3+T STAT3 
SUMDW = SUMDW + DW 
SUMSGSQ = SUMSGSQ + SIGMASQ 

RETURN 
END 

********************** 
* SUBROUTINE 2 * 
********************** 

* 
SUBROUTINE INVMAT(AINV,A,N) 
REAL *8 A(3,3), L(3,3), U(3,3) 
REAL *8 AINV(3,3), UINV(3,3), LINV(3,3) 
CALL LUDCOM(L,U,A,N) 

DO 100 I= 1, N 
100 LINV(I,I) = 1.0 

DO 110 I= 1, N-1 
DO 110 J = I+ 1, N 

110 LINV(I,J) = 0.0 
DO 130 J = 1, N-1 
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DO 130 I= J+ 1, N 
SUM=O.O 
DO 120K=J+l,I-1 

120 SUM= SUM+ L(I,K)*LINV(K,J) 
LINV(I,J) = -L(I,J) - SUM 

130 CONTINUE 
DO 140 I= 1, N 

140 IBNV(I,I) = 1/U(I,I) 
DO 15 0 J = 1, N-1 

DO 150 I=J+l, N 
150 IBNV(I,J) = 0.0 

DO 170 I=N-1, 1, -1 
DO 170 J=N,I+l,-1 

SUM=O.O 
DO 160 K = I+ 1, J 

160 SUM= SUM+ U(I,K)*UINV(K,J) 
IBNV(I,J) = UINV(I,I)*(-SUM) 

170 CONTINUE 

* 

CALL PROMAT(AINV,IBNV,LINV,N,N,N) 
RETURN 
END 

SUBROUTINE LUDCOM(L,U,A,N) 
REAL *8 L(3,3), U(3,3), A(3,3), WM(3,3) 
DO 100 K= 1, N 

L(K,K) = 1.0 
U(l,K) = A(l,K) 

100 CONTINUE 
DO 150 1=2,N 

DO 120 J = 1, I-1 
WM(I,J) = 0.0 
DO 110 M = 1, J-1 

110 WM(I,J) = WM(I,J) + L(I,M)*U(M,J) 
L(I,J) = (A(I,J) - WM(I,J))/U(J,J) 

120 CONTINUE 
DO 140 J=I, N 

WM(I,J) = 0.0 
DO 130 M = 1, I-1 

130 WM(I,J) = WM(I,J) + L(I,M)*U(M,J) 
U(I,J) = A(I,J) - WM(I,J) 

140 CONTINUE 
150 CONTINUE 

* 

RETURN 
END 

219 



SUBROUTINE PROMAT(C,A,B,N,L,M) 
REAL*8 C(3,3), A(3,3), B(3,3) 
DO 100 I= 1, N 

DO 100 J= 1, M 
C(I,J) = 0.0 
DO 100 K= 1, L 
C(I,J) = C(I,J) + A(I,K)*B(K,J) 

100 CONTINUE 
RETURN 
END 

* END OF PROGRAM 
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*************************************** 
* SPURIOUS REGRESSION: K = 2, P = 1 * 
*************************************** 
*********************** 
* MAIN PROGRAM * 
*********************** 

PROGRAM MAIN 
PARAMETER(N=250, NUM=lOOOO, N2=2) 
IMPLICIT REAL*8 (A-H, 0-Z) 
REAL *8 U(N), X(N), XT(N), YT(N), Y(N) 
REAL *8 XX(N,2), RESID(N), SUMGAMMA(N2) 
REAL*8 SUMI, SUM2, SUM3, SUM4 
REAL *8 EPGAMMAl, EPGAMMA2 
REAL*8 EPRSQ, EPDW, EPSGSQl, EPSGSQ2 
REAL*8 EPTl, EPT2, EPT3 
REAL *8 SUMSGSQ, SUMRSQ, SUMDW 
REAL*8 SUMTl, SUMT2, SUMT3 
EXTERNALRNSET,RNNOA 
ISEEDl = 13579 

CALL RNISD(ISEED 1,ISEED2) 

DO 2000 I=l,NUM 

CALL RNSET(ISEED 1) 
CALL DRNNOA(N,U) 
CALL RNGET(ISEED 1) 
CALL RNSET(ISEED2) 
CALL DRNNOA(N,X) 
CALL RNGET(ISEED2) 

DO 100 J= 1, N 
SUMI =0.0 
SUM2=0.0 

DO 10 K= 1, J 
SUMI = SUMI + X(K) 
SUM2 = SUM2 + U(K) 

10 CONTINUE 
XT(J) = SUMI 
YT(J)=SUM2 

100 CONTINUE 

Y(l) = U(l) 
Y(2) = U(1)*2 + U(2) 

DO 250 J=3, N 
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SUM3 =0.0 
DO 200 K= 1, J-2 

SUM3 = SUM3 + YT(K) 
200 CONTINUE 

SUM4 = SUM3 + YT(K+l) 
Y(J) = 2*SUM4 - SUM3 + U(J) 

250 CONTINUE 

CALL GAMMA(N,N2,XT,Y,XX,RESID,SUMGAMMA,SUMRSQ, 
I SUMDW,SUMSGSQ,SUMTl ,SUMT2) 

2000 CONTINUE 
EPGAMMAl = SUMGAMMA(l)/NUM 
EPGAMMA2 = SUMGAMMA(2)/NUM 
EPRSQ = SUMRSQ/NUM 
EPDW = SUMDW/NUM 
EPSGSQ = SUMSGSQ/NUM 
EPTl = SUMTl/NUM 
EPT2 = SUMT2/NUM 
WRITE(*,*) EPGAMMAl ,EPGAMMA2 
WRITE(*,*) EPT1,EPT2 
WRITE(*,*) EPRSQ,EPDW 
WRITE(*,*) EPSGSQ 

END 

********************* 
* SUBROUTINE 1 * 
********************* 

SUBROUTINE GAMMA(N,N2,XT,Y,XX,RESID,SUMGAMMA,SUMRSQ, 
I SUMDW,SUMSGSQ,SUMTl ,SUMT2) 

