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PREFACE

The past eleven years of my involvement in the field of voice
recogﬁition have seen enormous progress. As voice recognition systems have
moved from the laboratory to the real world, my own activities in this area
have pecome ever more market focused. To sustain the market for voice

|
recogljlition and other biometric security products, further technological

|
advan}ces must address the difficult problems presented by future security
appliéations. |

Voice verification is rapidly being incorporated into applications
involving telephone transactions. The security provided by these systems, and
the trust that is placed in them, is limited by their accuracy and by their

resistance to counterfeiting. Overcoming these problems will be a giant step

toward enabling secure electronic commerce. The confluence of computer

telephony, video teleconferencing, and network computing will provide
resourées that can be used to this end. Thié dissertation, and the concept of
multi-%nédia personal identity verification, was conceived with these ideas in
mind. |

- This work represents an extension of several years of research and
develoipment that was conducted in collaboration with my colleagues and

friends, Larry Bahler and Jack Porter. Larry invented the SQNN algorithm for

voice |recognition, and Jack developed a mathematical rationale to understand

its excellent performancé. Jack also contributed to the Appendix of this
dissertation. Without Jack and Larry, it is unlikely that this work would have

been started, much less completed.
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|
!The inspiration. to undertake a doctoral program after years of work in
|

indust:ry came from Dr. Joe Campbell, an OSU graduate who had been faced
with similar circumstances. Joe showed me that it was possible to overcome
the hurdles of returning to an academic environment.

The biggest hurdle was in moving to Stillwater, Oklahoma for two

semes;ters while completing my course work. Although my work there was

interes:ting and challenging, I found it quite difficult being separated from my

e | . . .
wife, Rebecca, and our two sons, Doug and Alex, who remained in San Diego.
|

The main burden of the move fell on Rebecca, who, in addition to maintaining

her dental practice, had to deal single-handedly with the logistics of schools,:
sportirilg events, music lessions, Boy Scouts and Cub Scouts, etc. I am grateful to
Rebecéa for giving me the opportunity to pursue my studies at OSU.

“ Finally, I thank Professor Yarlagadda, my thesis advisor, for his
encouiragement, help, and guidance. During my residence in Stillwater and

since \thcn, we have had many interesting and useful discussions, and it has
\
|

been a great pleasure working with Dr. Y.
;This work was supported in part by Sandia National Laboratories

|
(Contr!act #AM-3325) and by the U. S. Army Research Office (Contract

#DAAH04-95-1-0463).
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CHAPTER 1

INTRODUCTION

| The ongoing de-centralization of computer resources and information

raises!concerns about information privacy and security. Data that was once
physicjially protected in locked and guarded buildings is, in many cases, now
accessjible at remote sites through computer networks. It is commonplace, for
examp:ile, for business people to access proprietary corporatevdata from
airports, hotel rooms, or customer's facilities. The protections that are
typically in place are vulnerable to circumvention through stolen passwords
or other means. Personal Identity Verification (PIV) systems offer a possible
solutiozn. PIV systems use measured physical, or biometric, evidence to
establi%sh the authenticity of a person's claimed identity. We refer to the
personi making the claim as the user, and to the person whose identity is

claimed as the claimant. PIV tests the hypothesis that the user and the

claimant are one in the same.

1.1 Multi-Media Personal Identity Verification

fThe focus of this research is on the use of voice and facial image as
biometrics for personal identity verification. @ An advantage of these
" biometrics over others is that they can be applied conveniently in the type of
application described above. The feasibility of measuring and processing
voice §and facial images is increased by the recent availability of low-cost
multi-media computers incorporating audio, video, and digital signal

procesising capabilities. = We refer to the concept of using multiple biometric




attributes to authenticate a user's claimed identity as Multi-Media Personal

Identity Verification.

w 1.2 Overview of Dissertation

To provide a motivation for the work reported here, the history of PIV
methojds and applications was investigated. The results of this investigation
suppoirt the notion that providing information security over networks is a
logical direction in which to extend PIV technology. For reasons alluded to
above, voice and facial images are among the most promising biometrics for

this purpose. Considerable progress may be needed, however to develop PIV

algorithms that are sufficiently robust with respect to variations in equipment
and environmental conditions. Feature extraction and statistical decision
algorithms for voice and face data are critical elements of the envisioned PIV
system.

A literature survey was conducted to assess the state of the art in these
areas, among others. Numerous studies are cited involving either voice

verification or face verification, separately. The approaches applied to voice

verification are generally quite different from those applied to face
verification. 1In part, this is due to the fact that all reported work to date on
facé verification has been based on still images, which lack the temporal
dimel_ision associated with voice.

The recent success of Brunelli and Falavigna [1] in combining voice and
still ;facial images proves that voice and facial appearance carry separate
inforr‘lnation about the identity of the subject that can be mutually reinforcing.

Despite this success, facial movements and expressions remain a source of

errors, rather than a source of information, to systems restricted to processing

still images. It should therefore be possible to achieve better verification



accuracy using image sequences than still images. This conclusion is
supported by studies of human performance [2].

Verification using voice and image sequences poses interesting

theoretical problems. Both voice and facial appearance are influenced by
factor$ other than the identity of the subject. To this extent, they are
reasonably regarded as random, as opposed to deterministic, observations of

underlying attributes that characterize the subject. The decision to accept or

reject: the claimed identity is made with minimum error probability according

to Bayes' decision rule. Implementation of Bayes' decision rule requires

estimates for the likelihood of the observed feature vector sequence assuming

that the claim is true, and assuming that it is false. The likelihoods depend in
turn on the local probability densities at the observed feature vector points
under the same assumptions. Estimation of these densities is made difficult by
the h:igh dimensionalities of the feature‘ spaces an(i by the limited availability
of tra‘ining data. In some cases (e.g., facial iméges), feature space
dimenlsionality may actually exceed the number of available training samples.
iThe nearest-neighbor (NN) method is a well-known approach to
nonparametric density estimation. According to the NN method, the log of
local probability density is related through an affine transformation to the
log of Euclidean distance between the test sample and the nearest training
sampl%:. It is shown that the NN method fails in high-dimensional spaces.

i

Empinical investigations in cases of interest indicate that local log probability
densitiy is more closely related to the square  of nearest-neighbor distance
T

than to its logarithm. Estimation of density based on this conjectured relation

is reférred to here as SONN estimation. Analytic support for SQNN estimation is

provided for the special case of multivariate Gaussian densities.



PIV algorithms were developed for voice and facial image sequences,
separately. The algorithms differ in their methods of feature extraction, but

are otherwise identical. Both algorithms implement an approximation to

Bayes' decision rule incorporating SQNN estimation.
© An experimental database was collected in which subjects were filmed

usingi a camcorder while reading a set of short, prompted phrases. Each

subjec{:t was filmed on multiple occasions, providing sufficient data for
\
modeling and simulated verification. Both the audio and video data were

digitiz‘ed and stored in computer files. This data was used for development and

evalugtion of the PIV algorithms.

\
|
- Performance of the PIV algorithms was evaluated by simulating a large

number of verification trials in which the claimed identity was either valid or
invalid. Accuracy of the voice and face PIV algorithms was measured as a
functiion of the duration of the input data. These results demonstrate the

|
superiority of image sequences over still images. Given 10-second segments of

input| data, both algorithms accept at least 90% of valid claims while rejecting

all ill‘lvalid claims. Analysis of the false-rejection errors reveals that in most
cases; they occur when the test conditions differ in some obvious way from the
trainipg conditions used to model the subject. For example, the subject may
wear;glasses during a test session but not during training sessions. Similar
phenomena affect the voice data. It is argued that differences of this sort
invali}date the subject's model, and therefore the decision derived from it. No
examiples were found in the experimental database of sessions that were
simulltaneously anomalous with respect to both the voice and face models.
Therejfore, perfect verification performance is obtained by accepting the

identity claim if the data passes either the voice test or the face test, and

rejecting it otherwise.
|



1.3 Previous Work

This work extends previous studies by the author in collaboration with

others [3, 4] (see Acknowledgements). The voice PIV algorithm based on

"SQNN" estimation (to be defined later) is substantially the same as that

descrfbed in [4]. "INN" estimation was developed as an extension of the work of

Pettis, et. al [S]. One important step in the face PIV algorithm involves the use

a subject-independent face model proposed by Turk and Pentland [6].

1.4 Organization of Dissertation

Chapter 2 examines methods and applications of personal identity

verification. A historical perspective is taken, and the focus is on methods

that employ biometrics other -than voice and facial image. Chapter 3 surveys

the literature in the areas of voice and face verification, as well as date fusion

and protection of biometric data, two other key components of a multi-media

PIV system. In Chapter 4, the concept of operation of a multi-media PIV system

is presented. The approach to probabilistic modeling of individuals, including

defini?tion and rationalization of the SQNN estimation method, is presented in

Chapter 5. The experimental database is described in Chapter 6. Chapters 7 and

8 provide details of the voice and face PIV algorithms, respectively. Results of

applying the simulated PIV algorithms to the experimental database are

presented in Chapter 9. Conclusions of this work are given in Chapter 10.



CHAPTER 2
PIV METHODS AND APPLICATIONS

;It is said that there are three approaches to authenticating an
indivicéiual's claimed identity: "What you know, What you have, and What you
are". ! The first two approaches refer to the use of passwords and personal

tokens as discussed in Section 2.1. The third approach refers to biometric
verification, described in Section 2.2. In Sections 2.3, 2.4, and 2.5, applications
of PIV systems are divided into three broad categories: law enforcement,
physiqal access, and network access. Examples of each category are given and
the dijfferences between categories are presented. No attempt is made to
exhaustively catalog or differentiate specific applications. PIV technologies
appropriate for each category of application are described. Conclusions are

presented in Section 2.6.

2.1 Passwords and Personal Tokens

; Pagsswords and personal tokens such as credit cards are commonly used
as evidence of personal identity. Both are vulnerable to circumvention by
unauthorized individuals because their security hinges on the restricted
knowléedge or possession of some item. Computer break-ins to sensitive DOD,
DOE |and NASA facilities involving penetration of password PIV systems have
been widely publicized [7]. When passwords are computer-generated, they
tend jto be difficult to remember, adversely affecting user acceptability. When

users ‘select their own passwords, they favor words that are easy to remember

(and ifor hackers to guess). The pervasive use of fraudulent identification



items | (including credit cards, driver's licenses, etc.) is also well documented |
[8]. |Annual credit card losses attributed to fraud are estimated to be over one

percent of total credit card sales [9]. Because of these problems, there is a need

for biometric verification methods to be used in place of or in addition to
passwbrds and personal tokens. This research focuses on biometric

verification.

2.2 Biometric Verification

Password- and token-based PIV systems associate” with each user a

unique, discrete pattern that must be matched exactly for the claim to be

accepted. Biometric PIV systems, on the other hand, involve measurements of
humaril physical attributes that vary continuously over multiple dimensions.
Uncorjltrolled factors, including the subject's behavior, may influence these

|
attributes.  In addition, measurement errors of various types may be present.
|

Bertillon's system of "Anthropometric Indications”, published in 1889,
consis}s of a set of length measurements of the head and limbs that was used
for pbsitive identification of known criminals. An illustration of
measurement of the right ear, as prescribed by Bertillon [10], is shown in

Figure 1.2.




Figure 2.1: Example of a Biometric Measurement

Biometric verification requires each user to participate in one or more
enrollment sessions, in which normative measurements of the relevant
attributes are established. These measurements are used to form a model of
the user. Similar measurements, made later during verification sessions or
test sessions, are evaluated using the claimant's model to determine the wvalidity

of the claim.

23 Law Enforcement

Law enforcement applications of PIV involve use of evidence at a crime
scene to identify the perpetrator. The perpitrator is non-cooperative in
providing evidence and may actively seek to hide his identity. Evidence of
various types may be discovered through the efforts of a human investigator.
The initial stages of the investigation may use criteria such as motive, access,
etc. to reduce the search to a small number of suspects. For each suspect, the

hypothesis that the evidence was produced by that suspect is tested by the PIV



system. Processing time is not critically important. Ultimately, the strength

of evidence connecting the crime with the suspect is decided by a jury.

Types of evidence commonly involved in law enforcement applications
1
include witness identifications, fingerprints, and DNA present in human cells.

These| are described in the following sections.

2.3.1 Witness Identifications

Witness identification of suspects is routinely admitted as evidence in

|
court. The constitutionality of legal proceedings involving witness testimony

was qg:stablished in three landmark cases: United States v. Wade, Gilbert v.
Califiornia, and Stovall v. Denno. 1In all three cases, both visual and voice
information was used in identification [11]. - Under ideal conditions, visual
identification is considered more reliable than voice identification. Although
the ihformation content of visual and auditory media depends on factors such
as lighting and background noise levels, observers apparentlybdo not. modify
their idecision strategy based on these factors [12]. In simulated police lineups,
subjeéts are about 9 times more likely to be correct than incorrect [13], and
they !tend to be more accurate in rejecting non-targets than in affirmatively
identi;fying target individuals. It is generally reported that observers’
subje?ctive confidence in their decisions has little or no correlation with
objec}tive accuracy . Zavala [2] reports that the ac;:uracy of witnesses in
identi}:fying suspects is improved by the use of movie clips as opposed to still
phot'ographs.

Face recognition systems are currently in use and under continuing

development for mug-shot retrieval. The purpose of these systems is to rapidly
accesjs individuals in a database whose faces match a verbal description. In

FACI;ES (Facial Analysis Comparison and Elimination System) [14], used by the



British police force, a digitizing pad and stylus is used to locate 37 "cardinal

points" on a photograph of each known face. The locations of the points are

converted to a set of 21 linear and arca parameters. The values of these

parameters are used as coordinates into a space upon which each known face
is represented as one point. Verbal descriptions of the perpetrator are
conve:rted to numerical coordinates in this space. Goldstein, et al. [15] estimate
that zilbout 5.4 features must be accﬁrately known to specify one individual out
of a ipopulation of 256, and that the number of features required increases with
the l(%g of the populétion size. The main difficulty in these systems is that
witnegses rarely remember more than 3-4 features [15], and the features they

remember tend to be poor discriminators [16].

I
", ,
; Fin rints

~ Papilary ridges, or fingerprints, on the surface of the fingertips have
| .
been |used to identify individuals since the late 19th century. Fingerprints are

uniqul‘e to each individual, including identical twins, because they depend on

the c!haotic initial conditions of embryonic development. In 1901, fingerprint
matcﬁing was officially introduced at Scotland Yard using a classification
syster-jn developed by Sir Edward Richard Henry. The Henry System was adopted
by th?e FBI and other organizations, and remains in use throughout the world

today;.

i The Henry System classifies ten-print records into one of approximately

1000 |types [17]. When searching for a matching ten-print record, the search

is restricted to consider only file prints of the same type. Within each

finger‘print, a number of points are located (about 12 on average) where a

ridgegeither ends or bifurcates, becoming two ridges. These points are called

10



minutiae points. Matches within prints of the same type are established from
the relative positions of the minutiae points.

The most reliable method of locating minutiae points is by a human

examiper. A method in current practice for latent prints is the following [18].
The ;})rints are photographically enlarged using a 5:1 scale. Tracing paper is
placedj over the photograph, and the ridges are traced by hand. The origin of a
2-dim;:nsional coordinate system is established at the center of the outermost
joint ?t the end of the finger. A digitized image of the tracing is created and
storedi as a computer file. The examiner then enters the coordinates of the
minutjiae points using a digitizing tablet.

Automated methods have been developed for location and matching of

minut:ia points in ten-print records [19-21]. This technology was incorporated

into jthe FBI's Automated Fingerprint Identification System (AFIS), which

becam‘e operational in 1983 [22]. The use of AFIS is growing rapidly. It is

\
estimated [23] that by the year 2000, the FBI will process 61,000 fingerprint
checkfs per day against a file of 34 million prints. Manual editing is still
requir}ed for latent prints {24].

 The results of a search include a list of up to ten individuals whose file
printsi best match the unknown, and scores associated with the matches.
Scorefs range from 0 to 9999, higher scores generally indicating better
matclies. Scores are influenced by factors including the number of minutia
points and how tightly they are clustered. In the case of latent prints, scores

arc also influenced by the quality of the print and the alignment of the axes

used |as the reference for the minutia coordinates. Because of these factors,

score| values themselves are less indicative of the likelihood of a match than
\
differences between score values. The best quantitative evidence of a match is

a larée gap between the scores of the first and second candidates [18, 22].

i
; 11
i



In recent work, fingerprint technology has been applied to local
access| control applications (see Section 2.4). A fully-automatic fingerprint

based PIV system using an optical reader is described by Takeda et al. [25].

Other  recent work includes improved algorithms for minutia detection [26] and

improved measurement devices [27].

2 i DNA 1 ification

The hereditary characteristics  individuals are transmitted from
generation to generation by means of genes. Genes are represented
physif'ally bychromosomes, which are present within thc‘ nucleus of every
cell of the human body. Chromosomes are made up of. deoxyribonucleic acid,

or DNA, a complex organic molecule that contains a sequence of simpler

molecules called nucleotides. There are four different nucleotides, usually
abbreviated A, G, T, and C, which act as symbols in the genetic code. Parts of
the séqence of nucleotides on a chromosome, called extrons, are used to encode
the genes. Other parts, called introns, are long repeating sequences that may
occur at any point on the chromosome. Although introns are genetically
insignificant, their lengths (number of neucleotide sequence repetitions) are
uniqué to each individual, and are the basis of DNA identification [28].

DNA identification uses a process known as gel electrophoresis. In this
procesjs, a set of specific introns is extracted from the DNA sample and added to
a gel} placed between two eclectrodes. When electrical current flows between
the eilectrodes, the negatively charged DNA fragments migrate slowly toward
the positive electrode. Shorter molecules move more quickly through the
viscm}s gel than longer omes. The current is stopped before the migration is
compliete, and a radioactive probe is used to expose the positions of the |

molecules on a photographic plate. The resulting photograph shows a series

12




of bands along a "lane" between the two electrodes. Two or more DNA samples

can be compared by forming multiple lanes in a single gel electrophoresis

run. !
jThe accuracy of DNA identification depends on the particular introns

used in the process, and on the probability distributions of the lengths of these

intron§ in the general population. As an example, if ten introns are used and

\
each possible intron length is shared by ten percent of the population, the

probal!)ility of two randomly selected people having the same DNA signature
|
(assuming each intron is independent of the others) is 1 x 10-10, DNA

identi"fication requires a minimum of several weeks and is quite costly. For

this reason, it is only used in connection with very serious crimes.

24 Local Access Control

Local access control applications involve transactions that take place at
publici places such as commercial offices, kiosks, or point-of-sale terminals.
The q’IV equipment at each site is shared by many users. The equipment is
physic?:ally protected to minimize to the possibility of tampering. Verification
must ébe completed within a few seconds. Subjects are cooperative and there is
little ‘or mo human supervision. Examples include:

' Acc.ess control to rooms or buildings
« ATM Machines

* Credit Card Verification

. Electronic Benefits Transfer

¢ Ticketless Travel

' Biometric based PIV. systems for local access control were first
developed and tested in the 1970s [29, 30]. These stand-alone systems

incorporated microprocessors and were fully automated. A comparison of

13



various PIV systems for use in a local access control application was conducted

by Sandia Laboratories [31]. The results are shown in Table 2.1.

