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PREFACE

A question that arises often in time series analysis is that whether the time series
should be differenced. This is equivalent to asking if autoregressive (AR) part of the
model being fitted has a unit root. Time series models with unit roots are known to
provide good stochastic approximations for many nonstationary time series. The vector
autoregressive moving average (ARMA) model has wide applications in various fields
such as economics, engineering and survey sampling. Often the model parameters are
restricted by a number of constraints. In this thesis a simple and easy-to-compute
Newton-Raphson estimator (Shin and Sarkar, 1995) will be discussed that approximates
the restricted maximum likelihood (RML) estimator and takes full advantage of the
information contained in the restrictions. In order to obtain the initial parameter
estimator in the Newton-Raphson iterative method, two stages of multivariate version of
Hannan and Rissanen’s (1982) procedure can be used to methods of both Kohn (1979)
and Shin and Sarkar (1995). In the first part (Chapters 2, 3, 4) of this thesis we study the
problem of testing for a unit root in an AR(p) signal observed with MA(q) noise by using
three different estimation methods (Hannan-Rissanen, Kohn and Shin-Sarkar).

In the second part of this thesis (Chapters 5 and 6) we study various model mis-
specification problems. Model misspecification is a common problem in statistical data

analysis. This is no exception in case of nonstationary time series data. A time series
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model can be misspecified in various ways. One may regress a nonstationary time series
on another unrelated nonstationary time series; or one may misspecify the order of a
nonstationary autoregressive or a polynomial regression model; or one may misspecify a
deterministic trend as a nonstationary AR process or vice versa. In the misspecified
models, inference using the usual statistics such as t, Durbin-Watson (DW) and R’ can be
very often misleading. This topic of model misspecification is discussed in Chapter 5 and
Chapter 6.

This thesis consists of six chapters. The motivation and purpose of this research
will be introduced in Chapter 1. Previous works in testing for a unit root without parame-
tric constraints in time series will be discussed in Chapter 2. The autoregressive moving
average with nonlinear parametric restrictions will be introduced in Chapter 3 in case that
parameters of both autoregressive part and moving average (MA) part are unknown. The
general restricted model will be considered in Section 3.2 and three different estimation
methods (Hannan-Rissanen, Kohn and Shin-Sarkar) will be introduced in Section 3.3. In
Chapter 4 each method will be applied to test for a unit root in an AR(1) signal observed
with MA(1) noise in a Monte Carlo experiment.

In Section 5.1 general regression model with integrated errors and one system of
integrated regressors will be introduced, the limiting distributions of least squares (LS)
estimators and the usual LS statistics such as &, t, DW and R® will be proposed in
Section 5.2, and three different kinds of model misspecifications will be suggested. These
are spurious regression problem, misspecification of nonstationary AR and polynomial
regression models, and misspecification of orders in a nonstationary AR and polynomial

regression models in Sections 5.3-5.5. In Chapter 6 we will analyze three different model
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misspecification problems through a Monte Carlo study and examine each model
misspecification problem by using the usual LS statistics as diagnostic tools.
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CHAPTER 1
INTRODUCTION

1.1. Unit roots tests and model specification problems

Suppose a process has a mean that is different for each time period. How could we
estimate these means ? As usual, we use sample information. However, typically we
have only one observation per time period for time series data. Therefore, we have only
one observation at time t to estimate the mean at time t, one observation at time t+1 to
estimate the mean at time t+1, and so on. An estimate of a mean based on only one
observation is automatically nof useful. The situation gets much worse if the variance of
the process also is not constant through time. In such cases an appropriate degree of
differencing is to be considered to make the data stationary in mean. The reason for
making data stationaryv is to obtain useful estimates of the parameters in the time series
model.

There are several ways to check the stationarity of a time series, i.e., to make a

decision on the proper degree of differencing:



(1) Examine the realization visually (graphically) to see if either the mean or the
variance appears to be changing over time. If different segments of each series behave
much like the rest of the series after we allow for changes in level and/or slope, then this
nonstationary realization can be transformed into a stationary series by differencing. In
addition visual inspection of the data is perhaps the most practical way of measuring
stationarity of the variance.

(2) Inspect the esﬁmated autocorrelation function (ACF) to see if the auto-
correlation move rapidly toward zero. In practice, “rapidly” means that the absolute t
statistic values of the estimated autocorrelations should fall below approximately 1.6 by
about lag 5 or 6 (Pankratz, 1983). These values are only guidelines, not the absolute
rules. In general, if any examination of the ACF for a time series shows relatively large
autocorrelations at high lags, differencing of the observations is probably appropriate.

(3) Scrutinize the estimated autoregressive (AR) coefficients to see if they satisfy
the stationarity conditions.

However, the above methods have some drawbacks in the sense that they fail to
quantify the extent of mean nonstationarity and they depend on subjective judgment.
Moreover, the problem with determining the degree of differencing from plots is that in
small samples the picture is often not clear cut.

On the contrary, the unit root tests provide a more formal method for determining
the degree of differencing and gives a quantitative and rigorous way to check whether or
not the given AR model in time series is stationary. The presence of a unit root indicates
that the time series is not stationary and that differencing will make it stationary. To make

matters precise, the value of d in ARIMA(p,d,q), autoregressive integrated moving



average of order p, d, g, indicates the number of differencing necessary to make the series
stationary and the number d also equals the number of unit roots in the autoregressive
characteristic equation for the time series. Therefore, unit root tests provide a formal and
quantitative method when the degree of differencing needs to be determined. Methods for
detecting the presence of a unit root in parametric time series models have lately attracted
a great deal of interest in both statistical theory and applications. One major field of
application where the hypothesis of a unit root has important implications is economics.
This is because a unit root is often a theoretical implication of models which postulate the
rational use of information that is available to economic agents. Examples include various
financial market variables such as futures contracts (Samuelson, 1965), stock price
(Samuelson, 1973), dividends (Kleidon, 1986), spot and forward exchange rates (Meese
and Singleton, 1983), and even aggregate variables like real consumption (Hall, 1978).
Formal statistical tests of the unit root hypothesis are of additional interest to economists
because they can help evaluate the nature of nonstationarity that most macroeconomic
data exhibit. In particular, economists determine whether the trend is stochastic, through
the presence of a unit root, or deterministic, through the presence of a polynomial time
trend.

Next we consider the topic of model misspecification. Model misspecification is
a common problem in statistical data analysis. A time series model can be misspecified
in a variety of ways. One may regress a nonstationary time series on another unrelated
nonstationary time series; or one may misspecify the order of a nonstationary AR or a
polynomial regression model; or one may misspecify a polynomial regression as a

nonstationary AR model or vice versa. In the misspecified models inference using the



usual regression statistics such as t, Durbin-Watson (DW) and R® can be very often
misleading, and these statistics can be useful tools to detect the model misspecification at

the same time.

1.2. Research purpose

We consider the following general restricted model.

a(L)y,=b(L)e, t=1,2,....n,

where {e,} is a sequence of independent identically distributed (iid) random vectors with

variance covariance matrix Q and L is the lag operator such that kat = Vik»

a(Ll)=I+AL+.+AL’, bL)=I+B,L+..+B]L"

It is assumed that (p, q) are nonnegative integers and known, and A = (A [A; |...|A,), B=
(B; [B; |...|B,) are respectively mxmp and mxmq matrices of unknown parameters. Let
{y},t=1,..., nis the set of mx1 observation vectors and {e;} is a sequence of iid m-
dimensional random vectors with mean zero and a nonsingular variance covariance
matrix Q. For stationarity, invertibility and identifiability, all the roots of det[a(L)] are
assumed to lie outside the unit circle and A, is of full rank. The vector of restrictions on

parameters A, B and Q is defined as



f(A,B,Q)=0

where f is a k-dimensional vector of differential functions.

There are two different situations which we may model with the above general
restricted model as follows:

Case 1. Testing for a unit root with parametric restrictions when parameters B in
general restricted model are known.

Case 2. Testing for a unit root with parametric restrictions when parameters B in
general restricted model are unknown.

As far as Case 1 is concerned, Shin and Sarkar (1994) showed that an ARIMA(p,
1, 0) signal distributed by MA(q) noise is an ARIMA(p, 1, p+q+1) process restricted by
nonlinear constraints on parameters and for this model with a unit root they presented a
modified restricted maximum likelihood estimator (MRMLE)(Shin and Sarkar, 1994, p.
2649), obtained by maximizing a modified likelihood function, that has the same limiting
properties as the restricted MLE (Shin and Sarkar 1994, p. 2648) and is computationally
much simpler. They showed that unit root tests based on the MRMLE perform very well
in small samples and compare favorably with the Said and Dickey (1985) tests with
respect to both sizes and powers through simulation study for the case p = 0 and q = 1.
Shin and Sarkar (1995) considered the multivariate ARMA model with nonlinear
parametric restriction in the context of Case 2 and proposed a simple and easy-to-
compute Newton-Raphson estimator that approximates the restricted ML estimator which

uses fully the information contained in the restriction.



As an application of the general restricted model and restrictions on parameters,
we consider the case withm =1, p =1, g= 1, i.e., we model z, and u, as AR(1) and MA(1)
respectively

yi=z,+w, a(l)z,=¢, u,=cL)w, (1.2.1)
where

c@L)=1+CL,al)=1+AL (1.2.2)

with backshift operator L.

The model (1.2.1) can be expressed as follows:
Ve= Az T g T wit Ciwy, (1.2.3)

subject to the resﬂicti§n f=(f, £,) =(0,0)".

We will study through simulation experiments on model (1.2.1)-(1.2.3) the power
functions of unit root tests based on the following estimation methods:

(1) Hannan and Rissanen (1982)(HR) method.

(2) Kohn (1979) method.

(3) Shin and Sarkar (1995)(SS) method.

In order to obtain the initial parameter estimates in the Newton-Raphson iterative
procedure, the first and second stages of multivariate version of Hannan-Rissanen’s
procedure can be used to both Kohn’s and Shin-Sarkar’s methods respectively.

Our objective is to consider the limiting null distribution of the unit roots and to

check which of the above three different unit root tests perform well with respect to both



sizes and powers based on model (1.2.1)-(1.2.3) and thus apply these results to several
fields such as the engineering science and economics. In chapter 3 and 4 three different
estimation methods are introduced and each method will be applied to test for a unit root
in an AR(1) signal observed with MA(1) noise, respectively. Finally, we will check the
above three different unit root tests with respect to both sizes and powers based on the
given model. Ten thousand replications will be simulated for sample size 25, 50, 100 and
250, for the coefficient of autoregressive signal A; = 1.00, 0.99, 0.95, 0.90, 0.80 and 0.70
(see equation (3.2.10), p. 62) and for nominal levels 1%, 5% and 10%. The normal
random variables will be generated by the subroutine RNNOA of the IMSL subroutine
library. The computed values of the tests n(Al-l) and T based on three different methods
will be compared to the theoretical 1%, 5% and 10% left tail critical values tabulated by
Dickey and Fuller (see Fullér, 1976, p. 371).

Next we discuss our résearch on model misspecification. Shin and Sarkar (1996)
considered a general regression model with integrated errors and one system of integrated
regressors and worked asymptotic properties of the conventional regression statistics
under this model. Specifically, they discussed three types of model misspecifications as
applications based on the analysis of the general regression model (5.1.1): (a) how to
detect existence of cointegration; (b) how to decide whether a nonstationary AR(p) model
or a polynomial regression model gives a good fit; (c) the t-statistic has more power than
its alternative test statistic discussed by Dickey and Fuller (1979) for testing the single
unit root null hypothesis against the double unit roots hypothesis. They concluded that:
the behavior of the regression statistics depends on whether the error term U, is

stationary or nonstationary.



Consider a general regression model

Vi =Bot+ BiXey +..+ BXip + U t=1,...,1, (1.2.4)
where
Xt,_] = de_l +...+ Xt’j_l, j = 1, 2,..., p, Xt,O - Xt’

Ut,j :Ul,_]'l + saw +Ut,j-1’ j = 1,..., k, Ut,():ut.

If (1.2.4) is misspecified then U, is nonstationary; & = ijfk /(n-p-1) diverges; DW =
t=1

Z(fjt,k ~U )7 ijik—p—>0; B, diverges for j; if the probabilistic order of the

regressors is not greater than that of the regression error, then the limit of
R’ =yXX'X)'X'y - 07’ J(y'y - n¥*)

is less than one, otherwise R* —>—1; and the t-statistic diverges, implying misleading
high significance of the t-statistics (Theorems 1-2 of Shin and Sarkar, 1996). On the

other hand, if the stationarity of y; is well explained by X ;’s then the error term U, will

be stationary. In this case B; is consistent; 6" converges; DW converges to a positive

number ; R* —2>1; t statistics converges (Theorem 3 of Shin and Sarkar, 1996). The
above facts developed by Shin and Sarkar (1996) will provide the theoretical background
for our simulation results. We will analyze the above three different situations through a

Monte Carlo study and examine each model misspecification problem by using the usual



OLS statistics such as 6%, t, DW and R” as diagnostic tools. Ten thousand samples will be
simulated for sample sizes 25, 50, 100 and 250 using the normal random numbers will be

generated by the subroutine RNNOA of the IMSL subroutine library.

1.3. Some definitions

(1) What is Stationarity ?
When useful estimates of the parameters in time series process are expected to be
obtained, the stationarity among a number of properties in satisfying the modeling are to

be considered. Consider a finite set of random variables {Ye s Ytn} from stochastic

process {Y:t=0,%1, %2, ...}. A process is said to be strictly n-th order stationary if the

n dimensional distribution function F is time invariant, i.e., F{Yt, yeees Ytn} = F{Yt1+k,...,
Y, .} for ¥V (t;,...,t), kistrue foranyn=1, 2,... . However, there are some difficulties

in verifying a distribution function, particularly a joint distribution function from an
observed time series. Therefore, we use a weaker sense of stationarity in terms of the
moments of the model. That is, a process is said to be nth order weakly stationary if all
its joint moments up to order n exist and are time invariant. Throughout this paper we
use the terminology ‘stationary’ for covariance stationary, which has constant mean and
variance with the covariance and the correlation being functions of the time difference

alone, i.e.,
E(y)=p

El(y; - W] = 5,> = ¥(0)
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and

E[(¥: - W(Yem - W] =y(m), m=1,2, ... .

(2) What is White Noise ?

A time series in which successive values are highly dependent can be usefully
regarded as generated from a series of independent shock e,. These shocks are uncorre-
lated random variables from a fixed distribution, usually assumed normal and having
mean zero and constant variance cez. Such a sequence of random variables e, €, 4,... is
called a white noise process by engineers. Although this process hardly ever occurs in
applied time series, it plays an crucial role as a basic building block in the construction of

the time series model.

(3) What is Random Walk ?

Consider the following ARIMA(p, d, q) model:

o(L)(1 - L)'y, = 8o+ O(L)e,

where ¢(L) = (1 - ¢,L - §,L” - ...- ¢,L7), 6(L) = (1 - B,L - 0,1 - ...- 0,B%) with backshift
operator L and 6, is a fixed value. If p=0,d =1, q =0 in above ARIMA model, (1-L)y,
=€, ¥V; = Vo1 T €, then this model is called random walk. This behavibr 1s similar to
following a drunken man whose position at time ¢ is his position at time (¢-1) plus a step
in a random direction at time ¢. Note that the random walk model is the limiting process

of ARIMA(1, 0, 0), AR(1), process (1 - ¢;L)y, = e, with ¢;—>1. Moreover, random walk
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has the distinct characteristic of having stationary mean and nonstationary variance based
on AR(1) model with ¢; = 1 and white noise e,. Finally, the random walk phenomenon
can be characterized by large nonvanishing spikes in the same ACF of the original series

{y,} and insignificant zero ACF for the differenced series {(1-L)y,}.

(4) What is the Measurement Error Model ?
It is not always possible to observe a time series x, directly. Instead of observing

X, one observes the sum

Y= Xt (1.3.1)

where u, is a N(0, 0'u2) random variable, called measurement error. The observed variable
y, is sometimes called the manifest variable or the indicator variable. The unobserved
variable x, is called a /atent variable in certain areas of application. Models with fixed x,
are called functional models, while models with random x, are called structural models.
As an example of a situation where x; can not be observed, consider the relationship
between the yield of corn and available nitrogen in the soil. Assume that there is an
adequate approximatidn to the linear relationship between yield and nitrogen. In order to
estimate the available soil nitrogen, it is necessary to sample the soil of the experimental
plot and to perform a laboratory analysis on the selected sample. As a result of sampling
and of the laboratory analysis, we do not observe x; but observe an estimate of x,.
Therefore, we represent the observed nitrogen by y,, where y, satisfies (1.3.1) and u; is the
measurement error introduced by sampling and laboratory analysis. Estimation of the

true value x, is very important in signal measurement problems encountered in the
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engineering sciences where X, is known as signal and u, is known as noise. It is also
important in survey sampling in the situation where a population is sampled at a sequence
of time points according to a sample scheme. In a survey sampling, y,, X, and u, denote
observed direct survey estimates, unobservable population values and the sampling errors

respectively.

(5) What is the Autocovariance Generating Function ?

For each of the covariance-stationary processes for y,, we calculate the sequence
of autocovariances. If this sequence is absolutely summable, then one way of
summarizing the covariances is through a scalar-valued function called the
autocovariance generating function. Frequently this function is easy to calculate, in
which case the autocovariance at lag k may be determined by identifying the coefficient
of either z* or z*. If {y.} 1s a stationary process with autocovariances, then its auto-

covariance generating function is defined by

g2) = 27,

j=—

provided the series converges for all z in some annulus < |z| <r withr> 1.

For a covariance-stationary vector processes y, with an absolutely summable
sequence of covariance matrices, the analogous matrix-valued autocovariance generating

function G(z) is defined as

G(z) = iszj,

j=—eo



13

where I'; = E[(y; - 1)(¥y; - 1)'] with mean vector of y;, .

(6) What are Integration and Cointegration ?

If a series with no deterministic component has a stationary, invertible ARMA
representation after differecing d times, it is said to be integrated of order d. If two series,
y1, and y,, are both I(d), it will normally be the case that any linear combination is also
I(d). However, it is possible that there is a linear combination of the two series for which
the order of the integration is smaller than d. In this case the series are said to be
cointegrated. More generally, the components of the vector time series y, are said to be
cointegrated of order d, b if (a) all components of y, are I(d), and (b) there exists a non-
null vector, a, such that ay, is I(d-b) with b > 0. Cointegration means that although many
developments can cause permanent changes in the individual elements of y,, there is some
long-run equilibrium relation tying the individual components together, represented by
the linear combination a'y, and thus certain constraints are needed to impose on the
multivariate time series model. An example of such a system is the model of consumption
spending. Although both consumption and income exhibit a unit root, over the long run
consumption tends to be a roughly constant proportion of income, so that the difference

between the log of consumption and the log of income appears to be a stationary process.

(7) What is Brownian Motion (or Wiener) process?
A stochastic process [X(t), t = 0] is said to be a Brownian motion process if:
(2) X(0)=0;

(b) {X(t), t = 0} has stationary independent increments;
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(c) for every t > 0, X(t) is normally distributed with mean 0 and variance c’t, where c is
some positive constant.

When ¢ = 1, the process is often called standard Browmian motion. As any
Brownian motion can always be converted to the standard process by looking at X(t)/c,
we shall suppose throughout that ¢ = 1. This process has been used beneficially in such
areas as statistical testing of goodness of fit, analyzing the price levels on the stock

market, and quantum mechanics.
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CHAPTER II

PREVIOUS WORKS IN TESTING FOR A UNIT ROOT

WITHOUT PARAMETRIC CONSTRAINTS IN TIME SERIES

There has been a huge amount of work done on unit roots tests so far, but only a
few papers are reviewed in this chapter. Section 2.1 discusses statistical inference for

ARIMA(p, 1, q) models and Section 2.2 for measurement error models.

2.1. Previous results on ARIMA(p, 1, q) models

In Section 2.1.1 we review unit roots tests in univariate time series and in

multivariate time series in Section 2.1.2.

2.1.1. Unit roots in univariate time series

Box and Jenkins (1976) proposed an “interactive modeling process” that consists
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of model formulation (“identification”), estimation and diagnostic checking, one key

element of which is the use of integrated, or “difference-stationary,” ARMA models,

(1-L)* ®(L)y, = O(L)ey.

Thus, although y, is nonstationary, it is assumed that its d-th difference is a stationary
ARMA process. The appropriateness of the Box-Jenkins tactic of differencing to achieve
stationarity depends on the existence of one or more unit roots in the autoregressive lag
operator polynomial. The desirability of specific tests for unit roots is therefore apparent.

Dickey (1976) and Fuller (1976) used the Monte Carlo method to calculate the
percentage points of the finite sample as well as the asymptotic distribution of the least
squares (LS) estimator of the AR parameter as well as its “t-statistic,” when the true AR

parameter is positive or negative one. Specifically, they consider the null model

Hy: ¥:=Yu1 + € &~ NID(0,6%), yo=0
and the alternative

Model 1: Hy: y,=py.1 + €, €~ NID(O, 02), p=1,y,=0

and consider the LS estimator (which is also ML, under the normality assumption)

5 =Zytyt_1 (2.1.1)
D
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obtained from a sample of size n. Under the null hypothesis (p;s-1)=0, (n™"); the
convergence is faster than for |p| < 1, in which case (p,; — p) = 0, (n""*). It follows that

the proper quantity for which percentage points should be calculated under the null is
n(p,s —1). Dickey and Fuller (1979) tabulate the asymptotic as well as the finite sample
percentage points of n(p—1) for various sample sizes. Under the null hypothesis of a unit

root, the distribution of n(p—1) is skewed to the left, and lim, ,,P(p<1) = 0.68. They

also consider the usual “student’s t” for testing p = 1,

A

p—1

Pt
,/sz Qv
t=2

& = Dy, — Py, )’/ (n—2).
t=2

where

Under the null, T = O, (1), but it does not have the t distribution; again, they calculate its

percentage points for various sample sizes using Monte Carlo simulation. Rewriting the

first-order autoregression as

Vi~ Y1 = (P - Dy e (2.1.2)

Thus, T is the usual t-statistic in a regression of the first difference of y, on the first lag of

Yt
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Dickey and Fuller (1979) showed that T is a monotone function of the likelihood
ratio for the null hypothesis of p =1 vs. the two-sided alternative and they obtained the
limiting distribution of n(p—1). Despite the non-standard properties of the LS estimator
in a nonstationary AR(1) model, a test of the hypothesis that the process is a random walk
against the alternative that it is stationary can be carried out using n(p—1) or the
regression t-statistic T and comparing its value with tabulated percentiles of the
distribution by Monte Carlo simulation. In a similar manner, unit root testing in two

more general AR(1) model can also be developed:

Model 2: y, - p=p(y,- n) + &, t=1,..., wherey,=0, e, ~NID(0, 02)

Model 3:y,-a-bt=p{y,;-a-b(t- 1)} +e, t=1,..., where y,=0, e, ~ NID(0, 02)

and the limiting distributions of the three different LS estimators, p, p,, and p,
respectively can be derived. The LS estimator p of Model 1 is given by (2.1.1) for the
model when the true value of p is positive or negative one. The limiting distribution of
n(E-1) is

1 1 )
Dyeeo | SWF -1

n(p-1) =" — Twora
FXY?»] OW(r) dr
t=1

where W(-) is the standard Brownian motion on [0, 1]. We could define the alternatives
to H;: |p] < 1 or Hy: |p| > 1. For either of these cases, one-sided test is appropriate. If the

alternative is |p] < 1, then the model is asymptotically stationary, since the effect of the
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fixed initial condition is transient. The alternative |p| > 1, on the other hand, is non-
stationary for all sample sizes. Now consider allowance for a nonzero mean p under the
above alternative (Model 2), or y; = a + py,; + €, where oo = u(1-p). If un were known,
we could simply center the data and proceed as before. In practice, p must be estimated
along with the other parameters. Although o vanishes under the null hypothesis p = 1, it
is nevertheless present under the alternative, and so an intercept is included in the
regression. The corresponding statistics %u and n(p, —1) have been tabulated under the
null (o, p) = (0, 1) by Dickey (1976) and Fuller (1976). Similarly, the alternative might
include a trend (Model 3), or y, = o + Bt + py,; + e, where o = a(1-p) + bp and B = b(1-
p). Under the null hypothesis that p =1,

yt:b + Yt + S

but under the trend-stationary alternative both the intercept and trend enter and so they
must be included in the regression. Dickey (1976) and Fuller (1976) tabulated the
distributions of normalized-bias and studentized statistics, T and n(p, —1), respectively,
under Hy: (a, B) = (0, 0). Furthermore, they showed that the null distributions of the two
test statistics are unaffected by the value of b in Model 3 and the representations for the
limit distributions of all the test statistics under the null are invariant to the choice of y;,.
Dickey and Fuller (1981) extended unit roots tests in AR(1) to higher order AR

process. The AR(p) model may be reformulated as
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. E . X (2.1.3)
(Ye=Ye) =P Y + 220 (Vo j = Yioju) + € €~ NID(0, %)
j=t

where p = ipk,j =1,2, ..., p-1 and p* = ipk—l. When p* is zero, the model
k=1

k=j+1
reduces to an AR(p-1) in first differences, i.e., ARIMA(p-1, 1, 0). Thus, a test of H: pa'= =
0 is the unit root test, which is called “Augmented Dickey-Fuller (ADF) test.” The test
could also be carried out by regressing y; on y,; to y,, and testing the restriction that the
coefficients sum to one. The asymptotic distribution of the t-statistic associated with y,
in (2.1.3) is the same as that of (2.1.2). The t-statistics associated with the differenced
variables in (2.1.3) are asymptotically standard normal, so that inference on the lags can

be conducted in the usual way. In addition for the case of a nonzero mean, we have

(y,—pw= iaj(yt_j —w+e, €~ NID(,c%), yo=0.
j=1

We can put this in the form

-1
Y.=k+py. + ipj (yt—j - Yt—j+1) te
=t

where k = p(1- iocj). Under the null of a unit root, the intercept vanishes because in
j=1

that case ioc ;= -1. The distribution of the studentized statistic for testing p =1 in this

=1
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regression is asymptotically identical to that of T,. Consider the alternative of a linear

trend,
(¥, —a—bt) + Yoy(y,;—a—b(t~ ) +e,, &~ NID(O, 63, yo = 0.
j=1
or

-1
v, =k, +k,t+py  + E:p}(yw- o 2R L
j=1

where k, =a(l+ iai)—biiai k, =bt(1+ iai). Under the null, k; = —biimi and

i=1 i=1 i=1 i=1
k, = 0. The use of AR processes as approximations raises the question of the applicability
of the ADF test. In theory the ADF test is only valid if the underlying model is indeed a
finite AR process. When an MA part is present in model, a bias is in general introduced
into the test statistics.

Said and Dickey (1984) made an initial attempt to extend the unit root tests to the
general ARMA(p, q) case, where the p, q are unknown, by approximating the ARMA
model as a finite autoregression and showed that as long as p goes to infinity sufficiently
slow relative to n, then the OLS t test of p = 1 can continue to be compared with the
Dickey-Fuller values (Table 8.5.2, Fullef, 1976). The Said-Dickey result permits the
researcher to use a large value of p on which to base this comparison the larger is the
sample size n. However, this has the problem that one loses the degree of freedom by
having to both estimate a number of nuisance parameters and condition on increasing
number of observations n. LS method can be used to estimate the coefficients, and this

procedure produces test statistics whose limit distributions are the same as those tabulated
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in Fuller (1976). It will prove convenient to consider first the simple case of H,:

ARIMA(1, 1, 1) vs. H;: ARMA(2, 1). Suppose that
Yt = PYt1 + Xp Xp = 0Xgq + € + Bet-la ICX‘L lﬁl < 19 S~ NID(Oa 0-2)9 X0= Yo ™ 0.

If |p| < 1, then {y,} is a stationary ARMA(2, 1) process except for transitory effects. On

the other hand, if p = 1, then {y,} is ARIMA(, 1, 1). Now note that
€ = Z(_B)j(xt—j _(x‘xt—j—l)
=0
Y= PYe1 + (@ + B)(Xer - Bxip + BXes ) F e
We can use these results to write
Yi-Ye1 = (P - Dy + (o + B)(xpq PXpn + Bzxt-3 -...) te

Under the null hypothesis of p =1, X; =y, - ¥..; = Ay,, and so we write

Ay, = (00 + B)(AYe1 - BAY, + B2 Ayes -...) + e

We can then develop a test of the null by regressing Ay, on y, 1, AYi15..., AYe Where k =

1/3

0,(n""). The LS estimates of p, o and § obtained by this technique are consistent under

the null. However, the distribution of n(p— 1) depends on the nuisance parameters o and
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B and so it is not useful. On the other hand, the studentized statistic T associated with
(p—1) does not involve any unknown parameters, and it has asymptotically the original
Dickey-Fuller © distribution. Now consider the general ARMA(p+1, q) model, which is

written as

Yi=pPYu t Xp

2
Xy + iaixt—l =€ + iBjet—j > X0= Yo~ 05 € ~ NID(O’ G )
i=1

=

where X, is stationary and invertible. Then we can proceed exactly as before, estimating
by using regression

Ay, = (p - 1)y - djAY, -...- GAX i + €,

We still get consistency under the null, and the distribution of the t-statistic on (p—1) is
the same as before. Also, if the nonzero mean is allowed under the alternative, © , may be
used rather than 7 .

Said and Dickey (1985) studied a one step Gauss-Newton procedure of estimating
p starting with p = 1 based on ARIMA(p, 1, q) model with known p and q. The model

they suggested is as

Yt = th-l + Zt and Zt + Zp:aizt_i = et + Zq:BJet_J Where YO = 07 et ~ NID(OD 02)_
i=1 j=1

(2.1.4)
Associated with the above z, process are (1- a;L - ...- apr), (1-B4L-...- Bqu), the roots

of which are all assumed to be greater than one in absolute value. Viewing as a
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difference equation subject to q initial conditions, €, = 8;, €,1 = 8,,..., €, 441 = 8, holds,
and thus model (2.1.4) can be rewritten as follows:
&= (¥¢ - PYe) T 1Y - PYs2) t - T 4 (Tip - PYip) - Bi€er - -+ - Belig 2.1.5)

and let &= (f),al,---,ép,Bl,---,f}q,sl,---,ép) and expand e/(0) about 0 to obtain

e, 0)=¢,®) - v, @)p- ) - Lx,,O)a, ~8) - Zw, OB, - B) - A, O)G, -9, +1,
(2.1.6)

where 1, is the Taylor series remainder and - V,(8), - X,,®), - W;,(6), and — A, (6) are the

derivatives of e(0) with respect to p, a;, B; and 8, respectively, evaluated at 0. Ignoring

the remainder term and rearranging (2.1.6) as

e,®)=v,O)p~ )+ Zx,, O)a ~3) + Zw, OB, - B) + A, O)3, ~5,) +e,
2.1.7)
suggests the regression of ¢,(8) on v, (@), X, O3, (W, ®):, and (A, (8))1 to estimate
Y =(p—-pa,—a,,..,a,-4,B - Byyeres B, - f}q, 8, = 0,,enes 3, —Sq). The derivatives in

(2.1.7) can be computed recursively as follows:
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vi@®) =y +ta )y, et a Y - BV, = BV
Xi.t(e) == |31Xi,t—1 Tl T qui,t—q -7,
wj,t((;)) =€, ; ~ Ble,t_l - quj’t_q,
and
Ak,t = BlAk,t—l Thee T Bqu,t—q

wherei=1,...,p;)=1,..., qand k = 1,..., q. Computation is performed by taking the
initial value of p to be 1 and using the method of moment estimator of (B, ..., By).
Furthermore, since the limiting distribution of n(p~-1) is identical to that of Dickey and
Fuller (1979) and Fuller (1976), the tables suggested by them can also be applied.

Phillips (1987) suggested a nonparametric approach with respect to nuisance
parameters and thereby allows for a very wide class of time series models in which there
is a unit root. This includes ARIMA models with MA part with heterogenously as well

as identically distributed innovations. The basic idea is to estimate a non-augmented
Dickey-Fuller regression, y, = py,.; + €, and then to correct the Dickey-Fuller normalized-
bias n(p—1) and studentized statistic T for general forms of serial correlation and/or
heteroskedasticity that might be present in e,. Implicitly, the procedure amounts to
semiparametric estimation of p, accounting for the infinite-dimensional nuisance
parameter associated with e, Moreover, he modified the T, n(p~1) tabulated by Dickey-
Fuller when the data follow an ARMA(p, q) process, and developed new tests for unit

roots that apply under general conditions. He defined the new statistics as
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~ 1 2 2 -2 < =241
Z, = n(p—l)—g(snk =S))(n g(yt_l -9

and
n . 1 o 12 e 2.1.8
Z, =By )-8, - 35 ~SH(ErL) 8 @19
where
n 1 n
Si = Z(yt - yt—l)2 /n:_zef’
t=1 ni
n k n
S2 = Zef /n+ Zmek Zetepm /n,
t=1 m=1 t=m+1
and

(Dmk=l-m/(l+k)

The cutoff point k of the weighted autocovariances should grow with sample size, but at a
slower rate, to ensure convergence to the asymptotic Dickey-Fuller distribution. In this

case, Z, is a transformation of the standardized estimator n(p—1) and Z, is a transfor-

mation of regression t statistic t, with

,/ZYL
t=1

t, = (-1

P [&
\/Z(yl -py.,)’ /n
t=1

and

Zyt—l(yt - yt~1) /n
n(p-1) = =—— based on y; = py,; + &, p=1.
223’3—1 /n

t=1
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The limiting distribution of Z, is the same as that of the regression t statistics as long as

lim,, _,(,(,{Z:E(et2 /n)} =lim, _,(,(,{Z:E(Sf1 /n)}. Without depending on strong assumptions
t

such as independence, homoskedasticity and normality, the given statistics Z,, Z , allow

for quite general weakly dependent and heterogenously distributed innovations based on
an asymptotic theory for the LS regression estimators and the associated regression t
statistics in (2.1.8). This method seems to have significant advantages when there are
MA components in the time series and, at least in this respect, offers a promising
alternative to the Dickey and Fuller (1979) and Said and Dickey (1984) procedures.
Phillips and Perron (1988) extended the study of Phillips (1987) to the cases
where (1) a random walk with a shiftt in mean included (2) a random walk with a shift in
mean and a linear trend are included in the specified model and suggested a modified test
statistic which employed a correction. The limiting distributions of the following new
test statistics are expressed as functionals of standard Brownian motion and are identical
to those given in Fuller (1976), and these tests may be used with existing tabulations even

if they allow for much more general innovations specification (p. 341).

Z,=n(p-D-i/m ,

, 5 AS,
ts 6;11 p ﬁ’

Z, =t 43, e
=7 L+ A, =
%G, l,fmyymyy

N A

Zazn(p—l)—'ﬁ
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M=(1-n")m, —12m} +12(1+n™")m m —(4+6n"' +2n~)m?,
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@ ~8)/2, A=0/&,, X=(& -3")/2, A=1/5]

n.

based on the two LS regression equations

Yo = }I:H- ﬁyt—l + ﬁ‘t

JUREPS | - -
y, = Do+ B(t—gn)+ Py + 1,

where ({1, p) and (fi, B, P) are the least squares estimates.
Pantula (1991) characterized the asymptotic null distribution of a variety of unit

root test statistics in the model

Y= Yea T € - 0pe

as 6—1 with sample size. Specifically, let6, =1 - y/ns, where 0 <y<2and 6 <0. As 6
approaches unity, of course, the process approaches stationarity, since the first differ-
enced process would then have a unit MA root. The asymptotic null distributions of the

various test statistics may then be shown to depend on the speed with which 6 — 1, i.e.,
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on the value of 8. Pantula’s examination of asymptotic size in a sequence of null models
getting arbitrarily close to the alternative nicely complements the “roots local to unity”
literature, in which asymptotic power is investigated against a sequence of alternatives
getting arbitrarily close to the null.

Hall (1989) investigated a strategy for testing for a unit root in the situations
considered by Phillips (1987) and Phillips and Perron (1988) where the innovations
constitute a MA process of order q, denoted by MA(q). The rationale behind the test
procedure is based on the observation that the generalization of the Dickey and Fuller
(1981) tests to the random walk with the MA process is complicated by three factors: the
unit root, the MA innovations, and the use of LS to estimate the model. He proposed
instrumental variables (IV) estimator which uses y,, for k > q as the instrument on y,
when the underlying model is an ARIMA(O, 1, q). Let {y,} be a time series generated by

the model

¥t = PYyr1 +”‘t’ t= 1""’ n, p=1

where y, has a fixed distribution independent of t, sample size, and

=6+ 0 e t..+ 0 e,

It is assumed that {e}~ 11d(0, 02) for all t and supt{E(lpt]B ")} < oo for some p>2, &> 0.

Then the corresponding parameters for the three different models are estimated using the

IV approach respectively are as follows, summations being over t =k,..., n:
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It is apparent that the use of instrumental variables to reduce the bias in the LS estimates
might deliver a test with improved finite-sample performance relative to the Said and
Dickey (1984) and Phillips (1987) approaches. Furthermore, the limiting distribution of
the estimator, properly normalized, of the coefficient of y, ; converges to the distribution
tabulated by Dickey (1976) and Fuller (1976) and when multiplied by a sample covar-
iance ratio t statistics for the coefficient on y,; converges to the distribution tabulated by
Dickey (1976) and Fuller (1976). This test may performs relatively favorably because it
uses more information on model structure than Phillips’s (1987) approach and avoids the
loss of information inherent in Said and Dickey (1984) approach.

The Monte Carlo evidence in Schwert (1989) which examines the effects of
model misspecification on the size of unit root tests for mixed ARIMA process indicated
that the above modifications of test statistics may not be very successful. For instances,
consider the ARIMA(O, 1, 1) model, y, =y.; + ¢ - 0e.;, t = -19,..., n where the errors
{e,} are serially uncorrelated standard normal variables, the data are generated by setting
€,0 and y.,, equal to zero and creating n+20 observations, discarding the first 20

observations to remove the effect of the initial conditions. A negative value of 0 close to
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minus one means that the series is not too far from being stationary white noise. In this
case, all the above tests reject the null hypothesis of a unit root much more frequently
than they should. Thus for n = 100 and 6 = -0.8, Pantula (1991) showed that for a
nominal test size of 0.05, the ADF tests based on AR models with p =4 and p = 8 have
empirical sizes of 0.36 and 0.11 respectively, Hall’s (1989) IV test has a size of 0.22,
while Phillips-Perron (1988) tests have sizes of over 0.85. And simulations in Schwert
(1989) showed that the tests for a unit root developed by Dickey and Fuller (1979, 1981)
are sensitive to the assumption that the data are generated by a pure AR process. When
the underlying process contains a MA part, the distribution of the unit root test statistics
can be much different from the distribution defined by Dickey and Fuller (1979, 1981).
Moreover the tests proposed by Said and Dickey (1984), Phillips (1987) and Phillips and
Perron (1988) to correct the model misspecification problem do not appear to work well
as long as the MA parameter is large. Both Pantula (1991) and Schwert (1989)
recommended the ADF test, while conceding that the question of how to decide on
appropriate value of p is difficult one to determine. The ADF test remains attractive.
Pantula and Hall (1991) suggested an approach based on an instrumental variable
estimator for testing the null hypothesis that a process y, is an ARIMA(p, 1, q) against the
alternative that it is stationary ARIMA(p+1, 0, q) process, which is the extension of
ARIMA(O, 1, q) in Hall (1989). They also considered the limiting distribution of the
instrumental variable estimator when the estimated model is either (1) the true model, (2)
the true model with a shift in mean included, or (3) the true model with a shift in mean
and a linear time trend included. Their simulation showed that the criteria based on the

IV approach seem to perform as well as or better than the existing methods when the
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model is specified correctly (or when p and q are known). However, if the model is
overspecified, then empirical levels are higher than the nominal level in moderate-sized
samples, whereas if the model is underspecified the IV estimators are inconsistent.

Shin and Pantula (1993) proposed problem of testing for a unit root in an AR
model where the data are available only from each s-th period, called systematic
sampling. In some applications, the observations may be available only at periodic
intervals. For example, economic data may suggest a monthly model but only quartile
(or yearly) data are available; or in a manufacturing process the data are collected only at
regular time intervals because of cost considerations. They consider an AR(p) process x;

given by

X =

-

1t
—_

¢, X, +¢€, where {e} ~iid(0, c7).

1

Assume that y; for only each s-th period y; = X, ¥, = Xy, .-+ » Yo = X, are available, where
s is a positive integer. They show that y, may be modeled by a ARMA(p, q) where q =
max{q:q < p - (s/p)}. Using a Monte Carlo study they compared the IV approach by
Pantula and Hall (1991) and nonlinear least squares estimators by Said and Dickey (1985)
and Shin and Fuller (1992) and obtained results that methods based on approximated
ARMA(1, p-1) performed better than those based on ARMA(p, p-1).

