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PREFACE 

The past eleven years of my involvement in the field of voice 

recogrj.ition have seen enormous progress. As voice recognition systems have 

moved from the laboratory to the real world, my own activities in this area 

I 
have become ever more market focused. To sustain the market for voice 

I 

recogJition and other biometric security products, further technological 
I 

i advanfeS must address the difficult problems presented by future security 

applications. 

Voice verification is rapidly being incorporated into applications 

involving telephone transactions. The security provided by these systems, and 

the 1st that is placed ht them, is limited by their accuracy and by their 

resistrce to counterfeiting. Overcoming these problems will be a giant step 

towarq enabling secure electronic commerce. The confluence of computer 

teleph~ny, video teleconferencing, and network computing will provide 

resources that can be used to this end. This dissertation, and the concept of 

multi-tnedia personal identity verification, was conceived with these ideas in 

mind. 

, This work represents an extension of several years of research and 
i 

devel~pment that was conducted in collaboration with my colleagues and 

friendJ, Larry Bahler and Jack Porter. Larry invented the SQNN algorithm for 
I 
I 

voice I recognition, and Jack developed a mathematical rationale to understand 
I 

its excellent performance. Jack also contributed to the Appendix of this 

dissertation. Without Jack and Larry, it is unlikely that this work would have 

been started, much less completed. 
I 
i 
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I 

I The inspiration . to undertake a doctoral program after years of work in 
I 

indus~y came from Dr. Joe Campbell, an OSU graduate who had been faced 

with similar circumstances. Joe showed me that it was possible to overcome 

the hurdles of returning to an academic environment. 

The biggest hurdle was in moving to Stillwater, Oklahoma for two 

semesters while completing my course work. Although my work there was 
i 

intere~ting and challenging, I found it quite difficult being separated from my 

I 
wife, febecca, and our two sons, Doug and Alex, who remained in San Diego. 

The diain burden of the move fell on Rebecca, who, in addition to maintaining 

her +•ta! practice, had to deal single-handedly with the logistics of schools,· 

sportitg events, music lessions, Boy Scouts and Cub Scouts, etc. I am grateful to 

Rebecca for giving me the opportunity to pursue my studies at· OSU. 

· Finally, I thank Professor Yarlagadda, 'my thesis advisor, for his 

encoutagement, help, and guidance. During my residence in Stillwater and 
I 

since I then, we have had many interesting and useful discussions, and it has 

I 
been a great pleasure working with Dr. Y. 

i This work was supported in part by Sandia National Laboratories 
I 

(Cont.tact #AM-3325) and by the U. S. Army Research Office (Contract 

#DAAH04-95-1-0463). 

lV 



TABIB OFCONIBNTS 

Section 
I 

1. I I ODUCTION 

1.1 Multi-Media Personal Identity Verification 

1.2 Overview of Dissertation 

1.3 Previous Work 

1.4 Organization of Dissertation 

2. PIV METHODS AND APPLICATIONS 

2.1 Passwords and Personal. Tokens 
2.2 , Biometric Verification 

i . 
2.3 1 Law Enforcement 2J 1. Witness Identifications 

2+2. Fingerprints 

2.].3. DNA Identification 
2.4 Local Access Control 

2. .1. Retinal Scan 

2. r2. Iris Scan 
2.4.3. Hand Geometry 

2.5 I Network Access Control 

2.6 · i Summary 
i 

3. REVIEW OF REIBVANT LITERATURE 

3 .1 Voice Verification 

3.1.1. Text-Dependent Apprqaches 

3. ].2. Text-Independent Approaches 

3.2 I Face Verification 
3 '4' 1. Feature-Based Approaches 

3.,.2. Template-Based Approaches 
3.3 Multiple Media 
3.4 Data Fusion 

3 .5 I Biometric Data Protection 

3.6 Summary 

V 

Page 

1 

1 

2 

5 

5 

6 

6 

7 

8 
9 
10 
12 

13 

15 

15 

16 

16 

17 

18 

18 

19 

22 

26 

27 
29 
32 
34 

37 

42 



Sectil n 

4. MULTI-MEDIA PIV SYSTEM DESIGN 
i 

4.1 ; System Requirements 

4.2 • Concept of Operation 
4.3 Counterfeiting 

4.4 · Anti-Counterfeiting 

4.5 Summary 

5. PROBABILISTIC MODELING OF INDIVIDUALS 

Page 

44 

44 
45 

47 
48 

49 

50 

5 .1 Introduction 5 0 

5.2 Acceptance Criterion 51 
5.3 An Example: Height as Evidence of Identity 53 

5.4 Probability Density Estimation for Densely Sampled Populations 57 

5.5 Probability Density Estimation for Sparsely Sampled .Populations 59 

5.6 Dimensionality Estimation 

5.6.1. An .Extension of the Method of Pettis, et. al 
I 

5.7 ' Likelihood Ratio Estimation 
5.8 1 Multiple Models Per Individual 

5.9 Summary 

6. EXHERIMENT AL DATA 

6.1 Introduction 

6.2 Equipment Setup 

6.3 Subjects 

6.4 Prompting 

6.5 Initial Data Processing 

6.6 · Inventory of Sessions 

6.7 Subjective Observations 

6.8 · Summary 

7. VOICEDATAFEATUREEXTRACTION 

7 .1 1· Introduction · 
7 .2 Voice-Only PIV Algorithm 

7.3 Signal Processing 

7. .1. Spectral Analysis 

7 J2. Silence Frame Pruning 
I 

7.~.3. Blind Deconvolution 

7.3.4. Frequency Differencing 

7.4 · Voice Comparison 

7.5 Summary 

vi 

65 

66 

68 

69 

70 

73 

73 
73 

75 

75 
75 

77 
78 
79 

80 

80 
80 
81 
81 
84 
84 

85 

85 
85 



Sectifn 

8. vmto DATA FEATURE EXTRACTION 

8.1 Introduction 
8.2 Video-Only PIV Algorithm 

8.3 : Manual Location of Faces 

8.4 Signal Processing 

8.4.1. Histogram Stretching 

8.4.2. Gradient Filtering 

8.5 i Automatic Location of Faces 

8.6 Face Comparison 

8.7 Summary 

9. AN YSIS AND RESULTS 

9.1 Introduction 

9.2 Likelihood Scoring Versus L.ikelihood Ratio Scoring 
9.3 Intrinsic Dimensionality 

9.4 : ROC Performance Measurement 
9.4i.1. Integrated Error Measure 

i 

9.5 I Test Procedure 

9.6 ~oice-Only ROC Data 
9.7 Face-Only ROC Data 

9.8 Fusion of Voice and Face Data 

9.9 Summary 

10. COI~CLUSION 
I 

10.1 ! Summary of Accomplishments 

10.2 i Suggested Future Research 
I 

BIBLI©GRAPHY 

APPENDIX: Density versus NN Distance for Gaussian PDF 

A.1 Conditional Expectation of px 
A.2 Density of px 

A.3 Conditional Density of dNN2 

A.4 Numerical Evaluation of 1t,xldNN2 

A.5 Approximation of Median NN Distance 
A.6 Interpretation 

VITA 

vii 

Page 

86 

86 

86 

88 

89 

89 

90 
91 

97 

97 

99 

99 
99 
101 

101 

104 

105 

107 
109 
111 
115 

118 

119 

121 

126 

135 

136 
137 

139 

140 

141 
141 

145 



Table 

2.1 

5.1 

6.1 

7.1 

9.1 

9.2 

9.3 

LIST OFT ABLES 

Comparison of PIV Systems (from Maxwell 1987) 

Cumulative Height Distribution of Adult Males 

Inventory of Sessions by Subject 

Filterbank Design Data 

Example of ROC Computation 

Values of a and ~ for Voice and Video Data 

Summary of Key Results 

Vlll 

Page 

11 

45 

65 

70 

88 

96 

99 



Figure' 

2.1 

3.1 

3.2 

4.1 

4.2 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

6.1 

6.2 , 

6.3 

6.4 

6.5 

7.1 

8.1 

8.2 

8.3 

8.4 

8.5 

8.6 

LIST OF FIGURES 

Example of a Biometric Measurement 

Illustration of Data Fusion 

System for Secure Transmission of Biometric Models 

User's View of PIV System 

System Interaction with Network 

Likelihood Functions for Hx = 71 

Log Likelihood Ratio Function for Hx = 71 

Log Probability Density versus Nearest-Neighbor 
Distance for N(O, I2) 

Log Probability Density versus Nearest-Neighbor 
Distance for N(O, 113) 

Comparison of Log Likelihood Estimators for N(O, I 13) 

Approximate Linear Relationship of Ln rki Versus 
Ln k, with Slope Equal Reciprocal of Local 
Dimensionality 

Illustration of Experimental Setup 

Script Used for Prompting Subjects 

Initial Data Processing 

Video and Audio Digitization Parameters 

Example Image Frame from MA-1 

Data Flow Diagram of Voice Data Processing 

Data Flow Diagram of Video Data Processing 

3 x 3 Neighborhood Used by Sobel Operator 

Example Pre-Processed Frame from MA-1 

Estimation of Face Box Position 

Average Head Box Image after 1, 2, and 3 Iterations 

The 12 Most Significant Eigenfaces of the OSU Data 

IX 

Page 

6 

29 

34 

37 

38 

46 

46 

49 

51 

53 

57 

62 

63 

63 

64 

66 

68 

74 

76 

77 

78 

79 

81 



Figur 

9.1 

9.2 

9.3 

9.4 

9.5 

9.6 

9.7 

9.8 

9.9 

A.I 

A.2 

A.3 

A.3 

A.3 

Log Likelihood Scores for Each Test Session 

Example ROC Curve 

Test Procedure for False Acceptance Measurement 

ROC Performance of SQNN Voice-Only PIV Algorithm 

Comparison of INN Versus SQNN Voice-Only 
PIV Algorithms 

ROC Performance .of Face..:Only PIV Algorithm 

ROC Performance of Face-Only PIV Algorithm Using 
One Test Frame and Various Numbers of Training 
Frames 

Scatter Plot of LLRvoice VErsus LLRface 

Scatter Plot Showing Decision . Boundary 

Illustration of Density Estimation Using NN Distances 

Sample Density and Density of Px 

Density· Estimators for v = 3 

Density Estimators for v = 13 

Density Estimators for v = 13, N = 1000 

X 

Page 

85 

87 

90 

91 

92 

93 

94 

96 

98 

114 

117 

121 

122 

123 



ACRONYMS 

equal-error rate 

FA false acceptance 

false rejection 

gaussian mixture model 

hidden Markov model 

integrated error measure 

INN interpolated nearest neighbor 

IIR log likelihood ratio 

IR likelihood ratio 

NN nearest neighbor 

PDF probability density function 

PN personal identity verification 

ROC receiver operating characteristic 

SQNN squared nearest neighbor 

Xl 



CHAPrERl 

INTRODUCTION 

The ongoing de-centralization of computer resources and information 

raises concerns about information privacy and security. Data that was once 

physiq1lly protected in locked and guarded buildings is, in many cases, now 
I 
i 

accessible at remote sites through computer networks. It is commonplace, for 
i 

example, for business people to access proprietary corporate data from 

airports, hotel rooms, or customer's facilities. The protections that are 

typicafly in place are vulnerable to circumvention through stolen passwords 

or other means. Personal Identity Verification (PIV) systems offer a possible 

solution. PIV systems use measured physical, or biometric, evidence to 
i 
I 

estabHsh the authenticity of a person's claimed identity. We refer to the 

persoJ making the claim as the user, and to the person whose identity is 

claim~d as the claimant. PIV tests the hypothesis that the user and the 

claimaint are one in the same. 

1.1 Multi-Media Personal Identity Verification 

: The focus of this research is on the use of voice · and facial image a~ 

biometrics for personal identity verification. An advantage of these 
I 

biomeirics over others is that they can be applied conveniently in the type of 

applicltion described above. The feasibility of measuring and processing 

voice I and facial images is increased by the recent availability of low-cost 

multi-tnedia computers incorporating audio, video, and digital signal 
! 
i procTng capabilities. We refer to the concept of using multiple biometric 

1 
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i 

attribftes 
Ident1ty 

I 
I 

to authenticate a user's claimed identity as Multi-Media Personal 

Verification. 

1.2 Overview of Dissertation 

To provide a motivation for the work reported here, the. history of PIV 

methtjds and applications was investigated. The results of this investigation 

supptt the notion that providing information security over networks is a 

logical direction in which to extend PIV technology. For reasons alluded to 

I 

abov~, voice and facial images are among the most promising biometrics for 

this Jurpose. Considerable progress may be needed, however to develop PIV 

algor~thms that. are sufficiently robust with respect to variations in equipment 

and environmental conditions. Feature extraction and statistical decision 

algorithms for voice and face data are critical elements of the envisioned PIV 

system. 

I A literature survey was conducted to assess the state of the art in these 

areasl among others. Numerous studies are cited involving either voice 

verifil ation or face verification, separately. The approaches applied to voice 

verification are generally quite different from those applied to face 

verification. In part, this is due to the fact that all reported work to date on 

face verification has been based on still images, which lack the temporal 

dimension associated with voice. 

The recent success of Brunelli and Falavigna [1] in combining voice and 

still facial images proves that voice and facial appearance carry separate 
' 

infonhation about the identity of the subject that can be mutually reinforcing. 

Despte this success, facial movements and expressions remain a source of 
I 

errors, rather than a source of information, to systems restricted to processing 

still tmages. It should therefore be possible to achieve better verification 

2 



I 

I 

I 

accurly using image sequences than still images. 

suppJted by studies of human performance [2]. 

This conclusion is 

Verification using voice and image sequences poses interesting 

theordtical problems. Both voice and facial appearance are influenced by 
I 

factor~ other than the identity of the subject. To this extent, they are 
! 

reasoJably regarded as random, as opposed to deterministic, observations of 

underting attributes that characterize the subject. The decision to accept or 

rejectl the claimed identity is made with minimum error probability according 

to Byes' decision rule. Implementation of Bayes' decision rule requires 

estimres for the likelihood of the observed feature vector sequence assuming 

that the claim is true, and assuming that it is false. The likelihoods depend in 

turn 9n the local probability densities. at the observed feature vector points 

under the same assumptions. Estimation of these densities is made difficult by 

the h~gh dimensionalities of the feature spaces and by the limited availability 

of tr~ning data. In some cases (e.g., facial images), feature space 

dime+onality may actually exceed the number of available training samples. 

The nearest-neighbor (NN) method is a well-known approach to 

nonparametric density estimation. According to the NN method, the log of 

local · probability density is related through an affine transformation to the 

log of Euclidean distance between the test sample and the nearest training 

sampl~. It is shown that the NN method fails in high-dimensional spaces. 
I 

Empi~ical investigations in cases of interest indicate that local log probability 
i 

densit¥ is more closely related to the square of nearest-neighbor distance 
I 

than to its logarithm. Estimation of density based on this conjectured relation 

is reflrred to here as SQNN estimation. Analytic support for SQNN estimation is 

proviqed for the special case of multivariate Gaussian densities. 

3 
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I 

I 

I PIV algorithms were developed for voice and facial image sequences, 

separltely. The algorithms differ in their methods of feature extraction, but 

are ~therwise identical. Both algorithms implement an approximation to 

BayeJ• decision rule incorporating SQNN estimation. 

An experimental database was collected in which subjects were filmed 

using a camcorder while reading a set of short, prompted phrases. Each 

subje<i:t was filmed on multiple occasions, providing sufficient data for 

I 
modeling and simulated verification. Both the audio and video data were 

digitiled and stored in computer files. 
I 

This data was used for development and 

evalu~tion of the PIV algorithms. 
I 
I 

; Performance of the PIV algorithms was evaluated by simulating a large 

number of verification trials in which the claimed identity was either valid or 

invalid. Accuracy of the voice and face PIV algorithms was measured as a 

funct~on of the duration of the input data. These results demonstrate the 

I 

superiority of image sequences over still images. Given 10-second segments of 

input I data, both algorithms accept at least 90% of valid claims while rejecting 

! 

all i1valid claims. Analysis of the false-rejection errors reveals that in most 

cases, they occur when the test conditions differ in some obvious way from the 

traini:p.g conditions used to model the subject. For example, the subject may 

wear · glasses during a test session but not during training sessions. Similar 

phenomena affect the voice data. It is argued that differences of this sort 

invaliidate the subject's model, and therefore the decision derived from it. No 

exambles were found in the experimental database of sessions that were 

simul~aneously anomalous with respect to both the voice and face models. 

TherJfore, perfect verification performance is obtained by accepting the 

identhy claim if the data passes either the voice test or the face test, and 

rejecting it otherwise. 
I 
I 
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1.3 Previous Work 

This work extends previous studies by the author in collaboration with 

others [3, 4] (see Acknowledgements). The voice PIV algorithm based on 

"SQNN" estimation (to be defined later) is substantially the same as that 

descri~ed in [4]. "INN" estimation was developed as an extension of the work of 

PettisJ et. al [5]. One important step in the face PIV algorithm involves the use 

a su~ect-independent face model proposed by Turk and Pentland [6]. 
! 

1.4 Organization of Dissertation 

1 Chapter 2 examines methods and applications of personal identity 

verifi. ation. A historical perspective is taken, and the focus is on methods 

that tmploy biometrics other · than voice and facial image. Chapter 3 surveys 

the 1Jterature in the areas of voice and face verification, as well as date fusion 

and Jrotection of biometric data, two other key components of a multi-media 

PIV jy,tem. In Chapter 4, the concept of operation of a multi-media PIV system 

is pr~sented. The approach to probabilistic modeling of individuals, including 

defini!tion and rationalization of the SQNN estimation method, is presented in 

Chapter 5. The experimental database is described in Chapter 6. Chapters 7 and 

8 provide details of the voice and face PIV algorithms, respectively. Results of 

applying the simulated PIV algorithms to the experimental database are 

presented in Chapter 9. Conclusions of this work are given in Chapter 10. 

5 



CHAPTER2 

PIV METHODS AND APPLICATIONS 

It is said that there are three approaches to authenticating an 

individual's claimed identity: "What you know, What you have, and What you 

are". I The first two approaches refer to the use of passwords and personal 

tokenJ as discussed in Section 2.1. The third approach refers to biometric 

verifidation, described in Section 2.2. In Sections 2.3, 2.4, and 2.5, applications 
I . 

of PIY systems are divided into three broad categories: law enforcement, 
i 

physical access, and network access. Examples of each category are given and 

the dlfferences between categories are presented. No attempt is made to 

exhau~tively catalog or differentiate specific applications. PIV technologies 

approbriate for each category of application are described. Conclusions are 
i 

presented in Section 2.6. 

2.1 Passwords and Personal Tokens 

Passwords and personal tokens such as credit cards are commonly used 

as evidence of personal identity. Both are vulnerable to circumvention by 

unauthorized individuals because their security hinges on the restricted 

knowledge or possession of some item. Computer break-ins to sensitive DOD, 

DOE and NASA facilities involving penetration of password PIV systems have 

been widely publicized [7]. When passwords are computer-generated, they 

tend to be difficult to remember, adversely affecting user acceptability. When 

users ' select their own passwords, they favor words that are easy to remember 

(and ftor hackers to guess). The pervasive use of fraudulent identification 

6 



items (including credit cards, driver's licenses, etc.) is also well documented . 

[8]. Annual credit card losses attributed to fraud are estimated to be over one 

perce~t of total credit card sales [9]. 

for b~ometric verification methods to 
! 

Because of these problems, there is a need 

be used in place of or in addition to 

passwords and personal tokens. This research focuses on biometric 

verification. 

2.2 Biometric Verification 

Password- and token-based PIV systems associate· with each user a 

unique, discrete pattern that must be matched exactly for the claim to be 

accepled. Biometric PIV systems, on the other hand, involve measurements of 

humani 
1 

physical attributes that vary continuously over multiple dimensions. 
I 

Unco~trolled factors, including the subject's behavior, may influence these 

attrib~tes. In addition, measurement errors of various types may be present. 
I 

Bertillon's system of "Anthropometric Indications", published in 1889, 

consi~ts of a set of length measurements of the head and limbs that was used 

for positive identification of known criminals. An illustration of 

measurement of the right ear, as prescribed by Bertillon [10], is shown in 

Figury 1.2. 
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Figure 2.1: Example of a Biometric Measurement 

Biometric verification requires each user to participate in one or more 

enrollment sessions, in which normative measurements of the relevant 

attributes are established. These measurements are used to form a model of 

the user. Similar measurements, made later during verification sessions or 

test sessions, are evaluated using the claimant's model to determine the validity 

of the claim. 

2.3 Law Enforcement 

Law enforcement applications of PIV involve use of evidence at a crime 

scene to identify the perpetrator. The perpitrator is non-cooperative in 

providing evidence and may actively seek to hide his identity. Evidence of 

various types may be discovered through the efforts of a human investigator. 

The initial stages of the investigation may use criteria such as motive, access, 

etc. to reduce the search to a small number of suspects. For each suspect, the 

hypothesis that the evidence was produced by that suspect is tested by the PIV 
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syste+ Processing time is not critically important. Ultimately, the strength 

of evidence connecting the crime with the suspect is decided by a jury. 

I Types of evidence commonly involved in law enforcement applications 

i 

include witness identifications, fingerprints, and DNA present in human cells. 
! 
I 

These! are described in the following sections. 
I 

Witness Identifications 

Witness identification of suspects is routinely admitted as evidence in 
I 

court.! The constitutionality of legal proceedings involving witness testimony 

was ~stablished in three landmark cases: United States v. Wade, Gilbert v. 

