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CHAPTER I 

INTRODUCTION 

Colloidal Systems 

A colloid system or colloid suspension consists of particles having size of 

about 10-9 m to 10-6m, which are dispersed in a liquid. The examples are soap so­

lutions, emulsions, solutions of proteins and synthetic systems such as polystyrene, 

TPM-silica[l] and poly-(methylmethacrylate) (PMMA)[2] dispersions. The size of 

the colloidal particles is much larger compared with the solvent particles which are 

molecular size, so that the colloidal particles are subjected to Brownian motion due 

to the random kicks by the solvent molecules. The particle size is sufficiently small 

that the particles' Brownian motion dominates over the sedimentation or convec­

tion. A colloidal system may be considered as supermolecular fluid in which the 

colloidal particles play the role of molecules. The solvent is treated as a continuous 

background that gives rise to fluctuating forces between the colloidal particles. The 

effect of averaging over the background solvent gives rise to a potential of mean 

force, or an effective pair potential of the colloidal particles. Statistical mechanics 

can be used to calculate the properties of a colloidal system with its effective pair 

potential of the particles. 

Colloidal Particles and Interparticle Forces 

There are three major kinds of interparticle forces in the colloidal systems. 

We c;an classify colloidal systems into two classes by the different stabilization 

mechanisms: charge and steric stabilization. The attractive van der Waals force is 

the same for each class. 

1 
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Van der Waals Attraction 

Van der Waals Attraction is a dipole-induced-dipole attraction. It has the 

form for two particles with separation distance r as 

A 2a2 2a2 4a2 

VA(r) = --[ + - + ln(l - -)] 
6 r2 - 2a2 r2 r2 

(1.1) 

where a is the radius of the particles and A is a constant determined mainly by 

the polarisabilities of particles and solvent. Thus, if the particles and suspension 

medium of the system are index matched, A ~ 0, then van der Waals attraction 

can be omitted. From the equation ( 1.1 ), we can see that the attraction vanishes 

as r-6 and is infinite at particle contact (r = 2a). 

If the van der Waals attraction was the only force in the colloidal system, 

the particles would aggregate. Therefore, an additional stabilizing force is required 

to keep the particles from sticking together. Two different stabilization methods 

are available for colloidal systems, charged stabilization and steric stabilization. 

Charged Colloidal System and Electrical Force 

For charge stabilized systems, particles carry electrical charges on their 

surface which forms an electric double layer. They can be called "macroions". 

The electric double layer was formed when some of the ionisable groups on the 

particle surface dissociated in polar solvents such as water but remained near the 

surface of the particles. Two macroions repelled each other when they approached 

due to the Coulomb repulsion from their overlapping electric double layers. 

The system is hard to characterize since the charges carried by each particle 

are unknown. A simple effective pairwise potential of the double layer can be 

expressed with the "DLVO" potential[3,4]. The DLVO potential has two parts 

which are van der Waals attraction, equation ( 1.1 ), and the electrostatic repulsion. 

The latter has the screened Coulombic or Yukawa form as follows 

{ 
00 

V(r) = 2 

~; exp( -Kr) 

r < 2a 
(1.2) 

r > 2a 



where a is the particle radius, f is the dielectric constant of the liquid and 

q; = qo . exp(,w) 
1 + IW 

is the effective charge of the particle which is related to the bare charge q0 • 

K, = (~ ~ p·q~)l/2 
tkBT ~ J J 

J 

3 

(1.3) 

(1.4) 

is an Debye screening parameter, Pi and qj , the ion's number density and charge, 

respe,ctively. This stabilization method has a long history and can be quite com­

plicated to understand in great detail. 

Hard Sphere System and Potential 

On the other hand, the steric stabilized system is much simpler. For these 

systems, the particles are coated with relatively thin surface layers of macromolec­

ular material which looks like a layer of hair on the surface of a sphere [2]. If the 

particles move close enough to each other to let the hairs overlap, the hairs will 

repel one another due to entropic effects. When the length of the hair is much less 

than the size of the particles, the interaction of the particles for this repulsion can 

be approximated by the simple pairwise hard sphere potential, which is similar to 

the atomic system at high temperature, with potential given as: 

{ 
oo r < 2a 

V(r) = . -
0 r > 2a. 

(1.5) 

The hard sphere system has simple thermodynamic properties which are indepen­

dent of the temperature due to the fact that there is no interaction energy when 

the particles separate. The phase diagram and the structure of the system depend 

on only one parameter, </>, the volume fraction of the system. 

Importance of Colloids in Fundamental Physics and Chemistry 

Since the work of Brown[5] in the early nineteenth century, colloidal sys­

tems; have produced many important contributions to physics and chemistry. Re­

search on the Brownian movement of the colloidal particles provided a new way 
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to support the concept of the molecules and the kinetic theory of molecular move-

ment; 

In 1905, 1906, Einstein (6, 7] gave a theory of the Brownian movement 

based on the theory of molecular movement. From the theory, the mean squared 

displacement L was given as 

L = ( tRT )112, 
N3'f/1ra 

(1.6) 

where t is the time the particle moves in the path A, 'f/ is the viscosity of the 

medium, a is the radius of the particle, R is the gas constant and N is the number 

of molecules in a gram-mol (Avogadro's number). 

Avogadro's number, N, can be measured experimentally from equation 

( 1.6 ). Perrin[8] investigated the almost monodisperse suspensions of gamboge 

and obtained a value for N between 5.6 x 1023 and 9.4 x 1023 • Later, Shaxby[9] 

obtained N = 6.08 x 1023 by measuring the movement of bacteria. The agreement 

of the measured value of N from the colloid experiments helped convince people 

of the concept of the existence of molecules which was not widely accepted at that 

time. 

Colloids and Phase Transitions 

Phase transitions are an old and important subject in physics. A theory 

to fully understand this topic is still missing. One of the phase transitions is 

. the liquid-to-solid transition. Ice formation from water is the best known one in 

natm;e. Crystallization in a colloidal system[13] is another example of this kind of 

transition. One of the many applications of colloidal systems is as the model for 

this study of the phase transition. 

As early as in 1930's, people found that colloidal systems can exhibit an 

order/disorder phase transition[lO]. In late 1950's, three-dimensional crystals were 

observed in suspensions of tipula iridescent virus, and a light scattering technique 

was tised to study the structures of the crystals(l 1]. The availability of several syn­

thetic colloidal particle systems with narrow size distribution since late 1940's[12] 
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gave people the systems used to study the physics of colloidal phase transitions. 

Since: then, the ability of colloidal systems to have phase transition and the prop­

erties (large structural relaxation times and weakness of the colloidal crystals) of 

the colloidal crystals have attracted more and more people to the solidification 

dynamics of colloidal crystals. Many experiments have been done on the colloidal 

phase transition. 

First the equilibrium phase behavior of the colloidal systems was studied. 

The crystal structures were measured using a static light scattering technique which 

measured the light scattering intensity to obtained the structure factor as in X-ray 

diffraction studies. For hard sphere systems, samples were prepared in a series 

of volume fractions. Sedimentation measurement is employed to determined the 

phase diagram. Fluid, coexistence of fluid and crystal, homogeneous crystal, het­

erogeneous crystal and glass phases were observed as the sample volume fractions 

increased[13,14]. Freezing and melting points were determined to be at volume 

fractions of ¢1 = 0.494 and </Jm = 0.545, respectively[15]. For the structure of the 

crystals, a random-stacked close-packed structure was observed[16]. For charged 

particles, the pairwise potential is a function of suspension condition which is re­

lated. to the parameters such as electrolyte concentration, particle volume fraction, 

particle surface charges, etc. Phase behavior may be studied by changing any one 

of the parameters. Charged sphere systems evidence the same phase transition 

as hard sphere systems but with lower volume fractions depending on the other 

parameters, surface charges and electrolyte concentration, due to their long range 

of interaction[l 7-19]. The crystal structures were found to be body-centered cu­

bic (BCC) at low concentration and face-centered cubic (FCC) at higher volume 

fraction [20-22]. 

For the kinetics of crystallization, several methods were used to do the 

study. The first is direct observation with a camera and image processing. The 

second is Bragg angle scattering which monitors the crystal structure of the crystals 

as the function of time. The third is small angle light scattering which measures 
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the density fluctuation of the sample. The last one is turbidity which monitors the 

total ·scattering by the sample. Details will be given in the next chapter. 

Comparison of Atomic and Colloidal System 

In pure atomic systems, the dynamics of the liquid to solid phase transition 

at supercooling is hard to control and measure due to the very fast kinetics of 

the transition. A computer simulation result showed that the nucleation rate in 

atomic system is about 10-10 second[23], which is presently too fast to measure. 

As a result, high resolution experimental data are sparse. The process of colloidal 

crystallization, on the contrary, is several orders of magnitude slower so that it is 

more easily measured. In addition, colloidal crystals have advantageous properties 

for phase transition studies. First is the capacity of colloidal crystals to diffract 

visible light. Bragg reflections are possible once the largest interplanar distance 

is greater than )../2, where .A is light wavelength in the suspension. In the case 

of the colloidal samples, the spacing of the particles is on the order of the visible 

light .wavelength, therefore, we see colorful crystals. It gives us the opportunities 

to study the phase transition with light scattering techniques. Second is the very 

low dasticity of the colloidal crystals due to the large interplanar distance. The 

colloidal crystal can be shear melted to a metastable fluid state, which is important 

since temperature is not an control parameter in hard sphere systems. Last, the size 

of the colloidal crystals is large enough in many cases that it is possible to observe 

directly single crystal growth. The difference of physical properties between colloid 

and molecular crystals is due to the difference in their respective microscopic length 

scales. 

Both atomic and colloidal systems are classical statistical mechanics sys­

tems. They have the similar pair potential. For equilibrium properties, a colloidal 

system has phase diagram and crystal structure similar to pure atomic system. In 

this ~ense, a dispersion of colloidal spheres can be regarded as assembly of super­

atoms. However, the dynamics of two systems is different. The atoms in the pure 

atomic system follow Newton's equations of motion. But due to the solvent, the 
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particles of the colloidal system execute Brownian motion and experience solvent 

mediated hydrodynamic interactions. 

Hard Sphere System as Model Systems 

Hard sphere systems play an important role as model systems in physics 

due to the simple pairwise interparticle potential. They are the simplest systems to 

show disorder to order transition. The question whether crystallization can occur in 

the hard sphere systems where there is no attraction was hotly debated among the 

physicists historically. As early as 1939 Kirkwood[24) speculated on the possibility 

of crystallization of hard sphere systems. The computer simulation work of Alder 

and Wainwright in 1957 [25) first indicated the hard sphere phase transition. The 

results showed that the equation of state of a hard sphere system has two density 

branches: a low density branch corresponding to fluid state and high density branch 

corresponding to crystalline order. A finally convincing proof of the hard sphere 

phase transition was given by Hoover and Ree[15]. Their numerical simulations 

established that the volume fraction of the coexisting fluid and solid phases are 

</>1 = 0.494 and </>m = 0.545, respectively. When <p < 0.494, the system is in a fluid 

state, for 0.494 < cp < 0.545 , the system is in coexistence of liquid and solid, and 

for cp > 0.545 up to close packing (</> = 0.74), the system is in the state of long 

range order. 

The "driving force" of the hard sphere phase transition is the system en­

tropy which has two forms. The freezing of hard spheres is the result of the com­

petition between these two forms of entropy: (1) a loss of global entropy due to 

the ordered structure which has fewer configurations than the disordered structure 

and (2) a gain of local entropy resulting from the decreasing of excluded volume 

caused by the localization of the particles in the order structure. In theory, with 

the application of density functional techniques [26,27), one can predict the hard 

sphere phase transition that agrees with the computer simulation result of Hoover 

and Ree[15). In experiment, Pusey and Van Megen[13) first obtained the phase 
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diagram of hard spheres using a sterically stabilized PMMA particle system. There 

is a good agreement of their experiment results with the computer simulations. 

No hard sphere atomic systems exists in reality. But at very high tempera­

ture, the strong Born repulsion dominates the interaction between two neighbour­

ing particles. As an approximation, the hard sphere interaction is used for atomic 

systems. For sterically stabilized colloidal particles, when the steric surface layer is 

thin enough compared to the size of the particle, it is a good approximation to de­

scribe the system with the hard sphere potential equation ( 1.5 ). The hard sphere 

system is the simplest system to show the freeing/melting transition. Therefore, it 

is an important model in physics where theories and computer simulation results 

can be compared with the experiment data. 

Summary 

This thesis is organized as follows. Chapter II briefly reviews the studies of 

dynamics of colloidal system melting/freezing transition with various techniques. 

The original research is presented in the next three chapters. Nucleation and 

growth of crystals were measured with the small angle light scattering technique for 

a smaller size particle system than previously studied. The method, the results and 

the comparison of the results with a classical theory [28] are presented in chapter 

III. A range of power growth law exponents in the early time region and punctuated 

structure factors are observed. * A special photographic technique is proposed 

and morphology of the colloidal crystals is presented in chapter IV. t Sizes of the 

crystals were obtained from the slides. Crystal growth data measured in real space 

are consistent with the small angle light scattering data. A substructure in the 

crystals was observed, measured and compared to the Mullins-Sekerka instability 

*Chapter III will be published (accepted by Phys. Rev. E) by authors: Yueming 
He, B. J. Ackerson, W. van Megen, S. M. Underwood and Klaus Schatzel. 

t Chapter IV will be published (Langmuir (in review)) by authors: Yueming He, 
B. Olivier and B. J. Ackerson. 



length. In chapter V, + turbidity of the system is studied during crystallization. 

The turbidity measurement is more sensitive for the light intensity than other 

scattering techniques thus gives us the early time information about the samples. A 

laser heating effect on the solvent was observed in the early time range compared to 

that of SALS. It gave us the early time limit for the measurement of crystallization 

dynamics. In the last chapter, a conclusion is given. A brief review of the classical 

theory of a hard sphere colloidal crystal nucleation and growth is presented in 

Appendix A. 

+Chapter V will be published (accepted by Physica) by authors: Yueming He 
and B. J. Ackerson. 
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CHAPTER II 

REVIEWS OF PREVIOUS WORK IN COLLOIDAL CRYSTALLIZATION 

Bragg angle scattering 

In colloidal crystals there is a periodic arrangements of the colloidal parti­

cles as in atomic crystals. If incident light is scattered by this structure, maxima 

of the scattering intensity appear at the Bragg angle directions. Dynamic crys­

tallization information is obtained by monitoring the time evolution of the Bragg 

diffraction [1,2]. Dhont et al.[1] used charged TPM-silica and Harland et al.[2] used 

steric stabilized PMMA hard spheres in dynamic Bragg scattering experiments. 

A typical experimental setup is shown in figure 2.1 The sample is held 

in a cylindrical cuvette which can be rotated in the center C. The key element 

of the setup is a high resolution diode array camera (DAC). The DAC used in 

reference [1] has a pixel size of 25µm or a scattering angular resolution of 0.007° 

and a time resolution of 10 ms. Scattered Bragg peak intensity, I(q, t), where q 

is the scattering vector, is collected by the camera at certain time intervals for 

an extended period of time. Maximum intensity, position and width of the Bragg 

peak as a function of time were obtained and were used to study the dynamics of 

crystallization. Usually, the sample is rotated slowly (0.01 ,...., 0.06 Hz) during the 

experiment to get better statistical data for the crystallization kinetics (averaging 

over the size, orientation and number of the crystals in the scattering volume of the 

sample) because only a few crystals present in the scattering volume are oriented 

to scatter light to the DAC at any time. 

