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Abstract 

Growing concern about the effects of post-Industrial revolution fossil carbon dioxide 

release has led to large-scale research efforts to understand how to address and mitigate 

future fossil CO2 emissions. Within the scope of products and services that have been 

enabled by the extraction of fossil hydrocarbon sources, those that rely on energy 

release by combustion – that is, electricity generation and transportation fuels – are 

considered the primary culprit in the observed increase of atmospheric CO2 levels. 

While various mature technologies exist for the generation of electrical power without 

the need for combustion of coal, natural gas, or liquid fuels, there are significantly more 

difficult engineering challenges involved in supplying so-called “zero emission” or 

“carbon neutral” energy storage solutions for transportation which can displace 

petroleum-based products. 

Numerous studies point to the possibility of displacing or replacing petroleum use for 

transportation fuels via the industrial production of liquid fuels from thermochemical 

conversion of biomass. As biomass can be a renewable and sustainable non-fossil 

source of organic molecules, it is hypothesized that it is possible to develop conversion 

strategies and technologies that allow society to retain the advantages and existing 

infrastructure associated with liquid hydrocarbon fuels without the associated fossil CO2 

release. However, barring extensive regulatory requirements, any biomass-based 

technologies that seek to displace petroleum on a wide scale must be economically 

viable. For liquid biofuels, lowering processing costs and improving total fuel yields per 

acre are some of the significant engineering challenges that hinder economic viability.  

 



xx 

In this contribution, we consider the effects of changing various process conditions 

during biomass conversions, as well as develop an understanding of what compositional 

features of the biomass are most important to the resulting thermochemical product 

distribution. By understanding how and why the process conditions and the biomass 

feedstock compositions affect the resulting thermochemical product distribution, 

parallel development of feedstocks and processes tailored for those feedstocks can 

occur. This combined approach may help accelerate progress towards more viable 

biofuels production and therefore help accelerate petroleum displacement in 

transportation fuels.  
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Chapter 1:  Pyrolysis & Catalysis Literature Review 

Portions adapted from a paper published in Frontiers in Energy Research 

Fan Lin, Christopher L. Waters, Richard G. Mallinson, Lance L. Lobban, Laura E. 

Bartley 

1.1 Introduction 

Biomass can be a renewable and sustainable source of transportation fuels not 

associated with fossil CO2 release. Numerous studies highlight the advantages of 

displacing petroleum fuels with industrial production of liquid fuels from 

thermochemical conversion of biomass (1-3). Thermochemical conversion entails 

heating of biomass in an anoxic environment; condensation of organic liquid products, 

known as bio-oil; and subsequent treatment of the products with catalysts to create 

liquid fuels, i.e., refined bio-oil, similar to petroleum-derived gasoline or diesel. This is 

in contrast to biochemical conversion, which utilizes enzymes to release sugars 

followed by microbial production of ethanol or other fuel molecules (4, 5). Relative to 

biochemical approaches, thermal conversion has the potential to make use of all carbon 

(C)-containing biomass components, would allow society to retain existing 

infrastructure associated with liquid hydrocarbon fuels, and, due to the rapidity of the 

process, may reduce production costs by permitting scalability and distribution of 

production (6, 7). For both thermochemical and biochemical biofuels, lowering 

processing costs and improving fuel yields per hectare are major engineering challenges 

that hinder economic viability. Thermochemical fuel production also faces challenges 

related to maintaining a high C-yield while obtaining a fungible fuel. 
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1.2 Challenges for Thermochemical Conversion 

Two types of pyrolysis have been developed: fast pyrolysis and slow pyrolysis. Slow 

pyrolysis is usually performed over several hours and has a high solid yield, and as such 

has little relevance for liquid fuels production. Fast pyrolysis, however, is typically 

performed quickly, in seconds, at temperatures between 400 and 600°C and 

decomposes most of the solid biomass into a volatile mixture of various organic 

molecules, water, and CO/CO2. Pyrolysis oil or bio-oil constitutes the condensable 

portion of this vapor. Non-condensable components (primarily CO2 and CO) and a 

mineral rich solid (char) are other product classes that will not be addressed here, except 

in that they detract from the overall C-yield of raw and refined bio-oil. Bio-oil 

comprises water (15-30%) plus compounds from several chemical families including 

the following (Table 1.1): organic acids, light (C1-C3) oxygenates, furan and furan 

derivatives, phenolic species with various degrees of methyl and methoxy substituents, 

pyrones, and sugar derivatives like levoglucosan (8, 9). Bio-oil’s chemically complex 

nature prohibits its direct use in combustion applications or petroleum refining. The 

reasons for this include low heating value; ignition difficulty; high chemical reactivity 

which results in oligomerization and polymerization over time and upon heating, 

prohibiting distillative separation (10-12); immiscibility with petroleum; and high 

corrosivity (10). Many of these features are associated with the high oxygen content of 

biomass and the resulting bio-oil, relative to fossil fuels. 
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Category  Major Components  Dry Wt (%)  
Light Oxygenates Glycolaldehyde, Acetol 3-26 
Organic Acids Acetic acid, Formic acid, Propanoic 2-27 
Aldehydes Acetaldehyde, Formaldehyde, Ethanedial 3-18 
Sugars 1,6-Anhydroglucose (Levoglucosan) 5-14 

Phenols Phenol, Catechol (Di-OH Benzene), 
Methyl Phenol, Dimethyl Phenol 3-13 

Guaiacols Isoeugenol, Eugenol, 4-Methyl Guaiacol 3-15 
Furans Furfurol, Hydroxymethyl furfural, Furfural 2-11 

Syringols 2,6-Dimethoxy Phenol, Syringaldehyde, 
Propyl Syringol 2-9 

Ketones Acetone 4-6 
Alcohols Methanol, Ethylene Glycol, Ethanol 2-6 

Esters Methyl Formate, Butyrolactone, 
Methylfuranone <1-3 

Table 1.1. The percentage ranges and categories of major bio-oil components. 
Source: (6) 
 

The tendency for compounds in the condensed vapors from torrefaction and pyrolysis to 

self-polymerize is an often-cited issue that lowers overall yield, both carbon and liquid, 

and increases processing costs (10, 13). The multi-oxygenated phenol derivatives, 

which are the major product of lignin pyrolysis, readily form dimers, trimers, and other 

oligomers when condensed. This is primarily due to the high amounts of organic acids 

present in condensed bio-oil which catalyze these reactions (12). These molecules are 

primarily guaiacol & syringol derivatives, often substituted at the 4 position with vinyl 

or propyl moieties. These reactions are a major contributor to the thermally unstable 

nature of biomass and its increasing viscosity over time. 

1.3 Catalytic upgrading 

In order to obtain desirable fuel properties and allow integration with the existing 

transportation fuels infrastructure (gasoline and diesel engines), the bio-oil must be 

chemically converted to reduce the undesirable characteristics mentioned above. 
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Catalytic upgrading is typically used to refine bio-oil, improving its stability and 

making it an acceptable liquid fuel.  

The simplest method is hydrotreating or hydrodeoxygenation, which removes oxygen 

via catalytic hydrogenation (14), decreasing both the chemical reactivity and 

corrosivity. However, the low H:C ratio of bio-oil leads to very high hydrogen input 

costs (15, 16). Additionally, this process converts any C1-C5 oxygenates, representing as 

much as half of the carbon in bio-oil, to C1-C5 hydrocarbons that are too volatile for 

liquid fuels rather than liquids in the target fuel range (C6-C14) (16, 17), greatly 

decreasing the process carbon efficiency. 

Another straightforward approach is to ‘crack’ the pyrolysis vapors using acidic zeolite 

catalysts into light olefins and aromatic hydrocarbons (primarily benzene, toluene, and 

o/m/p-xylene) (18-20). This approach is appealing because of the lack of an external H2 

requirement and the simplicity of the product streams. Furthermore, since zeolite 

cracking is widely used in traditional petroleum refining/valorization (21), other 

advantages are the product compatibility with existing refinery infrastructure and the 

maturity of the process (21). However, zeolite cracking is crippled by poor usable 

carbon yield due to the high amounts of coke, CO, and CO2 formed during the catalytic 

process (19) and the concomitant rapid catalyst deactivation. Regeneration of zeolites is 

typically done by combusting away the coke, and the carbon is lost to CO2. 

Additionally, further catalytic oligomerization and reforming for olefins and aromatics, 

respectively, are needed to make these products suitable for addition to refinery fuel 

product streams, increasing the process costs and further reducing overall carbon yield. 
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Recently, a variety of novel catalytic strategies have been proposed (22). Briefly, these 

include: selective hydrogenation of acetic acid to ethanol over oxide-supported metals; 

ketonization of acetic acid to acetone on both oxide & zeolite catalysts; condensation of 

light oxygenates and furanic compounds over a variety of catalysts; hydrolysis of 

levoglucosan followed by partial oxidation to gluconic acid; aldol condensation in 

biphasic water/organic emulsions using bifunctional nanohybrid metal/basic catalysts; a 

variety of options to reduce furanic compound reactivities; disproportionation and 

transalkylation of methoxy- substituents on phenolic species via metal-functionalized 

zeolites and oxide-supported metals;  selective hydrogenation of the C-O phenolic bond 

using bimetallic alloy catalysts; and alkylation of phenolic species with ketones using 

functionalized zeolites.  

While the studies cited above all show promising results, the underlying problem with 

any catalytic strategy to upgrade fast pyrolysis bio-oil to a suitable liquid fuels product 

is that any one catalyst cannot be optimized to convert the complex mixture that is bio-

oil. A catalyst used for upgrading of one family of compounds (e.g. light oxygenates) 

may not be suitable for other families (e.g. substituted phenolics or furanics) which 

results in undesirable reactions (breaking C-C bonds unnecessarily, or increasing H:C 

ratios above the 2:1 optimum) or undergoing rapid deactivation due to reactions with 

other, non-targeted bio-oil oxygenates. For example, acidic catalysts which have been 

shown to be very efficient at producing alkyl aromatics from polysaccharide-derived 

molecules (23), are severely inhibited by the presence of lignin-derived 

methoxyphenols. These high molecular weight compounds have been shown to 

compete strongly for adsorption sites on these catalysts. 
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These upgrading challenges suggest the desirability of thermal conversion producing 

more selective product streams, i.e., each stream comprising fewer families of chemical 

compounds. As a result, some separation of bio-oil into catalytically favorable product 

streams must be achieved in order to improve the viability of this technology. 

1.4 Staged Thermal Fractionation 

One strategy which has been proposed to produce simpler intermediate streams is 

staged thermal fractionation (also referred to as staged degasification) (24-26). Staged 

fractionation leverages the inherent differences in the thermal stability and 

decomposition products of the biopolymers which constitute biomass. TGA studies 

have shown that hemicelluloses, cellulose, and lignin decompose over different 

temperature ranges; generally, hemicellulose decomposes at a lower temperature range 

(220-315°C) than cellulose (300-400°C), while lignin decomposes over a broad range 

of temperatures (150-900°C) (27-29). Additionally, In a series of publications, Brown 

and Patwardhan report the product distributions from the pyrolysis of the three biomass 

fractions (12, 30, 31). A summary of their results is reported in table 1.2. 
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Table 1.2. Product distribution from fast pyrolysis of three biopolymer fractions. 
From (12, 30, 31) 
 

As all three biopolymers yield distinct thermal decomposition products, it should be 

possible to develop a staged thermal fractionation strategy that is capable of producing 

several product streams of enhanced compositional purity (Figure 1.1). A low 

temperature step (at torrefaction conditions) targeting hemicellulose decomposition is 

followed by an intermediate step targeting cellulose decomposition, and finally a high 
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temperature step (similar to fast pyrolysis conditions) to decompose the remaining 

lignin. These purified streams could then be catalytically upgraded using the best 

catalyst for the job. 

 
Figure 1.1. Hypothetical configuration for thermal fractionation of lignocellulosic 
biomass with resultant purified product streams 
 

Achieving a purely thermal separation of the cellulose- and lignin- derived components 

from biomass (e.g., levoglucosan and phenolic species) is of particular interest due to 

the inherent overlapping thermal stability regimes of these components and challenges 

of downstream separation. As hemicellulose is the more unstable polysaccharide, lower 

temperature treatments are expected to decompose this component with minimal 

cellulose decomposition leaving a remaining solid enriched in cellulose and lignin. The 

major products of these two biopolymers – levoglucosan and variously substituted 

phenolics – are difficult to separate using thermal methods and typically involve solvent 

extraction of one form or another (32). Achieving a thermal segregation of these major 

pyrolysis products could enable implementation of the advanced catalytic strategies 

outlined above by eliminating the need for a costly downstream separation step. This 

latter challenge might be addressed by understanding the relationships between biomass 

Staged	Thermal	Fractionation

250°C	 –
275°C

300°C	 –
400°C

500°C	 –
600°C

Light	
oxygenates
Acetic	acid,	
Furfural,	
Water

Sugar	
derived	

compounds
Levoglucosan

Lignin	
derived	

compounds
Phenolics

Biomass Biochar
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composition and bio-oil components, and using this information to alter biomass, either 

through genetic, chemical, or thermal means.  
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Chapter 2:  Relationships between biomass composition and liquid 
products formed via pyrolysis 

Adapted from a paper published in Frontiers in Energy Research 

Fan Lin, Christopher L. Waters, Richard G. Mallinson, Lance L. Lobban, Laura E. 

Bartley 

2.1 Biomass composition and chemical structures 

Recent reviews have addressed the general relationships between biomass composition 

and thermal products, such as increasing the content of phenolics relative to 

carbohydrates to reduce the oxygen content of bio-oil (33). Here, we provide a more 

detailed description of the chemical structure and interactions among major cell wall 

components to aid in understanding more subtle relationships between biomass and bio-

oil content. Biomass consists of cell walls that establish the structure of the plant and, to 

a lesser extent, nonstructural components (Table 2.1). Cell walls determine the shape of 

leaves and stems and the cells that compose them and consist of cellulose, 

hemicellulose, lignin, as well as structural proteins and wall-associated mineral 

components. Nonstructural components include sugars, proteins, and additional 

minerals (33-35). For example, in switchgrass, an important potential bioenergy crop, 

dry biomass consists of ~70% cell walls, 9% intrinsic water, 8% minerals, 6% proteins, 

and 5% nonstructural sugars (35). The relative fractions of different components, 

chemical linkages within and between polymers, and cellular patterning varies among 

plant species, organs, developmental stages, and growth conditions (36-39). Here, we 

review the components of secondary cell walls, which are formed as plant growth 

ceases, as they constitute the majority of plant biomass (40), and then discuss evidence 

for interactions among components. Table 2.1 lists the different major and minor 
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components of biomass and the broad ranges of their representation within biomass for 

biofuel conversion. Figure 2.1 shows the chemical structures and atom numbering of the 

most abundant cell wall monomeric species. 

Biomass Component Dry Wt (%)a 
Cellulose 15-49 b 
Hemicellulose: 12-50 b, c, d 
  Xylan 5-50 c 
  Mixed Linkage Glucan 0-5 c, e 
  Xyloglucan Minor c 
  Mannan (and galactoglucomannan) 0-30 c, f 
Soluble (Mainly sucrose) 9-67 b, g 
Pectin < 0.1 h 
Lignin 6-28 b 
Ferulic acid and p-coumaric acid < 1.5 h 
Protein 4-5 b 
Ash (Mainly silicate) 0.4-14.4 b 
Intrinsic moisture 11-34 i 
aPercent mass composition of secondary cell walls. b(40) c(41)dAs the highest percentage of xylan in (41) is higher than the 
highest percentage of hemicellulose in (40), the highest percentage of hemicellulose is set to the highest percentage of xylan. 
eMLG is only abundant in grasses, The maximum percentage of MLG we are aware of is that of the mature rice stem after 
flowering. (42) fGalactoglucomannan is only abundant in gymnosperm woods.  Dicots and grasses possess <8% of mannan and 
galactoglucomannan. (41) gThe high solubles abundance is only for sorghum biomass. Other plants usually have less than 15% 
soluble content. (40) h(43) i (44) 

Table 2.1. The variation of biomass components among vascular plants including 
grasses, softwoods, and hardwoods. 
 

 
Figure 2.1. Structure of the major basic units of biomass polymers and related products 
 

Figure 1. Structure of the major basic units of biomass polymers and related products.
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Cellulose and hemicellulose represent 15-49% and 12-50% of biomass by dry weight, 

respectively (39, 40, 43). Cellulose is an unbranched homopolymer of >500 β-(1,4)-

linked glucose units. In plant cell walls, cellulose is primarily in the form of crystalline 

microfibrils consisting of approximately 36 hydrogen-bonded cellulose chains, but also 

has amorphous regions (45, 46). 

Hemicelluloses are typically branched polysaccharides substituted with various sugars 

and acyl groups. As discussed further in section 2.3, the different sugar composition and 

linkages of hemicelluloses influence thermal products (47, 48). The structure and 

composition of hemicellulosic polysaccharides differ depending on plant species 

classification, i.e., taxonomy. Major taxonomic divisions with the relevance to 

bioenergy production are grasses, such as switchgrass and wheat; woody dicots, i.e., 

hardwoods, such as poplar; and woody gymnosperms, i.e., softwoods, such as pine. The 

most abundant grass hemicelluloses are mixed-linkage glucan (MLG) and 

glucuronoarabinoxylan (GAX) (41, 49); the hemicelluloses of hardwood are primarily 

composed of glucuronoxylans (GX) but also contain a small amount of galactomannans 

(GM) (40); and softwood hemicelluloses are largely galactoglucomannan (GGM) and 

GAXs (41). MLG is an unbranched glucose polymer similar to cellulose but containing 

both β-(1-3)- and β-(1-4)-linkages (42). MLG is nearly unique to the order Poales, 

which includes the grasses, but has also been found in horsetail (Equisetum). Its 

abundance in mature tissues and secondary cell walls has recently been recognized(49). 