Calikrnia, and Stovall v. Denno. In all three cases, both visual and voice 

information was used in identification [11]. Under ideal conditions, visual 

identification is considered more reliable than voice identification. Although 

the information content of visual and auditory media depends on factors such 

as lilhting and background noise levels, observers apparently do not modify 
! 

their !decision strategy based on these factors [12]. In simulated police lineups, 

subjects are about 9 times more likely to be correct than incorrect [13], and 

they ! tend to be more accurate in rejecting non-targets than in affirmatively 
; 

identifying target individuals. It is generally reported that observers' 
I 
I 

subjective confidence in their decisions has little or no correlation with 

objective accuracy . Zavala [2] reports that the accuracy of witnesses in 

iden~fying suspects is improved by the use of movie clips as opposed to still 
I 

photbgraphs. 

I Face recognition systems are 

devel!opment for mug-shot retrieval. 

currently in use and under continuing 

The purpose of these systems is to rapidly 

acces;s individuals in a database whose faces match a verbal description. In 

FACES (Facial Analysis Comparison and Elimination System) [14], used by the 
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I 
British police force, a digitizing pad and stylus is used to locate 37 "cardinal 

pointsl" on a photograph of each known face. The locations of the points are 

conve~ted to a set of 21 linear and area parameters. The values of these 

parJeters are used as coordinates into a space upon which each known face 

is represented as .one point. Verbal descriptions of the perpetrator are 

converted to numerical coordinates in this space. Goldstein, et al. [15] estimate 

that ~bout 5.4 features must be accurately known. to specify one individual out 

of a !population of 256, and that the number of features required increases with 
I 
I 

the l~g of the population size. The main difficulty in these systems is that 

• i 

w1tneres 

reme1ber 

rarely remember more than 3-4 features [15], and the features they 

tend to be poor discriminators [16]. 

I 2,3,2, Fingerprints 

Papilary ridges, or fingerprints, on the surface of the fingertips have 
i 

been !used to identify individuals since the late 19th century. Fingerprints are 

uniqur to each individual, including identical twins, because they depend on 

the qhaotic initial conditions of embryonic development. In 190 l, fingerprint 

matching was officially introduced at Scotland Yard using a classification 

system developed by Sir Edward Richard Henry. The Henry System was adopted 

by tqe FBI and other organizations, and remains in use throughout the world 

toda)'I. 

The Henry System classifies ten-print records into one of approximately 

1000 types [17]. When searching for a matching ten-print record, the search 

is restricted to consider only file prints of the same type. Within each 

fing+rint, a number of points are located (about 12 on average) where a 

ridge : either ends or bifurcates, becoming two ridges. These points are called 
! 
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minujiae points. Matches within Prints of the same type are established from 

the r6lative positions of the minutiae points. 
I 

I The most reliable method of locating minutiae points is by a human 

examiher. A method in current practice for latent prints is the following [18]. 

The Jrints are photographically enlarged using a 5: 1 scale. Tracing paper is 
I 
I 

placeq over the photograph, and the ridges are traced by hand. The origin of a 
I 

2-dimensional coordinate system is established at the center of the outermost 

joint flt the end of the finger. A digitized image of the tracing is created and 

store~ as a computer file. The examiner then enters the coordinates of the 

minutiae points using a digitizing tablet. 

Automated methods have been developed for location and matching of 

. ~ . mmutia pomts in ten-print records [19-21). This technology was incorporated 

into the FBI's Automated Fingerprint Identification System (AFIS), which 
I 

becanie operational in 1983 [22). The use of AFlS is growing rapidly. It is 
I 

estim!ted [23) that by the year 2000, the FBI will process 61,000 fingerprint 

I 

check~ per day against a file of 34 million prints. Manual editing is still 

requi~ed for latent prints [24). 

The results of a search include a list of up to ten individuals whose file 
I 

prints! best match the unknown, and scores associated with the matches. 

I 
Score~ range from O to 9999, higher scores generally indicating better 

matcqes. Scores are influenced by factors including the number of minutia 
' 

point~ and how tightly they are clustered. In the case of latent prints, scores 
I 
I 

are arso influenced by the quality of the print and the alignment of the axes 

used las the reference for the minutia coordinates. Because of these factors, 
I 
I 

score I values themselves are less indicative of the likelihood of a match than 
I 

differences between score values. The best quantitative evidence of a match is 

a large gap between the scores of the first and second candidates [18, 22). 
I 

i 
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In recent work, fingerprint technology has been applied to local 

access control applications (see Section 2.4). A fully-automatic fingerprint 

based PIV system using an optical reader is described by Takeda et al. [25]. 

Other • recent work includes improved algorithms for minutia detection [26] and 

improved measurement devices [27]. 

I 

2,3,3.I DNA Identification 
I 
I 

I The hereditary characteristics individuals are· transmitted from 
I 

gener*ion to generation by means of genes. Genes are represented 

physicbally bychromosomes, which are present within the nucleus of every 

cell t the human body. Chromosomes are made up of deoxyribonucleic acid, 

or D~A, a complex organic molecule that contains a sequence of simpler 

molechles called nucleotides. There are four different nucleotides, usually 

abbreviated A, G, T, and C, which act as symbols in the genetic code. Parts of 

the sJqence of nucleotides on a chromosome, called extrons, are used to encode 

the g!nes. Other parts, called intrans, are long repeating sequences that may 

occur at any point on the chromosome. Although introns are genetically 

insignificant, their lengths (number of neucleotide sequence repetitions) are 

uniqu~ to each individual, and are the basis of DNA identification [28]. 

DNA identification uses a process known as gel electrophoresis. In this 

proce~s, a set of specific introns is extracted from the DNA sample and added to 

a gel i placed between two electrodes. When electrical current flows between 

i 

the electrodes, the negatively charged DNA fragments migrate slowly toward 

the +sitive electrode. Shorter molecules move more quickly through the 

viscolls gel than longer ones. The current is stopped before the migration is 
I 

compl;ete, and a radioactive probe is used to expose the positions of the 

molecules on a photographic plate. The resulting photograph shows a series 
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of bjd, along a "lane" between the two electrodes. Two or more DNA samples 

can 4 compared by forming multiple lanes in a single gel electrophoresis 

I run. 
1 

The accuracy of DNA identification depends on the particular introns 

used in the process, and on the probability distributions of the lengths of these 

intronr in the general population. As an example, if ten introns are used and 

each possible intron length is shared by ten percent of the population, the 

probatility of, two randomly selected people having the same DNA signature 
1. 

(assuming each intron is independent of the others) is 1 x 10-10. DNA 
I 
I 

identification requires a minimum of several weeks and is quite costly. For 
I 

this reason, it is only used in connection with very serious crimes. 

2.4 Local Access Control 

Local access control applications involve transactions that take place at 

publid places such as commercial offices, kiosks, or point-of-sale terminals. 

The tiv equipment at each site is shared by many users. The equipment is 

' 
physitally protected to minimize to the possibility of tampering. Verification 

must ,be completed within a few seconds. Subjects are cooperative and there is 

little :or no human supervision. Examples include: 
I 

• I Access control to rooms or buildings 
I 

• ATM Machines 

• Credit Card Verification 

•
1 Electronic Benefits Transfer 

• Ticketless Travel 

Biometric based PIV systems for local access control were first 

devel~ped and tested in the 1970s [29, 30]. These stand-alone systems 

incor:torated microprocessors and were fully automated. A comparison of 
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i 

variol PIV systems for use in a local access control application was conducted 

by S tdia Laboratories [31]. The results are shown in Table 2.1. 

Hand Voice 

Geometry (AT&T) 

Verify Attempts 
I 

1491 3206 

i 
Imposter Attempts 4055 3415 

I 
I 

Enrollment Time 54 sec 
! 

18 sec 

Verification Time 4.4 sec 8.8 sec 
i 

False I Rejections 0.9% 12.5% 

Fales I Accepances 0.4% 0.1% 

I 

Voice Retinal Finger 

(Voxtron) Scan Print 

2564 3082 3384 

3795 5027 4849 

144 sec 126 sec 114 sec 

10.1 sec 7.5 sec 9.8 sec 

17.0% 10.8% 9.1% 

0.6% 0% 0% 

1Table 2.1: Comparison of PIV Systems (from Maxwell 1987) 

The development of optically-based fingerprint readers (as opposed to 
I 

ink dads) has enabled fingerprint technology (See Section 2.3.2) to be applied 

to physical access control applications. Electronic benefits transfer (EBT), 

whereby government benefits such as food stamps are dispensed 

electronically at point-of-sale terminals, is an important current application. 

A 19,95 study by the General Accounting Office concluded that "electronic 

fingetprinting may be the most viable option for detering fraud in an EBT 

envir~nment". The Federal EBT Task Force recommended that EBT with 
i 

fingetprinting be used for all disbursements of social security, military 
I 

pensibns, civil service retirement, food stamps, and Aid to Families with 

Depeldent Childeren by 1999. The total of these payments in 1994 was $433 

I 

billion, of which it is estimated that 10% was fradulent [32). 
I 
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I 
I 

2.4.1.1 Retinal Scan 
I 

I 

I Retinal identification of individuals is based on the pattern of blood 

vesselr in the subject's eye. According to a 1935 medical finding, no two 

retinal patterns are identical. The patterns are disrupted only by eye surgery 

or serious eye injuries such as detached retina. Either or both eyes can be 

used, I depending on the required accuracy. Retinal scanners have been 

comJercially available since 1985. To use a retinal scanner, the subject looks 

into ie eyepiece, which is similar to the eyepiece of a microscope. The 
i 

distanice between the eye and the scanner must be very small. A weak 
I 

infrarrd light is directed through the pupil to the retina, and the reflected 

patter;n is observed using a CCD camera. The pattern is stored digitally using 

about: 35 bytes. The retinal scan is one of the most accurate available 
I 

biomttrics [33]. A scanner instrument, excluding supporting computer 

equiprent, costs about $3500. 

2.4,2j Iri5 Scan 

The iris, or colored part of the eye, has also been found to be a reliable 

identifier of individuals. Viewed closely, the iris contains numerous features 

such i as pits and striations. Like fingerprints, these details depend on the 

initial conditions of embryonic development, and are therefore unique even 

among identical twins. The principles and technology of personal 

' 

ident~fication using iris features is patented by two opthamologists, L. Flom 

I 
and t" Safir [34], and described in [35]. The iris scan device is available 

com,ercially, and can be used at a distance of up to 45 cm. 
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2.4.3.1 Hand Geometry 
I 

I Hand geometry identification is based on the three-dimensional shape 

of thJ subject's hand. 
! 
I 

Hand shape is a stable individual characteristic over 

time, • and the performance of hand geometry devices is reported to be 

unaffQcted by dirt or cuts on the hand. A hand geometry reader includes a 

i 

base plate with metal alignment pins which guide the placement of the hand. 

Simulf aneous top- and side-view pictures are taken using a digital camera. 
I 

Features are extracted automatically, including hand height, finger length 
I 

and width, and distance between knuckles. These features are transformed 
i 

and 1ompressed to form a 9-byte digital pattern. Enrollment for an individual 

is acbomplished by averaging the 9-byte patterns from three readings. Equal-

error ;rates for hand geometry are now reportedly about 0.2 percent [33]. The 

cost bf a hand-geometry unit is about $2150. 

I 2.5 Network Access Control 

I Network access control applications involve access to networked 

computer, data, or telecommunications resources by users throughout the 

network. The defining characteristic that differentiates network access 

control from local access control applications is that the number of sites from 

which users may be allowed access is unlimited. Users may provide their own 

equipment, including the PIV measurement equipment. Economic 

consi~erations dictate the that cost of this equipment be minimized. PIV 

systels for network access control must be robust with respect to variations in 
I 

meastrement equipment and user environments. 
I 

The use of biometric PIV methods for network access control is in the 

early . stages of development. An early example was the Sprint FONCARD, in 

which' voice verification was used to control access to Sprint's long distance 
I 

16 



telephpne network. Other potential applications include home banking and 

home I shopping. 

I 
I The need for network access control is increasing rapidly, as networks 

i themselves increase in size. It is estimated that the number of internet 
I 

addre~ses doubles every nine months. At the same time, audio and video 
i 
I 

capab~lities are becoming available at moderate cost for use in video 

confe~encing. As these capabilities become "standard equipment" on future 
I 
I 

persoiial computers, it will be possible to obtain voice and facial image data 
i 

witho¥t added cost. The growing need for network access control, combined 
I 

with !affordable measurement hadware, create a powerful motivation for 

develqpment PIV algorithms based on voice and facial images. 

2.6 Summary 

Biometric technology has evolved since the time of Bertillon toward 

becoming partially or fully automated. This evolution has enabled new 

applications such as automated local access control. The biometrics most often 

used for local access control - hand geometry, fingerprints, iris scans, and 

retinal scans - all require specialized (and expensive) measurement 

equipment. The cost of providing this equipment at every node of a network 

makes these biometrics impractical for use in network access control. Audio 

and video cababilities required for voice and facial-image PIV systems, on the 

other hand, are becoming available at modest cost for use in video 

conferencing. Normal human experience provides proof of the concept of 

identJying individuals from their voices and faces. These observations 

sugge!st that voice and facial image biometrics will become increasingly 

important in the evolution of PIV systems toward network access control. 
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CHAPTER3 

REVIEW OF RELEVANT LITERATURE 

• This chapter reviews the literature in areas of specific relevance to 
! 

multi-hledia 
I 

.f. I . ven 1qat10n, 

PIV: voice verification,. face verification, multi-media 

data fusion, and biometric data protection. 

3.1 Voice Verification 

The speech signal from a microphone is segmented . into a series of 

contigiuous 10-20 ms frames, and features related to the spectral shape within 
I 

each frame are extracted. The measured spectral shape is determined 

primarily by the instantaneous size and shape of the vocal tract, and is 

there ff re characteristic of the speaker. Types of features include normalized 

I 

power1 spectra [36], cepstra [37], and various transforms of the impulse 

response of linear prediction filters [38]. Typically, each frame is represented 

by 10 to 20 features. 

' A sequence of spectral features over time can be visualized by means of 

a spectrogram, in which the x axis represents time, the y axis represents 

frequency, and the gray scale level represents power or intensity. 

Spect~ograms (also called "voice prints") have been used for forensic 

I 

identification since about 1962 [39]. 
I 

I It is common for voice verification systems to prompt the user to speak 
J 

one dr more phrases containing words from a small vocabulary. Data collected 

in enrollment sessions is used to create models for the vocabulary words. 

' 

Durin~ verification, the similarity of the observed speech data to the word 
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mode~ is evaluated by means of algorithms similar to those commonly used for 

speeJ recognition. The word models allow temporal stretching and · 
! 

I . d . b"l" f k" t Th t comp~ess10n to accommo ate vana 1 1ty o spea mg ra e. ese sys ems are 

referrJd to as text dependent. 
I 

' 
I Voice verification using unconstrained speech material is also possible. 

' 
In this case, word modeling or other forms of linguistic modeling have 

relatif ely little benefit, compared with purely acoustical modeling of the data. 
I 

Voic9 verification systems that handle unsconstrained speech material are 

i 
calledi text independent. Text dependent systems are generally capable of 

highet verification accuracy than text independent systems. The advantage of 

text ~ependent systems derives from comparing test and training data frames 

i 

whic~ are time aligned with respect to articulation, or vocal tract 

confJguration. · 

3,1,1, Text-Dependent Approaches 

I 

Suppose the test speech signal, x(t), is known to contain a string of 

words, W. Word templates may be derived from the enrollment data and 

concatenated together in the sequence W with restricted contraction or 

dilati,jm of the time scale to accommodate a range of speaking rates. Let F(t) be 

a time scale warping function from a set <I> of allowable functions, and let C(W, 

F(t)) ; be the concatenation of templates in the sequence W using warping 
! 

function F(t). Define a measure of distortion, D(x, C(W,F(t)) between the input 

data :and the concatenated templates. The best time warping function is 

F*(t) = argmin D( x, C(W, F(t))) 

F(t) E <I> 

19 
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I 

I 

I 

and ,e minimum distortion is given by o• = D( x, C(W, F'(t)) ). F'(t) and o• 

can bf computed by template matching methods, which employ an efficient 
I 

dynamic programming algorithm [40, 41]. 
I 

I The above matching method was used by Doddington [29] in one of the 
! 
: 

first ~orking 

I 
the df stortion 

speaker verification systems. The identity claim was accepted if 

o* was less than a threshold value. The concatenation of word 

I 

templates C(W,F*(t)) is equivalent to a phrase template. A weakness of 

Doddi~gton's method is that optimization of F(t) within the set <I> does not allow 

! 

an aqequate diversity of pronunciations, particularly with respect to the 
I 

' I 
length of inter-word pauses. This leads to false rejections 

syste! cannot distinguish pronunciation deviations from 

in cases where the· 

voice deviations. 

Rosenberg [42], Furui [43] and others developed improved speaker 

verification algorithms based on a more flexible syntax-driven dynamic 

progr~mming procedure incorporating word templates [ 44, 45] as opposed to 

phras~ templates. The use of separate templates for the various words and 

silende made these algorithms more robust with respect to pronunciation. 

Another important advantage was that the amount of enrollment data required 

was determined by the vocabulary size, as opposed to the number of possible 

phra~es. 

! Furui also introduced the method of cepstral subtraction [37] to 

compensate for linear channel distortions such as the frequency response of a 
I 

non-iJleal microphone. He showed that convolution of the input signal is 
! 

equiv~lent to addition of a constant bias in the cepstral domain (assuming the 

conv41utive distortion does not contain spectral zeros). Therefore, if two 

I 
signals differ from one another only by a fixed linear distortion, their cepstral 

sequences can be made comparable by subtracting the long-term average 
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from each one. Cepstral subtraction is analogous to blind 

decon olution in the power spectrum domain [46). 

Further improvements in text-dependent verification resulted from the 

use o hidden Markov models (HMMs) [47, 48) rather than dynamic 

progrJmming as the basis for alignment and matching of the input speech 

with toice models. Although the theory of hidden Markov modelling is out of 

the slope of this work, there are several excellent tutorials on the subject [49, 

50). Template matching and HMMs have been compared in several studies [51-

53), and consistently better results have been reported for HMMs. A likely 
I 

explatlation is that the probabalistic HMM training procedure produces more 

stable and robust word models than the deterministic procedure used for 

templ~te trainiI1g. 

The HMM algorithm provides an estimate of the speaker likelihood, or 

the conditional probability of the observations 
I . 

given the speaker model. Prior 

to t9bt, the speaker likelihood was commonly used as the numerical criterion 

for aJceptance or rejection of the identity claim. 
I 

Higgins et al [3] described a 
' 

systeqi in which verification decisions were based on a likelihood-ratio test of 
I 

' 
the form shown in Equation 2.2. The demominator of the likelihood ratio, p(X I 

-C), ras ~pproximated using a group of enrolled users other than the claimant. 

This 1approximation requires matching the input speech with the voice models 

of thbse other users as well as the claimant, thereby multiplying the required 

compf talion. The added computation is justified by reductions in error rates of 

2-5 times, leading to widespread adoption of likelihood-ratio scoring methods 

by oter researchers (54-56]. 

I 

I 
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i 

I 

3.1.2J 
I 

Text-Independent Approaches 

One of the first automatic algorithms for text-independent speaker 

recognition was reported by Pruzansky in 1963 [57]. In this study, the 
I 

information contained in digital spectograms of the reference and test 

utteraices was used as the basis of comparison between two speakers. The 

most important finding was that recognition accuracy remained essentially 

unchTged when spectrograms were averaged over time to form a single 

long-tfrm power spectrum per utterance. A similar result was reported by 

Pfeife~ [58], in a study in which speakers were identified from handmarked 
I 

sampl~s of five vowels. Performance was found to improve by pooling the 

vowell samples, as opposed to maintaining separate statistical models of each 
I 

vowel!. A likely explanation of this finding is that the vowel samples were 

highl~ influenced by the phonetic contexts in which they occurred. 

This explanation is supported by the findings of Paul, et al. [59], 

invol ing a database of 250 speakers. Acoustic features were extracted from 

thirte, n phonetic categories (10 vowels and 3 nasals). Three methods of 

selecting reference and test samples were compared. The first method, called 

"context independent", compared any two events that were of the same 
I 

phon~tic category. The second method, called "context dependent", compared 

two events of the same phonetic category only if · the second formants of the 

adjac<pnt phonemes were at similar frequencies. The third method, called "text 

depenJdent", deemed two events comparable only if they occurred in the 

identiral phonetic contexts. 

monofonically from context 
I 

categories. 

Speaker separability was found to increase 

independent to text dependent across all phonetic 

A recurring question in text-independent speaker verification is 
! 

whelli1er (and if so, how) linguistic modeling can be used to advantage. The 

22 



I 
I 

I 

I 

I 

answe~ appears to be that linguistic modeling is useful to the extent that it 

restridts comparisons between enrollment and test data to like phonetic events 
i 

withi~ the same context. A vast quantity of enrollment material must be 

availaple to enable such comparisons. Phonetically-based approaches have 

little if any advantage over purely acoustic approaches when the text is not 

I 

knowrj. [56, 60], except on very short test utterances. In this case, language 

consttiaints provided by a large-vocabulary speech recognizer [61] have 

proven to be useful. 

For longer unprompted utterances (30 seconds or more), good 

performance can be obtained using purely acoustical modelling. Several 

studie~ have investigated the use of acoustic models spanning several time 

frames [62]. These models capture feature trajectories, as opposed to 

instantaneous features. They are capable of representing vocal gestures or 

coarticulations that may be speaker specific. Like context-dependent phonetic 

mode~s, multiple-frame acoustic models require a very large amount of 

enrolI~ent data. A way of incorporating trajectory information with less 

impact on enrollment requirements is to estimate the time derivative of the 

spectr.um at each frame, and augment the feature vector to include this 

infonµation [37]. 