X-ray diffraction theory[3] was adapted to analyze the data and calculate 

the quantities relevant to nucleation and growth in colloidal systems. In reference 

[1], a;3suming uniform crystal sizes, crystal cubes of (N x N x N) FCC unit cells, 
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Figure 2.1. Optical setup used for Bragg s~attering measurement. 
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a constant rate of nucleation, interface limited growth, and a constaut growth 

velocity, the authors obtained various quantities: the induction time, the nucleation 

rate, the crystal growth rate, the size of crystallites and the number of crystallites 

in the scattering volume as the function of sample concentration. 

In reference [2], Harland et al. measured the growth of the lowest or­

der Bragg reflection intensity profile, I(q, t). The structure factor, Sc(q, t), of the 

crystals were obtained by dividing I(q, t) by the single particle form factor , then 

subtracting the structure factor of the hard sphere fluid at the same volume frac­

tion. ; The integral of Sc(q, t) with respect to q under the main Bragg peak gives 

the extent of crystallization X(t). The average linear size of the crystals, L(t), is 

obtained from the width of the peak at half maximum, wq(t). Therefore, the num­

ber density of the crystals is Nc(t) = X(t)/ L3 (t). A accelerated nucleation rate, 

Nc(t) rv t3 , was observed. The Maximum nucleation rate density, c = dNc/dt, is 

consistent with the nucleation rate density ( assumed constant) predicted by the 

classical theory[4-6]. The authors had trouble obtaining the data for low concen­

tration samples 0.49 < <p < 0.53. They said that the data of low concentration 

samples ( <p < 'Pm) suffer from considerable statistical uncertainties due to poor 

orientational averaging over the relatively small number of crystals in the illumi­

nated region. Thus the Bragg angle scattering method loses sensitivity for the 

lower concentration samples. 

Transmitted light intensity measurement (turbidity) 

Turbidity measures the transmitted light intensity of a sample as the func­

tion of time. It is used widely in the colloidal related industries to measure particle 

size 4nd size distributions[7-9] and in physics to measure critical point behav­

ior[l0,11], particle interactions[12], and dynamics of the colloidal crystallization 

[13]. Aastuen et al. [13] monitored the transmitted light intensity and proposed a 

model based on the Avrami's theory[l4,15] of crystallization. They obtained the 

nucle:ation rate density, c, by :fitting the transparency data ( as the function of time) 

to their model. 
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In the model, the effect of the light scattering due to the system density 

fluctuations is neglected assuming the light scattering is strictly a volume effect. 

If the effect of wall growth is excluded, the transmitted light intensity, ft, would 

be 

(2.1) 

where ab, a1 are absorption coefficients and db, d1 are lengths for bulk crystals 

and liquid respectively. ab and a1 will be considered as constant parameters for a 

particular concentration sample. db and d1 are obtained by a statistical method in 

which the most probable length is calculated as follows: 

l d/2 

d1 = 
0 

2m(t)dx, (2.2) 

and db = d - d1, where dis the total length of the sample ( cell length), m(t) = 

exp( -( c; )v3t4 ) is the probability that a point is liquid after time t in the condition 

of interface limited growth with constant growth rate v. These results, substituted 

into equation ( 2.2 ), yield the result: 

(2.3) 

The nucleation rate density c is obtained by a nonlinear least-square fit of 

the form of equation ( 2.3 ) for transmitted light intensity, It, with three parameters 

(ab, a1, and c) to measured transmitted intensities. The constant growth rate, v, 

in equation ( 2.3 ) was obtained by measuring the crystal growth in real space. 

Crystal direct observation and morphology 

The colloidal crystals are large enough to observe growth with weak mag­

nification. The interparticle spacing in colloidal crystals is on the order of wave­

length of visible light so that a colorful picture of the crystals is observed when they 

scatter incident white light. Monovoukas et al.[16] studied charged sphere crystal 

growth in thin cells with a optical polarizing microscope in transmission. Structure 

and orientation information of crystals is obtained with the sample between two 

crossed polarizers. Fee crystals orient with their (110) planes parallel to the cell 
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wall. Dynamical diffraction theory[l 7] is employed to explain the experimental 

data.· 

Aastuen et al.[13,18] observed the charged sphere crystal growth using 

camera with microscope and video equipment. Figure 2.2 show the experimen­

tal setup used by the authors. Nucleation and growth of single BCC crystallites 

was observed when the samples were sheared melted to the metastable state. They 

found that crystals are nearly spherical and their surfaces are rough. Interface lim­

ited growth was observed for all samples (densities between lµm- 3 and 3µm- 3 ). 

The growth rates are a function of particle concentrations, and are fit to the Wil­

son[19] and Frenkel[20] growth law. The growth rate is determined by self diffusion. 

Recently, Wiirth et. al.[21] directly observed the BCC colloidal crystal 

growth in the (110) direction with video microscopy and image processing tech­

nique for systems of highly charged spheres and precision control of ionic strength. 

Their measured data are consistent with the data of Aastuen et al. They observed 

that the growth velocities are constants with the time for all the samples with dif­

ferent fixed volume fractions and salt concentrations; and the growth velocities as 

the functions of volume fraction and salt concentrations can be unified to a master 

function and fitted with the Wilson-Frenkel growth law, if the velocities were plot­

ted versus the reduced density difference. The microstructure of the interface was 

discussed with a model in which there are several particle layers that continuously 

decay from crystalline into liquid within a finite thickness of the interface. 

Small angle light scattering 

During the order/ disorder transition of colloidal samples, the density fluc­

tuates. Schatzel and Ackerson[22,23] used a time resolved small angle light scat­

tering technique to monitor the density fluctuations and obtain crystallization 

information. Sterically stabilized PMMA hard spheres ( r = 500nm) were used in 

the studies. In their scattering setup, a microscope objective and a pin hole were 

used to spatially filter and expand a laser beam. The beam was scattered by the 

sample and the scattered light was stopped by a screen which is about lm away 
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figure :2.:2. Experimental setup to observe the crystal growth directly. 



from the sample. Analogous with phase seperation in binary liquid mixtures, the 

scattered intensity appears like a bright "ring" ( peak intensity at finite scattering 

vector). The shape and intensity change with time, as the phase transition pro­

ceeds. A series of small angle scattering images was recorded with a CDD camera 

controlled by a PC. The images were processed to extract the data of the peak 

intensity, positions and the contributions of the rings as the functions of the time. 

From the data, what were found by the authors are as follows: Two time regions 

of the order/ disorder transition of the hard sphere system were observed. In small 

time region, power-law growth in peak intensity was found. For samples near 

melting concentration, diffusion limited growth was observed instead of interface 

limited growth[18] for charged sphere system. In large time region, ripening growth 

was observed. Crystals grow with t1/ 3 for samples with densities lower than the 

melting point and with t1/ 2 or faster for higher density samples. The data for low 

concentration samples show that the length scale determined by the peak position 

first increases but then decreases in the "crossover" time region and grows again 

in large time region. The structure factor (intensity contributions of the rings) 

can be scaled to a common master function for samples near melting point. There 

are a deviations to the common master function for samples with lower or higher 

concentrations. 

As mentioned in references[21,23], the difference of the crystal growth ve­

locity between hard sphere and charged sphere is due to their pairwise interactions. 

Systems with long range interaction begin to crystallize at small volume fraction 

and the density difference between crystal and liquid is small compared to the hard 

sphere system which has a crystal density about 10% above that of the liquid at 

coexistence. Therefore, in charged stabilized systems the crystal can grow without 

diffusion limitation by the large distance particles, and the growth rate is constant 

with the time. On the other hand, the large change in volume fraction for hard 

sphere depletes the liquid phase near the crystal. This leads to a highly complex 

and nonlinear growth with the time. 
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CHAPTER III 

CRYSTALLIZATION DYNAMICS IN HARD SPHERE SUSPENSIONS 

Abstract 

Density fluctuations are monitored by small angle light scattering during 

the crystallization of 0.22µm radius, hard colloidal spheres. Measured structure 

factors show an intensity maximum at finite scattering vectors. The shape of 

the intensity distribution scales at early times during nucleation and growth and 

again at large times during ripening. At intermediate times there is a crossover 

region where scaling ceases to be valid. Both the amplitude and the position of 

the maximum intensity show quasi-power law behavior in time. The values of 

the observed exponents are within the range expected for classical growth models. 

The breadth of the intensity distribution increases with increasing volume fraction, 

suggesting greater crystal polydispersity with increasing volume fraction. The 

lower volume fraction intensity distributions suggest crystals have a compound 

or internal structure, while the observed decrease in characteristic length in the 

crossover time regime may indicate breakup of crystals to this smaller internal 

structure. The results of measurements are compared with results calculated for 

nucleation and growth of crystals in suspensions of hard spheres. Results also are 

compared with earlier measurements made on samples containing 0.50µm radius 

spheres. Differences in the two systems are discussed in terms of interparticle 

potential, polydispersity and gravitational effects.* 

*will be published (accepted by Phys. Rev. E) by: Yueming He and Bruce J. 
Ackerson; Department of Physics and Center for Laser Research; Oklahoma State 
University ; Stillwater, OK 74078-0444; 
W. van Megen and S. M. Underwood; Department of Applied Physics; Royal 
Melbourne Institute of Technology; Melbourne, Victoria, Australia; 
Klaus Schatzel; lnstitut fiir Physik; Johannes Gutenberg Universitat; D-55099 
Main~, Germany 

21 



22 

Introduction 

The dynamics of crystallization, the disorder to order transition from a 

metastable fluid to a crystalline solid, is very rapid and hard to characterize in 

simple atomic systems. Only recently have advances in instrumentation permit­

ted kinetic studies of crystallization in metallic glasses by using x-ray diffraction 

with millisecond time resolution[l]. In complex fluids crystallization dynamics is 

orders of magnitude slower and the lattice constants are on the order of the wave­

length of light. Thus time resolved optical analogues of x-ray diffraction[2-6] and 

microscopy[7] have proved useful in characterizing homogeneous nucleation and 

growth in these systems. 

In colloidal systems the suspended particles order into crystalline lattices 

from initially shear melted[8] amorphous metastable fluid state. These samples 

differ from pure atomic systems in that the sample volume is fixed by the suspend­

ing fluid, and crystallization occurs at fixed volume rather than fixed pressure. 

Furthermore, the particles exchange energy and momentum with the solvent. Any 

latent heat produced is rapidly dissipated by the solvent with negligible change 

in temperature. Finally, the colloidal particle interactions are essentially repulsive 

due to charge stabilization or steric stabilization to prevent particle aggregation. 

Despite these differences between atomic and colloidal systems, we expect the 

essential features of the phase transition is similar in atomic and complex fluid 

systems. 

Most homogeneous colloidal crystallization work has focussed the crystal 

order parameter, a nonconserved parameter used to characterize the disorder to 

order phase transition. Aastuen et al. [2] have made direct observations of growing 

crystallites in aqueous suspensions of charge stabilized polystyrene spheres as a 

function of particle volume fraction. The size of the crystals was found to be 

directly proportional to the elapsed time, indicating interface limited growth. The 

velocity increased and saturated with increased sample volume fraction and was 

characterized by the classical Wilson-Frenkel growth law. Dhont et al.[4] used time 
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resolved light scattering to monitor the first order Bragg peak during crystallization 

in suspensions of slightly charged silica particles. Interface limited growth was 

assumed implicitly and a classical analysis made to determine induction times, 

nucleation and growth rates, and the size and numbers of the crystals as a function 

of particle volume fraction. The nucleation rate density was found to have a much 

weaker dependence on volume fraction than predicted[9). 

Recently a conserved parameter, the particle density, has been monitored 

during the crystallization process[5,6,10). Small angle light scattering measure­

ments were made during the crystallization process in suspensions of sterically 

stabilized spheres in a solvent which has nearly the same index of refraction as the 

particles. The observed scattered intensity distribution had a maximum at finite 

scattered wave vector and was observed to scale over nearly the full observation 

time. As a result, the experimental data was represented by the position and mag­

nitude of the intensity maximum as a function of time. Two distinct time regimes 

were observed and termed "nucleation and growth" and "ripening". In the nucle­

ation: and growth region the intensity maxima were observed to follow a power law 

incre~se in time with an exponent of four for volume fractions equal to or less than 

the melting value. Similarly the position of the maximum moved towards zero 

scattering angle with increasing time, following an inverse square root time depen­

dence near melting volume fractions. Thus a characteristic length was increasing 

as the square root of time and was consistent with diffusion limited rather than 

interface limited growth. The intensity growth exponent was explained in terms 

of a constant nucleation rate and the diffusion limited growth of crystals. 

In the ripening region, the growth of the maximum intensity was much 

slower with an exponent of unity or less. The exponent for the position of the 

maximum was one third for volume fractions less than· the melting value. This 

is consistent with the exponent for Ostwald ripening in a two phase region. For 

volume fractions greater than melting the exponent was observed to be one half, 

consistent with the exponent for growth through domain wall motion. Dynamical 

scaling was also examined and found to give the expected scaling exponent of three 
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for this three dimensional system for volume fractions equal to the melting value 

or less. For larger volume fractions, the exponent was observed to be two and is 

not yet understood. 

In this work we present results of similar small angle light experiments for 

suspensions of smaller radii colloidal particles. A number of samples closely spaced 

in volume fraction were studied. The growth exponents for both the intensity and 

the characteristic length were larger than found at corresponding volume fractions 

for the previously studied 0.50µm radii particles. All samples, exhibited a de­

crease in scattered intensity and reduction in characteristic length in the crossover 

region between nucleation/ growth and ripening. This combined with changes ob­

served in the shape of the small angle intensity distribution suggest crystal breakup 

or dissolution in the crossover region before ripening commences. The intensity 

distribution shape functions became broader as the volume fraction of particles 

increases. This is attributed to a larger polydispersity of the scattering entities 

with increasing volume fraction. 

In the following section the samples, experimental apparatus and proce­

dure are discussed. This is followed by a presentation of the results. Finally we 

compare the data with theory for classical crystallization in suspensions of hard 

spheres and with measurements taken for suspensions with larger radii spheres. 

The differences are discussed in terms of interparticle potential, polydispersity and 

gravitational effects. 

Experiment 

Particles 

The colloidal suspensions used in these experiments contained uniformly 

sized,polymethylmethacrylate (PMMA) spheres coated with a thin (,...., 10nm) layer 

of poly-12-hydroxystearic acid [11]. This coating provided sufficient steric stabi­

lization to prevent flocculation. The particle radius was determined to be 220nm 
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with a polydispersity of 7% relative standard deviation by dynamic light scatter­

ing on diluted suspensions. The solvent was a mixture of tetralin ( 46wt%) and 

decalin (54wt%) in a ratio adjusted to closely match the index of refraction of the 

suspended particles. Exact matching was not possible due to difference in refrac­

tive index of the particle core and coating. Also the matching point is sensitive to 

temperature and probing wavelength. However, samples with particle volume frac­

tions on the order of 50% appeared clear to the eye and showed a total scattering 

of less than 50% of the incident light for a path length of 10mm at a wavelength 

of 633nm. The losses were due primarily to small angle and Bragg scattering. 