Xylans consist of a β-(1-4)-linked xylose backbone with various substitutions. GXs are 

xylans substituted mostly by glucuronic acid and 4-O-methyl glucuronic acid through α-

(1-2)-linkages. GAXs are not only substituted by glucuronic acid, but also substituted 
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by arabinofuranoses at the O-3, which can be further substituted by the 

phenylpropanoid acids, to form feruloyl- and p-coumaryl esters linked at the O-5 (41). 

Acetyl groups are often attached to the O-3 of backbone xyloses but also attach to the 

O-2. Unlike xylans, which mainly consist of pentoses, mannans consist of hexoses like 

mannose, glucose and galactose. GM and GGM have a β-(1-4)-linked backbone with 

mannose or a combination of glucose and mannose, respectively. Both GM and GGM 

can be acetylated and substituted by α-(1-6)-linked galactoses (41, 50, 51). Relatively 

depleted in secondary walls, but rich in growing primary walls of dicot species, 

xyloglucan and pectins are two other polysaccharides in cell walls. Xyloglucan consists 

of β-(1-4)-linked glucose residues, modified by xylose and other sugar residues; and 

pectin is another branched or unbranched polymer that is rich in galacturonic acid, 

rhamnose, galactose, and several other monosaccharide residues (5, 41). 

Lignin is a crosslinked, heteropolyphenol mainly assembled from three monolignols—

sinapyl (S), coniferyl (G), and p-coumaryl (H) alcohols. As waste products are often 

selected as biofuel feedstocks, it is also relevant to note that lignin derived from other 

monolignols such as caffeyl alcohol and 5-hydroxyconiferyl have been found in the 

seedcoat of both monocots and dicots (52, 53). Lignin structural heterogeneity and 

various types of incorporated groups can lead to a variety of different depolymerization 

reactions during pyrolysis (54). Often traceable to the corresponding bio-oil 

components, the three major lignin units differ in the degree of methoxylation of their 

carbon ring. S-units are methoxylated at both O-3 and O-5 ring positions; G-units have 

one methoxy group at the O-3 position; and H-units lack ring methoxy groups (3, 

Figure 2.1) (55).  Lignin units undergo oxidative coupling in the cell wall to form many 
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types of dimers, including β–O–4, β–5, β–β, 5–5, 5–O–4, and β–1, leaving other atoms 

free to further polymerize, which significantly increases the structural heterogeneity of 

lignin. Lignin units can also be esterified with p-coumaryl, p-hydroxybenzoyl, and 

acetyl groups, primarily at the γ position of terminal units (56, 57). Lignin compositions 

and the acylation groups vary among plant clades (55). Woody dicot lignins have G- 

and S-units, and trace amount of H-units. Poplar wood, for example has a G:S:H ratio 

of 55:45:1 (58). The lignin of many hardwoods is acylated by p-hydroxybenzoates (57) 

and acetyl groups in low amounts (59). Biomass from other species, like palms and 

kenaf, possess a high degree of lignin acetylation (60). Grass lignins also contain G- and 

S-units with slightly higher amount of H-units than woody dicots. Wheat straw, for 

example, has a G:S:H ratio of 64:30:6 (61). Grass lignin possesses high levels of p-

coumarate esters (62) and can also be etherified by tricin and ferulic acid (63, 64), as 

discussed further below. Woody gymnosperm lignins are different from angiosperm 

lignins, being primarily composed of G-units and a lower amounts of H-units (55).  

Biomass also contains inorganic elements including Ca, K, Si, Mg, Al, S, Fe, P, Cl,  Na 

and some trace elements (<0.1%) such as Mn and Ti,  according to ash analysis, formed 

by oxidation of biomass at 575°C (65, 66). As with other biomass components, the 

abundance of mineral elements varies among species. In general, compared with grass 

biomass, woody biomasses contain less ash, Cl, K, N, S, and Si, but more Ca (66). 

Plant biomass components do not accumulate independently of each other, though their 

relationships are still an active area of research (67-69). Biomass components can 

correlate with each other because they are physically bound to each other through 

covalent and non-covalent interactions or because they accumulate in the same plant 
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organ or stage of plant development, though a physical interaction may not exist. 

Because the abundance of some biomass components is correlated, the thermal products 

from one biomass component may also correlate with other components. For example, 

the abundance of cellulose correlates with the abundance of lignin in five different 

biomass sources (Pearson’s Correlation Coefficient = 0.83) and lignin-derived thermal 

products correlate with cellulosic glucose (48).  Many mineral elements are also 

correlated with each other, for example, N, S, and Cl; Si, Al, Fe, Na, and Ti; Ca, Mg, 

and Mn; K, P, S, and Cl (66). Numerous interactions between lignins and 

hemicelluloses and among hemicelluloses have been observed. Among the best-studied 

examples, GAXs of grasses and other recently evolved monocot species covalently link 

to lignin through ether bonds with ferulate esters on arabinose moieties of arabinoxylan 

(70). In poplar and spruce wood, NMR results indicate that lignin and carbohydrates are 

directly bonded through several types of ether linkages (71, 72). The data provide 

evidence for ether bonds between lignin and C1, C5, and C6 atoms of pentoses and 

hexoses. Generally, xylan is the most closely associated polysaccharide to lignin, and 

NMR studies have also clearly identified lignin-glucuronic acid ester bonds (71). Also, 

MLGs closely coat low-substituted xylan regions, likely via non-covalent interactions 

(73, 74). Furthermore, some components can also affect the distribution of other 

components. For example, rice plants that overexpress an enzyme that cleaves MLG 

exhibit reduced MLG and have an altered distribution profile of Si though maintain the 

same total amount of Si (75). In sum, mounting evidence supports covalent and 

noncovalent interactions among cell wall polymers and components, however these 
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connections have been difficult to study with questions persisting related to how 

different cell wall preparations and manipulation may alter observations. 

2.2 Models for relationships between biomass components and bio-oil product 

composition 

Reaction pathways of individual biomass components to formation of thermal products 

have been described (76). However, the pyrolysis literature suggests that biomass 

components tend to have more complex effects on bio-oil yield and product 

composition than simply their quantity. Here we introduce three possible “models” of 

how biomass components may influence the yield or composition of thermal products, 

and in section 2.3 we discuss evidence supporting each of them. Figure 2.2 provides 

schematic representations of the following models: 
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Figure 2.2. Three models of how biomass components and their interactions affect the 
formation of thermal products. 
HA: Hydroxyacetone, HAA: Hydroxyacetaldehyde. (A) Direct conversion (B) Catalytic 
effect of minerals (C) Interactions among Polymers Indirectly Affect Conversion. (A) 
and (C) are adapted and modified from (77) and (78) with permission. 
 

Model 1: Direct Conversion

Model 2: Catalytic Effect of Minerals 

Model 3: Interactions among Polymers Indirectly Affect Conversion  

Figure 2. Three models of how biomass components and their interactions affect the formation of 
thermal products. HA: Hydroxyacetone, HAA: Hydroxyacetaldehyde. (A) Direct conversion (B) 
Catalytic effect of minerals (C) Interactions among Polymers Indirectly Affect Conversion  
(A) and (C) are adapted and modified from Zhang et. al. , 2013 and Vanholme, 2010 with permission. 

and

Levoglucosan

(HAA)(HA)

(A)

(B)
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Model 1: Biomass components are the direct sources of thermal products. Components 

are converted to products through de-polymerization and secondary reactions such as 

cracking, i.e., splitting, and recombination (Figure 2.2A). 

Model 2: Components or their derived products act as catalysts that accelerate thermal 

reactions of other components, altering product yields and ratios (Figure 2.2B).  

Model 3: Chemical interactions or structural relationships among cell wall components 

alter bio-oil composition and/or yield (Figure 2.2C). This “indirect” model applies when 

variation in a biomass component alters the yield of a chemically unrelated product in a 

manner not easily explained by a catalytic effect. Chemical interactions that alter 

products may either be covalent or non-covalent chemical bonds between cell wall 

components. Structural relationships refer to correlations between components, often 

minor ones, and physical features of the biomass. For example, the abundance of a cell 

wall component may be indicative of the structure of the plant material, such as biomass 

bulk density differences caused by different leaf to stem ratios, but do not reflect 

chemical bonding between components. As of the preparation of this review, very little 

evidence addresses how biological correlations effect bio-oil products, so the discussion 

focuses on potential chemical interactions. 

2.3 Evidence relating biomass content and bio-oil composition 

Evidence in the literature for the three models described above is presented in table 2.2 

and discussed below. In the reviewed experiments, relationships between biomass 

components and pyrolysis products have been identified by varying the starting 

biomass, either through experimentation on purified components, via naturally 

occurring variation among different biomass sources, or via pretreatment of the 
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biomass. Most studies included in this discussion report the chemical products derived 

from pyrolysis of biomass or biomass components. Studies that only reported weight 

losses or elemental balances were not considered. The two dominant techniques present 

in this corpus of literature are either pyrolysis-gas chromatography/mass spectroscopy 

where pyrolysis vapors from microgram- to milligram-scale samples are directly 

transported to a GC for analysis, or pyrolysis in a gram- to kilogram- scale reactor 

system followed by condensation of the vapors and subsequent chromatographic 

analysis of the liquid.  
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2.3.1 Model 1: Direct products of cellulose, hemicellulose, and lignin 

Thermal breakdown of purified cellulose, hemicellulose, and lignin have been relatively 

well studied. Levoglucosan, a six carbon 1,6-anhyrosugar (see figure 2.1), was 

identified as the main product of cellulose pyrolysis nearly a century ago (97). 

Levoglucosan is formed alongside other smaller decomposition products, with 

maximum levoglucosan production occurring at 500°C (98). Minor products of 

cellulose pyrolysis are dominated by other anhydrosugars that retain all 6 carbons of 

glucose, such as 1,6-anhydroglucofuranose and 5-hydroxymethyl furfural, but also 

smaller molecules, like furfural (5, Figure 2.1), formic acid, and glycolaldehyde, among 

others (31).  

As with cellulose, hemicellulose pyrolysis products depend mostly on the number of 

carbons in the monosaccharide residues of the starting polymer (47). Pentoses and 

hexoses produce similar light, C1-C3 oxygenates but differ in the types and selectivities 

(i.e., relative ratios) of heavier, C4-C6 products. Consistent with expectations, pyrolysis 

of monosaccharides reveals that hexoses can form more unique compounds than 

pentoses, including pyranic species; additionally, pentoses yield more lighter 

fragmentation products than hexoses and only trace amounts of C6 and higher products 

(79).  

Lignin thermal degradation products generally retain the characteristic ring decoration 

of the monolignols from which they originate (3, Figure 2.1).  For example, syringol 

derivatives are bio-oil products derived from S-lignin units and guaiacols are products 

derived from G-lignin units (6, Figure 2.1). The derivative groups possess 1-3 carbons 

and/or oxygenate moieties at the 4 position (6, Figure 2.1). Consistent with 
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expectations, softwood lignins yield almost exclusively guaiacyl derivatives, while 

hardwood lignins yield both guaiacyl and syringyl derivatives. Grasses yield guaiacyl, 

syringyl, and p-hydroxyphenyl derivatives, but also vinylphenol, propenyl-phenols, and 

p-hydroxybenzaldehyde that are not produced during pyrolysis of softwood and 

hardwood (48, 81), and are likely derived from ferulate and coumarate esters (99). 

Phenol derivatives are the large majority of the products formed from lignin pyrolysis; 

aromatic hydrocarbons and some furan derivatives are also detectable, but at very low 

amounts that might represent lignin sample contaminants (81). Lignins from spruce 

wood with different dimer compositions also show different product distributions, 

including variations in the yield of major products like guaiacol (72). This suggests that 

bonds between lignin units and the lignin structure determined by those bonds may 

impact pyrolysis, as well. 

2.3.2 Model 2: Secondary reactions catalyzed by inorganic components  

The biopolymers that make up the majority of the biomass by weight are established as 

the primary source of bio-oil products formed during thermal degradation. However, 

secondary reactions occur during the pyrolysis process involving other components 

present within the biomass (48, 85-91). As products form, they can interact with 

catalytic minerals in the residual solid. For example, levoglucosan has been shown to 

react on minerals present in the residual char from pyrolysis of biomass. The products 

formed include levoglucosenone, furan derivatives, and lighter oxygenates such as 

acetic acid, acetone and acetol. Demineralization prohibits the formation of these 

products. (86, 87) 
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Different inorganics are responsible for different kinds of secondary reactions. In 

general, the presence of metal cations enhances the homolytic cleavage of pyranose ring 

bonds over the heterolytic cleavage of glycosidic linkages, leading to the increased 

formation of light oxygenate decomposition products at the expense of levoglucosan 

formation. While Na+, K+, Mg2+, and Ca2+ all catalyze levoglucosan decomposition, the 

effects of group 1, alkali metals and 2, alkaline elements differ. Increased Na+ and K+ 

alkali metal loading increased formic acid, glycolaldehyde and acetol more than similar 

amounts of the alkaline metals, Mg2+ and Ca2+, though more furfural is produced with 

increasing concentrations of Mg2+ and Ca2+. Additionally, the alkali metals reduce 

levoglucosan production at very low thresholds. This suggests that Na+ and K+ 

ultimately promote cracking reactions, while Mg2+ and Ca2+ promote dehydration 

reactions (89, 100, 101) 

2.3.3 Model 3: Interactions and linkages between primary components  

While the first two models address the direct conversion of biopolymer organic 

components to related bio-oil products and their further reaction catalyzed by biomass 

inorganics, the third addresses compositional and structural relationships among cell 

wall components and their impact on the products. Interactions between 

polysaccharides and lignin have been shown to alter pyrolysis products (72, 92). The 

cellulose-lignin interaction can lead to a decrease in levoglucosan yield and an increase 

in light (C1-C3) compounds, especially glycoladehyde and furans. Based on the nature 

of the small products, Zhang et al. (92) hypothesized that the cellulose-lignin interaction 

occupies the C6 position, disfavoring glycosidic bond cleavage that is required for the 

formation of levoglucosan and favoring light compound and furans formation through 
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ring scission, rearrangement, and dehydration reactions. The strength of this effect on 

pyrolysis products is most pronounced in grasses, followed by softwood and then 

hardwood, possibly due to the increased prevalence of covalent bonds between cellulose 

and lignin in grass cell walls (102, 103). Hemicellulose-lignin interactions, especially 

the xylan-lignin interaction revealed in NMR experiments (71), may also affect 

pyrolysis. Indeed, enzymatic removal of hemicelluloses from lignin-carbohydrate 

complexes increased coniferyl alcohol yields (72). 

An example of a compositional feature that may impact product distribution is the 

degree of acetylation of the biopolymers. As mentioned, acetyl groups decorate 

hemicellulose side-chains, and acetyl groups are also present in the lignin. The 

increased abundance of these groups in biomass correlates with increasing yields of 

acetic acid, methyl pyruvate, acetone, and furan; additionally, this acetylation correlates 

with decreasing yields of furfural and acetaldehyde (47, 104). While the acetic acid and 

perhaps the methyl pyruvate can be explained by the direct production of these 

compounds upon pyrolytic decomposition (model 1), the nature of the relationship 

between acetate and the furanic and other 4-carbon species has not been clearly defined.  

The production of the 4-carbon species may be due to an indirect effect (model 3) or 

may be the result of catalytic reaction of acetate with itself (model 2).  

Several investigations (94-96) suggest that feedstock moisture content can also play a 

role in the yield and product distribution of the organic fraction of the bio-oil. As 

previously discussed, the presence of water in bio-oil prohibits its direct use and creates 

challenges to catalytic valorization. For these reasons biomass is typically subjected to 

drying prior to pyrolysis, which both reduces the required energy of the pyrolysis step 
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and limits the water in the liquid condensate to water produced by decomposition 

reactions. However, the degree to which the feedstock moisture content should be 

eliminated is still under investigation. Burhenne et al. (95) found that higher feedstock 

moisture content led to slightly lower char & gas yields upon pyrolysis with minimal 

changes to the elemental composition of the char. However, this is in disagreement with 

Westerhof et al. (94), who observed slightly higher char yields with increasing moisture 

content. The water weight fraction distribution of the feedstocks in the two studies were 

quite different, 2.4% - 55.4% in Burhenne et al. versus 0% - 20% in Westerhof et al. 

Beyond impacts to the yields, He et al. (96) studied the change in selectivity to the 

organic fraction produced upon pyrolysis of switchgrass with 5, 10 and 15% feedstock 

moisture contents. The authors found that at 500°C, the lowest moisture content 

feedstock produced the highest amounts of levoglucosan and acetic acid. The authors 

note that while significant differences in pyrolysis products were observed, they could 

not identify clear trends in their data. Among these studies, the observable but 

sometimes contradictory or unclear trends suggest that the feedstock moisture content 

may have multiple impacts on the pyrolysis process, possibly related to the physical 

location of the water in biomass. 

In addition to compositional factors, morphological factors also influence the bio-oil 

product distributions. Biomass undergoing thermal decomposition retains its 

morphology even in harsh thermal treatment regimes (105). Biomass is a poor 

conductor of heat (conductivity < 0.1 W m-1 K-1) (106), and large temperature gradients 

occur in heated biomass particles (107). Most reactor systems for thermal degradation 

require size reduction of biomass particles; as an example, fluidized beds require 
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particle sizes no larger than 2 mm (106) to ensure rapid reaction. These particle sizes 

are larger than the tissue structures present in biomass. While the overall tissue and 

cellular morphology remain intact, micropore formation and shrinkage during the 

reaction process can occur in a non-uniform manner throughout the biomass (105, 108). 