PARAMETER(MDA=2, MDAINV=2, P=l) 
REAL *8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA) 
REAL *8 XT(N), XX(N,2), Y(N), GAMMAHAT(MDA), RESID(N) 
REAL *8 SQY, YBAR, RSQDENO, RSQNUM, RSQUARE 
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REAL *8 SUMGAMMA(N2), SQY, YBAR, RSQDENO, RSQNUM, RSQUARE 
REAL *8 SUM, SUM2, SUM3 
REAL *8 SUMRSQ, DENO, DNUM, DW, SUMDW 
REAL*8 T_STATl, T_STAT2 
REAL *8 SUMTl, SUMT2 
REAL *8 SIGMASQ, SUMSGSQ 

SQY=O.O 
DO 150 Kl= 1, 2 

DO 120 K2 = 1, 2 
A(Kl ,K2) = 0.0 



120 CONTINUE 
B(Kl) = 0.0 

150 CONTINUE 

*** OLS, R-SQUARE(DENOMINATOR), T-STATISTICS 
DO 200 L= 1, N 

A(l,2) = A(l,2) + XT(L) 
A(2,2) = A(2,2) + XT(L)**2 
B(l) = B(l) + Y(L) 
B(2) = B(2) + XT(L)*Y(L) 
SQY = SQY + Y(L)*Y(L) 

200 CONTINUE . 
A(l,1) = N 
A(2,1) = A(l,2) 
YBAR = B(l )*B(l )IN 
RSQDENO = SQY - YBAR 

CALL INVMAT(AINV,A,2) 

DO 240 L2 = 1, N 
XX(L2,1) = 1.0 
XX(L2,2) = XT(L2) 

240 CONTINUE 
DO 280 MDAINVl = 1, 2 

SUM=O.O 
DO 250 MDAINV2 = 1, 2 

SUM= SUM+ AINV(MDAINV1,MDAINV2)*B(MDAINV2) 
250 CONTINUE 

GAMMAHAT(MDAINVl) = SUM 
280 CONTINUE 

SUMGAMMA(l) = SUMGAMMA(l) + GAMMAHAT(l) 
SUMGAMMA(2) = SUMGAMMA(2) + GAMMAHAT(2) 

*** RESIDUAL, R-SQUARE(NUMERATOR) 
SUM3 =0.0 
DO 320 Ml= 1, N 

SUM2=0.0 
DO 300 M2= 1,2 

SUM2 = SUM2 + XX(Ml,M2)*GAMMAHAT(M2) 
300 CONTINUE 

SUM3 = SUM3 + Y(Ml )*SUM2 
RESID(Ml) = Y(Ml)- SUM2 

320 CONTINUE 
RSQNUM = SUM3 - YBAR 
RSQUARE = RSQNUM/RSQDENO 
SUMRSQ = SUMRSQ + RSQUARE 
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*** DW, SIGMASUARE HAT 
DENO=O.O 
DNUM=O.O 
DO 350 M3 = 1, N-1 

DNUM = DNUM + (RESID(M3+ 1) - RESID(M3))**2 
DENO = DENO + RESID(M3+ 1 )**2 

350 CONTINUE 
DENO= DENO + RESID(N)**2 
DW = DNUM/DENO 
SIGMASQ = DENO/(N-P-1) 
T_STATl = GAMMAHAT(l)/SQRT(AINV(l,l)*SIGMASQ) 
T_STAT2 = GAMMAHAT(2)/SQRT(AINV(2,2)*SIGMASQ) 
SUMTl = SUMTl + T_STATl 
SUMT2 = SUMT2 + T STAT2 
SUMDW = SUMDW + DW 
SUMSGSQ = SUMSGSQ + SIGMASQ 

RETURN 
END 

********************* 
* SUBROUTINE 2 * 
********************* 

SUBROUTINE INVMAT(AINV,A,N) 
REAL *8 A(2,2), L(2,2), U(2,2) 
REAL *8 AINV(2,2), UINV(2,2), LINV(2,2) 
CALL LUDCOM(L,U,A,N) 
DO 100 I= 1, N 

100 LINV(I,I) = 1.0 
DO 110 I= 1, N-1 

DO 110 J = I+ 1, N 
110 LINV(I,J) = 0.0 

DO 130 J= 1, N-1 
DO 130 I= J+ 1, N 

SUM=O.O 
DO 120 K = J+l, I-1 

120 SUM= SUM + L(I,K)*LINV(K,J) 
LINV(I,J) = -L(I,J) - SUM 

130 CONTINUE 
DO 1401= 1, N 

140 UINV(I,I) = 1/U(I,I) 
DO 150 J = 1, N-1 

DO 150 I= J+ 1, N 
150 UINV(I,J) = 0.0 

DO 170 I=N-1, 1, -1 
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DO 170 J=N,I+l,-1 
SUM=O.O 
DO 160 K = I+ 1, J 

160 SUM= SUM+ U(I,K)*UINV(K,J) 
UINV(I,J) = UINV(I,I)*(-SUM) 

170 CONTINUE 

* 

CALL PROMAT(AINV,UINV,LINV,N,N,N) 
RETURN 
END 

SUBROUTINE LUDCOM(L,U,A,N) 
REAL *8 L(2,2), U(2,2), A(2,2), WM(2,2) 
DO 100 K= 1, N 
L(K,K) = 1.0 
U(l,K) = A(l,K} 

100 CONTINUE 
DO 150 1=2,N 

DO 120 J= 1, I-1 
WM(I,J) = 0.0 
DO 110 M = 1, J-1 

110 WM(I,J) = WM(I,J) + L(I,M)*U(M,J) 
L(I,J) = (A(I,J) - WM(I,J))/U(J,J) 

120 CONTINUE 
DO 140 J=I, N 

WM(I,J) = 0.0 
D0130M=l,I-1 

130 WM(I,J) = WM(I,J) + L(I,M)*U(M,J) 
U(I,J) = A(I,J) - WM(I,J) 

140 CONTINUE 
150 CONTINUE 

* 

RETURN 
END 

SUBROUTINE PROMAT(C,A,B,N,L,M) 
REAL *8 C(2,2), A(2,2), B(2,2) 
DO 100 I= 1, N 
DO 100 J= l,M 
C(I,J) = 0.0 
DO 100 K= 1, L 
C(I,J) = C(I,J) + A(I,K)*B(K,J) 

100 CONTINUE 
RETURN 
END 

* END OF PROGRAM 
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*************************************** 
* SPURIOUS REGRESSION: K = 2, P = 2 * 
*************************************** 