Samples having different particle concentrations were prepared by load­

ing optical quality cuvettes (lOmmx 10mmx50mm) with an index matched stock 

sample of known weight of each solvent and particle component. The particles 

were then centrifuged to the bottom of each cuvette and different weights of the 

supernatant were withdrawn to obtain a series of samples having particle weight 

fractions ef>w ranging from 0.391 to 0.491. The particles were redispersed by vigor­

ous agitation of the cuvettes, which were then left undisturbed for approximately 

two months. During this time crystallization commenced and the crystals being 

more dense than the amorphous phase settled. The phase diagram shown in fig­

ure 3.1 was determined using the sedimentation tracking method of Paulin and 

Ackerson.[12]. The volume fraction cp = (0.494/0.395)ef>w has been rescaled from 

the weight fraction to make the freezing point coincide with the value for hard 

spheres, ¢>1 = 0.494 [13]. It is seen that this rescaling brings the melting point 

ef>m = 0.55 ± 0.01 into close agreement with that for hard spheres (0.545 ± 0.02). 

The required rescaling was larger than that for PMMA particles having twice the 

radius[12] but was the same order as that required for similar sized particles (325nm 

in radius) suspended in mixtures of decalin and C S2 [14]. It is believed that absorp­

tion of tetralin or C S2 into the particle coating ( or core) may be responsible for 

this effect [14-16]. The weight of each cuvette was monitored to account for any 

change in particle volume fraction due to solvent evaporation over the duration of 

these experiments. 
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Figure 3 .1. Phase diagram for the colloidal system used in the experiment. The 
freezing point is fixed at 0.494 as described in the text and a fit 
determines the melting point to be a volume fraction of 0.55. 
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Small angle light scattering setup 

The small angle light scattering setup shown in figure 3.2 was modified 

slightly for some measurements from that reported previously[6]. A small HeNe 

laser beam (5 mW, polarized) was spatially filtered and expanded using a mi­

croscope objective (20x) and a pin hole (25 micron diameter) in a commercial 

mechanical (Newport) unit. A single "best form" lens (f = 80 mm, anti-reflection 

coated for 633 nm) refocused the filtered beam onto the detection screen. An aper­

ture adjusted to coincide with the first diffraction minimum (,..., 9mm) produced 

by the pinhole was placed just before the sample. Careful aperture adjustment 

minimized diffraction both from the aperture and from scattering by sample cell 

walls. The detection screen was adjusted to lie between 0.68 to 1.25m from the 

sample. The distance chosen depended on the particular sample. 

Scattered light was detected in either a transmission or reflection geometry. 

In the reflection geometry used previously[6], the focused primary beam passed 

through a 2 to 5mm hole in the center of the screen to a distant beam stop. 

The smaller hole sizes were needed for the relatively smaller scattering patterns 

produced by larger crystals of the lower volume fraction samples. Scattered light 

was detected by CCD-video. camera placed slightly off-axis, typically just below 

the main beam and close to the sample. In the transmission geometry the primary 

beam was incident on a beam stop placed directly on the detection screen. The 

CCD-video camera was placed on axis with the beam a distance of 60 cm behind 

the detection screen. 

Measurements in either geometry gave identical results, except that the 

magnitude of the scattered light is approximately sixfold larger in the transmission 

geometry. This larger intensity proved useful for the relatively weak scattering 

produced by the larger volume fraction samples. These two arrangements kept 

the geometric distortions negligible for the observed small angle scattering. The 

camera resolved 192 by 165 pixels and exposure times were kept close to 200 ms. 

The scale of the scattering wave vector q = 41rnsin( () /2) / A was calibrated by 

placing a grating with 200 lines/inch in the position of the sample and detecting 
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Figure 3.2: Optical setup used for small angle light scattering. The different cam­
era positions correspond to transmission and reflection geometries. 
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the positions of the diffracted maxima using two orthogonal orientations of the 

grating. Here the index of refraction of the solvent is given by n, the incident laser 

wavelength by A, and the scattering angle by (). 

Data analysis 

Data analysis followed the same procedure developed previously[6]. The 

CCD-video camera was driven by a personal computer which accepted the digitized 

image data having 8 bit resolution and stored the data on magnetic disks. Frame 

rates varied from one frame every 20 seconds (immediately after shear melting) 

to one every hour at large times. At the end of a data collection run, the pro­

cessing involved careful centering of the series of scattering images followed by the 

calculation of radial intensity distributions I( q). 

To eliminate detector dark count, low angle static scattering produced by 

the sample cuvette, and a small amount of residual static scattering from the opti­

cal system, a radial intensity distribution from an early image was subtracted from 

each of the other intensity distributions. Typically the chosen image exhibited the 

smallest intensity values throughout the useful q-range. In most cases all early 

images were almost equivalent. However, index of refraction changes, associated 

with temperature equilibration or sample flow relaxation after shear melting, can 

produce scattering changes in this time range and must be avoided. The tem­

perature of the samples was maintained to within ±l°C. After compensating for 

diffetences in optical setup, apertures and exposure times, all intensities can be 

represented approximately on the same scale. Because the smaller particle sam­

ples studied here exhibit nucleation and growth on a faster time scale than the 

previously reported samples with larger radii particles, faster initial frame rates 

were required to obtain image data suitable for subtraction. 

Background subtracted intensity distributions evidenced a ring structure 

with a maximum in the intensity at finite wave vector qm, The value of the maxi­

mum and its position changed with time as shown in figure 3.3. The value of the 

maximum Im was determined by :fitting a second order polynomial to the data in 
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Figure 3.3. Measured light scattering intensity as a function of scattering vec­
tor and time for sample p3 ( </> = 0.594). Three distinct regions 
are observed: nucleation and growth (t < 510 sec), crossover 
(510 < t < 192000 sec) and ripening (t > 192000 sec). 
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a limited region around the peak. The ring position could be characterized most 

accurately by the larger wavevector q1; 2 , where the intensity distribution fell to 

half its maximum value. Im and q1; 2 were studied as functions of time and also 

used to obtain scaled structure factors as follows 

S(Q,t) = I(q,t)/I(qm,t), Q = q/q1;2(t). (3.1) 

Results 

Time dependence 

Figure 3.4 and figure 3.5 show, respectively, the parameters Im and q1; 2 

for the intensity maximum and location as a function of time elapsed since the 

cessation of shear melting. The double logarithmic scales demonstrate the large 

dynamic range of the data and any approximate power law growth behavior. For 

all samples the Im show the same qualitative form. There is an inital rapid growth 

to a maximum value followed by a decrease to a lower value. When runs are made 

to sufficiently large elapsed times, Im again evidences an increase in value. For 

purposes of discussion we will consider this behavior to consist of three parts as 

done in previous studies [6]: (1) an "initial nucleation and growth" region from 

zero time to the time where the maximum in scattered intensity Im occurs, (2) 

a "crossover" region from the time of the first maximum to approximately the 

point where Im begins the second increase in value, and (3) the "ripening" region 

where the large elapsed time increase in Im occurs. Any breaks in these intensity 

data correspond with adjustments in the beam intensity to avoid saturating the 

CCD-video camera as the scattered intensity increases. 

In the n~cleation and growth region, Im exhibits nearly power law growth 

in elapsed time with an exponent 4.66 ± 0.02 ( </> = 0.531) at one of the lowest 

volume fractions and increasing to a maximum value of 7.15 ± 0.16 ( </> = 0.545) 

before decreasing to 5.57 ± 0.23 ( </> = 0.549) for a sample near melting and further 

decreasing to 3.6 ± 0.1 (</> = 0.551) for the fully crystallized sample. At the larger 
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volume fractions, Im remains fairly constant for a large range of elapsed time ( two 

days) in the crossover region, while at the lower volume fraction measured, Im is 

not constant for a similar range of crossover time. In the ripening region the data 

at the largest measured elapsed times may be characterized by linear or sublinear 

power law behavior. The quoted error in the exponential values is determined from 

the best fit to the data. 

In figure 3.5, q1/ 2 is shown as a function of elapsed time, where it is seen 

that all volume fractions appear to have the same qualitative behavior. The char­

acteristic wavevector initially decreases in. magnitude indicating the growth of a 

characteristic length. However, this wavevector evidences a minimum and then 

increases with increasing elapsed time. This implies a decrease in the character­

istic length in this elapsed time region. At sufficiently large elapsed times, the 

characteristic wavevector again decreases indicating a growth of the characteristic 

length. Like the Im data, this data may be discussed in terms of three regions. 

The initial growth of a characteristic length scale corresponds to a nucleation and 

growth region. The time where the characteristic length scale decreases to the time 

where it again increases corresponds to a crossover region. A ripening region cor­

responds to the large elapsed times where the characteristic length scale increases. 

This identification is somewhat ambiguous since the Im maximum and the q112 

minimum do not occur at exactly the same time, the minimum being later in time. 

With this descrepancy in mind we will use this terminology (nucleation/growth, 

crossover, and ripening) to discuss the time dependent data . 

. In the nucleation and growth region q1/ 2 decreases with an approximate 

power law behavior ranging from 0.75 ± 0.02 (</> = 0.531) at the smallest volume 

fraction measured to 1.01 ± 0.08 ( </> = 0.549) for the sample near the melting 

point. In the crossover region the characteristic length remains fairly constant as 

does the intensity for the larger volume fractions. For the lower volume fractions 

the characteristic length changes as does the intensity. For the largest elapsed 

times we compare the data with decreasing power law exponent of 1/3. While the 

data approximates this power law behavior, it is not clear if this is the ultimate 
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asymptotic behavior of the data. Measurements at even larger elapsed times would 

require better temperature control and laser stability. 

Scaling 

The normalized or scaled structure factor is shown in figures 3.6, 3. 7 and 

3.8 using the data in figure 3.3 for a sample near the melting point ( </> = 0.549) . 

From this data we conclude that the scattered intensity does not scale over the 

full time domain, because it cannot be completely characterized by Im, q1; 2 and a 

single shape function. However, the scaling is punctuated. For limited time regions, 

scaling is observed to hold. These regions correspond to the initial nucleation and 

growth phase for times less than 600 seconds and to the ripening phase for times 

greater than 150 thousand seconds. Despite the great time lapse separating the 

two regions, the shape functions indicated by the solid lines in figures 3.6, 3. 7 

and 3.8 is very similar. The crossover region are much less settled where the shape 

function, being much broader, deviates markedly from that observed in the other 

two regions. Furthermore, it changes rapidly to this form which shows approximate 

scalir;i.g in the time range between 600 seconds and 6000 seconds but evolves slowly 

at larger elapsed times to the ripening form. 

The shape functions also depend on the volume fraction as shown in figures 

3.9, 3.10 and 3.11. A double logarithmic plot of S(Q) is given as a function 

of Q and parametrized by volume fraction. The shape function for each volume 

fraction is shifted by an order of magnitude from the neighboring ones for clarity of 

presentation. As the volume fraction decreases, the scattered intensity maximum 

moves to smaller angles and cannot be resolved reliably with our apparatus for vol­

ume fractions less than 0.525. As the volume fraction increases the shape function 

broadens in all scaling time domains. To make more quantitative comparisons the 

data has been fit by the Furukawa form [17]: 

(1 + ,(</>)/2)Q'2 
S(Q, </>) = ,(</>)/2 + Q'2+,y(cf>) (3.2) 
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Figure 3.6. Structure factors for data in figure 3.3 in "nucleation and growth'' 
time regions are shown and as well as F urukawa scaling function 
F ( Q) (line) as a guide to the eye. 
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Figure 3.9. Structure factors for various volume fraction samples in "nucleation 
and growth" time region. 
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where 

Q' = f( <fa)Q. (3.3) 

Here the exponent 'Y( <p) and the scale parameter f ( <p) are fitting parameters which 

depend on volume fraction. Table I presents values for 'Y( <fa), and values for f( <fa) are 

redundant since they are a result of the definition of q1/ 2 not being at the intensity 

maximum. Due to solvent evaporation during the duration of these experiments 

a given sample could be used to obtain data at several different volume fractions, 

and ~hese are included in Table I. The form of equation (3.2) is quadratic in the 

small QI limit. The data in the nucleation and growth region, where small QI 

data is most accessible, are reasonably consistent with this form. In the ripening 

region the larger characteristic lengths make this region less accessible. For the 

larger volume fraction samples measured,the Furukawa form gives a reasonable fit 

to the data for the full QI range. However at the lower volume fractions, there 

is a more complicated large QI asymptotic dependence which may be constructed 

from two power law decays with different exponents. In Table I values of 'Y( <fa) 

are given for a fit which neglects the large QI asymptotic behavior and a result 

in parenthesis which fits to the large QI values. For the smaller volume fraction 

sample ( <p = 0.539) we see an evolution from the complex decay behavior in the 

nucleation and growth region at large QI values to a single power law decay in 

the ripening region. We do not want to argue any general significance for using 

the Furukawa form ( and in fact, the exponents are far different from those usually 

found in liquid-gas and fluid demixing transitions), but we find it a convenient 

form to fit the data. 

Discussion 

The motivation for this work was to check previous results with a dif­

ferent system, to expand the scattering vector space available to our apparatus 
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by effectively reducing the crystal size, to reduce the effects of sedimentation by 

using smaller size particles, and to expand the range of volume fractions stud­

ied. However, measurements at large volume fractions were ultimately limited by 

diminished sample scattering with either size particles. At smaller volume frac­

tions, crystallite sizes typically were larger for the smaller particles systems and 

confounded our attempts to improve apparatus resolution. The region between 

nucleation/ growth and ripening, the "crossover region", became more pronounced 

for the smaller particle samples and limited our ability to study ripening compared 

to the larger particle systems. We now make more explicit these differences with 

earlier work and offer explanations in terms of possible deviations from hard sphere 

behavior, sample polydispersity and gravitational effects. 

Comparison with previous hard sphere studies 

The data presented here for 0.22µm radius particle samples extend and 

contrast with earlier small angle light scattering studies made for suspensions con­

taining 0.50µm radius particles[6]. Other than the differences in particle radius 

the same solvents, PMMA particle cores, and steric stabilizers are used in both 

of these sample systems. Numerous studies on both systems indicate that they 

approximate suspensions of hard colloidal spheres[l2,14-16]. Qualitatively, the 

crystallization process is similar. After cessation of shear melting, there is a rapid 

increase in the intensity of forward scattered light. The intensity distribution is in 

the shape of a ring which exhibits scaling and collapses in size during the "nucle­

ation and growth" phase. There is a "crossover" region followed by a "ripening" 

phase. The shape function in the nucleation and growth region is found to be 

similar to that in the ripening region for the larger volume fraction samples. 