Piskorz and colleagues observed decreasing liquid yields with increasing particle size, 

attributed to increasing incidence of secondary reactions with wood particles (109). The 

principles of internal and external diffusion and the impacts of tortuosity, surface area, 

and diffusion path lengths are all fundamental to catalytic reaction engineering, and in 

the case of thermal biomass conversion these important parameters are all dictated by 

the reacting feedstock (110). Some evidence supports the notion that different plant 

developmental stages, which is related to the ratio of leaves to stems and biomass 

density, results in different pyrolysis products. For example, switchgrass harvested at 

later times during the growing season produced increased yields of condensable 

products, relative to that from younger, leafier material (111), though compositional and 

developmental differences of the starting material were not carefully assessed. 

2.4 Conclusions 

Years of research have led to understanding of the direct pyrolysis conversion pathways 

of the major monomeric and polymeric constituents of biomass (model 1, table 2.2). 

The observation that these constituents often represent minor components in raw bio-oil 

(table 2.1) highlights the importance of catalytic degradation (model 2) and possibly 

indirect effects (model 3) on pyrolysis products. The latter model is only recently 

receiving attention as knowledge of cell wall structures and analytical repertoires 

blossom (48, 92). Detailed examination of the relationships between components and 
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products are still sparse, with the biological literature providing detailed 

characterization of cell wall components, while the engineering literature analyzes the 

chemical components, or often just total yields, of different pyrolysis fractions. We 

would argue that further investigations on the relationships between biomass 

components and thermal products will allow improvement of thermal product “quality.” 

Short of attaining (or improving on) petroleum fuel-like properties, even the criteria for 

a high quality thermal product remains unclear. As discussed, this is in part because 

methods for up-grading are so dependent on bio-oil composition. Thus, methods that 

economically separate and/or simplify the different product streams, while still 

maintaining C-C bonds and overall C-content, are more likely to be amenable to 

catalytic upgrading.  

Greater and more systematic analysis of biomass composition and pyrolysis products 

within species that show significant compositional variation will aid in better 

understanding biomass-bio-oil relationships. Much of the existing literature relies on 

comparisons of thermal degradation products across diverse taxonomic groups that vary 

greatly in cell wall composition beyond the biomass components measured (table 2.2). 

An analysis of more subtle compositional differences, in which compositional factors 

are varied across different samples may aid in refining biomass-bio-oil relationships. 

For example, genetic mutants that vary in only one component relative to near isogenic, 

un-mutated “wild-type” plants can directly address relationships between starting 

components and products (82). In addition to genetically determined compositional 

differences, biomass composition also depends on growth conditions and developmental 

stage, which relates to harvest time. Taken together, the scale of the problem points to 
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the value of developing high-throughput methods to help identify species and genotypes 

that are most suitable for production of specific thermal products and to guide the 

optimization of genetic stocks and growth condition for bioenergy crops. Methods 

available to identify such “high-quality” biomass include near-infrared reflectance 

spectroscopy (35), Fourier transform near-infrared spectroscopy (112), and pyrolysis 

molecular beam mass spectrometry, at least for lignin components (99, 113). In general, 

these methods can be trained, either rationally or in a model-independent manner, to 

detect spectroscopic or molecular signatures in biological materials with linear, or non-

linear, relationships to thermal products. 

Besides selecting or breeding for natural variation in biomass composition (e.g., (114, 

115), it is also possible to genetically modify biomass composition (116). Most simply, 

genetic engineering of bioenergy plants can be achieved by modifying the plant’s 

genome to 1) express genes from other organisms, 2) increase expression of native 

genes, or 3) reduce expression of native genes. More complex schemes are also 

possible, in which expression patterns of genes are altered through synthetic biology 

approaches that recombine various genetic elements (e.g., (117)). The most common 

method for plant genetic engineering co-opts the molecular machinery of a bacterial 

pathogen that introduces genes into plant chromosomes to facilitate its pathogenesis. 

Genetic engineering to improve bio-oil production would aim to increase biomass 

components that enhance the yield of favored products and/or to decrease components 

that produce disfavored products or interfere with up-grading strategies. Advances in 

understanding cell wall biosynthesis, including genes responsible for synthesizing the 

major polymer classes (41, 51, 118) and covalent interactions among them (e.g., (119-
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121)); regulation of expression of the cell wall biosynthesis genes (122); and metal ion 

transport proteins that determine the abundance and distribution of plant mineral 

content (123-125), lay the foundation for genetically engineering bioenergy crop cell 

wall content and structure. For example, lignin is an important target for genetic 

engineering for pyrolysis since the major lignin-derived products have a lower O:C 

ratio, a higher energy value, and are more stable than sugar-derived products (33, 48). 

Some important genes that participate in or regulate lignin synthesis have already been 

modified in energy crops without major interference with plant biomass yield (e.g., 

(126, 127), reviewed in: (128)). However, current genetic engineering strategies are 

focused on developing low lignin biomass for saccharification and biochemical 

conversion to fuels. Therefore, more work is required to develop biomass with high 

lignin content for thermal conversion. Producing corrosive acetic acid in bio-oil (48), 

acetyl groups on cell wall polymers are another potential target for genetic engineering 

of “pyrolysis crops.” Three enzyme classes, including the Reduced Wall Acetylation 

(RWA) proteins, acetylate cell wall polysaccharides (121, 129, 130). A mutant of the 

dicot reference plant, Arabidopsis thaliana, that lacks expression of all four RWA 

genes, shows a 40% reduction in secondary wall associated acetyl groups (129). 

Reducing expression of this family of genes in bioenergy crops may be help solve the 

problems caused by acetic acid in bio-oil produced from such plants.  

Pretreatments such as washing/leaching and torrefaction are another class of strategies 

to improve biomass quality by changing biomass composition (131, 132). For example, 

by washing biomass with detergent (Triton) or acid to remove minerals, the yield of 

bio-oil is increased and reaction water content is reduced (132). Coupling biochemical 
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conversion of biomass, which depletes the polysaccharide fraction, with pyrolysis of the 

resulting residue, or bagasse, is another avenue to explore further (133, 134). 

Torrefaction is a low-temperature (200 to 400°C) thermal pretreatment that decomposes 

hemicellulose and may segregate disfavored products such as water and acid into 

intermediate streams before the next stage of pyrolysis (131). More efficient 

torrefaction may be achieved by changing the composition or chemical structure of 

hemicellulose through genetic methods to further separate the decomposition 

temperatures of hemicellulose from lignin and cellulose. By identifying and studying 

the roles of key biomass components during thermal conversion, it will be possible to 

maximize the economic and environmental benefits of plant biomass derived biofuels in 

the future.  
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Chapter 3:  Experimental Methods 

3.1 Bench scale torrefaction system 

A bench scale torrefaction reactor (Figure 3.1), as described in Wan et al. (135), was 

used to perform torrefaction experiments as described in this text.  

The reactor was made of a stainless steel tube with an ID of 0.930 in. and length of 12 

in. The reactor was externally heated with a one-zone electric furnace, where the actual 

pyrolysis temperature was monitored by a Type K thermocouple inserted in the center 

of the reactor tube. Biomass was fed via a Coperion loss-in-weight twin screw auger 

feeder (Coperion K Tron Pitman Inc., Sewell NJ) over the course of one minute through 

a 1/2 inch stainless steel transport tube. A carrier gas, nitrogen at 300 mL/min, was 

introduced in the upper part of the transport tube to ensure good transport to the reactor, 

and to ensure no air was able to get into the reaction zone. A second flow of nitrogen 

preheated to 270°C was fed from the bottom of the reactor tube at 585 mL/min, for a 

total carrier flow rate of 885 mL/min, and a space-time of approximately 2 seconds. The 

reactor pressure was approximately 1 atm.  

Biomass was reacted for 20 minutes with a temperature ramp to achieve 270°C for the 

last five minutes. When the biomass is introduced into this reactor, the measured 

temperature inside the reactor immediately decreases, and the temperature recovers to 

270°C over the course of 15 minutes. The volatiles that evolved were condensed via an 

ice water trap followed by a liquid nitrogen trap. A wet test meter was used to measure 

the flow rate for the post-condensation gas mixture, before its release to a vent. After 20 

minutes of reaction, the reactor was rapidly cooled and the residual solids were 

removed. The liquids in the two traps were collected and mixed thoroughly for analysis.  
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Figure 3.1. Bench scale torrefaction reactor 

 

3.2 Pyrolysis GCMS/FID 

3.2.1 Sample Preparation 

To prepare biomass samples for analytical pyrolysis or torrefaction between 0.5 mg and 

1.5mg of biomass was loaded into a fire polished quartz tube (CDS Analytical, Oxford 

PA, Part No. 10A1-3015) with a filler rod (CDS Analytical, Oxford PA, Part No. 10A1-

3016S) and quartz wool (CDS Analytical, Oxford PA, Part No. 0100-9014) below to 

prevent the samples from falling out of the bottom (figure 3.2). The quartz tubes were 

weighed before and after sample loading, and the difference was taken as the mass of 

the sample in the tube. Larger sample masses (> 1 mg) were used in lower temperature 

experiments (below 450°C) in order to ensure a sufficient amount of material was 

detected. 
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Figure 3.2. Quartz sample tube diagram (not to scale) 

 

3.2.2 Pyroprobe Apparatus 

A CDS Analytical Pyroprobe 5250T apparatus with autosampler (figures 3.3 & 3.4) was 

used to perform thermal decomposition experiments on raw and thermally pretreated 

biomasses. Samples were placed in the autosampler carousel and the software was 

configured to select the appropriate calibrated temperature and desired final hold time.  
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Figure 3.3. Pyroprobe apparatus. 

 

 
Figure 3.4. Pyroprobe autosampler. 

 

When the GC ready signal was given, the autosampler carousel advanced, dropping the 

sample tube onto the top of an isolation valve, which rotates to allow the tube to drop 

further into the pyrolysis chamber (resting on top of a second, lower isolation valve). 

The top valves was closed and the pyrolysis chamber was then purged with helium for 

20 seconds to remove any air which was introduced into the system. Following this 

purge, the platinum filament was resistively heated to the instrument set point utilizing a 

1000°C / second temperature ramp. The evolved vapors passed through a valve oven 
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heated to 300°C, and were then swept into a 1/16” Silcosteel® (Restek Corporation, 

U.S., Bellefonte, PA) transfer line heated to 300°C which is connected to the injection 

port of the attached gas chromatograph (described in detail below). After the final hold 

time elapsed, the filament was deactivated and the lower isolation valve opened to allow 

the sample tube to be discharged from the instrument by gravity. For samples which 

have undergone successive thermal treatment regimes, the tube was left in the pyrolysis 

chamber until the gas chromatography program was completed, at which time the 

sequence repeats, resuming from the purge step (as no new tube is loaded into the 

chamber). After a tube had been discharged from the pyrolysis chamber in this manner, 

the pyrolysis chamber was cleaned by reactivating the filament, which was held at a 

temperature of 1200°C for 20 seconds while a purge flow of approximately 30 mL/min 

of helium flowed through the chamber. Samples were held online from 30 to 300 

seconds depending on the experiment. 

Prior to the use of the pyroprobe apparatus, a calibration was performed with a type K, 

1/16" diameter, ungrounded, 6" long thermocouple (Omega Engineering, Stamford, CT; 

Part no. TJ36-CASS-116U-6) to relate the instrument set point to the actual temperature 

in the chamber. This was necessary because the filament temperature is estimated by 

electrical resistivity and not direct measurement. A plot of the calibration curve 

measured for the pyroprobe instrument taken approximately one year apart is shown in 

figure 3.5. The calibration curve is stable and has not changed appreciably with use over 

the course of the studies presented in this work. 



41 

 
Figure 3.5. Pyroprobe filament temperature calibration curve. 
 

All pyrolysis and torrefaction reactions within the pyroprobe system were carried out in 

a helium carrier gas at one atmosphere. Flow was controlled by the gas chromatograph 

attached to the pyroprobe instrument. For experimental temperatures below 450°C, the 

helium flow rate was 14 mL/min total flow; above 450°C, the total helium flow rate was 

94 mL/min. This was to ensure a sufficient amount of thermochemical products were 

able to be detected, and is determined by the GC flow controller split ratio. A split ratio 

of 10:1 was used for lower temperature experiments, and a split ratio of 90:1 was used 

for higher temperature experiments.  

3.2.3 Gas chromatography 

Evolved vapors from the pyroprobe apparatus were transported via 1/16” Silcosteel® 

(Restek Corporation, U.S., Bellefonte, PA) transfer lines heated to 300°C which was 
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connected to the injection port of a Shimadzu QP-2010+ GC/MS-FID system 

(Shimadzu Corporation, Kyoto, Japan) with a 60m semi-polar Restek (Restek 

Corporation, U.S., Bellefonte, PA) RTX-1701 column (250µm diameter, 0.25µm film 

thickness). The injection port temperature was held at 280°C. All analysis presented in 

this paper used the same column temperature program, mass spectrometer settings, and 

FID settings, with the difference in split ratio (as noted before) for different temperature 

regimes in the pyroprobe. The temperature program on the column began at 45°C for 2 

minutes, then increased at a rate of 3K min-1 for 78.33 minutes to a final temperature of 

280°C, where it was held for 20 minutes. The mass spectrometer scanned masses 35.00 

to 250.00 at 0.5 seconds per scan. The resulting ion chromatogram was used to identify 

significant peaks in the chromatogram. The software used was Shimadzu GCMS 

Solutions version 4.11 (copyright © 1999-2013, Shimadzu corporation) and GCsolution 

Postrun version 2.41 (copyright © 2000-2010, Shimadzu corporation). 

3.2.4 Compound Identification 

Two publications by Faix et al (8, 9) were used as the primary means of compound 

identification. As Faix et al. used a 15m RTX-1701 column, the retention order (but not 

absolute time) of the pyrolysis products they observed are the same as in this work, and 

additionally they list the base peak masses with relative abundances of observed masses 

for the products, facilitating easy identification. In the case that a peak was unable to be 

identified using these two publications, the peaks were either assigned identifications 

based on NIST library searches, assigned to compound lumps based on major ions, or 

left unidentified. Figure 3.6 shows a flowchart of the methodology used to identify 

compounds. 
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Figure 3.6. Flowchart showing compound identification methodology. 
“Landmark” peaks include but are not limited to: furfural, acetic acid, and 
levoglucosan. 
 

The identified peaks from the ion chromatogram were then matched to the 

corresponding peaks from the FID chromatogram. The areas of these peaks were then 

determined by integration using the Shimadzu GCsolutions software. Each integrated 

peak area was then divided by the total mass of the material in the sample tube, thereby 

normalizing each experiment to the initial amount of sample fed into the pyroprobe.  

3.2.5 Lumping approach 

Identified compounds were assigned into lumps of compounds based on organic 

functionalities, in a similar manner as described by Dauenhauer et al. (136). The total 

peak area or carbon content (depending on what is reported) was summed for each of 

the compounds in the lump. The mean values of these compound lumps across the 

technical replicate experiments performed are reported throughout this work as ‘yield’. 
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3.2.6 FID Calibration 

Calibration of the FID area was performed by injection of varying concentrations of 

phenol in methanol at known quantities to develop a response curve. For each identified 

thermochemical product in the chromatograms, relative response factors in the literature 

were used (when available) in tandem with this calibration curve to calculate the carbon 

content of each compound.  

When response factors were unavailable in the literature, a quantitative structure 

property relationship (QSPR) model was used to predict the effective carbon number 

(ECN) for each compound; from this, the unknown response factors were calculated. 

This model is described in detail in (137). Briefly, response factors for many organic 

molecules were gathered from literature sources, and each carbon atom was assigned a 

type (i.e., aliphatic, carbonyl, ether, primary/secondary/tertiary alcohol, etc.). A linear 

model was fit to predict the ECN from the number of each type of carbon atom, and this 

model was experimentally tested. Measured values were found to be in good agreement 

with predicted values. 

3.3 Water content analysis 

Water content analysis (reported as liquid weight percent) was carried out using a 

TitroLine Karl-Fischer analyzer (TitroLine KF, SCHOTT Instruments). Typically, 

liquid samples were injected through a septum into the titration cell using a one-way 

syringe. Before measurement, a calibration titration was performed using deionized 

water according to the instrument manual. Two drops of each liquid sample (0.1 – 0.2g) 

were drawn by syringe and injected into the analyzer, then titrated with KF reagent for 
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volumetric titration until all moisture in the analyzer was consumed. The water content 

percentage was determined from the KF reagent consumption.  

3.4 Catalytic reactions 

3.4.1 Catalytic reactor 

A CDS pyroprobe model 5250 with autosampler (figures 3.3 & 3.4) was fitted with a 

separately heated packed bed flow reactor following the pyrolysis chamber (figure 3.7). 

The separate reactor consisted of 6” long stainless steel tube with ¼” O.D. and 6” long 

inserted into a block oven. Typically, less than 5mg catalyst would be loaded inside the 

reactor, mixed with 0.3g acid washed borosilicate glass beads obtained from Sigma 

Aldrich (Sigma Aldrich, St. Louis, MO, Part no. G1145). The zeolite catalyst was 

pelletized and sieved to a size of 150-212µm, within the same range as the glass beads, 

prior to mixing with the glass beads to prevent bypassing of the catalyst. The catalyst 

bed was sandwiched between 2 layers of 50mg quartz wool. The catalyst beds were 

positioned 2-4cm from the bottom of the reactor tube, which was measured to be the 

isothermal zone with an independent thermocouple. Product yields resulting from 

GCMS analysis are defined in terms of GCMS response, which has been defined as the 

integrated total ion count x 10-7 for ease of presentation. 
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Figure 3.7. External catalytic reactor. 