In the studies cited above by Pruzanski and Pfeifer, speakers were 

comp~red with one another based on Euclidean distances between their mean 
I 

I vectmrs . 
I 

Markel and Davis [63] extended this approach to use a Mahalanobis, 

or in:verse-covariance weighted Euclidean distance. Another method of 
I 

measJring distance between speakers [64] is based on the observation that 

vectJ quantizers (VQs) can be strongly speaker dependent. In vector 
! 

quantization, each speech frame to be quantized is replaced with the nearest 

frame in a "codebook" consisting of multiple frames. The frames belonging to 
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I 

I 

a codlbook are typically derived using a clustering procedure in which the 

mean lsquared error in quantization of a set of training data is minimized. 
I 

When I new speech data is processed, the mean squared quantization error tends 

to be I lowest for the speaker whose training speech ·was used to create the VQ 

codebook. Speaker identification methods that rely on measures of distance 

between speakers are known as minimum-distance methods. 

' 
In a study of various approaches to text-independent speaker 

I 

identitication, Schwartz et al [65] concluded that probabalistic approaches 

(both ! parametric and nonparametric) are capable of superior performance to 
I 

mini,um-distance approaches. The premise of probabalistic approaches is 

that tµe sounds produced by speakers can be statistically described by stable 
I 

probability density functions (PDFs), and that these PDFs provide a basis for 

classi{ying or testing hypotheses concerning new speech data. 

j One of the most successful probabilistic approaches is based on the 
I 

multi~ariate Gaussian model. Gish and Schmidt [66] derive simple expressions 
I 

for thF likelihood of speech data, given a Gaussian model PDF. Likelihoods are 

computed for a set of speakers including the claimant, and the likelihood ratio 

of the claimant versus other speakers is estimated. A virtue of Gaussian models 

is th~.t relatively few independent parameters are employed, minimizing the 
I 

required size of the enrollment data. However, evidence that speech PDFs are 
! 

well approximated as Gaussian has not been reported. 

i • 
I Another parametnc model used successfully for speaker verification is 

the Gkussian mixture model (GMM). A GMM is a weighted sum of multivariate 

I 
Gaussian densities in which the weights sum to unity, ensuring that the 

I 

mixtute is a proper density function. The parameters (means, covariance 

matrices, and weights) of a GMM are estimated using the Estimate-Maximize 

(EM) algorithm [67]. GMMs provide greater flexibility than Gaussian models to 
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i 
I 

matchl arbitrary PDFs, at the expense of a larger number of free parameters. 

Like . rdinary Gaussian models, Gaussian mixture models may be used to 

espveaalukl're. the likelihood of an observation being produced by a particular 

"' This approach to speaker verification is described by Reynolds and 
! 
! 

Rose [68]. 

I Nonparametric methods enable estimation of speaker likelihoods from a 

given j body of enrollment data without recourse to any assumed parametric 

famil~ of PDFs. The nearest-neighbor method is a well known technique of 

estimJting density from a collection of sample points. Given N samples, the 

nearer neighbor estimate of density p(x) at test point X i S: 

I .. 1 
p(x) = NV (3.2) 

wher1 V is the volume of a spherical ball centered on x, and just enclosing the 

framet of the model speaker's enrollment data as the N samples, and treating 

each lrame of the test data as an independent test point. One of the 

conclusions of a speaker recognition study that considered this approach [65] 

was that its effectiveness compared with parametric methods decreases with 

the dimensionality of the feature space. Higgins et al. [ 4] reported that a 

modi:Jfied form of nearest neighbor estimation gave better speaker recognition 
' 

perfo~mance than the conventional method. This finding and the reasons for 

it willl be further investigated herein. 
I 
I Text-independent systems are inherently more robust than text-

deperident systems with respect to non-linguistic or paralinguistic behaviors 

such las stuttering or hesitations and to non-speech sounds such as breathing 

and : ackground noises. This robustness, in addition to the high accuracy that 

can be obtained with small vocabularies, make text-independent approaches 

attra~tive for the intended PIV application. 
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I
I 

3.2 Face Verification 

I Until recently, most quantitative investigations of facial recognition 

has bJeen based on profile measurements [69]. Sir Francis Galton measured the 

! 

relative positions of five cardinal points. These points were defined in terms 

of facial features in a manner that would be considered unambiguous to most 
i 

obser-ters. One point, for example, was defined as "the notch between the nose 

and the upper lip". Individuals from the training set were selected as similar 

if alli five measurements were within a pre-specified tolerance of the test 

measurements [70]. A similar procedure using more measurements and an 

improjved decision procedure was developed by Harmon et al. [71]. More 

recently, Wu and Huang [72] developed a fully automatic system using back-lit 
I 
I 

photography that correctly recognized 17 out of 18 people. The approach of 

charabterizing individuals by the geometric relationships between a set of 
! 

cardi+al points continues to be used for both profile and frontal recognition, 

and i~ generally referred to as a feature-based approach. 
! 

In 1965, Preston reported using an optical computer to recognize faces 

[73]. A coherent light source was directed into the device through a 

photographic film upon which the input image was printed. Within the 

optical computer, a second photographic film, called a "matched filter", 

contatned the faces of six kings arranged side by side in two rows of three. 

Wheq the input image matched one of the kings' faces, a bright spot of light 
i 

appe*ed on the device's "output plane" at one of six locations corresponding 

i 
to the arrangement of faces on the matched filter. It was shown that the 

I 

imag1 on the output plane was the cross-correlation of the input image with 

the rpatched filter. The approach of characterizing individuals by a complete 

imag~ of the face is referred to as a wholistic or template-based appraoch. 
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Feature based approaches have the advantage of representing faces in a 

simple and compact form, enabling rapid searching over large databases. 

I 
Template based approaches, on the other hand, have been found to be more 

accurJte [74], probably because they preserve facial· details such as wrinkles, 
! 

i 
scars,: and unusual markings that are known to carry personal identity 

information [2]. Feature-based and template-based approaches are discussed in 
I 

the tllowing sections. 

3.2.11 Feature-Based Approaches 
I 
I 

i 

I One of the first automated systems for recognizing facial front views 

was 1eveloped by Kanade [75]. The method is similar in principal to the mug­

shot retrieval method described previously in Section 2.3.1. Facial features 

i 
(analqgous to "cardinal points") are located on the image, and parameters 

derivrld from these features serve as indexes into a "face space". To locate 

feat+, on the image, edge detection is first performed using the Laplacian 

operafor, and the image is quantized to binary intensity values. A set of 

"integral projections" are computed on narrow horizontal slits at various 

positions in the image. At each pixel along the length of the slit, the integral 
I 

proje¢tion is the number of l's along the width of the slit. Heuristic 
! 

proce~ures are applied to locate facial features in the following sequential 

order; (1) top of head; (2) sides of face; (3) nose, mouth and bottom of chin; (4) 

chin contour; and (5) eyes. The algorithm is iterative in the sense that feature 

locat' ons can be revised based on later computations. The final locations are 

conv rted to a set of 13 ratios and angles that are invariant with respect to the 

imagl scale. 
I 

The face space is therefore 13 dimensional. Fifteen out of 20 

peop~e were correctly identified in a test of the system. 
I 
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I More recently, explicit geometric models have been used to locate facial 
I 

featur~s. Govindaraju et al. reported an algorithm to automatically locate 

facesjin newspaper photographs [76]. The outline of the face was modeled as a 

close I contour consisting of arcs for the hair-line and chin-line with 
I -

connef ting straight lines for the face sides. Candidate arcs and lines were 

detectbd using the generalized Hough transform [77]. These segments were 
I 
I 

then grouped together to form candidate faces using an algorithm that is also 
! 
I 

based I on the Hough transform. Candidate faces are pruned using spatial 

! • constramts derived from the caption of the photo and heuristics of photo 

journ~lism. A slightly different approach was taken by Yuille et al. [78] in 
i 

locating eyes and mouths. They used simple geometric models involving 11 

param~ters of the eye model and the 10 parameters of the mouth model. These 

par,ters specified the location, size, shape and tilt of the model features 

with respect to the image. The parameters. were adjusted by a steepest descent 

algorithm to minimize an error function [79] of the image and the models. 

Simil~ approaches have been reported by others [80] [81]. 

Emperically-determined shape models were used by Lanitis et al. [82]. 

These. models were created from a set of training examples, which consisted of 

manually traced contours of eyes, nose, mouth, ears, and chin. The principal 

model! of variation of the shapes encountered in the training data were 

determined statistically [83], and used to define a family of allowable shapes, 

contr1lled by a small number of parameters. An algorithm similar to that of · 

Yumd, et al. was used to align the shapes with faces present in test images. 

Having located a set of facial features using methods such as those 

above
1
, the problem remains of how this information may be used to recognize 

indivi~uals. Kamel et al. [84] developed a transformation and matching 
i 
' 

tec,que in which nine original feature locations were converted to a set of 

I 
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five ·nvariant features to make the system robust with respect to viewing 

angle. The extracted information was represented using a data structure 

desigrted to enable efficient matching. In a test involving 84 test images with 

various viewing angles, 66% were correctly recognized. A test of a similar 

I 
syster, which did not involve multiple viewing angles [85], resulted in 89% 

corre~t 
i 

i 
3,2,2J 

recognition. 

Template-Based Approaches 

Baron [86] postulated that a cross-correlation mechanism like that of 

Preston's optical computer exists within the human neuroanatomy and is used 

in face recognition. According to this theory, input images are rapidly 

(nearl!y instantaneously) compared with remembered facial · images, or 

' 
templates. He developed a computer simulation of the mechanism, which 

included cross-correlation together with related "control networks" that 

perfo~med functions such as input scaling (to normalize the distance between 

the eyes) and illumination level normalization. 

Nakamura, et al. [87] applied a template-matching approach to a set of 

two-djmensional contours, termed "iso-density maps", which were derived 
! 

from jthe original · image. An iso-density map is a set of one or more closed 
I 
I 

contoµrs connecting points in a monochrome image that have the same level 
I 

of bl1ightness. Each face was represented using eight iso-density maps 

corre$ponding to different brightness levels. The maps for high brightness 
I 

level, were found to be most useful for discriminating between people, but also 

were I most affected by variations in viewing angle. The maps for low 
I 
I 

brigh~ness levels were more robust but less person specific. In a test 
! 

involving ten subjects, all faces were correctly recognized, but it was noted 
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' 
I 

that ~e algorithm is very sensitive to camera positioning and to the intensity, 
I 

positi1n, and color of the light source. 

! A limitation of conventional template matching approaches is that they 
i 
I 

do ndt accommodate the kind of facial movements that may be expected during 
i 
i 

speecli, for example. Lades et al. [88] applied a rectangular grid to input 

imager, and modeled the local sub-images at the vertices of the grid. In 

recogiizing a test image local template matching was performed at each grid I , 

point, I and the grid was ·allowed to distort elastically in order to minimize a 

global cost function. In a set of face verification tests involving 87 people 

with variations in viewing angle and facial expressions, equal-error rates 
' 

rangiJg from 12% to 21 % were reported. 

Another approach to handling facial image variability is to model the 

modes of variabilty with ·respect to a long-term average image. Sirovich and 

Kirbyl [89] 

of tr~ining 

applied principal component analysis to a set training faces. A set 

images was analyzed to determine the mean image, 'I', and the 

principal components, Ui, i :s;; 0 < L, of the covariance of the training images 

about 'I'. They showed that an arbitrary facial image, r, not belonging to the 

training set could be approximated in terms of 'I' and a relatively small 

number (e.g., 10) of principal components. To do this, the deviation of r from 

'I' is first computed as <1> = r - 'I'. The projection, <l>f, of <1> on the subspace 
L 

spann~ by the Ui is given by <l>f = LCOiUi, where COi = <l>fT Ui. The synthesized 

I 

i=l 

approbt.imation is: r f = 'I' + q>f. 
I 

Turk and Pentland [6]described a method of 

locatirg a face within a larger image by sliding a window over the original 

imagJ, and selecting the position of the window to minimize the error 
I 
I 

function: e2(x,y) = I <1> _ <1>fl2. In the following, r(x,y) denotes a subimage of r of 

dimensions equal to those of 'I' and Ui, with upper-left comer at (x, y). The 
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I 

I 

I 

derivJion of eex,y) in terms of r(x,y), 'P, and Di is repeated here because 

·Severt errors were contained in [6]. Dependence on (x, y) is suppessed. 

I e2 = I cp _ q,f12 e3.3) 
i 

Expanding the first term, 

I 

ExpaJding 
I 

I 

I 

the second term, 

= eci, - cpf)Tecp -<Pf) e3.4) 

= cp T cp - q,T <Pf - cpfT eci, - cpf) e3.5) 

= cp T cp - cpT q>f e3.6) 

= q,Tcp- e:lroiuiT)(LroiUi) e3.7) 

=cpTq,-Lroi2 e3.8) 

cp T cp = er - 'P) T er - 'P) 

= rTr - 2q,Tr + 'PT'P 

Lmi2 = :leci,Tui)2 

= :leer-'P)Tui)2 

= :lerui-'PT Ui)2 

e3.9) 

(3.10) 

e3.11) 

e3.12) 

e3.13) 

Comb~ning the two terms, and making explicit the dependence on spacial 

position: 

L 
e2ex,y) = rTex,y)rex,y) - 2q,Trex,y) + 'PT'P + L[rex,y)ui - 'PT Ui]2 e3.14) 

i=l 

Principal components analysis efficiently represents variability among 

faces,1 without regard for discrimination between individuals. In an effort to 

captmre the most useful possible information for face recognition, Cheng, et al. 
I 

' 

[90] proposed using linear discriminant functions similar to Fisher's 

I 

discriminant function [91]. In an experiment involving 40 subjects, correct 
f 
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recognition rates 

96.3%1 using 27 
I 
! Template 

ranged from 87 .8% using 3 training images per subject to 

training images per subject. 

matching approaches are inherently computation intensive. 

Burt ~sserts that the cost of searching for a target over a range of scale factors 
i 
i 

and tientations is proportional to the 6th power of the target dimensions [92). 

To re~uce the computational cost, he proposes the use of image pyramids. The 
I 

low-p~ss, or Gaussian pyramid is generated from the original image through a 
! 

seque~ce of steps, each involving low-pass filtering followed by sub­
! 

sampling. The band-pass, or Laplacian pyramid is formed as difference images 

betwe~n successive levels of the Gaussian [93). Laplacian pyramids are 
I 

potenVally useful in face verification because they enable each step of facial 
! 
I 

locati~m and matching to occur at the appropriate level of spacial resolution. 

I 

3.3 Multiple Media 

I Facial movements 

can substitute for voice. 

during speech are known to convey information that 

In recognizing noisy speech, observers gain the 

equivalent of 8-10 dB of signal-to-noise ratio by seeirg the talker's face [94 ]. 

Petajan [95) developed a speaker-dependent visual word recognition 

algorithm. Testing the algorithm on digits pronounced in isolation, a correct 

recognition rate of about 95 percent was reported. The algorithm cannot 

distin.guish between words that differ in articulations that are not visible. 

Furth~r evidence of the redundancy of voice and facial movements with 

respe~t speech message content is provided by the "McGurk effect" [96). As an 
i 

example of this phenomenon, observers presented with a videotape showing 
I 

artic~lation of the syllable "ba" together with the sound of the syllable "ga" 

tend :to perceive "da". This is explained by the fact that articulation of /d/ 

occurr at a point in the vocal tract that is physically between that of /b/ and 
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I 
I 

I 

lg/, 
I . 

representmg a compromise between the conflicting sound and visual 

cues. 

The high correlation between · speech sounds and mouth movements has 

led to recent efforts in joint audio/visual speech recognition [97] and joint 

audio~visual encoding for teleconferencing [98]. 
i 

I A PIV system using both voice and facial image data was recently 
I 

reported by Brunelli, et al [1, 99]. The voice component of the system is based 

on vitor quantization, and is similar to the system of Rosenberg and Soong 

[100].1 The face component is similar to the feature-based system of Brunelli 

and ~oggio [74] .. 

indivikuals were 
! . 

The voice and face scores for all known (modelled) 

processed using a HyperBF neural network [101] to produce 

the score of the integrated system. On a database of 33 subjects, the integrated 

system achieved 100% accuracy, whereas the voice and image components 
i 

separftely each achieved less than 95% accuracy. 

I Testing the synchrony between speech sounds and mouth movements 
. ! 

would be a useful means of detecting possible counterfeiting in a PIV system. 

Perfo:r;ming this test would of course require visual processing to be focused 

on the mouth area. In a study of audio/visual speech recognition by human 

listen~rs in. a noisy environment, Le Goff et al. [102] found that about half the 

information carried by viewing the speaker's natural face could be provided 

by a : model of the movement of the lips. About two thirds of the information 
I 

could I be provided either by the natural lips, or by a model of the combined 
I 

move~ent of the lips and jaw. Presumably, the remaining visual information 

is cahied by the tongue and teeth. 
I 

Brooke [94] reported that "articulatory 

excur~ions from a neutral facial position, in which the lips and jaw are lightly 

closed, rarely if ever exceed 25 mm". Therefore, any test of lip 
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! 

' I 

i 

sync~onization requires that images be captured with sufficient resolution to 

obserte these small movements. 
i 
I A substantial body of literature addresses human performance at 
I 

' 
' 

identifying individuals from voice or face observations [2, 11-13]. 
I 

Surpr~singly, to the author's knowledge there have been no studies of human 
I 

identification performance using both voice and face observations. One 

interesting study, however, concerned the detection of deceit in interpersonal 
! 

' communications [103]. · The best correlate of deceit was derived from a 

comb~nation of voice and facial features, and achieved 86% correct 
I 

classification of deceiptful versus nondeceitful communications. 

3.4 Data Fusion 

Combining multiple tests of the claimed identity is known to improve 

security. For example, the procedure used in automated bank teller machines 

• I 

prov11es greater security than passwords or credit cards [104] because it 

requir~s the user to possess a valid card and to know the corresponding PIN 

number. The probability of unauthorized access is reduced by combining 

independent tests of the claimed identity. 

Data fusion of biometric data can be accomplished at various stages of 

the d~ta processing. Suppose we have N sources of data: X1, X2, ... XN, which 

are p~ssed through processors Pl, P2, ... PN to produce processed data Y1, Y2, 

YN, jrespectively. All processed data are applied as inputs to fusion processor F, 
I 

! 

as shbwn in Figure 1.3. The output of F is an estimate of the likeihood ratio, 
I 

p(Y1,[ Y2, ... YN IC) I p(Yl, Y2, ... YN I -C). 

I 

34 



p(Y1, Y2, ... Yn I C) 
R = 

p(Y1, Y2, ... YN 1-C) 

F 

Y1 YN 

P1 P2 PN 

X1 X2 XN 

Figure 3.1: Illustration of Data Fusion 

i 

; In the achitecture of Figure 3.1, each source is processed independently 

of the other sources, defering possible consideration of correlation between 

sources to F. The literature refers to various types of data fusion, which differ 

in the nature of the processed. data, Yi, 

I 

.1 Yi = Xi. In this case, no processing is performed by Pi. The 

measurements Xi are passed directly to F, where they are processed 

jointly. This is refered to as measurement fusion. 

• Yi = p(Xi I C) I p(Xi I -C). In this case, each Pi estimates the likelihood 

ratio of C relative to -C based on its input data Xi, We refer to this case 

as likelihood-ratio fusion . 

• : Y· _ { 1 if p(C I Xi) > p(-C I Xi) 
1 - O otherwise · In this case, each Pi forms a decision 

to accept or reject the claim based on its input data Xi, This case is 

refered to as decision fusion. 

In the case of measurement fusion, the data from all sources is fed 

directfy to F. F produces an estimate of the likelihood ratio, p(Xt, X2, ... XN I C) I 
! 
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I 

p(X1,IX2, ... XN I -C), where the dimensionality of the observation space equals 

the sJm of the dimensionalities of the N sources. 
I 

This approach preserves all 

i 

correlation information. It is therefore potentially the best estimator [ 105] 

and the one that requires most computation. 

Likelihood-ratio fusion is equivalent to measurement fusion if the 

sources are mutually independent. In this case, by definition, p(X 1, X2, ... XN I 

C) = P(Xl I C)P(X2 I C) ... P(XN I C). The fusion processor, F, simply multiplies 

toget~er the N likelihood ratio estimates. 

If the sources are not independent, likelihood-ratio fusion is suboptimal 

because it neglects to account for correlation between sources at the 

measurement level. 

I 
I 

Decision fusion methods were studied and developed in the 1980s to 

(3.15) 

enable military information systems to integrate multiple reports originating 

from . a distributed network of independent sensors [ 106-109]. A large number 

of sensors were typically involved, and the bandwidth allowed for 

communication between the each local sensor and the central "decision post" 

(equivalent to F) was assumed to be highly restricted. Optimal strategies for 

setting the local decision thresholds and fusing the resulting decisions were 

derived. Decision fusion is less accurate than likelihood-ratio fusion because 

each :likelihood ratio is presented to F with a precision of only one bit. 

! For multi-media PIV, either measurement fusion or likelihood-ratio 
I 
I 

fusion are appropriate, depending on whether the information sources are 

considered to be independent. Decision fusion is not appropriate because 

restrittions on bandwidth or representational precision do not apply. 
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3.5 Biometric Data Protection 

A practical requirement of biometric security devices is that some 

mean~ should be in place to insure that personal models are not forged or 
I 

modified between enrollment and access time. The opportunity for such 
i 

alterations may be greatest when personal models are transported from the 
I 
I 
I 

enrollpient site to various access sites using telecommunications media or 
i 

personal tokens such as smart cards. The requirements for biometric data 

proteqtion are likely to include the following: 

• It must be possible to verify that a model belongs to the person who 

presents it or claims it (authenticity). 