A comparison of the two different radii samples is given in figures 3.12, 

3.13 and 3.14. The reduced elapsed time Tc= Dotc/a2 taken to reach the max­

imum. intensity Im (beginning of the crossover region) is shown in figure 3.12 as 

a function of volume fraction. Here a is the particle radius, D0 is dilute solution 

particle diffusion constant and tc is the elapsed time to the maximum in Im- The 
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Figure 3.12. The elapsed time to the Im maximum given by Dtc/ a2 as a function 
of volume fraction for 0.49 µm ( o) and 0.22 µm { •) radius particles. 
The open and solid squares are from computer simulations with 
a = 0.1, 0.05, 0.004 for open squares and a = 0.04, 0.026, 0.013 for 
the closed squares, respectively. 
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tion for 0.49 µm ( o) and 0.22 µm (•)radius particles. The open and 
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reduced wavevector qmina at the beginning of the crossover region is a local mini­

mum: for the smaller radii particles and is shown as a function of volume fraction 
' 

in figµre 3.13. In figure 3.14 an estimate of the nucleation rate density is given 
! 

using values presented in figures 3.12 and 3.13. During nucleation and growth 

it is assumed that crystal positions are random (uncorrelated) and that the small 

angle scattering is produced by the crystal form factors[6,10]. The growth process 

produces a depletion zone around each crystal, and this leads to a maximum in 

the small angle scattering at finite wavevector. Model calculations have been made 

for c:tystal-depletion zone structures which conserve the total particle number[lO] 

and these give R = 1.8/ qt as an estimate of crystal size, R. If the equilibrium 

complement of crystal is realized at tc and assuming qmin = 1.8/ Re remains valid, 

then the nucleation rate density, N, in the coexistence region is given by 

( <J,-0.494 ) 
N = .545-.494 

41r R~tc/3. 
(3.4) 

This is simply the fraction of sample filled with crystal divided by the size of the 

average crystal and the elapsed time of the measurement. 

Recently a classical theory for the nucleation and growth of colloidal crys­

tals has been proposed [9,34] and evaluated numerically (with some modifications) 

for suspensions of hard spheres [23]. Within this classical theory the critical nucleus 

size, r*, reduced by the particle radius, a, is given by 

(3.5) 

and the free energy "barrier to nucleation" at this critical size is given by 

~G(r*) = (41r11-sa2 /3)(r* /a) 2 • (3.6) 

Here the averaged crystal surface tension is given by 'YJ-s and the difference in 

chemical potential between the metastable fluid and crystal by µJ - µ 8 , while the 

crystal volume fraction is <Ps· The chemical potentials and the surface energy are 
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known from computer simulations of hard spheres (13] and analytic calculations 

[37,36,34]. The nucleation rate density is given by 

(3.7) 

where Ds( </>J) is a self diffusion constant which may be estimated from experiments 

[34] and f3 is a parameter expected to be of order unity, although in application 

of classical theory to atomic systems it may vary from unity by several orders of 

magnitude [38]. Crystal growth is assumed to follow a Wilson-Frenkel law, 

dX/dT = 8[1 - exp((µ! - µs)/kT)], (3.8) 

where Xis the crystal diameter reduced by the particle radius, T = D 0 t/a2 is the 

reduced time introduced previously, and 8 = a.Ds(</>1)/2D0 is a reduced velocity 

with alpha an adjustable parameter thought to be of order unity. The self diffusion 

constant in the Wilson-Frenkel law need not be identical to the one presented in 

the nucleation rate density. 

The theory is compared with experiment for growth by using the "known" 

values for the surface tension and chemical potentials, but adjusting the parameter 

8 so that the size Re at time tc agrees with the experimentally observe values. These 

sizes and times are shown in figures 3.12, 3.13 and 3.14 for the two different size 

particle suspensions. For pure hard spheres 8 is a function of volume fraction only, 

and we find a fit to the small particle growth data gives 8 values approximately 

the same ( within "" 2x) that for the larger particle samples at the same volume 

fraction. The reduced nucleation rate density theoretical results are also shown 

using a form for the self diffusion constant, Ds(</>) = D0 (l - </>/0.58)1-74 , given by 

van Duijneveldt [34] and assuming f3 is unity. Clearly the two different particle 

sizes give different results, and the theory could fit either (but not both) equally 

well if one has complete freedom to adjust (3. The theory shows a much stronger 

dependence on volume fraction than the data as the freezing point is approached. 

The source of the discrepancies between the two different particle size 

systems merits further comment. While it has been claimed that these particle 
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systems are close approximations of hard sphere systems, it has also been argued 

that the stabilizing layer introduces some "softness" into the interaction which be­

come~ more important as the ratio of the stabilizing layer thickness to the particle 

radius increases(18]. The rate of crystallization has been reported to increase in 

silica particle systems when this ratio is increased[3]. Furthermore, charge sta­

bilized particle suspensions, though at much lower particle volume fraction, have 

soft interparticle interactions and evidence a rapid crystal growth linear in elapsed 

time to produce rather large crystals[7]. Another indication of softness could be 

the increase in scaling factor applied to <f>w to obtain <p as particle size decreases. 

These observations may lead one to suspect that softer interparticle interactions 

between the smaller particles are responsible for the observed differences reported 

above. However, the rate of nucleation is actually slower for the smaller particles 

(figure 3.14) when scaled to account for particle size. Furthermore, the phase dia­

gram is consistent with that for hard spheres where the coexistence region width is 

10% of the freezing value. For softer repulsive potentials the coexistence region is 

expected to become relatively more narrow (19,20]. Other studies of the width of 

the coexistence region, which change ratio of stabilizing layer thickness to particle 

radius for PMMA core particles and a poly(l2-hydroxystearic acid) coating, show 

similar hard sphere behavior[16]. In addition, low shear viscosity measurements 

on PMMA particles by Mewis[18] show expected hard sphere behavior. At large 

stresses or volume fractions the softness of the interaction may need to be taken 

into account, but this "softness" does not seem to be important for nonsheared 

samples undergoing crystallization. We conclude that "soft" interparticle interac­

tions are not the primary cause for the observed differences between the large and 

small particle suspensions. 

Another factor which could influence the crystallization properties of the 

suspensions is the polydispersity. It is measured to be 7% for the small particle 

samples and 5% for the larger particles samples[6]. This is not a large difference 

but may be significant. As polydispersity increases both the nucleation rate and 

the growth rate may be reduced. A single large particle in the presence of small 
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ones can distrupt or delay the formation of a critical nucleus of smaller particles, 

until 'the larger particle has diffused out of the way. Similarly, the growth rate 

is slowed, because not every particle is the right size to fit into the growing front 

of a crystal. Evidently the self diffusion constants appropriate for nucleation and 

growth in monodisperse suspensions should be modified to include this slower 

diffusive process. Polydispersity can also slow the ripening process, because "miss­

fits" are expelled from crystals into the grain boundaries. These impurities act to 

pin the boundaries and slow the ripening. 

The reduced nucleation rate density noted in figures 3.12, 3.13 and 3.14 

for the smaller particle samples are in agreement with these arguments, since the 

polydispersity is larger for these samples. The larger crystal sizes observed in the 

smaller particle samples result from the reduced nucleation rate density, which 

allows more volume for a crystal to grow into before the onset of ripening. For 

sufficiently high polydispersities, the order-disorder transition is suppressed [39]. 

However, in our studies the polydispersity is not sufficiently large to evidence 

any narrowing of the coexistence region for the smaller particle samples. Thus we 

conclude that polydispersity is a candidate for the observed differences measured in 

the two different size particle samples but a quantitative theory needs development. 

Evidently polydispersity has no significant influence on the growth rate. 

Another difference between the two sample systems is the effect of sedi­

mentation. In dilute suspension the sedimentation velocity is given by the ratio of 

buoyant weight of the particle to the Stokes' drag[21] and is proportional to the 

particle radius squared. When sedimentation velocities are scaled by this num­

ber, the values obtained depend only on particle volume fraction[12]. Thus the 

ratio of the sedimentation velocities of the small to the large particles is 0.19, and 

this five-fold difference is evident in the time taken to characterize the phase di­

agram for each system (13 days vs 62 days, respectively, from the sedimentation 

data of large particle sample p4[6] and small particle sample p7 which have almost 

the same concentration). No measurable sedimentation is observed in these sys­

tems: until elapsed times corresponding to ripening, as can be seen in figure 3.15. 
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Howdver, at tc, the onset of the crossover region, the samples have probably real­

ized the equilibrium complement of crystal and must simply phase separate over 

a long period of time into colloidal liquid and colloidal crystal rich regions. For 

the volume fractions studied (greater than </J ,....., 0.52), the samples contain ,....., 50% 

crystal or more in equilibrium. Assuming uniformly sized spherical particles and 

placing them at the vertices of a cubic lattice, one finds that the separation be­

tween surfaces of nearest neighboring particles is less than 2% of their diameter. 

Thus. very little sedimentation is required to achieve large percolation clusters of 

crystals. These networks would be sensitive to gravitationally induced stresses. 

Sine~ the gravitational forces on particles are proportional to the bouyant weight, 

restructuring is expected to occur faster in the larger particle samples. Indeed the 

crossover region is smaller or absent in the larger particle samples. We believe this 

is the primary cause of the differences in time to ripening in the two different sys­

tems. However, polydispersity could also slow the ripening by trapping "miss-fits" 

in the grain boundaries, but the "pinning" of grain boundaries can give a smaller 

power law growth behavior than that observed here. 

Small times 

The intensity maximum Im initially increased proportional to the fourth 

power of the elapsed time in the larger particle systems for volume fractions at and 

below the melting point. Above the melting point the power law exponent was 

difficult to determine because the data was near the noise floor of the apparatus. 

The exponent appeared to be somewhat less and on the order of three. For the 

same time range the characteristic wavevector q1; 2 showed little measurable change 

at the largest volume fractions but decreased with a power law exponent of 0.5 at 

the melting point and a slightly larger exponent at the smallest volume fractions 

studird. These exponents suggested a diffusion limited growth process in contrast 

to the linear growth observed in charge stabilized particle suspensions [2]. A simple 

crystal growth model was introduced to explain these data [5,10]. It was assumed 

that randomly positioned single crystals and associated depletion zones produced 
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the small angle scattering. The magnitude of the scattering is proportional to 

the sixth power of the crystal size times the number of scatterers. This size is 

prop6rtional to the reciprocal of the characteristic wavevector and a constant rate 

of nucleation is assumed. With these assumptions one finds 

(3.9) 

where QI is the exponent characterizing the time dependence of the wavevector. 

Ford= 0.5 the growth exponent for the intensity is 4.0, as observed[6]. 

For the small particle samples the growth exponents for Im are found 

to be larger, being 4.66 at <p = 0.531 and increasing to a maximum of 7.15 at 

cp = 0.545, then decreasing to 5. 75 at the melting point. The noise floor limited 

accurate determination of growth exponents for <p > 0.552 which appeared smaller 

("' 3.3) than that determined at the melting point. The characteristic wavevector 

exponents QI were also found to be larger, approximately 0. 75 at lower volume 

fractions up to 1.01 at the melting point. 

To determine the validity of the model summarized by equation (3.9), we 

plot the intensity growth exponent and 6QI + 1 as a function of volume fraction in 

figure 3.16. At the lower volume fractions these exponents agree with the model, 

suggesting a constant nucleation rate as assumed previously for the larger particle 

systems. Near melting, however, the exponents differ by order unity indicating 

only an initial burst of nuclei. This has also been suggested as an explanation for 

the behavior of the largest volume fraction of the larger particle samples[6]. 

A range of exponents similar to those measured for QI has been observed 

recently[23] in calculations of crystal growth based on the classical theory of nucle­

ationi and growth adapted to suspensions of hard spheres[9]. In these calculations 

the volume fraction and the speed with which particles become incorporated into 

the growing crystal determines whether the growth is diffusion limited (QI= 0.5), 

interface limited (QI = 1.0), or has an approximate power law behavior with an 

intermediate exponent. For growth in the coexistence region with a large incorpo­

ration rate, the growth is diffusion limited with QI = 0.5. For smaller incorporation 
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rates jthe growth is slower and not diffusion limited. The growth evolves as an ap­

proxihlate power law with exponent a> 0.5. Thus the slower growth of the smaller 
i 

parti~le samples ( due to polydispersity?) is consistent with the larger growth ex-

pone~ts. The maximum growth exponents we found in our model calculations for 

the smaller hard sphere particle suspensions were for </> = 0.52, from a = 0.58 at 

8 = 0.5 to a = 0. 7 4 at 8 = 0.05, for </> = 0.54, a = 0. 75 at 8 = 0.05, and for 

</> = 0.56, a = 0.55 at 8 = 0.005. With increasing volume fraction, the growth 

exponent increases slightly as does the experimental data. However, for volume 
I 

fract~ons greater than freezing, the theoretical value is much reduced from unity, 
I 

duet~ finite size effects. The growth never has time to approach the limiting value 
I 

beca~se of competition with neighboring crystals for metastable fluid. 

The crossover region for the smaller particle samples is similar for all vol­

ume fractions studied in the coexistence and fully crystalline phases. At the begin­

ning of the crossover, the intensity maximum Im decreases with increased elapsed 

time ;while q1; 2 increases in value, indicating a decrease in the characteristic length 

scale) The same behavior is observed for the larger particle samples for volume 

fractions less than approximately 0.54. However, for volume fractions at or above 

melt~ng in the larger radii particle systems, Im exhibited a brief inflection and 

no decrease in value with increasing elapsed time. Correspondingly q1; 2 became 

· constant before decreasing again in the ripening region. The shape function evi­

denced deviations from the early and late elapsed time forms similar to that shown 
l 

in figures 3.6, 3. 7 and 3.8. Given the relationship between scattered intensity 

and c;haracteristic length scale in equation (3.9), the decrease in scattered intensity 

would seem to correlate with the observed decrease in characteristic length scale. 

For the smaller volume fraction samples ( ¢ < 0.535), the intensity maximum Im 

and q1; 2 reverse directions at the same time (tc). However, as the concentration of 

crystals becomes large enough that depletion zones overlap, the proposed scatter­

ing ciechanism for the nucleation and growth region is corrupted. This is suggested 
' 

for volume fractions ¢ > 0.535 by the fact that the intensity maximum Im begins 

its decrease before q1; 2 reaches its minimum (largest characteristic length). Thus 



56 

we picture independent, spatially uncorrelated nuclei to form and grow initially; 

but as the sample fills with crystals and depletion zones overlap and control the 

growth of crystals, the crystals become spatially correlated. The crossover region 

represents the change from a length scale correlated with the "size" of individual 

crystals to a length scale correlated with the "separation" between neighboring 

crystals. Since the crystals are in contact in the ripening region, the later length 

scale is also a measure of crystal "size". 

Bragg scattering from the first order peak has been monitored during the 

cryst~llization process for a similar hard sphere suspension [40]. This method works 

best for volume fractions at melting or larger due to the large number of crystallites 

scattering to the diode array detector. The small angle scattering works better 

for smaller volume fractions where there is increased scattered intensity due to 

increased crystal size, in general. Thus the two methods complement one another. 

The integrated intensity of the Bragg peak, X, is a measure of the crystal fraction. 