 

3.4.2 Catalyst characterization 

The powder X-ray diffraction (XRD) pattern of the zeolite was recorded on a Rigaku 

automatic diffractor (Model D-MAX A) with a curved crystal monochromator and Cu 

Kα radiation operated at 40kV and 35mA. The morphology of the zeolite was evaluated 

by high resolution scanning electronic microscopy (SEM) using a Zeiss-NEON FEG-

SEM system.  

3.4.3 Coke on spent catalyst 

The coke on the spent catalysts was estimated by temperature programmed oxidation 

using a Netzsch STA 449 F1 Jupiter attached to a Netzsch ZMS 403C Aeolos TGA 

system to analyze off gasses. Due to the presence of glass beads mixed with the spent 

catalyst bed, an extra layer of 150mg of alumina (γ-phase 99.97%, from Alfa Aesar) 

was placed in the crucible with the spent catalyst/glass beads mixture on top of the 

alumina such that at elevated temperatures, the glass would melt into the alumina and 

not adhere to the crucible.  The instrument was heated from room temperature to 

1000°C at a rate of 10 K min-1 under flow of 244.3 mL min-1 50% air (grade zero) and 
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Argon (ultra high purity) from Airgas. The total CO2 released during the burning was 

calculated based on calibration data and used to estimate the coke amount. Each spent 

catalyst was evaluated after contact with 10 pulses of biomass, corresponding to 

approximately 6.5mg.  

3.4.4 Permanent gas analysis 

Permanent gas analysis was conducted via online sampling of the vent line with a 

portable quadruple mass spectrometer (MKS Microvision Plus LM76). The MS was 

operated with a scan mode, with a range of mass/ion ratio from 1 to 60, and a speed of 

2.5 second per scan period.  A series of standard gas mixtures consisting of 5% CO, 

CO2, and CH4 respectively obtained from Airgas were used for calibration.  

3.5 Biomass characterization 

3.5.1 Oak cell wall composition 

Cell wall composition was measured for the oak samples using methods that were 

essentially described previously (120). All measurements were made in triplicate. 

Briefly, matrix polysaccharides (hemicellulose and pectin) were depolymerized with 2 

M trifluoracetate (TFA), diluted in weak base, and quantified relative to standards by 

high performance anion exchange chromatography. The TFA-insoluble pellet was 

dissolved with sulfuric acid and quantified via anthrone assay. Acetyl bromide soluble 

lignin determination utilized the extinction coefficient for aspen wood (138). (This 

information provided by Fan Lin who performed the characterization.) 

3.5.2 Switchgrass NIRS Characterization 

Dry switchgrass biomass was ground with a Thomas Wiley® Mini-Mill with 20-mesh. 

The samples were directly used for NIRS analysis. Two NIRS models previously 
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reported are used for NIRS analysis. One NIRS model is built on switchgrass samples 

and the other one is built on forage samples (35). The same switchgrass assays were 

used for high throughput assays including pyrolysis molecular-beam mass spectrometry 

(PyMBMS) (99) and enzymatic sugar release (139). Table 3.1 lists the variables 

measured. 

Variable Description Source 
ADF Acid detergent fiber  (140) 
ADF.forage Acid detergent fiber (forage equation) (141) 
ADL Acid detergent lignin  (140) 
ARA Arabinose (140) 
ASH Minerals (total ash)  (140) 
Ash.forage Minerals (total ash) (forage equation) (141) 
AX ARA + XYL (140) 
AXMG ARA+XYL+Man+GAL  (140) 
C Carbon (140) 
Ca Calcium (140) 
CA.forage Calcium (Forage equation) (141) 
CAL Calories (140) 
CP Crude Protein (140) 
CP.forage Crude Protein (Forage equation) (141) 

CWC 
Cell wall concentration  
(KL+UA+RHA+FUC+ARA+XYL+MAN+GAL+GLC+ 
PCA + FEST + FETH) (140) 

CWE Cell wall ethanol  (140) 

CWEP Theoretical ethanol conversion efficiency from cell wall 
hexosans (140) 

DM Dry Matter (140) 
DM.forage Dry Matter (Forage equation) (140) 
dNDF48 Digestible NDF 48 (140) 
dNDF48.forage Digestible NDF 48 (forage equation) (141) 
Dry Matter Dry Matter (140) 

Table 3.1. Switchgrass compositional features.  
Continued on following pages.  
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Variable Description Source 
EE Extracted fat (140) 
ETOH Ethanol/g dry forage (140) 
FA Ferulic acid (140) 
FEST Esterified ferulates  (140) 
FETH Etherified ferulates  (140) 
FRU Fructose (140) 
FUC Fucose (140) 
GAL Galactose (140) 
GLC Glucose (140) 
GLCS Soluble glucose  (140) 
glucose.nrel Glucose (NREL Measurement) (139) 
HCA Hydroxycinnamates (140) 

HEX Total hexoses ((MAN + GAL + 
GLC)(180/162)) + NSC) (140) 

HEXE 
Theoretical ethanol from hexoses 
[MAN + GAL + GLC)*0.57] + 
[0.51(GLCS + FRU)] + [0.537*SUC] (140) 

HEXEP Hexose ethanol extraction efficiency  
(ETOH/HEXE)/100 (140) 

IVDMD In-vitro dry matter digestibility (140) 

IVDMD.forage In-vitro dry matter digestibility 
(forage equation) (141) 

K Potassium (140) 
K.forage Potassium (Forage equation) (141) 
KL Klason lignin (140) 
lignin ABSL.AP13 % Acetyl Bromide soluble lignin Not published 
Lignin.forage Lignin (Forage equation) (141) 
lignin.nrel Lignin (NREL Measurement) (115) 
MAN Mannose (140) 
Mg Magnesium (140) 
MG.forage Magnesium (Forage equation) (141) 
N Nitrogen (140) 
NDF Neutral detergent fiber  (140) 

NDF.forage Neutral detergent fiber (Forage 
equation) (141) 

P Phosphorus (140) 
P.forage Phosphorus (Forage equation) (141) 
PCA p-Coumarate esters  (140) 
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Variable Description Source 
PENT Pentose sugars released/g dry forage  (140) 

PENTP Pentoses extraction efficiency  (0.88 
PENT / (ARA + XYL)) * 100 (140) 

PPEN Pentose proportion of total carbohydrates 
(1 - HEX/SUG))*100 (140) 

RHA Rhamnose (140) 

SC Total soluble carbohydrates (SUC + 
GLCS + FRU) (140) 

sgratio.nrel S/G ratio in lignin (115) 
STA Starch (140) 
SUC Sucrose (140) 
TDN Total Digestible Nutrients (140) 

TDN.forage Total Digestible Nutrients 
(forage equation) (141) 

total_sugar.nrel Total sugar (139) 
UA Uronic acids (140) 
XYL Xylose (140) 
xylose.nrel Xylose (NREL measurement) (139) 

 

3.5.3 Switchgrass cell wall chemical assay 

For cell wall chemical assay, samples were ground to fine powder and made into 

destarched cell wall material as previously described (120). The chemical assays and 

cell wall components measured are described previously (120) except the acetyl content 

measurement. The acetyl content in cell wall material was released by 0.5 M NaOH for 

1 h at room temperature with shaking at 500 rpm and measured by an Acetic Acid 

Assay Kit (Megazyme, K-ACET). (This information provided by Fan Lin who 

performed the characterization.) 
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Chapter 4:  Decoupling HZSM-5 Catalyst Activity from Deactivation 
During Upgrading of Pyrolysis Oil Vapors 

A paper published in ChemSusChem 

Shaolong Wan, Christopher Waters, Adam Stevens, Abhishek Gumidyala, Rolf Jentoft, 

Lance Lobban, Daniel Resasco, Richard Mallinson, and Steven Crossley 

4.1 Abstract 

The independent evaluation of a catalyst’s activity and its stability during the catalytic 

pyrolysis of biomass is challenging because of the nature of the reaction system and 

rapid catalyst deactivation that force the use of excess catalyst. In this contribution we 

use a modified pyroprobe system in which pulses of pyrolysis vapors are converted over 

a series of HZSM-5 catalysts in a separate fixed-bed reactor controlled independently. 

Both the reactor-bed temperature and the Si/Al ratio of the zeolite are varied to evaluate 

catalyst activity and deactivation rates independently both on a constant surface area 

and constant acid site basis. Results show that there is an optimum catalyst-bed 

temperature for the production of aromatics, above which the production of light gases 

increases and that of aromatics decrease. Zeolites with lower Si/Al ratios give 

comparable initial rates for aromatics production, but far more rapid catalyst 

deactivation rates than those with higher Si/Al ratios. 

4.2 Introduction 

The main processes under advanced development for the upgrading of biomass 

pyrolysis products involve two catalytic approaches: treating the pyrolysis vapors with 

acidic zeolites and/or hydrotreating the liquid product. The configurations employed for 

the upgrading of the pyrolysis vapors are varied and include combinations of the 

addition of catalysts within the pyrolyzer, in situ catalytic pyrolysis, (142) (143) and, 



52 

less commonly, ex situ upgrading in the vapor phase immediately following the 

pyrolyzer (135, 144). By contacting the vapors with a catalyst prior to condensation as a 

liquid, the primary pyrolysis products are stabilized before they condense and 

oligomerize in the liquid phase to produce heavy products that present challenges for 

subsequent upgrading. 

One distinct advantage of the use of zeolite catalysts for the conversion of bio-oil 

vapors lies in the absence of an external H2 requirement for the process. However, 

compared to processes that incorporate an external source of H2, this benefit comes at 

the expense of sacrificing the yield to upgraded liquid products per gram of biomass fed 

as pyrolysis vapors are hydrogen deficient. The low effective H/C ratio of the pyrolysis 

vapors results inherently in coke formation and catalyst deactivation, which accompany 

any upgrading process in the absence of an additional H2 source (145). As a result of 

this, the design of catalysts that are less prone to deactivation and coke formation is 

critical. Among the various types of zeolites used for the catalytic upgrading of biomass 

pyrolysis vapors, the most commonly studied catalyst is HZSM-5 (146-148). Compared 

to other catalysts, HZSM-5 produces the highest yields of the preferred products, 

alkylated aromatics, if bio-oil vapors are treated (149). However, HZSM-5, similar to 

all other catalysts in this environment, deactivates relatively rapidly. 

For a variety of reactions over zeolites, catalyst deactivation is highly dependent on 

catalyst properties such as the density of acid sites. For example, upon studying 

propylene oligomerization, Bell et al. observed dramatic decreases in conversion and 

increases in heavy aromatic species on the catalyst over HZSM-5 as the Si/Al ratio of 
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the zeolite decreased (150). The tradeoff between activity and deactivation rates with 

acid site density has not been fully investigated in the area of catalytic pyrolysis. 

Rapid catalyst deactivation associated with catalytic pyrolysis has made researchers use 

excess catalyst with catalyst/biomass feed ratios much greater than unity. As the 

products are generally collected over a period of several minutes and excess catalyst is 

used, it is difficult to measure intrinsic catalytic activity and rates of deactivation. 

Instead, yields to desired products are typically reported, which are a combination of 

both phenomena (151). Distinguishing the role of reaction parameters and catalyst 

properties in catalytic pyrolysis is also clouded by the fact that the vapors are typically 

condensed as liquids and aged in a trap, in which unconverted oxygenates can undergo 

secondary reactions, often for a period of several minutes or hours before analysis. 

Pyrolysis GC units, in which a small amount of biomass is pyrolyzed with the vapors 

sent directly to a GC for analysis, allow the direct measurement of primary pyrolysis 

products with no liquid aging and minimal subsequent reactions. This is a valuable 

experimental technique for the evaluation of the pyrolysis process itself as well as the 

upgrading of the pyrolysis vapors. Such units have been used extensively to screen the 

effectiveness of catalysts for the catalytic pyrolysis of biomass. Unfortunately, a great 

disadvantage of such processes lies in the way they are traditionally used to evaluate 

catalyst activity. In most cases, the biomass is mixed physically with excess catalyst in 

the pyrolysis tube (152). As there is no carrier gas flow through the pyrolysis tube, the 

residence time of pyrolysis vapors and contact time with the catalyst are very difficult to 

control and are dependent on the catalyst particle size, thermal conductivity, etc. Huber 

et al. pointed out the differences in partial pressure and contact times between this 
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approach and a typical fluidized bed as well as the exaggerated secondary reactions to 

produce naphthalenes that occur if the catalyst is placed directly in the pyrolysis tube. 

A more straightforward approach is to place the catalyst bed outside of the pyrolysis 

chamber, such that the pyrolysis vapors pass over the catalyst bed before they enter the 

GC (153). This approach gives valuable information on the catalyst deactivation rates 

and independent control of the catalytic reaction conditions versus pyrolysis conditions. 

In this contribution, a custom configuration of a CDS Analytical pyroprobe pyrolysis 

unit coupled with a separate catalytic reactor was constructed to evaluate the 

performance and deactivation of the catalysts upon contact with pyrolysis vapors. The 

product yields and catalyst stability were measured at various temperatures and Si/Al 

ratios independently for HZSM-5 catalysts under conditions in which excess catalyst 

was not used to decouple the activity from the stability of each catalyst. Catalysts are 

compared based on a constant catalyst mass and constant acid sites, and the coke on 

spent catalysts was quantified to better understand the role of acid site density on 

catalyst deactivation.  

4.3 Experimental 

Biomass used was locally sourced red oak sawdust, with an estimated ash content of 

2%, determined by calcination in a TGA unit after after oxidation at 800°C. The 

samples were ground to a size of 0.25–0.45mm and then dried in vacuum (0.02 MPa) at 

60°C overnight before use. Typical red oak compositions can be found in the literature 

with lignin, hemicellulose, and cellulose wt % of 21.3, 46.9, and 27.2, respectively. 

Levoglucosan (≥99%, ACROS Organics™) was obtained from Fisher, and the particles 

used in this work were sieved between 0.16-0.25mm. The three HZSM-5 catalyst 
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samples (CBV8014, CBV5524, and CBV2314) were obtained from Zeolyst with a 

Si/Al ratio of 40, 25, and 11.5 respectively. The catalysts were first calcined in flowing 

air at 600°C for 5 hours starting with a heating rate of 3°C/min to get the proton form, 

and then pelletized to particles with a size ranging from 0.16 to 0.25 mm.  

All catalytic reactions were performed in the reactor as described in section 3.4. The 

catalyst performance was evaluated by exposing the catalyst to the vapors produced by 

the pyrolysis of a succession of 0.6-0.8mg pulses of biomass with the catalytically 

treated products of each pulse analyzed in sections 3.2.3 – 3.2.6. 

4.4 Results and Discussion 

4.4.1 Catalyst characterization 

XRD and SEM results (Figures 4.1 and 4.2) demonstrate that all of the HZSM-5 

samples retain their crystallinity after calcination and have a crystallite size of 100–500 

nm. The acid site density was calculated based on the theoretical Si/Al ratio from 

inductively coupled plasma (ICP) analysis provided by the manufacturer. It has been 

shown experimentally that for HZSM-5 catalysts, the number of Brønsted acid sites is 

equal to their theoretical value (154). This has also been demonstrated for commercial 

ZSM-5 samples obtained from Zeolyst (155). 
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Figure 4.1. XRD of cbv2314, 5524 and 8014 
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Figure 4.2. SEM image of cbv2314 (a), 5524 (b) and 8014 (c). 
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4.4.2 Role of catalyst temperature 

As most catalytic pyrolysis experiments are conducted with the catalyst mixed 

physically with the biomass, modifying the temperature has an impact on both the 

pyrolysis and catalysis, which makes it difficult to decouple their respective roles. The 

formation of alkylbenzenes, which consist of single-ring aromatics (principally 

benzene, toluene, xylene, and mesitylene) over 4.46 mg of HZSM-5 in a separate 

reactor with Si/Al = 40 at temperatures of 400–600°C is shown in Figure 4.3. Pyrolysis 

conditions were maintained at 500°C in each case. No aromatics were produced in the 

blank (pyrolysis experiments with no catalyst). Of the three temperatures, the greatest 

aromatic yield is observed at 500°C, followed by 600°C, and the least at 400°C. The gas 

analysis of the primary light gas peaks quantified by MS is shown in Figure 4.4. An 

increased level of light gases are produced at 600°C compared with the lower 

temperatures, which likely explains the decrease in the yield of aromatics under these 

conditions. The amount of gases reported here is in general agreement with that found 

in the literature for fluidized-bed catalytic pyrolysis, in which increased gas yields are 

obtained at increased temperatures (151). 
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Figure 4.3. Comparison of alkyl benzenes production on HZSM-5 with Si/Al=40 from 
oak pyrolysis vapors at catalyst temperatures of 400, 500 and 600°C. 
 

 
Figure 4.4. Gas yields from the initial pulse of pyrolysis with 4.46mg HZSM5 of Si/Al 
= 40 under three different temperatures.  
Pyrolysis was conducted at 500˚C while the temperature of the catalyst was varied from 
400 to 600˚C. 
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The role of the catalyst is decoupled from that of the pyrolysis process for the 

production of light gases by separating the catalyst bed from the pyrolysis chamber. 

