By
DONG-BIN JEONG
Bachelor of Science
Chung-Ang University
Seoul, South Korea 1989
Master of Science
Chung-Ang University
Seoul, South Korea 1991

Submitted to the Faculty of the
Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of
DOCTOR OF PHILOSOPHY
December, 1996

TESTING FOR A UNIT ROOT IN AN AR(p) SIGNAL OBSERVED WITH MA(q) NOISE AND MODEL MISSPECIFICATION

Thesis Approved:

PREFACE

A question that arises often in time series analysis is that whether the time series should be differenced. This is equivalent to asking if autoregressive (AR) part of the model being fitted has a unit root. Time series models with unit roots are known to provide good stochastic approximations for many nonstationary time series. The vector autoregressive moving average (ARMA) model has wide applications in various fields such as economics, engineering and survey sampling. Often the model parameters are restricted by a number of constraints. In this thesis a simple and easy-to-compute Newton-Raphson estimator (Shin and Sarkar, 1995) will be discussed that approximates the restricted maximum likelihood (RML) estimator and takes full advantage of the information contained in the restrictions. In order to obtain the initial parameter estimator in the Newton-Raphson iterative method, two stages of multivariate version of Hannan and Rissanen's (1982) procedure can be used to methods of both Kohn (1979) and Shin and Sarkar (1995). In the first part (Chapters 2, 3, 4) of this thesis we study the problem of testing for a unit root in an AR(p) signal observed with MA(q) noise by using three different estimation methods (Hannan-Rissanen, Kohn and Shin-Sarkar).

In the second part of this thesis (Chapters 5 and 6) we study various model misspecification problems. Model misspecification is a common problem in statistical data analysis. This is no exception in case of nonstationary time series data. A time series
model can be misspecified in various ways. One may regress a nonstationary time series on another unrelated nonstationary time series; or one may misspecify the order of a nonstationary autoregressive or a polynomial regression model; or one may misspecify a deterministic trend as a nonstationary $A R$ process or vice versa. In the misspecified models, inference using the usual statistics such as t, Durbin-Watson (DW) and R^{2} can be very often misleading. This topic of model misspecification is discussed in Chapter 5 and Chapter 6.

This thesis consists of six chapters. The motivation and purpose of this research will be introduced in Chapter 1. Previous works in testing for a unit root without parametric constraints in time series will be discussed in Chapter 2. The autoregressive moving average with nonlinear parametric restrictions will be introduced in Chapter 3 in case that parameters of both autoregressive part and moving average (MA) part are unknown. The general restricted model will be considered in Section 3.2 and three different estimation methods (Hannan-Rissanen; Kohn and Shin-Sarkar) will be introduced in Section 3.3. In Chapter 4 each method will be applied to test for a unit root in an AR(1) signal observed with MA(1) noise in a Monte Carlo experiment.

In Section 5.1 general regression model with integrated errors and one system of integrated regressors will be introduced, the limiting distributions of least squares (LS) estimators and the usual LS statistics such as $\hat{\sigma}^{2}, t, D W$ and R^{2} will be proposed in Section 5.2, and three different kinds of model misspecifications will be suggested. These are spurious regression problem, misspecification of nonstationary AR and polynomial regression models, and misspecification of orders in a nonstationary $A R$ and polynomial regression models in Sections 5.3-5.5. In Chapter 6 we will analyze three different model
misspecification problems through a Monte Carlo study and examine each model misspecification problem by using the usual LS statistics as diagnostic tools.

I would like to express my sincere appreciation to my major adviser Professor Sahadeb Sarkar for his superb guidance, encouragement and support throughout this research. During my doctoral studies, Dr. Sarkar acted not only as my mentor but a loyal friend as well. I am certain that the accomplishment of this dissertation would not have been possible without his inspiration and assistance.

I also wish to express my sincere gratitude to my Ph. D. advisory committee members, Dr. William D. Warde, Dr. Barry K. Moser and Dr. Kevin M. Currier for their impact on my education and research. I would like to thank my parents Dr. Gab-Won Jeong and Won-Kyong Kim, and my brothers Dong-Hyuk, Byong-Gye Lee and DongPhil, and my sister Gee-Yeon for their inspiration, encouragement, understanding and support. I also thank my Seuk-Jong friends, Nobuyuki Nezu, Konrad Brandemuhl and Craig Wilson for their encouragement and heartfelt friendship. I wish to dedicate this dissertation to my family and hope my effort in graduate school has been worthy of my family's effort. Finally, I would like to express my appreciation to my wife Kyung-Hwa Lee (Oh Gam Do) for her endless love and concern.

TABLES OF CONTENTS

Chapter Page
I. INTRODUCTION 1
1.1. Unit Root Tests and Model Misspecification Problems 1
1.2. Research Purpose 4
1.3. Some Definitions 9
II. PREVIOUS WORKS IN TESTING FOR A UNIT ROOT 15 WITHOUT PARAMETRIC CONSTRAINTS IN TIME SERIES
2.1. Previous Results on ARIMA(p,1,q) Models 15
2.1.1. Unit Roots in Univariate Time Series 15
2.1.2. Unit Roots in Multivariate Time Series 35
2.2. Previous Results on Measurement Error Models 46
III. TESTING FOR A UNIT ROOT IN AN AR(p) SIGNAL WITH 51 MA(q) NOISE
3.1. Previous Works in Testing for a Unit Root 51 with Parametric Constraints
3.2. General Restricted Model 59
3.3. Parameter Estimation 63
3.3.1. Hannan and Rissanen's Method 64
3.3.2. Kohn's Method 64
3.3.3. Shin and Sarkar's Method 70
3.4. The Limiting Distributions 71
IV. SIMULATION STUDY 74
4.1. Algorithms 75
4.1.1. Kohn's Method 75
4.1.2. Shin and Sarkar's Method 77
4.1.3. Hannan and Rissanen's Method 77
4.2. Results and Discussion 78
V. MODEL MISSPECIFICATION PROBLEMS 109
5.1. General Regression Model 109
5.2. Asymptotic Properties 112
5.3. Spurious Regression Problem 121
5.3.1. Previous Works 121
5.3.2. Spurious Regression 124
5.4. Misspecification of Nonstationary AR and 128
Polynomial Regression Models
5.4.1. Previous Works 129
5.4.2. Misspecification of a Nonstationary AR Model as 130
a Polynomial Regression Model
5.4.3. Misspecification of a Polynomial Regression Model as 131 a Nonstationary AR Model
5.5. Underspecification of orders in Nonstationary AR and 135
Polynomial Regression Models
5.5.1. Previous Works 135
5.5.2. Underspecification of the Order 135 in a Nonstationary AR Model
5.5.3. Underspecification of the Order in a Polynomial 138
Regression Model
VI. AN EMPIRICAL STUDY 140
6.1. Algorithms 140
6.1.1. Spurious Regression 141
A. Case 1: $\mathrm{k}=1, \mathrm{p}=2$ 142
B. Case $2: \mathrm{k}=2, \mathrm{p}=1$ 142
C. Case 2: $\mathrm{k}=2, \mathrm{p}=2$ 143
6.1.2. Misspecification of Nonstationary AR and 144
Polynomial Regression Models
A. Misspecification of a Nonstationary AR(2) Model 144as a Polynomial Regression Model of Order 2
B. Misspecification of a Polynomial Regression Model 145 of Order 2 as a Nonstationary AR(2) Model
6.1.3. Underspecification of the Orders in Nonstationary AR and 145
Polynomial Regression Models
A. Underspecification of the Order in 145
a Nonstationary AR Model
Chapter Page
B. Underspecification of the Order in 146
a Polynomial Regression Model
6.2. Results and Discussion 148
REFERENCES 156
APPENDICES 161
APPENDIX A - FORTRAN PROGRAM FOR HANNAN AND 162RISSANEN'S METHOD BASED ONKOHN'S APPROACH
APPENDIX B - FORTRAN PROGRAM FOR HANNAN AND 172RISSANEN'S METHOD BASED ONSHIN AND SARKAR'S APPROACH
APPENDIX C - FORTRAN PROGRAM FOR 176
KOHN'S METHOD
APPENDIX D - FORTRAN PROGRAM FOR SHIN 191
AND SARKAR'S METHOD
APPENDIX E - FORTRAN PROGRAM FOR EMPIRICAL 198
CUMULATIVE DISTRIBUTION OFUNIT ROOTS TEST STATISTICSBASED ON SHIN AND
SARKAR'S METHOD
APPENDIX F - FORTRAN PROGRAM FOR 214
SPURIOUS REGRESSION
APPENDIX G - FORTRAN PROGRAM FOR 232MISSPECIFICATION OFA NONSTATIONARY AR(2)AND A POLYNOMIALREGRESSION MODELOF ORDER 2
APPENDIX H - FORTRAN PROGRAM FOR 241UNDERSPECIFICATION OFTHE ORDER IN A NON-STATIONARY AR(2) ANDPOLYNOMIAL REGRESSIONMODEL OF ORDER 2

LIST OF TABLES

Table Page
4.1 Empirical power (\%) of $n\left(\hat{A}_{1}-1\right)$ for nominal level 0.01 81 (Hannan-Rissanen's method based on Kohn's approach)
4.2 Empirical power (\%) of $n\left(\hat{A}_{1}-1\right)$ for nominal level 0.05 82
(Hannan-Rissanen's method based on Kohn's approach)
4.3 Empirical power (\%) of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for nominal level 0.10 83
(Hannan-Rissanen's method based on Kohn's approach)
4.4 Empirical power (\%) of $\hat{\tau}$ for nominal level 0.01 84
(Hannan-Rissanen's method based on Kohn's approach)
4.5
Empirical power (\%) of $\hat{\tau}$ for nominal level 0.05 85
(Hannan-Rissanen's method based on Kohn's approach)
4.6 Empirical power (\%) of $\hat{\tau}$ for nominal level 0.10 86
(Hannan-Rissanen's method based on Kohn's approach)
4.7 Empirical power (\%) of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for nominal level 0.01 87
(Hannan-Rissanen's method based on Shin and Sarkar's approach)
4.8 Empirical power (\%) of $n\left(\hat{A}_{1}-1\right)$ for nominal level 0.05 88
(Hannan-Rissanen's method based on Shin and Sarkar's approach)
4.9 Empirical power (\%) of $n\left(\hat{A}_{1}-1\right)$ for nominal level 0.10 89 (Hannan-Rissanen's method based on Shin and Sarkar's approach)
4.10 Empirical power (\%) of $\hat{\tau}$ for nominal level 0.01 90
(Hannan-Rissanen's method based on Shin and Sarkar's approach)
4.11 Empirical power (\%) of $\hat{\tau}$ for nominal level 0.05 91
(Hannan-Rissanen's method based on Shin and Sarkar's approach)
4.12 Empirical power (\%) of $\hat{\tau}$ for nominal level 0.10 92
(Hannan-Rissanen's method based on Shin and Sarkar's approach)
4.13 Empirical power (\%) of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for nominal level 0.01 93(Kohn's method)
4.14 Empirical power (\%) of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for nominal level 0.05 94 (Kohn's method)
4.15 Empirical power (\%) of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for nominal level 0.10 95 (Kohn's method)
4.16
Empirical power (\%) of $\hat{\tau}$ for nominal level 0.01 96 (Kohn's method)
4.17 Empirical power (\%) of $\hat{\tau}$ for nominal level 0.05 97 (Kohn's method)
4.18 Empirical power (\%) of $\hat{\tau}$ for nominal level 0.10 98
(Kohn's method)
4.19 Empirical power (\%) of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for nominal level 0.01 99
(Shin and Sarkar's method)4.20Empirical power (\%) of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for nominal level 0.05100(Shin and Sarkar's method)
Empirical power (\%) of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for nominal level 0.10 101
(Shin and Sarkar's method)
4.22 Empirical power (\%) of $\hat{\tau}$ for nominal level 0.01 102
(Shin and Sarkar's method)
4.23 Empirical power (\%) of $\hat{\tau}$ for nominal level 0.05 103
(Shin and Sarkar's method)
4.24 Empirical power (\%) of $\hat{\tau}$ for nominal level 0.10 104(Shin and Sarkar's method)
4.25 Empirical cumulative distribution of $\mathrm{n}\left(\hat{\mathrm{A}}_{1}-1\right)$ for $\mathrm{A}_{1}=1(\mathrm{~N}=25)$ 105
4.26 Empirical cumulative distribution of $\mathrm{n}\left(\hat{\mathrm{A}}_{1}-1\right)$ for $\mathrm{A}_{1}=1(\mathrm{~N}=50)$ 105
4.27 Empirical cumulative distribution of $n\left(\hat{A}_{1}-1\right)$ for $A_{1}=1(N=100) \cdots 106$
4.28 Empirical cumulative distribution of $n\left(\hat{A}_{1}-1\right)$ for $A_{1}=1(N=250) \cdots 106$
4.29 Empirical cumulative distribution of $\hat{\tau}$ for $A_{1}=1(N=25) \cdots \cdots \cdots \cdots \cdots \cdots$.

4.31 Empirical cumulative distribution of $\hat{\tau}$ for $\mathrm{A}_{1}=1(\mathrm{~N}=100) \cdots \cdots \ldots \ldots . .108$
4.32 Empirical cumulative distribution of $\hat{\tau}$ for $\mathrm{A}_{1}=1(\mathrm{~N}=250) \cdots \cdots \ldots \ldots \ldots .108$
6.1 Spurious regression $(\mathrm{k}=1, \mathrm{p}=2)$.. 151

6.3 Spurious regression $(\mathrm{k}=2, \mathrm{p}=2)$... 153
6.4 $\begin{aligned} & \text { Misspecification of a nonstationary AR(2) as } 154 \\ & \text { a polynomial regression model of order } 2\end{aligned}$
6.5 $\begin{aligned} & \text { Misspecification of a polynomial regression model of order } 2 \text { as } 154 \\ & \text { a nonstationary AR(2) model }\end{aligned}$
U.6 Underspecification of ... 155
a nonstationary AR(2) model

Underspecification of a polynomial regression model 155
of order 2

NOMENCLATURE

Guide: Subscripts -- $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{t}$
Scalars - a $\mathrm{A}_{1}, \mathrm{C}_{1}, \mathrm{z}, \alpha, \beta, \beta_{1}, \delta_{0}, \mu, \theta_{0}, \theta_{1}, \phi_{1}, \sigma, \theta, \rho, \tau$
Vectors -- $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$
Estimators -- $\hat{\mathrm{A}}_{1}, \hat{\delta}, \hat{\lambda}, \hat{\mu}, \hat{\theta}, \tilde{\rho}, \hat{\rho}, \widetilde{\xi}$
Matrices -- $\mathbf{A}, \mathbf{B}, \boldsymbol{\Omega}$
0 a vector of matrix of zeros

ACF
Autocorrelation Function
ADF Augmented Dickey-Fuller
AR(p) Autoregressive of order p

$\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$............. Autoregressive Moving Average of order p and q
ARMAX $\underline{\text { Autoregressive }} \underline{\text { Moving }} \underline{\text { Average }}$ with exogenous variables
CLT Central Limit Theorem
CPS Current Population Survey
DSP Difference Stationary Process
DW Durbin-Watson
GLS Generalized Least Squares
I(d) Integrated of order d
IID Independent Identically Distributed

CHAPTER I

INTRODUCTION

1.1. Unit roots tests and model specification problems

Suppose a process has a mean that is different for each time period. How could we estimate these means ? As usual, we use sample information. However, typically we have only one observation per time period for time series data. Therefore, we have only one observation at time t to estimate the mean at time t, one observation at time $t+1$ to estimate the mean at time $\mathrm{t}+1$, and so on. An estimate of a mean based on only one observation is automatically not useful. The situation gets much worse if the variance of the process also is not constant through time. In such cases an appropriate degree of differencing is to be considered to make the data stationary in mean. The reason for making data stationary is to obtain useful estimates of the parameters in the time series model.

There are several ways to check the stationarity of a time series, i.e., to make a decision on the proper degree of differencing:
(1) Examine the realization visually (graphically) to see if either the mean or the variance appears to be changing over time. If different segments of each series behave much like the rest of the series after we allow for changes in level and/or slope, then this nonstationary realization can be transformed into a stationary series by differencing. In addition visual inspection of the data is perhaps the most practical way of measuring stationarity of the variance.
(2) Inspect the estimated autocorrelation function (ACF) to see if the autocorrelation move rapidly toward zero. In practice, "rapidly" means that the absolute t statistic values of the estimated autocorrelations should fall below approximately 1.6 by about lag 5 or 6 (Pankratz, 1983). These values are only guidelines, not the absolute rules. In general, if any examination of the ACF for a time series shows relatively large autocorrelations at high lags, differencing of the observations is probably appropriate.
(3) Scrutinize the estimated autoregressive (AR) coefficients to see if they satisfy the stationarity conditions.

However, the above methods have some drawbacks in the sense that they fail to quantify the extent of mean nonstationarity and they depend on subjective judgment. Moreover, the problem with determining the degree of differencing from plots is that in small samples the picture is often not clear cut.

On the contrary, the unit root tests provide a more formal method for determining the degree of differencing and gives a quantitative and rigorous way to check whether or not the given AR model in time series is stationary. The presence of a unit root indicates that the time series is not stationary and that differencing will make it stationary. To make matters precise, the value of d in $\operatorname{ARIMA(p,d,q)\text {,autoregressiveintegratedmoving}}$
average of order $\mathrm{p}, \mathrm{d}, \mathrm{q}$, indicates the number of differencing necessary to make the series stationary and the number d also equals the number of unit roots in the autoregressive characteristic equation for the time series. Therefore, unit root tests provide a formal and quantitative method when the degree of differencing needs to be determined. Methods for detecting the presence of a unit root in parametric time series models have lately attracted a great deal of interest in both statistical theory and applications. One major field of application where the hypothesis of a unit root has important implications is economics. This is because a unit root is often a theoretical implication of models which postulate the rational use of information that is available to economic agents. Examples include various financial market variables such as futures contracts (Samuelson, 1965), stock price (Samuelson, 1973), dividends (Kleidon, 1986), spot and forward exchange rates (Meese and Singleton, 1983), and even aggregate variables like real consumption (Hall, 1978). Formal statistical tests of the unit root hypothesis are of additional interest to economists because they can help evaluate the nature of nonstationarity that most macroeconomic data exhibit. In particular, economists determine whether the trend is stochastic, through the presence of a unit root, or deterministic, through the presence of a polynomial time trend.

Next we consider the topic of model misspecification. Model misspecification is a common problem in statistical data analysis. A time series model can be misspecified in a variety of ways. One may regress a nonstationary time series on another unrelated nonstationary time series; or one may misspecify the order of a nonstationary AR or a polynomial regression model; or one may misspecify a polynomial regression as a nonstationary AR model or vice versa. In the misspecified models inference using the
usual regression statistics such as t, Durbin-Watson (DW) and R^{2} can be very often misleading, and these statistics can be useful tools to detect the model misspecification at the same time.

1.2. Research purpose

We consider the following general restricted model.

$$
\mathbf{a}(\mathrm{L}) \mathbf{y}_{\mathrm{t}}=\mathbf{b}(\mathrm{L}) \mathbf{e}_{\mathrm{t}}, \mathrm{t}=1,2, \ldots, \mathrm{n}
$$

where $\left\{\mathbf{e}_{t}\right\}$ is a sequence of independent identically distributed (iid) random vectors with variance covariance matrix Ω and L is the lag operator such that $L^{k} \mathbf{y}_{t}=\mathbf{y}_{t-k}$,

$$
\mathbf{a}(\mathrm{L})=\mathbf{I}+\mathbf{A}_{1} \mathrm{~L}+\ldots+\mathbf{A}_{\mathrm{p}} \mathrm{~L}^{\mathrm{p}}, \mathbf{b}(\mathrm{~L})=\mathbf{I}+\mathbf{B}_{1} \mathrm{~L}+\ldots+\mathbf{B}_{\mathrm{q}} \mathrm{~L}^{\mathrm{q}} .
$$

It is assumed that (p, q) are nonnegative integers and known, and $\mathbf{A}=\left(\mathbf{A}_{1}\left|\mathbf{A}_{\mathbf{2}}\right| \ldots \mid \mathbf{A}_{\mathrm{p}}\right), \mathbf{B}=$ $\left(\mathbf{B}_{1}\left|\mathbf{B}_{\mathbf{2}}\right| \ldots \mid \mathbf{B}_{\mathbf{q}}\right)$ are respectively $\mathrm{m} \times \mathrm{mp}$ and $\mathrm{m} \times \mathrm{mq}$ matrices of unknown parameters. Let $\left\{\mathbf{y}_{\mathrm{t}}\right\}, \mathrm{t}=1, \ldots, \mathrm{n}$ is the set of $\mathrm{m} \times 1$ observation vectors and $\left\{\mathbf{e}_{\mathrm{t}}\right\}$ is a sequence of iid m dimensional random vectors with mean zero and a nonsingular variance covariance matrix Ω. For stationarity, invertibility and identifiability, all the roots of $\operatorname{det}[\mathbf{a}(\mathrm{L})]$ are assumed to lie outside the unit circle and \mathbf{A}_{p} is of full rank. The vector of restrictions on parameters \mathbf{A}, \mathbf{B} and Ω is defined as

$$
\mathbf{f}(\mathbf{A}, \mathbf{B}, \Omega)=\mathbf{0}
$$

where \mathbf{f} is a k -dimensional vector of differential functions.

There are two different situations which we may model with the above general restricted model as follows:

Case 1. Testing for a unit root with parametric restrictions when parameters \mathbf{B} in general restricted model are known.

Case 2. Testing for a unit root with parametric restrictions when parameters \mathbf{B} in general restricted model are unknown.

As far as Case 1 is concerned, Shin and Sarkar (1994) showed that an ARIMA(p, $1,0)$ signal distributed by $\operatorname{MA}(q)$ noise is an $\operatorname{ARIMA}(p, 1, p+q+1)$ process restricted by nonlinear constraints on parameters and for this model with a unit root they presented a modified restricted maximum likelihood estimator (MRMLE)(Shin and Sarkar, 1994, p. 2649), obtained by maximizing a modified likelihood function, that has the same limiting properties as the restricted MLE (Shin and Sarkar 1994, p. 2648) and is computationally much simpler. They showed that unit root tests based on the MRMLE perform very well in small samples and compare favorably with the Said and Dickey (1985) tests with respect to both sizes and powers through simulation study for the case $\mathrm{p}=0$ and $\mathrm{q}=1$. Shin and Sarkar (1995) considered the multivariate ARMA model with nonlinear parametric restriction in the context of Case 2 and proposed a simple and easy-tocompute Newton-Raphson estimator that approximates the restricted ML estimator which uses fully the information contained in the restriction.

As an application of the general restricted model and restrictions on parameters, we consider the case with $m=1, p=1$, $q=1$, i.e., we model z_{t} and u_{t} as $\operatorname{AR(1)~and~MA(1)~}$ respectively

$$
\begin{equation*}
\mathrm{y}_{\mathrm{t}}=\mathrm{z}_{\mathrm{t}}+\mathrm{u}_{\mathrm{t}}, \quad \mathrm{a}(\mathrm{~L}) \mathrm{z}_{\mathrm{t}}=\varepsilon_{\mathrm{t}}, \mathrm{u}_{\mathrm{t}}=\mathrm{c}(\mathrm{~L}) \mathrm{w}_{\mathrm{t}} \tag{1.2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
c(\mathrm{~L})=1+\mathrm{C}_{1} \mathrm{~L}, \mathrm{a}(\mathrm{~L})=1+\mathrm{A}_{1} \mathrm{~L} \tag{1.2.2}
\end{equation*}
$$

with backshift operator L.
The model (1.2.1) can be expressed as follows:

$$
\begin{equation*}
\mathrm{y}_{\mathrm{t}}=-\mathrm{A}_{1} \mathrm{z}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}+\mathrm{w}_{\mathrm{t}}+\mathrm{C}_{1} \mathrm{w}_{\mathrm{t}-1} \tag{1.2.3}
\end{equation*}
$$

subject to the restriction $\mathbf{f}=\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right)^{\prime}=(0,0)^{\prime}$.
We will study through simulation experiments on model (1.2.1)-(1.2.3) the power functions of unit root tests based on the following estimation methods:
(1) Hannan and Rissanen (1982)(HR) method.
(2) Kohn (1979) method.
(3) Shin and Sarkar (1995)(SS) method.

In order to obtain the initial parameter estimates in the Newton-Raphson iterative procedure, the first and second stages of multivariate version of Hannan-Rissanen's procedure can be used to both Kohn's and Shin-Sarkar's methods respectively.

Our objective is to consider the limiting null distribution of the unit roots and to check which of the above three different unit root tests perform well with respect to both
sizes and powers based on model (1.2.1)-(1.2.3) and thus apply these results to several fields such as the engineering science and economics. In chapter 3 and 4 three different estimation methods are introduced and each method will be applied to test for a unit root in an $\operatorname{AR}(1)$ signal observed with $\mathrm{MA}(1)$ noise, respectively. Finally, we will check the above three different unit root tests with respect to both sizes and powers based on the given model. Ten thousand replications will be simulated for sample size $25,50,100$ and 250 , for the coefficient of autoregressive signal $\mathrm{A}_{1}=1.00,0.99,0.95,0.90,0.80$ and 0.70 (see equation (3.2.10), p. 62) and for nominal levels $1 \%, 5 \%$ and 10%. The normal random variables will be generated by the subroutine RNNOA of the IMSL subroutine library. The computed values of the tests $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ and $\hat{\tau}$ based on three different methods will be compared to the theoretical $1 \%, 5 \%$ and 10% left tail critical values tabulated by Dickey and Fuller (see Fuller, 1976, p. 371).

Next we discuss our research on model misspecification. Shin and Sarkar (1996) considered a general regression model with integrated errors and one system of integrated regressors and worked asymptotic properties of the conventional regression statistics under this model. Specifically, they discussed three types of model misspecifications as applications based on the analysis of the general regression model (5.1.1): (a) how to detect existence of cointegration; (b) how to decide whether a nonstationary $\operatorname{AR}(p)$ model or a polynomial regression model gives a good fit; (c) the t-statistic has more power than its alternative test statistic discussed by Dickey and Fuller (1979) for testing the single unit root null hypothesis against the double unit roots hypothesis. They concluded that: the behavior of the regression statistics depends on whether the error term $\mathrm{U}_{\mathrm{t}, \mathrm{k}}$ is stationary or nonstationary.

Consider a general regression model

$$
\begin{equation*}
y_{t}=\beta_{0}+\beta_{1} X_{t, 1}+\ldots+\beta_{p} X_{t, p}+U_{t, k}, t=1, \ldots, n \tag{1.2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& X_{t, j}=X_{1, j-1}+\ldots+X_{t, j-1}, j=1,2, \ldots, p, X_{t, 0}=x_{t}, \\
& U_{t, j}=U_{1, j-1}+\ldots+U_{t, j-1}, j=1, \ldots, k, U_{t, 0}=u_{t}
\end{aligned}
$$

If (1.2.4) is misspecified then $\mathrm{U}_{\mathrm{t}, \mathrm{k}}$ is nonstationary; $\hat{\sigma}^{2}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \hat{\mathrm{U}}_{\mathrm{t}, \mathrm{k}}^{2} /(\mathrm{n}-\mathrm{p}-1)$ diverges; $\mathrm{DW}=$ $\sum\left(\hat{U}_{t, k}-\hat{\mathrm{U}}_{\mathrm{t}-1, \mathrm{k}}\right)^{2} / \sum \hat{\mathrm{U}}_{\mathrm{t}, \mathrm{k}}^{2} \xrightarrow{\mathrm{p}} 0 ; \hat{\beta}_{\mathrm{j}}$ diverges for j ; if the probabilistic order of the regressors is not greater than that of the regression error, then the limit of

$$
\left.\mathrm{R}^{2}=\mathrm{y}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}-\mathrm{n} \overline{\mathbf{y}}^{2}\right] /\left(\mathbf{y}^{\prime} \mathbf{y}-\mathrm{n} \overline{\mathbf{y}}^{2}\right)
$$

is less than one, otherwise $\mathrm{R}^{2} \xrightarrow{p} 1$; and the t -statistic diverges, implying misleading high significance of the t-statistics (Theorems 1-2 of Shin and Sarkar, 1996). On the other hand, if the stationarity of y_{t} is well explained by $X_{t, j}$'s then the error term $U_{t, k}$ will be stationary. In this case $\hat{\beta}_{\mathrm{j}}$ is consistent; $\hat{\sigma}^{2}$ converges; DW converges to a positive number ; $\mathrm{R}^{2} \xrightarrow{\mathrm{p}} 1 ; \mathrm{t}$ statistics converges (Theorem 3 of Shin and Sarkar, 1996). The above facts developed by Shin and Sarkar (1996) will provide the theoretical background for our simulation results. We will analyze the above three different situations through a Monte Carlo study and examine each model misspecification problem by using the usual

OLS statistics such as $\hat{\sigma}^{2}, \mathrm{t}, \mathrm{DW}$ and R^{2} as diagnostic tools. Ten thousand samples will be simulated for sample sizes $25,50,100$ and 250 using the normal random numbers will be generated by the subroutine RNNOA of the IMSL subroutine library.

1.3. Some definitions

(1) What is Stationarity?

When useful estimates of the parameters in time series process are expected to be obtained, the stationarity among a number of properties in satisfying the modeling are to be considered. Consider a finite set of random variables $\left\{Y_{t_{1}}, \ldots, Y_{t_{n}}\right\}$ from stochastic process $\left\{Y_{\mathrm{t}}: \mathrm{t}=0, \pm 1, \pm 2, \ldots\right\}$. A process is said to be strictly n-th order stationary if the n dimensional distribution function F is time invariant, i.e., $\mathrm{F}\left\{\mathrm{Y}_{\mathrm{t}_{1}}, \ldots, \mathrm{Y}_{\mathrm{t}_{\mathrm{n}}}\right\}=\mathrm{F}\left\{\mathrm{Y}_{\mathrm{t}_{1}+\mathrm{k}}, \ldots\right.$, $\left.Y_{t_{n}+k}\right\}$ for $\forall\left(t_{1}, \ldots, t_{n}\right), k$ is true for any $n=1,2, \ldots$. However, there are some difficulties in verifying a distribution function, particularly a joint distribution function from an observed time series. Therefore, we use a weaker sense of stationarity in terms of the moments of the model. That is, a process is said to be nth order weakly stationary if all its joint moments up to order n exist and are time invariant. Throughout this paper we use the terminology 'stationary' for covariance stationary, which has constant mean and variance with the covariance and the correlation being functions of the time difference alone, i.e.,

$$
\begin{gathered}
\mathrm{E}\left(\mathrm{y}_{\mathrm{t}}\right)=\mu \\
\mathrm{E}\left[\left(\mathrm{y}_{\mathrm{t}}-\mu\right)^{2}\right]=\sigma_{\mathrm{y}}^{2}=\gamma(0)
\end{gathered}
$$

and

$$
E\left[\left(y_{t}-\mu\right)\left(y_{t-m}-\mu\right)\right]=\gamma(m), m=1,2, \ldots
$$

(2) What is White Noise ?

A time series in which successive values are highly dependent can be usefully regarded as generated from a series of independent shock e_{t}. These shocks are uncorrelated random variables from a fixed distribution, usually assumed normal and having mean zero and constant variance $\sigma_{e}{ }^{2}$. Such a sequence of random variables e_{t}, e_{t-1}, \ldots is called a white noise process by engineers. Although this process hardly ever occurs in applied time series, it plays an crucial role as a basic building block in the construction of the time series model.
(3) What is Random Walk ?

Consider the following $\operatorname{ARIMA}(\mathrm{p}, \mathrm{d}, \mathrm{q})$ model:

$$
\phi(\mathrm{L})(1-\mathrm{L})^{d} y_{t}=\theta_{0}+\theta(\mathrm{L}) e_{\mathrm{t}}
$$

where $\phi(L)=\left(1-\phi_{1} L-\phi_{2} L^{2}-\ldots-\phi_{p} L^{p}\right), \theta(L)=\left(1-\theta_{1} L-\theta_{2} L^{2}-\ldots-\theta_{q} B^{q}\right)$ with backshift operator L and θ_{0} is a fixed value. If $p=0, d=1, q=0$ in above ARIMA model, (1-L) y_{t} $=e_{t}, y_{t}=y_{t-1}+e_{t}$, then this model is called random walk. This behavior is similar to following a drunken man whose position at time t is his position at time ($t-1$) plus a step in a random direction at time t. Note that the random walk model is the limiting process of $\operatorname{ARIMA}(1,0,0), \operatorname{AR}(1)$, process $\left(1-\phi_{1} L\right) y_{t}=e_{t}$ with $\phi_{1} \rightarrow 1$. Moreover, random walk
has the distinct characteristic of having stationary mean and nonstationary variance based on $\operatorname{AR}(1)$ model with $\phi_{1}=1$ and white noise e_{t}. Finally, the random walk phenomenon can be characterized by large nonvanishing spikes in the same ACF of the original series $\left\{y_{t}\right\}$ and insignificant zero ACF for the differenced series $\left\{(1-L) y_{t}\right\}$.
(4) What is the Measurement Error Model ?

It is not always possible to observe a time series x_{t} directly. Instead of observing x_{t} one observes the sum

$$
\begin{equation*}
y_{t}=x_{t}+u_{t} \tag{1.3.1}
\end{equation*}
$$

where u_{t} is a $N\left(0, \sigma_{u}{ }^{2}\right)$ random variable, called measurement error. The observed variable y_{t} is sometimes called the manifest variable or the indicator variable. The unobserved variable x_{t} is called a latent variable in certain areas of application. Models with fixed x_{t} are called functional models, while models with random X_{t} are called structural models. As an example of a situation where X_{t} can not be observed, consider the relationship between the yield of corn and available nitrogen in the soil. Assume that there is an adequate approximation to the linear relationship between yield and nitrogen. In order to estimate the available soil nitrogen, it is necessary to sample the soil of the experimental plot and to perform a laboratory analysis on the selected sample. As a result of sampling and of the laboratory analysis, we do not observe x_{t} but observe an estimate of x_{t}. Therefore, we represent the observed nitrogen by y_{t}, where y_{t} satisfies (1.3.1) and u_{t} is the measurement error introduced by sampling and laboratory analysis. Estimation of the true value x_{t} is very important in signal measurement problems encountered in the
engineering sciences where x_{t} is known as signal and u_{t} is known as noise. It is also important in survey sampling in the situation where a population is sampled at a sequence of time points according to a sample scheme. In a survey sampling, y_{t}, x_{t} and u_{t} denote observed direct survey estimates, unobservable population values and the sampling errors respectively.
(5) What is the Autocovariance Generating Function?

For each of the covariance-stationary processes for y_{t}, we calculate the sequence of autocovariances. If this sequence is absolutely summable, then one way of summarizing the covariances is through a scalar-valued function called the autocovariance generating function. Frequently this function is easy to calculate, in which case the autocovariance at lag k may be determined by identifying the coefficient of either z^{k} or z^{-k}. If $\left\{y_{t}\right\}$ is a stationary process with autocovariances, then its autocovariance generating function is defined by

$$
g(z)=\sum_{j=-\infty}^{\infty} \gamma_{j} z^{\mathrm{j}}
$$

provided the series converges for all z in some annulus $\mathrm{r}^{-1}<|\mathrm{z}|<\mathrm{r}$ with $\mathrm{r}>1$.
For a covariance-stationary vector processes \mathbf{y}_{t} with an absolutely summable sequence of covariance matrices, the analogous matrix-valued autocovariance generating function $\mathbf{G}(\mathrm{z})$ is defined as

$$
\mathbf{G}(\mathrm{z})=\sum_{\mathrm{j}=-\infty}^{\infty} \Gamma_{\mathrm{j}} \mathrm{z}^{\mathrm{j}},
$$

where $\Gamma_{\mathrm{j}}=\mathrm{E}\left[\left(\mathbf{y}_{\mathrm{t}}-\mu\right)\left(\mathbf{y}_{\mathrm{t}-\mathrm{j}}-\mu\right)^{\prime}\right]$ with mean vector of $\mathbf{y}_{\mathrm{t}}, \mu$.
(6) What are Integration and Cointegration ?

If a series with no deterministic component has a stationary, invertible ARMA representation after differecing d times, it is said to be integrated of order d. If two series, $y_{1 t}$ and $y_{2 t}$, are both $I(d)$, it will normally be the case that any linear combination is also $\mathrm{I}(\mathrm{d})$. However, it is possible that there is a linear combination of the two series for which the order of the integration is smaller than d. In this case the series are said to be cointegrated. More generally, the components of the vector time series \mathbf{y}_{t} are said to be cointegrated of order d, b if (a) all components of \mathbf{y}_{t} are $\mathrm{I}(\mathrm{d})$, and (b) there exists a nonnull vector, \mathbf{a}, such that $\mathbf{a}^{\prime} \mathbf{y}_{\mathrm{t}}$ is $\mathrm{I}(\mathrm{d}-\mathrm{b})$ with $\mathrm{b}>0$. Cointegration means that although many developments can cause permanent changes in the individual elements of \mathbf{y}_{t}, there is some long-run equilibrium relation tying the individual components together, represented by the linear combination $\mathbf{a}^{\prime} \mathbf{y}_{\mathrm{t}}$ and thus certain constraints are needed to impose on the multivariate time series model. An example of such a system is the model of consumption spending. Although both consumption and income exhibit a unit root, over the long run consumption tends to be a roughly constant proportion of income, so that the difference between the log of consumption and the log of income appears to be a stationary process.
(7) What is Brownian Motion (or Wiener) process?

A stochastic process $[\mathrm{X}(\mathrm{t}), \mathrm{t} \geq 0]$ is said to be a Brownian motion process if:
(a) $\mathrm{X}(0)=0$;
(b) $\{\mathrm{X}(\mathrm{t}), \mathrm{t} \geq 0\}$ has stationary independent increments;
(c) for every $t>0, \mathrm{X}(\mathrm{t})$ is normally distributed with mean 0 and variance $\mathrm{c}^{2} \mathrm{t}$, where c is some positive constant.

When $\mathrm{c}=1$, the process is often called standard Brownian motion. As any Brownian motion can always be converted to the standard process by looking at $\mathrm{X}(\mathrm{t}) / \mathrm{c}$, we shall suppose throughout that $\mathbf{c}=1$. This process has been used beneficially in such areas as statistical testing of goodness of fit, analyzing the price levels on the stock market, and quantum mechanics.

CHAPTER II

PREVIOUS WORKS IN TESTING FOR A UNIT ROOT WITHOUT PARAMETRIC CONSTRAINTS IN TIME SERIES

There has been a huge amount of work done on unit roots tests so far, but only a few papers are reviewed in this chapter. Section 2.1 discusses statistical inference for ARIMA(p, 1, q) models and Section 2.2 for measurement error models.
2.1. Previous results on $\operatorname{ARIMA}(p, 1, q)$ models

In Section 2.1.1 we review unit roots tests in univariate time series and in multivariate time series in Section 2.1.2.
2.1.1. Unit roots in univariate time series

Box and Jenkins (1976) proposed an "interactive modeling process" that consists
of model formulation ("identification"), estimation and diagnostic checking, one key element of which is the use of integrated, or "difference-stationary," ARMA models,

$$
(1-\mathrm{L})^{\mathrm{d}} \Phi(\mathrm{~L}) \mathrm{y}_{\mathrm{t}}=\Theta(\mathrm{L}) \mathrm{e}_{\mathrm{t}}
$$

Thus, although y_{t} is nonstationary, it is assumed that its d-th difference is a stationary ARMA process. The appropriateness of the Box-Jenkins tactic of differencing to achieve stationarity depends on the existence of one or more unit roots in the autoregressive lag operator polynomial. The desirability of specific tests for unit roots is therefore apparent.

Dickey (1976) and Fuller (1976) used the Monte Carlo method to calculate the percentage points of the finite sample as well as the asymptotic distribution of the least squares (LS) estimator of the AR parameter as well as its " t-statistic," when the true AR parameter is positive or negative one. Specifically, they consider the null model

$$
H_{0}: y_{t}=y_{t-1}+e_{t}, e_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right), y_{0}=0
$$

and the alternative

$$
\text { Model 1: } H_{A}: y_{t}=\rho y_{t-1}+e_{t}, e_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right), \rho \neq 1, y_{0}=0
$$

and consider the LS estimator (which is also ML, under the normality assumption)

$$
\begin{equation*}
\hat{\rho}_{\mathrm{LS}}=\frac{\sum \mathrm{y}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}-1}}{\sum \mathrm{y}_{\mathrm{t}-1}^{2}} \tag{2.1.1}
\end{equation*}
$$

obtained from a sample of size n. Under the null hypothesis $\left(\hat{\rho}_{L S}-1\right)=O_{p}\left(\mathrm{n}^{-1}\right)$; the convergence is faster than for $|\rho|<1$, in which case $\left(\hat{\rho}_{L S}-\rho\right)=O_{p}\left(n^{-1 / 2}\right)$. It follows that the proper quantity for which percentage points should be calculated under the null is $\mathrm{n}\left(\hat{\rho}_{\mathrm{LS}}-1\right)$. Dickey and Fuller (1979) tabulate the asymptotic as well as the finite sample percentage points of $n(\hat{\rho}-1)$ for various sample sizes. Under the null hypothesis of a unit root, the distribution of $n(\hat{\rho}-1)$ is skewed to the left, and $\lim _{n \rightarrow \infty} \mathrm{P}(\hat{\rho}<1)=0.68$. They also consider the usual "student's t" for testing $\rho=1$,

$$
\hat{\tau}=\frac{\hat{\rho}-1}{\sqrt{s^{2}\left(\sum_{t=2}^{n} y_{t-1}^{2}\right)^{-1}}}
$$

where

$$
s^{2}=\sum_{t=2}^{n}\left(y_{t}-\hat{\rho} y_{t-1}\right)^{2} /(n-2)
$$

Under the null, $\hat{\tau}=O_{p}(1)$, but it does not have the t distribution; again, they calculate its percentage points for various sample sizes using Monte Carlo simulation. Rewriting the first-order autoregression as

$$
\begin{equation*}
y_{t}-y_{t-1}=(\rho-1) y_{t-1}+e_{t} \tag{2.1.2}
\end{equation*}
$$

Thus, $\hat{\tau}$ is the usual t-statistic in a regression of the first difference of y_{t} on the first lag of y_{t}.

Dickey and Fuller (1979) showed that $\hat{\tau}$ is a monotone function of the likelihood ratio for the null hypothesis of $\rho=1$ vs. the two-sided alternative and they obtained the limiting distribution of $n(\hat{\rho}-1)$. Despite the non-standard properties of the LS estimator in a nonstationary $\operatorname{AR}(1)$ model, a test of the hypothesis that the process is a random walk against the alternative that it is stationary can be carried out using $n(\hat{\rho}-1)$ or the regression t-statistic $\hat{\tau}$ and comparing its value with tabulated percentiles of the distribution by Monte Carlo simulation. In a similar manner, unit root testing in two more general $A R(1)$ model can also be developed:

Model 2: $y_{t}-\mu=\rho\left(y_{t}-\mu\right)+e_{t}, t=1, \ldots$, where $y_{0}=0, e_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$
Model 3: $y_{t}-a-b t=\rho\left\{y_{t-1}-a-b(t-1)\right\}+e_{t}, t=1, \ldots$, where $y_{0}=0, e_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right)$
and the limiting distributions of the three different LS estimators, $\hat{\rho}, \hat{\rho}_{\mu}$, and $\hat{\rho}_{\tau}$ respectively can be derived. The LS estimator $\hat{\rho}$ of Model 1 is given by (2.1.1) for the model when the true value of ρ is positive or negative one. The limiting distribution of $n(\hat{\rho}-1)$ is

$$
n(\hat{\rho}-1)=\frac{\frac{1}{n_{t=1}^{n}} y_{t-1} e_{t}}{\frac{1}{n^{2}} \sum_{t=1}^{n} y_{t-1}^{2}} \xrightarrow[L]{ } \frac{\frac{1}{2}\left[W(1)^{2}-1\right]}{\int_{0}^{1} W(r)^{2} d r}
$$

where $\mathrm{W}(\cdot)$ is the standard Brownian motion on $[0,1]$. We could define the alternatives to $\mathrm{H}_{1}:|\rho|<1$ or $\mathrm{H}_{1}:|\rho|>1$. For either of these cases, one-sided test is appropriate. If the alternative is $|\rho|<1$, then the model is asymptotically stationary, since the effect of the
fixed initial condition is transient. The alternative $|\rho|>1$, on the other hand, is nonstationary for all sample sizes. Now consider allowance for a nonzero mean μ under the above alternative (Model 2), or $y_{t}=\alpha+\rho y_{t-1}+e_{t}$, where $\alpha=\mu(1-\rho)$. If μ were known, we could simply center the data and proceed as before. In practice, μ must be estimated along with the other parameters. Although α vanishes under the null hypothesis $\rho=1$, it is nevertheless present under the alternative, and so an intercept is included in the regression. The corresponding statistics $\hat{\tau}_{\mu}$ and $n\left(\hat{\rho}_{\mu}-1\right)$ have been tabulated under the null $(\alpha, \rho)=(0,1)$ by Dickey (1976) and Fuller (1976). Similarly, the alternative might include a trend (Model 3), or $y_{t}=\alpha+\beta t+\rho y_{t-1}+e_{t}$ where $\alpha=a(1-\rho)+b \rho$ and $\beta=b(1-$ ρ). Under the null hypothesis that $\rho=1$,

$$
y_{t}=b+y_{t-1}+e_{t}
$$

but under the trend-stationary alternative both the intercept and trend enter and so they must be included in the regression. Dickey (1976) and Fuller (1976) tabulated the distributions of normalized-bias and studentized statistics, $\hat{\tau}_{\tau}$ and $n\left(\hat{\rho}_{\tau}-1\right)$, respectively, under $H_{0}:(\alpha, \beta)=(0,0)$. Furthermore, they showed that the null distributions of the two test statistics are unaffected by the value of b in Model 3 and the representations for the limit distributions of all the test statistics under the null are invariant to the choice of y_{0}.

Dickey and Fuller (1981) extended unit roots tests in AR(1) to higher order AR process. The $A R(p)$ model may be reformulated as

$$
\begin{equation*}
\left(y_{t}-y_{t-1}\right)=\rho^{*} y_{t-1}+\sum_{j=1}^{p-1} \rho_{j}^{*}\left(y_{t-j}-y_{t-j+1}\right)+e_{t}, e_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right) \tag{2.1.3}
\end{equation*}
$$

where $\rho^{*}=\sum_{k=j+1}^{p} \rho_{\mathrm{k}}, j=1,2, \ldots, \mathrm{p}-1$ and $\rho^{*}=\sum_{\mathrm{k}=1}^{\mathrm{p}} \rho_{\mathrm{k}}-1$. When ρ^{*} is zero, the model reduces to an $\operatorname{AR}(\mathrm{p}-1)$ in first differences, i.e., $\operatorname{ARIMA(p-1,1,0)}$. Thus, a test of $\mathrm{H}_{0}: \rho^{*}=$ 0 is the unit root test, which is called "Augmented Dickey-Fuller (ADF) test." The test could also be carried out by regressing y_{t} on y_{t-1} to y_{t-p} and testing the restriction that the coefficients sum to one. The asymptotic distribution of the t-statistic associated with y_{t-1} in (2.1.3) is the same as that of (2.1.2). The t-statistics associated with the differenced variables in (2.1.3) are asymptotically standard normal, so that inference on the lags can be conducted in the usual way. In addition for the case of a nonzero mean, we have

$$
\left(y_{t}-\mu\right)=\sum_{j=1}^{p} \alpha_{j}\left(y_{t-j}-\mu\right)+e_{t}, e_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right), y_{0}=0
$$

We can put this in the form

$$
y_{t}=k+\rho^{*} y_{t-1}+\sum_{j=1}^{p-1} \rho_{j}^{*}\left(y_{t-j}-y_{t-j+1}\right)+e_{t}
$$

where $\mathrm{k}=\mu\left(1-\sum_{\mathrm{j}=1}^{\mathrm{p}} \alpha_{\mathrm{j}}\right)$. Under the null of a unit root, the intercept vanishes because in that case $\sum_{j=1}^{p} \alpha_{j}=-1$. The distribution of the studentized statistic for testing $\rho^{*}=1$ in this
regression is asymptotically identical to that of $\hat{\tau}_{\mu}$. Consider the alternative of a linear trend,

$$
\left(y_{t}-a-b t\right)+\sum_{j=1}^{p} \alpha_{j}\left(y_{t-j}-a-b(t-j)\right)+e_{t}, e_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right), y_{0}=0
$$

or

$$
y_{t}=k_{1}+k_{2} t+\rho^{*} y_{t-1}+\sum_{j=1}^{p-1} \rho_{j}^{*}\left(y_{t-j}-y_{t-j+1}\right)+e_{t}
$$

where $\mathrm{k}_{1}=\mathrm{a}\left(1+\sum_{\mathrm{i}=1}^{\mathrm{p}} \alpha_{\mathrm{i}}\right)-\mathrm{b} \sum_{\mathrm{i}=1}^{\mathrm{p}} \mathrm{i}_{\mathrm{i}}, \mathrm{k}_{2}=\mathrm{bt}\left(1+\sum_{\mathrm{i}=1}^{\mathrm{p}} \alpha_{\mathrm{i}}\right)$. Under the null, $\mathrm{k}_{1}=-\mathrm{b} \sum_{\mathrm{i}=1}^{\mathrm{p}} \mathrm{i} \alpha_{\mathrm{i}}$ and $\mathrm{k}_{2}=0$. The use of AR processes as approximations raises the question of the applicability of the ADF test. In theory the ADF test is only valid if the underlying model is indeed a finite AR process. When an MA part is present in model, a bias is in general introduced into the test statistics.

Said and Dickey (1984) made an initial attempt to extend the unit root tests to the general $\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$ case, where the p, q are unknown, by approximating the ARMA model as a finite autoregression and showed that as long as p goes to infinity sufficiently slow relative to n, then the OLS t test of $\rho=1$ can continue to be compared with the Dickey-Fuller values (Table 8.5.2, Fuller, 1976). The Said-Dickey result permits the researcher to use a large value of p on which to base this comparison the larger is the sample size n. However, this has the problem that one loses the degree of freedom by having to both estimate a number of nuisance parameters and condition on increasing number of observations n. LS method can be used to estimate the coefficients, and this procedure produces test statistics whose limit distributions are the same as those tabulated
in Fuller (1976). It will prove convenient to consider first the simple case of H_{0} : $\operatorname{ARIMA}(1,1,1)$ vs. H_{1} : $\operatorname{ARMA}(2,1)$. Suppose that

$$
y_{t}=\rho y_{t-1}+x_{t}, x_{t}=\alpha x_{t-1}+e_{t}+\beta e_{t-1},|\alpha|,|\beta|<1, e_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right), x_{0}=y_{0}=0
$$

If $|\rho|<1$, then $\left\{y_{t}\right\}$ is a stationary $\operatorname{ARMA}(2,1)$ process except for transitory effects. On the other hand, if $\rho=1$, then $\left\{y_{t}\right\}$ is $\operatorname{ARIMA}(1,1,1)$. Now note that

$$
\begin{aligned}
e_{t} & =\sum_{j=0}^{\infty}(-\beta)^{j}\left(x_{t-j}-\alpha x_{t-j-1}\right) \\
y_{t} & =\rho y_{t-1}+(\alpha+\beta)\left(x_{t-1}-\beta x_{t-2}+\beta^{2} x_{t-3}-\ldots\right)+e_{t}
\end{aligned}
$$

We can use these results to write

$$
y_{t}-y_{t-1}=(\rho-1) y_{t-1}+(\alpha+\beta)\left(x_{t-1} \beta x_{t-2}+\beta^{2} x_{t-3}-\ldots\right)+e_{t}
$$

Under the null hypothesis of $\rho=1, x_{t}=y_{t}-y_{t-1} \equiv \Delta y_{t}$, and so we write

$$
\Delta y_{t}=(\alpha+\beta)\left(\Delta y_{t-1}-\beta \Delta y_{t-2}+\beta^{2} \Delta y_{t-3}-\ldots\right)+e_{t}
$$

We can then develop a test of the null by regressing Δy_{t} on $y_{t-1}, \Delta y_{t-1}, \ldots, \Delta y_{t-k}$, where $k=$ $o_{p}\left(n^{1 / 3}\right)$. The LS estimates of ρ, α and β obtained by this technique are consistent under the null. However, the distribution of $n(\hat{\rho}-1)$ depends on the nuisance parameters α and
β and so it is not useful. On the other hand, the studentized statistic $\hat{\tau}$ associated with $(\hat{\rho}-1)$ does not involve any unknown parameters, and it has asymptotically the original Dickey-Fuller $\hat{\tau}$ distribution. Now consider the general ARMA(p+1, q) model, which is written as

$$
\begin{gathered}
y_{t}=\rho y_{t-1}+x_{t}, \\
x_{t}+\sum_{i=1}^{p} \alpha_{i} x_{t-1}=e_{t}+\sum_{j=1}^{q} \beta_{j} e_{t-j}, x_{0}=y_{0}=0, e_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right) .
\end{gathered}
$$

where X_{t} is stationary and invertible. Then we can proceed exactly as before, estimating by using regression

$$
\Delta y_{t}=(\rho-1) y_{t-1}-d_{1} \Delta y_{t-1}-\ldots-d_{k} \Delta x_{t-k}+e_{t} .
$$

We still get consistency under the null, and the distribution of the t-statistic on $(\hat{\rho}-1)$ is the same as before. Also, if the nonzero mean is allowed under the alternative, $\hat{\tau}_{\mu}$ may be used rather than $\hat{\tau}$.

Said and Dickey (1985) studied a one step Gauss-Newton procedure of estimating
 they suggested is as

$$
y_{t}=\rho y_{t-1}+z_{t} \text { and } z_{t}+\sum_{i=1}^{p} a_{i} z_{t-i}=e_{t}+\sum_{j=1}^{q} \beta_{j} e_{t-j} \text { where } y_{0}=0, e_{t} \sim \operatorname{NID}\left(0, \sigma^{2}\right) .
$$

Associated with the above z_{t} process are $\left(1-a_{1} L-\ldots-a_{p} L^{p}\right),\left(1-\beta_{1} L-\ldots-\beta_{q} L^{q}\right)$, the roots of which are all assumed to be greater than one in absolute value. Viewing as a
difference equation subject to q initial conditions, $\mathrm{e}_{\mathrm{p}}=\delta_{1}, \mathrm{e}_{\mathrm{p}-1}=\delta_{2}, \ldots, \mathrm{e}_{\mathrm{p}-\mathrm{q}+1}=\delta_{\mathrm{q}}$ holds, and thus model (2.1.4) can be rewritten as follows:

$$
\begin{equation*}
e_{t}=\left(y_{t}-\rho y_{t-1}\right)+a_{1}\left(y_{t-1}-\rho y_{t-2}\right)+\ldots+a_{p}\left(y_{t-p}-\rho y_{t-p}\right)-\beta_{1} e_{t-1}-\ldots-\beta_{q} e_{t-q} \tag{2.1.5}
\end{equation*}
$$

and let $\hat{\theta}^{\prime}=\left(\hat{\rho}, a_{1}, \cdots, \hat{a}_{p}, \hat{\beta}_{1}, \cdots, \hat{\beta}_{q}, \hat{\delta}_{1}, \cdots, \hat{\delta}_{p}\right)$ and expand $\mathrm{e}_{\mathrm{t}}(\theta)$ about $\hat{\theta}$ to obtain

$$
\begin{equation*}
e_{t}(\theta)=e_{t}(\hat{\theta})-v_{i}(\hat{\theta})(\rho-\hat{\rho})-\sum_{i=1}^{p} x_{i, t}(\hat{\theta})\left(a_{i}-\hat{a}_{i}\right)-\sum_{i=1}^{q} w_{j, t}(\hat{\theta})\left(\beta_{j}-\hat{\beta}_{j}\right)-\Delta_{k, t}(\hat{\theta})\left(\delta_{k}-\hat{\delta}\right)_{k}+r_{t} \tag{2.1.6}
\end{equation*}
$$

where r_{t} is the Taylor series remainder and $-V_{t}(\hat{\theta}),-X_{i, t}(\hat{\theta}),-W_{j, t}(\hat{\theta})$, and $-\Delta_{k, t}(\hat{\theta})$ are the derivatives of $e_{t}(\theta)$ with respect to $\rho, a_{i}, \beta_{\mathrm{j}}$ and δ_{k}, respectively, evaluated at $\hat{\theta}$. Ignoring the remainder term and rearranging (2.1.6) as

$$
\begin{equation*}
e_{t}(\hat{\theta})=v_{i}(\hat{\theta})(\rho-\hat{\rho})+\sum_{i=1}^{p} x_{i, t}(\hat{\theta})\left(a_{i}-\hat{a}_{i}\right)+\sum_{i=1}^{q} w_{j, t}(\hat{\theta})\left(\beta_{j}-\hat{\beta}_{j}\right)+\Delta_{k, t}(\hat{\theta})\left(\delta_{k}-\hat{\delta}_{k}\right)+e_{t} \tag{2.1.7}
\end{equation*}
$$

suggests the regression of $\mathrm{e}_{\mathrm{t}}(\hat{\theta})$ on $\mathrm{V}_{\mathrm{t}}(\hat{\theta}),\left\{\mathrm{X}_{\mathrm{i}, \mathrm{t}}(\hat{\theta})\right\}_{\mathrm{i}=\mathrm{t}}^{\mathrm{p}},\left\{\mathrm{W}_{\mathrm{j}, \mathrm{t}}(\hat{\theta})\right\}_{\mathrm{j}=1}^{\mathrm{q}}$ and $\left\{\Delta_{\mathrm{k}, \mathrm{t}}(\hat{\theta})\right\}_{\mathrm{k}=1}^{\mathrm{q}}$ to estimate $\gamma^{\prime}=\left(\rho-\hat{\rho}, a_{1}-\hat{a}_{1}, \ldots, a_{p}-\hat{a}_{p}, \beta_{1}-\hat{\beta}_{1}, \ldots, \beta_{q}-\hat{\beta}_{q}, \delta_{1}-\hat{\delta}_{1}, \ldots, \delta_{q}-\hat{\delta}_{q}\right)$. The derivatives in (2.1.7) can be computed recursively as follows:

$$
\begin{aligned}
& v_{t}(\hat{\theta})=y_{t-1}+\hat{a}_{1} y_{t-2}+\ldots+\hat{a}_{p} y_{t-p-1}-\hat{\beta}_{1} v_{t-1}-\ldots-\hat{\beta}_{q} v_{t-q}, \\
& x_{i . t}(\hat{\theta})=-\hat{\beta}_{1} x_{i, t-1}-\ldots-\hat{\beta}_{q} x_{i, t-q}-z_{t-i}, \\
& w_{j, t}(\hat{\theta})=e_{t-j}-\hat{\beta}_{1} w_{j, t-1}-\ldots-\hat{\beta}_{q} w_{j, t-q},
\end{aligned}
$$

and

$$
\Delta_{\mathrm{k}, \mathrm{t}}=\hat{\beta}_{1} \Delta_{\mathrm{k}, \mathrm{t}-1}-\ldots-\hat{\beta}_{\mathrm{q}} \Delta_{\mathrm{k}, \mathrm{t}-\mathrm{q}}
$$

where $i=1, \ldots, p ; j=1, \ldots, q$ and $k=1, \ldots, q$. Computation is performed by taking the initial value of ρ to be 1 and using the method of moment estimator of $\left(\beta_{1}, \ldots, \beta_{q}\right)$. Furthermore, since the limiting distribution of $n(\hat{\rho}-1)$ is identical to that of Dickey and Fuller (1979) and Fuller (1976), the tables suggested by them can also be applied.

Phillips (1987) suggested a nonparametric approach with respect to nuisance parameters and thereby allows for a very wide class of time series models in which there is a unit root. This includes ARIMA models with MA part with heterogenously as well as identically distributed innovations. The basic idea is to estimate a non-augmented Dickey-Fuller regression, $y_{t}=\rho y_{t-1}+e_{t}$ and then to correct the Dickey-Fuller normalizedbias $n(\hat{\rho}-1)$ and studentized statistic $\hat{\tau}$ for general forms of serial correlation and/or heteroskedasticity that might be present in e_{t}. Implicitly, the procedure amounts to semiparametric estimation of ρ, accounting for the infinite-dimensional nuisance parameter associated with e_{t}. Moreover, he modified the $\hat{\tau}, \mathrm{n}(\hat{\rho}-1)$ tabulated by DickeyFuller when the data follow an $\operatorname{ARMA}(p, q)$ process, and developed new tests for unit roots that apply under general conditions. He defined the new statistics as

$$
Z_{\rho}=n(\hat{\rho}-1)-\frac{1}{2}\left(S_{n k}^{2}-S_{e}^{2}\right)\left(n^{-2} \sum_{t=2}^{n}\left(y_{t-1}-\bar{y}\right)^{2}\right)^{-1}
$$

and

$$
\begin{equation*}
Z_{\tau}=\left(\sum_{t=1}^{n} y_{t-1}^{2}\right)(\hat{\rho}-1) / S_{n k}-\frac{1}{2}\left(S_{n k}^{2}-S_{e}^{2}\right)\left(\sum_{t=1}^{n} y_{t-1}^{2}\right)^{-1 / 2} S_{n k}^{-1} n^{2} \tag{2.1.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{e}^{2}=\sum_{t=1}^{n}\left(y_{t}-y_{t-1}\right)^{2} / n=\frac{1}{n} \sum_{t=1}^{n} e_{t}^{2}, \\
& S_{n k}^{2}=\sum_{t=1}^{n} e_{t}^{2} / n+2 \sum_{m=1}^{k} \omega_{m k} \sum_{t=m+1}^{n} e_{t} e_{t-m} / n,
\end{aligned}
$$

and

$$
\omega_{\mathrm{mk}}=1-\mathrm{m} /(1+\mathrm{k})
$$

The cutoff point k of the weighted autocovariances should grow with sample size, but at a slower rate, to ensure convergence to the asymptotic Dickey-Fuller distribution. In this case, Z_{ρ} is a transformation of the standardized estimator $n(\hat{\rho}-1)$ and Z_{τ} is a transformation of regression t statistic t_{ρ} with

$$
t_{\rho}=\frac{\sqrt{\sum_{t=1}^{n} y_{t-1}^{2}}}{\sqrt{\sum_{t=1}^{n}\left(y_{t}-\rho y_{t-1}\right)^{2} / n}}(\hat{\rho}-1)
$$

and

$$
n(\hat{\rho}-1)=\frac{\sum_{t=1}^{n} y_{t-1}\left(y_{t}-y_{t-1}\right) / n}{2 \sum_{t=1}^{n} y_{t-1}^{2} / n} \quad \text { based on } y_{t}=\rho y_{t-1}+e_{t}, \rho=1 \text {. }
$$

The limiting distribution of Z_{τ} is the same as that of the regression t statistics as long as $\lim _{\mathrm{n} \rightarrow \infty}\left\{\sum_{\mathrm{t}} \mathrm{E}\left(\mathrm{e}_{\mathrm{t}}^{2} / \mathrm{n}\right)\right\}=\lim _{\mathrm{n} \rightarrow \infty}\left\{\sum \mathrm{E}\left(\mathrm{S}_{\mathrm{n}}^{2} / \mathrm{n}\right)\right\}$. Without depending on strong assumptions such as independence, homoskedasticity and normality, the given statistics Z_{τ}, Z_{ρ} allow for quite general weakly dependent and heterogenously distributed innovations based on an asymptotic theory for the LS regression estimators and the associated regression t statistics in (2.1.8). This method seems to have significant advantages when there are MA components in the time series and, at least in this respect, offers a promising alternative to the Dickey and Fuller (1979) and Said and Dickey (1984) procedures.

Phillips and Perron (1988) extended the study of Phillips (1987) to the cases where (1) a random walk with a shiftt in mean included (2) a random walk with a shift in mean and a linear trend are included in the specified model and suggested a modified test statistic which employed a correction. The limiting distributions of the following new test statistics are expressed as functionals of standard Brownian motion and are identical to those given in Fuller (1976), and these tests may be used with existing tabulations even if they allow for much more general innovations specification (p. 341).

$$
\begin{aligned}
& Z_{\hat{\rho}}=n(\hat{\rho}-1)-\hat{\lambda} / \bar{m}_{y y}, \\
& Z_{t_{\hat{p}}}=\frac{\hat{s}}{\hat{\sigma}_{n 1}} t_{p}-\frac{\hat{\lambda} \hat{\sigma}_{n 1}}{\sqrt{\bar{m}_{y y}}} \\
& Z_{t_{\hat{i}}}=\frac{\hat{s}}{\hat{\sigma}_{n 1}} t_{\hat{u}}+\hat{\lambda} \hat{\sigma}_{n 1} \frac{m_{y}}{\sqrt{\bar{m}_{y y} m_{y y}}} \\
& Z_{\tilde{\rho}}=n(\widetilde{\rho}-1)-\frac{\tilde{\lambda}}{M}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{t}_{\tilde{\tilde{r}}}}=\frac{\widetilde{\mathrm{s}}}{\widetilde{\sigma}_{\mathrm{n} 1}} \mathrm{t}_{\tilde{\mathrm{p}}}-\tilde{\lambda} \widetilde{\mathrm{o}}_{\mathrm{n}!} / \sqrt{\mathrm{M}} \\
& Z_{t_{\overline{\mathrm{n}}}}=\frac{\widetilde{\mathrm{s}}}{\widetilde{\sigma}_{\mathrm{n} 1}} \mathrm{t}_{\tilde{\mu}}-\tilde{\lambda} \widetilde{\sigma}_{\mathrm{n} 1} / \sqrt{\mathrm{M}\left(\mathrm{M}+\mathrm{m}_{\mathrm{y}}^{2}\right)} \\
& Z_{t_{\tilde{\beta}}}=\frac{\widetilde{\mathrm{s}}}{\widetilde{\sigma}_{\mathrm{m} 1}} \mathrm{t}_{\tilde{\beta}}-\tilde{\lambda} \widetilde{\sigma}_{\mathrm{n} 1}\left(\frac{1}{2} \mathrm{~m}_{\mathrm{y}}-\mathrm{m}_{\mathrm{ty}}\right) / \sqrt{\frac{\mathrm{M}}{12} \overline{\mathrm{~m}}_{\mathrm{yy}}} \\
& \mathrm{~m}_{\mathrm{yy}}=\sum \mathrm{y}_{\mathrm{t}}^{2} / \mathrm{n}^{2}, \bar{m}^{2}=\sum\left(\mathrm{y}_{\mathrm{t}}-\overline{\mathrm{y}}\right)^{2} / \mathrm{n}^{2}, \mathrm{~m}_{\mathrm{y}}=\sum \mathrm{y}_{\mathrm{t}} / \sqrt[3]{\mathrm{n}^{2}}, \mathrm{~m}_{\mathrm{ty}}=\sum \mathrm{ty}_{\mathrm{t}} / \sqrt[5]{\mathrm{n}^{2}}
\end{aligned}
$$

where

$$
\begin{gathered}
\mathrm{M}=\left(1-\mathrm{n}^{-2}\right) \mathrm{m}_{\mathrm{yy}}-12 \mathrm{~m}_{\mathrm{ty}}^{2}+12\left(1+\mathrm{n}^{-1}\right) \mathrm{m}_{\mathrm{ty}} \mathrm{~m}_{\mathrm{y}}-\left(4+6 \mathrm{n}^{-1}+2 \mathrm{n}^{-2}\right) \mathrm{m}_{\mathrm{y}}^{2}, \\
\hat{\lambda}=\left(\hat{\sigma}_{\mathrm{nl}}^{2}-\hat{\mathrm{s}}^{2}\right) / 2, \hat{\lambda}=\hat{\lambda} / \hat{\sigma}_{\mathrm{nl}}^{2}, \tilde{\lambda}=\left(\widetilde{\sigma}_{\mathrm{nl}}^{2}-\widetilde{\mathrm{s}}^{2}\right) / 2, \tilde{\lambda}=\tilde{\lambda} / \widetilde{\sigma}_{\mathrm{nl}}^{2}
\end{gathered}
$$

based on the two LS regression equations

$$
\begin{aligned}
& y_{t}=\hat{\mu}+\hat{\rho} y_{t-1}+\hat{\mu}_{t} \\
& y_{t}=\widetilde{\mu}+\widetilde{\beta}\left(t-\frac{1}{2} n\right)+\widetilde{\rho} y_{t-1}+\widetilde{\mu}_{t}
\end{aligned}
$$

where $(\hat{\mu}, \hat{\rho})$ and $(\widetilde{\mu}, \widetilde{\beta}, \widetilde{\rho})$ are the least squares estimates.
Pantula (1991) characterized the asymptotic null distribution of a variety of unit root test statistics in the model

$$
y_{t}=y_{t-1}+e_{t}-\theta_{n} e_{t-1}
$$

as $\theta \rightarrow 1$ with sample size. Specifically, let $\theta_{\mathrm{n}}=1-\gamma / \mathrm{n}^{\delta}$, where $0<\gamma<2$ and $\delta \leq 0$. As θ approaches unity, of course, the process approaches stationarity, since the first differenced process would then have a unit MA root. The asymptotic null distributions of the various test statistics may then be shown to depend on the speed with which $\theta \rightarrow 1$, i.e.,
on the value of δ. Pantula's examination of asymptotic size in a sequence of null models getting arbitrarily close to the alternative nicely complements the "roots local to unity" literature, in which asymptotic power is investigated against a sequence of alternatives getting arbitrarily close to the null.