Hand Voice Voice Retinal Finger
Geometry (AT&T) (Voxtron) Scan Print
Verif}ir Attempts 1491 3206 2564 3082 3384
Imposter Attempts | 4055 3415 3795 5027 4849
\
Enroljlment Time 54 sec 18 sec 144 sec 126 sec 114 sec
Verif{cation Time |4.4 sec 8.8 sec 10.1 sec 7.5 sec 9.8 sec
False}j Rejections 0.9% 12.5% 17.0% 10.8% 9.1%
Fales Accepances | 0.4% 0.1% 0.6% 0% 0%

|
fTable 2.1: Comparison of PIV Systems (from Maxwell 1987)

The development of optically-based fingerprint readers (as opposed to
ink pfads) has enabled fingerprint technology (See Section 2.3.2) to be applied
to. pﬁysical access control applications. Electronic benefits transfer (EBT),
wheréby government benefits such as food stamps are dispensed
electrionically at poiﬁt-of—sale terminals, is an important current application.
A 19;95 study by the General Accounting Office concluded that "electronic
fingelfrprinting may be the most viable option for detering fraud in an EBT
envir(j)nment". The Federal EBT Task Force recommended that EBT with

|
f1nge‘rpr1nt1ng be used for all disbursements of social security, military

pensions, civil service retirement, food stamps, and Aid to Families with

|

Dependent Childeren by 1999. The total of these payments in 1994 was $433

billion, of which it is estimated that 10% was fradulent [32].
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2.4.1. Retinal Scan

Retinal identification of individuals is based on the pattern of blood

vessels in the subject's eye. According to a 1935 medical finding, no two
retinal‘l patterns are identical. The patterns are disrupted only by eye surgery
or serious eye injuries such as detached retina. Either or both eyes can be
used, | depending on the required accuracy. Retinal scanners have been
commercially available since 1985. To use a retinal scanner, the subject looks
into the eyepiece, which is similar to the eyepiece of a microscope. The

distance between the eye and the scanner must be very small. A weak

infrared light is directed through the pupil to the retina, and the reflected

pattern is observed using a CCD camera. The pattern is stored digitally using
about! 35 bytes. The retinal scan is one of the most accurate available
biometrics [33]. A scanner instrument, excluding supporting computer

equipment, costs about $3500.

2.4.2 Iris Scan

The iris, or colored part of the eye, has also been found to be a reliable
identifier of individuals. Viewed closely, the iris contains numerous features
such éas pits and striations. Like fingerprints, these details depend on the
initial conditions of embryonic development, and are therefore unique even
among identical twins. The principles and technology of personal
identification using iris features is patented by two opthamologists, L. Flom

|

and A. Safir [34], and described in [35]. The iris scan device is available

comnllercially, and can be used at a distance of up to 45 cm.
|
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2.4.3. Hand _Geometry

Hand geometry identification is based on the three-dimensional shape

of the subject's hand. Hand shape is a stable individual characteristic over

time, and the performance of hand geometry devices is reported to be
unaffe%cted by dirt or cuts on the hand. A hand geometry reader includes a
base jplate with metal alignment pins which guide the placement of the hand.
Simul‘taneous top- and side-view pictures are taken using a digital camera.
Featuries are extracted automatically, including hand height, finger length
and vjvidth, and distance between knuckles. These features are transformed

and ﬁompressed to form a 9-byte digital pattern. Enrollment for an individual
is acéomplished by averaging the 9-byte patterns from three readings. Equal-
error rates for hand geometry are now reportedly about 0.2 percent [33]. The

cost of a hand-geometry unit is about $2150.

2.5 Network Access Control

Network access control applications involve access to networked
comp#ter, data, or telecommunications resources by wusers throughout the
network.  The defining characteristic that differentiates network access
control from local access control applications is that the number of sites from
which users may be allowed access is unlimited. Users may provide their own
equipment, including the PIV measurement equipment. Economic
consiélerations dictate the that cost of this equipment be minimized. PIV
systems for network access control must be robust with respect to variations in

|
meas1}1rement equipment and wuser environments.

The use of biometric PIV methods for network access control is in the
early stages of development. An early example was the Sprint FONCARD, in

whicﬁ voice verification was used to control access to Sprint's long distance
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telephone network.  Other potential applications include home banking and

home| shopping.

The need for network access control is increasing rapidly, as networks
themselves increase in size. It is estimated that the number of internet

addres}ses doubles every nine months. At the same time, audio and video

capab{lities are becoming available at moderate cost for use in video

confe#encing. As these capabilities become "standard equipment” on future

persorﬁlal computers, it will be possible to obtain voice and facial image data
|

without added cost. The growing need for network access control, combined

with |affordable measurement hadware, create a powerful motivation for

development PIV algorithms based on voice and facial images.

2.6 Summary

Biometric technology has evolved since the time of Bertillon toward

becoming partially or fully automated. This evolution has enabled new

applications such as automated local access control. The biometrics most often
used for local access control - hand geometry, fingerprints, iris scans, and
retinal scans - all require specialized (and expensive) measurement

equipment. The cost of providing this equipment at every node of a network
makes these biometrics impractical for use in network access control. Audio
and video cababilities required for voice and facial-image PIV systems, on the
otherihand, arc becoming available at modest cost for use in video
confe?rencing. Normal human experience provides proof of the concept of
identi&ying individuals from their voices and faces. These observations

suggest that voice and facial image biometrics will become increasingly

important in the evolution of PIV systems toward network access control.
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CHAPTER 3
REVIEW OF RELEVANT LITERATURE

- This chapter reviews the literature in areas of specific relevance to
multi-jmedia PIV: voice verification, face verification, multi-media

i
verification, data fusion, and biometric data protection.

3.1 Voice Verification

iThe speech signal from a microphone is segmented .into a series of
contlg“uous 10-20 ms frames, and features related to the spectral shape within
each frame are extracted. The measured spectral shape is determined
primafily by tl.le instantaneous size and shape of the vocal tract, and is
therefiore characteristic of the speaker. Types of features include normalized
power§ spectra [36], cepstra [37], and various transforms of the impulse
respo;ise of linear prediction filters [38]. Typically, each frame is represented
by 101 to 20 features.

' A sequence of spectral features over time can be visualized by means of
a spejctrogram, in which the x axis represents time, the y axis represents
frequéncy, and the gray scale level represents power or intensity.
Spectrﬁograms (also called "voice prints") have been used for forensic
identification since about 1962 [39].

‘

% It is common for voice verification systems to prompt the user to speak
one or more phrases containing words from a small vocabulary. Data collected
in enjrollment sessions is used to create models for the vocabulary words.

During verification, the similarity of the observed speech data to the word
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models is evaluated by means of algorithms similar to those commonly used for
speech recognition. The word models allow temporal stretching and

compression to accommodate variability of speaking rate. These systems are

referred to as text dependent.

?Voice verification using unconstrained speech material is also possible.
In thi:s case, word modeling or other forms of linguistic modeling have
relatively little benefit, compared with purely acoustical modeling of the data.
Voicq! verification systems that handle unsconstrained speech material are
calledj text independent. Text dependent systems are generally capable of
higher verification accuracy than text independent systems. The advantage of

text dependent systems derives from comparing test and training data frames

i
which are time aligned with respect to articulation, or vocal tract

configuration.
3.1.1, Text-Dependent Approaches

Suppose the test speech signal, x(t), is known to contain a string of
words, W. Word remplates may be derived from the enrollment data and
concatenated together in the sequence W with restricted contraction or
dilation of the time scale to accommodate a range of speaking rates. Let F(t) be

a time scale warping function from a set @ of allowable functions, and let C(W,

F(1)) ibe the concatenation of templates in the sequence W using warping

function F(t). Define a measure of distortion, D(x, C(W,F(t)) between the input

data 'and the concatenated templates. The best time warping function is

| F*(t) = argmin D( x, C(W, F(©)) ) (3.1
Ftye ®

19



and the minimum distortion is given by D* = D( x, C(W, F*(t)) ). F*(t) and D*
can be computed by template matching methods, which employ an efficient
dynarr‘lic programming algorithm (40, 41]. |

| The above matching method was used by Doddington [29] in one of the
first v‘;working speaker verification systems. The identity claim was accepted if

the distortion D* was less than a threshold value. The concatenation of word

templates C(W,F*(t)) is equivalent to a phrase template. A weakness of

Doddington's method is that optimization of F(t) within the set @ does not allow

an a(:lequate diversity of pronunciations, particularly with respect to the
lc:ngth‘i of inter-word pauses. This leads to false rejections in cases where the:
system cannot distinguish pronunciation deviations from voice deviations.

Rosenberg (42], Furui [43] and others developed improved speaker
verification algorithms based -on a more flexible syntax-driven dynamic
programming procedure incorporating word templates (44, 45] as opposed to
phrascl: templates. The use of separate templates for the various words and
silenqe made these algorithms more robust with respect to pronunciation.
Another important advantage was that the amount of enrollment data required
was determined by the vocabulary size, as opposed to the number of possible
phra:Ses.

Furui also introduced the method of cepstral subtraction [37] to
compensate for linear channel distortions such as the frequency response of a
non-ideal microphone. He showed that convolution of the input signal is
equivialent to addition of a constant bias in the cepstral domain (assuming the

convolutive distortion does not contain spectral zeros). Therefore, if two

signals differ from one another only by a fixed linear distortion, their cepstral -

sequences can be made comparable by subtracting the long-term average
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cepstrum from each one. Cepstral subtraction is analogous to blind
deconvolution in the power spectrum domain [46].

Further improvements in text-dependent verification resulted from the
use of hidden Markov models (HMMs) [47, 48] rather than dynamic
programming as the basis for alignment and matching of the input speech
with voice models. Although the theory of hidden Markov modelling is out of
the scope of this work, there are sevéral excellent tutorials on the subject [49,
50]. |Template matching and HMMs have been compared in several studies [51-
53], and consistently better results have been reported for HMMs. A likely

explanation is that the probabalistic HMM training procedure produces more

stable| and robust word models than the deierministic procedure used for
templéate training.

The HMM algorithm provides an estimate of the speaker likelihood, or
the _cpnditional probability of the observations given the speaker model. Prior
to 19!91, the speaker likelihood was commonly used as the numerical criterion
for acceptance or rejection of the identity claim. Higgins et al [3] described a
systenil in which verification decivsions were based on a likelihood-ratio test of
the foérm shown in Equation 2.2. The demominator of the likelihood ratio, p(X |
~C), i)vas approximated using a group of enrolled users other than the claimant.
This |approximation requires matching the input speech with the voice models
of th(::SG other users as well as the claimant, thereby multiplying the required
comp1|1tation. The added computation is justified by reductions in error rates of
© 2-5 times, leading to widespread adoption of likelihood-ratio scoring methods

by other researchers [54-56].
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3.1.2. Text-Independent Approaches

One of the first automatic algorithms for text-independent speaker
recognition was reported by Pruzansky in 1963 [57]. In this study, the
information contained in digital spectograms of the reference and test
utterances was used as the basis of comparison between two speakers. The
most |important finding was that recognitipn accuracy remained essentially
unchanged when spectrogramé were averaged over time to form a single
long-term power spectrum per utterance. A similar result was reported by
Pfeife%r [58], in a study in which speakers were identified from handmarked
samples of five vowels. Performance was found to improve by pooling the

vowel samples, as opposed to maintaining separate statistical models of each

vowel. A likely explanation of this finding is that the vowel samples were
highl);l influenced by the phonetic contexts in which they occurred.

This explanation is supported by the findings of Paul, et al. [59],
involving a database of 250 speakers. Acoustic features were extracted from
thirteen phonetic categories (10 vowels and 3 nasals). Three methods of
selecting reference and test samples were compared. The first method, called
"context independent”, compared any two events that were of the same
phonejtic category. The second method, called "context dependent”, compared
two g:vents of the same phonetic category only if the second formants of the
adjacent phonemes were at similar frequencies. The third method, called "text
depenfdent", deemed two events comparable only if they occurred in the
identiical phonetic contexts. Speaker separability was found to increase

mono:tonically from context independent to text dependent across all phonetic
|

categories.
~ A recurring question in text-independent speaker verification is

whethier (and if so, how) linguistic modeling can be used to advantage. The

| 22



answer appears to be that linguistic modeling is useful to the extent that it

restricts comparisons between enrollment and test data to like phonetic events

- within the same context. A vast quantity of enrollment material must be
available to enable such comparisons. Phonetically-based approaches have
little %if any advantage over purely acoustic approaches when the text is not

knowﬁ [56, 60], except on very short test utterances. In this case, language

|
constrfaints provided by a large-vocabulary speech recognizer [61] have
proveh to be useful.

zFor longer unprompted utterances (30 seconds or more), good
perfofmance can be obtained using purely acoustical modelling. ~ Several
studie}s have investigated the use of acoustic models spanning several time
framés [62]. These models capturc feature trajectories, as opposed to
instantaneous features. They are capable of representing vocal gestures or
coarticulations that may be speaker specific.  Like context-dependent phonetic
modeﬂs, multiple-frame acoustic models require a very large amount of
enrollpent data. A way of incorporating trajectory information with less
impacit on enrollment requirements is to estimate the time derivative of the
spectrum at each frame, and augment the feature vector to include this
information [37].

| In the studies cited above by Pruzanski and Pfeifer, speakers were
comp%tred with one another based on Euclidean distances between their mean
vector}s . Markel and Davis [63] extended this approach to use a Mahalanobis,
or iniverse-covariance weighted Euclidean distance. Another method of
measuring distance between speakers [64] is based on the observation that
vector quantizers (VQs) can be strongly speaker dependent. In vector
qnantijzation, each speech frame to be quantized is replaced with the nearest

frame‘ in a "codebook" consisting of multiple frames. The frames belonging to
|
|
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a codebook are typically derived wusing a clustering procedure in which the
mean |[squared error in quantization of a set of training data is minimized.

When | new speech data is processed, the mean squared quantization error tends

to be lowest for the speaker whose training speech was used to create the VQ
codebook. Speaker identification methods that rely on measures of distance
betweén speakers are known as minimum-distance methods.

: In a study of various approaches to text-independent speaker
identif;ication, Schwartz et al [65] concluded that probabalistic approaches
(bothiparametric and nonparametric) are capable of superior performance to
minimium-distance approaches. The premise of probabalistic approaches is
that the sounds produced by speakers can be statistically described by stable
probal;ility density functions (PDFs), and that these PDFs provide a basis for
classiféying or testing hypbtheses concerning new speech data.

One of the most successful probabilistic approaches is based on the
multivariate Gaussian model. Gish and Schmidt {66] derive simple expressions
for thfe likelihood of speech data, given a Gaussian model PDF. Likelihoods are
compufted for a set of speakers including the claimant, and the likelihood ratio
of the claimant versus other speakers is estimated. A virtue of Gaussian models
is th%t relatively few independent parameters are employed, minimizing the
requir%:d size of the enrollment data. However, evidence that speech PDFs are
well épproximated as Gaussian has not been reported.
iAnothf:r parametric model used successfully for speaker verification is

the Gaussian mixture model (GMM). A GMM is a weighted sum of multivariate

Gaussian densities in which the weights sum to unity, ensuring that the

mixture is a proper density function. The parameters (means, covariance
matrices, and weights) of a GMM are estimated using the Estimate-Maximize

(EM) jalgorithm [67]. GMMs provide greater flexibility than Gaussian models to
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match| arbitrary PDFs, at the expehse of a larger number of free parameters.
Like ordinary Gaussian models, Gaussian mixture models may be used to
evaluate the likelihood of an observation being produced by a particular
speaker. This approach to speaker verification is described by Reynolds and
Rose i[68].

Nonparametric methods enable estimation of speaker likelihoods from a
given, body of enrollment data without recourse to any assumed parametric

family of PDFs. The nearest-neighbor method is a well known technique of

estimating density from a collection of sample points. Given N samples, the

nearest neighbor estimate of demsity p(x) at test point x is:

| 1
P = v (3.2)

wherci V is the volume of é spherical ball centered on x, and just enclosing the
frames of the model speaker's enrollment data as the N samples, and treating
each frame of the test vdata as an independent test point. One of the

conclusions of a speaker recognition study that considered this approach [65]
was that its effectiveness compared with parametric methods decreases with
the d;imensionality of the feature space. Higgins et al. [4] reported that a
modified form of nearest neighbor estimation gave better speaker recognition
perfor?mance than the conventional method. This finding and the reasons for
it wiill be further investigated herein.

| Text-independent systems are inherently more robust than text-

dependent systems with respect to non-linguistic or paralinguistic behaviors

such |as stuttering or hesitations and to non-speech sounds such as breathing

and background noises. This robustness, in addition to the high accuracy that
can be obtained with small vocabularies, make text-independent approaches
attracitive for the intended PIV application.
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3.2 Face Verification

Until recently, most quantitative investigations of facial recognition

has been based on profile measurements [69]. Sir Francis Galton measured the

relative positions of five cardinal points. These points were defined in terms

of facial features in a manner that would be considered unambiguous to most
i

observers. One point, for example, was defined as "the notch between the nose

and t!he upper lip". Individuals from the training set were selected as similar
if a11§ five measurements were within a pre-specified tolerance of the test
measﬁrements [70]. -A similar procedure using more measurements and an
improved deci}sion procedure was developed by Harmon et al. [71]. More
recentily, Wu and Huang [72] developed a fully automatic system using back-lit
photo?graphy that correctly recognized 17 out of 18 people. The approach of
chara‘éterizing individuals by the geometric relationships between a set of
cardi111a1 points continues to be used for both profile and frontal recognition,
and 1;s generally referred to as a feature-based  approach.

| In 1965, Preston reported using an optical computer to recognize faces
[73]. A coherent light source was directed into the device through a
photographic film upon which the input image was printed. Within the
optical computer, é second photographic film, called a "matched filter",
contaiined the faces of six kings arranged side by side in two rows of three.
Whené the input image matched oneb of the kings' faces, a bright spot of light
appeagred on the device's "output plane” at one of six locations corresponding
to th‘le arrangement of faces on the matched filter. It was shown that the

image on the output plane was the cross-correlation of the input image with

the rjnatched filter. The approach of characterizing individuals by a complete

image of the face is referred to as a wholistic or template-based appraoch.

26



Feature based approaches have the advantage of representing faces in a

simple and compact form, enabling rapid searching over large databases.

Template based approaches, on the other hand, have been found to be more

accurate [74], probably because they preserve facial details such as wrinkles,
scars,iI and unusual markings that are known to carry personal identity

information [2]. Feature-based and template-based approaches are discussed in

the following sections.

3.2.1 F re-B Appr hes

‘ One of the first automated systems for recognizing facial front views
was developed by Kanade [75]. The method is similar in principal to the mug-
shot retrieval method described previously in Section 2.3.1. Facial features
(analégous to "cardinal points") are located on. the- image, and parameters
derivéd from these features serve as indexes into a "face space". To locate
features on the image, edge detection is first performed using the Laplacian
operafor, and the image is quantized to binary intensity values. A set of
"inteéral projections” are computed on narrow horizontal slits at various
positiéons in the image. At each pixel along the length of the slit, the integral
projecé:tion is the number of 1's along the width of the slit. Heuristic
proce?dures are applied to locate facial features in the following sequential
order::j (1) top of head; (2) sides of face; (3) nose, mouth and bottom of chin; (4)
chin |contour; and (5) e.yes. The algorithm is iterative in the sense that feature
locations can be revised based on later computations. The final locations are
converted to a set of 13 ratios and angles that are invariant with respect to the

image scale. The face space is therefore 13 dimensional. Fifteen out of 20

people were correctly identified in a test of the system.