We now discuss recursive estimation of ARMA(p,q) stationary process suggested
by Hannan and Rissanen (1982) for the purpose of comparative study in Chapter 3. They

considered a ARMA(p, q) stationary process generating a sequence y, according to the
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ARMA model ioc Yo = iBis «; for certain values, p = pg, q = qg, O; =0, B; =Py, of
=0 i=0

the coefficients. It is assumed that either a,, or B, is not zero with E(g,) = 0, and E(;

2 . .
g) = 840". In order to estimate py, qo, Op; and By ; from observations yy,..., yr, we assume

for the true system that the polynomials
A, = i:oco,jZJ > bO,z = iBo,jZJ s Xpo = Bo,o =1,
, s

have no common factors and that a,, # 0, by, # 0 for [z]| < 1. Then in the first stage

estimates, €, are found by fitting a high order AR model for the known pg qo. Thus the £,

n
are formed, for n large, as €, =Z:'Q1njyt_j 8,0 =1, where 4 ; are AR coefficients
=0

T-t
estimated through the Yule-Walker equations. If ¢, = ¥Zysys+t, then 4, ; may be

s=1

recursively calculated through the equations

At this time, n is assumed to be chosen so as to increase slightly faster than logT but no
faster than some power of logT by considering the criterion logd’, +(mlogT)/T,
provided n was not allowed to be too large, where m = max(nt+p+1, n+q+1). In the

second stage we calculate, for each (p, q)
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1 ¢ ’
as,q = inf? Z ( oY 5= iﬁjét_j] with o =1.
t=m \ j=0 j=1

Then (P, §) are chosen to minimize
log &, + (p+q)logT/T. (2.1.9)

Once P, § are determined we may, at the third stage, use any of the available algorithms
for the calculation of the maximum of the Gaussian likelihood, initiating the iterative

calculation with the strongly consistent estimates, @, ﬁj. The procedure should be
iterated commencing from the produced regression coefficients o;, B ; until the residual

mean square stabilizes. They also showed that for P, § minimizing (2.1.9) and &;, [3 i»

172, ~
(a;-

i) T (ﬁj —By,;) have the same asymptotic distribution as the maximum likelihood

estimators, for p,, q, known, on Gaussian assumptions.
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2.1.2. Unit roots in multivariate time series

There are two approaches used to investigate unit roots in vector time series: one
is the approaéh of Engle and Granger (1987) and the other is that of Fountis and Dickey
(1989). The main difference between two approaches is that Engle and Granger (1987)
look for evidence of a single cointegrating vector vs. the null hypothesis that all linear
combinations of the vector entries are nonstationary while Fountis and Dickey’s (1989)
approach tests a null hypothesis of a single unit root canonical series. In addition Fountis
and Dickey’s (1989) distributional results for the test statistic rely on the assumption that
there is exactly one unit root and the remaining parameters less than 1 in magnitude. The
null hypothesis indicates a single unitv root series mixed, by way of linear combinations,
with several stationary series. We now introduce some ideas from Fountis and Dickey
(1989) and we will discuss Engle and Granger (1987) in Chapter 5.

Let

Y, =AY, +e¢, (2.1.10)

where e, is a dimension k multivariate normal column vector with mean ¢ and variance
covariance matrix X. Assume that A has one eigenvalue 1 and the rest less than 1 in
magnitude. The right eigenvectors of A and A - I are identical, and there exists a matrix
R such that R (A - DR has 0 everywhere in the first row and column.

Let
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where all eigenvalues of V,, are less than 1 in magnitude.
Regressing Y, on Y, ; produces the coefficient matrix
A= (XQO)Y(’—U)(Y(—UY('—H)-I
where Yy = (Yo, Yy, ..o Yo1); Yoy = (Y3, Ypooo, Yy).  Notice that A is similar to R

A R, where

R'AR=[R'Y V' (R R Y )Y R DT,

and so the eigenvalues of A are the same as those we would get if we could regress

R'lY(o) on R'lY(_l). Thus if we can prove a distributional result for eigenvalues in this
transformed regression it will also hold for the untransformed regression. Even though
we do not know the true R we can act as if we do for the purpose of studying

distributional properties of the eigenvalues. Thus we assume

(2.1.11)

is the true model on the transformed scale and estimate all estimates of the coefficient

matrix (including the 0’s). Let

<>

il
1
8]
| |

3 >_<>
=

3 >H<>
[ 8]
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denote the estimate of the coefficient matrix as partitioned in (2.1.11). Each element of
\712 is Op(n'l) and each element of \721 is Op(n'm). This implies that n(\Af11 -1) has the same
limit distribution as that tabulated for n(p—1) in Fuller (1976).

The characteristic equation expanded on the first row is

IV -ml| = (V,, - m) |V,, -mI| +O,(n>?) =0,

and since the eigenvalues of V,, are bounded away from 1, n large implies a solution m =

A which differs from ¥V, by O, (0. Thus

n(h,-1) =n(V;,-1) + 0, @™,
showing that the distribution of in is also governed in the limit by the distribution for the
Dickey-Fuller tests.

This procedure easily extends to higher-order cases. Let

Yt = AlYt-l + A2Yt-2 +...+ Ath-p + 8t> t= 1, 2,.. ., 1,

where Y, is a dimension k column vector. Reparameterize this as

VY, =-(T-Ap .- A)Y - (Ag+ Ag+ oo+ ADVY - o - A VY i +

where VY, = (Y, - Y,;;) and note that if the characteristic equation,
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ILPY-LP'A, - ... -A_|=0,

ol

has a unique root L = 1 then the coefficient matrix on Y, is of rank k-1. If estimate Ai
of A, are calculated by least squares method from n observations, then the solution L = ?A»n

of LI - Lp'IAI S Apl = 0 closest in magnitude to 1 provides a test since, under the

null hypothesis of a single unit root, n(] in[ - 1) has the same limit distribution as n(p—1)

given by Dickey and Fuller (1979). Computing the eigenvectors of (I - Al S Ap)

associated with A_, we can construct R with the right eigenvector as its first column and

the left eigenvector as the first row of R

The following papers may provide the background to develop the unit roots in a
vector process (Chapter 3).

Reinsel et al. (1992) expressed the explicit form of the gradient vector and
Hessian matrix of the log likelihood function for the multivariate ARMA model and an
explicit description of the Gauss-Newton iterative procedure to get ML estimates of the
parameters. Their resulting computational procedure has the form of a generalized least
squares (GLS) estimation iﬁvolving lagged values of the observed vector series and of the
residual series as independent variables. This explicit representation of the estimation
procedure provides not only a convenient and appealing computational scheme relative to
the general nonlinear maximization algorithms which are commonly used, but also
proves‘useful in understanding and interpreting properties of the ML estimators. Their

presentation also allows for easy comparison of the ML procedure with the GLS
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procedure of Koreisha and Pukkila (1989) in the univariate case. Furthermore, their
approach displayed the stage three estimation procedure by Hannan and Rissanen (1982)
and Hannan and Kavalieris (1984a) in the univariate ARMA model context, and the stage
four procedure by Hannan and Kavalieris (1984b) for the vector ARMA model as
corresponding to the ML Newton-Raphson iteration procedure as represented in the GLS

form. Consider estimation of parameters in the multivariate ARMA model
Y - iq)th—i =&, — i@iSH
i=1 i=1

where Y; = (Yit+--» Yi)'» & = (Eip>---» €10)’ ar€ k-component vectors, and @y,..., Op, Oy,..., ’
®, are kxk matrices of unknown parameters. The € are assumed to be iid with mean
vector zero and nonsingular covariance matrix Z. All roots of det[®(z)] = 0 and det[®(z)]
= 0 are assumed to lie outside the unit circle, and the necessary conditions for the
identification of parameters for the above model are satisfied. On the assumption of
normality of the g, since e = vec(e') is N(0, I,®%), the approximate log likelihood

function can be written as

n 1
l=——logX ——¢ (1 ®X"
Slog] - Se (1,3

1
- ——glogIZI - We (1, 837)0 " w

where w = y — i:(Li Y®I ), withL' Y =(Y,,..., Y,,) and y = vec(Y') = (Y, ,..., Y,).

i=1

Defining the vector 6 = (¢'y,..., §'y, 0'4,..., 0'))" with ¢; = vec (®;) and 6; = vec(®;), i =
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1,..., q and matrix Z = [(LY®L),..., (L’Y®L), -(Le®L),..., -(L%®IL)], we can express

these derivatives collectively in a convenient form as

A/es =20 (L®T e (2.1.12)
or

o1/85 = (-0¢'/68) (L®L e with 6e/68' = -07'Z.

These likelihood equations (2.1.12) are highly nonlinear in the parameters 6 (unless q =
0). Thus for q > 0 these equations need to be solved by iterative numerical procedures

such as the Newton-Raphson equations for an approximate ML estimator 8 are

(2.1.13)

where 8, is an initial estimate of & and the estimate % = &'/ n from a previous iteration is
used for £. To carry out the iteration in (2.1.13) it is useful to have a convenient ex-
pression for the Hessian matrix of second partial derivatives. It can be shown that on
neglecting terms which, when divided by n, converge to zero in probability as n — o, we
obtain the approximation

[ 1 ) _(92') - (éi) (2.1.14)
~\zs05) ~\z5) & N 25

=70 (1,80 Z
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~

Using initial estimates 8, = (3},..., 8}, 8,..., §,) = vec(D,,..., D, ®,,..., 8,), we let

P’
O=1- i(Li ®0,),¢=0"Ty- i(LiY® I)$.] with vec(8)=¢, S=%'8/n and let
i=1 i=1

Z denote the matrix Z with LZ in place of L’e, j=1,..., q. Then, using (2.1.12)-(2.1.14),

the modified Newton-Raphson equations for § have the solution of the form
§=8,+ {ZI,®EHZ)'Z (1, ®5") @ (2.1.15)

where Z =07 Z. Note that € = vec(€") is easily computed recursively from

Be-y- DL YL, =y (1 ®F)L y
i=1 i=1

as

with € =€, =...=%_, =0. In addition the ML-GLS estimation procedure provides

asymptotically efficient ¢stimators and it involves the same degree of GLS computations
for the univariate modei as are involved in the univariate GLS estimation procedure of
Koreisha and Pukkila (1989). The ML estimation through the GLS estimation in (2.1.15)
corresponds essentially to the procedure stated by Hannan and Kavalieris (1984b) as their
Stage 4 procedure for estimation of vector ARMA with exogenous variables (ARMAX)

models. The ML-GLS procedure provided very good estimates after only a few iterations
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using reasonable initial estimates, and its performance was not dependent on the exact
nature of the initial estimates used.

Osborm (1977) worked exact and approximate ML estimators for vector MA
processes, which is a generalization of that adopted by Box and Jenkins (1976) for the

univariate case. Let a gth vector MA process be
W =g +018, + ... +08, (2.1.16)

where W, and &, are gx1 vectors of observations and disturbances respectively, while 0;, 1
= 1,..., q, are gxg matrices of MA coefficients. The disturbances are assumed to be
independent normally distributed about zero with variance covariance matrix X. With n
sample observations assumed to be available on W,, we denote the vector of disturbances
in (2.1.16) by € = (¢'1,- -+, €05 €'15-+., €)' This vector is normally distributed with zero
mean vector and variance-covariance matrix Q = I®Z. Then the exact likelihood function
is

FW)=(r) ® [WIF KW K[ T exp (_%(MW JR P — Ké*ﬂ 2.1.17)

where &' =(e]_,-,8,), W= (W[,~+,W;),e=MW + Ke'. By using the following two

facts,
1 AX -1 Ak 1 A —~1A
~5 (MW + K&')Q™ (MW + KE) | =| -~ €078

and
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IQI"%]K'Q‘IK}_% <[5 K (e 5 )K|—%,

equation (2.1.17) can be replaced by the following function Ll*

L"=-(n+q)log¥ - loglK’(I®Z‘l)Kl ~ DETlE,

t=1—q

Therefore, exact ML estimates of £ and 6;, i = 1,..., q, may be achieved by maximizing
the function Ll* with respect to these parameters using an appropriate nonlinear
optimization technique. Although this exact procedure may be preferred on the theoret-
ical grounds, the computational burden it imposes may make it impractical in some
circumstances.

Spliid (1983) suggested a very fast and simple algorithm for estimation of the
parameters of large multivariate time series which includes distributed lag variables and
showed that the distribution of the estimates are asymptotically normal and unbiased.
Furthermore, the algorithm is applicable for estimation of large multivariate models
where it is generally many times faster than maximization algorithms. In the model
identification stage of the analysis of multivariate time series it is often desirable to
estimate a number of alternative models and for this purpose this algorithm is very well
suited. Consider a general linear model that includes lagged regression variables is
denoted as

oLy, =PL)x, +6(L)a, t=1,2, ... (2.1.18)
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where B(L) = B, + B,L +...+ B, L"" is a kxm matrix polynomial and x, is an m-variate

series disturbances and (2.1.18) can be rewritten in the equivalence forms:
Y=US+a (2.1.19)

where U= (-A, Y, X), A= (La, L’a,..., L%), Y = (Ly, L’,..., L’y), and X = (x, Lx,...,
L"'x) with the matrix of unknown residuals a. Introducing the four stage procedures
based on the above models (2.1.19), we can take the following steps:

Step 1. Construct W = (Ly, Lzy,..., L'y, X) where s is a chosen order of the initial AR
part of the model. Linear regression gives 4, =y— W(W'W) W'y where 4, denotes
the estimate of a obtained in iteration number O.

Step 2. Compute recursively residuals fort=1, 2,..., n:

=1
a.,=y.— id)i,jyt—i + iei,jat~i,j - ZBi,jxt—i .
i=1 =1 i=0

Step 3. Construct A, recall Y and X, create U, and compute new estimates by linear

A A

regression, by solving fI’i U 0, =ULy.
Step 4. If & 1 Sj, increase j by 1 and repeat steps 2 through 4. If § = § > let §=5 i
and stop. The algorithm stops if and only if the empirical autocorrelations and cross-

correlations are zero (U’ a; = 0).

Koreisha and Pukkila (1989) considered explicit computation of the maximum
likelihood estimation for the unrestricted multivariate model and presented three linear

preliminary estimation method which, when used in conjunction with the exact ML
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(Hillmer and Tiao, 1979), can reduce parameter estimation by more than an order of
magnitude. Furthermore, because of the great speed and accuracy associated with
parameter value calculations they can also be employed in process order identification,
and these techniques are useful in the early model building-stage since they permit

analysts to compare the characteristics of various competing models inexpensively.
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2.2. Previous results on measurement error model

While the functional model, which has a fixed x, in the time series, considered in
the Section 2.1, the structural model with stochastic x; in the time series can be applied to
the following:

V=X, T, (2.2.1)

where u, is a measurement error. Estimation of the true value x; is very important in
signal measurement problems encountered in the engineering areas where x, is known as
‘signal’ and u, as ‘noise’. In addition, it is important in survey sampling in the situation
where a population is sampled at a sequence of time points according to a sampling
scheme and in macroeconomic survey data such as the Panel Study of Income Dynamics
(PSID) and the U. S. Current Population Survey (CPS). We consider the measurement
error model with the ARMA(p, q) process included. Some results on estimating the
univariate version of model (2.2.1) available in the following literature.

The problem of estimating the AR process parameters based on the data corrupted
by the unknown white noise has been studied by many authors. This problem was first
treated by Walker (1960). Later, Parzen (1967) proposed some methods to estimate
process parameters (PP) and signal-to-noise ratio (SNR) by means of spectral density and
third order correlation. Kashyap (1970) worked the ML method for more general vector
ARMA model with additional white noise.

Pagano (1974) suggested a two-stage nonlinear LS procedure to obtain consistent

and efficient estimators with the situation where x, is AR(p) and u, is white noise:
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i}b (2.2.2)

where {x,} and {u} are independent, {u,} and {e} are iid with N(O, cuz), N(O, cez),
respectively, and ¢, = 1, ¢, # 0. His basic idea is to introduce the first (p+1) new
parameters and obtain initial estimates of these new parameters and original (p+2)
parameters on the basis that the model (2.1.1) and (2.2.2) are then transformed into a
mixed ARMA model. Having obtained these initial estimates, we can get better estimates

by expressing these parameters in terms of the original parameters. Therefore, model

(2.2.1) and (2.2.2) are rewritten (Pagano, 1974, p. 100), as a mixed ARMA(p, q),
(2.2.3)
id)jxt—j = iYie:—i
i=0 i=0

with vy =1 and v, # 0, q > 1. In this reparameterization, we have gone from the original
ptq+2 parameters to p+max(p,q)+1 parameters. Furthermore, Pagano presented the
nonlinear regression method which is asymptotically consistent with the ML method and
proved its properties (Theorem 4, p. 107).

Sakai and Arase (1979) considered a modified LS procedures for the problem of
estimating parameters of an AR process based on the data corrupted by unknown white
noise. Assume that the time series {x,} is a zero mean Gaussian p-th order AR process,

(2.2.2) where {e} is a sequence of white noise with E(e,) = 0 and E(ee,) = Ge25t>s. Denote
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the noisy observation sequence by {y,} with (2.2.1) where {u,} is a Gaussian white noise
sequence uncorrelated with {x,} and cse2 is known. There are several steps to develop the
modified LS method so as to estimate ¢,,..., Oy » ce2 and cuz recursively, when we have n

successive samples yy,..., ¥,. Firstly, from (2.2.1) and (2.2.2), we get

(2.2.4)
id)th—i =€ - id)jut—j’ ¢, =0,
i=1 =0
or
yt - Y’t_1® = Vt (2.2.5)

where Yo = (Vetseoor Yip)s @ = O1,een, 0))'. (DY, Y7 )4, = 2.Y,,y, is obtained by
t=1 t=1

applying the LS method to (2.2.5) where

- - « < "N 2.2.6
a, = (OL;,'--,OLE)'Z (ZY:th—l ) I(ZYt~Iyt) ( )
t=1 t=1

and a_ is the LS estimate for @. Since the LS estimator is asymptotically biased, we may

apply their recursive modified LS method to this situation, the estimator &, is defined by

®, =4, +nP,c’D, (2.2.7)

n
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with P, = ( YHY’H)'l, ®, =($!,-,?). & in (2.2.7) converges to @ under the
assumption that an is known. But in many practical cases it is necessary to estimate it

since an is not known. Therefore, (2.2.7) can be modified to

O =4_+nP 5D (2.2.8)

n
Moreover, the recursive formulae for P,, 4, and ) &  where the residual at time n is

t=1

.=y, ~Y A4, are given by (Sakai and Arase, 1979, p. 952). On the contrary, in the
case that 0_62 is known, we estimate & , &, , and (67), as in (Sakai and Arase, 1979, p. 953).

Finally, they showed that modified LS method dominates the Yuler-Walker and the
bootstrap method for the problem of estimating AR process parameters based on the data
corrupted by unknown white noise from the simulation results.

Dunsmuir (1979) investigated central limit theorem for parameter estimation in
stationary vector time series and discussed its application to models for a stationary signal
observed with noise. Furthermore, he derived the strong consistency and the limiting
distribution of estimators by maximizing a frequency domain approximation of the
likelihood function.

Binder and Hidiroglou (1987) considered model y, = x, + u, where x, 1s a
ARMA(p, q) and u, is a ARMA(p*, q*) and formulated it as a state space model and
exploited an iterative numerical procedure to compute the MLE. The exact log likelihood

function may be written as:
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1 1 N ~
L= _Ezl:logiwtlt—ll - EZI:(Yt - Ytlt-l )’ Wl"hl‘l (Yt - Yth‘l) (229)
where
Wt]i =Var(y; | Y) = AtPt[iAt,: §’t]i =E(y, | Y}) =xu, + Atiqi (2.2.10)

based on the given model z, ~ N(0, Z), z, = Fiz.; + G, where g, ~ N(0, V,) and {z,} is

assumed to be a series of r-dimensional vectors. The model formulation continues with
0, = +h'z, e=k;z,and Y, =x0; + e, =x;u; + A 2,

where A, = x, h’ + k.. Maximizing this log likelihood function (2.2.9) with respect to
Olyseres Oy Proeees Py o and Yis---» Ys (When u, = ¢/y for known ¢,) based on ARMA(p, q)
process involves finding the first and second derivatives of (2.2.9) with respect to these

parameters. Therefore, it is sufficient to get the first and second derivations of ¥, . and

t)t-1
W, with respect to the known parameters {a.;,..., 0y, B, Bg, o’ Yis---» Yst- Lhese can

be obtained recursively by using the following along with (2.2.10):

z,,=0,
Puo = K2 K + G, VG,
2tlt = 2t]t—l +P A'tWTth(yt - yt“_l),

tle-1 t]

Ztlt+1 = Ft+lztlt’

P

-1
Ptlt =P t]t—lA,tWt[t—lAtPt]t—l’

tlt~1
P =F P F +G. .V G

t+1t 1Tttt 2223 Rad F9 8
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CHAPTER 1II

TESTING FOR A UNIT ROOT IN AN AR(p) SIGNAL WITH MA(q) NOISE

Section 3.1 describes previous works in testing for a unit root with parametric
constraints and general restricted model is introduced in Section 3.2. In Section 3.3 we
discuss the asymptotic distributions both of parameter estimators and of the unit root test

statistics under the null hypothesis.

3.1. Previous works in testing for a unit root with parametric constraints

Shin (1993) considered ML estimation for stationary AR processes when the
signal is subject to a MA noise, and also this ML estimator of the parameter vector was
shown to be strongly consistent and to have a multivariate normal limiting distribution.

The model which he suggested is

V=X, T 1, (3.1.0)

X, =pX T2, (3.1.1)
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iaizt—i =8, Oy =1
i-0

u, = iBth—j’ Bo =1,
j=0

fort=1, ..., n, where p and q are known nonnegative integers and n is the sample size. In
addition {y,} is a sequence of observations and {g;} and {w,} are iid N(O, 082) and
N(O,crwz) sequences respectively. The process {x.} is assumed to be stationary and o, # 0
and B = (By,..., By)’ and crwz are known. From (3.1.0) - (3.1.1) the following is obtained

as

+1
(3.1.2)
iaj(y't—j - th~i—j) = i(aj - paj—l)ut—j &,
j=0 j=0

where o = 1 and o; = a,,; = 0. Because the autocovarinace function of the time series

P
defined by the right hand side of (3.1.2) is zero for lags greater than (p+q+1) it can be

written as an MA(p+q+1) process:
P! (3.1.3)
iaj (Yt—j - pyt—l—j) = ZYjet_j >
j=0 j=0

where {e;} is a sequence of iid N(O, 02) random variables, 6 > 0 and Yo=1. Let O =

(Oseees Oy Yirees Ypr)'s &= (0, %), Y = (yy..., y)' and X = (x,,..., X,)'. Then the

negative log likelihood function is
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L&) =Y'Var(Y)"'Y + log[det(Var(Y)/c)] + nlogc™. (3.1.4)

The ML estimator is defined by minimizing L, (&) with respect to & under the following

restrictionon &, forh =0, 1,..., ptq,

pta=h q-Ji=j-| (3.1.5)
c’ YiY 5 _0§80h - 220‘1% ~ BSBS+]i_j_h| =0

j=0 i=0 j=0

where v, = oy = 1 and J, is the Kronecker delta. The modified ML estimator is defined
by minimizing

L ME) = Ze (Y, 0)/c” + nlogo,” (3.1.6)

under the above restriction of (3.1.5) and it has the same limiting distribution as ML
estimator based on (3.1.4) and is also strongly consistent. He showed that this modified
ML estimator is much better than that of Said and Dickey (1984) in the sense that in
general empirical powers are bigger and empirical sizes are much closer to the nominal
levels through numerical results.

Miazaki and Dorea (1993) considered univariate ARMA model with nonlinear
restrictions for analyzing a single time series data set from rotational sampling. If the
sampling at regular time intervals is designed such that samples drawn on different
occasions partially overlap, we can have a rotational sampling scheme. Under a rotational

sampling scheme, they extended the ideas of Pagano (1974) in the white noise u, case to
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the MA(q) u; case. Consider a signal detection model in which the signal x, is a pth order

AR process:
yi=xtu, t=1,..,n,

i (3.1.7)
X, =€,,0,=1
i=0

u, =§:ijt_j by =1,
=0

where (e, v,)’ is a sequence of independent N(0, X) random vectors with X = diag(cez,

6.%). It is assumed that the roots of i:ociLi =0 and of ﬁ:b ij = 0 are greater than one in

i=0 b=0

absolute value. Then by Pagano’s (1974) approach the model (3.1.7) can be written as én

ARMA process,
i “i (3.1.8)
oy = szt—j , O = By =1,
i=0 j=0
with restrictions
p P 2p+q )
Gt 2 Y amy, (k- ) -cl 2B =0,
=0 k=0 =0
p P p+q-h
: 2
ZZajockyu(k -j+h)-o, ZBiBi+h =0, h=1,--,p+q,
j=0k=0 j=0

where y,(h) = E(zZu). The new parameters B = (By,..., Byig) and o) = V(z,) are

functions of a = (o;,..., ;)" and cez from (3.1.7). Let 6 = (&', ccz)’, d=(y, GZZ)’, y=(,
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B") and ® = (a, Gez)'. Then we can develop a procedure to construct estimate of o and
Ge2 as follows.
Step 1. Consider the restricted model (3.1.8) and the problem of estimating 5. Assume

one has an initial estimator yo ofy. Let
2V = Y Yo~ D
i=1 j=1

Expanding z(Y, y) in a Taylor series about yO and regressing on the vector of the partial
derivatives of z(Y, y) with respect to v, u(Y, y), we obtain the one-step Gauss-Newton

estimator of y:

o, Ta, (3.1.9)
7=1" ‘@ u (Y.7")u, <Y,y°)} 2 u (Y1) (Y1),

Step 2. Let 8° be an initial estimator of & and G° be its estimated covariance matrix. To

estimate consider the model:

0: 8°=8+a subject to £(0) =0, (3.1.10)

. . . . 0 .
where a is a random column vector with zero mean and covariance matrix G°. Find the

value & that maximizes (80 - ES)’(GO)'l(ES0 - 8) subject to f(8) = 0 and take &7 such that
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In order to find the GLS estimator 6 for (3.1.10) the Gauss-Newton procedure for the

model is proposed as
B W R ARG
= +
0 CIp+q+l 0 0 CIp+q+1 f(e) az

where T'T = (GO)'l, ¢ is an arbitrary large number and (a,, a,)’ is a random column vector
with zero mean and identity estimated covariance matrix. Essentially, Steps 1-2 suggested
by Miazaki and Dorea (1993) are Pagano’s estimation method applied to model (3.1.1).
It differs in that LS estimates are constructed in the first step and the set of statistics used

at the second step are different. Pagano parameterized the unrestricted model in terms of

+
. 2 .
o and covariance of iﬁjzt_j , B, =1 whereas y and o, are taken as parameters in
§=0

Miazaki and Dorea (1993). The parameterization suggested by Miazaki and Dorea (1993)
has the advantage that the estimated covari'ance of ¥ is obtained as a direct result of the
computations when v is estimated in Step 1.

Shin and Sarkar (1994) showed that an ARIMA(p, 1, 0) signal disturbed by
MA(q) noise is a ARIMA(p, 1, ptq+1) process restricted by nonlinear constraints on

parameters. They considered the following model:

X, = pXq T 7, (3.1.11)
Zit 0zttt 0,7 = 2 (3.1.12)

and
(3.1.13)

u =W, + Biwyg ot Bwig,
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fort=1, 2,..., n, where p and q are known nonnegative integers, o, # 0, the a, and the w,
are independent unobservable processes, the a, are iid N(O, caz) and the w, are iid N(O,
cwz). The roots of A(m)=1-o,L - ... - ochp = 0 are assumed to lie outside the unit
circle and B = (B4,..., By) and 0w2 are assumed to be known. Without loss of generality,

we assume cw2 =1. From (3.1.0) and (3.1.11)-(3.1.13) we have

+1
. (3.1.14)
ga_j(Yt—j = PYirj) = Z:O‘ju:-j +a,

where ocj* = oy - Py, J =0, 1,..., ptl, g = 1 and o = oy, = 0. Because the auto-
covariance function of the time series defined by the right hand side of (3.1.14) is zero for

lags greater than (p+q+1) it can be written as an MA(p+q+1) process:

i pigzl (3.1.15)
j=oai(yt_j TPYer) = LY 8

o -

where {e,} is a sequence of 11d N(O, o°) random variables, o* and ¥o = 1. Equating the co-
variance function of the right hand side of (3.1.14) to that of the right hand side of

(3.1.15), forh =0, 1,..., prq+1, we get

p+g+l-h +1 prl q-]i=j-h| (3116)
o’ ( Yij+h)_{GZIO(h)+iiaiaj . BkBk+|i_j_h]}:Oa
=0 i=0 j=0 -0
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where By = 1, Iy(h) = 1 for h = 0 and Iy(h) = 0 for h # 0. Thus the parameters (yy,...,
Vorqts 02) are functionally related to (p, ay,..., o, caz) and the reparameterized (3.1.15) is

a restricted ARIMA model of order (p, 1, ptq+1). Therefore, the reparameterized model

(3.1.15) of (3.1.0) and (3.1.11)-(3.1.13) is considered so that results for unrestricted
ARIMA models can be used. Let 6 = (aty,..., 0y, ¥15e-+» Yprgr1) s ¥ = (P, 0)'. The negative

log likelihood function of y = (y,..., ¥,)', conditional on y,, up to a constant, is

L(£) = Q(y)/c” + log, {detl'(0)} + nlog,c”,
where

QW) =(y - py)' T (O)Y - PYD)s ¥1= Yooevs Yn)'

and o° T ,(0) is the nxn covariance of (y; - pYg,---» ¥n - PYu-1)- Let §* denote as a E-value

that minimizes L() subject to the (p+q+1) restrictions on & defined by

£=(Fye.., fyrge) =0. (3.1.17)

Then, §* is the restricted ML estimator (RMLE) of £ In addition, they considered an
approximation L (&) of L(§) and the modified restricted ML estimator (MRMLE) which
minimizes L, (&) under restrictions (3.1.17). The MRMLE is defined to be a value of

that minimizes

L) = S(y)/c” + nlog,c>, (3.1.18)
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subject to the restriction of (3.1.17), where S(y) = Zetz(y;w) with

p+q+l

e (y;¥)=— 2.7;¢;(¥s W)—i—iak(Yt—k —PY i)
k=0

i=0

Furthermore, they showed that the MRMLE and the RMLE have the same limiting
distribution and that this RMLE of the unit root parameter is strongly consistent and it
has the same distribution as the LS estimator of the unit root parameter in an AR(1)
model tabulated by Dickey and Fuller (1979). Their simulation study showed that unit
root tests based on the MRMLE performed very well for small samples and compare
favorably with the Said a.nd Dickey (1985) tests with respect to both sizes and powers

under model (3.1.0) and (3.1.11)-(3.1.13) withp=0and q = 1.

3.2. General Restricted Model

To illustrate the general restricted model we first consider the vector version of
the measurement error model
y. =z tu, a(l)z,=¢g, u,=c(L)w, (3.2.1)
where

¢L)=I+CL+..+C[L% alL)=I+AL+.. +A]L (3.2.2)
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and z, and u, are AR(p) and MA(q) processes respectively. The {g;} and {w,} are two
independent sequences of 1id mx1 random vectors with variance covariance matrices Q.
and Q,,,, respectively. Assume that Q,,,, is known and without loss of generality, we can
assume Q,,,, = L. For stationarity, invertibility and identifiability, all the roots of det[a(L)]
are assumed to lie outside the unit circle, det[€e] # 0, and A, is of full rank. We can
express the stationary process {y;} of (3.2.1) as an ARMA process. Note that from
(3.2.1),y,= a'l(L)at + ¢(L)w, and hence

a(L)y, =g, + a(L)e(L)w, (3.2.3)

Since the autocovariance function of the right hand side of (3.2.3) is zero when the lag is

greater than q = p+r, we can find a gth order moving average e, +2B ;€,_; whose
J'_—.

autocovariance function is the same as that of the right-hand side of (3.2.3). Hence we

can write model (3.2.3) as a special case of the general restricted model
a(L)y,=b(L)e, t=1,2,...,1, (3.2.4)

where {e;} is a sequence of iid random vectors with variance covariance matrix Q and L
is the lag operator such that kat =Yik»

b(L)=I+BL+... +BL" (3.2.5)

It is assumed that (p, q) are nonnegative integers and known, and A = (A, [A; |...|A,), B=

(B, [B; |...|By) are respectively mxmp and mxmgq matrices of unknown parameters. Let
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{y:}, t = 1,..., n is the set of mx1 observation vectors and {e;} is a sequence of iid m-
dimensional random vectors with mean zero and a nonsingular variance covariance
matrix Q. Furthermore, the following regularity conditions C1-C3 should be imposed to
satisfy the stationarity, invertibility and identifiability of the model:

C1. Allroots of det[a(L)] and det[b(L)] lie outside the unit circle;

@)
S

C2. Suppose a(L) = e¢(L)a,(L) and b(L) = ¢(L)by(L) for polynomials a;(L), b;(L)
and ¢(L), then det[¢(L)] is independent of L;
C3. The matrix [A | B] is of full rank.

The condition for a(L) in C1 is a stationarity condition for the y,. The condition for b(L)
in C1 is an invertibility condition for e, to be expressed in terms of {y,;}, j = 0,..., o,
through e, = b~ (L) a(L)y,, and this is used to approximate the error e, and the derivatives
of the approximation. The role of conditions C2 and C3 is to make the parameters in A
and B identifiable. Also, it is common to model the elements of 2 as functions of a few

parameters with some functional constraints. See Judge et al.(1985, Section 14.5.2).

The vector of restrictions on parameters A, B and Q is defined as

f(A, B, Q)=0 (3.2.6)

where f is a k-dimensional vector of differential functions. With the reparameterized
model (3.2.4), we can exploit the vector ARMA estimation procedure which will be
discussed in Section 3.3. Since b(L)e, and g + a(L)e(L)w, should have the same

autocovariance generating function, it follows that
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bL)QBL™)] - Qe - aL)e(L)[e(L ) [aL™)] = 0. (3.2.7)

As an application of the above model (3.2.1) and restriction (3.2.3), we consider the case

withm=1,p=1, g= 1, i.e., we model z, and u, as AR(1) and MA(1) respectively

Vi=ztu, a(l)z, =g, u=c(L)w, (3.2.8)

where

cL)=1+CL, aL)=1+A,L. (3.2.9)

The model (3.2.8) can be expressed as follows:

v, =-AZq &+ W+ Ciwyy, (3.2.10)

subject to the restrictions f=(f}, f,)’ =(0, 0)'.
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3.3. Parameter estimation

In this section, three different methods aré introduced to estimate unrestricted
models and compared with one another so that we can take advantage of theoretical
developments in a simulation study. Let o = (a'y,..., a',)’, o4 = vec(A’), B = (B'y,...,
B'y)’, B =vec(B'y), 6 =(a’, B') and &= (a’, f', M')'". Letting e;=0 for t <0 and I,, denote

the m-dimensional identity matrix, we can solve (3.2.4) to get

e©@) =y, + Ayt ApYip - B (0)- ... - B, et-p(e)
=¥ 2L OY - (L, ® e, O,
i i=1

(3.3.1)
using vec(RST) = (T'®R)vec(S) (see Fuller, 1987, p. 387) with proper orders R, S and T.
In order to develop the conditional Gaussian likelihood of {y,}, t = 1,..., n, the initial
observations y,, ¥.i,--., Y1, are assumed to be available and fixed and also the initial

disturbances e, e_,..., €, are assumed to be zero, respectively (Reinsel et al., 1992).

q

Then the negative logarithm of the conditional Gaussian likelihood function of {y,}, t =

1,..., n is approximated by (Shin, 1993)

L, =L.@®= %Ze ©)Q2"e,(0) +% nlogdet(Q). (3.32)
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Based on the model (3.2.8)-(3.2.10) as a special case of (3.2.4)-(3.2.5) and (3.2.7)
suggested by Shin and Sarkar (1994, p. 2646), (3.3.1) and (3.3.2) can be expressed as
follows:

e =& (0) =¥+ Ay - Biewi(6) - Byeo(6) (3.3.3)
and

L, =L, ()=e, 0)/26. +n/2(log.c.>). (3.3.4)

3.3.1. Hannan and Rissanen (HR)’s method

As mentioned in Section 2.1.2, we may apply the first and second stages of the

multivariate version of Hannan and Rissanen (1982) procedure in order to obtain an
initial estimator E of &£. In the first stage, regressing y, on y.;,..., Y, Where s is a
suitably chosen lag size large enough for approximating y, by previous observations, the
residuals &, are computed as estimates of the e,. In the second stage, we estimate A and

B by regressing y, on {y,,..., Yepy and {€_,,...,€_}. Then 6= {(Vec(K'l))',...,

s> %t—q

(vec(AL)), (vec(B,)Y ..., (vec(B)))}, O =n"Ze (B)e;(8) and 7= vech({d).

3.3.2. Kohn’s method

For a general vector linear time series model Kohn (1979) proved the strong

consistency and asymptotic normality of parameter estimates obtained by maximizing a
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particular time domain approximation to a Gaussian likelihood, where the observations
are not necessarily assumed to be normally distributed. To solve the normal equations he
set up a constrained Gauss-Newton iteration and obtained the properties of the iterates
when the sample size is large. A Newton-Raphson procedure which takes restriction
(3.2.6) into account is used to estimate the parameters based on model (3.2.4)-(3.2.6). In
particular, an efficient estimator is obtained if we initialize the iteration with a Jn-
consistent estimator.

Now we evaluate the first partial derivatives L = 0L, /0 of L. Letting W, =
0e,(0)/00', Wo, = (Wq, | Wp) is a mx {m’(p+q)} matrix, and Lo = JL,/00 = SW'q, Q'
¢,(0). When the restriction (3.2.6) involves the elements of ), estimates of o and 3 are
functionally related to the parameter estimates of Q. In case of p=q =1 and QB," = A’
the distribution of the estimator of A, clearly depends on the distribution of the estimator
of Q. This means that it may not be proper to follow the approach of finding a minimizer
Q(0) of L (&) with respect to Q for a fixed 0, and then minimizing L. (0, £(0)), which
works in the restricted case (Reinsel et al., 1992). Hence we need to find expressions and
the asymptotic behavior of the derivatives L, = J0L,/on and Ly, = &L /onon’ with
respect to 1 = vech(Q2). In handling the derivatives L, and Ly, our analysis is based on
Theorem 4.B.2 of Fuller (1987, p. 398), which gives the limiting distribution of the ML
estimator of the variance covariance matrix of the multivariate normal distribution based

on iid observations. In the sequel, the range for t in the summations will be 1 to n. By

(4.B.20) of Fuller (1987, p. 400),



66

Le=-I" 1 vech[Ze(0)e,/(6) - nQ]

where I' = 2¥(Q®Q)Y’ and W is a transformation matrix defined by vech(Q) =
Wvec(2). Let w;; denote the (i, j)th element of €, let 3; be the Kronecker’s delta such
that 8; = 0 and & = 0 for i # j, and let W(ij, ks) be the element of ¥ corresponding to ;;

and o, of vech(€2) and vec(Q2) respectively. Then, from (4.A.3) of Fuller (1987) we have

F(ij, ks) = (805 + 8,¢8)/2, j <i.
Therefore,

L = diag[ZW'g,, | - {vech(Ze(®) e/(0)-nQ}' I"']".

A Newton-Raphson procedure for estimating the model (3.2.4)-(3.2.5), without restriction

(3.2.6), is

g =F (ﬁ&)‘l fi (3.3.5)

where & is an initial estimator of & In order to get estimator &, the first and second
stages of multivariate version of Hannan-Rissanen (1982) procedure may be applied to
(3.3.5) as mentioned in Section 3.2.1. Now we modify the Newton-Raphson estimator
£"in (3.3.5) to accommodate the restriction (3.2.6). The Largrangian multiplier method
for the vector linear time series models is to be used as a tool of developing the above
estimators. The maximum likelihood estimator in this case minimize L, subject to the

restriction (3.2.6) and can be obtained by minimizing
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L, +fA, AeR"

with respect to & and A. Setting the first partial derivatives of (L, + f'A) with respect to &

and A to zero, we get

L:+G'A=0and f=0, (3.3.6)
where G = 0f/0€'. Combining the Taylor expansions

L.=L +L, (E-%), f=T+G(E-¥?), (3.3.7)
we have
L.¢-E)+Gr=-L,
and

Ge-g=-1

where E is an initial estimator, and Ijg, Iigg, G and T are the values of Lg, Lge, G and f

evaluated at = E Note that we have used f = 0. Therefore, the Newton-Raphson

) E ) Egg ek -1 Eg (3.3.8)
o] |G o] [T]

In order for the square matrix in (3.3.8) to be nonsingular, we need to make an assump-

estimator is obtained as

tion that G is of full rank, which is equivalent to there being no redundancy in f = 0.
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When some parameters are restricted to zero, we need to remove only the rows and
columns corresponding to the zero-restricted parameters in the vectors and matrices in
(3.3.8) instead of incorporating the zero-restrictions into G and f.

Applying above to the model (3.2.8)-(3.2.10), the following are obtained:

_ZWAl,tet* /ci-
ZWBl,tet* /Gi
Le=0L/0E=| 2 W, e’/ |,

Qe
C, n

2@y 20

(3.3.9)

and by differentiating (3.3.3) the elements of W, ., Wy . and W, are computed

recursively as
WAl,t =Y~ BlwA,,t—l - BZWAl,t—Z
WBl,t = —e:—l - BIWBl,t—l - BZWBI,t—Z
and W, = —€,, — B,Wg, .1 = B,Wg .