Hall (1989) investigated a strategy for testing for a unit root in the situations considered by Phillips (1987) and Phillips and Perron (1988) where the innovations constitute a MA process of order q, denoted by MA(q). The rationale behind the test procedure is based on the observation that the generalization of the Dickey and Fuller (1981) tests to the random walk with the MA process is complicated by three factors: the unit root, the MA innovations, and the use of LS to estimate the model. He proposed instrumental variables (IV) estimator which uses y_{t-k} for $k>q$ as the instrument on y_{t-1} when the underlying model is an $\operatorname{ARIMA}(0,1, q)$. Let $\left\{y_{t}\right\}$ be a time series generated by the model

$$
y_{t}=\rho y_{t-1}+\mu_{t}, t=1, \ldots, n, \rho=1
$$

where y_{0} has a fixed distribution independent of t, sample size, and

$$
\mu_{\mathrm{t}}=\mathrm{e}_{\mathrm{t}}+\theta_{1} \mathrm{e}_{\mathrm{t}-1}+\ldots+\theta_{\mathrm{q}} \mathrm{e}_{\mathrm{t}-\mathrm{q}} .
$$

It is assumed that $\left\{e_{t}\right\} \sim \operatorname{iid}\left(0, \sigma^{2}\right)$ for all t and $\sup _{\mathrm{t}}\left\{\mathrm{E}\left(\left|\mu_{t}\right|^{\beta+\varepsilon}\right)\right\}<\infty$ for some $\beta>2, \varepsilon>0$. Then the corresponding parameters for the three different models are estimated using the IV approach respectively are as follows, summations being over $\mathrm{t}=\mathrm{k}, \ldots, \mathrm{n}$:
(1) $y_{t}=\hat{\rho} y_{t-1}+\hat{\mu}_{t} \Rightarrow \hat{\rho}=\frac{\sum y_{t-k} y_{t}}{\sum y_{t-k} y_{t-1}}$
(2) $y_{t}=\widetilde{\mu}+\widetilde{\rho} y_{t-1}+\widetilde{\mu}_{t} \Rightarrow\left[\begin{array}{c}\tilde{\rho} \\ \tilde{\mu}\end{array}\right]=\left(\begin{array}{cc}\Sigma y_{t-k} y_{t-1} & \Sigma y_{t-k} \\ \Sigma y_{t-1} & 1\end{array}\right)^{-1}\binom{\sum y_{t-k} y_{t}}{\Sigma y_{t}}$
(3) $y_{t}=\bar{\mu}+\bar{\beta}\left(t-\frac{n}{2}\right)+\bar{\rho} y_{t-1}+\bar{\mu}_{t} \Rightarrow\left(\begin{array}{l}\bar{\rho} \\ \bar{\mu} \\ \bar{\beta}\end{array}\right)=\left(\begin{array}{ccc}\Sigma y_{t-k} y_{t-1} & \Sigma y_{t-k} & \Sigma y_{t-k}\left(t-\frac{n}{2}\right) \\ \Sigma y_{t-1} & n & \Sigma\left(t-\frac{n}{2}\right) \\ \Sigma y_{t-1}\left(t-\frac{n}{2}\right) & \Sigma\left(t-\frac{n}{2}\right) & \Sigma\left(t-\frac{n}{2}\right)^{2}\end{array}\right)\left(\begin{array}{c}\Sigma y_{t-k} y_{t} \\ \Sigma y_{t} \\ \Sigma y_{t}\left(t-\frac{n}{2}\right)\end{array}\right)$

It is apparent that the use of instrumental variables to reduce the bias in the LS estimates might deliver a test with improved finite-sample performance relative to the Said and Dickey (1984) and Phillips (1987) approaches. Furthermore, the limiting distribution of the estimator, properly normalized, of the coefficient of y_{t-1} converges to the distribution tabulated by Dickey (1976) and Fuller (1976) and when multiplied by a sample covariance ratio t statistics for the coefficient on y_{t-1} converges to the distribution tabulated by Dickey (1976) and Fuller (1976). This test may performs relatively favorably because it uses more information on model structure than Phillips's (1987) approach and avoids the loss of information inherent in Said and Dickey (1984) approach.

The Monte Carlo evidence in Schwert (1989) which examines the effects of model misspecification on the size of unit root tests for mixed ARIMA process indicated that the above modifications of test statistics may not be very successful. For instances, consider the $\operatorname{ARIMA}(0,1,1)$ model, $y_{t}=y_{t-1}+e_{t}-\theta e_{t-1}, t=-19, \ldots, n$ where the errors $\left\{e_{t}\right\}$ are serially uncorrelated standard normal variables, the data are generated by setting e_{-20} and y_{-20} equal to zero and creating $\mathrm{n}+20$ observations, discarding the first 20 observations to remove the effect of the initial conditions. A negative value of θ close to
minus one means that the series is not too far from being stationary white noise. In this case, all the above tests reject the null hypothesis of a unit root much more frequently than they should. Thus for $\mathrm{n}=100$ and $\theta=-0.8$, Pantula (1991) showed that for a nominal test size of 0.05 , the ADF tests based on AR models with $p=4$ and $p=8$ have empirical sizes of 0.36 and 0.11 respectively, Hall's (1989) IV test has a size of 0.22 , while Phillips-Perron (1988) tests have sizes of over 0.85. And simulations in Schwert (1989) showed that the tests for a unit root developed by Dickey and Fuller $(1979,1981)$ are sensitive to the assumption that the data are generated by a pure AR process. When the underlying process contains a MA part, the distribution of the unit root test statistics can be much different from the distribution defined by Dickey and Fuller (1979, 1981). Moreover the tests proposed by Said and Dickey (1984), Phillips (1987) and Phillips and Perron (1988) to correct the model misspecification problem do not appear to work well as long as the MA parameter is large. Both Pantula (1991) and Schwert (1989) recommended the ADF test, while conceding that the question of how to decide on appropriate value of p is difficult one to determine. The ADF test remains attractive.

Pantula and Hall (1991) suggested an approach based on an instrumental variable estimator for testing the null hypothesis that a process y_{t} is an $\operatorname{ARIMA}(p, 1, q)$ against the alternative that it is stationary $\operatorname{ARIMA}(\mathrm{p}+1,0, \mathrm{q})$ process, which is the extension of $\operatorname{ARIMA}(0,1, q)$ in Hall (1989). They also considered the limiting distribution of the instrumental variable estimator when the estimated model is either (1) the true model, (2) the true model with a shift in mean included, or (3) the true model with a shift in mean and a linear time trend included. Their simulation showed that the criteria based on the IV approach seem to perform as well as or better than the existing methods when the
model is specified correctly (or when p and q are known). However, if the model is overspecified, then empirical levels are higher than the nominal level in moderate-sized samples, whereas if the model is underspecified the IV estimators are inconsistent.

Shin and Pantula (1993) proposed problem of testing for a unit root in an AR model where the data are available only from each s-th period, called systematic sampling. In some applications, the observations may be available only at periodic intervals. For example, economic data may suggest a monthly model but only quartile (or yearly) data are available; or in a manufacturing process the data are collected only at regular time intervals because of cost considerations. They consider an $\operatorname{AR}(p)$ process x_{t} given by

$$
x_{t}=\sum_{i=1}^{p} \phi_{t-i} x_{t-i}+e_{t} \text { where }\left\{e_{t}\right\} \sim \operatorname{iid}\left(0, \sigma^{2}\right)
$$

Assume that y_{i} for only each s-th period $\mathrm{y}_{1}=\mathrm{x}_{\mathrm{s}}, \mathrm{y}_{2}=\mathrm{x}_{2 \mathrm{~s}}, \ldots, \mathrm{y}_{\mathrm{n}}=\mathrm{x}_{\mathrm{ns}}$ are available, where s is a positive integer. They show that y_{t} may be modeled by a $\operatorname{ARMA}(p, q)$ where $q=$ $\max \{\mathrm{q}: \mathrm{q} \leq \mathrm{p}-(\mathrm{s} / \mathrm{p})\}$. Using a Monte Carlo study they compared the IV approach by Pantula and Hall (1991) and nonlinear least squares estimators by Said and Dickey (1985) and Shin and Fuller (1992) and obtained results that methods based on approximated ARMA(1, p-1) performed better than those based on ARMA(p, p-1).

We now discuss recursive estimation of ARMA(p,q) stationary process suggested by Hannan and Rissanen (1982) for the purpose of comparative study in Chapter 3. They considered a ARMA(p,q) stationary process generating a sequence y_{t} according to the

ARMA model $\sum_{j=0}^{p} \alpha_{j} y_{t-j}=\sum_{i=0}^{q} \beta_{i} \varepsilon_{t-i}$ for certain values, $p=p_{0}, q=q_{0}, \alpha_{j}=\alpha_{0, j}, \beta_{j}=\beta_{0, j}$ of the coefficients. It is assumed that either $\alpha_{0, p_{0}}$ or $\beta_{0, \mathrm{q}_{0}}$ is not zero with $\mathrm{E}\left(\varepsilon_{\mathrm{t}}\right)=0$, and $\mathrm{E}\left(\varepsilon_{\mathrm{s}}\right.$ $\left.\varepsilon_{t}\right)=\delta_{\mathrm{st}} \sigma^{2}$. In order to estimate $\mathrm{p}_{0}, \mathrm{q}_{0}, \alpha_{0, \mathrm{j}}$ and $\beta_{0, \mathrm{j}}$ from observations $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{T}}$, we assume for the true system that the polynomials

$$
a_{0, z}=\sum_{j=0}^{p} \alpha_{0, j^{2}} z^{j}, b_{0, z}=\sum_{j=0}^{q} \beta_{0, j} z^{j}, \alpha_{0,0}=\beta_{0,0}=1,
$$

have no common factors and that $\mathrm{a}_{0, z} \neq 0, \mathrm{~b}_{0, \mathrm{z}} \neq 0$ for $|z| \leq 1$. Then in the first stage estimates, $\hat{\varepsilon}_{t}$ are found by fitting a high order AR model for the known p_{0}, q_{0}. Thus the $\hat{\varepsilon}_{t}$ are formed, for n large, as $\hat{\varepsilon}_{t}=\sum_{j=0}^{n} \hat{a}_{n, j} y_{t-j}, \hat{a}_{\mathrm{n}, \mathrm{o}}=1$, where $\hat{\mathrm{a}}_{\mathrm{n}, \mathrm{j}}$ are AR coefficients estimated through the Yule-Walker equations. If $c_{t}=\frac{1}{T} \sum_{s=1}^{T-t} y_{s} y_{s+t}$, then $\hat{a}_{n, j}$ may be recursively calculated through the equations

$$
\hat{a}_{n, n}=-\sum_{j=0}^{n-1} \hat{a}_{n-1, j} c_{n-j} / \hat{\sigma}_{n-1}^{2}, \hat{a}_{n, j}=\hat{a}_{n-1, j}+\hat{a}_{n, n} \hat{a}_{n-1, n-j}, \hat{\sigma}_{n}^{2}=\left(1-\hat{a}_{n, n}^{2}\right) / \hat{\sigma}_{n-1}^{2} .
$$

At this time, n is assumed to be chosen so as to increase slightly faster than $\log \mathrm{T}$ but no faster than some power of $\log T$ by considering the criterion $\log \hat{\sigma}_{m}^{2}+(m \log T) / T$, provided n was not allowed to be too large, where $m=\max (n+p+1, n+q+1)$. In the second stage we calculate, for each (p, q)

$$
\widetilde{\sigma}_{p, q}^{2}=\inf \frac{1}{T} \sum_{t=m}^{T}\left(\sum_{j=0}^{p} \alpha_{j} y_{t-j}-\sum_{j=1}^{q} \beta_{j} \hat{\varepsilon}_{t-j}\right)^{2} \text { with } \alpha_{o}=1
$$

Then ($\widetilde{\mathrm{p}}, \widetilde{\mathrm{q}}$) are chosen to minimize

$$
\begin{equation*}
\log \widetilde{\mathrm{o}}_{\mathrm{p}, \mathrm{q}}^{2}+(\mathrm{p}+\mathrm{q}) \log \mathrm{T} / \mathrm{T} . \tag{2.1.9}
\end{equation*}
$$

Once $\widetilde{\mathrm{p}}, \widetilde{\mathrm{q}}$ are determined we may, at the third stage, use any of the available algorithms for the calculation of the maximum of the Gaussian likelihood, initiating the iterative calculation with the strongly consistent estimates, $\hat{\alpha}_{j}, \hat{\beta}_{j}$. The procedure should be iterated commencing from the produced regression coefficients $\widetilde{\alpha}_{j}, \widetilde{\beta}_{j}$ until the residual mean square stabilizes. They also showed that for $\widetilde{\mathrm{p}}, \widetilde{\mathrm{q}}$ minimizing (2.1.9) and $\hat{\alpha}_{\mathrm{j}}, \hat{\beta}_{\mathrm{j}}$, $\widetilde{\alpha}_{j}, \widetilde{\beta}_{j}$, almost surely $\widetilde{\mathrm{p}}-\mathrm{p}_{\mathrm{o}}, \widetilde{\mathrm{q}}-\mathrm{q}_{0}, \widetilde{\alpha}_{\mathrm{j}}-\alpha_{0, \mathrm{j}}, \hat{\alpha}_{\mathrm{j}}-\alpha_{0, \mathrm{j}}, \hat{\beta}_{\mathrm{j}}-\beta_{0, \mathrm{j}} \rightarrow 0$ and also $\mathrm{T}^{1 / 2}\left(\hat{\alpha}_{\mathrm{i}}-\right.$ $\left.\alpha_{0, \mathrm{j}}\right), \mathrm{T}^{1 / 2}\left(\hat{\beta}_{\mathrm{j}}-\beta_{0, \mathrm{j}}\right)$ have the same asymptotic distribution as the maximum likelihood estimators, for $\mathrm{p}_{0}, \mathrm{q}_{0}$ known, on Gaussian assumptions.
2.1.2. Unit roots in multivariate time series

There are two approaches used to investigate unit roots in vector time series: one is the approach of Engle and Granger (1987) and the other is that of Fountis and Dickey (1989). The main difference between two approaches is that Engle and Granger (1987) look for evidence of a single cointegrating vector vs. the null hypothesis that all linear combinations of the vector entries are nonstationary while Fountis and Dickey's (1989) approach tests a null hypothesis of a single unit root canonical series. In addition Fountis and Dickey's (1989) distributional results for the test statistic rely on the assumption that there is exactly one unit root and the remaining parameters less than 1 in magnitude. The null hypothesis indicates a single unit root series mixed, by way of linear combinations, with several stationary series. We now introduce some ideas from Fountis and Dickey (1989) and we will discuss Engle and Granger (1987) in Chapter 5.

Let

$$
\begin{equation*}
\mathbf{Y}_{\mathrm{t}}=\mathbf{A} \mathbf{Y}_{\mathrm{t}-1}+\mathbf{e}_{\mathrm{t}} \tag{2.1.10}
\end{equation*}
$$

where \mathbf{e}_{t} is a dimension k multivariate normal column vector with mean ϕ and variance covariance matrix Σ. Assume that \mathbf{A} has one eigenvalue 1 and the rest less than 1 in magnitude. The right eigenvectors of \mathbf{A} and $\mathbf{A}-\mathbf{I}$ are identical, and there exists a matrix \mathbf{R} such that $\mathbf{R}^{-1}(\mathbf{A}-\mathbf{I}) \mathbf{R}$ has 0 everywhere in the first row and column.

Let

$$
\mathbf{V}=\mathbf{R}^{-1} \mathbf{A} \mathbf{R}=\left[\begin{array}{cc}
1 & \mathbf{0}^{\prime} \\
\mathbf{0} & \mathbf{V}_{22}
\end{array}\right]
$$

where all eigenvalues of \mathbf{V}_{22} are less than 1 in magnitude.
Regressing \mathbf{Y}_{t} on $\mathbf{Y}_{\mathrm{t}-1}$ produces the coefficient matrix

$$
\hat{\mathbf{A}}=\left(\mathbf{Y}_{(0)} \mathbf{Y}_{(-1)}^{\prime}\right)\left(\mathbf{Y}_{(-1)} \mathbf{Y}_{(-1)}^{\prime}\right)^{-1}
$$

where $\mathbf{Y}_{(-1)}=\left(Y_{0}, Y_{1}, \ldots, Y_{n-1}\right), \mathbf{Y}_{(0)}=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$. Notice that $\hat{\mathbf{A}}$ is similar to \mathbf{R}^{-1} $\hat{\mathbf{A} R}$, where

$$
\mathbf{R}^{-1} \hat{\mathbf{A}} \mathbf{R}=\left[\mathbf{R}^{-1} \mathbf{Y}_{(0)} \mathbf{Y}_{(-1)}^{\prime}\left(\mathbf{R}^{-1}\right)^{\prime}\right]\left[\mathbf{R}^{-1} \mathbf{Y}_{(-1)} \mathbf{Y}_{(-1)}^{\prime}\left(\mathbf{R}^{-1}\right)^{\prime}\right]^{-1}
$$

and so the eigenvalues of $\hat{\mathbf{A}}$ are the same as those we would get if we could regress $\mathbf{R}^{-1} \mathbf{Y}_{(0)}$ on $\mathbf{R}^{-1} \mathbf{Y}_{(-1)}$. Thus if we can prove a distributional result for eigenvalues in this transformed regression it will also hold for the untransformed regression. Even though we do not know the true R we can act as if we do for the purpose of studying distributional properties of the eigenvalues. Thus we assume

$$
\left[\begin{array}{l}
\mathbf{Z}_{1 \mathrm{t}} \tag{2.1.11}\\
\mathbf{Z}_{2 \mathrm{t}}
\end{array}\right]=\left[\begin{array}{cc}
1 & \mathbf{0}^{\prime} \\
\mathbf{0} & \mathbf{V}_{22}
\end{array}\right]\left[\begin{array}{l}
\mathbf{Z}_{1, \mathrm{t}-1} \\
\mathbf{Z}_{2, \mathrm{t}-1}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{n}_{1 \mathrm{t}} \\
\mathbf{n}_{2 \mathrm{t}}
\end{array}\right]
$$

is the true model on the transformed scale and estimate all estimates of the coefficient matrix (including the 0's). Let

$$
\hat{\mathbf{V}}=\left[\begin{array}{ll}
\hat{\mathbf{V}}_{11} & \hat{\mathbf{V}}_{12} \\
\hat{\mathbf{V}}_{21} & \hat{\mathbf{V}}_{22}
\end{array}\right]
$$

denote the estimate of the coefficient matrix as partitioned in (2.1.11). Each element of $\hat{\mathrm{V}}_{12}$ is $\mathrm{O}_{\mathrm{p}}\left(\mathrm{n}^{-1}\right)$ and each element of $\hat{\mathrm{V}}_{21}$ is $\mathrm{O}_{\mathrm{p}}\left(\mathrm{n}^{-1 / 2}\right)$. This implies that $\mathrm{n}\left(\hat{\mathrm{V}}_{11}-1\right)$ has the same limit distribution as that tabulated for $n(\hat{\rho}-1)$ in Fuller (1976).

The characteristic equation expanded on the first row is

$$
|\hat{\mathbf{V}}-\mathrm{mI}|=\left(\hat{\mathrm{V}}_{11}-\mathrm{m}\right)\left|\hat{\mathrm{V}}_{22}-\mathrm{m} \mathbf{I}\right|+\mathrm{O}_{\mathrm{p}}\left(\mathrm{n}^{-3 / 2}\right)=0
$$

and since the eigenvalues of $\hat{\mathrm{V}}_{22}$ are bounded away from $1, \mathrm{n}$ large implies a solution $\mathrm{m}=$ $\hat{\lambda}_{n}$, which differs from \hat{V}_{11} by $\mathrm{O}_{\mathrm{p}}\left(\mathrm{n}^{-3 / 2}\right)$. Thus

$$
\mathrm{n}\left(\hat{\lambda}_{\mathrm{n}}-1\right)=\mathrm{n}\left(\hat{\mathrm{~V}}_{11}-1\right)+\mathrm{O}_{\mathrm{p}}\left(\mathrm{n}^{-1 / 2}\right)
$$

showing that the distribution of $\hat{\lambda}_{n}$ is also governed in the limit by the distribution for the Dickey-Fuller tests.

This procedure easily extends to higher-order cases. Let

$$
\mathbf{Y}_{\mathrm{t}}=\mathbf{A}_{1} \mathbf{Y}_{\mathrm{t}-1}+\mathbf{A}_{2} \mathbf{Y}_{\mathrm{t}-2}+\ldots+\mathbf{A}_{\mathrm{p}} \mathbf{Y}_{\mathrm{t}-\mathrm{p}}+\varepsilon_{\mathrm{t}}, \mathrm{t}=1,2, \ldots, \mathrm{n},
$$

where Y_{t} is a dimension k column vector. Reparameterize this as

$$
\nabla \mathbf{Y}_{\mathrm{t}}=-\left(\mathbf{I}-\mathbf{A}_{1}-\ldots-\mathbf{A}_{\mathrm{p}}\right) \mathbf{Y}_{\mathrm{t}-1}-\left(\mathbf{A}_{2}+\mathbf{A}_{3}+\ldots+\mathbf{A}_{\mathrm{p}}\right) \nabla \mathbf{Y}_{\mathrm{t}-1}-\ldots-\mathbf{A}_{\mathrm{p}} \nabla \mathbf{Y}_{\mathrm{t}-\mathrm{p}+1}+\varepsilon_{\mathrm{t}},
$$

where $\nabla \mathbf{Y}_{t-\mathrm{p}}=\left(\mathbf{Y}_{\mathrm{t}}-\mathbf{Y}_{\mathrm{t}-\mathrm{p}}\right)$ and note that if the characteristic equation,

$$
\left|L^{\mathrm{p}} \mathbf{I}-\mathrm{L}^{\mathrm{p}-1} \hat{\mathbf{A}}_{1}-\ldots-\hat{\mathbf{A}}_{\mathrm{p}}\right|=0
$$

has a unique root $L=1$ then the coefficient matrix on Y_{t-1} is of rank $k-1$. If estimate $\hat{\mathbf{A}}_{i}$ of \mathbf{A}_{i} are calculated by least squares method from n observations, then the solution $L=\hat{\lambda}_{n}$ of $\left|L^{\mathrm{p}} \mathbf{I}-\mathrm{L}^{\mathrm{p}-1} \hat{\mathbf{A}}_{1}-\ldots-\hat{\mathbf{A}}_{\mathrm{p}}\right|=0$ closest in magnitude to 1 provides a test since, under the null hypothesis of a single unit root, $n\left(\left|\hat{\lambda}_{n}\right|-1\right)$ has the same limit distribution as $n(\hat{\rho}-1)$ given by Dickey and Fuller (1979). Computing the eigenvectors of (I - $\hat{\mathbf{A}}_{1}-\ldots-\hat{\mathbf{A}}_{p}$) associated with $\hat{\lambda}_{n}$, we can construct \mathbf{R} with the right eigenvector as its first column and the left eigenvector as the first row of \mathbf{R}^{-1}.

The following papers may provide the background to develop the unit roots in a vector process (Chapter 3).

Reinsel et al. (1992) expressed the explicit form of the gradient vector and Hessian matrix of the log likelihood function for the multivariate ARMA model and an explicit description of the Gauss-Newton iterative procedure to get ML estimates of the parameters. Their resulting computational procedure has the form of a generalized least squares (GLS) estimation involving lagged values of the observed vector series and of the residual series as independent variables. This explicit representation of the estimation procedure provides not only a convenient and appealing computational scheme relative to the general nonlinear maximization algorithms which are commonly used, but also proves useful in understanding and interpreting properties of the ML estimators. Their presentation also allows for easy comparison of the ML procedure with the GLS
procedure of Koreisha and Pukkila (1989) in the univariate case. Furthermore, their approach displayed the stage three estimation procedure by Hannan and Rissanen (1982) and Hannan and Kavalieris (1984a) in the univariate ARMA model context, and the stage four procedure by Hannan and Kavalieris (1984b) for the vector ARMA model as corresponding to the ML Newton-Raphson iteration procedure as represented in the GLS form. Consider estimation of parameters in the multivariate ARMA model

$$
\mathbf{Y}_{\mathrm{t}}-\sum_{\mathrm{i}=1}^{\mathrm{p}} \Phi_{\mathrm{i}} \mathbf{Y}_{\mathrm{t}-\mathrm{i}}=\boldsymbol{\varepsilon}_{\mathrm{t}}-\sum_{\mathrm{i}=1}^{\mathrm{q}} \Theta_{\mathrm{i}} \boldsymbol{\varepsilon}_{\mathrm{t}-\mathrm{i}}
$$

where $\mathbf{Y}_{\mathrm{t}}=\left(\mathrm{y}_{\mathrm{it}}, \ldots, \mathrm{y}_{\mathrm{kt}}\right)^{\prime}, \varepsilon_{\mathrm{t}}=\left(\varepsilon_{\mathrm{it}}, \ldots, \varepsilon_{\mathrm{kt}}\right)^{\prime}$ are k -component vectors, and $\Phi_{1}, \ldots, \Phi_{\mathrm{p}}, \Theta_{1}, \ldots$, Θ_{q} are $\mathrm{k} \times \mathrm{k}$ matrices of unknown parameters. The ε_{t} are assumed to be iid with mean vector zero and nonsingular covariance matrix Σ. All roots of $\operatorname{det}[\Phi(\mathrm{z})]=0$ and $\operatorname{det}[\Theta(\mathrm{z})]$ $=0$ are assumed to lie outside the unit circle, and the necessary conditions for the identification of parameters for the above model are satisfied. On the assumption of normality of the ε_{t}, since $\mathbf{e}=\operatorname{vec}\left(\varepsilon^{\prime}\right)$ is $\mathrm{N}\left(0, \mathbf{I}_{\mathrm{n}} \otimes \Sigma\right)$, the approximate \log likelihood function can be written as

$$
\begin{aligned}
1 & =-\frac{n}{2} \log |\Sigma|-\frac{1}{2} \mathbf{e}^{\prime}\left(\mathbf{I}_{n} \otimes \Sigma^{-1}\right) \\
& =-\frac{n}{2} \log |\Sigma|-\frac{1}{2} \mathbf{w}^{\prime} \Theta^{\prime-1}\left(\mathbf{I}_{\mathrm{n}} \otimes \Sigma^{-1}\right) \Theta^{-1} \mathbf{w}
\end{aligned}
$$

where $\mathbf{w}=\mathbf{y}-\sum_{\mathrm{i}=1}^{\mathrm{p}}\left(\mathrm{L}^{\mathrm{i}} \mathbf{Y} \otimes \mathbf{I}_{\mathrm{k}}\right) \phi_{\mathrm{i}}$ with $\mathrm{L}^{\mathrm{i}} \mathbf{Y}=\left(\mathrm{Y}_{1-\mathrm{i}}, \ldots, \mathrm{Y}_{\mathrm{n}-\mathrm{i}}\right)^{\prime}$ and $\mathbf{y}=\operatorname{vec}\left(\mathbf{Y}^{\prime}\right)=\left(\mathrm{Y}_{1}^{\prime}, \ldots, \mathrm{Y}_{\mathrm{n}}^{\prime}\right)$.
Defining the vector $\delta=\left(\phi_{1}^{\prime}, \ldots, \phi_{p}^{\prime}, \theta_{1}^{\prime}, \ldots, \theta_{q}^{\prime}\right)^{\prime}$ with $\phi_{\mathrm{i}}=\operatorname{vec}\left(\Phi_{\mathrm{i}}\right)$ and $\theta_{\mathrm{i}}=\operatorname{vec}\left(\Theta_{\mathrm{i}}\right), \mathrm{i}=$
$1, \ldots, q$ and matrix $\mathbf{Z}=\left[\left(\mathbf{L Y} \otimes \mathbf{I}_{k}\right), \ldots,\left(\mathbf{L}^{p} \mathbf{Y} \otimes \mathbf{I}_{k}\right),-\left(\mathbf{L} \varepsilon \otimes \mathbf{I}_{k}\right), \ldots,-\left(\mathbf{L}^{\mathrm{q}} \varepsilon \otimes \mathbf{I}_{k}\right)\right]$, we can express these derivatives collectively in a convenient form as

$$
\begin{equation*}
\partial I / \partial \delta=\mathbf{Z}^{\prime} \Theta^{-1}\left(\mathbf{I}_{\mathrm{n}} \otimes \Sigma^{-1}\right) \mathbf{e} \tag{2.1.12}
\end{equation*}
$$

or

$$
\partial \mathbf{I} / \partial \delta=\left(-\partial \mathbf{e}^{\prime} / \partial \delta\right)\left(\mathbf{I}_{\mathrm{n}} \otimes \mathbf{\Sigma}^{-1}\right) \mathbf{e} \text { with } \partial \mathbf{e} / \partial \delta^{\prime}=-\Theta^{-1} \mathbf{Z} .
$$

These likelihood equations (2.1.12) are highly nonlinear in the parameters δ (unless $\mathrm{q}=$ 0). Thus for $\mathrm{q}>0$ these equations need to be solved by iterative numerical procedures such as the Newton-Raphson equations for an approximate ML estimator $\hat{\delta}$ are

$$
\begin{equation*}
-\left.\left(\frac{\partial^{2} 1}{\partial \delta \partial \delta^{\prime}}\right)\right|_{\delta=\delta_{0}}\left(\hat{\delta}-\delta_{o}\right)=\left(\frac{\partial 1}{\partial \delta}\right)_{\delta=\delta_{0}} \tag{2.1.13}
\end{equation*}
$$

where δ_{0} is an initial estimate of δ and the estimate $\widetilde{\Sigma}=\hat{\varepsilon}^{\prime} \hat{\varepsilon} / \mathrm{n}$ from a previous iteration is used for Σ. To carry out the iteration in (2.1.13) it is useful to have a convenient expression for the Hessian matrix of second partial derivatives. It can be shown that on neglecting terms which, when divided by n , converge to zero in probability as $\mathrm{n} \rightarrow \infty$, we obtain the approximation

$$
\begin{align*}
-\left(\frac{\partial^{2} 1}{\partial \delta \partial \delta^{\prime}}\right) & =\left(\frac{\partial \mathbf{e}^{\prime}}{\partial \delta}\right)\left(\mathbf{I}_{\mathrm{n}} \otimes \Sigma^{-1}\right)\left(\frac{\partial \mathbf{e}}{\partial \delta^{\prime}}\right) \tag{2.1.14}\\
& =\mathbf{Z}^{\prime} \Theta^{-1}\left(\mathbf{I}_{\mathrm{n}} \otimes \Sigma^{-1}\right) \Theta^{-1} \mathbf{Z}
\end{align*}
$$

Using initial estimates $\delta_{o}=\left(\widetilde{\phi}_{1}^{\prime}, \ldots, \widetilde{\phi}_{\mathrm{p}}^{\prime}, \widetilde{\phi}_{1}^{\prime}, \ldots, \widetilde{\phi}_{q}^{\prime}\right)^{\prime}=\operatorname{vec}\left(\widetilde{\Phi}_{1}, \ldots, \widetilde{\Phi}_{\mathrm{p}}, \widetilde{\Theta}_{1}, \ldots, \widetilde{\Theta}_{\mathrm{q}}\right)$, we let $\widetilde{\Theta}=\mathbf{I}-\sum_{\mathrm{i}=1}^{\mathrm{q}}\left(\mathbf{L}^{\mathrm{i}} \otimes \widetilde{\Theta}_{\mathrm{i}}\right), \widetilde{\mathbf{e}}=\widetilde{\Theta}^{-1}\left[\mathbf{y}-\sum_{\mathrm{i}=1}^{\mathrm{p}}\left(\mathbf{L}^{\mathrm{i}} \mathbf{Y} \otimes \mathbf{I}_{\mathrm{k}}\right) \widetilde{\phi}_{\mathrm{i}}\right]$ with $\operatorname{vec}\left(\widetilde{\varepsilon}^{\prime}\right)=\widetilde{\mathbf{e}}, \widetilde{\Sigma}=\widetilde{\varepsilon}, \widetilde{\varepsilon} / \mathrm{n}$ and let $\widetilde{\mathbf{Z}}$ denote the matrix \mathbf{Z} with $\mathbf{L}^{j} \widetilde{\varepsilon}$ in place of $\mathbf{L}^{j} \boldsymbol{\varepsilon}, j=1, \ldots, q$. Then, using (2.1.12)-(2.1.14), the modified Newton-Raphson equations for $\hat{\delta}$ have the solution of the form

$$
\begin{equation*}
\hat{\delta}=\delta_{o}+\left\{\overline{\mathbf{Z}^{\prime}}\left(\mathbf{I}_{\mathrm{n}} \otimes \widetilde{\Sigma}^{-1}\right) \overline{\mathbf{Z}}\right\}^{-1} \overline{\mathbf{Z}}^{\prime}\left(\mathbf{I}_{\mathrm{n}} \otimes \widetilde{\Sigma}^{-1}\right) \widetilde{\mathbf{e}} \tag{2.1.15}
\end{equation*}
$$

where $\bar{Z}=\widetilde{\Theta}^{-1} \widetilde{Z}$. Note that $\widetilde{\mathbf{e}}=\operatorname{vec}\left(\widetilde{\mathbf{e}}^{\prime}\right)$ is easily computed recursively from

$$
\widetilde{\Theta} \widetilde{\mathbf{e}}=\mathbf{y}-\sum_{i=1}^{p}\left(\mathbf{L}^{\mathrm{i}} \mathbf{Y} \otimes \mathbf{I}_{k}\right) \widetilde{\phi}_{\mathrm{i}}=\mathbf{y}-\sum_{\mathrm{i}=1}^{p}\left(\mathbf{I}_{\mathrm{n}} \otimes \widetilde{\Phi}_{i}\right) \mathbf{L}^{\mathrm{i}} \mathbf{y}
$$

as

$$
\widetilde{\varepsilon}_{\mathrm{t}}=\mathbf{Y}_{\mathrm{t}}-\sum_{\mathrm{i}=1}^{\mathrm{p}} \widetilde{\Phi}_{\mathrm{i}} \mathbf{Y}_{\mathrm{t}-\mathrm{i}}+\sum_{\mathrm{i}=1}^{\mathrm{q}} \widetilde{\Theta}_{\mathrm{i}} \widetilde{\varepsilon}_{\mathrm{t}-\mathrm{i}}, \mathrm{t}=1, \ldots, \mathrm{n}
$$

with $\widetilde{\varepsilon}_{o}=\widetilde{\varepsilon}_{-1}=\ldots=\widetilde{\varepsilon}_{1-q}=0$. In addition the ML-GLS estimation procedure provides asymptotically efficient estimators and it involves the same degree of GLS computations for the univariate model as are involved in the univariate GLS estimation procedure of Koreisha and Pukkila (1989). The ML estimation through the GLS estimation in (2.1.15) corresponds essentially to the procedure stated by Hannan and Kavalieris (1984b) as their Stage 4 procedure for estimation of vector ARMA with exogenous variables (ARMAX) models. The ML-GLS procedure provided very good estimates after only a few iterations
using reasonable initial estimates, and its performance was not dependent on the exact nature of the initial estimates used.

Osborn (1977) worked exact and approximate ML estimators for vector MA processes, which is a generalization of that adopted by Box and Jenkins (1976) for the univariate case. Let a q th vector MA process be

$$
\begin{equation*}
\mathbf{W}_{\mathrm{t}}=\varepsilon_{\mathrm{t}}+\theta_{1} \varepsilon_{\mathrm{t}-1}+\ldots+\theta_{\mathrm{q}} \varepsilon_{\mathrm{t}-\mathrm{q}} \tag{2.1.16}
\end{equation*}
$$

where \mathbf{W}_{t} and ε_{t} are $\mathrm{g} \times 1$ vectors of observations and disturbances respectively, while $\theta_{\mathrm{i}}, \mathrm{i}$ $=1, \ldots, \mathrm{q}$, are $\mathrm{g} \times \mathrm{g}$ matrices of MA coefficients. The disturbances are assumed to be independent normally distributed about zero with variance covariance matrix Σ. With n sample observations assumed to be available on \mathbf{W}_{t}, we denote the vector of disturbances in (2.1.16) by $\varepsilon=\left(\varepsilon_{1-q}^{\prime}, \ldots, \varepsilon_{0}^{\prime}, \varepsilon_{1}^{\prime}, \ldots, \varepsilon_{\mathrm{n}}^{\prime}\right)^{\prime}$. This vector is normally distributed with zero mean vector and variance-covariance matrix $\Omega=\mathbf{I} \otimes \Sigma$. Then the exact likelihood function is

$$
\begin{equation*}
\mathbf{f}(\mathbf{W})=(2 \pi)^{-\frac{\mathrm{g}}{2}}|\mathbf{W}|^{-\frac{1}{2}}\left|\mathbf{K}^{\prime} \mathbf{W}^{-1} \mathbf{K}\right|^{-\frac{1}{2}} \exp \left(-\frac{1}{2}\left(\mathbf{M W}+\mathbf{K} \hat{\varepsilon}^{*}\right)^{\prime} \Omega^{-1}\left(\mathbf{M W}+\mathbf{K} \hat{\varepsilon}^{*}\right)\right) \tag{2.1.17}
\end{equation*}
$$

where $\hat{\varepsilon}^{*}=\left(\varepsilon_{1-q}^{\prime}, \cdots, \varepsilon_{0}^{\prime}\right)^{\prime}, \mathbf{W}=\left(\mathbf{W}_{1}^{\prime}, \cdots, \mathbf{W}_{n}^{\prime}\right)^{\prime}, \varepsilon=\mathbf{M} \mathbf{W}+\mathbf{K} \varepsilon^{*}$. By using the following two facts,

$$
\left(-\frac{1}{2}\left(\mathbf{M W}+\mathbf{K} \hat{\varepsilon}^{*}\right)^{\prime} \Omega^{-1}\left(\mathbf{M W}+\mathbf{K} \hat{\varepsilon}^{*}\right)\right)=\left(-\frac{1}{2} \hat{\varepsilon}^{\prime} \Omega^{-1} \hat{\varepsilon}\right)
$$

and

$$
|\Omega|^{-\frac{1}{2}}\left|\mathbf{K}^{\prime} \Omega^{-1} \mathbf{K}\right|^{-\frac{1}{2}}=|\Sigma|^{-\frac{1}{2}(n+q)}\left|\mathbf{K}^{\prime}\left(\mathbf{I} \otimes \Sigma^{-1}\right) \mathbf{K}\right|^{-\frac{1}{2}}
$$

equation (2.1.17) can be replaced by the following function $\mathrm{L}_{1}{ }^{*}$

$$
\mathrm{L}_{1}^{*}=-(\mathrm{n}+\mathrm{q}) \log |\Sigma|-\log \left|\mathbf{K}^{\prime}\left(\mathbf{I} \otimes \Sigma^{-1}\right) \mathbf{K}\right|-\sum_{\mathrm{t}=1-\mathrm{q}}^{\mathrm{n}} \hat{\varepsilon}_{\mathrm{t}}^{\prime} \Sigma^{-1} \hat{\varepsilon}_{\mathrm{t}}
$$

Therefore, exact ML estimates of Σ and $\theta_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{q}$, may be achieved by maximizing the function $\mathrm{L}_{1}{ }^{*}$ with respect to these parameters using an appropriate nonlinear optimization technique. Although this exact procedure may be preferred on the theoretical grounds, the computational burden it imposes may make it impractical in some circumstances.

Spliid (1983) suggested a very fast and simple algorithm for estimation of the parameters of large multivariate time series which includes distributed lag variables and showed that the distribution of the estimates are asymptotically normal and unbiased. Furthermore, the algorithm is applicable for estimation of large multivariate models where it is generally many times faster than maximization algorithms. In the model identification stage of the analysis of multivariate time series it is often desirable to estimate a number of alternative models and for this purpose this algorithm is very well suited. Consider a general linear model that includes lagged regression variables is denoted as

$$
\begin{equation*}
\phi(\mathrm{L}) \mathbf{y}_{\mathrm{t}}=\beta(\mathrm{L}) \mathbf{x}_{\mathrm{t}}+\theta(\mathrm{L}) \mathbf{a}_{\mathrm{t}}, \mathrm{t}=1,2, \ldots \tag{2.1.18}
\end{equation*}
$$

where $\beta(\mathrm{L})=\beta_{0}+\beta_{1} \mathrm{~L}+\ldots+\beta_{\mathrm{r}-1} \mathrm{~L}^{\mathrm{r}-1}$ is a $\mathrm{k} \times \mathrm{m}$ matrix polynomial and \mathbf{x}_{t} is an m-variate series disturbances and (2.1.18) can be rewritten in the equivalence forms:

$$
\begin{equation*}
\mathbf{Y}=\mathbf{U} \delta+\mathbf{a} \tag{2.1.19}
\end{equation*}
$$

where $\mathbf{U}=(-\mathbf{A}, \mathbf{Y}, \mathbf{X}), \mathbf{A}=\left(\mathrm{La}, \mathrm{L}^{2} \mathbf{a}, \ldots, \mathrm{~L}^{\mathrm{q}} \mathbf{a}\right), \mathbf{Y}=\left(\mathrm{L} \mathbf{y}, \mathrm{L}^{2} \mathbf{y}, \ldots, \mathrm{~L}^{\mathrm{p}} \mathbf{y}\right)$, and $\mathbf{X}=(\mathbf{x}, \mathrm{L} \mathbf{x}, \ldots$, $\mathrm{L}^{\mathrm{r}-1} \mathbf{x}$) with the matrix of unknown residuals a. Introducing the four stage procedures based on the above models (2.1.19), we can take the following steps:

Step 1. Construct $W=\left(L \mathbf{y}, \mathrm{~L}^{2} \mathbf{y}, \ldots, \mathrm{~L}^{\mathrm{s}} \mathbf{y}, \mathbf{X}\right)$ where s is a chosen order of the initial AR part of the model. Linear regression gives $\hat{\mathbf{a}}_{0}=\mathbf{y}-\mathbf{W}\left(\mathbf{W}^{\prime} \mathbf{W}\right)^{-1} \mathbf{W}^{\prime} \mathbf{y}$ where $\hat{\mathbf{a}}_{0}$ denotes the estimate of a obtained in iteration number 0 .

Step 2. Compute recursively residuals for $\mathrm{t}=1,2, \ldots, \mathrm{n}$:

$$
\hat{\mathbf{a}}_{\mathrm{t}, \mathrm{j}}=\mathbf{y}_{\mathrm{t}}-\sum_{\mathrm{i}=1}^{\mathrm{p}} \hat{\phi}_{\mathrm{i}, \mathrm{j}} \mathbf{y}_{\mathrm{t}-\mathrm{i}}+\sum_{\mathrm{i}=1}^{\mathrm{q}} \hat{\theta}_{\mathrm{i}, \mathrm{j}} \hat{\mathbf{a}}_{\mathrm{t}-\mathrm{i}, \mathrm{j}}-\sum_{\mathrm{i}=0}^{\mathrm{r}-1} \hat{\boldsymbol{\beta}}_{\mathrm{i}, \mathrm{j}} \mathbf{x}_{\mathrm{t}-\mathrm{i}} .
$$

Step 3. Construct $\hat{\mathbf{A}}_{\mathbf{j}}$, recall \mathbf{Y} and \mathbf{X}, create $\hat{\mathbf{U}}_{\mathbf{j}}$, and compute new estimates by linear regression, by solving $\hat{\mathbf{U}}_{\mathrm{j}}^{\prime} \hat{\mathbf{U}}_{\mathrm{j}} \hat{\delta}_{\mathrm{j}+1}=\hat{\mathbf{U}}_{\mathrm{j}}^{\prime} \mathbf{y}$.

Step 4. If $\hat{\delta}_{j+1} \neq \hat{\delta}_{j}$, increase j by 1 and repeat steps 2 through 4. If $\hat{\delta}_{j+1}=\hat{\delta}_{j}$, let $\hat{\delta}=\hat{\delta}_{j+1}$ and stop. The algorithm stops if and only if the empirical autocorrelations and crosscorrelations are zero ($\left.\hat{U}_{j}^{\prime} \hat{a}_{j}=0\right)$.

Koreisha and Pukkila (1989) considered explicit computation of the maximum likelihood estimation for the unrestricted multivariate model and presented three linear preliminary estimation method which, when used in conjunction with the exact ML
(Hillmer and Tiao, 1979), can reduce parameter estimation by more than an order of magnitude. Furthermore, because of the great speed and accuracy associated with parameter value calculations they can also be employed in process order identification, and these techniques are useful in the early model building-stage since they permit analysts to compare the characteristics of various competing models inexpensively.

2.2. Previous results on measurement error model

While the functional model, which has a fixed x_{t} in the time series, considered in the Section 2.1, the structural model with stochastic x_{t} in the time series can be applied to the following:

$$
\begin{equation*}
y_{t}=x_{t}+u_{t} \tag{2.2.1}
\end{equation*}
$$

where u_{t} is a measurement error. Estimation of the true value X_{t} is very important in signal measurement problems encountered in the engineering areas where X_{t} is known as 'signal' and u_{t} as 'noise'. In addition, it is important in survey sampling in the situation where a population is sampled at a sequence of time points according to a sampling scheme and in macroeconomic survey data such as the Panel Study of Income Dynamics (PSID) and the U. S. Current Population Survey (CPS). We consider the measurement error model with the $\operatorname{ARMA}(p, q)$ process included. Some results on estimating the univariate version of model (2.2.1) available in the following literature.

The problem of estimating the AR process parameters based on the data corrupted by the unknown white noise has been studied by many authors. This problem was first treated by Walker (1960). Later, Parzen (1967) proposed some methods to estimate process parameters (PP) and signal-to-noise ratio (SNR) by means of spectral density and third order correlation. Kashyap (1970) worked the ML method for more general vector ARMA model with additional white noise.

Pagano (1974) suggested a two-stage nonlinear LS procedure to obtain consistent and efficient estimators with the situation where x_{t} is $\operatorname{AR}(p)$ and u_{t} is white noise:

$$
\begin{gather*}
y_{t}=x_{t}+u_{t} \\
\sum_{j=0}^{p} \phi_{j} x_{t-j}=e_{t} \tag{2.2.2}
\end{gather*}
$$

where $\left\{x_{t}\right\}$ and $\left\{u_{t}\right\}$ are independent, $\left\{u_{t}\right\}$ and $\left\{e_{t}\right\}$ are iid with $N\left(0, \sigma_{u}{ }^{2}\right), N\left(0, \sigma_{e}{ }^{2}\right)$, respectively, and $\phi_{0}=1, \phi_{p} \neq 0$. His basic idea is to introduce the first ($p+1$) new parameters and obtain initial estimates of these new parameters and original $(p+2)$ parameters on the basis that the model (2.1.1) and (2.2.2) are then transformed into a mixed ARMA model. Having obtained these initial estimates, we can get better estimates by expressing these parameters in terms of the original parameters. Therefore, model (2.2.1) and (2.2.2) are rewritten (Pagano, 1974, p. 100), as a mixed ARMA(p, q),

$$
\begin{equation*}
\sum_{\mathrm{j}=0}^{\mathrm{p}} \phi_{\mathrm{j}} \mathrm{x}_{\mathrm{t}-\mathrm{j}}=\sum_{\mathrm{i}=0}^{\mathrm{q}} \gamma_{\mathrm{i}} \mathrm{e}_{\mathrm{t}-\mathrm{i}} \tag{2.2.3}
\end{equation*}
$$

with $\gamma_{0}=1$ and $\gamma_{q} \neq 0, \mathrm{q} \geq 1$. In this reparameterization, we have gone from the original $\mathrm{p}+\mathrm{q}+2$ parameters to $\mathrm{p}+\max (\mathrm{p}, \mathrm{q})+1$ parameters. Furthermore, Pagano presented the nonlinear regression method which is asymptotically consistent with the ML method and proved its properties (Theorem 4, p. 107).

Sakai and Arase (1979) considered a modified LS procedures for the problem of estimating parameters of an AR process based on the data corrupted by unknown white noise. Assume that the time series $\left\{\mathrm{x}_{\mathrm{t}}\right\}$ is a zero mean Gaussian p-th order AR process, (2.2.2) where $\left\{e_{t}\right\}$ is a sequence of white noise with $E\left(e_{t}\right)=0$ and $E\left(e_{t} e_{s}\right)=\sigma_{e}^{2} \delta_{t, s}$. Denote
the noisy observation sequence by $\left\{y_{t}\right\}$ with (2.2.1) where $\left\{u_{t}\right\}$ is a Gaussian white noise sequence uncorrelated with $\left\{\mathrm{X}_{\mathrm{t}}\right\}$ and $\sigma_{\mathrm{e}}{ }^{2}$ is known. There are several steps to develop the modified LS method so as to estimate $\phi_{1}, \ldots, \phi_{\mathrm{p}}, \sigma_{\mathrm{e}}{ }^{2}$ and $\sigma_{\mu}{ }^{2}$ recursively, when we have n successive samples y_{1}, \ldots, y_{n}. Firstly, from (2.2.1) and (2.2.2), we get

$$
\begin{equation*}
\sum_{i=1}^{p} \phi_{i} y_{t-i}=e_{t}-\sum_{j=0}^{p} \phi_{j} \mu_{t-j}, \phi_{0}=0 \tag{2.2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
y_{t}-\mathbf{Y}_{\mathrm{t}-1}^{\prime} \Phi=\mathrm{v}_{\mathrm{t}} \tag{2.2.5}
\end{equation*}
$$

where $\mathbf{Y}_{\mathrm{t}-1}=\left(\mathrm{y}_{\mathrm{t}-1}, \ldots, \mathrm{y}_{\mathrm{t}-\mathrm{p}}\right)^{\prime}, \Phi=\left(\phi_{1}, \ldots, \phi_{\mathrm{p}}\right)^{\prime} .\left(\sum_{\mathrm{t}=1}^{\mathrm{n}} \mathbf{Y}_{\mathrm{t}-1} \mathbf{Y}_{\mathrm{t}-1}^{\prime}\right) \hat{\mathbf{a}}_{\mathrm{n}}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \mathbf{Y}_{\mathrm{t}-1} \mathrm{y}_{\mathrm{t}}$ is obtained by applying the LS method to (2.2.5) where

$$
\begin{equation*}
\hat{\mathbf{a}}_{\mathrm{n}}=\left(\hat{\alpha}_{\mathrm{n}}^{1}, \cdots, \hat{\alpha}_{\mathrm{n}}^{\mathrm{p}}\right)^{\prime}=\left(\sum_{\mathrm{t}=1}^{\mathrm{n}} \mathbf{Y}_{\mathrm{t}-1} \mathbf{Y}_{\mathrm{t}-1}^{\prime}\right)^{-1}\left(\sum_{\mathrm{t}=1}^{\mathrm{n}} \mathbf{Y}_{\mathrm{t}-1} \mathbf{y}_{\mathrm{t}}\right) \tag{2.2.6}
\end{equation*}
$$

and $\hat{\mathbf{a}}_{\mathrm{n}}$ is the LS estimate for Φ. Since the LS estimator is asymptotically biased, we may apply their recursive modified LS method to this situation, the estimator $\hat{\Phi}_{\mathrm{n}}$ is defined by

$$
\begin{equation*}
\hat{\Phi}_{\mathrm{n}}=\hat{\mathbf{a}}_{\mathrm{n}}+\mathrm{n} \mathbf{P}_{\mathrm{n}} \sigma_{\mathrm{n}}^{2} \hat{\Phi}_{\mathrm{n}-1} \tag{2.2.7}
\end{equation*}
$$

with $\mathbf{P}_{\mathrm{n}}=\left(\Sigma \mathbf{Y}_{\mathrm{t}-1} \mathbf{Y}_{\mathrm{t}-1}^{\prime}\right)^{-1}, \quad \hat{\Phi}_{\mathrm{n}}=\left(\hat{\boldsymbol{\phi}}_{\mathrm{n}}^{1}, \cdots, \hat{\phi}_{\mathrm{n}}^{\mathrm{p}}\right)^{\prime} . \hat{\Phi}_{\mathrm{n}}$ in (2.2.7) converges to Φ under the assumption that $\sigma_{\mathrm{n}}{ }^{2}$ is known. But in many practical cases it is necessary to estimate it since $\sigma_{n}{ }^{2}$ is not known. Therefore, (2.2.7) can be modified to

$$
\begin{equation*}
\hat{\Phi}_{\mathrm{n}}=\hat{\mathbf{a}}_{\mathrm{n}}+\mathrm{n} \mathbf{P}_{\mathrm{n}} \hat{\sigma}_{\mathrm{n}}^{2} \hat{\Phi}_{\mathrm{n}-1} \tag{2.2.8}
\end{equation*}
$$

Moreover, the recursive formulae for $\mathbf{P}_{\mathrm{n}}, \hat{\mathbf{a}}_{\mathrm{n}}$ and $\sum_{\mathrm{t}=1}^{\mathrm{n}} \hat{\xi}_{\mathrm{t}, \mathrm{n}}^{2}$ where the residual at time n is $\xi_{t, n}=y_{t}-\mathbf{Y}_{\mathrm{t}-1}^{\prime} \hat{\mathbf{a}}_{\mathrm{n}}$ are given by (Sakai and Arase, 1979, p. 952). On the contrary, in the case that σ_{e}^{2} is known, we estimate $\hat{\sigma}_{n}^{2}, \hat{\Phi}_{\mathrm{n}}$, and $\left(\hat{\sigma}_{\mathrm{e}}^{2}\right)_{\mathrm{n}}$ as in (Sakai and Arase, 1979, p. 953). Finally, they showed that modified LS method dominates the Yuler-Walker and the bootstrap method for the problem of estimating AR process parameters based on the data corrupted by unknown white noise from the simulation results.

Dunsmuir (1979) investigated central limit theorem for parameter estimation in stationary vector time series and discussed its application to models for a stationary signal observed with noise. Furthermore, he derived the strong consistency and the limiting distribution of estimators by maximizing a frequency domain approximation of the likelihood function.

Binder and Hidiroglou (1987) considered model $y_{t}=x_{t}+u_{t}$ where x_{t} is a $\operatorname{ARMA}(p, q)$ and u_{t} is a $\operatorname{ARMA}\left(p^{*}, q^{*}\right)$ and formulated it as a state space model and exploited an iterative numerical procedure to compute the MLE. The exact log likelihood function may be written as:

$$
\begin{equation*}
\mathrm{L}=-\frac{1}{2} \sum_{\mathrm{t}=1}^{\mathrm{n}} \log \left|\mathbf{W}_{\mathrm{t} \mid \mathrm{t}-1}\right|-\frac{1}{2} \sum_{\mathrm{t}=1}^{\mathrm{n}}\left(\mathbf{Y}_{\mathrm{t}}-\hat{\mathbf{Y}}_{\mathrm{t} \mid \mathrm{t}-1}\right)^{\prime} \mathbf{W}_{\mathrm{t} \mid \mathrm{t}-1}^{-1}\left(\mathbf{Y}_{\mathrm{t}}-\hat{\mathbf{Y}}_{\mathrm{t} \mid \mathrm{t}-1}\right) \tag{2.2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{W}_{\mathrm{t} \mid \mathrm{i}}=\operatorname{Var}\left(\mathbf{y}_{\mathrm{t}} \mid \mathbf{Y}_{\mathrm{i}}\right)=\mathbf{A}_{\mathrm{t}} \mathbf{P}_{\mathrm{t} \mid \mathrm{i}} \mathbf{A}_{\mathrm{t}}^{\prime}, \hat{\mathbf{y}}_{\mathrm{t} \mid \mathrm{i}}=\mathrm{E}\left(\mathbf{y}_{\mathrm{t}} \mid \mathbf{Y}_{\mathrm{i}}\right)=\mathbf{x}_{\mathrm{t}} \mu_{\mathrm{t}}+\mathbf{A}_{\mathrm{t}} \hat{\mathbf{z}}_{\mathrm{t} \mid \mathrm{i}} \tag{2.2.10}
\end{equation*}
$$

based on the given model $\mathbf{z}_{0} \sim \mathrm{~N}\left(\mathbf{0}, \Sigma_{0}\right), \mathbf{z}_{\mathrm{t}}=\mathbf{F}_{\mathbf{t}_{\mathrm{t}-1}}+\mathbf{G}_{\mathrm{t}} \varepsilon_{\mathrm{t}}$ where $\varepsilon_{\mathrm{t}} \sim \mathrm{N}\left(\mathbf{0}, \mathbf{V}_{\mathrm{t}}\right)$ and $\left\{\mathbf{z}_{\mathrm{t}}\right\}$ is assumed to be a series of r-dimensional vectors. The model formulation continues with

$$
\theta_{\mathrm{t}}=\mu_{\mathrm{t}}+\mathbf{h}^{\prime} \mathbf{z}_{\mathrm{t}}, \mathbf{e}_{\mathrm{t}}=\mathbf{k}_{\mathrm{t}} \mathbf{z}_{\mathrm{t}} \text {, and } \mathbf{Y}_{\mathrm{t}}=\mathbf{x}_{\mathrm{t}} \theta_{\mathrm{t}}+\mathbf{e}_{\mathrm{t}}=\mathbf{x}_{\mathrm{t}} \mathbf{u}_{\mathrm{t}}+\mathbf{A}_{\mathrm{t}} \mathbf{z}_{\mathrm{t}}
$$

where $\mathbf{A}_{\mathrm{t}}=\mathbf{x}_{\mathbf{t}} \mathbf{h}^{\prime}+\mathbf{k}_{\mathrm{t}}$. Maximizing this \log likelihood function (2.2.9) with respect to $\alpha_{1}, \ldots, \alpha_{p}, \beta_{1}, \ldots, \beta_{q}, \sigma^{2}$ and $\gamma_{1}, \ldots, \gamma_{s}$ (when $\mathbf{u}_{t}=\mathbf{c}_{t}^{\prime} \gamma$ for known \mathbf{c}_{t}) based on ARMA(p,q) process involves finding the first and second derivatives of (2.2.9) with respect to these parameters. Therefore, it is sufficient to get the first and second derivations of $\hat{\mathbf{y}}_{\mathrm{tt}-1}$ and $\mathbf{w}_{\mathrm{t}-\mathrm{t}}$ with respect to the known parameters $\left\{\alpha_{1}, \ldots, \alpha_{\mathrm{p}}, \beta_{1}, \ldots, \beta_{\mathrm{q}}, \sigma^{2}, \gamma_{1}, \ldots, \gamma_{\mathrm{s}}\right\}$. These can be obtained recursively by using the following along with (2.2.10):

$$
\begin{aligned}
& \hat{\mathbf{z}}_{100}=\mathbf{0} \text {, } \\
& \mathbf{P}_{110}=\mathbf{F}_{1} \Sigma_{0} \mathbf{F}_{1}^{\prime}+\mathbf{G}_{1} \mathbf{V}_{1} \mathbf{G}_{1}^{\prime}, \\
& \hat{\mathbf{z}}_{\mathrm{t} \mid \mathrm{t}}=\hat{\mathbf{t}}_{\mathrm{t} \mid-1}+\mathbf{P}_{\mathrm{t} \mid \mathrm{t}-1} \mathbf{A}_{\mathrm{t}}^{\prime} \mathbf{W}_{\mathrm{t} \mid \mathrm{t}-1}^{-1}\left(\mathbf{y}_{\mathrm{t}}-\hat{\mathbf{y}}_{\mathrm{t} \mid \mathrm{t}-1}\right) \text {, } \\
& \hat{\mathbf{z}}_{t \mid t+1}=\mathbf{F}_{t+1} \hat{\mathbf{z}}_{\mathrm{t} \mid t} \text {, } \\
& \mathbf{P}_{t \mid t}=\mathbf{P}_{t \mathrm{t} t-1}-\mathbf{P}_{\mathrm{t} \mid t-1} \mathbf{A}_{\mathrm{t}}^{\prime} \mathbf{W}_{\mathrm{t} \mid t-1}^{-1} \mathbf{A}_{\mathrm{t}} \mathbf{P}_{\mathrm{t} t \mathrm{t}-1} \text {, } \\
& \mathbf{P}_{t+1 \mid t}=\mathbf{F}_{t+1} \mathbf{P}_{t \mid 1} \mathbf{F}_{t+1}^{\prime}+\mathbf{G}_{t+1} \mathbf{V}_{t+1} \mathbf{G}_{t+1}^{\prime}
\end{aligned}
$$

CHAPTER III

TESTING FOR A UNIT ROOT IN AN AR(p) SIGNAL WITH MA(q) NOISE

Section 3.1 describes previous works in testing for a unit root with parametric constraints and general restricted model is introduced in Section 3.2. In Section 3.3 we discuss the asymptotic distributions both of parameter estimators and of the unit root test statistics under the null hypothesis.
3.1. Previous works in testing for a unit root with parametric constraints

Shin (1993) considered ML estimation for stationary AR processes when the signal is subject to a MA noise, and also this ML estimator of the parameter vector was shown to be strongly consistent and to have a multivariate normal limiting distribution. The model which he suggested is

$$
\begin{align*}
& y_{t}=x_{t}+u_{t} \tag{3.1.0}\\
& x_{t}=\rho x_{t-1}+z_{t} \tag{3.1.1}
\end{align*}
$$

$$
\begin{aligned}
& \sum_{i=0}^{p} \alpha_{i} z_{t-i}=\varepsilon_{t}, \quad \alpha_{0}=1 \\
& u_{t}=\sum_{j=0}^{q} \beta_{j} w_{t-j}, \beta_{0}=1,
\end{aligned}
$$

for $\mathrm{t}=1, \ldots, \mathrm{n}$, where p and q are known nonnegative integers and n is the sample size. In addition $\left\{y_{t}\right\}$ is a sequence of observations and $\left\{\varepsilon_{t}\right\}$ and $\left\{\mathrm{w}_{\mathrm{t}}\right\}$ are iid $N\left(0, \sigma_{\varepsilon}^{2}\right)$ and $\mathrm{N}\left(0, \sigma_{\mathrm{w}}{ }^{2}\right)$ sequences respectively. The process $\left\{\mathrm{x}_{\mathrm{t}}\right\}$ is assumed to be stationary and $\alpha_{\mathrm{p}} \neq 0$ and $\beta=\left(\beta_{1}, \ldots, \beta_{q}\right)^{\prime}$ and $\sigma_{w}{ }^{2}$ are known. From (3.1.0) - (3.1.1) the following is obtained as

$$
\begin{equation*}
\sum_{j=0}^{p} \alpha_{j}\left(y_{t-j}-\rho y_{t-i-j}\right)=\sum_{j=0}^{p+1}\left(\alpha_{j}-\rho \alpha_{j-1}\right) u_{t-j}+\varepsilon_{t} \tag{3.1.2}
\end{equation*}
$$

where $\alpha_{0}=1$ and $\alpha_{-1}=\alpha_{p+1}=0$. Because the autocovarinace function of the time series defined by the right hand side of (3.1.2) is zero for lags greater than $(p+q+1)$ it can be written as an $M A(p+q+1)$ process:

$$
\begin{equation*}
\sum_{j=0}^{p} \alpha_{j}\left(y_{t-j}-\rho y_{t-1-j}\right)=\sum_{j=0}^{p+q+1} \gamma_{j} e_{t-j} \tag{3.1.3}
\end{equation*}
$$

where $\left\{\mathrm{e}_{\mathrm{t}}\right\}$ is a sequence of iid $\mathrm{N}\left(0, \sigma^{2}\right)$ random variables, $\sigma^{2}>0$ and $\gamma_{0}=1$. Let $\theta=$ $\left(\alpha_{1}, \ldots, \alpha_{p}, \gamma_{1}, \ldots, \gamma_{p+q}\right)^{\prime}, \xi=\left(\theta^{\prime}, \sigma^{2}\right)^{\prime}, \mathbf{Y}=\left(y_{1}, \ldots, y_{n}\right)^{\prime}$ and $\mathbf{X}=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$. Then the negative log likelihood function is

$$
\begin{equation*}
\mathrm{L}_{\mathrm{n}}(\xi)=\mathbf{Y}^{\prime} \operatorname{Var}(\mathbf{Y})^{-1} \mathbf{Y}+\log \left[\operatorname{det}\left(\operatorname{Var}(\mathbf{Y}) / \sigma^{2}\right)\right]+\mathrm{n} \log \sigma^{2} . \tag{3.1.4}
\end{equation*}
$$

The ML estimator is defined by minimizing $\mathrm{L}_{\mathrm{n}}(\xi)$ with respect to ξ under the following restriction on ξ, for $h=0,1, \ldots, p+q$,

$$
\begin{equation*}
\sigma^{2} \sum_{j=0}^{p+q-h} \gamma_{j} \gamma_{j+h}-\sigma_{\varepsilon}^{2} \delta_{0 h}-\sum_{i=0}^{p} \sum_{j=0}^{p} \alpha_{i} \alpha_{j} \sum_{s=0}^{q-|i-j-h|} \beta_{s} \beta_{s+|i-j-h|}=0 \tag{3.1.5}
\end{equation*}
$$

where $\gamma_{0}=\alpha_{0}=1$ and $\delta_{0 \mathrm{~h}}$ is the Kronecker delta. The modified ML estimator is defined by minimizing

$$
\begin{equation*}
L_{n}{ }_{n}^{M}(\xi)=\Sigma e_{t}^{2}(\mathbf{Y}, \theta) / \sigma^{2}+n \log \sigma_{e}^{2} \tag{3.1.6}
\end{equation*}
$$

under the above restriction of (3.1.5) and it has the same limiting distribution as ML estimator based on (3.1.4) and is also strongly consistent. He showed that this modified ML estimator is much better than that of Said and Dickey (1984) in the sense that in general empirical powers are bigger and empirical sizes are much closer to the nominal levels through numerical results.

Miazaki and Dorea (1993) considered univariate ARMA model with nonlinear restrictions for analyzing a single time series data set from rotational sampling. If the sampling at regular time intervals is designed such that samples drawn on different occasions partially overlap, we can have a rotational sampling scheme. Under a rotational sampling scheme, they extended the ideas of Pagano (1974) in the white noise u_{t} case to
the MA(q) u_{t} case. Consider a signal detection model in which the signal x_{t} is a p th order AR process:

$$
\begin{align*}
& y_{t}=x_{t}+u_{t}, t=1, \ldots, n, \\
& \sum_{i=0}^{p} \alpha_{i} x_{t-i}=e_{t}, \alpha_{0}=1 \tag{3.1.7}\\
& u_{t}=\sum_{j=0}^{q} b_{j} v_{t-j}, b_{0}=1,
\end{align*}
$$

where $\left(e_{t}, v_{t}\right)^{\prime}$ is a sequence of independent $N(0, \Sigma)$ random vectors with $\Sigma=\operatorname{diag}\left(\sigma_{e}{ }^{2}\right.$, σ_{v}^{2}). It is assumed that the roots of $\sum_{i=0}^{p} \alpha_{i} L^{i}=0$ and of $\sum_{b=0}^{q} b_{j} L^{j}=0$ are greater than one in absolute value. Then by Pagano's (1974) approach the model (3.1.7) can be written as an ARMA process,

$$
\begin{equation*}
\sum_{\mathrm{i}=0}^{\mathrm{p}} \alpha_{\mathrm{i}} \mathrm{y}_{\mathrm{t}-\mathrm{i}}=\sum_{\mathrm{j}=0}^{\mathrm{p+q}} \beta_{\mathrm{j}} \mathrm{z}_{\mathrm{t}-\mathrm{j}}, \alpha_{0}=\beta_{0}=1 \tag{3.1.8}
\end{equation*}
$$

with restrictions

$$
\begin{aligned}
& \sigma_{e}^{2}+\sum_{j=0}^{p} \sum_{k=0}^{p} \alpha_{j} \alpha_{k} \gamma_{u}(k-j)-\sigma_{z}^{2} \sum_{j=0}^{p+q} \beta_{j}^{2}=0, \\
& \sum_{j=0}^{p} \sum_{k=0}^{p} \alpha_{j} \alpha_{k} \gamma_{u}(k-j+h)-\sigma_{z}^{2} \sum_{j=0}^{p+q-h} \beta_{j} \beta_{j+h}=0, h=1, \cdots, p+q,
\end{aligned}
$$

where $\gamma_{\mu}(\mathrm{h})=\mathrm{E}\left(\mathrm{z}_{\mathrm{t}} \mathrm{z}_{\mathrm{t}+\mathrm{h}}\right)$. The new parameters $\beta=\left(\beta_{1}, \ldots, \beta_{\mathrm{p}+\mathrm{q}}\right)^{\prime}$ and $\sigma_{\mathrm{z}}{ }^{2}=\mathrm{V}\left(\mathrm{z}_{\mathrm{t}}\right)$ are functions of $\alpha=\left(\alpha_{1}, \ldots, \alpha_{p}\right)^{\prime}$ and σ_{e}^{2} from (3.1.7). Let $\theta=\left(\delta^{\prime}, \sigma_{e}^{2}\right)^{\prime}, \delta=\left(\gamma^{\prime}, \sigma_{z}^{2}\right)^{\prime}, \gamma=\left(\alpha^{\prime}\right.$,
$\left.\beta^{\prime}\right)^{\prime}$ and $\pi=\left(\alpha^{\prime}, \sigma_{\mathrm{e}}^{2}\right)^{\prime}$. Then we can develop a procedure to construct estimate of α and $\sigma_{\mathrm{e}}{ }^{2}$ as follows.

Step 1. Consider the restricted model (3.1.8) and the problem of estimating δ. Assume one has an initial estimator γ^{0} of γ. Let

$$
z_{t}(\mathbf{Y}, \gamma)=Y_{t}+\sum_{i=1}^{p} \gamma_{i} Y_{t-i}-\sum_{j=1}^{p+q} \gamma_{p+j} Z_{t-j} .
$$

Expanding $z_{\mathrm{t}}(\mathbf{Y}, \gamma)$ in a Taylor series about γ^{0} and regressing on the vector of the partial derivatives of $z_{\mathrm{t}}(\mathbf{Y}, \gamma)$ with respect to $\gamma, \mathbf{u}_{\mathrm{t}}(\mathbf{Y}, \gamma)$, we obtain the one-step Gauss-Newton estimator of γ :

$$
\begin{equation*}
\widetilde{\gamma}=\gamma^{0}-\left(\sum_{t=1}^{n} \mathbf{u}_{t}^{\prime}\left(\mathbf{Y}, \gamma^{0}\right) \mathbf{u}_{\mathrm{t}}\left(\mathbf{Y}, \gamma^{0}\right)\right)^{-1} \sum_{\mathrm{t}=1}^{\mathrm{n}} \mathbf{u}_{\mathrm{t}}^{\prime}\left(\mathbf{Y}, \gamma^{0}\right) \mathrm{z}_{\mathrm{t}}\left(\mathbf{Y}, \gamma^{0}\right) . \tag{3.1.9}
\end{equation*}
$$

Step 2. Let δ^{0} be an initial estimator of δ and \mathbf{G}^{0} be its estimated covariance matrix. To estimate consider the model:

$$
\begin{equation*}
\theta: \delta^{0}=\delta+\mathbf{a} \text { subject to } \mathbf{f}(\theta)=\mathbf{0} \tag{3.1.10}
\end{equation*}
$$

where \mathbf{a} is a random column vector with zero mean and covariance matrix \mathbf{G}^{0}. Find the value $\hat{\delta}$ that maximizes $\left(\delta^{0}-\delta\right)^{\prime}\left(\mathbf{G}^{0}\right)^{-1}\left(\delta^{0}-\delta\right)$ subject to $\mathbf{f}(\theta)=\mathbf{0}$ and take $\hat{\sigma}_{\mathrm{e}}^{2}$ such that

$$
\mathbf{f}\left(\hat{\delta}, \hat{\sigma}_{e}^{2}\right)=\mathbf{0}, \quad \hat{\sigma}_{e}^{2}=\hat{\sigma}_{z}^{2} \sum_{j=0}^{p+q} \hat{\beta}_{j}^{2}-\sum_{i=0}^{p} \sum_{k=0}^{p} \hat{\alpha}_{i} \hat{\alpha}_{k} \gamma_{\mu}(\mathrm{k}-\mathrm{j}) \quad \text { where } \hat{\alpha}_{0}=\hat{\beta}_{0}=1 .
$$

In order to find the GLS estimator $\hat{\theta}$ for (3.1.10) the Gauss-Newton procedure for the model is proposed as

$$
\left(\begin{array}{cc}
\mathbf{T}^{\prime} & \mathbf{0} \\
\mathbf{0} & c \mathbf{I}_{p+q+1}
\end{array}\right)\binom{\delta^{0}}{\mathbf{0}}=\left(\begin{array}{cc}
\mathbf{T}^{\prime} & \mathbf{0} \\
\mathbf{0} & \mathbf{c} \mathbf{I}_{p+q+1}
\end{array}\right)\binom{\delta}{\mathrm{f}(\theta)}+\binom{\mathbf{a}_{1}}{\mathbf{a}_{2}}
$$

where $\mathbf{T}^{\prime} \mathbf{T}=\left(\mathbf{G}^{0}\right)^{-1}$, c is an arbitrary large number and $\left(\mathbf{a}_{1}, \mathbf{a}_{2}\right)^{\prime}$ is a random column vector with zero mean and identity estimated covariance matrix. Essentially, Steps 1-2 suggested by Miazaki and Dorea (1993) are Pagano's estimation method applied to model (3.1.1). It differs in that LS estimates are constructed in the first step and the set of statistics used at the second step are different. Pagano parameterized the unrestricted model in terms of α and covariance of $\sum_{j=0}^{p+q} \beta_{j} \mathrm{z}_{\mathrm{t}-\mathrm{j}}, \beta_{0}=1$ whereas γ and $\sigma_{\mathrm{z}}{ }^{2}$ are taken as parameters in Miazaki and Dorea (1993). The parameterization suggested by Miazaki and Dorea (1993) has the advantage that the estimated covariance of $\widetilde{\gamma}$ is obtained as a direct result of the computations when γ is estimated in Step 1.