*********************** 
* MAIN PROGRAM * 
*********************** 

PROGRAM MAIN 
PARAMETER(N=SOO, NUM=lOOOO, N2=3) 
IMPLICIT REAL *8 (A-H, 0-Z) 
REAL*8 U(N), X(N), XTl(N), XT2(N), YT(N), Y(N) 
REAL *8 XX(N,3), RESID(N), SUMGAMMA(N2) 
EXTERNAL RNSET,RNNOA 
ISEEDl= 13579 

*** GENERATE 2 DIFFERENT RANDOM NUMBERS. 
CALL RNISD(ISEEDl ,ISEED2) 
DO 300 I= 1, NUM 

CALL RNSET(ISEEDl) 
CALL DRNNOA(N,U) 
CALL RNGET(ISEEDl) 
CALL RNSET(ISEED2) 
CALL DRNNOA(N,X) 
CALL RNGET(ISEED2) 

DO 100 J= 1, N 
SUMl =0.0 
SUM2=0.0 

DO 50 K= 1, J 
SUMl = SUMi + X(K) 
SUM2 = SUM2 + U(K) 

50 CONTINUE 
XTl(J) = SUMl 
YT(J)=SUM2 

100 CONTINUE 
XT2(1) = X(l) 
XT2(2) = X(l )*2 + X(2) 
Y(l) =U(l) 
Y(2) = U(1)*2 + U(2) 
DO 250 J=3,N 

SUM3 =0.0 
SUMS =0.0 

DO 200 K=l,J-2 
SUM3 = SUM3 + XTl(K) 
SUMS = SUMS + YT(K) 
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200 CONTINUE 
SUM4 = SUM3 + XTl(K+l) 
SUM6 = SUMS + YT(K + 1) 
XT2(J) = 2*SUM4 - SUM3 + X(J) 
Y(J) = 2*SUM6 - SUMS + U(J) 

250 CONTINUE 

CALL GAMMA(N,N2,XT1,XT2,YT,Y,XX,RESID,SUMGAMMA,SUMRSQ, 
I SUMDW,SUMSGSQ,SUMT1,SUMT2,SUMT3) 

300 CONTINUE 
EPGAMMAl = SUMGAMMA(l)/NUM 
EPGAMMA2 = SUMGAMMA(2)/NUM 
EPGAMMA3 = SUMGAMMA(3)/NUM 
EPRSQ = SUMRSQ/NUM 
EPDW= SUMDW/NUM 
EPSGSQ = SUMSGSQ/NUM 
EPTl = SUMTl/NUM 
EPT2 = SUMT2/NUM 
EPT3 = SUMT3/NUM 
WRITE(*,*) EPGAMMAl, EPGAMMA2, EPGAMMA3 
WRITE(*,*) EPTl, EPT2, EPT3 
WRITE(*,*) EPRSQ, EPDW 
WRITE(*,*) EPSGSQ 
END 

********************** 
* SUBROUTINE 1 * 
********************** 

SUBROUTINE GAMMA(N,N2,XT1,XT2,YT,Y,XX,RESID,SUMGAMMA, 
I SUMRSQ,SUMDW,SUMSGSQ,SUMT1,SUMT2,SUMT3) 

P ARAMETER(MDA=3, MDAINV=3, P=2) 
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REAL *8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA), YT(N) 
REAL*8 XTl(N), XT2(N), XX(N,3), Y(N), GAMMAHAT(MDA), RESID(N) 
REAL *8 SUMGAMMA(N2), SQY, YBAR, RSQDENO, RSQNUM, RSQUARE 
REAL *8 DENO, DNUM, DW, SUMDW 
REAL *8 SUM, SUM2, SUM3, SUMRSQ 
REAL*8 T_STATl, T_STAT2, T_STAT3 
REAL*8 SUMTl, SUMT2, SUMT3 
REAL*8 SIGMASQ 

SQY=O.O 
DO 150 Kl = 1, 3 

DO 120 K2 = 1, 3 
A(Kl,K2) = 0.0 

120 CONTINUE 



B(Kl) = 0.0 
150 CONTINUE 

*** OLS, R-SQUARE(DENOMINATOR), T-STATISTICS 
DO 200 L= 1,N 

A(l,2) = A(l,2) + XTl(L) 
A(l,3) = A(l,3) + XT2(L) 
A(2,2) = A(2,2) + XT1(L)**2 
A(2,3) = A(2,3) + XT1(L)*XT2(L) 
A(3,3) = A(3,3) + XT2(L)**2 
B(l) = B(l) + Y(L) 
B(2) = B(2) + XTl(L)*Y(L) 
B(3) = B(3) + XT2(L)*Y(L) 
SQY = SQY + Y(L)*Y(L) 

200 CONTINUE 
A(l,1) =N 
A(2,1) = A(l,2) 
A(3,1) = A(l,3) 
A(3,2) = A(2,3) 
YBAR = B(l )*B(l )IN · 
RSQDENO = SQY -.YBAR 

CALL INVMAT(AINV,A,3) 

DO 240 L2 = 1, N 
XX(L2,1) = 1.0 
XX(L2,2) = XT1(L2) 
XX(L2,3) = XT2(L2) 

240 CONTINUE 

DO 280 MDAINVl = 1, 3 
SUM=O.O 

DO 250 MDAINV2 = 1, 3 
SUM= SUM+ AINV(MDAINV1,MJ)AINV2)*B(MDAINV2) 

250 CONTINUE 
GAMMAHAT(MDAINVl) = SUM 

280 CONTINUE 
SUMGAMMA(l) = SUMGAMMA(l) + GAMMAHAT(l) 
SUMGAMMA(2) = SUMGAMMA(2) + GAMMAHAT(2) 
SUMGAMMA(3) = SUMGAMMA(3) + GAMMAHAT(3) 

*** RESIDUAL, R-SQUARE(NUMERATOR) 
SUM3 =0.0 
DO 320 Ml= 1, N 

SUM2=0.0 
DO 300 M2 = 1, 3 
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SUM2 = SUM2 + XX(Ml,M2)*GAMMAHAT(M2) 
300 CONTINUE 