Note that Lz = & L./050E’ can be expressed as follows:

where
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Ayt VBt Aj,Byt
P= Z(WAl,tWB,,t +e:WWA,,B,,t)/G§ Z(W}:,,: +e:WWB1,!) /Of Z(W}s,,zwaz,z +e:WWBDBZ) /Gi
Z(WA,,IWBz,t + e:WWAl,Bz,z) /Of Z(WBl,lWBZ,t + e:WWBx,Bz )/Gi Z(Wgz,: + e:ww}sz,z) /Gi

S(W, +eWW, )/6  X(W, W, +eWW, ,)/c (W, W, +e&WW, )/oj-l
l
with
WWADBI = GWAI,t /0B, = —\NAM_1 — BIWWAI,Bl,t—I -B,W WAI’BDH,
W WAl,Bz,t = aWAI,t /0B, = _WAl,t—2 - BIWWAl,BZ,t—l -B,W WAI,Bz,t—Z’
W WBl,t = aWBl,t /6B1 = _ZWB,,t—I - BIWWBI,t—I - BZWWBl,t—Z’

W WBl,Bz,t = aWBl,t /0B, = _WBz,t—l -B,W WBI,BZ,t—I _WB,,t—z - BZWWBI,BZ,t—Z’

W Wg,,t = aWBz,t /0B, = _ZWBZ,t—I - BIWWBZ,t—I - BZWWBz,t—25

q=[-2eiW, /(@) oW, /(0 -2eiW,  /(62)]

and
s=3(e, )’/(c) - n/(o.).
Furthermore, |
f=(f, £) =[c.’(B; + BBy - (A; + C; + A{’C, + A,C,), 6,’B, - A,C\ T,
and

[-1-2AC, &*+B,&® Bo® B,+BB,]
G=orog = | ) .
-C 0 o B,

1 3

Now we can compute an estimate for model (3.2.1), by applying (3.3.8) with G, f and L

described above to the reparmeterized model (3.2.4).
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3.3.3. Shin and Sarkar’s method

Based on the Kohn’s method, Shin and Sarkar (1995) considered an approxi-
mation H g of Ly in (3.3.8), in order to compute an easier Newton-Raphson estimator

that approximates the restricted ML estimator. They defined
Hy: = diag[SW's Q' W, -nl"]. (3.3.10)
Approximation EW’e,tQ'IWe,t of & L, /0000 is well explained in Reinsel et al. (1992) and

by (4.B.22) of Fuller (1987) Lyq = -nI’ e 0,(n). Hence, Lz = Hee + 0,(n). Applying

(3.3.10) to model (3.2.8)-(3.2.10), the following is obtained:

W /S 0 0 0
0 DLW /o 0 0
H: = 0 0 W2 /0
0 0 0 =
i 2(0)’

Therefore, by replacing Ijii with its approximation H g the Newton-Raphson estimator

) E ) ﬁgg & -1 IN_,E (3.3.11)
o] |G o] |T|

is obtained as



3.4. The limiting distribution

Assume that ‘/n— (E —&)=0,(1). Combining the Taylor expansion

By Dunsmuir and Hannan (1976) together with theorem 4.B.2 of Fuller (1987),

1 1
7 H —> N(0,V) and —H, >V,

71

where V = diag[I(0), I" '1] and I(0) is the information matrix of 6 in the unrestricted model

(3.2.4)-(3.2.5). The normality of the e, is used for convergence in distribution of nt? H,,

the elements of n'> H: corresponding to the parameters n. Since G is a continuous
3 p g p n

function of £, G —2—> G. Then from Shin and Sarkar (1995) the limiting distribution of

these estimator é follows.
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Theorem 3.1. Assume that the model (3.2.4)-(3.2.6) holds with regularity

conditions C1-C3. And assume that the e,’s are normal, f is continuously differentiable

and G is nonsingular.  Suppose that the initial estimator é of & satisfies

\/;1_(& -8=0,(). Let (, }:) be as defined in (3.3.11). Then,

el )
1 ——> N| 0, .

G 0 0 0||G O

Using the formula for the inverse of a partitioned matrix (see, for example, Judge et al.,

1985, p. 947), it can easily be shown that

v ¢T [V o] [v ¢ [vi-vv,v, o (3.4.2)
G 0] [0 o] |G o 0 A
where V, =GV~ and V,, =(GV'G") ™.

Note that the upper left block of the covariance matrix in the right hand side of

vV GT
(3.4.13) corresponding to & is the same as the upper-left block of the matrix [G 0 } .

Since I(0) can be consistently estimated by ZVAVé’tf)_l\’AVe,t, the variance covariance

. A, &
matrix of & is estimated by the upper-left block of the matrix L & o J . Then the



73

limit distributions of n(A1 -Dand 7t = Al /s.e. (Al) under the unit root null hypothesis

are given by the following.

Theorem 3.2. Given the model (3.2.10) with restrictions f = (f}, f,)’ = (0, 0),
where 5,” = V(e,) and f; = 6.’ (B, + B,B,) - (A, + C, + A,°C, + A,C), f, = 6.’B, - A,C,,

the limiting distribution of n(A1 —1) and T under the null hypothesis Hy: A; = -1 are

1 2 1 2
S WO -1 5 W@ -1

:[1 W(r)*dr e 1, _EW(r)Zdr

Brownian motion on [0, 1].

given by respectively, where W(.) is the standard

Observe that Theorem 3.1 and Theorem 3.2 give asymptotics of a unit root
parameter estimator and unit root tests based on Shin and Sarkar’s method. The limiting
distributions of unit root tests are the same as in Theorem 3.2 when unit root parameter

estimates are based on Kohn’s and Hannan-Rissanen’s methods.
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CHAPTER IV

SIMULATION STUDY

We now consider a Monte Carlo study on the power functions of our unit root
tests under model (3.2.8)-(3.2.10). Ten thousand replications were simulated for sample
sizes 25, 50, 100 and 250, for A; =1.00, 0.99, 0.95, 0.90 and 0.70, and for nominal levels
1%, 5% and 10%. The normal random numbers {g;} and {w,} were generated by the
subroutine DRNNOA and the calculation of inverse matrix are performed by the
subroutine DLINRG of the IMSL package. The value of GWZ was set to one. The value
of C, was set to -0.5, 0 and 0.5, and the value of cez was set to 0.2, 1.0 and 5.0. For

different (n, C,, 062) combinations independent samples were used. The computed values

of the tests n(A1 —1) and T were compared to the theoretical 1%, 5% and 10% left tail
critical values tabulated by Dickey and Fuller (see Fuller 1976, p. 371 and p. 373).
Section 4.1 discusses algorithms based on three different estimation methods in Section

3.3, and Section 4.2 gives simulation results and conclusive remarks.
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4.1. Algorithms

Three different testing algorithms are introduced to perform the comparative study

on the basis of Section 3.3.

4.1.1. Kohn’s method

Step 1. Generate random numbers, {e;} and {w,}, as follows:
{e~NID(0, 6,), {w,} ~NID(0, 1)
and {e,} and {w,} are independent
wheret=1,..., n for cez =0.2, 1.0, 5.0 and for sample size n = 25, 50, 100, 250.
Step 2. Compute the following y,’s based on random variables {e,} and {w,} obtained in
Step 1:
ViT 4t

where z, = -A;z.; t ¢, and u, =w, + C;w,; withe,=w, =0ift <0, A; = 1.0, 0.99, 0.95,
0.9,0.8 and 0.7, C; =-0.5, 0.0 and 0.5.
Step 3. Estimate initial values &= (A,,B,,B,,8’) of & = (A,, B, B,, 6.”)' using the
following steps:

(3.1) Regress y, on (V.p,..., Yis) to obtain the residuals, €, where
T=Y-XX'X)'X'Y with Y = (yy,..., ¥,)' and the X matrix, for s = 5 for example, is

given by
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0O 0 0 0 0
y, 0 0 0 0
Y, Y 0 0 0
x=|¥ Y v 0 0
Yo Y5 Y2 ¥ O

Ys Y4 Ys Y2 Y;

Yoor Yoz Yu-s Yo-a Yuos

(3.2) Regress y, on (y,,,¢.;,¢,,) to estimate the initial values (Kl,ﬁl,ﬁz) of
(A4, By, B,), where {€} is obtained from Step (3.1).

(3.3) Compute the initial estimate of O'ez as 6. = ((el*)2 +...+ (et*)z)/n, t=1,...,n
where ¢, =y, +A,y,, - Be,, —B,e, , with e; =0, t <0.
Step 4. Obtain the final estimates E: = (Al,ﬁl,ﬁz,éﬁ)’ of &, by using the Newton-Raphson
method (3.3.8) based on the initial estimates, € =(A,,B,,B,,57) in Step 3. In the

numerical computations, the following revised Newton-Raphson estimator instead of

_ g n igg el -1 ig 4.1.1)
0 G 0 f

where k is a scalar controlling the step length. We calculate the left-hand side and the

(3.3.8) will be examined:

associated value for the log likelihood for various values of k and choose as the estimate
the left-hand side value that produces the biggest value for the log likelihood as defined

in equation (3.3.2).
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Step 5. Compute statistics n(Al —1) and T and compare their values with the tabulated
percentiles of the distribution given by Dickey and Fuller (1979) and check if the values
of n(A1 —1) and 7 value are less than the corresponding tabulated percentiles.

Step 6. Repeat Step 1 through Step 5 ten thousand times and thus count the relative

frequencies of n(A1 —1) and 7 smaller than the corresponding tabulated percentiles.

4.1.2. Shin and Sarkar (SS)’s method

All steps are the same as those of Kohn’s method except that we replace L g With

its approximation H g 0 (4.1.1).

4.1.3. Hannan and Rissanen (HR)’s method

We follow Steps 1, 2, 3, 5, and 6 of Kohn’s (Section 4.1.1) method in obtaining

the statistic n(A1 —1). In particular, in order to obtain the standard error of Al when 7 is

&T
0 J of (4.1.1) is computed.

[_N
calculated, the matrix L g’



78

4.2, Results and Discussion

Simulation results on the empirical level and power of the test statistics n(A1 -1)

and T are presented in Tables 4.1-4.28. Note that Tables 4.1-4.12 show the empirical

powers of the two test statistics based on Hannan and Rissanen’s method. In preparing
for T, we needed to compute the standard error of Al. For Tables 4.4-4.6 these were

done by using

~ —1
[T, &1

& o
of (4.1.1) and for Tables 4.10-4.12 by using
f, &
L& ol
While Tables 4.13-4.18 present simulation numbers based on Kohn’s method, and Tables

4.19-4.24 based on Shin and Sarkar’s method. We now discuss our findings based on the

tables.

Common points among three methods

(1) When we fix n and increase Ge2 or fix Ge2 and increase n, the empirical powers
are getting bigger and sizes are closer to the nominal level in terms of both n(A1 —1) and
7. In particular, In case of large samples (n = 100, 250), the empirical sizes of each of

three methods are almost close to the desired nominal levels except that cez =0.2.
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(2) For cez = 0.2 (i.e., when the signal is weak), especially when C, = 0.5, the size

tends to be larger than the nominal level. For fixed (n, C;, cez) the powers are monotone
functions of A;.

(3) The comparisons for nominal levels 1%, 5%, and 10% are similar.

What are the differences among three methods ?

(1) For the “normalized” unit root test statistic n(A1 —1), the empirical sizes
using Kohn’s estimates are usually slightly smaller than those using Shin and Sarkar’s
estimates; and sizes are close to one another. As expected, the empirical powers based on
Shin and Sarkar’s method generally are larger than those based on Kohn’s due to the
larger empirical sizes. There is no big differences between tests based on Kohn’s and
Shin and Sarkar’s estimates.

(2) For the t-test statistic 7, the sizes using Kohn’s estimates are in general much
smaller than those using Shin and Sarkar’s. The powers for Shin and Sarkar’s method

become closer as the sample size gets larger and C; gets smaller.

Summary

For small sample sizes (n = 25, 50), all three different methods (H-R, Kohn, S-S)
lead to test statistics for which the tabulated critical values given by Dickey and Fuller
(1979) are not appropriate. Numerical results of Schwert (1989) show that the distribution
of unit root test statistics in unrestricted ARMA models (containing a nonzero MA
component) can be very different from those tabulated by Dickey and Fuller (1979).

Therefore, we prepared Table 4.25 - Table 4.32 to obtain the empirical critical values for
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both normalized unit root test statistic and t-test statistic in order to apply the unit root
tests to real time series data.

The advantage of using Shin and Sarkar’s method lies in the fact that it is much
easier than Kohn’s for computation in terms of inverting the Hessian matrix. If p, g, m
are bigger than the case considered in our simulation study (p=1, g=1, m=1), gain in
computational ease will be even more noticeable. In terms of statistic n(A1 —1), the Shin
and Sarkar method can be a good alternative to the Kohn’s method when we test for a
unit root in an AR(1) signal observed with MA(1) noise. On the other hand, the Kohn’s

method is preferable while using the t-test statistic 7.



Table 4.1

Empirical power (%) of n(A1 ~—1) for nominal level 0.01

2=0.2 ’=1.0 6. =5.0

Sample c| 05 00 05 05 00 05 05 0.0 05
Size A,

1.00 171 18.6 209 69 75 88 36 42 43

0.99 188 19.6 24.4 75 19 9.6 38 47 53

25 095 26,5 28.0 358 117 113 145 65 65 74

0.90 348 37.6 457 179 18.0 20.2 10.6 106 11.8

0.80 463 557 66.1 290 312 385 19.8 21.2 23.1

0.70 537 649 719 409 460 54.4 32.6 339 36.5

1.00 11.4 104 12.8 42 41 45 24 26 27

0.99 143 123 143 54 50 55 34 30 34

50 . 0.95 268 23.1 286 109 10.0 11.5 67 65 6.9

0.90 4277 404 470 221 212 236 156 162 16.8

0.80 63.6 648 721 474 485 532 40.8 412 425

0.70 725 774 833 648 67.0 713 62.1 625 63.8

1.00 63 55 17 26 24 28 19 16 1.8

0.99 96 84 115 37 35 38 24 26 25

100 0.95 29.8 279 345 154 145 163 119 115 12.0

0.90 583 57.1 65.0 409 408 445 367 359 36.6

0.80 80.6 843 883 79.0 80.8 83.8 81.3 81.8 818

0.70 873 905 934 887 909 926 927 933 932

1.00 28 23 3.2 14 15 13 13 12 1.0

0.99 73 67 94 43 43 5.0 3.8 38 4.0

250  0.95 542 535 60.4 50.5 50.8 52.0 491 493 492

0.90 83.3 865 899 93.8 94.6 95.2 96.3 964 96.0

0.80 91.8 94.5 957 993 997 99.7 100.0 100.0 100.0

0.70 92.6 952 96.2 99.0 99,6 99.7 100.0 100.0 100.0
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Table 4.2

Empirical power (%) of n(A1 —1) for nominal level 0.05

=02 S=1.0 o, =5.0

Sample c| 05 00 05 05 00 05 05 0.0 05
Size A

1.00 261 267 292 13.6 140 153 89 94 102

0.99 29.2 285 331 147 146 164 10,0 103 11.1

25 095 40.1 388 46.8 222 215 254 156 153 169

0.90 504 509 583 328 309 347 244 230 245

0.80 635 68.6 76.1 49.4 499 558 40.2 405 435

0.70 69.5 75.6 84.1 61.7 64.8 70.4 553 56.8 58.8

1.00 18.2 188 203 96 9.5 10.6 75 13 1.6

0.99 227 201 233 124 115 124 99 88 93

50 0.95 393 36.0 425 231 231 243 19.2 184 187

0.90 577 553  60.9 422 41.6 443 373 378 378

0.80 744 752 791 692 699 734 69.2 687 702

0.70 80.1 82.7 86.7 79.3. 80.8 827 822 823 824

1.00 13.0 117 149 77 6.8 8.1 66 56 63

0.99 18.8 175 22.6 107 109 120 90 95 94

100 0.95 493 483 555 37.6 37.8 403 345 348 35.0

0.90 752 753 815 71.8 722 753 722 720 723

0.80 877 905 923 924 941 953 959 96.5 96.3

0.70 90.7 92.6 949 941 961 965 98.0 983 98.1

1.00 79 71 85 59 57 6.0 55 54 53

0.99 19.6 189 23.0 159 159 173 153 152 157

250 0.95 769 79.6 84.2 86.1 865 86.9 877 873 868

0.90 90.9 94.0 95.8 995 996 99.7 99.9 999 99,9

0.80 93.7 959 96.9 998 999 99,9 100.0 100.0 100.0

0.70 93.6 959 96.9 995 998 99.8 100.0 100.0 100.0
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Table 4.3

Empirical power (%) of n(A1 ~1) for nominal level 0.10

2=0.2 6. =10 c.=5.0

Sample c| 05 00 05 05 00 05 0.5 0.0 05
Size A,

1.00 321 323 348 185 191 20.2 14.0 14.6 14.8

0.99 357 345 39.1 203 205 227 155 159 16.7

25 095 476 459 537 300 294 336 237 231 249

0.90 584 588 64.5 43.1 407 44.4 353 339 354

0.80 712 742 80.2 60.6 605 65.9 53.8 54.0 56.6

0.70 76.1 79.9 86.4 711 729 76.8 67.7 68.6 69.9

1.00 234 21.6 259 147 146 15.8 123 124 126

0.99 289 257 29.7 19.0 17.6 19.0 159 14.8 156

50 0.95 48.6 45.0 51.0 33.8 338 363 304 302 30.1

0.90 66.2 63.6 68.1 559 558 57.9 54.0 544 53.6

0.80 784 79.1 82.0 787 79.5 81.8 82.0 81.7 82.2

0.70 82.4 84.8 87.8 84.2 856 86.5 88.9 89.0 88.6

1.00 189 17.3 214 127 119 134 11.5 10.8 11.3

0.99 263 252 312 185 19.0 202 16.6 17.0 17.1

100 0.95 61.5 612 689 554 54.9 57.6 538 531 54.0

0.90 819 831 877 85.1 86.3 88.1 875 878 878

0.80 89.6 92.6 93.8 956 97.0 97.3 98.6 98.9 98.8

0.70 91.9 935 954 958 973 97.6 99.0 992 99.0

1.00 127 121 144 108 106 112 101 102 103

0.99 314 305 354 289 285 295 27.6 273 285

250 0.95 858 887 91.8 957 960 96.2 96.9 968 96.5

0.90 933 958 972 99.9 999 999 100.0 100.0 100.0

0.80 945 96.6 97.3 99.8 100.0 100.0 100.0 100.0 100.0

0.70 939 962 97.1 99.6 99.9 99.9 100.0 100.0 100.0
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Empirical power (%) of T for nominal level 0.01

Table 4.4

o, =02 6. =1.0 =50

Sample cl -05 00 05 0.5 0.0 05 0.5 0.0 05
Size A,

1.00 123 67 116 55 31 33 34 32 25

0.99 137 68 13.6 59 32 39 35 34 29

25  0.95 18.5 10.0 19.6 91 46 5.6 60 4.6 43

0.90 23.0 131 253 131 73 82 94 8.0 7.0

0.80 27.8  20.0 40.0 202 135 159 177 163 153

0.70 304 268 52.1 269 21.6 24.2 27.8 267 262

1.00 67 23 35 28 15 18 21 20 17

0.99 81 3.0 4.2 34 23 21 29 24 23

50 0.95 151 62 8.8 70 41 4.4 60 52 4.8

0.90 243 111 164 144 98 99 139 131 123

0.80 353 215 325 304 253 267 364 355 34.0

0.70 393 295 47.0 2.0 404 407 558 555 55.17

1.00 27 12 2.6 1.8 12 1.6 1.7 14 14

0.99 39 1.6 41 23 1.6 22 21 20 1.9

100 0.95 124 65 116 95 81 98 105 9.6 9.5

0.90 261 161 229 262 250 29.0 331 318 314

0.80 444 327 378 572 610 663 76.7 711 756

0.70 51.6 412 48.1 68.1 745 793 89.6 90.4 90.3

1.00 1.1 09 3.0 1.1 1.0 0.9 1.2 1.0 09

0.99 32 32 88 32 3.00 3.9 3.8 34 35

250 0.95 275 313 523 412 422 451 478 477 46.6

0.90 503 63.0 80.3 879 90.1 913 955 955 95.1

0.80 621 713 81.0 97.9 99.1 99.3 100.0 100.0 100.0

0.70 643 69.6 734 972 99.1 99.3 100.0 100.0 100.0
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Table 4.5

Empirical power (%) of © for nominal level 0.05

o, =02 o, =1.0 o, =5.0

Sample c| 05 00 05 05 00 05 05 00 05
Size A

1.00 185 11.6 16.5 104 7.8 8.0 83 81 17

0.99 20.1 119 18.8 11.0 79 87 93 88 86

25 095 266 173 272 165 11.8 137 145 131 12.8

0.90 329 225 342 242 179 18.8 22.6 202 195

0.80 386 331 496 339 29.6 32.8 369 359 365

0.70 413 393 60.8 414 411 44.8 49.7 510 50.6

1.00 111 7.0 97 73 59 6.9 69 66 64

0.99 135 77 109 88 74 179 93 77 18

50 0.95 243 148 204 170 153 16.2 17.8 165 16.1

0.90 358 244 31.0 313 29.0 307 350 347 335

0.80 483 388 479 528 533 56.9 655 651 64.8

0.70 51.6 467 60.2 61.9 657 68.6 78.5 79.0 78.6

1.00 70 55 120 61 52 66 61 53 57

0.99 101 88 185 85 86 98 85 87 87

100 0.95 277 26.0 417 301 308 34.4 332 333 328

0.90 458 44.6 588 61.0 62.8 68.0 70.0 69.8 69.2

0.80 59.2 592 652 840 883 91.0 948 953 95.1

0.70 63.5 62.0 69.3 857 914 935 973 980 975

1.00 49 54 94 51 51 55 53 52 4.9

0.99 12.8 145 24.8 141 142 16.0 150 147 155

250 0.95 61.6 69.4 81.6 82.5 829 84.6 86.9 86.4 858

0.90 78.4 87.8 933 987 992 995 99.8 998 99.8

0.80 78.6 88.4 91.2 99.5 99.8 99,9 100.0 100.0 100.0

0.70 755 844 86.3 98.9 997 99.7 100.0 100.0 100.0
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Table 4.6

Empirical power (%) of © for nominal level 0.10

o, =02 o =10 6. =5.0

Sample cl 05 00 05 0.5 00 05 05 00 05
Size A

1.00 235 16.6 21.6 151 131 13.1 134 133 126

0.99 255 173 244 16.2 135 14.9 149 144 145

25 0.95 337 241 343 241 205 225 228 213 220

0.90 40.6 311 41.6 340 286 30.5 339 318 31.6

0.80 472 436 569 459 439 479 51.3 50.6 51.7

0.70 498 490 66.9 532 551 59.5 634 64.6 652

1.00 156 128 175 11.9 111 125 11.7 116 114

0.99 19.0 140 19.6 154 138 15.1 15.6 139 143

50 0.95 323 252 340 277 272 298 29.5 287 28.0

0.90 452 377 451 47.0 46.0 48.9 524 523 51.0

0.80 565 522 59.1 673 69.6 73.2 799 794 793

0.70 59.0 583 68.9 722 770 1787 86.7 87.0 86.8

1.00 12.8 12,6 215 114 104 122 11.5 103 109

0.99 183 18.6 312 164 168 188 165 16.7 164

100 0.95 437 465 628 502 50.9 55.0 534 53.0 53.0

0.90 614 648 77.0 80.3 81.9 853 865 869 86.4

0.80 688 73.6 716 92.4 949 96.1 982 985 98.3

0.70 708 73.2 787 91.7 953 96.1 98.6 98.9 98.7

1.00 9.7 106 15.8 10,0 9.9 10.9 10.0 10.0 10.3

0.99 247 271 386 274 274 29.1 279 274 28.0

250 0.95 76.8 83.0 90.1 942 94.7 953 965 96.0 96.0

0.90 873 929 957 99.7 99.8 999 100.0 100.0 100.0

0.80 84.8 92.5 937 99.8 99.9 99.9 100.0 100.0 100.0

0.70 80.8 89.4 90.3 993 99.8 99.8 100.0 100.0 100.0
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Table 4.7

Empirical power (%) of n(/&1 —1) for nominal level 0.01

G =0.2 o, =10 o, =5.0

Sample cl 05 00 05 05 00 05 05 00 05
Size A,

1.00 17.0 195 23.6 69 75 95 36 42 44

0.99 189 20.0 26.6 74 77 10.1 38 47 53

25 095 263 28.6 379 11.6 112 153 65 64 74

0.90 347 388 486 177 18.0 21.2 10.6 105 11.8

0.80 459 54.6 689 28.6 309 39.7 19.7 21.1 23.0

0.70 517 65.0 793 39.9 455 557 32,6 337 364

1.00 11.5 103 12.0 42 38 4.7 25 26 3.0

0.99 144 130 142 54 52 54 32 33 31

50 095 254 237 274 107 95 117 65 64 71

0.90 428 414 463 220 21.6 25.1 156 158 16.4

0.80 623 650 729 476 483 539 41.0 409 432

0.70 703 764 82.8 647 66.1 T2.6 62.6 625 63.9

1.00 64 54 64 26 24 27 19 1.6 1.8

0.99 98 83 97 37 36 37 24 26 25

100 0.95 299 279 302 153 147 16.2 11.9 115 12.0

0.90 581 573 605 413 408 45.0 367 359 36.7

0.80 80.6 835 86.7 79.0 812 845 813 815 81.8

0.70 86.0 89.6 93.2 889 91.0 926 927 933 93.2

1.00 29 22 3.1 14 15 13 1.3 12 1.1

0.99 74 62 94 44 42 5.0 38 38 4.0

250  0.95 544 51.6 59.8 505 506 52.3 49.1 493 49.2

0.90 83.1 84.7 888 93.9 945 95.2 96.3 96.4 96.0

0.80 91.3 93.7 94.6 993 997 997 100.0 100.0 100.0

0.70 92.0 945 953 99.0 99.7 99.6 100.0 100.0 100.0
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Table 4.8

Empirical power (%) of n(A1 —1) for nominal level 0.05

. =02 o.=1.0 c.=5.0

Sample c| 05 00 05 05 00 05 05 00 05
Size A,

1.00 258 278 312 13.6 139 159 89 94 102

0.99 290 292 344 147 145 169 100 103 11.1

25 095 397 395 477 2.1 215 26.0 155 153 17.0

0.90 495 518 59.1 324 310 355 244 230 245

0.80 626 674 768 49.0 497 56.9 402 405 435

0.70 678 754 84.2 605 643 709 553  56.6  58.6

1.00 185 163 185 95 94 101 74 15 1.6

0.99 227 204 215 122 117 123 95 9.0 93

50  0.95 385 360 39.6 234 224 241 18.9 18.6 18.9

0.90 577 557 585 425 419 443 378 373 378

0.80 738 743 789 68.8 69.9 734 69.1 691 69.3

0.70 782 812 863 78.8  80.0 83.1 822 824 829

1.00 130 113 135 77 68 18 66 56 63

0.99 189 17.0 209 10.7 109 119 90 95 94

100  0.95 488 471 525 376 380 398 345 348 350

0.90 744 743 78.7 720 722 753 72 720 723

0.80 869 894 913 924 944 950 959 965 963

0.70 89.1 922 947 942 959 96.5 98.0 983 98.1

1.00 80 67 86 59 57 59 55 54 53

0.99 197 177 23.0 158 159 17.0 153 152 157

250 0.95 798 784 841 86.1 865 86.9 877 873 868

0.90 90.6 933 952 995 99.6 99.7 99.9 99.9 999

0.80 933 954 96.0 99.8 99.9 99,9 100.0 100.0 100.0

0.70 932 955 959 99.4  99.8 99.8 100.0  100.0 100.0
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Table 4.9

Empirical power (%) of n(A1 —1) for nominal level 0.10

2=02 S=1.0 o, =50

Sample ¢l 05 00 05 05 00 05 05 00 05
Size A

1.00 31.7 333 36.0 185 191 208 14.0 14.6 14.8

0.99 354 349 401 203 205 229 155 158 16.7

25 0.95 46.6 461 54.1 29.9 294 34.0 237 230 249

0.90 579 589 64.8 427 409 45.1 354 338 354

0.80 699 741 80.0 60.2 60.2 66.4 53.8 540 565

0.70 73.8 79.4 86.3 70.0 725  76.9 67.5 685 69.7

1.00 238 211 235 151 139 15.1 126 124 12.6

0.99 28.8 267 284 185 17.7 18.8 16.0 153 157

50 0.95 473 44.6 48.0 343 333 352 304 29.8 298

0.90 659 635 655 559 56.8 57.9 53.8 543 53.8

0.80 778 719 816 784 79.5 815 819 81.8 824

0.70 80.5 832 874 83.8 84.9 86.7 88.7 88.8 89.1

1.00 189 167 20.1 127 120 13.1 115 108 11.3

0.99 265 245 294 185 19.0 19.9 16.6 17.0 171

100 0.95 61.1 60.0 66.5 553 55.0 572 538 53.1 54.0

0.90 80.8 822 859 853 86.3 88.0 875 878 878

0.80 89.0 91.5 93.0 95.6 971 97.2 98.6 98.9 98.8

0.70 90.3 93.1 95.3 956 97.1 975 99.0 99.2 99.0

1.00 127 116 145 10.8 106 11.0 10.1 102 10.3

0.99 313 291 354 28.8 284 292 27.6 273 285

250 095 855 881 917 957 96.0 96.2 96.9 96.8 96.5

0.90 929 950 96.6 999 99,9 99,9 100.0 100.0 100.0

0.80 940 96.0 96.6 99.9 999 99,9 100.0 100.0 100.0

0.70 93.6 958 96.1 99.6 99.9 99.8 100.0 100.0 100.0
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Table 4.10

Empirical power (%) of T for nominal level 0.01

Sample C| -05 00 05 05 00 05 05 00 05
Size A,
1.00 211 263 310 81 95 141 40 46 55
0.99 23.0 272 345 88 9.8 150 42 51 63
25 095 327 375 472 137 145 23.0 73 713 94
0.90 424 496 584 207 222 319 117 117 142
0.80 57.6 662 748 337 379 523 215 231 271
0.70 649 749 82.3 46.6 54.0  66.8 351 369 41.2
1.00 13.9 148 143 47 47 8.0 2.8 27 34
0.99 17.6 18.6 17.2 61 64 93 34 35 338
50 095 308 325 308 121 119 190 71 71 81
0.90 508 52.6 47.6 251 265 36.4 171 174 188
0.80 705 719 710 529 557 66.7 432 434 472
0.70 772 7185  80.7 702 73.0 _ 78.6 64.8  64.9  68.0
1.00 81 90 68 30 29 54 20 1.8 2.1
0.99 123 134 109 39 45 1.6 260 27 26
100  0.95 374 385 283 169 179 269 124 123 132
0.90 67.0 62.0 49.8 449 475 60.9 378 375 395
0.80 83.2 805 785 83.4 867 85.8 82.4 828 84.6
0.70 86.6 872  89.9 912 919 898 93.6 941 94.4
1.00 35 33 441 15 1.6 25 13 12 11
0.99 91 85 11.8 47 48 82 40 38 42
250 0.95 59.8 43.6 62.7 529 546 64.7 505 510 51.6
0.90 80.4 727 848 947 961 91.9 964 967 96.6
0.80 87.8 89.7 89.5 99.1 992 975 100.0 100.0 100.0
0.70 89.5 93.0 93.2 98.4 99.2 983 100.0 100.0 1000
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Empirical power (%) of T for nominal level 0.05

Table 4.11

o, =02 o, =1.0 o, =5.0
Sample c| 05 00 05 05 0.0 05 05 00 05
Size A

1.00 29.8 339 359 150 16.6 20.6 96 101 11.4

0.99 33.0 354 40.0 161 173 226 105 11.1 125

25 095 449 471 526 245 253 334 16.6 164 19.1
0.90 562 59.9 633 361 362 448 260 250 27.6

0.80 702 73.6 715 540 561 654 42,6 432 476

0.70 75.0 792  84.1 66.0 69.6 762 57.8 594 627

1.00 21.0 20.6 20.6 104 106 13.8 77 17 83

0.99 259 258 241 132 133 167 99 94 10.0

50 095 438 432 408 255 255 320 19.8 194  20.6
0.90 634 613 565 45.6 413 537 39.7 392 407

0.80 773 751  76.0 729 750 76.9 707 709 725

0.70 80.0 804 839 81.7 827 82.9 83.4 83.6 84.9

1.00 151 147 16.1 81 7.8 107 67 59 6.6

0.99 221 211 242 115 124 16.1 92 99 10.0

100  0.95 552 511 525 402 422 484 355 360 37.0
0.90 771 711 T2.8 748 712 195 732 732 743

0.80 855 862 877 931 939 92.0 96.2 96.6 96.9

0.70 87.9 90.5 93.2 93.9 94.8 94.8 98.1 984 98.2

1.00 82 73 10.8 61 60 73 55 54 54

0.99 213 181 283 164 169 20.8 155 153 163

250 0.95 75.0 68.0 84.7 86.6 87.8 873 878 873 8713
0.90 86.2 874 9.8 994 995 972 99.9 999 998

0.80 91.4 934 93.0 99.6 99.7 99.0 100.0 100.0 100.0

0.70 91.8 945 94.8 992 996 99.1 100.0 100.0 100.0
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'Empirical power (%) of T for nominal level 0.10

Table 4.12

.. =0.2 o, =10 ’=5,0

Sample ¢l -05 00 05 05 00 05 05 00 05
Size A

1.00 354 38.6 398 202 21.8 253 147 154 16.6

0.99 39.1 404 44.1 222 232 280 165 169 18.4

25 095 514 525 571 32.8 337 400 252 248 27.8

0.90 633 649 67.0 463 463 533 376 363 39.0

0.80 751 764 79.6 64.6 656 721 568 56.8 60.7

0.70 78.5 80.7 85.4 741 760 80.1 69.4 707 73.0

1.00 263 249 255 158 153 185 13.0 12.8 135

0.99 321 309 303 19.6 196 22.8 162 159 16.9

50 095 523 50.0 40.1 36.7 369 41.9 315 312 321

0.90 694 656 62.4 59.2 609 63.8 555 560 56.5

0.80 795 767 79.4 80.8 822 817 82.8 83.0 84.1

0.70 81.0 818 85.8 848 853 85.2 89.2 89.4 899

1.00 212 194 237 134 132 155 12.0 10.8 117

0.99 29.8 277 343 195 208 24.1 173 17.8 18.0

100  0.95 649 603 674 576 59.1 629 552 551 56.0

0.90 80.6 78.0 82.7 872 883 874 88.0 88.5 88.7

0.80 872 894 90.6 954 96.6 952 98.6 989 98.9

0.70 88.9 92.1 943 951 963 96.4 98.8 99.1 98.9

1.00 128 117 171 10.8 11.1 12.6 103 103 10.6

0.99 32.0 283 41.0 295 29.8 329 284 279 29.0

250 0.95 81.4 80.6 913 957 96.1 94.1 96.7 963 96.4

0.90 89.5 91.5 947 99.8 99.8 98.6 100.0 100.0 100.0

0.80 92.5 94.6 944 99.7 99.8 994 100.0 100.0 100.0

0.70 92.6 951 953 994 997 994 100.0 100.0 100.0
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Table 4.13

Empirical power (%) of n(A1 —1) for nominal level 0.01

2=02 S=1.0 o =5.0

Sample cl -05 00 05 05 00 05 05 00 05
Size A

1.00 165 183 20.8 66 15 8.7 36 41 43

0.99 181 21.8 288 73 82 103 38 47 53

25 095 25.6 29.5 39.2 113 115 149 66 65 74

0.90 323 393 492 172 18.0 208 105 10.6 117

0.80 445 557 69.9 278 313 385 200 214 23.0

0.70 509 659 80.1 39.7 455 54.3 33.2 340 36.2

1.00 11.2 102 125 39 38 44 24 25 25

0.99 142 142 184 55 51 5.6 34 32 35

50 0.95 258 252 320 10.7 10.0 11.2 71 65 6.9

0.90 417 427 510 220 213 232 161 16.0 16.1

0.80 631 67.6 753 473 475 510 41.6 415 429

0.70 713 783 85.1 647 66.7 70.1 628 629 645

1.00 60 52 14 25 23 24 1.8 1.6 1.7

0.99 93 81 111 36 34 35 25 27 25

100 0.95 283 271 327 152 142 152 119 115 11.8

0.90 56.7 558 62.6 40.5 39.6 41.2 367 359 365

0.80 80.3 849 879 792 804 82.2 814 81.6 81.8

0.70 867 91.6 935 889 91.0 925 92.8 933 93.2

1.00 24 20 25 1.3 14 1.2 13 11 1.0

0.99 65 59 15 44 43 47 38 38 4.0

250  0.95 51,5 51.0 55.0 50.5 505 50.6 492 493 491

0.90 835 872 90.0 93.9 94.6 95.2 96.3 964 96.1

0.80 92.1 947 96.0 993 997 997 100.0 100.0 100.0

0.70 934 958 96.4 99.0 992 99.7 100.0 100.0 100.0

93



Table 4.14

Empirical power (%) of n(A1 —1) for nominal level 0.05

=02 ’=1.0 6, =5.0

Sample c| 05 00 05 05 00 05 05 00 05
Size A

1.00 254 266 29.0 132 139 15.2 88 94 10.0

0.99 282 306 373 14.6 149 16.7 101 105 11.0

25 095 387 403 50.1 220 217 252 158 154 16.8

0.90 483 529 619 323 30,6 349 245 233 245

0.80 62.8 684 792 487 499 554 408 412 43.8

0.70 675 766 86.0 61.1 64.6 70.0 563 57.6 592

1.00 180 17.8 20.0 92 9.1 98 74 12 14

0.99 221 221 274 122 113 122 96 91 9.2

50 095 383 38.0 452 232 225 235 19.1 185 189

0.90 572 58.1 645 420 417 431 375 377 317

0.80 745 78.0 83.0 693 69.6 72.0 68.8 68.8 69.8

0.70 791 842 89.0 796 81.8 83.6 822 827 83.1

1.00 123 108 137 75 6.6 1.3 65 55 6.2

0.99 18.0 168 20.7 10.6 107 11.1 90 95 93

100 0.95 474 46.6 515 373 373 382 346 348 349

0.90 742 745 793 71.8 719 732 722 720 722

0.80 878 914 92.8 925 941 95.1 96.0 965 96.3

0.70 90.6 94.0 952 943 963 96.6 98.0 983 981

1.00 71 65 13 58 56 59 54 53 52

0.99 177 177 197 160 158 16.6 153 152 15.8

250 0.95 76.8 79.6 82.6 864 866 865 877 873 86.9

0.90 91.7 94.6 959 99.6 99.6 99.8 999 999 999

0.80 942 961 97.1 99.8 999 999 100.0 100.0 100.0

0.70 945 965 97.1 99.6 999 999 100.0 100.0 100.0
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Table 4.15

Empirical power (%) of n(f\l —1) for nominal level 0.10

=02 . =10 =50

Sample cl 05 00 05 05 00 05 0.5 00 05
Size A,

1.00 314 321 345 181 191 20.1 139 14.6 14.6

0.99 34.6 36.6 434 201 209 226 157 16.0 16.7

25 0.95 46.1 473 56.9 29.8 294 332 239 232 249

0.90 570 605 69.3 427 405 444 354 342 354

0.80 704 74.0 83.1 60.0 60.5 65.4 544 54.6 56.9

0.70 73.8 80.8 88.4 705 73.0 768 684 693 704

1.00 234 214 257 142 139 15.1 121 122 124

0.99 283 279 335 185 174 183 157 150 155

50 0.95 471 469 535 339 337 349 305 302 307

0.90 654 664 715 560 56.0 56.6 54.0 547 54.1

0.80 79.2 81.9 859 78.9 80.0 81.4 814 81.7 827

0.70 81.8 86.4 89.8 84.7 86.7 88.1 88.7 89.1 894

1.00 179 16.1 194 126 117 126 115 107 11.2

0.99 25.0 24.0 285 184 188 192 166 171 171

100 0.95 59.9 595 64.7 553 545 55.6 538 531 54.1

0.90 81.6 83.0 86.6 852 863 87.1 875 878 879

0.80 90.1 93.6 94.5 957 971 973 98.6 99.0 98.8

0.70 92.0 949 958 959 975 977 99.0 992 99.0

1.00 11.6 113 125 10.6 10.6 10.9 100 101 10.2

0.99 29.1 293 316 289 284 29.0 277 274 285

250 0.95 864 89.6 91.3 958 961 96.2 96.9 968 96.5

0.90 939 963 973 999 999 100.0 | 100.0 100.0 100.0

0.80 949 968 974 99.9 100.0 100.0 100.0 100.0 100.0

0.70 948 96.8 97.2 100.0 100.0 100.0 100.0 100.0 100.0
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Empirical power (%) of T for nominal level 0.01