Based on these results, it appears that CH4 formation is not influenced by the presence 

of a zeolite catalyst at 400 or 500°C, which is to be expected because of the b-scission 

pathway promoted by the zeolite catalysts used. An increase in CH4 yield occurs at 

600°C, which could be because of thermal reactions, enhanced pyrolytic cracking at 

elevated temperatures, or a combination of both. In addition, the yield of CO and CO2 

are roughly double in the catalytic case because of decarboxylation and decarbonylation 

of the oxygenated pyrolysis products. This increase in CO and CO2 at increased 

temperature agrees with the increased conversion of light pyrolysis compounds (such as 

acetic acid and other light oxygenates) as well as lignin-derived methoxyphenols, all of 

which show essentially full conversion at 600°C and a greater abundance exits the 

reactor as the reactor temperature is decreased (Figures 4.5-4.7). An increase in the 

conversion of pyrolysis vapors with catalyst temperature is also evident from the yield 

of alkylbenzenes. For example, at 400°C the catalyst is not active enough to produce a 

high yield of aromatics with the amount of catalyst provided, whereas at 600°C a 

greater production of light gases results in a decreased aromatics yield compared to that 

at 500°C. A comparable trend is observed with the larger two-ring aromatics (Figure 

4.8). The yields of the additional intermediate compound groups, which include alkyl 

phenols, furans, and indanes, as well as the relatively stable product levoglucosan are 

shown in Figures 4.9 – 4.12  
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Figure 4.5. Comparison of acetic acid conversion on HZSM-5 with Si/Al=40 from oak 
pyrolysis vapors at catalyst temperatures of 400, 500 and 600°C. 
 

 
Figure 4.6. Comparison of methoxyphenolics conversion on HZSM-5 with Si/Al=40 
from oak pyrolysis vapors at catalyst temperatures of 400, 500 and 600°C. 
Compounds in this group mainly include Creosol, Acetovanillone, Syringaldehyde, and 
Methoxyeugenol etc., which contain one, or more methoxy group attached in the 
benzene ring. 
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Figure 4.7. Comparison of light oxygenates conversion on HZSM-5 with Si/Al=40 
from oak pyrolysis vapors at catalyst temperatures of 400, 500 and 600°C. 
 

 
Figure 4.8. Comparison of Napthalenes production on HZSM-5 with Si/Al=40 from 
oak pyrolysis vapors at catalyst temperatures of 400, 500 and 600°C. 
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Figure 4.9. Comparison of indane/indene production on HZSM-5 for Si/Al=11.5, 25 
and 40 from oak pyrolysis vapors with the fixed total sites at 500°C. 
Compounds in this group include indane, Indene, Dimethyl Indene, and 2,3-dihydro-
1H-Inden-1-one. 
 

 
Figure 4.10. Comparison of Benzofuran production on HZSM-5 for Si/Al=11.5, 25 and 
40 from oak pyrolysis vapors with the fixed total sites at 500°C. 
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Figure 4.11. Comparison of Alkyl Phenols production on HZSM-5 with Si/Al=40 from 
oak pyrolysis vapors at catalyst temperatures of 400, 500 and 600°C. 

 
Figure 4.12. Comparison of Levoglucosan/sugars production on HZSM-5 with 
Si/Al=40 from oak pyrolysis vapors at catalyst temperatures of 400, 500 and 600°C. 
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Figure 4.13. Comparison of Indanes production on HZSM-5 with Si/Al=40 from oak 
pyrolysis vapors at catalyst temperatures of 400, 500 and 600°C. 

 
Figure 4.14. Comparison of Furans production on HZSM-5 with Si/Al=40 from oak 
pyrolysis vapors at catalyst temperatures of 400, 500 and 600°C. 
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Figure 4.15. Comparison of acetic acid conversion on HZSM-5 for Si/Al=11.5, 25 and 
40 from oak pyrolysis vapors with the fixed total sites at 500°C. 
 

The amount of coke was analyzed by temperature-programmed oxidation, and the 

results are reported in Table 4.1. A trend of a decreased amount of coke on catalysts 

with increased reaction temperature is observed, in agreement with results reported in 

the literature (151). This significant decrease in coke at higher temperatures appears to 

correspond with the production of more light gases. 

Catalyst Temp. Catalyst mass Amount of coke 
Si/Al [oC] [mg] [µg mgoak

-1] [µg mgcatalyst
-1 mgoak

-1] 
Temperature Series 
40 400 4.46 44.6 10 
40 500 4.46 42.4 9.5 
40 600 4.46 22.3 5 
Constant Catalyst Mass Series 
40 500 2.83 21.2 7.5 
25 500 2.83 36.8 13 
11.5 500 2.83 18.4 6.5 
Constant Acid Sites Series 
40 500 4.46 42.4 9.5 
25 500 2.83 36.8 13 
11.5 500 1.36 6.8 5 

Table 4.1. Comparison of coke on spent catalysts after 10 pulses of biomass injected.  
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4.4.3 Varying acid site density 

The alkylbenzene yields that result from the conversion of pyrolysis vapors over three 

different commercial zeolites with various Si/Al ratios are shown in Figure 4.16. 

Repeated pulses of biomass were pyrolyzed in which the vapors passed over the 

catalyst. The sum of the masses of these pulses is reported on the x axis, analogous to 

increasing time-on-stream. The pyrolysis temperature and the catalytic reaction 

temperature were maintained at 500°C in each case. A reaction temperature of 500°C 

was chosen because of the optimal alkylbenzene yields obtained at this temperature, as 

discussed in the previous section. So as not to introduce additional bias, the number of 

acid sites was maintained at a constant level of 1.81 mmol for each catalyst bed by 

appropriate variation of catalyst mass. Interestingly, the yield of alkylbenzenes is 

comparable for the initial pulse in each case. This implies that the initial activity of the 

HZSM-5 zeolites is comparable for the production of alkylbenzenes independent of the 

acid site density. This comparable initial activity is significant and would not be 

obtained through traditional experiments conducted in situ in which catalyst 

deactivation rates and catalyst activity contribute simultaneously to product yields. 
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Figure 4.16. Comparison of alkyl benzenes production on HZSM-5 for Si/Al=11.5, 25 
and 40 from oak pyrolysis vapors with the fixed total sites at 500˚C. 
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catalysts (Figure 4.22). These results show that higher acid density, with a constant total 

number of acid sites (acid density mass), results in a severe deactivation of the catalyst. 
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source used in these experiments (150). They observed decreased activity and a greater 

potential for aromatics formation over the catalysts with in-creased acid site density, 

which they attributed to a higher population of oligomers in close proximity that led 

ultimately to aromatics production. For the feedstocks considered here, a closer 

proximity of sites may influence the potential for condensation reactions such as aldol 

condensation (156) that could lead ultimately to pore plugging and catalyst deactivation. 

 
Figure 4.17. Comparison of methoxyphenols conversion on HZSM-5 for Si/Al=11.5, 
25 and 40 from oak pyrolysis vapors with the fixed total sites at 500°C. 
Compounds in this group mainly include Creosol, Acetovanillone, Syringaldehyde, and 
Methoxyeugenol etc., which contain one, or more methoxy group attached in the 
benzene ring. 
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Figure 4.18. Comparison of light oxygenates conversion on HZSM-5 for Si/Al=11.5, 
25 and 40 from oak pyrolysis vapors with the fixed total sites at 500°C. 
Compounds in this group include 2,3-butanedione, acetol, Hydroxybutanal, 2,3-
Pentanedione, etc. Acetic acid and intermediate oxygenate products like acetone, furan 
and methyl-furan were not listed in this group. 

 
Figure 4.19. Comparison of alkyl phenols production on HZSM-5 for Si/Al=11.5, 25 
and 40 from oak pyrolysis vapors with the fixed total sites at 500°C. 
Compounds in this group mainly include Phenol, Methyl Phenol, and Dimethyl Phenol. 
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Figure 4.20. Comparison of furans production on HZSM-5 for Si/Al=11.5, 25 and 40 
from oak pyrolysis vapors with the fixed total sites at 500°C. 
Compounds in this group include Furan and Methyl Furan.Acetic acid and intermediate 
oxygenate products like acetone, furan and methyl-furan were not listed in this group. 

 
Figure 4.21. Comparison of furan derivatives production on HZSM-5 for Si/Al=11.5, 
25 and 40 from oak pyrolysis vapors with the fixed total sites at 500°C. 
Compounds in this group include 2-Cyclopenten-1-one, 2-Cyclopenten-1-one, 2,3-
dimethyl-, and Furfural. 
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Figure 4.22. Comparison of levoglucosan conversion on HZSM-5 for Si/Al=11.5, 25 
and 40 from oak pyrolysis vapors with the fixed total sites at 500°C. 
 

One may suggest that this phenomenon could be a result of changes in acid site strength 

with different Si/Al ratios, which would impact product distribution. However, a 

number of studies have suggested that the strength of acid sites does not change over 

the range of Si/Al ratios used in this study (157-159). Another possible explanation 

could be that varying degrees of extraframework Al may exist in these samples, which 

could serve as nucleation sites for coke formation. It has been shown that internal 

defects have a strong correlation with deactivation rates for reactions with oxygenates 

over HZSM-5 such as methanol to olefins (160). Two studies that used MFI samples 

from Zeolyst led to conclusions that the fraction of extraframework Al per total Al in 

the sample is very low and does not change with the Si/Al ratio (150, 161). As these 

catalysts are compared on a constant acid site basis, each catalyst should have a 

comparable amount of extraframework Al. 
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Notably, the three catalysts with different Si/Al ratios share a similar pore size 

distribution per unit mass as they have the same MFI structure. Thus, in the case of 

higher-acid-density catalysts, a lower mass results in a lower total surface area. This 

may make these catalysts more susceptible to pore plugging, which could cause faster 

deactivation. 

To examine this further, another set of experiments was performed with the same mass, 

2.83 mg, of each of the three catalysts, to give similar surface areas and pore volumes 

for each catalyst. The Si/Al = 40 catalyst has a lower initial yield of alkylbenzenes after 

the first pulse because of the lower number of acid sites but shows rather stable 

performance over the 10 pulses of exposure to vapors (Figure 4.23). Si/Al = 11.5 

(which contains two times the number of total acid sites than Si/Al = 25 and 3.3 times 

that of Si/Al = 40) shows a stable aromatics yield at a high level in the first four pulses, 

after which deactivation proceeds at a faster rate than that in the other two catalysts. The 

Si/Al = 25 catalyst demonstrates an intermediate deactivation rate. 

 
Figure 4.23. Comparison of alkyl benzenes production on HZSM-5 of Si/Al=11.5, 25 
and 40 from oak pyrolysis vapors with fixed catalyst mass at 500°C. 
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Clearly, the initial stable yield for the Si/Al = 11.5 catalyst is caused by an excess of 

catalyst and is not an indication of the absence of deactivation. This trend is more 

evident if the Si/Al = 11.5 catalyst is compared at two different mass loadings (Figure 

4.24), for which the initial yield of alkylbenzenes is constant between the two series. 

The catalyst deactivates continuously in both studies, but the excess catalyst results in a 

constant level of aromatics production. This result is significant, especially if we 

consider that most studies of catalytic pyrolysis use excess catalyst and far greater 

catalyst/biomass ratios than those used here. Attempts to quantify catalyst deactivation 

under these conditions may lead to the incorrect conclusion that the catalysts are more 

stable than they actually are.  

 
Figure 4.24. Alkyl benzenes exiting the reactor over HZSM-5 of Si/Al=11.5 from oak 
pyrolysis vapors with fixed catalyst mass at 500°C. 
Catalyst mass was varied from 1.36mg to 2.83mg. 
 

Once the excess catalyst is deactivated, after four pulses, the deactivation becomes 

observable as a decrease in product yields. These results demonstrate clearly that it is 
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the higher acid density that leads to a more rapid deactivation rate. The plateau in 

aromatics yield with excess catalyst is proposed to be caused by the complete 

conversion of the precursors for aromatics products. For example, the light oxygenates 

and acetic acid are converted fully for the initial pulses over 2.8 mg of HZSM-5 Si/Al = 

11.5, and these pyrolysis compounds begin to appear after pulse 4, as shown in Figure 

5.25 for acetic acid.  

 
Figure 4.25. Acetic acid exiting the reactor over HZSM-5 of Si/Al=11.5 from oak 
pyrolysis vapors with fixed catalyst mass at 500°C. 
Catalyst mass was varied from 1.36mg to 2.83mg. 
 

A similar trend is observed upon analysis of the light gases for the case of Si/Al = 11.5 

with 1.36 mg of catalyst. The noncondensable gases CH4, CO, and CO2 that result from 

conversion over the Si/Al = 11.5 zeolite as a function of biomass fed are shown in 

Figure 4.26. Interestingly, the CH4 yield does not change considerably, which is in 

agreement with the results shown in 4.4 that show that CH4 is not generated 

catalytically at this temperature. Both the CO and CO2 yields decrease as the catalyst 
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begins to deactivate. The decreased light gas yield is in agreement with greater amounts 

of oxygenates observed exiting the reactor (less conversion) over the deactivated 

catalyst.  

 
Figure 4.26. Gas yield from the 10 pulses of pyrolysis with HZSM5 of Si/Al=11.5 
1.36mg under 500°C. 
 

Analysis of the coke on the spent catalysts is shown in Table 4.1. For a constant catalyst 

mass, the most coke formation was observed with the medium acid density catalyst 

(Si/Al = 25). The lower acid density catalyst (Si/Al = 40) produced less coke, likely 

because of the lower amount of acid sites present compared with the Si/Al = 25 catalyst. 

The least coke formation occurred with the highest acid density catalyst (Si/Al = 11.5), 

which exhibited a very rapid deactivation rate in spite of its high initial reactivity. The 

close proximity of sites may have led to more coke initially, but this rapid coke 

formation could have resulted in pore plugging. The rapid deactivation of the active 

sites may reduce the rate of further coke formation. The same trend of decreased coke 

for the Si/Al = 11.5 catalyst was observed if comparable acid sites were used. If 

compared on an equivalent acid site basis, the total coke yield for the Si/Al = 40 catalyst 

was slightly higher than that of the Si/Al = 25 catalyst. 
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To further test the hypothesis of pore plugging for the low Si/Al ratio catalyst, 

experiments were conducted with both the Si/Al = 11.5 and Si/Al = 40 catalysts based 

on constant acid sites with increased catalyst volumes to enable characterization. If the 

amount of the Si/Al = 11.5 catalyst was increased to 5 mg, a micropore volume of 0.10 

cm3 g-1 is obtained for the fresh catalyst as shown in Table 4.2, which is in agreement 

with values obtained in the literature (162). After pulsing 46 mg of biomass over this 

catalyst, the larger catalyst bed volume exhibited a similar rapid deactivation based on a 

yield of alkylbenzenes of less than 15% of the initial yield obtained during the first 

pulses. A pore volume less than the detection limit of the instrument was obtained for 

the spent sample. We can claim accurately that the micropore volume is low, in line 

with the pore plugging hypothesis, and the surface area is below the detection limit of 

100 m2 g-1 for this sample size.  

Catalyst Micropore Volume[a] Brønsted site density[b] 
Si/Al [cm3 g-1] [µmol g-1] 
11.5 fresh 0.10 1093  
11.5 spent <0.02[c] 23  
40 fresh 0.12 391  
40 spent 0.09 123  
[a] Measured using the t-plot method. [b] Measured by IPA-TPD. [c] 
Below the 100 m2 g-1 minimum detection limit of the instrument for this 
sample size. 

Table 4.2. Comparison of micropore volume and measured Brønsted sites on fresh and 
spent catalysts after exposure to 46 mg of biomass at 500°C.  
 

Additional support for this conclusion of pore plugging over the Si/Al = 11.5 catalyst is 

found by the accessible acid sites post reaction. The acid sites were characterized by 

isopropylamine temperature-programmed desorption (IPA-TPD) to quantify the 

accessible Brønsted sites before and after reaction. The measured number of Brønsted 

sites post reaction for the Si/Al=11.5 catalyst decreased to 2% of the initial value (table 
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4.2; the corresponding propylene spectra are shown in figure 4.27). By contrast, for the 

Si/Al = 40 catalyst, the micropore volume decreases by less than 30% of the initial 

value, and the accessible acid sites decrease by 70% of the initial value. The greater 

relative reduction in accessible acid sites than the pore volume is an additional 

indication that the Si/Al = 40 catalyst is not de-activated solely by pore plugging under 

these conditions. 

 
Figure 4.27. Gas yield from the 10 pulses of pyrolysis with HZSM5 of Si/Al=11.5 
1.36mg under 500°C. 
 

These results help to clarify others that occur in more complex systems in which several 

factors, such as rapid deactivation, excess catalyst, and the presence of an active 

 
Figure S21. Propylene peak measured via IPA TPD of both fresh and spent 
(coked) catalysts with Si/Al=11.5 and 40 as reported in Table 2. 
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mesoporous support, make the identification of the role of the zeolite very challenging. 

As the catalyst with a high site density deactivates so rapidly, the net amount of 

catalytic coke may be lower and could easily lead to the wrong conclusions.  

4.4.4 Product yields 

The overall mass balance for the first pulse of six different catalytic and blank series is 

shown in Figure 4.28. As a result of the separation of the pyrolysis bed from the reactor 

bed, the char and ash can be quantified separately from the catalytic coke.  

 
Figure 4.28. Overall mass balance from the first pulse of three different temperatures 
series and another two fixed acid sites series under 500˚C respectively. 
The coke amount [mg mgoak input

-1] in each catalytic case is averaged from the total coke 
in the spent catalyst after undertaking 10 pulses of pyrolysis vapors.  
 

Quantification of the char, ash, coke, and noncondensable gases allows the estimation 

of an overall mass balance for the system. The coke yields reported are based on the 

amount of coke accumulated after 10 pulses of biomass injected (to enable a 

quantifiable amount measured by TGA as described in section 3.4.3). The cumulative 
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amount of coke after 10 pulses was divided by the amount of biomass injected to 

estimate the average amount of coke per pulse. The coke yield makes up a small portion 

of the biomass, so differences in coke yield that occur from the 1st to 10th pulse are not 

likely to have a great impact on the overall mass balance (Figure 4.28). The C2+ vapor 

and water yields reported in Figure 4.28 are taken by difference because of the small 

amounts of biomass vapors produced per pulse (153). 