SUM3 = SUM3 + Y(Ml)*SUM2 
RESID(Ml) = Y(Ml) - SUM2 

320 CONTINUE 
RSQNUM = SUM3 - YBAR 
RSQUARE = RSQNUM/RSQDENO 
SUMRSQ = SUMRAQ + RSQUARE 

*** DW, SIGMASUARE HAT 
DENO=O.O 
DNUM=O.O 
DO 350 M3 = l, N-1 

DNUM = DNUM + (RESID(M3+1)-RESID(M3))*>1<2 
DENO =DENO+ RESID(M3+ 1 )**2 

350 CONTINUE 
DENO = DENO + RESID(N)**2 
DW = DNUMIDENO 
SIGMASQ = DENO/(N-P-1) 
T_STATl = GAMMAHAT(l)/SQRT(AINV(l,l)*SIGMASQ) 
T_STAT2 = GAMMAHAT(2)/SQRT(AINV(2,2)*SIGMASQ) 
T_STAT3 = GAMMAfIAT(3)/SQRT(AINV(3,3)*SIGMASQ) 
SUMTl = SUMTl + T STATl 
SUMT2 = SUMT2 + T STAT2 . -. . 

SUMT3 = SUMT3 + T_STAT3 
SUMDW = SUMDW + DW 
SUMSGSQ = SUMSGSQ + SIGMASQ 

RETURN 
END 

********************* 
* SUBROUTINE2 . * 
********************* 

SUBROUTINE INVMAT(AINV,A,N) 
REAL *8 A(3,3), L(3,3), U(3,3) 
REAL *8 AINV(3,3), UINV(3,3), LINV(3,3) 
CALL LUDCOM(L,U,A,N) 
DO 100 I= 1, N 

100 LINV(I,I) = 1.0 
DOllOI=l,N-1 

DO 110 J = I+ 1, N 
110 LINV(I,J) = 0.0 

D0130J=l,N-l 
DO 130 I=J+l,N 

SUM=O.O 
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DO 120 K = J+l, I-1 
120 SUM= SUM+ L(I,K)*LINV(K.,J) 

LINV(I,J) = -L(I,J)-SUM 
130 CONTINUE 

DO 140 I= 1, N 
140 UINV(I,I)=l/U(I,I) 

DO 150 J = 1, N-1 
DO 150 I= J+ 1, N 

150 UINV(I,J) = 0.0 
DO 170 I =N-1, 1, -1 
DO 170 J =N, I+l, -1 

SUM=O.O 
DO 160 K = I+ 1, J 

160 SUM= SUM+ U(I,K)*UINV(K.,J) 
UINV(I,J) = UINV(I,I)*(-SUM) 

170 CONTINUE 

* 

CALL PROMAT(AINV,UINV,LINV,N,N,N) 
RETURN 
END 

SUBROUTINE LUDCOM(L,U,A,N) 
REAL *8 L(3,3), U(3,3), A(3,3), WM(3,3) 
DO 100 K= 1,N 

L(K.,K) = 1.0 . 
U(l,K) = A(l,K) 

100 CONTINUE 
DO 150 I=2, N 
DO 120 J= 1, I-1 

WM(I,J) = 0.0 
DO 110 M = 1, J-1 

110 WM(I,J) = WM(I,J) + L(I,M)*U(M,J) 
L(I,J) = (A(I,J)-WM(I,J))/U(J,J) 

120 . CONTINUE · 
DO 140 J=I, N 

WM(I,J) = 0.0 
DO 130 M = 1, I-1 

130 WM(I,J) = WM(I,J) + L(I,M)*U(M,J) 
U(I,J) = A(I,J) - WM(I,J) 

140 CONTINUE 
150 CONTINUE 

* 

RETURN 
END 

SUBROUTINE PROMAT(C,A,B,N,L,M) 
REAL *8 C(3,3), A(3,3), B(3,3) 
DO 100 I= 1, N 
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DO 100 J= 1,M 
C(I,J) = 0.0 
DO 100 K= 1,L 
C(I,J) = C(I,J) + A(I,K)*B(K,J) 

100 CONTINUE 
RETURN 
END 

* END OF PROGRAM 
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********************************************************************* 
* MISSPECIFICATION AR(2) AS POLYNOMIAL REGRESSION MODEL * 
* OF ORDER 2. * 
********************************************************************* 

*********************** 
* MAIN PROGRAM * 
*********************** 

10 

I 

PROGRAM MAIN 
P ARAMETER(N=500, NUM=l 0000, N2=3) 
IMPLICIT REAL *8 (A-H,0-Z) 
REAL*8 U(N), Y(N), X(N,3), RESID(N), UMBETA(N2) 
EXTERNAL RNSET, RNNOA 
ISEED = 13579 

CALL RNSET(ISEED) 

DO 50 I= 1,NUM 
CALL RNNOA(N,U) 

Y(l) =U(l) 
Y(2) = 2*Y(l) + U(2) 

DO 10 J=3,N 
Y(J) = 2*Y(J-1) - Y(J-2) + U(J) 

CONTINUE· 
CALL BETA(N,N2,X,Y,RESID,SUMBETA,SUMRSQ,SUMDW, 

SIGMASQ,SUMT1,SUMT2,SUMT3) 
50 CONTINUE 

EPBETAl = SUMBETA(l)/NUM 
EPBETA2 = SUMBETA(2)/NUM 
EPBETA3 = SUMBETA(3)/NUM 
EMPRSQ = SUMRSQ/NUM 
EMPDW= SUMDW/NUM 
EMPSIGSQ = SUMSIGSQ/NUM 
EMPTl = SUMTl/NUM 
EMPT2 = SUMT2/NUM 
EMPT3 = SUMT3/NUM 
WRITE(*,*) EPBETAl, EPBETA2, EPBETA3 
WRITE(*,*) EMPTl, EMPT2, EMPT3 
WRITE(*,*) EMPRSQ, EMPDW, EMPSIGSQ 