It shows a rapid increase with exponent µ = 3 at volume fraction </> = 0.530 

and ~xponent µ = 4 at volume fraction </> = 0.548 followed by a saturation or very 

slow increase. The reduced times for this change in behavior correlate well with the 

reduced time in figures 3.12, 3.13 and 3.14. The argument given in equation (3.9) 

should be modified for Bragg scattering to read X rv t3°'+1 if the nucleation rate 

is assumed constant. The growth exponents then become a = 0.66 and a = 1.0 

for volume fractions </> = 0.530 and 0.548 where we found via SALS a = .63 

and a = 1.0, respectively. This interpretation gives the same growth exponents 

determined by both methods. If the peak width is used as a measure of the crystal 

size, then the growth exponents are half the values cited above and the nucleation 

rate increases approximately with the square of the elapsed time. However, it is 

in this volume fraction range that these growth law measurements are the least 

reliable in the Bragg scattering method. Also, the Bragg measurements detect 

only those crystal planes which are oriented to scatter to the detector, while SALS 

is sensitive to the whole crystal structure. These planes may grow differently than 

the crystal as a whole. Finally we note the saturation of X above tc indicates that 
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crystallization is completed by this time and this assumption leading to equation 

(3.4),is valid. 

Late times 

The extended crossover region for the small particle samples has lim­

ited our ability to characterize the ripening region. For three samples ( <p 

0.540, 0.549, 0.552) data runs have been extended to more than two weeks. In 

the 11ii,st week Im approaches a nearly linear increase with elapsed time, while q1/ 2 

decr~ases with a power law near one third. This is similar to the behavior observed 

in th~ larger particle samples at the melting point. It may be understood[5] as a 

ripening process where nearly equilibrium values of liquid and crystal are present, 

but larger crystals grow at the expense of smaller ones. For example, if the char­

acteristic crystal size is R, then the scattering intensity for a single crystal will go 

like R6 , the number of scatterers like R-3 and the total scattered intensity as R3 . 

This .total intensity increases linearly in time if q'0~ rv R rv t 113 . The growth ex­

ponent equal to 1/3 is common in coarsening processes, especially where the order 

parameter is conserved (known as Lifshitz-Slyozov ripening [24]). Crystallization 

is described by a nonconserved order parameter, but evidently, the small angle 

scattering and the crystallization process are controlled by a conserved quantity, 

the particle density. In contrast with the larger particle samples this growth expo­

nent extends into the fully crystalline region (volume fraction 0.552). In the fully 

crystalline region the larger particle samples evidenced a larger exponent ( rv 1/2) 

whic4 may increase further with increasing volume fraction. This larger exponent 

might be expected in fully crystalline samples (Lifshitz-Allen-Cahn behavior[25]). 
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Scali:µg and dynamical scaling 

Dynamical scaling is often observed[26-30] in nonequilibrium phase trans­

formations or coarsening processes. At sufficiently large times the scattered inten­

sity distribution is given by 

(3.10) 

where d is the dimensionality of the system and F is a shape function. In figure 

3.17, Im is plotted as a function the measured peak intensity Im is plotted as 

a fuqction of the corresponding characteristic scattering vector q1; 2 value in the 

ripening region for sample volume fractions 0.540, 0.549 and 0.552. The limited 

data for each sample are compared with the solid line representing a power law 

behavior with exponent 3.0. All samples measured show reasonable agreement 

with an exponent corresponding to three dimensional space. While larger particle 

samples showed the same dynamical scaling in the coexistence region and near the 

melting point, the exponent was close to 2.0 for the largest volume fractions. This 

exponent value remains unexplained. 

The shape functions do not have universal form but depend on the un­

derlying physical process. General arguments[l 7] give F "' q2 as the small wave 

vector limit for scattering from conserved quantities like particle density. On the 

other hand, the large wavevector behavior for spinodal decomposition[31,32] is ex­

pected[l 7] to go as F rv q-4 due to well defined surfaces and scattering in the 

Porod limit[33]. In electrorheological fluids[35] the large wavevector behavior goes 

as F"' q-3 due to Porod scattering from essentially two dimensional objects. For 

irreversible aggregation processes[30], the large wavevector limit goes as q-d1 due 

to the fractal dimension d1 of the scattering clusters. In our samples we expect the 

small wavevector behavior F"' q2 ; however, due to the large characteristic size in 

the ripening region we could not confirm this behavior with the present apparatus. 

The large wavevector behavior suggests F "'q/3 where 1 < {3 < 4. We believe this 

results from scattering from a polydisperse collection of crystallites. The polydis­

persity increases with increasing volume fraction but grows self-similarly at a given 
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volume fraction. We do not have a theoretical model for the crystal size distri­

bution but note that the classical theory of nucleation predicts a lower barrier to 

nucle;ation as the volume fraction ( undercooling) of the metastable state increases. 

This lower barrier is conducive to a more polydisperse or broader distribution of 

nucleus sizes. 

In the nucleation and growth time regime, the lower volume fraction sam­

ples evidence a more complex behavior in the large Qt portion of the intensity 

distr~bution as seen in figures 3.9, 3.10 and 3.11. When the data is fit near 

the ~aximum intensity with 'Y ,..., 4.0 in the Furukawa function, it is clear that a 

smaller exponent is needed to fit the largest Qt intensities. Preliminary microscopy 

studies for these lower volume fraction samples indicate that there is some sub­

structure within the crystals[22]. Thus, this complex intensity distribution may 

indicate both scattering from crystals (near the maximum) and from the substruc­

ture (for the high Qt tail). In the crossover and ripening regions this complex 

behavior is eliminated. Because this transformation is accompanied by a decrease 

in th~ characteristic length as noted for figure 3.5, it is natural to suggest that 

the c;rystals are breaking up into the smaller substructures. The breakup may 

result from gravitational stresses or dissolution of crystal at internal defects. The 

computer calculations[23] of crystal growth indicate that these crystals should be 

compressed to higher than equilibrium osmotic pressures so internal stresses are 

expected to be present. 

Acknowledgements 

It is with deep regret that we inform the readers of the untimely death 

of Klaus Schatzel during the final preparation of this manuscript. B.J.A. and 

K.S. ~ere supported by grant from the North Alantic Treaty Organization. B.J.A. 

and Y.H. gratefully acknowledge support from the National Science Foundation 

through grants numbered DMR 9122589 and DMR 9501865. 



61 

Sample p2 p7 p7 p4 p4 p4 p4 p3 p3 p3 

<P 0.525 0.533 0.537 0.539 0.540 0.545 0.546 0.548 0.549 0.552 
Nuc./Growth 4.0 4.1 4.0(3.4) 4.0(3.5) 4.0(3.0) 2.9 2.2 2.2 1.8 1.3 

Orossover 3.1 3.7 3.6 2.8 3.0 2.75 1.8 1.9 1.1 1.1 
Iµpening 2.9 1.82 1.53 

Table 3.1. 
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CHAPTER IV 

MORPHOLOGY OF CRYSTALS MADE OF HARD SPHERES 

Abstract 

A special photographic technique is used to monitor the growth and mor­

phology of crystals in suspensions of hard colloidal spheres. The crystals evidence 

irregular rectangular and rosette shapes with sharp edges. These edges indicate 

that the growth occurs below the roughening transition and a simple model for 

roughening is adapted to hard sphere systems to understand our observations. 

There is a visible substructure in the crystals which does not result from the ag­

gregation of smaller crystallites. The substructure is measured and compared to 

the Mullins-Sekerka instability length for hard spheres. The reduction in crystal 

size inferred between growth and ripening in small angle scattering experiments is 

attributed to the existence of this crystal substructure. For hard sphere systems 

this remarkable ordering process is the result of entropy increasing in thermody­

namically isolated systems.* 

Introduction 

A thermally activated collection of identical hard spheres is one of the 

simplest classical many-body systems. Because the hard sphere interaction is in­

finitely repulsive at contact and zero otherwise, the potential energy of the system 

is the same for all particle configurations. As a result temperature is not an impor­

tant thermodynamic parameter but particle density is. The occurance of a fluid 

*will be published (Langmuir (in review)) by: Yueming He, B. Olivier and Bruce 
J. Ackerson; Department of Physics and Center for Laser Research; Oklahoma 
State University; Stillwater, OK 74078-0444 
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to crystal phase transition as density is increased was hotly debated[l] because 

there is no force to hold the crystal together and so the transition must be driven 

by entropy. Yet the fluid phase would appear to have a larger entropy than the 

crystal phase. However, computer simulations[2,3] established the existence of this 

transition, with the volume fraction of spheres at the freezing point being 0.494 

and 0.545 at the melting point. Thus the system is only half full of spheres when 

freezing begins. Density functional theories[4] support these results and suggest 

that the transition is driven by a competition between global and local entropies. 

Entropy can drive even more complex transitions. Recent computer simulations[5] 

have ;confirmed that a mixture of two different radii hard spheres will form a com­

plex AB13 structure having 128 particles in a unit cell. However, due to electronic 

and quantum effects which dominate at the atomic level, it is difficult to find an 

atomic or small molecule system which closely approximates hard spheres. 

On the other hand, hard sphere interactions have been approximated at 

the colloidal particle level using steric stabilization to minimize the van der Waals 

attraction between particles[6, 7]. The particles typically are very uniform in size 

with diameter in the colloidal range between a tenth and one micron. Suspen­

sions of these particles in organic solvents evidence properties consistent with ex­

pected hard sphere behavior. Sedimentation velocities as a function of volume 

fraction[8,9] show neither a decrease due to longer ranged particle repulsions nor 

an increase due to particle attractions as compared to predicted theoretical re­

sults for hard spheres[lO]. These suspensions evidence a fluid to crystal phase 

transformation with increasing volume fraction particles[ll,8,12] which has a co­

existence region width in volume fraction equal to one tenth the freezing value 

( ( o/melting - q> freezing)/ q> freezing cv 0.1) expected for hard spheres but not for softer 

repulsive potentials [13]. Shear induced microstructures have been understood in 

terms of the steric interaction of hard spheres[14]. 

The crystal structure in these suspensions has been determined using light 

diffraction, the analogue of x-ray powder diffraction for atomic systems[l5]. The 

crystal structure data is described well as a registered random stacking of close 
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packed planes of spheres. This can be considered as a highly faulted face centered 

cubic or three dimensional hexagonal close packed structure. Face centered cubic 

structures are favored energetically when there are long range repulsions between 

particles extending to second nearest neighbors. Hexagonal close packed structures 

are favored energetically for attractive interactions of second nearest neighbors. For 

hard spheres there is no energy of interaction between second nearest neighbors 

and this leads to the random close packed structure results. 

Recently small angle light scattering has been used to monitor the nucle­

ation and growth process in suspensions of hard spheres[16-18]. The scattered 

intensity distribution scales during nucleation and growth while the characteristic 

length increases approximately as a power law in time with exponents distributed 

between one half and unity, the expected limiting values of diffusion and interface 

limited growth respectively. This growth region is followed by a crossover region 

where the characteristic length scale is observed to decrease in time before increas­

ing again at the largest observation times. This reduction in crystal size was not 

expected nor understood. 

While microphotography has been used to study growth and morphology 

of colloidal crystals in charge stabilized particle suspensions, it has not been applied 

to the more basic hard sphere suspensions. In suspensions of charged stabilized 

particles, crystals appear spherical, not faceted, indicating growth above the rough­

ening transition[19,20]. The crystal size grows linearly with elapsed time, indicat­

ing interface limited growth. On the other hand, unstable Mullins-Sekerka[21,22] 

growth also has been observed[23]. It is not clear what the morphology of hard 

sphere crystals should be given the nature of the interparticle interaction and given 

that the microstructure is highly faulted or random. Computer simulations are not 

yet powerful enough to answer question involving such long times and large num­

bers of particles. Are the crystals faceted or do they grow above the roughening 

transition? Do growth instabilities influence morphology? What can be learned 

about the mysterious crystal size reduction in the crossover region between growth 

and ripening? In this article we examine the growth and morphology of hard 
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sphere crystals using a special microphotographic technique. We evaluate theo­

ries for roughening and growth instabilities in the hard sphere limit. The crystal 

length scale reduction in time, seen in small angle light scattering experiments, is 

examined photographically. 

Experimental Procedure 

The sample used in these experiments is comprized of 0.22µm radius poly­

methylmethacrylate (PMMA) spheres suspended in a mixture of tetralin and de­

calin; The solvent ratio is chosen to match the refractive index of the particles and 

render the suspensions transparent. The particles are sterically stabilized against 

aggregation with a I"./ 10nm thick surface layer of poly-12-hydroxystearic acid. The 

volume fraction of the sample studied drifted slightly during the three month obser­

vation time but was determined by weighing to be in the range 0.522 < cp < 0.524. 

These volume fractions are referenced to the freezing volume fraction as described 

elsewhere[ll,8]. This sample at equilibrium is in the liquid/crystal coexistence re­

gion. Before measurements the sample is shear melted to an amorphous metastable 

fluid state and the elapsed time, t, is measured from the cessation of shear melt­

ing. Since crystals appear to the eye approximately an hour after shear melting, 

there is sufficient time for convection to cease without disturbing the nucleation 

and crystal growth. 

The sample is contained in couvette (1.0cm x l.Ocmx5.0cm) with one of the 

vertical rectangular faces perpendicular to the optical axis of the camera to min­

imize image distortions. A Nikon series N2000 camera is used with I{ odachrome 

DX 35mm slide film. The camera optics affords a magnification of approximately 

2X in the slide image with a further magnification of approximately 12X in making 

figure 4.1. 

The sample is illuminated using a 500W tungsten light source which is 

collimated and weakly focussed with a cylindrical lense (f = 50cm) into a thin 

vertical sheet having an minimum halfwidth of approximately lOOµm. The angle 

that the optical axis of the camera makes with the plane of the sheet of light 
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Figure 4.1. Crystal images of a sample ( cp ,......, 0.523) with a magnification of ap­
proximately 24X at t = 135min above and t = 242min bellow. We 
can see the substructures and dendritic growth in the later picture. 
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corresponds to the first order Bragg scattering angle for one wavelength in the 

visible spectrum. For this radius particle and wavelength A= 514.5nm, the Bragg 

angle is approximately 55 degrees. Exposure times ranged from 30 to 90 seconds 

depending on the width of the incident sheet and the actual elapsed time during 

the crystallization process. The exposure times were, however, much smaller than 

times corresponding to observable changes in the crystal growth. 

The growth of individual crystals, as shown in figures 4.2 and 4.3, are 

captured from the original photographic slides by the following image processing 

procedure. The slides are illuminated with diffuse light and digitized using a CCD 

camera and high resolution frame grabber. The resolution, however, was limited 

by the camera to approximately 640 x 480 pixels on a 3/4" active surface. The 

magnification was increased by a factor of 9X by using a continuously focusing mi­

croscope attached to the camera. Care was taken to insure a uniformly illuminated 

photograph in order to minimize artifacts which could arise from non-uniform back­

ground fields. The image processing consisted of contrast enhancement of regions 

of interest. 