Interestingly, the coke values on the spent catalysts shown in Figure 4.28 are far less 

than coke values reported typically in in situ catalytic pyrolysis runs. This is because of 

the inability to distinguish catalytic coke from char during in situ catalytic pyrolysis 

experiments. The amount of char+coke reported here is in agreement with typical coke 

levels reported in the literature for in situ catalytic pyrolysis runs (151). The values of 

coke reported here that correspond to ~4.5% of the biomass fed are in agreement with 

other results reported for ex situ catalytic pyrolysis using a separate bed of HZSM-5 

(153).  

All the catalytic runs have a higher yield of CO, CO2, and CH4 and lower yield of C2+ 

vapors and water than the blank runs. As the temperature of the catalyst increases, the 

gas yield increases and the coke yield decreases as discussed previously. The aromatics 

yield passes through a maximum at 500°C (Figure 4.3), which highlights the significant 

difference in the composition of the vapor products as the temperature is increased. 

Variation of the acid site density results in nearly identical product yields for the first 

pulse if a comparable amount of acid sites are used. The lower coke yield over the Si/Al 

= 11.5 catalyst is because of the rapid deactivation of the catalyst, likely caused by pore 

plugging, and the fact that coke yields are measured after 10 pulses of biomass. These 
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results indicate that product yields that result from all three catalysts on a per acid site 

basis are initially very similar, but the major difference lies in the more rapid 

deactivation rates that result over the catalysts with acid sites in close proximity (Figure 

4.16).  

4.5 Conclusions  

The use of a separate catalytic reactor in the custom pyroprobe allows independent 

evaluation of catalyst activity and catalyst deactivation. The conversion of biomass 

pyrolysis vapors to aromatics over HZSM-5 is favored at moderate temperatures around 

500°C, with a tradeoff between low activity at lower temperature and the formation of 

excessive light gasses at higher temperatures. Initial yields of aromatics are comparable 

per acid site for the range of Si/Al tested here. It was found that the density of acid sites 

plays a critical role on catalyst stability under these conditions, and lower Si/Al ratios 

lead to increased catalyst deactivation rates. 
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Chapter 5:  Staged Thermal Fractionation for Segregation of Lignin 
and Cellulose Pyrolysis Products: An Experimental Study of Residence 
Time and Temperature Effects 

Extracted from a manuscript in preparation 

Christopher Waters, Rajiv Janupala, Richard Mallinson, Lance Lobban 

5.1 Abstract 

Thermal conversion technologies may be the most efficient means of production of 

transportation fuels from lignocellulosic biomass. In order to increase the viability and 

improve the carbon emissions profile of pyrolysis biofuels, improvements must be made 

to the required catalytic upgrading to increase both hydrogen utilization efficiency and 

final liquid carbon yields. However, no current single catalytic valorization strategy can 

be optimized to convert the complex mixture of compounds produced upon fast 

pyrolysis of biomass. Staged thermal fractionation, which entails a series of sequentially 

increasing temperature steps to decompose biomass, has been proposed as a simple 

means to create vapor product streams of enhanced purity as compared to fast pyrolysis. 

In this work we use analytical pyrolysis to investigate the effects of time and 

temperature on a thermal step designed to segregate the lignin and cellulose pyrolysis 

products of a biomass which has been pre-torrefied to remove hemicellulose. At process 

conditions of 380°C and 180 second isothermal hold time, a stream containing less than 

20% phenolics (carbon basis) was produced, and upon subsequent fast pyrolysis of the 

residual solid a stream of 81.5% levoglucosan (carbon basis) was produced. The 

thermal segregation comes at the expense of vapor product carbon yield, but the 

improvement in catalytic performance may offset these losses.  
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5.2 Introduction 

Achieving a purely thermal separation of the cellulose- and lignin- derived components 

from biomass (e.g., levoglucosan and phenolic species) is of particular interest due to 

the inherent overlapping thermal stability regimes of these components and challenges 

of downstream separation as discussed in chapter 1. In this work, analytical pyrolysis is 

used to study the effects of time and temperature on an intermediate thermal treatment 

step designed to achieve separation of cellulose and lignin products from torrefied oak 

biomass. The objective of this study is to assess the efficacy of the staged thermal 

fractionation process in achieving enhanced purity of thermochemical vapor product 

streams. Time & temperature process parameters are varied and resulting products are 

characterized to better understand options for and potential of advanced catalytic 

valorization strategies.  

5.3 Experimental 

5.3.1 Biomass Feedstock 

Red oak (Q. Rubra) sawdust was generated with a table saw from boards acquired at a 

local wood supplier. Sawdust was sieved to sizes between 250 and 425 µm and then 

dried in vacuum (0.02 MPa) at 60˚C overnight before use. Cell wall composition was 

measured for the oak samples using described in section 3.5.1. Elemental analysis was 

performed by Galbraith laboratories (Knoxville, TN). The composition is summarized 

in table 5.1 and 5.2. 
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Oak Component wt% 
Lignin 22.67% 
Cellulose 27.70% 
Hemicellulose 30.24% 
Non-structural sugars 2.15% 
Sum 82.76% 
Table 5.1. Oak feedstock compositional data. 

 

Oak Component wt% 
Carbon 48.22% 
Hydrogen 6.03% 
Oxygen 44.33% 
Sum 98.58% 

Table 5.2. Oak feedstock elemental analysis data. 
 

5.3.2 Selection of initial conditions 

With the goal of biopolymer thermal segregation in mind, biopolymer thermal stability 

regimes in the literature in tandem with a kinetic weight loss model developed 

specifically for oak biomass were employed to determine initial experimental 

conditions. As previously stated, hemicellulose decomposes at a lower temperature than 

cellulose while lignin decomposes over a broad range of temperatures. Cellulose has 

been shown to not undergo significant mass loss at temperatures below 275°C (163, 

164). As the hemicelluloses are much less thermally stable, a stage 1 temperature not 

exceeding 275°C should decompose hemicellulose while leaving the cellulose 

unconverted. Therefore, a temperature of 270°C was selected for stage 1. Additionally, 

temperatures between 500°C – 550°C  has been shown to be an optimal temperature for 

biomass fast pyrolysis to optimize overall liquid yield (106, 165). Therefore, stage 3 

was carried out at 500°C.  

The weight loss model described and parameterized for oak by Di Blasi (166) was used 

to choose the initial conditions for stage 2 and the hold time for stage 1, given the 
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conditions selected for the other two based on TGA studies in the literature. The source 

code for the implemented model can be found in Appendix A. 

The model results for the conditions selected are presented in table 5.3 and figures 5.1 – 

5.3. For the 270°C stage 1, 20 minutes was selected as the process time to achieve 

conversion of most of the hemicellulose. 350°C for 3 minutes was chosen as the initial 

stage 2 condition, as the kinetic model predicts near total conversion of the cellulose 

while leaving some lignin still available for conversion at stage 3. The prediction 

offered by this kinetic model suggests that the goal of separating the two 

polysaccharides via thermal degradation is achievable. The significant overlap of lignin 

is noteworthy, as the results of this work do not reflect high degrees of lignin 

degradation at the lowest temperature. The source code for this model can be found in 

Appendix A. 

Temperature/Time Predicted 
Cumulative 
Mass 
conversion 

Predicted 
Cumulative 
Hemicellulose 
conversion 

Predicted 
Cumulative 
Cellulose 
conversion 

Predicted 
Cumulative 
Lignin 
conversion 

270°C, 20 min 30.9% 87.3% 2.3% 17.0% 
350°C, 3 min 61.1% 100.0% 99.0% 15.2% 
500°C, 1 min 61.8% 100.0% 100.0% 17.0% 

Table 5.3. Kinetic model weight loss predictions for oak biomass. 
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Figure 5.1. Model weight loss prediction, 270°C. 

a_ext is the wt% of extractives volatilized, a_hc is the wt% of hemicellulose volatilized, 
a_c is the wt% of cellulose volatilized, and a_L is the wt% of lignin volatilized. 

 

 
Figure 5.2. Model weight loss prediction, 350°C. 
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Figure 5.3. Model weight loss prediction, 500°C. 

 

5.3.3 Conversion of stage 1 solid samples at stage 2 conditions 

 In preparation for the analytical pyrolysis investigation of the stage 2 conditions, 

sufficient quantities of stage 1 residual solids were generated from raw oak biomass 

using a bench scale system as described in section 3.1. Water content analysis of the 

resulting liquid (reported as liquid weight percent) was performed as described in 

section 3.3. Samples from the stage 1 solid residue were then prepared for analytical 

pyrolysis as described in section 3.2. Approximately 0.75 mg of stage 1 solid residue 

was used in each analytical pyrolysis experiment. Table 5.4 lists compounds and their 

lumps as used in this work.  
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Table 5.4. Identified compounds and lumps in this study. 
 

5.4 Results & Discussion 

5.4.1 First temperature step products characterization 

Figure 5.4 shows the composition of the liquid collected from stage 1. The water 

content was determined by Karl-Fischer titration to be 64.9 weight percent (dry basis). 

A mass balance from this reaction is shown in table 5.5. As stated above, the stage 1 

recovered solid was used as the starting material for the pyroprobe screenings to 

produce the intermediate and final temperature step results that follow. Levoglucosan is 

the primary product of cellulose pyrolysis (31, 98); the low abundance in the liquid 
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indicates that the cellulose was mostly unconverted by this stage 1 treatment, in 

agreement with the results predicted by the kinetic model. The relatively low yields of 

phenolic species and levoglucosan confirm that at these mild conditions, hemicellulose 

breakdown is the primary source of the volatile products formed. 

 
Figure 5.4. Stage 1 collected liquid composition. 

 

Total oak sawdust fed 15.8 gm 100.0% 
Total liquid collected 3.3 gm 20.9% 
Total solid collected 11.9 gm 75.3% 
Non-condensable gases* 0.6 gm 3.8% 
Table 5.5. Mass balance of Stage 1 Thermal Treatment. 

 

5.4.2 Total Yields 

The measured carbon content in the organic vapor product for the sequential stages 2 

and 3 in the pyroprobe were summed and are presented in table 5.6 and figure 5.5 with 

the stage 1 carbon yield as functions of the stage 2 independent process condition 

variables (i.e., time & temperature). 
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Figure 5.5. Cumulative stages 1, 2 & 3 carbon yields compared with single-step fast 
pyrolysis carbon yields. (Does not include CO/CO2). 
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Temperature Time Stage 1 
Carbon Yield 

Stage 2 
Carbon Yield 

Stage 3 
Carbon Yield 

Combined 
Carbon Yield 

% of fast 
pyrolysis 

350°C 60s 30.9 7.59 56.45 94.94 45.2% 
 180s 30.9 17.28 27.15 † 75.33 35.8% 
 300s 30.9 37.22 24.15 92.27 43.9% 
380°C 60s 30.9 34.97 25.70 91.56 43.6% 
 180s 30.9 41.00 25.87 97.77 46.5% 
 300s 30.9 40.25 18.01 89.16 42.4% 
400°C 30s 30.9 47.36 9.38 87.64 41.7% 
 60s 30.9 69.69 6.54 107.13 51.0% 
 120s 30.9 68.62 4.20 103.72 49.3% 
 180s 30.9 50.61 3.65 85.16 40.5% 
500°C 30s 30.9 71.29 4.32 106.51 50.7% 
 60s 30.9 87.02 3.73 121.65 57.9% 
 120s 30.9 89.02 5.07 *124.99 59.4% 
 180s 30.9 85.86 3.67 120.43 57.3% 
Single-Step Fast Pyrolysis   210.24 100.0% 

Table 5.6. Carbon yields for stages 1, 2 & 3. 
All carbon yield values are reported as (measured µg carbon) / (mg raw oak biomass).  
† denotes the lowest yield multi-stage case; * denotes the highest yield multi-stage case. 
 

These results indicate that the more complete conversion of the solid with progressively 

harsher stage 2 conditions limits the amount of material available for subsequent 

volatilization in stage 3. As expected, the stage 2 carbon yields generally increase with 

increasing temperatures, and the stage 3 carbon yields drop with increasing stage 2 

carbon yields (as seen in table 5.6 & figure 5.5). At 350°C, the the stage 2 carbon yields 

increase with increasing stage 2 treatment time, and the stage 3 yields decrease with 

increasing stage 2 treatment time; for stage 2 treatment times of 60 seconds, the stage 2 

carbon yields increase with increasing temperatures, and the stage 3 yields decrease 

with increasing stage 2 temperatures. However, at the intermediate temperatures (380°C 

and 400°C), decreasing carbon yields are observed with increased treatment time. These 

decreasing total carbon yields are observed across the whole product spectrum and thus 

are not indicative of dramatically changing product selectivities (figure 5.11), and the 

MS chromatograms from these experiments do not show any pronounced increases in 

CO2.  
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Figure 5.6. Stage 2 yields, separated by compound lumps, for the stage 2 conditions 
labeled. 
The number above the stacked bars is the sum of the colored bars, indicating the total 
carbon yield of each stage 2 condition.  Numbers in the pink, orange, and blue segments 
(corresponding with methoxyphenols, levoglucosan, and furfurals respectively) are the 
yields of those specific lumps. Yield values are (measured µg carbon in vapors) / (mg of 
raw biomass).   
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Figure 5.7. Stage 2 carbon selectivities, separated by compound lumps, for the stage 2 
conditions labeled, compared with single-step fast pyrolysis of raw oak biomass (far 
right). 
Numbers in the pink, orange, and blue segments (corresponding with methoxyphenols, 
levoglucosan, and furfurals respectively) are the carbon selectivities of those specific 
lumps.   
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Figure 5.8. Stage 3 carbon yields, separated by compound lumps, for the 2nd stage 
conditions labeled. 
The number above the stacked bars is the sum of the colored bars, indicative of the total 
carbon yield of the 3rd stage thermal treatment. Numbers in the pink & orange 
segments (corresponding with methoxyphenols and levoglucosan respectively) are the 
carbon yields of those specific lumps. Yield values are (measured µg carbon in vapors) / 
(mg of raw biomass).  
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Figure 5.9. Stage 3 carbon selectivities, separated by compound lumps, for the stage 2 
conditions labeled, compared with single-step fast pyrolysis of raw oak biomass (far 
right). 
Numbers in the pink & orange segments (corresponding with methoxyphenols and 
levoglucosan respectively) are the selectivities of those specific lumps.  
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Figure 5.10. Stages 1, 2 & 3 cumulative carbon yields, separated by compound lumps, 
for the stage 2 conditions labeled, compared with single-step fast pyrolysis of raw oak 
biomass (far right). 
The number above the stacked bars is the cumulative carbon yield of the three stages. 
Numbers in the pink, orange, and blue segments (corresponding with methoxyphenols, 
levoglucosan, and furfurals respectively) are the carbon yields of those specific lumps. 
Much of the decrease in the overall carbon yield at the lower temperatures is due to the 
decrease in the yield of these compound lumps. Yield values are (measured µg carbon 
in vapors) / (mg of raw biomass).  
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Figure 5.11. Stages 1, 2 and 3 cumulative carbon selectivities, separated by compound 
lumps, for the stage 2 conditions labeled, compared with single-step fast pyrolysis of 
raw oak biomass (far right). 
The number above the stacked bars is the total normalized peak area, indicative of the 
cumulative carbon yield of the three stages. Numbers in the pink, orange, and blue 
segments (corresponding with methoxyphenols, levoglucosan, and furfurals 
respectively) are the carbon yields of those specific lumps.   
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The cumulative staged thermal fractionation acetic acid yields compared with single-

step fast pyrolysis yields (figure 5.12) indicate that at stage 1 conditions the 

hemicellulose in the biomass is nearly fully decomposed. The maximum acetic acid 

yield from stages 2 and 3 (cumulative) as a percentage of single-step fast pyrolysis 

acetic acid yield is 27.6%, occurring at stage 2 conditions of 500°C for 180s. As 

cellulose pyrolysis is not a major producer of acetic acid (31), any acetic acid formed in 

stages 2 and 3 must come from decomposition of any remaining unreacted 

hemicelluloses and from lignin decomposition (12). It is possible that the acetic acid 

seen in stage 2 is the result of incomplete stage 1 decomposition of hemicellulose. 

However, if that were the case, the successively increasing yields with time in the 

350°C cases would not be expected - the yields at 180s and 300s would not be expected 

to be dramatically different than the yield at 60s. These results suggest that the acetic 

acid may be a result of reactions with lower activation energies than the reactions that 

produce larger, lignin monomer unit-like products such as 4-substituted syringols and 

guaiacols. 
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Figure 5.12. Acetic acid yields for stages 1, 2 & 3, as a percentage of the fast pyrolysis 
acetic acid yield. 
The low yields of acetic acid indicate that the hemicellulose is decomposed at stage 1 
conditions. 
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established that organic yields from cellulose in general are maximal at 500°C (98, 

167). More recent NMR investigations (168, 169) have demonstrated that new aliphatic 

and aromatic structures are formed in polysaccharides treated at torrefaction 

temperatures. The mechanism for cellulose pyrolysis advanced by Huber (170) suggests 

that cellulose begins to depolymerize at temperatures as low as 100°C, with breaks in 

the polymer chain occurring until the anhydrosugar monomer (levoglucosan) is 

obtained. At temperatures low enough to prevent volatilization of levoglucosan, char 

formation (proposed to be the result of repolymerization of levoglucosan or 

rearrangement/decomposition products of levoglucosan) may be enhanced. Similar 

condensation and repolymerization behavior also has been shown to occur in lignin; 

Wen et. al (171) observed that β-O-4, β-β, and β-5 lignin bonds disappear under 

torrefaction (275°C – 300°C) conditions. The β-O-4 linkages (the most abundant type) 

cleave and reform aromatic C-C bonds within the lignin. These new refractory bonds 

have much higher dissociation enthalpies, and may not dissociate at typical fast 

pyrolysis temperatures, leading to enhanced char formation and corresponding loss of 

organic vapor yield.  