Table 4.16

Sample ¢l 05 00 05 05 00 05 05 00 05
Size A,

1.00 118 65 115 52 31 33 33 31 24

0.99 129 69 143 55 32 4.0 34 34 29

25 095 171 92 191 87 45 55 60 45 42

0.90 207 121 245 122 68 79 92 18 68

0.80 25.7 179 392 187 127 15.0 176 160 147

0.70 269 232  48.6 250 195 221 274 261 25.0

1.00 66 22 34 25 13 15 21 20 17

0.99 80 34 51 37 21 22 31 25 24

50  0.95 141 60 89 68 45 48 63 52 45

0.90 231 112 154 134 100 92 137 12.8 118

0.80 333 202 309 29.8 248 25.0 369 354 335

0.70 365 262 439 41.0 390 385 | 564 561 54.9

1.00 26 11 25 1.7 11 13 1.6 14 14

0.99 38 1.6 41 22 16 20 22 20 19

100 0.95 118 64 109 93 79 89 105 96 94

0.90 249 155 21.5 257 240 259 332 319 311

0.80 429 320 365 56.6 595 62.0 768 711 755

0.70 50.1 40.2 463 67.5 73.6 716 89.7  90.6  90.4

1.00 1.0 08 20 1.0 10 09 1.1 1.0 1.0

0.99 29 28 6.0 32 29 35 38 34 36

250  0.95 246 278 419 408 41.8 43.0 478 477 464

0.90 482 60.6 752 87.8 90.1 909 955 955 952

0.80 60.6 710 81.7 97.9 991 993 100.0 100.0 100.0

0.70 633 692 792 98.0 992 994 100.0 100.0 100.0
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Empirical power (%) of © for nominal level 0.05

Table 4.17

Sample C, -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5

Size A,
1.00 176 114 16.2 10.0 7.8 7.8 8.2 8.0 7.5
0.99 19.0 122 197 107 7.9 8.6 94 8.9 8.5

25 0.95 249 165 269 159 11.7 133 146 13.0 127
0.90 304 21.7 33.2 233 174 184 22,7 202 19.2
0.80 36.2 30.1 48.7 325 28,6 31.2 37.2 361 36.0
0.70 37.8 365 5841 398 39.0 41.8 50.2 51.2 50.0
1.00 10.7 6.9 9.6 6.6 5.6 6.2 6.8 6.4 6.2
0.99 13.3 84 12.0 9.2 7.4 7.7 8.6 7.9 7.7

50 0.95 224 14.8 20.2 166 14.7 151 180 16.6 15.8

0.90 344 243 304 302 285 293 354 348 331
0.80 46.1 36.7 46.6 52,5 52.0 534 65.5 649 63.9
0.70 485 43.6 56.9 604 632 663 784 789 783
1.00 6.6 5.0 94 5.8 4.9 5.7 6.0 5.2 5.6
0.99 9.5 8.3 16.0 8.3 8.3 8.8 8.5 8.7 8.5

100 0.95 259 246 36.7 30,0 299 31.6 333 333 326
0.90 43.6 425 547 603 615 639 69.9 69.7 69.1
0.80 574 584 64.0 839 88.0 89.7 948 953 951
0.70 618 60.8 68.0 85.6 91.2 93.2 973 98.0 975
1.00 4.3 4.7 7.0 5.0 5.0 53 5.2 5.1 4.9
0.99 11.1  13.0 185 141 141 152 151 147 154

250 0.95 588 664 749 825 83.0 83.6 869 865 858
0.90 777 875 91.7 988 992 995 998 998 99.8
0.80 77.8 88.7 914 995 99.8 99.9 100.0 100.0 100.0
0.70 780 88.5 91.6 99.6 99.8 99.9 100.0 100.0 100.0
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Empirical power (%) of T for nominal level 0.10

Table 4.18

Sample C| -05 0.0 0.5 05 0.0 0.5 05 0.0 0.5
Size A,

1.00 225 165 213 146 129 127 133 132 123

0.99 241 17.6 254 159 13.6 145 15.0 145 144

25 0.95 316 234 338 23.7 206 21.7 229 213 21.7
0.90 379 307 41.0 331 279 297 340 319 314

0.80 44.8 403 56.1 444 428 458 638 509 514

0.70 463 463 643 517 531  56.2 708 649 648

1.00 153 120 17.0 11.7 106 11.6 115 115 112

0.99 184 148 204 149 13.2 142 151 139 143

50 0.95 305 249 324 275 265 274 294 28.6 28.2
0.90 433 375 44.1 46.0 454 46.6 525 519 50.9

0.80 545 491 5779 66.8 68.7 70.1 793 794 795

0.70 56.1 54.8 659 712 749 77.8 86.7 875 86.6

1.00 119 114 184 112 101 111 114 102 10.8

0.99 171 17.2 264 162 164 173 165 167 164

100 0.95 41.0 43.6 553 49.7 50.1 52.0 534 529 529
0.90 59.0 62,7 731 80.0 814 828 86.5 869 86.4

0.80 672 731 771 924 949 95.7 98.2 985 983

0.70 69.1 733 77.6 926 953 96.0 98.6 989 98.7

1.00 8.9 95 124 10,0 99 105 10.0 100 10.2

0.99 221 249 311 273 273 279 279 274 28.0

250 095 755 819 86.2 94.2 947 95.0 96.5 96.0 96.0
0.90 874 929 94.6 99.7 998 99.9 100.0 100.0 100.0
0.80 875 928 938 99.8 99.9 999 100.0 100.0 100.0
0.70 87.7 913 91.6 99.6 99.8 999 100.0 100.0 100.0
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Table 4.19

Empirical power (%) of n(A1 —1) for nominal level 0.01

o =02 c. =10 o, =5.0

Sample c| 05 00 05 05 00 05 05 00 05
Size A,

1.00 17.0 195 23.6 68 74 95 3.6 41 43

0.99 189 20.1 267 75 77 102 38 47 53

25 095 26.4 28.6 38.1 11.6 113 154 66 64 14

0.90 349 389 488 177 18.0 21.3 107 105 11.8

0.80 46.0 54.8 69.1 28.7 309 39.7 19.8 21.1 23.0

0.70 520 653 79.4 399 456 557 326 338 365

1.00 11.5 103 12.0 41 38 4.7 25 25 29

0.99 145 13.1 143 54 52 55 32 33 32

50 0.95 25.4 237 28.0 107 95 117 65 64 72

0.90 428 413 46.6 221 21.6 25.1 15.6 159 164

0.80 623 658 729 477 483 539 41.0 409 432

0.70 706 764 83.0 64.6 66.8 72.6 62.6 62.6 63.9

1.00 63 53 6.1 26 24 27 1.9 16 1.8

0.99 98 84 95 37 36 37 25 27 26

100 0.95 298 279 298 154 147 162 119 11.6 12.0

0.90 581 572 59.7 413 40.8 44.9 36.8 359 367

0.80 80.6 83.5 86.0 79.0 813 84.1 81.3  81.6 81.8

0.70 86.0 89.6 93.1 889 91.3 93.0 927 933 93.2

1.00 28 21 29 14 14 12 1.3 11 11

0.99 74 62 91 44 43 5.0 38 38 4.0

250 095 541 516 586 50.5 50.6 523 492 493 492

0.90 833 84.4 883 93.9 945 952 963 96.4 96.0

0.80 91.5 93.9 94.8 99.3 99,7 99.8 100.0 100.0 100.0

0.70 922 947 955 1991 99,7 997 100.0 100.0 100.0
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Table 4.20

Empirical power (%) of n(A1 —1) for nominal level 0.05

6.2=0.2 J=1.0 6, =5.0

Sample c| 05 00 05 0.5 00 05 05 00 05
Size A,

1.00 257 277 311 135 139 158 88 93 10.1

0.99 289 292 344 147 145 169 101 103 11.1

25  0.95 39.7 395 476 221 215 261 156 153 17.0

0.90 49.6 52.0 59.1 324 310 355 245 23.0 245

0.80 625 675 768 49.1 49.7 56.8 402 405 43.6

0.70 67.8 757 84.1 60.5 645 709 553 56.6 58.7

1.00 184 163 182 95 93 10.1 73 14 15

0.99 227 203 212 122 117 123 95 90 93

50 0.95 384 362 397 234 224 242 189 18.6 18.9

0.90 576 561 586 425 41.8 443 378 373 378

0.80 732 745  79.0 689 698 732 69.1 69.1 69.4

0.70 784 815 86.2 79.2 80.8 829 82.2 824 829

1.00 129 112 128 76 68 1.8 65 5.6 63

0.99 188 17.0 199 107 11.0 119 90 95 94

100 0.95 487 471 508 376 380 39.8 34.6 34.8 350

0.90 742 743 7115 720 722 753 722 721 723

0.80 868 894 912 92.4 944 949 959 96.5 96.3

0.70 89.2 922 949 942 959 96.7 98.0 98.3 98.1

1.00 79 6.6 8.1 58 57 58 55 54 52

0.99 198 17.8 22.0 159 159 17.0 153 152 15.8

250 0.95 797 79.2 82.6 86.1 865 86.9 877 873 86.8

0.90 90.8 937 959 995 996 99.7 999 99,9 999

0.80 93.4 955 96.7 99.8 999 999 100.0 100.0 100.0

0.70 935 957 964 994 998 999 100.0 100.0 100.0
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Table 4.21

Empirical power (%) of n(A1 —1) for nominal level 0.10

S =02 2=1.0 . =5.0

Sample cl 05 00 05 05 00 05 05 00 05
Size A,

1.00 315 332 357 184 191 207 139 14.6 14.7

0.99 352 348 399 203 205 229 15.6 159 16.7

25  0.95 46.6 46.0 53.6 299 294 341 23.8 231 249

0.90 578 59.0 64.3 42.6 409 451 354 339 354

0.80 699 74.1 80.0 60.2 602 66.3 53.8 541 56.5

0.70 737 79.6 86.2 700 725 768 67.6 68.5 69.7

1.00 237 21.0 228 151 139 15.1 126 123 126

0.99 288 267 275 185 177 189 160 153 157

50 0.95 471 44.6 473 342 332 352 304 299 298

0.90 65.8 63.6 654 559 56.8 58.0 53.8 544 53.8

0.80 778 1780 815 784 795 813 819 81.8 824

0.70 80.7 834 874 841 854 863 88.8 88.8 89.2

1.00 188 165 19.0 126 119 13.0 115 107 113

0.99 263 244 294 185 19.0 19.9 166 170 171

100 0.95 60.7 59.6 665 554 549 571 53.8 531 54.0

0.90 804 819 859 853 863 88.0 875 879 878

0.80 889 914 93.0 959 971 973 98.6 99.0 98.8

0.70 90.5 932 955 95.7 972 97.7 99.0 99.2 99,0

1.00 12.6 115 13.8 10.7 106 109 100 101 10.2

0.99 315 291 340 289 284 292 277 274 286

250 0.95 855 884 91.0 957 96.1 96.2 9.9 968 96.5

0.90 929 961 979 999 999 999 100.0 100.0 100.0

0.80 941 963 975 99.9 100.0 100.0 100.0 100.0 100.0

0.70 93.8 96.0 971 99.6 99.8 99.9 100.0 100.0 100.0

101



Table 4.22

Empirical power (%) of T for nominal level 0.01

. =0.2 6. =1.0 o =5.0

Sample G| -05 00 05 05 00 05 05 00 05
Size A,

1.00 208 261 30.2 8.0 94 14.0 39 46 55

0.99 228 271 338 88 97 150 42 51 63

25 095 326 372 463 137 145 229 73 13 94

0.90 424 495 5715 206 22.1 31.8 117 117 142

0.80 573 66.0 74.5 337 379 523 215 231 2741

0.70 649 748 819 464 540 66.7 352 369 41.2

1.00 138 14.6 13.0 46 46 8.0 27 27 33

0.99 17.6 184 159 61 64 93 34 35 38

50 0.95 30.8 324 291 121 119 19.0 71 71 82

0.90 508 522 46.7 251 265 364 171 174 188

0.80 705 712 70.2 529 556 66.7 432 434 472

0.70 772 785 80.6 701 735  78.6 648 649 68.0

1.00 80 87 57 29 29 53 1.9 17 2.0

0.99 121 132 94 39 45 16 260 27 2.6

100 0.95 371 381 255 169 179 269 124 123 132

0.90 66.6 61.6 69.8 449 475 60.9 378 375 39.6

0.80 829 80.5 76.6 829 869 85.7 824 82.8 84.6

0.70 86.6 869 89.5 912 922 89.8 93.6 941 94.4

1.00 33 32 37 15 15 24 12 12 11

0.99 97 85 111 47 48 83 41 39 43

250 0.95 597 432 59.7 529 54.6 64.7 505 511 51.6

0.90 80.6 712 825 947 96.1 91.9 964 96.7 96.6

0.80 87.9 90.0 88.9 991 992 975 100.0 100.0 100.0

0.70 89.7 932 934 98.6 99.2 98.3 100.0 100.0 1000
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Table 4.23

Empirical power (%) of T for nominal level 0.05

o-f =0.2 O'EZ =1.0 cez =5.0
Sample C,| -05 0.0 0.5 05 0.0 0.5 -0.5 0.0 0.5
Size A

1.00 29.2 335 344 149 164 203 95 100 114

0.99 325 351 386 16.0 172 225 105 111 125

25 0.95 444 46,6 51.0 244 252 333 16.7 164 19.1
0.90 558 59.5 61.7 358 36.0 44.6 260 250 27.6

0.80 695 732 768 539 559 65.1 42,6 432 47.6

0.70 744 787 834 659 694 75.9 57.8 594 62.7

1.00 207 202 183 103 105 137 7.6 7.6 8.2

0.99 25.6 254 220 13.2 133 167 9.9 9.4 10.0

50 0.95 43.2 43.0 38.0 255 254 32,0 199 195 20.6
0.90 63.7 615 54.6 455 472 53.5 397 39.2 40.7

0.80 76.8 748 74.6 729 749 76.7 707 709 725

0.70 79.9 803 83.7 819 82.9 81.7 834 83.6 84.9

1.00 150 144 142 8.0 7.6 10.6 6.6 5.8 6.0

0.99 22.0 206 214 116 125 1641 9.2 99 10.0

100 0.95 54.6 503 483 40.3 422 484 355 36.0 37.0
0.90 76.5 704 69.8 747 712 794 732 732 743

0.80 85.2 860 864 93,5 945 91.8 96.2 96.6 96.9

0.70 88.0 903 92.8 93.6 95.0 94.5 98.1 984 98.2

1.00 8.2 7.1 9.9 6.0 59 73 5.4 5.4 53

0.99 220 18.0 264 165 169 20.8 156 153 163

250 095 752 673 814 865 87.8 874 878 873 873
0.90 86.4 87.1 91.0 994 995 972 999 999 99.8
0.80 91.6 935 93.0 99.6 99.7 99.0 100.0 100.0 100.0
0.70 92.1 94.7 95.1 99.2 99.6 99.1 100.0 100.0 100.0
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Table 4.24

Empirical power (%) of T for nominal level 0.10

.. =0.2 o, =10 6, =5.0

Sample c| 05 00 05 05 00 05 05 00 05
Size A,

1.00 348 381 380 201 21.6 24.9 146 153 165

0.99 385 399 422 221 231 278 165 169 184

25 095 507 517 55.1 327 335 39.8 253 248 27.8

0.90 628 644 65.0 46.0 461 529 37.6 363 390

0.80 743 757 7187 642 652 71.6 56.8 56.8 60.6

0.70 77.6 80.1 84.7 737 757 7195 694 70.6 72.9

1.00 260 244 23.0 158 153 184 129 128 134

0.99 317 305 278 19.6 196 229 162 159 169

50 095 51.6 499 452 366 368 418 315 313 321

0.90 69.1 65.6 60.9 59.2 60.9 635 555 56.0 565

0.80 78.6 768 78.1 80.8 82.1 81.0 82.8 83.0 84.1

0.70 807 817 857 852 855 84.3 89.2 894 89.9

1.00 211 189 212 133 13.0 154 119 107 11.6

0.99 29.6 271 31.0 19.5 208 24.1 173 17.8 18.0

100 0.95 642 59.2 63.0 576 59.0 62.7 553 551 56.0

0.90 80.0 771 797 87.1 882 873 88.1 885 88.6

0.80 87.0 89.0 89.8 95.6 966 95.2 98.6 99.0 98.9

0.70 89.0 919 941 949 963 96.2 989 991 98.9

1.00 125 115 15.8 107 111 125 102 103 10.6

0.99 329 281 384 295 29.8 32.8 284 279 29.1

250 0.95 81.2 80.2 882 956 96.1 94.2 96.7 963 96.4

0.90 89.7 91.8 937 99.8 99.8 98.6 100.0 100.0 100.0

0.80 92.5 949 94.6 997 99.8 99.4 100.0 100.0 100.0

0.70 934 95.8 96.2 994 997 994 100.0 100.0 100.0
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Table 4.25

Empirical cumulative distribution of n(A1 —-1) for A;=1(N=25)

Probability of a Smaller Value

(c2,C) | 001 0025 005 010 090 095 0975 099
(0.2,:0.5) | -46.78 -33.53 -2530 -17.58 293 565  10.10  20.77
(0.2,0.0) | -61.67 -42.89 -31.44 -21.93 284 563 1047 2042
(0.2,05) | -57.06 -4322 -3527 -2687 324 660 11.62  20.78
(1.0,-0.5) | -30.25 -2047 -1421 932 163 251 357 613
(1.0,00) | -3231 -2239 -1572 -975 158 236 361 640
(1.0,0.5) | -36.23 -25.48 -1824 -1142 158 242 365 626
(50,-0.5) | -21.78 -13.93 -10.15 -677 140 193 260  3.66
(5.0,00) | -2227 -1542 -1085 -7.02 139 195 257 357
(5.0,0.5) | -22.89 -1578 -11.13  -737 141 199 260 371
Table 4.26

Empirical cumulative distribution of n(A1 -1) for A; =1 (N =50)

Probability of a Smaller Value

(., C)) 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
(0.2,-0.5) | -58.75 -3839 -25.78 -14.72 1.89 3.15 5.73 12.97
(0.2,0.0) | -54.25 -35.53 -2334 -13.30 1.84 3.05 6.03 11.93
(0.2,0.5) | -61.03 -43.09 -29.56 -15.890 232 4.87 9.58 16.65
(1.0,-0.5) | -25.83 -16.61 -11.50 -7.45 1.19 1.67 221 2.90
(1.0,0.0) | -2429 -1584 -11.03 -7.31 1.19 1.65 2.10 2.80
(1.0,0.5) | -27.41 -17.84 -12.42 -7.75 1.22 1.70 2.25 3.08
(5.0,-0.5) | -18.78 -12.96 -9.44 -6.41 1.10 1.51 1.94 2.46
(5.0,0.0) | -17.86 -13.02 -9.42 -6.32 1.12 1.54 1.91 2.46
(5.0,0.5) | -1863 -13.72 -9.76 -6.53 1.14 1.62 2.03 2.59
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Table 4.27

Empirical cumulative distribution of n(A1 -1) for A; =1 (N=100)

Probability of a Smaller Value

(c2,C) | 001 0025 005 010 090 095 0975 099
(0.2,-0.5) -38.05 -24.53 -15.73 -9.77 1.16 1.67 2.22 3.02
(0.2, 0.0) -3298 -20.88 -14.00 -8.76 1.12 1.62 2.13 2.79
(0.2,0.5) -33.37 -20.89 -15.05 -9.57 1.06 1.54 2.09 3.04
(1.0,-0.5) -19.60 -13.61 -9.95 -6.67 1.00 1.42 1.80 2.32
(1.0, 0.0) -18.52 -13.07 -9.28 -6.24 1.01 1.43 1.89 2.34
(1.0, 0.5) -19.72  -13.76 -10.10 -6.76 1.00 1.39 1.74 2.24
(5.0,-0.5) -16.90 -11.72 -9.02 -6.19 1.00 1.39 1.76 2.23
(5.0, 0.0) -15.84 -1144 -8.39 -5.88 1.01 1.40 1.84 2.35
(5.0,0.5) -15.89 -11.92 -8.87 -6.09 1.0. 1.39 1.74 2.17
Table 4.28

Empirical cumulative distribution of n(A1 —1) for A; =1 (N=250)

Probability of a Smaller Value

(c.’,C) 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
(0.2,-0.5) | -20.53 -1441 -1022 -6.76 1.04 1.44 1.87 2.39
(0.2,0.0) | -17.86 -12.92 -9.46 -6.33 1.03 1.43 1.83 235
(0.2,0.5) [ -20.21 -1424 -1046. -7.02 0.97 1.39 1.78 231
(1.0,-0.5) | -15.25 -11.41 - -8.59 -5.97 0.98 1.35 1.67 2.10
(1.0,0.0) | -14.78 -11.17 -8.54 -5.91 0.95 1.33 1.72 2.14
(1.0,0.5) | -14.62 -11.02 -8.54 -5.95 0.94 1.32 1.68 2.12
(5.0,-0.5) | -14.44 -11.05 -8.28 -5.73 0.97 1.34 1.65 2.06
(5.0,0.0) | -14.28  -10.80  -8.26 -5.78 0.96 1.33 1.71 2.16
(5.0,0.5) -10.45  -8.23 -5.80 0.96 1.32 1.67 2.09

-13.86
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Table 4.29

Empirical cumulative distribution of T for A; =1 (N = 25)

Probability of a Smaller Value

(c2Cc) | 001 0025 005 010 090 095 0975 099
(0.2,-0.5) -20.21 -9.47 -6.08 -4.17 434 20.11 74.92 4804
(0.2,0.0) -318.0 -15.72 -8.78 -5.63 4.06 17.90 70.03 4775
(0.2, 0.5) -186.4 -28.78 -16.07 -10.22 4.80 23.64 109.2 12684
(1.0,-0.5) -6.98 -4.41 -3.24 -2.40 1.92 3.59 7.90 25.87
(1.0, 0.0) -7.79 -4,94 -3.67 -2.58 1.88 3.49 6.87 26.10
(1.0, 0.5) -12.66 -7.29 -5.11 -3.39 1.81 3.23 6.28 22.32
(5.0,-0.5) -4.33 -3.05 -2.45 -1.91 1.51 241 3.51 6.10
(5.0, 0.0) -4.49 -3.35 -2.59 -1.96 1.57 2.57 3.64 6.30
~(5.0,0.5) -5.00 -3.59 -2.73 -2.08 1.51 242 3.60 6.41
Table 4.30
Empirical cumulative distribution of © for A; =1 (N = 50)
Probability of a Smaller Value
(:c) [ 001 0025 005 010 090 095 0975 099
(02,-05) | 9.85 -637 -453 316 221 490 2079 2175
(0.2,0.0) | -10.04 -678 -497 349 212 428  20.67 1935
02,05) | -17.93 -11.97 -853 -418 280 1586 96.14 9403
(10-05) | -427 320 255 -197 129 199 278  3.95
(1.0,0.0) | -424 321 257 -2.00 125 188 262  4.09
(1.0,0.5) | -5.86 -417 -324 -231 130 196 270 398
(50,05 | -3.33 267 221 -178 112 170 228 297
(50,00) | -323 268 222 -1.76 115 163 218 294
(5.0,05) | 346 286 234 181 117 171 223 301
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Table 4.31

Empirical cumulative distribution of © for A; =1 (N = 100)

Probability of a Smaller Value

(Gez, C) 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
(0.2,-0.5) -5.35 -4.00 -3.15 -2.40 1.14 1.76 2.47 3.94
(0.2,0.0) -6.09 -4.72 -3.47 -2.44 1.11 1.73 2.31 333
(0.2,0.5) -7.92 -3.32 -2.71 -2.21 1.06 1.70 2.37 3.51
(1.0,-0.5) -3.32 -2.71 -2.26 -1.81 1.00 1.52 1.96 2.54
(1.0, 0.0) -3.32 -2.70 -2.21 -1.77 1.02 1.50 1.98 2.55
(1.0, 0.5) -4.18 -3.29 -2.68 -2.00 1.00 1.46 1.93 2.52
(5.0,-0.5) -2.95 -2.45 -2.10 -1.71 0.98 1.44 1.85 2.33
(5.0, 0.0 -2.90 -2.41 -2.03 -1.67 1.01 1.46 1.86 241
(5.0,0.5) -2.92 -2.48 -2.12 -1.71 1.01 1.41 1.82 2.34
Table 4.32
Empirical cumulative distribution of T for A; =1 (N =250)
o Probability of a Smaller Value
(c2,C) | 001 0025 005 010 090 095 0975  0.99
(0.2,-0.5) -3.55 -2.85 -2.33 -1.84 0.98 1.44 1.89 2.42
(0.2, 0.0) -4.00 -2.90 -2.20 -1.73 1.01 1.43 1.86 2.38
(0.2,0.5) -3.32 -2.82 -2.41 -1.95 0.96 1.44 1.89 2.39
(1.0,-0.5) | -2.77 -2.38 -2.04 -1.67 0.94 1.37 1.79 2.21
(1.0, 0.0) -2.77 -2.37 -2.05 -1.68 0.94 1.33 1.74 2.15
(1.0, 0.5) -3.13 -2.58 -2.17 -1.75 0.94 1.37 1.74 2.16
(5.0,-0.5) -2.68 -2.32 -1.99 -1.63 0.93 1.35 1.76 2.17
(5.0,0.0) -2.65 -2.29 -1.99 -1.63 0.93 1.32 1.72 2.09
(5.0, 0.5) -2.64 -2.26 -1.98 -1.65 0.93 1.35 1.71 2.11
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CHAPTER V

MODEL MISSPECIFICATION PROBLEMS

A general regression model with integrated errors and one system of integrated
regressors is introduced in Section 5.1. Section 5.2 develops the Basic asymptotic results
of parameter estimates and the usual OLS statistics, which is applied to subsequent
Sections 5.3-5.5. Spurious regression problem is discussed in Section 5.3 and misspeci-
fication of nonstationary autoregresive and polynomial regression models considered in
Section 5.4. Section 5.5 discusses underspecification of orders in nonstationary AR and

polynomial regression models.

5.1. General Regression Model

We consider a general regression model with integrated errors and one system of

integrated regressors as follows:

Y= BO + BIXt,l +...+ BpXt,p + Ut,k’ t= 1,..., n, (511)
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where vy, is the regressand, the regressors consist of an intercept and a system of

integrated variables defined by
Xt,j = Xl:j"l oot Xt,j-l’ J = 1’ 29-- - P Xt,O =X (512)

for a given deterministic or random sequence {x}, the regression error Uy is a k-
integrated error defined by

Ut,j :Ul,j-l +...+ Ut,j-l? _] 1 k UtO u,

and p and k are the levels of integration. The two processes {x,} and {u,} are assumed to
have certain limiting behavior based on the following Assumption 5.1 suggested by Shin
and Sarkar (1996, pp. 4-5). For simplicity of presentation, we discuss one system of

integrated regressors.

Assumption 5.1. There exist sequences of real numbers a, and d,, and continuous non-

zero functions f and g on [0,1], possibly random, such that as n— oo (E X.a_ , Eu d')

converges in distribution to (g(¥), f(s)), 0 <r, s <1, where [nr] denotes the largest integer

not greater than nr.

Usually, each of the functions g and f in Assumption 5.1 is either a deterministic
function, or a standard Brownian motion. The latter holds with w, = x, or w; = u, under

conditions such as



m

CCl. E(w,) =0 forallt, Sup, Epw " < o for some &> 2 and v> 0, o = lim,_E(w;

+...+w,,)2/n exists and & > 0, {w,} is a strong-mixing with mixing coefficients ,,

satisfying X w,’ 25 < oo; or

CC2. w, = Zgbjet_j where {e,} is an iid sequence with E(e,) = 0, E(e/) = 6,/ < o Zj"2¢j2
j=0

<wand o =3 (Y.¢,)" > 0.

=0
The conditions CC1 and CC2 were formulated by Herrndorf (1984) and Phillips and Solo
(1992) respectively.

If X 1,..., Xy linearly explain nothing of y,, then (By + p,X;; + ... + B,X, ;) is said
to be totally misspecified and Uy represents the nonstationary process y,. If X,y,..., X;,
explain the nonstationarity of y, partially in the sense that U, is still nonstationary with k
< p. Then the model (5.1.1) is said to be partially misspecified. The conventional t
statistics diverge asymptotically and the Durbin-Watson (DW) statistic converges in
probability to zero in cases of totally or partially misspecified models. On the other hand,
model (5.1.1) is said to be well specified when y, is well explained by X, ,..., X, in the
sense that U, is stationary with k = 0. In this case, t statistic has nondegenerate limiting

distributions and the limits of DW and R are positive and one respectively. If k =0 in

model (5.1.1) and x, = u, in (5.1.2), then model (5.1.1) becomes the AR model of order p

i (5.1.3)
Yi=0,+ ¢th—j+ut’
1
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where ¢;’s are linear combination of B;’s whose characteristic roots are all one. Similarly,
if k = 0 in model (5.1.1) and x, = 1 in (5.1.2), then (5.1.1) becomes the polynomial

regression model

S5 5.14
yt=80+28jt1/j!+ut ( )
j=1

where 8;’s are linear combinations of B;’s.

5.2. Asymptotic properties

In this section we discuss the asymptotics of the LS estimator and other regression
statistics in model (5.1.1) under proper normalization. Assumption 5.1 is imposed on the

two processes {x,} and {u,} to derive the asymptotic results.

Let B = (BO: Bla"'5 Bp)"and let Y= (YID"" Yn)’a Xt = (15 Xt,b"‘n Xt,p)ls X= (Xl | X2

X)), U= Uy, Up), §= 2y, /nand U= ) U,, /n. Then the LS estimator f
t=1 t=1 }

of B satisfies

B-B)=XX)"XU.

To establish the limiting distribution of suitably normalized (f&—B), the joint limiting
distributions of the elements in X'X and X'U of Lemma 5.1 below (Shin and Sarkar,

1996, pp. 6-7) are exploited.
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Lemma 5.1. Let model (5.1.1) hold with Assumption 5.1. Assume that k > 1 and p > 1.

Then, jointly
(1) n'jﬂan'lX[m]J —L—) gj(r)a J = 15---5 p;

k+1 4 -1 L
n dn U[nr],k — fk(r)a

n 1
@) 0% ) X X, — ngr)gj(r)dr, L,j=1,..,p;
t=1 0

n 1
@) 0™, %21 D X, U, — Igj(r)fk (r)dr, j=1,2,...,p,
t=1 0

1 T
where g,(1) = Jg;(9ds,j =2,.... . 210 = £ ®), () = [£, (9)ds, j =2, k. i) =
0 0

f(x).

Proof. Noting an'1 Xor1 = an'1 ixt — > g, (r) = g(r), we have
t=1
A -1 _ E“ -1 L _ rj
X2l 8, = 2,Xn7a, ——>g,(r) = Jg,(s)ds
t=1 0

because of the continuity of the map g (r)= Igl(s)ds and the continuous mapping
0

theorem (Billingsley 1968, Theorem 5.1). The proof of part (1) is completed by
repeatedly applying similar arguments. Let D be the set of all right continuous functions

on [0, 1] having the left hand limits, equipped with Skorokhod topology. Then the proof
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of parts (2), (3) and the joint convergence is verified by using part (1) and continuity of

the map D? — DP"x%PP*") defined by

1 1
3:(f, g) > [fise o fio E15e- s s (Igigjdr, i=1,..p,j=1,...,p), (Igjfkdr,j =1,...,p)]
0 0

and continuous mapping theorem. since (g(r), f(s)) is continuous, the convergence in
Skorokhod topology is equivalent to the uniform convergence (Billingsley 1968, p. 112).

Hence, it suffices to show the continuity of the map J in the uniform topology, which is
1

verified by observing that, for example, | Ig ifidr| < |lgigill, where || - || is the uniform norm
0

llgll = supg < <1/g(t)| that induces the uniform topology on C[0,1], the set of all continuous

functions on [0, 1]. Since boundedness of a map on C[0, 1] to R is equivalent to

1
continuity, the map (g;, g;) — Igi g,dr is continuous. Q.E.D.
0

Now let
A, = diag[1, a(1,n,..., " )], G@) =[1, g@)...., 5D,
! ! ! 5.2.1
H-= IG(r)G(r)’dr, V= IG(r)fk (r)dr, z= Iflfdr, 2D
and let
6’ = > fIf /(n-p-1)



where ﬁt =Yy, —f)o -B. X = =B, X, Then,
(np-1)6* =U'U - UXX'X)'X'U.
Now from the above Lemma 5.1 it follows that

n"AY(XX)A, ! —5 H, A, '(X'U)(@5,) —> V
and

UU/(n*'d?) Lz

We now define conventional regression statistics: the Durbin-Watson statistic

DW= Z(ﬁt - fjt-—l)z /ij?’
t=2 t=1

the coefficient of determination

R’ = [y X(X'X)"' X'y - n7*/(¥'y - n7°);
and the t-statistic

tﬁj :(Bj - Bj)/ Sﬁj,

where s; denotes the standard error of B ;-
]
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Now we state three theorems containing the limiting properties of the parameter
estimators and other conventional regression statistics, which are given by Shin and

Sarkar (1996).

Theorem 5.1. Let model (5.1.1) hold with Assumption 5.1. Assume k > 1, p > 1 and that

H is nonsingular. Then

1) A, (B-B)/(*'d,)—:>H'V,ie,
d, 2,0 (B, -B) —L>H'V),,, forj=1,.,p;

) @-p-1)6*/0*'d,>) —— (z-VH'V),

Theorem 5.2. Let model (5.1.1) hold with Assumption 5.1. Assume thatk > 1, p > 1 and
H is nonsingular. also assume that f; is not a linéar éombination of g, g,..., g, Define 1
= ( if B = 0, otherwise define t = limn_m(n'(an)/(nkdn) where k = max{0 <j < p: B; # 0}
and h(r) = 1p,g(r) + fi(r). then

(1) DW —-0;

(2) ift=00,R* —2 1;

if0<1t <00,
R>—51-[ .[hz (r)dr — ( .[h(r)dr)z ' [z- VH'V];

(3) forj=1,...,p,

ty, / n——(H'V),, [(H™),,, ., z— VHV)].
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Proof of (1). Note that
ﬁt = i(ﬁj - Bj)Xt,j +Ut,k’ [AJt _ﬁt—l = i(ﬁj - Bj)Xt,j—l + Ut,k—l
=0 =1

Now

2(11 L0, =UU 2B - By XU + BBy XX (B-P)

where

X, = (0, Xp Xi1eer Xip1)s X = (X5 1%y 1 X, ), and U = (Uypegye-nr Upier)'-
Then, by the continuous mapping theorem and (5.2.2) we have

AXXHA, ' 250, A, (XU —2> 0, UTUT /(0™ 4,2 —25 0
(5.2.3)

and the result follows as a direct consequence of (5.2.3) and Theorem 5.1. Q.E.D.
Proof of (2). Since §'§ = y'y—(n—-p-1)&*, where ¥ =(§,,..., ¥,)", R =1- (y'y - n7°)"'

(n-p-1)&°. By (5.2.2) and Theorem 5.1-(2), (n-p-1) & is of the same order in probability

as U'U. Now if t = o0, y; =B, X;, and by Lemma 5.1-(1)

nl-Kan-l}"[nr] —L) BKgK(r) # 0.

Hence by Theorem 5.1- (2) and the continuous mapping theorem
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(@-p-D&/Y'Y - n5°) = Op(n™ ', /™ 'a,") = 0,(1)
and R> —2»>1.If0 <7 < o0, y, = B X, + Uy and

k1 q -1 K 1- 1k g -1
0 d, Y = @ a/nd)Bn K T 07 dy Upe

—L 5 1 B.g (1) + fi(r) = h(r). (5.2.4)

Hence, the limiting distribution of R? follows from Theorem 5.1-(2) and (5.2.4) and

continuous mapping theorem. Q.E.D.

Proof of (3). The result follow from

ty, n'"*d;'a,n"™ B, -B))
Voo o0 ) XX a0 RS

(5.2.2) and Theorem 5.1. Q.E.D.

The condition that f is not a linear combination of g, g,,..., g, is equivalent to the fact
that model (5.1.1) is misspecified in our sense as described in Section 5.1 after two
conditions are defined. If model (5.1.1) is totally or partially misspecified, then Uy is an
integrated error representing the nonstationarity of y, unexplained by the regressors.
Therefore, f, can not be a linear combination of g;, g,..., g,, which makes (z - V’H'lV) >
0 and the limits in part (3) of Theorem 5.2 well defined. This is the case for all the

misspecification examples considered in Sections 5.3, 5.4.1, and 5.5. In view of Lemma
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5.1-(1), t defined in the above Theorem 5.2 represents the probabilistic order of (B, +
B1Xiq + ... + B,Xy,) relative to the error U,. Hence t = o corresponds to the situation
when the regressors have greater probabilistic order than the error, and in such a situation
R>—2 5 1. On the other hand, 0 < © < oo corresponds to the case when the regressors do
not have greater probabilistic order than the error and in such a case R’ converges to a
random variable which is less than éne.

When (5.1.1) is a well specified model in the sense that the nonstationarity of y, is
captured by Xt,j’s then the regressibn error U,y is a stationary process with k = 0. This
situation can not be handled using Theorem 5.1 and 5.2 and to derive asymptotics in the

case we need some additional conditions.

Theorem 5.3. Let model (5.1) hold with Assumption 5.1. Assume that H is nonsingular
and alsok=0,p >1,d, = n" and An'IX’U/dn converges in distribution to a nonzero
finite random vector, say, ¢ and U'U/n converges in probability to a positive real number,
say, y. Then

(1) forj=1,..p, "%, (B; - B)——> H'),.,,

Q) &—— v;

(3) if 2U, U, — >0, then DW — 2(y - 9)/y;
t=1

(4) R =25 1;

(5) forj=1,..,p, ty, ——> (Hq).;, [(H™); 091"
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Proof. Proofis similar to that of Theorem 5.1 and 5.2 and is, therefore, omitted. Q.E.D.

As seen from the above theorems, the behavior of the regression statistics depends

on whether the error term Uy, is stationary or nonstationary. If model (5.1.1) is
misspecified then U,y is nonstationary and [§ ; diverges for j such that d, n* /a, T oo; 67
diverges; DW —=— 0. If the probabilistic order of the regressors is not greater than that
of the regression error, then the limit of R? is less than one, otherwise R L 1; and t[ij
diverges, implying misleading high significance of the tg,-

On the other hand, if the nonstaionarity of y, is well explained by X,;’s then the
error term Uy, will be stationary. In this case [?) ; 1s consistent; 6° converges; DW

. P
converges to the positive number because y > o; R* —51; t, converges. One
]

implication is that a small value of DW along with a moderate R’ value may be taken as
an indication of possible misspecification in the sense that the error term Uy, in model
(5.1.1) is nonstationary and needs to be explained further. Furthermore, we will state
several corollaries based on the above three theorems in the next sections, which are

given by Shin and Sarkar (1996).
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5.3. Spurious regression problem
5.3.1. Previous works

A small value of DW together with a moderate R’ value may be taken as an
indication of possible misspecification in the sense that the error term U, in model
(5.1.1) is nonstationary. Granger and Newbold (1974) showed, through simulation
results, the danger of acceptance of spurious relationships if the traditional significant test
statistics are used. If autocorrelated errors in time series regression equations are ignored,
problem arise involving inefficient parameter estimates, and invalid significant tests and
sub-optimal results when the fitted equations are used to derive forecasts. Provided that a
regression equation relating variables is found to have strongly autocorrelated residuals,
equivalent to a low Durbin-Watson value, the only coﬂclusion that can be reached is that
the equation is misspecified, whatever the value of R* observed. Furthermore, the form of
the misspecification can be considered to be either (a) the omission of relevant variables
or (b) the inclusion of irrelevant variables or (c) autocorrelated residuals. There are three
ways éuggésted by them in which the problems associated with spurious regression can
be avoided. The first approach is to include lagged values of both the dependent and
independent variable in the regression. A second approach is to difference the data before
estimating the relation. A third approach is to assume a simple first-order autoregressive
form for the residual of the equation. Because the second approach avoids the spurious
regression problem as well as the nonstandard distributions for certain hypotheses, many

researchers recommend routinely differencing apparently nonstationary variables before
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estimating regressions. However, there are two different situations in which it might be
inappropriate. First, if the data are really stationary, then differencing the data can result
in a misspecified regression. Second, even if both series y;; and y,, are truly integrated of
order 1 (I(1)), i.e., both series with no deterministic component has a stationary, invertible
ARMA representation after differencing once, there is a class of models, so called
cointegrated models, for which the bivariate dynamic relation between y;, and y,, will be
misspecified if the researCher simply differences both y;, and y,,.

Newbold and Davies (1978) suggested that a reasonable alternative to AR(1), in
certain circumstances, is the ARIMA(O, 1, 1) process in terms of error structure and that
inference in regressions involving time series can be greatly affected by the error
structure assumed.