• It must be possible to detect any alterations of a model occurring after 

enrollment (integrity). 

• It may be desirable to keep the model data private to minimize the 

potential advantage to impersonators (secrecy). 

In 1976, Diffie and Hellman proposed the principles of public-key 

cryptography, whereby secure communication can take place without any 

transfer of secret keys [110]. Their method is based on one-way functions, 

which are easy to compute and which have inverses that are infeasible to 

compute. One-way functions for which computation of the inverse is made 

feasible by knowledge of a key are called trap-door one-way functions. 

Consider a family of encoding functions Ez and their inverse or decoding 

functfons Dz, indexed by integer z, for which Y = Ez(X) and X = Dz(Y) can be 

I 

compµted easily given z, but for which Dz(Y) is infeasible to compute 
i 

other{\Tise, even when Ez is known. 
I 
I 

1 A public-key cryptosystem providing secure communications to a 

network of users works as follows. Each user, A, randomly chooses an integer 
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z andl forms algorithms for computing EA and DA, He then publishes EA in a 
I 

pub lid directory and keeps z and DA secret. User A may send a secret message, 
I 

X, to I user B by retrieving EB from the public directory, forming Y = EB (X), and 

transmitting Y to B. User B uses his private decoding algorithm DB to decrypt 

Y. 

i Information authentication refers to methods of proving the identity of 

the originator of a message. Cryptographic methods are often used to 
i 

implerilent authentication. Secrecy and authentication, however, are 
i 

indepfndent attributes [111]. Public-key cryptography can be used to create a 

I 
digit~l signature as follows: User A "signs" his message by applying his secret 

I 

algoriithm, DA, to form S = DA(X). Anyone may decode S by applying EA, 
I 

avail~ble in the public directory. The decoded message, if intelligible, could 
I . 

only p.ave been signed by User A because only User A knows DA, Also, since S 
I 
I 

is a function of message X, any alteration of S will be render the decoded 
i 

mess1ge unintelligible. It is possible to simultaneously achieve secrecy and 

authertication . by signing with DA and then encrypting with EB at the 
! 

trans~itting end, and applying the inverse operations at the receiving end. 

A theory of information authentication developed by G. Simmons [112] 

defin~s an authentication scheme by the set of messages the receiver will 
I 
I 

accepit as authentic and the set of messages the transmitter may transmit. The 

probability of deception, Pd, is equal to the ratio of the sizes of these two sets. 

i 
An essential feature of authentication is the presence of redundant 

I 

infortation known to the receiver. 

acce~table messages in what appears 

! 
all ppssible messages. Simmons cites 

Encryption is used to spread the set of 

to be a random manner among the set of 

the example of a common military 

communications protocol in which the transmitter and receiver have 

matc]iiing secret authenticator codes. The transmitter appends the 
I 
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authenticator code Z to the 

messake before transmitting. 
I 

message and encrypts the resulting extended 

The receiver accepts the message as authentic if 

Z is :recovered after decryption. For an authenticator containing r bits chosen 

at random, the probability of a random message being accepted is equal to 2-r. 

This reasoning leads to the following lower bound on Pd: 

log Pd~ -H(Z), (3.16) 

wherel H(Z) is the entropy of the authenticator code. A tighter bound, derived 
! 

by Sihlmons, is: 

log Pd ~ -l(Y ; Z) (3.17) 

I 

wheref l(Y ; Z) is the mutual information between the encrypted message Y and 

the a~thenticator code. This surprising result states that the probability of 

deceplion can only be small when the encrypted message provides a large 

amout of information about the key! This can be achieved by using a long 

I 

key.• 

The algorithm proposed by Rivest, Shamir, and Adelman [113] is the 

most thoroughly studied public-key cryptographic algorithm that remains 

viable today. It is believed (but not proven) that the security of the RSA 

algodthm is equivalent to the difficulty of factoring large numbers. The RSA 

method is described in [114] as "the only well-known system discovered to date 
i 

which' is secure, practical and suitable for both secrecy and authentication". A 

draw~ack of the RSA algorithm is that it is patented and subject to a licensing 

fee b1~ RSA Data Security, Inc. Alternatives to RSA include the public-domain 
I 
I 

PGP [algorithm and the NSA/NIST Digital Signature Standard (DSS) algorithm 

[11sr 
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Ordinary credit transactions are characterized by mutual distrust 

betwern the merchant and the customer, but common trust in a third party 

(e.g., I a bank or credit card company). The third party, or "issuer", may employ 
i 

the f~llowing methods, proposed by Simmons [112], to facilitate transactions 

among a network of merchants and customers. Each customer reports to the 

issuer: for measurement of biometric attributes such as voice and facial 
i 
i 

featurrs. The customer is given a credential (possibly in the form of a "smart 

card") containing his biometric information encrypted using the issuer's 

secret1 key. The issuer's public key is made available to all merchants. When 

the dustomer initiates a transaction, he presents his encrypted credential to 
! 

the njterchant. The merchant decrypts it using the issuer's public key. He 

then measures the customer's biometric attributes and compares them with 

those : derived from the credential. If an acceptable match is obtained, he 

conclides that: (1) the credential is authentic (endorsed by the issuer); and 
I . 

(2) tie customer's biometric data are consistent with the credential. This 

procebure requires no communication between the merchant and the issuer at 

the t~me of the transaction, and requires merchants to store only the public 

keys of the various issuers. 

Authentication of long messages requires a prohibitive amount of 

computation [114]. To reduce computation, one-way hash functions of the 

message can be used. A hash function converts a variable-length message X to 

a fixr-length representation, H(X), sometimes referred to as a message digest. 

The message digest is then signed, rather than the message itself. The signed 

messJge digest, DA (H(X)), together with the original message, X, are jointly 
I 
! 

encryt>ted to produce Y = EB(X, DA(H(X))). At the receiver, the hash function 

of th~ recovered message X is compared with the recovered message digest. If 

they are the same, the integrity of X is proved. 
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The Secure Hash Algorithm (SHA) developed by NIST [116] takes as input 

messages of length up to 264 bits and produces a 160-bit message digest. Every 
! 

bit o~ the message digest is a function of every bit of the input message. The 
I 
I 
i 

difficulty of finding a message with a given digest is on the order of 2 l 6 0 

operations. 

Biometric models created from voice and facial image features require a 

large number of bytes for their representation (on the order of 104 to 105 
I 

bytes). Coding and decoding these models using RSA or similar algorithms 

would incur unacceptable delays. Therefore, the use of hash functions is 
I 

indicJted. The system shown below includes both digital signature (with SHA) 

I 

and !encryption functions. 

DA 

Biometric Data 

Compress 

Hash 

Signature Encode 
(Two Key) 

Encrypt (Single Key) 

Biometric Data 

Uncompress 

Hash 

Signature Decode 

Decrypt 

Cipher Data (Public) 

EA 

Figujre 3.2: System for Secure Transportation of Biometric Models. 
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' 

I 
1 An operational system based on the principles described above was 
I 

devel~ped and tested by Sandia Laboratories for controlling access to a 
I 

plutotjium reactor facility [30]. Biometric information consisted of the 

subject's weight and hand geometry features. The RSA encryption algorithm 

was used, with a separate key pair for each employee. Encrypted data was 

stored on a magnetic stripe on the employee's ID badge. 

A recent survey of government applications of smart cards [117] 

I 
inclu4es a large number of experimental programs related to personal identity 

! 

verifie!;ation. Many of these programs appear to include or have future plans 
i 

to include biometric features and/or cryptographic data protection. 

3.6 Summary 

A substantial body of literature exists in various fields relevant to multi-

I 

medi~ PIV. Both voice and face PIV algorithms have been under development 

for nrarly 20 years, resulting in numerous and diverse approaches. Face 

verifi¢ation algorithms have used only still images, as opposed to image 

sequences. Very recently, a PIV algorithm was reported that combines voice 

and still facial images, achieving better accuracy with the combination than 

with either voice or face information alone. The use of facial image sequences 
' 

is a logical extension of the current state of the art. Human performance 

studies provide at least anecdotal evidence of the merit of this approach. 

! Fusion of multiple data sources can be performed at various levels, from 

raw ineasurments to fully processed binary decisions. In general, accuracy 

increJses as data fusion is performed earlier in the processing. For 
I 

indeprndent sources, fusion can be performed at the likelihood-ratio level 

without loss of accuracy. 
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I 

I 

I Cryptographic methods of data protection are available to insure the 

I 

integrf1y, authenticity, and privacy of biometric data as it is transported from 

the 4easurement site to a processing site or between processing sites at 

differ~nt locations. These methods will be needed to detect and prevent 

subvelsion of. the system by persons wishing to gain unauthorized access. 
I 

I 
! 
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CHAPTER4 

MULTI-MEDIA PIV SYSTEM DESIGN 

This chapter considers the design of a biometric PIV system for network 

acces~ control. The requirements of the system are specified and a concept of 
! 

operation is presen!ed. Issues related to counterfeiting and methods of 

preventing counterfeiting are discussed. 

4.1 System Requirements 

From the point of view of the authorized user, the primary 

requtrements are that verification be performed quickly, unobtrusively, and 

with I 1ow probability of rejection. From the point of view of the system 

admihistrator the primary requirement is low cost and low probability of 
I , 

admitting an unauthorized person. These requirements may be quantified as 

follows [118, 119]: 

• Access time: 10 seconds or less 

• i 
I 
I • 

False rejection probability: 1 percent or less 

False acceptance probability: application dependent 

Cost: no special-purpose biometric equipment needed 

Counterfeiting: simple attacks must be blocked. 

The requirement on false rejection probability is based on the tolerance 

of v~lid users to being blocked from their intended activity. The 1 % level is 

comparable with the probability of being blocked for other reasons such as a 

mis-~ialed telephone number or lack of an available communications circuit. 
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' 
I 

I 

The fuaximum tolerable false-acceptance probability depends on the value of 
i 
I 

what iis being protected, and on the other (non-biometric) checks that may 

' 

also The in effect. For long-distance telephone access control, where the cost of 
! 

false !acceptance is relatively low, a 10% level may be tolerable. 
i 
i The requirement on counterfeiting is also dependent on the application. 

Count:erfeiting should be discouraged by making it sufficiently costly or time 

consutning that it is not warranted. Forseeable attacks that could be 

acconiplished simply should be prevented. 

4.2 Concept of Operation 

The concept of operation is as follows: The user logs in using the 

normal procedure, establishing an identity claim. A live video picture of the 

user's face is displayed on the CRT, and the user is asked to adjust his position 

or that of the camera so that the face appears entirely within the screen. 

When I the system detects that a face is present, it prompts · the user to speak a 

i 
short, I randomly selected phrase. A decision to accept or reject the identity 

claim is then made based on the available measurements. 
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Video 

Figure 4.1: 

Good evening, 
Mr. Biggins. 
Please say: 

"34 · 97" 

User's View of PIV System. 

Equipment beyond a normal personal computer required for this 

procedure consists of a video camera, microphone, and appropriate digitization 

hardware. It is assumed that the sampled sound waveform and sampled image 

data are available at resolutions and sampling rates typical of current 

consumer-quality audio-visual equipment. It is also assumed that valid users 

are cooperative in responding to prompts and in providing an environment 

with adequate lighting and reasonably low background noise level. 

To minimize the possibility of tampering, the PIV program is executed 

using processing resources located within the network, as opposed to the 

user's computer. As shown in Figure 4.2, biometric data collected at the user's 

computer is transmitted to a processing resource P in the network. P then 

locates and retrieves the user's model from a data storage resource, D. After 
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I 

I 

i 
perforfing the PIV processing, P allows or disallows the requested access to 

I 

occui 

I 
I 

D 

User's 
Computer 

p--------0 P = Processing Resource 

D = Data Storage Resource 

D p 

Figure 4.2: System Interaction with Network. 

It would be possible to circumvent this PIV procedure in either of two 

general ways. One approach would be to substitute the imposter's model for 
I 

I 

the cfaimed user's model at point D, or to interfere with the communication 

between P and D in such a way that the imposter's model was received by P. 

Data protection methods that address this possibility were discussed in Section 

3.5. Another approach is to present counterfeit data to the PIV system. This 

could, be done, for example, by substituting pre-recorded audio and video data 

in place of the microphone and camera "live" inputs. Anti-counterfeiting 
; 

methdds addressing this possibility are presented in the following section. 
! 

4.3 Counterfeiting 

Conventional approaches to performance measurement employ subjects 

who ibehave cooperatively, using the PIV system in the intended manner. 

Coop¢ration by authorized users is rational because it increases the likelihood 
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I 
I 

that qte PIV device will recognize their identity and allow them to proceed 

with ]their business. Unauthorized users, or impostors, however, might 

reasonably believe that access could more likely be obtained by employing a 

counterfeiting strategy designed to exploit a perceived vulnerability of the 

PIV system. For example, a person's voice could be counterfeited using a tape 

recorder, or a facial image using a mask or photograph. Law enforcement 

agencies have even reported cases involving specially made rubber globes 

with :fingerprint patterns inscribed on the fingertips [120]. The possibility 

that an imposter's biometric data might be made available to law enforcement 

authorities provides further incentive for counterfeiting. Counterfeiting is 

therefore a rational strategy for imposters. The possibility of counterfeiting 

has been largely neglected in the literature. PIV systems should include 

measures to detect and reject counterfeiting attempts. 

4.4 Anti-Counterfeiting 

The objective of anti-counterfeiting is to verify that the received audio 

and video signals are "live", as opposed to pre-recorded or synthesized. This 

can be accomplished by prompting the subject to speak randomly-chosen 

phrases, and limiting the time permitted for the correct response [3]. 

Randomized prompting effectively defeats the threat of pre-recording if the a-

priori probability of having the needed response (roughly the reciprocal of 

the number of possible phrases) is less than the false-acceptance rate. The 

impo~ed time limit addresses the synthesizer threat. The proposed concept of 

oper~tion is vulnerable to (future) synthesizers that are sufficiently fast and 
I 
I accuq1.te. Even so, the imposter would have to go to considerable effort to 

obtain data from the target user with which to train the synthesizer. 
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4.S Summary 

A concept was presented for a multi-media PIV system to be used for 

network access control applications. The system employs inexpensive audio 

and video equipment of the type used for desktop video conferencing. It 

prompts the user to speak randomly selected phrases, while capturing sound 

and full-motion video of the spoken response. The user is allowed access to the 
I 
I 

prote9ted network resources if the observations are consistent with the 
I 

claimed identity. Several system requirements were presented. The possibility 

of counterfeit evidence being presented was discussed, and approaches to 

detecting counterfeiting were described. 
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CHAPTERS 

PROBABILISTIC MODELING OF INDIVIDUALS 

5.1 Introduction 

This chapter describes the rationale for accepting or rejecting an 

identity claim based on the observed biometric measurements. We wish to 

minimize the total probability of making an error, which occurs either when 

a valid claim is rejected or when an invalid claim is accepted. This is 

accomplished by accepting the claim if and only if it is more likely to be valid 

than invalid given the observation. Evaluating the likelihood of the claim (or 
I 
I 

i 
the a!lternative, that the individual is someone other than the claimant) given 

I 

I 
the observation requires the use of individual models. 

Both voice and facial appearance can be consciously influenced by the 

subject. To this extent, they are reasonably regarded as random, as opposed to 

deterministic, observations of underlying attributes that characterize the 

subject. The subject may be considered to "emit" observation vectors 

according to a multi-dimensional probability density function (PDF). The true 

PDF .associated with an individual is not known in practice, but must be 

estimated from a set of prior observations known as enrollment data. The 
; 

enroltment data combined with the PDF estimation algorithm comprise the 

individual model. 
I 

The individual model is the key element of verification by which 

observations at the frame level are converted to evidence of identity. Evidence 
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may ~e accumulated over the length of a verification session under the 

assunt,tion of mutually independent frames. 
I 

· The dimensionality (number of measurements per frame) of biometric 

data is often greater than ten. The number of frames of enrollment data is 

often on the order of 100 or less. Probability density estimation is problematic 

under these conditions where the measurement space is sampled sparsely. Two 

appro~ches to this problem are presented. A key factor in choosing between 

the two approaches is the intrinsic dimensionality, or the minimum number 

of independent parameters needed to specify a point in the space. 

5.2 Acceptance Criterion 

Suppose we wish to test the validity of an identity claim, C, given 

observation sequence X. Using Bayes' decision rule, C is accepted if and only if 

p(C I X) > p( C I X) (5.1) 

where p(C I X) is the posterior probability of C given X, and p( C I X) is the 

posterior probability of the alternative (that C is false) given X. Bayes' 

decision rule minimizes the probability of making an incorrect decision [91). 

or 

Re-writing the posterior .probabilities gives the rule 

p(X I C) p(C) p(X I C) p( C) 
p(X) > p(X) 

p(X I C) _p(_Q 
p(X I C) > p(C) 

(5.2) 

(5.3) 

wher~ p(X I C) and p(X I C) are likelihood functions, and p(C) and p( C) are a -

prioTi probabilities of C and C. The ratio p(X I C) I p(X I C) is known as a 

likelihood ratio function, and Equation 5.3 is a likelihood ratio test. The 
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quant~ty p( C) I p(C) is a constant. The decision rule of Equation 5.3 can also 

be e1pressed in terms of the log likelihood ratio (LLR), 

p(X I C) Q.{_g 
ln p(X I C) > ln p(C) . (5.4) 

In practice, the prior probabilities p( C) and p(C) are unknown. It is 

therefore common to replace log(p( C) I p(C)) with an experimentally 

detenpined threshold value, T. 
' 
! Estimation of p(X I C) is difficult because of the conditioning on C, the 

set of all individuals except C. A reasonable approximation to p(X I C) can be 

derived as follows: 

p(X I C) = L p(X I Si) 
S·e C 1 

= L p(X I Si) 
SiED 
Sf;tC 

= max {p(X I Si)}· 
SiED "-
Si:;tC 

where Si is a particular individual, and D is a set of individuals known as a 

cohort, for whom enrollment data is available. Equation 5.6 is valid if the 
i 

(5.5) 

(5.6) 

(5.7) 

number if individuals included in D is sufficiently large. Equation 5.7 is valid 

if the sum over SiE D in Equation 5.6 is dominated by one individual. The 

i 
LLRqecision rule of Equation 5.4 can now be approximated as 

or 

In p(X I C) - ln max {p(X I Si)} > T 
SiED 
Si:;tC 

In p(X IC) - max {In p(X I Si)} > T. 
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Suppose that X is an observed sequence of feature vectors Xi, 0 ~ i< N, 

I 
over )he length of an utterance. A further approximation is based on the 

assumption that the feature vectors Xi comprising X are statistically 

independent: 

or 

p(X I Si) "' TI p(Xj I Si), 
XjEX 

ln p(X I Si) "' L ln p(xj I Si). 
XjEX 

Combining Equations 5.9 and 5.11, the LLR decision rule becomes 

L ln p(x j IC) -

XjEX 
max { L ln p(xj I Si)} > T. 
SiED XjEX 
Si#C 

(5.10) 

(5.11) 

(5.12) 

The decision to accept or reject the. claimed identity based on evidence X 
! 

therefore reduces to the problem of accurately estimating probability 
! 

densities at the test sample points, Xj. This problem is addressed in the 

following sections. 

5.3 An Example: Height as Evidence of Identity 

To illustrate estimation of the likelihood ratio, consider a simple PIV 

system based on the user's measured height. Suppose the height of User X is 

deterµiined during enrollment to be Hx = 71 inches. Suppose also that the 

com~ined effect of variability of X's height, measurement precision, and 

variability of shoe height introduce errors that are Gaussian distributed with 
! 

zero : mean and a standard deviation of 0.5 inches (a simplification for the 

purpose of illustration). If a person claims to be User X and has measured 

height H, the likelihood function, assuming the claim, C, is true, is: 
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2 
p(H I C) = {i exp( -2(H - Hx)2 ) 

· The likelihood function for -C is the PDF of heights for all people except 

X. ~ssuming that the X has negligible effect on the PDF, p(H I -C) may be 

approximated by the unconditional likelihood, p(H). 

p(H I -C) "' p(H) 

The Cumulative probability distribution, P(H), of heights of males between the 

ages of 18 and 64 in the US is shown in Table 1.1 [121]. Differentiating to form 

a density function, 

d 
p(H I -C) ::: dH P(H). 
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Height Cumulative 
(inches) Probabilitv (%) 

60 0.15 

61 0.35 

62 0.65 

63 1.44 

64 2.89 

65 5.92 

66 11.81 

67 19.88 

68 31.37 

69 45.93 

70 60.18 

71 73.73 

72 83.94 

73 83.94 

74 91.65 

75 95.81 

76 98.04 

77 99.26 

Table 5.1: Cumulative Height Distribution of Adult Males 

The two likelihood functions, p(H I C) and p(H I -C) , are shown in Figure 
p(H I C) 

5.1. pie LLR, log p(H l -C), is shown in Figure 5.2. 
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Figure 5.1: Likelihood Functions for Hx = 71. 
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Figure 5.2: Log likelihood Ratio Function for Hx = 71. 

Determination of the LLR for height is relatively simple because: (1) 

height is a scalar quantity as opposed to a vector; (2) intra-person variation in 
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measured height is mainly due to measurement errors and is therefore well 

i 

modeled, independent of the identity claim; and (3) stable (adequately trained) 
' 

population statistics, p(H), are available. Biometrics such as voice and facial 

image~ present the following problems: 

• Feature vectors extracted from the measurements are high 

dimensional. Therefore a very large number of measurements is 

needed to obtain stable estimates of the required likelihood functions. 