While the pyroprobe/GCMS-FID system is a useful analytical tool that provides rapid 

assessments of pyrolysis vapor products, it is also limited in that it cannot provide good 

mass balance information that a larger-scale system can (such as the one used to 

generate the stage 1 products). Successive pyroprobe treatments on the same sample 

leaves that sample in the (unheated) pyrolysis chamber during the chromatography run, 

preventing measurement of the residual solid before the next pyrolysis step. 

Furthermore, other studies have noted that the pyroprobe apparatus appears to generate 
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much more char than other systems such as TGA, ascribed to the lack of sweep gas 

through the pyrolyzing solid due to the required tube loading configuration (170). This 

can lead to high concentrations of volatiles in the heated zone and increased coke 

formation. Additionally, the pyroprobe system only provides vapor product 

compositional data, and cannot be used to generate liquids for analysis of properties like 

water content, viscosity, elemental analysis, etc. – information which is necessary for 

techno-economic analyses and life cycle analyses. Further, larger-scale studies are 

needed to generate these kinds of data for the optimized conditions discussed here. 

5.4.3 Segregation Ability 

The ability of the staged thermal fractionation process to achieve enhanced purity of 

thermochemical vapor product streams that will facilitate improved catalytic processing 

is of specific interest and will be the focus of the remainder of the discussion. First, a 

case of relatively poor thermal separation is examined. Figure 5.13 shows the carbon 

yield & selectivity of stage 2 pyrans plotted against stage 2 furfurals. These two 

compound lumps show relatively poor thermal segregation ability; as seen in figure 

5.13a, there is no condition that favors production of one of these lumps over the other. 

While the selectivity to furfurals is higher at 350°C and 380°C, this is mostly due to the 

production of levoglucosan at 400°C and 500°C. Both furfurals and pyrans are known 

pyrolysis products of cellulose, and cannot be readily separated using staged thermal 

fractionation.  
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  a      b 

      
Figure 5.13. Stage 2 pyran vs. Stage 2 furfurals carbon yield (a) and selectivity (b) for 
the stage 2 conditions indicated. 
Cumulative carbon yield is the sum of the carbon in all compound lumps at both stage 2 
& stage 3 conditions. Yield values are (measured µg carbon in vapors) / (mg of raw 
biomass). 
 

A separation of particular interest for this work was of the levoglucosan and the 

combined phenolic lumps (alkyl phenols + methoxyphenols) between stages 2 and 3. 

Figures 5.14 & 5.15 show the carbon yields and carbon selectivity of these two lumps 

plotted against each other for stages 2 and 3. As discussed in the introduction, the 

specific catalytic upgrading approaches for these kinds of compounds is different and 

non-complementary, and avoiding downstream separations methods is desirable. 
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However, this separation comes at the expense of the cumulative carbon yield as 

discussed in the section above.  

      a                b 

      
Figure 5.14. Stage 2 Levoglucosan vs. Stage 2 Phenolics carbon yield (a) & carbon 
selectivity (b) for the stage 2 conditions indicated. 
Cumulative carbon yield is the sum of the carbon in all compound lumps at both stage 2 
& stage 3 conditions. Yield values are (measured µg carbon in vapors) / (mg of raw 
biomass). 
 
      a             b 

 
Figure 5.15. Stage 3 Levoglucosan vs. Stage 3 Phenolics carbon yield (a) & carbon 
selectivity (b) for the stage 2 conditions indicated. 
Cumulative carbon yield is the sum of the carbon in all compound lumps at both stage 2 
& stage 3 conditions. Yield values are (measured µg carbon in vapors) / (mg of raw 
biomass). 
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moderate segregation between the light oxygenates and phenolics into stages 2 & 3, 
respectively, is possible at 380°C. Nearly all of the light oxygenates are segregated into 
stage 2; very little are produced in stage 3 across nearly all conditions observed (Figure 
5.17b). The light oxygenates lump consists of small molecule fragments and is 
produced by all major biomass components; the ability to segregate these from 
phenolics at lower temperatures likely is due to the minimal activation and 
decomposition of cellulose. In this case, most of the light oxygenates are expected to be 
formed primarily from lignin decomposition.  
 
      a             b 

       
Figure 5.16. Stage 2 light oxygenates vs. Stage 2 phenolics carbon yield (a) and carbon 
selectivity (b) for the stage 2 conditions indicated. 
Cumulative carbon yield is the sum of all compound lumps at both stage 2 & stage 3 
conditions. Yield values are (measured µg carbon in vapors) / (mg of raw biomass). 
 
      a             b 

        
Figure 5.17. Stage 3 light oxygenates vs. Stage 3 phenolics carbon yield (a) and carbon 
selectivity (b) for the stage 2 conditions indicated. 
Cumulative carbon yield is the sum of all compound lumps at both stage 2 & stage 3 
conditions. Yield values are (measured µg carbon in vapors) / (mg of raw biomass). 
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The acetic acid and the phenolics also appear to be thermally segregable at lower 

temperature stage 2 conditions. Stage 2 conditions of 380°C or 350°C for 300s achieve 

good segregation of acetic acid into stage 2 while minimizing stage 2 phenolics yields, 

as seen in figure 5.18. As discussed above, acetic acid is not a major product of 

cellulose pyrolysis, and as such is expected to be derived primarily from unreacted 

hemicelluloses and from lignin decomposition (as are the phenolics) (12). Since the 

hemicellulose has been removed, the higher temperature cases (400°C-500°C) show 

little difference in the acetic acid as compared to the lower temperature cases, but the 

phenolics yield is greater due to enhanced lignin decomposition at higher temperatures. 

      a             b 

        
Figure 5.18. Stage 2 acetic acid yield vs. Stage 2 phenolics carbon yield (a) and carbon 
selectivity (b) for the stage 2 conditions indicated. 
Cumulative carbon yield is the sum of all compound lumps at both stage 2 & stage 3 
conditions. Yield values are (measured µg carbon in vapors) / (mg of raw biomass). 
 

5.5 Conclusions 

Rapid screening in the pyroprobe has demonstrated that the production of 

thermochemical vapor product streams of enhanced purity and decreased complexity as 

compared to fast pyrolysis is achievable via staged thermal fractionation by 
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The ability of this technique to segregate the compound lumps is primarily derived from 

the thermal stability of the biopolymers from which the lumps are derived, with the 

exception of lignin, which may exhibit selectivity changes over a temperature range not 

observed with polysaccharides. However, some of the more effective thermal 

segregation conditions (namely, 350°C and 380°C) carry with them a penalty to the 

cumulative carbon yield of organics from the process due to condensation and 

repolymerization reactions that form refractory C-C bonds which do not exist in 

untreated biomass. 

The stage 2 conditions of 380°C and 180 seconds seem to be best of those tested for 

creating both stage 2 and 3 product streams of enhanced purity as compared to fast 

pyrolysis. At these conditions, less than 10% of the carbon in stage 2 comes from 

levoglucosan, while over 85% of the carbon in the stage 3 product stream is in the 

levoglucosan. Only 6.3% of the carbon in stage 3 is in the phenolic lumps, and there is 

also minimal light gas production (4%). For these process parameters, an appropriate 

catalytic strategy for the best stage 2 product stream might involve a simple 

condensation separation for the heavy phenolics followed by a sequential 

ketonization/aldol condensation, ending with transalkylation of the phenolics and 

subsequent hydrotreating (22). Stage 3 could be treated as pure levoglucosan, with the 

aforementioned gluconic acid pathway. Figure 5.19 is an updated version of figure 1.1, 

showing a revision to the hypothetical process schematic based on the results of this 

work. 
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Figure 5.19. Revised configuration for thermal fractionation of lignocellulosic biomass 
with resultant purified product streams based on this work. 
 

Although staged thermal fractionation at stage 2 conditions of 380°C and 180 seconds 

does indeed yield product streams of greatly enhanced compositional purity as 

compared to fast pyrolysis, the separation achieved does come at the expense of total 

carbon yield. Full investigation and understanding of the impacts of this tradeoff of 

yield for better selectivity on process economics are beyond the scope of this work, but 

with this effort we hope to guide inquiry into the acceptable limits of catalytic 

performance and the associated process costs. From an emissions perspective, however, 

this is not necessarily an undesirable outcome. Production of solid char from biomass 

has been shown to be an effective form of carbon sequestration. If the increased 

formation of char due to the intermediate thermal treatment allows for lower catalyst 

deactivation (and subsequent CO2 formation upon regeneration), the carbon cycle 

efficiencies of staged thermal fractionation as compared to fast pyrolysis could be a net 

positive. 

To hedge against the possibility that the carbon yield loss may be too severe of a 

penalty, it is necessary to consider a two-step fractionation strategy, of which the 500°C 
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highest overall process carbon yields of the stage 2 conditions tested. In this scheme, the 

stage 1 treatment achieves segregation of the acetic acid and furfural with minimal 

production of lignin-derived phenolics; however, the stage 1 treatment is mild enough 

to limit the degree to which the lignin & cellulose condenses/repolymerizes, providing 

comparable carbon yields in the resulting vapor product to single-step fast pyrolysis. 

The segregation of the acetic acid into stage 1 is probably the most notable product 

stream purity enhancement, as the acid-catalyzed reactivity of the high-temperature 

liquid product would be expected to be greatly reduced. Further investigation of the 

storage and handling stability, separation strategies, and catalytic upgrading 

performance parameters for a liquid having this composition are underway.  

The differences between the empirical kinetic model used to determine initial 

experimental conditions and the observed vapor products across the stages are not 

trivial. The kinetic model, developed using isothermal techniques, was far off the mark 

when compared to the observed stage 2 temperatures at which production of 

levoglucosan occurred. Almost no levoglucosan was produced at temperatures below 

400°C in these experiments, with the exception being the 380°C, 300s case. The most 

likely explanation is offered by Lin et al (170), where they observe a significant thermal 

lag effect in temperature-ramp thermogravimetric analysis of cellulose pyrolysis. At 

slow (1K min-1) heating rates, rapid volatilization of cellulose is observed to begin at 

roughly 275°C; at fast (150K min-1) heating rates, cellulose volatilization does not begin 

to occur until nearly 375°C. The kinetic model used to select initial conditions in this 

work was developed using a 5K min-1 temperature ramp, much slower than the 1000K 

s-1 heating rate in the pyroprobe apparatus used. This thermal lag phenomenon would 
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account for the discrepancy between the model and our results, including the slight 

levoglucosan production at the 380°C, 300s case. 

Beyond the specific results of this investigation with red oak biomass, the methodology 

developed in this work can be applied to investigate the segregation ability of other 

feedstocks. Oak is unlikely to ever be a serious candidate as an at-scale biofuel 

feedstock but perhaps provides some unique challenges which other feedstocks do not. 

Of particular interest are any differences in behavior between lignin-derived product 

lumps between feedstocks that have evolutionarily divergent lignin biosynthesis 

pathways. It has been established that lignin pyrolysis products generally retain the 

characteristic ring substituents of the monolignols from which they originate (81); this 

forms the basis of py-MBMS analysis for lignin composition analysis (99). The impacts 

on the staged compositions due to this key biological factor are unknown, but some 

differences in the behavior of the phenolic species is to be expected. 
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Chapter 6:  Predictive modeling of switchgrass thermochemical 
products from biomass compositional features 

Extracted from a manuscript in preparation 

Christopher Waters, Fan Lin, Laura Bartley, Richard Mallinson, Lance Lobban 

6.1 Abstract 

Switchgrass has been proposed to be a good candidate for a dedicated biomass 

feedstock for production of thermochemical biofuels (e.g., from fast pyrolysis 

technologies). Staged thermal fractionation of biomass has been proposed as an 

alternative to fast pyrolysis as a way to improve catalytic processing of bio-oil to 

transportation fuels, increasing overall carbon yields and reducing external hydrogen 

input requirements. As the composition of the biomass dictates the products yielded 

upon thermal decomposition, and switchgrass has been shown to have significant 

compositional diversity, we hypothesize that some switchgrasses may have more 

favorable compositions for staged thermal fractionation than others. To test this, we 

used analytical pyrolysis to screen characterized switchgrass samples at pyrolysis 

(500°C) and torrefaction (350°C) conditions and developed predictive linear models of 

the products at each of those conditions as functions of the composition. The models 

were then used to predict the thermochemical product yields of an approximately 1,300 

member switchgrass association panel. Several of the developed models demonstrate 

good re-predictive ability, and the relationships between the dependent and independent 

variables reflect other published literature relating biomass composition and 

thermochemical products, and provide insight into the most important compositional 

variables for in vivo biomasses. We conclude that it is possible to select switchgrasses 
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which are more favorable for the thermal fractionation process, leading to improved 

catalytic processing and improved process viability. 

6.2 Introduction 

While this staged thermal fractionation process as described in chapter 5 suggests that 

separation should be possible based on the biopolymer stability regimes, it is well 

established that the product distribution from thermal decomposition is widely variable 

between biomass types and is dependent on biomass compositional features. In chapter 

2, three possible schema* of how biomass components may influence the yield or 

composition of thermal products were introduced based on evidence in the literature. 

Briefly, schema 1 considers biomass components as the direct sources of 

thermochemical products (e.g., cellulose decomposition forming levoglucosan); schema 

2 considers biomass components to act as catalysts, altering the product yields and 

selectivities of thermochemical decomposition (e.g., levoglucosan reaction catalyzed by 

minerals to form smaller products); and schema 3 considers biomass components which 

interact with other biomass components to alter the product distribution (e.g., cellulose-

lignin interaction leading to decreased levoglucosan yield). 

In this work, we use analytical pyrolysis to study the effects of composition on the 

product distribution of the vapors formed upon the pyrolysis and torrefaction of 

untreated switchgrass biomass. The objective of this study is to identify which 

compositional features are most important to the yields of the thermochemical products 

                                                

* In chapter 2 (and the review it is adapted from), the three types of compositional 
influence are referred to as “Models”; however, in the context of this paper, “schema” is 
used to avoid ambiguity. 
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formed, giving us insight into how to best achieve enhanced purity of thermochemical 

vapor product streams and high yields of favorable compounds for further processing to 

fuels and chemicals. By torrefying and pyrolyzing biomass of the same species but of 

known variable composition, we can model the thermochemical product distribution as 

a function of the composition. The developed models can then be used to predict the 

behavior of a larger population of switchgrass with known composition. 

6.3 Experimental 

Switchgrass (Panicum virgatum) has been identified as a good candidate for a dedicated 

bioenergy crop by the United States Department of Energy (172). Switchgrass has been 

studied as a high-value forage for decades (173, 174) and exhibits high mass yields per 

acre as compared with other herbaceous graminoids (grasses). Because switchgrass is a 

perennial, it can produce yields year after year with no requirement for seasonal 

planting and little decrease in yield per acre across many environments (175). It exhibits 

a large degree of variability in the wild and can adapt to the point of dominance across a 

variety of different environments (176). All of these qualities make it an ideal candidate 

for further study and investigation into suitability for fuels production. 

Twenty-two switchgrass samples were chosen from a panel of approximately 1300 

biochemically characterized switchgrasses (the ‘association panel’) provided by the 

Samuel Roberts Noble foundation. Switchgrass composition was characterized as 

described in section 3.5. Of the approximately 1300 switchgrasses which were 

characterized in this manner, 22 were selected for further biochemical and 

thermochemical characterization. 
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6.3.1 Thermochemical Characterization 

As previously stated, hemicellulose decomposes at a lower temperature range than 

cellulose while lignin decomposes over a broad range of temperatures. While TGA 

experiments with cellulose indicate mass loss above 275°C (164), high heating rates 

have been shown to delay thermal breakdown onset to over 350°C (170). Therefore, 

experimental conditions of 350°C for 60 seconds were chosen as the torrefaction 

conditions to minimize cellulose decomposition while facilitating the breakdown of 

most of the hemicellulose and the more thermally unstable lignin. For pyrolysis 

conditions, 500°C for 60 seconds was chosen to achieve complete deconstruction of the 

biomass (106, 165). The 22 switchgrasses selected for thermochemical characterization 

were analyzed at these conditions, in the manner described in section 3.2. Tables 6.1 

and 6.2 list the identified compounds and their lumps as used in this work. For 

torrefaction experiments, analysis of variance (ANOVA) indicated that all lumps with 

the exception of the light oxygenates show significant differences between the 22 

samples characterized (p < 0.05); for pyrolysis, all lumps showed significant differences 

between the 22 samples characterized. 
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Table 6.1. Compounds and lumps used for torrefaction modeling. 
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6.3.2 Linear modeling 

To more robustly model the thermochemical product yields of the 22 tested 

switchgrasses as functions of their predictor variables (e.g., compositional features), a 

multi-step approach was used employing random forests, ordinary least squares 

regression, and stepwise feature selection. While pure predictive ability of a model on 

its own can be useful in some circumstances, approaches which may result in good 

predictive ability (e.g., principal components regression (177, chapter 3)) can obscure 

the contribution of the predictor variables (a ‘black box’ model). To ensure that the 

models developed were fully interpretable, an ordinary least squares approach was 

chosen. However, the compositional data had 64 potential useful features; therefore, 

significant feature selection was needed in order to avoid over-fitting of the linear 

regression models built. The source code for the models described in this work is 

available in appendices B – D. 

Before beginning, predictor variables which were defined as combinations of other 

predictor variables (e.g., non-structural carbohydrates, defined as total soluble 

carbohydrates plus starch) were removed as these could lead to the development of 

models with highly correlated predictors. Beyond removal of the known combination 

variables, calculated linear combinations were removed from the predictor variables 

using the findLinearCombos function from the caret package in R (178) (179) on 

the full compositional dataset (1096 observations).  