Shin and Sarkar (1994) showed that an $\operatorname{ARIMA}(p, 1,0)$ signal disturbed by $\operatorname{MA}(\mathrm{q})$ noise is a $\operatorname{ARIMA}(\mathrm{p}, 1, \mathrm{p}+\mathrm{q}+1$) process restricted by nonlinear constraints on parameters. They considered the following model:

$$
\begin{gather*}
x_{t}=\rho x_{t-1}+z_{t} \tag{3.1.11}\\
z_{t}+\alpha_{1} z_{t-1}+\ldots+\alpha_{p} z_{t-p}=a_{t} \tag{3.1.12}
\end{gather*}
$$

and

$$
\begin{equation*}
u_{t}=w_{t}+\beta_{1} w_{t-1}+\ldots+\beta_{p} w_{t-q} \tag{3.1.13}
\end{equation*}
$$

for $t=1,2, \ldots, n$, where p and q are known nonnegative integers, $\alpha_{p} \neq 0$, the a_{t} and the w_{t} are independent unobservable processes, the a_{t} are iid $\mathrm{N}\left(0, \sigma_{a}{ }^{2}\right)$ and the w_{t} are iid $\mathrm{N}(0$, $\sigma_{w}{ }^{2}$). The roots of $A(m)=1-\alpha_{1} L-\ldots-\alpha_{p} L^{p}=0$ are assumed to lie outside the unit circle and $\beta=\left(\beta_{1}, \ldots, \beta_{q}\right)^{\prime}$ and $\sigma_{\mathrm{w}}{ }^{2}$ are assumed to be known. Without loss of generality, we assume $\sigma_{w}{ }^{2}=1$. From (3.1.0) and (3.1.11)-(3.1.13) we have

$$
\begin{equation*}
\sum_{j=0}^{p} \alpha_{j}\left(y_{t-j}-\rho y_{t-1-j}\right)=\sum_{j=0}^{p+1} \alpha_{j}^{*} u_{t-j}+a_{t} \tag{3.1.14}
\end{equation*}
$$

where $\alpha_{j}^{*}=\alpha_{j}-\rho \alpha_{j-1}, j=0,1, \ldots, p+1, \alpha_{0}=1$ and $\alpha_{-1}=\alpha_{p+1}=0$. Because the autocovariance function of the time series defined by the right hand side of (3.1.14) is zero for lags greater than $(\mathrm{p}+\mathrm{q}+1)$ it can be written as an $\mathrm{MA}(\mathrm{p}+\mathrm{q}+1)$ process:

$$
\begin{equation*}
\sum_{j=0}^{p} \alpha_{j}\left(y_{t-j}-\rho y_{t-1-j}\right)=\sum_{j=0}^{p+q+1} \gamma_{j} e_{t-j}, \tag{3.1.15}
\end{equation*}
$$

where $\left\{e_{t}\right\}$ is a sequence of $\operatorname{iid} \mathrm{N}\left(0, \sigma^{2}\right)$ random variables, σ^{2} and $\gamma_{0}=1$. Equating the covariance function of the right hand side of (3.1.14) to that of the right hand side of (3.1.15), for $h=0,1, \ldots, p+q+1$, we get

$$
\begin{equation*}
\sigma^{2}\left(\sum_{j=0}^{p+q+1-h} \gamma_{j} \gamma_{j+h}\right)-\left\{\sigma_{a}^{2} \mathbf{I}_{0}(\mathrm{~h})+\sum_{i=0}^{p+1} \sum_{j=0}^{p+1} \alpha_{i}^{*} \alpha_{j}^{*} \sum_{k=0}^{q-|i-j-h|} \beta_{k} \beta_{k+|i-j-h|}\right\}=0, \tag{3.1.16}
\end{equation*}
$$

where $\beta_{0}=1, I_{0}(\mathrm{~h})=1$ for $\mathrm{h}=0$ and $\mathrm{I}_{0}(\mathrm{~h})=0$ for $\mathrm{h} \neq 0$. Thus the parameters $\left(\gamma_{1}, \ldots\right.$, $\gamma_{p+q+1}, \sigma^{2}$) are functionally related to ($\rho, \alpha_{1}, \ldots, \alpha_{p}, \sigma_{a}{ }^{2}$) and the reparameterized (3.1.15) is a restricted ARIMA model of order ($\mathrm{p}, 1, \mathrm{p}+\mathrm{q}+1$). Therefore, the reparameterized model (3.1.15) of (3.1.0) and (3.1.11)-(3.1.13) is considered so that results for unrestricted ARIMA models can be used. Let $\theta=\left(\alpha_{1}, \ldots, \alpha_{p}, \gamma_{1}, \ldots, \gamma_{p+q+1}\right)^{\prime}, \psi=\left(\rho, \theta^{\prime}\right)^{\prime}$. The negative \log likelihood function of $y=\left(y_{1}, \ldots, y_{n}\right)^{\prime}$, conditional on y_{0}, up to a constant, is

$$
\mathrm{L}(\xi)=\mathrm{Q}(\psi) / \sigma^{2}+\log _{\mathrm{e}}\{\operatorname{det} \Gamma(\theta)\}+\operatorname{nlog}_{\mathrm{e}} \sigma^{2}
$$

where

$$
Q(\psi)=\left(\mathbf{y}-\rho \mathbf{y}_{1}\right)^{\prime} \Gamma^{-1}(\theta)\left(\mathbf{y}-\rho \mathbf{y}_{1}\right), \quad \mathbf{y}_{1}=\left(y_{0}, \ldots, y_{\mathrm{n}-1}\right)^{\prime}
$$

and $\sigma^{2} \Gamma_{n}(\theta)$ is the $\mathrm{n} \times \mathrm{n}$ covariance of $\left(\mathrm{y}_{1}-\rho \mathrm{y}_{0}, \ldots, \mathrm{y}_{\mathrm{n}}-\rho \mathrm{y}_{\mathrm{n}-1}\right)^{\prime}$. Let ξ^{*} denote as a ξ-value that minimizes $L(\xi)$ subject to the $(p+q+1)$ restrictions on ξ defined by

$$
\begin{equation*}
\mathbf{f}=\left(f_{1}, \ldots, f_{p+q+1}\right)^{\prime}=\mathbf{0} \tag{3.1.17}
\end{equation*}
$$

Then, ξ^{*} is the restricted ML estimator (RMLE) of ξ. In addition, they considered an approximation $L_{m}(\xi)$ of $L(\xi)$ and the modified restricted ML estimator (MRMLE) which minimizes $\mathrm{L}_{\mathrm{m}}(\xi)$ under restrictions (3.1.17). The MRMLE is defined to be a value of ξ that minimizes

$$
\begin{equation*}
\mathrm{L}_{\mathrm{m}}(\xi)=\mathrm{S}(\psi) / \sigma^{2}+\mathrm{n} \log _{\mathrm{e}} \sigma^{2} \tag{3.1.18}
\end{equation*}
$$

subject to the restriction of (3.1.17), where $S(\psi)=\sum e_{t}^{2}(\mathbf{y} ; \psi)$ with

$$
e_{t}(\mathbf{y} ; \psi)=-\sum_{j=0}^{p+q+1} \gamma_{j} e_{t-j}(y ; \psi)+\sum_{k=0}^{p} \alpha_{k}\left(y_{t-k}-\rho y_{t-1-k}\right) .
$$

Furthermore, they showed that the MRMLE and the RMLE have the same limiting distribution and that this RMLE of the unit root parameter is strongly consistent and it has the same distribution as the LS estimator of the unit root parameter in an $\operatorname{AR}(1)$ model tabulated by Dickey and Fuller (1979). Their simulation study showed that unit root tests based on the MRMLE performed very well for small samples and compare favorably with the Said and Dickey (1985) tests with respect to both sizes and powers under model (3.1.0) and (3.1.11)-(3.1.13) with $\mathrm{p}=0$ and $\mathrm{q}=1$.

3.2. General Restricted Model

To illustrate the general restricted model we first consider the vector version of the measurement error model

$$
\begin{equation*}
\mathbf{y}_{\mathrm{t}}=\mathbf{z}_{\mathrm{t}}+\mathbf{u}_{\mathrm{t}}, \mathbf{a}(\mathrm{~L}) \mathbf{z}_{\mathrm{t}}=\boldsymbol{\varepsilon}_{\mathrm{t}}, \mathbf{u}_{\mathrm{t}}=\mathbf{c}(\mathrm{L}) \mathbf{w}_{\mathrm{t}} \tag{3.2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{c}(\mathrm{L})=\mathbf{I}+\mathbf{C}_{1} \mathrm{~L}+\ldots+\mathbf{C}_{\mathrm{q}} \mathrm{~L}^{\mathrm{q}}, \mathbf{a}(\mathrm{~L})=\mathbf{I}+\mathbf{A}_{1} \mathrm{~L}+\ldots+\mathbf{A}_{\mathrm{p}} \mathrm{~L}^{\mathrm{p}} \tag{3.2.2}
\end{equation*}
$$

and \mathbf{z}_{t} and \mathbf{u}_{t} are $\operatorname{AR}(\mathrm{p})$ and $\operatorname{MA}(\mathrm{q})$ processes respectively. The $\left\{\varepsilon_{\mathrm{t}}\right\}$ and $\left\{\mathbf{w}_{\mathrm{t}}\right\}$ are two independent sequences of iid $m \times 1$ random vectors with variance covariance matrices $\Omega_{\varepsilon \varepsilon}$ and Ω_{ww} respectively. Assume that Ω_{ww} is known and without loss of generality, we can assume $\Omega_{\mathbf{w w}}=\mathbf{I}$. For stationarity, invertibility and identifiability, all the roots of $\operatorname{det}[\mathbf{a}(\mathrm{L})]$ are assumed to lie outside the unit circle, $\operatorname{det}\left[\Omega_{\varepsilon \varepsilon}\right] \neq 0$, and \mathbf{A}_{p} is of full rank. We can express the stationary process $\left\{\mathbf{y}_{\mathrm{t}}\right\}$ of (3.2.1) as an ARMA process. Note that from (3.2.1), $\mathbf{y}_{\mathrm{t}}=\mathbf{a}^{-1}(\mathrm{~L}) \varepsilon_{\mathrm{t}}+\mathbf{c}(\mathrm{L}) \mathbf{w}_{\mathrm{t}}$ and hence

$$
\begin{equation*}
\mathbf{a}(\mathrm{L}) \mathbf{y}_{\mathrm{t}}=\varepsilon_{\mathrm{t}}+\mathbf{a}(\mathrm{L}) \mathbf{c}(\mathrm{L}) \mathbf{w}_{\mathrm{t}} \tag{3.2.3}
\end{equation*}
$$

Since the autocovariance function of the right hand side of (3.2.3) is zero when the lag is greater than $q=p+r$, we can find a q th order moving average $\mathbf{e}_{t}+\sum_{j=1}^{q} \mathbf{B}_{j} \mathbf{e}_{t-j}$ whose autocovariance function is the same as that of the right-hand side of (3.2.3). Hence we can write model (3.2.3) as a special case of the general restricted model

$$
\begin{equation*}
\mathbf{a}(\mathrm{L}) \mathbf{y}_{\mathrm{t}}=\mathbf{b}(\mathrm{L}) \mathbf{e}_{\mathrm{t}}, \mathrm{t}=1,2, \ldots, \mathrm{n} \tag{3.2.4}
\end{equation*}
$$

where $\left\{\mathbf{e}_{\mathrm{t}}\right\}$ is a sequence of iid random vectors with variance covariance matrix Ω and L is the lag operator such that $L^{k} \mathbf{y}_{t}=\mathbf{y}_{t-k}$,

$$
\begin{equation*}
\mathbf{b}(\mathrm{L})=\mathbf{I}+\mathbf{B}_{1} \mathrm{~L}+\ldots+\mathbf{B}_{\mathrm{q}} \mathrm{~L}^{\mathrm{q}} \tag{3.2.5}
\end{equation*}
$$

It is assumed that (p, q) are nonnegative integers and known, and $\mathbf{A}=\left(\mathbf{A}_{1}\left|\mathbf{A}_{2}\right| \ldots \mid \mathbf{A}_{\mathrm{p}}\right), \mathbf{B}=$ $\left(\mathbf{B}_{1}\left|\mathbf{B}_{\mathbf{2}}\right| \ldots \mid \mathbf{B}_{\mathbf{q}}\right)$ are respectively $\mathrm{m} \times m p$ and $m \times m q$ matrices of unknown parameters. Let
$\left\{\mathbf{y}_{\mathrm{t}}\right\}, \mathrm{t}=1, \ldots, \mathrm{n}$ is the set of $\mathrm{m} \times 1$ observation vectors and $\left\{\mathbf{e}_{\mathrm{t}}\right\}$ is a sequence of iid m dimensional random vectors with mean zero and a nonsingular variance covariance matrix Ω. Furthermore, the following regularity conditions $\mathrm{C} 1-\mathrm{C} 3$ should be imposed to satisfy the stationarity, invertibility and identifiability of the model:

C1. All roots of $\operatorname{det}[\mathbf{a}(\mathrm{L})]$ and $\operatorname{det}[\mathbf{b}(\mathrm{L})]$ lie outside the unit circle;
C2. Suppose $\mathbf{a}(L)=\mathbf{c}(L) \mathbf{a}_{1}(L)$ and $\mathbf{b}(L)=\mathbf{c}(L) \mathbf{b}_{1}(L)$ for polynomials $\mathbf{a}_{1}(L), \mathbf{b}_{1}(L)$ and $\mathbf{c}(\mathrm{L})$, then $\operatorname{det}[\mathbf{c}(\mathrm{L})]$ is independent of L ;

C3. The matrix $[\mathbf{A} \mid \mathbf{B}]$ is of full rank.
The condition for $\mathbf{a}(\mathrm{L})$ in Cl is a stationarity condition for the \mathbf{y}_{t}. The condition for $\mathbf{b}(\mathrm{L})$ in C1 is an invertibility condition for \mathbf{e}_{t} to be expressed in terms of $\left\{y_{t-\mathrm{j}}\right\}, j=0, \ldots, \infty$, through $\mathbf{e}_{\mathrm{t}}=\mathbf{b}^{-1}(\mathrm{~L}) \mathbf{a}(\mathrm{L}) \mathbf{y}_{\mathrm{t}}$, and this is used to approximate the error \mathbf{e}_{t} and the derivatives of the approximation. The role of conditions C 2 and C 3 is to make the parameters in \mathbf{A} and \mathbf{B} identifiable. Also, it is common to model the elements of Ω as functions of a few parameters with some functional constraints. See Judge et al.(1985, Section 14.5.2).

The vector of restrictions on parameters \mathbf{A}, \mathbf{B} and Ω is defined as

$$
\begin{equation*}
\mathbf{f}(\mathbf{A}, \mathbf{B}, \Omega)=\mathbf{0} \tag{3.2.6}
\end{equation*}
$$

where \mathbf{f} is a k-dimensional vector of differential functions. With the reparameterized model (3.2.4), we can exploit the vector ARMA estimation procedure which will be discussed in Section 3.3. Since $\mathbf{b}(L) \mathbf{e}_{\mathrm{t}}$ and $\boldsymbol{\varepsilon}_{\mathrm{t}}+\mathbf{a}(\mathrm{L}) \mathbf{c}(\mathrm{L}) \mathbf{w}_{\mathrm{t}}$ should have the same autocovariance generating function, it follows that

$$
\begin{equation*}
\mathbf{b}(\mathrm{L}) \Omega\left[\mathbf{b}\left(\mathrm{L}^{-1}\right)\right]^{\prime}-\Omega_{\varepsilon \varepsilon}-\mathbf{a}(\mathrm{L}) \mathbf{c}(\mathrm{L})\left[\mathbf{c}\left(\mathrm{L}^{-1}\right)\right]^{\prime}\left[\mathbf{a}\left(\mathrm{L}^{-1}\right)\right]^{\prime}=\mathbf{0} \tag{3.2.7}
\end{equation*}
$$

As an application of the above model (3.2.1) and restriction (3.2.3), we consider the case with $\mathrm{m}=1, \mathrm{p}=1, \mathrm{q}=1$, i.e., we model z_{t} and u_{t} as $\mathrm{AR}(1)$ and $\mathrm{MA}(1)$ respectively

$$
\begin{equation*}
y_{t}=z_{t}+u_{t}, a(L) z_{t}=\varepsilon_{t}, u_{t}=c(L) w_{t} \tag{3.2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{c}(\mathrm{~L})=1+\mathrm{C}_{1} \mathrm{~L}, \mathrm{a}(\mathrm{~L})=1+\mathrm{A}_{1} \mathrm{~L} \tag{3.2.9}
\end{equation*}
$$

The model (3.2.8) can be expressed as follows:

$$
\begin{equation*}
y_{t}=-A_{1} z_{t-1}+\varepsilon_{t}+w_{t}+C_{1} w_{t-1} \tag{3.2.10}
\end{equation*}
$$

subject to the restrictions $\mathbf{f}=\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right)^{\prime}=(0,0)^{\prime}$.

3.3. Parameter estimation

In this section, three different methods are introduced to estimate unrestricted models and compared with one another so that we can take advantage of theoretical developments in a simulation study. Let $\alpha=\left(\alpha_{1}^{\prime}, \ldots, \alpha_{\mathrm{p}}^{\prime}\right)^{\prime}, \alpha_{\mathrm{i}}=\operatorname{vec}\left(\mathbf{A}_{\mathrm{i}}^{\prime}\right), \beta=\left(\beta_{1}^{\prime}, \ldots\right.$, $\left.\beta^{\prime}{ }_{q}\right)^{\prime}, \beta_{\mathrm{i}}=\operatorname{vec}\left(\mathbf{B}_{\mathrm{i}}^{\prime}\right), \theta=\left(\alpha^{\prime}, \beta^{\prime}\right)^{\prime}$ and $\xi=\left(\alpha^{\prime}, \beta^{\prime}, \eta^{\prime}\right)^{\prime}$. Letting $\mathbf{e}_{\mathrm{t}}=\mathbf{0}$ for $\mathrm{t} \leq 0$ and \mathbf{I}_{m} denote the m-dimensional identity matrix, we can solve (3.2.4) to get

$$
\begin{aligned}
\mathbf{e}_{\mathrm{t}}(\theta) & =\mathbf{y}_{\mathrm{t}}+\mathbf{A}_{1} \mathbf{y}_{\mathrm{t}-1}+\ldots+\mathbf{A}_{\mathrm{p}} \mathbf{y}_{\mathrm{t}-\mathrm{p}}-\mathbf{B}_{1} \mathbf{e}_{\mathrm{t}-1}(\theta)-\ldots-\mathbf{B}_{\mathrm{q}} \mathbf{e}_{\mathrm{t}-\mathrm{p}}(\theta) \\
& =\mathbf{y}_{\mathrm{t}}+\sum_{\mathrm{i}=1}^{\mathrm{p}}\left(\mathbf{I}_{\mathrm{m}} \otimes \mathbf{y}_{\mathrm{t}-\mathrm{p}}^{\prime}\right) \alpha_{\mathrm{i}}-\sum_{\mathrm{i}=1}^{\mathrm{q}}\left(\mathbf{I}_{\mathrm{m}} \otimes \mathbf{e}_{\mathrm{t}-\mathrm{i}}^{\prime}(\theta)\right) \beta_{\mathrm{i}}
\end{aligned}
$$

using $\operatorname{vec}(\mathbf{R S T})=\left(\mathbf{T}^{\prime} \otimes \mathbf{R}\right) \operatorname{vec}(\mathbf{S})$ (see Fuller, 1987, p. 387) with proper orders \mathbf{R}, \mathbf{S} and \mathbf{T}. In order to develop the conditional Gaussian likelihood of $\left\{\mathbf{y}_{\mathrm{t}}\right\}, \mathrm{t}=1, \ldots, \mathrm{n}$, the initial observations $\mathbf{y}_{0}, \mathbf{y}_{-1}, \ldots, \mathbf{y}_{1-\mathrm{p}}$ are assumed to be available and fixed and also the initial disturbances $\mathbf{e}_{0}, \mathbf{e}_{-1}, \ldots, \mathbf{e}_{1-q}$ are assumed to be zero, respectively (Reinsel et al., 1992). Then the negative logarithm of the conditional Gaussian likelihood function of $\left\{y_{t}\right\}, t=$ $1, \ldots, \mathrm{n}$ is approximated by (Shin, 1993)

$$
\begin{equation*}
\mathrm{L}_{\mathrm{n}}=\mathrm{L}_{\mathrm{n}}(\xi)=\frac{1}{2} \sum_{\mathrm{t}=1}^{\mathrm{n}} \mathbf{e}_{\mathrm{t}}^{\prime}(\theta) \Omega^{-1} \mathbf{e}_{\mathrm{t}}(\theta)+\frac{1}{2} \mathrm{n} \log \operatorname{det}(\Omega) . \tag{3.3.2}
\end{equation*}
$$

Based on the model (3.2.8)-(3.2.10) as a special case of (3.2.4)-(3.2.5) and (3.2.7) suggested by Shin and Sarkar (1994, p. 2646), (3.3.1) and (3.3.2) can be expressed as follows:

$$
\begin{equation*}
e_{t}^{*}=e_{t}^{*}(\theta)=y_{t}+A_{1} y_{t-1}-B_{1} e_{t-1}(\theta)-B_{2} e_{t-2}(\theta) \tag{3.3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{L}_{\mathrm{n}}^{*}=\mathrm{L}_{\mathrm{n}}^{*}(\xi)=\sum \mathrm{e}_{\mathrm{t}}^{*}(\theta)^{2} / 2 \sigma_{\mathrm{e}}^{2}+\mathrm{n} / 2\left(\log _{\mathrm{e}} \sigma_{\mathrm{e}}^{2}\right) \tag{3.3.4}
\end{equation*}
$$

3.3.1. Hannan and Rissanen (HR)'s method

As mentioned in Section 2.1.2, we may apply the first and second stages of the multivariate version of Hannan and Rissanen (1982) procedure in order to obtain an initial estimator $\widetilde{\xi}$ of ξ. In the first stage, regressing \mathbf{y}_{t} on $\mathbf{y}_{t-1}, \ldots, \mathbf{y}_{t-s}$, where s is a suitably chosen lag size large enough for approximating \mathbf{y}_{t} by previous observations, the residuals $\widetilde{\mathbf{e}}_{\mathrm{t}}$ are computed as estimates of the \mathbf{e}_{t}. In the second stage, we estimate $\widetilde{\mathbf{A}}$ and $\widetilde{\mathbf{B}}$ by regressing \mathbf{y}_{t} on $\left\{\mathbf{y}_{\mathrm{t}-1}, \ldots, \mathbf{y}_{\mathrm{t}-\mathrm{p}}\right\}$ and $\left\{\widetilde{\mathbf{e}}_{\mathrm{t}-1}, \ldots, \widetilde{\mathbf{e}}_{\mathrm{t}-\mathrm{q}}\right\}$. Then $\widetilde{\theta}=\left\{\left(\operatorname{vec}\left(\widetilde{\mathbf{A}}_{1}^{\prime}\right)\right)^{\prime}, \ldots\right.$, $\left.\left(\operatorname{vec}\left(\widetilde{\mathbf{A}}_{\mathrm{p}}^{\prime}\right)\right)^{\prime},\left(\operatorname{vec}\left(\widetilde{\mathbf{B}}_{1}^{\prime}\right)\right)^{\prime}, \ldots,\left(\operatorname{vec}\left(\widetilde{\mathbf{B}}_{\mathrm{q}}^{\prime}\right)\right)^{\prime}\right\}, \widetilde{\Omega}=\mathrm{n}^{-1} \Sigma \mathbf{e}_{\mathrm{t}}(\widetilde{\theta}) \mathbf{e}_{\mathrm{t}}^{\prime}(\widetilde{\theta})$ and $\widetilde{\eta}=\operatorname{vech}(\widetilde{\Omega})$.

3.3.2. Kohn's method

For a general vector linear time series model Kohn (1979) proved the strong consistency and asymptotic normality of parameter estimates obtained by maximizing a
particular time domain approximation to a Gaussian likelihood, where the observations are not necessarily assumed to be normally distributed. To solve the normal equations he set up a constrained Gauss-Newton iteration and obtained the properties of the iterates when the sample size is large. A Newton-Raphson procedure which takes restriction (3.2.6) into account is used to estimate the parameters based on model (3.2.4)-(3.2.6). In particular, an efficient estimator is obtained if we initialize the iteration with a $\sqrt{\mathrm{n}}$ consistent estimator.

Now we evaluate the first partial derivatives $\mathbf{L}_{\xi}=\partial \mathbf{L}_{n} / \partial \xi$ of \mathbf{L}_{n}. Letting $\mathbf{W}_{\theta, t}=$ $\partial \mathbf{e}_{\mathrm{t}}(\theta) / \partial \theta^{\prime}, \mathbf{W}_{\theta, \mathrm{t}}=\left(\mathbf{W}_{\alpha, \mathrm{t}} \mid \mathbf{W}_{\beta, \mathrm{t}}\right)$ is a $\mathrm{m} \times\left\{\mathrm{m}^{2}(\mathrm{p}+\mathrm{q})\right\}$ matrix, and $\mathbf{L}_{\theta}=\partial \mathbf{L}_{\mathrm{n}} / \partial \theta=\Sigma \mathbf{W}_{\theta, \mathrm{t}}^{\prime} \Omega^{-1}$ $\mathbf{e}_{\mathrm{t}}(\theta)$. When the restriction (3.2.6) involves the elements of Ω, estimates of α and β are functionally related to the parameter estimates of Ω. In case of $p=q=1$ and $\Omega \mathbf{B}_{1}{ }^{\prime}=\mathbf{A}_{1}{ }^{\prime}$ the distribution of the estimator of \mathbf{A}_{1} clearly depends on the distribution of the estimator of Ω. This means that it may not be proper to follow the approach of finding a minimizer $\Omega(\theta)$ of $\mathbf{L}_{n}(\xi)$ with respect to Ω for a fixed θ, and then minimizing $\mathbf{L}_{n}(\theta, \Omega(\theta)$), which works in the restricted case (Reinsel et al., 1992). Hence we need to find expressions and the asymptotic behavior of the derivatives $\mathbf{L}_{\eta}=\partial \mathbf{L}_{\mathrm{n}} / \partial \eta$ and $\mathbf{L}_{\eta \eta}=\partial^{2} \mathbf{L}_{\mathrm{n}} / \partial \eta \partial \eta^{\prime}$ with respect to $\eta=\operatorname{vech}(\Omega)$. In handling the derivatives \mathbf{L}_{η} and $\mathbf{L}_{\eta \eta}$ our analysis is based on Theorem 4.B. 2 of Fuller (1987, p. 398), which gives the limiting distribution of the ML estimator of the variance covariance matrix of the multivariate normal distribution based on iid observations. In the sequel, the range for t in the summations will be 1 to n . By (4.B.20) of Fuller (1987, p. 400),

$$
\mathbf{L}_{\xi}=-\Gamma^{-1} \operatorname{vech}\left[\Sigma \mathbf{e}_{\mathbf{t}}(\theta) \mathbf{e}_{\mathrm{t}}^{\prime}(\theta)-\mathrm{n} \Omega\right]
$$

where $\Gamma=2 \Psi(\Omega \otimes \Omega) \Psi^{\prime}$ and Ψ is a transformation matrix defined by $\operatorname{vech}(\Omega)=$ $\Psi \operatorname{vec}(\Omega)$. Let $\omega_{\mathrm{i}, \mathrm{j}}$ denote the (i, j)th element of Ω, let δ_{ij} be the Kronecker's delta such that $\delta_{\mathrm{ii}}=0$ and $\delta_{\mathrm{ij}}=0$ for $\mathrm{i} \neq \mathrm{j}$, and let $\Psi(\mathrm{ij}, \mathrm{ks})$ be the element of Ψ corresponding to ω_{ij} and ω_{ks} of $\operatorname{vech}(\Omega)$ and $\operatorname{vec}(\Omega)$ respectively. Then, from (4.A.3) of Fuller (1987) we have

$$
\Psi(\mathrm{ij}, \mathrm{ks})=\left(\delta_{\mathrm{ks}} \delta_{\mathrm{si}}+\delta_{\mathrm{ki}} \delta_{\mathrm{sj}}\right) / 2, \mathrm{j} \leq \mathrm{i} .
$$

Therefore,

$$
L_{\xi}=\operatorname{diag}\left[\Sigma \mathbf{W}_{\theta, \mathrm{t}}^{\prime} \mid-\left\{\operatorname{vech}\left(\Sigma \mathbf{e}_{\mathrm{t}}(\theta) \mathbf{e}_{\mathrm{t}}^{\prime}(\theta)-\mathrm{n} \Omega\right\}^{\prime} \Gamma^{-1}\right]^{\prime}\right.
$$

A Newton-Raphson procedure for estimating the model (3.2.4)-(3.2.5), without restriction (3.2.6), is

$$
\begin{equation*}
\xi^{+}=\widetilde{\xi}-\left(\widetilde{\mathbf{H}}_{\xi \xi}\right)^{-1} \widetilde{\mathbf{H}}_{\xi} \tag{3.3.5}
\end{equation*}
$$

where $\widetilde{\xi}$ is an initial estimator of ξ. In order to get estimator $\widetilde{\xi}$, the first and second stages of multivariate version of Hannan-Rissanen (1982) procedure may be applied to (3.3.5) as mentioned in Section 3.2.1. Now we modify the Newton-Raphson estimator ξ^{+}in (3.3.5) to accommodate the restriction (3.2.6). The Largrangian multiplier method for the vector linear time series models is to be used as a tool of developing the above estimators. The maximum likelihood estimator in this case minimize L_{n} subject to the restriction (3.2.6) and can be obtained by minimizing

$$
\mathbf{L}_{\mathrm{n}}+\mathbf{f}^{\prime} \lambda, \lambda \in \mathrm{R}^{\mathrm{k}}
$$

with respect to ξ and λ. Setting the first partial derivatives of $\left(L_{n}+\mathbf{f}^{\prime} \lambda\right)$ with respect to ξ and λ to zero, we get

$$
\begin{equation*}
\mathbf{L}_{\xi}+\mathbf{G}^{\prime} \lambda=\mathbf{0} \text { and } \mathbf{f}=\mathbf{0}, \tag{3.3.6}
\end{equation*}
$$

where $\mathbf{G}=\partial \mathbf{f} / \partial \xi^{\prime} . \quad$ Combining the Taylor expansions

$$
\begin{equation*}
\mathbf{L}_{\xi}=\widetilde{\mathbf{L}}_{\xi}+\widetilde{\mathbf{L}}_{\xi \xi}(\xi-\widetilde{\xi}), \mathbf{f}=\widetilde{\mathbf{f}}+\widetilde{\mathbf{G}}(\xi-\widetilde{\xi}) \tag{3.3.7}
\end{equation*}
$$

we have

$$
\widetilde{\mathbf{L}}_{\xi \xi}(\xi-\widetilde{\xi})+\widetilde{\mathbf{G}}^{\prime} \lambda=-\widetilde{\mathbf{L}}_{\xi}
$$

and

$$
\widetilde{\mathbf{G}}(\xi-\widetilde{\xi})=-\widetilde{\mathbf{f}}
$$

where $\widetilde{\xi}$ is an initial estimator, and $\widetilde{\mathbf{L}}_{\xi}, \widetilde{\mathbf{L}}_{\xi \xi}, \widetilde{\mathbf{G}}$ and $\widetilde{\mathbf{f}}$ are the values of $\mathbf{L}_{\xi}, \mathbf{L}_{\xi \xi}, \mathbf{G}$ and \mathbf{f} evaluated at $\xi=\widetilde{\xi}$. Note that we have used $\mathbf{f}=\mathbf{0}$. Therefore, the Newton-Raphson estimator is obtained as

$$
\left[\begin{array}{l}
\hat{\xi} \tag{3.3.8}\\
\hat{\lambda}
\end{array}\right]=\left[\begin{array}{l}
\widetilde{\xi} \\
\mathbf{0}
\end{array}\right]-\left[\begin{array}{cc}
\widetilde{\mathbf{L}}_{\xi \xi} & \widetilde{\mathbf{G}}^{\prime} \\
\widetilde{\mathbf{G}} & \mathbf{0}
\end{array}\right]^{-1}\left[\begin{array}{c}
\widetilde{\mathbf{L}}_{\xi} \\
\widetilde{\mathbf{f}}
\end{array}\right] .
$$

In order for the square matrix in (3.3.8) to be nonsingular, we need to make an assumption that \mathbf{G} is of full rank, which is equivalent to there being no redundancy in $\mathbf{f}=\mathbf{0}$.

When some parameters are restricted to zero, we need to remove only the rows and columns corresponding to the zero-restricted parameters in the vectors and matrices in (3.3.8) instead of incorporating the zero-restrictions into \mathbf{G} and \mathbf{f}.

Applying above to the model (3.2.8)-(3.2.10), the following are obtained:

$$
\mathbf{L}_{\xi}=\partial \mathbf{L}_{\mathrm{n}} / \partial \xi=\left[\begin{array}{l}
\sum \mathrm{W}_{\mathrm{A}_{1}, \mathrm{t}} \mathrm{e}_{\mathrm{t}}^{*} / \sigma_{\mathrm{e}}^{2} \\
\sum \mathrm{~W}_{\mathrm{B}_{1}, \mathrm{t}} \mathrm{e}_{\mathrm{t}}^{*} / \sigma_{\mathrm{e}}^{2} \\
\sum \mathrm{~W}_{\mathrm{B}_{2}, \mathrm{t}} \mathrm{e}_{\mathrm{t}}^{*} / \sigma_{\mathrm{e}}^{2} \\
-\frac{\sum \mathrm{e}_{\mathrm{t}}^{* 2}}{2\left(\sigma_{\mathrm{e}}^{2}\right)^{2}}+\frac{\mathrm{n}}{2 \sigma_{\mathrm{e}}^{2}}
\end{array}\right],
$$

and by differentiating (3.3.3) the elements of $\mathrm{W}_{\mathrm{A}_{1}, \mathrm{t}}, \mathrm{W}_{\mathrm{B}_{1}, \mathrm{t}}$ and $\mathrm{W}_{\mathrm{B}_{2}, \mathrm{t}}$ are computed recursively as

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{A}_{1}, \mathrm{t}}=\mathrm{y}_{\mathrm{t}-1}-\mathrm{B}_{1} \mathrm{~W}_{\mathrm{A}_{1}, \mathrm{t}-1}-\mathrm{B}_{2} \mathrm{~W}_{\mathrm{A}_{1}, \mathrm{t}-2} \\
& \mathrm{~W}_{\mathrm{B}_{1}, \mathrm{t}}=-\mathrm{e}_{\mathrm{t}-1}^{*}-\mathrm{B}_{1} \mathrm{~W}_{\mathrm{B}_{1}, \mathrm{t}-1}-\mathrm{B}_{2} \mathrm{~W}_{\mathrm{B}_{1}, \mathrm{t}-2}
\end{aligned}
$$

and

$$
\mathrm{W}_{\mathrm{B}_{2}, \mathrm{t}}=-\mathrm{e}_{\mathrm{t}-2}^{*}-\mathrm{B}_{1} \mathrm{~W}_{\mathrm{B}_{2}, \mathrm{t}-1}-\mathrm{B}_{2} \mathrm{~W}_{\mathrm{B}_{2}, \mathrm{t}-2} .
$$

Note that $\mathbf{L}_{\xi \xi}=\partial^{2} \mathbf{L}_{\mathrm{n}} / \partial \xi \partial \xi^{\prime}$ can be expressed as follows:

$$
\mathbf{L}_{\xi \xi}=\left[\begin{array}{cc}
\mathbf{P} & \mathbf{q}^{\prime} \\
\mathbf{q} & \mathrm{s}
\end{array}\right],
$$

where

with

$$
\begin{aligned}
& \mathrm{WW}_{\mathrm{A}_{1}, \mathrm{~B}_{1}}=\partial \mathrm{W}_{\mathrm{A}_{1}, \mathrm{t}} / \partial \mathrm{B}_{1}=-\mathrm{W}_{\mathrm{A}_{1}, \mathrm{t}-1}-\mathrm{B}_{1} \mathrm{WW}_{\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{t}-1}-\mathrm{B}_{2} \mathrm{WW}_{\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{t}-2}, \\
& W W_{A_{1}, B_{2}, t}=\partial W_{A_{1}, t} / \partial B_{2}=-W_{A_{1}, t-2}-B_{1} W_{A_{1}, B_{2}, t-1}-B_{2} W_{A_{1}, B_{2}, t-2}, \\
& W W_{B_{1}, t}=\partial W_{B_{1}, t} / \partial B_{1}=-2 W_{B_{1}, t-1}-B_{1} W_{B_{1}, t-1}-B_{2} W_{B_{1}, t-2}, \\
& \mathrm{WW}_{\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{t}}=\partial \mathrm{W}_{\mathrm{B}_{1}, \mathrm{t}} / \partial \mathrm{B}_{2}=-\mathrm{W}_{\mathrm{B}_{2}, \mathrm{t}-1}-\mathrm{B}_{1} \mathrm{WW}_{\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{t}-1}-\mathrm{W}_{\mathrm{B}_{1}, \mathrm{t}-2}-\mathrm{B}_{2} \mathrm{WW}_{\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{t}-2}, \\
& \mathrm{WW}_{\mathrm{B}_{2}, \mathrm{t}}=\partial \mathrm{W}_{\mathrm{B}_{2}, \mathrm{t}} / \partial \mathrm{B}_{2}=-2 \mathrm{~W}_{\mathrm{B}_{2}, \mathrm{t}-1}-\mathrm{B}_{1} \mathrm{WW}_{\mathrm{B}_{2}, \mathrm{t}-1}-\mathrm{B}_{2} \mathrm{WW}_{\mathrm{B}_{2}, \mathrm{t}-2}, \\
& \mathbf{q}=\left[-\sum \mathrm{e}_{\mathrm{t}}^{*} \mathrm{~W}_{\mathrm{A}_{1}, \mathrm{t}} /\left(\sigma_{\mathrm{e}}^{2}\right)^{2}-\sum \mathrm{e}_{\mathrm{t}}^{*} \mathrm{~W}_{\mathrm{B}_{1}, \mathrm{t}} /\left(\sigma_{\mathrm{e}}^{2}\right)^{2} \quad-\sum \mathrm{e}_{\mathrm{t}}^{*} \mathrm{~W}_{\mathrm{B}_{2}, \mathrm{t}} /\left(\sigma_{\mathrm{e}}^{2}\right)^{2}\right]
\end{aligned}
$$

and

$$
\mathrm{s}=\Sigma\left(\mathrm{e}_{\mathrm{t}}^{*}\right)^{2} /\left(\sigma_{\mathrm{e}}^{2}\right)^{3}-\mathrm{n} /\left(\sigma_{\mathrm{e}}^{2}\right)^{2}
$$

Furthermore,

$$
\mathbf{f}=\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right)^{\prime}=\left[\sigma_{\mathrm{e}}^{2}\left(\mathrm{~B}_{1}+\mathrm{B}_{1} \mathrm{~B}_{2}\right)-\left(\mathrm{A}_{1}+\mathrm{C}_{1}+\mathrm{A}_{1}^{2} \mathrm{C}_{1}+\mathrm{A}_{1} \mathrm{C}_{1}^{2}\right), \sigma_{\mathrm{e}}^{2} \mathrm{~B}_{2}-\mathrm{A}_{1} \mathrm{C}_{1}\right]^{\prime}
$$

and

$$
\mathbf{G}=\partial \mathbf{f} / \partial \xi^{\prime}=\left[\begin{array}{cccc}
-1-2 \mathrm{~A}_{1} \mathrm{C}_{1} & \sigma_{\mathrm{e}}^{2}+\mathrm{B}_{2} \sigma_{\mathrm{e}}^{2} & \mathrm{~B}_{1} \sigma_{\mathrm{e}}^{2} & \mathrm{~B}_{1}+\mathrm{B}_{1} \mathrm{~B}_{2} \\
-\mathrm{C}_{1} & 0 & \sigma_{\mathrm{e}}^{2} & \mathrm{~B}_{2}
\end{array}\right]
$$

Now we can compute an estimate for model (3.2.1), by applying (3.3.8) with \mathbf{G}, \mathbf{f} and $\mathbf{L}_{\xi \xi}$ described above to the reparmeterized model (3.2.4).
3.3.3. Shin and Sarkar's method

Based on the Kohn's method, Shin and Sarkar (1995) considered an approximation $\mathbf{H}_{\xi \xi}$ of $\mathbf{L}_{\xi \xi}$ in (3.3.8), in order to compute an easier Newton-Raphson estimator that approximates the restricted ML estimator. They defined

$$
\begin{equation*}
\mathbf{H}_{\xi \xi}=\operatorname{diag}\left[\Sigma \mathbf{W}_{\theta, t}^{\prime} \Omega^{-1} \mathbf{W}_{\theta, t}-\mathrm{n} \Gamma^{-1}\right] . \tag{3.3.10}
\end{equation*}
$$

Approximation $\Sigma \mathbf{W}_{\theta, t}^{\prime} \Omega^{-1} \mathbf{W}_{\theta, \mathrm{t}}$ of $\partial^{2} \mathrm{~L}_{\mathrm{n}} / \partial \theta \partial \theta^{\prime}$ is well explained in Reinsel et al. (1992) and by (4.B.22) of Fuller (1987) $\mathbf{L}_{\eta \eta}=-n \Gamma^{-1}+o_{p}(n)$. Hence, $\mathbf{L}_{\xi \xi}=\mathbf{H}_{\xi \xi}+o_{p}(n)$. Applying (3.3.10) to model (3.2.8)-(3.2.10), the following is obtained:

$$
\mathbf{H}_{\xi \xi}=\left[\begin{array}{cccc}
\sum \mathrm{W}_{\mathrm{A}_{1}, \mathrm{t}}^{2} / \sigma_{\mathrm{e}}^{2} & 0 & 0 & 0 \\
0 & \sum \mathrm{~W}_{\mathrm{B}_{1}, \mathrm{t}}^{2} / \sigma_{\mathrm{e}}^{2} & 0 & 0 \\
0 & 0 & \sum \mathrm{~W}_{\mathrm{B}_{2}, \mathrm{t}}^{2} / \sigma_{\mathrm{e}}^{2} & 0 \\
0 & 0 & 0 & \frac{\mathrm{n}}{2\left(\sigma_{\mathrm{e}}^{2}\right)^{2}}
\end{array}\right] .
$$

Therefore, by replacing $\widetilde{\mathbf{L}}_{\xi \xi}$ with its approximation $\widetilde{\mathbf{H}}_{\xi \xi}$, the Newton-Raphson estimator is obtained as

$$
\left[\begin{array}{l}
\hat{\xi} \tag{3.3.11}\\
\hat{\lambda}
\end{array}\right]=\left[\begin{array}{l}
\widetilde{\xi} \\
\mathbf{0}
\end{array}\right]-\left[\begin{array}{cc}
\widetilde{\mathbf{H}}_{\xi \xi} & \widetilde{\mathbf{G}}^{\prime} \\
\widetilde{\mathbf{G}} & \mathbf{0}
\end{array}\right]^{-1}\left[\begin{array}{c}
\widetilde{\mathbf{L}}_{\xi} \\
\widetilde{\mathbf{f}}
\end{array}\right] .
$$

3.4. The limiting distribution

Assume that $\sqrt{\mathrm{n}}(\hat{\xi}-\xi)=\mathrm{O}_{\mathrm{p}}(1)$. Combining the Taylor expansion

$$
\left[\begin{array}{c}
\widetilde{\mathbf{H}}_{\xi} \\
\widetilde{\mathbf{f}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{H}_{\xi} \\
\mathbf{f}
\end{array}\right]-\left[\begin{array}{cc}
\widetilde{\mathbf{H}}_{\xi \xi} & \widetilde{\mathbf{G}}^{\prime} \\
\widetilde{\mathbf{G}} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
\widetilde{\xi}-\xi \\
\mathbf{0}
\end{array}\right]+\left[\begin{array}{c}
\mathrm{O}_{\mathbf{p}}(1) \\
\mathrm{o}_{\mathbf{p}}(1)
\end{array}\right]
$$

with (3.3.8) replaced $\mathbf{L}_{\xi \xi}$ by $\mathbf{H}_{\xi \xi}$ and $\mathbf{f}=\mathbf{0}$, we get

$$
\left[\begin{array}{c}
\hat{\xi}-\xi \\
\hat{\lambda}
\end{array}\right]=-\left[\begin{array}{cc}
\widetilde{\mathbf{H}}_{\xi \xi} & \widetilde{\mathbf{G}}^{\prime}{ }^{\prime} \\
\widetilde{\mathbf{G}} & \mathbf{0}
\end{array}\right]^{-1}\left\{\left[\begin{array}{c}
\mathbf{H}_{\xi} \\
\mathbf{0}
\end{array}\right]+\left[\begin{array}{c}
\mathrm{O}_{\mathrm{p}}(1) \\
\mathbf{o}_{\mathrm{p}}(1)
\end{array}\right]\right\} .
$$

By Dunsmuir and Hannan (1976) together with theorem 4.B. 2 of Fuller (1987),

$$
\frac{1}{\sqrt{\mathrm{n}}} \mathbf{H}_{\xi} \xrightarrow{\mathrm{d}} \mathrm{~N}(\mathbf{0}, \mathbf{V}) \text { and } \frac{1}{\mathrm{n}} \mathbf{H}_{\xi \xi} \xrightarrow{\mathrm{p}} \mathbf{V},
$$

where $\mathbf{V}=\operatorname{diag}\left[\mathbf{I}(\theta), \Gamma^{-1}\right]$ and $\mathbf{I}(\theta)$ is the information matrix of θ in the unrestricted model (3.2.4)-(3.2.5). The normality of the \mathbf{e}_{t} is used for convergence in distribution of $\mathrm{n}^{-1 / 2} \mathbf{H}_{\eta}$, the elements of $\mathrm{n}^{-1 / 2} \mathbf{H}_{\xi}$ corresponding to the parameters η. Since \mathbf{G} is a continuous function of $\xi, \widetilde{\mathbf{G}} \xrightarrow{\mathrm{p}} \mathbf{G}$. Then from Shin and Sarkar (1995) the limiting distribution of these estimator $\hat{\xi}$ follows.

Theorem 3.1. Assume that the model (3.2.4)-(3.2.6) holds with regularity conditions C1-C3. And assume that the $\mathbf{e}_{\mathbf{t}}$'s are normal, \mathbf{f} is continuously differentiable and G is nonsingular. Suppose that the initial estimator $\hat{\xi}$ of ξ satisfies $\sqrt{\mathrm{n}}(\hat{\xi}-\xi)=\mathrm{O}_{\mathrm{p}}(1)$. Let $(\hat{\xi}, \hat{\lambda})$ be as defined in (3.3.11). Then,

$$
\left[\begin{array}{c}
\sqrt{\mathrm{n}}(\hat{\xi}-\xi) \tag{3.4.1}\\
\frac{1}{\sqrt{\mathrm{n}}} \hat{\lambda}
\end{array}\right] \xrightarrow{\mathrm{d}} \mathbf{N}\left(\mathbf{0},\left[\begin{array}{cc}
\mathbf{V} & \mathbf{G}^{\prime} \\
\mathbf{G} & \mathbf{0}
\end{array}\right]^{-1}\left[\begin{array}{cc}
\mathbf{V} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{V} & \mathbf{G}^{\prime} \\
\mathbf{G} & \mathbf{0}
\end{array}\right]^{-1}\right)
$$

Using the formula for the inverse of a partitioned matrix (see, for example, Judge et al., 1985, p. 947), it can easily be shown that

$$
\left[\begin{array}{cc}
\mathbf{V} & \mathbf{G}^{\prime} \tag{3.4.2}\\
\mathbf{G} & \mathbf{0}
\end{array}\right]^{-1}\left[\begin{array}{cc}
\mathbf{V} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{V} & \mathbf{G}^{\prime} \\
\mathbf{G} & \mathbf{0}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\mathbf{V}^{-1}-\mathbf{V}_{\mathbf{g}}^{\prime} \mathbf{V}_{\mathrm{gg}} \mathbf{V}_{\mathrm{g}} & \mathbf{0} \\
\mathbf{0} & \mathbf{V}_{\mathrm{gg}}
\end{array}\right]
$$

where $\mathbf{V}_{\mathrm{g}}=\mathbf{G} \mathbf{V}^{-1}$ and $\mathbf{V}_{\mathrm{gg}}=\left(\mathbf{G} \mathbf{V}^{-1} \mathbf{G}^{\prime}\right)^{-1}$.
Note that the upper left block of the covariance matrix in the right hand side of (3.4.13) corresponding to ξ is the same as the upper-left block of the matrix $\left[\begin{array}{cc}\mathbf{V} & \mathbf{G}^{\prime} \\ \mathbf{G} & \mathbf{0}\end{array}\right]^{-1}$.

Since $I(\theta)$ can be consistently estimated by $\sum \hat{\mathbf{W}}_{\theta, \mathrm{t}}^{\prime} \hat{\Omega}^{-1} \hat{\mathbf{W}}_{\theta, \mathrm{t}}$, the variance covariance

limit distributions of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ and $\hat{\tau}=\hat{\mathrm{A}}_{1} /$ s.e. $\left(\hat{\mathrm{A}}_{1}\right)$ under the unit root null hypothesis are given by the following.

Theorem 3.2. Given the model (3.2.10) with restrictions $\mathrm{f}=\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right)^{\prime}=(0,0)^{\prime}$, where $\sigma_{e}{ }^{2}=V\left(e_{t}\right)$ and $f_{1}=\sigma_{e}{ }^{2}\left(B_{1}+B_{1} B_{2}\right)-\left(A_{1}+C_{1}+A_{1}{ }^{2} C_{1}+A_{1} C_{1}{ }^{2}\right), f_{2}=\sigma_{e}^{2} B_{2}-A_{1} C_{1}$, the limiting distribution of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ and $\hat{\tau}$ under the null hypothesis $\mathrm{H}_{0}: \mathrm{A}_{1}=-1$ are given by $\frac{\frac{1}{2}\left\{W(1)^{2}-1\right\}}{\int_{f}^{1} W(r)^{2} d r}$ and $\frac{\frac{1}{2}\left\{W(1)^{2}-1\right\}}{\sqrt{\int_{0} W(r)^{2} d r}}$ respectively, where $W($.$) is the standard$ Brownian motion on $[0,1]$.

Observe that Theorem 3.1 and Theorem 3.2 give asymptotics of a unit root parameter estimator and unit root tests based on Shin and Sarkar's method. The limiting distributions of unit root tests are the same as in Theorem 3.2 when unit root parameter estimates are based on Kohn's and Hannan-Rissanen's methods.

CHAPTER IV

SIMULATION STUDY

We now consider a Monte Carlo study on the power functions of our unit root tests under model (3.2.8)-(3.2.10). Ten thousand replications were simulated for sample sizes $25,50,100$ and 250 , for $\mathrm{A}_{1}=1.00,0.99,0.95,0.90$ and 0.70 , and for nominal levels $1 \%, 5 \%$ and 10%. The normal random numbers $\left\{\varepsilon_{t}\right\}$ and $\left\{w_{t}\right\}$ were generated by the subroutine DRNNOA and the calculation of inverse matrix are performed by the subroutine DLINRG of the IMSL package. The value of $\sigma_{w}{ }^{2}$ was set to one. The value of C_{1} was set to $-0.5,0$ and 0.5 , and the value of $\sigma_{\mathrm{e}}{ }^{2}$ was set to $0.2,1.0$ and 5.0. For different ($n, C_{1}, \sigma_{e}{ }^{2}$) combinations independent samples were used. The computed values of the tests $\mathrm{n}\left(\hat{\mathrm{A}}_{1}-1\right)$ and $\hat{\tau}$ were compared to the theoretical $1 \%, 5 \%$ and 10% left tail critical values tabulated by Dickey and Fuller (see Fuller 1976, p. 371 and p. 373). Section 4.1 discusses algorithms based on three different estimation methods in Section 3.3, and Section 4.2 gives simulation results and conclusive remarks.

4.1. Algorithms

Three different testing algorithms are introduced to perform the comparative study on the basis of Section 3.3.

4.1.1. Kohn's method

Step 1. Generate random numbers, $\left\{\mathrm{e}_{\mathrm{t}}\right\}$ and $\left\{\mathrm{w}_{\mathrm{t}}\right\}$, as follows:

$$
\left\{e_{t}\right\} \sim \operatorname{NID}\left(0, \sigma_{e}^{2}\right),\left\{w_{t}\right\} \sim \operatorname{NID}(0,1)
$$

and $\left\{\mathrm{e}_{\mathrm{t}}\right\}$ and $\left\{\mathrm{w}_{\mathrm{t}}\right\}$ are independent where $\mathrm{t}=1, \ldots, \mathrm{n}$ for $\sigma_{\mathrm{e}}{ }^{2}=0.2,1.0,5.0$ and for sample size $\mathrm{n}=25,50,100,250$.

Step 2. Compute the following y_{t} 's based on random variables $\left\{e_{t}\right\}$ and $\left\{w_{t}\right\}$ obtained in Step 1:

$$
y_{t}=z_{t}+u_{t}
$$

where $z_{t}=-A_{1} z_{t-1}+e_{t}$ and $u_{t}=w_{t}+C_{1} w_{t-1}$ with $e_{t}=w_{t}=0$ if $t \leq 0, A_{1}=1.0,0.99,0.95$, $0.9,0.8$ and $0.7, \mathrm{C}_{1}=-0.5,0.0$ and 0.5 .

Step 3. Estimate initial values $\widetilde{\xi}=\left(\widetilde{\mathrm{A}}_{1}, \widetilde{\mathrm{~B}}_{1}, \widetilde{\mathrm{~B}}_{2}, \widetilde{\mathrm{a}}_{\mathrm{e}}^{2}\right)^{\prime}$ of $\xi=\left(\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{~B}_{2}, \sigma_{\mathrm{e}}{ }^{2}\right)^{\prime}$ using the following steps:
(3.1) Regress y_{t} on $\left(y_{t-1}, \ldots, y_{t-s}\right)$ to obtain the residuals, \widetilde{e}_{t}, where $\widetilde{\mathbf{e}}=\mathbf{Y}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$ with $\mathbf{Y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)^{\prime}$ and the \mathbf{X} matrix, for $\mathrm{s}=5$ for example, is given by

$$
\mathbf{X}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
\mathrm{y}_{1} & 0 & 0 & 0 & 0 \\
\mathrm{y}_{2} & \mathrm{y}_{1} & 0 & 0 & 0 \\
\mathrm{y}_{3} & \mathrm{y}_{2} & \mathrm{y}_{1} & 0 & 0 \\
\mathrm{y}_{4} & \mathrm{y}_{3} & \mathrm{y}_{2} & \mathrm{y}_{1} & 0 \\
\mathrm{y}_{5} & \mathrm{y}_{4} & \mathrm{y}_{3} & \mathrm{y}_{2} & \mathrm{y}_{1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\mathrm{y}_{\mathrm{n}-1} & \mathrm{y}_{\mathrm{n}-2} & \mathrm{y}_{\mathrm{n}-3} & \mathrm{y}_{\mathrm{n}-4} & \mathrm{y}_{\mathrm{n}-5}
\end{array}\right) .
$$

(3.2) Regress y_{t} on $\left(y_{t-1}, \widetilde{\mathrm{e}}_{t-1}, \widetilde{\mathrm{e}}_{t-2}\right)$ to estimate the initial values $\left(\widetilde{\mathrm{A}}_{1}, \widetilde{\mathrm{~B}}_{1}, \widetilde{\mathrm{~B}}_{2}\right)$ of $\left(A_{1}, B_{1}, B_{2}\right)$, where $\left\{\widetilde{e}_{t}\right\}$ is obtained from Step (3.1).
(3.3) Compute the initial estimate of $\sigma_{e}{ }^{2}$ as $\tilde{\sigma}_{e}^{2}=\left(\left(e_{1}^{*}\right)^{2}+\ldots+\left(e_{t}^{*}\right)^{2}\right) / n, t=1, \ldots, n$ where $e_{t}^{*}=y_{t}+\widetilde{A}_{1} y_{t-1}-\widetilde{B}_{1} e_{t-1}^{*}-\widetilde{B}_{2} e_{t-2}^{*}$ with $e_{t}^{*}=0, t \leq 0$.

Step 4. Obtain the final estimates $\hat{\xi}=\left(\hat{\mathrm{A}}_{1}, \hat{\mathrm{~B}}_{1}, \hat{\mathrm{~B}}_{2}, \hat{\sigma}_{\mathrm{e}}^{2}\right)^{\prime}$ of ξ, by using the Newton-Raphson method (3.3.8) based on the initial estimates, $\widetilde{\xi}=\left(\widetilde{\mathrm{A}}_{1}, \widetilde{\mathrm{~B}}_{1}, \widetilde{\mathrm{~B}}_{2}, \widetilde{\sigma}_{\mathrm{e}}^{2}\right)^{\prime}$ in Step 3. In the numerical computations, the following revised Newton-Raphson estimator instead of (3.3.8) will be examined:

$$
\left[\begin{array}{l}
\hat{\xi} \tag{4.1.1}\\
\hat{\lambda}
\end{array}\right]=\left[\begin{array}{l}
\widetilde{\xi} \\
\mathbf{0}
\end{array}\right]-\mathrm{k}\left[\begin{array}{cc}
\widetilde{\mathbf{L}}_{\xi \xi} & \widetilde{\mathbf{G}}^{\prime} \\
\widetilde{\mathbf{G}} & \mathbf{0}
\end{array}\right]^{-1}\left[\begin{array}{c}
\widetilde{\mathbf{L}}_{\xi} \\
\widetilde{\mathbf{f}}
\end{array}\right]
$$

where k is a scalar controlling the step length. We calculate the left-hand side and the associated value for the \log likelihood for various values of k and choose as the estimate the left-hand side value that produces the biggest value for the log likelihood as defined in equation (3.3.2).

Step 5. Compute statistics $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ and $\hat{\tau}$ and compare their values with the tabulated percentiles of the distribution given by Dickey and Fuller (1979) and check if the values of $n\left(\hat{A}_{1}-1\right)$ and $\hat{\tau}$ value are less than the corresponding tabulated percentiles.

Step 6. Repeat Step 1 through Step 5 ten thousand times and thus count the relative frequencies of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ and $\hat{\tau}$ smaller than the corresponding tabulated percentiles.

4.1.2. Shin and Sarkar (SS)'s method

All steps are the same as those of Kohn's method except that we replace $\widetilde{\mathbf{L}}_{\xi \xi}$ with its approximation $\widetilde{\mathbf{H}}_{\xi \xi}$ in (4.1.1).

4.1.3. Hannan and Rissanen (HR)'s method

We follow Steps 1, 2, 3, 5, and 6 of Kohn's (Section 4.1.1) method in obtaining the statistic $n\left(\hat{\mathrm{~A}}_{1}-1\right)$. In particular, in order to obtain the standard error of $\hat{\mathrm{A}}_{1}$ when $\hat{\tau}$ is calculated, the matrix $\left[\begin{array}{cc}\widetilde{\mathbf{L}}_{\xi \xi} & \widetilde{\mathbf{G}}^{\prime} 耳^{-1} \\ \widetilde{\mathbf{G}} & 0\end{array}\right]^{\text {of (4.1.1) is computed. }}$

4.2. Results and Discussion

Simulation results on the empirical level and power of the test statistics $n\left(\hat{A}_{1}-1\right)$ and $\hat{\tau}$ are presented in Tables 4.1-4.28. Note that Tables 4.1-4.12 show the empirical powers of the two test statistics based on Hannan and Rissanen's method. In preparing for $\hat{\tau}$, we needed to compute the standard error of $\hat{\mathrm{A}}_{1}$. For Tables 4.4-4.6 these were done by using

$$
\left[\begin{array}{cc}
\widetilde{\mathbf{L}}_{\mathfrak{\xi}} & \widetilde{\mathbf{G}}^{\prime} \\
\mathbf{G} & \mathbf{0}
\end{array}\right]^{-1}
$$

of (4.1.1) and for Tables 4.10-4.12 by using

$$
\left[\begin{array}{cc}
\widetilde{\mathbf{H}}_{5 \xi} & \widetilde{\mathbf{G}}^{\prime} \\
\mathbf{G} & \mathbf{0}
\end{array}\right]^{-1} .
$$

While Tables 4.13-4.18 present simulation numbers based on Kohn's method, and Tables 4.19-4.24 based on Shin and Sarkar's method. We now discuss our findings based on the tables.

Common points among three methods

(1) When we fix n and increase $\sigma_{e}{ }^{2}$ or fix $\sigma_{e}{ }^{2}$ and increase n, the empirical powers are getting bigger and sizes are closer to the nominal level in terms of both $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ and $\hat{\tau}$. In particular, In case of large samples $(\mathrm{n}=100,250)$, the empirical sizes of each of three methods are almost close to the desired nominal levels except that $\sigma_{e}{ }^{2}=0.2$.
(2) For $\sigma_{\mathrm{e}}^{2}=0.2$ (i.e., when the signal is weak), especially when $\mathrm{C}_{1}=0.5$, the size tends to be larger than the nominal level. For fixed $\left(\mathrm{n}, \mathrm{C}_{1}, \sigma_{e}{ }^{2}\right)$ the powers are monotone functions of A_{1}.
(3) The comparisons for nominal levels $1 \%, 5 \%$, and 10% are similar.

What are the differences among three methods?

(1) For the "normalized" unit root test statistic $n\left(\hat{\mathrm{~A}}_{1}-1\right)$, the empirical sizes using Kohn's estimates are usually slightly smaller than those using Shin and Sarkar's estimates; and sizes are close to one another. As expected, the empirical powers based on Shin and Sarkar's method generally are larger than those based on Kohn's due to the larger empirical sizes. There is no big differences between tests based on Kohn's and Shin and Sarkar's estimates.
(2) For the t-test statistic $\hat{\tau}$, the sizes using Kohn's estimates are in general much smaller than those using Shin and Sarkar's. The powers for Shin and Sarkar's method become closer as the sample size gets larger and C_{1} gets smaller.

Summary

For small sample sizes $(\mathrm{n}=25,50)$, all three different methods (H-R, Kohn, S-S) lead to test statistics for which the tabulated critical values given by Dickey and Fuller (1979) are not appropriate. Numerical results of Schwert (1989) show that the distribution of unit root test statistics in unrestricted ARMA models (containing a nonzero MA component) can be very different from those tabulated by Dickey and Fuller (1979). Therefore, we prepared Table 4.25 - Table 4.32 to obtain the empirical critical values for
both normalized unit root test statistic and t-test statistic in order to apply the unit root tests to real time series data.

The advantage of using Shin and Sarkar's method lies in the fact that it is much easier than Kohn's for computation in terms of inverting the Hessian matrix. If $\mathrm{p}, \mathrm{q}, \mathrm{m}$ are bigger than the case considered in our simulation study $(p=1, q=1, m=1)$, gain in computational ease will be even more noticeable. In terms of statistic $n\left(\hat{A}_{1}-1\right)$, the Shin and Sarkar method can be a good alternative to the Kohn's method when we test for a unit root in an $\operatorname{AR}(1)$ signal observed with $\mathrm{MA}(1)$ noise. On the other hand, the Kohn's method is preferable while using the t-test statistic $\hat{\tau}$.