• Intra-person variance is significant. Its magnitude and principal 

directions depend on the individual. Multiple enrollment sessions are 

needed to model this variance. 

5.4 Probability Density Estimation for Densely Sampled 
Populations 

1 
The nature of the PDFs of speech and image feature vectors is not well 

I 

underf tood. This lack of understanding is at least partially due to the difficulty 
I 

of co!llecting large enough data samples to reliably estimate density in spaces 

of high dimensionality. In particular, evidence that speech and facial image 

features are well represented using known parametric distributions has not 

been reported. It is therefore reasonable to look to non-parametric, as opposed 

to parametric, statistical methods as the basis for verification decisions. 

The probability density at a test point x can be estimated by considering 

a spherical ball of known volume, V, centered on x. The total probability mass 

within the ball is equal to the probability density (assuming the density is 

const~nt within the ball) times the volume of the ball, or p(x)*V. If N samples 
i 

are drawn at random from p, and k fall inside the ball, then the measured 

relative frequency is equal to k/N. Equating these two probability estimates, 

k 
p(x)*V = N 
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at random from the same Gaussian PDF. For each test sample, Figure 5.3 plots 

the Euclidean distance from the test sample to the nearest of the 1000 training 

samples versus the true log probability density at the test sample. The solid 

curve is the log probability density estimate derived from Equation 5.16. 
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II.I 

~ 
OJ 
A 
>-... .... ..... .... 
~ 
.t::, 

0 

~ -5 
p... 
b.O 
0 

....:I 

0 N! 
0 

~ 
0 

~ 
0 

Nearest-Neighbor Distance 

Figure 5.3: Log 
Nearest-Neighbor 

Probability Density 
Distance for N(O, 

~ 
0 

versus 
12). 

The maximum log density attained by N(O, I2) is equal to -log(21t) or 

-1.838. Although actual log densities cannot exceed this value, the estimates 

derived from Equation 5.16 do exceed it for sufficiently small values of nearest-

neighbor distance. Otherwise, Equation 5.16 provides an accurate model of the 

observed data. 

5.5 Probability Density Estimation for Sparsely Sampled 
Populations 

We are concerned in practice with feature spaces for which v ;:;,: 10. For 

v=lO, one thousand samples would provide an extremely sparse covering of the 
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space, invalidating Equations 5.14, 5.15 and 5.16. To cover a 10-dimensional 

space with the same average density as the 2-dimensional example above 

would require roughly 100010/2 = 1015 samples. Therefore, while N=lOOO is a 

large sample size for v=2, it is a small sample size for v=lO. It is generally not 

feasible to collect enough data to justify the use of Equation 5.16 for feature 

spaces. of five or more dimensions. 

Although the difficulty of estimating density in a high-dimensional 

space• is increased by the relative sparseness of samples, the distance from the 

test ~oint to the nearest sample (NN distance) remains the strongest data upon 

which to base the estimation. To develop a method of estimating probability 

density that is valid for high-dimensional spaces, we further examine the 

relationship between local density and NN distance. In previous work [4], the 

following relationship was conjectured: 

ln p(x) .. a+~ (dNN)2. (5.17) 

where a and ~ are constants and (dNN)2 is the squared Euclidean distance from 

test point x to the nearest sample. In terms of the x and Yi sample locations, 

ln p(x I Y) .. a+~ mi nix -yil2. (5.18) 
YjEY 

Equation 5.18 relates local log density to squared NN distance (as opposed to log 

NN pistance) through an affine transformation. A Monte Carlo simulation was 

cond~cted in a manner similar to that described above in connection with 

Figur~ 5.3. In this case, 1000 samples were selected at random from the 13-

dimehsional Gaussian PDF N(O, 113). As before, nearest-neighbor distance is 

plotted versus true log density at each test sample location. The log density 

estim;ators derived from Equations 5.16 and 5.18 are plotted as solid curves. 

60 



Figure 5 .4 shows that Equation 5 .18 provides a much better fit to the data than 

does Equation 5.16. 
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Figure 5.4: Log 
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versus 
It 3), 

Now consider the problem of evaluating the log likelihood of a set X of 

independent observation vectors x j being generated by the same PDF 

under I ying the set Y. 

In p(X I Y) = In IT p(xj I Y) 

XjEX 

L In p (xj I Y) 
x·EX J 

The conventional (large sample size) nearest-neighbor estimate, based on 

Equation 5.16, is: 

In p(X I Y) z L, -ln(NVv ) - v 

XjEX 
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(5.20) 
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I 

The s!mall sample size estimate, based on Equation 5 .18, is: 

ln p(X I Y) ~ minlxj - Yi12. 
YiEY 

(5.22) 

Again, the accuracy of these equations can be checked using simulated 

data with known PDFs. Suppose X and Y are generated from Gaussian PDFs, 

N(mx,Cx) and N(my ,Cy), respectively. The true log likelihood, ln p(X I my ,Cy), 

is given by: 

ln p(Xlmy,Cy)= -;lnl2nCyl-; L(Xi-my)T cy-l(Xi-my) (5.23) 

XjEX 

= -; [ln 12nCyl + tr( Cy-lex) +(mx - my)T Cy-l(mx - my)] (5.24) 

where .1 I signifies the determinant. A set of experiments was conducted to 

compare the true and estimated log likelihood values. For each data point, 1000 

samples of dimension v=13 were generated at random for Y using my = 0 and 

Cy = 113, and another 1000 samples of dimension v=13 were generated at 

random for X using mx = (8, o)T and Cx = 113. Values of the displacement 

parameter 8 were chosen in the range from O to 2.5 in increments of 0.02. A 

scatter plot of the true log likelihood from Equation 5.24 versus estimates from 

Equations 5.21 and 5.22 is shown in Figure 5.5. 
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Figure 5.5: Comparison of Log Likelihood 
Estimators for N(O, It 3). 

: The values of a. and p used in Equation 5.22 for this simulation were 

' derived as follows. The true log density at each sample point Yi was evaluated 

using the known parameters my and C y , 

v 1 1 T 1 Ai= -2 ln 21t -2 ln ICyl - 2 (Yi - my) Cy- (Yi - my). (5.25) 

The squared Euclidean distance di2 from each sample Yi to its nearest neighbor 

in Y (excluding itself) was determined as 

di2 = minlyj -yi12 . 
YjEY 
Yj,tYi 

(5.26) 

I 
The constants a and p were then chosen to minimize the squared error in the 

equation Ai = a + p di2. This was accomplished by 

(5.27) 
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i 

The 1alues of a. and p used in Figure 5.5 were a. = -12.49 and p = -1.06. These 

I 
values were determined as indicated above, using samples from the Y set only. 

I 

Figure 5.5 shows that the estimates derived from Equation 5.21 are 

! 

reasoJ!lably accurate for d < l, but overestimate the log likelihood outside this 

range. As the PDFs move farther apart, test points and their nearest neighbors 

often have significantly different densities, invalidating Equation 5.21. 

Equation 5.22, however, remains accurate over a larger range of displacements 

of the PDFs. 

The primary evidence cited in [ 4] in support Equation 5 .17 was that a 

voicel recognition algorithm based on Equation 5.22 gave dramatically higher 
! 

perfm!"mance than one based on Equation 5 .21. Two additional arguments are 

the following. First, the density of the feature vectors under consideration is 

assumed to have a finite upper bound, so that the negative log density has a 

lower bound. However, . nothing precludes arbitrarily small NN distances from 

occurring, particularly when the test point is in the vicinity of the 
I 

distribution mode. This effect can be seen in Figure 5.3. The logarithm of dN N 

therefore has no lower bound, whereas (dNN)2 does. Second, when the test 

point is distant from the distribution mode, the nearest sample is likely to be 

much. nearer to the mode, so that (dNN)2 will be roughly equal to the squared 

distance from the test point to the mode. For quasi-Gaussian distributions, the 

negative log density will then rise in proportion to ( dN N )2. 

Investigation of the validity of Equation 5 .17 using experimental data 

woul~ be very difficult because of the intractably large number of samples 

that ~ould be required to accurately estimate the underlying density 
' 

functi;ons. It is possible, however, to determine the theoretical relationship 
I 

between the expected value of log probability density and NN distance for 

knowµ (parametric) density functions. The function relating these quantities 
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is deteloped for normalized Gaussian PDFs in Appendix A. This function 
i 

approximates a logarithm in the limit of large sample size and low 
I 

dimenlsionality, and a parabola in the limit of small sample size and high 

dimensionality. The parabolic approximation appears to be valid in cases of 

practical interest such as multi-media PIV. 

5.6 Dimensionality Estimation 

1 Whether a given population is considered densely or sparsely sampled 

depends on the number of samples observed and on the dimensionality of the 

subspace which they occupy. In the case of voice data, the nominal 

dimensionality of the feature space is 16. However, it is well known that 

nearly all the variance of voice feature vectors occurs within a subspace of 

dimension less than 16. A conventional method of estimating the 

dimensionality of the subspace is to count the number of significant 
I 

eigenfalues of the feature · vector covariance matrix. The dimensionality of 
I 

speecl data determined in this manner is reported to be between 8 and 12. 

The above method overestimates true dimensionality when the observed 

samples lie on curved, as opposed to linear, surfaces. Consider, for example, a 

two dimensional space in which . all data samples lie on the unit circle. The 

covariance matrix has two equal eigenvalues, indicating a dimensionality of 

two. 

only 

However, the location of any data sample can be specified exactly using 

i 

one parameter value. The true, or intrinsic, dimensionality is equal to 
I 

one ip this case because data are distributed throughout the space with only 

I 

one q.egree of freedom. 

' Intrinsic dimensionality is important in nonparametric density 

estimation because it governs the relation of test points to their nearest 

neighbors. Pettis, et. al [5] developed an intrinsic dimensionality estimator 
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i 

I 
I 

based j on near-neighbor distances. Consider a set of samples, {xi}, 0 :::; i< n. Let 

rk i Je the distance from sample Xi to its kth nearest neighbor, and let fk be 
' ! 

- 1 n 
the ayerage distance to the kth nearest neighbor, rk = ; }>ki· Pettis shows 

i=l 

that 
- kl/den 

E{ rk} - G (5.28) 
kd 

kl/dr(k) 1 ~ 
where! Gkd - 1 and Cn =; ""[np(xi) V d]-1/d. Taking logs in Equation 

r(k+d) i=l 

5.28, and substituting rk in place of its expected value, E{ fk}, gives 

1 
ln Gkd + ln rk = d ln k + ln Cn. (5.29) 

The term log Gkd is shown to be close to O for all k and d, and the term 

log Cn is independent of k. Therefore a plot of ln fk as a function of ln k has 

slope equal to lid .. Pettis . et. al estimate lid by performing a linear regression 

of ln rk versus ln k for 1 :::; k :::; K . 

5.6.1. An Extension of the Method · of Pettis, et. al 

Suppose that two sets of samples are available: X = {xi}, 0 :::; i< n, and Y = 

{ Yj} ,: 0 :::; j< m. Redefine rk,i as the distance from test sample Xi to its kth 

neare~t neighbor among the set Y. Substituting rk,i (rather than fk) for 

E { r:k} in Equation 5.28, and taking logs of both sides, 
I 

1 
In Gkct + In rk,i = d In k + In Ci (5.30) 

whe e 

(5.31) 
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The value of ln Ci can be obtained for each i, 0 ~ i< n, from the 

approximate solution to Equation 5.30 through linear regression. As before, a 

plot df ln I'k,i as a function of ln k has slope equal to lid. The additive term in 

the regression (which is not used by Pettis, et. al) is equal to ln Ci. Taking logs 
I 

of E~uation 5.31 and solving for ln p(xi I Y), 

ln p(xi I Y) = -ln(nV d) - d ln Cj. · (5.32) 

Equation 5.32 is identical to Equation 5.15, but with Ci substituted for r, 

which in the notation of this section would be q ,i. This result is reasonable, 

' 
since Ci can be interpretted as an estimator of rt,i· Figure 5.6 shows a plot of 

ln rk i as a function of ln k for 1 ~ k ~ 20 with the linear regression line 
': 

superimposed. These values of ln rk,i are for a randomly chosen frame of 

voice data. The reciprocal of the slope of the line equals 5.6, the approximate 

local dimensionality at the test point, Xi. Note that the zero value on the 

abscis~a occurs at ln k = 0, or k = 1. The additive term in the regression, Ci, may 
I 
I 

therefore be interpretted as a smoothed or interpolated estimate of q ,i· We 

therefore refer to density estimation by means of Equation 5.32 as the 

interpolated nearest neighbor (INN) method. 
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Figure 5.6: Plot Showing Approximate Linear 
Relationship of Ln rki Versus Ln k, -With Slope 

Equal To Reciprocal of Local Dimensionality. 

Equation 5.32 has two advantages over Equation 5.15. First, the linear 

interpblation involved in the derivation of Ci makes Ci a less "noisy" indicator 

of local density than rki- Second, an estimate of the local dimensionality, d, at 

each sample point Xi is available as a bi-product of the computation of Ci- This 

estimate can be used in Equation 5.15, as opposed to the assumed constant value 

of dimensionality that would normally be used in Equation 5.15. 

5. 7 Likelihood Ratio Estimation 

, Using Equation 5.17 as the estimator of local probability density, one 

may ~valuate the LLR of the claimant versus other individuals. Combining 

Equations 5 .12 and 5 .18 gives the decision rule, 
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I 1~ ac + ~c min lxj -yi12 
1.£..J YiE Y C 
~jEX 

> T, 

(5.33) 

where T is the acceptance threshold, Sc is the claimant, Yk is the set of 

enrollment frames belonging to individual Sk, and D is the set of individuals, 

or "cohort", for whom enrollment data is available. The vectors Xj and Yi 

contain pixel values within the 27x32 face boxes. The subscripts attached to a 

and ~· indicate that these constants are assodated with the model PDFs. It is 

assumed that they do not vary as a function of the individual. If this is the 

case, the values of a and ~ do not affect verification performance as measured 

by the ROC curve. In the remainder of this report, we use the values a = 0 and ~ 

= 1. 

5.8 Multiple Models Per Individual 

i The decision rule represented by Equation 5.33 is based on the premise 
I 

I 

that dne PDF characterizes each individual. Suppose that subject Si posesses N 

distinct states, con O~n<N, and that the likelihood function associated with the 

combination of subject Si and state con is p(X I Si, con) . · Distinct voice states, for 

example, might be assumed for "morning voice" and "afternooon voice". Facial 

appearance states might be associated with the presence or absence of glasses 

or hats. Further suppose that on any particular occasion, co j is selected at 

random with probability p(con). Then the likelihood function for subject Si is: 

N 
p(X I Si) = L p(X I Si, con) p(con). 

n=l 
(5.34) 

If p(coj) is a uniform density, and if the sum is dominated by one term, then 

Equation 5.34 may be approximated by: 
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1 
p(X I Si)= N max {p(X I Si, ron)}. 

n 

Combining Equation 5.9 and Equation 5.35 gives the LLR test, 

max { ln p(X IC, ron)} - max { max { ln p(X I Si, ron)} } > T. 
n SiED n 

SitC 

Now combining Equations 5.22 and 5.36, 

max{~ac+~c min 1Xj-Yi12 } 
O<n<N .£...i YiE Y Cn . 

XjEX 

- max {max{~ CXk + ~k min lxj-Yi12 }} > T, 
SkED O<n<N .£...i YiE Ykn 
Sk~C XjEX 

(5.35) 

(5.36) 

(5.37) 

where Ykn is the set of feature vectors representing the nth model of Subject 

Sk. In the experiments performed, Ykn was the set of frames observed in the 

nth enrollment session of Subject Sk. 

5.9 Summary 

The decision to accept or reject a claimed identity is reached according 

to Bayes decision rule by determining whether the likelihood of the data given 

the claimed identity is greater or less than the likelihood given the alternative 

(the prior probabilities being equal). The former likelihood is estimated using 

the claimant's model. The later likelihood is estimated using models for a set of 

individuals other than the claimant, called a cohort. 

The individual model provides an estimate of local probability density at 

any ~ample point. The conventional nearest-neighbor density estimate, based 

on asymptotic large-sample arguments, was shown to be appropriate for low-

dimensional feature spaces. Accurate likelihood estimation was demonstrated 
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I 
(using Equation 5.21) for 1000-sample populations from known 2-dimensional 

! 

Gauss~an PDFs. 

: For problems involving small numbers of samples with high 

dimeusionality, the asymptotic arguments are not valid. Evidence was shown 

that . in some cases, the negative log of local probability density is more closely 

related to the squared nearest-neighbor distance (SQNN) than to its logarithm. 

An expression is developed in Appendix A for the conditional expectation of 

local · density given nearest-neighbor distance for normalized Gaussian PDFs. 

This function approximates a logarithm in the limit of large sample size and 

low dimensionality, and a parabola in the limit of small sample size and high 

dimensionality .. 

The relevant measure of dimensionality is the intrinsic, or local 

dimensionality, which is the minimum number of independent parameters 

needed to specify the location of a point in the space occupied by the data. A 

methqd of estimating intrinsic dimensionality was examined and modified to 

provi4e estimates of both dimensionality and probability density at any sample 

' point. The density estimator resembles the conventional nearest-neighbor 

estimator, but uses an interpolated nearest-neighbor distance (INN), which 

takes into account the distances . to the K nearest neighbors. 

Bayes' decision rule was formulated in terms of summations over time of 

the estimated local log probability densities at the test sample points for both 

the SQNN and INN estimators. These formulas were developed without 

reference to the type of data being observed. 
i 

To proceed further with 

devel<l>pment of PIV algorithms, closer attention must be given to the specifics 
I 

of v9ice and image sequence data. Using the experimental data described in 

the n.ext chapter, "front end" processes will be developed by which raw input 
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I 
I 

::J: 
I 

converted to feature vectors. These data will then be used to test and 

the performance of the SQNN and INN "back end" processes. 
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CHAPTER6 

EXPERIMENTAL DATA 

6.1 Introduction 

! A small experimental database was collected for the purpose of 

develqping and testing multi-media PIV algorithms. Motion video and audio 

I 

recorclings were made of subjects reading from scripts on multiple occasions. 

The experimental setup and the scripts were comparable to what might be 

used in a practical application of multi-media PIV. 

6.2 Equipment Setup 

I Recordings took place in a laboratory room at Oklahoma State 

University. The room had ceiling-mounted flourescent lighting, and slight 

noticable reververation due to absense of carpeting or sound-absorbant 

furniture. No special measures were taken to control the lighting or sound 

characteristics. An illustration of the experimental setup is shown in Figure 

6.1. The subject was seated in a chair in front of a white projection screen. An 

8mm ,camcorder was set up on a tripod about 8 feet in front of the subject. The 
i 

vertical position of the camcorder was adjusted separately for each subject to 
I 
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allow for differences in the subject's height. 

White 
screen 

• 
Prompting rscc;pt 

till 

1------- Approx. --------4 
8 ft. 

Figure 6.1: Illustration of Experimental Setup. 

The camcorder was a Cannon model E250A with 6.7 - 80.4 mm autofocus 

macro zoom lens. The zoom lens was adjusted separately for each subject. An 

electret lapel microphone (Radio Shack model 33-3003), clipped to the subject's 

shirt or coat, was used instead of the camcorder's built-in microphone. The 

audio recording level was regulated automatically by an automatic gain 

control with a time constant of about 10 seconds. 
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6.3 Subjects 

Twelve subjects participated voluntarily in the experiment. They 

consisted of OSU students (graduate and undergraduate), faculty, and staff. The 

subject population was diversified with respect to sex, age, and country of 

origin. The purpose of the experiment was explained to each subject. 

6.4 Prompting 

: The subject was asked to speak several phrases in a natural voice. The 

phrases were prompted using a paper script that the experimenter held just 

above the camcorder. The script is shown in Figure 6.2. 

My name is 

My social security number is 

Today's date is 

The time is ... 

One, two, three, four, five, six, seven, eight, nine, ten 

Figure 6.2: Script Used for Prompting Subjects. 

Subjects were told that the exact choice of words to complete the phrases 

was · not important. For example, the date could be spoken as "November 

second", "the second of November"; or in any other normal way. 

6.5 Initial Data Processing 

After completing all recordings, the 8 mm video tape was dubbed to a 

VHS :format tape. Each session was then digitized to a separate movie file using 

a Macintosh 7100 AV computer. Both the audio and video channels were 

digitized. These steps are shown in Figure 6.3. 
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n 
Original movies filmed 
on 8 mm camcorder. 

B mm tape dubbed to 
VHS video cassette. 

Audio and video data 
digitized on Macintosh 
7100 AV computer. 

Figure 6.3: Initial Data Processing. 

FusionRecorder ™ version 1.1 was used to perform the digitization. 

Resulting digitized movies were stored in Apple QuickTime™ format. For most 
I 

sessiQns, the original video recording included the subject sitting down, 

clipping on the microphone, reading the prompts, and getting up to leave. 

Only the portion of each sesion in which the subject was reading the prompts 

was µigitized. Therefore each digitized session started immediately with "My 
! 

name I is ... ", and ended with the digit sequence. The digitized portion of the 
i 

session was not edited in any way. Relevant video and audio digitization 

parameters are shown in Figure 6.4. 

Video: 

10 frames I second 

160 (w) x 120 (h) pixels I frame 

8 bits I pixel - grayscale 

Cinepak compression - best quality 

Audio: 

22 kHz sampling 

16 bits per sample, linear quantization 

no compression 

Figure 6.4: Video and Audio Digitization Parameters. 
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Video compression was used to enable the video image sequences to be 

store~ on the available disk drive. Each image frame represents 160 x 120 = 
' I 

19,200 pixels. Without compression, the video portion of a typical 20-second 

movie would require 3.8 megabytes, or 

(1 byte/pixel) x (19200 pixels/frame) x (10 frames/sec ) x (20 seconds). 