Phillips (1986) developed an asymptotic theory for regression with integrated
processes that explainé analytically the empirical findings of Granger and Newbold
(1974) and furthermore worked the asymptotics of various statistics such as regression
coefficients, t statistics and F statistics for the significance of the regression coefficients
in a spurious regression , and showed that the usual t and F test statistics do not possess
limiting distributions but actually diverge as the sample size n approaches oo. for

illustration, consider the simplest case:
Y1t = Y1 T €1
V24T Vo1 T €2

¥e = V1o Y2
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where g;,’s are i1d with mean zero and variance c;", €,,’s are iid with mean zero and

variance o,’, and €, is independent of &,, for all t. First, an OLS regression of y,, on yy,

and a constant,

Yie=otByxte, (5.3.1)

produces estimates & and B characterized by

where lih1:|= 1 IW*(r)dr B IW*(r)dr

h, | | [Wmdr [(W @)dr| | [(W @) dr

and the integral sign indicates integration over r from 0 to 1, W*(r) and denotes scalar
standard Brownian motion. Usually, the LS estimates are consistent with f&n — 50 and
must be multiplied by some increasing function of n in order to obtain a nondegenerate
asymptotic distribution. Here, however, neither estimate is consistent-different arbitrarily
large samples will have randomly differing estimates f&n. Indeed, the estimate of the
constant term & actually diverges, and must be divided by n'? to obtain a random
variable with a well-specified distribution. The estimate & itself is likely to get farther
and farther from the true value of zero as the sample size increases. Second, the usual LS

estimate of the variance of e, 6. = (Residual SS)/(n-2), again diverges as n goes to
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infinity. To obtain an estimate that does not grow with the sample size, the residual sum

of squares has to be divided by n’ rather than n. In this respect, the residuals &, from a
spurious regression behave like a unit root process; if z, is a I(1) series, then Zztz/n
diverges and Z‘,ztz/n2 converges. Third, OLS t or F tests based on the spurious regression
(5.3.1) also diverge; the regression F-statistic must be divided by n to obtain a variable
that does not grow with the sample size. Since an F test of a single restriction is the
square of the corresponding t test, any t statistic would have to be divided by n'"? to
obtain a convergent variable. Thus, as the sample size n becomes larger, it becomes
likely that the absolute value of a t test statistic will exceed any arbitrary finite value.

Note that above results can be obtained only when all of the elements of y, are I(1) with

zero drift and when the vector y, is not cointegrated.

5.3.2. Spurious regression

We now discuss a few of the implications of the unit root tests literature for
regression with integrated variables. Suppose first that one is interested in making
inference on a particular regression coefficient (which may be a vector). The following
situations arise naturally:

(1) If the disturbance term is serially uncorrelated and uncorrelated with the regressors,
and the coefficient(s) of interest can be expressed as coefficients on zero-mean stationary
variables, then LS estimators are consistent and the standard asymptotic distribution

theory applies. If, on the other hand, the coefficient(s) of interest cannot be expressed as



125

coefficients on zero-mean stationary variables, then consistency still obtains, but the
asymptotic distribution is nonstandard.
(2) If an integrated regressand is cointegrated with at least one regressor, so that the
disturbance term is stationary but not necessarily serially uncorrelated or independent of
the regressors, and if the coefficient(s) of interest can be expressed as coefficients on
zero-mean stationary variables, then LS estimates are inconsistent. If, however, the
coefficient of interest is on an integrated regressor and cannot be written as a coefficient
on a zero-mean stationary variable, then the estimator is consistent (but it has a
nonstandard asymptotic distribution).
(3) If an integrated regressand is not cointegrated with any regressor, so that the
disturbance term is integfated, then the LS estimates of coefficients on integrated
regressors will be inconsistent; it is in this situation that the Granger-Newbold “spurious
regression” phenomenon arises.

We consider the general framework (5.1.1) in which a k-integrated series vy, is
wrongly regressed on another p-integrated series X, and its lags, i.e., kat =u, VX, =
x,, where V is the difference operator such that VX; = X,; - X ;. For simplicity of

analysis and notation we assume that u, = 0 and x, = 0 for t < 0. We also assume that both

{x,} and {u,} satisfy the above condition CC1 or CC2 for some cx2 >0 and ouz > 0. Then

application of Theorems 5.1 and 5.2 gives the following (Shin and Sarkar, 1996, p. 11).
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Corollary 5.3. Under the assumptions of Section 5.3.2, ﬁ ; diverges for j <k, while ﬁ ;

converges for j > k; & diverges; all the t-statistics diverges at the rate nm; DW —— 0;

R*has a nondegenerate limit which is less than one.

Proof. We first give a proof for the case when {y,} and {x,} are independent. The true y,
satisfy model (5.1.1) with U, = y; = V'kut and By = f; =... = B, = 0, and Assumption 5.1
is then satisfied with

a,=n"% d,=n"% g@) =6, W), ft)=c,W'(),

where W(r) and W"(r) are two independent standard Brownian motions on [0,1]. There-
fore, the limiting distribution of the normalized LS estimator n'kﬂ'm(fio ,w/Hﬁl ,vn’ Bz yeees

n"1/2+pﬁp) in the spurious regression is given by Theorem 5.1-(1) with

G() =[1, 5,W,"(@),..., 5, W, (0)] and £(r) = 5, W, (1),

where W;(r) is the j _fold integral of W(r), and W, "(r) is the k-fold integral of W"(r).

Therefore, f& ; diverges for j <k, while ﬁ ; converges for j > k; also & diverges. Since
X,;’s are independent of y, = Uy, W,'(r) is not a linear combination of W,(r),..., W, (1),
and since By = B; = ... =B, = 0, T of Theorem 5.2 is zero. In this case the regressors do

not explain nonstationarity of the regressand at all and Theorem 5.1-(1) holds and results

follow from Theorem 5.2.
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Suppose next X, and y, are not independent. If k > p or y, and X, are not

cointegrated, then W '(r) is not a linear combination of W,*(r),..., W, (r) and the

asymptotics of |§, &, tg, ’s and DW are the same as those when X, and its lags and y, are

independent. Q.E.D.

Example 5.1. Engle and Granger (1987, Table IV) analyzed the US quarterly real per
capita consumption on nondurables (C,) and real per capita disposable income (Y,) from
1947: 1 to 1981: II and they obtained Ct =0.52 + 0.23Y,, 6 = 0.016, DW = 0.46, R* =
0.99. The moderate value of DW and high value of R? indicate cointegration between C,
and Y,, supporting the conclusion of Engle and Granger who proposed to use DW as a

test statistic for integration whenp =k = 1.
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5.4. Misspecification of nonstationary AR and polynomial regression models

In analyzing a time series showing some kind of a trend as in macroeconomic
variables, the deterministic trend (or polynomial regression) model and stochastic trend
y,, defined by V° y, = u, for some positive integer s, are two main alternatives for
representing the trend. We consider the effect of misspecification on the asymptotic

behavior of the LS estimat¢ in which a polynomial regression model
Yy = 8o+ 81t + y(t720) + 8,(P/p!) + ¢, (5.4.1)
is used to estimate a stochastic trend defined by the nonstationary AR model
V=g + oV ly ot ¢q-1VYt-q+1 T 0Yiq T M (5.4.2)

or vice versa. The g, and m, are the error components and are assumed to satisfy condition
CC1 or CC2 given in Section 5.1. For model (5.4.2) we also assume that the s roots of
the polynomial A(L) = [1 - ¢;(1 - L)q'lL - - ¢qmq) lie on the unit circle and the

remaining (g-s) roots lie outside the unit circle.
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5.4.1. Previous works

Nelson and Plossér (1982) argued that a large number of macroeconomic
aggregates are better modeled as random walks or integrated processes of order 1 (I(1)
processes) rather than stationary processes with a trénd. Furthermore, many variables
such as real GNP and employment were found to be reasonably characterized as random
walks with drift.

Nelson and Kang (1984) investigated the properties of standard regression
statistics including R’ t and sample autocorrelations of the residuals when time is the
only explanatory variable, namely polynomial model of order one in time when in fact
the time series we are interested in explaining belongs to the difference stationary process
(DSP) class such. as a’ driftless random walk. They explored the fact that this regression
results in the inappropriate inference that the trend is significant.

Durlauf and Phillips (1988) analyzed the effect of misspecification of the
generating mechanism of a nonstationary time series in terms of deterministic trends and
derived the limiting properties of the LS estimator in the linear time trend regression
model when the true model is a random walk. In particular, the DW statistic is shown to
possess promising asymptotic properties as a regression diagnostic tool in the sense that it

converges to zero when an integrated process is erroneously treated as stationary.
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5.4.2. Misspecification of a nonstationary AR model as a polynomial regression model

Suppose the true y, satisfies V'y, = n* with n* satisfying condition CC1 or CC2 of
Section 5.1 for some o” > 0, suppose model (5.4.1) is fit to the {y,}", series. Then

applying Theorem 5.1 and 5.2 with x; = 1, k = s, and U, = y, we obtain the next result

(Shin and Sarkar, 1996, p. 14).

Corollary 5.4.1. Under the above assumptions of Section 5.4.2, for j <s, 5 ; diverges; all

t-statistics diverges at the rate nm; DW converges to zero; R’ converges to a degenerate

limit which is less than one.

Proof. Regression (5.4.2) has the form of model (5.1.1) with true parameters §, = 8, = 9,
=0, x, = 1, k = s and regression error U, =y, = V'Snt*. Leta,=n,d, = (czn)m, gr) =r,
f(r) = W(),

A, =diag(l,n,...,n"), G=(1,1/1,...,/p!y, f,(r) = W),

where W, (1) is the s-fold integral of W(r). Then by Theorem 5.1-(1), upon evaluating the

integrals, we obtain
n n . 1
n'"*(c’n)"*(8,,n5,,..., n°B )y —— K'M" IG(r)wS(r)dr,
0

where K = diag(1, 1/1!, 1/2!,..., 1/p!) and M is a (p+1)x(p+1) matrix with (i, j)th element

= (i+j+l)'1. Note that for j <s, Sj diverges. We have positive (z - VH' V) in Theorem
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5.1-(2) because W (r) is not a linear combination of (1, r/1!,..., ©/p!). Also 1 in Theorem

5.2 is zero because d, = ... = &, = 0. Therefore, the asymptotics of statistics follow from
Theorem 5.2. Q.E.D.
Note that this section is a case in which the regressors do not express non-

stationarity of'y, at all and hence the model is totally misspecified.

Example 5.2. Consider the log of the US consumer prices analyzed by Nelson and
Plosser (1982, Table 4). Their reported DW statistic value for this series in the regression
¥, = 80 + Slt is approximately.0.06, indicating a misspecification. However, the DW
statistic value in the autoregressive fitting in Table 5 of Nelson and Plosser (1982) is
2.12, which indicates a good fit. This leads to the same conclusion of Nelson and Plosser
that log of consumer price is well represented by a unit root AR model instead of the

trend regression model.

5.4.3. Misspecification of a polynomial regression model as a nonstationary AR model

We assume that the true y, is generate by model (5.1.1) with errors {g,} satisfying
condition CC1 or CC2 with some ¢° > 0, model (5.4.2) is fit to the {y }i, series.
Assume §,#0andp>q>1. LetX;; =3, 9 /(p-g+j)!1), j=1,2,..., q. Then Vq'jyt_j =
Xy + Op(np'q+j'1), uniformly in t. Hence, the asymptotics in the estimated model (5.4.2) in

the same as those in

g’t = (T)o +$1Xt,1 +“'+$th,q
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and we have the following result (Shin and Sarkar, 1996, p. 15).

Corollary 5.4.2. Assume that the above assumptions of Section 5.4.2 hold

(1) If8 =3, =...= §,, =0 then §, converges; & ——c’; t o converges; DW

>(p;R2 * 5 1.

—2 5 2(c” - 9)/o’, where thgt—l
t=1
(2) If some of §;, d;,..., 6, are nonzero, then b ; converges; & diverges;

DW—3 0;R*—2 5 1; t, diverges for j such that (H'lV)jH’1 # 0 where H and V are as

defined in (5.2.1) with

GO =[1, " (p-g+D,..., p!], £ =5 k!
where k = x = max {j: §; ¢‘0, 0<j<p-q}.
Proof. Observe that the true y, in (5.4.1) can be written as
Y1 = (Opqr1Xy1 + oo T 8X, )8, + Uy

which is of the form (5.1.1) with x, = 8,t”%(p-q)! and U, =8, " */(p-q)! + ... +§, +&,.

Note that

Ext /8pnp'q+1 — g(@) =" (p-q+1)!

t=1

Therefore, with a, = 8pnp'q+1, G() =[1, " (p-q+D,..., P/p!].
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The asymptotics depend on whether U, = ¢, or not.

First proof of part (1) is given. Assume §, =0, =... =38, ,=0. Then U, = ¢, and
1

conditions of Theorem 5.3 are satisfied with ¢ = IG(r)dW(r), Y = o”. Hence, by
0

Theorem 5.3

—a+l i / N - L -
8, ("0l /on"?)($, -5, ., 8, ) —> (H7Q),,,

which is a normal distribution, and the results follow. Q.E.D.
Now proof of part (2) is given. Assume some of the §;’s are not equal to zero.

Let k =max{j: §;#0,0<j<p-q}. Thend, »0and U,=3,t*/x!. Hence, with d_=n"*"",
1 K
s -l L r
d'A'XU L SKIG(r)EdFV.
: !

Since r/x! is not a linear combination of r’ 'q+1/(p-q+1)!,..., '/p!, condition of Theorem

5.2 is satisfied. Therefore, by Theorem 5.1 and 5.2

@0 Y0 ) 10§84 8,) —> (H Vo,
which is nonrandom; ¢ ; converges; & diverges; DW ——> 0; t o diverges for j such that

(H'1 V)i, #20. Since X, , = t*/p! increases faster than U, = 8,t"/x!, T in Theorem 5.2 is .

Hence, R —> 1. Q.E.D.
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In the case of part (1) of Corollary 5.4.2 the estimated model (5.4.2) is well
specified model in the sense that all the nonstationarity of y, is explained by the
regressors. Whereas in the case of part (2) the model is partially misspecified in the sense
that the trends of y, of the order greater than (p-q) are explained by the regressors, the lags

of y,, while trends of the order less than or equal to k is still unexplained.
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5.5. Underspecification of orders in nonstationary autoregressive

and polynomial regression models

The order values p and q in the polynomial regression and nonstationary
autoregressive models (5.4.1) and (5.4.2) are usually not known and they might be

overspecified or underspecified.

5.5.1. Previous works

Dickey and Pantula (1987) déveloped a sequential testing procedure for testing
three unit roots against two unit roots and then two unit roots against one unit root, which
could be used to determine the number of unit roots. In addition Hasza and Fuller (1979),
Sen and Dickey (1987) and Haldrup (1994) investigated tests for unit roots in the I(2)

time series.

5.5.2. Underspecification of the order in a nonstationary autoregressive model

If the data are underdifferenced, by which we mean that the AR model does in
fact have some unit roots and/or cointegrating relationships but is nevertheless estimated
completely in levels, so that no unit roots or cointegrating relationships are imposed on

the data, then the unit roots and cointegrating relationships (if present) will nevertheless
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be satisfied asymptotically (although some efficiency is lost in finite samples), and
moreover, convergence is typically at rates faster than O(nm). The fact that the
distribution theory for some of the estimated coefficients is nonstandard is of no
consequence for construction of point forecasts. Thus, the costs of underdifferncing are
likely to be low. Overdifferencing, on the other hand, discards low-frequency information
and destroys cointegrating relationships, and may cause difficulties for numerical
estimation algorithm, due to the induced unit moving-average roots.

Suppose the true y, satisfies V'y, = n* with n* satisfying condition CC1 or CC2
for some o” > 0 and is estimated by model (5.4.2) with q <s. In this case the model is
partially misspecified. Using Theorem 5.1 and 5.2 we get the following (Shin and Sarkar,

1996, p. 17).

Corollary 5.5.1. Under ‘the above assumptions of section 5.2, ; converges; & diverges

at the rate n°¢9; RZ—25 1; DW ——0; t y, diverges at the rate n'?,

Proof. Let X*t,j = v Vi Xij= v¥y  andx,=V%y, Then

X'y =Xy + 0, @),

ql_ . qi .
y,=(1-L+L)Yy,= i@vq Jyt_j +X%, = i(j}xt_j +X,

j=1 j=1

which is of the form (5.1.1) with Uy, = x,. Also observe that k = s - q because x, = Vq'jn*t.

Since
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n ¢ (sn)y"? Ext —L s W i(@), 2, =1n"%(c"n)"”

t=1

and
G() = (1, W g1 (0),..., W(D)'.
1
Also, since Uy, = V¥n ,, by Lemma 5.1-2), d, = a, and V = IG(r)WS_q(r)dr, z=
0
1
!Wsz_q (r)dr. By Theorem 5.1

(9, —@)—L>(H'IV)J-H,I,

A

¢, converges; 6° diverges at the rate n**? Observe that W, (r) is not a linear
combination of W g,1(1),..., W(1), and since the probabilistic order of X, = V'Sn*t is
greater than that of Uy, = V', 1 in Theorem 5.2 is «. Therefore, R* — 1; also

DW —> 0Oand t b diverges at the rate n'’%. Q.E.D.

We now consider an application of the above. If one is fitting an AR(1) model to
1 1
an I(2) process, then p=1,s =2, and G = (1, Wy(r)) and V = IG(r)W(r)dr = (IW(r)dr,
0 0
1
IW(r) W,(r)dr)’. Therefore,
0

n($, -1)—— _[W(r)Wz (r)dr/ ij (r)dr.
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Hence n(cIA)1 —1) converges in distribution. However, ty, = (431 - 1)/5(51 diverges at the
rate n'? and t, is expected to reject the single unit root hypothesis with higher

probability than n((IA)1 -1).

Example 5.3. Consider the data on commercial bank real estate loans analyzed by Dickey
and Pantula (1987). Dickey and Pantula argued that the séri_es was well represented by an
AR process with two unit roots. For testing Hy: one unit root vs. H;: not H, after
adjusting for the mean and lags of first differences, Dickey and Pantula (1987, Table 1)
obtained 1.265 for the t-statistic T, and 70x(0.006197) = 0.434 for n( p,-1). Using Tables
8.5.1 - 8.5.2 of Fuller (1976) the n(ﬁu-l) value is less than 97.5-th percentile point and
T , 18 much higher than the 99-th percentile point. Therefore, the t-statistic 1 , has more
power for the double unit roots alternative. In this example, fu provides stronger

evidence than n(p,, -1) against the single unit root null hypothesis.

5.5.3. Underspecification of the order in a polynomial regression model

We next consider the polynomial regression. Let the true model for y, be a gth
order polynomial regression y, = 8, + &t + 82(t2/2!) + ...+ Sq(tq/q!) + g, 8y # 0, and is

estimated by the pth order polynomial regression y, = 80 + 81t+ Sztz 214+ Sp(tp/p!),
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where p <q. This is a case of a totally misspecified model. By Theorem 5.1 and 5.2 the

following is obtained:

Corollary 5.5.2. Under the assumptions of Section 5.5.3, all the § ;s and &” diverges; the

t-statistics diverge at the rate n'?;, DW converges to 0; R’ converges to a constant lying

strictly between zero and one.

Proof. The pth order polynomial model can be considered as model (5.1.1) with p =p, k
=q,%x=1,Uyg=y,andu = VIt + ... + 3,(tq!) + &) = 8, a, =n and d, = §,n, and

zero as the true parameter values. Then,

GO =[1,1,..., P!, £, =1Yq!

1 .
and by Theorem 5.1 the limiting distribution of (3,, n®"§,,..., %3 ) is &, IG(r)
0

1
G(r)'dr]'l[ jG(r) f,(r)dr]. We see that all the § ;s and &” diverge. Since U;,q = Sqtq/q!, T
0

in Theorem 5.2 is zero. Also fq (r) is not a linear combination of 1, 1,..., I’/p!. Hence, by

Theorem 5.2 the result follows. Q.E.D.
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CHAPTER VI

AN EMPIRICAL STUDY

In this chapter we consider a Monte Carlo study based on Chapter 5 regarding the
model specification problems. We generate 10,000 samples of size n for n = 25, 50, 100
and 250. For a fixed sample size n, the corresponding empirical means of parameter
estimates, &* and other conventional regression statistics such as t-statistics, R* and DW
are considered. The subroutine DRNNOA is used to generate the normal random
numbers. Sectidn 6.1 discusse‘s algorithms based on misspeciﬁed models in Sections 5.3-

5.5, and Section 6.2 contains Monte Carlo results and a discussion.

6.1. Algorithms

In this section several algorithms derived on the basis of corollaries from Chapter

5 are introduced.
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6.1.1. Spurious regression

We consider the following special cases of the spurious regression based on kat
=1, VX, =x¢

(A) k=1landp=2

(B) k=2andp=1, and

" (C) k=2andp=2.

The following different algebraic equations will be used in data generation.

Vyt=ut:>yt=yt_1+ut:>yt=gui (6.1.1)

VY =0 = Y =2y - Vi S Y, = 2211i - gui +u, 6.1.2)

VX, =% = X, =X + 5,2 X, = gxi (6.1.3)

VX5 = Xy = Xy = Xpip + Xy = Xy = Z X, ©6.14)
VX, =% = Xip = 2Xi12 - Xeam + X,

(6.1.5)

£-1 )
=X, = ZZXM - ZXm + X,
i=1

i=1

where x,=1u,=0, ift <0.
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A Casel:k=landp=2

Algorithm:

(1) Generate random numbers u,’s and x,’s iid N(0, 1) or N(0, 5), respectively, where t =
1,...,nwithn=25, 50, 100 and 250.

(2) Compute the y,’s, Xm’s and X, ,’s based on equations (6.1.1) and (6.1.4), respectively.
(3) Regressy; on X, and X, where y, = By + B, X ; + B2 X, + &

(4) Calculate regression coefficients and the usual OLS statistics, &7, t, DW and R” based
on the fitted model.

(5) Repeat steps (1) - (4) ten thousand times.

(6) Compute the corresponding empirical means of the statistics 6°, DW and R’
respectively through step (5).

(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results

of Corollary 5.3.

B. Case2:k=2andp=1

Algorithm:

(1) Generate random numbers u,’s and x,’s iid N(0, 1) or N(0, 5), respectively, where t =
1,..., nwith n =25, 50, 100 and 250.

(2) Compute the y,’s and X, ;’s based on équations (6.1.2) and (6.1.3), respectively.

(3) Regressy, on X;; wherey, =+ p;X;; +&.

(4) Calculate regression coefficients and the usual OLS statistics, 6°, t, DW and R? based

on the fitted model.

(5) Repeat steps (1) - (4) ten thousand times.
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(6) Compute the corresponding empirical means of the statistics 6°, DW and R
respectively through step (5).
(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical

results of Corollary 5.3.

C. Case3:k=2andp=2

Algorithm:

(1) Generate random numbers u,’s and x,’s iid N(0, 1) or N(0, 5), respectively, where t =
1,...,n with n =25, 50, 100 and 250.

(2) Compute the y;’s, X;;’s and X, ,’s based on equations (6.1.2) and (6.1.4), respectively.
(3) Regressy,on X, and X;, wherey, =g+ B;X;; + B, X, t &

(4) Calculate regression coefficients and the usual OLS statistics, 6%, t, DW and R’ based
on the fitted model.

(5) Repeat steps (1) - (4) ten thousand times.

(6) Compute the corresponding empirical means of the statistics 6°, DW and R’
respectively through step (5).

(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results

of Corollary 5.3.
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6.1.2. Misspecification of nonstationary AR and polynomial regression models

We consider the case of p = q = 2 in models (5.4.1) and (5.4.2) to observe the

empirical behavior of the regression statistics in misspecified models.

A. Misspecification of a nonstationary AR(2) model as a polynomial regression model of
order 2

True model: szt =1, ,1.., a nonstationary AR(2) model

Fitted modél: V=90 + 01t + 62(‘[2/2) + g, 1.€., a polynomial fegression model of order 2.

Algorithm:

(1) Generate random numbers u, ~ NID(0, 1) or N(0, 5), where t = 1,..., n with n = 25,

50, 100 and 250.

(2) Compute the y,’s based on the following: y, = 2y, - ;o + 4, Where u, =y, = 0if t < 0.

(3) Fit the data y, generated by step (2) to the polynomial regression model of order 2.

(4) Calculate regression coefficients and the busua'l OLS statistics, 6°, t, DW and R? based

on the fitted model. |

(5) Repeat steps (1) - (4) ten thousand times.

(6) Compute the empirical means of the statistics 6°, DW, t and R

(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results

of Corollary 5.4.1.
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B. Misspecification of a polynomial regression model of order 2 as a nonstationary

AR(2) model

True model: y, =8 + &;t + 82(‘[2/2) + g, with (8, 81, 6,) = (0, 1, 1) or (0, 2, 2) or (0, 2, 1)
Fitted model: y; = ¢o + ¢1Vyy1 + §2¥i2 + M,

Algorithm:

(1) Generate random numbers g, ~ NID(0, 1) or N(0, 5), where t = 1,..., n with n = 25,
50, 100 and 250.

(2) Compute the y,’s based on the following: y, =t + t*/2 + g, where ¢, = y;=0ift<0.

(3) Regress y; on {(¥y1 - ¥12)s Via}-

(4) Calculate regression coefficients and the usual OLS statistics, 6%, t, DW and R” based
on the fitted model.

(5) Repeat steps (1) - (4) ten thousand times.

(6) Compute the empirical means of the statistics 6%, DW, t and R

(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results

of Corollary 5.4.2.

6.1.3. Underspecification of the orders in nonstationary AR and polynomial
regression model

A. Underspecification of the order in a nonstationary AR model.

Let the true generating mechanism for y, be szt = nt* , with nt* satisfying

condition CC1 or CC2 for some 6” > 0, and is estimated by model Vy,=n;:
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True model: szt =1, i.e., nonstationary AR(2) model

Fitted model: y,= ¢y + ¢1Ye; T+ €

Algorithm:

(1) Generate random number u, ~ NID(0, 1) or NID(0, 5), where t = 1,..., n with n = 25,
50, 100 and 250.

(2) Compute the y,’s based on the following: y, =2y, - y;, + u, where u, =y, =0ift < 0.
(3) Regressy,ony,.

(4) Calculate regression coefficients and the usual OLS statistics, 6°, t, DW and R’ based
on the fitted model. |

(5) Repeat steps (1) - (4) ten thousand times.

(6) Compute the empirical means of the statistics 6>, DW, t and R%

(7) Compare the o‘btained numerical results from steps (1) - (6) with the theoretical results

of Corollary 5.5.1.

B. Underspecification of the order in a polynomial regression model

Let the true model for y, be a second order polynomial regression and is estimated
by the first order polynomial regression:
True model: y, =8 o+ 8 1t + 8 5(t72) + &  with (8, 8 1, 8 2) =(0, 1, 1) or (0, 2, 2)
Fitted model: y, = 8, + &:t + €,
Algorithm:
(1) Generate random number g, ~ NID(0, 1) or NID(0, 5), where t = 1,..., n with n = 25,

50, 100 and 250.
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(2) Compute the y,’s based on the following: y, =t + 2+ g, where g, =y, =0ift<0.

(3) Regressy,ont.

(4) Calculate regression coefficients and the usual OLS statistics, 6°, t, DW and R” based
on the fitted model.

(5) Repeat steps (1) - (4) ten thousand times.

(6) Compute the empirical means of the statistics 6°, DW, t and R’.

(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results

of Corollary 5.5.2.
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6.2. Results and Discussion

In Chapter 5 a general regression model with integrated errors and one system of
integrated regressors has been considered and asymptotic properties of the conventional
regression statistics under this model have been discussed. Empirical results on model
specification problems for nonstationary time series are presented in Table 6.1 through
Table 6.7.

Tables 6.1-6.3 show the empirical results in spurious regression against the
theoretical background given by Corollary 5.3. The following common empirical results
from Tables 6.1-6.3 can be seen: all the DW’s appear to converge in probability to 0; all
&°’s diverge; all the R’ ’s seem to have a nondegenerate limit which is less than one

(0.49, 0.37 and 0.78 in Tables 6.1-6.3, respectively); all the t-statistics seem to diverge
slowly; all the parameter estimates ﬁj’s may diverge very slowly for j < k and converge
very slowly for j > k. From these results we can observe the fact that LS statistics such as
R* and DW can be used as diagnostic tools to check the spurious regression in the sense

that they can be used as remarkable symptoms of spurious regression when we obtain

DW close to 0 and R* much less than one. Furthermore, as the orders of k and/or p are
getting larger, the rate of divergence for [3 ;s and tg, ’s are getting faster.
Table 6.4-Table 6.5 display the empirical results under misspecification of

polynomial regression models and nonstationary AR against the theoretical backdrop

provided by Corollary 5.4.1 and Corollary 5.4.2 respectively. From Table 6.4 the

following can be observed: Sj’s, forj =0, 1, 2, diverge; all three t-statistics diverge; DW
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seems to converge to 0; R? appears to converge to 0.96; 6* diverges. In addition, from
Table 6.5 the following can be seen: (f)l appears to converge to 1.9 and (f)z to 1.00; DW

seems to converge in probability to 3; & appears to converge in probability to 4.01; R?

seems to converge in probability to 1; t, and t, converge to numbers near 9.5 and 5.78

respectively. All these empirical values in Table 6.4-6.5 fully support the theoretical
results of Corollary 5.4.1 and Corollary 5.4.2 respectively. Similarly, LS statistics such as
Rz_ and DW may be exploited to check for misspecification of polynomial regression
models and nonstationary AR as follows:

(1) If DW is close to 0 and R’ is close to 0.96, we can conclude that a
nonstationary AR model has been misspecified as a polynomial regression model.

(2) IfDW is close to 3 and R’ is close to 1.0, we can conclude that a polynomial
regression model has been misspecified as a nonstationary AR model.

Table 6.6-Table 6.7 give the simulation results under underspecification of the
order in a nonsfationary AR and underspecification of the order in polynomial regression.
In these cases Corollary 5.5.1 and Corollary 5.5.2 respectively provide the theoretical
background. From Table 6.6 the following can be observed: ¢, seems to converge to 0.01
and (f)l to 1.00; &° appears to diverge; R’ seems to converge in probability to 1; DW
seems to converge in probability to 0; two t-statistics appear to diverge. The following
facts can be seen from Table 6.7: all the parameter estimates, 6 and two t-statistics seem
to diverée; DW seems to converge in probability to 0; R® seems to converge in
probability to 0.94. All these empirical values in Tables 6.6-6.7 fully support the results

of Corollary 5.4.1 and Corollary 5.4.2 respectively.
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In summary, it is observed from the simulation results that DW and R? can be in
general used as diagnostic tools to detect spurious regression, misspecification of non-

stationary AR and polynomial regression models.



Table 6.1

SPURIOUS REGRESSION 1 (k=1,p=2)
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n 25 50 100 250
statistics
B, -0.0000 0.0075 0.0292 0.0673
B 0.0041 0.0001 -0.0118 -0.1915
Bl -0.0004 -0.0002 -0.0001 -0.0001
2

ty, -0.008 0.006 -0.022 0.092
ty 0.002 -0.003 0.118 -0.249
t,, 0.082 0.063 0.017 -0.271
R® 0.497 0.496 0.490 0.489
DW 0.907 0.486 0.253 0.104
52 1.768 3.339 6.572 16.218




Table 6.2

SPURIOUS REGRESSION 2 (k=2,p=1)

n 25 50 100 250
statistics
B, 0.185 -0.281 -1.569 -9.702
B -0.063 -0.135 0.058 -0.090
1
ts, 0.039 0.026 -0.044 -0.142
ts, -0.057 -0.024 -0.013 -0.001
R® 0.376 0.377 0.372 0.374
DW 0.447 0.177 0.093 0.015
&2 360.4 2630.9 20221.2 | 307268.1
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Table 6.3

SPURIOUS REGRESSION 3 (k =2, p=2)

n 25 50 100 250
statistics
B, 0.049 0.093 0.111 6.951
B -0.014 -0.002 0.001 0.149
B‘ -0.011 -0.042 -0.090 -0.230
2
ty. 0.013 -0.003 -0.171 -0.246
tg, -0.018 0.005 0.067 0.165
t, 0.038 -0.152 -0.536 -0.740
R? 0.774 0.786 0.781 0.780
DW 1.001 0.318 0.103 0.033
5 90.3 644.3 5020.1 74303.8
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Table 6.4

MISSPECIFICATION OF A NONSTATIONARY AR(2) AS

A POLYNOMIAL REGRESSION MODEL

OF ORDER 2
n 25 50 100 250
statistics

5, -0.028 -0.109 -0.147 -1.498
5, 0.026 0.010 0.025 0.121
5, -0.001 0.001 0.000 -0.001
ts, -0.017 -0.022 -0.053 -0.189
t5, -0.123 0.005 0.147 0.857
ts, -0.015 0.027 0.182 0.308
R 0.965 0.965 0.965 0.964
DW 0.414 0.113 0.028 0.004
&2 3.304 24.774 200.348 3070.343
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MISSPECIFICATION OF A POLYNOMIAL REGRESSION MODEL

Table 6.5

OF ORDER 2 AS A NONSTATIONARY AR(2) MODEL

n 25 50 100 250
statistics
¢, 2.988 2.354 1.748 1.285
$, 1.604 1.860 1.961 1.994
$, 1.030 1.005 1.000 1.000
ty, 3.092 2.354 1.748 1.701
ty, 10.240 9.658 9.585 9.526
ty, 5.264 5.658 5.783 5.789
R 0.998 0.998 0.998 0.999
D 2.759 3.222 3.411 3.415
&2 3.487 3.845 4.009 4.019




Table 6.6

UNDERSPECIFICATION OF A NONSTATIONARY AR(2) MODEL
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n 25 50 100 250
statistics
b, 0.019 0.014 0.017 0.013
$, 1.019 1.012 1.007 1.003
ty, 0.058 0.042 0.042 0.167
t,, 93.065 257.153 704.187 2722.667
R 0.982 0.994 0.997 0.998
DW 0.706 0.369 0.187 0.075
&52 1.186 2.273 4,618 11.459
Table 6.7
UNDERSPECIFICATION OF A POLYNOMIAL REGRESSION MODEL
OF ORDER 2
n 25 50 100 250
statistics
5, -58.497 -220.999 -858.501 -5271.000
5, 14.000 26.500 51.500 126.500
ts, -5.861 -8.094 -11.315: -17.756
ts, 20.838 28.441 39.470 61.691
R 0.949 0.943 0.939 0.938
DW 0.087 0.023 0.006 0.001
&2 585.196 9018.000 141570.278 5468059.648
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APPENDIX A

FORTRAN PROGRAM FOR HANNAN AND RISSANEN’S METHOD
BASED ON KOHN’S APPROACH



Sk sk sfe sk ok sk sk sk sie sk ok sfe sk sk sk sk sk sk ok 3k sk sk sk ofe sk ok sk ok sk she ok 3k she she she sk sk sk sfe sfe ske ks sk sk ke sk sk sk ke sk sk sk sk ke ke sk

* Note that (N, S, cez) = (250, 4, 5.0) is considered as an example. *

sfe s s s sk e sk sk s se g s ke s ke s s ke sk ok s g s s sk s sk o sk ok e s s ok sk o sk s s s e s sk sk e s sk ke ok e sk s ke

sk s sfe sfe ok ok sk she she sk she ske sk sk she ske sk sk ke sk sk ok

*

MAIN PROGRAM *

sk she sfe ofe sk ske sk sk sk ok ok ok ok sk she sk ok ke ke ke ke sk ok

PROGRAM HR-KOHN

PARAMETER(N=250, NUM=10000, NN=254, NNN=252, N2=4, N3=3, N5=6)
IMPLICIT REAL*8 (A-H, 0-Z)

REAL*8 E(N), W(N), Z(N), UN), Y(N)

REAL*8 Al(6), C1, D1, D2

REAL*8 R(NN), ETILDA(N), X(N,N2), T(NNN)

REAL*$ RR(NNN), ABTILDA(N3), HAP, SIGMAET

INTEGER ISEEDI, ISEED2

EXTERNAL RNSET, DRNNOA, DLINRG

DATA A1/1.0,0.99,0.95,0.90,0.80,0.70/

ISEED1 = 13579

CALL RNISD(ISEEDI, ISEED2)

DO 260 11 =1,6

DO 255 C1=-0.5,0.5,0.5

ICOUNT =0

COUNT1=0.0
COUNT2=0.0
COUNT3=0.0
COUNT4=0.0
COUNT5=0.0
COUNT6=0.0

D1 =Al(1) +Cl
D2 = Al(I1) * C1

DO 100 I=1, 18000

CALL RNSET(ISEEDI)
CALL DRNNOA(N,E)
CALL RNGET(ISEED!)
CALL RNSET(ISEED2)
CALL DRNNOA(N,W)
CALL RNGET(ISEED2)
Z(1) =E(1) * SQRT(5.0)
U)=w()
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Y(1)=Z(1) + U(1)

DO 10 J=2,N
Z(J) = -A1(11)*Z(J-1) + E(H*SQRT(5.0)
UQ) = WQ) + C1*W(-1)
Y() = Z() + UQJ)
10 CONTINUE

DO 1 K=1,N
R(K+4) = Y(K)
1 CONTINUE

DO 3 K=1,4

R(K) = 0.0
3 CONTINUE

CALL ETINIT(Y, R, X, N, NN, ETILDA)

DO 5 K=1,N
RR(K+2) = ETILDA(K)
5 CONTINUE

DO 7 K=1,2
RR(K) = 0.0
7 CONTINUE

CALL ABINIT(N, ABTILDA, R, RR, NN, NNN, N3)
CALL SIGMAINIT(Y,R,T,N,NN,NNN,ABTILDA,N3,HAP,SIGMAET)

CALL NRMETHOD(N,NN,NNN,N3,N5,R,T,ABTILDA,HAP,SIGMAET,
/ C1,D1,D2,ICOUNT,COUNT1,COUNT2,COUNT3,COUNT4,
/ COUNTS5,COUNT®6)

IF (ICOUNT.GE.10000) GO TO 115

100 CONTINUE
115 CONTINUE

PWR1 = (COUNT1/NUM)*100.0
PWR2 = (COUNT2/NUM)*100.0
PWR3 = (COUNT3/NUM)*100.0
PWR4 = (COUNT4/NUM)*100.0
PWR5 = (COUNTS/NUM)*100.0
PWR6 = (COUNT6/NUM)*100.0
WRITE(*,*)'Al =", A1(I1),'C1 =", C1



WRITE(*,*) COUNT1, PWR1
WRITE(*,*) COUNT2, PWR2
WRITE(*,*) COUNT3, PWR3
WRITE(*,*) COUNT4, PWR4
WRITE(*,*) COUNTS5, PWR5
WRITE(*,*) COUNT6, PWR6

255 CONTINUE
260 CONTINUE
END
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* SUBROUTINE1 *
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*** ESTIMATE INITIAL VALUE OF ET.