Table 4.1
Empirical power (\%) of $n\left(\hat{A}_{1}-1\right)$ for nominal level 0.01

$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	$\mathbf{A}_{1}{ }^{\mathbf{C}}$	$\underline{\sigma}^{2}=0.2$			$\underline{\sigma}^{2}=1.0$			$\sigma_{\text {a }}{ }^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	17.1	18.6	20.9	6.9	7.5	8.8	3.6	4.2	4.3
	0.99	18.8	19.6	24.4	7.5	7.9	9.6	3.8	4.7	5.3
	0.95	26.5	28.0	35.8	11.7	11.3	14.5	6.5	6.5	7.4
	0.90	34.8	37.6	45.7	17.9	18.0	20.2	10.6	10.6	11.8
	0.80	46.3	55.7	66.1	29.0	31.2	38.5	19.8	21.2	23.1
	0.70	53.7	64.9	77.9	40.9	46.0	54.4	32.6	33.9	36.5
50	1.00	11.4	10.4	12.8	4.2	4.1	4.5	2.4	2.6	2.7
	0.99	14.3	12.3	14.3	5.4	5.0	5.5	3.4	3.0	3.4
	0.95	26.8	23.1	28.6	10.9	10.0	11.5	6.7	6.5	6.9
	0.90	42.7	40.4	47.0	22.1	21.2	23.6	15.6	16.2	16.8
	0.80	63.6	64.8	72.1	47.4	48.5	53.2	40.8	41.2	42.5
	0.70	72.5	77.4	83.3	64.8	67.0	71.3	62.1	62.5	63.8
100	1.00	6.3	5.5	7.7	2.6	2.4	2.8	1.9	1.6	1.8
	0.99	9.6	8.4	11.5	3.7	3.5	3.8	2.4	2.6	2.5
	0.95	29.8	27.9	34.5	15.4	14.5	16.3	11.9	11.5	12.0
	0.90	58.3	57.1	65.0	40.9	40.8	44.5	36.7	35.9	36.6
	0.80	80.6	84.3	88.3	79.0	80.8	83.8	81.3	81.8	81.8
	0.70	87.3	90.5	93.4	88.7	90.9	92.6	92.7	93.3	93.2
250	1.00	2.8	2.3	3.2	1.4	1.5	1.3	1.3	1.2	1.0
	0.99	7.3	6.7	9.4	4.3	4.3	5.0	3.8	3.8	4.0
	0.95	54.2	53.5	60.4	50.5	50.8	52.0	49.1	49.3	49.2
	0.90	83.3	86.5	89.9	93.8	94.6	95.2	96.3	96.4	96.0
	0.80	91.8	94.5	95.7	99.3	99.7	99.7	100.0	100.0	100.0
	0.70	92.6	95.2	96.2	99.0	99.6	99.7	100.0	100.0	100.0

Table 4.2
Empirical power (\%) of $n\left(\hat{A}_{1}-1\right)$ for nominal level 0.05

$\begin{gathered} \text { Sample } \\ \text { Size } \\ \hline \end{gathered}$	$\begin{array}{r} \mathbf{C}_{1} \\ \mathbf{A}_{1} \\ \hline \end{array}$	$\sigma_{c}^{2}=0.2$			$\sigma_{\text {a }}{ }^{2}=1.0$			$\sigma_{\text {d }}{ }^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	26.1	26.7	29.2	13.6	14.0	15.3	8.9	9.4	10.2
	0.99	29.2	28.5	33.1	14.7	14.6	16.4	10.0	10.3	11.1
	0.95	40.1	38.8	46.8	22.2	21.5	25.4	15.6	15.3	16.9
	0.90	50.4	50.9	58.3	32.8	30.9	34.7	24.4	23.0	24.5
	0.80	63.5	68.6	76.1	49.4	49.9	55.8	40.2	40.5	43.5
	0.70	69.5	75.6	84.1	61.7	64.8	70.4	55.3	56.8	58.8
50	1.00	18.2	18.8	20.3	9.6	9.5	10.6	7.5	7.3	7.6
	0.99	22.7	20.1	23.3	12.4	11.5	12.4	9.9	8.8	9.3
	0.95	39.3	36.0	42.5	23.1	23.1	24.3	19.2	18.4	18.7
	0.90	57.7	55.3	60.9	42.2	41.6	44.3	37.3	37.8	37.8
	0.80	74.4	75.2	79.1	69.2	69.9	73.4	69.2	68.7	70.2
	0.70	80.1	82.7	86.7	79.3	80.8	82.7	82.2	82.3	82.4
100	1.00	13.0	11.7	14.9	7.7	6.8	8.1	6.6	5.6	6.3
	0.99	18.8	17.5	22.6	10.7	10.9	12.0	9.0	9.5	9.4
	0.95	49.3	48.3	55.5	37.6	37.8	40.3	34.5	34.8	35.0
	0.90	75.2	75.3	81.5	71.8	72.2	75.3	72.2	72.0	72.3
	0.80	87.7	90.5	92.3	92.4	94.1	95.3	95.9	96.5	96.3
	0.70	90.7	92.6	94.9	94.1	96.1	96.5	98.0	98.3	98.1
250	1.00	7.9	7.1	8.5	5.9	5.7	6.0	5.5	5.4	5.3
	0.99	19.6	18.9	23.0	15.9	15.9	17.3	15.3	15.2	15.7
	0.95	76.9	79.6	84.2	86.1	86.5	86.9	87.7	87.3	86.8
	0.90	90.9	94.0	95.8	99.5	99.6	99.7	99.9	99.9	99.9
	0.80	93.7	95.9	96.9	99.8	99.9	99.9	100.0	100.0	100.0
	0.70	93.6	95.9	96.9	99.5	99.8	99.8	100.0	100.0	100.0

Table 4.3
Empirical power (\%) of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for nominal level 0.10

$\begin{gathered} \text { Sample } \\ \text { Size } \\ \hline \end{gathered}$	$\begin{array}{r} \mathbf{C}_{1} \\ \mathbf{A}_{1} \\ \hline \end{array}$	$\sigma_{e}{ }^{2}=0.2$			$\sigma_{e}{ }^{2}=1.0$			$\sigma_{¢}{ }^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	32.1	32.3	34.8	18.5	19.1	20.2	14.0	14.6	14.8
	0.99	35.7	34.5	39.1	20.3	20.5	22.7	15.5	15.9	16.7
	0.95	47.6	45.9	53.7	30.0	29.4	33.6	23.7	23.1	24.9
	0.90	58.4	58.8	64.5	43.1	40.7	44.4	35.3	33.9	35.4
	0.80	71.2	74.2	80.2	60.6	60.5	65.9	53.8	54.0	56.6
	0.70	76.1	79.9	86.4	71.1	72.9	76.8	67.7	68.6	69.9
50	1.00	23.4	21.6	25.9	14.7	14.6	15.8	12.3	12.4	12.6
	0.99	28.9	25.7	29.7	19.0	17.6	19.0	15.9	14.8	15.6
	0.95	48.6	45.0	51.0	33.8	33.8	36.3	30.4	30.2	30.1
	0.90	66.2	63.6	68.1	55.9	55.8	57.9	54.0	54.4	53.6
	0.80	78.4	79.1	82.0	78.7	79.5	81.8	82.0	81.7	82.2
	0.70	82.4	84.8	87.8	84.2	85.6	86.5	88.9	89.0	88.6
100	1.00	18.9	17.3	21.4	12.7	11.9	13.4	11.5	10.8	11.3
	0.99	26.3	25.2	31.2	18.5	19.0	20.2	16.6	17.0	17.1
	0.95	61.5	61.2	68.9	55.4	54.9	57.6	53.8	53.1	54.0
	0.90	81.9	83.1	87.7	85.1	86.3	88.1	87.5	87.8	87.8
	0.80	89.6	92.6	93.8	95.6	97.0	97.3	98.6	98.9	98.8
	0.70	91.9	93.5	95.4	95.8	97.3	97.6	99.0	99.2	99.0
250	1.00	12.7	12.1	14.4	10.8	10.6	11.2	10.1	10.2	10.3
	0.99	31.4	30.5	35.4	28.9	28.5	29.5	27.6	27.3	28.5
	0.95	85.8	88.7	91.8	95.7	96.0	96.2	96.9	96.8	96.5
	0.90	93.3	95.8	97.2	99.9	99.9	99.9	100.0	100.0	100.0
	0.80	94.5	96.6	97.3	99.8	100.0	100.0	100.0	100.0	100.0
	0.70	93.9	96.2	97.1	99.6	99.9	99.9	100.0	100.0	100.0

Table 4.4
Empirical power (\%) of $\hat{\tau}$ for nominal level 0.01

Sample Size	$\begin{array}{r} \\ \mathbf{A}_{1} \\ \hline \end{array}$	$\sigma_{c}{ }^{2}=0.2$			$\underline{\sigma}^{2}=1.0$			$\sigma_{e}^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	12.3	6.7	11.6	5.5	3.1	3.3	3.4	3.2	2.5
	0.99	13.7	6.8	13.6	5.9	3.2	3.9	3.5	3.4	2.9
	0.95	18.5	10.0	19.6	9.1	4.6	5.6	6.0	4.6	4.3
	0.90	23.0	13.1	25.3	13.1	7.3	8.2	9.4	8.0	7.0
	0.80	27.8	20.0	40.0	20.2	13.5	15.9	17.7	16.3	15.3
	0.70	30.4	26.8	52.1	26.9	21.6	24.2	27.8	26.7	26.2
50	1.00	6.7	2.3	3.5	2.8	1.5	1.8	2.1	2.0	1.7
	0.99	8.1	3.0	4.2	3.4	2.3	2.1	2.9	2.4	2.3
	0.95	15.1	6.2	8.8	7.0	4.1	4.4	6.0	5.2	4.8
	0.90	24.3	11.1	16.4	14.4	9.8	9.9	13.9	13.1	12.3
	0.80	35.3	21.5	32.5	30.4	25.3	26.7	36.4	35.5	34.0
	0.70	39.3	29.5	47.0	42.0	40.4	40.7	55.8	55.5	55.17
100	1.00	2.7	1.2	2.6	1.8	1.2	1.6	1.7	1.4	1.4
	0.99	3.9	1.6	4.1	2.3	1.6	2.2	2.1	2.0	1.9
	0.95	12.4	6.5	11.6	9.5	8.1	9.8	10.5	9.6	9.5
	0.90	26.1	16.1	22.9	26.2	25.0	29.0	33.1	31.8	31.4
	0.80	44.4	32.7	37.8	57.2	61.0	66.3	76.7	77.1	75.6
	0.70	51.6	41.2	48.1	68.1	74.5	79.3	89.6	90.4	90.3
250	1.00	1.1	0.9	3.0	1.1	1.0	0.9	1.2	1.0	0.9
	0.99	3.2	3.2	8.8	3.2	3.00	3.9	3.8	3.4	3.5
	0.95	27.5	31.3	52.3	41.2	42.2	45.1	47.8	47.7	46.6
	0.90	50.3	63.0	80.3	87.9	90.1	91.3	95.5	95.5	95.1
	0.80	62.1	71.3	81.0	97.9	99.1	99.3	100.0	100.0	100.0
	0.70	64.3	69.6	73.4	97.2	99.1	99.3	100.0	100.0	100.0

Table 4.5
Empirical power (\%) of $\hat{\tau}$ for nominal level 0.05

$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	$\begin{array}{r} \mathbf{C}_{1} \\ \mathbf{A}_{1} \\ \hline \end{array}$	$\sigma_{\text {d }}{ }^{2}=0.2$			$\sigma_{\text {c }}{ }^{2}=1.0$			$\sigma_{e}{ }^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	18.5	11.6	16.5	10.4	7.8	8.0	8.3	8.1	7.7
	0.99	20.1	11.9	18.8	11.0	7.9	8.7	9.3	8.8	8.6
	0.95	26.6	17.3	27.2	16.5	11.8	13.7	14.5	13.1	12.8
	0.90	32.9	22.5	34.2	24.2	17.9	18.8	22.6	20.2	19.5
	0.80	38.6	33.1	49.6	33.9	29.6	32.8	36.9	35.9	36.5
	0.70	41.3	39.3	60.8	41.4	41.1	44.8	49.7	51.0	50.6
50	1.00	11.1	7.0	9.7	7.3	5.9	6.9	6.9	6.6	6.4
	0.99	13.5	7.7	10.9	8.8	7.4	7.9	9.3	7.7	7.8
	0.95	24.3	14.8	20.4	17.0	15.3	16.2	17.8	16.5	16.1
	0.90	35.8	24.4	31.0	31.3	29.0	30.7	35.0	34.7	33.5
	0.80	48.3	38.8	47.9	52.8	53.3	56.9	65.5	65.1	64.8
	0.70	51.6	46.7	60.2	61.9	65.7	68.6	78.5	79.0	78.6
100	1.00	7.0	5.5	12.0	6.1	5.2	6.6	6.1	5.3	5.7
	0.99	10.1	8.8	18.5	8.5	8.6	9.8	8.5	8.7	8.7
	0.95	27.7	26.0	41.7	30.1	30.8	34.4	33.2	33.3	32.8
	0.90	45.8	44.6	58.8	61.0	62.8	68.0	70.0	69.8	69.2
	0.80	59.2	59.2	65.2	84.0	88.3	91.0	94.8	95.3	95.1
	0.70	63.5	62.0	69.3	85.7	91.4	93.5	97.3	98.0	97.5
250	1.00	4.9	5.4	9.4	5.1	5.1	5.5	5.3	5.2	4.9
	0.99	12.8	14.5	24.8	14.1	14.2	16.0	15.0	14.7	15.5
	0.95	61.6	69.4	81.6	82.5	82.9	84.6	86.9	86.4	85.8
	0.90	78.4	87.8	93.3	98.7	99.2	99.5	99.8	99.8	99.8
	0.80	78.6	88.4	91.2	99.5	99.8	99.9	100.0	100.0	100.0
	0.70	75.5	84.4	86.3	98.9	99.7	99.7	100.0	100.0	100.0

Table 4.6
Empirical power (\%) of $\hat{\tau}$ for nominal level 0.10

$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	$\mathbf{A}_{1}{ }^{\mathbf{C}_{1}}$				$\underline{\sigma}^{2}=1.0$			$\sigma_{\text {d }}{ }^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	23.5	16.6	21.6	15.1	13.1	13.1	13.4	13.3	12.6
	0.99	25.5	17.3	24.4	16.2	13.5	14.9	14.9	14.4	14.5
	0.95	33.7	24.1	34.3	24.1	20.5	22.5	22.8	21.3	22.0
	0.90	40.6	31.1	41.6	34.0	28.6	30.5	33.9	31.8	31.6
	0.80	47.2	43.6	56.9	45.9	43.9	47.9	51.3	50.6	51.7
	0.70	49.8	49.0	66.9	53.2	55.1	59.5	63.4	64.6	65.2
50	1.00	15.6	12.8	17.5	11.9	11.1	12.5	11.7	11.6	11.4
	0.99	19.0	14.0	19.6	15.4	13.8	15.1	15.6	13.9	14.3
	0.95	32.3	25.2	34.0	27.7	27.2	29.8	29.5	28.7	28.0
	0.90	45.2	37.7	45.1	47.0	46.0	48.9	52.4	52.3	51.0
	0.80	56.5	52.2	59.1	67.3	69.6	73.2	79.9	79.4	79.3
	0.70	59.0	58.3	68.9	72.2	77.0	78.7	86.7	87.0	86.8
100	1.00	12.8	12.6	21.5	11.4	10.4	12.2	11.5	10.3	10.9
	0.99	18.3	18.6	31.2	16.4	16.8	18.8	16.5	16.7	16.4
	0.95	43.7	46.5	62.8	50.2	50.9	55.0	53.4	53.0	53.0
	0.90	61.4	64.8	77.0	80.3	81.9	85.3	86.5	86.9	86.4
	0.80	68.8	73.6	77.6	92.4	94.9	96.1	98.2	98.5	98.3
	0.70	70.8	73.2	78.7	91.7	95.3	96.1	98.6	98.9	98.7
250	1.00	9.7	10.6	15.8	10.0	9.9	10.9	10.0	10.0	10.3
	0.99	24.7	27.1	38.6	27.4	27.4	29.1	27.9	27.4	28.0
	0.95	76.8	83.0	90.1	94.2	94.7	95.3	96.5	96.0	96.0
	0.90	87.3	92.9	95.7	99.7	99.8	99.9	100.0	100.0	100.0
	0.80	84.8	92.5	93.7	99.8	99.9	99.9	100.0	100.0	100.0
	0.70	80.8	89.4	90.3	99.3	99.8	99.8	100.0	100.0	100.0

Table 4.7

Empirical power (\%) of $n\left(\hat{A}_{1}-1\right)$ for nominal level 0.01

$\begin{gathered} \text { Sample } \\ \text { Size } \\ \hline \end{gathered}$	${ }_{\mathbf{A}_{1}} \mathbf{C}_{1}$	$\sigma_{c}^{2}=0.2$			$\sigma^{2}{ }^{2}=1.0$			$\sigma_{\text {a }}{ }^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	17.0	19.5	23.6	6.9	7.5	9.5	3.6	4.2	4.4
	0.99	18.9	20.0	26.6	7.4	7.7	10.1	3.8	4.7	5.3
	0.95	26.3	28.6	37.9	11.6	11.2	15.3	6.5	6.4	7.4
	0.90	34.7	38.8	48.6	17.7	18.0	21.2	10.6	10.5	11.8
	0.80	45.9	54.6	68.9	28.6	30.9	39.7	19.7	21.1	23.0
	0.70	51.7	65.0	79.3	39.9	45.5	55.7	32.6	33.7	36.4
50	1.00	11.5	10.3	12.0	4.2	3.8	4.7	2.5	2.6	3.0
	0.99	14.4	13.0	14.2	5.4	5.2	5.4	3.2	3.3	3.1
	0.95	25.4	23.7	27.4	10.7	9.5	11.7	6.5	6.4	7.1
	0.90	42.8	41.4	46.3	22.0	21.6	25.1	15.6	15.8	16.4
	0.80	62.3	65.0	72.9	47.6	48.3	53.9	41.0	40.9	43.2
	0.70	70.3	76.4	82.8	64.7	66.1	72.6	62.6	62.5	63.9
100	1.00	6.4	5.4	6.4	2.6	2.4	2.7	1.9	1.6	1.8
	0.99	9.8	8.3	9.7	3.7	3.6	3.7	2.4	2.6	2.5
	0.95	29.9	27.9	30.2	15.3	14.7	16.2	11.9	11.5	12.0
	0.90	58.1	57.3	60.5	41.3	40.8	45.0	36.7	35.9	36.7
	0.80	80.6	83.5	86.7	79.0	81.2	84.5	81.3	81.5	81.8
	0.70	86.0	89.6	93.2	88.9	91.0	92.6	92.7	93.3	93.2
250	1.00	2.9	2.2	3.1	1.4	1.5	1.3	1.3	1.2	1.1
	0.99	7.4	6.2	9.4	4.4	4.2	5.0	3.8	3.8	4.0
	0.95	54.4	51.6	59.8	50.5	50.6	52.3	49.1	49.3	49.2
	0.90	83.1	84.7	88.8	93.9	94.5	95.2	96.3	96.4	96.0
	0.80	91.3	93.7	94.6	99.3	99.7	99.7	100.0	100.0	100.0
	0.70	92.0	94.5	95.3	99.0	99.7	99.6	100.0	100.0	100.0

Table 4.8
Empirical power (\%) of $n\left(\hat{A}_{1}-1\right)$ for nominal level 0.05

Table 4.9
Empirical power (\%) of $n\left(\hat{A}_{1}-1\right)$ for nominal level 0.10

$\begin{gathered} \text { Sample } \\ \text { Size } \\ \hline \end{gathered}$	$\mathbf{A}_{1} \mathbf{C}_{1}$	$\sigma_{c}^{2}=0.2$			$\underline{\sigma}^{2}=1.0$			$\sigma_{\text {d }}{ }^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	31.7	33.3	36.0	18.5	19.1	20.8	14.0	14.6	14.8
	0.99	35.4	34.9	40.1	20.3	20.5	22.9	15.5	15.8	16.7
	0.95	46.6	46.1	54.1	29.9	29.4	34.0	23.7	23.0	24.9
	0.90	57.9	58.9	64.8	42.7	40.9	45.1	35.4	33.8	35.4
	0.80	69.9	74.1	80.0	60.2	60.2	66.4	53.8	54.0	56.5
	0.70	73.8	79.4	86.3	70.0	72.5	76.9	67.5	68.5	69.7
50	1.00	23.8	21.1	23.5	15.1	13.9	15.1	12.6	12.4	12.6
	0.99	28.8	26.7	28.4	18.5	17.7	18.8	16.0	15.3	15.7
	0.95	47.3	44.6	48.0	34.3	33.3	35.2	30.4	29.8	29.8
	0.90	65.9	63.5	65.5	55.9	56.8	57.9	53.8	54.3	53.8
	0.80	77.8	77.9	81.6	78.4	79.5	81.5	81.9	81.8	82.4
	0.70	80.5	83.2	87.4	83.8	84.9	86.7	88.7	88.8	89.1
100	1.00	18.9	16.7	20.1	12.7	12.0	13.1	11.5	10.8	11.3
	0.99	26.5	24.5	29.4	18.5	19.0	19.9	16.6	17.0	17.1
	0.95	61.1	60.0	66.5	55.3	55.0	57.2	53.8	53.1	54.0
	0.90	80.8	82.2	85.9	85.3	86.3	88.0	87.5	87.8	87.8
	0.80	89.0	91.5	93.0	95.6	97.1	97.2	98.6	98.9	98.8
	0.70	90.3	93.1	95.3	95.6	97.1	97.5	99.0	99.2	99.0
250	1.00	12.7	11.6	14.5	10.8	10.6	11.0	10.1	10.2	10.3
	0.99	31.3	29.1	35.4	28.8	28.4	29.2	27.6	27.3	28.5
	0.95	85.5	88.1	91.7	95.7	96.0	96.2	96.9	96.8	96.5
	0.90	92.9	95.0	96.6	99.9	99.9	99.9	100.0	100.0	100.0
	0.80	94.0	96.0	96.6	99.9	99.9	99.9	100.0	100.0	100.0
	0.70	93.6	95.8	96.1	99.6	99.9	99.8	100.0	100.0	100.0

Table 4.10
Empirical power (\%) of $\hat{\tau}$ for nominal level 0.01

$\begin{array}{\|c} \text { Sample } \\ \text { Size } \end{array}$		$\sigma_{\text {a }}{ }^{2}=0.2$			$\sigma_{\text {e }}{ }^{2} 1.0$			$\sigma_{c}^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	21.1	26.3	31.0	8.1	9.5	14.1	4.0	4.6	5.5
	0.99	23.0	27.2	34.5	8.8	9.8	15.0	4.2	5.1	6.3
	0.95	32.7	37.5	47.2	13.7	14.5	23.0	7.3	7.3	9.4
	0.90	42.4	49.6	58.4	20.7	22.2	31.9	11.7	11.7	14.2
	0.80	57.6	66.2	74.8	33.7	37.9	52.3	21.5	23.1	27.1
	0.70	64.9	74.9	82.3	46.6	54.0	66.8	35.1	36.9	41.2
50	1.00	13.9	14.8	14.3	4.7	4.7	8.0	2.8	2.7	3.4
	0.99	17.6	18.6	17.2	6.1	6.4	9.3	3.4	3.5	3.8
	0.95	30.8	32.5	30.8	12.1	11.9	19.0	7.1	7.1	8.1
	0.90	50.8	52.6	47.6	25.1	26.5	36.4	17.1	17.4	18.8
	0.80	70.5	71.9	71.0	52.9	55.7	66.7	43.2	43.4	47.2
	0.70	77.2	78.5	80.7	70.2	73.0	78.6	64.8	64.9	68.0
100	1.00	8.1	9.0	6.8	3.0	2.9	5.4	2.0	1.8	2.1
	0.99	12.3	13.4	10.9	3.9	4.5	7.6	2.60	2.7	2.6
	0.95	37.4	38.5	28.3	16.9	17.9	26.9	12.4	12.3	13.2
	0.90	67.0	62.0	49.8	44.9	47.5	60.9	37.8	37.5	39.5
	0.80	83.2	80.5	78.5	83.4	86.7	85.8	82.4	82.8	84.6
	0.70	86.6	87.2	89.9	91.2	91.9	89.8	93.6	94.1	94.4
250	1.00	3.5	3.3	4.1	1.5	1.6	2.5	1.3	1.2	1.1
	0.99	9.1	8.5	11.8	4.7	4.8	8.2	4.0	3.8	4.2
	0.95	59.8	43.6	62.7	52.9	54.6	64.7	50.5	51.0	51.6
	0.90	80.4	72.7	84.8	94.7	96.1	91.9	96.4	96.7	96.6
	0.80	87.8	89.7	89.5	99.1	99.2	97.5	100.0	100.0	100.0
	0.70	89.5	93.0	93.2	98.4	99.2	98.3	100.0	100.0	1000

Table 4.11
Empirical power (\%) of $\hat{\tau}$ for nominal level 0.05

$\begin{array}{\|c} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	$\mathbf{A}_{1}{ }^{\mathbf{C}}$	$\sigma_{\text {析 }{ }^{2}=0.2}$			$\sigma_{\text {d }}^{2}=1.0$			$\sigma_{\text {d }}{ }^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	29.8	33.9	35.9	15.0	16.6	20.6	9.6	10.1	11.4
	0.99	33.0	35.4	40.0	16.1	17.3	22.6	10.5	11.1	12.5
	0.95	44.9	47.1	52.6	24.5	25.3	33.4	16.6	16.4	19.1
	0.90	56.2	59.9	63.3	36.1	36.2	44.8	26.0	25.0	27.6
	0.80	70.2	73.6	77.5	54.0	56.1	65.4	42.6	43.2	47.6
	0.70	75.0	79.2	84.1	66.0	69.6	76.2	57.8	59.4	62.7
50	1.00	21.0	20.6	20.6	10.4	10.6	13.8	7.7	7.7	8.3
	0.99	25.9	25.8	24.1	13.2	13.3	16.7	9.9	9.4	10.0
	0.95	43.8	43.2	40.8	25.5	25.5	32.0	19.8	19.4	20.6
	0.90	63.4	61.3	56.5	45.6	47.3	53.7	39.7	39.2	40.7
	0.80	77.3	75.1	76.0	72.9	75.0	76.9	70.7	70.9	72.5
	0.70	80.0	80.4	83.9	81.7	82.7	82.9	83.4	83.6	84.9
100	1.00	15.1	14.7	16.1	8.1	7.8	10.7	6.7	5.9	6.6
	0.99	22.1	21.1	24.2	11.5	12.4	16.1	9.2	9.9	10.0
	0.95	55.2	51.1	52.5	40.2	42.2	48.4	35.5	36.0	37.0
	0.90	77.1	71.1	72.8	74.8	77.2	79.5	73.2	73.2	74.3
	0.80	85.5	86.2	87.7	93.1	93.9	92.0	96.2	96.6	96.9
	0.70	87.9	90.5	93.2	93.9	94.8	94.8	98.1	98.4	98.2
250	1.00	8.2	7.3	10.8	6.1	6.0	7.3	5.5	5.4	5.4
	0.99	21.3	18.1	28.3	16.4	16.9	20.8	15.5	15.3	16.3
	0.95	75.0	68.0	84.7	86.6	87.8	87.3	87.8	87.3	87.3
	0.90	86.2	87.4	92.8	99.4	99.5	97.2	99.9	99.9	99.8
	0.80	91.4	93.4	93.0	99.6	99.7	99.0	100.0	100.0	100.0
	0.70	91.8	94.5	94.8	99.2	99.6	99.1	100.0	100.0	100.0

Table 4.12
'Empirical power (\%) of $\hat{\tau}$ for nominal level 0.10

SampleSize	$\begin{array}{r} \mathbf{C}_{1} \\ \mathbf{A}_{1} \\ \hline \end{array}$	$\sigma_{\text {a }}{ }^{2}=0.2$			$\sigma_{\text {e }}^{2}=1.0$			$\sigma_{c}^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	35.4	38.6	39.8	20.2	21.8	25.3	14.7	15.4	16.6
	0.99	39.1	40.4	44.1	22.2	23.2	28.0	16.5	16.9	18.4
	0.95	51.4	52.5	57.1	32.8	33.7	40.0	25.2	24.8	27.8
	0.90	63.3	64.9	67.0	46.3	46.3	53.3	37.6	36.3	39.0
	0.80	75.1	76.4	79.6	64.6	65.6	72.1	56.8	56.8	60.7
	0.70	78.5	80.7	85.4	74.1	76.0	80.1	69.4	70.7	73.0
50	1.00	26.3	24.9	25.5	15.8	15.3	18.5	13.0	12.8	13.5
	0.99	32.1	30.9	30.3	19.6	19.6	22.8	16.2	15.9	16.9
	0.95	52.3	50.0	40.1	36.7	36.9	41.9	31.5	31.2	32.1
	0.90	69.4	65.6	62.4	59.2	60.9	63.8	55.5	56.0	56.5
	0.80	79.5	76.7	79.4	80.8	82.2	81.7	82.8	83.0	84.1
	0.70	81.0	81.8	85.8	84.8	85.3	85.2	89.2	89.4	89.9
100	1.00	21.2	19.4	23.7	13.4	13.2	15.5	12.0	10.8	11.7
	0.99	29.8	27.7	34.3	19.5	20.8	24.1	17.3	17.8	18.0
	0.95	64.9	60.3	67.4	57.6	59.1	62.9	55.2	55.1	56.0
	0.90	80.6	78.0	82.7	87.2	88.3	87.4	88.0	88.5	88.7
	0.80	87.2	89.4	90.6	95.4	96.6	95.2	98.6	98.9	98.9
	0.70	88.9	92.1	94.3	95.1	96.3	96.4	98.8	99.1	98.9
250	1.00	12.8	11.7	17.1	10.8	11.1	12.6	10.3	10.3	10.6
	0.99	32.0	28.3	41.0	29.5	29.8	32.9	28.4	27.9	29.0
	0.95	81.4	80.6	91.3	95.7	96.1	94.1	96.7	96.3	96.4
	0.90	89.5	91.5	94.7	99.8	99.8	98.6	100.0	100.0	100.0
	0.80	92.5	94.6	94.4	99.7	99.8	99.4	100.0	100.0	100.0
	0.70	92.6	95.1	95.3	99.4	99.7	99.4	100.0	100.0	100.0

Table 4.13
Empirical power (\%) of $n\left(\hat{A}_{1}-1\right)$ for nominal level 0.01

$\begin{gathered} \text { Sample } \\ \text { Size } \\ \hline \end{gathered}$	C_{1}	$\sigma_{\text {¢ }}{ }^{2}=0.2$			$\underline{\sigma_{e}^{2}=1.0}$			$\underline{\sigma}^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	16.5	18.3	20.8	6.6	7.5	8.7	3.6	4.1	4.3
	0.99	18.1	21.8	28.8	7.3	8.2	10.3	3.8	4.7	5.3
	0.95	25.6	29.5	39.2	11.3	11.5	14.9	6.6	6.5	7.4
	0.90	32.3	39.3	49.2	17.2	18.0	20.8	10.5	10.6	11.7
	0.80	44.5	55.7	69.9	27.8	31.3	38.5	20.0	21.4	23.0
	0.70	50.9	65.9	80.1	39.7	45.5	54.3	33.2	34.0	36.2
50	1.00	11.2	10.2	12.5	3.9	3.8	4.4	2.4	2.5	2.5
	0.99	14.2	14.2	18.4	5.5	5.1	5.6	3.4	3.2	3.5
	0.95	25.8	25.2	32.0	10.7	10.0	11.2	7.1	6.5	6.9
	0.90	41.7	42.7	51.0	22.0	21.3	23.2	16.1	16.0	16.1
	0.80	63.1	67.6	75.3	47.3	47.5	51.0	41.6	41.5	42.9
	0.70	71.3	78.3	85.1	64.7	66.7	70.1	62.8	62.9	64.5
100	1.00	6.0	5.2	7.4	2.5	2.3	2.4	1.8	1.6	1.7
	0.99	9.3	8.1	11.1	3.6	3.4	3.5	2.5	2.7	2.5
	0.95	28.3	27.1	32.7	15.2	14.2	15.2	11.9	11.5	11.8
	0.90	56.7	55.8	62.6	40.5	39.6	41.2	36.7	35.9	36.5
	0.80	80.3	84.9	87.9	79.2	80.4	82.2	81.4	81.6	81.8
	0.70	86.7	91.6	93.5	88.9	91.0	92.5	92.8	93.3	93.2
250	1.00	2.4	2.0	2.5	1.3	1.4	1.2	1.3	1.1	1.0
	0.99	6.5	5.9	7.5	4.4	4.3	4.7	3.8	3.8	4.0
	0.95	51.5	51.0	55.0	50.5	50.5	50.6	49.2	49.3	49.1
	0.90	83.5	87.2	90.0	93.9	94.6	95.2	96.3	96.4	96.1
	0.80	92.1	94.7	96.0	99.3	99.7	99.7	100.0	100.0	100.0
	0.70	93.4	95.8	96.4	99.0	99.2	99.7	100.0	100.0	100.0

Table 4.14
Empirical power (\%) of $n\left(\hat{A}_{1}-1\right)$ for nominal level 0.05

$\begin{gathered} \text { Sample } \\ \text { Size } \\ \hline \end{gathered}$	$\mathbf{A}_{1} \mathbf{C}_{1}$	$\sigma_{c}^{2}=0.2$			$\sigma_{\text {析 }{ }^{2}=1.0}$			$\sigma_{e}^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	25.4	26.6	29.0	13.2	13.9	15.2	8.8	9.4	10.0
	0.99	28.2	30.6	37.3	14.6	14.9	16.7	10.1	10.5	11.0
	0.95	38.7	40.3	50.1	22.0	21.7	25.2	15.8	15.4	16.8
	0.90	48.3	52.9	61.9	32.3	30.6	34.9	24.5	23.3	24.5
	0.80	62.8	68.4	79.2	48.7	49.9	55.4	40.8	41.2	43.8
	0.70	67.5	76.6	86.0	61.1	64.6	70.0	56.3	57.6	59.2
50	1.00	18.0	17.8	20.0	9.2	9.1	9.8	7.4	7.2	7.4
	0.99	22.1	22.1	27.4	12.2	11.3	12.2	9.6	9.1	9.2
	0.95	38.3	38.0	45.2	23.2	22.5	23.5	19.1	18.5	18.9
	0.90	57.2	58.1	64.5	42.0	41.7	43.1	37.5	37.7	37.7
	0.80	74.5	78.0	83.0	69.3	69.6	72.0	68.8	68.8	69.8
	0.70	79.1	84.2	89.0	79.6	81.8	83.6	82.2	82.7	83.1
100	1.00	12.3	10.8	13.7	7.5	6.6	7.3	6.5	5.5	6.2
	0.99	18.0	16.8	20.7	10.6	10.7	11.1	9.0	9.5	9.3
	0.95	47.4	46.6	51.5	37.3	37.3	38.2	34.6	34.8	34.9
	0.90	74.2	74.5	79.3	71.8	71.9	73.2	72.2	72.0	72.2
	0.80	87.8	91.4	92.8	92.5	94.1	95.1	96.0	96.5	96.3
	0.70	90.6	94.0	95.2	94.3	96.3	96.6	98.0	98.3	98.1
250	1.00	7.1	6.5	7.3	5.8	5.6	5.9	5.4	5.3	5.2
	0.99	17.7	17.7	19.7	16.0	15.8	16.6	15.3	15.2	15.8
	0.95	76.8	79.6	82.6	86.4	86.6	86.5	87.7	87.3	86.9
	0.90	91.7	94.6	95.9	99.6	99.6	99.8	99.9	99.9	99.9
	0.80	94.2	96.1	97.1	99.8	99.9	99.9	100.0	100.0	100.0
	0.70	94.5	96.5	97.1	99.6	99.9	99.9	100.0	100.0	100.0

Table 4.15
Empirical power (\%) of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for nominal level 0.10

Sample Size	$\begin{array}{rr} \mathbf{C}_{1} \\ \mathbf{A}_{1} \\ \hline \end{array}$	$\underline{\sigma}_{e}{ }^{2}=0.2$			$\underline{\sigma}^{2}=1.0$			$\sigma_{\text {e }}{ }^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	31.4	32.1	34.5	18.1	19.1	20.1	13.9	14.6	14.6
	0.99	34.6	36.6	43.4	20.1	20.9	22.6	15.7	16.0	16.7
	0.95	46.1	47.3	56.9	29.8	29.4	33.2	23.9	23.2	24.9
	0.90	57.0	60.5	69.3	42.7	40.5	44.4	35.4	34.2	35.4
	0.80	70.4	74.0	83.1	60.0	60.5	65.4	54.4	54.6	56.9
	0.70	73.8	80.8	88.4	70.5	73.0	76.8	68.4	69.3	70.4
50	1.00	23.4	21.4	25.7	14.2	13.9	15.1	12.1	12.2	12.4
	0.99	28.3	27.9	33.5	18.5	17.4	18.3	15.7	15.0	15.5
	0.95	47.1	46.9	53.5	33.9	33.7	34.9	30.5	30.2	30.7
	0.90	65.4	66.4	71.5	56.0	56.0	56.6	54.0	54.7	54.1
	0.80	79.2	81.9	85.9	78.9	80.0	81.4	81.4	81.7	82.7
	0.70	81.8	86.4	89.8	84.7	86.7	88.1	88.7	89.1	89.4
100	1.00	17.9	16.1	19.4	12.6	11.7	12.6	11.5	10.7	11.2
	0.99	25.0	24.0	28.5	18.4	18.8	19.2	16.6	17.1	17.1
	0.95	59.9	59.5	64.7	55.3	54.5	55.6	53.8	53.1	54.1
	0.90	81.6	83.0	86.6	85.2	86.3	87.1	87.5	87.8	87.9
	0.80	90.1	93.6	94.5	95.7	97.1	97.3	98.6	99.0	98.8
	0.70	92.0	94.9	95.8	95.9	97.5	97.7	99.0	99.2	99.0
250	1.00	11.6	11.3	12.5	10.6	10.6	10.9	10.0	10.1	10.2
	0.99	29.1	29.3	31.6	28.9	28.4	29.0	27.7	27.4	28.5
	0.95	86.4	89.6	91.3	95.8	96.1	96.2	96.9	96.8	96.5
	0.90	93.9	96.3	97.3	99.9	99.9	100.0	100.0	100.0	100.0
	0.80	94.9	96.8	97.4	99.9	100.0	100.0	100.0	100.0	100.0
	0.70	94.8	96.8	97.2	100.0	100.0	100.0	100.0	100.0	100.0

Table 4.16
Empirical power (\%) of $\hat{\tau}$ for nominal level 0.01

SampleSize	$\begin{array}{r} \quad \mathbf{C} \\ \mathbf{A}_{1} \\ \hline \end{array}$	$\sigma_{c}{ }^{2}=0.2$			$\sigma_{c}^{2}=1.0$			$\sigma_{c}^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	11.8	6.5	11.5	5.2	3.1	3.3	3.3	3.1	2.4
	0.99	12.9	6.9	14.3	5.5	3.2	4.0	3.4	3.4	2.9
	0.95	17.1	9.2	19.1	8.7	4.5	5.5	6.0	4.5	4.2
	0.90	20.7	12.1	24.5	12.2	6.8	7.9	9.2	7.8	6.8
	0.80	25.7	17.9	39.2	18.7	12.7	15.0	17.6	16.0	14.7
	0.70	26.9	23.2	48.6	25.0	19.5	22.1	27.4	26.1	25.0
50	1.00	6.6	2.2	3.4	2.5	1.3	1.5	2.1	2.0	1.7
	0.99	8.0	3.4	5.1	3.7	2.1	2.2	3.1	2.5	2.4
	0.95	14.1	6.0	8.9	6.8	4.5	4.8	6.3	5.2	4.5
	0.90	23.1	11.2	15.4	13.4	10.0	9.2	13.7	12.8	11.8
	0.80	33.3	20.2	30.9	29.8	24.8	25.0	36.9	35.4	33.5
	0.70	36.5	26.2	43.9	41.0	39.0	38.5	56.4	56.1	54.9
100	1.00	2.6	1.1	2.5	1.7	1.1	1.3	1.6	1.4	1.4
	0.99	3.8	1.6	4.1	2.2	1.6	2.0	2.2	2.0	1.9
	0.95	11.8	6.4	10.9	9.3	7.9	8.9	10.5	9.6	9.4
	0.90	24.9	15.5	21.5	25.7	24.0	25.9	33.2	31.9	31.1
	0.80	42.9	32.0	36.5	56.6	59.5	62.0	76.8	77.1	75.5
	0.70	50.1	40.2	46.3	67.5	73.6	77.6	89.7	90.6	90.4
250	1.00	1.0	0.8	2.0	1.0	1.0	0.9	1.1	1.0	1.0
	0.99	2.9	2.8	6.0	3.2	2.9	3.5	3.8	3.4	3.6
	0.95	24.6	27.8	41.9	40.8	41.8	43.0	47.8	47.7	46.4
	0.90	48.2	60.6	75.2	87.8	90.1	90.9	95.5	95.5	95.2
	0.80	60.6	71.0	81.7	97.9	99.1	99.3	100.0	100.0	100.0
	0.70	63.3	69.2	79.2	98.0	99.2	99.4	100.0	100.0	100.0

Table 4.17
Empirical power (\%) of $\hat{\tau}$ for nominal level 0.05

$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	$\begin{array}{r} \\ \mathbf{A}_{1} \\ \hline \end{array}$	$\sigma^{2}=0.2$			$\sigma_{c}^{2}=1.0$			$\sigma_{c}^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	17.6	11.4	16.2	10.0	7.8	7.8	8.2	8.0	7.5
	0.99	19.0	12.2	19.7	10.7	7.9	8.6	9.4	8.9	8.5
	0.95	24.9	16.5	26.9	15.9	11.7	13.3	14.6	13.0	12.7
	0.90	30.4	21.7	33.2	23.3	17.4	18.4	22.7	20.2	19.2
	0.80	36.2	30.1	48.7	32.5	28.6	31.2	37.2	36.1	36.0
	0.70	37.8	36.5	58.1	39.8	39.0	41.8	50.2	51.2	50.0
50	1.00	10.7	6.9	9.6	6.6	5.6	6.2	6.8	6.4	6.2
	0.99	13.3	8.4	12.0	9.2	7.4	7.7	8.6	7.9	7.7
	0.95	22.4	14.8	20.2	16.6	14.7	15.1	18.0	16.6	15.8
	0.90	34.4	24.3	30.4	30.2	28.5	29.3	35.4	34.8	33.1
	0.80	46.1	36.7	46.6	52.5	52.0	53.4	65.5	64.9	63.9
	0.70	48.5	43.6	56.9	60.4	63.2	66.3	78.4	78.9	78.3
100	1.00	6.6	5.0	9.4	5.8	4.9	5.7	6.0	5.2	5.6
	0.99	9.5	8.3	16.0	8.3	8.3	8.8	8.5	8.7	8.5
	0.95	25.9	24.6	36.7	30.0	29.9	31.6	33.3	33.3	32.6
	0.90	43.6	42.5	54.7	60.3	61.5	63.9	69.9	69.7	69.1
	0.80	57.4	58.4	64.0	83.9	88.0	89.7	94.8	95.3	95.1
	0.70	61.8	60.8	68.0	85.6	91.2	93.2	97.3	98.0	97.5
250	1.00	4.3	4.7	7.0	5.0	5.0	5.3	5.2	5.1	4.9
	0.99	11.1	13.0	18.5	14.1	14.1	15.2	15.1	14.7	15.4
	0.95	58.8	66.4	74.9	82.5	83.0	83.6	86.9	86.5	85.8
	0.90	77.7	87.5	91.7	98.8	99.2	99.5	99.8	99.8	99.8
	0.80	77.8	88.7	91.4	99.5	99.8	99.9	100.0	100.0	100.0
	0.70	78.0	88.5	91.6	99.6	99.8	99.9	100.0	100.0	100.0

Table 4.18
Empirical power (\%) of $\hat{\tau}$ for nominal level 0.10

$\begin{array}{\|c} \text { Sample } \\ \text { Size } \\ \hline \end{array}$	$\mathbf{A}_{1}{ }^{\mathbf{C}}$	$\sigma^{2}=0.2$			$\sigma_{\text {a }}{ }^{2}=1.0$			$\sigma_{e}^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	22.5	16.5	21.3	14.6	12.9	12.7	13.3	13.2	12.3
	0.99	24.1	17.6	25.4	15.9	13.6	14.5	15.0	14.5	14.4
	0.95	31.6	23.4	33.8	23.7	20.6	21.7	22.9	21.3	21.7
	0.90	37.9	30.7	41.0	33.1	27.9	29.7	34.0	31.9	31.4
	0.80	44.8	40.3	56.1	44.4	42.8	45.8	63.8	50.9	51.4
	0.70	46.3	46.3	64.3	51.7	53.1	56.2	70.8	64.9	64.8
50	1.00	15.3	12.0	17.0	11.7	10.6	11.6	11.5	11.5	11.2
	0.99	18.4	14.8	20.4	14.9	13.2	14.2	15.1	13.9	14.3
	0.95	30.5	24.9	32.4	27.5	26.5	27.4	29.4	28.6	28.2
	0.90	43.3	37.5	44.1	46.0	45.4	46.6	52.5	51.9	50.9
	0.80	54.5	49.1	57.7	66.8	68.7	70.1	79.3	79.4	79.5
	0.70	56.1	54.8	65.9	71.2	74.9	77.8	86.7	87.5	86.6
100	1.00	11.9	11.4	18.4	11.2	10.1	11.1	11.4	10.2	10.8
	0.99	17.1	17.2	26.4	16.2	16.4	17.3	16.5	16.7	16.4
	0.95	41.0	43.6	55.3	49.7	50.1	52.0	53.4	52.9	52.9
	0.90	59.0	62.7	73.1	80.0	81.4	82.8	86.5	86.9	86.4
	0.80	67.2	73.1	77.1	92.4	94.9	95.7	98.2	98.5	98.3
	0.70	69.1	73.3	77.6	92.6	95.3	96.0	98.6	98.9	98.7
250	1.00	8.9	9.5	12.4	10.0	9.9	10.5	10.0	10.0	10.2
	0.99	22.1	24.9	31.1	27.3	27.3	27.9	27.9	27.4	28.0
	0.95	75.5	81.9	86.2	94.2	94.7	95.0	96.5	96.0	96.0
	0.90	87.4	92.9	94.6	99.7	99.8	99.9	100.0	100.0	100.0
	0.80	87.5	92.8	93.8	99.8	99.9	99.9	100.0	100.0	100.0
	0.70	87.7	91.3	91.6	99.6	99.8	99.9	100.0	100.0	100.0

Table 4.19
Empirical power (\%) of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for nominal level 0.01

$\begin{gathered} \text { Sample } \\ \text { Size } \\ \hline \end{gathered}$	$\begin{array}{r} \quad \mathbf{C} \\ \mathbf{A}_{1} \\ \hline \end{array}$				$\sigma_{\text {, }}{ }^{2}=1.0$			$\underline{\sigma}^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	17.0	19.5	23.6	6.8	7.4	9.5	3.6	4.1	4.3
	0.99	18.9	20.1	26.7	7.5	7.7	10.2	3.8	4.7	5.3
	0.95	26.4	28.6	38.1	11.6	11.3	15.4	6.6	6.4	7.4
	0.90	34.9	38.9	48.8	17.7	18.0	21.3	10.7	10.5	11.8
	0.80	46.0	54.8	69.1	28.7	30.9	39.7	19.8	21.1	23.0
	0.70	52.0	65.3	79.4	39.9	45.6	55.7	32.6	33.8	36.5
50	1.00	11.5	10.3	12.0	4.1	3.8	4.7	2.5	2.5	2.9
	0.99	14.5	13.1	14.3	5.4	5.2	5.5	3.2	3.3	3.2
	0.95	25.4	23.7	28.0	10.7	9.5	11.7	6.5	6.4	7.2
	0.90	42.8	41.3	46.6	22.1	21.6	25.1	15.6	15.9	16.4
	0.80	62.3	65.8	72.9	47.7	48.3	53.9	41.0	40.9	43.2
	0.70	70.6	76.4	83.0	64.6	66.8	72.6	62.6	62.6	63.9
100	1.00	6.3	5.3	6.1	2.6	2.4	2.7	1.9	1.6	1.8
	0.99	9.8	8.4	9.5	3.7	3.6	3.7	2.5	2.7	2.6
	0.95	29.8	27.9	29.8	15.4	14.7	16.2	11.9	11.6	12.0
	0.90	58.1	57.2	59.7	41.3	40.8	44.9	36.8	35.9	36.7
	0.80	80.6	83.5	86.0	79.0	81.3	84.1	81.3	81.6	81.8
	0.70	86.0	89.6	93.1	88.9	91.3	93.0	92.7	93.3	93.2
250	1.00	2.8	2.1	2.9	1.4	1.4	1.2	1.3	1.1	1.1
	0.99	7.4	6.2	9.1	4.4	4.3	5.0	3.8	3.8	4.0
	0.95	54.1	51.6	58.6	50.5	50.6	52.3	49.2	49.3	49.2
	0.90	83.3	84.4	88.3	93.9	94.5	95.2	96.3	96.4	96.0
	0.80	91.5	93.9	94.8	99.3	99.7	99.8	100.0	100.0	100.0
	0.70	92.2	94.7	95.5	99.1	99.7	99.7	100.0	100.0	100.0

Table 4.20
Empirical power (\%) of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for nominal level 0.05

SampleSize	$\mathbf{A}_{\perp}{ }^{\prime}$	$\sigma_{c}{ }^{2}=0.2$			$\sigma_{\text {d }}{ }^{2}=1.0$			$\sigma_{c}{ }^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	25.7	27.7	31.1	13.5	13.9	15.8	8.8	9.3	10.1
	0.99	28.9	29.2	34.4	14.7	14.5	16.9	10.1	10.3	11.1
	0.95	39.7	39.5	47.6	22.1	21.5	26.1	15.6	15.3	17.0
	0.90	49.6	52.0	59.1	32.4	31.0	35.5	24.5	23.0	24.5
	0.80	62.5	67.5	76.8	49.1	49.7	56.8	40.2	40.5	43.6
	0.70	67.8	75.7	84.1	60.5	64.5	70.9	55.3	56.6	58.7
50	1.00	18.4	16.3	18.2	9.5	9.3	10.1	7.3	7.4	7.5
	0.99	22.7	20.3	21.2	12.2	11.7	12.3	9.5	9.0	9.3
	0.95	38.4	36.2	39.7	23.4	22.4	24.2	18.9	18.6	18.9
	0.90	57.6	56.1	58.6	42.5	41.8	44.3	37.8	37.3	37.8
	0.80	73.2	74.5	79.0	68.9	69.8	73.2	69.1	69.1	69.4
	0.70	78.4	81.5	86.2	79.2	80.8	82.9	82.2	82.4	82.9
100	1.00	12.9	11.2	12.8	7.6	6.8	7.8	6.5	5.6	6.3
	0.99	18.8	17.0	19.9	10.7	11.0	11.9	9.0	9.5	9.4
	0.95	48.7	47.1	50.8	37.6	38.0	39.8	34.6	34.8	35.0
	0.90	74.2	74.3	77.5	72.0	72.2	75.3	72.2	72.1	72.3
	0.80	86.8	89.4	91.2	92.4	94.4	94.9	95.9	96.5	96.3
	0.70	89.2	92.2	94.9	94.2	95.9	96.7	98.0	98.3	98.1
250	1.00	7.9	6.6	8.1	5.8	5.7	5.8	5.5	5.4	5.2
	0.99	19.8	17.8	22.0	15.9	15.9	17.0	15.3	15.2	15.8
	0.95	79.7	79.2	82.6	86.1	86.5	86.9	87.7	87.3	86.8
	0.90	90.8	93.7	95.9	99.5	99.6	99.7	99.9	99.9	99.9
	0.80	93.4	95.5	96.7	99.8	99.9	99.9	100.0	100.0	100.0
	0.70	93.5	95.7	96.4	99.4	99.8	99.9	100.0	100.0	100.0

Table 4.21
Empirical power (\%) of $n\left(\hat{A}_{1}-1\right)$ for nominal level 0.10

Sample Size	\mathbf{C}_{1}	$\underline{\sigma}^{2}=0.2$			$\sigma_{e}^{2}=1.0$			$\underline{\sigma}_{e}^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	31.5	33.2	35.7	18.4	19.1	20.7	13.9	14.6	14.7
	0.99	35.2	34.8	39.9	20.3	20.5	22.9	15.6	15.9	16.7
	0.95	46.6	46.0	53.6	29.9	29.4	34.1	23.8	23.1	24.9
	0.90	57.8	59.0	64.3	42.6	40.9	45.1	35.4	33.9	35.4
	0.80	69.9	74.1	80.0	60.2	60.2	66.3	53.8	54.1	56.5
	0.70	73.7	79.6	86.2	70.0	72.5	76.8	67.6	68.5	69.7
50	1.00	23.7	21.0	22.8	15.1	13.9	15.1	12.6	12.3	12.6
	0.99	28.8	26.7	27.5	18.5	17.7	18.9	16.0	15.3	15.7
	0.95	47.1	44.6	47.3	34.2	33.2	35.2	30.4	29.9	29.8
	0.90	65.8	63.6	65.4	55.9	56.8	58.0	53.8	54.4	53.8
	0.80	77.8	78.0	81.5	78.4	79.5	81.3	81.9	81.8	82.4
	0.70	80.7	83.4	87.4	84.1	85.4	86.3	88.8	88.8	89.2
100	1.00	18.8	16.5	19.0	12.6	11.9	13.0	11.5	10.7	11.3
	0.99	26.3	24.4	29.4	18.5	19.0	19.9	16.6	17.0	17.1
	0.95	60.7	59.6	66.5	55.4	54.9	57.1	53.8	53.1	54.0
	0.90	80.4	81.9	85.9	85.3	86.3	88.0	87.5	87.9	87.8
	0.80	88.9	91.4	93.0	95.9	97.1	97.3	98.6	99.0	98.8
	0.70	90.5	93.2	95.5	95.7	97.2	97.7	99.0	99.2	99.0
250	1.00	12.6	11.5	13.8	10.7	10.6	10.9	10.0	10.1	10.2
	0.99	31.5	29.1	34.0	28.9	28.4	29.2	27.7	27.4	28.6
	0.95	85.5	88.4	91.0	95.7	96.1	96.2	96.9	96.8	96.5
	0.90	92.9	96.1	97.9	99.9	99.9	99.9	100.0	100.0	100.0
	0.80	94.1	96.3	97.5	99.9	100.0	100.0	100.0	100.0	100.0
	0.70	93.8	96.0	97.1	99.6	99.8	99.9	100.0	100.0	100.0

Table 4.22
Empirical power (\%) of $\hat{\tau}$ for nominal level 0.01

$\begin{array}{\|c} \text { Sample } \\ \text { Size } \end{array}$	A_{1}	$\underline{\sigma}^{2}=0.2$			$\sigma_{\text {d }}{ }^{2}=1.0$			$\sigma_{\text {a }}{ }^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	20.8	26.1	30.2	8.0	9.4	14.0	3.9	4.6	5.5
	0.99	22.8	27.1	33.8	8.8	9.7	15.0	4.2	5.1	6.3
	0.95	32.6	37.2	46.3	13.7	14.5	22.9	7.3	7.3	9.4
	0.90	42.4	49.5	57.5	20.6	22.1	31.8	11.7	11.7	14.2
	0.80	57.3	66.0	74.5	33.7	37.9	52.3	21.5	23.1	27.1
	0.70	64.9	74.8	81.9	46.4	54.0	66.7	35.2	36.9	41.2
50	1.00	13.8	14.6	13.0	4.6	4.6	8.0	2.7	2.7	3.3
	0.99	17.6	18.4	15.9	6.1	6.4	9.3	3.4	3.5	3.8
	0.95	30.8	32.4	29.1	12.1	11.9	19.0	7.1	7.1	8.2
	0.90	50.8	52.2	46.7	25.1	26.5	36.4	17.1	17.4	18.8
	0.80	70.5	71.2	70.2	52.9	55.6	66.7	43.2	43.4	47.2
	0.70	77.2	78.5	80.6	70.1	73.5	78.6	64.8	64.9	68.0
100	1.00	8.0	8.7	5.7	2.9	2.9	5.3	1.9	1.7	2.0
	0.99	12.1	13.2	9.4	3.9	4.5	7.6	2.60	2.7	2.6
	0.95	37.1	38.1	25.5	16.9	17.9	26.9	12.4	12.3	13.2
	0.90	66.6	61.6	69.8	44.9	47.5	60.9	37.8	37.5	39.6
	0.80	82.9	80.5	76.6	82.9	86.9	85.7	82.4	82.8	84.6
	0.70	86.6	86.9	89.5	91.2	92.2	89.8	93.6	94.1	94.4
250	1.00	3.3	3.2	3.7	1.5	1.5	2.4	1.2	1.2	1.1
	0.99	9.7	8.5	11.1	4.7	4.8	8.3	4.1	3.9	4.3
	0.95	59.7	43.2	59.7	52.9	54.6	64.7	50.5	51.1	51.6
	0.90	80.6	71.2	82.5	94.7	96.1	91.9	96.4	96.7	96.6
	0.80	87.9	90.0	88.9	99.1	99.2	97.5	100.0	100.0	100.0
	0.70	89.7	93.2	93.4	98.6	99.2	98.3	100.0	100.0	1000

Table 4.23
Empirical power (\%) of $\hat{\tau}$ for nominal level 0.05

$\begin{array}{\|c} \text { Sample } \\ \text { Size } \end{array}$	$\begin{array}{r} \mathrm{C}_{1} \\ \mathbf{A}_{1} \\ \hline \end{array}$	$\sigma_{f}^{2}=0.2$			$\sigma_{\text {a }}{ }^{2}=1.0$			$\sigma_{e}{ }^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	29.2	33.5	34.4	14.9	16.4	20.3	9.5	10.0	11.4
	0.99	32.5	35.1	38.6	16.0	17.2	22.5	10.5	11.1	12.5
	0.95	44.4	46.6	51.0	24.4	25.2	33.3	16.7	16.4	19.1
	0.90	55.8	59.5	61.7	35.8	36.0	44.6	26.0	25.0	27.6
	0.80	69.5	73.2	76.8	53.9	55.9	65.1	42.6	43.2	47.6
	0.70	74.4	78.7	83.4	65.9	69.4	75.9	57.8	59.4	62.7
50	1.00	20.7	20.2	18.3	10.3	10.5	13.7	7.6	7.6	8.2
	0.99	25.6	25.4	22.0	13.2	13.3	16.7	9.9	9.4	10.0
	0.95	43.2	43.0	38.0	25.5	25.4	32.0	19.9	19.5	20.6
	0.90	63.7	61.5	54.6	45.5	47.2	53.5	39.7	39.2	40.7
	0.80	76.8	74.8	74.6	72.9	74.9	76.7	70.7	70.9	72.5
	0.70	79.9	80.3	83.7	81.9	82.9	81.7	83.4	83.6	84.9
100	1.00	15.0	14.4	14.2	8.0	7.6	10.6	6.6	5.8	6.6
	0.99	22.0	20.6	21.4	11.6	12.5	16.1	9.2	9.9	10.0
	0.95	54.6	50.3	48.3	40.3	42.2	48.4	35.5	36.0	37.0
	0.90	76.5	70.4	69.8	74.7	77.2	79.4	73.2	73.2	74.3
	0.80	85.2	86.0	86.4	93.5	94.5	91.8	96.2	96.6	96.9
	0.70	88.0	90.3	92.8	93.6	95.0	94.5	98.1	98.4	98.2
250	1.00	8.2	7.1	9.9	6.0	5.9	7.3	5.4	5.4	5.3
	0.99	22.0	18.0	26.4	16.5	16.9	20.8	15.6	15.3	16.3
	0.95	75.2	67.3	81.4	86.5	87.8	87.4	87.8	87.3	87.3
	0.90	86.4	87.1	91.0	99.4	99.5	97.2	99.9	99.9	99.8
	0.80	91.6	93.5	93.0	99.6	99.7	99.0	100.0	100.0	100.0
	0.70	92.1	94.7	95.1	99.2	99.6	99.1	100.0	100.0	100.0

Table 4.24
Empirical power (\%) of $\hat{\tau}$ for nominal level 0.10

$\begin{gathered} \text { Sample } \\ \text { Size } \\ \hline \end{gathered}$	$\mathbf{A}_{1}{ }^{\mathbf{C}}$	$\sigma_{\text {c }}{ }^{2}=0.2$			$\sigma_{e}^{2}=1.0$			$\sigma_{\text {a }}{ }^{2}=5.0$		
		-0.5	0.0	0.5	-0.5	0.0	0.5	-0.5	0.0	0.5
25	1.00	34.8	38.1	38.0	20.1	21.6	24.9	14.6	15.3	16.5
	0.99	38.5	39.9	42.2	22.1	23.1	27.8	16.5	16.9	18.4
	0.95	50.7	51.7	55.1	32.7	33.5	39.8	25.3	24.8	27.8
	0.90	62.8	64.4	65.0	46.0	46.1	52.9	37.6	36.3	39.0
	0.80	74.3	75.7	78.7	64.2	65.2	71.6	56.8	56.8	60.6
	0.70	77.6	80.1	84.7	73.7	75.7	79.5	69.4	70.6	72.9
50	1.00	26.0	24.4	23.0	15.8	15.3	18.4	12.9	12.8	13.4
	0.99	31.7	30.5	27.8	19.6	19.6	22.9	16.2	15.9	16.9
	0.95	51.6	49.9	45.2	36.6	36.8	41.8	31.5	31.3	32.1
	0.90	69.1	65.6	60.9	59.2	60.9	63.5	55.5	56.0	56.5
	0.80	78.6	76.8	78.1	80.8	82.1	81.0	82.8	83.0	84.1
	0.70	80.7	81.7	85.7	85.2	85.5	84.3	89.2	89.4	89.9
100	1.00	21.1	18.9	21.2	13.3	13.0	15.4	11.9	10.7	11.6
	0.99	29.6	27.1	31.0	19.5	20.8	24.1	17.3	17.8	18.0
	0.95	64.2	59.2	63.0	57.6	59.0	62.7	55.3	55.1	56.0
	0.90	80.0	77.1	79.7	87.1	88.2	87.3	88.1	88.5	88.6
	0.80	87.0	89.0	89.8	95.6	96.6	95.2	98.6	99.0	98.9
	0.70	89.0	91.9	94.1	94.9	96.3	96.2	98.9	99.1	98.9
250	1.00	12.5	11.5	15.8	10.7	11.1	12.5	10.2	10.3	10.6
	0.99	32.9	28.1	38.4	29.5	29.8	32.8	28.4	27.9	29.1
	0.95	81.2	80.2	88.2	95.6	96.1	94.2	96.7	96.3	96.4
	0.90	89.7	91.8	93.7	99.8	99.8	98.6	100.0	100.0	100.0
	0.80	92.5	94.9	94.6	99.7	99.8	99.4	100.0	100.0	100.0
	0.70	93.4	95.8	96.2	99.4	99.7	99.4	100.0	100.0	100.0

Table 4.25
Empirical cumulative distribution of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for $\mathrm{A}_{1}=1(\mathrm{~N}=25)$

	Probability of a Smaller Value							
$\left(\sigma_{e}{ }^{2}, \mathrm{C}_{1}\right)$	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99
$(0.2,-0.5)$	-46.78	-33.53	-25.30	-17.58	2.93	5.65	10.10	20.77
$(0.2,0.0)$	-61.67	-42.89	-31.44	-21.93	2.84	5.63	10.47	20.42
$(0.2,0.5)$	-57.06	-43.22	-35.27	-26.87	3.24	6.60	11.62	20.78
$(1.0,-0.5)$	-30.25	-20.47	-14.21	-9.32	1.63	2.51	3.57	6.13
$(1.0,0.0)$	-32.31	-22.39	-15.72	-9.75	1.58	2.36	3.61	6.40
$(1.0,0.5)$	-36.23	-25.48	-18.24	-11.42	1.58	2.42	3.65	6.26
$(5.0,-0.5)$	-21.78	-13.93	-10.15	-6.77	1.40	1.93	2.60	3.66
$(5.0,0.0)$	-22.27	-15.42	-10.85	-7.02	1.39	1.95	2.57	3.57
$(5.0,0.5)$	-22.89	-15.78	-11.13	-7.37	1.41	1.99	2.60	3.71

Table 4.26
Empirical cumulative distribution of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for $\mathrm{A}_{1}=1(\mathrm{~N}=50)$

	Probability of a Smaller Value							
$\left(\sigma_{\mathrm{e}}{ }^{2}, \mathrm{C}_{\mathrm{l}}\right)$	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99
$(0.2,-0.5)$	-58.75	-38.39	-25.78	-14.72	1.89	3.15	5.73	12.97
$(0.2,0.0)$	-54.25	-35.53	-23.34	-13.30	1.84	3.05	6.03	11.93
$(0.2,0.5)$	-61.03	-43.09	-29.56	-15.89	2.32	4.87	9.58	16.65
$(1.0,-0.5)$	-25.83	-16.61	-11.50	-7.45	1.19	1.67	2.21	2.90
$(1.0,0.0)$	-24.29	-15.84	-11.03	-7.31	1.19	1.65	2.10	2.80
$(1.0,0.5)$	-27.41	-17.84	-12.42	-7.75	1.22	1.70	2.25	3.08
$(5.0,-0.5)$	-18.78	-12.96	-9.44	-6.41	1.10	1.51	1.94	2.46
$(5.0,0.0)$	-17.86	-13.02	-9.42	-6.32	1.12	1.54	1.91	2.46
$(5.0,0.5)$	-18.63	-13.72	-9.76	-6.53	1.14	1.62	2.03	2.59

Table 4.27
Empirical cumulative distribution of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for $\mathrm{A}_{1}=1(\mathrm{~N}=100)$

	Probability of a Smaller Value							
$\left(\sigma_{e}{ }^{2}, \mathrm{C}_{1}\right)$	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99
$(0.2,-0.5)$	-38.05	-24.53	-15.73	-9.77	1.16	1.67	2.22	3.02
$(0.2,0.0)$	-32.98	-20.88	-14.00	-8.76	1.12	1.62	2.13	2.79
$(0.2,0.5)$	-33.37	-20.89	-15.05	-9.57	1.06	1.54	2.09	3.04
$(1.0,-0.5)$	-19.60	-13.61	-9.95	-6.67	1.00	1.42	1.80	2.32
$(1.0,0.0)$	-18.52	-13.07	-9.28	-6.24	1.01	1.43	1.89	2.34
$(1.0,0.5)$	-19.72	-13.76	-10.10	-6.76	1.00	1.39	1.74	2.24
$(5.0,-0.5)$	-16.90	-11.72	-9.02	-6.19	1.00	1.39	1.76	2.23
$(5.0,0.0)$	-15.84	-11.44	-8.39	-5.88	1.01	1.40	1.84	2.35
$(5.0,0.5)$	-15.89	-11.92	-8.87	-6.09	1.0.	1.39	1.74	2.17

Table 4.28
Empirical cumulative distribution of $n\left(\hat{\mathrm{~A}}_{1}-1\right)$ for $\mathrm{A}_{1}=1(\mathrm{~N}=250)$

	Probability of a Smaller Value							
$\left(\sigma_{c}^{2}, \mathrm{C}_{1}\right)$	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99
$(0.2,-0.5)$	-20.53	-14.41	-10.22	-6.76	1.04	1.44	1.87	2.39
$(0.2,0.0)$	-17.86	-12.92	-9.46	-6.33	1.03	1.43	1.83	2.35
$(0.2,0.5)$	-20.21	-14.24	-10.46	-7.02	0.97	1.39	1.78	2.31
$(1.0,-0.5)$	-15.25	-11.41	-8.59	-5.97	0.98	1.35	1.67	2.10
$(1.0,0.0)$	-14.78	-11.17	-8.54	-5.91	0.95	1.33	1.72	2.14
$(1.0,0.5)$	-14.62	-11.02	-8.54	-5.95	0.94	1.32	1.68	2.12
$(5.0,-0.5)$	-1444	-11.05	-8.28	-5.73	0.97	1.34	1.65	2.06
$(5.0,0.0)$	-14.28	-10.80	-8.26	-5.78	0.96	1.33	1.71	2.16
$(5.0,0.5)$	-13.86	-10.45	-8.23	-5.80	0.96	1.32	1.67	2.09

Table 4.29
Empirical cumulative distribution of $\hat{\tau}$ for $\mathrm{A}_{1}=1(\mathrm{~N}=25)$

	Probability of a Smaller Value							
$\left(\sigma_{\mathrm{e}}{ }^{2}, \mathrm{C}_{1}\right)$	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99
$(0.2,-0.5)$	-20.21	-9.47	-6.08	-4.17	4.34	20.11	74.92	4804
$(0.2,0.0)$	-318.0	-15.72	-8.78	-5.63	4.06	17.90	70.03	4775
$(0.2,0.5)$	-186.4	-28.78	-16.67	-10.22	4.80	23.64	109.2	12684
$(1.0,-0.5)$	-6.98	-4.41	-3.24	-2.40	1.92	3.59	7.90	25.87
$(1.0,0.0)$	-7.79	-4.94	-3.67	-2.58	1.88	3.49	6.87	26.10
$(1.0,0.5)$	-12.66	-7.29	-5.11	-3.39	1.81	3.23	6.28	22.32
$(5.0,-0.5)$	-4.33	-3.05	-2.45	-1.91	1.51	2.41	3.51	6.10
$(5.0,0.0)$	-4.49	-3.35	-2.59	-1.96	1.57	2.57	3.64	6.30
$(5.0,0.5)$	-5.00	-3.59	-2.73	-2.08	1.51	2.42	3.60	6.41

Table 4.30
Empirical cumulative distribution of $\hat{\tau}$ for $\mathrm{A}_{1}=1(\mathrm{~N}=50)$

	Probability of a Smaller Value							
$\left(\sigma_{c}^{2}, \mathrm{C}_{1}\right)$	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99
$(0.2,-0.5)$	-9.85	-6.37	-4.53	-3.16	2.21	4.90	20.79	217.5
$(0.2,0.0)$	-10.04	-6.78	-4.97	-3.49	2.12	4.28	20.67	193.5
$(0.2,0.5)$	-17.93	-11.97	-8.53	-4.18	2.80	15.86	96.14	9403
$(1.0,-0.5)$	-4.27	-3.20	-2.55	-1.97	1.29	1.99	2.78	3.95
$(1.0,0.0)$	-4.24	-3.21	-2.57	-2.00	1.25	1.88	2.62	4.09
$(1.0,0.5)$	-5.86	-4.17	-3.24	-2.31	1.30	1.96	2.70	3.98
$(5.0,-0.5)$	-3.33	-2.67	-2.21	-1.78	1.12	1.70	2.28	2.97
$(5.0,0.0)$	-3.23	-2.68	-2.22	-1.76	1.15	1.63	2.18	2.94
$(5.0,0.5)$	-3.46	-2.86	-2.34	-1.81	1.17	1.71	2.23	3.01

Table 4.31
Empirical cumulative distribution of $\hat{\tau}$ for $\mathrm{A}_{1}=1(\mathrm{~N}=100)$

	Probability of a Smaller Value							
$\left(\sigma_{e}{ }^{2}, \mathrm{C}_{1}\right)$	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99
$(0.2,-0.5)$	-5.35	-4.00	-3.15	-2.40	1.14	1.76	2.47	3.94
$(0.2,0.0)$	-6.09	-4.72	-3.47	-2.44	1.11	1.73	2.31	3.33
$(0.2,0.5)$	-7.92	-3.32	-2.71	-2.21	1.06	1.70	2.37	3.51
$(1.0,-0.5)$	-3.32	-2.71	-2.26	-1.81	1.00	1.52	1.96	2.54
$(1.0,0.0)$	-3.32	-2.70	-2.21	-1.77	1.02	1.50	1.98	2.55
$(1.0,0.5)$	-4.18	-3.29	-2.68	-2.00	1.00	1.46	1.93	2.52
$(5.0,-0.5)$	-2.95	-2.45	-2.10	-1.71	0.98	1.44	1.85	2.33
$(5.0,0.0)$	-2.90	-2.41	-2.03	-1.67	1.01	1.46	1.86	2.41
$(5.0,0.5)$	-2.92	-2.48	-2.12	-1.71	1.01	1.41	1.82	2.34

Table 4.32
Empirical cumulative distribution of $\hat{\tau}$ for $\mathrm{A}_{1}=1(\mathrm{~N}=250)$

	Probability of a Smaller Value							
$\left(\sigma_{\mathrm{e}}{ }^{2}, \mathrm{C}_{1}\right)$	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99
$(0.2,-0.5)$	-3.55	-2.85	-2.33	-1.84	0.98	1.44	1.89	2.42
$(0.2,0.0)$	-4.00	-2.90	-2.20	-1.73	1.01	1.43	1.86	2.38
$(0.2,0.5)$	-3.32	-2.82	-2.41	-1.95	0.96	1.44	1.89	2.39
$(1.0,-0.5)$	-2.77	-2.38	-2.04	-1.67	0.94	1.37	1.79	2.21
$(1.0,0.0)$	-2.77	-2.37	-2.05	-1.68	0.94	1.33	1.74	2.15
$(1.0,0.5)$	-3.13	-2.58	-2.17	-1.75	0.94	1.37	1.74	2.16
$(5.0,-0.5)$	-2.68	-2.32	-1.99	-1.63	0.93	1.35	1.76	2.17
$(5.0,0.0)$	-2.65	-2.29	-1.99	-1.63	0.93	1.32	1.72	2.09
$(5.0,0.5)$	-2.64	-2.26	-1.98	-1.65	0.93	1.35	1.71	2.11

CHAPTER V

MODEL MISSPECIFICATION PROBLEMS

A general regression model with integrated errors and one system of integrated regressors is introduced in Section 5.1. Section 5.2 develops the basic asymptotic results of parameter estimates and the usual OLS statistics, which is applied to subsequent Sections 5.3-5.5. Spurious regression problem is discussed in Section 5.3 and misspecification of nonstationary autoregresive and polynomial regression models considered in Section 5.4. Section 5.5 discusses underspecification of orders in nonstationary AR and polynomial regression models.

5.1. General Regression Model

We consider a general regression model with integrated errors and one system of integrated regressors as follows:

$$
\begin{equation*}
y_{t}=\beta_{0}+\beta_{1} x_{t, 1}+\ldots+\beta_{p} x_{t, p}+U_{t, k}, t=1, \ldots, n, \tag{5.1.1}
\end{equation*}
$$

where y_{t} is the regressand, the regressors consist of an intercept and a system of integrated variables defined by

$$
\begin{equation*}
X_{t, j}=X_{1, j-1}+\ldots+X_{t, j-1}, j=1,2, \ldots, p, X_{t, 0}=x_{t} \tag{5.1.2}
\end{equation*}
$$

for a given deterministic or random sequence $\left\{\mathrm{x}_{\mathrm{t}}\right\}$, the regression error $\mathrm{U}_{\mathrm{t}, \mathrm{k}}$ is a k integrated error defined by

$$
U_{t, j}=U_{1, j-1}+\ldots+U_{t, j-1}, j=1, \ldots, k, \quad U_{t, 0}=u_{t}
$$

and p and k are the levels of integration. The two processes $\left\{\mathrm{x}_{\mathrm{t}}\right\}$ and $\left\{\mathrm{u}_{\mathrm{t}}\right\}$ are assumed to have certain limiting behavior based on the following Assumption 5.1 suggested by Shin and Sarkar (1996, pp. 4-5). For simplicity of presentation, we discuss one system of integrated regressors.

Assumption 5.1. There exist sequences of real numbers a_{n} and d_{n}, and continuous nonzero functions fand g on $[0,1]$, possibly random, such that as $n \rightarrow \infty\left(\sum_{t=1}^{[n r]} x_{t} a_{n}^{-1}, \sum_{t=1}^{[n s]} u_{t} d_{n}^{-1}\right)$ converges in distribution to $(g(r), f(s)), 0 \leq r, s \leq 1$, where [nr] denotes the largest integer not greater than $n r$.

Usually, each of the functions g and f in Assumption 5.1 is either a deterministic function, or a standard Brownian motion. The latter holds with $w_{t}=x_{t}$ or $w_{t}=u_{t}$ under conditions such as

CC1. $E\left(w_{t}\right)=0$ for all $t, \operatorname{Sup}_{t} E\left(w_{t}\right)^{t^{+} v}<\infty$ for some $\xi>2$ and $v>0, \sigma^{2}=\lim _{n \rightarrow \infty} E\left(w_{1}\right.$ $\left.+\ldots+w_{n}\right)^{2} / n$ exists and $\sigma^{2}>0,\left\{w_{v}\right\}$ is a strong-mixing with mixing coefficients ψ_{m} satisfying $\Sigma \psi_{m}{ }^{l-2 / \xi}<\infty$; or

CC2. $w_{t}=\sum_{j=0}^{\infty} \phi_{j} e_{t-j}$ where $\left\{e_{t}\right\}$ is an iid sequence with $E\left(e_{t}\right)=0, E\left(e_{t}^{2}\right)=\sigma_{e}^{2}<\infty, \Sigma j^{2} \phi_{j}^{2}$ $<\infty$ and $\sigma^{2}=\sigma_{e}^{2}\left(\sum_{j=0}^{\infty} \phi_{j}\right)^{2}>0$.

The conditions CC1 and CC2 were formulated by Herrndorf (1984) and Phillips and Solo (1992) respectively.

If $X_{t, 1}, \ldots, X_{t, p}$ linearly explain nothing of y_{t}, then $\left(\beta_{0}+\beta_{1} X_{t, 1}+\ldots+\beta_{p} X_{t, p}\right)$ is said to be totally misspecified and $\mathrm{U}_{\mathrm{t}, \mathrm{k}}$ represents the nonstationary process y_{t}. If $\mathrm{X}_{\mathrm{t}, 1}, \ldots, \mathrm{X}_{\mathrm{t}, \mathrm{p}}$ explain the nonstationarity of y_{t} partially in the sense that $\mathrm{U}_{\mathrm{t}, \mathrm{k}}$ is still nonstationary with k $<\mathrm{p}$. Then the model (5.1.1) is said to be partially misspecified. The conventional t statistics diverge asymptotically and the Durbin-Watson (DW) statistic converges in probability to zero in cases of totally or partially misspecified models. On the other hand, model (5.1.1) is said to be well specified when y_{t} is well explained by $\mathrm{X}_{\mathrm{t}, 1}, \ldots, \mathrm{X}_{\mathrm{t}, \mathrm{p}}$ in the sense that $\mathrm{U}_{\mathrm{t}, \mathrm{k}}$ is stationary with $\mathrm{k}=0$. In this case, t statistic has nondegenerate limiting distributions and the limits of DW and R^{2} are positive and one respectively. If $\mathrm{k}=0$ in model (5.1.1) and $x_{t}=u_{t-1}$ in (5.1.2), then model (5.1.1) becomes the AR model of order p

$$
\begin{equation*}
y_{t}=\phi_{0}+\sum_{j=1}^{p} \phi_{j} y_{t-j}+u_{t} \tag{5.1.3}
\end{equation*}
$$

where ϕ_{j} 's are linear combination of β_{j} 's whose characteristic roots are all one. Similarly, if $\mathrm{k}=0$ in model (5.1.1) and $\mathrm{x}_{\mathrm{t}}=1$ in (5.1.2), then (5.1.1) becomes the polynomial regression model

$$
\begin{equation*}
y_{t}=\delta_{0}+\sum_{j=1}^{p} \delta_{j} t^{j} / j!+u_{t} \tag{5.1.4}
\end{equation*}
$$

where δ_{j} 's are linear combinations of β_{j} 's.