The audio portion requires 880 kilobytes, or 

(2 bytes/sample) x (22000 samples/second) x (20 seconds). 

The total requirement is therefore about 4.7 megabytes per movie. 

Using Cinepak video compression (an Apple proprietary compression 

technique), a 20-second movie requires 2.1 megabytes, of which about 1.2 

megabytes are allocated to the video portion. This represents a video 

compression ratio of 3.3 to 1. Cinepak compression was chosen from several 

alternative compression methods because it produced no visible degradation of 

the images. 

6.6 Inventory of Sessions 

A total of 48 sessions from 12 subjects were collected. The experiments 

described in this report used only the first four sessions of those ten spea,kers 

who had four or more sessions. In Table 6.1, subjects are identified by their 

initials. 
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Subject Number of Session 
Sessions Numbers 

MA 4 1-4 

GB 1 -

BB 5 5-8 

oc 4 9-12 

KD 4 13-16 

CF 5 17-20 

DH 6 21-24 

YL 4 25-28 

RM 4 29-32 

SR 4 33-36 

GW 3 -

RY 4 37-40 

Table 6.1: Inventory of Sessions by Subject. 

I Data for subjects GB and GW were not used because they had less than 

"' I • .1our sess10ns. 

I 

To identify a particular session, we will use either the session 

number or the notation XX-N, where XX is the subject's initials, and N is the 

session number, ranging from 1 to 4. For example, KD-3 is the third session of 

subject KD, or Session 15. 

6. 7 Subjective Observations 

The quality of · an the digitized movies was sufficient to allow the 

exper~menter (who knew the subjects) to identify each subject immediately 

from !either the video or audio data. 
I 
I 

! As noted previously, there was slight noticable reverberation in the 

room. Also, some variability in sound spectral balance was noticed from one 

session to another, possibly due to variations in the placement of the lapel 
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microphone. The ceiling lighting caused some variation in facial 

illumination, which was noticable when subjects looked up or down. 

An example of one image frame from MA-1 is shown in Figure 6.5. 

·~ . 

. · , 
• • .- I ~,. . ..... . . 

Figure 6.5: An Example Image Frame from MA-1. 

The following observations were made with respect to subjects' 

appearance and behavior: 

1. BB wore glasses in BB-3, but not in the other sessions. 

2. BB wore a hat in BB-2 and BB-3, but not in the other sessions. 

3. BC wore a different hairstyle in BC-2 and BC-3 than in BC-1 and BC-4. 

4. KD wore a hat in KD-1, but not in the other sessions. 

5. SR scratched his head in SR-1. 

6. SR touched his mouth and looked to the side in SR-2. 

7. RY looked down at his watch in RY-2, RY-3, and RY-4. 

6.8 Summary 

The OSU database contains at least four sessions from each of ten 

subjects. The data is reasonably well controlled in terms of camera and 

microphone position , consistency of lighting, and background. 

variations in subjects' appearance and behavior are observed. 
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CHAPTER 7 

VOICE DATA FEATURE EXTRACTION 

7 .1 Introduction 

This chapter describes the processing and analysis that was performed 

to convert the sampled waveform sound input data to a sequence of feature 

vectors to be used by the PIV "back end". The sound data from the OSU database 

was at first treated independently of the video data to develop a voice-only PIV 

algorithm. Results of testing the voice-only PIV algorithm and the multi-

media PIV algorithm are presented in Chapter 9. 

7 .2 Voice-Only PIV Algorithm 

Figure 7 .1 is a data flow diagram showing the sequence of processing 

steps involved in the voice-only PIV algorithm. Rectangles represent 

processes (programs) , whereas circles represent data structures (disk files). 

Input 
Audio 

pre Process 

Figure 7.1: 

compare Voice 

makeROC 

Data Flow Diagram of Voice Data Processing. 
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The voice algorithm is much simpler than the face PIV algorithm, 

primarily because locating the speech portion of the audio signal is less 
! 

difficlillt than locating the face portions of the image sequence. The input 

signali is first passed though a pre-processor, preProcess, which includes 
I 
I 

several operations described in Section 7.3. Comparison of voices from 

different sessions is accomplished using the program compareVoices, 

described in Section 7.4, which implements the LLR measure. Finally, the 

score :files produced by compareVoices are processed by makeROC. MakeROC 

converts the log likelihoods to log likelihood ratios as described in Section 5.7 
I 

and ~andles multiple models per subject as described in Section 5.8. The output 

I 
of malkeROC is a Reciever Operating Characteristic (ROC), which is used to 

; 

measure verification accuracy. 

7 .3 Signal Processing 

I 

I Pre-processing of the voice signal consists of four operations 

perforf ed in tandem: spectral analysis, silence frame pruning, blind 

deconvolution, and frequency differencing. These operations are described in 

the following subsections. 

7,3.t.: Spectral Analysis 

The electrical signal from the microphone was sampled at a rate of 22.0 

kHz. ! Initially, eight-bit lin~ar quantization was used to conserve disk space. 
! 

This produced audible distortion and limited voice verification accuracy. 
i 

Therefore, the data was re-digitized using 16-bit linear quantization as 

indicated in Table 3.4. Preemphasis filtering was applied in the form of simple 
! 

differencing of consecutive samples, Yi = Xi - Xi-1- This boosts high 

frequencies at the rate of 6 dB per octave, reducing the spectral dynamic 
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range, of the speech signal. The preemphasized signal was segmented into 
I 

I 

overl~pping frames, each containing 704 samples or 20.0 milliseconds. 
! 

Cons~cutive frames were offset by 440 samples or 32.0 milliseconds. Each 704-

sample frame was multiplied by a Hamming window and padded with zeros to 

1024 samples. Squared spectral magnitudes were computed from a 1024-sample 

DFT. Dot products were then computed between these squared magnitudes and 

the frequency responses of each of 16 bandpass filters. Dot product Pij 

measures the power at frame i within frequency band j. 

The filters were designed to cover ~he range of frequencies from 350 Hz 

to 5000 Hz. Details of the filters are shown in Table 7 .1. The specified low- and 

high-frequency cutoffs are the frequencies at which filter response is down 3 

dB relative to the center frequency. At frequencies below 1000 Hz, the filters 

have a constant bandwidth of 150 Hz. Above 1000 Hz, they have a constant Q 

factor (ratio of center frequency to bandwidth) of 6.0. This design is 

consisitent with studies of human perception indicating that perceived pitch of 
i 

tones is proportional to frequency below 1000 Hz, and proportional to log 

frequency above 1000 Hz [122]. 
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I 

Fi It et Low-Freq. High-Freq. 
I 

Center Bandwidth Filter Q 

Numper Cutoff (Hz) Cutoff (Hz) Freq. (Hz) (Hz) Factor 

1 • 350 500 425 150 2.8 

2 480 630 555 150 3.7 

3 610 760 685 150 4.6 

4. 740 890 814 150 5.4 

5 866 1024 945 157 6.0 

6 1000 1183 1092 188 6.0 

7· 1155 1366 1261 210 6.0 

8 1335 1578 1456 243 6.0 

9 1542 1822 1682 280 6.0 

10 1781 2105 1943 324 6.0 

11 2058 2432 2245 374 6.0 

12 2377 2809 2593 432 6.0 

13 2745 3244 2995 499 6.0 

14 3171 3748 3459 576 6.0 
I 

4329 3996 q 3663 666 6.0 
! 

16 4230 5000 4615 769 6.0 

Table 7.1: Filter bank Design Data 

• The power in each filter "channel" was processed using a nonlinear 

compression function. Following Olano [36], the fourth root was used instead 

of the more traditional logarithm to avoid the extreme sensitivity of the log 

function at very low power levels. The resulting 16-element vector, (ql, q2, 

q 16) 11, was L2 normalized, so that the sum of its squared elements equals a 
I 

i constant value (1.0) across all frames. This was accomplished as follows: 
I 

.. -[ ~ii 
112 qlJ - 16 

L Pik 
k=l 

(7.1) 
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' 

The total log power within the 350 - 5000 Hz band was computed each frame as: 
! 

7,3.2,: 

16 
Pi= log L Pij 

j=l 

Silence Frame Pruning 

Silence frame pruning was performed as follows. A histogram was 

computed of the log power of all frames of the input signal. A silence 

threshold was set equal to the 10 percentile of this histogram plus 6 dB. All 

(7.2) 

input frames with log power exceeding the silence threshold were retained, 

while · others were discarded. This algorithm assumes that the dynamic range 

of "silence" is 6 dB. 

7,3,3. Blind Deconvolution 

Blind deconvolution is a method of compensating for the unknown 

frequency response of the input channel [123]. Although the same 

microphone and electronics were used in all sessions, the frequency response 

of the microphone depends on its location and orientation relative to the 

subject's mouth, and whether it is obscured by clothing or other objects. Blind 

deconvolution was accomplished by dividing each feature, qij, by its long-term 

average value, and re-applying L2 normalization within each frame. 

9i · 
bij = 'Yi K J 

il: qkj 
k=l 

i 

I 
where i K is the number of frames in the session, and 

_ [ 16 (1 iij JJ-1/2 
'Yi - L -~ qk. 

. 1 K ~ J 
J= k=l 
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7,3.4~ Frequency Differencing 

The final step of pre-processing was to compute differences between 

the feature values at consecutive frequencies (with "wrap around") as follows: 

.. -{bij-bi(j-1) if j> 1 
fiJ- bi1-bil6ifj=l 

This step has the effect of de-correlating the elements of the feature 

vectors, and emphasizing spectral regions near the formants. The feature 

vectors used in the remaining processing were fi = (fi 1, fi2, ... , fi 16) T. 

7.4 Voice Comparison 

The likelihood ratio score given by Equation 2.27 was applied in the 

(7.5) 

voice PIV system exactly as in the face PIV system. The feature vectors fi of 

Equation 4.8 were used, giving a feature space dimensionality of 16. 

7 .5 Summary 

Processing steps were described by which the sampled waveform sound 

data is converted to a feature vector per frame. Spectral analysis is performed 

wihin 32 millisecond overlapping windows using a 16-channel FIR filterbank 

covering the range of frequencies from 350 Hz to 5000 Hz. The filterbank 

output is normalized each frame in a manner that preserves spectral shape but 

is independent of overall amplitude. Low-amplitude frames, corresponding to 

silence intervals, are eliminated. Equalization for the unknown and variable 

frequepcy response of the microphone is accomplished using blind 

decon{rolution. Enhancement of salient spectral features is accomplished 
i 

throu~h differencing of adjacent frequency channels. Sound feature vectors 

are 16 dimensional and are produced at the rate of 50 per second. 
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CHAPTERS 

VIDEO DATA FEATURE EXTRACTION 

8.1 Introduction 

This chapter describes the processing and analysis that was performed 

to convert the raw video input data to a sequence of feature vectors to be used 

by the PIV "back end". The video data from the OSU database was at first 
I 
' 

treated independently of the audio data to develop a video-only PIV algorithm. 

Results of testing the video-only PIV algorithm and the multi-media PIV 

algorithm are presented in Chapter 9. 

8.2 Video-Only PIV Algorithm 

Figure 8.1 is a data flow diagram showing the sequence of processing 

steps involved in the video-only PIV algorithm. Rectangles represent 

processes (programs) , whereas circles represent data structures (disk files). 
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Hand Mark 

showEF 

pre Process 

show Faces 

makeROC 

Figure 8.1: Data Flow Diagram of Video Data Processing. 

Information about the subject's identity was expected to be concentrated 

in the part of each frame corresponding to the face. Therefore, the first 

intermediate goal is to locate the face within each image. This is accomplished 

by the program locateFaces , described in Section 8.5. LocateFaces operates on 

video :data that has been pre-processed as described in Section 8.4. The model 

used fo locate faces is derived from hand marking of face boundaries (or "face 
I 

boxes"') in a subset of the database. The hand marking process is described in 

Sectio:p. 8.3. Comparison of faces is accomplished using the program 

compareFaces, described in Section 8.6, which implements the LLR measure. 

Finally, the score files produced by compareFaces are processed by makeROC . 

The score files produced by compareFaces are in the same format as those 
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produped by compareVoices. Therefore, the same program, makeROC , is used 

for b~th voice and face processing. The output of makeROC is a Reciever 

Operating Characteristic (ROC), used to measure verification accuracy. 

8.3 Manual Location of Faces 

The process of manual marking defines faces by example. For the 

purpose of this study, a face was considered to be a rectangular region 

bounded from the left .and right by the outer comers of the eyes, from above 

by the top of the eyebrows, and from below by the bottom of the nose. This 

definition was arrived at by experimentation, and intentionally excludes the 

mouth, which exhibits greater within-subject variability during speech than 

other facial features. 

A computer program, called handMark, was developed to manually 

locate each face in the entire database. HandMark operates as follows: A 

movie file for a session is opened, and the first image, similar to Figure 6.5, is 

displayed in a 160 x 120 pixel window. On-screen buttons are provided to zoom 

in or out, move up, down, right, or left, and rotate the image clockwise or 

counterclockwise. After each adjustment, the selected part of the image is 

scaled, translated, or rotated appropriately and re-displayed in the window. 

Using the on-screen controls, the operator adjusts the image to contain only 

the face. Ideally, the eyebrows are horizontal and the nose is vertical. It is 

sometiimes not possible to locate an ideal face (even using rotation), 

particl!-larly when the subject does not directly face the camera. Subjective 

judgement was used to determine the best alignment. The rectangle bounding 

the face is refered to as the "face box". After locating each face box, pushing 

the "Next" button causes the coordinates of the box to be saved in a data file, 

and the next frame to be displayed (initially within the previous frame's face 
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box). The data obtained from StepFrame was used as "ground truth" for 

traini:p.g of alorithms to automatically locate faces. 

8.4 Signal Processing 

Various forms of image pre-processing were examined at each stage of 

the algorithm. Two general conclusions are: (1) Some form of gray-level 
i 

mapping function is needed ·to reduce the effect of variations in illumination 

and/or reflectivity of the face; (2) Some form of spacial- or frequency-

domain filtering is needed to enhance facial features such as the edges of the 

eyes, . nose, and mouth. The pre-processing steps used in all experiments 
I 

I 

described below consist of histogram stretching followed by the Sobel gradient 

operator. These pre-processing steps are applied independently to each image 

frame. 

I 
I 

8.4.tl 
I 

Histogram Stretching 

i Histogram stretching is performed as follows. Suppose I 1 and 12 are 

gray level values corresponding to specified percentiles of the histogram of 

the input image. Each pixel of the image is scaled in such a way that these 

same percentile values of the output histogram occur at L 1 and L2. If x and y 

are gray level values of a pixel before and after histogram stretching, they are 

related as follows: 

[ L2 - Ll ]255 
y = 12 - 11 (x - 11) + L 1 0 (8.1) 

I 
where1 the square brackets denote clipping within the indicated limits. 

i 

In 
I 

practite, the specified percentiles are 5% and 95%, and L1 = 78, L2 = 178. 
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8.4.2 Gradient Filtering 

1 The Sobel operator is a form of spatial filtering that provides an 
i 

appro~imation to the magnitude of the image intensity gradient at each pixel 
I 

[124]. The Sobel operator uses the gray level values in a 3 x 3 neighborhood of 

the pixel under consideration, which is labeled as p5 in Figure 8.2. 

pl p2 p3 

p4 p5 p6 

p7 p8 p9 

Figure 8.2: 3 x 3 Neighborhood Used by Sobel Operator. 

The estimated gradient magnitude, S(p5), is given by: 

S(p5) = I P7 + P8 + P9 - Pl - P2 - p3 I + I P3 + P6 + P9 - Pl - P4 - p7I. (8.2) 

The frame shown in Figure 6.5 is shown again in Figure 8.3, after pre-

processing by histogram stretching· followed by application of the Sobel 

operator. 

Figure 8.3: A Pre-Processed Frame from MA-1. 
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8.5 Automatic Location of Faces 

To limit the computation involved in determining precise face location 

in each frame, a preliminary step was taken of locating the subject's whole 

head., The rectangle containing the head is refered to as the "head box". 

Following this step, the face box can be located by exhaustive search within 

the sµb-image delimited by the head box. 

Processing each frame in this manner, independently of the other 

frames, requires a large amount of computation and is error prone. Both 
i 

problJms are addressed by recognizing that frames within a session are in fact 
I 

highly correlated. To take advantage of this, the algorithm shown in Figure 

8.4 was developed. 
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1. Find haad box 
incepa1dently for ea.ch 
frame. 

~ 
2. .Adjust size of all haad 
boxes to eqµal the average 
size, keeping the center 
:points unchanged. 

--', .... 
3. Carpute the average 
:image within. adjusted head 
1:x:lxes. 

~ 
4. Re-:positian head boxes to 
maximize correlation with the 
average :image. 

'I 

5. Locate face box within. 
average head box. 

~ 
6. Using" averaged face as 
tenplate, locate all face 
boxes within. head boxes. 

Figure 8.4: Estimation of Face Box Position. 

In Step 1, simple heuristic rules are employed to determine the 

appro:iimate head box position independently in each frame. The top of the 

head pox is first determined as follows: (1) the sum of pixel (grayscale) values 
i 

along i each row is computed; (2) from a histogram of these sums, the 10 
I 
I 

perce:q.tile value is determined; (3) scanning down from the top of the image, 
I 
I 

the fitst row for which the sum of pixels exceeds the 10 percentile is deemed to 

be the top of the head box. Similar rules are applied to determine the left and 
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right ! sides of the head box. The bottom is chosen to maintain a constant ratio 
I 

of h~ight to width. 

The hueuristic rules above work well on average, but can behave 

incon$istently when given "fuzzy" edges, such as hair. In Step 2, it is assumed 

that each head box is centered correctly, but is subject to error in its estimated 

size. Step 2 sets the height and width of each head box equal to the average 

height and width of all head boxes, while maintaining their original center 

points. 

Variations in sitting position or zoom lens adjustment may cause the 

image scale factor to change from one session to another. Within a session, 
! 

I 

however, the scale factor can be assumed to be constant. Recognizing this, and 

noting that as a result of Step 2, all head boxes are equal in size, Step 3 

computes the average of all images within the head boxes. At each pixel 

position, averaging is performed across all frames in the image sequence. 

The average image resulting from Step 3 may appear blurred or "out of 

focus" due to violations of the assumption made in Step 2 that all head boxes are 

centered correctly. In Step 4, the center position of each head box is adjusted 

to m~ximize the correlation of the image within that head box with the 

average head box image. Translation is limited to several pixels in any 

direction. 

Steps 3 and 4 may be re-iterated until there are no further changes in 

' 

the h¢ad box positions. In practice, convergence was found to occur after only 
! 

one or two iterations. Figure 8.5 shows an example of an average head box 

image! after one, two, and three iterations. Note that image sharpness and 
I 

focus I improve from the first to the second iteration, but remain about the same 

on th~ third. After three iterations, some residual blurriness is caused by 

facial· movements, particularly of the mouth and eyes, within the session. 
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a. 

Figure 8.5: 
After 1, 

b. c. 

Average Head Box Image 
2, and 3 Iterations. 

After locating the head boxes, the next step is to create a "face template", 

with which to search for the face box within each head box. As indicated in 

Step 5 of Figure 8.4, the average head box image produced in Step 3 (after 3 

iterations) is searched to find the face box, and the image within that face box 

is used as the face template. An example face box is shown in Figure 8.5c. 

Step 5 is accomplished using the "eigenfaces" technique proposed by 

Turk and Pentland[6]. The use of eigenfaces, as opposed to simple correlation, 

is appropriate for this step because it is desired to locate the face consistently 

without prior knowledge of the identity of the subject. A virtue of eigenfaces 

is that; it is a subject-independent face model. 

To apply the eigenfaces method, a set of training images is analyzed to 

determine the mean image, 'P, and the principal components, Ui, i ~ 0 < L, of 

the covariance of the training images about 'P. Any arbitrary facial image, r, 

not btylonging to the training set can then be approximated in terms of 'P and a 
i 

relativply small number (e.g., 10) of principal components. To do this, the 

deviat~on of r from 'P is first computed as <I> = r - 'P. The projection, <l>f, of <I> on 
i L 

the s~bspace spanned by the Ui is given by <l>f = LffiiUi, where ffii = <l>fT Ui. The 
i=l 

i 

synthesized approximation is: r f = 'P + q>f. Location of a face within a larger 

image • can be accomplished by sliding a window over the original image, and 
' 

selectihg the position of the window to minimize the error function: ~:2(x,y) = I 
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I 
I 

i 
I 

q, _ ci,J12. In the following, r(x,y) denotes a subimage of r of dimensions equal to 
i 
I 

thosei of q, and Ui, with upper-left corner at (x, y). The derivation of e(x,y) in 

termsl of r(x,y), 'I', and Di is repeated here because several errors were 

conta~ned in [6]. Dependence on (x, y) is suppessed. 

' 

Expan:ding the first term, 

Expanding the second term, 

I 

e2 = I q, _ q,f12 

= (q, - <l>f) T (q, - <l>f) 

= q, T q, - q,T <l>f - q,fT (q, - <Pf) 

= q, T q, _ q,T cpf 

= ci,Tci,- (LCOiUiT)(L/OiDi) 

= ci,Tci, - LCOi2 

ci, T ci, = (r _ 'I') T (r _ 'I') 

= rTr - zq,Tr + q,Tq, 

Lcoi2 = L(q,Tui)2 

= L«r-'I')Tui)2 

= L(rui-'f'T Ui)2 

Comb,ning the two terms, and making explicit the dependence on spacial 

positibn: 
I 

. L 
: e2(x,y) = rT(x,y)r(x,y) - zq,Tr(x,y) + q,Tq, + L[r(x;y)Ui - q,T Di]2 
! i=l 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

(8.14) 

· : Eigenfaces were computed from a subset of the OSU data, using the hand 

marked face boxes, as described in Section 4.1. The data subset consists of 

every ;twentieth frame of the first session of each of the first five subjects 
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(MA, j BB, BC, KD, and CF). The data within each hand-marked face box was 

i 
scaleq to a size of 32 x 27 pixels (the average face box dimensions), and ten 

I 

eigenfaces were computed. These are shown in Figure 8.6. It was found that 

the :qiost significant three are adequate to locate faces reliably. 