Small angle light scattering measurements were made for this sample fol­

lowing the procedure in earlier studies[16-18]. The circular scattered intensity 

pattern evidences a maximum at finite scattered wavevector. The position of the 

maximum initially decreases in radius, increases, and decreases again. In figure 

4.4 the initial decrease and increase may be seen. Also shown in this figure are 

estimates of crystal radius from photographs. The radius is estimated from the 

square root of the average area of the ten largest crystals observed in each pho­

tographic slide at each time. The image processing technique described above is 

used to capture images from slides. Schatzel and Ackerson[l 7] gave a relationship 

between average crystal size, R, and the larger wavevector at half the maximum 

peak value ( done to increase measurement accuracy), q1; 2 , as q1; 2 = 1.8/ R. This 

has been used to reduce the radius data for figure 4.4. These measurements were 

taken last when evaporation increased the sample volume fraction to 0.524. 
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Figure 4.2. Time evolution of a crystal. This series of pictures are captured 
from the photographic slides by a CCD camera attached with a 
continuously focusing microscope and a PC. 
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Figure 4.3. Pictures are captured from the photographic slides by a CCD camera 

attached with a continuously focusing microscope and a PC. Growth 
of two characteristic crystals are shown. Protrusions are developing. 
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Figure 4.4. Changes of crystal size with elapsed time. The line is small angle 
light scattering data, q1;2(t). The fill square is 1.8/ R, which R is 
the square root of the average area of the ten largest crystals in each 
photographic. 
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Results and Discussion 

Figure 4.1 shows images from photograph slides taken at the first order 

Bragg angle at t = 135min (a) and t = 242min (b) after shear melting. The 

lighter crystals have their planes "properly" oriented relative to the incident beam 

to Bragg scatter the incident light. The darker structures are crystals having 

non-Bragg scattering orientations relative to the incident sheet of light. These 

"dark" crystals scatter less light than the surrounding metastable fluid which is 

near .its maximum scattered intensity at this angle. Thus, all crystals within the 

illuminated region are visible when the crystal size is comparable to the sheet 

width. Bragg scattering crystals are observed first in time, presumably due to the 

large scattered intensity and smallness bf the crystal size compared to the sheet 

width in present studies. 

Other photographic observations[24] have not used a thin sheet illumina­

tion of the sample and only observe the Bragg scattering crystals. In these other 

experiments light from the forground and background obscures the non-Bragg scat­

tering crystals. Our sheet illumination produces greater clarity of the crystal image, 

at least in the center of the field of view, where the object plane of the camera and 

the sheet illumination overlap. 

As shown in figure 4.1 the crystals appear sharply defined, largely with 

rectangular or rosette shapes. At the larger time shown in figure 4.1, the crystals 

are still sharply defined at the outer boundary, but significant internal structure is 

also visible and is reminiscent of dendritic growth. These characteristic morpholo­

gies were found throughout the sample for all data runs. At even larger times the 

dark crystals appear to fill the volume of the sample. Here it becomes difficult 

to resolve individual crystals, and the crystal substructure length scale becomes 

the dominant visible feature. The crystal substructure does not result from an 

aggregation of a collection of smaller crystals into a single larger crystal. Rather 

this substructure may result from a growth instability similar to that which leads 

to dendritic growth. Figure 4.3 shows the growth of two characteristic crystal 
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shap~s which have been isolated from the original photographic slides. We can see 
i 

that :one crystal with a rectangular cross section grew uniformly and then later 

developing protrusions at its corners. The protrusions have a width approximately 

equal to lOOµm at later times. The second crystal in the digitized image has the 

characteristic rosette shape at early times but also develops an instability at later 

times. The width of this protrusion is approximately 150µm. 

We can compare these length scales with that predicted by Mullins and 

Seke~ka[21,22] for crystal growth instabilities of a planar interface. The Mullins­

Seketka instability results from a competition between diffusion causing growth 
! 

and ~urface tension suppressing growth. A planar crystal interface growing into a 
I 

metastable fluid is found to be unstable to small spatial undulations with wave-
1 . 

' 

lengths greater than 

>../a= 21rJ(l/a)(d/a). (4.1) 

Here the wavelength, >.., is reduced by the particle radius, a, and the mobility ratio 

of th~ particle to solvent[25] is set equal to unity. In this equation the reduced 
I 

diffu~ion length is given by l/a and the reduced capillary length by d/a. For hard 

spheres the reduced capillary length is expressed as 

41ra2 -y 

d/a = 3kT 
b.,1.2 dµ, 

'I' def, 

( 4.2) 

where the chemical potential of the metastable fluid may be calculated from fits 

to computer simulations of the equation of state [26,27]. In these calculations we 

use the forms for the fluid and crystal (metastable) states; respectively, IT/nkT = 

Z(</>1) = 0.904/((<PJ - 0.731) + 0.016) and IT/nkT = Z(</>c) = 2.17/(0.738 - <Pc)-

Here'Il is the osmotic pressure, n is the particle number density, kT is the thermal 
' 

eneq~y, <PJ is the (metastable) fluid volume fraction and <Pc is the (metastable) 

crystal volume fraction[28]. b.cp = <Pmelt - <PJreeze is the miscibility gap, <Pmelt is the 

crystal melting volume fraction, <PJreeze is the liquid freezing volume fraction. The 

ratio of the surface energy to thermal energy 1a2 /kT is taken to be 0.16[29,30]. 
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The fielmholtz free energy and ( for hard spheres) the entropy per particle is given 

by A/kT = -S/k = J Z(</>)(d</>/4>) + c. If the number of particles is given by N, 

then :the chemical potential is given by µ = ( 8N A/ 8N)T,v so that 

dµ = Z( </>1) + dZ( </>1) 
de/> </>1 d</>1 

(4.3) 

The diffusion length is given by 

l/a=2D/va ( 4.4) 

' 

wher~ D is a diffusion constant and v is the velocity of the growth front. The 

growth velocity may be estimated using the Wilson-Frenkel growth law for hard 

spheres[31,28]. 

V = Ds(</>l) (1 - Exp[-~µjkT]) 
2a 

( 4.5) 

where the self diffusion constant, Ds, is given in the literature[29,31]. The chemical 

potential difference between the crystal and metastable states, ~µ, may be calcu­

lated! as outlined above and are given in the literature[28). If the diffusion constant 

in equation ( 4.4) is the self diffusion constant in equation ( 4.5), the minimum 

instability length is approximately 13µm. If the diffusion constant in equation 

( 4.4) is identified with the collective diffusion constant , the instability length is 

approximately 36µm. These lengths, which are evaluated for a volume fraction of 

0.52, are smaller than the measured lengths cited above by a factor of five. The 

fastest growing length in this model is larger by a factor of v3, which improves 

the agreement with experimental values. However, crystals do not represent flat 

surfaf::es so a comparison with instabilities in the growth of a spherical crystal may 

be rr{ore appropriate. Here the instability begins when the crystal has a radius 

approximately seven times the critical nucleus radius[25). At a volume fraction 

0.52 !the critical nucleus radius is 1'J 8µm so the initial deviation from spherical 

behayior should be observed for a radius 1'J 60µm, which is consistent with our 

observations. 
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The crystals in figure 4.1 appear to have sharp edges indicating that 

the growth process may occur "below the roughening transition [19,20,32]". This 
I 
I 

equilibrium transition has been understood in terms of the two dimensional Ising 

mod~l[33]. Sharp or faceted surfaces correspond to low temperatures where there 

is condensation into large regions of "gas" or "liquid". At high temperature the 

"rough" surface exists which is represented by a single phase in the Ising model. 

Obviously, the Ising model depends on the energy of interaction between particles 

and therefore displays a temperature dependent transition. Jackson[19,20] has 
I 

deve~oped a simpler model which determines the equilibrium state of minimum 
! 

free ¢nergy of a surface based on particle interaction energy with the bulk crystal 
:, 

and {vith other particles on the surface, as well as, a bulk entropy change and a 
I . 

configurational entropy associated with the particle configurations on the surface. 

In the hard sphere colloidal systems, there is no change in internal energy 

with changing particle configurations so roughening would have to be purely an 

entropy driven effect. Jackson's model can still be used even if the energy terms 

are e~iminatied. One needs the entropy change between the liquid at the freezing 

volu*1e fraction and the crystal at the melting volume fraction. This change can 

be determined from computer simulations[3,26] using simple thermodynamic rela­

tionships as outlined above. This difference has a value Sc-Sf= -l.2NAk, where 

Sc is the bulk crystal entropy, S1 is the bulk liquid entropy, NA is the number of 

liquid particles transfered to the solid surface, and k is the Boltzmann constant. 

This change is negative indicating that the entropy of the crystal is lower than 

the liquid, and unfavorable, if entropy is to be maximized. The reader should not 

be surprised by this result because the coexisting liquid is at one volume fraction 

and the crystal at another. For a metastable fluid at equilibrium densities corre­

spon~ing to a fully crystalline solid, the entropy of the metastable fluid is lower 

than. the corresponding equilibrium crystal, in agreement with our understanding 

that [entropy is maximized in equilibrium[34]. The Jackson model Helmholtz free 
I 

energy, F, for crystallization at constant pressure and volume, corresponding to 

our crystallization conditions, is given by 
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!J.F/NkT = 1.2p + pLn(p) + (1 - p)Ln(l - p). ( 4.6) 

In this expression p = NA/N is the fraction of crystal surface sites occu­

pied. The first term on the right hand side is the bulk entropy change cited above, 

while the second and third terms correspond to the surface configurational entropy. 

A rough surface is half occupied, while a purely smooth surface is fully occupied or 

empty. For the bulk entropy change (-1.2NAk) used in this theory, the minimum 

free ~nergy is at an occupancy of p = 0.23. While this value indicates something 
' 

betwben the extremes of smooth or rough, the model is crude but indicates how 
I 

pure]y entropic "forces" can produce rough or smooth surfaces. Crystals of hard 

spheres may show sharp interfaces because the bulk entropy loss on adding a par­

ticle to the interface may dominate the configurational entropy gain. Clearly a 

better calculation would be more definitive. In the case of repulsive charged col­

loidal particles, we expect a larger free energy cost in adding particles to a crystal 

surface. Therefore, the surfaces should be rougher than that for hard spheres, as 

obsertved. 

As noted for figure 4.1, a high degree of substructure is evident in the 

larger crystals. One might suspect that the different substructures in a single crys­

tal are actually different crystals having different orientations but were seeded and 

grew from a common nucleus. However, we note from figure 4.1 that the crystals 

oriented to Bragg scatter, represent a single orientation and many times have di­

men~ions comparable to the dark crystals, not the substructure length scale in the 

dark :crystals. This suggests that the crystals have a fairly uniform stacking plane 

orientation, but registration differences within a plane lead to different stacking 

structures growing parallel to one another. The boundaries between these differ­

ent stacking structures are visible as substructure boundaries. Growth instabilities, 

such .as the Mullins-Sekerka instability discussed previously, could lead to this kind 

of boundary development. Unstable growth which favors the development of pro­

trusions would maintain the layer stacking oreintation. However, there would be 

no communication of registration order between spatially separated protrusions. 
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As layers are added independently onto each of the protrusions the detailed differ­

ences in the adjacent crystals leads to a substructure boundary as the protrusions 

merge and grow together. 

In figure 4.4 the length scales measured by small angle light scattering and 

photography are compared. The agreement between the two measurements is strik­

ing. Both indicate an initial increase in length scale as the crystals are nucleated 

and grow. The size and growth rates are comparable. However, after half an hour, 

the length scale begins to decrease in both measurements. For sufficiently long 

' times, not shown here, it increases again. The decrease in size was first observed 

in srriall angle scattering[l 7] and was not understood. However, it is now observed 
I 
I 

phot~graphically. The photographs indicate that the crystals grow independently 

from the melt and exhibit an internal substructure with a characteristic length 

scale before overlapping or touching at the completion of the growth phase. At 

this time the sample appears full of crystals. The crystals have lost their individual 

identity and the substructure is the dominant length scale. Crystals which Bragg 

scatter directly to the camera are also reduced to this substructure length scale. 
I 

This !reduction in Bragg scattering size means that the crystals must have broken 

up or dissolved along substructure boundaries and undergone some local reorien­

tation. Theoretical calculations[28] and Bragg angle scattering measurements[35] 

have indicated that the growing crystals are compressed to higher than equilib­

rium densities during growth. When a full complement of crystals is created at 

the completion of growth and the metastable fluid density is reduced to nearly the 

equilibrium value, the compressed crystals must then be in an unstable situation 

in which expansion fractures them and dissolution occurs along the substructure 

boundaries before ripening commences. 

The shape of the crystals undoubtedly is related to the underlying mi­

crosc'opic order. Light diffraction studies[15] reveal that this order is a registered 

rand©m stacking of close packed ( 111) layers of particles to make highly faulted 

face centered cubic or hexagonal close packed crystals. We have not yet been able 

to index a crystal with respect to its shape, because the crystals are exceedingly 



soft ind destroyed by weak shear flows. However, we speculate that the stacking 
I 

of (1~1) layers may have a rectangular shape when viewed end on and a rosette 

shapi when viewed straight on. 

Conclusions 

In conclusion we remind the reader that the remarkable ordering observed 

duri:q.g crystallization in these hard sphere systems is the result of entropy increas­

ing in thermodynamically isolated systems. 
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CHAPTER V 

CRYSTALLIZATION IN SUSPENSIONS OF HARD SPHERES AND 

TURBIDITY 

Abstract 

The dynamics of crystallization have been investigated for suspensions of 

hard spheres by small angle light scattering, direct imaging, and Bragg scatter­

ing. This work reports preliminary but complementary measurements of turbidity 

during crystallization. The change in turbidity correlates with small angle light 

scattering for the smaller volume fractions studied, where the signal is strong. 

However an initial exponential time dependence in turbidity is observed, which 

has a decay time independent of the sample volume fraction. This signal domi­

nates at larger volume fractions where small angle light scattering measurements 
' 

are weak and Bragg studies are more easily performed. We identify this initial 

transient decay with a laser induced heating of the sample.* 

Introduction 

Uniformly sized colloidal particles, which are stabilized against irreversible 

aggregation, will spontaneously order into regular crystalline arrays at sufficiently 

large particle concentration [1]. In these suspensions the interparticle separation 

is on the order of the wavelength of visible light, and the crystallization process is 

slow ( on the order of seconds to days), making them amenable to study by a variety 

of ex:perimental techniques from direct observation [2], Bragg angle scattering[3,4], 

small angle scattering[5,6] and turbidity measurements[7]. 

*will be published (accepted by Physica A) by: Yueming He and Bruce J. 
Ackerson; Department of Physics and Center for Laser Research; Oklahoma State 
University; Stillwater, OK 74078-0444 
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Recently sterically stabilized "hard sphere" suspensions have been inves­

tigated by both small angle scattering [8,5,6], direct imaging[9] and Bragg angle 

scattering[4]. The small angle scattering revealed different time domains referred 

to as nucleation/ growth ( see figure 5.2 for times less than 2000s), crossover ( fig­

ure 5.2 between 2000s and 100000s) and ripening (figure 5.2 for times greater 

than 100000s). In the nucleation/ growth and ripening regions the scattered inten­

sity distributions are found to scale, such that the scattered intensity maximum 

amplitude, I, and position, q1, are sufficient to describe the scattered intensity 
2 

comBletely, given the intensity distribution at one time. In the crossover region, 

the ihtensity distribution does not scale and evolves in time. For samples with 

0.22µm particle radii, the intensity distribution in the three different time do­

mains was fit to a Furukawa form and found to broaden systematically as the 

sample volume fraction increased. This is attributed to an increase in colloidal 

crystal polydispersity with increasing volume fraction[6]. 