27




More recently, explicit geometric models have been used to locate facial
features. Govindaraju et al. reported an algorithm to automatically locate

faces [in newspaper photographs [76]. The outline of the face was modeled as a

closeq contour consisting of arcs for the hair-line and chin-line with
connecj:ting straight lines for the face sides. Candidate arcs and lines were
detect:ed using the generalized Hough transform [77]. These segments were
then Egrouped together to form candidate faces using an algorithm that is also
based‘i on the Hough transform. Candidate faces are pruned using spatial
constr%ints derived from the caption of the photo and heuristics of photo
journailism. A slightly different approach was taken by Yuille et al. [78]in
locatilglg eyes and mouths. They used simple geometric models involving 11
paramieters of the eye model and the 10 parameters of the mouth model. These
param!eters specified the location, size, shape and tilt of the model features
with respect to the image. The parameters were adjusted by a steepest descent
algorifthm to minimize an error function [79] of the image and the models.
Similzfir approaches have been reported by others [80] [81].
Emperically-determined shape models were used by Lanitis et al. [82].
These‘: models were created from a set of training examples, which consisted of
manually traced contours of eyes, nose, mouth, ears, and chin. The principal
modeé of variation of the shapes encountered in the training data were
determined statistically [83], and used to define a family of allowable shapes,
controlled by a small number of parameters. An algorithm similar to that of
Yuille, et al. was used to align the shapes with faces present in test images.

Having located a set of facial features using methods such as those

above‘, the problem remains of how this information may be used to recognize
indivi,‘duals. Kamel et al. [84] developed a transformation and matching

technique in which nine original feature locations were converted to a set of

!
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five invariant features to make the system robust with respect to viewing

angle., The extracted information was represented using a data structure

design’ed to enable efficient matching. In a test involving 84 test images with
varioufs viewing angles, 66% were correctly recognized. A test of a similar
system, which did not involve multiple viewing angles [85], resulted in 89%

correct recognition.

2.2, Template-B Approaches

: Baron [86] postulated that a cross-correlation mechanism like that of
Preston's optical computer exists within the human neuroanatomy and is used
in face recognition. According to this theory,‘ input images are rapidly
(nearliy instantaneously) compared with remembered facial images, or
templiates. He developed avcomputer simulation of the mechanism, which
included cross-correlation together with related "control networks" that
perfoﬁmed functions such as input scaling (to normalize the distance between
the éyes) and illumination level normavlization.

- Nakamura, et al. [87] applied a template-matching approach to a set of
two-dimensional contours, termed "iso-density maps”, which were derived

from ithe original image. An iso-density map is a set of one or more closed
| :
contours connecting points in a monochrome image that have the same level
!
of br?ightness. Each face was represented using eight iso-density maps

correéponding to different brightness levels. The maps for high brightness

levelsl were found to be most useful for discriminating between people, but also
|
were lmost affected by variations in viewing angle. The maps for low

bright!ness levels were more robust but less person specific. In a test

involving ten subjects, all faces were correctly recognized, but it was noted
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that tlhe algorithm is very sensitive to camera positioning and to the intensity,

positic}m, and color of the light source.

rA limitation of conventional template matching approaches is that they
do nojt accommodate the kind of facial movements that may be expected during
speecli, for example. Lades et al. [88] applied a rectangular grid to input
imageis, and modeled the local sub-images at the vertices of the grid. In
recogr{ﬁzing a test image, local template matching was performed at each grid
point,i and the grid was allowed to distort elastically in order to minimize a
globalj cost function. In a set of face verification tests involving 87 people
with ‘:variationsv in viewing angle and facial expressions, equal-error rates
rangix{g from 12% to 21% were reported.

Another épproach to handling facial image variability is to model the
modes of variabilty with respect to a long-term average image. Sirovich and
Kirby‘3 [89] applied principal component analysis to a set training faces. A set
of tre}iining images was analyzed to determine the mean image, ¥, and the
principal components, wuj,i<0 < L, of the covariance of the training images
about ¥. They showed that an arbitrary facial image, I", not belonging to the
training set could be approximated in terms of ¥ and a relatively small

number (e.g., 10) of principal components.  To do this, the deviation of T from

¥ is first computed as ¢ =" — . The projection, ¢f, of ¢ on the subspace
spanned by the ujis given by ¢f = Zmiui, where oj = ¢fTui. The synthesized
i i=1

approximation is: I'f= ¥ + ¢f. Turk and Pentland [6]described a method of
locating a face within a larger image by sliding a window over the original

image, and selecting the position of the window to minimize the error

function: ez(x,y) =1¢. ¢f|2. In the following, I'(x,y) denotes a subimage of I" of

dimensions equal to those of ¥ and uj, with upper-left corner at (x, y). The
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derivation of e(x,y) in terms of I'(x,y), ¥, and uj is repeated here because

several errors were contained in [6]. Dependence on (x, y) is suppessed.

2 =16 052 (3.3)
= (0 -0DT(0 -0p (34)
=0To- 0Tof - o1 (0 - 0f) (3.5)
=0To- oTor (3.6)
=0To - QoD ojui) 3.7)
=To - 20)12 (3.8)
Expanding the first term,
oTo=( . )Tr. v (3.9
| =rTr-29Tr+ ¢Ty ' (3.10)
|
Expan}ding the second term,
|
|
| Y 0i2 = Y 0Tuj)? | 3.11)
=Y (r-¥)Tuy)2 (3.12)
=Y (ruj-#Tuj)2 ' (3.13)

Combining the two terms, and making explicit the dependence on spacial
position:

L
20y =TTy - 29 Trey) + ¥Tw + D rxoyui - ¥Tui2  (3.14)
! i=1 '

i
}Principal components analysis efficiently represents variability among

faces,| without regard for discrimination between individuals. 1In an effort to
capture the most useful possible information for face recognition, Cheng, et al.
[90] proposed using linear discriminant functions similar to  Fisher's

|
discriminant function [91]. In an experiment involving 40 subjects, correct
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recognition rates ranged from 87.8% using 3 training images per subject to

96.3% using 27 training images per subject.
i
| Template matching approaches are inherently computation intensive.

Burt asserts that the cost of searching for a target over a range of scale factors

and orientations is proportional to the 6th power of the target dimensions [92].

i
To reiduce the computational cost, he proposes the use of image pyramids. The

low-plélss, or Gaussian pyramid is generated from the original image through a
sequexflce of steps, each involving low-pass filtering followed by sub-
samplgng. The band-pass, or Laplacian pyramid is formed as difference images
betwe;en successive levels of the Gaussian [93]. Laplacian pyramids are

i ,

potentfially useful in face verification because they enable each step of facial

| .
location and matching to occur at the appropriate level of spacial resolution.

5 3.3 Multiple Media

\

i Facial movements during speech are known to convey information that
can siubstitute for voice. In recognizing noisy speech, observers gain the
equivélent of 8-10 dB of signal-to-noise ratio by seeing the talker's face [94].
Petajén [95] developed a speaker-dependent visual word recognition
algorithm. Testing the algorithm on. digits pronounced in isolation, a correct
recoginition rate of about 95 percent was reported. The algorithm cannot
distinguish between words that differ in articulations that are not visible.
Further evidence of the redundancy of voice and facial movements with
respe;ét speech message content is provided by the "McGurk effect” [96]. As an
examiple of this phenomenon, observers presented with a videotape showing
articu!lation of the syllable "ba" together with the sound of the syllable "ga"

tend jto perceive "da". This is explained by the fact that articulation of /d/

occur;s at a point in the vocal tract that is physically between that of /b/ and
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/g/, representing a compromise between the conflicting sound and visual
cues.

The high correlation between speech sounds and mouth movements has

led to recent efforts in joint audio/visual speech recognition [97] and joint
audio/:visual encoding for teleconferencing [98].

| A PIV system using both voice and facial image data was recently
reported by Brunelli, et al [1, 99]. The voice component of the system is based
on vector quantization, and is similar to the system of Rosenberg and Soong

[100]._ The face component is similar to the feature-based system of Brunelli

and Poggio [74]. The voice and face scores for all known (modelled)

individuals were processed using a HyperBF neural network [101] to produce
the sc;ore of the integrated system. On a database of 33 subjects, the integrated
system achieved 100% accuracy, whereas the voice and image components
separalltely each achieved less than 95% accuracy.

|
! Testing the synchrony between speech sounds and mouth movements

would be a useful means of detecting possible counterfeiting in a PIV system.
Performing this test would of course require visual processing to be focused

on the mouth area. In a study of audio/visual speech recognition by human

listeners in a noisy environment, Le Goff et al. [102] found that about half the
information carried by viewing the speaker's natural face could be provided
by a model of the movement of the lips. About two thirds of the information

could. be provided either by the natural lips, or by a model of the combined

movement of the lips and jaw. Presumably, the remaining visual information

is carried by the tongue and teeth. Brooke [94] reported that "articulatory

excursions from a neutral facial position, in which the lips and jaw are lightly

closed, rarely if ever exceed 25 mm". Therefore, any test of lip



synchlronization requires that images be captured with sufficient resolution to
obser\Le these small movements.
i
|

A substantial body of literature addresses human performance at

identifying individuals from voice or face observations [2, 11-13].

Surprisingly, to the author's knowledge there have been no studies of human
identiification performance using both voice and face observations. One
interesting study, however, concerned the detection of deceit in interpersonal
comm?unications [103]. The best correlate of deceit was derived from a
combijnation of voice and facial features, and achieved 86% correct

!
classtlcatmn of deceiptful versus nondeceitful communications.

34 Data Fusion

. Combining multiple tests of the claimed identity is known to improve
security. For example, the procedure used in automated bank teller machines
proviées greater security than passwords or credit cards [104] because it
requir}es the user to possess a valid card and to know the corresponding PIN
number. The probability of unauthorized access is reduced by combining
independent tests of the claimed identity.

| Data fusion of biometric data can be accomplished at various stages of
the da%lta processing. Suppose we have N sources of data: X1, X2, ... XN, which
are p_%ssed through processors P1, P2, ... PN to produce processed data Y1, Y2, ..
YN, irespectively. All processed data are applied as inputs to fusion processor F,

as sh(i)wn in Figure 1.3. The output of F is an estimate of the likeihood ratio,
p(Yl,} Y2, .. YNIC)/p(Y1, Y2, .. YN I ~C).
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p(Y1, Y2,..¥n | C)

R =  ccecmeecee-e-
/]\ p(Y1, Y2,..YN I~C)
F

\& 11 LW
Y2
[
P1 P2 PN
roooh A
| X1 X2 XN

Figure " 3.1: Illustration of Data Fusion

- In the achitecture of Figure 3.1, each source is processed independently
of the other sources, defering possible consideration of correlation between
sources to F. The literature refers to various types of data fusion, which differ

in the nature of the processed data, Yj.

|
*/ Yij=2Xj. In this case, no processing is performed by Pj. The

measurements Xj are passed directly to F, where they are processed

jointly. This is refered to as measurement fusion.

e Yi=pXjl O /pXjl~C). In this case, each Pj estimates the likelihood
ratio of C relative to ~C based on its input data Xj. We refer to this case
as likelihood-ratio fusion.

1 if p(C | Xj) > p(~C I X})

o Yi= . . In this case, each Pj forms a decision
; 0 otherwise :

to accept or reject the claim based on its input data Xj. This case is

. refered to as decision fusion.

" In the case of measurement fusion, the data from all sources is fed

, directjy to F. F produces an estimate of the likelihood ratio, p(X1, X2, ... XN 1 C) /
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\
p(X1,} X2, ... XN | ~C), where the dimensionality of the observation space equals

the sum of the dimensionalities of the N sources. This approach preserves all

correl%ttion information. It is therefore potentially the best estimator [105]
and the one that requires most computation.

- Likelihood-ratio fusion is equivalent to measurement fusion if the
sourcés are mutually independent. In this case, by definition, p(X1, X2, ... XN |
C) = P(X1 | OP(X2 1 O)..P(XN | C). The fusion processor, F, simply multiplies

together the N likelihood ratio estimates.

N
R=][]vi (3.15)
i=1

If th¢ sources are not independent, likelihood-ratio fusion is suboptimal
becau;e it neglects to account for correlation between sources at the
measurement level.

Decision fusion methods were studied and developed in the 1980s to
enablé: military information systems to integrate multiple reports originating
from a distributed network of independent sensors [106-109]. A large number
of sensors were typically involved, and the bandwidth allowed for
comm;unication between the each local sensor and the central "decision post"
(equi\}alent to F) was assumed to be highly restricted. Optimal strategies for
setting the local decision thresholds and fusing the resulting decisions were
derivéd. Decision fusion is less accurate than likelihood-ratio fusion because
each %likelihood ratio is presented to F with a precision of only one bit.

; For multi-media PIV, ecither measurement fusion or likelihoc_)d-ratio
quiOI}l are appropriate, depending on whether the information sources are

|

considered to be independent. Decision fusion is not appropriate because

restriétions on bandwidth or representational precision do not apply.

36



3.5 Biometric Data Protection

|
x

‘ A practical requirement of biometric security devices is that some
means should be in place to insure that personal models are not forged or
modified between enrollment and access time. The opportunity for such

altera“tions may be greatest when personal models are transported from the
!
|
enrollment site to various access sites using telecommunications media or
personal tokens such as smart cards. The requirements for biometric data

protection are likely to include the following:

°j It must be possible to verify that a model belongs to the person who
| presents it or claims it (authenticity).
* It must be possible to detect any alterations of a model occurring after
enrollment (integrity).
. It may be desirable to keep the model data private to minimize the
potential advantage to impersonators (secrecy).
‘ In 1976, Diffie and Hellman proposed the principles of public-key
cryptiography, whereby secure communication can take place without any
transfer of secret keys [110]. Their method is based on one-way functions,
which are easy to compute and which have inverses that .are infeasible to
compﬁte. One-way functions for which computation of the inverse is made
feasible by knowledge of a key are called trap-door one-way functions.
Consi}der a family of encoding functions ‘E; and their inverse or decoding
functijons Dz, indexed by integer z, for which Y = Ez(X) and X = Dz(Y) can be
|

computed easily given z, but for which Dz(Y) is infeasible to compute
i

| . .
other\‘avme, even when E; is known.

A public-key cryptosystem providing secure communications to a

network of users works as follows. Each user, A, randomly chooses an integer
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|
z and: forms algorithms for computing EA and DA. He then publishes EA in a
public% directory and keeps z and DA secret. User A may send a secret message,
X, to?user B by retrieving EB from the public directory, forming Y = EB(X), and
transn-iitting Y to B. User B uses his private decoding algorithm DB to decrypt
Y.

Information authentication refers to methods of proving the identity of
the ojriginator of a message. Cryptographic methods are often used to
imple?ment authentication.  Secrecy and authentication, however, are
indepeizndent attributes [111]. Public-key cryptography can be used to create a
digita;l signature as follows: User A "signs" his message by applying his secret

algoriéthm, DA, to form S = DA(X). Anyone may decode S by applying EA,

availa:ble in the public directory. The decoded message, if intelligible, could

i

only pave been signed by User A because only User A knows DA. Also, since S
1

is a function of message X, any alteration of S will be render the decoded

messzige unintelligible. It is possible to simultaneously achieve secrecy and
autheptication by signing with DA and then encrypting with ER at the
transr?nitting end, and applying the inverse operations at the receiving end.
A theory of information authentication developed by G. Simmons [112]
dcfinc;:s an -authentication scheme by the set of messages the receiver will
i

|
accept as authentic and the set of messages the transmitter may transmit. The

probability of deception, Pg, is equal to the ratio of.the sizes of these two sets.

An essential feature of authentication is the presence of redundant

information known to the receiver. Encryption is used to spread the set of

acce%table messages in what appears to be a random manner among the set of
all pfossible messages. Simmons cites the example of a common military
communications protocol in which the transmitter and receiver have
matcljiing secret authenticator codes. The transmitter appends the

|
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authenticator code Z to the message and encrypts the resulting extended

message before transmitting. The receiver accepts the message as authentic if

Z is recovered after decryption. For an authenticator containing r bits chosen
at random, the probability of a random message being accepted is equal to 2°T.

This reasoning leads to the following lower bound on Pg:
log Pq > -H(Z), (3.16)

where} H(Z) is the entropy of the authenticator code. A tighter bound, derived
i

by Simmons, is:
log Pg 2 -I(Y ;Z) (3.1

whereﬁ I(Y ; Z) is the mutual information between the encrypted message Y and
the a%uthenticator code. This surprising result states that the probability of
decep‘tion can only be small when the encrypted message provides a large
amount of information about the key! This can be achieved by using a long
key. "

The algorithm proposed by Rivest, Shamir, and Adelman [113] is the
most thoroughly studied public-key cryptographic algorithm that remains
viable today. It is believed (but not proven) that the security of the RSA
algorithm is equivalent to the difficulty of factoring large numbers. The RSA
methdd is described in [114] as "the only well-known system discovered to date
whicﬂ is secure, practical and suitable for both secfecy and authentication". A
drawlTack of the RSA algorithm is that it is patented and subject to a licensing
fee b}y RSA Data Security, Inc. Alternatives to RSA include the public-domain

PGP ‘algorithm and the NSA/NIST Digital Signature Standard (DSS) algorithm

[115]:.
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Ordinary credit transactions are characterized by mutual distrust
between the merchant and the customer, but common trust in a third party

(e.g.,a bank or credit card company). The third party, or "issuer", may employ

the f(l)llowing methods, proposed by Simmons [112], to facilitate transactions
among a network of merchants and customers. Each customer reports to the
issuer. for measurement of biometric attributes such as voice and facial

featur!es. The customer is given a credential (possibly in the form of a "smart

! 3 . 3 Y . . - 3 .
card") containing his biometric information encrypted using the issuer's

secreﬂ key. The issuer's public key is made available to all merchants. When

the customer initiates a transaction, he presents his encrypted credential to
|

the mierchant. The merchant decrypts it using the issuer's public key. He
then .measures the customer's biometric attributes and compares them with
those; derived from the credential. If an acceptable match is obtained, he
conch‘ldes that: (1) the credential is authentic (endorsed by the issuer); and
(2) the customer's biometric data are consistent with the credential. This
procedure requires no communication between the merchant and the issuer at
the tiime of the transaction, and requires merchants to store only the public
keys of the various issuers.

Authentication of long messages requires a prohibitive amount of
computation [114]. To reduce computation, one-way hash functions of the
message can be used. A hash function converts a variable-length message X to
a fix%:d-length representation, H(X), sometimes referred to as a message digest.

The message digest is then signed, rather than the message itself. The signed

message digest, DA (H(X)), together with the original message, X, are jointly

|
encrypted to produce Y = EB(X, DA(H(X))). At the receiver, the hash function
of the recovered message X is compared with the recovered message digest. If

they are the same, the integrity of X is proved.
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\
1
l The Secure Hash Algorithm (SHA) developed by NIST [116] takes as input

messaiges of length up to 264 bits and produces a 160-bit message digest. Every
1

bit of} the message digest is a function of every bit of the input message. The

difﬁc{ﬂty of finding a message with a given digest is on the order of 2160
operations.

\ Biometric models created from voice and facial image features require a
large jnumber of bytes for their representation (on the order of 104 to 105
bytes)%. Coding and decoding these models using RSA or similar algorithms
wouldj incur unacceptable delays. Therefofe, the use of hash functions is
indicated. The system shown below includes both digital signature (with SHA)

and iencryption functions.