END 

********************** 
* SUBROUTINE 1 * 
********************** 

SUBROUTINE BETA(N,N2,X,Y,RESID,SUMBETA,SUMRSQ,SUMDW, 
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I SUMSIGSQ,SUMTl ,SUMT2,SUMT3) 
P ARAMETER(MDA=3, MDAINV=3, P=2) 
REAL *8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA) 
REAL *8 X(N,3), Y(N), BETAHAT(MDA), RESID(N), SQY 
REAL *8 RSQDENO, YBAR, SUM, SUM2, SUM3, RSQNUM, RSQUARE 
REAL*8 SUMBETA(N2), HAP, DENO, DNUM, DW, SIGMASQ 
REAL*8 T_STATl, T_STAT2, T_STAT3, SUMTl, SUMT2, SUMT3 
REAL *8 SUMRSQ, SUMDW, SUMSIGSQ 

SQY=O.O 
DO 240 L2 = 1, N 

X(L2,1) = 1.0 
X(L2,2) =L2 
X(L2,3) = (L2*L2)/2 

240 CONTINUE 
DO 150 Kl = 1, 3 

DO 120 K2 = 1, 3 
A(Kl,K2) = 0.0 

120 CONTINUE 
B(Kl) = 0.0 

150 CONTINUE 

*** OLS, R-SQOARE(DENOMINATOR), T-STATISTICS 
HAP=O 
DO 200 L= 1, N 

A(l,1) = A(l,1) + X(L,l)*X(L,l) 
A(l,2) = A(l,2) + X(L,l)*X(L,2) 
A(l,3) = A(l,3) + X(L,l)*X(L,3) 
A(2,2) = A(2,2) + X(L,2)*X(L,2) 
A(2,3) = A(2,3) + X(L,2)*X(L,3) 
A(3,3) = A(3,3) + X(L,3)*X(L,3) 
B(l) = B(l) + X(L,l)*Y(L) 
B(2) = B(2) + X(L,2)*Y(L) 
B(3) = B(3) + X(L,3)*Y(L) 
SQY = SQY + Y(L)*Y(L) 
HAP= HAP+ Y(L) 

200 CONTINUE 
A(2,1) = A(l,2) 
A(3,1) = A(l,3) 
A(3,2) = A(2,3) 
YBAR = HAP**2/N 
RSQDENO = SQY - YBAR 

CALL DLINRG(3,A,MDA,AINV,MDAINV) 

DO 280 MDAINVl = 1, 3 
SUM=O.O 

234 



DO 250 MDAINV2 = 1, 3 
SUM= SUM+ AINV(MDAINV1,MDAINV2)*B(MDAINV2) 

250 CONTINUE 
BETAHAT(MDAINVl) = SUM 

280 CONTINUE 
SUMBETA(l) = SUMBETA(l) + BETAHAT(l) 
SUMBETA(2) = SUMBETA(2) + BETAHAT(2) 
SUMBETA(3) = SUMBETA(3) + BETAHAT(3) 

*** RESIDUAL, R-SQUARE(NUMERATOR) 
SUM3 =0.0 
DO 320 Ml= 1, N 

SUM2=0.0 
DO 300 M2 = 1, 3 

SUM2 = SUM2 + X(Ml,M2)*BETAHAT(M2) 
300 CONTINUE 

SUM3 = SUM3 + Y(Ml)*SUM2 
RESID(Ml) = Y(Ml)- SUM2 

320 CONTINUE 
RSQNUM = SUM3 - YBAR 
RSQUARE = RSQNUM/RSQDENO 
SUMRSQ = SUMRSQ + RSQUARE 

*** DW, SIGMASUARE HAT 
DENO=O.O 
DNUM=O.O 
DO 350 M3 = 1,"N-1 

DNUM = DNUM + (RESID(M3+ 1) - RESID(M3))**2 
DENO = DENO + RESID(M3+ 1 )**2 

350 CONTINUE 
DENO = DENO + RES1D(N)**2 
DW = DNUM/DENO 
SIGMASQ = DENO/(N-P-i) 
T_STATl = BETAHAT(l)/SQRT(AINV(l,l)*SIGMASQ) 
T_STAT2 = BETAHAT(2)/SQRT(AINV(2,2)*SIGMASQ) 
T_STAT3 = BETAHAT(3)/SQRT(AINV(3,3)*SIGMASQ) 
SUMTl = SUMTl + T STATl 
SUMT2 = SUMT2 + T STAT2 
SUMT3 = SUMT3 + T STAT3 
SUMDW = SUMDW + DW 
SUMSIGSQ = SUMSIGSQ + SIGMASQ 

RETURN 
END 

* END OF PROGRAM 
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*********************************************************************** 
* MISSPECIFICATION OF POLYNOMIAL REGRESION MODEL OF ORDER 2 * 
* AS AN AR(2) MODEL. * 
*********************************************************************** 

*********************** 
* MAIN PROGRAM * 
*********************** 

PROGRAM MAIN 
PARAMETER(N=250, NlJM=lOOOO, N2=3) 
IMPLICIT REAL *8 (A-H, 0-Z) 
REAL *8 E(N), Y(N), X(N,3), RESID(N), SUMGAMMA(N2) 
EXTERNAL RNSET, RNNOA . 
ISEED = 13579 
CALL RNSET(ISEED) 

DO 50 I= 1, NUM 

CALL RNNOA(N,E) 
DO 10 J= 1, N 

Y(J) = J + J*J/2 + E(J) 
10 CONTINUE 

CALL GAMMA(N,N2,Y,X,RESID,SUMGAMMA,SUMRSQ,SUMDW, 
SUMSIGSQ,SUMT1,SUMT2,SUMT3) 

50 CONTINUE 
EPGAMMAl = SUMGAMMA(l)/NUM 
EPGAMMA2 = SUMGAMMA(2)/NUM 
EPGAMMA3 = SUMGAMMA(3)/NUM 
EPRSQ = SUMRSQ/NUM 
EPDW= SUMDW/NUM 
EPSIGSQ = SUMSIGSQ/NUM 
EPTl = SUMTl/NUM 
EPT2 = SUMT2/NUM 
EPT3 = SUMT3/NUM 
WRITE(*,*) EPGAMMAl, EPGAMMA2, EPGAMMA3 
WRITE(*,*) EPTl, EPT2, EPT3 
WRITE(*,*) EPRSQ, EPDW, EPSIGSQ 
END 

********************** 
* SUBROUTINE 1 * 
********************** 

SUBROUTINE GAMMA(N,N2,Y,X,RESID,SUMGAMMA,SUMRSQ, 
I SUMDW,SUMSIGSQ,SUMT1,SUMT2,SUMT3) 