5.2. Asymptotic properties

In this section we discuss the asymptotics of the LS estimator and other regression statistics in model (5.1.1) under proper normalization. Assumption 5.1 is imposed on the two processes $\left\{\mathrm{x}_{\mathrm{t}}\right\}$ and $\left\{\mathrm{u}_{\mathrm{t}}\right\}$ to derive the asymptotic results.

Let $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{\mathrm{p}}\right)^{\prime}$ and let $\mathbf{y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)^{\prime}, \mathbf{X}_{\mathrm{t}}=\left(1, \mathrm{X}_{\mathrm{t}, 1}, \ldots, \mathrm{X}_{\mathrm{t}, \mathrm{p}}\right)^{\prime}, \mathbf{X}=\left(\mathbf{X}_{1} \mid \mathbf{X}_{2}\right.$ $\left.|\ldots| \mathbf{X}_{\mathrm{n}}\right)^{\prime}, \mathbf{U}=\left(\mathrm{U}_{1, k}, \ldots, \mathrm{U}_{\mathrm{n}, \mathrm{k}}\right)^{\prime}, \overline{\mathrm{y}}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \mathrm{y}_{\mathrm{t}} / \mathrm{n}$ and $\overline{\mathrm{U}}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \mathrm{U}_{\mathrm{t}, \mathrm{k}} / \mathrm{n}$. Then the LS estimator $\hat{\boldsymbol{\beta}}$ of β satisfies

$$
(\hat{\beta}-\beta)=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{U}
$$

To establish the limiting distribution of suitably normalized $(\hat{\beta}-\beta)$, the joint limiting distributions of the elements in $\mathbf{X}^{\prime} \mathbf{X}$ and $\mathbf{X}^{\prime} \mathbf{U}$ of Lemma 5.1 below (Shin and Sarkar, 1996, pp. 6-7) are exploited.

Lemma 5.1. Let model (5.1.1) hold with Assumption 5.1. Assume that $k \geq 1$ and $p \geq 1$. Then, jointly
(1) $n^{-j+1} a_{n}{ }^{-1} X_{[n r], j} \xrightarrow{L} g_{j}(r), j=1, \ldots, p ;$

$$
\mathrm{n}^{-\mathrm{k}+1} \mathrm{~d}_{\mathrm{n}}^{-1} \mathrm{U}_{[\mathrm{nr}], \mathrm{k}} \xrightarrow{\mathrm{~L}} \mathrm{f}_{\mathrm{k}}(\mathrm{r}) ;
$$

(2) $n^{-i-j+1} a_{n}{ }^{-2} \sum_{t=1}^{n} X_{t, i} X_{t, j} \xrightarrow{L} \int_{0}^{1} g_{i}(r) g_{j}(r) d r, i, j=1, \ldots, p ;$
(3) $n^{-j-k+1} d_{n}^{-1} a_{n}^{-1} \sum_{t=1}^{n} X_{t, j} U_{t, k} \xrightarrow{L} \int_{0}^{1} g_{j}(r) f_{k}(r) d r, j=1,2, \ldots, p$,
where $g_{j}(r)=\int_{0}^{1} g_{j-1}(s) d s, j=2, \ldots, p, g_{1}(r)=g(r), f_{j}(r)=\int_{0}^{r} f_{j-1}(s) d s, j=2, \ldots, k, f_{1}(r)=$ $\mathrm{f}(\mathrm{r})$.

Proof. Noting $a_{n}^{-1} X_{[n r], 1}=a_{n}{ }^{-1} \sum_{t=1}^{[n r]} x_{t} \xrightarrow{L} g_{1}(r)=g(r)$, we have

$$
X_{[n r], 2} n^{-1} a_{n}^{-1}=\sum_{t=1}^{[n r]} X_{t} n^{-1} a_{n}^{-1} \xrightarrow{L} g_{2}(r)=\int_{0}^{r} g_{1}(s) d s
$$

because of the continuity of the map $g_{1}(r)=\int_{0}^{\mathrm{r}} \mathrm{g}_{1}(\mathrm{~s}) \mathrm{ds}$ and the continuous mapping
theorem (Billingsley 1968, Theorem 5.1). The proof of part (1) is completed by repeatedly applying similar arguments. Let D be the set of all right continuous functions on $[0,1]$ having the left hand limits, equipped with Skorokhod topology. Then the proof
of parts (2), (3) and the joint convergence is verified by using part (1) and continuity of the map $D^{2} \rightarrow D^{p+k} \times \Re^{p(p+1)}$ defined by

$$
\mathfrak{J}:(f, g) \rightarrow\left[f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{p},\left(\int_{0}^{1} g_{g_{i}} g_{j} d r, i=1, \ldots, p, j=1, \ldots, p\right),\left(\int_{0}^{1} g_{j} f_{k} d r, j=1, \ldots, p\right)\right]
$$

and continuous mapping theorem. since $(\mathrm{g}(\mathrm{r}), \mathrm{f}(\mathrm{s})$) is continuous, the convergence in Skorokhod topology is equivalent to the uniform convergence (Billingsley 1968, p. 112). Hence, it suffices to show the continuity of the map \mathfrak{J} in the uniform topology, which is verified by observing that, for example, $\left|\int_{0}^{1} \mathrm{~g}_{\mathrm{j}} \mathrm{f}_{\mathrm{k}} \mathrm{dr}\right| \leq\left\|\mathrm{g}_{\mathrm{i}} \mathrm{g}_{\mathrm{j}}\right\|$, where $\|\cdot\|$ is the uniform norm $\|g\|=\sup _{0 \leq t \leq 1}|g(t)|$ that induces the uniform topology on $C[0,1]$, the set of all continuous functions on $[0,1]$. Since boundedness of a map on $C[0,1]$ to \mathfrak{R} is equivalent to continuity, the map $\left(g_{i}, g_{j}\right) \rightarrow \int_{0}^{1} g_{i} g_{j} d r$ is continuous. Q.E.D.

Now let

$$
\begin{gather*}
\mathbf{A}_{\mathrm{n}}=\operatorname{diag}\left[1, \mathrm{a}_{\mathrm{n}}\left(1, \mathrm{n}, \ldots, \mathrm{n}^{\mathrm{p}-1}\right)\right], \mathbf{G}(\mathrm{r})=\left[1, \mathrm{~g}_{1}(\mathrm{r}), \ldots, \mathrm{g}_{\mathrm{p}}(\mathrm{r})\right]^{\prime}, \\
\mathbf{H}=\int_{0}^{1} \mathbf{G}(\mathrm{r}) \mathbf{G}(\mathrm{r})^{\prime} \mathrm{dr}, \mathbf{V}=\int_{0}^{1} \mathbf{G}(\mathrm{r}) \mathrm{f}_{\mathrm{k}}(\mathrm{r}) \mathrm{dr}, \mathrm{z}=\int_{0}^{1} \mathrm{f}_{\mathrm{k}}^{2} \mathrm{dr} \tag{5.2.1}
\end{gather*}
$$

and let

$$
\hat{\sigma}^{2}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \hat{\mathrm{U}}_{\mathrm{t}}^{2} /(\mathrm{n}-\mathrm{p}-1)
$$

where $\hat{U}_{t}=y_{t}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{t, 1}-\ldots-\hat{\beta}_{p} X_{t, p}$. Then,

$$
(\mathrm{n}-\mathrm{p}-1) \hat{\sigma}^{2}=\mathbf{U}^{\prime} \mathbf{U}-\mathbf{U}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{U}
$$

Now from the above Lemma 5.1 it follows that

$$
\mathrm{n}^{-1} \mathbf{A}^{\mathrm{n}-1}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{A}_{\mathrm{n}}^{-1} \xrightarrow{\mathrm{~L}} \mathbf{H}, \quad \mathbf{A}_{\mathrm{n}}^{-1}\left(\mathbf{X}^{\prime} \mathbf{U}\right) /\left(\mathrm{n}^{\mathrm{k}} \mathrm{~d}_{\mathrm{n}}\right) \xrightarrow{\mathrm{L}} \mathbf{V}
$$

and

$$
\begin{equation*}
\mathbf{U}^{\prime} \mathbf{U} /\left(\mathrm{n}^{2 \mathrm{k}-1} \mathrm{~d}_{\mathrm{n}}^{2}\right) \xrightarrow{\mathrm{L}} \mathrm{z} \tag{5.2.2}
\end{equation*}
$$

We now define conventional regression statistics: the Durbin-Watson statistic

$$
\mathrm{DW}=\sum_{\mathrm{t}=2}^{\mathrm{n}}\left(\hat{\mathrm{U}}_{\mathrm{t}}-\hat{\mathrm{U}}_{\mathrm{t}-1}\right)^{2} / \sum_{\mathrm{t}=1}^{\mathrm{n}} \hat{\mathrm{U}}_{\mathrm{t}}^{2}
$$

the coefficient of determination

$$
\mathrm{R}^{2}=\left[\mathbf{y}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}-\mathrm{n} \overline{\mathbf{y}}^{2}\right] /\left(\mathbf{y}^{\prime} \mathbf{y}-\mathrm{n} \overline{\mathbf{y}}^{2}\right) ;
$$

and the t-statistic

$$
t_{\beta_{j}}=\left(\hat{\beta}_{j}-\beta_{j}\right) / s_{\hat{\beta}_{j}},
$$

where $\mathrm{s}_{\hat{\beta}_{j}}$ denotes the standard error of $\hat{\beta}_{j}$.

Now we state three theorems containing the limiting properties of the parameter estimators and other conventional regression statistics, which are given by Shin and Sarkar (1996).

Theorem 5.1. Let model (5.1.1) hold with Assumption 5.1. Assume $\mathrm{k} \geq 1, \mathrm{p} \geq 1$ and that \mathbf{H} is nonsingular. Then
(1) $\mathbf{A}_{\mathrm{n}}(\hat{\beta}-\beta) /\left(\mathrm{n}^{\mathrm{k}-1} \mathrm{~d}_{\mathrm{n}}\right) \xrightarrow{\mathrm{L}} \mathbf{H}^{-1} \mathbf{V}$, i.e.,

$$
d_{n}^{-1} a_{n} n^{j-k}\left(\hat{\beta}_{j}-\beta_{j}\right) \xrightarrow{L}\left(\mathbf{H}^{-1} \mathbf{V}\right)_{j+1,1} \text { for } j=1, \ldots, p ;
$$

(2) (n-p-1) $\hat{\sigma}^{2} /\left(n^{2 k-1} d_{n}{ }^{2}\right) \xrightarrow{\mathrm{L}}\left(\mathrm{z}-\mathbf{V}^{\prime} \mathbf{H}^{-1} \mathbf{V}\right)$.

Theorem 5.2. Let model (5.1.1) hold with Assumption 5.1. Assume that $\mathrm{k} \geq 1, \mathrm{p} \geq 1$ and \mathbf{H} is nonsingular. also assume that f_{k} is not a linear combination of $g_{1}, g_{2}, \ldots, g_{p}$. Define τ $=0$ if $\beta=0$, otherwise define $\tau=\lim _{n \rightarrow \infty}\left(n^{\kappa} a_{n}\right) /\left(n^{k} d_{n}\right)$ where $\kappa=\max \left\{0 \leq j \leq p: \beta_{j} \neq 0\right\}$ and $h(r)=\tau \beta_{k} g_{k}(r)+f_{k}(r)$. then
(1) $\mathrm{DW} \xrightarrow{\mathrm{p}} 0$;
(2) if $\tau=\infty, R^{2} \xrightarrow{p} 1$;
if $0 \leq \tau \leq \infty$,

$$
\mathrm{R}^{2} \xrightarrow{\mathrm{~L}} 1-\left[\int_{0}^{1} \mathrm{~h}^{2}(\mathrm{r}) \mathrm{dr}-\left(\int_{0}^{1} \mathrm{~h}(\mathrm{r}) \mathrm{dr}\right)^{2}\right]^{-1}\left[\mathrm{z}-\mathbf{V}^{\prime} \mathbf{H}^{-1} \mathbf{V}\right] ;
$$

(3) for $\mathrm{j}=1, \ldots, \mathrm{p}$,

$$
\mathrm{t}_{\mathrm{\beta}_{\mathrm{j}}} / \sqrt{\mathrm{n}} \xrightarrow{\mathrm{~L}}\left(\mathbf{H}^{-1} \mathbf{V}\right)_{\mathrm{j}+1,1}\left[\left(\mathbf{H}^{-1}\right)_{\mathrm{j}+1, j+1}\left(\mathrm{z}-\mathbf{V}^{\prime} \mathbf{H}^{-1} \mathbf{V}\right)\right]^{-1 / 2} .
$$

Proof of (1). Note that

$$
\hat{U}_{t}=\sum_{j=0}^{p}\left(\beta_{j}-\hat{\beta}_{j}\right) X_{t, j}+U_{t, k}, \hat{U}_{t}-\hat{U}_{t-1}=\sum_{j=1}^{p}\left(\beta_{j}-\hat{\beta}_{j}\right) X_{t, j-1}+U_{t, k-1}
$$

Now

$$
\sum_{t=1}^{n}\left(\hat{U}_{t}-\hat{U}_{t-1}\right)^{2}=\mathbf{U}^{*} \mathbf{U}^{*}-2(\hat{\beta}-\beta)^{\prime} \mathbf{X}^{*} \mathbf{U}^{*}+(\hat{\beta}-\beta)^{\prime} \mathbf{X}^{*} \mathbf{X}^{*}(\hat{\beta}-\beta)
$$

where

$$
\mathbf{X}_{\mathrm{t}}^{*}=\left(0, \mathrm{x}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}, 1}, \ldots, \mathrm{X}_{\mathrm{t}, \mathrm{p}-1}\right)^{\prime}, \mathbf{X}^{*}=\left(\mathbf{X}_{1}^{*}\left|\mathbf{X}_{2}^{*}\right| \ldots \mid \mathbf{X}_{\mathrm{n}}^{*}\right)^{\prime}, \text { and } \mathbf{U}^{*}=\left(\mathrm{U}_{1, \mathrm{k}-1}, \ldots, \mathrm{U}_{\mathrm{n}, \mathrm{k}-1}\right)^{\prime}
$$

Then, by the continuous mapping theorem and (5.2.2) we have

$$
\begin{equation*}
\mathbf{A}_{\mathrm{n}}^{-1}\left(\mathbf{X}^{*} \mathbf{X}^{*}\right) \mathbf{A}_{\mathrm{n}}^{-1} \mathrm{n}^{-1} \xrightarrow{\mathrm{p}} \mathbf{0}, \mathbf{A}_{\mathrm{n}}^{-1}\left(\mathbf{X}^{*} \mathbf{U}^{*}\right) /\left(\mathrm{n}^{\mathrm{k}} \mathrm{~d}_{\mathrm{n}}\right) \xrightarrow{\mathrm{p}} \mathbf{0}, \mathbf{U}^{*} \mathbf{U}^{*} /\left(\mathrm{n}^{2 \mathrm{k}-1} \mathrm{~d}_{\mathrm{n}}^{2}\right) \xrightarrow{\mathrm{p}} 0 \tag{5.2.3}
\end{equation*}
$$

and the result follows as a direct consequence of (5.2.3) and Theorem 5.1. Q.E.D.

Proof of (2). Since $\hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}}=\mathbf{y}^{\prime} \mathbf{y}-(\mathrm{n}-\mathrm{p}-1) \hat{\sigma}^{2}$, where $\hat{\mathbf{y}}=\left(\hat{\mathrm{y}}_{1}, \ldots, \hat{\mathbf{y}}_{\mathrm{n}}\right)^{\prime}, \mathrm{R}^{2}=1-\left(\mathbf{y}^{\prime} \mathbf{y}-\mathrm{n} \overline{\mathbf{y}}^{2}\right)^{-1}$ $(\mathrm{n}-\mathrm{p}-1) \hat{\sigma}^{2}$. By (5.2.2) and Theorem 5.1-(2), (n-p-1) $\hat{\sigma}^{2}$ is of the same order in probability as $\mathbf{U}^{\prime} \mathbf{U}$. Now if $\tau=\infty, y_{\mathrm{t}} \cong \beta_{\mathrm{K}} X_{\mathrm{t}, \mathrm{K}}$ and by Lemma 5.1-(1)

$$
\mathrm{n}^{1-\mathrm{k}} \mathrm{a}_{\mathrm{n}}^{-1} \mathrm{y}_{[\mathrm{nr}]} \xrightarrow{\mathrm{L}} \beta_{\mathrm{k}} \mathrm{~g}_{\mathrm{k}}(\mathrm{r}) \neq 0
$$

Hence by Theorem 5.1- (2) and the continuous mapping theorem

$$
(n-p-1) \hat{\sigma}^{2} /\left(y^{\prime} y-n \bar{y}^{2}\right)=O_{p}\left(n^{2 k-1} d_{n}^{2} / n^{2 k-1} a_{n}{ }^{2}\right)=o_{p}(1)
$$

and $R^{2} \xrightarrow{p} 1$. If $0 \leq \tau<\infty, y_{t} \cong \beta_{\mathrm{K}} X_{t, \mathrm{~K}}+\mathrm{U}_{\mathrm{t}, \mathrm{k}}$ and

$$
\begin{align*}
n^{k-1} d_{n}^{-1} y_{[n r]} & \cong\left(n^{\kappa} a_{n} / n^{k} d_{n}\right) \beta_{\kappa} n^{1-k} X_{[n r], k}+n^{1-k} d_{n}^{-1} U_{[n n], k} \\
& \xrightarrow{L} \tau \beta_{\kappa} g_{k}(r)+f_{k}(r)=h(r) \tag{5.2.4}
\end{align*}
$$

Hence, the limiting distribution of R^{2} follows from Theorem 5.1-(2) and (5.2.4) and continuous mapping theorem. Q.E.D.

Proof of (3). The result follow from

$$
\frac{t_{\beta_{j}}}{\sqrt{n}}=\frac{n^{1-k} d_{n}^{-1} a_{n} n^{j-1}\left(\hat{\beta}_{j}-\beta_{j}\right)}{\sqrt{n\left(a_{n} n^{j-1}\right)^{2}\left\{\left(X^{\prime} X\right)^{-1}\right\}_{j+1, j+1} n^{1-2 k} d_{n}^{-2} \hat{\sigma}^{2}}},
$$

(5.2.2) and Theorem 5.1. Q.E.D.

The condition that f_{k} is not a linear combination of $g_{1}, g_{2}, \ldots, g_{p}$ is equivalent to the fact that model (5.1.1) is misspecified in our sense as described in Section 5.1 after two conditions are defined. If model (5.1.1) is totally or partially misspecified, then $\mathrm{U}_{\mathrm{t}, \mathrm{k}}$ is an integrated error representing the nonstationarity of y_{t} unexplained by the regressors. Therefore, f_{k} can not be a linear combination of $\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{\mathrm{p}}$, which makes $\left(\mathrm{z}-\mathbf{V}^{\prime} \mathbf{H}^{-1} \mathbf{V}\right)>$ 0 and the limits in part (3) of Theorem 5.2 well defined. This is the case for all the misspecification examples considered in Sections 5.3, 5.4.1, and 5.5. In view of Lemma
5.1-(1), τ defined in the above Theorem 5.2 represents the probabilistic order of ($\beta_{0}+$ $\beta_{1} X_{t, 1}+\ldots+\beta_{p} X_{t, p}$) relative to the error $U_{t, k}$. Hence $\tau=\infty$ corresponds to the situation when the regressors have greater probabilistic order than the error, and in such a situation $\mathrm{R}^{2} \xrightarrow{\mathrm{p}} 1$. On the other hand, $0 \leq \tau<\infty$ corresponds to the case when the regressors do not have greater probabilistic order than the error and in such a case R^{2} converges to a random variable which is less than one.

When (5.1.1) is a well specified model in the sense that the nonstationarity of y_{t} is captured by $\mathrm{X}_{\mathrm{t}, \mathrm{j}}$, then the regression error $\mathrm{U}_{\mathrm{t}, \mathrm{k}}$ is a stationary process with $\mathrm{k}=0$. This situation can not be handled using Theorem 5.1 and 5.2 and to derive asymptotics in the case we need some additional conditions.

Theorem 5.3. Let model (5.1) hold with Assumption 5.1. Assume that \mathbf{H} is nonsingular and also $\mathrm{k}=0, \mathrm{p} \geq 1, \mathrm{~d}_{\mathrm{n}}=\mathrm{n}^{1 / 2}$ and $\mathbf{A}_{\mathrm{n}}{ }^{-1} \mathbf{X}^{\prime} \mathbf{U} / \mathrm{d}_{\mathrm{n}}$ converges in distribution to a nonzero finite random vector, say, ς and $\mathrm{U}^{\prime} \mathrm{U} / \mathrm{n}$ converges in probability to a positive real number, say, ψ. Then
(1) for $j=1, \ldots, p, n^{j-1 / 2} a_{n}\left(\hat{\beta}_{j}-\beta_{j}\right) \xrightarrow{L}\left(\mathbf{H}^{-1} \varsigma\right)_{j+1,1}$
(2) $\hat{\sigma}^{2} \xrightarrow{\mathrm{P}} \psi$;
(3) if $\sum_{\mathrm{t}=1}^{\mathrm{n}} \mathrm{U}_{\mathrm{t}, 0} \mathrm{U}_{\mathrm{t}-1,0} \xrightarrow{\mathrm{P}} \varphi$, then DW $\xrightarrow{\mathrm{P}} 2(\psi-\varphi) / \psi$;
(4) $\mathrm{R}^{2} \xrightarrow{\mathrm{P}} 1$;
(5) for $j=1, \ldots, p, t_{\beta_{j}} \xrightarrow{L}\left(\mathbf{H}^{-1} \varsigma\right)_{j+1,1}\left[\left(\mathbf{H}^{-1}\right)_{j+1, j+1} \cdot \psi\right]^{-1 / 2}$

Proof. Proof is similar to that of Theorem 5.1 and 5.2 and is, therefore, omitted. Q.E.D.

As seen from the above theorems, the behavior of the regression statistics depends on whether the error term $\mathrm{U}_{\mathrm{t}, \mathrm{k}}$ is stationary or nonstationary. If model (5.1.1) is misspecified then $U_{t, k}$ is nonstationary and $\hat{\beta}_{j}$ diverges for j such that $d_{n} n^{k-j} / a_{n} \uparrow \infty ; \hat{\sigma}^{2}$ diverges; $\mathrm{DW} \xrightarrow{\mathrm{p}} 0$. If the probabilistic order of the regressors is not greater than that of the regression error, then the limit of R^{2} is less than one, otherwise $R^{2} \xrightarrow{P} 1$; and $t_{\beta_{j}}$ diverges, implying misleading high significance of the $t_{\beta_{j}}$.

On the other hand, if the nonstaionarity of y_{t} is well explained by $X_{t, j}$'s then the error term $U_{t, k}$ will be stationary. In this case $\hat{\beta}_{j}$ is consistent; $\hat{\sigma}^{2}$ converges; $D W$ converges to the positive number because $\psi>\varphi ; R^{2} \xrightarrow{P} 1 ; \mathrm{t}_{\beta_{j}}$ converges. One implication is that a small value of DW along with a moderate R^{2} value may be taken as an indication of possible misspecification in the sense that the error term $\mathrm{U}_{\mathrm{t}, \mathrm{k}}$ in model (5.1.1) is nonstationary and needs to be explained further. Furthermore, we will state several corollaries based on the above three theorems in the next sections, which are given by Shin and Sarkar (1996).

5.3. Spurious regression problem

5.3.1. Previous works

A small value of DW together with a moderate R^{2} value may be taken as an indication of possible misspecification in the sense that the error term $\mathrm{U}_{\mathrm{t}, \mathrm{k}}$ in model (5.1.1) is nonstationary. Granger and Newbold (1974) showed, through simulation results, the danger of acceptance of spurious relationships if the traditional significant test statistics are used. If autocorrelated errors in time series regression equations are ignored, problem arise involving inefficient parameter estimates, and invalid significant tests and sub-optimal results when the fitted equations are used to derive forecasts. Provided that a regression equation relating variables is found to have strongly autocorrelated residuals, equivalent to a low Durbin-Watson value, the only conclusion that can be reached is that the equation is misspecified, whatever the value of R^{2} observed. Furthermore, the form of the misspecification can be considered to be either (a) the omission of relevant variables or (b) the inclusion of irrelevant variables or (c) autocorrelated residuals. There are three ways suggested by them in which the problems associated with spurious regression can be avoided. The first approach is to include lagged values of both the dependent and independent variable in the regression. A second approach is to difference the data before estimating the relation. A third approach is to assume a simple first-order autoregressive form for the residual of the equation. Because the second approach avoids the spurious regression problem as well as the nonstandard distributions for certain hypotheses, many researchers recommend routinely differencing apparently nonstationary variables before
estimating regressions. However, there are two different situations in which it might be inappropriate. First, if the data are really stationary, then differencing the data can result in a misspecified regression. Second, even if both series $y_{1 t}$ and $y_{2 t}$ are truly integrated of order $1(I(1))$, i.e., both series with no deterministic component has a stationary, invertible ARMA representation after differencing once, there is a class of models, so called cointegrated models, for which the bivariate dynamic relation between $y_{1 t}$ and $y_{2 t}$ will be misspecified if the researcher simply differences both $y_{1 t}$ and $y_{2 t}$.

Newbold and Davies (1978) suggested that a reasonable alternative to $\operatorname{AR}(1)$, in certain circumstances, is the $\operatorname{ARIMA}(0,1,1)$ process in terms of error structure and that inference in regressions involving time series can be greatly affected by the error structure assumed.

Phillips (1986) developed an asymptotic theory for regression with integrated processes that explains analytically the empirical findings of Granger and Newbold (1974) and furthermore worked the asymptotics of various statistics such as regression coefficients, t statistics and F statistics for the significance of the regression coefficients in a spurious regression, and showed that the usual t and F test statistics do not possess limiting distributions but actually diverge as the sample size n approaches ∞. for illustration, consider the simplest case:

$$
\begin{aligned}
& \mathrm{y}_{1, \mathrm{t}}=\mathrm{y}_{1, \mathrm{t}-1}+\varepsilon_{1 \mathrm{t}}, \\
& \mathrm{y}_{2, \mathrm{t}}=\mathrm{y}_{2, \mathrm{t}-1}+\varepsilon_{2 \mathrm{t}}, \\
& \mathrm{y}_{\mathrm{t}}=\left(\mathrm{y}_{1 \mathrm{t}}, \mathrm{y}_{2 \mathrm{t}}\right)^{\prime}
\end{aligned}
$$

where $\varepsilon_{1 t}$'s are iid with mean zero and variance $\sigma_{1}{ }^{2}, \varepsilon_{2 t}$'s are iid with mean zero and variance $\sigma_{2}{ }^{2}$, and $\varepsilon_{1 t}$ is independent of $\varepsilon_{2 t}$ for all t. First, an OLS regression of $y_{1 t}$ on $y_{2 t}$ and a constant,

$$
\begin{equation*}
y_{1 t}=\alpha+\beta y_{2 t}+e_{t} \tag{5.3.1}
\end{equation*}
$$

produces estimates $\hat{\alpha}_{\mathrm{n}}$ and $\hat{\beta}_{\mathrm{n}}$ characterized by

$$
\left[\begin{array}{c}
\hat{\alpha}_{\mathrm{n}} / \sqrt{\mathrm{n}} \\
\hat{\beta}_{\mathrm{n}}
\end{array}\right] \xrightarrow{\mathrm{L}}\left[\begin{array}{c}
\sigma_{1} \mathrm{~h}_{1} \\
\left(\sigma_{1} / \sigma_{2}\right) \mathrm{h}_{2}
\end{array}\right]
$$

where

$$
\left[\begin{array}{l}
\mathrm{h}_{1} \\
\mathrm{~h}_{2}
\end{array}\right] \equiv\left[\begin{array}{cc}
1 & \int \mathrm{~W}^{*}(\mathrm{r}) \mathrm{dr} \\
\int \mathrm{~W}^{*}(\mathrm{r}) \mathrm{dr} & \int\left(\mathrm{~W}^{*}(\mathrm{r})\right)^{2} \mathrm{dr}
\end{array}\right]^{-1}\left[\begin{array}{c}
\int \mathrm{W}^{*}(\mathrm{r}) \mathrm{dr} \\
\int\left(\mathrm{~W}^{*}(\mathrm{r})\right)^{2} \mathrm{dr}
\end{array}\right]
$$

and the integral sign indicates integration over r from 0 to $1, W^{*}(r)$ and denotes scalar standard Brownian motion. Usually, the LS estimates are consistent with $\hat{\beta}_{\mathrm{n}} \xrightarrow{\mathrm{P}} \mathbf{0}$ and must be multiplied by some increasing function of n in order to obtain a nondegenerate asymptotic distribution. Here, however, neither estimate is consistent-different arbitrarily large samples will have randomly differing estimates $\hat{\beta}_{\mathrm{n}}$. Indeed, the estimate of the constant term $\hat{\alpha}_{\mathrm{n}}$ actually diverges, and must be divided by $\mathrm{n}^{1 / 2}$ to obtain a random variable with a well-specified distribution. The estimate $\hat{\alpha}_{n}$ itself is likely to get farther and farther from the true value of zero as the sample size increases. Second, the usual LS estimate of the variance of $e_{t}, \hat{\sigma}_{n}^{2}=$ (Residual SS)/(n-2), again diverges as n goes to
infinity. To obtain an estimate that does not grow with the sample size, the residual sum of squares has to be divided by n^{2} rather than n . In this respect, the residuals $\hat{\mathrm{e}}_{\mathrm{n}}$ from a spurious regression behave like a unit root process; if z_{t} is a $I(1)$ series, then $\Sigma z_{t}^{2} / n$ diverges and $\Sigma z_{t}^{2} / n^{2}$ converges. Third, OLS t or F tests based on the spurious regression (5.3.1) also diverge; the regression F-statistic must be divided by n to obtain a variable that does not grow with the sample size. Since an F test of a single restriction is the square of the corresponding t test, any t statistic would have to be divided by $\mathrm{n}^{1 / 2}$ to obtain a convergent variable. Thus, as the sample size n becomes larger, it becomes likely that the absolute value of a t test statistic will exceed any arbitrary finite value. Note that above results can be obtained only when all of the elements of \mathbf{y}_{t} are $I(1)$ with zero drift and when the vector \mathbf{y}_{t} is not cointegrated.

5.3.2. Spurious regression

We now discuss a few of the implications of the unit root tests literature for regression with integrated variables. Suppose first that one is interested in making inference on a particular regression coefficient (which may be a vector). The following situations arise naturally:
(1) If the disturbance term is serially uncorrelated and uncorrelated with the regressors, and the coefficient(s) of interest can be expressed as coefficients on zero-mean stationary variables, then LS estimators are consistent and the standard asymptotic distribution theory applies. If, on the other hand, the coefficient(s) of interest cannot be expressed as
coefficients on zero-mean stationary variables, then consistency still obtains, but the asymptotic distribution is nonstandard.
(2) If an integrated regressand is cointegrated with at least one regressor, so that the disturbance term is stationary but not necessarily serially uncorrelated or independent of the regressors, and if the coefficient(s) of interest can be expressed as coefficients on zero-mean stationary variables, then LS estimates are inconsistent. If, however, the coefficient of interest is on an integrated regressor and cannot be written as a coefficient on a zero-mean stationary variable, then the estimator is consistent (but it has a nonstandard asymptotic distribution).
(3) If an integrated regressand is not cointegrated with any regressor, so that the disturbance term is integrated, then the LS estimates of coefficients on integrated regressors will be inconsistent; it is in this situation that the Granger-Newbold "spurious regression" phenomenon arises.

We consider the general framework (5.1.1) in which a k-integrated series y_{t} is wrongly regressed on another p-integrated series $X_{t, p}$ and its lags, i.e., $\nabla^{k} y_{t}=u_{t}, \nabla^{p} X_{t, p}=$ x_{t}, where ∇ is the difference operator such that $\nabla \mathrm{X}_{\mathrm{t}, \mathrm{j}}=\mathrm{X}_{\mathrm{t}, \mathrm{j}}-\mathrm{X}_{\mathrm{t}-1, \mathrm{j}}$. For simplicity of analysis and notation we assume that $u_{t}=0$ and $x_{t}=0$ for $t \leq 0$. We also assume that both $\left\{x_{t}\right\}$ and $\left\{u_{t}\right\}$ satisfy the above condition CC 1 or CC 2 for some $\sigma_{\mathrm{x}}{ }^{2}>0$ and $\sigma_{u}{ }^{2}>0$. Then application of Theorems 5.1 and 5.2 gives the following (Shin and Sarkar, 1996, p. 11).

Corollary 5.3. Under the assumptions of Section 5.3.2, $\hat{\beta}_{\mathrm{j}}$ diverges for $\mathrm{j} \leq \mathrm{k}$, while $\hat{\beta}_{\mathrm{j}}$ converges for $\mathrm{j}>\mathrm{k}$; $\hat{\sigma}^{2}$ diverges; all the t -statistics diverges at the rate $\mathrm{n}^{1 / 2} ; \mathrm{DW} \xrightarrow{\mathrm{P}} 0$; R^{2} has a nondegenerate limit which is less than one.

Proof. We first give a proof for the case when $\left\{\mathrm{y}_{\mathrm{t}}\right\}$ and $\left\{\mathrm{x}_{\mathrm{t}}\right\}$ are independent. The true y_{t} satisfy model (5.1.1) with $U_{t, k}=y_{t}=\nabla^{-k} u_{t}$ and $\beta_{0}=\beta_{1}=\ldots=\beta_{p}=0$, and Assumption 5.1 is then satisfied with

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{n}^{1 / 2}, \mathrm{~d}_{\mathrm{n}}=\mathrm{n}^{1 / 2}, \mathrm{~g}(\mathrm{r})=\sigma_{\mathrm{x}} \mathrm{~W}^{\mathrm{x}}(\mathrm{r}), \mathrm{f}(\mathrm{r})=\sigma_{\mathrm{u}} \mathrm{~W}^{\mathrm{u}}(\mathrm{r})
$$

where $\mathrm{W}^{\mathrm{x}}(\mathrm{r})$ and $\mathrm{W}^{\mathrm{u}}(\mathrm{r})$ are two independent standard Brownian motions on [0,1]. Therefore, the limiting distribution of the normalized LS estimator $\mathrm{n}^{-\mathrm{k}+1-1 / 2}\left(\hat{\beta}_{0}, \sqrt{\mathrm{n}} \hat{\beta}_{1}, \sqrt{\mathrm{n}^{3}} \hat{\beta}_{2}, \ldots\right.$, $\mathrm{n}^{-1 / 2+\mathrm{p}} \hat{\beta}_{\mathrm{p}}$) in the spurious regression is given by Theorem 5.1-(1) with

$$
\mathbf{G}(\mathrm{r})=\left[1, \sigma_{\mathrm{x}} \mathrm{~W}_{1}^{\mathrm{x}}(\mathrm{r}), \ldots, \sigma_{\mathrm{x}} \mathrm{~W}_{\mathrm{p}}^{\mathrm{x}}(\mathrm{r})\right]^{\prime} \text { and } \mathrm{f}_{\mathrm{k}}(\mathrm{r})=\sigma_{\mathrm{u}} \mathrm{~W}_{\mathrm{k}}^{\mathrm{u}}(\mathrm{r}),
$$

where $W_{j}{ }^{\mathrm{x}}(\mathrm{r})$ is the j -fold integral of $\mathrm{W}^{\mathrm{x}}(\mathrm{r})$, and $\mathrm{W}_{\mathrm{k}}{ }^{\mathrm{L}}(\mathrm{r})$ is the k -fold integral of $\mathrm{W}^{\mathrm{u}}(\mathrm{r})$.
Therefore, $\hat{\beta}_{j}$ diverges for $\mathrm{j} \leq \mathrm{k}$, while $\hat{\beta}_{\mathrm{j}}$ converges for $\mathrm{j}>\mathrm{k}$; also $\hat{\sigma}^{2}$ diverges. Since $X_{t, j}$'s are independent of $y_{t}=U_{t, k}, W_{k}^{4}(r)$ is not a linear combination of $W_{1}{ }^{x}(r), \ldots, W_{p}{ }^{x}(r)$, and since $\beta_{0}=\beta_{1}=\ldots=\beta_{p}=0, \tau$ of Theorem 5.2 is zero. In this case the regressors do not explain nonstationarity of the regressand at all and Theorem 5.1-(1) holds and results follow from Theorem 5.2.

Suppose next $X_{t, p}$ and y_{t} are not independent. If $k>p$ or y_{t} and $X_{t, p}$ are not cointegrated, then $W_{k}{ }^{4}(r)$ is not a linear combination of $W_{1}{ }^{\mathrm{x}}(\mathrm{r}), \ldots, \mathrm{W}_{\mathrm{p}}{ }^{\mathrm{x}}(\mathrm{r})$ and the asymptotics of $\hat{\beta}, \hat{\sigma}^{2}, t_{\beta_{j}}$'s and DW are the same as those when $X_{t, p}$ and its lags and y_{t} are independent. Q.E.D.

Example 5.1. Engle and Granger (1987, Table IV) analyzed the US quarterly real per capita consumption on nondurables $\left(\mathrm{C}_{\mathrm{t}}\right)$ and real per capita disposable income $\left(\mathrm{Y}_{\mathrm{t}}\right)$ from 1947: I to 1981: II and they obtained $\hat{\mathrm{C}}_{\mathrm{t}}=0.52+0.23 \mathrm{Y}_{\mathrm{t}}, \hat{\sigma}=0.016, \mathrm{DW}=0.46, \mathrm{R}^{2}=$ 0.99 . The moderate value of DW and high value of R^{2} indicate cointegration between C_{t} and Y_{t}, supporting the conclusion of Engle and Granger who proposed to use DW as a test statistic for integration when $\mathrm{p}=\mathrm{k}=1$.
5.4. Misspecification of nonstationary AR and polynomial regression models

In analyzing a time series showing some kind of a trend as in macroeconomic variables, the deterministic trend (or polynomial regression) model and stochastic trend y_{t}, defined by $\nabla^{s} y_{t}=u_{t}$ for some positive integer s, are two main alternatives for representing the trend. We consider the effect of misspecification on the asymptotic behavior of the LS estimate in which a polynomial regression model

$$
\begin{equation*}
\mathrm{y}_{\mathrm{t}}=\delta_{0}+\delta_{1} \mathrm{t}+\delta_{2}\left(\mathrm{t}^{2} / 2!\right)+\delta_{\mathrm{p}}\left(\mathrm{t}^{\mathrm{p}} / \mathrm{p}!\right)+\varepsilon_{\mathrm{t}} \tag{5.4.1}
\end{equation*}
$$

is used to estimate a stochastic trend defined by the nonstationary AR model

$$
\begin{equation*}
\mathrm{y}_{\mathrm{t}}=\phi_{0}+\phi_{1} \nabla^{\mathrm{q}-1} \mathrm{y}_{\mathrm{t}-1}+\ldots+\phi_{\mathrm{q}-1} \nabla \mathrm{y}_{\mathrm{t}-\mathrm{q}+1}+\phi_{\mathrm{q}} \mathrm{y}_{\mathrm{t}-\mathrm{q}}+\eta_{\mathrm{t}} \tag{5.4.2}
\end{equation*}
$$

or vice versa. The ε_{t} and η_{t} are the error components and are assumed to satisfy condition CC1 or CC2 given in Section 5.1. For model (5.4.2) we also assume that the s roots of the polynomial $A(L)=\left[1-\phi_{1}(1-L)^{q-1} L-\ldots-\phi_{q} m^{q}\right)$ lie on the unit circle and the remaining ($q-s$) roots lie outside the unit circle.

5.4.1. Previous works

Nelson and Plosser (1982) argued that a large number of macroeconomic aggregates are better modeled as random walks or integrated processes of order 1 ($\mathrm{I}(1)$ processes) rather than stationary processes with a trend. Furthermore, many variables such as real GNP and employment were found to be reasonably characterized as random walks with drift.

Nelson and Kang (1984) investigated the properties of standard regression statistics including R^{2}, t and sample autocorrelations of the residuals when time is the only explanatory variable, namely polynomial model of order one in time when in fact the time series we are interested in explaining belongs to the difference stationary process (DSP) class such as a driftless random walk. They explored the fact that this regression results in the inappropriate inference that the trend is significant.

Durlauf and Phillips (1988) analyzed the effect of misspecification of the generating mechanism of a nonstationary time series in terms of deterministic trends and derived the limiting properties of the LS estimator in the linear time trend regression model when the true model is a random walk. In particular, the DW statistic is shown to possess promising asymptotic properties as a regression diagnostic tool in the sense that it converges to zero when an integrated process is erroneously treated as stationary.
5.4.2. Misspecification of a nonstationary AR model as a polynomial regression model

Suppose the true y_{t} satisfies $\nabla^{s} y_{t}=\eta^{*}$ with η^{*} satisfying condition CC1 or CC2 of Section 5.1 for some $\sigma^{2}>0$, suppose model (5.4.1) is fit to the $\left\{y_{t}\right\}_{t=1}^{n}$ series. Then applying Theorem 5.1 and 5.2 with $\mathrm{x}_{\mathrm{t}}=1, \mathrm{k}=\mathrm{s}$, and $\mathrm{U}_{\mathrm{t}, \mathrm{s}}=\mathrm{y}_{\mathrm{t}}$ we obtain the next result (Shin and Sarkar, 1996, p. 14).

Corollary 5.4.1. Under the above assumptions of Section 5.4.2, for $\mathrm{j}<\mathrm{s}, \hat{\delta}_{\mathrm{j}}$ diverges; all t-statistics diverges at the rate $n^{1 / 2} ; D W$ converges to zero; R^{2} converges to a degenerate limit which is less than one.

Proof. Regression (5.4.2) has the form of model (5.1.1) with true parameters $\delta_{0}=\delta_{1}=\delta_{\mathrm{p}}$ $=0, x_{t}=1, k=s$ and regression error $U_{t, s}=y_{t}=\nabla^{-s} \eta_{t}{ }^{*}$. Let $\mathrm{a}_{\mathrm{n}}=\mathrm{n}, \mathrm{d}_{\mathrm{n}}=\left(\sigma^{2} \mathrm{n}\right)^{1 / 2}, \mathrm{~g}(\mathrm{r})=\mathrm{r}$, $f(r)=W(r)$,

$$
\mathbf{A}_{\mathrm{n}}=\operatorname{diag}\left(1, \mathrm{n}, \ldots, \mathrm{n}^{\mathrm{p}}\right), \mathbf{G}=\left(1, \mathrm{r} / 1!, \ldots, \mathrm{r}^{\mathrm{p}} / \mathrm{p}!\right)^{\prime}, \mathrm{f}_{\mathrm{s}}(\mathrm{r})=\mathrm{W}_{\mathrm{s}}(\mathrm{r}),
$$

where $W_{s}(r)$ is the s-fold integral of $W(r)$. Then by Theorem 5.1-(1), upon evaluating the integrals, we obtain

$$
\mathrm{n}^{1-\mathrm{s}}\left(\sigma^{2} \mathrm{n}\right)^{-1 / 2}\left(\hat{\delta}_{0}, \mathrm{n} \hat{\delta}_{1}, \ldots, \mathrm{n}^{\mathrm{p}} \hat{\beta}_{\mathrm{p}}\right)^{\prime} \xrightarrow{\mathrm{L}} \mathbf{K}^{-1} \mathbf{M}^{-1} \int_{0}^{1} \mathbf{G}(\mathrm{r}) \mathbf{W}_{\mathrm{s}}(\mathrm{r}) \mathrm{dr}
$$

where $\mathbf{K}=\operatorname{diag}(1,1 / 1!, 1 / 2!, \ldots, 1 / \mathrm{p}!)$ and \mathbf{M} is a $(p+1) \times(p+1)$ matrix with (i, j) th element $=(i+j+1)^{-1}$. Note that for $\mathrm{j}<\mathrm{s}, \hat{\delta}_{\mathrm{j}}$ diverges. We have positive $\left(\mathrm{z}-\mathbf{V}^{\prime} \mathbf{H}^{-1} \mathbf{V}\right)$ in Theorem
5.1-(2) because $W_{s}(r)$ is not a linear combination of $\left(1, r / 1!, \ldots, r^{\mathrm{p}} / \mathrm{p}!\right)$. Also τ in Theorem 5.2 is zero because $\delta_{0}=\ldots=\delta_{p}=0$. Therefore, the asymptotics of statistics follow from Theorem 5.2. Q.E.D.

Note that this section is a case in which the regressors do not express nonstationarity of y_{t} at all and hence the model is totally misspecified.

Example 5.2. Consider the log of the US consumer prices analyzed by Nelson and Plosser (1982, Table 4). Their reported DW statistic value for this series in the regression $\hat{y}_{\mathrm{t}}=\hat{\delta}_{0}+\hat{\delta}_{1} \mathrm{t}$ is approximately 0.06 , indicating a misspecification. However, the DW statistic value in the autoregressive fitting in Table 5 of Nelson and Plosser (1982) is 2.12, which indicates a good fit. This leads to the same conclusion of Nelson and Plosser that \log of consumer price is well represented by a unit root AR model instead of the trend regression model.
5.4.3. Misspecification of a polynomial regression model as a nonstationary AR model

We assume that the true y_{t} is generate by model (5.1.1) with errors $\left\{\varepsilon_{\mathrm{t}}\right\}$ satisfying condition CC 1 or CC 2 with some $\sigma^{2}>0$, model (5.4.2) is fit to the $\left\{\mathrm{y}_{\mathrm{t}}\right\}_{\mathrm{t}=1}^{\mathrm{n}}$ series. Assume $\delta_{\mathrm{p}} \neq 0$ and $\mathrm{p} \geq \mathrm{q} \geq 1$. Let $\mathrm{X}_{\mathrm{t}, \mathrm{j}}=\delta_{\mathrm{p}}\left(\mathrm{t}^{\mathrm{p}-\mathrm{q}+\mathrm{j}} /(\mathrm{p}-\mathrm{q}+\mathrm{j})!\right), \mathrm{j}=1,2, \ldots, \mathrm{q}$. Then $\nabla^{\mathrm{q}-\mathrm{j}} \mathrm{y}_{\mathrm{t}-\mathrm{j}}=$ $X_{t, j}+O_{p}\left(n^{p-q+j-1}\right)$, uniformly in t. Hence, the asymptotics in the estimated model (5.4.2) in the same as those in

$$
\hat{\mathrm{y}}_{\mathrm{t}}=\hat{\phi}_{0}+\hat{\phi}_{\mathrm{I}} \mathrm{X}_{\mathrm{t}, 1}+\ldots+\hat{\phi}_{\mathrm{q}} \mathrm{X}_{\mathrm{t}, \mathrm{q}}
$$

and we have the following result (Shin and Sarkar, 1996, p. 15).

Corollary 5.4.2. Assume that the above assumptions of Section 5.4 .2 hold
(1) If $\delta_{0}=\delta_{1}=\ldots=\delta_{p-q}=0$ then $\hat{\phi}_{\mathrm{j}}$ converges; $\hat{\sigma}^{2} \xrightarrow{\mathrm{P}} \sigma^{2} ; \mathrm{t}_{\mathrm{o}_{\mathrm{j}}}$ converges; DW $\xrightarrow{\mathrm{P}} 2\left(\sigma^{2}-\varphi\right) / \sigma^{2}$, where $\sum_{\mathrm{t}=1}^{\mathrm{n}} \varepsilon_{\mathrm{t}} \varepsilon_{\mathrm{t}-1} \xrightarrow{\mathrm{P}} \varphi ; \mathrm{R}^{2} \xrightarrow{\mathrm{P}} 1$.
(2) If some of $\delta_{0}, \delta_{1}, \ldots, \delta_{p-q}$ are nonzero, then $\hat{\phi}_{\mathrm{j}}$ converges; $\hat{\sigma}^{2}$ diverges; $\mathrm{DW} \xrightarrow{\mathrm{P}} 0 ; \mathrm{R}^{2} \xrightarrow{\mathrm{P}} 1 ; \mathrm{t}_{\gamma_{j}}$ diverges for j such that $\left(\mathbf{H}^{-1} \mathbf{V}\right)_{j+1,1} \neq 0$ where \mathbf{H} and \mathbf{V} are as defined in (5.2.1) with

$$
\mathbf{G}(\mathrm{r})=\left[1, \mathrm{r}^{\mathrm{p}-\mathrm{q}+1} /(\mathrm{p}-\mathrm{q}+1)!, \ldots, \mathrm{r}^{\mathrm{p}} / \mathrm{p}!\right]^{\prime}, \mathrm{f}_{\mathrm{k}}(\mathrm{r})=\delta_{\mathrm{k}} \mathrm{r}^{\mathrm{k}} / \mathrm{k}!
$$

where $\mathrm{k}=\mathrm{k}=\max \left\{\mathrm{j}: \delta_{\mathrm{j}} \neq 0,0 \leq \mathrm{j} \leq \mathrm{p}-\mathrm{q}\right\}$.

Proof. Observe that the true y_{t} in (5.4.1) can be written as

$$
y_{t}=\left(\delta_{p-q+1} X_{t, 1}+\ldots+\delta_{q} X_{t, q}\right) / \delta_{p}+U_{t}
$$

which is of the form (5.1.1) with $\mathrm{x}_{\mathrm{t}}=\delta_{\mathrm{p}} \mathrm{t}^{\mathrm{p}-\mathrm{q}} /(\mathrm{p}-\mathrm{q})$! and $\mathrm{U}_{\mathrm{t}}=\delta_{\mathrm{p}-\mathrm{q}} \mathrm{t}^{\mathrm{p}-\mathrm{q}} /(\mathrm{p}-\mathrm{q})!+\ldots+\delta_{0}+\varepsilon_{\mathrm{t}}$. Note that

$$
\sum_{t=1}^{\lfloor n r]} x_{t} / \delta_{p} n^{p-q+1} \rightarrow g(r)=r^{p-q+1} /(p-q+1)!
$$

Therefore, with $a_{n}=\delta_{p} n^{p-q+1}, \mathbf{G}(r)=\left[1, r^{p-q+1} /(p-q+1)!, \ldots, r^{p} / p!\right]$.

The asymptotics depend on whether $\mathrm{U}_{\mathrm{t}}=\varepsilon_{\mathrm{t}}$ or not.
First proof of part (1) is given. Assume $\delta_{0}=\delta_{1}=\ldots=\delta_{\mathrm{p}-\mathrm{q}}=0$. Then $\mathrm{U}_{\mathrm{t}}=\varepsilon_{\mathrm{t}}$ and conditions of Theorem 5.3 are satisfied with $\zeta=\int_{0}^{1} \mathbf{G}(\mathrm{r}) \mathrm{d} \mathbf{W}(\mathrm{r}), \psi=\sigma^{2}$. Hence, by Theorem 5.3

$$
\delta_{p}\left(n^{p-q+1} n^{j} / \sigma n^{1 / 2}\right)\left(\hat{\phi}_{j}-\delta_{p-q+j} \delta_{p}^{-1}\right) \xrightarrow{L}\left(\mathbf{H}^{-1} \zeta\right)_{j+1,1},
$$

which is a normal distribution, and the results follow. Q.E.D.
Now proof of part (2) is given. Assume some of the δ_{j} 's are not equal to zero. Let $\kappa=\max \left\{\mathrm{j}: \delta_{\mathrm{j}} \neq 0,0 \leq \mathrm{j} \leq \mathrm{p}-\mathrm{q}\right\}$. Then $\delta_{\mathrm{k}} \neq 0$ and $\mathrm{U}_{\mathrm{t}} \cong \delta_{\mathrm{k}} \mathrm{t}^{\mathrm{K}} / \kappa!$. Hence, with $\mathrm{d}_{\mathrm{n}}=\mathrm{n}^{\mathrm{k}+1}$,

$$
\mathrm{d}_{\mathrm{n}}^{-1} \mathbf{A}_{\mathrm{n}}^{-1} \mathbf{X}^{\prime} \mathbf{U} \xrightarrow{\mathrm{L}} \delta_{\mathrm{K}} \int_{0}^{1} \mathbf{G}(\mathrm{r}) \frac{\mathrm{r}^{\mathrm{k}}}{\mathrm{k}!} \mathrm{dr}=\mathbf{V} .
$$

Since r^{k} / κ ! is not a linear combination of $r^{p-q+1} /(p-q+1)!, \ldots, r^{p} / p!$, condition of Theorem 5.2 is satisfied. Therefore, by Theorem 5.1 and 5.2

$$
\left(\delta_{p}\left(\mathrm{n}^{\mathrm{p}-\mathrm{q}+1}\right) / \mathrm{n}^{\kappa+1}\right) \mathrm{n}^{\mathrm{j}}\left(\hat{\phi}_{\mathrm{j}}-\delta_{\mathrm{p}-\mathrm{q}+\mathrm{j}} \delta_{\mathrm{p}}^{-1}\right) \xrightarrow{\mathrm{L}}\left(\mathbf{H}^{-1} \mathbf{V}\right)_{\mathrm{j}+1,1},
$$

which is nonrandom; $\hat{\phi}_{j}$ converges; $\hat{\sigma}^{2}$ diverges; $D W \xrightarrow{p} 0 ; t_{\phi_{j}}$ diverges for j such that $\left(\mathbf{H}^{-1} \mathbf{V}\right)_{j+1,1} \neq 0$. Since $X_{t, p} \cong \mathfrak{t}^{p} / p!$ increases faster than $U_{t} \cong \delta_{\mathrm{k}} \mathrm{t}^{\mathrm{k}} / \kappa!$, τ in Theorem 5.2 is ∞. Hence, $\mathrm{R}^{2} \xrightarrow{\mathrm{P}}$ 1. Q.E.D.

In the case of part (1) of Corollary 5.4.2 the estimated model (5.4.2) is well specified model in the sense that all the nonstationarity of y_{t} is explained by the regressors. Whereas in the case of part (2) the model is partially misspecified in the sense that the trends of y_{t} of the order greater than (p-q) are explained by the regressors, the lags of y_{t}, while trends of the order less than or equal to κ is still unexplained.
5.5. Underspecification of orders in nonstationary autoregressive and polynomial regression models

The order values p and q in the polynomial regression and nonstationary autoregressive models (5.4.1) and (5.4.2) are usually not known and they might be overspecified or underspecified.

5.5.1. Previous works

Dickey and Pantula (1987) developed a sequential testing procedure for testing three unit roots against two unit roots and then two unit roots against one unit root, which could be used to determine the number of unit roots. In addition Hasza and Fuller (1979), Sen and Dickey (1987) and Haldrup (1994) investigated tests for unit roots in the $\mathrm{I}(2)$ time series.

5.5.2. Underspecification of the order in a nonstationary autoregressive model

If the data are underdifferenced, by which we mean that the AR model does in fact have some unit roots and/or cointegrating relationships but is nevertheless estimated completely in levels, so that no unit roots or cointegrating relationships are imposed on the data, then the unit roots and cointegrating relationships (if present) will nevertheless
be satisfied asymptotically (although some efficiency is lost in finite samples), and moreover, convergence is typically at rates faster than $\mathrm{O}\left(\mathrm{n}^{1 / 2}\right)$. The fact that the distribution theory for some of the estimated coefficients is nonstandard is of no consequence for construction of point forecasts. Thus, the costs of underdifferncing are likely to be low. Overdifferencing, on the other hand, discards low-frequency information and destroys cointegrating relationships, and may cause difficulties for numerical estimation algorithm, due to the induced unit moving-average roots.

Suppose the true y_{t} satisfies $\nabla^{s} y_{t}=\eta^{*}$ with η^{*} satisfying condition CC1 or CC2 for some $\sigma^{2}>0$ and is estimated by model (5.4.2) with $\mathrm{q}<\mathrm{s}$. In this case the model is partially misspecified. Using Theorem 5.1 and 5.2 we get the following (Shin and Sarkar, 1996, p. 17).

Corollary 5.5.1. Under the above assumptions of section 5.2, $\hat{\phi}_{\mathrm{j}}$ converges; $\hat{\sigma}^{2}$ diverges at the rate $\mathrm{n}^{2(\mathrm{~s}-\mathrm{q})} ; \mathrm{R}^{2} \xrightarrow{\mathrm{P}} 1 ; \mathrm{DW} \xrightarrow{\mathrm{P}} 0 ; \mathrm{t}_{\phi_{j}}$ diverges at the rate $\mathrm{n}^{1 / 2}$.

Proof. Let $X_{t, j}^{*}=\nabla^{\mathrm{q}-\mathrm{j}} \mathrm{y}_{\mathrm{t}-\mathrm{j}}, \mathrm{X}_{\mathrm{t}, \mathrm{j}}=\nabla^{\mathrm{q}-\mathrm{j}} \mathrm{y}_{\mathrm{t}-1}$ and $\mathrm{x}_{\mathrm{t}}=\nabla^{\mathrm{q}} \mathrm{y}_{\mathrm{t}}$. Then

$$
\begin{gathered}
X_{t, j}^{*}=X_{t, j}+O_{p}\left(n^{(j-1) / 2}\right), \\
y_{t}=(1-L+L)^{q} y_{t}=\sum_{j=1}^{q}\binom{q}{j} \nabla^{q-j} y_{t-j}+x_{t}=\sum_{j=1}^{q}\binom{q}{j} X_{t-j}^{*}+x_{t}
\end{gathered}
$$

which is of the form (5.1.1) with $U_{t, k}=x_{t}$. Also observe that $k=s-q$ because $x_{t}=\nabla^{q-j} \eta^{*}$. Since

$$
n^{-(s-q)}\left(\sigma^{2} n\right)^{-1 / 2} \sum_{\mathrm{t}=1}^{[n \mathrm{r}]} \mathrm{x}_{\mathrm{t}} \xrightarrow{\mathrm{~L}} \mathrm{~W}_{\mathrm{s}-\mathrm{q}+1}(r), \mathrm{a}_{\mathrm{n}}=\mathrm{n}^{s-\mathrm{q}}\left(\sigma^{2} n\right)^{1 / 2}
$$

and

$$
\mathbf{G}(\mathrm{r})=\left(1, \mathrm{~W}_{\mathrm{s}-\mathrm{q}+1}(\mathrm{r}), \ldots, \mathrm{W}_{\mathrm{s}}(\mathrm{r})\right)^{\prime}
$$

Also, since $U_{t, k}=\nabla^{q-s} \eta^{*}$, by Lemma 5.1-(2), $d_{n}=a_{n}$ and $\mathbf{V}=\int_{0}^{1} \mathbf{G}(r) W_{s-q}(r) d r, z=$ $\int_{0}^{1} W_{s-q}^{2}(r) d r$. By Theorem 5.1

$$
\mathrm{n}^{\mathrm{j}}\left(\hat{\phi}_{\mathrm{j}}-\binom{\mathrm{q}}{\mathrm{j}} \xrightarrow{\mathrm{~L}}\left(\mathbf{H}^{-1} \mathbf{V}\right)_{\mathrm{j}+1,1}\right.
$$

$\hat{\phi}_{\mathrm{j}}$ converges; $\hat{\sigma}^{2}$ diverges at the rate $\mathrm{n}^{2(\mathrm{~s}-\mathrm{q})}$. Observe that $\mathrm{W}_{\mathrm{s}-\mathrm{q}}(\mathrm{r})$ is not a linear combination of $W_{s-q+1}(r), \ldots, W_{s}(r)$, and since the probabilistic order of $X_{t, q}=\nabla^{-8} \eta_{t}^{*}$ is greater than that of $U_{t, k}=\nabla^{-s+q} \eta^{*}, \tau$ in Theorem 5.2 is ∞. Therefore, $R^{2} \xrightarrow{p} 1$; also $\mathrm{DW} \xrightarrow{\mathrm{p}} 0$ and $\mathrm{t}_{\mathrm{\phi}_{\mathrm{i}}}$ diverges at the rate $\mathrm{n}^{1 / 2}$. Q.E.D.

We now consider an application of the above. If one is fitting an $\operatorname{AR}(1)$ model to an $\mathrm{I}(2)$ process, then $\mathrm{p}=1, \mathrm{~s}=2$, and $\mathrm{G}=\left(1, \mathrm{~W}_{2}(\mathrm{r})\right)^{\prime}$ and $\mathrm{V}=\int_{0}^{1} \mathbf{G}(\mathrm{r}) \mathrm{W}(\mathrm{r}) \mathrm{dr}=\left(\int_{0}^{1} \mathrm{~W}(\mathrm{r}) \mathrm{dr}\right.$, $\left.\int_{0}^{1} \mathrm{~W}(\mathrm{r}) \mathrm{W}_{2}(\mathrm{r}) \mathrm{dr}\right)^{\prime}$. Therefore,

$$
\mathrm{n}\left(\hat{\phi}_{1}-1\right) \longrightarrow \int_{0}^{\mathrm{d}} \mathrm{~W}(\mathrm{r}) \mathrm{W}_{2}(\mathrm{r}) \mathrm{dr} / \int_{0}^{1} \mathrm{~W}_{2}^{2}(\mathrm{r}) \mathrm{dr} .
$$

Hence $n\left(\hat{\phi}_{1}-1\right)$ converges in distribution. However, $t_{\phi_{j}}=\left(\hat{\phi}_{1}-1\right) / \mathrm{s}_{\hat{\phi}_{1}}$ diverges at the rate $n^{1 / 2}$ and $t_{\phi_{j}}$ is expected to reject the single unit root hypothesis with higher probability than $n\left(\hat{\phi}_{1}-1\right)$.

Example 5.3. Consider the data on commercial bank real estate loans analyzed by Dickey and Pantula (1987). Dickey and Pantula argued that the series was well represented by an AR process with two unit roots. For testing H_{0} : one unit root vs. H_{1} : not H_{0}, after adjusting for the mean and lags of first differences, Dickey and Pantula (1987, Table 1) obtained 1.265 for the t-statistic $\hat{\tau}_{\mu}$ and $70 \times(0.006197)=0.434$ for $n\left(\hat{\rho}_{\mu}-1\right)$. Using Tables 8.5.1-8.5.2 of Fuller (1976) the $n\left(\hat{\rho}_{\mu}-1\right)$ value is less than 97.5 -th percentile point and $\hat{\tau}_{\mu}$ is much higher than the 99-th percentile point. Therefore, the t-statistic $\hat{\tau}_{\mu}$ has more power for the double unit roots alternative. In this example, $\hat{\tau}_{\mu}$ provides stronger evidence than $n\left(\hat{\rho}_{\mu}-1\right)$ against the single unit root null hypothesis.
5.5.3. Underspecification of the order in a polynomial regression model

We next consider the polynomial regression. Let the true model for y_{t} be a q th order polynomial regression $\mathrm{y}_{\mathrm{t}}=\delta_{0}+\delta_{1} \mathrm{t}+\delta_{2}\left(\mathrm{t}^{2} / 2!\right)+\ldots+\delta_{\mathrm{q}}\left(\mathrm{t}^{\mathrm{q}} / \mathrm{q}!\right)+\varepsilon_{\mathrm{t}}, \delta_{\mathrm{q}} \neq 0$, and is estimated by the p th order polynomial regression $\hat{y}_{t}=\hat{\delta}_{0}+\hat{\delta}_{1} t+\hat{\delta}_{2} t^{2} / 2!+\ldots+\hat{\delta}_{p}\left(t^{p} / \mathrm{p}!\right)$,
where $\mathrm{p}<\mathrm{q}$. This is a case of a totally misspecified model. By Theorem 5.1 and 5.2 the following is obtained:

Corollary 5.5.2. Under the assumptions of Section 5.5.3, all the $\hat{\delta}_{j}$'s and $\hat{\sigma}^{2}$ diverges; the t-statistics diverge at the rate $n^{1 / 2}$; DW converges to $0 ; R^{2}$ converges to a constant lying strictly between zero and one.

Proof. The p th order polynomial model can be considered as model (5.1.1) with $\mathrm{p}=\mathrm{p}, \mathrm{k}$ $=q, x_{t}=1, U_{t, q}=y_{t}$ and $u_{t}=\nabla^{q}\left(\delta_{1} t+\ldots+\delta_{q}\left(\mathrm{t}^{\mathrm{q}} / \mathrm{q}!\right)+\varepsilon_{\mathrm{t}}\right) \cong \delta_{\mathrm{q}}, \mathrm{a}_{\mathrm{n}}=\mathrm{n}$ and $\mathrm{d}_{\mathrm{n}}=\delta_{\mathrm{q}} \mathrm{n}$, and zero as the true parameter values. Then,

$$
\mathbf{G}(\mathrm{r})=\left[1, \mathrm{r}, \ldots, \mathrm{r}^{\mathrm{p}} / \mathrm{p}!\right]^{\prime}, \mathrm{f}_{\mathrm{q}}(\mathrm{r})=\mathrm{r}^{\mathrm{q}} / \mathrm{q}!
$$

and by Theorem 5.1 the limiting distribution of $\left(n^{-q} \hat{\delta}_{0}, n^{-q+1} \hat{\delta}_{1}, \ldots, n^{-q+p} \hat{\delta}_{\mathrm{p}}\right)^{\prime}$ is $\delta_{\mathrm{q}} \int_{0}^{1} \mathbf{G}(\mathrm{r})$ $\left.\mathbf{G}(\mathrm{r})^{\prime} d r\right]^{-1}\left[\int_{0}^{1} \mathbf{G}(\mathrm{r}) \mathrm{f}_{\mathrm{q}}(\mathrm{r}) \mathrm{dr}\right]$. We see that all the $\hat{\delta}_{\mathrm{j}}$'s and $\hat{\sigma}^{2}$ diverge. Since $\mathrm{U}_{\mathrm{t}, \mathrm{q}} \cong \delta_{\mathrm{q}} \mathrm{t}^{\mathrm{q}} / \mathrm{q}!, \tau$ in Theorem 5.2 is zero. Also $f_{q}(r)$ is not a linear combination of $1, r, \ldots, r^{p} / \mathrm{p}$!. Hence, by Theorem 5.2 the result follows. Q.E.D.

CHAPTER VI

AN EMPIRICAL STUDY

In this chapter we consider a Monte Carlo study based on Chapter 5 regarding the model specification problems. We generate 10,000 samples of size n for $\mathrm{n}=25,50,100$ and 250. For a fixed sample size n , the corresponding empirical means of parameter estimates, $\hat{\sigma}^{2}$ and other conventional regression statistics such as t-statistics, R^{2} and DW are considered. The subroutine DRNNOA is used to generate the normal random numbers. Section 6.1 discusses algorithms based on misspecified models in Sections 5.35.5, and Section 6.2 contains Monte Carlo results and a discussion.

6.1. Algorithms

In this section several algorithms derived on the basis of corollaries from Chapter 5 are introduced.

6.1.1. Spurious regression

We consider the following special cases of the spurious regression based on $\nabla^{k} y_{t}$ $=u_{t}, \nabla^{p} X_{t, p}=x_{t}:$
(A) $\mathrm{k}=1$ and $\mathrm{p}=2$
(B) $\mathrm{k}=2$ and $\mathrm{p}=1$, and
(C) $\mathrm{k}=2$ and $\mathrm{p}=2$.

The following different algebraic equations will be used in data generation.

$$
\begin{gather*}
\nabla y_{t}=u_{t} \Rightarrow y_{t}=y_{t-1}+u_{t} \Rightarrow y_{t}=\sum_{i=1}^{t} u_{i} \tag{6.1.1}\\
\nabla^{2} y_{t}=u_{t} \Rightarrow y_{t}=2 y_{t-1}-y_{t-2}+u_{t} \Rightarrow y_{t}=2 \sum_{i=1}^{t-1} u_{i}-\sum_{i=1}^{t-2} u_{i}+u_{t} \tag{6.1.2}\\
\nabla X_{t, 1}=x_{t} \Rightarrow X_{t, 1}=X_{t-1,1}+x_{t} \Rightarrow X_{t, 1}=\sum_{i=1}^{t} x_{i} \tag{6.1.3}\\
\nabla X_{t, 2}=X_{t, 1} \Rightarrow X_{t, 2}=X_{t-1,2}+X_{t, 1} \Rightarrow X_{t, 2}=\sum_{i=1}^{t} X_{i, 1} \tag{6.1.4}\\
\nabla^{2} X_{t, 2}=x_{t} \Rightarrow X_{t, 2}=2 X_{t-1,2}-X_{t-2,2}+x_{t} \\
\Rightarrow X_{t, 2}=2 \sum_{i=1}^{t-1} X_{i, 1}-\sum_{i=1}^{t-2} X_{i, 1}+x_{t} \tag{6.1.5}
\end{gather*}
$$

where $x_{t}=u_{t}=0$, if $t \leq 0$.

A. Case $1: k=1$ and $p=2$

Algorithm:
(1) Generate random numbers u_{t} 's and x_{t} 's iid $N(0,1)$ or $N(0,5)$, respectively, where $t=$ $1, \ldots, n$ with $n=25,50,100$ and 250.
(2) Compute the y_{t} 's, $X_{t, 1}$'s and $X_{t, 2}$'s based on equations (6.1.1) and (6.1.4), respectively.
(3) Regress y_{t} on $X_{t, 1}$ and $X_{t, 2}$ where $y_{t}=\beta_{0}+\beta_{1} X_{t, 1}+\beta_{2} X_{t, 2}+\varepsilon_{t}$.
(4) Calculate regression coefficients and the usual OLS statistics, $\hat{\sigma}^{2}, t, D W$ and R^{2} based on the fitted model.
(5) Repeat steps (1) - (4) ten thousand times.
(6) Compute the corresponding empirical means of the statistics $\hat{\sigma}^{2}$, DW and R^{2} respectively through step (5).
(7) Compare the obtained numerical results from steps (1)-(6) with the theoretical results of Corollary 5.3.

B. Case $2: \mathrm{k}=2$ and $\mathrm{p}=1$

Algorithm:
(1) Generate random numbers u_{t} 's and x_{t} 's iid $N(0,1)$ or $N(0,5)$, respectively, where $t=$ $1, \ldots, n$ with $n=25,50,100$ and 250.
(2) Compute the y_{t} 's and $X_{t, 1}$'s based on equations (6.1.2) and (6.1.3), respectively.
(3) Regress y_{t} on $X_{t, 1}$ where $y_{t}=\beta_{0}+\beta_{1} X_{t, 1}+\varepsilon_{t}$.
(4) Calculate regression coefficients and the usual OLS statistics, $\hat{\sigma}^{2}, t, D W$ and R^{2} based on the fitted model.
(5) Repeat steps (1) - (4) ten thousand times.
(6) Compute the corresponding empirical means of the statistics $\hat{\sigma}^{2}, \mathrm{DW}$ and R^{2} respectively through step (5).
(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results of Corollary 5.3.