Biometric Data Biometric Data
‘ Y
! Compress- - Uncompress
|
| Hash Hash
Integrity
Check
Signature Encode Signat Decod
DA —P> (Two Key) ignature Decode j— EA

Y

Encrypt (Single Key) Decrypt

*

Cipher Data (Public)

Figu%re 3.2: System for Secure Transportation of Biometric Models.
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! An operational system based on the principles described above was

developed and tested by Sandia Laboratories for controlling access to a

plutonium reactor facility [30]. Biometric information consisted of the
subject's weight and hand geometry features. The RSA encryptién algorithm
was used, with a separate key pair for each employee. Encrypted data was
stored on a magnetic stripe on the employee's ID badge.

A recent survey of government applications of smart cards [117]
includ|es a large number of experimental programs related to personal identity
verificj:ation. Many of these programs appear to include or have future plans

\
to include biometric features and/or cryptographic data protection.

3.6 Summary

A substantial body of literature exists in various fields relevant to multi-
mediai PIV. Both voice and face PIV algorithms have been under development -
for nearly 20 years, resulting in numerous and d.iverse approaches. Face
verific;l:ation algorithms have used only still images, as opposed to image
éequehces. Very recently, a PIV algorithm was reported that combines voice
and still facial images, achieving better accuracy with the combination than
with ;either voice or face information alone. The use of facial image sequences
is a iogical extension of the current state of the art. Human performance
studies provide at least anecdotal evidence of the merit of this approach.

Fusion of multiple data sources can be performed at various levels, from

raw r;neasurments to fully processed binary decisions. In general, accuracy

increqses as data fusion is performed earlier in the processing. For

indep}endent sources, fusion can be performed at the likelihood-ratio level
\

without loss of accuracy.
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|
|
Cryptographic methods of data protection are available to insure the
integrity, authenticity, and privacy of biometric data as it is transported from
the nTeasurement site to a processing site or between processing sites at
differént locations. These methods will be needed to detect and prevent

subve‘rsion of the system by persons wishing to gain unauthorized access.
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‘ CHAPTER 4
MULTI-MEDIA PIV SYSTEM DESIGN

This chapter considers the design of a biometric PIV system for network
access control. The requirements of the system are specified and a concept of
operdtion is presented. Issues related to counterfeiting and methods of

preventing counterfeiting are discussed.

4.1 System Requirements

From the point of view of the authorized user, the primary
requfrements are that verification be performed quickly, unobtrusively, and
with‘low probability of rejection. From the point of view of the system
administrator, the primary requirement is low cost and low probability of
admiitting an unauthorized person. These requirements may be quantified as

follows [118, 119]:

e Access time: 10 seconds or less

- False rejection probability: 1 percent or less

False acceptance probability: application dependent
Cost:  no special-purpose biometric equipment needed

» Counterfeiting: simple attacks must be blocked.

: The requirement on false rejection probability is based on the tolerance
of vhlid users to being blocked from their intended activity. The 1% level is
com;ﬁarable with the probability of being blocked for other reasons such as a

mis-dialed telephone number or lack of an available communications circuit.
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The maximum tolerable false-acceptance probability depends on the value of

what |is being protected, and on the other (non-biometric) checks that may

also ﬁe in effect. For long-distance telephone access control, where the cost of
|

false acceptance is relatively low, a 10% level may be tolerable.

\
\ . - .
. The requirement on counterfeiting is also dependent on the application.

|
Countjerfeiting should be discouraged by making it sufficiently costly or time
consuining that it is not warranted. Forseeable attacks that could be

accoﬁplished simply should be prevented.

4.2 Concept of Operation

The concept of operation is as follows: The user logs in using the
normal procedure, establishing an identity claim. A live video picture of the
user's face is displayed on the CRT, and the user is asked to adjust his position
or th%lt of the camera so that the face appears entirely within the screen.
Whenj the system detects that a face is present, it prompts -the user to speak a
short,i randomly selected phrase. A decision to accept or reject the identity

claim is then made based on the available measurements.
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Video

Good evening,

Mr. Higgins.

Please say:
tl34 - 97"

Microphone

Figure 4.1: User's View of PIV System.

Equipment beyond a normal personal computer required for this
procedure consists of a video camera, microphone, and appropriate digitization
hardware. It is assumed that the sampled sound waveform and sampled image
data are available at resolutions and sampling rates typical of current
consumer-quality audio-visual equipment. It is also assumed that valid users
are cooperative in responding to prompts and in providing an environment
with adequate lighting and reasonably low background noise level.

To minimize the possibility of tampering, the PIV program is executed
using processing resources located within the network, as opposed to the
user's computer. As shown in Figure 4.2, biometric data collected at the user's
computer is transmitted to a processing resource P in the network. P then

locates and retrieves the user's model from a data storage resource, D. After
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perforiming the PIV processing, P allows or disallows the requested access to

Computer

occur.

P = Processing Resource

D = Data Storage Resource

Network

Figure 4.2: System Interaction with Network.

It would be possible tp circumvent this PIV procedure in either of twb
generziil ways. One ‘approach would be to substitute the imposter's model for
the ciaimed user's model at point D, or to interfere with the communication
between P and D in such a way that the imposter's model was received by P.
Data 'protection methods that address this possibility were discussed in Section
3.5. ;Another approach is to present counterfeit data to the PIV system. This
could; be done, for example, by substituting pre-recorded audio and video data

in place of the microphone and camera "live" inputs. Anti-counterfeiting

metho:ds addressing this possibility are presented in the following section.

4.3 Counterfeiting

|
\'
|
1 Conventional approaches to performance measurement employ subjects

who %behave cooperatively, using the PIV system in the intended manner.

Coopf;:ration by authorized users is rational because it increases the likelihood
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that t:he PIV device will recognize their identity and allow them to proceed
with jtheir business.  Unauthorized users, or impostors, however, might
reasoﬁably believe that access could more likely be obtained by employing a
counterfeiting strategy designed to exploit a perceived vulnerability of the
PIV s;ystem. For example, a person's voice could be counterfeited using a tape
recorder, or a facial image using a mask or photograph. Law enforcement
agencies have even reported cases iﬁvolving specially made rubber globes
with fingerprint patterns inscribed on the fingertips [120]. The possibility
that an imposter's biometric data might be made available to law enforcement
authorities provides further incentive for counterfeiting. Counterfeiting is
therefore a rational strategy for imposters. The possibility of counterfeiting
has been largely neglected in the literature. PIV systems should include

measures to detect and reject counterfeiting attempts.

4.4 Anti-Counterfeiting

The objective of anti-counterfeiting is to verify that the received audio
and video signals are "live", as opposed to pre-recorded or synthesized. This
can be accomplished by prompting the subject to speak randomly-chosen
phras¢s, and limiting the time permitted for the correct response [3].
Randémized prompting effectively defeats the threat of pre-recording if the a-
prioriz probability of having the needed response (roughly the reciprocal of
the Iiumber of possible phrases) is less than the false-acceptance rate. The
imposed time limit addresses the synthesizer threat. The proposed concept of
opera:tion is vulnerable to (future) synthesizers that are sufficiently fast and
accurgate. Even so, the imposter would have to go to considerable effort to

|
obtain data from the target user with which to train the synthesizer.
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! 4.5 Summary
|
|

!‘ A concept was presented for a multi-media PIV system to be used for
netwofrk access control applications. The system employs inexpensive audio
and video equipment of the type used for desktop video conferencing. It
prompts the user to speak randomly selected phrases, while capturing sound
and fljlll-motion video of the spoken response. The user is allowed access to the

proteclfted network resources if the observations are consistent with the

!
claimegd identity. Several system requirements were presented. The possibility
of counterfeit evidence being presented was discussed, and approaches to

detecting counterfeiting were described.
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CHAPTER 5

PROBABILISTIC MODELING OF INDIVIDUALS

- 51 Introduction

| This chapter describes the rationale for accepting or rejecting an
identfty claim based on the observed biometric measurements. We wish to
minimize the total probability of making an error, which occurs either when
a valid claim is rejected or when an invalid claim is accepted. This is
accomplished by accepting the claim if and only if it is more likely to be valid

than ;invalid given the observation. Evaluating the likelihood of the claim (or

the a;lternative, that the individual is someone other than the claimant) given
|
the o}bservation requires the use of individual models.

Both voice and facial appearance can be consciously influenced by the
subject. To this extent, they are reasonably regarded as random, as opposed to
deterministic, observations of underlying attributes that characterize the
subject. The subject may be considered to "emit” observation vectors
according to a multi-dimensional probability dehsity function (PDF). The true
PDF associated with an individual is not known in practice, but must be
estim?ted from a set of prior observations known as enrollment data. The

enrol‘lment data combined with the PDF estimation algorithm comprise the

indiviidual model.
The individual model is the key element of verification by which

observations at the frame level are converted to evidence of identity. Evidence
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may lf)e accumulated over the length of a verification session under the
assum;ption of mutually independent frames.

;The dimensionality (number of measurements per frame) of biometric
data 1s often greater than ten. The number of frames of enrollment data is
often on the order of 100 or less. Probability density estimation is problematic
under these conditions where the measurement space is sampled sparsely. Two
approaches to this problem are presented. A key factor in choosing between
the two approaches is the intrinsic dimensionality, or the minimum number

of independent parameters needed to specify a point in the space.

5.2 Acceptance Criterion

| Suppose we wish to test the validity of an identity claim, C, given

observation sequence X. Using Bayes' decision rule, C is accepted if and only if
pC1X) > p(CIX) (5.1

whcré p(C | X) is the posterior probability of C given X, and p( C | X) is the

posteiior probability of the alternative (that C is false) given X. Bayes'

decision rule minimizes the probability of making an incorrect decision [91].
Re-writing the posterior probabilities gives the rule

pX1C0) p(C) pXl O p(C)
p(X) p(X)

(5.2)

or
RX1C) p(C)
p(X1 C) “p(C)

(5.3)

whcrjc p(X | C) and p(X | C) are likelihood functions, and p(C) and p( C) are a-
prioﬁ probabilities of C and C. The ratio p(X | C) / p(X | C) is known as a

likelihood ratio function, and Equation 5.3 is a likelihood ratio test. The
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| _
quantilty p( C) / p(C) is a constant.  The decision rule of Equation 5.3 can also

be exilpressed in terms of the log likelihood ratio (LLR),
| pPX1C) _ p(T)
p(X1C) >1In p(C) ° 54

In

In practice, the prior probabilities p( C) and p(C) are unknown. It is
fherefore common to replace log(p( Q) / p(C)) with an experimentally
deterrinined threshold value, T.

Estimation of p(X | C) is difficult because of the conditioning on C, the
set of all individuals except C. A reasonable approximation to p(X | C) can be

derivéd as follows:

pXIT) = Y pX18p (5.5)
Sije C

= Z p(X 1S9 (5.6)
SieD
Si=C

~ max {pX 1S} 5.7
SieD "
: Si#C

where Sj is a particular individual, and D is a set of individuals known as a

cohort, for whom enrollment data is available. Equation 5.6 is valid if the
i

number if individuals included in D is sufficiently large. Equation 5.7 is valid
if the sum over Sje D in Equation 5.6 is dominated by one individual. The

LLRd;ecision rule of Equation 5.4 can now be approximated as
‘ Inp(X1C)- In max {(pX1S)} > T (5.8)
SieD
Si=C

or -
InpX1C)- max {lnpX IS} > T. 5.9

SieD
Si2C
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Suppose that X is an observed sequence of feature vectors xj, 0 <i< N,

|
over the length of an utterance. A further approximation is based on the

assumfption that the feature vectors xi comprising X are statistically

indcp‘bndcnt:
pX18) = []pxj!80, (5.10)
xjeX
or
In p(X 1 S)) = Y Inp(xj!Sj). (5.11)
xjeX

Combining Equations 5.9 and 5.11, the LLR decision rule becomes

Y In p(xj1C) - max{ Y Inp(xjISp} > T. (5.12)
xje X SieD xJ'eX
SizC

. The decision to accept or reject the claimed identity based on evidence X
theref{ore reduces to the problem of accurately estimating probability
densities at the test sample points, xj. This problem is addressed in the

following sections.

5.3 An Example: Height as Evidence of Identity

To illustrate estimation of the likelihood ratio, consider a simple PIV
system based on the user's measured height. Suppose the height of User X is
detcrrinined during enrollment to be Hyx = 71 inches. Suppose also that the
comﬁined effect of variability of X's height, measurement precision, and
varia;bility of shoe height introduce errors that are Gaussian distributed with
Z€eTo ;mean and a standard deviation of 0.5 inches (a simplification/ for the

purpdse of illustration). If a person claims to be User X and has measured

height H, the likelihood function, assuming the claim, C, is true, is:
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2
H|C) == exp( -2(H - Hx)?2
| p( N p( -2( X))
The likelihood function for ~C is the PDF of heights for all people except
X. &ssuming that the X has negligible effect on the PDF, p(H | ~C) may be

approkimated by the unconditional likelihood, p(H).
pH | ~C) = p(H)

The cumulative probab‘ility distribution, P(H), of heights of males between the
ages Qf 18 and 64 in the US is shown in Table 1.1 [121]. Differentiating to form

a density function,

_d
5 pH I ~C) = JH P(H).



| Height Cumulative
‘ (inches) Probability (%)
60 0.15

61 0.35

62 0.65

63 1.44

64 2.89

65 5.92

66 11.81

67 19.88

68 31.37

69 45.93

70 60.18

71 73.73

72 83.94

73 83.94

74 91.65

75 95.81
| 76 98.04
77 | 99.26

Table 5.1: Cumulative Height Distribution of Adult Males

The two likelihood functions, p(H | C) and p(H | ~C) , are shown in Figure

5.1. The LLR, log RE1C)

p(H1~C)’ is shown in Figure 5.2.
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Figure 5.1: Likelihood Functions for Hyx = 71.
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Figure 5.2: Log likelihood Ratio Function for Hyx = 71.

Determination of the LLR for height is relatively simple because: (1)

height is a scalar quantity as opposed to a vector; (2) intra-person variation in
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measujred height is mainly due to measurement errors and is therefore well
model%:d, independent of the identity claim; and (3) stable (adequately trained)
populétion statistics, p(H), are available. Biometrics such as voice and facial
images present the following problems:

o Feature vectors extracted from the measurements are high
dimensional. Therefore a very large number of measurements is
needed to obtain stable estimates of the required likelihood functions.

» Intra-person variance is significant. Its magnitude and principal
directions depend on the individual. —Multiple enrollment sessions are
needed to model this variance.

5.4 Probability Density Estimation for Densely Sampled
Populations

} The nature of the PDFs of speech and image feature vectors is not well
under%tood. This lack of understanding is at least partially due to the difficulty.
of cofllecting large enough data samples to reliably estimate density in spaces
of hiéh dimensionality. In particular, evidence that speech and facial image
features are well represented using known parametric distributions has not
been reported. It is therefore reasonable to look to non-parametric, as opposed
to pérametric, statistical methods as the basis for verificétion decisions.

The probability density at a test point x can be estimated by considering
a spherical ball of known volume, V, centered on x. The total probability mass
WithiI; the ball is equal to the probability density (assuming the density is
constafmt within the ball) times the volume of the ball, or p(x)*V. If N samples
are dfrawn at random from p, and k fall inside the ball, then the measured

relative frequency is equal to k/N. Equating these two probability estimates,

k
p(x)*V = N ©r p(x) = NISV (5.13)
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at random from the same Gaussian PDF. For each test sample, Figure 5.3 plots
the Euclidean distance from the test sample to the nearest of the 1000 training
samples versus the true log probability density at the test sample. The solid

curve is the log probability density estimate derived from Equation 5.16.

Log Probability Density

-10 T T T

08

o o o
Nearest-Neighbor Distance

Figure 5.3: Log Probability Density versus
Nearest-Neighbor Distance for N(0, 12).

The maximum log density attained by N(0, I2) is equal to -log(2n) or
-1.838.  Although actual log densities cannot exceed this value, the estimates
derived from Equation 5.16 do exceed it for sufficiently small values of nearest-
neighbor distance. Otherwise, Equation 5.16 provides an accurate model of the

observed data.

5.5 Probability Density Estimation for Sparsely Sampled
Populations

We are concerned in practice with feature spaces for which v 2 10. For

v=10, one thousand samples would provide an extremely sparse covering of the
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1
space,% invalidating Equations 5.14, 5.15 and 5.16. To cover a 10-dimensional
space?with the same average density as the 2-dimensional example above
would require roughly 1000102 = 1015 samples. Therefore, while N=1000 is a
large sample size for v=2, it is a small sample size for v=10. It is generally not
feasible to collect enough data to justify the use of Equation 5.16 for feature

spaces . of five or more dimensions.

Although the difficulty of estimating density in a high-dimensional
space: is increased by the relative sparseness of samples, the distance from the
test pjoint to the nearest sample (NN distance) remains the strongest data upon
whichi to base the estimation. To develop a method of estimating probability
densiﬁy that is valid for high-dimensional spaces, we further examine the
relatic;mship between local density and NN distance. In previous work [4], the

following relationship was conjectured:
In p(x) ~ & + B (ANN). (5.17)

where o and B are constants and (dNN)2 is the sQuared Euclidean distance from

test pfoint X to the nearest sample. In terms of the x and yi sample locations,

In p(x 1Y) =a+B minlk - yjl2. ‘ (5.18)

yjeY

Equation 5.18 relates local log density to squared NN distance (as opposed to log
NN ;distance) through an affine transformation. A Monte Carlo simulation was
COIldl;lCted in a manner similar to that described above in connection with
Figur?e 5.3. In this case, 1000 samples were selected at random from the 13-
dimer;i}sional Gaussian PDF N(0, I13). As before, nearest-neighbor distance is
plotte;d versus true log density at each test sample location. The log density

estimators derived from Equations 5.16 and 5.18 are plotted as solid curves.
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Figure 5.4 shows that Equation 5.18 provides a much better fit to the data than

does Equation 5.16.

Figure 5.4: Log Probability Density
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Now consider the problem of evaluating the log likelihood of a set X of

independent observation vectors xj being generated by the same PDF

underlying the set Y.

The conventional

Equation 5.16, is:

In pX1Y) =1n []pxjIY)
ijX
= Y Inp(xjlY)
ijX

(large sample size) nearest-neighbor estimate,

based

Inp(X1Y) = E -In(NVy) -v In minlxj - yil.

Xj€e X
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|
The s@all sample size estimate, based on Equation 5.18, is:

InpX1Y) = za + B minlxj - yjl2. (5.22)

ieY
xjeX yi

- Again, the accuracy of these equations can be checked using simulated
data with known PDFs. Suppose X and Y are generated from Gaussian PDFs,

N(mx,Cx) and N(my,CY), respectively. The true log likelihood, In p(X I my,Cy),

is gi\fen by:

In p(X 1 my,Cy) = 5“ In 2zCy!| -2‘1 Y i -my)T Cy-l(xi -my) (523)

XjEX
= 2 (I 2rCy! + &( Cy"1Cx) +(mx -my)T Cy-Limx - my)] (5.24)
where | | signifies the determinant. A set of experiments was conducted to

compare the true and estimated log likelihood values. For each data point, ‘1000
samplés of dimension v=13 were generated at random for Y using my =0 and
Cy =113, and another 1000 samples of dimension v=13 were generated at
random for X using mYX = (5, 8)T and CxX =113. Values of the displacement
parameter & were chosen in the range from 0 to 2.5 in increments of 0.02. A
scatte; plot of the true log likelihood from Equation 5.24 versus estimates from

Equations 5.21 and 5.22 is shown in Figure 5.5.
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Figure 5.5: Comparison of Log Likelihood
Estimators for N(0, 113).