P ARAMETER(MDA =3, MDAINV=3, P=2) 
REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA) 
REAL*8 X(N,3), Y(N), GAMMAHAT(MDA), RESID(N), SQY, YBAR 
REAL*8 SUMGAMMA(N2) 
REAL *8 RSQDENO, RSQNUM, RSQUARE 
REAL *8 SUM, SUM2, SUM3, DNUM, DENO, DW, SIGMASQ 
REAL*8 T_STATl, T_STAT2, T_STAT3 
REAL*8 SUMTl, SUMT2, SUMT3 
REAL *8 SUMDW, SUMSIGSQ 

SQY=O.O 
DO 150 Kl= 1, 3 

DO 120 K2 = 1, 3 
A(Kl,K2) = 0.0 

120 CONTINUE 
B(Kl) = 0.0 

150 CONTINUE 

X(l,1) = 1.0 
X(2,1) = 1.0 
X(l,2) = 0.0 
X(2,2) = Y(l) 
X(l,3) = 0.0 
X(2,3) = 0.0 

DO 180 L2=3,N 
X(L2,1) = 1.0 
X(L2,2) = Y(L2-1) - Y(L2-2) 
X(L2,3) = Y(L2-2) 

180 CONTINUE 

*** OLS, R-SQUARE(DENOMINATOR), T-STATISTICS 
HAP=O.O. 
DO 200 L= 1, N 

A(l,1) = A(l,1) + X(L,1)**2 
A(l,2) = A(l,2) + X(L,l)*X(L,2) 
A(l,3) = A(l,3) + X(L,l)*X(L,3) 
A(2,2) = A(2,2) + X(L,2)**2 
A(2,3) = A(2,3) + X(L,2)*X(L,3) 
A(3,3) = A(3,3) + X(L,3)**2 
B(l) = B(l) + X(L,l)*Y(L) 
B(2) = B(2) + X(L,2)*Y(L) 
B(3) = B(3) + X(L,3)*Y(L) 
SQY = SQY + Y(L)*Y(L) 
HAP= HAP+ Y(L) 

200 CONTINUE 
A(2,1) = A(l,2) 
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A(3,1) = A(l,3) 
A(3,2) = A(2,3) 
YBAR = HAP**2/N 
RSQDENO = SQY - YBAR 

CALL INVMAT(AINV,A,3) 

DO 280 MDAINVl = 1, 3 
SUM=O.O 

DO 250 MDAINV2 = 1, 3 
SUM= SUM+ AINV(MDAINV1,MDAINV2)*B(MDAINV2) 

250 CONTINUE 
GAMMAHAT(MDAINVl) = SUM 

280 CONTINUE 
SUMGAMMA(l) = SUMGAMMA(l) + GAMMAHAT(l) 
SUMGAMMA(2) = SUMGAMMA(2) + GAMMAHAT(2) 
SUMGAMMA(3) = SUMGAMMA(3) + GAMMAHAT(3). 

*** RESIDUAL, R-SQUARE(NUMERATOR} 
SUM3 =0.0 
DO 320 Ml = 1, N 

SUM2=0.0 
DO 300 M2 = 1, 3 

SUM2 = SUM2 + X(Ml,M2)*GAMMAHAT(M2) 
300 CONTINUE 

SUM3 = SUM3 + Y(Ml )*SUM2 
RESID(Ml) = Y(Ml) - SUM2 

320 CONTINUE 
RSQNUM = SUM3 - YBAR 
RSQUARE = RSQNUM/RSQDENO 
SUMRSQ = SUMRSQ + RSQUARE 

*** DW, SIGMASUARE HAT, T-STATISTICS 
DENO=O.O 
DNUM=O.O 
DO 350 M3 = 1, N-1 

DNUM = DNUM + (RESID(M3+ 1)-RESID(M3))**2 
DENO = DENO + RESID(M3)**2 

350 CONTINUE 
DENO = DENO + RESID(N)**2 
DW = DNUM/DENO 
SIGMASQ = DENO/(N-P-1) 
T_STATl = GAMMAHAT(l)/SQRT(AINV(l,l)*SIGMASQ) 
T_STAT2 = GAMMAHAT(2)/SQRT(AINV(2,2)*SIGMASQ) 
T_STAT3 = GAMMAHAT(3)/SQRT(AINV(3,3)*SIGMASQ) 
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SUMTl = SUMTl + T STATl 
SUMT2 = SUMT2 + T STAT2 
SUMT3=SUMT3+T STAT3 
SUMDW = SUMDW + DW 
SUMSIGSQ = SUMSIGSQ + SIGMASQ 

RETURN 
END 

********************** 
* SUBROUTINE 2 * 
********************** 
*** COMPUTE INVERSE OF A MATRIX. 

SUBROUTINE INVMAT(AINV,A,N) 
REAL *8 A(3,3), L(3,3), U(3,3) 
REAL *8 AINV(3,3), UINV(3,3), LINV(3,3) 
CALL LUDCOM(L,U,A,N) 
DO 100 I= l, N 

100 LINV(I,I) = 1.0 
DO 110 I = 1, N-1 
DO 110 J = I+ 1, N 

110 LINV(I,J) = 0.0 
DO 130 J = 1, N-1 
DO 130 I=J+l,N 

SUM=O.O 
DO 120 K = J+l, 1-1 

120 SUM= SUM+ L(I,K)*LINV(K,J) 
LINV(I,J) = -L(I,J)-SUM 

130 CONTINUE 
DO 140 I= 1, N 

140 UINV(I,I) = 1/U(I,I) 
DO 150 J=l,N-1 
DO 150 I=J+l,N 

150 UINV(I,J) = 0.0 
DO 170 I =N-1, 1, -1 
DO 170 J =N, I+l, -1 

SUM=O.O 
DO 160 K = I+ 1, J 

160 SUM= SUM+ U(I,K)*UINV(K,J) 
UINV(l,J) = UINV(I,I)*(-SUM) 

170 CONTINUE 

* 

CALL PROMAT(AINV,UINV,LINV,N,N,N) 
RETURN 
END 
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SUBROUTINE LUDCOM(L,U,A,N) 
REAL *8 L(3,3), U(3,3), A(3,3), WM(3,3) 
DO 100 K= 1,N 