~W~MJ 
BJ~~.~ 
~-~E 

Figure 8.6: · The 12 Most Significant 
Eigenfaces of the OSU Data. 

The scale factor for the session, assumed in Step 1 to be constant, is 

unknown. To accommodate the unknown scale factor, multiple eigenface 

searc:t:ies are performed on the average head box image, after re-scaling it 

using scale factors of 0.8, 0.9, 1.0, 1.1, and 1.2. Each search determines the face 

box position that minimizes the mean-squared error between the scaled image 

and i(s eigenface approximation. The scale factor and face box are selected 

that r~sult in the global minimum error. Figure 8.5c shows an example of a 

face box determined in this manner. 

I The image in the face box determined in Step 5 is an average of the face 

portio~s of all frames in the session. In Step 6, each face box is located by 

' using i this image as a template for correlation-based matching. A procedure 

similat to that of Baron [86] was used. Let T be the template and I(x,y) be a 

rectangular region of the image with upper left comer at location (x,y). Then 

define] a correlation coefficient, C(x,y) as 

96 



C(x, y) = _/ 
-v <T*T><l(x,y)*l(x,y)> 

<T*l(x,y)> 
(8.15) 

where * Tepresents the pixel-by-pixel product, and < > is the average operator. 

C(x,y~ is computed for all values of x and y for which the region lies entirely 

within the head box. The putative location of the upper left comer of the face 

box is the value of (x,y) for which C(x, y) is maximum. The normalization term 

<l(x,y)*l(x,y)> in the denominator was found to be important. Without this 

term, · the maximum correlation location is biased toward dark regions of the 

image. 

8.6 Face Comparison 

Having located the central face region, or "face box" within each image 

frame; it now becomes possible to compare the sequences of facial images in 

two different sessions. This is accomplished using the log likelihood ratio, as 

computed using Equation 5.37. In applying Equation 5.37, the vectors Xj and Yi 

' contain pixel values within the 27 x 32 face boxes. The dimensionality of the 
! 
I 

feature space is therefore 864. 

8.7 Summary 

Processing steps were described by which raw video input data is 

converted to a feature vector per frame. Histogram equalization and gradient 
i 

filterifg are included to minimize sensitivity to lighting gradients and skin 

I 

reflec~ivity. The central portion of the subject's face is located within each 
i 

video ! frame, allowing for unknown scale factor and head tilting, in addition to 

lateral; movement. The face is scaled to a 27 x 32 pixel rectangular area, and 

the processed gray-level values with that area form the elements of feature 
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I 
I 

vector. Video feature vectors are 864 dimensional and are produced at the rate 
I 

of 10 per second. 
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CHAPTER9 

ANALYSIS AND RESULTS 

9.1 Introduction 

This chapter presents analysis and results derived from PIV algorithms 

operating on the OSU database. The PIV algorithms considered combine the 

voice · and video feature extraction components described in Chapters 7 and 8 

with the decision component described in Chapter 5. 

• 9.2 Likelihood Scoring Versus Likelihood Ratio Scoring 

It is commonly believed that identity verification should only require a 

model ; of the claimaint, and should not make reference to models of other 

indivi~uals. The assumption underlying this theory is that the likelihood 

functiQn p(X I C) is tightly localized, whereas p(X I C) is approximately a multi-

dimensional uniform PDF. Therefore, p(X I C) differs from the likelihood ratio, 

p(X I C) l p(X I C), only . by a multiplicative constant. 

With this theory in mind, consider the data shown in Figure 9.1. Each of 

the 4Q columns was produced by computing the log likelihood of one session of 
! 
I 

the database (treated as test data) with respect to each of the other 39 sessions 
I 

(treate~ as enrollment or model data). There are therefore 40 * 39 = 1560 points 

plotte1 in Figure 9.1. Each indicated log likelihood score was computed for the 
I 

video ldata using Equation 5.22. Note that the log likelihood is not symmetric, 
I 

(i.e., ln p(X I Y) * In p(Y I X)). The triangles represent valid claims, in which 

the id~ntity of the test subject and model subject are the same. The crosses 
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represent invalid claims, in which the test data is compared with model data 
I 

from a different subject. 
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Figure 9.1: Log Likelihood Scores for Each Test Session. 

The distribution of scores for invalid claims is clearly seen to vary from 

one test session to another. This is not consistent with the proposition that p(X 

I C) is a uniform PDF. 

From the data in Figure 9 .1, it can be seen that a threshold value of -1000 

separates the valid and invalid cases for Subject MA (Sessions 1-4) without 

errors. A threshold value of about -1300 separates the valid and invalid cases 

for Sdbject YL (Sessions 25-28) without errors. However, a threshold of -1300 
I 
I 

wouldi allow MA to be falsely accepted in many cases, and a threshold of -1000 

would reject all valid claims of YL. This illustrates the difficulty of scoring 

based I on the likelihood function, and the advantage of the likelihood ratio. 

, The LLR score, computed from Equation 5.37, has the following 

interpfetation. The LLR score for a session is equal to the best log likelihood 
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score. among the claimant's models minus the best score among all other 
! 

i spea~er's models. For a threshold of zero, this rule can be interpretted 
I 

graph!ically in terms of Figure 9.1 as follows. A session is accepted if a 

triangle is the highest-scoring model, or rejected otherwise. Only two sessions 

(numbers 7 and 13) are rejected at a threshold of zero. 

9.3 Intrinsic Dimensionality 

The intrinsic dimensionality of the voice and video data was estimated 

using: the method of Pettis, et. al. Estimates were made for all sessions and then 

averaged. A regression order of K = 3 was used. For the voice data, the average 

intrinsic dimensionality equals 3.1. This may indicate that speech articulation 

of an individual exhibits three degrees of freedom, presumably associated with 

the tongue or other parts of the vocal tract. For the video data, the average 

intrinsic dimensionality equals 4.5. Similarly, this may indicate that facial 

expre$sions are dominated by the activity of 4 or 5 muscle groups. 

9.4 ROC Performance Measurement 

Accuracy of PIV systems is measured by probabilities of Type-I, or false 

rejection errors, and Type-II, or false-acceptance errors. Total error 
I 

probapility, or the sum of false-rejection and false-acceptance error 

proba]?ilities, is minimized by PIV systems employing a likelihood ratio test. 
' 

Since ! the optimum value of the threshold is not known (because an estimate of 
I 

the p*ior probability of a valid claim is generally unavailable), it is common to 
I 

measu\re false-rejection and false-acceptance error probabilities over a range 
i 

of thr~shold values. A receiver operating characteristic (ROC) curve, as 
' 

shown: in Figure 9.2, provides a convenient method of displaying this 

information. 
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Figure 9.2: Example ROC Curve 

The ROC curve plots false-acceptance probability on the horizontal axis 

versus true-acceptance probability (equal to one minus false-rejection 

probability) on the vertical axis as a function of .threshold value. The 
I 

endpoints are at (0, 0) and (1, 1), and the curve increases monotonically 

betwe~n these endpoints. The ROC curve for a perfect PIV system passes 

through the point (0, 1), indicating that a value of threshold exists for which 
! 

all valid claims are accepted and all invalid claims are rejected. The 
I . 

perforniance of an imperfect PIV system is illustrated in Figure 9.2. The points 

labeled "A", "B" and "C" are three possible operating points corresponding to 
I 

differ~nt (decreasing) threshold values. False-rejection and false-acceptance 
i 

proba~ilities are equal at operating point B. The false-rejection or false-

accept~nce probability corresponding to operating point B is called the equal­

! 
error irate (EER). Operating points A and C represent different possible 

I 

tradeo{fs between the two types of errors. At operating point C, both 

legitiniate users and imposters are more likely to be accepted than at operating 

points :A or B. 
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Consider an experiment involving N subjects with M trials each. 

Suppose the data associated with each trial is recorded so that it can be 
I 
! 

prese~ted repeatedly to the PIV system with different claimed identities. False 
i 
I 
I 

rejection rates can then be estimated by presenting each of the N*M trials 

with · the correct claimed identity and determining the fraction of rejections. 

False-acceptance rates can be estimated by presenting each trial with each 

incor~ect claimed identity and determining the fraction of acceptances. A 

total :of N*M*(N-1) simulated imposter trials is obtained in this manner. This 

methdd of estimating false-acceptance rates, termed "casual imposters" by 

Doddington [29], is based on the premise that imposters' behavior is 

independent of the identity they are claiming. 

Given the LLR scores resulting from all false-rejection and false-

acceptance trials, ROCs are created as follows. The LLR scores are sorted in 

descending order together with labels identifying whether each score resulted 

from a valid or invalid identity claim. Each score value is then treated in turn 

as a verification threshold. The reported probability of correct acceptance is 

the fraction of all valid trials with scores exceeding the threshold. The 

reported probability of false acceptance is the fraction of all invalid trials 

with scores exceeding the threshold. An example is shown in Table 9.1. 
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UR Valid Prob (False Prob (Correct 
Score Claim? Accept) Accept) 

243 1 0.000 0.000 
236 1 0.000 0.025 
224 1 0.000 0.050 
... ... . .. ... 
58 1 0.000 0.875 
54 1 0.000 0.900 
9 1 0.000 0.925 

-1 0 0.000 0.950 
-7 0 0.003 0.950 
-8 0 0.006 0.950 

... . .. ... . .. 
-91 0 0.442 0.950 
-92 1 0.450 0.950 
-93 0 0.453 0.975 
... . .. . .. ... 

-144 0 0.669 0.975 
-145 1 0.675 0.975 
-146 0 0.678 1.000 
-147 0 0.681 1.000 
... . .. ... ... 

Table 9.1: Example of ROC Computation. 

The ROC data shown in Table 9.1 is perfectly sorted, with the exception of 

two valid trials having scores of -92 and -145. At a threshold of -1, all valid 

trials :except these two are accepted without accepting any invalid trials. 

Adjusting the threshold to accept these two trials would cause 67.5% of the 

invalid trials to also be accepted. In this case, the ROC is said to have a long 

"tail",• indicating the presense of one or more trials that are in some way 

anomaf ous with respect to the PIV algorithm. 

9,4,1, l 
I 

Intea:rated Error Measure 

I Although the commonly-used EER measure is an important benchmark 
' 

of verification error, it is independent of the tails of the ROC curve. In the 

example above, the EER (5%) is an optimistic characterization of performance 
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I 
i 
I 

beca~se of the presense of the long tail of the ROC curve. A measure of error 
I 

that ~ccounts for the tails is the integrated error measure (IEM), defined as: 

00 

IEM = J PFA(t)dt (9.1) 
-oo 

wher~ PF A (t) is the false-acceptance probability at threshold t. Graphically, 
I 
I 

IEM ~quals the area above the ROC curve as plotted in Figure 9.1. 

9.5 Test Procedure 

The likelihood ratio scoring technique poses a unique problem in 

testing PIV systems. In practice, the cohort would be composed of a finite set 
i 

of efolled individuals, whereas the set of potential imposters is unlimited. 

One might expect there to be differences in the false acceptance rate between 

imposters who are included in the cohort and those who are not. This was 

observed experimentally to be the case. Inclusion of an individual in the 

cohort improves the ability of the system to reject that individual when 

anoth~r identity is claimed. Therefore, to assure unbiased measurement of the 

false 'acceptance rate, the cohort and the set of tested imposters should be 

mutually exclusive. At the same time, the small size of the OSU database 
I 

1. . I 
dema~ds that efficient use be made of all available data. 

I 

: With these considerations in mind, the following procedure was used in 
I 

false-!cceptance testing. For each subject presented as input to the system, 

the iJentities of the other nine subjects were treated in turn as the claim. In 
I 

each rial, the cohort was composed of the eight subjects whose identities 

matchfd neither the true nor the claimed identity. This procedure is 

illustrhted in Figure 9.3. 
i 
i 
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Figure 9.3: Test Procedure for False 
Acceptance Measurement. 

This procedure generalizes to measurement of false rejection, where the 

true iidentity and the claimed identity are one in the same. In false rejection 

testi+, therefore, the cohort was composed of the nine subjects whose 

identities differed from that of the subject under test. 

The test procedure simulated the use of three enrollment sessions per 

subje t. In false-rejection testing, each of the subject's four sessions were 

treat din turn as the input to the system (test session), while the remaining 

three sessions were treated as enrollment sessions. There were therefore four 

false- ejection trials per subject, or a total of 40 false-rejection trials. In false-

acce tance testing, the claimant's first three sessions were treated as 
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enrol ment sessions. For each of the 40 sessions, all nine false identity claims 

were tested. There were therefore 40 x 9 = 360 false-acceptance trials. 

9.6 Voice-Only ROC Data 

The ROC performance data for the voice-only PIV algerithm is shown in 

Figurr 9.4. Separate ROC curves are shown for cases in which the first 5, 10, 

an_d I 5 seconds of the test session are used in each trial. A large gap in 

performance is seen between the 5-second and 10-second cases. Increasing 

the t st session length from 10 seconds to 15 seconds leads to a smaller 

perfolmance improvement. This suggests that at about 10 seconds of speech 

proviles an adequate sampling of the subject's voice and that diminishing new 

inforlation is supplied by further observation. 
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Figure 9.4: ROC 
Voice-Only 

Performance of SQNN 
PIV Algorithm. 

The INN method was also tested, and its ROC performance is compared 

with at of the SQNN method in Figure 9.5. The first ten seconds from each 
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sessi n were used. The value of K used in the linear regression of Equation 

5.32 as set to K = 20 as a result of experimental optimization. The INN method 

is m re accurate than the SQNN method in this test. Its IEM is 0.0056, compared 

with .0172 for the SQNN method. 
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Figure 9.5: Comparison of INN Versus 
SQNN Voice-Only PIV Algorithms. 

The long "tail" of the ROC for the SQNN method indicates that a small 

numb of valid trials score very poorly (more poorly than about one third of 

the in[alid trials). This is not the case for the INN method. The explanation 

may ble related to the fact that the INN method makes use of distances to the 20 

nearest neighbors of each test frame, whereas the SQNN method uses only the 

single nearest neighbor. 
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9. 7 Face-Only ROC Data 

The ROC performance data for the face-only PIV algorithm using the 

SQN method is shown in Figure 9.6 .Only the first ten seconds of data were 

used from each session. ROC performance was also measured using the first 5 

secon s and the first 15 seconds of each session, but the result did not vary 

appreciably from that shown in Figure 9.6. 
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Figure 9.6: 
Face-Only 

ROC Performance 
PIV Algorithm. 

of 

The finding that performance is relatively insensitive to the length of 

was unexpected. A likely explanation is that the data frames are 

highl correlated, so that performance rapidly saturates as a function of 

length. Confirmation of this explanation is provided by Figure 9.7. 
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of 

Figure 9.7 was obtained by comparing one frame of data from each test 

sessio with various numbers of frames from the enrollment sessions. The 

selectr frame of test ·data was offset one half second from the beginning of 

the tel,t session. The selected frames of enrollment data were separated by 

intervlls of one half second, starting at an offset of one half second from the 

begin ing of the enrollment session. 

curve labelled "1 Frame" in Figure 9.7 represents conventional 

comp of faces by means of still images: A single test image is compared 

with a single enrollment image. Increasing the number of enrollment frames 

provid s steady improvement in performance, up to about 16 frames. The 16-

corresponds to an elapsed time interval of 8 seconds. Separation of 

by 0.5 seconds does not eliminate inter-frame correlation, but 

proba ly has some de-correlating effect. The ROC for 32 frames does not differ 
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appre iably from that for 16 frames, and is therefore not plotted. Use of 

additional test frames also does not improve accuracy. The IEM for the "16 

Fram<e" case in Figure 9.7 equals 0.0230, compared with 0.0281 for Figure 9.6, in 

whic~ 100 frames were used from each test and enrolment session. The 

diffeJence is probably insignificant. 

Performance of the INN method on the video data was found to be very 

poor. The estimated intrinsic dimensionality derived from Equation 5.32 is 

unrea onably high for many frames, often on the order of 100. This may be 

relate~ to the very high degree of correlation among the frames. A possible 

explatation is that any systematic difference between sessions leads to 

increred distances to all nearest neighbor frames, thus increasing the 

apparrt dimensionality. Another possible explanation of the failure of the 

INN method is that the enrollment data is simply too sparse to support the 

large-lample assumptions that underly Equations 5.15 and 5.32. 

9.8 Fusion of Voice and Face Data 

It is reasonable to assume the voice data and facial image sequence data 

are s~atistically independent in view of the fact that the face data excludes the 

mouth region. Assuming independence, data fusion can be accomplished 

withor loss of accuracy by adding the log likelihood ratios for the two sources 

(see ection 3.4). 

If estimated LLRs for the two sources are to be added, care must be taken 

to no malize the data so as to remove the effects of arbitrary scaling of the 

input easurements. In the case of the SQNN method, a. and ~ must also be 

estimaled for the voice and image sources. This was accomplished as follows. 

Fixed values were assumed for the number of enrollment samples and the 

intrins c dimensionality. For the voice data, the values used were: N = 250 and 
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d = . Values of a and ~ were computed for the unit-variance Gaussian PDF with 

N = 50 and d = 3 using the method described in Section 5.5. The average 

neare t-neighbor distance was computed for the voice data and for the unit­

varijce Guassian data. The voice data was then scaled so that its average 

nearelt neighbor distance was equal to that of the Gaussian data. The same 

approl ch was applied to the video data, using N = 100 and d = 4. The values of a 

and used in Equation 5.37 are shown in Table 9.2. 

Voice Video 

Alpha -0.33 -0.13 

Beta -1.72 -3.18 

Table 9.2: Values of a and ~ for Voice and Video Data. 

Let the LLR scores produced by the voice-only and face-only algorithms 

be d noted LLRvoice and LLRface, respectively. A scatter plot of LLRvoice 

versul LLRface is shown in Figure 9.8. Valid calims are represented by 

triang es, and invalid claims are represented by diamonds. Valid and invalid 

are clearly separable. Therefore, 100% verification accuracy can be 

obtain d using a decision rule based on a combination of LLRface and 

LLR oice, whereas less than perfect verification is obtained using either 

LLRface or LLRvoice alone. 
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Figure 9.8: Scatter Plot of LLRvoice Versus LLRface• 

If the enrollment data are considered to be representative of all 

subjects, and if the voice and face measurements are assumed to be mutually 

independent, then the LLR of the joint voice and face measurments equals the 

sum of the separate LLRs. Symbolically, LLRjoint = LLRvoice + LLRface· In 

Figure 6.6, contours of constant LLRjoint are lines with slope equal to -1. The 

acceptance region associated with a decision rule based on LLRjoint is 

therefore the region above and to the right of a line with slope -1. This 

decision rule does not achieve perfect separation of valid from invalid sessions 

for any value of the threshold. 

Of the valid claims, the two "outlier" sessions with respect to LLRface are 

BB-3 and KD-1. BB-3 was the only session in which Subject BB wore glasses. 

Similarly, KD-1 was the only session in which Subject KD wore a hat. In both 

cases the test subject's appearance was affected by factors not represented in 

that individual's enrollment data. The two outlier sessions with respect to 
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oice are YL-1 and RM-1. Listening to these sessions revealed that YL-1 

has reverberant quality not present in the other sessions. This is likely to 

been caused by placement of the microphone too far from the speaker's 

mou Nothing unusual was perceived in listening to session RM-1. 

The fact that three of the four outliers can be explained by failure of 

the nrollment data to represent conditions encountered in the test data 

suggests that more weight should sometimes 

than re other. Although sessions BB-3 

be placed on one type of evidence 

and KD-1 are outliers with respect to 

LLRface, they are in the normal range with respect to LLRvoice- Similarly, 

YL-1 and RM-1 are outliers with respect to LLRvoice, but are in the normal 

range with respect to LLRface- In addition, the invalid claims are fairly 

tightl clustered in Figure 9.8, with no outliers. Based on these observations, it 

appears reasonable to accept the identity claim if either LLRface or LLRvoice 

excee1s a threshold value. An equivalent decision rule is to accept the claim if 

LLRJiax exceeds a threshold, where 

LLRmax = max(LLRvoice, LLRface). (6.1) 

The acceptance region associated with LLRmax is illustrated in Figure 

9.9. Using the decision rule LLRmax > 20, 100% verification accuracy is 

. achieved. 
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9.9 Summary 

In this chapter, data was shown comparing likelihood scoring with 

likelihood ratio scoring. The difficulty of applying likelihood scoring using a 

fixed decision threshold was demonstrated, as was the relative superiority of 

likelihood ratio scoring, based on Equation 5.37. The data presented was 

inconsistent with the premise that the denominator of the likelihood ratio is 

constant. 

The intrinsic dimensionality of the voice and video data in the OS U 

database was estimated to be 3.1 in the case of the voice data, and 4.5 in the case 

of the video data. Possible physical explanations were conjectured. 

Performance of the voice-only and video-only PIV algorithms were 

measured. A summary of the results is shown in Table 9.3. Using 10 seconds 

from each session and the SQNN method, the equal-error rate of both 

115 



algor"thms is 5%. The INN method gives somewhat better performance for the 

voic data, but poor performance for the video data. Possible explanations 

were conjectured. 