‘ The values of a and B used in Equation 5.22 for this simulation were

derivéd as follows. The true log density at each sample point yj was evaluated

using the known parameters my and Cy

1 1
A = 321 In 2r -5 In ICy! -5 (vi - mY)T Cy~1(yi - my). (5.25)

The ;squared Euclidean distance di2 from each sample yi to its nearest neighbor
in Y (excluding itself) was determined as
diZ = minlyj - yii2. (5.26)

yjie Y
Yi#yi

The fconstants o and B were then chosen to minimize the squared error in the
equafion AMi=a+ P diz. This was accomplished by
di4 A - d12 diz?»i N diz?»i- di2 Aq

TNt a2 P Nt Qa2
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The values of o and B used in Figure 5.5 were o= -12.49 and B = -1.06. These

\

valuejs were determined as indicated above, using samples from the Y set only.
Figure 5.5 shows that the estimates derived from Equation 5.21 are

reasoﬁably accurate for d < 1, but overestimate the log likelihood outside this
range; As the PDFs move farther apart, test points and their nearest neighbors
often have significantly different densities, invalidating Equation 5.21.
Equation 5.22, however, remains acéurate over a larger range of displacements
of the PDFs.

The primary evidence cited iﬁ [4] in support Equation 5.17 was that a
voice} recognition algorithm based on Equation 5.22 gave dramatically higher
perfor%mance than one based on Equation 5.21. Two additional arguments are
the following. First, the density of the feature vectors under consideration is
assumed to have a finite upper bound, so that the negative log density has a
lower bound. However, nothing precludes arbitrarily small NN distances from
occurFing, particularly when the test point is in the vicinityv of the
distrit;ution mode. This effect can be seen in Figure 5.3. The logarithm of AN N
therefore has no lower bound, whereas (dNN)2 does. Second, when the test
point‘is distant from the distribution mode, the nearest sample is likely to be
much nearer to the mode, so that (ANN )2 will be roughly equal to the squared
distance from the test point to the mode. For quasi-Gaussian distributions, the
negative log density will then rise in proportion to (dNN)z.

| Investigation of the validity of Equation 5.17 using experimental data
wouldj be very difficult because of the intractably large number of samples
that \javould be required to accurately estimate the underlying density
functiions. It is possible, however, to determine the theoretical relationship

betwecn the expected value of log probability density and NN distance for

knowh (parametric) density functions. The function relating these quantities
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is de\j'eloped for normalized Gaussian PDFs in Appendix A. This function

approyj(imates a logarithm in the limit of large sample size and low
dimensionality, and a parabola in the limit of small sample size and high
dimensionality. The parabolic approximation appears to be valid in cases of

practical interest such as multi-media PIV.

5.6 Dimensionality Estimation

;Whether a given population is considered densely or sparsely sampled
depenjds on the number of samples observed and on the dimensionality of the
subspéce which they occupy. In the case of voice data, the nominal
dimen}sionality of the feature space is 16. However, it is well known that
nearly all the variance of voice feature vectors occurs within a subspace of
dimension less than 16. A conventional method of estimating the
dimenisionality of the subspace is to count the number of significant

eigen\ffalues of the feature vector covariance matrix. The dimensionality of

|
|
speeclil data determined in this manner is reported to be between 8 and 12.

:The above method overestimates true dimensionality when the observed
samples lie on curved, as opposed to linear, surfaces. Consider, for example, a
two dimensional space in which -all data samples lie on the unit circle. The
covariance matrix has two equal eigenvalues, indicating a dimensionality of
two. ‘However, the location of any data sample can be specified exactly using
only jone parameter vaiue. The true, or intrinsic, dimensionality is equal to
one 1n this case because data are distributed throughout the space with only
one djegree of freedom.

jIntrinsic dimensionality is important in nonparametric density

estimation because it governs the relation of test points to their nearest

neighbors.  Pettis, et. al [5] developed an intrinsic dimensionality estimator
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based on near-neighbor distances. Consider a set of samples, {xj}, 0 <i<n. Let

rk,i be the distance from sample xj to its kth nearest neighbor, and let Tk be
n

the aﬁzerage distance to the kth nearest neighbor, rk = nlzrki- Pettis shows
| i=1
that
_ kllan
E{ rx}=—"F="—" 5.28
{ k} Grd (5.28)
| k1/dr(x) 1%
wherei Gkd = and Cn=n—2[np(xi)Vd]'1/d. Taking logs in Equation

I"(k+'&) : i=1
5.28, 'and substituting rx in place of its expected value, E{ rk}, gives

In Gkg + In ;‘-k = ’(11' In k + In Cy. (5.29)

The term log Gkd is shown to be close to O for all k and d, and the term
log Cn is independent of k. Therefore a plot of In rk as a function of In k has
slope , equal to 1/d.  Pettis et. al estimate 1/d by performing a linear regression

1

of In|rk versus In k for 1 <k < K.

5.6.1. An Extension of the Method of Pettis, et. al

Suppose that two sets of samples are available: X = {xj},0 <i<n, and Y =
{yj},’0 < j<m. Redefine 1k,i as the distance from test sami)le xj to its kth
nearest neighbor among the set Y. Substituting rkj (rather than k) for

E{ ?i(} in Equation 5.28, and taking logs of both sides,

In Gkq +Inrgj = %ln k+Incj (5.30)
wheFe
1
¢i = [np(xj | Y)Vq1-1/d. (5.31)
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; The value of In ci can be obtained for each i, 0 < i< n, from the
approy?(imate solution to Equation 5.30 through linear regression. As before, a
plot of In rki as a function of In k has slope equal to 1/d. The additive term in
the re;,‘gression (which is not used by Pettis, et. al) is equal to In c¢ij. Taking logs

|
of Equation 5.31 and solving for In p(xj | Y),
Inp(xij 1Y) =-In(nVyg) - d In cj. (5.32)

Equation 5.32 is identical to Equation 5.15, but with ci substituted for r,
which in the notation of this section would be ri j. This result is reasonable,
since c¢j can be interpretted as an estimator of r] j. Figure 5.6 shows a blot of
In rkj as a function of In k for 1 <k <20 with the linear regression line
superimposed. These values of In rgj are for a randomly chosen frame of
voice data. The reciprocal of the slope of the line equals 5.6, the approximate
local dimensionality at the test point, xj. Note that the zero value on the

abscissa occurs at In k = 0, or k = 1. The additive term in the regression, cj, may

|
therefore be interpretted as a smoothed or interpolated estimate of r;,i.- We

therefore refer to density estimation by means of Equation 5.32 as the

interpolated nearest neighbor (INN) method.
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7.2

Linear Regression Line
Slope = 1/d

6.8 —

Ln ryg

6.6 =

6.4 % Intercept = In ¢

6.2

Ln k

Figure 5.6: Plot Showing Approximate Linear
Relationship of Ln rkj Versus Ln k, -With Slope
Equal To Reciprocal of Local Dimensionality.

3 Equation 5.32 has two advantages over Equation 5.15. First, the linear
interpjolation involved in the derivation of c¢i makes c¢i a less "noisy” indicator
of local density than rkj. Second, an estimate of the local dimensionality, d, at
each sample point xj is available as a bi-product of the computation of c¢i. This
estimate can be used in Equation 5.15, as opposed to the assumed constant value

of dimensionality that would normally be used in Equation 5.15.

5.7 Likelihood Ratio Estimation

+ Using Equation 5.17 as the estimator of local probability density, one
may evaluate the LLR of the claimant versus other individuals. Combining

Equatiions 5.12 and 5.18 gives the decision rule,
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E oC + BC min IXj-in2 - max { ok + Bk minlxj-yilz} > T,
vie YC SkeD 4 yvie Yk

Sk2Sc M€

xje X
(5.33)
where T is the acceptance threshold, SC is the claimant, Yk is the set of
enrollment frames belonging to individual Sk, and D is the set of individuals,
or "cohort", for whom enrollment data is available. The vectors Xj and yi
contaih pixel values within the 27x32 face boxes. - The subscripts attached to o
and B indicate that these constants are associated with the model PDFs. It is
assumjed that they do not vary as a function of the individual. If this is the
case, the values of o and B do not affect verification performance as measured
by the ROC curve. In the remainder of this report, we use the values o = 0 and B

=1.

5.8 Multiple Models Per Individual

| The decision rule represented by Equation 5.33 is based on the premise

that one PDF characterizes each individual. Suppose that subject Si posesses N
distinct states, wp 0<n<N, and that the likelihood function associated with the
combination of subject Sj and state wp is p(X | Si, wp) . Distinct voice states, for
example, might be assumed for "morning voice" and "afternooon voice". Facial
appearance states might be associated with the presence or absence of glasses
or hats. Further suppose that on any particular occasion, wjis selected at
random with probability p(wp). Then the likelihood function for subject Sj is:

N
p(X1Sp) = Y p(X | Si, @n) p(on). (5.34)
n=1

If p(a)j) is a uniform density, and if the sum is dominated by one term, then

Equation 5.34 may be approximated by:
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1

p(X 18 = max {p(X | Sj, wn)}. (5.35)

n

Combining Equation 5.9 and Equation 5.35 gives the LLR test,

max { In p(X |1 C, op)} - max { max { In p(X|Sj, o)} } > T. (5.36)
n SieD n
Si#C

Now combining Equations 5.22 and 5.36,

max { oC +BC min Ixj-yilz}

O<n<N yie YCn
xJ'eX '
- max { max { ok + Bx min Ixj -yilz} } > T, 5.37
SkeD O<n<N 4 yvi€ Ykn
Sk#SC xJeX

where Ykp is the set of feature vectors representing the nth model of Subject
Sk. In the experiments performed, Yk was the set of frames observed in the

nth enrollment session of Subject Sk.

59 Summary

The decision to accept or reject a claimed identity is reached according
to Béyes decision rule by determining whether the likelihood of the data given
the élaimcd identity iis greater or less than the likelihood given the alternative
(the prior probabilities being equal). The former likelihood is estimated using
the claimant's model. The later likelihood is estimated using models for a set of
individuals other than the claimant, called a cohort.

The individual model provides an estimate of local probability density at
any jsample point. The conventional nearest-neighbor density estimate, based
on agymptotic large-sample arguments, was shown to be appropriate for low-

dimensional feature spaces. Accurate likelihood estimation was demonstrated
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(using? Equation 5.21) for 1000-sample populations from known 2-dimensional
Gausséian PDFs.

;For problems involving small numbers of samples with high
dimensionality, the asymptotic arguments are not valid. Evidence was shown
that in some cases, the negative log of local probability density is more closely
related to the squared nearest-neighbor distance (SQNN) than to its logarithm.
An expression is developed in Appendix A for the conditional expectation of
local density given nearest-neighbor distance for normalized Gaussian PDFs.
This function approximates a logarithm in the limit of large sample size and
low dimensionality, and a parabola in the limit of small sample size and high
dimensionality.

The relevant measure of dimensionality is the intrinsic, or local
dimensionality, which is the minimum number of independent parameters
needed to specify the location of a point in the space occupied by the data. A
methojd of estimating intrinsic dimensionality was examined and modified to
provi(jle estimates of both dimensionality and probability density at any sample
point.' The density estimator resembles the conventional nearest-neighbor
estimator, but uses an interpolated nearest-neighbor distance (INN), which
takes into account the distances to the K nearest neighbors.

o Bayes' decision rule was formulated in terms of summations over time of
the estimated local log probability densities at the test sample points for both
the SQNN and INN estimators. These formulas were developed without
re_fere;nce to the type of data being observed. To proceed further with

|
development of PIV algorithms, closer attention must be given to the specifics

the next chapter, "front end" processes will be developed by which raw input

of voice and image sequence data. Using the experimental data described in
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data are converted to feature vectors. These data will then be used to test and

|
compare the performance of the SQNN and INN "back end" processes.
|
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CHAPTER 6

EXPERIMENTAL DATA

6.1 Introduction

A small experimental database was collected for the purpose of
develéping and testing multi-media PIV algorithms. Motion video and audio
recorciings were made of subjects reading from scripts on multiple occasions.
The éxperimental setup and the scripts were comparable to what might be

used in a practical application of multi-media PIV.

6.2 Equipment Setup

{ Recordings took place in a laboratory room at Oklahoma State
Unive?rsity. The room had ceiling-mounted flourescent lighting, and slight
noticable reververation due to absense of carpeting or sound-absorbant
furniture. No special measures were taken to control the lighting or sound
characteristics. ~ An illustration of the experimental setup is shown in Figure
6.1. :The subject was seated in a chair in front of a white projection screen. An
8§mm %camcorder was set up on a tripod about 8 feet in front of the subject. The

vertical position of the camcorder was adjusted separately for each subject to
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allow for differences in the subject's height.

o~

White Prompting

/ screen Script

& aF

I Approx. |
8 ft. 1
Figure 6.1: Illustration of Experimental Setup.

The camcorder was a Cannon model E250A with 6.7 - 80.4 mm autofocus

macro zoom lens. The zoom lens was adjusted separately for each subject. An

electret lapel microphone (Radio Shack model 33-3003), clipped to the subject's

shirt or coat, was used instead of the camcorder's built-in microphone. The

audio recording level was regulated automatically by an automatic gain

control with a time constant of about 10 seconds.
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| 6.3 Subjects

|

| Twelve subjects participated voluntarily in the experiment. They
consisted of OSU students (graduate and undergraduate), faculty, and staff. The
subject population was diversified with respect to sex, age, and country of

origin. The purpose of the experiment was explained to each subject.

6.4 Prompting

: The subject was asked to speak several phrases in a natural voice. The
phrases were prompted using a paper script that the experimenter held just

above the camcorder. The script is shown in Figure 6.2.

My name is ...

My social security number is ...
Today's date is ...

The time is ...

One, two, three, four, five, six, seven, eight, nine, ten

Figure 6.2: Script Used for Prompting Subjects.

Subjects were told that the exact choice of words to complete the phrases
was not important. For example, the date could be spoken as "November

second”, "the second of November”, or in any other normal way.

6.5 Initial Data Processing

~ After completing all recordings, the 8 mm video tape was dubbed to a
VHS 1format tape. Each session was then digitized to a separate movie file using
a Macintosh 7100 AV computer. Both the audio and video channels were

digitized. These steps are shown in Figure 6.3.
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Orijginal movies filmed 8 mm tape dubbed to Audio and video data

on 8 mm camcorder. VHS video cassette. digitized on Macintosh
7100 AV computer.

Figure 6.3: Initial Data Processing.

FusionRecorder™ version 1.1 was used to perform the digitization.
Resulting digitized movies were stored in Apple QuickTime™ format. For most
sessi(;ns, the original video recording included the subject sitting down,
clipping on the microphone, reading the prompts, and getting up to leave.
Only the portion of each sesion in which the subject was reading the prompts
was digitized. Therefore each digitized session started immediately with "My

name} is...", and ended with the digit sequence. The digitized portion of the
i .
session was not edited in any way. Relevant video and audio digitization

parameters are shown in Figure 6.4.

Video:

10 frames / second

160 (w) x 120 (h) pixels / frame

8 bits / pixel - grayscale

Cinepak compression - best quality
_ Audio:
‘ 22 kHz sampling

16 bits per sample, linear quantization

no compression

Figure 6.4: Video and Awudio Digitization Parameters.
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~ Video compression was used to enable the video image sequences to be
stored} on the available disk drive. Each image frame represents 160 x 120 =
19,200 pixels. Without compression, the video portion of a typical 20-second

movi¢ would require 3.8 megabytes, or

(1 byte/pixel) x (19200 pixels/frame) x (10 frames/sec ) x (20 seconds).

The audio portion requires 880 kilobytes, or

(2 bytes/sample) x (22000 samples/second) x (20 seconds).

The total requirement is therefore about 4.7 megabytes per movie.

| Using Cinepak video compression (an Apple proprietary compression
technﬂque), a 20-second movie requires 2.1 megabytes, of which about 1.2
megabytes are allocated to the video portion. This represents a video
compression ratio éf 3.3 to 1. Cinepak compression was chosen from several
alternative compression methods ‘because it produced no visible degradation of

the images.

6.6 Inventory of Sessions

A total of 48 sessions from 12 subjects were collected. The experiments
described in this report used only the first four sessions of those ten speakers
who had four or more sessions. In Table 6.1, subjects are identified by their

initials.

717



Subject | Number of Session
Sessions Numbers

MA 4 1-4
GB 1 -
BB 5 5-8
BC 4 9-12
KD 4 13-16
CF 5 17-20
DH 6 21-24
YL 4 25-28
RM 4 29-32
SR 4 33-36
GW 3 -
RY 4 37-40

Table 6.1: Inventory of Sessions by Subject.

‘ Data for subjects GB and GW were not used because they had less than

four sessions. To identify a particular session, we will use either the session

!
number or the notation XX-N, where XX is the subject's initials, and N is the

session number, ranging from 1 to 4. For example, KD-3 is the third session of

subject KD, or Session 15.

6.7 Subjective Observations

- The quality of all the digitized movies was sufficient to allow the
experimenter (who knew the subjects) to identify each subject immediately

from ‘F:ither the video or audio data.
1
| As noted previously, there was slight noticable reverberation in the

room.. Also, some variability in sound spectral balance was noticed from one

session to another, possibly due to variations in the placement of the lapel
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microphone.  The ceiling lighting caused some variation in facial
illumination, which was noticable when subjects looked up or down.

An example of one image frame from MA-1 is shown in Figure 6.5.

&

Figure 6.5: An Example Image Frame from MA-1.

The following observations were made with respect to subjects’

appearance and behavior:

1. BB wore glasses in BB-3, but not in the other sessions.

2. BB wore a hat in BB-2 and BB-3, but not in the other sessions.

3. BC wore a different hairstyle in BC-2 and BC-3 than in BC-1 and BC-4.
4. KD wore a hat in KD-1, but not in the other sessions.

5. SR scratched his head in SR-1.

6. SR touched his mouth and looked to the side in SR-2.

7. RY looked down at his watch in RY-2, RY-3, and RY-4.

6.8 Summary

The OSU database contains at least four sessions from each of ten
subjects. The data is reasonably well controlled in terms of camera and
microphone position, consistency of lighting, and background. Normal

variations in subjects' appearance and behavior are observed.
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CHAPTER 7

VOICE DATA FEATURE EXTRACTION

7.1 Introduction

This chapter describes the processing and analysis that was performed
to convert the sampled waveform sound input data to a sequence of feature
vector‘s to be used by the PIV "back end”. The sound data from the OSU database
was at first treated independently of the video data to develop a voice-only PIV
algorithm. Results of testing the voice-only PIV algorithm and the multi-

media PIV algorithm are presented in Chapter 9.

7.2 Voice-Only PIV Algorithm

Figure 7.1 is a data flow diagram showing the sequence of processing
steps involved in the voice-only PIV algorithm. Rectangles represent

processes (programs) , whereas circles represent data structures (disk files).

:’:’dl::) 9! preProcess

compareVoice

Figure 7.1: Data Flow Diagram of Voice Data Processing.
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i The voice algorithm is much simpler than the face PIV algorithm,
prima!rily because locating the speech portion of the audio signal is less
diffiCl;llt than locating the face portions of the image sequence. The input
signal% is first passed though a pre-processor, preProcess, which includes
severr:il operations described in Section 7.3. Comparison of voices from
different sessions is accomplished using the program compareVoices,
described in Section 7.4, which implements the LLR measure. Finally, the
score :files produced by compareVoices are processed by makeROC . MakeROC
convefts the log likelihoods to log likelihood ratios as described in Section 5.7
and hiandles multiple models per Subject as described in Section 5.8. The output

|

|
of ma!keROC is a Reciever Operating Characteristic (ROC), which is used to

measure verification accuracy.