L(K,K) = 1.0 
U(l,K) = A(l,K) 

100 CONTINUE 
DO 150 I=2,N 
DO 120 J = 1, I-1 
WM(I,J) = 0.0 
DO 110 M = 1, J-1 

110 WM(I,J) = WM(I,J) + L(I,M)*U(M,J) 
L(I,J) = (A(I,J)-WM(I,J))/U(J,J) 

120 CONTINUE 
DO 140 J=I, N 

WM(I,J) = 0.0 
D0130M=l,I-1 

130 WM(I,J) = WM(I,J) + L(I,M)*U(M,J) 
U(I,J) = A(I,J) - WM(I,J) 

140 CONTINUE 
150 CONTINUE 

* 

RETURN 
END 

SUBROUTINE PROMAT(C,A,B,N,L,M) 
REAL *8 C(3,3), A(3,3), B(3,3) . 
DO 100 I= 1, N 
DO 100 J= 1,M 
C(I,J) = 0.0 
DO 100 K= 1,L 
C(I,J) = C(I,J) + A(I,K)*B(K,J) 

100 CONTINUE 
. RETURN 

END 

* END OF PROGRAM 
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********************************************** 
* UNDERSPECIFICATION OF AR(2) AS AR(l) * 
********************************************** 

*********************** 
* MAIN PROGRAM * 
*********************** 

PROGRAM MAIN 
PARAMETER(N = 250, NUM =10000, N2 = 2) 
IMPLICIT REAL *8 (A-H, 0-Z) 
REAL *8 U(N), X(N), Y(N), XX(N,2), RESID(N), SUMGAMMA(N2) 
EXTERNAL RNSET, RNNOA 
!SEED = 13579 

CALL RNSET(ISEED) 
DO 50 I= 1, NUM 

CALL RNNOA(N,U) 
Y(l) =U(l) 
Y(2) = 2*Y(l) + U(2) 

DO 10 J=3,N 
Y(J) = 2*Y(J-1) - Y(J-2) + U(J) . 

10 CONTINUE 

CALL GAMMA(N,N2,X,Y,XX,RESID,SUMGAMMA,SUMRSQ, 
I SUMDW,SUMSIGSQ,SUMl ,SUMT2) 

50 CONTINUE 
EPGAMMAl =SUMGAMMA(l)/NUM 
EPGAMMA2 = SUMGAMMA(2)/NUM 
EMPRSQ = SUMRSQ/NUM 
EMPDW= SUMDW/NUM 
EMPSIGSQ = SUMSIGSQ/NUM 
EMPTl = SUMTl/NUM 
EMPT2 = SUMT2/NUM 
WRITE(*,*) EPGAMMAl, EPGAMMA2 
WRITE(*,*) EMPT1,EMPT2 
WRITE(*,*) EMPRSQ, EMPDW, EMPSIGSQ 

END 

******************* 
* SUBROUTINE * 
******************* 

SUBROUTINE GAMMA(N,N2,X,Y,XX,RESID,SUMGAMMA,SUMRSQ, 
I SUMDW,SUMSIGSQ,SUMTl ,SUMT2) 

P ARAMETER(MDA=2, MDAINV=2, P=l) 
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REAL *8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA) 
REAL *8 X(N), XX(N,2), Y(N), GAMMAHAT(MDA), RESID(N) 
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REAL *8 SUMGAMMA(N2), SQY, YBAR, RSQDENO, RSQNUM, RSQUARE 
REAL *8 SUM, SUM2, SUM3, SUMRSQ, DENO, DNUM, DW, SIGMASQ 
REAL*8 T_STATl, T_STAT2, SUMTl, SUMT2, SUMDW, SUMSIGSQ 

SQY=O.O 
XX(l,1) = 1.0 
XX(l,2) = 0.0 
DO 240 L2 = 2, N 

XX(L2,l) = 1.0 
XX(L2,2) = Y(L2-1) 

240 CONTINUE 

DO 150 Kl= 1, 2 
DO 120 K2 = 1, 2 

A(Kl,K2) = 0.0 
120 CONTINUE 

B(Kl) = 0.0 
150 CONTINUE 

*** OLS, R-SQUARE(DENOMINAOR), T-STATISTICS 
HAP=O.O 
DO 200L= 1, N 

A(l,1) = A(l,1) + XX(L,1)**2 
A(l,2) = A(l,2) + XX(L,l)*X(L,2) 
A(2,2) = A(2,2) + XX(L,2)**2 
B(l) = B(l) + XX(L,l)*Y(L) 
B(2) = B(2) + XX(L,2)*Y(L) 
SQY = SQY + Y(L)*Y(L) 
HAP =HAP+ Y(L) 

200 CONTINUE 
A(2,1) = A(l,2) 
YBAR = HAP**2/N 
RSQDENO=SQY-YBAR 

CALL DLINRG(2,A,MDA,AINV,MDAINV) 

DO 280 MDAINVl = 1, 2 
SUM=O.O 

DO 250 MDAINV2 = 1, 2 
SUM= SUM+ AINV(MDAINV1,MDAINV2)*B(MDAINV2) 

250 CONTINUE 
GAMMAHAT(MDAINVl) = SUM 

280 CONTINUE 



SUMGAMMA(l) = SUMGAMMA(l) + GAMMAHAT(l) 
SUMGAMMA(2) = SUMGAMMA(2) + GAMMAHAT(2) 

*** RESIDUAL, R-SQUARE(NUMERATOR) 
SUM3 =0.0 
DO 320 Ml = 1, N 

SUM2=0.0 
DO 300 M2 = 1, 2 

SUM2 = SUM2 + XX(Ml,M2)*GAMMAHAT(M2) 
300 CONTINUE 

SUM3 = SUM3 + Y(Ml)*SUM2 
RESID(Ml) = Y(Ml) - SUM2 

320 CONTINUE 
RSQNUM = SUM3 - YBAR 
RSQUARE = RSQNUM/RSQDENO 
SUMRSQ = SUMRSQ + RSQUARE 

*** DW, SIGMASUARE HAT 
DENO=O.O 
DNUM=O.O 
DO 350 M3 = 1, N-1 

DNUM = DNUM + (RES1D(M3+1) - RES1D(M3))**2 
DENO = DENO + RES1D(M3+ 1 )**2 

350 CONTINUE 
DENO= DENO+ RES1D(N)**2 
DW = DNUM/DENO 
SIGMASQ = DENO/(N-P-1) 
T_STATl = GAMMAHAT(l)/SQRT(AINV(l,l)*SIGMASQ) 
T_STAT2 = GAMMAHAT(2)/SQRT(AINV(2,2)*SIGMASQ) 
SUMTl = SUMTl + T STATl 
SUMT2 = SUMT2 + T STAT2 
SUMDW = SUMDW + DW 
SUMSIGSQ = SUMSIGSQ + SIGMASQ 