C. Case $3: \mathrm{k}=2$ and $\mathrm{p}=2$

Algorithm:

(1) Generate random numbers u_{t} 's and x_{t} 's iid $N(0,1)$ or $N(0,5)$, respectively, where $t=$ $1, \ldots, n$ with $n=25,50,100$ and 250.
(2) Compute the y_{t} 's, $X_{t, 1}$'s and $X_{t, 2}$'s based on equations (6.1.2) and (6.1.4), respectively.
(3) Regress y_{t} on $X_{t, 1}$ and $X_{t, 2}$ where $y_{t}=\beta_{0}+\beta_{1} X_{t, 1}+\beta_{2} X_{t, 2}+\varepsilon_{t}$.
(4) Calculate regression coefficients and the usual OLS statistics, $\hat{\sigma}^{2}$, t, DW and R^{2} based on the fitted model.
(5) Repeat steps (1) - (4) ten thousand times.
(6) Compute the corresponding empirical means of the statistics $\hat{\sigma}^{2}, \mathrm{DW}$ and R^{2} respectively through step (5).
(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results of Corollary 5.3.
6.1.2. Misspecification of nonstationary AR and polynomial regression models

We consider the case of $\mathrm{p}=\mathrm{q}=2$ in models (5.4.1) and (5.4.2) to observe the empirical behavior of the regression statistics in misspecified models.

A. Misspecification of a nonstationary AR(2) model as a polynomial regression model of order 2

True model: $\nabla^{2} y_{t}=u_{t}$, i.e., a nonstationary $\operatorname{AR}(2)$ model
Fitted model: $y_{t}=\delta_{0}+\delta_{1} t+\delta_{2}\left(\mathrm{t}^{2} / 2\right)+\varepsilon_{\mathrm{t}}$, i.e., a polynomial regression model of order 2 .
Algorithm:
(1) Generate random numbers $u_{t} \sim N I D(0,1)$ or $N(0,5)$, where $t=1, \ldots, n$ with $n=25$, 50,100 and 250.
(2) Compute the y_{t} 's based on the following: $y_{t}=2 y_{t-1}-y_{t-2}+u_{t}$ where $u_{t}=y_{t}=0$ ift ≤ 0.
(3) Fit the data y_{t} generated by step (2) to the polynomial regression model of order 2.
(4) Calculate regression coefficients and the usual OLS statistics, $\hat{\sigma}^{2}, t, D W$ and R^{2} based on the fitted model.
(5) Repeat steps (1) - (4) ten thousand times.
(6) Compute the empirical means of the statistics $\hat{\sigma}^{2}, \mathrm{DW}, \mathrm{t}$ and R^{2}.
(7) Compare the obtained numerical results from steps (1)-(6) with the theoretical results of Corollary 5.4.1.

B. Misspecification of a polynomial regression model of order 2 as a nonstationary

AR(2) model

True model: $\mathrm{y}_{\mathrm{t}}=\delta_{0}+\delta_{1} \mathrm{t}+\delta_{2}\left(\mathrm{t}^{2} / 2\right)+\varepsilon_{\mathrm{t}}$ with $\left(\delta_{0}, \delta_{1}, \delta_{2}\right)=(0,1,1)$ or $(0,2,2)$ or $(0,2,1)$
Fitted model: $y_{t}=\phi_{0}+\phi_{1} \nabla y_{t-1}+\phi_{2} y_{t-2}+\eta_{t}$

Algorithm:

(1) Generate random numbers $\varepsilon_{\mathrm{t}} \sim \operatorname{NID}(0,1)$ or $\mathrm{N}(0,5)$, where $\mathrm{t}=1, \ldots$, n with $\mathrm{n}=25$, 50, 100 and 250.
(2) Compute the y_{t} 's based on the following: $y_{t}=t+t^{2} / 2+\varepsilon_{t}$ where $\varepsilon_{t}=y_{t}=0$ if $t \leq 0$.
(3) Regress y_{t} on $\left\{\left(y_{t-1}-y_{t-2}\right), y_{t-2}\right\}$.
(4) Calculate regression coefficients and the usual OLS statistics, $\hat{\sigma}^{2}$, t, DW and R^{2} based on the fitted model.
(5) Repeat steps (1) - (4) ten thousand times.
(6) Compute the empirical means of the statistics $\hat{\sigma}^{2}, \mathrm{DW}, \mathrm{t}$ and R^{2}.
(7) Compare the obtained numerical results from steps (1)-(6) with the theoretical results of Corollary 5.4.2.
6.1.3. Underspecification of the orders in nonstationary AR and polynomial regression model

A. Underspecification of the order in a nonstationary AR model.

Let the true generating mechanism for y_{t} be $\nabla^{2} y_{t}=\eta_{t}^{*}$, with η_{t}^{*} satisfying condition CC 1 or CC 2 for some $\sigma^{2}>0$, and is estimated by model $\nabla \mathrm{y}_{\mathrm{t}}=\eta_{\mathrm{t}}$:

True model: $\nabla^{2} y_{t}=u_{t}$, i.e., nonstationary $\operatorname{AR}(2)$ model
Fitted model: $y_{t}=\phi_{0}+\phi_{1} y_{t-1}+\varepsilon_{t}$.

Algorithm:

(1) Generate random number $u_{t} \sim \operatorname{NID}(0,1)$ or $\operatorname{NID}(0,5)$, where $t=1, \ldots, n$ with $n=25$, 50,100 and 250.
(2) Compute the y_{t} 's based on the following: $y_{t}=2 y_{t-1}-y_{t-2}+u_{t}$ where $u_{t}=y_{t}=0$ ift ≤ 0.
(3) Regress y_{t} on y_{t-1}.
(4) Calculate regression coefficients and the usual OLS statistics, $\hat{\sigma}^{2}, \mathrm{t}, \mathrm{DW}$ and R^{2} based on the fitted model.
(5) Repeat steps (1) - (4) ten thousand times.
(6) Compute the empirical means of the statistics $\hat{\sigma}^{2}, \mathrm{DW}, \mathrm{t}$ and R^{2}.
(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results of Corollary 5.5.1.

B. Underspecification of the order in a polynomial regression model

Let the true model for y_{t} be a second order polynomial regression and is estimated by the first order polynomial regression:

True model: $\mathrm{y}_{\mathrm{t}}=\delta^{*}{ }_{0}+\delta^{*}{ }_{1} \mathrm{t}+\delta^{*}{ }_{2}\left(\mathrm{t}^{2} / 2\right)+\varepsilon_{\mathrm{t}}{ }_{\mathrm{t}}$ with $\left(\delta^{*}{ }_{0}, \delta^{*}{ }_{1}, \delta^{*}{ }_{2}\right)=(0,1,1)$ or $(0,2,2)$
Fitted model: $y_{t}=\delta_{0}+\delta_{1} t+\varepsilon_{t}$.
Algorithm:
(1) Generate random number $\varepsilon_{\mathrm{t}} \sim \operatorname{NID}(0,1)$ or $\operatorname{NID}(0,5)$, where $t=1, \ldots, n$ with $n=25$, 50,100 and 250.
(2) Compute the y_{t} 's based on the following: $y_{t}=t+t^{2} / 2+\varepsilon_{t}$ where $\varepsilon_{t}=y_{t}=0$ if $t \leq 0$.
(3) Regress y_{t} on t.
(4) Calculate regression coefficients and the usual OLS statistics, $\hat{\sigma}^{2}, t, D W$ and R^{2} based on the fitted model.
(5) Repeat steps (1) - (4) ten thousand times.
(6) Compute the empirical means of the statistics $\hat{\sigma}^{2}, \mathrm{DW}, \mathrm{t}$ and R^{2}.
(7) Compare the obtained numerical results from steps (1) - (6) with the theoretical results of Corollary 5.5.2.

6.2. Results and Discussion

In Chapter 5 a general regression model with integrated errors and one system of integrated regressors has been considered and asymptotic properties of the conventional regression statistics under this model have been discussed. Empirical results on model specification problems for nonstationary time series are presented in Table 6.1 through Table 6.7.

Tables 6.1-6.3 show the empirical results in spurious regression against the theoretical background given by Corollary 5.3. The following common empirical results from Tables 6.1-6.3 can be seen: all the DW's appear to converge in probability to 0 ; all $\hat{\sigma}^{2}$'s diverge; all the R^{2} 's seem to have a nondegenerate limit which is less than one ($0.49,0.37$ and 0.78 in Tables 6.1-6.3, respectively); all the t-statistics seem to diverge slowly; all the parameter estimates $\hat{\beta}_{j}$'s may diverge very slowly for $\mathrm{j} \leq \mathrm{k}$ and converge very slowly for $\mathrm{j}>\mathrm{k}$. From these results we can observe the fact that LS statistics such as R^{2} and DW can be used as diagnostic tools to check the spurious regression in the sense that they can be used as remarkable symptoms of spurious regression when we obtain DW close to 0 and R^{2} much less than one. Furthermore, as the orders of k and/or p are getting larger, the rate of divergence for $\hat{\beta}_{j}$'s and $t_{\beta_{j}}$'s are getting faster.

Table 6.4-Table 6.5 display the empirical results under misspecification of polynomial regression models and nonstationary AR against the theoretical backdrop provided by Corollary 5.4.1 and Corollary 5.4.2 respectively. From Table 6.4 the following can be observed: $\hat{\delta}_{j}{ }^{\prime}$'s, for $\mathrm{j}=0,1,2$, diverge; all three t -statistics diverge; DW
seems to converge to $0 ; \mathrm{R}^{2}$ appears to converge to $0.96 ; \hat{\sigma}^{2}$ diverges. In addition, from Table 6.5 the following can be seen: $\hat{\phi}_{1}$ appears to converge to 1.9 and $\hat{\phi}_{2}$ to 1.00 ; DW seems to converge in probability to $3 ; \hat{\sigma}^{2}$ appears to converge in probability to $4.01 ; \mathrm{R}^{2}$ seems to converge in probability to $1 ; \mathfrak{t}_{\phi_{1}}$ and $\mathfrak{t}_{\phi_{2}}$ converge to numbers near 9.5 and 5.78 respectively. All these empirical values in Table 6.4-6.5 fully support the theoretical results of Corollary 5.4.1 and Corollary 5.4.2 respectively. Similarly, LS statistics such as R^{2} and DW may be exploited to check for misspecification of polynomial regression models and nonstationary AR as follows:
(1) If DW is close to 0 and R^{2} is close to 0.96 , we can conclude that a nonstationary AR model has been misspecified as a polynomial regression model.
(2) If DW is close to 3 and R^{2} is close to 1.0 , we can conclude that a polynomial regression model has been misspecified as a nonstationary AR model.

Table 6.6-Table 6.7 give the simulation results under underspecification of the order in a nonstationary AR and underspecification of the order in polynomial regression. In these cases Corollary 5.5 .1 and Corollary 5.5 .2 respectively provide the theoretical background. From Table 6.6 the following can be observed: $\hat{\phi}_{0}$ seems to converge to 0.01 and $\hat{\phi}_{1}$ to $1.00 ; \hat{\sigma}^{2}$ appears to diverge; R^{2} seems to converge in probability to 1 ; DW seems to converge in probability to 0 ; two t-statistics appear to diverge. The following facts can be seen from Table 6.7: all the parameter estimates, $\hat{\sigma}^{2}$ and two t-statistics seem to diverge; DW seems to converge in probability to $0 ; \mathrm{R}^{2}$ seems to converge in probability to 0.94 . All these empirical values in Tables $6.6-6.7$ fully support the results of Corollary 5.4.1 and Corollary 5.4.2 respectively.

In summary, it is observed from the simulation results that DW and R^{2} can be in general used as diagnostic tools to detect spurious regression, misspecification of nonstationary AR and polynomial regression models.

Table 6.1
SPURIOUS REGRESSION $1(\mathrm{k}=1, \mathrm{p}=2)$

n	25	50	100	250
statistics				
$\hat{\beta}_{0}$	-0.0000	0.0075	0.0292	0.0673
$\hat{\beta}_{1}$	0.0041	0.0001	-0.0118	-0.1915
$\hat{\beta}_{2}$	-0.0004	-0.0002	-0.0001	-0.0001
$\mathfrak{t}_{\beta_{0}}$	-0.008	0.006	-0.022	0.092
$\mathrm{t}_{\beta_{1}}$	0.002	-0.003	-0.118	-0.249
$\mathrm{t}_{\beta_{2}}$	0.082	0.063	0.017	-0.271
R^{2}	0.497	0.496	0.490	0.489
DW	0.907	0.486	0.253	0.104
$\hat{\sigma}^{2}$	1.768	3.339	6.572	16.218

Table 6.2
SPURIOUS REGRESSION $2(\mathrm{k}=2, \mathrm{p}=1)$

statistics	25	50	100	250
$\hat{\beta}_{0}$	0.185	-0.281	-1.569	-9.702
$\hat{\beta}_{1}$	-0.063	-0.135	0.058	-0.090
$\mathrm{t}_{\beta_{0}}$	0.039	0.026	-0.044	-0.142
$\mathrm{t}_{\beta_{1}}$	-0.057	-0.024	-0.013	-0.001
R^{2}	0.376	0.377	0.372	0.374
DW	0.447	0.177	0.093	0.015
$\hat{\sigma}^{2}$	360.4	2630.9	20221.2	307268.1

Table 6.3
SPURIOUS REGRESSION $3(\mathrm{k}=2, \mathrm{p}=2)$

statistics	25	50	100	250
$\hat{\beta}_{0}$	0.049	0.093	0.111	6.951
$\hat{\beta}_{1}$	-0.014	-0.002	0.001	0.149
$\hat{\beta}_{2}$	-0.011	-0.042	-0.090	-0.230
$\mathrm{t}_{\beta_{0}}$	0.013	-0.003	-0.171	-0.246
$\mathrm{t}_{\beta_{1}}$	-0.018	0.005	0.067	0.165
$\mathrm{t}_{\beta_{2}}$	0.038	-0.152	-0.536	-0.740
R^{2}	0.774	0.786	0.781	0.780
DW	1.001	0.318	0.103	0.033
$\hat{\sigma}^{2}$	90.3	644.3	5020.1	74303.8

Table 6.4
MISSPECIFICATION OF A NONSTATIONARY AR(2) AS
A POLYNOMIAL REGRESSION MODEL
OF ORDER 2

n	25	50	100	250
statistics				
$\hat{\delta}_{0}$	-0.028	-0.109	-0.147	-1.498
$\hat{\delta}_{1}$	0.026	0.010	0.025	0.121
$\hat{\delta}_{2}$	-0.001	0.001	0.000	-0.001
$\mathrm{t}_{\delta_{0}}$	-0.017	-0.022	-0.053	-0.189
$\mathrm{t}_{\delta_{1}}$	-0.123	0.005	0.147	0.857
$\mathrm{t}_{\delta_{2}}$	-0.015	0.027	0.182	0.308
R^{2}	0.965	0.965	0.965	0.964
DW	0.414	0.113	0.028	0.004
$\hat{\sigma}^{2}$	3.304	24.774	200.348	3070.343

Table 6.5
MISSPECIFICATION OF A POLYNOMIAL REGRESSION MODEL OF ORDER 2 AS A NONSTATIONARY AR(2) MODEL

statistics	25	50	100	250
$\hat{\phi}_{0}$	2.988	2.354	1.748	1.285
$\hat{\phi}_{1}$	1.604	1.860	1.961	1.994
$\hat{\phi}_{2}$	1.030	1.005	1.000	1.000
$\mathrm{t}_{\phi_{0}}$	3.092	2.354	1.748	1.701
$\mathrm{t}_{\phi_{1}}$	10.240	9.658	9.585	9.526
$\mathrm{t}_{\phi_{2}}$	5.264	5.658	5.783	5.789
R^{2}	0.998	0.998	0.998	0.999
DW	2.759	3.222	3.411	3.415
$\hat{\sigma}^{2}$	3.487	3.845	4.009	4.019

Table 6.6
UNDERSPECIFICATION OF A NONSTATIONARY AR(2) MODEL

n	25	50	100	250
statistics				
$\hat{\phi}_{0}$	0.019	0.014	0.017	0.013
$\hat{\phi}_{1}$	1.019	1.012	1.007	1.003
$\mathrm{t}_{\phi_{0}}$	0.058	0.042	0.042	0.167
$\mathrm{t}_{\phi_{1}}$	93.065	257.153	704.187	2722.667
R^{2}	0.982	0.994	0.997	0.998
DW	0.706	0.369	0.187	0.075
$\hat{\sigma}^{2}$	1.186	2.273	4.618	11.459

Table 6.7

UNDERSPECIFICATION OF A POLYNOMIAL REGRESSION MODEL OF ORDER 2

n	25	50	100	250
statistics				
$\hat{\delta}_{0}$	-58.497	-220.999	-858.501	-5271.000
$\hat{\delta}_{1}$	14.000	26.500	51.500	126.500
$\mathrm{t}_{\delta_{0}}$	-5.861	-8.094	-11.315	-17.756
$\mathrm{t}_{\delta_{1}}$	20.838	28.441	39.470	61.691
R^{2}	0.949	0.943	0.939	0.938
DW	0.087	0.023	0.006	0.001
$\hat{\sigma}^{2}$	585.196	9018.000	141570.278	5468059.648

REFERENCES

Billingsley, P. (1968) Convergence of probability measures, Wiley, New York. Binder, D. A. and Hidiroglou, M. A. (1988) Sampling in time, Handbook of Statistics 6, 187-211, North Holland, New York.

Box, G. E. P. and Jenkins, G. M. (1976) Time Series Analysis: Forecasting and Control, revised edition, Holden Day, San Francisco.

Dickey, D. A. (1976) Estimation and testing of nonstationary time series, Ph. D. thesis, Department of Statistics, Iowa State University, Ames, IA.

Dickey, D. A. and Fuller, W. A. (1979) Distribution of the estimators for autoregressive time series with a unit root. J. Amer. Statist. Assoc. 74, 427-431.

Dickey, D. A. and Fuller, W. A. (1981) Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49, 1057-1072.

Dickey, D. A. and Pantula, S. G. (1987) Determining the order of differencing in autoregressive process. Journal of Business and Economic Statistics 5, 455-461.

Dunsmuir, W. (1979) A central limit theorem for parameter estimation in stationary vector time series and its application to models for a signal observed with noise, Ann. Statist 7, 490-506.

Dunsmuir, W. and Hannan, E. J. (1976) Vector linear time series model. Adv. Statist. 7, 339-364.

Durlauf, S. N. and Phillips, S. G. (1988) Trends versus random walks in time series analysis. Econometrica 56, 1333-1354.

Engle, R. F. and Granger, C. W. J. (1987) Cointegration and error correction: representation, estimation, and testing. Econometrica 55, 251-276.

Fountis, N. G. and Dickey, D. A. (1989) Testing for a unit root nonstationarity in multivariate autoregressive time series, Ann. Statist. 17, 419-428.

Fuller, W. A. (1976) Introduction to statistical time series. New York: John Wiley.
Fuller, W. A. (1987) Measurement error models. New York: John Wiley.
Granger, C. W. J. and Newbold, P. (1974) Spurious regression in econometrics. Journal of Econometrics 2, 111-120.

Haldrup, N. (1994) Semiparametric tests for double unit roots. Journal of Business and Economic. Statistics 12, 109-122.

Hall, R. E. (1978) Stochastic implications of the life cycle-permanent income hypothesis: theory and evidence. J. Polit. Econ. 86, 971-987.
Hall, A. (1989) Testing for a unit root in the presence of moving average errors. Biometrika 76, 49-56.

Hannan, E. J. and Kavalieris, L. (1984a) A method for autoregressive-moving average estimation. Biometrika 71, 273-280.

Hannan, E. J. and Kavalieris, L. (1984b) Multivariate linear time series model, $A d v$. Appl. prob. 16, 975-981.
Hannan, E. J. and Rissanen. J. (1982) Recursive estimation of mixed autoregressive moving average order. Biometrika 69, 81-94.

Hasza, D. P. and Fuller, W. A. (1979) Estimation for autoregressive with unit roots. Ann. Statist. 7, 1106-1120.

Herrndorf, N. (1984) A functional central limit theorem for weakly dependent sequences of random variables. Ann. Probab. 12, 141-153.
Hillmer, S. and Tiao, G. (1979) likelihood function of stationary multiple autoregressive moving average models. J. Ameri. Statist. Assoc. 74, 654-660.
Jenkins, G. M. and Alavi, A. S. (1981) Some aspects of modeling and forecasting multivariate time series. J. Time Ser. Anal. 2, 1-47.

Judge, G. G., Griffiths, W. E., Hill, R. C., Lutkepohl, H. and Lee, T. C. (1985) The theory and practice of econometrics. New York: John Wiley.
Kashyap, R. L. (1970) Maximum likelihood identification of stochastic linear systems, I.E.E.E. Trans. autom. Control 15, 25-34.

Kleidon, A. W. (1986) Variances bounds tests and stock price valuation models. J. Polit. Econ. 94, 959-1001.

Kohn, R. (1979) Asymptotic estimation and hypothesis testing results for vector
linear time series models. Econometrica 47, 1005-1030.
Koreisha, S. G. and Pukkila, T. M. (1989) Fast linear estimation methods for vector ARMA models. J. Time Ser. Anal. 10, 325-339.

Meese, R. A. and Singleton, K. J. (1983) On unit roots and the empirical modeling of exchange rates. Int. Econ. Rev. 24, 1029-1035.

Miazaki, E. S. and Dorea, C. C. Y. (1993) Estimation of the parameters of a time series subject to the error of rotational sampling, Commun. Stat., Thoery Methods 22, 805-825.

Nelson, C. R. and Kang, H. J. (1984) Pitfalls in the use of time as an explanatory variable in regression, Journal of Business and Economic Statistics 2, 73-82.

Nelson, C. R. and Plosser, C. I. (1982) Trends and random walks in macroeconomic time series. Journal of Monetary Economics 10, 139-162.

Newbold, P. and Davies, N. (1978) Error misspecification and spurious regressions. International Economic Review 19, 513-519.

Osborn, D. R. (1977) Exact and approximate maximum likelihood estimators for vector moving average processes. J. Roy. Statist. Soc., Series B 39, 114-118.

Pagano, N. (1974) Estimation of models of autoregressive signal plus white noise. Ann. Statist. 2, 99-108.

Pankratz, A. (1983) Forecasting with univariate Box-Jenkins models. New York: John Wiley.

Pantula, S. G. (1991) Asymptotic distributions of the unit root tests when the process is nearly stationary, Journal of Business and Economic Statistics 9, 63-71.

Pantula, S. G. and Hall, A. (1991) Testing for unit roots in autoregressive moving average models. Journal of Econmetrics 48, 325-353.

Parzen, E. (1967) Advanced seminar on spectral analysis of time series, John Wiley.
Phillips, P. C. B.(1986) Understanding spurious regression. Journal of Econometrics 33, 311-340

Phillips, P. C. B. (1987) Time series regression with a unit root. Econmetrica 55, 277-301.

Phillips, P. C. B. and Perron. P. (1988) Testing for a unit root in time series regression. Biometrika 75, 335-346.

Phillips, P. C. B. and Solo, V. (1992) Asymptotics for linear processes. Ann. Statist. 20, 971-1001.
Reinsel, G. C., Basu, S. B. and Yap, S. F. (1992) Maximum likelihood estimators in the multivariate autoregressive moving average model from a generalized least squares viewpoint. J. Time Ser. Anal. 13, 133-145.
Sakai, H. and Arase, M. (1979) Recursive parameter estimation of an autoregressive process distributed by white noise. Int. J. Control 30, 949-966.

Said, S. E. and Dickey, D. A. (1984) Testing for unit roots in autoregressive-moving average of unknown order. Biometrika 71, 599-607.

Said, S. E. and Dickey, D. A. (1985) Hypothesis testing in ARIMA(p,1,q) models. J. Amer. Statist. Assoc. 80, 369-374.

Samuelson, P. A. (1965) Proof that properly anticipated prices fluctuate randomly. Indust. Manag. Rev. 6, 41-50.

Samuelson, P. A. (1973) Proof that properly discounted present values of assets vibrate randomly Bell. J. Econ. Manag. Sci. 4, 69-74.

Schwert, G. W. (1989) Tests for unit roots: A Monte Carlo investigation. J. Amer. Statist. Assoc. 83, 147-159.

Sen, D. L. and Dickey, D. A. (1987) Symmetric test for second differencing in univariate time series. Journal of Business and Economic Statistics 5, 463-473.

Shin, D. W. and Fuller, W. A. (1992) Estimation for the autoregressive moving average with an autoregressive unit root. Unpublished manuscript, Iowa State University, Ames, IA.

Shin, D. W. (1993) Maximum likelihood estimation for autoregressive processes distributed by a moving average. J. Time Ser. Anal. 14, 629-643.
Shin, D.W. and Pantula, S. G. (1993) Testing for a unit root in autoregressive processes with systematic but incomplete sampling. Statistics and Probability Letters 18, 183-190.

Shin, D. W. and Sarkar, S. (1994) Testing for a unit root in an ARIMA(p,1,0) signal observed with MA(q) noise. Commun. Stat., Thoery Methods 29, 2643-2670.
Shin, D. W. and Sarkar, S. (1995) Estimation of the multivariate autoregressive moving average having parameter restrictions and an application to rotational sampling.
J. Time Ser. Anal. 16, 431-444.

Shin, D. W. and Sarkar, S. (1996) Model misspecification problem for nonstationary time series. Technical report \#130, Dept. of Statistics, Oklahoma State University, Stillwater, OK.

Spliid, H. (1983) A fast estimation method for the vector autoregressive moving average model with exogenous variables. J. Amer. Statist. Assoc. 78, 843-849.

Walker, A. M. (1960) Some consequences of superimposed error in time series analysis, Biometrika 47, 33-43.

APPENDICES

APPENDIX A

FORTRAN PROGRAM FOR HANNAN AND RISSANEN'S METHOD BASED ON KOHN'S APPROACH

* Note that $\left(\mathrm{N}, \mathrm{S}, \sigma_{\mathrm{e}}{ }^{2}\right)=(250,4,5.0)$ is considered as an example.

```
************************
* MAIN PROGRAM *
***********************
```


PROGRAM HR-KOHN

PARAMETER(N=250, NUM=10000, NN=254, NNN=252, N2=4, N3=3, N5=6)
IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 $\mathrm{E}(\mathrm{N}), \mathrm{W}(\mathrm{N}), \mathrm{Z}(\mathrm{N}), \mathrm{U}(\mathrm{N}), \mathrm{Y}(\mathrm{N})$
REAL*8 A1(6), C1, D1, D2
REAL*8 R(NN), ETILDA(N), X(N,N2), T(NNN)
REAL*8 RR(NNN), ABTLLDA(N3), HAP, SIGMAET
INTEGER ISEED1, ISEED2
EXTERNAL RNSET, DRNNOA, DLINRG

DATA A1/1.0,0.99,0.95,0.90,0.80,0.70/
ISEED1 = 13579
CALL RNISD(ISEED1, ISEED2)
DO $260 \mathrm{I} 1=1,6$ DO $255 \mathrm{C} 1=-0.5,0.5,0.5$

$$
\begin{aligned}
& \text { ICOUNT }=0 \\
& \text { COUNT1 }=0.0 \\
& \text { COUNT2 }=0.0 \\
& \text { COUNT3 }=0.0 \\
& \text { COUNT4 }=0.0 \\
& \text { COUNT5 }=0.0 \\
& \text { COUNT6 }=0.0
\end{aligned}
$$

$\mathrm{D} 1=\mathrm{A} 1(\mathrm{I} 1)+\mathrm{C} 1$

$$
\mathrm{D} 2=\mathrm{A} 1(\mathrm{I} 1) * \mathrm{C} 1
$$

DO $100 \mathrm{I}=1,18000$
CALL RNSET(ISEED1)
CALL DRNNOA(N,E)
CALL RNGET(ISEED1)
CALL RNSET(ISEED2)
CALL DRNNOA(N,W)
CALL RNGET(ISEED2)
$\mathrm{Z}(1)=\mathrm{E}(1) * \operatorname{SQRT}(5.0)$
$\mathrm{U}(1)=\mathrm{W}(1)$

$$
Y(1)=Z(1)+U(1)
$$

DO $10 \mathrm{~J}=2, \mathrm{~N}$

$$
\mathrm{Z}(\mathrm{~J})=-\mathrm{A} 1(\mathrm{I} 1) * \mathrm{Z}(\mathrm{~J}-1)+\mathrm{E}(\mathrm{~J}) * \mathrm{SQRT}(5.0)
$$

$$
\mathrm{U}(\mathrm{~J})=\mathrm{W}(\mathrm{~J})+\mathrm{C} 1^{*} \mathrm{~W}(\mathrm{~J}-1)
$$

$$
\mathrm{Y}(\mathrm{~J})=\mathrm{Z}(\mathrm{~J})+\mathrm{U}(\mathrm{~J})
$$ CONTINUE

$$
\begin{aligned}
\text { DO } 1 \mathrm{~K} & =1, \mathrm{~N} \\
\mathrm{R}(\mathrm{~K}+4) & =\mathrm{Y}(\mathrm{~K})
\end{aligned}
$$

CONTINUE
DO $3 \mathrm{~K}=1,4$
$R(K)=0.0$
CONTINUE
CALL ETINIT(Y, R, X, N, NN, ETILDA)
DO $5 \mathrm{~K}=1$, N
$R R(K+2)=\operatorname{ETILDA}(K)$
CONTINUE
DO $7 \mathrm{~K}=1,2$
$R R(K)=0.0$
CONTINUE
CALL ABINIT(N, ABTILDA, R, RR, NN, NNN, N3)
CALL SIGMAINIT(Y,R,T,N,NN,NNN,ABTILDA,N3,HAP,SIGMAET)
CALL NRMETHOD(N,NN,NNN,N3,N5,R,T,ABTILDA,HAP,SIGMAET, C1,D1,D2,ICOUNT,COUNT1,COUNT2,COUNT3,COUNT4, COUNT5,COUNT6)

IF (ICOUNT.GE.10000) GO TO 115
100 CONTINUE
115 CONTINUE
PWR1 $=(\mathrm{COUNT} 1 / \mathrm{NUM}) * 100.0$
PWR2 $=($ COUNT2/NUM $) * 100.0$
PWR3 $=($ COUNT3/NUM $) * 100.0$
PWR4 $=($ COUNT4/NUM $) * 100.0$
PWR5 $=($ COUNT5/NUM $) * 100.0$
PWR6 $=($ COUNT6/NUM $) * 100.0$
$\operatorname{WRITE}\left({ }^{*}, *\right)$ 'A1 = ', A1(I1), 'C1 = ', C1

WRITE(*,*) COUNT1, PWR1 WRITE(*,*) COUNT2, PWR2 WRITE(*,*) COUNT3, PWR3 WRITE ${ }^{*}, *$) COUNT4, PWR4 WRITE (*,*) COUNT5, PWR5 WRITE(*,*) COUNT6, PWR6

CONTINUE
CONTINUE
END

* SUBROUTINE 1 *

湅
*** ESTIMATE INITIAL VALUE OF ET.

```
SUBROUTINE ETINIT(Y, R, X, N, NN, ETILDA)
    PARAMETER(LDA=4, LDAINV=4, N2=4)
    REAL*8 R(NN), A(LDA,LDA), B(N2), AINV(LDAINV,LDAINV)
    REAL*8 X(N,N2), Y(N), ETILDA(N), SUM1(N2)
```

 DO \(210 \mathrm{I}=1,4\)
 DO \(200 \mathrm{~J}=1,4\)
 \(\mathrm{A}(\mathrm{I}, \mathrm{J})=0.0\)
 CONTINUE
 \(B(I)=0.0\)
 210 CONTINUE

DO $250 \mathrm{~L}=1$, N

$$
\mathrm{A}(1,1)=\mathrm{A}(1,1)+\mathrm{R}(\mathrm{~L}+3) * \mathrm{R}(\mathrm{~L}+3)
$$

$$
\mathrm{A}(2,1)=\mathrm{A}(2,1)+\mathrm{R}(\mathrm{~L}+2) * \mathrm{R}(\mathrm{~L}+3)
$$

$$
\mathrm{A}(3,1)=\mathrm{A}(3,1)+\mathrm{R}(\mathrm{~L}+1) * \mathrm{R}(\mathrm{~L}+3)
$$

$$
\mathrm{A}(4,1)=\mathrm{A}(4,1)+\mathrm{R}(\mathrm{~L}) * \mathrm{R}(\mathrm{~L}+3)
$$

$$
\mathrm{A}(2,2)=\mathrm{A}(2,2)+\mathrm{R}(\mathrm{~L}+2) * \mathrm{R}(\mathrm{~L}+2)
$$

$$
\mathrm{A}(2,3)=\mathrm{A}(2,3)+\mathrm{R}(\mathrm{~L}+1) * \mathrm{R}(\mathrm{~L}+2)
$$

$$
\mathrm{A}(2,4)=\mathrm{A}(2,4)+\mathrm{R}(\mathrm{~L}) * \mathrm{R}(\mathrm{~L}+2)
$$

$$
\mathrm{A}(3,3)=\mathrm{A}(3,3)+\mathrm{R}(\mathrm{~L}+1) * \mathrm{R}(\mathrm{~L}+1)
$$

$$
\mathrm{A}(3,4)=\mathrm{A}(3,4)+\mathrm{R}(\mathrm{~L}) * \mathrm{R}(\mathrm{~L}+1)
$$

$$
\mathrm{A}(4,4)=\mathrm{A}(4,4)+\mathrm{R}(\mathrm{~L}) * \mathrm{R}(\mathrm{~L})
$$

$$
\mathrm{B}(1)=\mathrm{B}(1)+\mathrm{R}(\mathrm{~L}+3)^{*} \mathrm{R}(\mathrm{~L}+4)
$$

$$
\mathrm{B}(2)=\mathrm{B}(2)+\mathrm{R}(\mathrm{~L}+2) * \mathrm{R}(\mathrm{~L}+4)
$$

$$
\mathrm{B}(3)=\mathrm{B}(3)+\mathrm{R}(\mathrm{~L}+1) * \mathrm{R}(\mathrm{~L}+4)
$$

$$
\mathrm{B}(4)=\mathrm{B}(4)+\mathrm{R}(\mathrm{~L}) * \mathrm{R}(\mathrm{~L}+4)
$$

$$
A(1,2)=A(2,1)
$$

$$
\begin{aligned}
& \mathrm{A}(1,3)=\mathrm{A}(3,1) \\
& \mathrm{A}(1,4)=\mathrm{A}(4,1) \\
& \mathrm{A}(3,2)=\mathrm{A}(2,3) \\
& \mathrm{A}(4,2)=\mathrm{A}(2,4) \\
& \mathrm{A}(4,3)=\mathrm{A}(3,4)
\end{aligned}
$$

CALL DLINRG(N2, A, LDA, AINV, LDAINV)

DO $265 \mathrm{~K} 1=1,4$

DO $260 \mathrm{~K} 2=1, \mathrm{~N}$
IF (K2.LE.K1) THEN
$\mathrm{X}(\mathrm{K} 2, \mathrm{~K} 1)=0.0$
ELSE

$$
X(\mathrm{~K} 2, \mathrm{~K} 1)=\mathrm{Y}(\mathrm{~K} 2-\mathrm{K} 1)
$$

ENDIF

CONTINUE
CONTINUE
DO 280 LDAINV1 $=1,4$ SUM $=0.0$
DO 270 LDAINV2 $=1,4$ SUM $=$ SUM + AINV(LDAINV1,LDAINV2)*B(LDAINV2) CONTINUE SUM1(LDAINV1) = SUM CONTINUE

DO $290 \mathrm{~K} 3=1, \mathrm{~N}$
SUM2 $=0.0$
DO $285 \mathrm{~K} 4=1,4$
SUM2 $=$ SUM2 + X(K3,K4)*SUM1(K4) CONTINUE
ETILDA(K3) $=\mathrm{Y}(\mathrm{K} 3)-$ SUM2
CONTINUE
RETURN
END

```
DO \(320 \mathrm{I}=1,3\)
    DO \(310 \mathrm{~J}=1,3\)
        \(\mathrm{E}(\mathrm{I}, \mathrm{J})=0.0\)
    CONTINUE
    \(\mathrm{F}(\mathrm{I})=0.0\)
CONTINUE
DO \(350 \mathrm{~K}=1, \mathrm{~N}\)
    \(\mathrm{E}(1,1)=\mathrm{E}(1,1)+\mathrm{R}(\mathrm{K}+3) * \mathrm{R}(\mathrm{K}+3)\)
    \(\mathrm{E}(2,1)=\mathrm{E}(2,1)-\mathrm{R}(\mathrm{K}+3) * \mathrm{RR}(\mathrm{K}+1)\)
    \(\mathrm{E}(3,1)=\mathrm{E}(3,1)-\mathrm{R}(\mathrm{K}+3) * \mathrm{RR}(\mathrm{K})\)
    \(\mathrm{E}(2,2)=\mathrm{E}(2,2)+\mathrm{RR}(\mathrm{K}+1) * \mathrm{RR}(\mathrm{K}+1)\)
    \(\mathrm{E}(2,3)=\mathrm{E}(2,3)+\mathrm{RR}(\mathrm{K}) * \mathrm{RR}(\mathrm{K}+1)\)
    \(\mathrm{E}(3,3)=\mathrm{E}(3,3)+\mathrm{RR}(\mathrm{K}) * \mathrm{RR}(\mathrm{K})\)
    \(\mathrm{F}(1)=\mathrm{F}(1)-\mathrm{R}(\mathrm{K}+3) * \mathrm{R}(\mathrm{K}+4)\)
    \(\mathrm{F}(2)=\mathrm{F}(2)+\mathrm{R}(\mathrm{K}+4) * \mathrm{RR}(\mathrm{K}+1)\)
    \(\mathrm{F}(3)=\mathrm{F}(3)+\mathrm{R}(\mathrm{K}+4)^{*} \mathrm{RR}(\mathrm{K})\)
CONTINUE
    \(\mathrm{E}(1,2)=\mathrm{E}(2,1)\)
    \(\mathrm{E}(1,3)=\mathrm{E}(3,1)\)
    \(\mathrm{E}(3,2)=\mathrm{E}(2,3)\)
```

CALL DLINRG(3, E, MDA, EINV, MDAINV)

```
DO 390 MDAINV1 \(=1,3\)
        SUM3 \(=0.0\)
        DO 370 MDAINV2 \(=1,3\)
            SUM3 = SUM3 + EINV(MDAINV1,MDAINV2)*F(MDAINV2)
        CONTINUE
        ABTILDA(MDAINV1) \(=\) SUM3
    CONTINUE
```

RETURN
END

* SUBROUTINE 3

*** ESTIMATE INITIAL VALUE OF $\sigma_{\mathrm{e}}{ }^{2}$.
SUBROUTINE SIGMAINIT(Y, R, T, N, NN, NNN, ABTILDA,
N3, HAP, SIGMAET)
REAL*8 Y(N), R(NN), T(NNN)
REAL*8 ABTILDA(N3), HAP, SIGMAET
DO $400 \mathrm{~L}=1$, NNN
$\mathrm{T}(\mathrm{L})=0.0$
400 CONTINUE

```
HAP = 0.0
DO 430 L=1,N
        T(L+2)=R(L+4) + ABTILDA(1)*R(L+3) - ABTILDA(2)*T(L+1)
                        - ABTILDA(3)*T(L)
        HAP = HAP + T(L+2)*T(L+2)
CONTINUE
SIGMAET = HAP/N
RETURN
END
```


* SUBROUTINE 4 *

*** NEWTON-RAPHSON METHOD BASED ON KOHN'S APPROACH

```
    SUBROUTINE NRMETHOD(N,NN,NNN,N3,N5,R,T,ABTILDA,HAP,
                SIGMAET,C1,D1,D2, ICOUNT,COUNT1,COUNT2,
                COUNT3,COUNT4,COUNT5,COUNT6)
            PARAMETER(LDA=6, LDAINV=6,N6=6)
            REAL*8 A(LDA,LDA), AINV(LDAINV,LDAINV)
            REAL*8 R(NN),T(NNN), ABTILDA(N3)
            REAL*8 A11, B11, B22,SIGMAET
            REAL*8 SS1,SS2
            A11 = ABTILDA(1)
            B11 = ABTILDA(2)
            B22 = ABTILDA(3)
            WA1 = 0.0
            WB1 = 0.0
            WB2 = 0.0
            WA1WB1 = 0.0
            WA1WB2 }=0.
            WB1WB1 }=0.
            WB1WB2 }=0.
            WB2WB2 }=0.
            DO 510 I = 1,6
            DO 500 J=1,6
                A(I,J) = 0.0
            CONTINUE
510 CONTINUE
```

$\mathrm{W} 1 \mathrm{TEMP}=0.0$
W 2 TEMP $=0.0$
W 3 TEMP $=0.0$
WAB1TMP $=0.0$
$\mathrm{WAB} 2 \mathrm{TMP}=0.0$
WWB1TMP $=0.0$
WB12TMP $=0.0$
$\mathrm{WWB} 2 \mathrm{TMP}=0.0$
WA1TEMP1 $=0.0$
WA1TEMP2 $=0.0$
WB1TEMP1 $=0.0$
$\mathrm{WB} 1 \mathrm{TEMP} 2=0.0$
WB2TEMP1 $=0.0$
WB2TEMP2 $=0.0$
WAB1TMP1 $=0.0$
$\mathrm{WAB} 1 \mathrm{TMP} 2=0.0$
WAB2TMP1 $=0.0$
WAB2TMP2 $=0.0$
WWB1TMP1 $=0.0$
$\mathrm{WWB} 1 \mathrm{TMP} 2=0.0$
WB12TMP1 $=0.0$
WB12TMP2 $=0.0$
$\mathrm{WWB} 2 \mathrm{TMP} 1=0.0$
$\mathrm{WWB} 2 \mathrm{TMP} 2=0.0$

DO $550 \mathrm{~L}=1, \mathrm{~N}$
$\mathrm{WA} 1=\mathrm{R}(\mathrm{L}+3)-\mathrm{B} 11 * W A 1 T E M P 1-\mathrm{B} 22 * W A 1 T E M P 2$
WB1 $=-\mathrm{T}(\mathrm{L}+1)-\mathrm{B} 11 * W B 1 T E M P 1-\mathrm{B} 22 * W B 1 T E M P 2$
WB2 $=-\mathrm{T}(\mathrm{L})-\mathrm{B} 11^{*} \mathrm{WB} 2 T E M P 1-\mathrm{B} 22 *$ WB2TEMP2
WA1WB1 = -WA1TEMP1 - B11*WAB1TMP1 - B22*WAB1TMP2
WA1WB2 $=-$ WA1TEMP2 - B11*WAB2TMP1 - B22*WAB2TMP2
WB1WB1 $=-2 *$ WB1TEMP1 - B11*WWB1TMP1 - B22*WWB1TMP2
WB1WB2 $=-$ WB2TEMP1 - B11*WB12TMP1 - WB1TEMP2

- B22*WB12TMP2

WB2WB2 $=-2 *$ WB2TEMP2 - B11*WWB2TMP1-B22*WWB2TMP2

$$
\begin{aligned}
& \mathrm{A}(1,1)=\mathrm{A}(1,1)+(\mathrm{WA} 1 * \mathrm{WA} 1) \\
& \mathrm{A}(2,2)=\mathrm{A}(2,2)+\left(\mathrm{WB} 1 * \mathrm{WB} 1+\mathrm{T}(\mathrm{~L}+2)^{*} \mathrm{WB} 1 \mathrm{WB} 1\right) \\
& \mathrm{A}(3,3)=\mathrm{A}(3,3)+\left(\mathrm{WB} 2 * \mathrm{WB} 2+\mathrm{T}(\mathrm{~L}+2)^{*} \mathrm{WB} 2 \mathrm{WB} 2\right) \\
& \mathrm{A}(4,4)=\mathrm{A}(4,4)+\left(\mathrm{T}(\mathrm{~L}+2)^{*} \mathrm{~T}(\mathrm{~L}+2)\right) \\
& \mathrm{A}(1,2)=\mathrm{A}(1,2)+\left(\mathrm{WA} 1 * \mathrm{WB} 1+\mathrm{T}(\mathrm{~L}+2)^{*} \mathrm{WA} 1 \mathrm{WB} 1\right) \\
& \mathrm{A}(1,3)=\mathrm{A}(1,3)+\left(\mathrm{WA} 1 * \mathrm{WB} 2+\mathrm{T}(\mathrm{~L}+2)^{*} \mathrm{WA} 1 \mathrm{WB} 2\right) \\
& \mathrm{A}(1,4)=\mathrm{A}(1,4)-\left(\mathrm{T}(\mathrm{~L}+2)^{*} \mathrm{WA} 1\right) \\
& \mathrm{A}(2,3)=\mathrm{A}(2,3)+\left(\mathrm{WB} 1 * \mathrm{WB} 2+\mathrm{T}(\mathrm{~L}+2)^{*} \mathrm{WB} 1 \mathrm{WB} 2\right) \\
& \mathrm{A}(2,4)=\mathrm{A}(2,4)-\left(\mathrm{T}(\mathrm{~L}+2)^{*} \mathrm{WB} 1\right) \\
& \mathrm{A}(3,4)=\mathrm{A}(3,4)-\left(\mathrm{T}(\mathrm{~L}+2)^{*} \mathrm{WB} 2\right)
\end{aligned}
$$

```
    W1TEMP = WA1TEMP1
    WA1TEMP1 = WA1
    WA1TEMP2 = W1TEMP
    W2TEMP = WB1TEMP1
    WB1TEMP1 = WB1
    WB1TEMP2 = W2TEMP
    W3TEMP = WB2TEMP1
    WB2TEMP1 \(=\) WB2
    WB2TEMP2 \(=\mathrm{W} 3\) TEMP
    WAB1TMP = WAB1TMP1
    WAB1TMP1 \(=\) WA1WB1
    \(\mathrm{WAB} 1 \mathrm{TMP} 2=\mathrm{WAB} 1 \mathrm{TMP}\)
    \(\mathrm{WAB} 2 \mathrm{TMP}=\mathrm{WAB} 2 \mathrm{TMP} 1\)
    WAB2TMP1 = WA1WB2
    \(\mathrm{WAB} 2 \mathrm{TMP} 2=\mathrm{WAB} 2 \mathrm{TMP}\)
    WWB1TMP \(=W W B 1 T M P 1\)
    \(\mathrm{WWB} 1 \mathrm{TMP} 1=\mathrm{WB} 1 \mathrm{WB} 1\)
    WWB1TMP2 \(=W W B 1 T M P\)
    WB12TMP = WB12TMP1
    \(\mathrm{WB} 12 \mathrm{TMP} 1=\mathrm{WB} 1 \mathrm{WB} 2\)
    \(\mathrm{WB} 12 \mathrm{TMP} 2=\mathrm{WB} 12 \mathrm{TMP}\)
    WWB2TMP \(=W W B 2 T M P 1\)
    \(\mathrm{WWB} 2 \mathrm{TMP} 1=\mathrm{WB} 2 \mathrm{WB} 2\)
    WWB2TMP2 \(=\mathrm{WWB} 2 T M P\)
\(\mathrm{A}(1,1)=\mathrm{A}(1,1) /\) SIGMAET
\(\mathrm{A}(1,2)=\mathrm{A}(1,2) /\) SIGMAET
\(\mathrm{A}(1,3)=\mathrm{A}(1,3) /\) SIGMAET
\(\mathrm{A}(1,4)=\mathrm{A}(1,4) /\left(\right.\) SIGMAET \(\left.^{*}{ }^{*} 2\right)\)
\(\mathrm{A}(2,2)=\mathrm{A}(2,2) /\) SIGMAET
\(\mathrm{A}(2,3)=\mathrm{A}(2,3) /\) SIGMAET
\(\mathrm{A}(2,4)=\mathrm{A}(2,4) /\left(\mathrm{SIGMAET}^{*}{ }^{2}\right)\)
\(\mathrm{A}(3,3)=\mathrm{A}(3,3) /\) SIGMAET
\(\mathrm{A}(3,4)=\mathrm{A}(3,4) /\left(\right.\) SIGMAET \(\left.^{*}{ }^{2}\right)\)
\(\mathrm{A}(4,4)=\mathrm{A}(4,4) *\) SIGMAET \(^{* *} 3-\left(\mathrm{N} /\left(2 *\right.\right.\) SIGMAET \(\left.\left.^{* *} 2\right)\right)\)
\(\mathrm{A}(1,5)=\mathrm{A}(1,5)-\left(1+2 * \mathrm{D} 2+\mathrm{C} 1{ }^{* *} 2\right)\)
\(A(1,6)=A(1,6)-C 1\)
\(\mathrm{A}(2,5)=\mathrm{A}(2,5)+(1+\mathrm{B} 22) *\) SIGMAET
\(\mathrm{A}(3,5)=\mathrm{A}(3,5)+\mathrm{B} 11 *\) SIGMAET
\(\mathrm{A}(3,6)=\mathrm{A}(3,6)+\) SIGMAET
\(\mathrm{A}(4,5)=\mathrm{A}(4,5)+\mathrm{B} 11 *(1+\mathrm{B} 22)\)
\(\mathrm{A}(4,6)=\mathrm{A}(4,6)+\mathrm{B} 22\)
\(\mathrm{A}(2,1)=\mathrm{A}(1,2)\)
\(\mathrm{A}(3,1)=\mathrm{A}(1,3)\)
\(\mathrm{A}(4,1)=\mathrm{A}(1,4)\)
\(\mathrm{A}(5,1)=\mathrm{A}(1,5)\)
```

550 CONTINUE

$$
\begin{aligned}
& \mathrm{A}(6,1)=\mathrm{A}(1,6) \\
& \mathrm{A}(3,2)=\mathrm{A}(2,3) \\
& \mathrm{A}(4,2)=\mathrm{A}(2,4) \\
& \mathrm{A}(5,2)=\mathrm{A}(2,5) \\
& \mathrm{A}(4,3)=\mathrm{A}(3,4) \\
& \mathrm{A}(5,3)=\mathrm{A}(3,5) \\
& \mathrm{A}(6,3)=\mathrm{A}(3,6) \\
& \mathrm{A}(5,4)=\mathrm{A}(4,5) \\
& \mathrm{A}(6,4)=\mathrm{A}(4,6)
\end{aligned}
$$

CALL DLINRG(N6, A, LDA, AINV, LDAINV)

> IF (AINV(1,1).GT.0.0) THEN

$$
\mathrm{SS} 1=\mathrm{N}^{*}(\mathrm{~A} 11-1.0)
$$

$$
\mathrm{SS} 2=(\mathrm{A} 11-1.0) / \mathrm{SQRT}(\operatorname{AINV}(1,1))
$$

IF (SS1.LT.-5.7) THEN
COUNT1 $=$ COUNT1 +1.0

ENDIF

IF (SS1.LT.-8.0) THEN
COUNT2 $=$ COUNT2 +1.0
ENDIF
IF (SS1.LT.-13.6) THEN
COUNT3 $=$ COUNT3 +1.0
ENDIF
IF (SS2.LT.-1.62) THEN
COUNT4 $=$ COUNT4 +1.0
ENDIF
IF (SS2.LT.-1.95) THEN
COUNT5 $=$ COUNT5 +1.0
ENDIF
IF (SS2.LT.-2.58) THEN
COUNT6 $=$ COUNT6 +1.0
ENDIF
ICOUNT $=\mathrm{ICOUNT}+1$
ENDIF

RETURN
END

* END OF PROGRAM

APPENDIX B

FORTRAN PROGRAM FOR HANNAN AND RISSANEN'S METHOD
BASED ON SHIN AND SARKAR'S APPROACH

```
* Note that \(\left(\mathrm{N}, \mathrm{S}, \sigma_{\mathrm{e}}^{2}\right)=(250,4,5.0)\) case is considered as example.
* In addition, only Subroutine 4 is described because the rest of all subroutines *
* and main program are exactly the same as those of HR-KOHN.
******************************************************************
```

* SUBROUTINE 4

SUBROUTINE NRMETHOD(N,NN,NNN,N3,N5,R,T,ABTILDA,HAP, SIGMAET,C1,D1,D2,ICOUNT,COUNT1,COUNT2, COUNT3,COUNT4,COUNT5,COUNT6)
PARAMETER(LDA=6, LDAINV=6, N6=6)
REAL*8 A(LDA,LDA), AINV(LDAINV,LDAINV)
REAL*8 R(NN), T(NNN), ABTILDA(N3)
REAL*8 A11, B11, B22, SIGMAET, SS1, SS2

A11 = ABTILDA(1)
B11 = ABTILDA(2)
$\mathrm{B} 22=\mathrm{ABTILDA}(3)$
$\mathrm{WA} 1=0.0$
$\mathrm{WB} 1=0.0$
$\mathrm{WB} 2=0.0$
$\mathrm{W} 1 \mathrm{TEMP}=0.0$
$\mathrm{W} 2 \mathrm{TEMP}=0.0$
W 3 TEMP $=0.0$
WA1TEMP1 $=0.0$
WA1TEMP2 $=0.0$
WB1TEMP1 $=0.0$
WB1TEMP2 $=0.0$
WB2TEMP1 $=0.0$
$\mathrm{WB} 2 \mathrm{TEMP} 2=0.0$

DO $510 \mathrm{I}=1,6$
DO $500 \mathrm{~J}=1,6$
$\mathrm{A}(\mathrm{I}, \mathrm{J})=0.0$
500 CONTINUE
510 CONTINUE

```
DO \(550 \mathrm{~L}=1, \mathrm{~N}\)
    WA1 \(=\mathrm{R}(\mathrm{L}+3)-\mathrm{B} 11 *\) WA1TEMP1 - B22*WA1TEMP2
    WB1 \(=-\mathrm{T}(\mathrm{L}+1)-\mathrm{B} 11 * W B 1 T E M P 1-\mathrm{B} 22 * W B 1 T E M P 2\)
    \(\mathrm{WB} 2=-\mathrm{T}(\mathrm{L})-\mathrm{B} 11 * \mathrm{WB} 2 \mathrm{TEMP} 1-\mathrm{B} 22 *\) WB2TEMP2
```

```
    \(\mathrm{A}(1,1)=\mathrm{A}(1,1)+\mathrm{WA} 1^{*} \mathrm{WA} 1\)
    \(\mathrm{A}(2,2)=\mathrm{A}(2,2)+\mathrm{WB} 1 * \mathrm{WB} 1\)
    \(\mathrm{A}(3,3)=\mathrm{A}(3,3)+\mathrm{WB} 2 * \mathrm{WB} 2\)
    \(\mathrm{W} 1 \mathrm{TEMP}=\mathrm{WA1TEMP} 1\)
    WA1TEMP1 = WA1
    WA1TEMP2 = W1TEMP
    W2TEMP = WB1TEMP1
    WB1TEMP1 = WB1
    WB1TEMP2 \(=\mathrm{W} 2\) TEMP
    W3TEMP \(=\) WB2TEMP1
    WB2TEMP1 = WB2
    WB2TEMP2 \(=\mathrm{W} 3\) TEMP
CONTINUE
    \(\mathrm{A}(1,1)=\mathrm{A}(1,1) /\) SIGMAET
    \(\mathrm{A}(2,2)=\mathrm{A}(2,2) /\) SIGMAET
    \(\mathrm{A}(3,3)=\mathrm{A}(3,3) /\) SIGMAET
    \(\mathrm{A}(5,1)=\mathrm{A}(5,1)-(1+2 * \mathrm{D} 2+\mathrm{C} 1 * * 2)\)
    \(\mathrm{A}(2,5)=\mathrm{A}(2,5)+(1+\mathrm{B} 22) *\) SIGMAET
    \(\mathrm{A}(3,5)=\mathrm{A}(3,5)+\mathrm{B} 11 *\) SIGMAET
    \(\mathrm{A}(6,1)^{\prime}=\mathrm{A}(6,1)-\mathrm{C} 1\)
    \(\mathrm{A}(3,6)=\mathrm{A}(3,6)+\) SIGMAET
    \(\mathrm{A}(4,4)=\mathrm{A}(4,4)-\mathrm{N} /\left(2^{*}\left(\right.\right.\) SIGMAET \(\left.\left.^{* *} 2\right)\right)\)
    \(\mathrm{A}(4,5)=\mathrm{A}(4,5)+\mathrm{B} 11^{*}(1+\mathrm{B} 22)\)
    \(\mathrm{A}(4,6)=\mathrm{A}(4,6)+\mathrm{B} 22\)
    \(A(1,5)=A(5,1)\)
    \(A(1,6)=A(6,1)\)
    \(A(5,2)=A(2,5)\)
    \(A(5,3)=A(3,5)\)
    \(A(6,3)=A(3,6)\)
    \(A(5,4)=A(4,5)\)
    \(\mathrm{A}(6,4)=\mathrm{A}(4,6)\)
```

CALL DLINRG(N6, A, LDA, AINV, LDAINV)
IF (AINV(1,1).GT.0.0) THEN
$\mathrm{SS} 1=\mathrm{N}^{*}(\mathrm{~A} 11-1.0)$
$\operatorname{SS} 2=(\operatorname{A} 11-1.0) / \operatorname{SQRT}(\operatorname{AINV}(1,1))$
IF (SS1.LT.-5.7) THEN
COUNT1 $=$ COUNT1 +1.0
ENDIF
IF (SS1.LT.-8.0) THEN COUNT2 $=$ COUNT2 +1.0
ENDIF
IF (SS1.LT.-13.6) THEN
COUNT3 $=$ COUNT3 +1.0
ENDIF
IF (SS2.LT.-1.62) THEN COUNT4 $=$ COUNT4 +1.0
ENDIF
IF (SS2.LT.-1.95) THEN
COUNT5 $=$ COUNT5 +1.0
ENDIF
IF (SS2.LT.-2.58) THEN COUNT6 $=$ COUNT6 +1.0 ENDIF
ICOUNT $=$ ICOUNT +1 ENDIF
RETURN
END

* END OF PROGRAM

APPENDIX C

FORTRAN PROGRAM FOR KOHN'S METHOD

```
***********************************************
* \(\left(\mathrm{N}, \mathrm{S}, \sigma_{\mathrm{e}}{ }^{2}\right)=(250,4,5.0)\) is considered as an example. *
***********************************************
```

* MAIN PROGRAM
$* *$

PROGRAM KOHN
PARAMETER(NUM=10000, $\mathrm{N}=250, \mathrm{NN}=254$, $\mathrm{NNN}=252$, N2=4, N3=3, N5=6)
IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 $\mathrm{E}(\mathrm{N}), \mathrm{W}(\mathrm{N}), \mathrm{Z}(\mathrm{N}), \mathrm{U}(\mathrm{N}), \mathrm{Y}(\mathrm{N})$
REAL*8 A1(6), C1, D1, D2
REAL*8 T(NNN), TT(NNN), T1(NNN)
REAL*8 R(NN), ETILDA(N), X(N,N2), FL_EST(10)
REAL*8 RR(NNN), ABTILDA(N3), C(N5), HAP, ZIGMAET, SIGMAET
REAL*8 CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6
INTEGER ISEED1, ISEED2
EXTERNAL RNSET, DRNNOA, DLINRG
DATA A1/1.0,0.99, $0.95,0.90,0.80,0.70 /$
ISEED $1=13579$
CALL RNISD(ISEED1, ISEED2)
DO $260 \mathrm{I} 1=1,6$
DO $255 \mathrm{C} 1=-0.5,0.5,0.5$
ICOUNT $=0$
COUNT1 $=0.0$
COUNT2 $=0.0$
COUNT3 $=0.0$
COUNT4 $=0.0$
COUNT5 $=0.0$
COUNT6 $=0.0$
$\mathrm{D} 1=\mathrm{A} 1(\mathrm{I} 1)+\mathrm{C} 1$
$\mathrm{D} 2=\mathrm{A}(\mathrm{I} 1) * \mathrm{C} 1$

DO $100 \mathrm{I}=1,18000$
CALL RNSET(ISEED1)
CALL DRNNOA(N,E)
CALL RNGET(ISEED1)
CALL RNSET(ISEED2)
CALL DRNNOA(N,W)
CALL RNGET(ISEED2)

```
Z(1)=E(1)*SQRT(5.0)
U(1)=W(1)
Y(1)=Z(1)+U(1)
DO 10 J=2,N
    Z(J)=-A1(I1)*Z(J-1)+E(j)*SQRT(5.0)
    U(J) = W(J)+C1*W(J-1)
    Y(J)=Z(J)+U(J)
CONTINUE
DO 1 K=1,N
    R(K+4)=Y(K)
CONTINUE
DO 3 K=1,4
    R(K)=0.0
CONTINUE
CALL ETINIT(Y, R, X, N, NN, ETILDA)
DO 5 K=1,N
        RR(K+2) = ETILDA(K)
    CONTINUE
    DO 7 K=1,2
    RR(K)=0.0
    CONTINUE
```

CALL ABINIT(N, NN, NNN, N3, R, RR, ABTILDA)
CALL SIGMAINIT(Y, R, T, N, NN, NNN, N3, ABTILDA, HAP, ZIGMAET)

CALL NR1(N, NN, NNN, N3, N5, R, T, TT, C1, D1, D2, C, ABTILDA, HAP, ZIGMAET, FL-EST, CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6)

CALL NR2(N, NN, NNN, N3, N5, R, T1, C1, D1, D2, SIGMAET, CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6, ICOUNT, COUNT1, COUNT2, COUNT3, COUNT4, COUNT5, COUNT6)

IF (ICOUNT.GE.10000) GO TO 115

> PWR1 $=(\mathrm{COUNT} 1 / \mathrm{NUM})^{*} 100.0$
> PWR2 $=(\mathrm{COUNT} 2 / \mathrm{NUM}) * 100.0$
> PWR3 $=(\mathrm{COUNT} 3 / \mathrm{NUM}) * 100.0$
> PWR $4=(\mathrm{COUNT} 4 / \mathrm{NUM}) * 100.0$
> PWR5 $=(\mathrm{COUNT} 5 / \mathrm{NUM}) * 100.0$
> PWR $6=(\mathrm{COUNT} 6 / \mathrm{NUM}) * 100.0$

WRITE(*,*) 'A1 = ', A1(I1), 'C1 = ', C1
WRITE(*,*) COUNT1, PWR1
WRITE(*,*) COUNT2, PWR2
WRITE(*,*) COUNT3, PWR3
WRITE(*,*) COUNT4, PWR4
WRITE(*,*) COUNT5, PWR5
WRITE(*,*) COUNT6, PWR6
CONTINUE
CONTINUE
END

* SUBROUTINE 1 *

*** ESTIMATE THE INITIAL VALUE OF e_{t}.
SUBROUTINE ETINIT(Y, R, X, N, NN, ETILDA)
PARAMETER (LDA $=4, \operatorname{LDAINV}=4, \mathrm{~N} 2=4)$
REAL*8 R(NN), A(LDA,LDA), B(N2), AINV(ILDAINV,LDAINV)
REAL*8 X(N,N2), Y(N), ETILDA(N), SUM1(N2), SUM, SUM2
DO $200 \mathrm{I}=1,4$
DO $210 \mathrm{~J}=1,4$
$\mathrm{A}(\mathrm{I}, \mathrm{J})=0.0$
210
CONTINUE
$\mathrm{B}(\mathrm{I})=0.0$
CONTINUE

DO $250 \mathrm{~L}=1, \mathrm{~N}$

$$
A(1,1)=A(1,1)+R(L+3) * R(L+3)
$$

$$
\mathrm{A}(2,1)=\mathrm{A}(2,1)+\mathrm{R}(\mathrm{~L}+2) * \mathrm{R}(\mathrm{~L}+3)
$$

$$
\mathrm{A}(3,1)=\mathrm{A}(3,1)+\mathrm{R}(\mathrm{~L}+1) * \mathrm{R}(\mathrm{~L}+3)
$$

$$
A(4,1)=A(4,1)+R(L) * R(L+3)
$$

$$
\mathrm{A}(2,2)=\mathrm{A}(2,2)+\mathrm{R}(\mathrm{~L}+2) * \mathrm{R}(\mathrm{~L}+2)
$$

$$
\mathrm{A}(2,3)=\mathrm{A}(2,3)+\mathrm{R}(\mathrm{~L}+1) * \mathrm{R}(\mathrm{~L}+2)
$$

$$
\mathrm{A}(2,4)=\mathrm{A}(2,4)+\mathrm{R}(\mathrm{~L}) * \mathrm{R}(\mathrm{~L}+2)
$$

$$
\mathrm{A}(3,3)=\mathrm{A}(3,3)+\mathrm{R}(\mathrm{~L}+1) * \mathrm{R}(\mathrm{~L}+1)
$$

$$
\mathrm{A}(3,4)=\mathrm{A}(3,4)+\mathrm{R}(\mathrm{~L}) * \mathrm{R}(\mathrm{~L}+1)
$$

$$
\begin{aligned}
& \mathrm{A}(4,4)=\mathrm{A}(4,4)+\mathrm{R}(\mathrm{~L}) * \mathrm{R}(\mathrm{~L}) \\
& \mathrm{B}(1)=\mathrm{B}(1)+\mathrm{R}(\mathrm{~L}+3) * \mathrm{R}(\mathrm{~L}+4) \\
& \mathrm{B}(2)=\mathrm{B}(2)+\mathrm{R}(\mathrm{~L}+2) * \mathrm{R}(\mathrm{~L}+4) \\
& \mathrm{B}(3)=\mathrm{B}(3)+\mathrm{R}(\mathrm{~L}+1) * \mathrm{R}(\mathrm{~L}+4) \\
& \mathrm{B}(4)=\mathrm{B}(4)+\mathrm{R}(\mathrm{~L}) * \mathrm{R}(\mathrm{~L}+4)
\end{aligned}
$$

CONTINUE
$A(1,2)=A(2,1)$
$\mathrm{A}(1,3)=\mathrm{A}(3,1)$
$\mathrm{A}(1,4)=\mathrm{A}(4,1)$
$\mathrm{A}(3,2)=\mathrm{A}(2,3)$
$\mathrm{A}(4,2)=\mathrm{A}(2,4)$
$\mathrm{A}(4,3)=\mathrm{A}(3,4)$
CALL DLINRG(N2, A, LDA, AINV, LDAINV)
DO $260 \mathrm{~K} 1=1,4$
DO $265 \mathrm{~K} 2=1, \mathrm{~N}$
IF (K2.LE.K1) THEN

$$
\mathrm{X}(\mathrm{~K} 2, \mathrm{~K} 1)=0.0
$$

ELSE

$$
X(K 2, K 1)=Y(K 2-K 1)
$$

ENDIF
CONTINUE
CONTINUE
DO 270 LDAINV1 $=1,4$
SUM $=0.0$
DO 280 LDAINV2 $=1,4$
SUM = SUM + AINV(LDAINV1,LDAINV2)*B(LDAINV2) CONTINUE
SUM1 $($ LDAINV1 $)=$ SUM
CONTINUE
DO $285 \mathrm{~K} 3=1, \mathrm{~N}$
SUM2 $=0.0$
DO $290 \mathrm{~K} 4=1,4$
SUM2 $=$ SUM2 $+\mathrm{X}(\mathrm{K} 3, \mathrm{~K} 4)^{*}$ SUM1(K4)
CONTINUE
ETILDA(K3) $=\mathrm{Y}(\mathrm{K} 3)-$ SUM2
CONTINUE

RETURN

END

SUBROUTINE 2

*** ESTIMATE THE INITIAL VALUE OF A1, B1 AND B2.
SUBROUTINE ABINIT(N, NN, NNN, N3, R, RR, ABTILDA)
PARAMETER(MDA=3, MDAINV=3)
REAL*8 R(NN), RR(NNN), ABTILDA(N3)
REAL*8 E(MDA,MDA), EINV(MDAINV,MDAINV), F(MDA)
REAL*8 SUM3
DO $310 \mathrm{I}=1,3$
DO $320 \mathrm{~J}=1,3$

$$
\mathrm{E}(\mathrm{I}, \mathrm{~J})=0.0
$$

CONTINUE
$F(I)=0.0$
CONTINUE
DO $350 \mathrm{~K}=1$, N
$\mathrm{E}(1,1)=\mathrm{E}(1,1)+\mathrm{R}(\mathrm{K}+3)^{*} \mathrm{R}(\mathrm{K}+3)$
$\mathrm{E}(2,1)=\mathrm{E}(2,1)-\mathrm{R}(\mathrm{K}+3) * \mathrm{RR}(\mathrm{K}+1)$
$\mathrm{E}(3,1)=\mathrm{E}(3,1)-\mathrm{R}(\mathrm{K}+3) * \mathrm{RR}(\mathrm{K})$
$\mathrm{E}(2,2)=\mathrm{E}(2,2)+\mathrm{RR}(\mathrm{K}+1) * \mathrm{RR}(\mathrm{K}+1)$
$\mathrm{E}(2,3)=\mathrm{E}(2,3)+\mathrm{RR}(\mathrm{K}) * \mathrm{RR}(\mathrm{K}+1)$
$\mathrm{E}(3,3)=\mathrm{E}(3,3)+\mathrm{RR}(\mathrm{K}) * \mathrm{RR}(\mathrm{K})$
$\mathrm{F}(1)=\mathrm{F}(1)-\mathrm{R}(\mathrm{K}+3) * \mathrm{R}(\mathrm{K}+4)$
$\mathrm{F}(2)=\mathrm{F}(2)+\mathrm{R}(\mathrm{K}+4) * \mathrm{RR}(\mathrm{K}+1)$
$\mathrm{F}(3)=\mathrm{F}(3)+\mathrm{R}(\mathrm{K}+4) * \mathrm{RR}(\mathrm{K})$
CONTINUE
$\mathrm{E}(1,2)=\mathrm{E}(2,1)$
$\mathrm{E}(1,3)=\mathrm{E}(3,1)$
$\mathrm{E}(3,2)=\mathrm{E}(2,3)$
CALL DLINRG(3, E, MDA, EINV, MDAINV)
DO 390 MDAINV1 $=1,3$
SUM3 $=0.0$
DO 370 MDAINV2 $=1,3$
SUM3 $=$ SUM3 + EINV(MDAINV1,MDAINV2) $*$ F(MDAINV2)
CONTINUE
ABTILDA $($ MDAINV1 $)=$ SUM3
CONTINUE
RETURN
END

```
***********************
SUBROUTINE 3
```

*** ESTIMATE THE INITIAL VALUE OF $\sigma_{\mathrm{e}}{ }^{2}$.
SUBROUTINE SIGMAINIT(Y, R, T, N, NN, NNN, N3, ABTILDA,
/
HAP, ZIGMAET)
REAL*8 Y(N), R(NN), T(NNN)
REAL*8 ABTILDA(N3), HAP, ZIGMAET
DO $400 \mathrm{~L}=1, \mathrm{NNN}$
$\mathrm{T}(\mathrm{L})=0.0$
400 CONTINUE
$\mathrm{HAP}=0.0$
DO $430 \mathrm{~L}=1, \mathrm{~N}$
$\mathrm{T}(\mathrm{L}+2)=\mathrm{R}(\mathrm{L}+4)+\mathrm{ABTILDA}(1) * \mathrm{R}(\mathrm{L}+3)-\mathrm{ABTILDA}(2) * \mathrm{~T}(\mathrm{~L}+1)$

- ABTILDA(3)*T(L)
$\mathrm{HAP}=\mathrm{HAP}+\mathrm{T}(\mathrm{L}+2)^{*} \mathrm{~T}(\mathrm{~L}+2)$
430 CONTINUE
ZIGMAET $=\mathrm{HAP} / \mathrm{N}$