For samples with 0.50µm particle radii in the liquid-crystal coexistence re­

gion,; the time evolution of q1 cv r 1/ 2 in the nucleation/ growth region indicates a 
i 2 

diffusion limited growth process, contrary to earlier observed or assumed interface 
I 

limited growth processes where q1 cv C 1 [2,3]. For samples with 0.22µm parti-
2 

de radii in the liquid-crystal coexistence region, the time evolution is described 

by q1 cv C°' with a cv 0.75 to 1.0. These discrepancies were investigated in a 
2 

model calculation for the growth of hard sphere crystals [10]. This model, based 

on the Wilson-Frenkel growth law and computer simulation results for hard sphere 

thermodynamic functions, shows both diffusion limited growth in the coexistence 

region and interface limited growth for volume fractions greater than the melting 

value, if the particle incorporation rate into the crystal is large. For reduced incor­

poration rates, quasi-power law behavior is observed with exponents 0.5 < a< 1.0 

in long lived transients to the final asymptotic diffusion limited or interface limited 

forms. The observed crystal growth rates indicate that our experimental observa­

tions occur within these transients. The model also indicates that the nucleated 

crystal initially will be compressed to densities larger than the equilibrium value 
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but undergo a slow relaxation to the equilibrium value. Bragg angle studies indi-
' 

cate ~uch a compression and relaxation[4], but quantitative comparisons are yet to 

be done. 

Nucleation rate densities, N rv 1/( 41r R3Tc/3), may be estimated from the 

crystal size R '"" 1/ q1 at the crossover time Tc when the sample is assumed to have 
2 

its full complement of crystal. If a reduced nucleation rate density is calculated to 

account for differences in sample particle size, it is found that the 0.22µm particle 

radii samples have a reduced nucleation rate density at least two orders of magni­

tude '.smaller than the 0.50µm particle radii samples at the same volume fraction[6]. 

It has been suggested that the smaller particles might have a softer interparticle 

repulsion than the larger particles. But the conventional wisdom is that this softer 

repulsion should lead to a larger nucleation rate density. We have attributed this 

difference to sample polydispersity which is ,..._, 0.07 and '"" 0.05 for the smaller and 

larger particles, respectively. The reduced growth velocities (particle incoporation 

rates) are the same for both large and small particle samples, however. Finally we 

note ,that the nucleation rate density may be calculated from classical nucleation 

theoiy[lO]. As the freezing point is approached the variation with volume frac­

tion is dominated by thermodynamics. Since the thermodynamics of hard spheres 

is established, it is troublesome that the experimentally measured values show a 

much weaker volume fraction dependence than the classical prediction. 

Direct observations of hard sphere colloidal crystals have been made at 

the first order Bragg angle for volume fractions near 0.52[9]. Both bright crystals 

( oriented to Bragg scatter) and dark crystals (improperly oriented to Bragg scat­

ter) are observed. The dark crystals evidence sharp edges, which indicate faceted 

rather than rough surfaces. Simple arguments have been given by Jackson to es­

timate the roughening transition[ll]. These arguemts have been adapted to the 

purely entropic hard sphere liquid- crystal transition to understand observations. 

The dark crystals also evidence an internal structure, which is indicated in the 

small angle scattering results, as well[6]. Direct observations do not indicate that 

this structure results from an aggregation of smaller crystals into a single larger 
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crystr,l. However, the length scale of this substructure compares favorably with 
' 

numerical estimates of the Mullins-Sekerka instability length for these samples[12). 
I 

The reduction in crystal sized in the crossover region (increase in qi) is attributed 

to the breakdown of crystals to this substructure length scale. 

In the small angle and Bragg scattering experiments reviewed above there 

are initial transients observed which complicate data analysis. These transients 

are assumed to be related to the shear melting process and subsequent viscous 

daml?ing of fluid motion in the sample. However, effects related to sample absorp­

tion µave been ignored. For some samples, measurements of transmitted intensity 

indicate that nearly half the light is scattered or absorbed[5]. Such a loss due only 

to scattering would indicate significant multiple scattering. However, the samples 
I 

appear clear, so multiple scattering was considered minimal. Furthermore, small 

angle scattering measurements have been performed with a helium neon (633nm) 

laser, because illumination with shorter wavelengths ( 488nm) produced noticable 

thermal blooming. In this paper we present preliminary results for turbidity mea­

surer.p.ents which complement earlier small angle and Bragg angle studies. The 
I 

turbi:dity measurements show an initial transient which is not related to the crys-

tallization process. We argue that it is due to heating by the incident laser beam. 

The time scale for this decay sets the lower time limit for which reliable scattering 

data may be obtained. For larger times the turbidity may be explained in terms 

of scattering by the growing crystals. 

Theory 

Turbidity is defined as the light intensity reduction per unit penetration 

length in the sample. For a finite sample thickness d, the turbidity is given as 

1 (Io) 
T = -Zn -

d Id 
(5.1) 

where !0 is the light intensity incident on the sample and Id is the intensity exiting 

through the sample. The reduction in intensity is produced by absorption or 

scattering of the incident radiation. However, the samples examined in this study 
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are if!dex matched to reduce multiple scattering and appear transparent. The 

trans~itted intensity, Id(t), is monitored as a function of elapsed time since shear 
i 

melt~ng and would appear to be a result of the structural reorganization of the 

particles during the crystallization process. 

If the turbidity change is due only to scattering, then the turbidity may be 

related to the total scattered intensity, i(O), by the metastable fluid, small angle 

and Bragg sources as 

1 

r = 21r 11r i(O)sinOdO. (5.2) 

Althbugh the relative magnitudes of the metastable fluid, small angle and Bragg 
I 
I 

scatterings are not known, the angular dependencies have been measured. For the 

metastable fluid, the Percus-Yevick structure factor has been used to fit data, and 

the integrated intensity has been measured for Bragg angle scattering(4]. For small 

angle measurements[6], the measured intensity is found to evolve as 

i(O) = I(t)S(O, t) (5.3) 

wher~ I ,....., t60+1, S(O, t) is a normalized structure factor and a is the growth 

exponent for the length scale measured in small angle scattering, R ,....., 1/ q1 ,....., t°'. 
2 

The Furukawa form[13] for the structure factor 

(J t - (1 + ,/2)Q2 
S( ' ) - (1 +, /2) + Q2+-y) (5.4) 

has qeen used most recently to fit small angle scattering data(6]. Here Q = q/q1 
2 

with _q = 41rnsin( ! ) / >., where n is the solvent index of refraction, (J is the scattering 

angl~, and >. is the incident radiation vacuum wavelength. 

Experimental Procedure 

The sample used in these experiments is comprized of 0.22µm radius poly­

methylmethacrylate (PMMA) spheres suspended in a mixture of tetralin and de­

calin'. The solvent ratio is chosen to match the refractive index of the particles 
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and ~ender the suspensions transparent. The particles are sterically stabilized 
I 

againbt aggregation with an ,..., 10nm thick surface layer of hydroxystearic acid. 
I 

The volume fraction of particles in each sample is determined by the weight ratio 

of solid to solvent but scaled to the freezing volume fraction as described else­

where[14]. Two samples in this study ( <p = 0.525, 0.538) were between the freezing 

value ( <pjreezing = 0.494) and the melting value ( </>melting = 0.545), and two samples 

( <p = 0.554, 0.563) were above the melting value but less than the kinetic glass 

transition value. 
I 

A schematic diagram of the apparatus used in these experiments is de­

tailed in figure 5.1. This apparatus is adapted from earlier small angle scattering 

studies[5,6]. A polarized helium neon laser beam is expanded, spatially filtered by 

a pinhole, and weakly focussed to a distant screen used for small angle scattering. 

The beam width at the sample is slightly less than the width of the sample con­

tainer to avoid spurious reflections and small angle scatter. One diode detector 

monitors the input beam intensity and another, behind the small angle scattering 

detection screen, monitors the transmitted intensity or transparency of the sample. 

The output of these diodes is digitized and recorded by a personal computer. 

Samples are prepared for measurement by shear melting[15] which is as­

sumed to leave the sample in a metastable fluid or amorphous state. After complete 

shear melting by agitation and tumbling for several days, the sample is mounted 

on the measuring apparatus. The sample holder is driven by a stepping motor, 

which shear melts the sample by turning it end over end once a minute for several 

minutes, before repositing the sample cell precisely to the initial orientation for 

the II.ext measurment. This allows signal averaging, especially at the larger vol­

ume fractions where the signal is weaker and a few hundred crystallization runs 

are averaged. 

Figure 5.2 shows turbidity data determined from intensity data using 

equation (5.1 ). Intensity data is normalized for incident laser fluctuations and 
I 

furthbr normalized by the initial transmitted intensity value, Id(t = 0), for pre­

sentation here. The volume fractions in the coexistence region show the turbidity 



Spatial Beam Splitor 

[Laser ;:<ez~ 8 
Colli I at;/\ 

Sample 

Light Detector 

I ri 
== Io 

89 

Light Detector 

Figure 5.1. Schematic diagram of the apparatus used in both small angle and 
turbidity measurements showing spatially filtered, expanded laser 
beam which is weakly focussed through the sample to the small 
angle scattering screen and collected by a photodiode. A second 
photodiode monitors the magnitude of incident laser beam. 
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Figure 5.2. Turbidity measurements for volume fractions ( <P = 0.563 open squares, 
¢ = 0.554 asterisks, ¢ = 0.538 filled squares, and ¢ = 0.525 filled 

triangles). 
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to d~crease initially but this is followed by an increase to a maximum value at a 

time ,identified as the crossover value in earlier work[6], where the the initial nu­

cleation and growth process ends and ripening begins. The turbidity decreases for 

larger times. For volume fractions greater than the melting value, the turbidity 

only decreases for the times measured; however, these times also should include 

the crossover region ( at least for <p = 0.554). 

Discussion 

Turbidity measurements at the smallest volume fraction measured mirror 

the same change in intensity and suggest a strong dependence on the small angle 

scattering. The small angle scattered intensity, J(t), increases at early times during 

nucleation and growth as shown in figure 5.3. At the beginning of the crossover 

region this intensity decreases but is followed by an increase in value in the ripening 

region. By contrast, Bragg scattering[4] exhibits an increase in intensity in the 

nucleation and growth region which saturates without decreasing in magnitude 

for times greater than the crossover value. Photographic studies[9] suggest that 

crystals break up into smaller pieces at the beginning of the crossover. Thus 

the small angle scattering increases due to nucleating and growing crystals but 

decreases at the crossover due to the decreased size of crystallites. Since the total 

volume of crystallites need not decrease as the crystals fracture, the Bragg scattered 

intensity will saturate. 

Figure 5.4 shows turbidity data for <p = 0.525 compared against turbidity 

calculated using equations (5.1 ), (5.2) and (5.3) with "( = 4, and experimentally 

measured small angle values for J(t) and q1(t). The amplitude of the calculated 
2 

turbidity is scaled to fit the amplitude of the direct turbidity measurements. This 

calc~lation neglects increasing contributions from Bragg angle scattering and de­

creasing contributions from the metastable fluid, but fits the data well. It does 

not fit the initial decrease in turbidity nor does it do well beyond the maximum at 

the crossover time. However, beyond the crossover time the static structure factor 



E 
-€ 1 ,... -C" 

• 
C 

• .c 

.c 
C • 

-• 
C • 

• 
---- -0 - ------C 

9:2 

----

Figure 5.3. Small angle light scattering measurements of the reciprocal length 
scale, q1 , and the maximum intensity, I, as a function of elapsed 

2 
time for sample rp = 0.525. 



! 0.1 

0.1 

0.12 

0.1 

-5 0. -~ .... -
~ 0. 
32 
~ ... 0 . 
~ 

-0. 