RETURN 
END 

* END OF PROGRAM 
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*********************************************************************** 
* UNDERSPECIFICATION OF POLYNOMIAL REGRESSION OF ORDER 2 * 
* ORDER 2 AS POLYNOMIAL REGRESSION MODEL OF ORDER 1. * 
*********************************************************************** 

*********************** 
* MAIN PROGRAM * 
*********************** 

PROGRAM MAIN 
P ARAMETER(N=250, NUM= 10000, N2=2) 
IMPLICIT REAL *8 (A-H,0-Z) 
REAL*8 E(N), X(N), Y(N), XX(N,2), RESID(N), SUMBETA(N2) 
EXTERNAL RNSET,RNNOA 
ISEED = 13579 

CALL RNSET(ISEED) 

DO 50 I= 1, NUM 
CALL RNNOA(N,E) 

DO 10 J = 1, N 
X(J) = J 
Y(J) = X(J) + X(J)*X(J)/2 + E(J) 

10 CONTINUE 

CALL BETA(N,N2,X,Y,XX,RESID,SUMBETA,SUMRSQ,SUMDW, 
I SUMSIGSQ,SUMT1,SUMT2) 

50 CONTINUE 
EMPBETAl = SUMBETA(l)/NUM 
EMPBET A2 = SUMBETA(2)/NUM 
EMPRSQ = SUMRSQ/NUM 
EMPDW= SUMDW/NUM 
EMPSIGSQ = SUMSIGSQ/NUM 
EMPTl = SUMTl/NUM 
EMPT2 = SUMT2/NUM 
WRITE(*,*) EMPBETAl, EMPBETA2 
WRITE(*,*) EMPTl, EMPT2 
WRITE(*,*) EMPRSQ, EMPDW, EMPSIGSQ 

END 

******************** 
* SUBROUTINE * 
******************** 

SUBROUTINE BETA(N,N2,X,Y,XX,RESID,SUMBETA,SUMRSQ, 



I SUMDW,SUMSIGSQ,SUMTl ,SUMT2) 
PARAMETER(MDA=2, MDAINV=2, P=l) 
REAL *8 A(MDA,MDA), AINV(MDAINV,MDAINV) ,B(MDA) 
REAL *8 X(N), XX(N,2), Y(N), BETAHAT(MDA), RESID(N) 
REAL*8 SUMBETA(N2) 
REAL *8 SQY, Y AR, RSQDENO, SUM, SUM2, SUM3 
REAL *8 RSQNUM, RSQUARE, SUMRSQ, DENO, DNUM 
REAL *8 SIGMASQ, DW, SUMDW, SUMSIGSQ 
REAL*8 T_STATl, T_STAT2, SUMTl, SUMT2 
SQY=O.O 
DO 150 Kl= 1, 2 

DO 120 K2 = 1, 2 
A(Kl,K2) = 0.0 

120 CONTINUE 
B(Kl) = 0.0 

150 CONTINUE 

*** OLS, R-SQUARE(DENOMINATOR), T-STATISTICS 
DO 200 L= 1, N 

A(l,2) = A(l,2) + X(L) 
A(2,2) = A(2,2) + X(L)**2 
B(l) = B(l) + Y(L) 
B(2) = B(2) + X(L)*Y(L) 
SQY = SQY + Y(L)*Y(L) 

200 CONTINUE 
A(l,1) = N 
A(2, 1) = A(l ,2) 
YBAR = B(l)*B(l)/N 
RSQDENO = SQY - YBAR 

CALL DLINRG(2,A,MDA,AINV,MDAINV) 

DO 240 L2 = 1, N 
XX(L2,1) = 1.0 
XX(L2,2) = L2 

240 CONTINUE 

DO 280 MDAINVl = 1, 2 
SUM=O.O 

DO 250 MDAINV2 = 1, 2 
SUM= SUM+ AINV(MDAINV1,MDAINV2)*B(MDAINV2) 

250 CONTINUE 
BETAHAT(MDAINVl) = SUM 

280 CONTINUE 
SUMBETA(l) = SUMBETA(l) + BETAHAT(l) 
SUMBETA(2) = SUMBETA(2) + BETAHAT(2) 
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*** RESIDUAL, R-SQUARE(NUMERATOR) 
SUM3 =0.0 
DO 320 Ml= 1,N 

SUM2=0.0 
DO 300 M2= 1,2 

SUM2 = SUM2 + XX(Ml,M2)*BETAHAT(M2) 
300 CONTINUE 

SUM3 = SUM3 + Y(Ml )*SUM2 
RESID(Ml) =Y(Ml)-SUM2 

320 CONTINUE 
RSQNUM = SUM3 - YBAR 
RSQUARE = RSQNUM/RSQDENO 
SUMRSQ = SUMRSQ + RSQUARE 

*** DW, SIGMASUARE HAT 
DENO=O.O 
DNUM=O.O 
DO 350 M3 = 1, N-1 

DNUM = DNUM + (RES1D(M3+ 1) - RES1D(M3))**2 
DENO = DENO + RES1D(M3)**2 

350 CONTINUE . . 
DENO = DENO + RES1D(N)**2 
DW = DNUM/DENO 
SIGMASQ = DENO/(N-P-1) . . .. 
T_STATl = BETAHAT(l)/SQRT(AINV(l,l)*SIGMASQ) 
T_STAT2 = BETAHAT(2)/SQRT(AINV(2,2)*SIGMASQ) 
SUMTl = SUMTl + T STATl 
SUMT2 = SUMT2 + T_STAT2 
SUMDW = SUMDW + DW 
SUMSIGSQ = SUMSIGSQ + SIGMASQ 

RETURN 
. END 

* END OF PROGRAM 
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