RETURN
END

* SUBROUTINE 4 *

*** NEWTON-RAPHSON METHOD BASED ON KOHN'S.
SUBROUTINE NR1(N, NN, NNN, N3, N5, R, T, TT, C1, D1, D2, C, ABTILDA, HAP, ZIGMAET, FL EST, CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6)
PARAMETER(LDA=6, LDAINV=6, N6=6)
REAL*8 A(LDA), AINV(LDAINV,LDAINV), B(N6), C(N5)
REAL*8 R(NN), T(NNN), TT(NNN), ABTILDA(N3)
REAL*8 D(N6), HAP1
REAL*8 CC1(10), CC2(10), CC3(10), CC4(10), CC5(10), CC6(10)
REAL*8 FL_EST(10), FMIN
REAL*8 CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6
A11 $=$ ABTILDA(1)
B11 = ABTILDA(2)
$\mathrm{B} 22=\mathrm{ABTILDA}(3)$
$C(5)=0.0$

$$
\begin{aligned}
& C(6)=0.0 \\
& W A 1=0.0 \\
& W B 1=0.0 \\
& \text { WB2 }=0.0 \\
& \text { WA1WB1 }=0.0 \\
& \text { WA1WB2 }=0.0 \\
& \text { WB1WB1 }=0.0 \\
& \text { WB1WB2 }=0.0 \\
& \text { WB2WB2 }=0.0
\end{aligned}
$$

DO $500 \mathrm{I}=1,6$ DO $510 \mathrm{~J}=1,6$

$$
\mathrm{A}(\mathrm{I}, \mathrm{~J})=0.0
$$

W 1 TEMP $=0.0$
W 2 TEMP $=0.0$
W 3 TEMP $=0.0$
$\mathrm{WAB1TMP}=0.0$
$\mathrm{WAB} 2 \mathrm{TMP}=0.0$
$\mathrm{WWB} 1 \mathrm{TMP}=0.0$
WB12TMP $=0.0$
$W W B 2 T M P=0.0$
WA1TEMP1 $=0.0$
WA1TEMP2 $=0.0$
WB1TEMP1 $=0.0$
WB1TEMP2 $=0.0$
WB 2 TEMP1 $=0.0$
WB2TEMP2 $=0.0$
WAB1TMP1 $=0.0$
$\mathrm{WAB} 1 \mathrm{TMP} 2=0.0$
$\mathrm{WAB2TMP} 1=0.0$
WAB2TMP2 $=0.0$
WWB1TMP1 $=0.0$
$\mathrm{WWB} 1 \mathrm{TMP} 2=0.0$
WB12TMP1 $=0.0$
$\mathrm{WB} 12 \mathrm{TMP} 2=0.0$
WWB2TMP1 $=0.0$
$\mathrm{WWB2TMP} 2=0.0$

```
DO \(550 \mathrm{~L}=1\), N
    WA1 \(=\mathrm{R}(\mathrm{L}+3)-\mathrm{B} 11 * W A 1 T E M P 1-\mathrm{B} 22 * W A 1 T E M P 2\)
    WB1 \(=-\mathrm{T}(\mathrm{L}+1)-\mathrm{B} 11 *\) WB1TEMP1 - B22*WB1TEMP2
    WB2 \(=-\mathrm{T}(\mathrm{L})-\mathrm{B} 11^{*} \mathrm{WB} 2 T E M P 1-\mathrm{B} 22 *\) WB2TEMP2
```

```
WA1WB1 = -WA1TEMP1 - B11*WAB1TMP1 - B22*WAB1TMP2
WA1WB2 = -WA1TEMP2 - B11*WAB2TMP1 - B22*WAB2TMP2
WB1WB1 = -2*WB1TEMP1 - B11*WWB1TMP1 - B22*WWB1TMP2
WB1WB2 =-WB2TEMP1 - B11*WB12TMP1 - WB1TEMP2
    - B22*WB12TMP2
WB2WB2 = -2*WB2TEMP2 - B11*WWB2TMP1 - B22*WWB2TMP2
```

```
A(1,1) =A(1,1) +(WA1*WA1)
A}(2,2)=\textrm{A}(2,2)+(WB1*WB1+T(L+2)*WB1WB1
A(3,3) = A (3,3) + (WB2*WB2 + T(L+2)*WB2WB2)
A}(4,4)=\textrm{A}(4,4)+(\textrm{T}(\textrm{L}+2)*T(\textrm{L}+2)
A}(1,2)=\textrm{A}(1,2)+(WA1*WB1+T(L+2)*WA1WB1
A(1,3) =A(1,3) +(WA1*WB2 + T(L+2)*WA1WB2)
A(1,4) = A(1,4) - (T(L+2)*WA1)
A(2,3)=A(2,3)+(WB1*WB2 + T(L+2)*WB1WB2)
A(2,4) = A(2,4) - (T(L+2)*WB1)
A(3,4) = A(3,4) - (T(L+2)*WB2)
B}(1)=\textrm{B}(1)+WA1*T(L+2
B(2) = B(2)+WB1*T(L+2)
B}(3)=\textrm{B}(3)+WB2*T(L+2
B(4)=B(4)+T(L+2)*T(L+2)
W1TEMP = WA1TEMP1
WA1TEMP1 = WA1
WA1TEMP2 = W1TEMP
W2TEMP = WB1TEMP1
WB1TEMP1 = WB1
WB1TEMP2 = W2TEMP
W3TEMP = WB2TEMP1
WB2TEMP1 = WB2
WB2TEMP2 = W3TEMP
WAB1TMP = WAB1TEMP
WAB1TMP1 = WA1WB1
WAB1TMP2 = WAB1TMP
WAB2TMP = WAB2TMP1
WAB2TMP1 = WA1WB2
WAB2TMP2 = WAB2TMP
WWB1TMP = WWB1TMP1
WWB1TMP1 = WB1WB1
WWB1TMP2 = WWB1TMP
WB12TMP = WB12TMP1
WB12TMP1 = WB1WB2
WB12TMP2 = WB12TMP
WWB2TMP = WWB2TMP1
WWB2TMP1 = WB2WB2
WWB2TMP2 = WWB2TMP
```

CONTINUE
$\mathrm{A}(1,1)=\mathrm{A}(1,1) /$ ZIGMAET
$\mathrm{A}(1,2)=\mathrm{A}(1,2) /$ ZIGMAET
$\mathrm{A}(1,3)=\mathrm{A}(1,3) /$ ZIGMAET
$\mathrm{A}(1,4)=\mathrm{A}(1,4) /(\mathrm{ZIGMAET} * * 2)$
A(2,2) $=\mathrm{A}(2,2) /$ ZIGMAET
$\mathrm{A}(2,3)=\mathrm{A}(2,3) /$ ZIGMAET
$\mathrm{A}(2,4)=\mathrm{A}(2,4) /(\mathrm{ZIGMAET} * * 2)$
$\mathrm{A}(3,3)=\mathrm{A}(3,3) /$ ZIGMAET
$\mathrm{A}(3,4)=\mathrm{A}(3,4) /\left(\right.$ ZIGMAET ${ }^{*}{ }^{*}$)
A $(4,4)=$ A $(4,4) *$ ZIGMAET $* * 3-(N /(2 * Z I G M A E T * * 2))$
$\mathrm{A}(1,5)=\mathrm{A}(1,5)-(1+2 * \mathrm{D} 2+\mathrm{C} 1 * * 2)$
$\mathrm{A}(1,6)=\mathrm{A}(1,6)-\mathrm{C} 1$
$\mathrm{A}(2,5)=\mathrm{A}(2,5)+(1+\mathrm{B} 22) *$ ZIGMAET
$\mathrm{A}(3,5)=\mathrm{A}(3,5)+\mathrm{B} 11 *$ ZIGMAET
$\mathrm{A}(3,6)=\mathrm{A}(3,6)+$ ZIGMAET
$\mathrm{A}(4,5)=\mathrm{A}(4,5)+\mathrm{B} 11 *(1+\mathrm{B} 22)$
$\mathrm{A}(4,6)=\mathrm{A}(4,6)+\mathrm{B} 22$
$B(1)=B(1) / Z I G M A E T$
$B(2)=B(2) /$ ZIGMAET
$B(3)=B(3) /$ ZIGMAET
$\mathrm{B}(4)=\left(-\mathrm{B}(4) /\left(2^{*}\right.\right.$ ZIGMAET*ZIGMAET $\left.)\right)+\left(\mathrm{N} /\left(2^{*}\right.\right.$ ZIGMAET $\left.)\right)$
$\mathrm{B}(5)=$ ZIGMAET $*(1+\mathrm{B} 22) * \mathrm{~B} 11-\mathrm{D} 1^{*}(1+\mathrm{D} 2)$
$\mathrm{B}(6)=$ ZIGMAET $*$ B22 -D 2
$\mathrm{A}(2,1)=\mathrm{A}(1,2)$
$A(3,1)=A(1,3)$
$\mathrm{A}(4,1)=\mathrm{A}(1,4)$
$A(5,1)=A(1,5)$
$A(6,1)=A(1,6)$
$A(3,2)=A(2,3)$
$\mathrm{A}(4,2)=\mathrm{A}(2,4)$
$A(5,2)=A(2,5)$
$A(4,3)=A(3,4)$
$A(5,3)=A(3,5)$
$\mathrm{A}(6,3)=\mathrm{A}(3,6)$
$\mathrm{A}(5,4)=\mathrm{A}(4,5)$
$A(6,4)=A(4,6)$
CALL DLINRG(N6, A, LDA, AINV, LDAINV)
DO 580 LDAINV1 $=1,6$

$$
\text { SUM }=0.0
$$

DO 570 LDAINV2 $=1,6$
SUM $=$ SUM + AINV(LDAINV1,LDAINV2)*B(LDAINV2)
CONTINUE
D(LDAINV1) = SUM

CONTINUE

$$
\mathrm{M}=1
$$

$$
\text { DO } 750 \mathrm{I} 3=2,10
$$

$$
\text { IF(I3.EQ.0.OR.FL_EST(I3).GE.FL_EST(M)) GO TO } 750
$$

$$
\mathrm{M}=\mathrm{I} 3
$$

750 CONTINUE
FMIN = FL_EST(M)

$$
\mathrm{CMIN} 1=\overline{\mathrm{CC}} 1(\mathrm{M})
$$

$$
\mathrm{CMIN} 2=\mathrm{CC} 2(\mathrm{M})
$$

$$
\mathrm{CMIN} 3=\mathrm{CC} 3(\mathrm{M})
$$

$$
\mathrm{CMIN} 4=\mathrm{CC} 4(\mathrm{M})
$$

$$
\mathrm{CMIN} 5=\mathrm{CC} 5(\mathrm{M})
$$

$$
\mathrm{CMIN} 6=\mathrm{CC} 6(\mathrm{M})
$$

RETURN

END

* SUBROUTINE 5

SUBROUTINE NR2(N, NN, NNN, N3, N5, R, T1, C1, D1, D2, SIGMAET, COUNT1, COUNT2, COUNT3, COUNT4, COUNT5, COUNT6)
PARAMETER (LDA $=6$, LDAINV $=6, \mathrm{~N} 6=6$)
REAL*8 A(LDA,LDA), AINV(LDAINV,LDAINV)
REAL*8 R(NN), T1(NNN)
REAL*8 CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6
REAL*8 AA1, B1, B2, SIGMAET
REAL*8 SS1, SS2
$\mathrm{AA} 1=\mathrm{CMIN} 1$
$\mathrm{B} 1=\mathrm{CMIN} 2$
$\mathrm{B} 2=\mathrm{CMIN} 3$
SIGMAET $=$ CMIN4

DO $800 \mathrm{~L}=1$, NNN
$\mathrm{T} 1(\mathrm{~L})=0.0$
CONTINUE
DO $830 \mathrm{~L}=1, \mathrm{~N}$
$\mathrm{T} 1(\mathrm{~L}+2)=\mathrm{R}(\mathrm{L}+4)+\mathrm{AA} 1 * \mathrm{R}(\mathrm{L}+3)-\mathrm{B} 1 * \mathrm{~T} 1(\mathrm{~L}+1)-\mathrm{B} 2 * \mathrm{~T} 1(\mathrm{~L})$
CONTINUE

$$
\begin{aligned}
& \text { WA1 }=0.0 \\
& \text { WB1 }=0.0 \\
& \text { WB2 }=0.0 \\
& \text { WA1WB1 }=0.0 \\
& \text { WA1WB2 }=0.0 \\
& \text { WB1WB1 }=0.0 \\
& \text { WB1WB2 }=0.0 \\
& \text { WB2WB2 }=0.0
\end{aligned}
$$

DO $870 \mathrm{I}=1,6$ DO $850 \mathrm{~J}=1,6$ $\mathrm{A}(\mathrm{I}, \mathrm{J})=0.0$
$\mathrm{W} 1 \mathrm{TEMP}=0.0$
W 2 TEMP $=0.0$
$\mathrm{W} 3 \mathrm{TEMP}=0.0$
$\mathrm{WAB} 1 \mathrm{TMP}=0.0$

```
\(\mathrm{WAB} 2 \mathrm{TMP}=0.0\)
\(W W B 1 T M P=0.0\)
\(\mathrm{WB} 12 \mathrm{TMP}=0.0\)
\(W W B 2 T M P=0.0\)
WA1TEMP1 \(=0.0\)
WA1TEMP2 \(=0.0\)
WB1TEMP1 \(=0.0\)
WB1TEMP2 \(=0.0\)
WB2TEMP1 \(=0.0\)
WB2TEMP2 \(=0.0\)
\(\mathrm{WAB} 1 \mathrm{TMP} 1=0.0\)
\(\mathrm{WAB} 1 \mathrm{TMP} 2=0.0\)
WAB2TMP1 \(=0.0\)
WAB2TMP2 \(=0.0\)
WWB1TMP1 \(=0.0\)
WWB1TMP2 \(=0.0\)
\(\mathrm{WB} 12 \mathrm{TMP} 1=0.0\)
\(\mathrm{WB} 12 \mathrm{TMP} 2=0.0\)
WWB2TMP1 \(=0.0\)
\(\mathrm{WWB2TMP} 2=0.0\)
```

DO $900 \mathrm{~L}=1, \mathrm{~N}$
$\mathrm{WA} 1=\mathrm{R}(\mathrm{L}+3)-\mathrm{B} 1 * W A 1 T E M P 1-\mathrm{B} 2 * W A 1 T E M P 2$
WB1 $=-\mathrm{T} 1(\mathrm{~L}+1)-\mathrm{B} 1 * W B 1 T E M P 1-\mathrm{B} 2 * W B 1 T E M P 2$
$\mathrm{WB} 2=-\mathrm{T} 1(\mathrm{~L})-\mathrm{B} 1 * \mathrm{WB} 2 T E M P 1-\mathrm{B} 2 * W B 2 T E M P 2$
WA1WB1 = -WA1TEMP1 - B1*WAB1TMP1 - B2*WAB1TMP2
WA1WB2 $=-$ WA1TEMP2 - B1*WAB2TMP1 - B2*WAB2TMP2
WB1WB1 $=-2 *$ WB1TEMP1 - B1*WWB1TMP1 - B2*WWB1TMP2
WB1WB2 $=-$ WB2TEMP1 - B1*WB12TMP1 - WB1TEMP2
- B2*WB12TMP2
WB2WB2 $=-2 *$ WB2TEMP2 $-\mathrm{B} 1 * W W B 2 T M P 1-\mathrm{B} 2 * W W B 2 T M P 2$
$\mathrm{A}(1,1)=\mathrm{A}(1,1)+(\mathrm{WA} 1 * W A 1)$
$\mathrm{A}(2,2)=\mathrm{A}(2,2)+\left(\mathrm{WB} 1 * \mathrm{WB} 1+\mathrm{T} 1(\mathrm{~L}+2)^{*} \mathrm{WB} 1 \mathrm{WB} 1\right)$
$\mathrm{A}(3,3)=\mathrm{A}(3,3)+\left(\mathrm{WB} 2 * \mathrm{WB} 2+\mathrm{T} 1(\mathrm{~L}+2)^{*} \mathrm{WB} 2 \mathrm{WB} 2\right)$
$\mathrm{A}(4,4)=\mathrm{A}(4,4)+(\mathrm{T} 1(\mathrm{~L}+2) * \mathrm{~T} 1(\mathrm{~L}+2))$
$\mathrm{A}(1,2)=\mathrm{A}(1,2)+\left(\mathrm{WA} 1 * W B 1+\mathrm{T} 1(\mathrm{~L}+2)^{*} \mathrm{WA} 1 \mathrm{WB} 1\right)$
$\mathrm{A}(1,3)=\mathrm{A}(1,3)+\left(\mathrm{WA} 1 * \mathrm{WB} 2+\mathrm{T} 1(\mathrm{~L}+2)^{*} \mathrm{WA} 1 \mathrm{WB} 2\right)$
$\mathrm{A}(1,4)=\mathrm{A}(1,4)-(\mathrm{T} 1(\mathrm{~L}+2) * \mathrm{WA} 1)$
$\mathrm{A}(2,3)=\mathrm{A}(2,3)+\left(\mathrm{WB} 1 * \mathrm{WB} 2+\mathrm{T} 1(\mathrm{~L}+2)^{*} \mathrm{WB} 1 \mathrm{WB} 2\right)$
$\mathrm{A}(2,4)=\mathrm{A}(2,4)-(\mathrm{T} 1(\mathrm{~L}+2) * \mathrm{WB} 1)$
$\mathrm{A}(3,4)=\mathrm{A}(3,4)-\left(\mathrm{T} 1(\mathrm{~L}+2)^{*} \mathrm{WB} 2\right)$
W1TEMP $=$ WA1TEMP1
WA1TEMP1 = WA1
WA1TEMP2 $=\mathrm{W} 1 \mathrm{TEMP}$

$$
\begin{aligned}
& \text { W2TEMP = WB1TEMP1 } \\
& \text { WB1TEMP1 = WB1 } \\
& \text { WB1TEMP2 = W2TEMP } \\
& \text { W3TEMP }=\text { WB2TEMP1 } \\
& \text { WB2TEMP1 }=\text { WB2 } \\
& \text { WB2TEMP2 = W3TEMP } \\
& \mathrm{WAB} 1 \mathrm{TMP}=\mathrm{WAB} 1 \mathrm{TMP} 1 \\
& \text { WAB1TMP } 1=\text { WA1 WB } 1 \\
& \mathrm{WAB} 1 \mathrm{TMP} 2=\mathrm{WAB} 1 \mathrm{TMP} \\
& \mathrm{WAB} 2 \mathrm{TMP}=\mathrm{WAB} 2 \mathrm{TMP} 1 \\
& \text { WAB2TMP1 = WA1WB2 } \\
& \mathrm{WAB} 2 \mathrm{TMP} 2=\mathrm{WAB} 2 \mathrm{TMP} \\
& \text { WWB1TMP }=W W B 1 T M P 1 \\
& \text { WWB1TMP1 = WB1WB1 } \\
& \text { WWB1TMP2 }=W W B 1 T M P \\
& \text { WB12TMP = WB12TMP1 } \\
& \mathrm{WB} 12 \mathrm{TMP} 1=\mathrm{WB} 1 \mathrm{WB} 2 \\
& \text { WB12TMP2 }=\mathrm{WB} 12 \mathrm{TMP} \\
& \text { WWB2TMP = WWB2TMP1 } \\
& \text { WWB2TMP1 = WB2WB2 } \\
& \text { WWB2TMP2 }=W W B 2 T M P \\
& \text { CONTINUE } \\
& \mathrm{A}(1,1)=\mathrm{A}(1,1) / \text { SIGMAET } \\
& \mathrm{A}(1,2)=\mathrm{A}(1,2) / \text { SIGMAET } \\
& \mathrm{A}(1,3)=\mathrm{A}(1,3) / \text { SIGMAET } \\
& \mathrm{A}(1,4)=\mathrm{A}(1,4) /\left(\text { SIGMAET }^{*} * 2\right) \\
& \mathrm{A}(2,2)=\mathrm{A}(2,2) / \text { SIGMAET } \\
& \text { A }(2,3)=\text { A }(2,3) / \text { SIGMAET } \\
& \mathrm{A}(2,4)=\mathrm{A}(2,4) /\left(\text { SIGMAET }^{* *} 2\right) \\
& \text { A }(3,3)=\mathrm{A}(3,3) / \text { SIGMAET } \\
& \mathrm{A}(3,4)=\mathrm{A}(3,4) /\left(\text { SIGMAET }^{* *} 2\right) \\
& \mathrm{A}(4,4)=\mathrm{A}(4,4)^{*} \text { SIGMAET }^{* *} 3-\left(\mathrm{N} /\left(2 * \text { SIGMAET }^{* *} 2\right)\right) \\
& \mathrm{A}(1,5)=\mathrm{A}(1,5)-(1+2 * \mathrm{D} 2+\mathrm{C} 1 * * 2) \\
& A(1,6)=A(1,6)-C 1 \\
& \mathrm{~A}(2,5)=\mathrm{A}(2,5)+(1+\mathrm{B} 2) * \text { SIGMAET } \\
& \mathrm{A}(3,5)=\mathrm{A}(3,5)+\mathrm{B} 1 * \text { SIGMAET } \\
& \mathrm{A}(3,6)=\mathrm{A}(3,6)+\text { SIGMAET } \\
& \mathrm{A}(4,5)=\mathrm{A}(4,5)+\mathrm{B} 1^{*}(1+\mathrm{B} 2) \\
& A(4,6)=A(4,6)+B 2 \\
& A(2,1)=A(1,2) \\
& \mathrm{A}(3,1)=\mathrm{A}(1,3) \\
& A(4,1)=A(1,4) \\
& A(5,1)=A(1,5) \\
& A(6,1)=A(1,6) \\
& A(3,2)=A(2,3) \\
& A(4,2)=A(2,4)
\end{aligned}
$$

$$
\begin{aligned}
& A(5,2)=A(2,5) \\
& A(4,3)=A(3,4) \\
& A(5,3)=A(3,5) \\
& A(6,3)=A(3,6) \\
& A(5,4)=A(4,5) \\
& A(6,4)=A(4,6)
\end{aligned}
$$

CALL DLINRG(N6, A, LDA, AINV, LDAINV)

```
IF (AINV(1,1).GT.0.0) THEN
        SS1 = N*(AA1 - 1.0)
        SS2 = (AA1 - 1.0)/SQTR(AINV(1,1))
```

 IF (SS1.LT.-5.7) THEN
 COUNT1 \(=\) COUNT1 +1.0
 ENDIF
 IF (SS1.LT.-8.0) THEN
 COUNT2 \(=\) COUNT2 +1.0
 ENDIF
 IF (SS1.LT.-13.6) THEN
 COUNT3 \(=\) COUNT3 +1.0
 ENDIF
 IF (SS2.LT.-1.62) THEN
 COUNT4 \(=\) COUNT4 +1.0
 ENDIF
 IF (SS2.LT.-1.95) THEN
 COUNT5 \(=\) COUNT5 +1.0
 ENDIF
 IF (SS2.LT.-2.58) THEN
 COUNT6 \(=\) COUNT6 +1.0
 ENDIF
 ICOUNT \(=\) ICOUNT +1
 ENDIF

RETURN
END

APPENDIX D

FORTRAN PROGRAM FOR SHIN AND SARKAR'S METHOD
$* \quad$ Note that $\left(\mathrm{n}, \mathrm{s}, \sigma_{\mathrm{e}}{ }^{2}\right)=(250,4,5.0)$ is considered as an example.
$*$ This program is the same as that of Kohn's except Subroutine 4 and 5 and th
$*$ we have only to replace Subroutine 4 and 5 in Kohn's with these two subro
$* *$ $\begin{aligned} & * \\ & * \quad \text { SUBROUTINE } 4 * \\ & * * * * * * * * * * * * * * * * * * * \\ & * * * \text { NEWTON-RAPHSON METHOD BASED ON SHIN AND SARKAR'S }\end{aligned}$
SUBROUTINE NR1(N,NN,NNN,N3,N5,R,T,ABTILDA,HAP,ZIGMAET,TT, / C1,D1,D2,C,FL_EST,CMIN1,CMIN2,CMIN3,CMIN4,CMIN5,CMIN6) PARAMETER(LDA $=6$, LDAINV $=6, \mathrm{~N} 6=6$)
REAL*8 A(LDA,LDA), B(N6), C(N5), AINV(LDAINV,LDAINV)
REAL*8 R(NN), T(NNN), ABTILDA(N3), TT(NNN)
REAL*8 D(N6), HAP1
REAL*8 CC1(10), $\mathrm{CC} 2(10), \mathrm{CC} 3(10), \mathrm{CC} 4(10), \mathrm{CC} 5(10), \mathrm{CC} 6(10)$
REAL*8 FL_EST(10), FMIN
REAL*8 CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6
$\mathrm{A} 11=\mathrm{ABTILDA}(1)$
B11 = ABTILDA(2)
$\mathrm{B} 22=\mathrm{ABTILDA}(3)$
$C(5)=0.0$
$C(6)=0.0$
$W A 1=0.0$
$\mathrm{WB} 1=0.0$
$\mathrm{WB} 2=0.0$
W1TEMP $=0.0$
W2TEMP $=0.0$
W 3 TEMP $=0.0$
WA1TEMP $1=0.0$
WA1TEMP2 $=0.0$
WB1TEMP1 $=0.0$
$\mathrm{WB} 1 \mathrm{TEMP} 2=0.0$
WB2TEMP1 $=0.0$
$\mathrm{WB} 2 \mathrm{TEMP} 2=0.0$
DO $510 \mathrm{I}=1,6$
DO $500 \mathrm{~J}=1,6$
$\mathrm{A}(\mathrm{I}, \mathrm{J})=0.0$
CONTINUE
$\mathrm{B}(\mathrm{I})=0.0$
CONTINUE

```
DO \(550 \mathrm{~L}=1, \mathrm{~N}\)
    WA1 \(=\mathrm{R}(\mathrm{L}+3)-\mathrm{B} 11^{*} \mathrm{WA} 1 T E M P 1-\mathrm{B} 22^{*} \mathrm{WA} 1 T E M P 2\)
    WB1 \(=-\mathrm{T}(\mathrm{L}+1)-\mathrm{B} 11 *\) WB1TEMP1 - B22*WB1TEMP2
    \(\mathrm{WB} 2=-\mathrm{T}(\mathrm{L})-\mathrm{B} 11 * \mathrm{WB} 2\) TEMP1 - B22*WB2TEMP2
    \(\mathrm{AA}(1,1)=\mathrm{AA}(1,1)+\mathrm{WA} 1 * \mathrm{WA} 1\)
    \(\mathrm{AA}(2,2)=\mathrm{AA}(2,2)+\mathrm{WB} 1 * \mathrm{WB} 1\)
    \(\mathrm{AA}(3,3)=\mathrm{AA}(3,3)+\mathrm{WB} 2 * \mathrm{WB} 2\)
    \(\mathrm{BB}(1)=\mathrm{BB}(1)+\mathrm{WA} 1 * \mathrm{~T}(\mathrm{~L}+2)\)
    \(\mathrm{BB}(2)=\mathrm{BB}(2)+\mathrm{WB} 1 * \mathrm{~T}(\mathrm{~L}+2)\)
    \(\mathrm{BB}(3)=\mathrm{BB}(3)+\mathrm{WB} 2 * \mathrm{~T}(\mathrm{~L}+2)\)
    \(\mathrm{BB}(4)=\mathrm{BB}(4)+\mathrm{T}(\mathrm{L}+2)^{*} \mathrm{~T}(\mathrm{~L}+2)\)
    W1TEMP \(=\) WA1TEMP1
    WA1TEMP1 = WA1
    WA1TEMP2 = W1TEMP
    W2TEMP = WB1TEMP1
    WB1TEMP1 = WB1
    WB1TEMP2 = W2TEMP
    W3TEMP \(=\) WB2TEMP1
    WB2TEMP \(1=\) WB2
    WB2TEMP2 = W3TEMP
CONTINUE
    \(\mathrm{A}(1,1)=\mathrm{A}(1,1) /\) ZIGMAET
    \(\mathrm{A}(2,2)=\mathrm{A}(2,2) /\) ZIGMAET
    \(\mathrm{A}(3,3)=\mathrm{A}(3,3) / \mathrm{ZIGMAET}\)
    \(\mathrm{A}(5,1)=\mathrm{A}(5,1)-(1+2 * \mathrm{D} 2+\mathrm{C} 1 * * 2)\)
    \(\mathrm{A}(2,5)=\mathrm{A}(2,5)+(1+\mathrm{B} 22) *\) ZIGMAET
    \(\mathrm{A}(3,5)=\mathrm{A}(3,5)+\mathrm{B} 11 *\) ZIGMAET
    \(\mathrm{A}(6,1)=\mathrm{A}(6,1)-\mathrm{C} 1\)
    \(\mathrm{A}(3,6)=\mathrm{A}(3,6)+\) ZIGMAET
    \(\mathrm{A}(4,4)=\mathrm{A}(4,4)-\mathrm{N} /\left(2^{*}\left(\right.\right.\) ZIGMAET \(\left.\left.^{* *} 2\right)\right)\)
    \(\mathrm{A}(4,5)=\mathrm{A}(4,5)+\mathrm{B} 11^{*}(1+\mathrm{B} 22)\)
    \(\mathrm{A}(4,6)=\mathrm{A}(4,6)+\mathrm{B} 22\)
    \(\mathrm{B}(1)=\mathrm{B}(1) /\) ZIGMAET
    \(\mathrm{B}(2)=\mathrm{B}(2) /\) ZIGMAET
    \(\mathrm{B}(3)=\mathrm{B}(3) /\) ZIGMAET
    \(\mathrm{B}(4)=(-\mathrm{B}(4) /(2 *\) ZIGMAET*ZIGMAET \())+(\mathrm{N} /(2 *\) ZIGMAET \())\)
    \(\mathrm{B}(5)=\) ZIGMAET \(^{*}(1+\mathrm{B} 22)^{*} \mathrm{~B} 11-\mathrm{D} 1 *(1+\mathrm{D} 2)\)
    \(\mathrm{B}(6)=\) ZIGMAET \(*\) B22 - D2
    \(\mathrm{A}(1,5)=\mathrm{A}(5,1)\)
    \(\mathrm{A}(1,6)=\mathrm{A}(6,1)\)
    \(\mathrm{A}(5,2)=\mathrm{A}(2,5)\)
    \(A(5,3)=A(3,5)\)
    \(A(6,3)=A(3,6)\)
    \(A(5,4)=A(4,5)\)
    \(\mathrm{A}(6,4)=\mathrm{A}(4,6)\)
```

CALL DLINRG(N6, A, LDA, AINV, LDAINV)

```
DO 580 LDAINV1 \(=1,6\)
                SUM \(=0.0\)
            DO 570 LDAINV2 \(=1,6\)
            SUM = SUM + AINV(LDAINV1,LDAINV2)*B(LDAINV2)
            CONTINUE
        D(LDAINV1) = SUM
CONTINUE
```

DO $800 \mathrm{~K}=1,10$

$$
\mathrm{C}(1)=\mathrm{A} 11-(1 / \mathrm{K}) * \mathrm{D}(1)
$$

$$
\mathrm{C}(2)=\mathrm{B} 11-(1 / \mathrm{K}) * \mathrm{D}(2)
$$

$$
\mathrm{C}(3)=\mathrm{B} 22-(1 / \mathrm{K}) * \mathrm{D}(3)
$$

$$
\mathrm{C}(4)=\text { ZIGMAET }-(1 / \mathrm{K}) * \mathrm{D}(4)
$$

$$
\mathrm{C}(5)=\mathrm{C}(5)-(1 / \mathrm{K}) * \mathrm{D}(5)
$$

$$
C(6)=C(6)-(1 / K) * D(6)
$$

$$
\mathrm{HAP} 1=0.0
$$

$$
\text { DO } 650 \mathrm{Il}=1, \mathrm{NNN}
$$

$$
\mathrm{TT}(\mathrm{I} 1)=0.0
$$

```
DO \(700 \mathrm{I} 2=1, \mathrm{~N}\)
        \(\mathrm{TT}(\mathrm{I} 2+2)=\mathrm{R}(\mathrm{I} 2+4)+\mathrm{C}(1) * \mathrm{R}(\mathrm{I} 2+3)-\mathrm{C}(2)^{*} \mathrm{TT}(\mathrm{I} 2+1)-\mathrm{C}(3) * \mathrm{TT}(\mathrm{I} 2)\)
        \(\mathrm{HAP} 1=\mathrm{HAP} 1+\mathrm{TT}(\mathrm{I} 2+2)^{*} \mathrm{TT}(\mathrm{I} 2+2)\)
    CONTINUE
    FL_EST(K) \(=(1 /(2 * \mathrm{C}(4))) * \mathrm{HAP} 1+(\mathrm{N} / 2) * \operatorname{LOG}(\mathrm{C}(4))\)
    \(\mathrm{CC} 1(\mathrm{~K})=\mathrm{C}(1)\)
    \(\mathrm{CC} 2(\mathrm{~K})=\mathrm{C}(2)\)
    \(\mathrm{CC} 3(\mathrm{~K})=\mathrm{C}(3)\)
    \(\mathrm{CC} 4(\mathrm{~K})=\mathrm{C}(4)\)
    \(\mathrm{CC} 5(\mathrm{~K})=\mathrm{C}(5)\)
    CC6(K) \(=\mathrm{C}(6)\)
CONTINUE
```

$\mathrm{M}=1$
DO $850 \mathrm{I} 3=2,10$
IF(I3.EQ.0.OR.FL_EST(I3).GE.FL_EST(M)) GO TO 850
$\mathrm{M}=\mathrm{I} 3$
CONTINUE
FMIN $=$ FL_EST(M)
$\mathrm{CMIN} 1=\overline{\mathrm{CC}} 1(\mathrm{M})$
CMIN2 $=\mathrm{CC} 2(\mathrm{M})$
CMIN3 $=$ CC3(M)
CMIN4 $=\mathrm{CC} 4(\mathrm{M})$

CMIN5 $=\mathrm{CC} 5(\mathrm{M})$
CMIN6 $=$ CC6(M)
RETURN
END

```
**********************
* SUBROUTINE 5 *
**********************
    SUBROUTINE NR2(N,NN,NNN,N3,N5,R,T1,C1,D1,D2,SIGMAET,
        CMIN1,CMIN2,CMIN3,CMIN4,CMIN5,CMIN6,ICOUNT,
                COUNT1,COUNT2,COUNT3,COUNT4,COUNT5,COUNT6)
        PARAMETER(LDA=6, LDAINV=6,N6=6)
        REAL*8 A(LDA,LDA), AINV(LDAINV,LDAINV)
        REAL*8 R(NN),T1(NNN)
        REAL*8 AA1, B1, B2, SIGMAET
        REAL*8 CMIN1, CMIN2, CMIN3, CMIN4
        REAL*8 SS1,SS2
        AA1 = CMIN1
        B1 = CMIN2
        B2 = CMIN3
        SIGMAET = CMIN4
        DO 900 L=1,NNN
        T1(L)=0.0
        CONTINUE
        DO 930 L=1,N
        T1(L+2) = R(L+4) + AA1*R(L+3)- B1*T1(L+1) - B2*T1(L)
        CONTINUE
        DO 950 I = 1,6
        DO 940 J=1,6
            A(I,J) = 0.0
940
        CONTINUE
950 CONTINUE
    WA1 = 0.0
WB1 = 0.0
WB2 = 0.0
W1TEMP = 0.0
W2TEMP = 0.0
W3TEMP = 0.0
```

```
WA1TEMP1 \(=0.0\)
WA1TEMP2 \(=0.0\)
\(\mathrm{WB} 1 \mathrm{TEMP} 1=0.0\)
WB1TEMP2 \(=0.0\)
WB2TEMP1 \(=0.0\)
\(\mathrm{WB} 2 \mathrm{TEMP} 2=0.0\)
DO \(980 \mathrm{~L}=1, \mathrm{~N}\)
    WA1 \(=\mathrm{R}(\mathrm{L}+3)-\mathrm{B} 1 * W A 1 T E M P 1-\mathrm{B} 2 * W A 1 T E M P 2\)
    WB1 \(=-\mathrm{T} 1(\mathrm{~L}+1)-\mathrm{B} 1 * W B 1 T E M P 1-\mathrm{B} 2 * W B 1 T E M P 2\)
    \(\mathrm{WB} 2=-\mathrm{T} 1(\mathrm{~L})-\mathrm{B} 1 * W B 2 T E M P 1-\mathrm{B} 2 * W B 2 T E M P 2\)
    \(\mathrm{A}(1,1)=\mathrm{A}(1,1)+\mathrm{WA} 1 * \mathrm{WA} 1\)
    \(\mathrm{A}(2,2)=\mathrm{A}(2,2)+\mathrm{WB} 1 * \mathrm{WB} 1\)
    \(\mathrm{A}(3,3)=\mathrm{A}(3,3)+\mathrm{WB} 2 * \mathrm{WB} 2\)
    W1TEMP = WA1TEMP1
    WA1TEMP1 = WA1
    WA1TEMP2 = W1TEMP
    W2TEMP \(=\) WB1TEMP 1
    WB1TEMP1 = WB1
    WB1TEMP2 = W2TEMP
    W3TEMP \(=\mathrm{WB} 2 T E M P 1\)
    WB2TEMP1 \(=\) WB2
    WB2TEMP2 = W3TEMP
```


CONTINUE

```
\(\mathrm{A}(1,1)=\mathrm{A}(1,1) /\) SIGMAET
\(\mathrm{A}(2,2)=\mathrm{A}(2,2) /\) SIGMAET
\(\mathrm{A}(3,3)=\mathrm{A}(3,3) /\) SIGMAET
\(\mathrm{A}(5,1)=\mathrm{A}(5,1)-(1+2 * \mathrm{D} 2+\mathrm{C} 1 * * 2)\)
\(\mathrm{A}(2,5)=\mathrm{A}(2,5)+(1+\mathrm{B} 2) *\) SIGMAET
\(\mathrm{A}(3,5)=\mathrm{A}(3,5)+\mathrm{B} 1 *\) SIGMAET
\(\mathrm{A}(6,1)=\mathrm{A}(6,1)-\mathrm{C} 1\)
\(\mathrm{A}(3,6)=\mathrm{A}(3,6)+\) SIGMAET
\(\mathrm{A}(4,4)=\mathrm{A}(4,4)-\mathrm{N} /\left(2^{*}\left(\mathrm{SIGMAET}^{* *} 2\right)\right)\)
\(\mathrm{A}(4,5)=\mathrm{A}(4,5)+\mathrm{B} 1 *(1+\mathrm{B} 2)\)
\(\mathrm{A}(4,6)=\mathrm{A}(4,6)+\mathrm{B} 2\)
\(A(1,5)=A(5,1)\)
\(A(1,6)=A(6,1)\)
\(A(5,2)=A(2,5)\)
\(A(5,3)=A(3,5)\)
\(A(6,3)=A(3,6)\)
\(A(5,4)=A(4,5)\)
\(A(6,4)=A(4,6)\)
```

CALL DLINRG(N6, A, LDA, AINV, LDAINV)
IF (AINV(1,1).GT.0.0) THEN

```
        SS1 = N*(AA1 - 1.0)
        SS2 = (AA1 - 1.0)/SQRT(AINV(1,1))
        IF (SS1.LT.-5.7) THEN
        COUNT1 = COUNT1 + 1.0
            ENDIF
        IF (SS1.LT.-8.0) THEN
            COUNT2 = COUNT2 + 1.0
        ENDIF
        IF (SS1.LT.-13.6) THEN
            COUNT3 = COUNT3 + 1.0
            ENDIF
        IF (SS2.LT.-1.62) THEN
        COUNT4 = COUNT4 + 1.0
        ENDIF
        IF (SS2.LT.-1.95) THEN
        COUNT5 = COUNT5 + 1.0
        ENDIF
        IF (SS2.LT.-2.58) THEN
            COUNT6 = COUNT6 + 1.0
            ENDIF
ICOUNT = ICOUNT + 1
    ENDIF
RETURN
    END
```

* END OF PROGRAM

APPENDIX E

FORTRAN PROGRAM FOR

EMPIRICAL CUMULATIVE DISTRIBUTION OF
UNIT ROOT TEST STATISTICS
BASED ON
SHIN AND SARKAR'S METHOD

* $\left(\mathrm{N}, \mathrm{S}, \sigma_{\mathrm{e}}{ }^{2}\right)=(250,4,5.0)$ is considered as an example. * ***

* MAIN PROGRAM *

PROGRAM MAIN
PARAMETER(N=250,NUM=10000,NN=254,NNN=252,N2=4,N3=3,N5=6)
PARAMETER($\mathrm{I} 1=100, \mathrm{I} 2=250, \mathrm{I} 3=500, \mathrm{I} 4=1000$)
PARAMETER($\mathrm{I} 5=9000, \mathrm{I} 6=9500, \mathrm{I} 7=9750, \mathrm{I} 8=9900$)
IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 E(N), W(N), Z(N), U(N), Y(N)
REAL*8 STAT1(NUM), STAT2(NUM), SS1, SS2
REAL*8 A1, C1, D1, D2
REAL*8 FL INIT, FL_EST(10)
REAL*8 T(NNN), TT(NNN), T1(NNN)
REAL*8 R(NN), ETILDA(N), X(N,N2)
REAL*8 RR(NNN), ABTILDA(N3), C(N5), HAP, SIGMAET, ZIGMAET
REAL*8 CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6
INTEGER ISEED1,ISEED2
EXTERNAL RNSET,DRNNOA,DLINRG
$\mathrm{A} 1=1.0$
ISEED1 = 13579
CALL RNISD(ISEED1,ISEED2)
DO $260 \mathrm{C} 1=-0.5,0.5,0.5$
ICOUNT $=0$
$\mathrm{D} 1=\mathrm{A} 1+\mathrm{C} 1$
$\mathrm{D} 2=\mathrm{A} 1 * \mathrm{C} 1$
DO $100 \mathrm{I}=1,18000$
CALL RNSET(ISEED1)
CALL DRNNOA(N,E)
CALL RNGET(ISEED1)
CALL RNSET(ISEED2)
CALL DRNNOA(N,W)
CALL RNGET(ISEED2)

$$
\begin{aligned}
& Z(1)=E(1) * \operatorname{SQRT}(5.0) \\
& U(1)=W(1) \\
& Y(1)=Z(1)+U(1)
\end{aligned}
$$

DO $10 \mathrm{~J}=2$, N

$$
\mathrm{Z}(\mathrm{~J})=-\mathrm{A} 1 * \mathrm{Z}(\mathrm{~J}-1)+\mathrm{E}(\mathrm{~J}) * \operatorname{SQRT}(5.0)
$$

$$
\mathrm{U}(\mathrm{~J})=\mathrm{W}(\mathrm{~J})+\mathrm{C} 1 * \mathrm{~W}(\mathrm{~J}-1)
$$

$$
Y(J)=Z(J)+U(J)
$$

10 CONTINUE
DO $1 \mathrm{~K}=1, \mathrm{~N}$$\mathrm{R}(\mathrm{K}+4)=\mathrm{Y}(\mathrm{K})$
1 CONTINUE
DO $3 \mathrm{~K}=1,4$$R(K)=0.0$
3 CONTINUE
CALL ETINIT(Y,R,X,N,NN,ETILDA)
DO $5 \mathrm{~K}=1$, N$R R(\mathrm{~K}+2)=\mathrm{ETILDA}(\mathrm{K})$
5 CONTINUE
DO $7 \mathrm{~K}=1,2$ $R R(K)=0.0$
7 CONTINUE
CALL ABINTT(N,ABTILDA,R,RR,NN,NNN,N3)
CALL SIGMAINIT(Y,R,T,N,NN,NNN,ABTILDA,N3,HAP,SIGMAET,FL_INIT)
CALL NR1(N,NN,NNN,N3,N5,R,T,ABTILDA,HAP,SIGMAET,
/ TT,C1,D1,D2,C,FL INIT,FL EST,
/ CMIN1,CMIN2,CMIN3,CMIN4,CMIN5,CMIN6)
CALL NR2(N,NN,NNN,N3,N5,R,T1,C1,D1,D2,ZIGMAET,
/ CMIN1,CMIN2,CMIN3,CMIN4,CMIN5,CMIN6,
/ ICOUNT,SS1,SS2)
STAT1 $($ ICOUNT $)=$ SS1
STAT2(ICOUNT) $=$ SS2
IF (ICOUNT.GE.10000) GO TO 112
100 CONTINUE
112 CONTINUE

> PRINT*,I1,'-th SMALLEST = ', STAT1(I1)
> PRINT*,I2,'-th SMALLEST = ', STAT1(I2)
> PRINT*,I3,'-th SMALLEST = ', STAT1(I3)
> PRINT*,I4,'-th SMALLEST = ', STAT1(I4)
> PRINT*,I5,'-th SMALLEST $=$ ', STAT1(I5)
> PRINT*,I6,'-th SMALLEST = ', STAT1(I6)
> PRINT*,I7,'-th SMALLEST = ', STAT1(I7)
> PRINT*,I8,'-th SMALLEST $=$ ', STAT1(I8)
> PRINT*,I1,'-th SMALLEST $=$ ', STAT2(I1)
> PRINT*,I2,'-th SMALLEST = ', STAT2(I2)
> PRINT*,I3,'-th SMALLEST $=$ ', STAT2(I3)
> PRINT*,I4,'-th SMALLEST $=$ ', STAT2(I4)
> PRINT*,I5,'-th SMALLEST $=$ ', STAT2(I5)
> PRINT*,I6,'-th SMALLEST = ', STAT2(I6)
> PRINT*,I7,'-th SMALLEST = ', STAT2(I7)
> PRINT*,I8,'-th SMALLEST = ', STAT2(I8)

260 CONTINUE

END

 SUBROUTINE 1

$* *$
*** ESTIMATE THE INITIAL VALUE OF ET.
SUBROUTINE ETINIT(Y,R,X,N,NN,ETILDA)
PARAMETER(LDA=4, LDAINV $=4, \mathrm{~N} 2=4$)
REAL*8 R(NN), A(LDA,LDA), B(N2), AINV(LDAINV,LDAINV)
REAL*8 X(N,N2), Y(N), ETILDA(N), SUM1(N2)
DO $200 \mathrm{I}=1,4$
DO $210 \mathrm{~J}=1,4$
$\mathrm{A}(\mathrm{I}, \mathrm{J})=0.0$
210 CONTINUE
$\mathrm{B}(\mathrm{I})=0.0$
200 CONTINUE
DO $250 \mathrm{~L}=1, \mathrm{~N}$
$\mathrm{A}(1,1)=\mathrm{A}(1,1)+\mathrm{R}(\mathrm{L}+3) * \mathrm{R}(\mathrm{L}+3)$
$A(2,1)=A(2,1)+R(L+2) * R(L+3)$
$\mathrm{A}(3,1)=\mathrm{A}(3,1)+\mathrm{R}(\mathrm{L}+1) * \mathrm{R}(\mathrm{L}+3)$
$\mathrm{A}(4,1)=\mathrm{A}(4,1)+\mathrm{R}(\mathrm{L})^{*} \mathrm{R}(\mathrm{L}+3)$
$\mathrm{A}(2,2)=\mathrm{A}(2,2)+\mathrm{R}(\mathrm{L}+2) * \mathrm{R}(\mathrm{L}+2)$

```
    \(\mathrm{A}(2,3)=\mathrm{A}(2,3)+\mathrm{R}(\mathrm{L}+1) * \mathrm{R}(\mathrm{L}+2)\)
    \(\mathrm{A}(2,4)=\mathrm{A}(2,4)+\mathrm{R}(\mathrm{L}) * \mathrm{R}(\mathrm{L}+2)\)
    \(\mathrm{A}(3,3)=\mathrm{A}(3,3)+\mathrm{R}(\mathrm{L}+1) * \mathrm{R}(\mathrm{L}+1)\)
    \(\mathrm{A}(3,4)=\mathrm{A}(3,4)+\mathrm{R}(\mathrm{L}) * \mathrm{R}(\mathrm{L}+1)\)
    \(\mathrm{A}(4,4)=\mathrm{A}(4,4)+\mathrm{R}(\mathrm{L}) * \mathrm{R}(\mathrm{L})\)
    \(\mathrm{B}(1)=\mathrm{B}(1)+\mathrm{R}(\mathrm{L}+3) * \mathrm{R}(\mathrm{L}+4)\)
    \(\mathrm{B}(2)=\mathrm{B}(2)+\mathrm{R}(\mathrm{L}+2) * \mathrm{R}(\mathrm{L}+4)\)
    \(\mathrm{B}(3)=\mathrm{B}(3)+\mathrm{R}(\mathrm{L}+1) * \mathrm{R}(\mathrm{L}+4)\)
    \(\mathrm{B}(4)=\mathrm{B}(4)+\mathrm{R}(\mathrm{L}) * \mathrm{R}(\mathrm{L}+4)\)
250 CONTINUE
    \(\mathrm{A}(1,2)=\mathrm{A}(2,1)\)
    \(\mathrm{A}(1,3)=\mathrm{A}(3,1)\)
    \(\mathrm{A}(1,4)=\mathrm{A}(4,1)\)
    \(\mathrm{A}(3,2)=\mathrm{A}(2,3)\)
    \(\mathrm{A}(4,2)=\mathrm{A}(2,4)\)
    \(\mathrm{A}(4,3)=\mathrm{A}(3,4)\)
```

CALL INVMAT(AINV,A,4,4)
DO $260 \mathrm{~K} 1=1,4$
DO $265 \mathrm{~K} 2=1, \mathrm{~N}$
IF (K2.LE.K1) THEN $\mathrm{X}(\mathrm{K} 2, \mathrm{~K} 1)=0.0$
ELSE $\mathrm{X}(\mathrm{K} 2, \mathrm{~K} 1)=\mathrm{Y}(\mathrm{K} 2-\mathrm{K} 1)$ ENDIF
CONTINUE
CONTINUE
DO 270 LDAINV1 $=1,4$
SUM $=0.0$
DO 280 LDAINV2 $=1,4$ SUM = SUM + AINV(LDAINV1,LDAINV2)*B(LDAINV2) CONTINUE SUM1 (LDAINV1) $=$ SUM
CONTINUE
DO $285 \mathrm{~K} 3=1, \mathrm{~N}$
SUM2 $=0.0$
DO $290 \mathrm{~K} 4=1,4$
SUM2 $=$ SUM2 $+\mathrm{X}(\mathrm{K} 3, \mathrm{~K} 4)^{*} \operatorname{SUM} 1(\mathrm{~K} 4)$

CONTINUE
RETURN
END

* SUBROUTINE 2

*** ESTIMATE THE INITIAL VALUE OF A1, B1 AND B2.

```
SUBROUTINE ABINIT(N,ABTILDA,R,RR,NN,NNN,N3)
    PARAMETER(MDA=3, MDAINV=3)
    REAL*8 R(NN), RR(NNN), ABTILDA(N3)
    REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV), F(MDA)
    DO \(310 \mathrm{I}=1,3\)
        DO \(320 \mathrm{~J}=1,3\)
            \(\mathrm{A}(\mathrm{I}, \mathrm{J})=0.0\)
        CONTINUE
        \(\mathrm{F}(\mathrm{I})=0.0\)
        CONTINUE
```

 DO \(350 \mathrm{~K}=1, \mathrm{~N}\)
 \(\mathrm{A}(1,1)=\mathrm{A}(1,1)+\mathrm{R}(\mathrm{K}+3) * \mathrm{R}(\mathrm{K}+3)\)
 \(\mathrm{A}(2,1)=\mathrm{A}(2,1)-\mathrm{R}(\mathrm{K}+3) * \mathrm{RR}(\mathrm{K}+1)\)
 \(\mathrm{A}(3,1)=\mathrm{A}(3,1)-\mathrm{R}(\mathrm{K}+3) * \mathrm{RR}(\mathrm{K})\)
 \(\mathrm{A}(2,2)=\mathrm{A}(2,2)+\mathrm{RR}(\mathrm{K}+1) * \mathrm{RR}(\mathrm{K}+1)\)
 \(\mathrm{A}(2,3)=\mathrm{A}(2,3)+\mathrm{RR}(\mathrm{K}) * \mathrm{RR}(\mathrm{K}+1)\)
 \(\mathrm{A}(3,3)=\mathrm{A}(3,3)+\mathrm{RR}(\mathrm{K}) * \mathrm{RR}(\mathrm{K})\)
 \(\mathrm{F}(1)=\mathrm{F}(1)-\mathrm{R}(\mathrm{K}+3) * \mathrm{R}(\mathrm{K}+4)\)
 \(\mathrm{F}(2)=\mathrm{F}(2)+\mathrm{R}(\mathrm{K}+4)^{*} \mathrm{RR}(\mathrm{K}+1)\)
 \(\mathrm{F}(3)=\mathrm{F}(3)+\mathrm{R}(\mathrm{K}+4)^{*} \mathrm{RR}(\mathrm{K})\)
 350 CONTINUE
$\mathrm{A}(1,2)=\mathrm{A}(2,1)$
$A(1,3)=A(3,1)$
$A(3,2)=A(2,3)$

CALL INVMAT(AINV,A,3,3)
DO 370 MDAINV1 $=1,3$

$$
\mathrm{SUM} 3=0.0
$$

DO 390 MDAINV2 $=1,3$
SUM3 $=$ SUM3 + AINV(MDAINV1,MDAINV2) $*$ F(MDAINV2)
390 CONTINUE
ABTILDA(MDAINV1) $=$ SUM3
IF (ABTILDA(1).LT.-2.0) THEN ABTILDA(1) $=-2.0$
ELSE IF (ABTILDA(1).GT.2.0) THEN $\operatorname{ABTILDA}(1)=2.0$
ENDIF

RETURN
END

```
* SUBROUTINE 3 *
* SUBROUTINE }
*** ESTIMATE THE INITIAL VALUE OF SIGMAET.
    SUBROUTINE SIGMAINIT(Y,R,T,N,NN,NNN,ABTILDA,N3,HAP,
    / SIGMAET,FL_INIT)
        REAL*8 Y(N), R(NN),T(NNN)
        REAL*8 ABTILDA(N3), HAP, SIGMAET
            DO 400 L = 1, NNN
            T(L)=0.0
400 CONTINUE
    HAP = 0.0
        DO 430 L=1,N
            T(L+2)=R(L+4)+ABTILDA(1)*R(L+3) - ABTILDA(2)*T(L+1)
    / - ABTILDA(3)*T(L)
            HAP = HAP + T(L+2)*T(L+2)
    CONTINUE
    SIGMAET = HAP/N
        IF (SIGMAET.LT.EXP(-100.0)) THEN
            SIGMAET = EXP(-100.0)
            ELSE IF (SIGMAET.GT.EXP(10.0)) THEN
            SIGMAET = EXP(10.0)
        ENDIF
        FL_INIT = (1/(2*SIGMAET))*HAP + (N/2)*LOG(SIGMAET)
        RETURN
        END
```

$* *$

* SUBROUTINE 4 *
$* *$
*** NEWTON-RAPHSON METHOD BASED ON SS'S APPROACH.
SUBROUTINE NR1(N,NN,NNN,N3,N5,R,T,ABTILDA,HAP,SIGMAET,TT, / C1,D1,D2,C,FL_INTT,FL_EST,

1
CMIN1,CMIN2,CMIN3,CMIN4,CMIN5,CMIN6)
PARAMETER(LDA=6, LDAINV=6, N6=6)
REAL*8 A(LDA,LDA), B(N6), C(N5), AINV(LDAINV,LDAINV)
REAL*8 R(NN), T(NNN), ABTILDA(N3), TT(NNN)
REAL*8 D(N6), HAP1
REAL*8 CC1(10), CC2(10), CC3(10), CC4(10), CC5(10), CC6(10)
REAL*8 FL_EST(10), FMIN, FL_INIT
REAL*8 CMIN1, CMIN2, CMIN3, CMIN4, CMIN5, CMIN6

$$
\begin{aligned}
& \mathrm{A} 11=\mathrm{ABTILDA}(1) \\
& \mathrm{B} 11=\mathrm{ABTILDA}(2) \\
& \mathrm{B} 22=\mathrm{ABTILDA}(3) \\
& \mathrm{C}(5)=0.0 \\
& \mathrm{C}(6)=0.0 \\
& \mathrm{WA} 1=0.0 \\
& \mathrm{WB} 1=0.0 \\
& \mathrm{WB} 2=0.0
\end{aligned}
$$

DO $500 \mathrm{I}=1,6$ DO $510 \mathrm{~J}=1,6$

$$
\mathrm{A}(\mathrm{I}, \mathrm{~J})=0.0
$$

510 CONTINUE

$$
\mathrm{B}(\mathrm{I})=0.0
$$

CONTINUE

$$
\begin{aligned}
& \text { W1TEMP }=0.0 \\
& \text { W2TEMP }=0.0 \\
& \text { W3TEMP }=0.0 \\
& \text { WA1TEMP1 }=0.0 \\
& \text { WA1TEMP2 }=0.0 \\
& \text { WB1TEMP1 }=0.0 \\
& \text { WB1TEMP2 }=0.0 \\
& \text { WB2TEMP1 }=0.0 \\
& \text { WB2TEMP2 }=0.0
\end{aligned}
$$

```
DO 550 L = 1,N
    WA1 = R(L+3) - B11*WA1TEMP1 - B22*WA1TEMP2
    WB1 =-T(L+1) - B11*WB1TEMP1 - B22*WB1TEMP2
    WB2 = -T(L) - B11*WB2TEMP1 - B22*WB2TEMP2
    A(1,1) = A(1,1) + WA 1*WA1
    A(2,2)=A(2,2)+WB1*WB1
    A(3,3) = A(3,3) + WB2*WB2
    B(1) = B(1) +WA1*T(L+2)
    B}(2)=\textrm{B}(2)+WB1*T(L+2
    B}(3)=\textrm{B}(3)+WB2*T(L+2
    B(4)=B(4)+T(L+2)*T(L+2)
```

```
W1TEMP = WA1TEMP1
WA1TEMP1 = WA1
WA1TEMP2 = W1TEMP
W2TEMP = WB1TEMP1
WB1TEMP1 = WB1
WB1TEMP2 = W2TEMP
W3TEMP = WB2TEMP1
WB2TEMP1 = WB2
WB2TEMP2 \(=\mathrm{W} 3\) TEMP
\(\mathrm{A}(1,1)=\mathrm{A}(1,1) /\) SIGMAET
\(\mathrm{A}(2,2)=\mathrm{A}(2,2) /\) SIGMAET
\(\mathrm{A}(3,3)=\mathrm{A}(3,3) /\) SIGMAET
\(\mathrm{A}(5,1)=\mathrm{A}(5,1)-(1+2 * \mathrm{D} 2+\mathrm{C} 1 * * 2)\)
\(\mathrm{A}(2,5)=\mathrm{A}(2,5)+(1+\mathrm{B} 22) *\) SIGMAET
\(\mathrm{A}(3,5)=\mathrm{A}(3,5)+\mathrm{B} 11 *\) SIGMAET
\(\mathrm{A}(6,1)=\mathrm{A}(6,1)-\mathrm{C} 1\)
\(\mathrm{A}(3,6)=\mathrm{A}(3,6)+\) SIGMAET
\(\mathrm{A}(4,4)=\mathrm{A}(4,4)-\mathrm{N} /\left(2 *\left(\right.\right.\) SIGMAET \(\left.\left.^{*}{ }^{*} 2\right)\right)\)
\(\mathrm{A}(4,5)=\mathrm{A}(4,5)+\mathrm{B} 11^{*}(1+\mathrm{B} 22)\)
\(\mathrm{A}(4,6)=\mathrm{A}(4,6)+\mathrm{B} 22\)
\(\mathrm{B}(1)=\mathrm{B}(1) /\) SIGMAET
\(\mathrm{B}(2)=\mathrm{B}(2) /\) SIGMAET
\(\mathrm{B}(3)=\mathrm{B}(3) /\) SIGMAET
\(\mathrm{B}(4)=(-\mathrm{B}(4) /(2 *\) SIGMAET*SIGMAET \())+(\mathrm{N} /(2 *\) SIGMAET \())\)
\(\mathrm{B}(5)=\operatorname{SIGMAET} *(1+\mathrm{B} 22) * \mathrm{~B} 11-\mathrm{D} 1 *(1+\mathrm{D} 2)\)
\(\mathrm{B}(6)=\) SIGMAET*B22 - D2
\(\mathrm{A}(1,5)=\mathrm{A}(5,1)\)
\(A(1,6)=A(6,1)\)
\(A(5,2)=A(2,5)\)
\(A(5,3)=A(3,5)\)
\(A(6,3)=A(3,6)\)
\(A(5,4)=A(4,5)\)
\(A(6,4)=A(4,6)\)
```


CALL INVMAT(AINV,A,6,6)

DO 570 LDAINV1 $=1,6$
SUM $=0.0$
DO 580 LDAINV2 $=1,6$
SUM = SUM + AINV(LDAINV1,LDAINV2)*B(LDAINV2)
580 CONTINUE
D(LDAINV1) = SUM
570 CONTINUE

DO $600 \mathrm{~K}=1,10$

$$
\begin{aligned}
& \mathrm{C}(1)=\mathrm{A} 11-(1 / \mathrm{K}) * \mathrm{D}(1) \\
& \mathrm{C}(2)=\mathrm{B} 11-(1 / \mathrm{K}) * \mathrm{D}(2) \\
& \mathrm{C}(3)=\mathrm{B} 22-(1 / \mathrm{K}) * \mathrm{D}(3) \\
& \mathrm{C}(4)=\mathrm{SIGMAET}-(1 / \mathrm{K}) * \mathrm{D}(4) \\
& \mathrm{C}(5)=\mathrm{C}(5)-(1 / \mathrm{K}) * \mathrm{D}(5) \\
& \mathrm{C}(6)=\mathrm{C}(6)-(1 / \mathrm{K}) * \mathrm{D}(6) \\
& \mathrm{HAP} 1=0.0
\end{aligned}
$$

DO $650 \mathrm{I} 1=1, \mathrm{NNN}$ TT(I1) $=0.0$
$\mathrm{M}=1$
DO $800 \mathrm{I} 3=2,10$
IF(I3.EQ.0.OR.FL_EST(I3).GE.FL_EST(M)) GO TO 800

$$
\mathrm{M}=\mathrm{I} 3
$$

800 CONTINUE
FMIN = FL_EST(M)

$$
\mathrm{CMIN} 1=\mathrm{CC} 1(\mathrm{M})
$$

$$
\mathrm{CMIN} 2=\mathrm{CC} 2(\mathrm{M})
$$

$$
\mathrm{CMIN} 3=\mathrm{CC} 3(\mathrm{M})
$$

$$
\mathrm{CMIN} 4=\mathrm{CC} 4(\mathrm{M})
$$

$$
\text { CMIN5 }=\mathrm{CC} 5(\mathrm{M})
$$

$$
\mathrm{CMIN} 6=\mathrm{CC} 6(\mathrm{M})
$$

RETURN

END

* SUBROUTINE 5 *

SUBROUTINE NR2(N,NN,NNN,N3,N5,R,T1,C1,D1,D2,ZIGMAET, / CMIN1,CMIN2,CMIN3,CMIN4,CMIN5,CMIN6,ICOUNT,SS1,SS2)

PARAMETER(LDA=6, LDAINV=6, N6=6)
REAL*8 A(LDA,LDA), AINV(LDAINV,LDAINV)
REAL*8 R(NN), T1(NNN)
REAL*8 AA1, B1, B2, ZIGMAET
REAL*8 CMIN1, CMIN2, CMIN3, CMIN4
REAL*8 SS1, SS2
AA1 $=$ CMIN1
$\mathrm{B} 1=\mathrm{CMIN} 2$
$\mathrm{B} 2=\mathrm{CMIN} 3$
ZIGMAET $=$ CMIN4
DO $400 \mathrm{~L}=1$, NNN
$\mathrm{T} 1(\mathrm{~L})=0.0$
400 CONTINUE
DO $430 \mathrm{~L}=1, \mathrm{~N}$
$\mathrm{T} 1(\mathrm{~L}+2)=\mathrm{R}(\mathrm{L}+4)+\mathrm{AA} 1 * \mathrm{R}(\mathrm{L}+3)-\mathrm{B} 1 * \mathrm{~T} 1(\mathrm{~L}+1)-\mathrm{B} 2 * \mathrm{~T} 1(\mathrm{~L})$
430 CONTINUE
DO $500 \mathrm{I}=1,6$
DO $510 \mathrm{~J}=1,6$

$$
\mathrm{A}(\mathrm{I}, \mathrm{~J})=0.0
$$

510 CONTINUE
500 CONTINUE
$W A 1=0.0$
$\mathrm{WB} 1=0.0$
$\mathrm{WB} 2=0.0$
W1TEMP $=0.0$
W 2 TEMP $=0.0$
W 3 TEMP $=0.0$
WA1TEMP1 $=0.0$
WA1TEMP2 $=0.0$
WB1TEMP1 $=0.0$
WB1TEMP2 $=0.0$
WB2TEMP1 $=0.0$

WB2TEMP2 $=0.0$

```
DO \(550 \mathrm{~L}=1, \mathrm{~N}\)
    \(\mathrm{WA} 1=\mathrm{R}(\mathrm{L}+3)-\mathrm{B} 1 * W A 1 T E M P 1-\mathrm{B} 2 * W A 1 T E M P 2\)
    WB1 \(=-\mathrm{T} 1(\mathrm{~L}+1)-\mathrm{B} 1 *\) WB1TEMP1 - B2*WB1TEMP2
    \(\mathrm{WB} 2=-\mathrm{T} 1(\mathrm{~L})-\mathrm{B} 1 * \mathrm{WB} 2 T E M P 1-\mathrm{B} 2 * W B 2 T E M P 2\)
```

 \(\mathrm{A}(1,1)=\mathrm{A}(1,1)+\mathrm{WA} 1 * \mathrm{WA} 1\)
 \(\mathrm{A}(2,2)=\mathrm{A}(2,2)+\mathrm{WB} 1 * \mathrm{WB} 1\)
 \(\mathrm{A}(3,3)=\mathrm{A}(3,3)+\mathrm{WB} 2 * \mathrm{WB} 2\)
 W1TEMP = WA1TEMP1
 WA1TEMP1 = WA1
 WA1TEMP2 = W1TEMP
 W2TEMP \(=\) WB1TEMP 1
 WB1TEMP1 = WB1
 WB1TEMP2 = W2TEMP
 W3TEMP = WB2TEMP1
 WB2TEMP1 = WB2
 WB2TEMP2 \(=\mathrm{W} 3\) TEMP
 550 CONTINUE
$\mathrm{A}(1,1)=\mathrm{A}(1,1) /$ ZIGMAET
$\mathrm{A}(2,2)=\mathrm{A}(2,2) /$ ZIGMAET
$\mathrm{A}(3,3)=\mathrm{A}(3,3) / \mathrm{ZIGMAET}$
$\mathrm{A}(5,1)=\mathrm{A}(5,1)-(1+2 * \mathrm{D} 2+\mathrm{C} 1 * * 2)$
$\mathrm{A}(2,5)=\mathrm{A}(2,5)+(1+\mathrm{B} 2) *$ ZIGMAET
$\mathrm{A}(3,5)=\mathrm{A}(3,5)+\mathrm{B} 1 *$ ZIGMAET
$\mathrm{A}(6,1)=\mathrm{A}(6,1)-\mathrm{C} 1$
$\mathrm{A}(3,6)=\mathrm{A}(3,6)+$ ZIGMAET
$\mathrm{A}(4,4)=\mathrm{A}(4,4)-\mathrm{N} /\left(2^{*}\left(\mathrm{ZIGMAET}^{* *} 2\right)\right)$
$\mathrm{A}(4,5)=\mathrm{A}(4,5)+\mathrm{B} 1^{*}(1+\mathrm{B} 2)$
$\mathrm{A}(4,6)=\mathrm{A}(4,6)+\mathrm{B} 2$
$\mathrm{A}(1,5)=\mathrm{A}(5,1)$
$\mathrm{A}(1,6)=\mathrm{A}(6,1)$
$\mathrm{A}(5,2)=\mathrm{A}(2,5)$
$\mathrm{A}(5,3)=\mathrm{A}(3,5)$
$\mathrm{A}(6,3)=\mathrm{A}(3,6)$
$\mathrm{A}(5,4)=\mathrm{A}(4,5)$
$\mathrm{A}(6,4)=\mathrm{A}(4,6)$
CALL INVMAT(AINV,A,6,6)

```
    IF (AINV(1,1).GT.0.0) THEN
        SS1 = N*(AA1-1.0)
        SS2 = (AA1-1.0)/SQRT(AINV(1,1))
    ICOUNT = ICOUNT + 1
ENDIF
```

```
RETURN
END
```

* SUBROUTINE 6 *

SUBROUTINE SORT(N,DATA)
* LOG-SPACE QUICK-SORT

```PARAMETER (MAXSTK=10)
```

* MAX. DATA (ARRAY) SIZE: (MAXSTK+1)-TH POWER OF 2

```INTEGER N
```

$* ~$

* DATA TYPE
REAL*8 DATA(N), PIVOT, TEMP

INTEGER I, J, LEFT, RIGHT, L, R
* STACK FRAMES AND POINTER
INTEGER LSTACK(MAXSTK), RSTACK(MAXSTK), SP

```*
```

$\mathrm{SP}=0$

```*
            LEFT = 1
            RIGHT = N
*
* RECURSIVE CALL ENTRY (CALL RETURNS HERE IF STACK NOT EMPTY)
    1000 CONTINUE
*
        I = LEFT
        J = RIGHT
        PIVOT = DATA(INT((I+J)/2))
*
2000 CONTINUE
*
    100 IF (DATA(I).LT.PIVOT) THEN
        I = I+1
        GOTO 100
        ENDIF
*
200 IF (DATA(J).GT.PIVOT) THEN
        J= J-1
        GOTO 200
        ENDIF
    *
        IF (I.LE.J) THEN
```

```
* SWAP
        TEMP = DATA(I)
        DATA(I) = DATA(J)
        DATA(J) = TEMP
        I=I+1
        J = J-1
        ENDIF
        IF (I.LE.J) GOTO 2000
* RECURSIVE CALL
            R = RIGHT - I
            L = J - LEFT
            IF (R.GE.L) THEN
            IF (L.GT.0) THEN
* PUSH STACK
            SP = SP + 1
            LSTACK(SP) = I
            RSTACK(SP) = RIGHT
            RIGHT = J
            GOTO 1000
            ELSE IF (R.GT.0) THEN
            LEFT = I
            GOTO 1000
            ENDIF
            ELSE
            IF (R.GT.0) THEN
* PUSH STACK
            SP = SP + 1
            LSTACK(SP) = LEFT
            RSTACK(SP) = J
            LEFT = I
            GOTO 1000
            ELSE IF (L.GT.0) THEN
            RIGHT = J
            GOTO 1000
            ENDIF
        ENDIF
*
* RECURSIVE RETURN
            IF (SP.GT.0) THEN
* POP STACK
            RIGHT = RSTACK(SP)
            LEFT = LSTACK(SP)
            SP = SP - 1
            GOTO 1000
            ENDIF
```