7.3 Signal Processing
|
‘Pre-processing of the voice signal consists of four operations
performed in tandem:  spectral analysis, silence frame pruning, blind

[

deconvolution, and frequency differencing. These operations are described in

the following subsections.

1, ral _Analysis

:The electrical signal from the microphone was sampled at a rate of 22.0
kHz. : Initially, eight-bit linear quantization was used to conserve disk space.
This ;produced audible distortion and limited voice verification accuracy.
Thereti"ore, the data was re-digitized using 16-bit linear quantization as
indicaited in Table 3.4. Precemphasis filtering was applied in the form of simple

differéncing of consecutive samples, yj = Xj - Xj-1. This boosts high

frequencies at the rate of 6 dB per octave, reducing the spectral dynamic
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range% of the speech signal. The preemphasized signal was segmented into
overla{lpping frames, each containing 704 samples or 20.0 milliseconds.
Consecutive frames were offset by 440 samples or 32.0 milliseconds. Each 704-
samplé frame was multiplied by a Hamming window and padded with zeros to
1024 jsamples. Squared spectral magnitudes were computed from a 1024-sample
DFT. Dot products were then computed between these squared magnitudes and
the frequency responses of each of 16 bandpass filters. Dot product pij
measures the power at frame i within frequency band j.

- The filters were designed to cover the range of frequencies from 350 Hz
to SOQO Hz. Details of the filters are shown in Table 7.1. The specified low- and
high-frequency cutoffs are the frequencies at which filter response is down 3
dB relative to the center frequency. At frequencies below 1000 Hz, the filters
have a constant bandwidth of 150 Hz. Above 1000 Hz, they have a constant Q

factor (ratio of center frequency to bandwidth) of 6.0. This design is

consistent with studies of human perception indicating that perceived pitch of

tones |is proportional to frequency below 1000 Hz, and proportional to log

frequency above 1000 Hz [122].
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Filter Low-Freq. High-Freq. Center Bandwidth Filter Q

Number Cutoff (Hz) Cutoff (Hz) Freq. (Hz) (Hz) Factor
1 350 500 425 150 2.8
2 480 630 555 150 3.7
3 610 760 685 150 4.6
4 740 890 814 150 5.4
5 866 1024 945 157 6.0
6 1000 1183 1092 188 6.0
7 1155 1366 1261 210 6.0
8 1335 1578 1456 243 6.0
9 1542 1822 1682 280 6.0
10 1781 2105 1943 324 6.0
11 2058 2432 2245 374 6.0
12 2377 2809 2593 432 6.0
13 2745 3244 2995 499 6.0
14 3171 3748 3459 576 6.0
15 3663 4329 3996 666 6.0
16 4230 5000 4615 769 6.0

Table 7.1: Filterbank Design Data

- The power in each filter "channel” was processed using a nonlinear

compréssion function. Following Olano [36], the fourth root was used instead
of the more traditional logarithm to avoid the extreme sensitivity of the log
function at very low power levels. The resulting 16-element vector, (q1, q2, ...,

q16)Tj, was L) normalized, so that the sum of its squared elements equals a

constant value (1.0) across all frames. This was accomplished as follows:

NS
aj =| g (7.1)

2 Pik

k=1
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The tfotal log power within the 350 - 5000 Hz band was computed each frame as:

16
Pj = log ) pij (1.2)
=1

7.3.2, Silence Frame Pruning

Silence frame pruning was performed as follows. A histogram was
computed of the log power of all frames of the input signal. A silence
threshold was set equal to the 10 percentile of this histogram plus 6 dB. All
input frames with log power exceeding the silence threshol‘d were retained,
whileiothers were discarded. This algorithm assumes that the dynamic range

of "silence" is 6 dB.

7.3.3. Blind Deconvolution

Blind deconvolution is a method of compensating for the unknown
frequeﬁcy response of the input channel [123]. Although the same
microphone and eclectronics were used in all sessions, the frequency response
of the microphone depends on its location and orientation relative to the
subject’'s mouth, and whether it is obscured by clothing or other objects. Blind
deconvolution was accomplished by dividing each feature, qjj, by its long-term

average value, and re-applying L2 normalization within each frame.
—— (73)

bij=v ¢
1

K 2 9k
k=1

i . . .
where | K is the number of frames in the session, and
I

16 _T‘é_'.i_ -1/2
1
DY T 74
i - quk-] ( )
J k=1 ,
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7.3.4. Frequency Differencing

' The final step of pre-processing was to compute differences between

the feature values at consecutive frequencies (with "wrap around”) as follows:

_ [bijebig-1) if j>1 |
flJ:{bil-biw if j=1 7.5)
This step has the effect of de-correlating the elements of the feature

vectors, and emphasizing spectral regions near the formants. The feature

vectors used in the remaining processing were fi = (fi1, fi2, ..., fil6)T.

7.4 Voice Comparison

The likelihood ratio score given by Equation 2.27 was applied in the

voice PIV system exactly as in the face PIV system. The feature vectors fj of

Equation 4.8 were used, giving a feature space dimensionality of 16.

7.5 Summary

Processing steps were described by which the sampled waveform sound
data is converted to a feature vector per frame. Spectral analysis is performed
wihin 32 millisecond overlapping windows using a 16-channel FIR filterbank
covering the range of frequencies from 350 Hz to 5000 Hz. The filterbank
output is normalized each frame in a manner that preserves spectral shape but
is independent of overall amplitude. L.ow-amplitude frames, corresponding to
silence intervals, are eliminated. Equalization for the unknown and variable
frequeﬁncy response of the microphone is accomplished using blind
decon\i/olution. Enhancement of salient spectral features is accomplished
throug;h differencing of adjacent frequency channels. Sound {feature vectors

are 16 dimensional and are produced at the rate of 50 per second.
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CHAPTER 8

VIDEO DATA FEATURE EXTRACTION

8.1 Introduction

| This chapter describes the processing and analysis that was performed
to co{nvert the raw video input data to a sequence of feature vectors to be used
by thé PIV "back end". The video data from the OSU database was at first
treate;l independently of the audio data to develop a video-only PIV algorithm.
Results of testing the video-only PIV algorithm and the multi-media PIV

algorithm are presented in Chapter 9.

8.2 Video-Only PIV Algorithm

- Figure 8.1 is a data flow diagram showing the sequence of processing
steps involved in the video-only PIV algorithm. Rectangles represent

processes (programs) , whereas circles represent data structures (disk files).

86



True
Input —1—>>{ Hand Mark Face

Video |
! k Boxes
makeEF showEF

locateFaces

-9' preProcess

showFaces

Score
Files

compareFaces |

MmakeROC ROC
Files

Figure 8.1: Data Flow Diagram of Video Data Processing.

Information about the subject's identity was expected to be concentrated
in the part of each frame corresponding to the face. Therefore, the first
intermediate goal is to locate the face within each image. This is accomplished
by the program locateFaces , described in Section 8.5. LocateFaces operates on
video %data that has been pre-processed as described in Section 8.4, The model
used to locate faces is derived from hand marking of faée boundaries (or "face
boxes") in a subset of the database. The hand marking process is described in
Sectioxil 8.3. Comparison of faces is accomplished using the program
compdreFaces, described in Section 8.6, which implements.the LLR measure.
Finally, the score files produced by compareFaces are processed by makeROC .

The score files produced by compareFaces are in the same format as those
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produiced by compareVoices. Therefore, the same program, makeROC , is used
for bém voice and face processing. The output of makeROC is a Reciever

Operdting Characteristic (ROC), used to measure verification accuracy.

8.3 Manual Location of Faces

The process of manual marking defines faces by example. For the
purpose of this study, a face was considered to be a rectangular region
bounded from the left and right by the outer corners of the eyes, from above
by the top of the'eyebrows, and from below by the bottom of the nose.  This
defini?tion was arrived at by experimentation, and intentionally excludes the
mouth, which exhibits greater Qithin-subject variability during speech than
other facial features.

A computer program, called handMark, was developed to manually
locate each face in the entire database. HandMark operates as follows: A
movie file for a session is opened, and the firsf image, similar to Figure 6.5, is
displasled in a 160 x 120 pixel window. On-screen buttons are provided to zoom
in or out, move up, down, right, or left, and rotate the image clockwise or
counterclockwise. After each adjustment, the selected part of the image is
scaled, translated, or rotated appropriately and re-displayed in the window.
Using the on-screen controls, the operator adjusts the image to contain only
the face. Ideally, the eyebrows are horizontal and the nose is vertical. It is
someti%mes not possible to locate an ideal face (even using rotation),
partictillarly when the subject does not directly face the camera. Subjective
judgenjlent was used to determine the best alignment. The rectangle bounding
the face is refered to as the "face box". After locating each face box, pushing
the "Next" button causes the coordinates of the box to be saved in a data file,

and the next frame to be displayed (initially within the previous frame's face
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box).

The data obtained from StepFrame was used as "ground truth” for

|
trainihg of alorithms to automatically locate faces.

8.4 Signal Processing

Various forms of image pre-processing were examined at each stage of
the aigorithm. Two general conclusions are: (1) Some form of gray-level
mapping function is needed to reduce the effect of variations in illumination
and/o? reflectivity of the face; (2) Some form of spacial- or frequency-
domain filtering is needed to enhance facial features such as the edges of the
eyes,:nosc, and mouth. The pre-processing steps used in all experiments
descri!bed below consist of histogram stretching followed by the Sobel gradient

operator. These pre-processing steps are applied independently to each image

frame.
84,1,  Histogram Stretching

|
!
. Histogram stretching is performed as follows. Suppose 11 and 12 are

gray llevel values corresponding to specified percentiles of the histogram of
the input image. Each pixel of the image is scaled in éuch a way that these
same percentile values of the output histogram occur at L and L2. If x and y
are g;ay level values of a pixel before and after histogram stretching, they are

related as follows:

L2-L1 255
y=[12-11 (x-11)+L1]0 8.D

wherei the square brackets denote clipping within the indicated limits. In
\

practiée, the specified percentiles are 5% and 95%, and L1 = 78, 1Ly = 178.
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8.4.2. Gradient Filtering

‘ The Sobel operator is a form of spatial filtering that provides an

i
appro%;imation to the magnitude of the image intensity gradient at each pixel
[124]. The Sobel operator uses the gray level values in a 3 x 3 neighborhood of

the pixel under conmsideration, which is labeled as p5 in Figure 8.2.

pl | p2 | p3
p4 | p5 | po
p7 | p8 | P9

~ Figure 8.2: 3 x 3 Neighborhood Used by Sobel Operator.

The estimated gradient magnitude, S(p5), is given by:
S(p5)=1p7 + P8 +P9 - P1-p2 -p3l+1p3 +p6 + P9 - p1 - p4 - p7l- (8.2)

The frame shown in Figure 6.5 is shown again in Figure 8.3, after pre-
processing by histogram stretching followed by application of the Sobel

operator.

| Figure 8.3: A Pre-Processed Frame from MA-1.
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8.5 Automatic Location of Faces

To limit the computation involved in determining precise face location
in edch frame, a preliminary step was taken of locating the subject's whole
head.; The rectangle containing the head is refered to as the "head box".
Follo{;ving this step, the face box can be located by exhaustive search within
the sﬁb-image delimited by the head box.

Processing each frame in this manner, independently of the other
frameé, requires a large amount of computation and is error prone. Both

probléms arc addressed by recognizing that frames within a session are in fact
|

highl)} correlated. To take advantage of this, the algorithm shown in Figure

8.4 Was developed.
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: 1. Find head box
! independently for each
frame.

2. Adjust size of all head
boxes to equal the average
size, keeping the center
points unchanged.

F

3. Camute the average
image within adjusted head

bosees.
4. Re-position head boxes to

maximize correlaticn with the
average image.

V4

5. Locate face box within
average head bax.

I

6. Using averaged face as
template, locate all face

boxes within head boxes.

Figure 8.4: Estimation of Face Box Position.

" In Step 1, simple heuristic rules are employed to determine the
appro:i(imate head box position independently in each frame. The top of the
head jbox is first determined as follows: (1) the sum of pixel (grayscale) values
along;each row is computed; (2) from a histogram of these sums, the 10
perceﬁitile value is determined; (3) scanning down from the top of the image,

the fi%rst row for which the sum of pixels exceeds the 10 percentile is deemed to

be the top of the head box. Similar rules are applied to determine the left and
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rightisides of the head box. The bottom is chosen to maintain a constant ratio
of het:ight to width.

| The hueuristic rules above work well on average, but can behave
inconfsistently when given "fuzzy" edges, such as hair. In Step 2, it is assumed
that each head box is centered correctly, but is subject to error in its estimated
size. = Step 2 sets the height and width of each head box equal to the average
height and width of all head boxes, while maintaining their original center
poinfs.

- Variations in sitting position or zoom lens adjustment may cause the
image% scale factor to change from one session to another. Within a session,
howe{/er, the scale factor can be assumed to be constant. Recognizing this, and
noting that as a result of Step 2, all head boxes are equal in size, Step 3

comp{ltes the average of all images within the head boxes. At each pixel
position, averaging is performed across all frames in the image sequence.

The average image resulting from Step 3 may appear blurred or "out of
focus’f due to violations of the assumption made in Step 2 that all head boxes are
centered correctly. In Step 4, the center position of each head box is adjusted
to maximize the correlation of the image within that head box with the
averaée head box image. Translation is limited to several pixels in any
direcfion.

- Steps 3 and 4 may be re-iterated until there are no further changes in
the hiead box positions. In practice, convergence was found to occur after only
one oir two iterations. Figure 8.5 shows an example of an average head box
image% after ome, two, and three iterations. Note that image sharpness and
focuséimprove from the first to the second iteration, but remain about the same
on the third. After three iterations, some residual blurriness is caused by

facial| movements, particularly of the mouth and eyes, within the session.
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a. b. C.

Figure 8.5: Average Head Box Image
After 1, 2, and 3 Iterations.

- After locating the head boxes, the next step is to create a "face template”,
with §vhich to search for the face box within each head box. As indicated in
Step 5 of Figure 8.4, the average head box image produced in Step 3 (after 3
iteratisns) is searched to find the face box, and the image within that face box
is uséd as the face template. An example face box is shown in Figure 8.5c.

i Step 5 is accomplished using the "eigenfaceS" technique prof)osed by
Turk %and Pentland[6]. The use of eigenfaces, as opposed to simple correlation,
is apf)ropriate for this step because it is desired to locate the face consistently
withoﬁt prior knowledge of the identity of the subject. A virtue of eigenfaces
is that? it is a subject-independent face model.

To apply the eigenfaces method, a set of training images is analyzed to
determine the mean image, ¥, and the principal components, wuj,i<0 <L, of
the cqvariance of the training images about ¥. Any arbitrary facial image, T,
not bej:longing to the training set can then be approximated in terms of ¥ and a
relativ?ely small number (e.g., 10) of principal components. To do this, the

deviatiion of T from ¥is first computed as ¢ =T — ¥. The projection, ¢f, of ¢ on
3 L
|

the sdbspace spanned by the ujis given by ¢f= Zmiui, where wj = ¢fTui. The
1 i=1 ,

syntheéized approximation is: Tf= W + ¢f. Location of a face within a larger
image can be accomplished by sliding a window over the original image, and

selecting the position of the window to minimize the error function: ez(x,y) = |
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ii
| . . .
o - ¢ﬁl2. In the following, I'(x,y) denotes a subimage of I" of dimensions equal to
|
those! of ¥ and uj, with upper-left corner at (x, y). The derivation of e(x,y) in
terms; of I'(x,y), ¥, and uj is repeated here because several errors were

contained in [6]. Dependence on (x, y) is suppessed.

e2=10.of2 (8.3)
= (¢ -0DT(0 -0p (84)
= 0To- 0Tor- 0T (0 - 09 (8.5)
=0To - oTor (8.6)
=0To- Q oD}, ojuj) @.7)
= 6To- Y o2 (8.8)
Expalliding the first term,

oTo= . 9)T(r.¥) 8.9)
=TTr-29Tr + 9Ty (8.10)

Expaniding the second term,
Y 0i2=, (¢Tui)? (8.11)
= Z (C-¥)Tup)2 8.12)
= (Tuj-¥Tuj)? (8.13)

Combi:ning the two terrns‘, and making explicit the dependence on spacial
positifon:

| L
e2(xy) = TT(x)Txy) - 29Trey) + ¥Tw + Y rxy)ui - ¥Tuil2  (8.14)
i=1

: éEigenfaces were computed from a subset of the OSU data, using the hand
marked face boxes, as described in Section 4.1. The data subset consists of

every ‘twentieth frame of the first session of each of the first five subjects
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(MA,!BB, BC, KD, and CF). The data within each hand-marked face box was

]
scaled to a size of 32 x 27 pixels (the average face box dimensions), and ten
eigenfaces were computed. These are shown in Figure 8.6. It was found that

the most significant three are adequate to locate faces reliably.

avYh
it
-

Figure 8.6: The 12 Most Significant
Eigenfaces of the OSU Data.

The scale factor for the session, assumed in Step 1 to be constant, is
unknown. To accommodate the unknown scale factor, multiple eigenface
searches are performed on the average head box image, after re-scaling it
using :‘scale factors of 0.8, 0.9, 1.0, 1.1, and 1.2. Each search determines the face
box ﬁosition that minimizes the mean-squared error between the scaled image
and itjs eigenface approximation. The scale factor and face box are selected
that rgsult in the global minimum error. Figure 8.5¢ shows an example of a
face pox determined in this manner.

‘ The image in the face box determined in Step 5 is an average of the face
pOI‘tiOIilS of all frames in the session. In Step 6, each face box is located by
using;this image as a template for correlation-based matching. A procedure
similari to that of Baron [86] was used. Let T be the template and I(x,y) be a
rectangular region of the image with upper left corner at location (x,y). Then

defineé a correlation coefficient, C(x,y) as
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<T*I(x,y)>
V<T*T><I(x,y)*I(x,y)>

Cx,y)= (8.15)

where * represents the pixel-by-pixel product, and < > is the average operator.
C(x,y%) is computed for all values of x and y for which the region lies entirely
withiﬁ the head box. The putative location of the upper left corner of the face
box 1s the value of (x,y) for which C(x, y) is maximum. The normalization term
<I(x,}%{)*1(x,y)> in the denominator was found to be important. Without this
term,E the maximum correlation location is biased toward dark regions of the

im agé.
8.6 Face Comparison

Having located the central face region, or "face box" within each image
frame, it now becomes possible to compare the sequences of facial images in
two ciifferent sessions. This is accomplished using the log likelihood ratio, as
compﬁted using Equation 5.37. In applying Equation 5.37, the vectors xj and yj

contain pixel values within the 27 x 32 face boxes. The dimensionality of the

featurfe space is therefore 864.

8.7 Summary

;Processing steps were described by which raw video input data is
convejrted to a featurel vector per frame, Histogram equalization and gradient
filteririlg are included to minimize sensitivity to lighting gradients and skin
reﬂectiivity. The central portion of the subject’'s face is located within each
videoiframe, allowing for unknown scale factor and head tilting, in addition to
lateralz movement. The face is scaled to a 27 x 32 pixel rectangular area, and

the processed gray-level values with that area form the elements of feature
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vector.  Video feature vectors are 864 dimensional and are produced at the rate

of IQ per second.
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CHAPTER 9

ANALYSIS AND RESULTS

9.1 Introduction

~This chapter presents analysis and results derived from PIV algorithms
operating on the OSU database. The PIV algorithms considered combine the
voice 'and video feature extraction components described in Chapters 7 and 8§

with the decision component described in Chapter 5.