For the video-only algorithm, a single frame of test data and 16 frames 

of e rollment data give the same performance as 10 seconds of test data and 10 

secolllds of enrollment data. This is believed to be the resu t of a high degree of 

inter frame correlation. Consistent improvement is observed, however, as the 

numb~r of enrollment frames increases from 1 to 16. This demonstrates the 

value of image sequences, as opposed to still images, in the enrollment process. 

! 

DatJ 

I 

Type 

Face 

Face 
I 

FLe 
Voici+Face 

PDF Est. 

Method 

INN 

SQNN 

SQNN 

SQNN 

SQNN 

SQNN 

Enrollment Test Length 

Length 

10 seconds 10 seconds 

10 seconds 10 seconds 

10 seconds 10 seconds 

1 frame 1 frame 

16 frames 1 frame 

10 seconds 10 seconds 

EER (%) 

3.3 

5.0 

5.0 

15 

5.0 

0 

Table 9.3: Summary of Key Results. 

IEM 

.0056 

.0172 

.0281 

.0584 

.0230 

0 

Finally, a PIV algorithm using both voice and video data was tested. Data 

fusion is employed at the LLR level. The identity claim is accepted if either 

LLR exceeds the threshold value. A rat10nale for this strategy was given. 
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the combined algorithm, no errors occur in verification testing using 

database. 
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CHAPTER 10 

CONCLUSION 

A substantial body of literature exists in various fields relevant to multi-

medi PIV. Both voice and face PIV algorithms have been under development 

for n~arly 20 years, resulting in numerous and diverse approaches. Face 

verifibation algorithms, until now, have used only still images, as opposed to 

imag sequences. Very recently, a PIV algorithm was reported that combines 

voice and still facial images, achieving better accuracy with the combination 

than lith either voice or face information alone. The current work 

demoystrates that further improvement can be obtained by using facial image 

sequ,nces. 

In this research, the sound and image data originating from a movie 

clip sampled and processed to form feature vectors within periodically 

g frames over the length of the movie. The availability of sound and 

image data streams spanning a common interval has enabled a unified 

approach to be taken in processing the two information sources. 

Voice and facial image data are reasonably regarded as random, as 

d to deterministic, observations of underlying characteristics the 

indivi I ual. Bayes' decision rule provides an optimal criterion for accepting or 

rejec+g a user's claimed identity based on the available observations. 

Appli~ation of Bayes' decision rule leads to a likelihood ratio test, and reduces 

the p~oblem to designing estimators for the likelihood functions p(X I C) and 

p(X I C). These likelihood functions depend in turn on the local probability 
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densi y at each sample point. Estimation of local density is made difficult by 

the igh dimensionality of the measurement spaces and by the limited 

availlbility of training data. Two approaches to this problem were 

inves igated, and found to be useful under different conditions of practical 

interest. 

and 

I An experimental database was collected for the purpose of developing 

~esting multi-media PIV algorithms. Using a camcorder, motion video and 

audio recordings were made of subjects reading from scripts on multiple 

occas ions. Although this database is small (only ten subjects), it provides a 

able demonstration of the concepts presented here. 

Separate multi-media PIV algorithms for voice and facial image data 

were I simulated and tested. Using 10-second samples of either voice data or 

faciali image data alone, equal error rates of about 5% were observed. False-
1 

rejecdon errors in both cases were attributed to conditions existing in the test 

data rat were not represented in the model data (presence or absence of 

eyeglisses, for example). No test data was observed to be simultaneously 

anom lous with respect to both voice and face. Data fusion was therefore 

accoJplished by selecting as the final score the greater of the two log 

likeliJood ratios based on the voice and face data. Verification accuracy of 

100% was shown on the experimental database. 

The approach may applicable to a wider class of hypothesis-testing or 

classi ication problems involving high-dimensional measurement sequences. 

10.1 Summary of Accomplishments 

The development of practical multi-media PIV systems presents 

~umero~s challenges and opportunities for scientific and technological 

mnov tlon. Some of these challenges and opportunities have been identified 
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and addressed here. The main accomplishments of this research are listed 

belo , in decreasing order of importance. 

1. Use of Facial Image Sequences. Facial image measurements used 

in previous PIV systems have been still images, as opposed to image 

sequences. Facial movements are a source of errors, rather than a 

source of information, to these systems. It was demonstrated here for 

the first time that the additional information provided by image 

sequences leads to higher verification accuracy. 

2[ Unified Approach to Multi-Media Processing. The previous 

I work of Higgins, Bahler, and Porter [4] in the area of voice verification 

I 
was further investigated, and applied to verification using facial image 

sequences. Error rates on the order of five percent were observed 

using either voice or image sequences separately. Combining the two 

sources, 100% accuracy was achieved on a small database. The success 

of this experiment demonstrates the feasibility of applying a unified 

approach to processing voice and facial image measurement data. 

3 Improved Likelihood Function Estimator. The estimator of 

intrinsic dimensionality reported by Pettis, et. al [5] was extended to 

enable estimation of the likelihood of a sequence of multi-dimensional 

observations relative to a set of training data. This estimator was 

compared experimentally with the SQNN estimator of Higgins, Bahler, 

and Porter. Its performance is superior to that of SQNN for voice data, 

but inferior for image sequence data. An explanation was 

hypothesized. 
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Multi-Media PIV Database. Using a camcorder, motion video and 

audio recordings were made of ten subjects reading short phrases from 

scripts. Each subject participated in at least four sessions on different 

days. The data was digitized and is available in digitized form to other 

researchers. 

5. Literature Survey. The scientific literature was surveyed in 

subjects relevant to PIV technology and applications. A conclusion of 

the survey is that development of multi-media PIV systems is a logical 

evolutionary step that is needed to satisfy an increasing demand for 

network security. Evidence was cited [1] that voice and facial 

appearance carry separate information about the identity of the 

subject. Surprisingly, no quantitive studies were found on PIV 

performance of humans using multi-media information. 

10.2 Suggested Future Research 

Multi-Media Personal Identity Verification is a fascinating, multi-

disciplinary subject that holds great opportunity for further advances. The 

goal }f developing a convenient, inexpensive, and robust multi-media PIV 

syste , remains to be accomplished in the future. Reaching this goal may 

· 1 I k · · 1 · · · b b·1· d mvo le wor m s1gna processmg, computer science, pro a 1 1ty an 

statistics, applied psychology, and other fields. 

j One of the most important and difficult challenges is to develop 

algori hms that maintain high accuracy in uncontrolled environments. Voice 

and flcial images are convenient media beause their measurement does not 

involv expensive instrumentation, precise behavior by the subject, or 

121 



physral contact with the subject. This convenience comes at the cost of 

concomitant measurement variability. Facial image measurements are subject 

to vLiability with respect to lighting, distance and orientation relative to the 

camela, the optical quality of the camera, background objects, and presense or 

abse1se of glasses, hats, beards, etc. Voice measurments are subject to 

variability with respect to microphone and subject positioning, microphone 
I . 

soun! quahty, background noise, room reverberation, and colds or other 

facto. s affecting the subject's voice. These sources of variability will need to 

be al commodated, either through improved modeling or through development 

of signal processing methods that are insensitive to them. 

I The multj-media PIV algorithm developed here was simulated, but not 

I • 

made I to process mput data in real time. It appears to be feasible to implement 

the J1gorithm in real time on current processors (comparable to the Intel 

Pentilm) with the following modifications. First, more efficient methods 

sho~~!] be employed for !~eating faces in the input images (with unknown 

pos1ti n, rotation, and scale factor). This is the most computation intensive 

part the algorithm. Burt's "coarse-to-fine'.' multi-resolution template 

stategy [92] could be used for this purpose. Alternately, the 

appro ch of Turk and Pentland [6] based on spacio-temporal filtering could be 

emplo ed. The second modification is to use only a reletively small subset of 

the il\lput image frames. The experimental results reported here suggest that 

16 frres at one-half second intervals is sufficient to provide good 

performance. It may be desirable to sample a diversity of facial expressions 

(eyes open/closed, mouth open/closed, etc.). Achieving this diversity could 

invol e a symbiotic coupling of the face-location and frame-selection 
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To obtain a more realistic evaluation of performance, the PIV algorithm 

shoul be tested using a much larger population of subjects separate from 

those used in development of the algorithm. Other than the OSU database, 

suitatile databases for development or testing of multi-media PIV algorithms do 

not 1urrently exist. Creating such databases would be a major step toward 

enabling further PIV technology development. The environment in which 

the 1su data was collected was relatively benign in terms of conditions such as 

lighting and background noise. It would be useful to include some controlled 

varia ility of these and other "nuisance variables" in future databases. 

Although the content of the speech material in the OSU database was 

contr1lled by providing prompts, the PIV algorithms do not take advantage of 

this 'nowledge through any type of linguistic modeling. It is known that 

knowiedge of the spoken text leads to improved accuracy of speaker 

verifiII ation systems. There is some evidence [94, 98] that it may also be 

relev t to face verification by providing a means to predict mouth 

movelents. A natural extension of the current work w~uld be to apply text­

depen~ent verification methods using both voice and facial image sequence 

meas rements. 

Related to this, another promissing direction is development of 

"liveness" tests to verify that the spoken utterance matches the prompt, and 

that !e observed mouth movement is consisitent with the sound. Methods 

simil, to the lipreading recognizer of Petajan [95] could be employed for this 

purpor. Liveness tests are needed to detect and reject counterfeiting attempts 

involving photographs and/or tape recordings. Liveness tests would logically 

be dlveloped concurrently with text-dependent verification approaches as 

referred to in the previous paragraph. 
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In this research, frames of data are treated as statistically independent 

over the duration of a session. Each frame contributes equally to the log 

likeli ood measures for the claimant and alternative hypotheses, which are 

The log likelihood ratio, which is the difference 

betw en the accumulated log likelihoods, also increases in magnitude over 

time, reflecting an accrual of evidence. This characteristic of the log 

scores is appropriate when the input data frames are 

indep ndent because evidence is indeed being accrued at a constant rate. The 

assull\lption of independent frames is problematic, however, in the case of 

facial! image sequences, which are obviously correlated from frame to frame. 

A ralionale is needed for de-weighting of log likelihood ratio scores to account 

for irter-frame Correlations. This is particularly important when combining 

inforration sources with diverse degrees of inter-frame correlation. 

I The important role of intrinsic dimensionality has been observed in 

this r.ork. The PIV algorithms developed here assume that intrinsic 

dime sionality remains constant throughout the feature space. The validity of 

this lssumption should be tested expermentally. Deviations from uniform 

· · I . d" · 1· 1d · d. h · 1 " f mtrms1c 1mens10na 1ty wou m 1cate t e potent1a .1or per ormance 

impr vement through algorithm modifications to estimate ·and accommodate 

local variations. This investigation could be conducted wiihin either a text-

depe dent or text-independent framework. 

In a more theoretical vein, it would be enlightening to investigate the 

relati,nship of local density to nearest-neighbor distance for a variety of PDFs 

withlroader or narrower "tails" than the Gaussian PDF, as well as correlated 

Gauss·ans and Gaussian mixtures. The current work provides some rationale 

for SQNN approximation, but does not prove that SQNN is optimal in any 
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Development of an approximation to Equation A.17 that is valid in the 

limit of high dimensionality might be useful in this regard. 
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APPENDIX: Density versus NN Distance for Gaussian PDF 

To explore the relationship between probability density and nearest-

neig bor distance, consider first the case of the standardized Gaussian 

prob bility function, p = N(O, Iv), where v equals the number of independent 

dimensions Suppose we have observed N samples generated from the density 
I . 

function p, and we wish to estimate the local density, Px = p(x), at a test point x. 

This is illustrated in Figure A.1. We measure the squared Euclidean distance, 

d 2, between x and each of the N samples. The squared Euclidean distance to the 

closelt of these samples (NN, the nearest neighbor) is denoted as dNN2. 

Consider a statistical ensemble of trials in which, in each trial, a test point x 

and f samples from p are jointly selected at random. Both Px and dN N 2 may 

then be treated as random variables: Px due to random selection of test point x, 

and I N N 2 due to random selection of x and random sampling of p. 

I 
* 

* 
I 

I 
I 

* * 

* 
* 

* 
* 

* * 
* 

Fig re A.1: Illustration of density estimation using NN distances. 

Let the probability distribution function of d2 be Fd2(6). That is, Fd2(6) = 

prob d2 :$; 6). The probability of a randomly chosen sample from p falling 
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outs de a ball of radius 6 centered at x equals 1 - Fd 2(6). The probability of 

all N independent samples in population T falling outside the ball equals (1 -

F d 2 ( , ))N. The probability of any of the N samples falling inside the ball 

equ i8 1 - (1 - Fd2(6))N. Therefore, the distribution function FdNN2(6) of 

dNN can be expressed as: 

(A.I) 

The value of Fd2(6) can be determined as the integral of p within the 

ball of radius 6 centered at x. Since p is Gaussian, 

Fd2(6) = ~,2(6 Iv, r2), 

wher1 r2 equals the squared Euclidean distance from the origin to x, and 

PX •2 (r I v , ,:2) is the non-central chi-squared distribution with v degrees of 

freed@m and non-centrality parameter r2 [ 125]. 

A.1 Conditional 
Expectation of Px 

(A.2) 

We wish to estimate the density Px at sample point x, given the squared 

Eucli ean distance to the nearest sample from population T. The minimum 

mean-squared error estimate equals the conditional expected value of Px given 

dNN2 [126]. 
00 

Using Bayes' rule, 
00 
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p Id 2(P I 6) dp 
Px NN 

pdNN 21Px(6 Ip) Ppx(p) dp 

pdNN2(6) 

(A.3) 

(A.4) 



Exp ding the denominator in terms of conditional probabilities of dNN2 

Px: 

00 

=----------~--
00 (A.5) 

Solution of Equation (A.5) requires two PDFs: n. (p) and p,l 21 (61 p). ~vx uNN Px 

Expr ssions for these two functions are derived in the following two sections. 

A.2 Density of Px 

Note that Px, the density of the feature space at test point x, is a random 

depends on x. The probability density of Px, denoted as 1Px (p ), is 

density function of a probability density! Because p is assumed to 

be a normalized Gaussian function, the value of Px depends only on the 

dist r of x from the origin. The density at radius r is 

Px(r) = /2 
(21t) V 

(A.6) 

Figures 4.4a and 4.4b are sketches of Px (r) and 1Px (p ), respectively. At 

-v/2 
r=O, ~x reaches a maximum value of PMAX = (21t) . Random selection of test 

point x often results in a value of r for which Px is nearly zero. This is 

particrarly true for large values of dimensionality, V. The function 1l>x (p) 

therefi re reaches a maximum value near p=O. Since Px::;; PMAX, Ip/P) = 0 for p 

>p 
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px(r) p(px) 

pMAX 

r pMAX px 

Figure A.2: (a) sample density, (b) density of Px. 

Consider a spherical shell centered at the origin · with radius r and 

thickress Ar. The probability mass, m, contained in the shell is equal to its 

volume (surface area times thickness) times the density within the shell, Px. 

The lurface area, Sv, of a v-dimensional sphere of radius r is 

2(1tv/2) n-1 
Sv - r(v/2) r . 

Ther fore, 

2(1tv/2) 1 
M - r(v/2) 1n- Lirpx. (A.7) 

wiW~ 

The shaded vertical section in Figure 4.4b corresponds to density values 

I 

the spherical shell. The density at radius r+Ar, for small Ar, is 

-(r+Lir)2/2 e 

(21t)v/2 

-(r2+2rLir)/2 e 
"" ___ v_/_2 __ = Px e-rLir 

(21t) 

The hange of density, Lipx, between the inner and outer surface of the shell is 

Lipx = Px - Px e-rLir = Px(l - e-rLir) == PxrLir. 

The ea represented by the shaded vertical section is then 

(A.8) 
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The area A must equal the probability mass M within the shell. Equating the 

term in Equations A.7 and A.8, 

Solvi[ng 

I 

or, ii terms of density values, 

2(nvl2) (v 2)/2 
Pp/P) - r(v/2 ) (-2 ln[(2n)v/2p]) - . (A.9) 

A.3 Conditional Density of dN N 2 

To determine P...1 21 (6 I p ), first note that conditioning on Px is 
uNN Px 

equiv lent to conditioning on r2 (the squared·. distance of x from the origin): 

=:a [ 1 - (1 - ~,2(a Iv, Ax) )N 1a=6 

a 

= :a [ 1 - (1 - f Px•2(l; Iv, Ax)dl; )N ]a=6 
0 

= N [ 1 - P ,2(6 Iv, Ax) ]N-lP. ,2(6 Iv, Ax) 
X X 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

In Equation A.10, the variable Ax is related to p by: Ax= -2 ln(p(2n)-Vl2) = 

-2 In - v ln(2n). Equation A.11 follows from the definition of the density 

Equation A.12 uses Equation A.1 to relate the distribution of nearest-
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neiglbor distances (out of a population of N samples), PdNN2,r2(a I Ax), to the 

dis.)butlon of all distances between samples, 1;i2~2(a I l.x). Equation A.13 

subs itutes a non-central chi-squared distribution for Pd2,r2(a I Ax) using 

Equ tion A.2. Equation A.14 replaces the distribution function with an 

intelated density function. 

differentiation. 

Finally, Equation A.15 carries out the 

Substituting Equations A.9 and A.15 into Equation A.5, and simplifying, 

PMAX 

J pN[ 1-P ,2(~IV,Ax)JN-lP, ,2(6IV,Ax)ln(p)dp 
. X X 

0 
EPxldNN2(6 ) = PMAX (A.16) 

I wh1 pMAX = (2x)v/2. 

J N[ 1-P ,2(6lv,Ax)]N-lP, ,2(6lv,Ax)ln(p)dp 
O X X 

A.4 Numerical Evaluation of E 2 
PxldNN 

Numerical evaluation of Equation A.16 is difficult because the ln(p) 
I 

term,1 present in both the numerator and denominator, is unbounded at the 

lowe1 limit of integration. We therefore introduce a change of variable, 'I' = 

-ln(p}, or p = e-'I'. Equation A.16 then becomes 
00 

(A.17) 

wher Ax= -2'1' - v ln(21t). Evaluation of Equation A.17 was accomplished using 

Rom erg's integration method [127]. 
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A.S Approximation of Median NN Distance 

From Equation A. l, the median nearest-neighbor distance is equal to the 
1 

value of 6 for which FdNN2(6) = 1 - (1 - 1:i2(6))N = 2. Taking logs of both sides 

and rearranging, 

For large N, a good approximation is 

-.693 
N" 

ln(l/2) 
N 

(A.18) 

In this expression, Fd2(6) is the cumulative distribution of inter-sample 

For the Gaussian .case, Fd2(6) is a weighted sum of non-central chi-

squar d distributions: 

00 

The rlue of 6 which satisfies Equation A.18 can be determined using a 

numerical root-finding technique such as the Van Wijngaarden-Decker-

Brent method [ 12 7] . 

A.6 Interpretation 

Figure A.3 plots the negative log density estimated from Equation A.17 as 

a fun tion of dNN (not dNN2). The median value of dNN (from Equation A.18) is 

used ~s a normalizing fac1or, so that an x-axis value of 2 indicates an NN 

distanbe twice as great as the median NN distance. The data shown are for a 

three-rimensional space (v=3), with one sample and one million samples. The 

N=l curve appears to be a parabolic shape, consistent with the affine 
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con ection. The N= 1000000 curve has a complex shape, changing its direction 

of c rvature twice within the range plotted. At distances several times the 

the N=lOOOOOO curve has negative curvature, consistent 

with the use of a log function as in Equation 5.15. Note that for small dNN, the 

two estimators approach a limiting density value that is slightly lower than 

the ctual maximum density of a Gaussian (2n-v/2). It is possible (although 

unli ely) for a dNN value near zero to be observed at a test point distant from 

the ode of the distribution. To account for this possibility, the estimator 

neve reaches the theoretical maximum. 

---- N=1000000 

14 

12 

_e, 10 
0 

i 8 
C 

a, 6 
0 
1 4 

-----N=1 

2 ....._Max density at mode 

. 0 +-+-t-t~-+--+-+-t-;t-+~-+--+-+-t-;t-+-+-+-f 

0 1 2 3 4 5 

dNN I medlan(dNN) 

Figure A.3: Density estimators for v = 3 • 

Figure A.4 shows a similar pair of curves for v=13. The N=l curve is 

again approximately parabolic and the N=lOOOOOO curve is again a complex 

shape The N=lOOOOOO curve has positive curvature at distances near the 
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medi n of dNN. Negative curvature at distances of several times the median of 

dNN is not apparent in this case as it was for v=3. 

----- N=1 ---N=1000000 

70 
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10 0 
..J 

I 

Figure A.4: 

dNN I medlan(dNN) 

Density estimators for v = 13 • 

In most applications, N=lOOOOOO is an impractically large number of 

samples, although for v=13, it is still much to small to justify the asymptotic 

argu ents leading to Equation 5.15. Figure A.5 shows the optimal estimator for 

This represents a combination of dimensionality and sample 

size at is of practical interest. The curve is parabola like, with no changes in 

the rtion of curvature. Note the similarity of this curve to the data and 

parab lie fit shown previously in Figure 5.4 
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Figure A.5: Density estimator for v=13, N=lOOO. 

Examination of a number. of curves such as those plotted above for 

vari us combinations of sample size and dimensionality suggest that the 

optimal estimator is logarithm-like in the limit of large sample size and low 

dime~sionality, and parabola-like in the limit of small sample size and high 

dimebsionality. Many practical problems approximate the latter limit. 
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