RETURN

END

```
**************************
* SUBROUTINE 7 *
*** COMPUTE INVERSE OF A MATRIX.
```

SUBROUTINE INVMAT(AINV,A,N,NMAX)
REAL*8 A(NMAX,NMAX), L(NMAX,NMAX), U(NMAX,NMAX)
REAL*8 AINV(NMAX,NMAX), UINV(NMAX,NMAX), LINV(NMAX,NMAX)
CALL LUDCOM(L,U,A,N,NMAX)
DO $100 \mathrm{I}=1, \mathrm{~N}$
$100 \operatorname{LINV}(\mathrm{I}, \mathrm{I})=1.0$
DO $110 \mathrm{I}=1, \mathrm{~N}-1$
DO $110 \mathrm{~J}=\mathrm{I}+1, \mathrm{~N}$
$110 \operatorname{LINV}(\mathrm{I}, \mathrm{J})=0.0$
DO $130 \mathrm{~J}=1, \mathrm{~N}-1$
DO $130 \mathrm{I}=\mathrm{J}+1, \mathrm{~N}$
SUM $=0.0$
DO $120 \mathrm{~K}=\mathrm{J}+1$, $\mathrm{I}-1$
$120 \quad \mathrm{SUM}=\mathrm{SUM}+\mathrm{L}(\mathrm{I}, \mathrm{K}) * \operatorname{LINV}(\mathrm{~K}, \mathrm{~J})$
LINV $(I, J)=-L(I, J)-S U M$
130 CONTINUE
DO $140 \mathrm{I}=1, \mathrm{~N}$
$140 \operatorname{UINV}(\mathrm{I}, \mathrm{I})=1 / \mathrm{U}(\mathrm{I}, \mathrm{I})$
DO $150 \mathrm{~J}=1, \mathrm{~N}-1$
DO $150 \mathrm{I}=\mathrm{J}+1, \mathrm{~N}$
$150 \operatorname{UINV}(\mathrm{I}, \mathrm{J})=0.0$
DO $170 \mathrm{I}=\mathrm{N}-1,1,-1$
DO $170 \mathrm{~J}=\mathrm{N}, \mathrm{I}+1,-1$
SUM $=0.0$
DO $160 \mathrm{~K}=\mathrm{I}+1$, J
$160 \quad \mathrm{SUM}=\mathrm{SUM}+\mathrm{U}(\mathrm{I}, \mathrm{K})^{*} \mathrm{UINV}(\mathrm{K}, \mathrm{J})$
$\operatorname{UINV}(\mathrm{I}, \mathrm{J})=\operatorname{UINV}(\mathrm{I}, \mathrm{I})^{*}(-\mathrm{SUM})$
170 CONTINUE
CALL PROMAT(AINV,UINV,LINV,N,NMAX)
RETURN
END
*

* LU-DECOMPOSITION ROUTINE

SUBROUTINE LUDCOM(L,U,A,N,NMAX)
REAL*8 L(NMAX,NMAX), U(NMAX,NMAX)
REAL*8 A(NMAX,NMAX), WM(NMAX,NMAX)
DO $100 \mathrm{~K}=1$, N

```
    L}(\textrm{K},\textrm{K})=1.
    U(1,K) = A(1,K)
100 CONTINUE
    DO 150 I = 2,N
    DO 120 J=1, I-1
        WM(I,J) = 0.0
        DO 110 M = 1, J-1
110 WM(I,J) = WM(I,J) + L(I,M)*U(M,J)
    L(I,J)=(A(I,J) - WM(I,J))/U(J,J)
120 CONTINUE
    DO 140 J=I,N
        WM(I,J) = 0.0
        DO 130 M = 1, I-1
        WM(I,J)=WM(I,J) + L(I,M)*U(M,J)
        U(I,J) = A(I,J) - WM(I,J)
140 CONTINUE
150 CONTINUE
    RETURN
    END
*
* MATRIX MULTIPLICATION (C = A * B)
    SUBROUTINE PROMAT(C,A,B,N,NMAX)
    REAL*8 C(NMAX,NMAX), A(NMAX,NMAX), B(NMAX,NMAX)
    DO 100 I= 1,N
        DO 100 J=1,N
            C(I,J) = 0.0
            DO 100 K=1,N
            C(I,J)=C(I,J) + A(I,K)*B(K,J)
100 CONTINUE
    RETURN
    END
* END OF PROGRAM
```


APPENDIX F

FORTRAN PROGRAM FOR SPURIOUS REGRESSION

* SPURIOUS REGRESSION: K = 1, $\mathrm{P}=2$

* MAIN PROGRAM

```
PROGRAM MAIN
PARAMETER( \(\mathrm{N}=250, \mathrm{NUM}=10000, \mathrm{~N} 2=3\) )
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 U(N), X(N), XT1(N), XT2(N), Y(N)
REAL*8 XX(N,3), RESID(N), SUMGAMMA(N2)
REAL*8 EPGAMMA1, EPGAMMA2, EPGAMMA3
REAL*8 EPRSQ, EPDW, EPSGSQ
REAL*8 EPT1, EPT2, EPT3
EXTERNAL RNSET,RNNOA
ISEED1= 13579
```


CALL RNISD(ISEED1,ISEED2)

DO $300 \mathrm{I}=1$, NUM
CALL RNSET(ISEED1)
CALL DRNNOA(N,U)
CALL RNGET(ISEED1)
CALL RNSET(ISEED2)
CALL DRNNOA(N,X)
CALL RNGET(ISEED2)
DO $100 \mathrm{~J}=1, \mathrm{~N}$
SUM1 $=0.0$
SUM2 $=0.0$
DO $50 \mathrm{~K}=1$, J
SUM1 = SUM1 + U(K)
SUM2 $=$ SUM2 $+\mathrm{X}(\mathrm{K})$
50 CONTINUE
$\mathrm{Y}(\mathrm{J})=$ SUM1
XT1(J) = SUM2
100 CONTINUE
$\mathrm{XT} 2(1)=\mathrm{X}(1)$
$\mathrm{XT} 2(2)=2 * \mathrm{X}(1)+\mathrm{X}(2)$
DO $250 \mathrm{~J}=3$, N
SUM3 $=0.0$
DO $200 \mathrm{~K}=1$, J-2
SUM3 $=$ SUM3 $+\mathrm{XT} 1(\mathrm{~K})$

CONTINUE

SUM4 = SUM3 + XT1 (K +1)
XT2(J) $=2 *$ SUM $4-$ SUM3 $+\mathrm{X}(\mathrm{J})$

CALL GAMMA(N,N2,XT1,XT2,Y,XX,RESID,SUMGAMMA,SUMRSQ,
/ SUMDW,SUMSGSQ,SUMT1,SUMT2,SUMT3)

300 CONTINUE
EPGAMMA1 = SUMGAMMA(1)/NUM
EPGAMMA2 = SUMGAMMA(2)/NUM
EPGAMMA3 = SUMGAMMA(3)/NUM
EPRSQ = SUMRSQ/NUM
EPDW = SUMDW/NUM
EPSGSQ = SUMSGSQ/NUM
EPT1 = SUMT1/NUM
EPT2 = SUMT2/NUM
EpT3 $=$ SUMT3/NUM
WRITE(*,*) EPGAMMA1,EPGAMMA2,EPGAMMA3
WRITE(*,*) EPT1,EPT2,EPT3
WRITE(*,*) EPRSQ,EPDW
WRITE $(*, *)$ EPSGSQ
END

* SUBROUTINE 1
$* *$

SUBROUTINE GAMMA(N,N2,XT1,XT2,Y,XX,RESID,SUMGAMMA,SUMRSQ,
/ SUMDW,SUMSGSQ,SUMT1,SUMT2,SUMT3)
PARAMETER(MDA=3, MDAINV=3, $\mathrm{P}=2$)
REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA)
REAL*8 XT1(N), XT2(N), XX(N,3), Y(N), GAMMAHAT(MDA), RESID(N)
REAL*8 SUMGAMMA(N2), SQY, YBAR, RSQDENO, RSQNUM, RSQUARE
REAL*8 DENO, DNUM, DW, SUMDW
REAL*8 SUM, SUM2, SUM3, SUMRSQ
REAL*8 T_STAT1, T_STAT2, T_STAT3
REAL*8 SUMT1, SUMT2, SUMT3
REAL*8 SIGMASQ
$\mathrm{SQY}=0.0$
DO $150 \mathrm{~K} 1=1,3$
DO $120 \mathrm{~K} 2=1,3$

```
        A(K1,K2) = 0.0
    120
        CONTINUE
        B(K1) = 0.0
        CONTINUE
***** OLS, R-SQUARE(DENOMINATOR), T-STATISTICS
    DO 200 L = 1,N
        A(1,2) = A(1,2) + XT1(L)
    A(1,3) = A(1,3) + XT2(L)
    A(2,2)=A(2,2)+XT1(L)**2
    A(2,3)=A(2,3)+XT1(L)*XT2(L)
    A(3,3)=A(3,3)+XT2(L)**2
    B}(1)=B(1)+Y(L
    B}(2)=B(2)+XT1(L)*Y(L
    B}(3)=\textrm{B}(3)+\textrm{XT}2(\textrm{L})*Y(\textrm{L}
    SQY = SQY + Y(L)*Y(L)
    CONTINUE
    A(1,1)=N
    A(2,1) = A(1,2)
    A(3,1)=A(1,3)
    A(3,2) = A(2,3)
    YBAR = B(1)*B(1)/N
    RSQDENO = SQY - YBAR
    CALL INVMAT(AINV,A,3)
        DO 240 L2 = 1,N
        XX(L2,1) = 1.0
        XX(L2,2) = XT1(L2)
        XX(L2,3)= XT2(L2)
240 CONTINUE
    DO 280 MDAINV1 = 1,3
        SUM = 0.0
        DO 250 MDAINV2 = 1,3
        SUM = SUM + AINV(MDAINV1,MDAINV2)*B(MDAINV2)
    CONTINUE
        GAMMAHAT(MDAINV1) = SUM
    CONTINUE
        SUMGAMMA(1) = SUMGAMMA(1) + GAMMAHAT(1)
        SUMGAMMA(2) = SUMGAMMA(2) + GAMMAHAT(2)
        SUMGAMMA(3) = SUMGAMMA(3) + GAMMAHAT(3)
***** RESIDUAL, R-SQUARE(NUMERATOR)
    SUM3 = 0.0
    DO 320 M1 = 1,N
```

```
        SUM2 = 0.0
        DO 300 M2 = 1, 3
    SUM2 = SUM2 + XX(M1,M2)*GAMMAHAT(M2)
        CONTINUE
        SUM3 = SUM3 + Y(M1)*SUM2
        RESID(M1) = Y(M1) - SUM2
    CONTINUE
    RSQNUM = SUM3 - YBAR
    RSQUARE = RSQNUM/RSQDENO
    SUMRSQ = SUMRSQ + RSQUARE
*** DW, SIGMASUARE HAT
    DENO = 0.0
    DNUM = 0.0
    DO 350 M3 = 1,N-1
    DNUM = DNUM + (RESID(M3+1) - RESID(M3))**2
    DENO = DENO + RESID(M3+1)**2
350 CONTINUE
    DENO = DENO + RESID(1)**2
    DW = DNUM/DENO
    SIGMASQ = DENO/(N-P-1)
    T_STAT1 = GAMMAHAT(1)/SQRT(AINV(1,1)*SIGMASQ)
    T_STAT2 = GAMMAHAT(2)/SQRT(AINV(2,2)*SIGMASQ)
    T_STAT3 = GAMMAHAT(3)/SQRT(AINV(3,3)*SIGMASQ)
    SUMT1 = SUMT1 + T_STAT1
    SUMT2 = SUMT2 + T_STAT2
    SUMT3 = SUMT3 + T_STAT3
    SUMDW = SUMDW + DW
    SUMSGSQ = SUMSGSQ + SIGMASQ
    RETURN
    END
```

* SUBROUTINE 2

*

SUBROUTINE INVMAT(AINV,A,N)

REAL*8 A(3,3), L(3,3), U(3,3)
REAL*8 AINV(3,3), UINV(3,3), $\operatorname{LINV}(3,3)$
CALL LUDCOM(L,U,A,N)
DO $100 \mathrm{I}=1, \mathrm{~N}$
$100 \operatorname{LINV}(\mathrm{I}, \mathrm{I})=1.0$
DO $110 \mathrm{I}=1, \mathrm{~N}-1$
DO $110 \mathrm{~J}=\mathrm{I}+1, \mathrm{~N}$
$110 \operatorname{LINV}(\mathrm{I}, \mathrm{J})=0.0$
DO $130 \mathrm{~J}=1, \mathrm{~N}-1$

```
    DO 130 I = J+1,N
        SUM = 0.0
        DO 120 K = J+1, I-1
120 SUM = SUM + L(I,K)*LINV(K,J)
        LINV(I,J) = -L(I,J) - SUM
130 CONTINUE
    DO 140 I = 1,N
140 UINV (I,I) = 1/U(I,I)
    DO 150 J=1,N-1
    DO 150 I = J+1,N
150 UINV (I,J) = 0.0
    DO 170 I=N-1, 1,-1
    DO 170 J=N, I+1, -1
        SUM=0.0
        DO 160 K = I +1, J
            SUM = SUM + U(I,K)*UINV(K,J)
        UINV(I,J)=UINV(I,I)*(-SUM)
170 CONTINUE
    CALL PROMAT(AINV,UINV,LINV,N,N,N)
    RETURN
    END
*
    SUBROUTINE LUDCOM(L,U,A,N)
    REAL*8 L(3,3), U(3,3), A(3,3), WM(3,3)
    DO 100 K=1,N
        L}(\textrm{K},\textrm{K})=1.
        U(1,K)=A(1,K)
100 CONTINUE
    DO 150 I =2,N
    DO 120 J = 1, I-1
        WM(I,J)}=0.
        DO 110 M = 1, J-1
            WM(I,J)=WM(I,J) + L(I,M)*U(M,J)
            L}(\textrm{I},\textrm{J})=(\textrm{A}(\textrm{I},\textrm{J})-\textrm{WM}(\textrm{I},\textrm{J}))/\textrm{U}(\textrm{J},\textrm{J}
120 CONTINUE
    DO 140 J=I,N
        WM(I,J)=0.0
        DO 130 M = 1, I-1
            WM(I,J) = WM(I,J) + L(I,M)*U(M,J)
        U(I,J) = A(I,J) - WM(I,J)
    140 CONTINUE
150 CONTINUE
    RETURN
    END
```

SUBROUTINE PROMAT(C,A,B,N,L,M)
REAL*8 C(3,3), A(3,3), B(3,3)
DO $100 \mathrm{I}=1, \mathrm{~N}$
DO $100 \mathrm{~J}=1, \mathrm{M}$
$\mathrm{C}(\mathrm{I}, \mathrm{J})=0.0$
DO $100 \mathrm{~K}=1$, L$\mathrm{C}(\mathrm{I}, \mathrm{J})=\mathrm{C}(\mathrm{I}, \mathrm{J})+\mathrm{A}(\mathrm{I}, \mathrm{K})^{*} \mathrm{~B}(\mathrm{~K}, \mathrm{~J})$
100 CONTINUE
RETURN
END

* END OF PROGRAM

**

* SPURIOUS REGRESSION: $\mathrm{K}=2, \mathrm{P}=1$ *

* MAIN PROGRAM

PROGRAM MAIN
PARAMETER($\mathrm{N}=250$, $\mathrm{NUM}=10000, \mathrm{~N} 2=2$)
IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 U(N), X(N), XT(N), YT(N), Y(N)
REAL*8 XX(N,2), RESID(N), SUMGAMMA(N2)
REAL*8 SUM1, SUM2, SUM3, SUM4
REAL*8 EPGAMMA1, EPGAMMA2
REAL*8 EPRSQ, EPDW, EPSGSQ1, EPSGSQ2
REAL*8 EPT1,EPT2, EPT3
REAL*8 SUMSGSQ, SUMRSQ, SUMDW
REAL*8 SUMT1, SUMT2, SUMT3
EXTERNAL RNSET, RNNOA
ISEED1 = 13579
CALL RNISD(ISEED1,ISEED2)
DO $2000 \mathrm{I}=1, \mathrm{NUM}$
CALL RNSET(ISEED1)
CALL DRNNOA(N,U)
CALL RNGET(ISEED1)
CALL RNSET(ISEED2)
CALL DRNNOA(N,X)
CALL RNGET(ISEED2)

$$
\begin{array}{cc}
\text { DO } 100 \mathrm{~J}=1, \mathrm{~N} \\
& \text { SUM1 }=0.0 \\
& \text { SUM2 }=0.0 \\
& \text { DO } 10 \mathrm{~K}=1, \mathrm{~J} \\
& \text { SUM1 }=\text { SUM1 + X(K) } \\
& \text { SUM2 }=\text { SUM2 }+\mathrm{U}(\mathrm{~K}) \\
10 & \text { CONTINUE } \\
& \text { XT(J) }=\text { SUM1 } \\
& \text { YT(J) }=\text { SUM2 } \\
100 & \text { CONTINUE }
\end{array}
$$

$Y(1)=U(1)$
$\mathrm{Y}(2)=\mathrm{U}(1) * 2+\mathrm{U}(2)$
DO $250 \mathrm{~J}=3$, N

```
            SUM3 = 0.0
        DO 200 K = 1, J-2
            SUM3 = SUM3 + YT(K)
200 CONTINUE
        SUM4 = SUM3 + YT(K+1)
        Y(J) = 2*SUM4 - SUM3 + U(J)
250 CONTINUE
    CALL GAMMA(N,N2,XT,Y,XX,RESID,SUMGAMMA,SUMRSQ,
    /
        SUMDW,SUMSGSQ,SUMT1,SUMT2)
2000 CONTINUE
    EPGAMMA1 = SUMGAMMA(1)/NUM
    EPGAMMA2 = SUMGAMMA(2)/NUM
    EPRSQ = SUMRSQ/NUM
    EPDW = SUMDW/NUM
    EPSGSQ = SUMSGSQ/NUM
    EPT1 = SUMT1/NUM
    EPT2 = SUMT2/NUM
    WRITE(*,*) EPGAMMA1,EPGAMMA2
    WRITE(*,*) EPT1,EPT2
    WRITE(*,*) EPRSQ,EPDW
    WRITE(*,*) EPSGSQ
END
```

$\underset{* *}{*}$

SUBROUTINE GAMMA(N,N2,XT,Y,XX,RESID,SUMGAMMA,SUMRSQ,
/
SUMDW,SUMSGSQ,SUMT1,SUMT2)
PARAMETER(MDA=2, MDAINV=2, $\mathrm{P}=1$)
REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA)
REAL*8 XT(N), XX(N,2), Y(N), GAMMAHAT(MDA), RESID(N)
REAL*8 SQY, YBAR, RSQDENO, RSQNUM, RSQUARE
REAL*8 SUMGAMMA(N2), SQY, YBAR, RSQDENO, RSQNUM, RSQUARE
REAL*8 SUM, SUM2, SUM3
REAL*8 SUMRSQ, DENO, DNUM, DW, SUMDW
REAL*8 T_STAT1, T_STAT2
REAL*8 SUMT1, SUMT2
REAL*8 SIGMASQ, SUMSGSQ
SQY $=0.0$
DO $150 \mathrm{~K} 1=1,2$
DO $120 \mathrm{~K} 2=1,2$
$\mathrm{A}(\mathrm{K} 1, \mathrm{~K} 2)=0.0$
CONTINUE
$\mathrm{B}(\mathrm{K} 1)=0.0$
150 CONTINUE
*** OLS, R-SQUARE(DENOMINATOR), T-STATISTICS
DO $200 \mathrm{~L}=1, \mathrm{~N}$

$$
\mathrm{A}(1,2)=\mathrm{A}(1,2)+\mathrm{XT}(\mathrm{~L})
$$

$\mathrm{A}(2,2)=\mathrm{A}(2,2)+\mathrm{XT}(\mathrm{L}){ }^{* *} 2$
$\mathrm{B}(1)=\mathrm{B}(1)+\mathrm{Y}(\mathrm{L})$
$B(2)=B(2)+X T(L)^{*} Y(L)$
$S Q Y=S Q Y+Y(L) * Y(L)$
200 CONTINUE
$\mathrm{A}(1,1)=\mathrm{N}$
$\mathrm{A}(2,1)=\mathrm{A}(1,2)$
$\mathrm{YBAR}=\mathrm{B}(1) * \mathrm{~B}(1) / \mathrm{N}$
RSQDENO = SQY - YBAR
CALL INVMAT(AINV,A,2)

$$
\text { DO } 240 \cdot \mathrm{~L} 2=1, \mathrm{~N}
$$

$X X(L 2,1)=1.0$
$\mathrm{XX}(\mathrm{L} 2,2)=\mathrm{XT}(\mathrm{L} 2)$
240 CONTINUE
DO 280 MDAINV1 $=1,2$
SUM $=0.0$
DO 250 MDAINV2 $=1,2$
SUM = SUM + AINV(MDAINV1,MDAINV2)*B(MDAINV2)
250 CONTINUE
GAMMAHAT(MDAINV1) = SUM
280 CONTINUE
SUMGAMMA(1) = SUMGAMMA(1) + GAMMAHAT(1)
SUMGAMMA(2) $=$ SUMGAMMA(2) + GAMMAHAT(2)
*** RESIDUAL, R-SQUARE(NUMERATOR)
SUM3 $=0.0$
DO $320 \mathrm{M} 1=1, \mathrm{~N}$
SUM2 $=0.0$
DO $300 \mathrm{M} 2=1,2$
SUM2 = SUM2 + XX(M1,M2)*GAMMAHAT(M2)
300 CONTINUE
SUM3 $=$ SUM3 + Y (M1)*SUM2
RESID(M1) = Y(M1) - SUM2
320 CONTINUE
RSQNUM = SUM3 - YBAR
RSQUARE $=$ RSQNUM/RSQDENO
SUMRSQ = SUMRSQ + RSQUARE

```
*** DW, SIGMASUARE HAT
    DENO = 0.0
    DNUM = 0.0
    DO 350 M3 = 1, N-1
        DNUM = DNUM + (RESID(M3+1) - RESID(M3))**2
        DENO = DENO + RESID(M3+1)**2
    CONTINUE
    DENO = DENO + RESID(N)**2
    DW = DNUM/DENO
    SIGMASQ = DENO/(N-P-1)
    T_STAT1 = GAMMAHAT(1)/SQRT(AINV(1,1)*SIGMASQ)
    T STAT2 = GAMMAHAT(2)/SQRT(AINV(2,2)*SIGMASQ)
    SUMT1 = SUMT1 + T_STAT1
    SUMT2 = SUMT2 + T_STAT2
    SUMDW = SUMDW + DW
    SUMSGSQ = SUMSGSQ + SIGMASQ
    RETURN
    END
```

$\underset{* *}{*}$
SUBROUTINE INVMAT(AINV,A,N)
REAL*8 A(2,2), L(2,2), U(2,2)
REAL*8 AINV(2,2), UINV(2,2), LINV $(2,2)$
CALL LUDCOM(L,U,A,N)
DO $100 \mathrm{I}=1, \mathrm{~N}$
$100 \operatorname{LINV}(\mathrm{I}, \mathrm{I})=1.0$
DO $110 \mathrm{I}=1, \mathrm{~N}-1$
DO $110 \mathrm{~J}=\mathrm{I}+1, \mathrm{~N}$
$110 \operatorname{LINV}(\mathrm{I}, \mathrm{J})=0.0$
DO $130 \mathrm{~J}=1, \mathrm{~N}-1$
DO $130 \mathrm{I}=\mathrm{J}+1, \mathrm{~N}$
SUM $=0.0$
DO $120 \mathrm{~K}=\mathrm{J}+1$, $\mathrm{I}-1$
$\mathrm{SUM}=\mathrm{SUM}+\mathrm{L}(\mathrm{I}, \mathrm{K}) * \operatorname{LINV}(\mathrm{~K}, \mathrm{~J})$
$\operatorname{LINV}(\mathrm{I}, \mathrm{J})=-\mathrm{L}(\mathrm{I}, \mathrm{J})-\mathrm{SUM}$
130 CONTINUE
DO $140 \mathrm{I}=1, \mathrm{~N}$
$\operatorname{UINV}(\mathrm{I}, \mathrm{I})=1 / \mathrm{U}(\mathrm{I}, \mathrm{I})$
DO $150 \mathrm{~J}=1, \mathrm{~N}-1$
DO $150 \mathrm{I}=\mathrm{J}+1, \mathrm{~N}$
$150 \operatorname{UINV}(\mathrm{I}, \mathrm{J})=0.0$
DO $170 \mathrm{I}=\mathrm{N}-1,1,-1$

```
    DO 170 J=N, I+1, -1
        SUM = 0.0
        DO 160 K = I+1, J
    160 SUM = SUM + U(I,K)*UINV(K,J)
        UINV(I,J) = UINV (I,I)*(-SUM)
170 CONTINUE
    CALL PROMAT(AINV,UINV,LINV,N,N,N)
    RETURN
    END
*
    SUBROUTINE LUDCOM(L,U,A,N)
    REAL*8 L(2,2), U(2,2), A(2,2), WM(2,2)
    DO 100 K=1,N
    L}(\textrm{K},\textrm{K})=1.
    U(1,K)=A(1,K)
100 CONTINUE
    DO 150 I=2,N
    DO 120 J=1, I-1
        WM(I,J) = 0.0
        DO 110 M = 1, J-1
110 WM(I,J) = WM(I,J) + L(I,M)*U(M,J)
        L(I,J) = (A(I,J) - WM(I,J))/U(J,J)
120 CONTINUE
    DO 140 J=I,N
        WM(I,J) = 0.0
        DO 130 M = 1, I-1
1 3 0
                WM(I,J)=WM(I,J) + L(I,M)*U(M,J)
        U(I,J) = A(I,J) - WM(I,J)
            CONTINUE
        CONTINUE
    RETURN
    END
    SUBROUTINE PROMAT(C,A,B,N,L,M)
    REAL*8 C(2,2),A(2,2), B(2,2)
    DO 100 I = 1, N
        DO 100 J = 1,M
        C(I,J) = 0.0
        DO 100 K=1,L
        C}(\textrm{I},\textrm{J})=\textrm{C}(\textrm{I},\textrm{J})+\textrm{A}(\textrm{I},\textrm{K})*\textrm{B}(\textrm{K},\textrm{J}
        CONTINUE
    RETURN
    END
* END OF PROGRAM
```

* SPURIOUS REGRESSION: $\mathrm{K}=2, \mathrm{P}=2$ *

```
************************
* MAIN PROGRAM *
***********************
```


PROGRAM MAIN

PARAMETER(N=500, NUM=10000, N2=3)
IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 U(N), X(N), XT1(N), XT2(N), YT(N), Y(N)
REAL*8 XX(N,3), RESID(N), SUMGAMMA(N2)
EXTERNAL RNSET, RNNOA
ISEED1 $=13579$
*** GENERATE 2 DIFFERENT RANDOM NUMBERS.
CALL RNISD(ISEED1,ISEED2)
DO $300 \mathrm{I}=1$, NUM
CALL RNSET(ISEED1)
CALL DRNNOA(N,U)
CALL RNGET(ISEED1)
CALL RNSET(ISEED2)
CALL DRNNOA(N,X)
CALL RNGET(ISEED2)

> DO $100 \mathrm{~J}=1, \mathrm{~N}$
> SUM1 $=0.0$
> SUM2 $=0.0$
> DO $50 \mathrm{~K}=1, \mathrm{~J}$
> SUM1 $=$ SUM $1+\mathrm{X}(\mathrm{K})$
> SUM2 $=$ SUM2 $+\mathrm{U}(\mathrm{K})$

50 CONTINUE
XT1 (J) = SUM1
YT $(\mathrm{J})=$ SUM2
100 CONTINUE
$\mathrm{XT} 2(1)=\mathrm{X}(1)$
$\mathrm{XT} 2(2)=\mathrm{X}(1) * 2+\mathrm{X}(2)$
$Y(1)=U(1)$
$\mathrm{Y}(2)=\mathrm{U}(1) * 2+\mathrm{U}(2)$
DO $250 \mathrm{~J}=3$, N
SUM3 $=0.0$
SUM5 $=0.0$
DO $200 \mathrm{~K}=1$, J-2
SUM3 = SUM3 + XT1 (K)
SUM5 = SUM5 + YT(K)

```
200
250
```

 CALL GAMMA(N,N2,XT1,XT2,YT,Y,XX,RESID,SUMGAMMA,SUMRSQ,
 /
 300
CONTINUE
EPGAMMA1 = SUMGAMMA(1)/NUM
EPGAMMA2 $=$ SUMGAMMA(2)/NUM
EPGAMMA3 = SUMGAMMA(3)/NUM
EPRSQ = SUMRSQ/NUM
EPDW = SUMDW/NUM
EPSGSQ = SUMSGSQ/NUM
EPT1 = SUMT1/NUM
$\mathrm{EPT} 2=\mathrm{SUMT} 2 / \mathrm{NUM}$
EPT3 $=$ SUMT3/NUM
WRITE(*,*) EPGAMMA1, EPGAMMA2, EPGAMMA3
WRITE(*,*) EPT1, EPT2, EPT3
WRITE(*,*) EPRSQ, EPDW
WRITE(*,*) EPSGSQ
END

* SUBROUTINE 1 *

SUBROUTINE GAMMA(N,N2,XT1,XT2,YT,Y,XX,RESID,SUMGAMMA,
/
SUMRSQ,SUMDW,SUMSGSQ,SUMT1,SUMT2,SUMT3)
PARAMETER(MDA $=3$, MDAINV $=3, \mathrm{P}=2$)
REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA), YT(N)
REAL*8 XT1(N), XT2(N), XX(N,3), Y(N), GAMMAHAT(MDA), RESID(N)
REAL*8 SUMGAMMA(N2), SQY, YBAR, RSQDENO, RSQNUM, RSQUARE
REAL*8 DENO, DNUM, DW, SUMDW
REAL*8 SUM, SUM2, SUM3, SUMRSQ
REAL*8 T_STAT1, T_STAT2, T_STAT3
REAL*8 SUMT1, SUMT2, SUMT3
REAL*8 SIGMASQ
SQY $=0.0$
DO $150 \mathrm{~K} 1=1,3$
DO $120 \mathrm{~K} 2=1,3$
$\mathrm{A}(\mathrm{K} 1, \mathrm{~K} 2)=0.0$
120 CONTINUE

$\mathrm{B}(\mathrm{K} 1)=0.0$
 150 CONTINUE

*** OLS, R-SQUARE(DENOMINATOR), T-STATISTICS

$$
\text { DO } 200 \mathrm{~L}=1, \mathrm{~N}
$$

$$
\mathrm{A}(1,2)=\mathrm{A}(1,2)+\mathrm{XT} 1(\mathrm{~L})
$$

$$
\mathrm{A}(1,3)=\mathrm{A}(1,3)+\mathrm{XT} 2(\mathrm{~L})
$$

$$
\mathrm{A}(2,2)=\mathrm{A}(2,2)+\mathrm{XT} 1(\mathrm{~L})^{* *} 2
$$

$$
\mathrm{A}(2,3)=\mathrm{A}(2,3)+\mathrm{XT} 1(\mathrm{~L}) * \mathrm{XT} 2(\mathrm{~L})
$$

$$
\mathrm{A}(3,3)=\mathrm{A}(3,3)+\mathrm{XT} 2(\mathrm{~L})^{* * 2}
$$

$$
B(1)=B(1)+Y(L)
$$

$$
\mathrm{B}(2)=\mathrm{B}(2)+\mathrm{XT}(\mathrm{~L}) * \mathrm{Y}(\mathrm{~L})
$$

$$
\mathrm{B}(3)=\mathrm{B}(3)+\mathrm{XT} 2(\mathrm{~L}) * \mathrm{Y}(\mathrm{~L})
$$

$$
S Q Y=S Q Y+Y(L)^{*} Y(L)
$$

$\mathrm{A}(1,1)=\mathrm{N}$
$\mathrm{A}(2,1)=\mathrm{A}(1,2)$
$\mathrm{A}(3,1)=\mathrm{A}(1,3)$
$A(3,2)=A(2,3)$
$\mathrm{YBAR}=\mathrm{B}(1)^{*} \mathrm{~B}(1) / \mathrm{N}$
RSQDENO = SQY - YBAR
CALL INVMAT(AINV,A,3)

$$
\begin{array}{ll}
& \text { DO } 240 \mathrm{~L} 2=1, \mathrm{~N} \\
& \text { XX(L2,1) }=1.0 \\
& \text { XX(L2,2) }=\text { XT1(L2) } \\
& \text { XX(L2,3) }=\text { XT2(L2) } \\
240 \quad & \text { CONTINUE }
\end{array}
$$

DO 280 MDAINV1 $=1,3$
SUM $=0.0$
DO 250 MDAINV2 $=1,3$ SUM $=$ SUM + AINV(MDAINV1,MDAINV2)*B(MDAINV2)
250 CONTINUE GAMMAHAT(MDAINV1) $=$ SUM
280 CONTINUE
SUMGAMMA(1) = SUMGAMMA(1) + GAMMAHAT(1)
SUMGAMMA(2) = SUMGAMMA(2) + GAMMAHAT(2)
SUMGAMMA(3) = SUMGAMMA(3) + GAMMAHAT(3)
*** RESIDUAL, R-SQUARE(NUMERATOR)
SUM3 $=0.0$
DO $320 \mathrm{M} 1=1, \mathrm{~N}$
SUM2 $=0.0$
DO $300 \mathrm{M} 2=1,3$

```
        SUM2 = SUM2 + XX(M1,M2)*GAMMAHAT(M2)
300
        CONTINUE
        SUM3 = SUM3 + Y(M1)*SUM2
        RESID(M1) = Y(M1) - SUM2
320 CONTINUE
    RSQNUM = SUM3 - YBAR
    RSQUARE = RSQNUM/RSQDENO
    SUMRSQ = SUMRAQ + RSQUARE
*** DW, SIGMASUARE HAT
    DENO = 0.0
    DNUM = 0.0
    DO 350 M3 = 1, N-1
        DNUM = DNUM + (RESID(M3+1) - RESID(M3))**2
        DENO = DENO + RESID(M3+1)**2
350 CONTINUE
    DENO = DENO + RESID(N)**2
    DW = DNUM/DENO
    SIGMASQ = DENO/(N-P-1)
    T_STAT1 = GAMMAHAT(1)/SQRT(AINV(1,1)*SIGMASQ)
    T_STAT2 = GAMMAHAT(2)/SQRT(AINV(2,2)*SIGMASQ)
    T_STAT3 = GAMMAHAT(3)/SQRT(AINV(3,3)*SIGMASQ)
    SUMT1 = SUMT1 + T STAT1
    SUMT2 = SUMT2 + T_STAT2
    SUMT3 = SUMT3 + T_STAT3
    SUMDW = SUMDW + DW
    SUMSGSQ = SUMSGSQ + SIGMASQ
    RETURN
    END
```

* SUBROUTINE 2 *

SUBROUTINE INVMAT(AINV,A,N)
REAL*8 A(3,3), L(3,3), U(3,3)
REAL*8 AINV(3,3), UINV(3,3), LINV(3,3)
CALL LUDCOM(L,U,A,N)
DO $100 \mathrm{I}=1, \mathrm{~N}$
$100 \operatorname{LINV}(\mathrm{I}, \mathrm{I})=1.0$
DO $110 \mathrm{I}=1, \mathrm{~N}-1$
DO $110 \mathrm{~J}=\mathrm{I}+1, \mathrm{~N}$
$110 \operatorname{LINV}(\mathrm{I}, \mathrm{J})=0.0$
DO $130 \mathrm{~J}=1, \mathrm{~N}-1$
DO $130 \mathrm{I}=\mathrm{J}+1, \mathrm{~N}$
SUM $=0.0$

```
        DO 120 K = J+1, I-1
    120 SUM = SUM + L(I,K)*LINV(K,J)
        LINV(I,J) = -L(I,J)-SUM
    130 CONTINUE
    DO 140 I= 1,N
140 UINV(I,I)=1/U(I,I)
    DO 150 J=1,N-1
    DO 150 I = J+1,N
150 UTNV (I,J) = 0.0
    DO 170 I=N-1, 1, -1
    DO 170 J=N, I+1, -1
        SUM=0.0
        DO 160 K = I +1, J
160 SUM = SUM + U(I,K)*UINV(K,J)
        UINV(I,J) = UINV(I,I)*(-SUM)
170 CONTINUE
    CALL PROMAT(AINV,UINV,LINV,N,N,N)
    RETURN
    END
*
    SUBROUTINE LUDCOM(L,U,A,N)
    REAL*8 L(3,3), U(3,3), A(3,3), WM(3,3)
    DO 100 K=1,N
        L(K,K) = 1.0
        U(1,K)=A(1,K)
100 CONTINUE
    DO 150 I=2,N
    DO 120 J=1, I-1
        WM(I,J) = 0.0
        DO 110 M = 1, J-1
            WM(I,J) = WM(I,J) + L(I,M)*U(M,J)
        L}(\textrm{I},\textrm{J})=(\textrm{A}(\textrm{I},\textrm{J})-\textrm{WM}(\textrm{I},\textrm{J}))/\textrm{U}(\textrm{J},\textrm{J}
        CONTINUE
    DO 140 J=I,N
        WM(I,J) = 0.0
        DO 130 M = 1, I-1
            WM(I,J) = WM(I,J) + L(I,M)*U(M,J)
        U(I,J) = A(I,J) - WM(I,J)
            CONTINUE
        CONTINUE
        RETURN
    END
    SUBROUTINE PROMAT(C,A,B,N,L,M)
    REAL*8 C(3,3), A(3,3), B(3,3)
    DO 100 I = 1,N
```

[^0]
APPENDIX G

FORTRAN PROGRAM FOR
 MISSPECIFICATION
 OF A NONSTATIONARY AR(2) AND
 A POLYNOMIAL REGRESSION MODEL OF ORDER 2

```
***********************************************************************
* MISSPECIFICATION AR(2) AS POLYNOMIAL REGRESSION MODEL *
* OF ORDER 2.
```

* MAIN PROGRAM *

PROGRAM MAIN

PARAMETER(N=500, NUM=10000, N2=3)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 U(N), Y(N), X(N,3), RESID(N), UMBETA(N2)
EXTERNAL RNSET, RNNOA
ISEED $=13579$
CALL RNSET(ISEED)
DO $50 \mathrm{I}=1$, NUM
CALL RNNOA(N,U)
$\mathrm{Y}(1)=\mathrm{U}(1)$
$\mathrm{Y}(2)=2 * \mathrm{Y}(1)+\mathrm{U}(2)$
DO $10 \mathrm{~J}=3, \mathrm{~N}$
$\mathrm{Y}(\mathrm{J})=2 * \mathrm{Y}(\mathrm{J}-1)-\mathrm{Y}(\mathrm{J}-2)+\mathrm{U}(\mathrm{J})$
10 CONTINUE
CALL BETA(N,N2,X,Y,RESID,SUMBETA,SUMRSQ,SUMDW,
/ SIGMASQ,SUMT1,SUMT2,SUMT3)
50 CONTINUE
EPBETA1 = SUMBETA(1)/NUM
EPBETA2 $=$ SUMBETA(2)/NUM
EPBETA3 = SUMBETA(3)/NUM
EMPRSQ = SUMRSQ/NUM
EMPDW $=$ SUMDW/NUM
EMPSIGSQ = SUMSIGSQ/NUM
EMPT1 $=$ SUMT1/NUM
EMPT2 $=$ SUMT2/NUM
EMPT3 = SUMT3/NUM
WRITE(*,*) EPBETA1, EPBETA2, EPBETA3
WRITE(*,*) EMPT1, EMPT2, EMPT3
WRITE(*,*) EMPRSQ, EMPDW, EMPSIGSQ
END

* SUBROUTINE 1 *

SUBROUTINE BETA(N,N2,X,Y,RESID,SUMBETA,SUMRSQ,SUMDW,

```
                    SUMSIGSQ,SUMT1,SUMT2,SUMT3)
    PARAMETER(MDA=3, MDAINV=3, P=2)
    REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA)
    REAL*8 X(N,3), Y(N), BETAHAT(MDA), RESID(N), SQY
    REAL*8 RSQDENO, YBAR, SUM, SUM2, SUM3, RSQNUM, RSQUARE
    REAL*8 SUMBETA(N2), HAP, DENO, DNUM, DW, SIGMASQ
    REAL*8 T STAT1, T_STAT2, T_STAT3, SUMT1,SUMT2, SUMT3
    REAL*8 SUMRSQ, SUMDW, SUMSIGSQ
        SQY = 0.0
        DO 240 L2 = 1,N
        X(L2,1) = 1.0
        X(L2,2)=L2
        X(L2,3)=(L2*L2)/2
        CONTINUE
    DO 150 K1 = 1,3
        DO 120 K2 = 1,3
            A(K1,K2) = 0.0
        CONTINUE
        B(K1) = 0.0
    CONTINUE
*** OLS, R-SQUARE(DENOMINATOR), T-STATISTICS
\[
\begin{aligned}
& \mathrm{HAP}=0 \\
& \text { DO } 200 \mathrm{~L}=1, \mathrm{~N}
\end{aligned}
\]
\[
\mathrm{A}(1,1)=\mathrm{A}(1,1)+\mathrm{X}(\mathrm{~L}, 1) * \mathrm{X}(\mathrm{~L}, 1)
\]
\[
\mathrm{A}(1,2)=\mathrm{A}(1,2)+\mathrm{X}(\mathrm{~L}, 1) * \mathrm{X}(\mathrm{~L}, 2)
\]
\[
\mathrm{A}(1,3)=\mathrm{A}(1,3)+\mathrm{X}(\mathrm{~L}, 1) * \mathrm{X}(\mathrm{~L}, 3)
\]
\[
\mathrm{A}(2,2)=\mathrm{A}(2,2)+\mathrm{X}(\mathrm{~L}, 2) * \mathrm{X}(\mathrm{~L}, 2)
\]
\[
\mathrm{A}(2,3)=\mathrm{A}(2,3)+\mathrm{X}(\mathrm{~L}, 2)^{*} \mathrm{X}(\mathrm{~L}, 3)
\]
\[
\mathrm{A}(3,3)=\mathrm{A}(3,3)+\mathrm{X}(\mathrm{~L}, 3) * \mathrm{X}(\mathrm{~L}, 3)
\]
\[
\mathrm{B}(1)=\mathrm{B}(1)+\mathrm{X}(\mathrm{~L}, 1) * \mathrm{Y}(\mathrm{~L})
\]
\[
\mathrm{B}(2)=\mathrm{B}(2)+\mathrm{X}(\mathrm{~L}, 2) * \mathrm{Y}(\mathrm{~L})
\]
\[
\mathrm{B}(3)=\mathrm{B}(3)+\mathrm{X}(\mathrm{~L}, 3) * \mathrm{Y}(\mathrm{~L})
\]
\[
S Q Y=S Q Y+Y(L) * Y(L)
\]
\[
\mathrm{HAP}=\mathrm{HAP}+\mathrm{Y}(\mathrm{~L})
\]

\section*{CONTINUE}
```

$$
\begin{aligned}
& \mathrm{A}(2,1)=\mathrm{A}(1,2) \\
& \mathrm{A}(3,1)=\mathrm{A}(1,3) \\
& \mathrm{A}(3,2)=\mathrm{A}(2,3) \\
& \text { YBAR }=\mathrm{HAP} * * 2 / \mathrm{N} \\
& \text { RSQDENO }=\text { SQY }- \text { YBAR }
\end{aligned}
$$

```

CALL DLINRG(3,A,MDA,AINV,MDAINV)
DO 280 MDAINV1 \(=1,3\)
\[
\mathrm{SUM}=0.0
\]
```

 DO 250 MDAINV2 = 1,3
 SUM = SUM + AINV(MDAINV1,MDAINV2)*B(MDAINV2)
 CONTINUE
 BETAHAT(MDAINV1) = SUM
 280 CONTINUE
SUMBETA(1) = SUMBETA(1) + BETAHAT(1)
SUMBETA(2) = SUMBETA(2) + BETAHAT(2)
SUMBETA(3) = SUMBETA(3) + BETAHAT(3)
*** RESIDUAL, R-SQUARE(NUMERATOR)
SUM3 = 0.0
DO 320 M1 = 1,N
SUM2 = 0.0
DO 300 M2 = 1,3
SUM2 = SUM2 + X(M1,M2)*BETAHAT(M2)
300 CONTINUE
SUM3 = SUM3 + Y(M1)*SUM2
RESID(M1) = Y(M1) - SUM2
320 CONTINUE
RSQNUM = SUM3 - YBAR
RSQUARE = RSQNUM/RSQDENO
SUMRSQ = SUMRSQ + RSQUARE
*** DW, SIGMASUARE HAT
DENO = 0.0
DNUM = 0.0
DO 350 M3 = 1, N-1
DNUM = DNUM + (RESID(M3+1) - RESID(M3))**2
DENO = DENO + RESID(M3+1)**2
350 CONTINUE
DENO = DENO + RESID(N)**2
DW = DNUM/DENO
SIGMASQ = DENO/(N-P-1)
T_STAT1 = BETAHAT(1)/SQRT(AINV(1,1)*SIGMASQ)
T_STAT2 = BETAHAT(2)/SQRT(AINV(2,2)*SIGMASQ)
T_STAT3 = BETAHAT(3)/SQRT(AINV(3,3)*SIGMASQ)
SÜMT1 = SUMT1 + T_STAT1
SUMT2 = SUMT2 + T_STAT2
SUMT3 = SUMT3 + T_STAT3
SUMDW = SUMDW + DW
SUMSIGSQ = SUMSIGSQ + SIGMASQ
RETURN
END

* END OF PROGRAM

```
```

**

* MISSPECIFICATION OF POLYNOMIAL REGRESION MODEL OF ORDER 2 *
* AS AN AR(2) MODEL.

* MAIN PROGRAM *

```

\section*{PROGRAM MAIN}
```

PARAMETER($\mathrm{N}=250$, $\mathrm{NUM}=10000, \mathrm{~N} 2=3$)
IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 E(N), Y(N), X(N,3), RESID(N), SUMGAMMA(N2)
EXTERNAL RNSET, RNNOA
ISEED $=13579$
CALL RNSET(ISEED)
DO $50 \mathrm{I}=1, \mathrm{NUM}$
CALL RNNOA(N,E)
DO $10 \mathrm{~J}=1, \mathrm{~N}$
$\mathrm{Y}(\mathrm{J})=\mathrm{J}+\mathrm{J}^{*} \mathrm{~J} / 2+\mathrm{E}(\mathrm{J})$
10 CONTINUE
CALL GAMMA(N,N2,Y,X,RESID,SUMGAMMA,SUMRSQ,SUMDW, SUMSIGSQ,SUMT1,SUMT2,SUMT3)
50 CONTINUE
EPGAMMA1 = SUMGAMMA(1)/NUM
EPGAMMA2 = SUMGAMMA(2)/NUM
EPGAMMA3 = SUMGAMMA(3)/NUM
EPRSQ = SUMRSQ/NUM
EPDW = SUMDW/NUM
EPSIGSQ = SUMSIGSQ/NUM
EPT1 = SUMT1/NUM
EPT2 $=$ SUMT2/NUM
EPT3 = SUMT3/NUM
WRITE(*,*) EPGAMMA1, EPGAMMA2, EPGAMMA3
WRITE(*,*) EPT1, EPT2, EPT3
WRITE(*,*) EPRSQ, EPDW, EPSIGSQ
END

```

\section*{**********************}
```

* SUBROUTINE 1 *

```

SUBROUTINE GAMMA(N,N2,Y,X,RESID,SUMGAMMA,SUMRSQ,

PARAMETER(MDA \(=3\), MDAINV \(=3, \mathrm{P}=2\) )
REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA)
REAL*8 X(N,3), Y(N), GAMMAHAT(MDA), RESID(N), SQY, YBAR
REAL*8 SUMGAMMA(N2)
REAL*8 RSQDENO, RSQNUM, RSQUARE
REAL*8 SUM, SUM2, SUM3, DNUM, DENO, DW, SIGMASQ
REAL*8 T_STAT1, T_STAT2, T_STAT3
REAL*8 SUMT1, SUMT2, SUMT3
REAL*8 SUMDW, SUMSIGSQ
SQY \(=0.0\)
DO \(150 \mathrm{~K} 1=1,3\)
DO \(120 \mathrm{~K} 2=1,3\)
\(\mathrm{A}(\mathrm{K} 1, \mathrm{~K} 2)=0.0\)
\[
\mathrm{B}(\mathrm{~K} 1)=0.0
\]

CONTINUE
\[
\begin{aligned}
& X(1,1)=1.0 \\
& X(2,1)=1.0 \\
& X(1,2)=0.0 \\
& X(2,2)=Y(1) \\
& X(1,3)=0.0 \\
& X(2,3)=0.0 \\
& D O 180 \quad L 2=3, N \\
& X(L 2,1)=1.0 \\
& X(L 2,2)=Y(L 2-1)-Y(L 2-2) \\
& X(L 2,3)=Y(L 2-2)
\end{aligned}
\]
*** OLS, R-SQUARE(DENOMINATOR), T-STATISTICS
HAP \(=0.0\)
DO \(200 \mathrm{~L}=1, \mathrm{~N}\)
\(\mathrm{A}(1,1)=\mathrm{A}(1,1)+\mathrm{X}(\mathrm{L}, 1)^{* *} 2\)
\(\mathrm{A}(1,2)=\mathrm{A}(1,2)+\mathrm{X}(\mathrm{L}, 1) * \mathrm{X}(\mathrm{L}, 2)\)
\(\mathrm{A}(1,3)=\mathrm{A}(1,3)+\mathrm{X}(\mathrm{L}, 1) * \mathrm{X}(\mathrm{L}, 3)\)
\(\mathrm{A}(2,2)=\mathrm{A}(2,2)+\mathrm{X}(\mathrm{L}, 2)^{* *} 2\)
\(\mathrm{A}(2,3)=\mathrm{A}(2,3)+\mathrm{X}(\mathrm{L}, 2)^{*} \mathrm{X}(\mathrm{L}, 3)\)
\(\mathrm{A}(3,3)=\mathrm{A}(3,3)+\mathrm{X}(\mathrm{L}, 3)^{* *} 2\)
\(\mathrm{B}(1)=\mathrm{B}(1)+\mathrm{X}(\mathrm{L}, 1) * \mathrm{Y}(\mathrm{L})\)
\(\mathrm{B}(2)=\mathrm{B}(2)+\mathrm{X}(\mathrm{L}, 2) * \mathrm{Y}(\mathrm{L})\)
\(B(3)=B(3)+X(L, 3) * Y(L)\)
\(S Q Y=S Q Y+Y(L) * Y(L)\)
\(\mathrm{HAP}=\mathrm{HAP}+\mathrm{Y}(\mathrm{L})\)
200 CONTINUE
\(\mathrm{A}(2,1)=\mathrm{A}(1,2)\)
```

 A(3,1)=A(1,3)
 A(3,2)=A(2,3)
 YBAR = HAP**2/N
 RSQDENO = SQY - YBAR
 CALL INVMAT(AINV,A,3)
 DO 280 MDAINV1 = 1,3
 SUM = 0.0
 DO 250 MDAINV2=1,3
 SUM = SUM + AINV(MDAINV1,MDAINV2)*B(MDAINV2)
 250 CONTINUE
GAMMAHAT(MDAINV1) = SUM
280 CONTINUE
SUMGAMMA(1) = SUMGAMMA(1) + GAMMAHAT(1)
SUMGAMMA(2) = SUMGAMMA(2) + GAMMAHAT(2)
SUMGAMMA(3) = SUMGAMMA(3) + GAMMAHAT(3)
*** RESIDUAL, R-SQUARE(NUMERATOR)
SUM3 = 0.0
DO 320 M1 = 1,N
SUM2 = 0.0
DO 300 M2 = 1, 3
SUM2 = SUM2 + X(M1,M2)*GAMMAHAT(M2)
CONTINUE
SUM3 = SUM3 + Y(M1)*SUM2
RESID(M1) = Y(M1) - SUM2
CONTINUE
RSQNUM = SUM3 - YBAR
RSQUARE = RSQNUM/RSQDENO
SUMRSQ = SUMRSQ + RSQUARE
*** DW, SIGMASUARE HAT, T-STATISTICS
DENO = 0.0
DNUM = 0.0
DO 350 M3 = 1, N-1
DNUM = DNUM + (RESID(M3+1)-RESID(M3))**2
DENO = DENO + RESID(M3)**2
350 CONTINUE
DENO = DENO + RESID(N)**2
DW = DNUM/DENO
SIGMASQ = DENO/(N-P-1)
T_STAT1 = GAMMAHAT(1)/SQRT(AINV (1,1)*SIGMASQ)
T_STAT2 = GAMMAHAT(2)/SQRT(AINV (2,2)*SIGMASQ)
T_STAT3 = GAMMAHAT(3)/SQRT(AINV(3,3)*SIGMASQ)

```
```

SUMT1 = SUMT1 + T_STAT1
SUMT2 = SUMT2 + T_STAT2
SUMT3 = SUMT3 + T_STAT3
SUMDW = SUMDW + DW
SUMSIGSQ = SUMSIGSQ + SIGMASQ
RETURN
END

```
*******************
* SUBROUTINE 2 *
***********************

COMPUTE INVERSE OF A MATRIX.

\section*{SUBROUTINE INVMAT(AINV,A,N)}

REAL*8 A(3,3), L(3,3), U(3,3)
REAL*8 AINV(3,3), UINV(3,3), \(\operatorname{LINV}(3,3)\)
CALL LUDCOM(L,U,A,N)
DO \(100 \mathrm{I}=1, \mathrm{~N}\)
\(100 \operatorname{LINV}(\mathrm{I}, \mathrm{I})=1.0\)
DO \(110 \mathrm{I}=1, \mathrm{~N}-1\)
DO \(110 \mathrm{~J}=\mathrm{I}+1, \mathrm{~N}\)
\(110 \quad \operatorname{LINV}(\mathrm{I}, \mathrm{J})=0.0\)
DO \(130 \mathrm{~J}=1, \mathrm{~N}-1\)
DO \(130 \mathrm{I}=\mathrm{J}+1, \mathrm{~N}\) SUM \(=0.0\)
DO \(120 \mathrm{~K}=\mathrm{J}+1\), \(\mathrm{I}-1\)
\(120 \quad \mathrm{SUM}=\mathrm{SUM}+\mathrm{L}(\mathrm{I}, \mathrm{K}) * \operatorname{LINV}(\mathrm{~K}, \mathrm{~J})\) \(\operatorname{LINV}(\mathrm{I}, \mathrm{J})=-\mathrm{L}(\mathrm{I}, \mathrm{J})-\mathrm{SUM}\)
130 CONTINUE
DO \(140 \mathrm{I}=1, \mathrm{~N}\)
\(140 \operatorname{UINV}(\mathrm{I}, \mathrm{I})=1 / \mathrm{U}(\mathrm{I}, \mathrm{I})\)
DO \(150 \mathrm{~J}=1\), N-1
DO \(150 \mathrm{I}=\mathrm{J}+1, \mathrm{~N}\)
\(150 \operatorname{UINV}(\mathrm{I}, \mathrm{J})=0.0\)
DO \(170 \mathrm{I}=\mathrm{N}-1,1,-1\)
DO \(170 \mathrm{~J}=\mathrm{N}, \mathrm{I}+1,-1\)
SUM \(=0.0\)
DO \(160 \mathrm{~K}=\mathrm{I}+1\), J
\(160 \quad \mathrm{SUM}=\mathrm{SUM}+\mathrm{U}(\mathrm{I}, \mathrm{K}) * \mathrm{UINV}(\mathrm{K}, \mathrm{J})\)
\(\operatorname{UINV}(\mathrm{I}, \mathrm{J})=\mathrm{UINV}(\mathrm{I}, \mathrm{I}) *(-\mathrm{SUM})\)
170 CONTINUE
CALL PROMAT(AINV,UINV,LINV,N,N,N)
RETURN
END
```

 SUBROUTINE LUDCOM(L,U,A,N)
 REAL*8 L(3,3), U(3,3), A(3,3), WM(3,3)
 DO 100 K=1,N
 L}(\textrm{K},\textrm{K})=1.
 U(1,K) = A(1,K)
 100 CONTINUE
DO 150 I=2,N
DO 120 J=1, I-1
WM(I,J)}=0.
DO 110 M = 1, J-1
110 WM(I,J) = WM(I,J) + L(I,M)*U(M,J)
L(I,J) = (A(I,J)-WM(I,J))/U(J,J)
CONTINUE
DO 140 J=I, N
WM(I,J)=0.0
DO 130 M = 1, I-1
WM(I,J)=WM(I,J)+L(I,M)*U(M,J)
U(I,J) = A(I,J) - WM(I,J)
CONTINUE
CONTINUE
RETURN
END
SUBROUTINE PROMAT(C,A,B,N,L,M)
REAL*8 C(3,3), A(3,3), B(3,3)
DO 100 I = 1,N
DO 100 J=1,M
C(I,J)=0.0
DO 100 K=1,L
C(I,J)=C(I,J) + A(I,K)*B(K,J)
100 CONTINUE
RETURN
END

```
* END OF PROGRAM

\section*{APPENDIX H}

FORTRAN PROGRAM FOR
UNDERSPECIFICATION
OF
THE ORDER IN A NONSTATIONARY AR(2) MODEL AND POLYNOMIAL REGRESSION MODEL OF ORDER 2
```

**

* UNDERSPECIFICATION OF AR(2) AS AR(1)
**

```
***********************
* MAIN PROGRAM
***********************

\section*{PROGRAM MAIN}

PARAMETER(N = 250, NUM = 10000, N2 = 2)
IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 U(N), X(N), Y(N), XX(N,2), RESID(N), SUMGAMMA(N2)
EXTERNAL RNSET, RNNOA
ISEED = 13579
CALL RNSET(ISEED)
DO \(50 \mathrm{I}=1\), NUM CALL RNNOA(N,U)
\(\mathrm{Y}(1)=\mathrm{U}(1)\)
\(\mathrm{Y}(2)=2 * \mathrm{Y}(1)+\mathrm{U}(2)\)
DO \(10 \mathrm{~J}=3, \mathrm{~N}\)
\(\mathrm{Y}(\mathrm{J})=2 * \mathrm{Y}(\mathrm{J}-1)-\mathrm{Y}(\mathrm{J}-2)+\mathrm{U}(\mathrm{J})\)
CONTINUE
CALL GAMMA(N,N2,X,Y,XX,RESID,SUMGAMMA,SUMRSQ,

EPGAMMA1 = SUMGAMMA(1)/NUM
EPGAMMA2 = SUMGAMMA(2)/NUM
EMPRSQ = SUMRSQ/NUM
EMPDW = SUMDW/NUM
EMPSIGSQ = SUMSIGSQ/NUM
EMPT1 = SUMT1/NUM
\(\mathrm{EMPT} 2=\mathrm{SUMT} 2 / \mathrm{NUM}\)
WRITE(*,*) EPGAMMA1, EPGAMMA2
WRITE(*,*) EMPT1, EMPT2
WRITE(*,*) EMPRSQ, EMPDW, EMPSIGSQ
END

\section*{* SUBROUTINE *}
********************

SUBROUTINE GAMMA(N,N2,X,Y,XX,RESID,SUMGAMMA,SUMRSQ,
/ SUMDW,SUMSIGSQ,SUMT1,SUMT2)
PARAMETER(MDA=2, \(\mathrm{MDAINV}=2, \mathrm{P}=1\) )

REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV), B(MDA)
REAL*8 X(N), XX(N,2), Y(N), GAMMAHAT(MDA), RESID(N)
REAL*8 SUMGAMMA(N2), SQY, YBAR, RSQDENO, RSQNUM, RSQUARE
REAL*8 SUM, SUM2, SUM3, SUMRSQ, DENO, DNUM, DW, SIGMASQ
REAL*8 T_STAT1, T_STAT2, SUMT1, SUMT2, SUMDW, SUMSIGSQ
\(\mathrm{SQY}=0.0\)
\(\mathrm{XX}(1,1)=1.0\)
\(\mathrm{XX}(1,2)=0.0\)
DO \(240 \mathrm{~L} 2=2, \mathrm{~N}\)
\(\mathrm{XX}(\mathrm{L} 2,1)=1.0\)
\(X X(L 2,2)=Y(L 2-1)\)
CONTINUE
DO \(150 \mathrm{~K} 1=1,2\)
DO \(120 \mathrm{~K} 2=1,2\)
\(\mathrm{A}(\mathrm{K} 1, \mathrm{~K} 2)=0.0\)
CONTINUE
\(\mathrm{B}(\mathrm{K} 1)=0.0\)
CONTINUE
*** OLS, R-SQUARE(DENOMINAOR), T-STATISTICS
HAP \(=0.0\)
DO \(200 \mathrm{~L}=1\), N
\(\mathrm{A}(1,1)=\mathrm{A}(1,1)+\mathrm{XX}(\mathrm{L}, 1)^{* *} 2\)
\(\mathrm{A}(1,2)=\mathrm{A}(1,2)+\mathrm{XX}(\mathrm{L}, 1) * \mathrm{X}(\mathrm{L}, 2)\)
\(\mathrm{A}(2,2)=\mathrm{A}(2,2)+\mathrm{XX}(\mathrm{L}, 2)^{* *} 2\)
\(\mathrm{B}(1)=\mathrm{B}(1)+\mathrm{XX}(\mathrm{L}, 1)^{*} \mathrm{Y}(\mathrm{L})\)
\(\mathrm{B}(2)=\mathrm{B}(2)+\mathrm{XX}(\mathrm{L}, 2)^{*} \mathrm{Y}(\mathrm{L})\)
\(S Q Y=S Q Y+Y(L) * Y(L)\)
\(H A P=H A P+Y(L)\)
CONTINUE
\(\mathrm{A}(2,1)=\mathrm{A}(1,2)\)
\(\mathrm{YBAR}=\mathrm{HAP}^{* *} 2 / \mathrm{N}\)
RSQDENO \(=\) SQY - YBAR
CALL DLINRG(2,A,MDA,AINV,MDAINV)
DO 280 MDAINV1 \(=1,2\)
\(\mathrm{SUM}=0.0\)
DO 250 MDAINV2 \(=1,2\)
SUM = SUM + AINV(MDAINV1,MDAINV2)*B(MDAINV2)
CONTINUE
GAMMAHAT(MDAINV1) \(=\) SUM
280 CONTINUE
```

 SUMGAMMA(1) = SUMGAMMA(1) + GAMMAHAT(1)
 SUMGAMMA(2) = SUMGAMMA(2) + GAMMAHAT(2)
 *** RESIDUAL, R-SQUARE(NUMERATOR)
SUM3 $=0.0$
DO $320 \mathrm{M} 1=1, \mathrm{~N}$
SUM2 $=0.0$
DO $300 \mathrm{M} 2=1,2$
SUM2 = SUM2 + XX(M1,M2)*GAMMAHAT(M2)
CONTINUE
SUM3 $=$ SUM3 + Y(M1)*SUM2
$\operatorname{RESID}(\mathrm{M} 1)=\mathrm{Y}(\mathrm{M} 1)-$ SUM2
320 CONTINUE
RSQNUM = SUM3 - YBAR
RSQUARE = RSQNUM/RSQDENO
SUMRSQ = SUMRSQ + RSQUARE
*** DW, SIGMASUARE HAT
DENO $=0.0$
DNUM $=0.0$
DO $350 \mathrm{M} 3=1, \mathrm{~N}-1$
DNUM $=$ DNUM $+(\text { RESID }(M 3+1)-\operatorname{RESID}(\mathrm{M} 3))^{* *} 2$
DENO $=\mathrm{DENO}+\operatorname{RESID}(\mathrm{M} 3+1)^{* *} 2$
350 CONTINUE
$\mathrm{DENO}=\mathrm{DENO}+\mathrm{RESID}(\mathrm{N})^{* *} 2$
DW = DNUM/DENO
SIGMASQ = DENO/(N-P-1)
T_STAT1 $=$ GAMMAHAT(1)/SQRT(AINV $(1,1) *$ SIGMASQ)
T_STAT2 = GAMMAHAT(2)/SQRT(AINV(2,2)*SIGMASQ)
SUMT1 = SUMT1 + T_STAT1
SUMT2 = SUMT2 + T_STAT2
SUMDW $=$ SUMDW + DW
SUMSIGSQ = SUMSIGSQ + SIGMASQ
RETURN
END

```
* END OF PROGRAM
```

* UNDERSPECIFICATION OF POLYNOMIAL REGRESSION OF ORDER 2 *
* ORDER 2 AS POLYNOMIAL REGRESSION MODEL OF ORDER 1. *

* MAIN PROGRAM *

PROGRAM MAIN
PARAMETER(N=250, NUM=10000, N2=2)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 E(N), X(N), Y(N), XX(N,2), RESID(N), SUMBETA(N2)
EXTERNAL RNSET, RNNOA
ISEED = 13579
CALL RNSET(ISEED)
DO $50 \mathrm{I}=1$, NUM
CALL RNNOA(N,E)
DO $10 \mathrm{~J}=1, \mathrm{~N}$
$\mathrm{X}(\mathrm{J})=\mathrm{J}$
$\mathrm{Y}(\mathrm{J})=\mathrm{X}(\mathrm{J})+\mathrm{X}(\mathrm{J}) * \mathrm{X}(\mathrm{J}) / 2+\mathrm{E}(\mathrm{J})$
CONTINUE

```

\section*{CALL BETA(N,N2,X,Y,XX,RESID,SUMBETA,SUMRSQ,SUMDW,}
EMPBETA1 \(=\) SUMBETA(1)/NUM
EMPBETA2 = SUMBETA(2)/NUM
EMPRSQ = SUMRSQ/NUM
EMPDW = SUMDW/NUM
EMPSIGSQ = SUMSIGSQ/NUM
EMPT1 = SUMT1/NUM
EMPT2 \(=\) SUMT2/NUM
WRITE(*,*) EMPBETA1, EMPBETA2
WRITE(*,*) EMPT1, EMPT2
WRITE(*,*) EMPRSQ, EMPDW, EMPSIGSQ
END

SUBROUTINE BETA(N,N2,X,Y,XX,RESID,SUMBETA,SUMRSQ,
```

 /
 PARAMETER(MDA=2, MDAINV=2, P=1)
 REAL*8 A(MDA,MDA), AINV(MDAINV,MDAINV) ,B(MDA)
 REAL*8 X(N), XX(N,2), Y(N), BETAHAT(MDA), RESID(N)
 REAL*8 SUMBETA(N2)
 REAL*8 SQY, YAR, RSQDENO, SUM, SUM2, SUM3
 REAL*8 RSQNUM, RSQUARE, SUMRSQ, DENO, DNUM
 REAL*8 SIGMASQ, DW, SUMDW, SUMSIGSQ
 REAL*8 T_STAT1, T_STAT2, SUMT1, SUMT2
 SQY = 0.0
 DO 150 K1 = 1,2
 DO 120 K2 = 1,2
 A(K1,K2) =0.0
 CONTINUE
 B(K1) = 0.0
 CONTINUE
    ```
*** OLS, R-SQUARE(DENOMINATOR), T-STATISTICS
    DO \(200 \mathrm{~L}=1\), N
        \(\mathrm{A}(1,2)=\mathrm{A}(1,2)+\mathrm{X}(\mathrm{L})\)
        \(\mathrm{A}(2,2)=\mathrm{A}(2,2)+\mathrm{X}(\mathrm{L}){ }^{* *} 2\)
        \(\mathrm{B}(1)=\mathrm{B}(1)+\mathrm{Y}(\mathrm{L})\)
        \(\mathrm{B}(2)=\mathrm{B}(2)+\mathrm{X}(\mathrm{L}) * \mathrm{Y}(\mathrm{L})\)
        \(S Q Y=S Q Y+Y(L) * Y(L)\)
200 CONTINUE
    \(\mathrm{A}(1,1)=\mathrm{N}\)
    \(\mathrm{A}(2,1)=\mathrm{A}(1,2)\)
    \(\mathrm{YBAR}=\mathrm{B}(1)^{*} \mathrm{~B}(1) / \mathrm{N}\)
    RSQDENO = SQY - YBAR
    CALL DLINRG(2,A,MDA,AINV,MDAINV)
    DO \(240 \mathrm{~L} 2=1, \mathrm{~N}\)
        \(\mathrm{XX}(\mathrm{L} 2,1)=1.0\)
        \(X X(L 2,2)=\mathrm{L} 2\)
    CONTINUE
    DO 280 MDAINV1 \(=1,2\)
            SUM \(=0.0\)
        DO 250 MDAINV2 \(=1,2\)
            SUM = SUM + AINV(MDAINV1,MDAINV2)*B(MDAINV2)
        CONTINUE
        BETAHAT(MDAINV1) \(=\) SUM
    CONTINUE
    SUMBETA(1) = SUMBETA(1) + BETAHAT(1)
    SUMBETA(2) = SUMBETA(2) + BETAHAT(2)
```

*** RESIDUAL, R-SQUARE(NUMERATOR)
SUM3 $=0.0$
DO $320 \mathrm{M} 1=1, \mathrm{~N}$
SUM2 $=0.0$
DO $300 \mathrm{M} 2=1,2$
SUM2 = SUM2 + XX(M1,M2)*BETAHAT(M2)
300 CONTINUE
SUM3 $=$ SUM3 $+\mathrm{Y}(\mathrm{M} 1)^{*}$ SUM2
RESID(M1) $=\mathrm{Y}(\mathrm{M} 1)-$ SUM2
320 CONTINUE
RSQNUM = SUM3 - YBAR
RSQUARE $=$ RSQNUM/RSQDENO
SUMRSQ = SUMRSQ + RSQUARE

```
*** DW, SIGMASUARE HAT
        DENO \(=0.0\)
        DNUM \(=0.0\)
        DO \(350 \mathrm{M} 3=1, \mathrm{~N}-1\)
            DNUM \(=\mathrm{DNUM}+(\operatorname{RESID}(\mathrm{M} 3+1)-\operatorname{RESID}(\mathrm{M} 3))^{* *} 2\)
            \(\mathrm{DENO}=\mathrm{DENO}+\operatorname{RESID}(\mathrm{M} 3)^{* *} 2\)
350 CONTINUE
        \(\mathrm{DENO}=\mathrm{DENO}+\operatorname{RESID}(\mathrm{N})^{* *} 2\)
        DW = DNUM/DENO
        SIGMASQ = DENO/(N-P-1)
        T_STAT1 = BETAHAT(1)/SQRT(AINV(1,1)*SIGMASQ)
        T_STAT2 \(=\) BETAHAT(2)/SQRT(AINV \((2,2)^{*} \operatorname{SIGMASQ)~}\)
        SUMT1 = SUMT1 + T_STAT1
        SUMT2 = SUMT2 + T_STAT2
        SUMDW \(=\) SUMDW + DW
        SUMSIGSQ = SUMSIGSQ + SIGMASQ
        RETURN
        END
* END OF PROGRAM

DONG-BIN JEONG
Candidate for the Degree of
Doctor of Philosophy

Thesis: TESTING FOR A UNIT ROOT IN AN AR(p) SIGNAL OBSERVED WITH MA(q) NOISE AND MODEL MISSPECIFICATION

Major Field: Statistics
Biographical:
Personal Data: Born in Iksan, South Korea, August 11, 1967, the son of Dr. Jeong, Gab-Won and Kim, Won-Kyong.

Education: Graduated from Nam-Sung High school, Iksan, South Korea, in February 1985; received Bachelor of Science degree in Statistics from Chung-Ang University, Seoul, South Korea, in February 1989; received Master of Science degree at Chung-Ang University in August, 1991; completed requirements of the Doctor of Philosophy Degree at Oklahoma State University in December 1996.

Professional Experience: Teaching Assistant, Language Institute in ChungAng University, 1990-1991; Research Assistant, Statistics, Oklahoma State University, 1993; Teaching Assistant, Statistics, Oklahoma State University, 1993-1996.```


[^0]:    DO $100 \mathrm{~J}=1, \mathrm{M}$ $C(\mathrm{I}, \mathrm{J})=0.0$
    DO $100 \mathrm{~K}=1$, L $\mathrm{C}(\mathrm{I}, \mathrm{J})=\mathrm{C}(\mathrm{I}, \mathrm{J})+\mathrm{A}(\mathrm{I}, \mathrm{K})^{*} \mathrm{~B}(\mathrm{~K}, \mathrm{~J})$
    100 CONTINUE
    RETURN
    END

    * END OF PROGRAM