9.2 Likelihood Scoring Versus Likelihood Ratio Scoring

th is commonly believed that identity verification should only require a
model, of the claimaint, and should not make reference to models of other
indiviéuals. The assumption underlying this theory is that.the likelihood
functién p(X | C) is tightly localized, whereas p(X | C) is approximately a multi-
dimengional uniform PDF. Therefore, p(X | C) differs from the likelihood ratio,
pX | C) / p(X | C), only by a multiplicative constant.

. With this theory in mind, consider the data shown in Figure 9.1. Each of
the 40 columns was produced by computing the log likelihood of one session of
the d%tabase (treated as test data) with respect to each of the other 39 sessions
(treateid as enrollment or model data). There are therefore 40 * 39 = 1560 points
plotted; in Figure 9.1. Each indicated log likelihood score was computed for the
video jdata using Equation 5.22. Note that the log likelihood is not symmetric,

(ie.,, In p(X1Y)#=Inp(Y | X)). The triangles represent valid claims, in which

the identity of the test subject and model subject are the same. The crosses
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repre‘sent invalid claims, in which the test data is compared with model data

fromi a different subject.

-800
AA A A Valid Claims A

: A A + Invalid Claims

1000 | AROR A *A A AA AA gAA ﬁ
g ty a, A AR AAAA AAA A a
3 1200 AzAﬁ a8 AAAA gﬁ ;t;
S AD
S A i X
B 1400 +
B
W FriFTas * * HIiT4
3 -1600-i $$ * # ¥ ¥ - Ak

21800 — — ,

e S ? g g

Test. Session Number

. Figure 9.1: Log Likelihood Scores for Each Test Session.

The distribution of scores for invalid claims is clearly seen to vary from
one test session to another. This is not coﬂsistent with the proposition that p(X
| C) is a uniform PDF.

From the data in Figure 9.1, it can be seen that a threshold vvalue of -1000
separa{tes the valid and invalid cases for Subject MA (Sessions 1-4) without
errors. A threshold value of about -1300 separates the valid and invalid cases
for Sl;1bject YL (Sessions 25-28) without errors. However, a threshold of -1300
wouldi allow MA to be falsely accepted in many cases, and a threshold of -1000
would% reject all valid claims of YL. This illustrates the difficulty of scoring
based%on the likelihood function, and the advantage of the likelihood ratio.

;The LLR score, computed from Equation 5.37, has the following

interpﬁetation. The LLR score for a session is equal to the best log likelihood
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scorei among the claimant's models minus the best score among all other
speakier's models. For a threshold of zero, this rule can be interpretted

|

|
graphically in terms of Figure 9.1 as follows. A session is accepted if a

trianéle is the highest-scoring model, or rejected otherwise. Only two sessions

(numbers 7 and 13) are rejected at a threshold of zero.

9.3 Intrinsic Dimensionality

The intrinsic dimensionality of the voice and video data was estimated
using? the method of Pettis, et. al. Estimates were made for all sessions and then
averaéed. A regression order of K = 3 was used. For the voice data, the average
intrinsic dimensiohality equals 3.1. This may indicate that speech articulation
of an individual exhibits three degrees of freedom, presumably associated with
the tongue or other parts of the vocal tract. For the video data, the average
intrinSic dimensionality‘equals 4.5. Similarly, this may indicate that facial

expreésions are dominated by the activity of 4 or 5 muscle groups.

9.4 ROC Performance Measurement

Accuracy of PIV systems is measured by probabilities of Type-I, or false
rejection errors, and Type-II, or false-acceptance errors. Total error
probai)ility, or the sum of false-rejection and false-acceptance error
probal‘?ilities, is minimized by PIV systems employing a likelihood ratio test.
Since%the optimum value of the threshold is not known (because an estimate of
the priior probability of a valid claim is generally unavailable), it is common to
measuére false-rejection and false-acceptance error probabilities over a range
of thri:ashold values. A receiver operating characteristic (ROC) curve, as

shown in Figure 9.2, provides a convenient method of displaying this

information.
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Figure 9.2: Example ROC Curve

" The ROC curve plots false-acceptance probability on the horizontal axis
versu§ true-acceptance probability (equal to one minus false-rejection
probal%)ility) on the vertical axis as a function of threshold value. The
endpoints are at (0, 0) and (1, 1), and the curve increases monotonically
betweén these endpoints. The ROC curve for a perfect PIV system passes
throug%h the point (0, 1), indicating that a value of threshold exists for which
all vailid claims are acceptgd and all invalid claims are rejected. The
perforijnance of an imperfect PIV system is illustrated in Figure 9.2. The points
labele(ii "A", "B" and "C" are three possible operating points corresponding to
differént (decreasing) threshold values. False-rejection and false-acceptance

probabilities are equal at operating point B. The false-rejection or false-

acceptance probability corresponding to operating point B is called the equal-

error |rate  (EER). Operating points A and C represent different possible
|
tradeoffs between the two types of errors. At operating point C, both
legitim:ate users and imposters are more likely to be accepted than at operating

points A or B.
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. Consider an experiment involving N subjects with M trials each.

i
Supp(i)se the data associated with each trial is recorded so that it can be
preseljlted repeatedly to the PIV system with different claimed identities. False
reject‘fion rates can then be estimated by presenting each of the N*M trials
with the correct claimed identity and determining the fraction of rejections.
False;acceptance rates can be estimated by presenting ecach trial with each
incorrect claimed identity and determining the fraction of acceptances. A
total iof N*M*(N-1) simulated imposter trials is obtained in this manner. This
method of estimating false-acceptance rates, termed "casual imposters” by
Doddi{ngton [29], is based on the premise that imposters' behavior is
indepéndent of the identity they are claiming.

. Given the LLR scores resulting from all false-rejection and false-
acceptance trials, ROCs are created as follows. The LLR scores are sorted in
descehding order together with labels identifying whether each score resulted
from a valid or invalid identity claim. Each score value is then treated in turn
as a verification threshold. The reported probability of correct acceptance is
the fraction of all valid trials with scores exceeding the threshold. The

reportéd probability of false acceptance is the fraction of all invalid trials

with scores exceeding the threshold. An example is shown in Table 9.1.
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IR Valid Prob (False Prob (Correct
Score Claim? Accept) Accept)
243 1 0.000 0.000
236 1 0.000 0.025
224 1 0.000 0.050
58 1 0.000 0.875
54 1 0.000 0.900
9 1 0.000 0.925
-1 0 0.000 0.950
-7 0 0.003 0.950
-8 0 0.006 0.950
-91 0 0.442 0.950
-92 1 0.450 0.950
-93 0 0.453 0.975
-144 0 0.669 0.975
-145 1 0.675 0.975
-146 0 0.678 1.000
-147 0 0.681 1.000

Table 9.1: Example of ROC Computation.

iThe ROC data shown in Table 9.1 is perfectly sorted, with the exception of
two valid trials having scores of -92 and -145. At a threshold of -1, all valid
trials iexcept these two are accepted without accepting any invalid trials.
Adjusting the threshold to accept these two trials would cause 67.5% of the
invalid trialé to also be accepted. In this case, the ROC is said to have a long
"tail", indicating the presense of one or more trials that are in some way

\
anomallous with respect to the PIV algorithm,

2.4,1,i In I Error M re

\!Although the commonly-used EER measure is an important benchmark
of verification error, it is independent of the tails of the ROC curve. In the

example above, the EER (5%) is an optimistic characterization of performance
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because of the presense of the long tail of the ROC curve. A measure of error

that accounts for the tails is the integrated error measure (IEM), defined as:

(=

IEM = jpp ADdt 9.1)

-00

wherei PFA(t) is the false-acceptance probability at threshold t. Graphically,

IEM !;equals the area above the ROC curve as plotted in Figure 9.1.

9.5 Test Procedure
The likelihood ratio scoring technique poses a unique problem in
testing PIV systems. In practice, the cohort would be composed of a finite set

|
of enrolled individuals, whereas the set of potential imposters is unlimited.

|

One imight expect there to be differences in the false acceptance rate between
impos?ters who are included iﬁ the cohort and those who are not. This was
obser\}ed experimentally td be the case. Inclusion of an individual in the
cohoré improves the ability of the system to reject that individual when
anothcé:r identity is claimed. Therefore, to assure unbiased measurement of the
false %acceptance rate, the cohort and the set of tested imposters should be
mutua?lly exclusive. At the same time, the small size of the OSU database

deman:ds that efficient use be made of all available data.

%With these considerations in mind, the following procedure was used in

false-allcceptance testing. For each subject presented as input to the system,

the identities of the other nine subjects were treated in turn as the claim. In
each trial, the cohort was composed of the eight subjects whose identities

matched neither the true nor the claimed identity. This procedure is

illustrated in Figure 9.3.
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Figure 9.3: Test Procedure for False
Acceptance Measurement.

This procedure generalizes to measurement of false rejection, where the

dentity and the claimed identity are one in the same. In false rejection

testing, therefore, the cohort was composed of the nine subjects whose

ident

ties differed from that of the subject under test.

The test procedure simulated the use of three enrollment sessions per

subject. In false-rejection testing, each of the subject's four sessions were

treated in turn as the input to the system (test session), while the remaining

three

sessions were treated as enrollment sessions. There were therefore four

false-rejection trials per subject, or a total of 40 false-rejection trials. In false-

accep

tance testing, the claimant's first three sessions were treated as
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enrol

were

ment sessions. For each of the 40 sessions, all nine false identity claims

tested. There were therefore 40 x 9 = 360 false-acceptance trials.

9.6 Voice-Only ROC Data

The ROC performance data for the voice-only PIV algerithm is shown in

Figure 9.4. Separate ROC curves are shown for cases in which the first 5, 10,

and 1

5 seconds of the test session are used in each trial. A large gap in

performance is seen between the S-second and 10-second cases. Increasing

the test session length from 10 seconds to 15 seconds leads to a smaller

performance improvement. This suggests that at about 10 seconds of speech

provides an adequate sampling of the subject's voice and that diminishing new

information is supplied by further observation.
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Figure 9.4: ROC Performance of SQNN
Voice-Only PIV Algorithm.

The INN method was also tested, and its ROC performance is compared

with that of the SQNN method in Figure 9.5. The first ten seconds from each
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session were used. The value of K used in the linear regression of Equation
5.32 was set to K = 20 as a result of experimental optimization. The INN method
is more accurate than the SQNN method in this test. Its IEM is 0.0056, compared

with 0.0172 for the SQNN method.
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Figure 9.5: Comparison of INN Versus
SQNN Voice-Only PIV Algorithms.

The long "tail" of the ROC for the SQNN method indicates that a small
number of valid trials score very poorly (more poorly than about one third of
the invalid trials). This is not the case for the INN method. The explanation
may be related to the fact that the INN method makes use of distances to the 20
nearest neighbors of each test frame, whereas the SQNN method uses only the

single| nearest neighbor.
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9.7 Face-Only ROC Data

The ROC performance data for the face-only PIV algorithm using the
SQNN method is shown in Figure 9.6 .Only the first ten seconds of data were
used from each session. ROC performance was also measured using the first 5
seconds and the first 15 seconds of each session, but the result did not vary

appreciably from that shown in Figure 9.6.
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Figure 9.6: ROC Performance of
Face-Only PIV Algorithm.
The finding that performance is relatively insensitive to the length of
the session was unexpected. A likely explanation is that the data frames are
highly correlated, so that performance rapidly saturates as a function of

session length. Confirmation of this explanation is provided by Figure 9.7.
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Figure 9.7: ROC Performance of
Face-Only PIV Algorithm.
Figure 9.7 was obtained by comparing one frame of data from each test
session with various numbers of frames from the enrollment sessions. The
selected frame of test ‘data was offset one half second from the beginning of

the test session. The selected frames of enrollment data were separated by

intervals of one half second, starting at an offset of one half second from the
beginning of the enrollment session.

The curve labelled "1 Frame" in Figure 9.7 represents conventional
comparison of faces by means of still images: A single test image is compared
with a single enrollment image. Increasing the number of enrollment frames
provides steady improvement in performance, up to about 16 frames. The 16-
frame |case corresponds to an elapsed time interval of 8 seconds. Separation of
the frames by 0.5 seconds does not eliminate inter-frame correlation, but

probably has some de-correlating effect. The ROC for 32 frames does not differ
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appreciably from that for 16 frames, and is therefore not plotted. Use of

additional test frames also does not improve accuracy. The IEM for the "16

Frame

which

1"

case in Figure 9.7 equals 0.0230, compared with 0.0281 for Figure 9.6, in

100 frames were used from each test and enrolment session. The

difference is probably insignificant.

poor.

Performance of the INN method on the video data was found to be very

The estimated intrinsic dimensionality derived from Equation 5.32 is

unreasonably high for many frames, often on the order of 100. This may be

related to the very high degree of correlation among the frames. A possible

explanation is that any systematic difference between sessions leads to

increa
appare
INN

large-

sed distances to all nearest neighbor frames, thus increasing the
ent  dimensionality.  Another possible explanation of the failure of the
method is that the enrollment data is simply too sparse to support the

sample assumptions that underly Equations 5.15 and 5.32.

9.8 Fusion of Voice and Face Data

It is reasonable to assume the voice data and facial image sequence data

are statistically independent in view of the fact that the face data excludes the

mouth region.  Assuming independence, data fusion can be accomplished

without loss of accuracy by adding the log likelihood ratios for the two sources

(see Section 3.4).

If estimated LLRs for the two sources are to be added, care must be taken

to normalize the data so as to remove the effects of arbitrary scaling of the

input

measurements. In the case of the SQNN method, o and B must also be

estimated for the voice and image sources. This was accomplished as follows.

Fixed

values were assumed for the number of enrollment samples and the

intrinsic dimensionality. For the voice data, the values used were: N = 250 and
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d = 3. Values of o and B were computed for the unit-variance Gaussian PDF with

250 and d = 3 using the method described in Section 5.5. The average

nearest-neighbor distance was computed for the voice data and for the unit-

variance Guassian data. The voice data was then scaled so that its average

neare

appro

St neighbor distance was equal to that of the Gaussian data. The same

ach was applied to the video data, using N = 100 and d = 4. The values of a

and B used in Equation 5.37 are shown in Table 9.2.

Voice Video
Alpha -0.33 -0.13
Beta -1.72 -3.18

Table 9.2: Values of o and B for Voice and Video Data.

Let the LLR scores produced by the voice-only and face-only algorithms

be denoted LLRygice and LLRface, respectively. A scatter plot of LLRygjice

versus LLRface is shown in Figure 9.8. Valid calims are represented by

triang

es, and invalid claims are represented by diamonds. Valid and invalid

claims are clearly separable. Therefore, 100% verification accuracy can be

obtain
LLRy

LLRf

ed using a decision rule based on a combination of LLRfsce and
roice, whereas less than perfect verification is obtained using either

ace Of LLRygice alone.
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Figure 9.8: Scatter Plot of LLRygjce Versus LLRfjce.

If the enrollment data are considered to be representative of all
subjects, and if the voice and face measurements are assumed to be mutually
independent, then the LLR of the joint voice and face measurments equals the
sum of the separate LLRs. Symbolically, LLRjoint = LLRypjce + LLRface. In
Figure 6.6, contours of constant LLRjoint are lines with slope equal to -1. The
acceptance region associated with a decision rule based on LLRjoint is
therefore the region above and to the right of a line with slope -1. This
decision rule does not achieve perfect separation of valid from invalid sessions
for any value of the threshold.

Of the valid claims, the two "outlier" sessions with respect to LLRfyce are
BB-3 and KD-1. BB-3 was the only session in which Subject BB wore glasses.
Similarly, KD-1 was the only session in which Subject KD wore a hat. In both
cases the test subject's appearance was affected by factors not represented in

that individual's enrollment data. The two outlier sessions with respect to
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LLRyojce are YL-1 and RM-1. Listening to these sessions revealed that YL-1
has a reverberant quality not present in the other sessions. This is likely to

have been caused by placement of the microphone too far from the speaker’s

mouth. Nothing unusual was perceived in listening to session RM-1.

The fact that three of the four outliers can be explained by failure of
the enrollment data to represent conditions encountered in the test data
suggests that more weight should sometimes be placed on one type of evidence
than Lhe other. ~ Although sessions BB-3 and KD-1 are outliers with respect to
LLRface, they are in the normal range with respect to LLRypice. Similarly,
YL-1|and RM-1 are outliers with respect to LLRygice, but are in the normal
range| with respect to LLRface. In addition, the invalid claims are fairly
tightly clustered in Figure 9.8, with no outliers. Based on these observations, it
appears reasonable to accept the identity claim if either LLRface or LLRygice
exceeds a threshold value. An equivalent decision rule is to accept the claim if

LLRmax exceeds a threshold, where

LLRmax = max(LLRypjce, LLRface). (6.1)
The acceptance region associated with LLRmpmax is illustrated in Figure
9.9. |Using the decision rule LLRmax > 20, 100% verification accuracy is

achieved.
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9.9 Summary

In this chapter, data was shown comparing likelihood scoring with
likelihood ratio scoring. The difficulty of applying likelihood scoring using a
fixed decision threshold was demonstrated, as was the relative superiority of
likelihood ratio scoring, based on Equation 5.37. The data presented was
inconsistent with the premise that the denominator of the likelihood ratio is
constant.

The intrinsic dimensionality of the voice and video data in the OSU
database was estimated to be 3.1 in the case of the voice data, and 4.5 in the case
of the video data. Possible physical explanations were conjectured.

Performance of the voice-only and video-only PIV algorithms were
measured. A summary of the results is shown in Table 9.3. Using 10 seconds

from each session and the SQNN method, the equal-error rate of both
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algorithms is 5%. The INN method gives somewhat better performance for the

voice

were

data, but poor performance for the video data. Possible explanations

conjectured.

For the video-only algorithm, a single frame of test data and 16 frames

of enrollment data give the same performance as 10 seconds of test data and 10

seconds of enrollment data. This is believed to be the result of a high degree of

inter-

frame correlation. Consistent improvement is observed, however, as the

number of enrollment frames increases from 1 to 16. This demonstrates the

value| of image sequences, as opposed to still images, in the enrollment process.
Data Type PDF Est. Enrollment Test Length EER (%) IEM
Method Length |
Voice INN 10 seconds 10 seconds 3.3 .0056
Voice SQNN 10 seconds 10 seconds 5.0 0172
Face SQNN 10 seconds 10 seconds 5.6 0281
Face SQNN 1 frame 1 frame 15 .0584
F ac‘e SQNN | 16 frames 1 frame 5.0 .0230
Voice+Face SQNN 10 seconds 10 seconds 0 0
Table 9.3: Summary of Key Results.
Finally, a PIV algorithm using both voice and video data was tested. Data
fusion is employed at the LLR level. The identity claim is accepted if either
LLR exceeds the threshold value. A rationale for this strategy was given.
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Using the combined algorithm, no errors occur in verification testing using

the OSU database.
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CHAPTER 10
CONCLUSION

A substantial body of literature exists in various fields relevant to multi-

PIV. Both voice and face PIV algorithms have been under development

for nearly 20 years, resulting in numerous and diverse approaches. Face

verification algorithms, until now, have used only still images, as opposed to

image

voice

sequences. Very recently, a PIV algorithm was reported that combines

and still facial images, achieving better accuracy with the combination

than with either voice or face information alone. The current work

demonstrates that further improvement can be obtained by using facial image

seque

nces.