C 

• 
C 

• 
C 

• 
I 
• m 

• • 

" r ., 

~~~~---~- . ~~~~~-~-~---~~-~-----------c C ~ - ---------------

9:3 

-0.LJ'rt--r"'T'"TT~;-r'T'TT1~;-,-rrri~~r-r-r"!'l](J:;;~i'TIJ'tTIC~i"Tl'.'l'.rrM 1 ~~~--~ 

lime (s) 

Figure 5.4. Turbidity for sample ¢; = 0.525 as a function of time compared to 
theory which includes only the small angle scattering to account for 
changes in the transmitted intensity. 



94 

form (equation (5.4)) changes[6] and will influence the fit in the appropriate direc­

tion.•. Clearly the small angle scattering dominates the turbidity at small volume 

fractions. 

The initial time decay observed in the turbidity data indicates a decrease in 

turbidity or clarification of the sample. This trend has been observed by Aastuen 

et al. [7] and was related to the decreased scattering produced by crystals rela­

tive to the metastable fluid. These measurements did not rigorously exclude the 

small angle scattering from measurements of the transmitted intensity as done in 

the results presented here. However, one may expect such an effect as follows. 

The metastable fluid scattering will be reduced in proportion to the volume of 

fluid replaced by crystal. But the crystal scattering may have a dependence on 

the average crystal radius greater than a power of three. If the crystals do not 

significantly attenuate the radiation incident upon them[16], then the maximum 

scattered intensity of the Bragg peak is proportional to the square of the number 

of scatterers in the crystal or the square of the volume of the crystal. However 

the integrated intensity is measured and this decreases the power dependence on 

average crystal radius to a power of four. Thus, for small crystal radii, the loss 

of scattering from the metastable fluid may be greater than the scattering by the 

crystal for sufficiently small crystal radii. The same power law dependence holds 

true for the small angle scattering and is reflected in the theoretical form pre­

sented in equation (5.2). However, this reasoning does not explain the initial time 

dependence observed in our experiments. 

Figure 5.5 shows the turbidity data for the cp = 0.525, 0.554, and 0.563 

volume fraction samples fitted by a single exponential function with decay time, 

T = 65s. Note that the 0.563 sample signal amplitude was scaled to superim­

pose on the other sample data. There is an initial decay in the turbidity which 

is independent of volume fraction, which suggests that it is not a result of the 

crystallization process. Both small angle and Bragg angle measurements show 

an enormous change in time scale with volume fraction, with the smaller volume 

fraction samples evidencing these crystallization effects only at much larger times 
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Figure 5.5. Turbidity for samples ¢ = 0.525, 0.554, 0.563 and a single exponential 
decay (solid line) described in the text. 
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after shear melting. Relaxation associated with the shear melting process can also 

be ruled out because the sample viscosity increases dramatically with increasing 

volume fraction. One would expect that a turbidity change associated with this 

relaxation would be reflected as an increased decay time, T, with increased vol­

ume fraction and viscosity. The possibility of slow electronic settling times was 

ruled out by taking data while replacing the sample with an attenuator and finding 

no effect. However, a noncrystallizing sample with volume fraction less than the 

freezing value did evidence this decay. 

While the samples are transparent, they do have a yellow appearance, 

indicating partial absorption of incident radiation. This may result from a reaction 

of decalin with water or other slow chemical degradation process. While absorption 

has been ignored in the analysis of previous experiments, we now wish to examine 

this as an explanation for the initial change in turbidity. Earlier work reported 

transmitted intensities not less than 50% of the incident intensity. The present 

samples also show similar reductions in intensity, but no samples appeared to be 

multiply scattering. In fact, the turbidity changes shown in figure 5.2 evidence only 

changes of order ten percent or less due to changes in absorption and scattering. 

We argue that the initial change in turbidity is related to absorption. The 

absorbed radiation increases the sample temperature, changing the index of refrac­

tion. As a result, there is a shift in contrast between particle and solvent, which 

changes the scattering and consequently the turbidity. The incident radiation, 

which illuminates the sample uniformly, will produce a temperature difference be­

tween the sample and the cell walls held at fixed temperature. A time constant 

may be found for the build up of this temperature difference by solving a diffusion 

equation for the temperature distribution in the cell. The slowest mode decays 

exponentially with a decay time given by T = 1r2 / ( L2 "'). The thermal diffusion 

constant is given by"'= k/pC, where k(rv 0.0005cal/cmsK) is the thermal con­

ducdvity, p(= 0.8699gm/cm3 ) is the density and C(rv 0.3cal/gmK) is the heat 

capacity of the solvent. Representative values are given for the conductivity and 



specific heat, while the known value for the density of decalin is given in paren­

theses. The sample cell width is given by L( = 1cm). These values give a decay 

time, T = 55s, in good agreement with our observations. If 50% of the 30mW 

maximum possible incident laser radiation, Q, is absorbed by the sample, then the 

temperature rise may be estimated as ~ ,...., QT/ pC. For the values given above, 

this corresponds to a temperature rise on the order of one degree centigrade and 

a change in the index of refraction on the order of ~n rv 0.0004. This could easily 

account for the observed initial few per cent change of the turbidity, since the 

samples are adjusted to be index matched. 

In Bragg angle studies, the low order Bragg scattering grows on the 

metastable fluid structure factor and must be determine by a background subtrac­

tion process[4]. This subtraction is complicated by the observed loss in intensity 

of the fluid scattering. This intensity loss does not seem to be related to the total 

amount of fluid present, and our observed temperature dependence suggests an 

alternative way to model the scattered intensity loss. 

In conclusion, we find the measured turbidity during crystallization in 

suspensions of hard spheres to be dominated hy small angle scattering losses and 

to laser heating induced changes in particle solvent contrast. The time scale for 

these latter changes should not pose a problem in the previously measured small 

angle light scattering or Bragg angle measurements, except near the melting point 

where the nucleation/ growth time scales and temperature relaxation time scales 

begin to overlap. If this is the case, then sample sizes can be reduced to reduce 

the temperature relaxation time scale. Absorption explains both the large loss of 

transmitted intensity without multiple scattering and the initial dynamics of the 

turbidity measurements. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The phase transition of freezing of a liquid or melting of a solid is an old 

subject in physics. It is very important to today's science and engineering and has 

many applications. But today, people still have little knowledge about the phase 

transition from the microscopic kinetics theories aspect. More experimental data 

in freezing or melting are needed. One of the difficulties in the experimental re­

search is that the dynamics of the nucleation and growth for pure atomic systems 

is too fast to monitor with usual equipment. Hard sphere colloidal systems give us 

an opportunity to study the phase transition with their relative slow crystalliza­

tion :processing and large interparticle distance of the crystals. This work presents 

three experimental methods to measure the dynamics of crystallization of a hard 

sphere colloidal system. The small angle light scattering technique developed by 

Schatzel and Ackerson was used to measure the nucleation and growth of the crys­

tals for small size hard sphere particle system, which enable us to study the phase 

transition with less gravitational influence. More data with different volume frac­

tion samples were taken than previously measured. The data support the previous 

work of Schatzel and Ackerson. All the data show that there are three growth 

regions. The crystals exhibited a power growth law instead of a linear growth in 

small and late time regions. In "crossover" time region, the characteristic length, 

q1; 2 , is observed to decrease, which means crystals breakup or dissolve before 

ripening begins. The normalized structure factors have been fit by a functional 

form.given by Furukawa. The scaling of the intensity versus angle data is different 

in different growth time regions and depends on the volume fraction. For small 

volume fraction samples, a complex large wavevector decay behavior was observed. 

It may suggest that there are substructures inside a crystal. 

99 



100 

Turbidity measurements were applied to monitor the crystallization pro­

cess. Turbidity data showed the dynamics of the crystal growth which agreed with 

the small angle light scattering measurements. Turbidity data evidenced a thermal 

blooming due to laser heating. 

A special photographic technique was used to monitor the crystal growth 

in real space domain. Individual crystal growth was measured and the crystal 

morphology was observed. Substructures inside the crystals and the instabilities 

of the crystals were observed. All the real space measurements of the crystals 

support the small angle light scattering measured results. 

Questions for future research include the following: For small angle light 

scattering measurement, we may improve the signal to noise ratio for high volume 

fraction samples by using more sensitive diode array as the light intensity detec­

tor. Various samples may be used in the experiment to study the effects of the 

polydispersity and "solfness" of particles in the crystallization process. 

For photographic technique, a computer related digital image processing 

technique is needed to be developed to analyze the crystal images. Statistical data, 

such :as size distribution, number density and size of the crystals as a function of 

time can be obtained easily with the help of this technique. My colleague in the 

laboratory Keith Davis is developing this kind of technique. 
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APPENDIX A 

CLASSICAL NUCLEATION AND GROWTH THEORY OF HARD SPHERE 

CRYSTALS 

Microscopic theories for nucleation and growth based on statistical me­

chanics are still undeveloped. The classical theory is still often used to interpret 

data through kinetic coefficients may be order of magnitude off in fits to data. 

Russel [1] and Ackerson[2] developed a theory model for nucleation and growth of 

the hard sphere crystals based on the classical theories. This chapter gives a brief 

review of Ackerson's works. 

Diffusion of the particles 

Nucleation and growth of the colloidal crystals is due to the diffusion of 

the particles through one phase (liquid) into other phase (solid). We can distin­

guish two kinds of diffusion from their driving mechanism. One is called collective 

diffusion and the other called self diffusion. 

The collective diffusion with collective diffusion coefficient, De, is caused 

by the concentration gradients of the particles suspended in the solvent. For hard 

sphere colloidal system, collective diffusion coefficient in fluid, D[, is almost inde­

pendent of volume fraction for small density gradients [3-5], and no experimental 

data of collective diffusion coefficient in solid, D~ has been measured. According 

to the classical crystal growth model , when the crystal grows, the particles diffuse 

to the surface of the crystal and then are incorporated into the crystal. As a result, 

a depletion zone will be produced round the crystal in the liquid. The equations 

of the collective diffusion of the particles for solid and liquid phase are 

8</>1 = v'. Di("' )v'"' at C o/J o/j (A.l) 
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(A.2) 

Where the f and s subscripts refer to the fluid and crystal, respectively. 

In the hard sphere colloidal system, the random or diffusion motion of par­

ticles is Brownian due to random kicks with the molecules of the solvent. The self 

diffusion coefficient, Ds, describes the motion of a tagged particle in the suspen­

sion .. It is defined as Ds =< ~r2 (t) > /6t. The mean square displacement of the 

particles, < ~r2(t) > , can be measured with photon correlation spectroscopy[6]. 

Experimental data and theoretical results from computer simulations[7,8] show 

that there are two different self diffusions associated with different time scales. 

One is the rapid diffusion within the "cage" of neraest neighbour and the other is 

the slower diffusion beyond their cage. Thus diffusion coefficients are function of 

sample concentration. In short-time, times much less then the time which is the 

needs for a particle to diffuse the mean interparticle separation, a particle does 

not interact with other particles. Only hydrodynamic interaction affects the par­

ticle diffusion by reducing the particle mobility. a measured short-time diffusion 

coefficient, D~, as a function of volume fraction in dilute limit, <pJ --+ 0, is given as 

[9] 
no n: = 1 - L83</J1, (A.3) 

and D0s --+ 0 as <pJ --+ 0.64 at random close packing. Here Do = ~ is Stokes-1r.,,a 

Einstein value, where a is the particle radius, T is the temperature and 'f/ is the 

viscosity of the solvent (Do has a value 0.41µm 2 / sec for the samples used in this 

work). At long times, a particle interacts with the surrounding solvent as well as 

other particles and then the particle diffusion involves both of hydrodynamic and 

structural effects. An additional retardation reduced by the structural effects leads 

to the long:..time diffusion coefficient, D~, a dilute limit as 

noo J
0 

= 1 - 1.21</JJ, (A.4) 

and D~ --+ 0 as <pJ --+ 0.58 at the glass transition where self diffusion is suppressed. 

For the liquid to solid phase transition, which relates to the particles movement on 
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the order of mean interparticle separation, the time scale is intermediate and then 

the corresponding diffusion coefficient is not clear. Several papers gave different 

expressions. Russel[l] has given the approximations for the sort-time and long-time 

diffusion coefficients as 

no n: = (1- <!>1/3.7)(1 - <!>1/0.64) (A.5) 

and 
n= Do = (1 - <1>112. 1)(1 - <1>1 ;o.58) (A.6) 

which satisfy the limiting behavior discussed above. van Duijneveldt et al. gave 

different formula for the long time self diffusion by fitting the data measured on 

samples for volume fraction less than the freezing value, </>1, as[lO] 

n= Do = (1 - <!>1 ;o.58)1-74 

and Harland et al. gave another expression as[ll] 

n= 
_s = (1 - </>1/0.58)2.58, 
Do 

(A.7) 

(A.8) 

which is based on the slow structure relaxation rates for metastable colloidal fluids 

of hard spheres[12]. 

Nucleation 

The Brownian motion of the colloidal particles causes at times the forma­

tion of very small solid particles or nuclei. Once the size of a nucleus is larger than 

a certain critical size, r*, the nucleus can grow, leading to a phase transition in 

the system. In 1946, Frenkel gave the basic classical theory of homogeneous nu­

cleation in his book[13]. When the nuclei are formed, the excess Gibbs free energy 

of a nucleus withradius r can be expressed as two terms contributed from surface 

and body energies respectively 

(A.9) 

where 'Y is the surface tension averaged over all the possible orientation of the 

solid fluid interface. The density functional calculation of Marr and Gast[14] gave 
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1 = O.l6kT/a2 for hard sphere system at equilibrum. Ackerson used this value in 

his calculation in the nonequilibrum growth process. kT is the thermal energy, a 

is the hard sphere radius, cf>s is the volume fraction of solid, and flµ = µ5 - µ f is 

chemical potential difference between the crystal and metastable liquid. 

The excess Gibbs free energy, !lG(r), first increases to its maximum, tlGm, 

then decreases as the size of the nucleus increases. Therefore, !lGm which is 

an enougy causing to nucleation determines the critical size, r*. The Gibbsfree 

energy becomes the driving force for the nucleus growth when its size r > r*. 

dtlG( r) / dr = 0 gives us r* as 

(r* /a)= 81r1 a 2 /(3cf>}llµ) (A.10) 

and the maximum excess Gibbs free energy, tlGm, is 

(A.11) 

Following Russel, the equilibrium rate of nucleation, N, can be expressed as[l] 

(A.12) 

where D s assumed to be the self diffusion constant in the metastable fluid state 

discussed above, factor A is unknown, but is dimensionless and presumably of 

order unity. 

For hard sphere system, the chemical potential, µ, (in units of kT) is the 

function of volume fraction only. It can be calculated from the Helmholtz free 

energy 

H/kT = J Z(cp)(dcp/cp) + c (A.13) 

and has the form as[2] 

µ I kT = J z (cf>) ( def> I cf>) + z (cf>) + C. (A.14) 

Here Z( cf>) IT/nkT is a function of osmotic pressure, IT, and particle number 

density n. The hard sphere state equations in metastable fluid and solid states 

can be used to find the explicit expression of the chemical potential as a function 
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of volume fraction. By fitting the data produced by the computer simulation of 

Woodcock[15] for hard sphere metastable phase, a simple expression of the state 

equation was given as 

IT/nkT = Z(c/>1) = 0.904/((¢1 - 0.731)2) + 0.016. (A.15) 

The equation of state for face-centered cubic crystal solid phase was given by 

computer simulation of Hall[16] as 

IT/nkT = Z(c/>1) = 2.17/(0.738 - cf>s). (A.16) 

By enforcing the pressures of both fluid and solid to be equal in coexistent region 

and setting the freezing point, ¢freezing, as 0.494, the melting point is ¢melting = 
0.546, which is essentially the same as the result in computer simulation[l 7]. 

Substituting Eqs. ( A.15 ) and ( A.16 ) into Eq. ( A.14 ) and setting 

the chemical potentials and pressures of fluid and solid to be equal at the phase 

transition to determine the constant, c, gives 

~µ/kT = -11.137 - 0.904/(0.551 - 1.46¢1 + ¢}) -

l.643ln[ c/>1] + 0.821ln[0.551 - 1.462¢] + ¢}] -

9.492arctan[7.91(c/>1 - 0.731)] + 2.17/(0.738 - cf>s) -

2.904ln[0.738 - c/>s] + 2.94ln[¢s]. 

(A.17) 

Explicit expression for the rate of nucleation, N, as a function of volume 

fraction is obtained by substituting Eq. ( A.18 ) into Eq. ( A.12 ). This result 

is used to compare with the experimental data from SALA ( small angle light 

scattering). 

Growth 

In order to simplify the theory, we only consider the growth. of a spherical 

crystal For a finite crystal size, r, the surface tension should effect the growth of 

the crystal. The "Gibbs-Thomson" effect[18] is included in the pressure balance 
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equation at the solid and fluid interface as 

(A.18) 

The classical Wilson-Frenkel growth law governs the crystal growth as follows[13,19]. 

dr/dt = a(Ds(</>t)/2a)[l - exp(fj,,µ/kT)] (A.19) 

where a is unknown and assumed to be of order unity. For these equations, once 

the size of the nucleus larger than the critical size, ,*, the crystal will grow by 

addition of individual particles from the fluid phase, but will shrink for smaller 

number. Combining Eqs. ( A.18 ) and ( A.19 ) with the diffusion equations ( A.1 

) and ( A.2 ) in fluid and solid phase respectively, we have the equations for the 

classical growth model. With the approximation which self diffusion constant, 

Ds( <l>t ), is assumed to be a constant, the equation of the model are expressed in 

the dimensionless form as 

dX/dt = 8[1 - exp(fj,,µ/kT)] 

o</>t = V'2,1.. 
OT <pf 

Oq>s = V'2 </>s 
OT 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

where the reduce time, T = D0t/l2, reduce size, X = r/l, and fj,,' = [/j,_ are dimen­

sionless variables, 8 = alDs(<l>t)/2aD0 and I<= (21a 2/kT)a/l are parameters. 8 

is dimensionless growth velocity which determines the growth rate. l is the scale 

length in space. l can be any length, but it was found that it is convenient to set 

l as the initial nucleus size obtained in the experiment. 

Results 

The equations of the model are solved numerically with a computor. The 

results are following. There exists a critical nucleus size. The nucleus only grows 



when greater than critical size, r*. There is a kinetic parameter, 8, the dimen­

sionless growth velocity contral the growth of the crystals. For large 8, the crystal 

dimemtion grows as t 1/ 2 ( diffusion limited growth) in the coexistence region, but 

grows proportional to t (interface limited growth) above melting. For small 8, the 

growth appreximate a power law behavior intermediating between diffusion and 

interface limited growth. The crystal increases in density (volume fraction) as 8 is 

reduced due to osmotic compression by the metastable fluid. This agrees with the 

observation in the experiment of Harland[l 1]. 
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