SUBROUTINE ETINIT(Y, R, X, N, NN, ETILDA)
PARAMETER(LDA=4, LDAINV=4, N2=4)
REAL*8 R(NN), A(LDA,LDA), BIN2), AINV(LDAINV,LDAINV)
REAL*8 X(N,N2), Y(N), ETILDA(N), SUM1(N2)

DO 210 1=1, 4
DO 200 J=1,4
A(LT)=0.0
200 CONTINUE
B(I) = 0.0
210 CONTINUE

DO 250 L=1,N |
A(1,1) = A(1,1) + RCLA3)*R(L+3)
AQ,1) = A2,1) + R(L+2)*R(L+3)
AQ3,1) = A(3,1) + R(L+1)*R(L+3)
A(4,1) = A(4,1) + RIL*R(L+3)
AQ,2) = AQ2,2) + R(L+2)*R(L+2)
AQ2,3) = A(2,3) + R(L+1)*R(L+2)
A(24) = A(2,4) + RIL*R(L+2)
A(3,3) = A(3,3) + R(L+1)*R(L+1)
A(34) = A(3,4) + RIL*R(L+1)
A(4,4) = A(4,4) + RIL)*R(L)
B(1) = B(1) + R(L+3)*R(L+4)
B(2) = B(2) + R(L+2)*R(L+4)
B(3) = B(3) + R(L+1)*R(L+4)
B(4) = B(4) + R(L)*R(L+4)

250  CONTINUE
A(1,2) = A2,1)
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A(1,3)=AG,1)
A(1,4)= A(4,1)
AB2)=A(2,3)
A(4,2) = A(2,4)
A(4,3) = AB3.4)

CALL DLINRG(N2, A, LDA, AINV, LDAINV)

DO 265 K1=1,4
DO 260 K2=1,N
IF (K2.LEK1) THEN
X(X2,K1)=0.0
ELSE
X(K2,K1) = Y(K2 -K1)
| ENDIF
260 CONTINUE
265 CONTINUE

DO 280 LDAINV1 =1, 4
SUM = 0.0
DO 270 LDAINV2 =1, 4
SUM = SUM + AINV(LDAINV1,LDAINV2)*B(LDAINV?2)
270 CONTINUE
SUM1(LDAINV1) = SUM
280 CONTINUE

DO 290 K3=1,N
SUM2 = 0.0
DO 285 K4=1,4
SUM2 = SUM2 + X(K3,K4)*SUM1(K4)

285 CONTINUE
ETILDA(K3) = Y(K3) - SUM2
290 CONTINUE
RETURN
END
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* SUBROUTINE2 *
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*#* ESTIMATE INITIAL VALUE OF Al, B1 AND B2.
SUBROUTINE ABINIT(N,ABTILDA,R,RR,NN,NNN,N3)
PARAMETER(MDA=3, MDAINV=3)
REAL*$ R(NN), RR(NNN), ABTILDA(N3)
REAL*$ E(MDA,MDA), EINV(MDAINV,MDAINV), F(MDA)



DO 320 I=1,3
DO 310 J=1,3
E(,J) = 0.0
310 CONTINUE
F() = 0.0
320 CONTINUE

DO 350 K=1,N

E(1,1)=E(1,1) + R(K+3)*R(K+3)
E(2,1) =E(2,1) - R(K+3)*RR(K+1)
E(3,1) =E(3,1) - R(K+3)*RR(K)
E(2,2) = E(2,2) + RR(K+1)*RR(K+1)
E(2,3) = E(2,3) + RR(K)*RR(K+1)
E(@3,3) = E(3,3) + RR(K)*RR(K)
F(1) =F(1) - R(K+3)*R(K+4)
F(2) =F(2) + R(K+4)*RR(K+1)
F(3) =F(3) + R(K+4)*RR(K)

350 CONTINUE
E(1,2) =E(2,1)
E(1,3)=E(3,1)
E(3,2) =E(2,3)

CALL DLINRG(3, E, MDA, EINV, MDAINV)

DO 390 MDAINV1 =1, 3
SUM3 =0.0
DO 370 MDAINV2 =1, 3
SUM3 = SUM3 + EINV(MDAINV1,MDAINV2)*F(MDAINV2)
370 CONTINUE
ABTILDA(MDAINV1) = SUM3
390 CONTINUE

RETURN
END
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* SUBROUTINE3 *
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*#x* ESTIMATE INITIAL VALUE OF o,”.
SUBROUTINE SIGMAINIT(Y, R, T, N, NN, NNN, ABTILDA,
/ N3, HAP, SIGMAET)
REAL*8 Y(N), R(INN), T(NNN)
REAL*8 ABTILDA(N3), HAP, SIGMAET
DO 400 L =1, NNN
T(L) = 0.0
400 CONTINUE
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HAP = 0.0
DO 430 L=1,N
T(L+2) = R(L+4) + ABTILDA(1)*R(L+3) - ABTILDA(2)*T(L+1)
- ABTILDAQ3)*T(L)
HAP = HAP + T(L+2)*T(L+2)
CONTINUE

SIGMAET = HAP/N

RETURN
END
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*

SUBROUTINE 4  *
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*** NEWTON-RAPHSON METHOD BASED ON KOHN’S APPROACH

500
510

SUBROUTINE NRMETHOD(N,NN,NNN,N3,N5,R, T,ABTILDA,HAP,
SIGMAET,C1,D1,D2, ICOUNT,COUNT1,COUNT2,
COUNTS3,COUNT4,COUNT5,COUNT6)

PARAMETER(LDA=6, LDAINV=6, N6=6)
REAL*8 A(LDA,LDA), AINV(LDAINV,LDAINV)
REAL*8 R(NN), T(NNN), ABTILDA(N3)
REAL*8 All, B11, B22, SIGMAET

REAL*8 SSI, SS2

A1l = ABTILDA(])
B11 = ABTILDA(2)
B22 = ABTILDA(3)

WAL =0.0
WB1=0.0
WB2=0.0
WAIWB1=0.0
WA1IWB2=0.0
WBIWBI1 = 0.0
WB1WB2=0.0
WB2WB2 = 0.0

DO 510 I=1,6
DO 500 I=1,6
AL =0.0
CONTINUE
CONTINUE



WITEMP =0.0
W2TEMP = 0.0
W3TEMP = 0.0
WAB1ITMP = 0.0
WAB2TMP = 0.0
WWBITMP =0.0
WBI12TMP = 0.0
WWB2TMP = 0.0
WAITEMP1 = 0.0
WAITEMP2 = 0.0
WBITEMP1 =0.0
WBI1TEMP2 = 0.0
WB2TEMP1 = 0.0
WB2TEMP2 = 0.0
WAB1TMP1 =0.0
WABITMP2 =0.0
WAB2TMP1 =0.0
WAB2TMP2 =0.0
WWBITMP1 = 0.0
WWBITMP2 = 0.0
WB12TMP1 = 0.0
WB12TMP2 =0.0
WWB2TMP1 = 0.0
WWB2TMP2 = 0.0

DO 550 L=1,N
WA1 =R(L+3) - BI1*WAITEMP1 - B22*WA1TEMP2
WB1 =-T(L+1) - B11*WB1TEMP1 - B22*WB1TEMP2
WB2 =-T(L) - B11*WB2TEMP1 - B22*WB2TEMP2
WA1IWB1 =-WAI1TEMP1 - B11*WAB1TMP1 - B22*WAB1TMP2
WA1WB2 = -WAI1TEMP2 - B11*WAB2TMP1 - B22*WAB2TMP2

WB1WBI1 =-2*WBI1TEMPI - B11*WWB1TMP1 - B22*WWB1TMP2

WB1WB2 =-WB2TEMP1 - B11*WB12TMP1 - WB1TEMP2
- B22*WB12TMP2

WB2WB2 = -2*WB2TEMP2 - B11*WWB2TMP1 - B22*WWB2TMP2

A(1,1)=A(1,1) + (WA1*WAL1)

A(2,2) = A(2,2) + (WB1*WBI1 + T(L+2)*WB1WB1)
A(3,3) = A(3,3) + (WB2*WB2 + T(L+2)*WB2WB2)
A(4,4) = A(4,4) + (T(L+2)*T(L+2))

A(1,2) = A(1,2) + (WAT*WB1 + T(L+2)*WA1WB1)
A(1,3) = A(1,3) + (WAT*WB2 + T(L+2)*WA1WB2)
A(1,4) = A(1,4) - (T(L+2)*WAL1)

A(2,3)=A(2,3) + (WB1*WB2 + T(L+2)*WB1WB?2)
A24)=A24) - (T(L+2)*WB1)

A(3,4)=AQ3,4) - (T(L+2)*WB2)
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WITEMP = WA1TEMP1
WAITEMP1 = WALl
WAITEMP2 = WITEMP
W2TEMP = WB1TEMP1
WBI1TEMP1 = WB1
WBITEMP2 = W2TEMP
W3TEMP = WB2TEMP1
WB2TEMP1 = WB2
WB2TEMP2 = W3TEMP
WABITMP = WAB1TMP1
WABI1TMP1 = WA1WBI1
WAB1TMP2 = WABITMP
WAB2TMP = WAB2TMP1
WAB2TMP1 = WA1WB2
WAB2TMP2 = WAB2TMP

WWBI1TMP = WWB1TMP1

WWB1TMP1 = WB1WB1

WWBI1TMP2 = WWB1TMP

WBI12TMP = WB12TMP1
WBI12TMP1 = WB1WB2
WB12TMP2 = WB12TMP

WWB2TMP = WWB2TMP1

WWB2TMP1 = WB2WB2

WWB2TMP2 = WWB2TMP

CONTINUE

A(1,1)= A(1,1/SIGMAET
A(1,2) = A(1,2)/SIGMAET
A(1,3)= A(1,3)/SIGMAET

A(1,4) = A(1,4)/(SIGMAET**2)

A(2,2) = A(2,2)/SIGMAET
A(2,3)= A(2,3)/SIGMAET

AQ2,4) = A(2,4)/(SIGMAET**2)

A(3,3) = A(3,3)/SIGMAET

AQ(3,4) = A(3,4)/(SIGMAET**2)
A(4,4) = A(4,4)*SIGMAET**3 - (N/(2*SIGMAET**2))
A(1,5) = A(1,5) - (1+2*D2+C1%**2)

A(L,6)= A(L,6)-Cl1

A(2,5)= A(2,5)+ (1+B22)*SIGMAET
A(3,5)= A(3,5) + B11*SIGMAET

A(3,6) = A(3,6) + SIGMAET

A(4,5) = A(4,5) + B11%(1+B22)

A(4,6)= A(4,6) + B22
AR D= A(1,2)
AG,1) = A(1,3)
A@,D) = A(1,4)
A(5,1) = A(1,5)
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A(6,1) = A(1,6)
A(3,2)= A(2,3)
A42)= A(2,4)
A(5,2)= A(2)5)
A(4,3)= A(34)
A(5,3)= A(3,5)
A(6,3) = A(3,6)
A(5,4) = A@45)
A(6,4)= A(4,6)

CALL DLINRG(NG, A, LDA, AINV, LDAINV)

IF (AINV(1,1).GT.0.0) THEN
SS1=N*(All - 1.0)
SS2 = (A1l - 1.0)/SQRT(AINV(1,1))
IF (SS1.LT.-5.7) THEN
COUNTI = COUNT1 + 1.0
ENDIF
IF (SS1.LT.-8.0) THEN
COUNT2 = COUNT2 + 1.0
ENDIF
IF (SS1.LT.-13.6) THEN
COUNT3 = COUNT3 + 1.0
ENDIF
IF (SS2.LT.-1.62) THEN
COUNT4 = COUNT4 + 1.0
ENDIF
IF (SS2.LT.-1.95) THEN
COUNTS5 = COUNTS + 1.0
ENDIF
IF (SS2.LT.-2.58) THEN
COUNT6 = COUNTG6 + 1.0
ENDIF
ICOUNT = ICOUNT + 1
ENDIF

RETURN
END

* END OF PROGRAM
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APPENDIX B

FORTRAN PROGRAM FOR HANNAN AND RISSANEN’S METHOD
BASED ON SHIN AND SARKAR’S APPROACH
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* Note that (N, S, cez) = (250, 4, 5.0) case is considered as example. *
* In addition, only Subroutine 4 is described because the rest of all subroutines *
* and main program are exactly the same as those of HR-KOHN. *
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* SUBROUTINE 4  *
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SUBROUTINE NRMETHOD(N,NN,NNN,N3,N5,R, T,ABTILDA,HAP,
/ SIGMAET,C1,D1,D2,JCOUNT,COUNT1,COUNT2,
/ COUNT3,COUNT4,COUNTS,COUNTS)
PARAMETER(LDA=6, LDAINV=6, N6=6)
REAL*8 A(LDA,LDA), AINV(LDAINV,LDAINV)
REAL*8 R(NN), T(NNN), ABTILDA(N3)
REAL*8 All, B11, B22, SIGMAET, SS1, SS2

A1l = ABTILDA(1)
Bl1 = ABTILDA(2)
B22 = ABTILDA(3)

WA1=0.0
WB1=0.0
WB2=0.0
WITEMP = 0.0
W2TEMP = 0.0
W3TEMP = 0.0
WAITEMP1 = 0.0
WAITEMP2 = 0.0
WBI1TEMP1 =0.0
WBITEMP2 =0.0
WB2TEMP1 = 0.0
WB2TEMP2 =0.0

DO 510 1=1,6
DO 500 J=1,6
AL =0.0
500  CONTINUE
510 CONTINUE

DO 550 L=1,N
WA1 =R(L+3) - BI1*WAI1TEMP1 - B22*WA1TEMP2
WB1 =-T(L+1) - BI1*WB1TEMP1 - B22*WB1TEMP2
WB2 =-T(L) - BI1*WB2TEMP1 - B22*WB2TEMP2
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A(1,D)=A(1,1) + WAI*WAL1
AQ2,2)=A(2,2) + WB1*WB1
A(3,3) = A(3,3) + WB2*WB2
WI1TEMP = WA1TEMP1
WAITEMP1 = WALl
WAI1TEMP2 = WITEMP
W2TEMP = WB1TEMP1
WBI1TEMP1 = WB1
WB1TEMP2 = W2TEMP
W3TEMP = WB2TEMP1
WB2TEMP1 = WB2
WB2TEMP2 = W3TEMP

550 CONTINUE
A(1,1) = A(1,1)/SIGMAET
AQ2,2) = A(2,2)/SIGMAET
A(3,3) = A(3,3)/SIGMAET
A(5,1) = A(5,1) - (1 +2*D2 + C1**2)
A(2,5) = A(2,5) + (1 + B22)*SIGMAET
AQ3,5) = A(3,5) + B11*SIGMAET
A(6,1)=A(6,1) - C1 :
A(3.6) = A(3,6) + SIGMAET
A(4,4) = A(4,4) - N/(2*(SIGMAET**2))
A(4,5)=A(4,5) + B11*(1 + B22)
A(4,6) = A(4,6) + B22
A(1,5) = A(5,1)
A(1,6) = A(6,1)
A(52)=A25)
A(5,3) =A(3,5)
A(6,3) = A(3,6)
A(5.4) = A(4,5)
A(6,4) = A(4,6)

CALL DLINRG(NG6, A, LDA, AINV, LDAINV)

IF (AINV(1,1).GT.0.0) THEN
SS1 =N*(All - 1.0)
$S2 = (A1l - 1.0)/SQRT(AINV(1,1))
IF (SS1.LT.-5.7) THEN
COUNTI = COUNTI + 1.0
ENDIF
IF (SS1.LT.-8.0) THEN
COUNT2 = COUNT2 + 1.0
ENDIF
IF (SS1.LT.-13.6) THEN
COUNT3 = COUNT3 + 1.0
ENDIF



IF (SS2.LT.-1.62) THEN
COUNT4 = COUNT4 + 1.0
ENDIF
IF (SS2.LT.-1.95) THEN
COUNTS5 = COUNTS + 1.0
ENDIF
IF (SS2.LT.-2.58) THEN
COUNT6 = COUNTS + 1.0
ENDIF
ICOUNT =ICOUNT + 1
ENDIF

RETURN
END

* END OF PROGRAM
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APPENDIX C

FORTRAN PROGRAM FOR KOHN’S METHOD
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* (N, S, 062) = (250, 4, 5.0) is considered as an example. *
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*  MAIN PROGRAM *
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PROGRAM KOHN
PARAMETER(NUM=10000, N= 250, NN=254, NNN=252, N2=4, N3=3, N5=6)
IMPLICIT REAL*8 (A-H, 0-Z)

REAL*8 E(N), W(N), Z(N), UN), Y(N)

REAL*8 Al(6), C1, D1, D2

REAL*8 T(NNN), TT(NNN), T1(NNN)

REAL*8 R(NN), ETILDA(N), X(N,N2), FL_EST(10)

REAL*8 RR(NNN), ABTILDA(N3), C(N5), HAP, ZIGMAET, SIGMAET
REAL*8 CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6

INTEGER ISEEDI, ISEED2 | '

EXTERNAL RNSET, DRNNOA, DLINRG

DATA A1/1.0,0.99,0.95,0.90,0.80,0.70/

ISEED1 = 13579
CALL RNISD(ISEEDI, ISEED2)

DO 260 I1=1,6
DO 255 C1=-05,0.5,0.5

ICOUNT =0

COUNT1=0.0
COUNT2=0.0
COUNT3=0.0
COUNT4=0.0
COUNT5=0.0
COUNT6=0.0

D1 = Al(I1) + Cl
D2 = Al(I1) * C1

DO 100 I=1, 18000
CALL RNSET(ISEED1)
CALL DRNNOA(N,E)
CALL RNGET(ISEEDI)
CALL RNSET(ISEED2)
CALL DRNNOA(N,W)
CALL RNGET(ISEED2)
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Z(1) = E(1) * SQRT(5.0)
U(1) = W(Q)
Y(1) = Z(1) + U(1)

DO 10 J=2,N
Z(T) = -A1(I1)*Z(J-1) + EG)*SQRT(5.0)
U@ = W@+ C1*W(J-1)

Y(J) =Z@J)+ U(J)

CONTINUE

DO 1 K=1,N
R(K+4) =Y(K)
CONTINUE

DO 3 K=1,4
R(K) = 0.0
CONTINUE

CALL ETINIT(Y, R, X, N, NN, ETILDA)

DO 5 K=1,N
RR(K+2) = ETILDA(K)
CONTINUE

DO 7K=1,2
RR(K) = 0.0
CONTINUE

CALL ABINIT(N, NN, NNN, N3, R, RR, ABTILDA)

CALL SIGMAINIT(Y, R, T, N, NN, NNN, N3, ABTILDA,
HAP, ZIGMAET)

CALL NRI(N, NN, NNN, N3,N5,R, T, TT, C1, D1, D2, C,
ABTILDA, HAP, ZIGMAET, FL-EST, CMIN1, CMIN2,
CMIN3, CMIN4, CMINS5, CMING6)

CALL NR2(N, NN, NNN, N3, N5, R, T1, C1, D1, D2, SIGMAET,
CMIN1, CMIN2, CMIN3, CMIN4, CMINS5, CMING,
ICOUNT, COUNT1, COUNT2,

COUNTS3, COUNT4, COUNTS, COUNT®6)

IF (ICOUNT.GE.10000) GO TO 115

CONTINUE
CONTINUE



PWR1 = (COUNT1/NUM)*100.0
PWR2 = (COUNT2/NUM)*100.0
PWR3 = (COUNT3/NUM)*100.0
PWR4 = (COUNT4/NUM)*100.0
PWRS5 = (COUNTS/NUM)*100.0
PWR6 = (COUNT6/NUM)*100.0

WRITE(*,*) 'Al =", A1(I1),'Cl =", C1
WRITE(*,*) COUNT1, PWRI
WRITE(*,*) COUNT2, PWR2
WRITE(*,*) COUNT3, PWR3
WRITE(*,*) COUNT4, PWR4
WRITE(*,*) COUNTS5, PWRS
WRITE(*,*) COUNT6, PWR6

255 CONTINUE
260 CONTINUE
END
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* SUBROUTINE1 *
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*** ESTIMATE THE INITIAL VALUE OF e..

SUBROUTINE ETINIT(Y, R, X, N, NN, ETILDA)
PARAMETER(LDA = 4, LDAINV = 4, N2 = 4)

REAL*8 R(NN), A(LDA,LDA), B(N2), AINV(ILDAINV,LDAINV)
REAL*8 X(N,N2), Y(N), ETILDA(N), SUM1(N2), SUM, SUM?2

DO 200 I=1, 4
DO 210 J=1,4
A(LT) =0.0
210 CONTINUE
B(@)=0.0
200 CONTINUE

DO 250 L=1,N
A(1,1) = A(L,1) + R(L+3)*R(L+3)
A(2,1) = A(2,1) + RIL+2)*R(L+3)
AG3,1) = A(3,1) + RIL+1)*R(L+3)
A(4,1) = A4,1) + RIL*R(L+3)
A(2,2) = A(2,2) + R(L+2)*R(L+2)
A(2,3) = A(2,3) + R(L+1)*R(L+2)
AQ2,4) = AQ2,4) + ROL*R(L+2)
A(3,3) = A(3,3) + R(L+1)*R(L+1)
AG,4) = AG4) + RIL*R(IL+1)
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265
260

280

270

290

285

A(4,4) = A(4,4) + ROLY*R(L)

B(1) = B(1) + R(L+3)*R(L+4)

B(2) = B(2) + R(L+2)*R(L+4)

B(3) = B(3) + R(L+1)*R(L+4)

B(4) = B(4) + R(L)*R(L+4)
CONTINUE

A(1,2) = A(2,1)

A(1,3)=A(3,1)

A(1,4) = A4,1)

A(32)=A(2,3)

A(42)=AQ2,4)

A(4,3) = A(3,4)

CALL DLINRG(N2, A, LDA, AINV, LDAINV)

DO 260 K1=1, 4
DO 265 K2=1,N
IF (K2.LE.K1) THEN
X(K2,K1)=0.0
ELSE ,
X(K2,K1) = Y(K2-K1)
ENDIF
CONTINUE
CONTINUE

DO 270 LDAINV1=1,4
SUM =0.0
DO 280 LDAINV2=1,4

SUM = SUM + AINV(LDAINV1,LDAINV2)*B(LDAINV2)

CONTINUE
SUMI(LDAINV1) = SUM
CONTINUE

DO 285 K3=1,N
SUM2 = 0.0
DO 290 K4=1, 4
SUM2 = SUM2 + X(K3,K4)*SUM1(K4)
CONTINUE
ETILDA(K3) = Y(K3) - SUM2
CONTINUE

RETURN
END
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*** ESTIMATE THE INITIAL VALUE OF A1, B1 AND B2.

SUBROUTINE ABINIT(N, NN, NNN, N3, R, RR, ABTILDA)
PARAMETER(MDA=3, MDAINV=3)

REAL*8 R(NN), RR(NNN), ABTILDA(N3)

REAL*8 E(MDA,MDA), EINV(MDAINV,MDAINV), F(MDA)
REAL*8 SUM3

DO 310 I=1,3
DO 320 J=1,3
E(LJ) = 0.0
320 CONTINUE
F(I)=0.0
310 CONTINUE

DO 350 K=1,N

E(1,1) = E(1,1) + R(K+3)*R(K+3)
E(2,1) =E(2,1) - RGK+3)*RR(K+1)
E(3,1) =E(3,1) - RK+3)*RR(K)
E(2,2) = E(2,2) + RR(K+1)*RR(K+1)
E(2,3) = B(2,3) + RR(K)*RR(K+1)
E(3,3) = E(3,3) + RR(K)*RR(K)
F(1) = F(1) - R(K+3)*R(K+4)
F(2) = F(2) + R(K+4)*RR(K+1)
F(3) = F(3) + R(K+4)*RR(K)

350 CONTINUE
E(1,2) =E(2,1)
E(1,3) =E(3,1)
E(3,2) =E(2,3)

CALL DLINRG(3, E, MDA, EINV, MDAINYV)

DO 390 MDAINV1 =1, 3
SUM3 =0.0
DO 370 MDAINV2=1, 3 ,
SUM3 = SUM3 + EINV(MDAINV1,MDAINV2)*F(MDAINV2)
370  CONTINUE
ABTILDA(MDAINV1) = SUM3
390 CONTINUE

RETURN
END
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*

SUBROUTINE3  *
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*** ESTIMATE THE INITIAL VALUE OF 662.

/

400

430

SUBROUTINE SIGMAINIT(Y, R, T, N, NN, NNN, N3, ABTILDA,

HAP, ZIGMAET)

REAL*8 Y(N), R(NN), T(NNN)
REAL*8 ABTILDA(N3), HAP, ZIGMAET

DO 400 L =1, NNN
T(L) = 0.0
CONTINUE

HAP =0.0
DO 430 L=1,N
T(L+2) = R(L+4) + ABTILDA(1*R(L+3) - ABTILDA(2)*T(L+1)
- ABTILDA(3)*T(L)
HAP = HAP + T(L+2)*T(L+2)
CONTINUE
ZIGMAET = HAP/N

RETURN
END
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*

SUBROUTINE 4  *
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**¥* NEWTON-RAPHSON METHOD BASED ON KOHN’S.

- SUBROUTINE NRI(N, NN, NNN, N3, N5, R, T, TT, C1, D1, D2, C,

/
/

ABTILDA, HAP, ZIGMAET, FL_EST,
CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6)
PARAMETER(LDA=6, LDAINV=6, N6=6)
REAL*8 A(LDA), AINV(LDAINV,LDAINV), B(N6), C(N5)
REAL*8 R(NN), T(NNN), TT(NNN), ABTILDA(N3)
REAL*8 D(N6), HAP1
REAL*8 CC1(10), CC2(10), CC3(10), CC4(10), CC5(10), CC6(10)
REAL*8 FL_EST(10), FMIN
REAL*8 CMIN1, CMIN2, CMIN3, CMIN4, CMINS, CMING6

A1l = ABTILDA(1)
B11 = ABTILDA(2)
B22 = ABTILDA(3)
C(5)=0.0
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510

500

C(6)=0.0
WAL =0.0
WB1 = 0.0
WB2 = 0.0
WA1WB1 = 0.0
WAIWB2 = 0.0
WB1WB1 =0.0
WB1WB2 = 0.0
WB2WB2 = 0.0

DO 500 1=1,6
DO 510 T=1,6
AL =0.0
CONTINUE
B(D) = 0.0
CONTINUE

WITEMP = 0.0
W2TEMP = 0.0
W3TEMP = 0.0
WABI1TMP = 0.0
WAB2TMP = 0.0
WWBI1TMP =0.0
WB12TMP = 0.0
WWB2TMP = 0.0
WAI1TEMPI1 = 0.0
WAI1TEMP2 = 0.0
WBI1TEMP1 = 0.0
WBI1TEMP2 =0.0
WB2TEMP1 =0.0
WB2TEMP2 = 0.0
WABITMPI1 = 0.0
WABI1TMP2 = 0.0
WAB2TMP1 =0.0
WAB2TMP2 =0.0
WWB1TMP1 = 0.0
WWBI1TMP2 =0.0
WB12TMP1 =0.0
WB12TMP2 = 0.0
WWB2TMP1 = 0.0
WWB2TMP2 = 0.0

DO 550 L=1,N
WA1 =R(L+3) - BIT*WAITEMP1 - B22*WA1TEMP2
WB1 =-T(L+1) - B11*WB1TEMP1 - B22*WB1TEMP2
WB2 =-T(L) - BI1*WB2TEMP1 - B22*WB2TEMP2
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WA1WBI1 =-WAI1TEMP1 - B11*WAB1TMP1 - B22*WAB1TMP2
WA1WB2 =-WAI1TEMP2 - B11*WAB2TMP1 - B22*WAB2TMP2
WB1WBI1 = -2*WBI1TEMPI - B11*WWB1TMP1 - B22*WWB1TMP2
WB1WB2 =-WB2TEMP1 - B11*WB12TMP1 - WB1TEMP2

- B22*WB12TMP2
WB2WB2 = -2*WB2TEMP2 - B11*WWB2TMP1 - B22*WWB2TMP2

A(1,1) = A(1,1) + (WAI*WAT)

AQ.2) = A(2,2) + (WBI*WB1 + T(L+2)*WB1WB1)
A(3,3) = A(3,3) + (WB2*WB2 + T(L+2)*WB2WB2)
A(4,4) = A(4,4) + (T(L+2)*T(L+2))

A(1,2) = A(1,2) + (WA1*WB1 + T(L+2)*WA1WB1)
A(1,3) = A(1,3) + (WAT*WB2 + T(L+2)*WA1WB2)
A(L,4) = A(1,4) - (T(L+2)*WA1)

AQ,3) = A(2,3) + (WBI*WB2 + T(L+2)*WB1WB2)
AQ2,4) = A(2,4) - (T(L+2)*WB1)

A(3,4) = A(3,4) - (T(L+2)*WB2)

B(1) = B(1) + WAI*T(L+2)

B(2) = B(2) + WBI*T(L+2)

B(3) = B(3) + WB2*T(L+2)

B(4) = B(4) + T(L+2)*T(L+2)

WITEMP = WAITEMP1
WAITEMP1 = WAL ‘
WAI1TEMP2 = WITEMP
W2TEMP = WB1TEMP1
WBI1TEMP1 = WB1
WBI1TEMP2 = W2TEMP
W3TEMP = WB2TEMP1
WB2TEMP1 = WB2
WB2TEMP2 = W3TEMP
WABITMP = WAB1TEMP
WABITMP1 = WAIWBI1
WAB1TMP2 = WAB1TMP
WAB2TMP = WAB2TMP1
WAB2TMP1 = WA1WB2
WAB2TMP2 = WAB2TMP
WWBITMP = WWB1TMP1
WWBITMP1 = WB1WBI1
WWBITMP2 = WWB1TMP
WB12TMP = WB12TMP1
WB12TMP1 = WB1WB2
WB12TMP2 = WB12TMP
WWB2TMP = WWB2TMP1
WWB2TMP1 = WB2WB2
WWB2TMP2 = WWB2TMP
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550 CONTINUE
A(1,1) = A(1,1)/ZIGMAET
A(1,2) = A(1,2)/ZIGMAET
A(1,3) = A(1,3)/ZIGMAET
A(1,4) = A(1,4)/(ZIGMAET**2)
A(2,2) = A(2,2)/ZIGMAET
A(2,3) = A(2,3)/ZIGMAET
A(2,4) = A(2,4)/(ZIGMAET**2)
A(3,3) = A(3,3)/ZIGMAET
A(3,4) = A(3,4)/(ZIGMAET**2)
A(4,4) = A(4,4)*ZIGMAET**3 - (N/(2*ZIGMAET**2))
A(L,5) = A(1,5) - (1+2*D2+C1**2)
A(L,6) = A(L,6) - C1
A(2,5) = A(2,5) + (1+B22)*ZIGMAET
A(3,5) = A(3,5) + B11*ZIGMAET
AQ,6) = A(3,6) + ZIGMAET
A(4,5) = A(4,5) + B11%(1+B22)
A(4,6)=A(4,6) + B22
B(1) = B(1)/ZIGMAET
B(2) = B(2)/ZIGMAET
B(3) = B(3)/ZIGMAET
B(4) = (-B(4)/(2*ZIGMAET*ZIGMAET)) + (N/(2*ZIGMAET))
B(5) = ZIGMAET*(1+B22)*B11 - D1*(1+D2)
B(6) = ZIGMAET*B22 - D2 |
AQ2,1)=A(1,2) |
AG,1)=A(L,3)
A4, =A(1,4)
A(5,1) = A(L,5)
A(6,1) = A(L,6)
A(3,2) = A(2,3)
A(4,2) = A(2,4)
A(5,2) = A(2,5)
A(4,3)=A(3.4)
A(5,3)=A(3,5)
A(6,3) = A(3,6)
A(54) = A(4,5)
A(6,4) = A(4,6)

CALL DLINRG(NG6, A, LDA, AINV, LDAINV)

DO 580 LDAINVI=1,6
SUM = 0.0
DO 570 LDAINV2=1, 6
SUM = SUM + AINV(LDAINV1,LDAINV2)*B(LDAINV2)
570 CONTINUE
D(LDAINV1) = SUM



580

600

650

700

750

CONTINUE

DO 700 K=1,10
C(1)=Al1 - (I/K)*D(1)
C(2)=B11 - (/K)*D(2)
C(3)=B22 - (1/K)*D(3)

C(4) = ZIGMAET - (1/K)*D(4)
C(5) = C(5) - (1/K)*D(5)

C(6) = C(6) - (1/K)*D(6)
HAP1 =0.0

DO 600 I1 =1, NNN
TT(I1) = 0.0
CONTINUE

DO 650 12=1,N
TT(12+2) = R(I2+4) + C(1)*R(I12+3) - C)*TT(12+1) - C3)*TT(12)
HAP1 = HAPI + TT(I2+2)*TT(12+2)
CONTINUE
FL_EST(K) = (1/(2*C(4)))*HAP1 + (N/2)*LOG(C(4))
CCL(K) = C(1)
CC2(K) = C(2)
CC3(K) = C(3)
CCA(K) = C(4)
CC5(K) = C(5)
CC6(K) = C(6)
CONTINUE

M=1

DO 750 13 =2, 10
IF(13.EQ.0.OR.FL,_EST(I3).GE.FL _EST(M)) GO TO 750

M=13

CONTINUE

FMIN = FL, EST(M)

CMIN1 = CC1(M)

CMIN2 = CC2(M)

CMIN3 = CC3(M)

CMIN4 = CC4(M)

CMINS = CC5(M)

CMING6 = CC6(M)

RETURN
END
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/
/

800

830

850
870

SUBROUTINE NR2(N, NN, NNN, N3, N5, R, T1, C1, D1, D2, SIGMAET,
CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6,ICOUNT,
COUNT1, COUNT2, COUNT3, COUNT4, COUNTS, COUNTS)

PARAMETER(LDA = 6, LDAINV = 6, N6 = 6)

REAL*8 A(LDA,LDA), AINV(LDAINV,LDAINV)

REAL*8 R(NN), T1(NNN)

REAL*8 CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6

REAL*S AALl, B, B2, SIGMAET

REAL*8 SS1, SS2

AAl=CMINI1
B1=CMIN2

B2 = CMIN3
SIGMAET = CMIN4

DO 800 L =1, NNN
T1(L) = 0.0
CONTINUE

DO 830 L=1,N | |
T1(L+2) = R(L+4) + AAT*R(L+3) - BI*T1(L+1) - B2*T1(L)
CONTINUE

WA1=0.0
WB1=0.0
WB2=0.0
WAIWBI1 =0.0
WAIWB2=0.0
WB1WB1 =0.0
WB1WB2=0.0
WB2WB2 =0.0

DO 870 I=1,6
DO 850 I=1,6
A@D)=0.0
CONTINUE
CONTINUE

WITEMP = 0.0
W2TEMP =0.0
W3TEMP = 0.0
WABITMP =0.0



WAB2TMP = 0.0
WWBI1TMP = 0.0
WB12TMP = 0.0
WWB2TMP = 0.0
WAITEMP1 =0.0
WAITEMP2 =0.0
WBITEMP1 = 0.0
WBITEMP2 =0.0
WB2TEMP1 =0.0
WB2TEMP2 = 0.0
WAB1TMP1 =0.0
WAB1TMP2 =0.0
WAB2TMP1 =0.0
WAB2TMP2 =0.0
WWBITMP1 =0.0
WWBITMP2 =0.0
WB12TMP1 = 0.0
WB12TMP2 = 0.0
WWB2TMP1 =0.0
WWB2TMP2 = 0.0

DO 900 L=1,N
WAL =R(L+3) - BI*WAITEMP1 - B2*WAI1TEMP2
WB1 =-T1(L+1) - BI*WB1TEMP1 - B2*WB1TEMP2
WB2 =-T1(L) - BI*WB2TEMP1 - B2*WB2TEMP2
WA1WBI1 =-WAITEMP1 - BI*WAB1TMP1 - B2*WAB1TMP2
WA1WB2 =-WAITEMP2 - BI*WAB2TMP1 - B2*WAB2TMP2

WB1WBI1 =-2*WBITEMP1 - BI*WWBITMP1 - B2*WWB1TMP2

WB1WB2 =-WB2TEMP1 - B1*WB12TMP1 - WB1TEMP2
- B2*WB12TMP2

WB2WB2 = -2*WB2TEMP2 - B1*WWB2TMP1 - B2*WWB2TMP2

A(1,1)=A(1,1) + (WAT*WAI)

A(2,2)=A2,2) + (WB1*WBI + TI(L+2)*WB1WB1)
A(3,3) =A(3,3) + (WB2*WB2 + T1(L+2)*WB2WB2)
A(4,4)=A44) + (TILH2)*T1(L+2))

A(1,2) =A(1,2) + (WA1*WB1 + TI(L+2)*WA1WB1)
A(1,3) =A(1,3) + (WA1*WB2 + TI(L+2)*WA1WB2)
A(1,4)=A(1,4) - (TI(L+2)*WAI)

A(2,3)=A(2,3) + (WB1*WB2 + TI(L+2)*WB1WB2)
AQ2,4) = A(2,4) - (TI(L+2)*WB1)

A(3,4) =A@G.4) - (TI(L+2)*WB2)

WITEMP = WAITEMP1
WAITEMP1 = WAL
WAITEMP2 = WITEMP
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W2TEMP = WB1TEMP1
WB1TEMP! = WB1
WB1TEMP2 = W2TEMP
W3TEMP = WB2TEMP1
WB2TEMP1 = WB2
WB2TEMP2 = W3TEMP
WABITMP = WAB1TMP1
WABITMP1 = WAIWBI1
WABITMP2 = WAB1TMP
WAB2TMP = WAB2TMP1
WAB2TMP1 = WAIWB2
WAB2TMP2 = WAB2TMP
WWB1TMP = WWB1TMP1
WWBI1TMP1 = WB1WBI
WWB1TMP2 = WWBI1TMP
WB12TMP = WB12TMP1
WB12TMP1 = WB1WB2
WB12TMP2 = WB12TMP
WWB2TMP = WWB2TMP1
WWB2TMP1 = WB2WB2
WWB2TMP2 = WWB2TMP
CONTINUE

A(1,1) = A(1,1/SIGMAET

A(1,2) = A(1,2)/SIGMAET

A(1,3) = A(1,3)/SIGMAET

A(1,4) = A(1,4)/(SIGMAET**2)

A(2,2) = A(2,2)/SIGMAET

A(2,3) = A(2,3)/SIGMAET

A(2,4) = A(2,4)/(SIGMAET**2)

A(3,3) = A(3,3)/SIGMAET

A(3,4) = A(3,4)/(SIGMAET**2)

A(4,4) = A(4,4)*SIGMAET**3 - (N/(2*SIGMAET**2))

A(L,5) = A(L,5) - (14+2%¥D2+C1#%2)

A(1,6)=A(L,6) - C1

A(2,5) = A(2,5) + (1+B2)*SIGMAET

A(3,5) = A(3,5) + BI*SIGMAET

A(3,6) = A(3,6) + SIGMAET

A(4,5) = A(4,5) + B1*(1+B2)

A(4,6)= A(4,6) + B2

A(2,1)=A(1,2)

A(3,1) = A(1,3)

A(4,1) = A(1,4)

A(5,1) = A(1,5)

A(6,1) = A(1,6)

AG32)=A(2,3)

A(4,2) = A(2,4)
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A(5,2) = A(2,5)
A(4,3)=A3,4)
A(5,3)=A(3,5)
A(6,3) = A(3,6)
A(5,4)=A(4,5)
A(6,4) = A(4,6)

CALL DLINRG(NG, A, LDA, AINV, LDAINV)

IF (AINV(1,1).GT.0.0) THEN
SS1 =N*(AAI - 1.0)
SS2 = (AA1 - 1.0)/SQTR(AINV(1,1))
IF (SS1.LT.-5.7) THEN
COUNT1 = COUNTI1 + 1.0
ENDIF
IF (SS1.LT.-8.0) THEN
COUNT2 = COUNT2 + 1.0
ENDIF
IF (SS1.LT.-13.6) THEN
COUNT3 = COUNT3 + 1.0
ENDIF -
IF (SS2.LT.-1.62) THEN
COUNT4 = COUNT4 + 1.0
ENDIF
IF (SS2.LT.-1.95) THEN
COUNTS = COUNTS5 + 1.0
ENDIF
IF (SS2.LT.-2.58) THEN
COUNT6 = COUNT6 + 1.0
ENDIF
ICOUNT =ICOUNT + 1
ENDIF

RETURN
END

* END OF PROGRAM
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APPENDIX D

FORTRAN PROGRAM FOR SHIN AND SARKAR’S METHOD



192

e st sk sk e st sk sk ok sk sk ok sk sk sk st sk sk st sk sk ot sk sk st sk sk st sk sk sk sk sk sk sk stk st sk ke st sk sk st ke she s e s s e she s s e s sk sk sk sk sk sk sk sk sk sk ok sk sk

*  Note that (n, s, ceZ ) =(250, 4, 5.0) is considered as an example. *
* This program is the same as that of Kohn’s except Subroutine 4 and 5 and thus *

* we have only to replace Subroutine 4 and 5 in Kohn’s with these two subroutines. *
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* SUBROUTINE 4 *
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*** NEWTON-RAPHSON METHOD BASED ON SHIN AND SARKAR'S

SUBROUTINE NRI(N,NN,NNN,N3,N5 R, T,ABTILDA,HAP,ZIGMAET,TT,

/ C1,D1,D2,C,FL_EST,CMIN1,CMIN2,CMIN3,CMIN4,CMIN5,CMIN6)

PARAMETER(LDA=6, LDAINV= 6, N6=6)

REAL*$ A(LDA,LDA), B(N6), C(N5), AINV(LDAINV,LDAINV)

REAL*8 R(NN), T(NNN), ABTILDA(N3), TT(NNN)

REAL*8 D(N6), HAP1

REAL*8 CC1(10), CC2(10), CC3(10), CC4(10), CC5(10), CCH(10)

REAL*8 FL_EST(10), FMIN

REAL*$ CMIN1, CMIN2, CMIN3, CMIN4, CMINS, CMING6

All = ABTILDA(1)
Bl1 = ABTILDA(2)
B22 = ABTILDA(3) |
C(5)=0.0

C(6)=0.0

WA1=0.0
WB1=0.0
WB2=0.0
WITEMP = 0.0
"W2TEMP = 0.0
W3TEMP = 0.0
WAITEMP1 =0.0
WAITEMP2 =0.0
WBITEMP1 =0.0
WBITEMP2 =0.0
WB2TEMP1 = 0.0
WB2TEMP2 =0.0

DO 510 I=1,6
DO 500 J=1,6
A 1)=0.0
500 CONTINUE
B() = 0.0
510  CONTINUE
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DO 550 L=1,N
WAL =R(L+3) - BI1*WAITEMP1 - B22*WA1TEMP2
WBI1 =-T(L+1) - BI1*WB1TEMP1 - B22*WB1TEMP2
WB2 =-T(L) - B11*WB2TEMP1 - B22*WB2TEMP2
AA(L]) = AA(1,1) + WAT*WAL
AA(2,2) = AA(2,2) + WB1*WBI1
AA(3,3) = AA(3,3) + WB2*WB2
BB(1) = BB(1) + WAI*T(L+2)
BB(2) = BB(2) + WB1*T(L+2)
BB(3) = BB(3) + WB2*T(L+2)
BB(4) = BB(4) + T(L+2)*T(L+2)
W1TEMP = WA1TEMP1
WAITEMP1 = WAL
WAI1TEMP2 = W1TEMP
W2TEMP = WB1TEMP1
WB1TEMP1 = WB1
WB1TEMP2 = W2TEMP
W3TEMP = WB2TEMP!1
WB2TEMP1 = WB2
WB2TEMP2 = W3TEMP