In this research, the sound and image data originating from a movie

clip are sampled and processed to form feature vectors within periodically

occuring frames over the length of the movie. The availability of sound and

image

approz

oppos

data streams spanning a common interval has enabled a unified
ich to be taken in processing the two information sources.
Voice and facial image data are reasonably regarded as random, as

cd to deterministic, observations of underlying characteristics the

individual. ~ Bayes' decision rule provides an optimal criterion for accepting or

rejecti

ng a user's claimed identity based on the available observations.

Application of Bayes' decision rule leads to a likelihood ratio test, and reduces

the problem to designing estimators for the likelihood functions pX | C) and

p(X |

'C). These likelihood functions depend in turn on the local probability
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density at each sample point. Estimation of local density is made difficult by
the high dimensionality of the measurement spaces and by the limited
availability of training data. Two approaches to this problem were
investigated, and found to be useful under different conditions of practical
interest.

An experimental database was collected for the purpose of developing
and testing multi-media PIV algorithms. Using a camcorder, motion video and
audio recordings were made of subjects reading from scripts on multiple
occassions.  Although this database is small (only ten subjects), it provides a
reasonable demonstration of the concepts presented here.

Separate multi-media PIV algorithms for voice and facial image data
were |simulated and tested. ‘Using 10-second samples of either voice data or
facial‘ image data alone, equal error rates of about 5% were observed. False-

rejection errors in both cases were attributed to conditions existing in the test

data that were not represented in the model data (presence or absence of
cyeglasses, for example). No test data was observed to be simultaneously
anomolous with respect to both voice and face. Data fusion was therefore
accomplished by selecting as thelfinal score the greater of the two log
likelihood ratios based on the voice and face data. Verification accuracy of
100%| was shown on the experimental database.

The approach may applicable to a wider class of hypothesis-testing or

classification problems involving high-dimensional measurement sequences.

10.1 Summary of Accomplishments

The development of practical multi-media PIV systems presents
numerous challenges and opportunities for scientific and technological

innovation. Some of these challenges and opportunities have been identified
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and addressed here. The main accomplishments of this research are listed

below

, in decreasing order of importance.

Use of Facial Image Sequences. Facial image measurements used
in previous PIV systems have been still images, as opposed to image
sequences. Facial movements are a source of errors, rather than a
source of information, to these systems. It was demonstrated here for
the first time that the additional information provided by image

sequences leads to higher verification accuracy.

Unified Approach to Multi-Media Processing. The previous
work of Higgins, Bahler, and Porter [4] in the area of voice verification
was further investigated, and applied to verification using facial image
sequences. Error rates on the order of five percent were observed
using either voice or image sequences separately. Combining the two
sources, 100% accuracy was achieved on a small database. The success
of this experiment demonstrates the feasibility of applying a unified

approach to processing voice and facial image measurement data.

Improved Likelihood Function Estimator. The estimator of
intrinsic dimensionality reported by Pettis, et. al [S] was extended to
enable estimation of the likelihood of a sequence of multi-dimensional
observations relative to a set of training data. This estimator was
compared experimentally with the SQNN estimator of Higgins, Bahler,
and Porter. Its performance is superior to that of SQNN for voice data,
but inferior for image sequence data. An explanation was

hypothesized.
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researchers.

5. Literature Survey. The scientific literature was surveyed

network security. Evidence was cited [1] that voice and facial

performance of humans using multi-media information.

10.2 Suggested Future Research

disciplinary subject that holds great opportunity for further advances.

subject.  Surprisingly, no quantitive studies were found on PIV

in

appearance carry separate information about the identity of the

Multi-Media Personal Identity Verification is a fascinating, multi-

4. Multi-Media PIV Database. Using a camcorder, motion video and
audio recordings were made of ten subjects reading short phrases from
scripts.  Each subject participated in at least four sessions on different

days. The data was digitized and is available in digitized form to other

subjects relevant to PIV technology and applications. A conclusion of
the survey is that development of multi-media PIV systems is a logical

evolutionary step that is needed to satisfy an increasing demand for

The

goal of developing a convenient, inexpensive, and robust multi-media PIV

system remains to be accomplished in the future. Reaching this goal may

involve work in signal processing, computer science, probability and
statistics, applied psychology, and other fields.

One of the most important and difficult challenges is to develop

algorithms that maintain high accuracy in uncontrolled environments.

Voice

and facial images are convenient media beause their measurement does not

involve expensive instrumentation, precise behavior by the subject,
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physical contact with the subject. This convenience comes at the cost of

concomitant measurement variability. Facial image measurements are subject

to variability with respect to lighting, distance and orientation relative to the

camer

a, the optical quality of the camera, background objects, and presense or

absense of glasses, hats, beards, etc. Voice measurments are subject to

variability with respect to microphone and subject positioning, microphone

soun

quality, background noise, room reverberation, and colds or other

factors affecting the subject's voice. These sources of variability will need to

be éccommodated, either through improved modeling or through development

of si&nal processing methods that are insensitive to them.

made

The multi-media PIV algorithm developed here was simulated, but not

to process input data in real time. It appears to be feasible to implement

the algorithm in real time on current processors (comparable to the Intel

Pentium) with the following modifications. First, more efficient methods

should be employed for locating faces in the input images (with unknown

position, rotation, and scale factor). This is the most computation intensive

part of the algorithm. Burt's "coarse-to-fine" multi-resolution template

matching stategy [92] could be used for this purpose. Alternately, the

approach of Turk and Pentland [6] based on spacio-temporal filtering could be

employed. The second modification is to use only a reletively small subset of

the input image frames. The experimental results reported here suggest that

16 frames at one-half second intervals is sufficient to provide good

perfor

(eyes

involv

proce

mance. It may be desirable to sample a diversity of facial expressions

open/closed, mouth open/closed, etc.). Achieving this diversity could
€ a symbiotic coupling of the face-location and frame-selection

S§SECS.
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To obtain a more realistic evaluation of performance, the PIV algorithm
should be tested using a much larger population of subjects separate from
those| used in development of the algorithm. Other than the OSU database,
suitable databases for development or testing of multi-media PIV algorithms do

not currently exist. Creating such databases would be a major step toward

enabling further PIV technology development. The environment in which
the QSU data was collected was relatively benign in tefms of conditions such as
lightil‘lg and background noise. It would be useful to include some controlled
variability of these and other "nuisance variables" in future databases.
Although the content of the speech material in the OSU database was
controlled by providing prompts, the PIV algorithms do not take advantage of
this l‘mowledge through any type of linguistic modeling. It is known that
knowledge of the spoken text leads to improved accuracy of speaker
verification systems. There is‘some evidence [94, 98] that it may also be
relevant to face verification by providing a means to predict mouth
movements. A natural extension of the current work would be to apply text-
dependent verification methods using both voice and facial image sequence
measurements.
Related to this, another promissing direction is development of
"liveness" tests to verify that the spoken utterance matches the prompt, and
that the observed mouth movement is consisitent with the sound. Methods
similar to the lipreading recognizer of Petajan [95] could be employed for this
purpose. Liveness tests are needed to detect and reject counterfeiting attempts
involving photographs and/or tape recordings. Liveness tests would logically
be developed concurrently with text-dependent verification approaches as

referred to in the previous paragraph.
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over

In this research, frames of data are treated as statistically independent

the duration of a session. Each frame contributes equally to the log

likelihood measures for the claimant and alternative hypotheses, which are

accumulated over time. The log likelihood ratio, which is the difference

between the accumulated log likelihoods, also increases in magnitude over

time,

likeli

reflecting an accrual of evidence. This characteristic of the log

hood ratio scores is appropriate when the input data frames are

independent because evidence is indeed being accrued at a constant rate. The

assumption of independent frames is problematic, however, in the case of

facial image sequences, which are obviously correlated from frame to frame.

A ra

tionale is needed for de-weighting of log likelihood ratio scores to account

for inter-frame correlations. This is particularly important when combining

information sources with diverse degrees of inter-frame correlation.

this

The important role of intrinsic dimensionality has been observed in

work. The PIV algorithms developed here assume that intrinsic

dimensionality remains constant throughout the feature space. The validity of

this

assumption should be tested expermentally. Deviations from uniform

intrinsic dimensionality would indicate the potential for performance

improvement through algorithm modifications to estimate -and accommodate

local

variations. This investigation could be conducted wiihin either a text-

dependent or text-independent framework.

In a more theoretical vein, it would be enlightening to investigate the

relationship of local density to nearest-neighbor distance for a variety of PDFs

with

broader or narrower “tails" than the Gaussian PDF, as well as correlated

Gaussians and Gaussian mixtures. The current work provides some rationale

for the SQNN approximation, but does not prove that SQNN is optimal in any
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sense. Development of an approximation to Equation A.17 that is valid in the

limit| of high dimensionality might be useful in this regard.
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APPENDIX: Density versus NN Distance for Gaussian PDF

To explore the relationship between probability density and nearest-

bor distance, consider first the case of the standardized Gaussian

probability function, p = N(0, Iy), where v equals the number of independent

dimensions. Suppose we have observed N samples generated from the density

function p, and we wish to estimate the local density, px = p(x), at a test point x.

This
d2, t

close

is illustrated in Figure A.l. We measure the squared Euclidean distance,
vetween x and each of the N samples. The squared Euclidean distance to the

st of these samples (NN, the nearest neighbor) is denoted as dNN2.

Consider a statistical ensemble of trials in which, in each trial, a test point x

and !

then

and ¢

N samples from p are jointly selected at random. Both px and dNN2 may
be treated as random variables: px due to random selection of test point x,

lNN2 due to random selection of x and random sampling of p.

Figure A.1l: INlustration of density estimation wusing NN distances.

prob

Let the probability distribution function of d2 be Fdz(S). That is, Fdz(8)=

d2 < §). The probability of a randomly chosen sample from p falling
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outside a ball of radius 5 centered at x equals 1 - Fd2(8). The probability of

all N independent samples in population T falling outside the ball equals (1 -

F 2(8

dNN

d

£
N2 ©

DN,  The probability of any of the N samples falling inside the ball
equals 1 - (1 - Fd2(8))N. Therefore, the distribution function F
2 can be expressed as:
Fygn2® = 1- (- Ep@)N

ball of radius 8 centered at x. Since p is Gaussian,

where

X

Fy2(® = BoGliv. 1)

freedom and non-centrality parameter r2 [125].

Euclid

mearn-

dNN2

Using

Expectation of pgx

136

r2 equals the squared Euclidean distance from the origin to x, and

P_.(® v, 12) is the non-central chi-squared distribution with v degrees of

A.l Conditional

ean distance to the nearest sample from population T. The minimum

(A1)

The value of Fd2(8) can be determined as the integral of p within the

(A2)

We wish to estimate the density px at sample point x, given the squared

(A3)

(A4)

squared error estimate equals the conditional expected value of px given
[126].
E 8 = dNN2 =f 18) d
oxldpp 28 = INN®) ; P P ldnn2tP 19 dp
Bayes' rule,
Papn2ipy @ ! P) By, (P
=1p dp
)
0



Expanding the denominator in terms of conditional probabilities of dNN2
given px:

oj P Pyyn2ipx®!P) B () dp

= (A.5)

00

Of pdNNZIPx(S Ip) pr(P) dp

Solution of Equation (A.5) requires two PDFs: be(p) and pdNNzlpx(Slp).

Expressions for these two functions are derived in the following two sections.

A.2 Density of px

Note that px, the density of the feature space at test point x, is a random

variable that depends on x. The probability density of pPx, denoted as be(p), is

a probability density function of a probability density! Because p is assumed to

be a normalized Gaussian function, the value of px depends only on the
distance r of x from the origin. The density at radius r is

-r2/2
e

Px (r) = 2 (A.6)

(21t)V/
Figures 4.4a and 4.4b are sketches of px(r) and be(p), respectively. At

r=0, px reaches a maximum value of pMAX = (Zn)-V/z. Random selection of test

point |x often results in a value of r for which px is nearly zero. This is

particularly true for large values of dimensionality, v. The function be(p)

therefore reaches a maximum value near p=0. Since px < pMAX, be(p) =0 for p

> PMAX-:
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px(r) p(px)

pMAX -

:

r pM'AX px

Figure A.2: (a) sample density, (b) density of py.

Consider a spherical shell centered at the origin with radius r and
thickness Ar. The probability mass, m, contained in the shell is equal to its
volume (surface area times thickness) times the density within the shell, px.

The surface area, Sy, of a v-dimensional sphere of radius r is

_2_(&)1_11-1

VIr(/2)

Therefore,

v/2
270 n-1arpy. (A.7)

T (v/2)
The shaded vertical section in Figure 4.4b corresponds to density values

within the spherical shell. The density at radius r+Ar, for small Ar, is

e-(r+Ar)2/2 e-(r2+2rAr)/2
~ —_ -TAT
/2 = /2 =hx¢
2n)’ 2n)’

The change of denmsity, Apx, between the inner and outer surface of the shell is

Apx = px - Px e TAT - px(1 - eTAD) - PxIAT.

The area represented by the shaded vertical section is then

A= q)x(r)Apx ~ ppx(r)pxrAr- (A.8)
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The jarea A must equal the probability mass M within the shell.

terms

in Equations A.7 and A.8,

2(rV/2
ppx(r)pxrAr = —v;lrn‘lArpx.

Solving for ppx (r),

or, in

v/2
Dy, @ = T den-2,

terms of density values,

2(n¥12) -2)/2
Dp () =poe 2 mimyV/2p) D2

A.3  Conditional Density of dN 2

Equating the

(A.9)

To determine pdNNzlp (8 I'p), first note that conditioning on pyx is
X

equivalent to conditioning on r2 (the squared‘ distance of x from the origin):

2 In p - vIin@2n).

function.

pdNN2|Px(8 [p) = pdNN2|r2(8 FAx)

d

=da [ PdNNzlrz(a i lx) ]a=8

=ga [1-(- B p@ )N 1,

=ga [1-0-Pp@lv,Ax) N1, s

a

(A.10)

(A.11)

(A.12)

(A.13)

“da [1-(- jvaz(é v, a)de N T o (A.14)

=NT[1 -136,2(8 v, Ax) ]N'lpx,z(S v, Ax) (A.15)

In Equation A.10, the variable Ay is related to p by: Ax = -2 In(p(2r)-V/2) =

139

Equation A.11 follows from the definition of the density

Equation A.12 uses Equation A.1 to relate the distribution of nearest-



neighbor distances (out of a population of N samples), PdNN2lr2(a I Ax), to the

distribution of all distances between samples, %2,r2(a'7»x)- Equation A.13

substitutes a non-central chi-squared distribution for szlrz(a””") using

Equation A.2. Equation A.14 replaces the distribution function with an

integrated density function. Finally, Equation A.15 carries out the

differentiation.

wherg

Substituting Equations A.9 and A.15 into Equation A.5, and simplifying,

PMAX
fpN[1-Px,z(alv,xx)]N‘1px.2(81v,7»x)1n(p)dp

®)= PMAX (A.16)

fN[1-Px.z(alv,xx)]N*1px,2(8lv,7»x)l'n(p)dp
0

E
PxldNNZ

> pMAX = (2n)V/2,

A4 Numerical Evaluation of E 2
PxIdNN

Numerical evaluation of Equatidn A.16 is difficult because the In(p)

term, present in both the numerator and denominator, is unbounded at the
lower limit of integration. We therefore introduce a change of variable, Yy =
-In(p), or p = eV. Equation A.16 then becomes
fe—‘vN[1-Px.2(8|v,xx)1N-1px.2(8lv,xx) ye Vdy
-In(pMAX)
K = A.17
pxldNN? 00 a.17)

f N[1 -Px,z(aw,xx)]N- 1px.2(8|v,xx)we—lvdw
-In(pMAX)

where Ax = -2y -vlIn(2n). Evaluation of Equation A.17 was accomplished using

Romberg's integration method [127].
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A.5 Approximation of Median NN Distance

From Equation A.1, the median nearest-neighbor distance is equal to the

value of & for which FdNNZ(S) =1-(Q1- %2(8))N = % Taking logs of both sides
and | rearranging,
In (1 - Fd2(8)) =in_(§£)'
For large N, a good approximation is
Fd2(8) = % (A.18)

distan

In this expression, Fd2(8) is the cumulative distribution of inter-sample

ces. For the Gaussian case, Fd2(8) is a weighted sum of non-central chi-

squared distributions:

The v

[e.o]

Fd2(8) = Of PX.Z(SIV,K)px,Z(K)dK

alue of 8 which satisfies Equation A.18 can be determined using a

numerical  root-finding technique such as the Van Wijngaarden-Decker-

Brent

method [127].

A.6 Interpretation

Figure A.3 plots the negative log density estimated from Equation A.17 as

a function of dNN (not dNN2). The median value of NN (from Equation A.18)is

used as a normalizing factor, so that an x-axis value of 2 indicates an NN

distance twice as great as the median NN distance. The data shown are for a

three-dimensional space (v=3), with one sample and one million samples. The

N=1 curve appears to be a parabolic shape, consistent with the affine
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connection.

of curvature twice within the range plotted.

The N=1000000 curve has a complex shape, changing its direction

At distances several times the

median NN distance, the N=1000000 curve has negative curvature, consistent

with

two

the actual maximum density of a Gaussian (21t"’/2).

the use of a log function as in Equation 5.15. Note that for small dNN, the

estimators approach a limiting density value that is slightly lower than

It is possible (although

unlikely) for a dNN value near zero to be observed at a test point distant from
the mode of the distribution. To account for this possibility, the estimator
never reaches the  theoretical maximum.
N=1000000 ————~- N=1
2
»
c
o
Q
o
<)
-
0+ttt
0 1 2 3 4 5
dNN / median(dNN)
Figure A.3: Density estimators for v=3.
Figure A.4 shows a similar pair of curves for v=13. The N=1 curve is
again| approximately parabolic and the N=1000000 curve is again a complex
shape. The N=1000000 curve has positive curvature at distances near the
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median of dNN. Negative curvature at distances of several times the median of

dNN| is not apparent in this case as it was for v=3.

N=1000000

dNN / median(dNN)

Figure A4:

Density estimators for v=13,

In most applications, N=1000000 is an impractically large number of

samples, although for v=13, it is still much to small to justify the asymptotic

arguments leading to Equation 5.15. Figure A.5 shows the optimal estimator for

N=1000 and v=13.

size {

the direction of curvature.

This represents a combination of dimensionality and sample

hat is of practical interest.

The curve is parabola like, with no changes in

Note the similarity of this curve to the data and

parabolic fit shown previously in Figure 5.4
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Figure A.5: Density estimator for v=13, N=1000.

Examination of a number of curves such as those plotted above for
various combinations of sample size and dimensionality suggest that the
optimal estimator is logarithm-like in the limit of large sample size and low
dimensionality, and parabola-like in the limit of small sample size and high

dimensionality. =~ Many practical problems approximate the latter limit.
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Experience: From 1977 to 1978, Mr. Higgins was a Development

Engineer with Scripps Institute of Oceanography, where he
developed instrumentation and mathematical models for
predicting sand transport on beaches. In 1978 he joined
Bolt, Beranek and Newman as a Scientist in the Speech
Group, where he developed algorithms for narrowband
speech compression. From 1981 to 1996 Mr. Higgins has
been employed with ITT Industries, where he has held
positions including Senior Scientist and Manager of the
Speech Department. His primary technical interests are in
the areas of speech and speaker recognition. Since 1985, he
has been Principal Investigator on seven government R&D
contracts, involving nearly 20 man-years of effort. He has
authored numerous technical papers and holds six U.S.
patents.