550  CONTINUE

A(1,1) = A(1,1)/ZIGMAET
A(2,2) = A(2,2)/ZIGMAET
A(3,3) = A(3,3)/ZIGMAET
A(5,1) = A(5,1) - (1+2%D2 + C1#+2)
A(2,5) = A(2,5) + (1+B22)*ZIGMAET
A(3,5) = A(3,5) + BI1*ZIGMAET
A(6,1) = A(6,1) - C1
A(3,6) = A(3,6) + ZIGMAET
A(4,4) = A(4,4) - N/(2*(ZIGMAET**2))
A(4,5) = A(4,5) + B11*(1+B22)
A(4,6) = A(4,6) + B22
B(1) = B(1)/ZIGMAET
B(2) = B(2)/ZIGMAET
B(3) = B(3)/ZIGMAET
B(4) = (-B(4)/(2*ZIGMAET*ZIGMAET))+(N/(2*ZIGMAET))
B(5) = ZIGMAET*(1+B22)*B11 - D1*(1+D2)
B(6) = ZIGMAET*B22 - D2
A(L,5) = AG5,1)
A(L,6) = A(6,1)
A(5,2) = A(2,5)
A(5,3) = A(3,5)
A(6,3) = A(3,6)
A(5,4) = A(4,5)
A(6,4) = A(4,6)
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580

650

700

800

850

CALL DLINRG(NG6, A, LDA, AINV, LDAINV)

DO 580 LDAINVI=1,6
SUM = 0.0
DO 570 LDAINV2=1,6
SUM = SUM + AINV(LDAINV1,LDAINV2)*B(LDAINV?)
CONTINUE
D(LDAINV1) = SUM
CONTINUE

DO 800 K=1, 10
C(1) = Al1 - (1/K)*D(1)
C(2) = B11 - (1/K)*D(2)
C(3) = B22 - (1/K)*D(3)
C(4) = ZIGMAET - (1/K)*D(4)
C(5) = C(5) - (1/K)*D(5)
C(6) = C(6) - (/K)*D(6)

HAP1 = 0.0

DO 650 I1 = 1, NNN
TT{1) = 0.0

CONTINUE

DO 700 I2=1,N
TT(I2+2) = R(I2+4) + C(1)*R(12+3) - CQR)*TT(12+1) - C(3)*TT(12)
HAP1 = HAP1 + TT(I2+2)*TT(12+2)

CONTINUE

FL_EST(K) = (1/(2*C(4)))*HAP1 + (N/2)*LOG(C(4))

CC1(K) = C(1)

CC2(K) = C(2)

CC3(K) = C(3)

CC4(K) = C(4)

CC5(K) = C(5)
CC6(K) = C(6)
CONTINUE

M=1

DO 850 I3=2, 10
TF(13.EQ.0.OR.FL_EST(I3).GE.FL_EST(M)) GO TO 850
M =13

CONTINUE

FMIN =FL_EST(M)

CMIN1 = CC1(M)

CMIN2 = CC2(M)

CMIN3 = CC3(M)

CMIN4 = CC4(M)
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CMIN5 = CC5(M)
CMIN6 = CC6(M)

RETURN
END
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SUBROUTINE S5  *
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900

930

940
950

SUBROUTINE NR2(N,NN,NNN,N3,N5,R,T1,C1,D1,D2,SIGMAET,

CMIN1,CMIN2,CMIN3,CMIN4,CMINS,CMING,ICOUNT,
COUNT1,COUNT2,COUNT3,COUNT4,COUNTS5,COUNTS)

PARAMETER(LDA=6, LDAINV=6, N6=6)

REAL*$ A(LDA,LDA), AINV(LDAINV,LDAINV)

REAL*8 R(NN), TI(NNN)

REAL*8 AAl, B, B2, SIGMAET

REAL*8 CMIN1, CMIN2, CMIN3, CMIN4

REAL*8 SS1, SS2

AA1=CMIN1

B1 =CMIN2

B2 =CMIN3
SIGMAET = CMIN4

DO 900 L =1, NNN
T1(L)=0.0
CONTINUE

DO 930 L=1,N
T1(L+2) = R(L+4) + AAI*R(L+3) - BI*T1(L+1) - B2*T1(L)
CONTINUE

DO 950 I=1,6
DO 940 J=1,6
AT =0.0
CONTINUE
CONTINUE

WA1=0.0
WB1=0.0
WB2=0.0
WITEMP = 0.0
W2TEMP = 0.0
W3TEMP = 0.0
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WAITEMP1 = 0.0
WAITEMP2 = 0.0
WBITEMP1 =0.0
WBITEMP2=0.0
WB2TEMP1 =0.0
WB2TEMP2 = 0.0

DO 980 L=1,N
WA1 = R(L+3) - BI*WAITEMP1 - B2*WA1TEMP2
WB1 =-T1(L+1) - BI*XWB1TEMP1 - B2*WB1TEMP2
WB2 =-T1(L) - BI*WB2TEMP1 - B2*WB2TEMP2
A1) = A(1,1) + WAT*WAL
A(2.2) = A(2,2) + WB1*WBI1
A(3,3) = A(3,3) + WB2*WB2
W1TEMP = WAITEMPI
WAI1TEMP1 = WAL
WAITEMP2 = WITEMP
W2TEMP = WB1TEMP1
WB1TEMP1 = WBI1
WB1TEMP2 = W2TEMP
W3TEMP = WB2TEMP1
WB2TEMP1 = WB2
WB2TEMP2 = W3TEMP

980  CONTINUE
A(1,1) = A(1,1)/SIGMAET
A(2,2) = A(2,2)/SIGMAET
A(3,3) = A(3,3)/SIGMAET
A(5,1) = A(5,1) - (1+2*D2 + C1%*2)
A(2,5) = A(2,5) + (1+B2)*SIGMAET
A(3,5) = A(3,5) + BI*SIGMAET
A(6,1)=A(6,1) - C1
A(3,6) = A(3,6) + SIGMAET
A(4,4) = A(4,4) - N/(2*(SIGMAET**2))
A(4,5) = A(4,5) + B1*(1+B2)
A(4,6) = A(4,6) + B2
A(1,5) = A(5,1)
A(1,6) = A(6,1)
A(5,2) = A(2,5)
A(5,3)=A(3,5)
A(6,3) = A(3,6)
A(5,4) = A(4,5)
A(6,4) = A(4,6)

CALL DLINRG(NG, A, LDA, AINV, LDAINV)

IF (AINV(1,1).GT.0.0) THEN
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SS1 =N*(AAI - 1.0)
SS2 = (AAI - 1.0YSQRT(AINV(1,1))

IF (SS1.LT.-5.7) THEN
COUNTI1 = COUNT1 + 1.0
ENDIF
IF (SS1.LT.-8.0) THEN
COUNT2 = COUNT2 + 1.0
ENDIF
IF (SS1.LT.-13.6) THEN
COUNT3 = COUNT3 + 1.0
ENDIF
IF (SS2.LT.-1.62) THEN
COUNT4 = COUNT4 + 1.0
ENDIF
IF (SS2.LT.-1.95) THEN
COUNTS = COUNTS + 1.0
ENDIF
IF (SS2.LT.-2.58) THEN
- COUNT6 = COUNTS + 1.0
ENDIF
ICOUNT =ICOUNT + 1
ENDIF

RETURN
END

* END OF PROGRAM
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APPENDIX E

FORTRAN PROGRAM FOR
EMPIRICAL CUMULATIVE DISTRIBUTION OF
UNIT ROOT TEST STATISTICS
BASED ON
SHIN AND SARKAR’S METHOD



199
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* (N, S, 0,)=(250, 4, 5.0) is considered as an example. *
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*  MAIN PROGRAM  *
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PROGRAM MAIN
PARAMETER(N=250,NUM=10000,NN=254,NNN=252,N2=4,N3=3 N5=6)
PARAMETER(I1=100,12=250,13=500,14=1000)
PARAMETER(I5=9000,16=9500,17=9750,I8=9900)

IMPLICIT REAL*8 (A-H, 0-Z)

REAL*8 E(N), W(N), Z(N), U(N), Y(N)

REAL*8 STATI(NUM), STAT2(NUM), SS1, SS2

REAL*8 Al, Cl,D1, D2

REAL*8 FL_INIT, FL_EST(10)

REAL*8 T(NNN), TT(NNN), TI(NNN)

REAL*8 R(NN), ETILDA(N), X(N,N2)

REAL*8 RR(NNN), ABTILDA(N3), C(N5), HAP, SIGMAET, ZIGMAET
REAL*8 CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6

INTEGER ISEED1,ISEED2

EXTERNAL RNSET,DRNNOA,DLINRG

Al=10
ISEEDI = 13579
CALL RNISD(ISEED1,ISEED2)

DO 260 C1=-0.5,0.5,0.5

ICOUNT =0
DI=A1+Cl1
D2=A1*Cl

DO 100 I=1,18000
CALL RNSET(ISEEDI)
CALL DRNNOA(N,E)
CALL RNGET(ISEED1)
CALL RNSET(ISEED2)
CALL DRNNOA(N,W)
CALL RNGET(ISEED2)

Z(1) = E(1) * SQRT(5.0)
U(1)=Ww(1)
Y(1) = Z(1) + U(1)

DO 10 J=2,N
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Z(J) = -A1*Z(J-1) + EQ)*SQRT(5.0)
U(Q) = W() + C1*W(J-1)
Y(0) = Z() + UQ)

10 CONTINUE

DO 1 K=1,N
R(K+4) = Y(K)
1  CONTINUE
DO 3 K=1,4
R(K) = 0.0
3 CONTINUE
CALL ETINIT(Y,R,X,N,NN,ETILDA)
DO 5 K=1,N
RR(K+2) = ETILDA(K)
5  CONTINUE
DO 7 K=1,2
RR(K) = 0.0
7 CONTINUE
CALL ABINIT(N,ABTILDA,R,RR,NN,NNN,N3)
CALL SIGMAINIT(Y,R,T,N,NN,NNN,ABTILDA,N3,HAP,SIGMAET,FL,_INIT)

CALL NRI(N,NN,NNN,N3,N5,R, T, ABTILDA HAP,SIGMAET,

/ TT,C1,D1,D2,C,FL_INIT,FL_EST,

/ CMIN1,CMIN2,CMIN3,CMIN4,CMINS5,CMING6)
CALL NR2(N,NN,NNN,N3,N5,R,T1,C1,D1,D2,ZIGMAET,

/o CMIN1,CMIN2,CMIN3,CMIN4,CMIN5,CMING,

/ ICOUNT,SS1,SS82)

STAT1(ICOUNT) = SS1
STAT2(ICOUNT) = SS2

IF (ICOUNT.GE.10000) GO TO 112

100 CONTINUE
112 CONTINUE

CALL SORT(NUM,STATI)
CALL SORT(NUM,STAT2)



PRINT*,I1,-th SMALLEST =", STAT1(I1)
PRINT*,12,"-th SMALLEST =", STAT1(I2)
PRINT*,13,-th SMALLEST =", STAT1(I3)
PRINT* I4,-th SMALLEST =", STAT1(14)
PRINT*,I5,-th SMALLEST =", STAT1(I5)
PRINT*,16,-th SMALLEST =", STAT1(I6)
PRINT*,17,-th SMALLEST =", STAT1(I7)
PRINT*,I8,-th SMALLEST =", STATI1(I8)
PRINT* I1,-th SMALLEST =", STAT2(I1)
PRINT*]2,-th SMALLEST ="', STAT2(I2)
PRINT*,13,-th SMALLEST =", STAT2(I3)
PRINT* ,I4,-th SMALLEST =", STAT2(14)
PRINT*,I5,-th SMALLEST ="', STAT2(I5)
PRINT*,16,-th SMALLEST =", STAT2(I6)
PRINT*,17,-th SMALLEST ="', STAT2(I7)
PRINT*,18,-th SMALLEST =", STAT2(I8)

260 CONTINUE

END
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*  SUBROUTINE 1 *
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*#*x ESTIMATE THE INITIAL VALUE OF ET.

SUBROUTINE ETINIT(Y,R,X,N,NN,ETILDA)
PARAMETER(LDA=4, LDAINV=4, N2=4)

REAL*8 R(NN), A(LDA,LDA), BAN2), AINV(LDAINV,LDAINV)
REAL*8 X(N,N2), Y(N), ETILDA(N), SUM1(N2)

DO 200 I=1,4
DO 210 J=1,4
AL =0.0
210  CONTINUE
B(I) = 0.0
200 CONTINUE

DO 250 L=1,N
A(1,1) = A(1,1) + R(L+3)*R(L+3)
A(2,1) = A(2,1) + R(L+2)*R(L+3)
AQG,1) = A(3,1) + R(L+1)*R(L+3)
A(4,1) = A4,1) + R(L*R(L+3)
A(2,2) = A(2,2) + R(L+2)*R(L+2)
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250

265
260

280

270

290

285

A(2,3) = A(2,3) + ROL+1)*R(L+2)
A(2,4) = A(2,4) + R(LY*R(L+2)
A(3,3) = A(3,3) + R(L+1)*R(L+1)
A(3,4) = A(3,4) + RIL*R(IL+1)
A(4,4) = A(4,4) + R(LY*R(L)

B(1) = B(1) + R(L+3)*R(L+4)
B(2) = B(2) + R(L+2)*R(L+4)
B(3) = B(3) + R(L+1)*R(L+4)
B(4) = B(4) + R(L)*R(L+4)
CONTINUE

A(1,2) = A(2,1)

A(1,3)=AB,1)

A(L,4) = A(4,1)

A(3,2) = A(2,3)

A(4,2) = A(2,4)

A(4,3)=A(3,4)

CALL INVMAT(AINV,A,4,4)

DO 260 K1=1, 4
DO 265 K2=1,N
IF (K2.LEK1) THEN
X(K2,K1)=0.0
ELSE
X(K2,K1) = Y(K2-K1)
ENDIF
CONTINUE
CONTINUE

DO 270 LDAINV1=1,4
SUM =0.0
DO 280 LDAINV2=1,4

SUM = SUM + AINV(LDAINV1,LDAINV2)*B(LDAINV2)

CONTINUE
SUM1(LDAINV1) = SUM
CONTINUE

DO 285 K3=1,N
SUM2 =0.0
DO290K4=1,4

SUM2 = SUM2 + X(K3,K4)*SUM1(K4)

CONTINUE
ETILDA(K3) = Y(K3) - SUM2
CONTINUE
RETURN
END
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*  SUBROUTINE 2 *
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*** ESTIMATE THE INITIAL VALUE OF Al, B1 AND B2.

SUBROUTINE ABINIT(N,ABTILDA,R,RR,NN,NNN,N3)
PARAMETER(MDA=3, MDAINV=3)
REAL*8 R(NN), RRQ(NNN), ABTILDA(N3)
REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV), F(MDA)

DO 310 I=1,3
DO 320 J=1,3
ALT) = 0.0
320 CONTINUE
F() = 0.0
310 CONTINUE

DO 350 K=1,N
A(1,1) = A(1,1) + R(K+3)*R(K+3)
A2,1) = A(2,1) - R(K+3)*RR(K+1)
AG3,1) = A(3,1) - R(K+3)*RR(K)
A(2,2) = A(2,2) + RR(K+1)*RR(K+1)
A(2,3) = A(2,3) + RR(K)*RR(K+1)
A(3,3) = A(3,3) + RR(K)*RR(K)
F(1) = F(1) - R(K+3)*R(K+4)
F(2) = F(2) + REK+4)*RR(K+1)
F(3) = F(3) + R(K+4)*RR(K)

350 CONTINUE .
A(1,2) = A(2,1)
A(1,3)=A@3,1)
A(3,2) = A(2.,3)

CALL INVMAT(AINV,A,3,3)

DO 370 MDAINV1 =1, 3
SUM3 =00
DO 390 MDAINV2 =1, 3
SUM3 = SUM3 + AINV(MDAINV1,MDAINV2)*F(MDAINV2)
390 CONTINUE
ABTILDA(MDAINV1) = SUM3
IF (ABTILDA(1).LT.-2.0) THEN
ABTILDA(1) =-2.0
ELSE IF (ABTILDA(1).GT.2.0) THEN
ABTILDA(1)=2.0
ENDIF
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370 CONTINUE

RETURN
END
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*  SUBROUTINE 3 *
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*** ESTIMATE THE INITIAL VALUE OF SIGMAET.

SUBROUTINE SIGMAINIT(Y,R,T,N,NN,NNN,ABTILDA,N3,HAP,
/ SIGMAET,FL_INIT)

REAL*$ Y(N), R(NN), T(NNN)
REAL*$ ABTILDA(N3), HAP, SIGMAET

DO 400 L = 1, NNN
T(L) = 0.0
400 CONTINUE

HAP=0.0
DO 430 L=1,N ,
T(L+2) = R(L+4) + ABTILDA(1)*R(L+3) - ABTILDAQ2)*T(L+1)
/ - ABTILDA(3)*T(L)
HAP = HAP + T(L+2)*T(L+2)
430 CONTINUE
SIGMAET = HAP/N

IF (SIGMAET.LT.EXP(-100.0)) THEN
SIGMAET = EXP(-100.0)
ELSE IF (SIGMAET.GT.EXP(10.0)) THEN
~ SIGMAET = EXP(10.0)
ENDIF
FL_INIT = (1/(2*SIGMAET))*HAP + (N/2)*LOG(SIGMAET)

RETURN
END
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*  SUBROUTINE 4 *
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*** NEWTON-RAPHSON METHOD BASED ON SS'S APPROACH.

SUBROUTINE NR1(N,NN,NNN,N3,N5,R,T,ABTILDA , HAP,SIGMAET,TT,
/ C1,D1,D2,C,FL._INIT,FL._EST,
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CMIN1,CMIN2,CMIN3,CMIN4,CMIN5,CMING)
PARAMETER(LDA=6, LDAINV=6, N6=6)
REAL*8 A(LDA,LDA), B(N6), C(N5), AINV(LDAINV,LDAINV)
REAL*8 R(NN), T(NNN), ABTILDA(N3), TT(NNN)
REAL*8 D(N6), HAP1
REAL*8 CC1(10), CC2(10), CC3(10), CC4(10), CC5(10), CC6(10)
REAL*8 FL_EST(10), FMIN, FL_INIT
REAL*$ CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6

Al1l=ABTILDA(1)
B11 = ABTILDA(2)
B22 = ABTILDA(3)
C(5)=0.0

C(6) = 0.0

WAL =0.0
WB1=0.0
WB2=0.0

DO 500 I=1,6
DO 510 T=1,6
AL =0.0
CONTINUE
B(I) = 0.0

CONTINUE

WI1TEMP = 0.0
W2TEMP = 0.0
W3TEMP = 0.0
WAITEMPI = 0.0
WAI1TEMP2 = 0.0
WBITEMP1 = 0.0
WBITEMP2 = 0.0
WB2TEMP1 = 0.0
WB2TEMP2 = 0.0

DO 550 L=1,N
WA1 = R(L+3) - BII*WA1TEMPI - B22*WA1TEMP2
WB1 = -T(L+1) - BII*WB1TEMP1 - B22*WB1TEMP2
WB2 = -T(L) - BII*WB2TEMPI - B22*WB2TEMP2
A(1,1) = A(1,1) + WAI*WAL
A(2,2) = A(2,2) + WB1*WBI
A(3,3) = A(3,3) + WB2*WB2
B(1) = B(1) + WAI*T(L+2)

B(2) = B(2) + WB1*T(L+2)
B(3) = B(3) + WB2*T(L+2)
B(4) = B(4) + T(L+2)*T(L+2)



550
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W1TEMP = WA1TEMP1
WAITEMP1 = WA
WAITEMP2 = W1TEMP
W2TEMP = WB1TEMP1
WBI1TEMP1 = WB1
WB1TEMP2 = W2TEMP
W3TEMP = WB2TEMP1
WB2TEMP1 = WB2
WB2TEMP2 = W3TEMP
CONTINUE
A(1,1) = A(1,1)/SIGMAET
A(2,2) = A(2,2)/SIGMAET
A(3,3) = A(3,3)/SIGMAET
A(5,1) = A(5,1) - (1+2*D2+C1**2)
A(2,5) = A(2,5) + (1+B22)*SIGMAET
A(3,5) = A(3,5) + B11*SIGMAET
A(6,1) = A(6,1) - C1
A(3,6) = A(3,6) + SIGMAET
A(4,4) = A(4,4) - N/(2*(SIGMAET**2))
A(4,5) = A(4,5) + B11*(1+B22)
A(4,6) = A(4,6) + B22
B(1) = B(1)/SIGMAET
B(2) = B(2)/SIGMAET
B(3) = B(3)/SIGMAET
B(4) = (-B(4)/(2*SIGMAET*SIGMAET)) + (N/(2*SIGMAET))
B(5) = SIGMAET*(1+B22)*B11 - D1*(1+D2)
B(6) = SIGMAET*B22 - D2
A(1,5) =A(5,1)
A(1,6)=A(6,1)
A(5,2) = A(2,5)
A(5,3) = A(3,5)
A(6,3) = A(3,6)
A(5,4) = A4,5)
A(6,4) = A(4,6)

CALL INVMAT(AINV,A,6,6)

DO 570 LDAINV1=1,6

SUM = 0.0 |
DO 580 LDAINV2=1,6
SUM = SUM + AINV(LDAINV1,LDAINV2)*B(LDAINV?)
CONTINUE
D(LDAINV1) = SUM

570 CONTINUE

DO 600 K=1, 10
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C(1)=Al1 - (I/K)*D(1)
C(2)=B11 - (/K)*D(2)

C(3) =B22 - (1/K)*D(3)

C(4) = SIGMAET - (1/K)*D(4)
C(5) = C(5) - (VK)*D(5)

C(6) = C(6) - (1/K)*D(6)
HAP1=0.0

DO 650 11 =1, NNN
TT(I1) = 0.0
CONTINUE

DO 700 I2=1,N
TT(12+2) = R(I2+4) + C(1)*R(12+3) - C(2)*TT(12+1)
- CR)*TT(I2)
HAP1 = HAP1 + TT(I2+2)*TT(12+2)
CONTINUE

IF (C(4).LT.EXP(-100.0)) THEN
C(4) = EXP(-100.0)
ELSE IF (C(4).GT.EXP(10.0)) THEN
C(4) = EXP(10.0)

ENDIF

FL_EST(K) = (1/(2*C(4)))*HAP1 + (N/2)*LOG(C(4))
CCL(K) = C(1)

CC2(K) = C(2)

CC3(K) = C(3)

CCA(K) = C(4)

CC5(K) = C(5)

CC6(K) = C(6)

CONTINUE

M=1
DO 800 13=2,10

IF(13.EQ.0.OR.FL,_EST(I3).GE.FL_EST(M)) GO TO 800

M =13
CONTINUE
FMIN = FL,_EST(M)
CMIN1 = CC1(M)
CMIN2 = CC2(M)
CMIN3 = CC3(M)
CMIN4 = CC4(M)
CMINS = CC5(M)
CMING6 = CC6(M)
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RETURN
END
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* SUBROUTINE 5 *
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/

400

430

510
500

SUBROUTINE NR2(N,NN,NNN,N3,N5,R,T1,C1,D1,D2,ZIGMAET,

CMIN1,CMIN2,CMIN3,CMIN4,CMIN5,CMIN6,ICOUNT,SS1,SS2)

PARAMETER(LDA=6, LDAINV=6, N6=6)
REAL*$ A(LDA,LDA), AINV(LDAINV,LDAINV)
REAL*8 R(NN), TL(NNN)

REAL*$ AAl, B1, B2, ZIGMAET

REAL*$ CMIN1, CMIN2, CMIN3, CMIN
REAL*8 SS1, SS2 \
AA1=CMIN1

Bl = CMIN2

B2 = CMIN3

ZIGMAET = CMIN4

DO 400 L =1, NNN
T1(L) = 0.0
CONTINUE

DO 430 L=1,N
T1(L+2) = R(L+4) + AAT*R(L+3) - BI*T1(L+1) - B2*T1(L)
CONTINUE

DO 500 I=1,6
DO 510 J=1,6
AL = 0.0
CONTINUE
CONTINUE

WA1=0.0
WB1=0.0
WB2=0.0
WITEMP = 0.0
W2TEMP = 0.0
W3TEMP = 0.0
WAITEMP1 =0.0
WAITEMP2 = 0.0
WBITEMP1 = 0.0
WBITEMP2 =0.0
WB2TEMP1 = 0.0
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550

WB2TEMP2 =0.0

DO 550 L=1,N
WAI1 =R(L+3) - BI*WAITEMP1 - B2*WA1TEMP2
WB1 =-T1(L+1) - BI*WB1TEMP1 - B2*WB1TEMP2
WB2 =-T1(L) - BI*WB2TEMP1 - B2*WB2TEMP2

A(1,1) = A(1,1) + WAI*WAL1
A(2,2) = A(2,2) + WB1*WBI1
A(3,3) = A(3,3) + WB2*WB2
WITEMP = WA1TEMP1
WAITEMP1 = WAL
WAITEMP2 = WITEMP
W2TEMP = WB1TEMP1
WBITEMP] = WB1
WB1TEMP2 = W2TEMP
W3TEMP = WB2TEMP1
WB2TEMPI = WB2
WB2TEMP2 = W3TEMP
CONTINUE

A(1,1) = A(1,1VZIGMAET
A(2,2) = A(2,2)/ZIGMAET
A(3,3) = A(3,3)/ZIGMAET
A(5,1) = A(5,1) - (1+2*D2+C1**2)
A(2,5) = A(2,5) + (1+B2)*ZIGMAET
A(3,5) = A(3,5) + BI*ZIGMAET
A(6,1) = A(6,1) - C1

A(3,6) = A(3,6) + ZIGMAET
A(4,4) = A(4,4) - N/(2*(ZIGMAET**2))
A(4,5) = A(4,5) + B1*(1+B2)
A(4,6)=A(4,6) + B2

A(1,5) = A(5,1)

A(L,6) = A(6,1)

A(5,2) = A(2,5)

A(5,3) = A(3,5)

A(6,3) = A(3,6)

A(5,4) = A(4,5)

A(6,4) = A(4,6)

CALL INVMAT(AINV,A,6,6)

IF (AINV(1,1).GT.0.0) THEN
SS1 = N*(AA1-1.0)
SS2 = (AA1-1.0)/SQRT(AINV(1,1))
ICOUNT =ICOUNT + 1
ENDIF

209



210

RETURN
END
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*  SUBROUTINE 6 *
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SUBROUTINE SORT(N,DATA)

* LOG-SPACE QUICK-SORT
PARAMETER (MAXSTK=10)

* MAX. DATA (ARRAY) SIZE: (MAXSTK+1)-TH POWER OF 2
INTEGER N
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* DATA TYPE
REAL*8 DATA(N), PIVOT, TEMP
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INTEGER 1, J, LEFT, RIGHT, L, R

* STACK FRAMES AND POINTER
INTEGER LSTACK(MAXSTK), RSTACK(MAXSTK), SP

*

SP=0

LEFT =1
RIGHT =N
E 3
* RECURSIVE CALL ENTRY (CALL RETURNS HERE IF STACK NOT EMPTY)
1000 CONTINUE
%k
I1=LEFT
J=RIGHT
PIVOT = DATA(INT((I+7)/2))

*

2000 CONTINUE
*
100 IF (DATA(D).LT.PIVOT) THEN
I=1+1
GOTO 100
ENDIF
*
200 IF (DATA(J).GT.PIVOT) THEN
J=1-1
GOTO 200
ENDIF

IF (ILE.J) THEN



*  SWAP
TEMP = DATA(I)
DATA() = DATA())
DATA(J) = TEMP
I=1+1
I=1]J-1
ENDIF
IF (I.LE.J) GOTO 2000
* RECURSIVE CALL
R =RIGHT -1
L=J-LEFT
IF (R.GE.L) THEN
IF (L.GT.0) THEN
*  PUSH STACK
SP=SP+1
LSTACK(SP)=1
RSTACK(SP) = RIGHT
RIGHT =1
GOTO 1000
ELSEIF (R.GT.0) THEN
LEFT =1
GOTO 1000
ENDIF
ELSE
IF (R.GT.0) THEN
* PUSH STACK
SP=SP+1
LSTACK(SP) = LEFT
RSTACK(SP)=1]
LEFT =1
GOTO 1000
ELSE IF (L.GT.0) THEN
RIGHT =1
GOTO 1000
ENDIF
ENDIF
%
* RECURSIVE RETURN
IF (SP.GT.0) THEN
* POP STACK
RIGHT = RSTACK(SP)
LEFT = LSTACK(SP)
SP=SP-1
GOTO 1000
ENDIF
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RETURN
END
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*  SUBROUTINE 7 *
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*** COMPUTE INVERSE OF A MATRIX.

SUBROUTINE INVMAT(AINV,A,N,NMAX)
REAL*8 A(NMAX,NMAX), LINMAX,NMAX), UNMAX,NMAX)
REAL*8 AINV(NMAX,NMAX), UINV(NMAX,NMAX), LINV(NMAX,NMAX)
CALL LUDCOM(L,U,A,N,NMAX)
DO 100 I=1,N
100 LINV(LI)=1.0
DO 110 I=1,N-1
DO 110 J=I+1,N
110 LINV(LI)=0.0
DO 130 J=1,N-1
DO 130 I=J+1,N
SUM = 0.0
DO 120 K =J+1, -1
120  SUM = SUM + L(LK)*LINV(K,])
LINV(L]) = -L(LJ) - SUM
130 CONTINUE
DO 140 I=1,N
140 UINV(LI) = 1/UQ])
DO 150 J=1,N-1
DO 150 I=J+1,N
150  UINV(LJ)=0.0
DO 170 1=N-1, 1, -1
DO 170 J=N, I+1, -1
SUM = 0.0
DO 160 K=1+1,7
160  SUM = SUM + U(LK)*UINV(K.J)
UINV(L]) = UINV(LI)*(-SUM)
170 CONTINUE
CALL PROMAT(AINV,UINV,LINV,N,NMAX)
RETURN
END
*
*  LU-DECOMPOSITION ROUTINE
SUBROUTINE LUDCOM(L,U,A,N,NMAX)
REAL*8 L(NMAX,NMAX), UNMAX,NMAX)
REAL*8 A(NMAX,NMAX), WM(NMAX,NMAX)
DO 100 K=1,N



L(K,K) = 1.0
U(1,K) = A(LK)
100 CONTINUE
DO 150 I=2,N
DO 120 J=1,1-1
WM(,J) = 0.0
DO 110 M=1, J-1
110 WM®J) = WM(J) + LLM)*UM,J)
L(J) = (ALT) - WMII))UJ,T)
120 CONTINUE
DO 140 J=I, N
WM(L,]) = 0.0
DO 130M=1,1-1
130 WM(LJ) = WM(L]) + LILM)*U(M,J)
ULT) = ALT) - WML])
140 CONTINUE
150 CONTINUE
RETURN
END

sk
*  MATRIX MULTIPLICATION (C = A * B)
SUBROUTINE PROMAT(C,A,B,N,NMAX)
REAL*8 C(NMAX,NMAX), ANNMAX,NMAX), B(NMAX,NMAX)
DO 100 I=1,N |
DO 100 J=1,N
C(LI) = 0.0
DO 100 K=1,N
C(L)) = C(1,J) + ALK)*B(K,J)
100 CONTINUE
RETURN
END

* END OF PROGRAM
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APPENDIX F

FORTRAN PROGRAM FOR SPURIOUS REGRESSION
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*  SPURIOUS REGRESSION:K=1,P=2 *
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*  MAIN PROGRAM *
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PROGRAM MAIN
PARAMETER(N=250, NUM=10000, N2=3)
IMPLICIT REAL*$ (A-H,0-Z) |
REAL*8 U(N), X(N), XT1(N), XT2(N), Y(N)
REAL*8 XX(N,3), RESID(N), SUMGAMMA(N2)
REAL*S EPGAMMA1, EPGAMMA?2, EPGAMMA?3
REAL*8 EPRSQ, EPDW, EPSGSQ

REAL*8 EPTI1, EPT2, EPT3

EXTERNAL RNSET,RNNOA

ISEED1= 13579

CALL RNISD(ISEED1,ISEED2)
DO 300 I=1, NUM

CALL RNSET(ISEEDI)
CALL DRNNOA(N,U)
CALL RNGET(ISEED1)
CALL RNSET(SEED2)
CALL DRNNOA(N,X)
CALL RNGET(ISEED2)

DO 100 J=1,N
SUM1 = 0.0
SUM2 = 0.0
DO 50 K=1,]J
SUM1 = SUM1 + U(K)
SUM2 = SUM2 + X(K)
50 CONTINUE
Y(J) = SUM1
XT1(J) = SUM2
100 CONTINUE
XT2(1) = X(1)
XT2(2) = 2*¥X(1) + X(2)

DO 250 J=3,N
SUM3 =0.0
DO 200 K=1,J-2
SUM3 = SUM3 + XT1(K)
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200 CONTINUE
SUM4 = SUM3 + XT1(K+1)
XT2(J) = 2*SUM4 - SUM3 + X(J)
250 CONTINUE

CALL GAMMA(N,N2,XT1,XT2,Y,XX,RESID,SUMGAMMA,SUMRSQ,
/ SUMDW,SUMSGSQ,SUMT1,SUMT2,SUMT3)

300 CONTINUE
EPGAMMAI = SUMGAMMA(1)/NUM
EPGAMMA2 = SUMGAMMA(2)/NUM
EPGAMMA3 = SUMGAMMA(3)/NUM
EPRSQ = SUMRSQ/NUM
EPDW = SUMDW/NUM
EPSGSQ = SUMSGSQ/NUM
EPT1 = SUMTI/NUM
EPT2 = SUMT2/NUM
EpT3 =SUMT3/NUM

WRITE(*,*) EPGAMMA1,EPGAMMA?2,EPGAMMA3
WRITE(*,*) EPT1,EPT2,EPT3

WRITE(*,*) EPRSQ,EPDW

WRITE(*,*) EPSGSQ

END
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* SUBROUTINE1  *
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SUBROUTINE GAMMA(N,N2,XT1,XT2,Y,XX,RESID,SUMGAMMA,SUMRSQ,
/ SUMDW,SUMSGSQ,SUMT1,SUMT2,SUMT3)

PARAMETER(MDA=3, MDAINV=3, P=2)
REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA)
REAL*8 XTI(N), XT2(N), XX(N,3), Y(N), GAMMAHAT(MDA), RESID(N)
REAL*8 SUMGAMMA(N2), SQY, YBAR, RSQDENO, RSQNUM, RSQUARE
REAL*8 DENO, DNUM, DW, SUMDW
REAL*8 SUM, SUM2, SUM3, SUMRSQ
REAL*8 T STATL, T STAT2, T STAT3
REAL*8 SUMTI1, SUMT2, SUMT3
REAL*8 SIGMASQ

SQY =0.0
DO 150 K1=1,3
DO 120 K2=1,3
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A(K1,K2)=0.0
120  CONTINUE

B(K1) = 0.0
150 CONTINUE

0% OLS, R-SQUARE(DENOMINATOR), T-STATISTICS
DO 200 L=1,N
A(1,2) = A(1,2) + XTI(L)
A(1,3) = A(1,3) + XT2(L)
A(2,2) = A(2,2) + XT1(L)**2
AQ2,3) = A(2,3) + XT1(L)*XT2(L)
A(3,3) = A(3,3) + XT2(L)**2
B(1)=B(1) + Y(L)
B(2) = B(2) + XT1(L)*Y(L)
B(3) = B(3) + XT2(L)*Y(L)
SQY = SQY + Y(L)*Y(L)
200 CONTINUE
A(LLD)=N
A(2,1)=A(1,2)
AB,1)=A(1,3)
A(3.2)=A(2,3)
YBAR = B(1)*B(1)/N
RSQDENO = SQY - YBAR

CALL INVMAT(AINV,A,3)

DO 240 L2=1,N
XX(L2,1)=1.0
XX(L2,2) = XT1(L2)
XX(L2,3) = XT2(L2)

240 CONTINUE

DO 280 MDAINV1 =1, 3
SUM = 0.0
DO 250 MDAINV2 =1, 3
SUM = SUM + AINV(MDAINV1,MDAINV2)*B(MDAINV?2)
250 CONTINUE
GAMMAHAT(MDAINV1) = SUM
280 CONTINUE
SUMGAMMA(1) = SUMGAMMA(1) + GAMMAHAT(1)
SUMGAMMA(2) = SUMGAMMA(2) + GAMMAHAT(2)
SUMGAMMA(3) = SUMGAMMA(3) + GAMMAHAT(3)

*akrk RESIDUAL, R-SQUARE(NUMERATOR)
SUM3 =0.0
DO 320 M1 =1,N
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320
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SUM2 = 0.0
DO 300M2=1, 3
SUM2 = SUM2 + XX(M1,M2)*GAMMAHAT(M2)
CONTINUE
SUM3 = SUM3 + Y(M1)*SUM2
RESID(M1) = Y(M1) - SUM2
CONTINUE
RSQNUM = SUM3 - YBAR
RSQUARE = RSQNUM/RSQDENO
SUMRSQ = SUMRSQ + RSQUARE

*** DW, SIGMASUARE HAT

350

DENO =0.0
DNUM =0.0.

DO 350 M3 =1,N-1

DNUM = DNUM + (RESID(M3+1) - RESID(M3))**2
DENO = DENO + RESID(M3+1)**2
CONTINUE
DENO = DENO + RESID(1)**2
DW = DNUM/DENO
SIGMASQ = DENO/(N-P-1)
T_STAT1 = GAMMAHAT(1)/SQRT(AINV(1,1)*SIGMASQ)
T _STAT2 = GAMMAHAT(2)/SQRT(AINV(2,2)*SIGMASQ)
T_STAT3 = GAMMAHAT(3)/SQRT(AINV(3,3)*SIGMASQ)
SUMTI = SUMT1 + T_STATI
SUMT2 = SUMT2 + T _STAT2
SUMTS3 = SUMT3 + T_STAT3
SUMDW = SUMDW + DW
SUMSGSQ = SUMSGSQ + SIGMASQ
RETURN
END
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*

SUBROUTINE2  *
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*

SUBROUTINE INVMAT(AINV,A,N)

100

110

REAL*8 A(3,3), L(3,3), U(3,3)
REAL*$ AINV(3,3), UINV(3,3), LINV(3,3)
CALL LUDCOM(L,U,AN)

DO 100 I=1,N
LINVID) = 1.0

DO 110 I=1,N-1
DO 110 J=I+1,N
LINV(L,J) = 0.0

DO 130 J=1,N-1



DO 130 I=J+1,N
SUM = 0.0
DO 120 K =J+1,I-1
120 SUM =SUM + L(LK)*LINV(K,J)
LINV(L]) = -L(1,J) - SUM
130 CONTINUE
DO 140 I=1,N
140 UINV(LD) = /UL
DO 150 J=1,N-1
DO 150 I=J+1,N
150  UINV(])=0.0
DO 170 1=N-1, 1, -1
DO 170 J=N, I+1, -1
SUM = 0.0
DO 160 K=I+1,7
160  SUM = SUM + ULK)*UINV(K,])
UINV(L,]) = UINV(LD*(-SUM)
170 CONTINUE
CALL PROMAT(AINV,UINV,LINV,N,N,N)
RETURN
END

SUBROUTINE LUDCOM(L,U,A,N)
REAL*8 L(3,3), U(3,3), A(3,3), WM(3,3)
DO 100 K=1,N
L(KK)=1.0
U(L,K) = A(LK)
100 CONTINUE
DO 150 I1=2,N
DO 1207=1,I-1
WM(LJ) = 0.0
DO 110 M=1,J-1
110 WM(LJ) = WMJ) + LLM)*U(M,])
L(LT) = (AQLT) - WM(LT)/UQ.J)
120 CONTINUE
DO 140 J=LN
WM(LJ) = 0.0
DO 130 M =1,1-1
130 WM(LJ) = WM(LJ) + LLM)*UM,])
ULD) = ALT) - WM(LT)
140  CONTINUE
150 CONTINUE
RETURN
END
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SUBROUTINE PROMAT(C,A,B,N,L,M)
REAL*8 C(3,3), A(3,3), B(3.,3)
DO 100 I=1,N
DO 100 J=1,M
C(,J)=0.0
DO 100 K=1,L
C(L)) = C(LJ) + ALK)*B(K,])
100 CONTINUE
RETURN
END

* END OF PROGRAM
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* SPURIOUS REGRESSION: K=2,P=1 *
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*  MAIN PROGRAM *
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PROGRAM MAIN

PARAMETER(N=250, NUM=10000, N2=2)
IMPLICIT REAL*8 (A-H, 0-Z)

REAL*8 UN), X(N), XT(N), YT(N), Y(N)
REAL*8 XX(N,2), RESID(N), SUMGAMMA(N2)
REAL*8 SUMI, SUM2, SUM3, SUM4
REAL*8 EPGAMMA1, EPGAMMA?2

REAL*8 EPRSQ, EPDW, EPSGSQ1, EPSGSQ2
REAL*8 EPT1, EPT2, EPT3

REAL*8 SUMSGSQ, SUMRSQ, SUMDW
REAL*8 SUMTI, SUMT2, SUMT3
EXTERNAL RNSET, RNNOA

ISEEDI1 = 13579

CALL RNISD(ISEED1,ISEED2)
DO 2000 I=1,NUM

CALL RNSET(ISEEDI)
CALL DRNNOA(N,U)
CALL RNGET(ISEED1)
CALL RNSET(ISEED2)
CALL DRNNOA(N,X)
CALL RNGET(ISEED2)

DO 100 J=1,N
SUMI = 0.0
SUM2 = 0.0
DO 10 K=1,7J
SUMI = SUM1 + X(K)
SUM2 = SUM2 + U(K)
10 CONTINUE
XT(J) = SUMI
YT(J) = SUM2
100 CONTINUE

Y(1)=U()
Y(2) =U(1)*2 + UQ)
DO 250 J=3,N



SUM3 = 0.0
DO 200 K=1,J-2
SUM3 = SUM3 + YT(K)

200 CONTINUE

250

/

SUM4 = SUM3 + YT(K+1)
Y(J) = 2*SUM4 - SUM3 + U(J)
CONTINUE

CALL GAMMA(N,N2,XT,Y,XX,RESID,SUMGAMMA,SUMRSQ,
SUMDW,SUMSGSQ,SUMT1,SUMT2)

2000 CONTINUE

EPGAMMA1 = SUMGAMMA(1)/NUM
EPGAMMA?2 = SUMGAMMA(2)/NUM
EPRSQ = SUMRSQ/NUM
EPDW = SUMDW/NUM
EPSGSQ = SUMSGSQ/NUM
EPT1 = SUMT1/NUM
EPT2 = SUMT2/NUM
WRITE(*,*) EPGAMMA1,EPGAMMA?2
WRITE(*,*) EPT1,EPT2
WRITE(*,*) EPRSQ,EPDW
WRITE(*,*) EPSGSQ

END
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*

SUBROUTINE 1 *
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/

SUBROUTINE GAMMA(N,N2,XT,Y,XX,RESID,SUMGAMMA,SUMRSQ,
| SUMDW,SUMSGSQ,SUMT1,SUMT2)
PARAMETER(MDA=2, MDAINV=2, P=1)
REAL*$ A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA)
REAL*8 XT(N), XX(N,2), YON), GAMMAHAT(MDA), RESID(N)
REAL*8 SQY, YBAR, RSQDENO, RSQNUM, RSQUARE
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REAL*8 SUMGAMMA(N2), SQY, YBAR, RSQDENO, RSQNUM, RSQUARE

REAL*8 SUM, SUM2, SUM3

REAL*8 SUMRSQ, DENO, DNUM, DW, SUMDW

REAL*8 T_STATI, T _STAT2
REAL*$ SUMTI, SUMT2
REAL*8 SIGMASQ, SUMSGSQ

SQY = 0.0

DO 150 K1=1,2
DO 120 K2=1,2
A(K1,K2)=0.0



120  CONTINUE
B(K1) = 0.0
150 CONTINUE

#% OLS, R-SQUARE(DENOMINATOR), T-STATISTICS
DO 200 L=1,N
A(1,2) = A(1,2) + XT(L)
A(2,2) = A(2,2) + XT(L)**2
B(1)=B(1) + Y(L)
B(2) = B(2) + XT(L)*Y(L)
SQY = SQY + Y(L)*Y(L)
200 CONTINUE
A(L,D=N
AQ,1) = A(1,2)
YBAR = B(1)*B(1)/N
RSQDENO = SQY - YBAR

CALL INVMAT(AINV,A,2)

DO 240 L2=1,N
XX(L2,1)= 1.0
XX(L2,2) = XT(L2)
240 CONTINUE
DO 280 MDAINV1=1,2
SUM = 0.0
DO 250 MDAINV2 =1, 2
SUM = SUM + AINV(MDAINV1,MDAINV2)*B(MDAINV?2)
250  CONTINUE
GAMMAHAT(MDAINV1) = SUM
280 CONTINUE
SUMGAMMA(1) = SUMGAMMA(1) + GAMMAHAT(1)
SUMGAMMA(2) = SUMGAMMA(2) + GAMMAHAT(2)

##* RESIDUAL, R-SQUARE(NUMERATOR)
SUM3 = 0.0
DO 320 M1=1,N
SUM2 =0.0
DO 300 M2=1,2
SUM2 = SUM2 + XX(M1,M2)*GAMMAHAT(M2)
300 CONTINUE
SUM3 = SUM3 + Y(M1)*SUM2
RESID(M1) = Y(M1) - SUM2
320 CONTINUE
RSQNUM = SUM3 - YBAR
RSQUARE = RSQNUM/RSQDENO
SUMRSQ = SUMRSQ + RSQUARE
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% DW, SIGMASUARE HAT
DENO = 0.0
DNUM = 0.0
DO 350 M3 =1, N-1
DNUM = DNUM + (RESID(M3+1) - RESID(M3))**2
DENO = DENO + RESID(M3+1)**2
350 CONTINUE
DENO = DENO + RESID(N)**2
DW = DNUM/DENO
SIGMASQ = DENO/(N-P-1)
T STAT1 = GAMMAHAT(1)/SQRT(AINV(1,1)*SIGMASQ)
T STAT2 = GAMMAHAT(2)/SQRT(AINV(2,2)*SIGMASQ)
SUMTI = SUMT1 + T_STATI
SUMT2 = SUMT2 + T_STAT2
SUMDW = SUMDW + DW
SUMSGSQ = SUMSGSQ + SIGMASQ
RETURN
END
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* SUBROUTINE2 *

sk sfe sfe sk ok ok sk sk sk sk ske sk sk sk ok ok s ok koK ok

SUBROUTINE INVMAT(AINV,A,N)
REAL*$ A(2,2), L(2,2), U(2,2)
REAL*$ AINV(2,2), UINV(2,2), LINV(2,2)
CALL LUDCOM(L,U,A,N)

DO 100 I=1,N
100 LINV(I)=1.0
DO 110 I=1,N-1
DO 110 J=I+1,N
110  LINV(J)=0.0
DO 130 J=1,N-1
DO 130 I=J+1,N
SUM = 0.0 |
DO 120 K =J+1,I-1
120  SUM = SUM + L(LK)*LINV(K,])
LINV(LJ) = -L(LJ) - SUM
130 CONTINUE
DO 140I=1,N
140 UINV(LI) = 1/UL])
DO 150 J=1,N-1
DO 150 I=J+1,N
150  UINV(D)=0.0
DO 170 I=N-1, 1, -1
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DO 170 J=N, I+1, -1
SUM = 0.0
DO 160 K=T+1,]
160  SUM=SUM + ULK)*UINV(K,])
UINV(L,J) = UINV(LI)*(-SUM)
170 CONTINUE
CALL PROMAT(AINV,UINV,LINV,N,N,N)
RETURN
END

SUBROUTINE LUDCOM(L,U,A,N)
REAL*8 L(2,2), U(2,2), A(2,2), WM(2,2)
DO 100 K=1,N
L(KK) = 1.0
U(1,K) = A(1,K)
100 CONTINUE
DO 150 1=2,N
DO 120 J=1,1-1
WM(LJ) = 0.0
DO 110 M=1, J-1
110 WM(LJ) = WM(LT) + LA,M)*U(M,J)
L(LD) = (A(LJ) - WMILD)UQJ.D)
120 CONTINUE
DO 140 J=L N
WM(LJ) = 0.0
DO 130 M=1,I-1
130 WM(LT) = WM(LJ) + LLM)*U(M,J)
UL = ALJ) - WM(LT)
140  CONTINUE
150 CONTINUE
RETURN
END

SUBROUTINE PROMAT(C,A,B,N,L.M)
REAL*8 C(2,2), A(2,2), B(2,2)
DO 100 I=1,N
DO 100 J=1,M
C(LI)=0.0
DO 100 K=1,L
C(L)) = C(LJ) + AILK)*BK,)
100 CONTINUE
RETURN
END

* END OF PROGRAM
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* SPURIOUS REGRESSION: K =2,P=2 *
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*

MAIN PROGRAM  *
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***% GENERATE 2 DIFFERENT RANDOM NUMBERS.

50

PROGRAM MAIN

PARAMETER(N=500, NUM=10000, N2=3)

IMPLICIT REAL*$ (A-H, 0-Z)

REAL*8 UN), X(N), XT1(N), XT2(N), YT(N), Y(N)
REAL*8 XX(N,3), RESID(N), SUMGAMMA(N2)

EXTERNAL RNSET, RNNOA
ISEED1= 13579

CALL RNISD(ISEED1,ISEED?)
DO 300 I=1, NUM
CALL RNSET(ISEEDI)
CALL DRNNOA(N,U)
CALL RNGET(ISEED1)
CALL RNSET(ISEED2)
CALL DRNNOA(N,X)
CALL RNGET(ISEED2)

DO 100 J=1,N
SUMI = 0.0
SUM2=0.0

DO 50 K=1,7J
SUMI = SUM1 + X(K)
SUM2 = SUM2 + U(K)
CONTINUE

XT1(J) = SUMI

YT(J) = SUM2

100 CONTINUE

XT2(1) = X(1)
XT2(2) = X(1)*2 + X(2)
Y(1) = U(1)
Y(2) = U(1)*2 + U(2)
DO 250 J=3,N
SUM3 = 0.0
SUMS = 0.0
DO 200 K=1,J-2
SUM3 = SUM3 + XT1(K)
SUMS = SUMS + YT(K)
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CONTINUE

SUM4 = SUM3 + XTl(K+1)
SUMS6 = SUMS + YT(K+1)
XT2(J) = 2*SUM4 - SUM3 + X(J)
Y(J) = 2*SUMS6 - SUMS + U(J)
CONTINUE

CALL GAMMA(N,N2,XT1,XT2,YT,Y,XX,RESID,SUMGAMMA,SUMRSQ,
SUMDW,SUMSGSQ,SUMT1,SUMT2,SUMT3)

CONTINUE

EPGAMMA1 = SUMGAMMA(1)/NUM

EPGAMMA?2 = SUMGAMMA(2)/NUM

EPGAMMA3 = SUMGAMMA(3)/NUM

EPRSQ = SUMRSQ/NUM

EPDW = SUMDW/NUM

EPSGSQ = SUMSGSQ/NUM

EPT1 = SUMT1/NUM

EPT2 = SUMT2/NUM

EPT3 = SUMT3/NUM

WRITE(*,*) EPGAMMAL1, EPGAMMA?2, EPGAMMA3

WRITE(*,*) EPT1, EPT2, EPT3

WRITE(*,*) EPRSQ, EPDW

WRITE(*,*) EPSGSQ

END
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SUBROUTINE1 *
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120

SUBROUTINE GAMMA(N,N2,XT1,XT2,YT,Y,XX,RESID,SUMGAMMA,
SUMRSQ,SUMDW,SUMSGSQ,SUMT1,SUMT2,SUMTS3)

PARAMETER(MDA=3, MDAINV=3, P=2)

REAL*8S A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA), YT(N)

REAL*8 XT1(N), XT2(N), XX(N,3), Y(N), GAMMAHAT(MDA), RESID(N)

REAL*8 SUMGAMMA(N2), SQY, YBAR, RSQDENO, RSQNUM, RSQUARE

REAL*8 DENO, DNUM, DW, SUMDW

REAL*8 SUM, SUM2, SUM3, SUMRSQ

REAL*8 T STATI, T STAT2, T STAT3

REAL*8 SUMT1, SUMT2, SUMT3

REAL*8 SIGMASQ

SQY =0.0

DO 150 K1=1,3

DO 120 K2=1,3
A(K1,K2)=0.0
CONTINUE
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B(K1)=0.0
CONTINUE

***% OLS, R-SQUARE(DENOMINATOR), T-STATISTICS

200

240

250

280

DO 200 L=1,N
A(1,2) = A(1,2) + XTI(L)
A(1,3) = A(1,3) + XT2(L)
A(2,2) = A(2,2) + XT1(L)**2
A(2,3) = A(2,3) + XTI(L)*XT2(L)
A(3,3) = A(3,3) + XT2(L)**2
B(1)=B(1)+YL)
B(2) = B(2) + XTL(L)*Y(L)
B(3) = B(3) + XT2(L)*Y(L)
SQY = SQY + Y(L)*Y(L)

CONTINUE

A(LD =N
A(2,1) = A(1,2)
A(3,1)=A(1,3)
A(32)=A(2,3)
YBAR = B(1)*B(1)/N |
RSQDENO = SQY - YBAR

CALL INVMAT(AINV,A,3)

DO 240 L2=1,N
XX(12,1)=1.0
XX(L2,2) = XT1(L2)
XX(L2,3) = XT2(L2)
CONTINUE

DO 280 MDAINV1 =1, 3
SUM=0.0
DO 250 MDAINV2=1,3
SUM = SUM + AINV(MDAINV1,MDAINV2)*B(MDAINV2)
CONTINUE ‘
GAMMAHAT(MDAINV1) = SUM
CONTINUE |
SUMGAMMA(1) = SUMGAMMA(1) + GAMMAHAT(1)
SUMGAMMA(2) = SUMGAMMA(2) + GAMMAHAT(2)
SUMGAMMA(3) = SUMGAMMA(3) + GAMMAHAT(3)

*** RESIDUAL, R-SQUARE(NUMERATOR)

SUM3 =0.0
DO 320 M1=1,N
SUM2 = 0.0
DO 300 M2=1,3
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SUM2 = SUM2 + XX(M1,M2)*GAMMAHAT(M2)
300 CONTINUE
SUMS3 = SUM3 + Y(M1)*SUM?2
RESID(M1) = Y(M1) - SUM2
320 CONTINUE
RSQNUM = SUM3 - YBAR
RSQUARE = RSQNUM/RSQDENO
SUMRSQ = SUMRAQ + RSQUARE

% DW, SIGMASUARE HAT
DENO = 0.0
DNUM = 0.0
DO 350 M3 =1, N-1

DNUM = DNUM + (RESID(M3+1) - RESID(M3))**2
DENO = DENO + RESID(M3+1)¥*2

350 CONTINUE
DENO = DENO + RESID(N)**2
DW = DNUM/DENO
SIGMASQ = DENO/(N-P-1)
T _STAT1 = GAMMAHAT(1)/SQRT(AINV(1,1)*SIGMASQ)
T _STAT2 = GAMMAHAT(2)/SQRT(AINV(2,2)*SIGMASQ)
T _STAT3 = GAMMAHAT(3)/SQRT(AINV(3,3)*SIGMASQ)
SUMT1 = SUMT1 + T_STATI |
SUMT2 = SUMT2 + T_STAT2
SUMT3 = SUMT3 + T_STAT3
SUMDW = SUMDW +DW
SUMSGSQ = SUMSGSQ + SIGMASQ

RETURN

END
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* SUBROUTINE2 *
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SUBROUTINE INVMAT(AINV,A,N)
REAL*8 A(3,3), L(3,3), U(3,3)
REAL*8 AINV(3,3), UINV(3,3), LINV(3,3)
CALL LUDCOM(L,U,A,N)
DO 100 I=1,N
100 LINV(LI) = 1.0
DO 110 I=1,N-1
DO 110 J=I+1,N
110  LINV(LJ)=0.0
DO 130 J=1,N-1
DO 130 I=J+1,N
SUM = 0.0
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DO 120 K =J+1,1-1
120 SUM = SUM + L(LK)*LINV(X,])
LINV(L]) = -L(I,J)-SUM
130 CONTINUE
DO 140 I=1,N
140  UINV(ID=1/U(LI)
DO 150 J=1,N-1
DO 150 I=J+1,N
150  UINV(LJ)=0.0
DO 170 I=N-1,1, -1
DO 170 J=N, I+1, -1
SUM = 0.0
DO 160 K=1+1,7
160 SUM = SUM + U(L,K)*UINV(K,])
UINV(LJ]) = UINV(L,D*(-SUM)
170 CONTINUE ‘
CALL PROMAT(AINV,UINV,LINV,N,N,N)
RETURN
END

SUBROUTINE LUDCOM(L,U,A,N)
REAL*8 1(3,3), U(3,3), A(3,3), WM(3,3)
DO 100 K=1,N
L(K,K)=1.0
U(LK) = A(1K)
100 CONTINUE
DO 150 I1=2,N
DO 120 J=1,I-1
WM(L,J) = 0.0
DO 110 M=1,1-1
110 WM(LT) = WM(L]) + L,M)*U(M,J)
L) = (ALD-WMID)UJ,T)
120 CONTINUE '
DO 140 J=I,N
WM(L,J) = 0.0
DO 130 M=1,I-1
130 WM(LJ) = WM(LJ) + LLM)*UM,])
UQ,)) = ALT) - WML
140  CONTINUE
150 CONTINUE
RETURN
END

SUBROUTINE PROMAT(C,A,B,N,L,.M)
REAL*8 C(3,3), A(3,3), B(3,3)
DO 100 I=1,N
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DO 100 J=1,M
C(L3) = 0.0
DO 100 K=1,L
C(L)) = C(LJ) + AIK)*B(K,J)
100 CONTINUE
RETURN
END

* END OF PROGRAM
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FORTRAN PROGRAM
FOR
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*  MISSPECIFICATION AR(2) AS POLYNOMIAL REGRESSION MODEL *
* OF ORDER 2. *
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*  MAIN PROGRAM *
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PROGRAM MAIN
PARAMETER(N=500, NUM=10000, N2=3)

IMPLICIT REAL*S (A-H,0-Z)

REAL*8 U(N), Y(N), X(N,3), RESID(N), UMBETA(N2)
EXTERNAL RNSET, RNNOA

ISEED = 13579

CALL RNSET(ISEED)

DO 50 I=1,NUM

CALL RNNOA(N,U)

Y(1)=U(1)

Y(2) = 2*Y(1) + UQ2)

DO 10 J=3,N

Y(I) = 2%Y(J-1) - Y(I-2) + UQ)
10 CONTINUE
CALL BETA(N,N2,X,Y,RESID,SUMBETA,SUMRSQ,SUMDW,
/ SIGMASQ,SUMT1,SUMT2,SUMT3)
50 CONTINUE
EPBETA1 = SUMBETA(1)NUM
EPBETA2 = SUMBETA(2)/NUM
EPBETA3 = SUMBETA(3)/NUM
EMPRSQ = SUMRSQ/NUM
EMPDW = SUMDW/NUM
EMPSIGSQ = SUMSIGSQ/NUM
EMPT1 = SUMT1/NUM
EMPT2 = SUMT2/NUM
EMPT3 = SUMT3/NUM
WRITE(*,*) EPBETA1, EPBETA2, EPBETA3
WRITE(*,*) EMPT1, EMPT2, EMPT3
WRITE(*,*) EMPRSQ, EMPDW, EMPSIGSQ
END
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* SUBROUTINE1 *
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SUBROUTINE BETA(N,N2,X,Y,RESID,SUMBETA,SUMRSQ,SUMDW,



234

/ SUMSIGSQ,SUMT1,SUMT2,SUMT3)
PARAMETER(MDA=3, MDAINV=3, P=2)
REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA)
REAL*8 X(N,3), Y(N), BETAHAT(MDA), RESID(N), SQY
REAL*8 RSQDENO, YBAR, SUM, SUM2, SUM3, RSQNUM, RSQUARE
REAL*8 SUMBETA(N2), HAP, DENO, DNUM, DW, SIGMASQ
REAL*8 T STATI, T STAT2, T STAT3, SUMTI, SUMT2, SUMT3
REAL*8 SUMRSQ, SUMDW, SUMSIGSQ
SQY = 0.0
DO 240 1L2=1,N
X(L2,1)=1.0
X(L2,2) =12
X(L2,3) = (L2*L2)/2
240 CONTINUE
DO 150 K1=1,3
DO 120 K2=1,3
A(K1,X2)=0.0
120 CONTINUE
B(K1) = 0.0
150 CONTINUE

*#% OLS, R-SQUARE(DENOMINATOR), T-STATISTICS
HAP =0
DO 200 L=1,N
A(L,1) = A(1,1) + X(L,1)*X(L,1)
A(1,2) = A(1,2) + X(L,1)*X(L,2)
A(1,3) = A(1,3) + X(L,1)*X(L,3)
A(2,2) = A(2,2) + X(L2)*X(L,2)
AQ2,3) = A(2,3) + X(L,2)*X(L,3)
A(3,3) = A(3,3) + X(L,3)*X(L,3)
B(1) = B(1) + X(L,1)*Y(L)
B(2) = B(2) + X(L,2)*Y(L)
B(3)=B(3) + X(L,3)*Y(L)
SQY =SQY + Y(L)*Y(L)
HAP = HAP + Y(L)
200 CONTINUE

A(2,1)=A(1,2)

AB,1)=A(L,3)

A(3.2)=A(2,3)

YBAR = HAP**2/N

RSQDENO = SQY - YBAR

CALL DLINRG(3,A,MDA,AINV,MDAINV)

DO 280 MDAINV1=1,3
SUM = 0.0



235

DO 250 MDAINV2 =1, 3
SUM = SUM + AINV(MDAINV1,MDAINV2)*B(MDAINV?2)
250  CONTINUE
BETAHAT(MDAINV1) = SUM
280 CONTINUE
SUMBETA(1) = SUMBETA(1) + BETAHAT(1)
SUMBETA(2) = SUMBETA(2) + BETAHAT(2)
SUMBETA(3) = SUMBETA(3) + BETAHAT(3)

##x RESIDUAL, R-SQUARE(NUMERATOR)
SUM3 = 0.0
DO 320 M1=1,N
SUM2 =0.0
DO 300 M2=1,3
SUM2 = SUM2 + X(M1,M2)*BETAHAT(M2)
300  CONTINUE |
SUM3 = SUM3 + Y(M1)*SUM2
RESID(M1) = Y(M1) - SUM2
320 CONTINUE
RSQNUM = SUM3 - YBAR
RSQUARE = RSQNUM/RSQDENO
SUMRSQ = SUMRSQ + RSQUARE

*#% DW, SIGMASUARE HAT
DENO = 0.0
DNUM = 0.0
DO 350 M3 =1,N-1
DNUM = DNUM + (RESID(M3-+1) - RESID(M3))**2
DENO = DENO + RESID(M3+1)#*2
350 CONTINUE
DENO = DENO + RESID(N)**2
DW=DNUM/DENO
SIGMASQ = DENO/(N-P-1)
T STAT1 = BETAHAT(1)/SQRT(AINV(1,1)*SIGMASQ)
T STAT2 = BETAHAT(2)/SQRT(AINV(2,2)*SIGMASQ)
T STAT3 = BETAHAT(3)/SQRT(AINV(3,3)*SIGMASQ)
SUMT1 = SUMT1 + T_STATI
SUMT2 = SUMT2 + T_STAT2
SUMTS3 = SUMT3 + T_STAT3
SUMDW = SUMDW +DW
SUMSIGSQ = SUMSIGSQ + SIGMASQ
RETURN
END

* END OF PROGRAM
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* MISSPECIFICATION OF POLYNOMIAL REGRESION MODEL OF ORDER 2 *
* AS AN AR(2) MODEL. *
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*

MAIN PROGRAM  *

sfe sk sk ske ok sk ske ok sk ok sk sk ok sk sk ok sk sk sk sk sk sk ok

10

50

PROGRAM MAIN
PARAMETER(N=250, NUM=10000, N2=3)

IMPLICIT REAL*8 (A-H, 0-Z)

REAL*8 E(N), YON), X(N,3), RESID(N), SUMGAMMA(N2)
EXTERNAL RNSET, RNNOA |
ISEED = 13579

CALL RNSET(ISEED)

DO 50 I=1,NUM

CALL RNNOA(N,E)
DO 10 J=1,N '
Y(I) =T+ J*J/2 + E()
CONTINUE

CALL GAMMA(N,N2,Y,X,RESID,SUMGAMMA,SUMRSQ,SUMDW,
SUMSIGSQ,SUMT1,SUMT2,SUMT3)

CONTINUE
EPGAMMA1 = SUMGAMMA(1)/NUM

EPGAMMA? = SUMGAMMA(2)/NUM

EPGAMMA3 = SUMGAMMA(3)/NUM

EPRSQ = SUMRSQ/NUM

EPDW = SUMDW/NUM

EPSIGSQ = SUMSIGSQ/NUM

EPT1 = SUMT1/NUM

EPT2 = SUMT2/NUM

EPT3 = SUMT3/NUM

WRITE(*,*) EPGAMMA1, EPGAMMA2, EPGAMMA3
WRITE(*,*) EPT1, EPT2, EPT3

WRITE(*,*) EPRSQ, EPDW, EPSIGSQ

END
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*

SUBROUTINE 1 *
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SUBROUTINE GAMMA(N,N2,Y,X,RESID,SUMGAMMA,SUMRSQ,
/ SUMDW,SUMSIGSQ,SUMT1,SUMT2,SUMTS3)
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150

180

*** OLS, R-SQUARE(DENOMINATOR), T-STATISTICS

200

PARAMETER(MDA =3, MDAINV=3, P=2)
REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA)
REAL*8 X(N,3), Y(N), GAMMAHAT(MDA), RESID(N), SQY, YBAR

REAL*8 SUMGAMMA(N2)

REAL*8 RSQDENO, RSQONUM, RSQUARE

REAL*8 SUM, SUM2, SUM3, DNUM, DENO, DW, SIGMASQ
REAL*8 T STAT1, T STAT2, T STAT3

REAL*8 SUMTI1, SUMT2, SUMT3

REAL*8 SUMDW, SUMSIGSQ

SQY = 0.0
DO 150 K1=1,3
DO 120 K2=1,3
A(K1,K2)=0.0
CONTINUE
B(K1)=0.0
CONTINUE

X(1,1)=1.0
X(2,1)=1.0
X(1,2) =0.0
X(2,2)=Y(1)
X(1,3) = 0.0
X(2,3)=0.0

DO 180 L2=3,N
X(L2,1)=1.0
X(L2,2) = Y(L2-1) - Y(1.2-2)
X(L2,3) = Y(12-2)
CONTINUE

HAP = 0.0
DO 200 L=1,N
A(L,1) = A(1,1) + X(L,1)**2
A(1,2) = A(1,2) + X(L,1)*X(L,2)
A(1,3) = A(1,3) + X(L,1)*X(L.3)
AQ.2) = A(2,2) + X(L,2)**2
AQ2,3) = A(2,3) + X(L,2)*X(L,3)
A(3,3) = A(3,3) + X(L,3)**2
B(1) = B(1) + X(L,1)*Y(L)
B(2) = B(2) + X(L2)*Y(L)
B(3) = B3) + X(L,3)*Y(L)
SQY = SQY + Y(L)*Y(L)
HAP = HAP + Y(L)
CONTINUE
AQ2,1)=A(1,2)
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AG,1)=A(1,3)
A(3.2)=A(2,3)

YBAR = HAP**2/N
RSQDENO = SQY - YBAR

CALL INVMAT(AINV,A,3)

DO 280 MDAINV1 =1, 3
SUM = 0.0
DO 250 MDAINV2 =1, 3
SUM = SUM + AINV(MDAINV1,MDAINV2)*B(MDAINV?2)
250  CONTINUE
GAMMAHAT(MDAINV1) = SUM
280 CONTINUE
SUMGAMMA(1) = SUMGAMMA(1) + GAMMAHAT(1)
SUMGAMMA(2) = SUMGAMMA(2) + GAMMAHAT(2)
SUMGAMMA(3) = SUMGAMMA(3) + GAMMAHAT(3)

% RESIDUAL, R-SQUARE(NUMERATOR)
SUM3 = 0.0
DO 320M1=1,N
SUM2 = 0.0
DO 300M2=1,3
SUM2 = SUM2 + X(M1,M2)*GAMMAHAT(M2)
300 CONTINUE
SUM3 = SUM3 + Y(M1)*SUM2
RESID(M1) = Y(M1) - SUM2
320 CONTINUE
RSQNUM = SUM3 - YBAR
RSQUARE = RSQNUM/RSQDENO
SUMRSQ = SUMRSQ + RSQUARE

*#+* DW, SIGMASUARE HAT, T-STATISTICS
DENO = 0.0
DNUM = 0.0
DO 350 M3 = 1, N-1
DNUM = DNUM + (RESID(M3+1)-RESID(M3))**2
DENO = DENO + RESID(M3)**2
350 CONTINUE
DENO = DENO + RESID(N)**2
DW = DNUM/DENO
SIGMASQ = DENO/(N-P-1)
T_STATI = GAMMAHAT(1)/SQRT(AINV(1,1)*SIGMASQ)
T_STAT2 = GAMMAHAT(2)/SQRT(AINV(2,2)*SIGMASQ)
T_STAT3 = GAMMAHAT(3)/SQRT(AINV(3,3)*SIGMASQ)



SUMT1 = SUMT1 + T_STATI
SUMT2 = SUMT2 + T_STAT2

SUMTS3 = SUMT3 + T_STAT3
SUMDW = SUMDW + DW
SUMSIGSQ = SUMSIGSQ + SIGMASQ
RETURN

END
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* SUBROUTINE2 *
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*** COMPUTE INVERSE OF A MATRIX.

SUBROUTINE INVMAT(AINV,A,N)
REAL*8 A(3.,3), L(3,3), U(3,3)
REAL*8 AINV(3,3), UINV(3,3), LINV(3,3)
CALL LUDCOM(L,U,A,N)
DO 100 I=1,N
100 LINV(ID=1.0
DO 110 I=1,N-1
DO 110 J=I+1,N
110  LINVIJ)=0.0
DO 130 J=1,N-1
DO 130 I=J+1,N
SUM = 0.0
DO 120 K =J+1,1-1
120  SUM = SUM + L{ILK)*LINV(K,])
LINV(L]) = -L(L,J)-SUM
130 CONTINUE
DO 140 I=1,N
140 UINV(L]) = VUE])
DO 150 J=1,N-1
DO 150 I=J+1,N
150  UINV(J)=0.0
DO 170 I=N-1, 1, -1
DO 170 J=N, I+1, -1
SUM =0.0
DO 160 K=1+1,7]
160  SUM = SUM + UQILK)*UINV(K,])
UINV(L]) = UINV(LD)*(-SUM)
170 CONTINUE

CALL PROMAT(AINV,UINV,LINV,N,N,N)

RETURN
END
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SUBROUTINE LUDCOM(L,U,A,N)
REAL*8 L(3,3), U(3,3), A(3,3), WM(3,3)
DO 100 K=1,N
L(KK) = 1.0
U(1,K) = A(LK)
100 CONTINUE
DO 150 1=2,N
DO 120 T=1,I-1
WM(LJ) = 0.0
DO 110 M=1,]1-1
110 WM(LT) = WM(LT) + LEM)*UM,])
L) = (AQD-WMID)/UQJ,J)
120 CONTINUE
DO 140 T=1,N
WM(LJ) = 0.0
DO 130 M=1,1-1
130 WM(LJ) = WM(L]) + LLM)*UM,]T)
UL = A@LT) - WM(LJ)
140  CONTINUE
150 CONTINUE
RETURN
END

SUBROUTINE PROMAT(C,A,B,N,L,M)
REAL*8 C(3,3), A(3,3), B(3,3)
DO 100 I=1,N
DO 100 J=1,M
C(@1,J)=0.0
DO 100 K=1,L
C(,)) = C(L)) + ALK)*BEK,))
100 CONTINUE
" RETURN
END

* END OF PROGRAM
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APPENDIX H

FORTRAN PROGRAM
FOR
UNDERSPECIFICATION
‘, OF
THE ORDER IN A NONSTATIONARY AR(2) MODEL AND
POLYNOMIAL REGRESSION MODEL OF ORDER 2
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* UNDERSPECIFICATION OF AR(2) AS AR(1) *
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* MAIN PROGRAM  *
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PROGRAM MAIN
PARAMETER(N = 250, NUM =10000, N2 = 2)

IMPLICIT REAL*8 (A-H, 0-Z)

REAL*8 UN), X(N), Y(N), XX(N,2), RESID(N), SUMGAMMA(N2)
EXTERNAL RNSET,RNNOA

ISEED = 13579

CALL RNSET(ISEED)
DO 50 I=1,NUM

CALL RNNOA(N,U)

Y(1) =U(1)

Y(2) = 2¥Y(1) + UQ2)

DO 10 J=3,N
Y(J) = 2¥Y(J-1) - Y(-2) + UQJ)
10 CONTINUE

CALL GAMMA(N,N2,X,Y,XX,RESID,SUMGAMMA,SUMRSQ,
/ SUMDW,SUMSIGSQ,SUM1,SUMT?)
50 CONTINUE
EPGAMMAI1 = SUMGAMMA(1)/NUM
EPGAMMA? = SUMGAMMA(2)/NUM
EMPRSQ = SUMRSQ/NUM
EMPDW = SUMDW/NUM
EMPSIGSQ = SUMSIGSQ/NUM
EMPT1 = SUMTI/NUM
EMPT?2 = SUMT2/NUM |
WRITE(*,*) EPGAMMA1, EPGAMMA?2
WRITE(*,*) EMPT1, EMPT2
WRITE(*,*) EMPRSQ, EMPDW, EMPSIGSQ
END

e ok 3k o ok ook sk ook ek skoskosk sksk sk

* SUBROUTINE *
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SUBROUTINE GAMMA(N,N2,X,Y,XX,RESID,SUMGAMMA,SUMRSQ,
/ SUMDW,SUMSIGSQ,SUMT1,SUMT?2)
PARAMETER(MDA=2, MDAINV=2, P=1)
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120

150
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REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA)

REAL*8 X(N), XX(N,2), Y(N), GAMMAHAT(MDA), RESID(N)

REAL*8 SUMGAMMA(N2), SQY, YBAR, RSQDENO, RSQNUM, RSQUARE
REAL*8 SUM, SUM2, SUM3, SUMRSQ, DENO, DNUM, DW, SIGMASQ
REAL*8 T STATI, T STAT2, SUMT1, SUMT2, SUMDW, SUMSIGSQ

SQY =0.0

XX(1,1)=1.0

XX(1,2) = 0.0

DO 240 L2=2,N
XX(L2,1)=1.0
XX(L2,2) = Y(L2-1)

CONTINUE

DO 150 K1=1,2
DO 120 K2=1,2
A(K1,K2) = 0.0
CONTINUE
B(K1)=0.0
CONTINUE

**#% OLS, R-SQUARE(DENOMINAOR), T-STATISTICS

200

250

280

HAP =0.0
DO200L=1,N |
A(L,1) = A(L,1) + XX(L,1)**2
A(1,2) = A(1,2) + XX(@L,1)*X(L,2)
AQ2,2) = A(2,2) + XX(L,2)**2
B(1) = B(1) + XX(L,1)*Y(L)
B(2) = B(2) + XX(L.2)*Y(L)
SQY = SQY + Y(L)*Y(L)
HAP = HAP + Y(L)
CONTINUE
AQ2,1)=A(1,2)
YBAR = HAP**2/N |
RSQDENO = SQY - YBAR

CALL DLINRG(2,A,MDA,AINV,MDAINV)

DO 280 MDAINVI =1, 2
SUM = 0.0
DO 250 MDAINV2 =1, 2
SUM = SUM + AINV(MDAINV1,MDAINV2)*B(MDAINV?)
CONTINUE
GAMMAHAT(MDAINV1) = SUM
CONTINUE



SUMGAMMA(1) = SUMGAMMA(1) + GAMMAHAT(1)
SUMGAMMA(2) = SUMGAMMA(2) + GAMMAHAT(2)

***% RESIDUAL, R-SQUARE(NUMERATOR)

300

320

SUM3 =0.0
DO 320 M1 =1,N
SUM2=0.0

DO 300 M2=1,2
SUM2 = SUM2 + XX(M1,M2)*GAMMAHAT(M2)

CONTINUE

SUM3 = SUM3 + Y(M1)*SUM2

RESID(M1) = Y(M1) - SUM2
CONTINUE
RSQNUM = SUM3 - YBAR
RSQUARE = RSQNUM/RSQDENO
SUMRSQ = SUMRSQ + RSQUARE

ok DW, SIGMASUARE HAT

350

DENO = 0.0
DNUM = 0.0
DO 350 M3=1,N-I |
DNUM = DNUM + (RESID(M3+1) - RESID(M3))**2
DENO = DENO + RESID(M3+1)**2
CONTINUE , ,
DENO = DENO + RESID(N)**2
DW = DNUM/DENO
SIGMASQ = DENO/(N-P-1)
T _STAT1 = GAMMAHAT(1)/SQRT(AINV(1,1)*SIGMASQ)
T _STAT2 = GAMMAHAT(2)/SQRT(AINV(2,2)*SIGMASQ)
SUMT1 = SUMTI1 + T_STATI1
SUMT2 = SUMT2 + T_STAT2
SUMDW = SUMDW + DW
SUMSIGSQ = SUMSIGSQ + SIGMASQ
RETURN
END

* END OF PROGRAM
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*

UNDERSPECIFICATION OF POLYNOMIAL REGRESSION OF ORDER 2

* ORDER 2 AS POLYNOMIAL REGRESSION MODEL OF ORDER 1.
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*

MAIN PROGRAM *
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10

/

50

PROGRAM MAIN

PARAMETER(N=250, NUM=10000, N2=2)

IMPLICIT REAL*8 (A-H,0-Z)

REAL*8 E(N), X(N), Y(N), XX(N,2), RESID(N), SUMBETA(N2)
EXTERNAL RNSET, RNNOA | |

ISEED = 13579

CALL RNSET(ISEED)

DO 50 I=1,NUM
CALL RNNOA(N,E)
DO 10 J=1,N
X)) =1 |
Y() = X(@I) + X0)*XU)/2 + EQ)
CONTINUE | |

CALL BETA(N,N2,X,Y,XX,RESID,SUMBETA,SUMRSQ,SUMDW,
SUMSIGSQ,SUMT1,SUMT2)

CONTINUE |

EMPBETA1 = SUMBETA(1)/NUM

EMPBETA?2 = SUMBETA(2)/NUM

EMPRSQ = SUMRSQ/NUM

EMPDW = SUMDW/NUM

EMPSIGSQ = SUMSIGSQ/NUM

EMPT1 = SUMT1/NUM

EMPT2 = SUMT2/NUM

WRITE(*,*) EMPBETA1, EMPBETA2

WRITE(*,*) EMPT1, EMPT2

WRITE(*,*) EMPRSQ, EMPDW, EMPSIGSQ
END

sk sk sfe ke ok ok ok ok sfe ske sk sk sk sk sk ks skosk ok

*

SUBROUTINE *
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SUBROUTINE BETA(N,N2,X,Y,XX,RESID,SUMBETA,SUMRSQ,

®
*
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/ SUMDW,SUMSIGSQ,SUMT1,SUMT?2)
PARAMETER(MDA=2, MDAINV=2, P=1)
REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV) ,B(MDA)
REAL*8 X(N), XX(N,2), YN), BETAHAT(MDA), RESID(N)
REAL*8 SUMBETA(N2)
REAL*8 SQY, YAR, RSQDENO, SUM, SUM2, SUM3
REAL*8 RSQNUM, RSQUARE, SUMRSQ, DENO, DNUM
REAL*8 SIGMASQ, DW, SUMDW, SUMSIGSQ
REAL*8 T STATI, T STAT2, SUMT1, SUMT?2
SQY =0.0
DO 150 K1=1,2
DO 120 K2=1,2
A(K1,K2)=0.0
120 CONTINUE
B(K1) = 0.0
150 CONTINUE

*#% OLS, R-SQUARE(DENOMINATOR), T-STATISTICS
DO 200 L=1,N |
A(1,2) = A(1,2) + X(L)
A2,2) = A(2,2) + X(L)**2
B(1) =B(1) + Y(L)
B(2) = B(2) + X(L)*Y(L)
SQY = SQY + Y(L)*Y(L)
200 CONTINUE ~
A(LLD=N
A(2,1)=A(1,2)
YBAR = B(1)*B(1)/N
RSQDENO = SQY - YBAR

CALL DLINRG(2,A,MDA,AINV,MDAINV)

DO 240 12=1,N
XX(L2,1)=1.0
XX(L2,2)=12

240 CONTINUE

DO 280 MDAINV1=1,2
SUM =0.0
DO 250 MDAINV2=1,2
SUM = SUM + AINV(MDAINV 1, MDAINV2)*B(MDAINV?2)
250  CONTINUE
BETAHAT(MDAINV1) = SUM
280 CONTINUE
SUMBETA(1) = SUMBETA(1) + BETAHAT(1)
SUMBETA(2) = SUMBETA(2) + BETAHAT(2)



%% RESIDUAL, R-SQUARE(NUMERATOR)

SUM3 =0.0
DO 320 M1=1,N
‘ SUM2=0.0

DO 300 M2=1,2
SUM2 = SUM2 + XX(M1,M2)*BETAHAT(M2)
300  CONTINUE
SUM3 = SUM3 + Y(M1)*SUM2
RESID(M1) = Y(M1) - SUM2
320 CONTINUE
RSQNUM = SUM3 - YBAR
RSQUARE = RSQNUM/RSQDENO
SUMRSQ = SUMRSQ + RSQUARE

*** DW, SIGMASUARE HAT
DENO = 0.0
DNUM =0.0
DO 350 M3 =1,N-1

DNUM = DNUM + (RESID(M3+1) - RESID(M3))**2

DENO = DENO + RESID(M3)**2
350 CONTINUE . f
DENO = DENO + RESID(N)**2
DW = DNUM/DENO
SIGMASQ = DENO/(N-P-1)

T STAT1 = BETAHAT(1)/SQRT(AINV(1,1)*SIGMASQ)
T _STAT2 = BETAHAT(2)/SQRT(AINV(2,2)*SIGMASQ)

SUMT1 = SUMT1 + T _STATI
SUMT2 = SUMT2 + T_STAT2
SUMDW = SUMDW + DW
SUMSIGSQ = SUMSIGSQ + SIGMASQ
RETURN
"END

* END OF PROGRAM
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