To make initial selections for modeling features, random forests (177, 180) were used to 

assess the most important compositional features in predicting the thermochemical lump 

responses. The random forests were built from the randomForest package in R 
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(181) with 15,000 trees and 20 random variables sampled for each split. Variable 

importance scoring was assessed as the mean decrease in accuracy measured by the 

mean standard error across the forest. The top 7 features from the variable importance 

scores (by percent increase of mean square error [MSE] upon deletion) were used for 

ordinary least squares regression (tables 6.3 and 6.4). Compositional features are 

described in table 3.1. 

acetic acid % Increase MSE  light oxygenates % Increase MSE 
FEST 3.84E+08  RHA 1.79E+05 
GLC 2.98E+08  C 1.62E+05 
Ca 1.70E+08  ARA 1.52E+05 
total_sugar.nrel 1.29E+08  HCA 9.26E+04 
KL 9.55E+07  Lignin.forage 6.42E+04 
PCA 9.51E+07  UA 5.49E+04 
lignin..nrel 6.57E+07  xylose.nrel 4.76E+04 
     
alkyl phenols % Increase MSE  methoxyphenols % Increase MSE 
pCA 3.15E+08  KL 7.22E+05 
Ash.forage 1.44E+08  UA 4.49E+05 
UA 7.84E+07  GLCS 4.22E+05 
HCA 7.58E+07  FEST 2.17E+05 
FEST 5.52E+07  proG..Z.Factor 1.11E+05 
Ash 5.10E+07  PCA 1.00E+05 
Ca 4.67E+07  Ash.forage 6.15E+04 
     
furfurals % Increase MSE  pyran derivatives % Increase MSE 
GLCS 5.98E+06  SUC 1.44E+08 
ADL 3.86E+06  XYL 8.59E+07 
ARA 3.07E+06  PENT 7.73E+07 
SUC 2.25E+06  GLCS 4.60E+07 
Lignin.forage 2.07E+06  GLC 2.77E+07 
proG..Z.Factor 1.67E+06  CP 2.11E+07 
lignin.nrel 8.48E+05  P.forage 1.63E+07 
     
light gases % Increase MSE  non-levoglucosan sugars % Increase MSE 
C 6.71E+06  PENT 6.49E+05 
KL 5.46E+06  Ash 6.11E+05 
GLC 3.80E+06  ASH 4.09E+05 
Crude.Protein 3.76E+06  sgratio.nrel 4.02E+05 
RHA 3.51E+06  EE 2.51E+05 
GAL 2.08E+06  ARA 2.17E+03 
XYL 1.89E+06  RHA -1.43E+03 

Table 6.3. Model variable importance scores for top seven torrefaction random forest 
variables. 
Variables in bold were eventually used in the final models. 
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acetic acid % Increase MSE  light oxygenates % Increase MSE 
PCA 8.21E+07  FA 1.44E+06 
GLC 1.97E+07  UA 1.28E+06 
K 1.73E+07  Ca 1.22E+06 
FA 1.23E+07  KL 6.67E+05 
PENT 1.04E+07  PENT 4.62E+05 
Lignin.forage 1.03E+07  C 4.48E+05 
Ash 8.58E+06  glucose.nrel 3.76E+05 
       
alkyl phenols % Increase MSE  methoxyphenols % Increase MSE 
pCA 4.50E+06  ARA 1.68E+06 
glucose.nrel 2.64E+06  PENT 1.33E+06 
PCA 1.25E+06  lignin.nrel 8.82E+05 
K 8.02E+05  STA 5.26E+05 
Crude.Protein 7.29E+05  PENT2 1.86E+05 
Ash 3.33E+05  glucose.nrel 1.82E+05 
SUC 2.96E+05  xylose.nrel 6.08E+04 
       
furfurals % Increase MSE  pyran derivatives % Increase MSE 
K 4.59E+05  PENT2 3.59E+06 
Crude.Protein 1.19E+05  K 3.11E+06 
PCA 6.74E+04  XYL 2.58E+06 
GLC 2.29E+03  GLCS 2.24E+06 
RHA -1.68E+03  ASH 2.14E+06 
PENT2 -3.01E+03  CAL 1.34E+06 
Mg -8.76E+03  PENT 1.09E+06 
       
levoglucosan % Increase MSE  non-levoglucosan sugars % Increase MSE 
P 2.45E+07  K 2.76E+05 
K 1.61E+07  FRU 1.17E+05 
xylose.nrel 1.36E+07  xylose.nrel 3.86E+04 
ADL 9.72E+06  HCA 3.82E+04 
KL 4.57E+06  GAL 3.81E+04 
FEST 3.67E+06  GLC 1.84E+04 
XYL 3.65E+06  XYL 1.41E+04 
      
light gases % Increase MSE    
UA 8.31E+07    
C 7.74E+07    
KL 7.72E+07    
Ca 5.21E+07    
glucose.nrel 2.96E+07    
FA 2.63E+07    
K 2.55E+07    

Table 6.4. Model variable importance scores for top seven pyrolysis random forest 
variables. 
Variables in bold were eventually used in the final models. 
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Following this automatic feature selection step, ordinary least squares linear regression 

models were built using the selected features using the lm function from the stats 

package in R (178). To further reduce model over-fitting, stepwise feature selection 

minimizing the Akike information criteria statistic (AIC) (182) was used. Both forward 

& backward approaches were employed. Finally, the vif (variance inflation factors) 

function from the car package in R (183) was applied to the stepwise models to test for 

multicollinearity. Variables having an inflation factor greater than 10 were removed 

from the initial ordinary least squares model and the stepwise selection was re-run. The 

final model coefficients and their values are presented in tables 6.5 and 6.6. 

acetic acid (Intercept) FEST Ca lignin.nrel  
720300.34 33219.44 -305260.1 -10292.75  

      

alkyl phenols (Intercept) pCA Ash.forage FEST UA 
198885.89 7785.6 17377.44 22921.93 -11980.6 

      

furfurals (Intercept) GLCS ARA   
-4698.984 1898.821 1850.343   

      

light gases (Intercept) Crude.Protein XYL   
69998.6703 3133.2839 -227.4472   

      

light oxygenates (Intercept) RHA    
42916.211 4948.003    

      

methoxyphenols (Intercept) UA    
66015.173 -1241.789    

      

pyran derivatives (Intercept) PENT GLCS   
-31770.8978 950.7257 9845.1746   

      
non-levoglucosan 
sugars 

(Intercept) sgratio.nrel EE   
-6225 45954 1801   

Table 6.5. Final model coefficients developed for the torrefaction thermochemical lump 
indicated. 
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acetic acid (Intercept) K Ash PENT2   
428149.75 112052.83 -7003.11 -881.59   

       

alkyl phenols (Intercept) pCA K SUC   
19390.61 1314.24 24239.00 -585.41   

       

furfurals (Intercept) K GLC SSE   
-16555.59 7914.94 91.53 413.09   

       

levoglucosan (Intercept) P K xylose.nrel ADL  
51319.39 -621733.33 -45507.10 510989.78 1173.02  

       

light gases (Intercept) C Ca glucose.nrel FA K 
2435647.92 -4906.00 183902.51 -599861.90 -5708.51 112343.10 

       

light oxygenates (Intercept) FA UA glucose.nrel   
31635.30 -939.54 2185.86 -88782.91   

       

methoxyphenols (Intercept) ARA lignin.nrel    
33233.79 -563.70 703.30    

       

pyran derivatives (Intercept) GLCS     
87857.55 4066.25     

       
non-levoglucosan 
sugars 

(Intercept) K FRU GAL XYL  
-4652.18 3347.06 390.16 610.90 77.21  

Table 6.6. Final model coefficients developed for the pyrolysis thermochemical lump 
indicated. 
 

6.4 Results & Discussion 

6.4.1 Linear modeling 

The predictive thermochemical model R2 values were calculated from the fit of the 

predictions of the final stepwise models from the compositional data to the observed 

thermochemical data and are shown in table 6.7. Models with an R2 value greater than 

or approximately equal to 0.5 were accepted and those below this value were rejected as 

too poorly fitted. A total of four linear models with good predictive ability and 

interpretable coefficients (that is, predicted relationships between composition & 

product distribution which are in agreement with literature or are otherwise reasonably 

hypothesized to have a relationship) were developed for the torrefaction products, and 



120 

three were developed for pyrolysis. The signs of their coefficients and the schemas 

these coefficients fit are shown in tables 6.8 – 6.11. 

350°C Torrefaction models R2 value   500°C Pyrolysis models R2 value 
acetic acid 0.488   acetic acid 0.466 
alkyl phenols 0.811   alkyl phenols 0.739 
furfurals 0.501   furfurals* 0.379 
light gases† 0.733   levoglucosan* 0.418 
light oxygenates* 0.110   light gases† 0.528 
methoxyphenols* 0.093   light oxygenates* 0.388 
pyran derivatives 0.738   methoxyphenols 0.645 
non-levoglucosan sugars† 0.436   pyran derivatives 0.314 
      non-levoglucosan sugars* 0.375 

*Unacceptable predictive ability. †Uninterpretable coefficients. 
Table 6.7. Torrefaction and pyrolysis stepwise model R2 values for re-prediction of 
observed values. 
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Table 6.10. Torrefaction model coefficients and their relationship schemas. 
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Table 6.11. Pyrolysis model coefficients and their relationship schemas. 

 

6.4.2 Torrefaction Schema 1 Relationships 

Schema 1 relationships, or the direct conversion of biomass components to 

thermochemical products, are predicted by four of the torrefaction models (table 6.10). 

The pyran model predicts increasing yields of pyrans with increasing amounts of 

pentose & soluble glucose measurements. Both pentose sugars and glucose have been 

reported by others in the literature to form pyran products on fast pyrolysis (79, 184), 

and the identified pyrans in this lump are both C5 and C6. The observed pyrans here are 

therefore most likely primary products of the decomposition of these sugar types, with 

moderate to low contribution from the other sugars (e.g., non-glucose hexoses). The 
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furfural lump model is similar in that the two coefficients are sugar measurements 

(arabinose & soluble glucose) from which furfurals may be directly produced; however, 

the predictive ability is lower in comparison with the pyrans. These direct conversion of 

components to products are explicit schema 1 relationships. 

It is worth noting that the compositional predictors for the torrefaction furfurals model 

(arabinose and soluble glucose) are much lower mass fractions of the original biomass 

than those of the torrefaction pyrans model (all pentoses + soluble glucose). Figure 6.1 

shows the boxplot of the distributions of these sugars in the association panel. While the 

FID area of the furfurals lump for the 22 tested samples is lower than that of the pyrans 

lump, the difference is not large enough to reflect the disparities underlying distribution 

of the predictor sugar compositions. It is possible that there are secondary reactions 

between the pyrans or the sugars and other components within the biomass (e.g., 

inorganics) not captured in this predictive model which catalyze ring closure reactions 

in a schema 2 effect, shifting products out of the pyrans group and into the furfurals 

group. Patwardhan et al. (88) observed a mild catalytic effect of magnesium & calcium 

salts which increased the production of 5-hydroxymethyl furfural away from 

levoglucosan (a pyranose anhydrosugar) upon pyrolysis of cellulose, and a similar 

effect may be occurring here.  
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Figure 6.1. Boxplot distributions of the two compositional sugars for the furfurals (left) 
and pyran (right) models. 
 

The negative sign of the “lignin.nrel” coefficient in the torrefaction acetic acid model 

implies a schema 1 relationship between composition and thermochemical products 

(table 6.10). Acetic acid in bio-oil has been reported as a product of primarily 

hemicellulose pyrolysis (and as relatively minor products of lignin and cellulose 

pyrolysis) (12, 30, 79). While production of acetic acid from the polysaccharides results 

from fragmentation of the sugar monomers or from acetyl groups present on 

hemicellulose side chains, no hemicellulose measurements are incorporated in the 

model. However, the negative sign of the “lignin.nrel” coefficient indicates that biomass 

which contains more polysaccharides (as an overall weight percent) would produce 

more acetic acid, which is consistent with what others have observed. 

The only positive predictive relationship in the torrefaction acetic acid model is the 

measurement of esterified ferulates. Esterified ferulates are the ferulic acids which have 

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

24

28

32

36

200

220

240

260

280

ARA + GLCS PENT + GLCS

Va
lu

e 
(m

g/
g)



124 

been incorporated into the cell wall, forming cross-linkages between the lignin and 

hemicelluloses (56, 57, 62, 99) (figure 6.3), in contrast with the measured predictors 

pCA (p-coumaric acid) and FA (ferulic acid), which are not yet incorporated into the 

cell wall. The acid group of the ferulic acid forms the ester bond with hemicellulose 

sugar chains, and the phenolic & methoxy group at the other end of the molecule are 

incorporated into the lignin polymer via a variety of possible lignin coupling reactions 

(forming bonds such as β-O-4, β-5, 5-5, 5-O-4, etc) (55). Direct production of some of 

the acetic acid from these molecules may be due to decomposition of the 

polysaccharide-lignin crosslink, with bond scission between carbons 1 & 2. A 

speculative mechanism for such a reaction is shown in figure 6.2.  
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Figure 6.2. Speculative reaction mechanism of acetic acid, phenolic, and furan 
derivative formation from ferulic acid esterified to an arabinose monosaccharide via a 
hydrogen radical initiated pathway. 
 

The alkyl phenol model is the fourth torrefaction model which predicts schema 1 

relationships. Both the unincorporated p-coumaric acid and the esterified ferulates 

(figure 6.3) have positive coefficients in the model. Pyrolysis of the p-coumaric acid 

(with removal of the carboxylic acid) can lead directly to the major alkyl phenolic 

compound, 4-vinylphenol (115). The esterified ferulic acid could also be a source of the 

alkyl phenols, but a removal of the methoxy substituent would be required.  
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Figure 6.3. Ferulic acid (left) and p-coumaric acid (right). 
The acid end of ferulic acid can bond with hemicellulose sugars, and the phenolic end 
with lignin, to form ester crosslinks between these two biopolymers. 
 

6.4.3 Pyrolysis Schema 1 Relationships 

Two of the three pyrolysis models also predict schema 1 relationships between 

composition and thermochemical products (table 6.11). As discussed above, acetic acid 

has been reported as a product of primarily hemicellulose pyrolysis and the positive 

sign of the pentose coefficient in the pyrolysis model corroborates this relationship. The 

pyrolysis alkyl phenol model, like the torrefaction alkyl phenol model, predicts a 

schema 1 relationship with the pCA, for the same reasons. Also for the pyrolysis alkyl 

phenols model, the inclusion and negative coefficient for sucrose suggests an implicit 

schema 1 relationship much like the lignin in the torrefaction acetic acid – increasing 

amounts of hemicellulose compete with lignin content in the biomass. Finally, the 

pyrolysis methoxyphenol model has a positive coefficient for with the “lignin.nrel” 

lignin measurement. These relationships are consistent with developed literature on 

pyrolysis products of biomass. 

6.4.4 Torrefaction Schema 2 Relationships 

Schema 2 relationships are also predicted by the developed torrefaction models. The 

torrefaction model for acetic acid predicts that increasing amounts of calcium lowers 

acetic acid yield (table 6.8). This effect may be due to secondary cracking reactions of 

the acetic acid on the calcium to light gases (CO & CO2), decreasing the acetic acid 
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yield. The mass balances reported by Patwardhan et al. (88) for inorganic-doped 

cellulose powder showed the highest yield of ‘unaccounted’ for the CaCl2 case, and the 

loss is attributed to formation of gaseous species and water. It is also possible that the 

calcium acts as a dehydration catalyst for the acetic acid, converting it into acetaldehyde 

and into the light oxygenates compound lump. While Patwardhan et al. (88) did not 

observe increasing acetaldehyde formation with added calcium in cellulose pyrolysis, 

acetic acid is not a major primary product of cellulose pyrolysis, unlike hemicellulose 

pyrolysis. 

Another torrefaction schema 2 relationship is predicted between the total ash content of 

the switchgrass and the alkyl phenol lump. Increasing yields with increases in the total 

ash content of the switchgrass is somewhat unexpected, as inorganics have been shown 

to primarily increase the kinds of secondary reactions which lead to char & light gas 

formation. However, Raveendran and Fahmi (87, 185) independently compared the 

TGA profiles of various untreated and demineralized biomasses and found that the 

initial decomposition temperature was increased after demineralization. The inorganics 

in the biomass act as catalysts for the thermal decomposition of the cell wall 

polysaccharide/lignin composite matrix. Higher inorganic content in the biomass would 

promote higher rates of decomposition of the cell wall, allowing for enhanced transport 

of the lignin decomposition products out of the reacting particle, limiting the char- and 

light gas-forming secondary reactions.  

6.4.5 Pyrolysis Schema 2 Relationships 

Two of the three pyrolysis models predict schema 2 relationships (table 6.11), all 

involving inorganic components. The acetic acid model predicts increasing yields with 
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potassium and decreasing yields with total ash content; while the promotion of acetic 

acid formation may suggest enhanced decomposition of hemicellulose sugars via 

secondary decomposition reactions with potassium (88), the acetic acid may be over-

cracking to CO/CO2, much like the effect of calcium on torrefaction acetic acid yields. 

Finally, the increasing yield of alkyl phenols with increased potassium content may be 

similar for that proposed for torrefaction above – enhanced decomposition of the cell 

walls leading to fewer secondary reactions.  

6.4.6 Schema 3 Relationships 

One possible schema 3 relationship is predicted by the developed torrefaction models 

(none were apparent in the pyrolysis models) (table 6.10). Increased uronic acid (UA) 

content is positively correlated with lower yields of the alkyl phenols. Uronic acid is 

known to act as a crosslinker between lignin and hemicellulose (71), in a similar 

functional role as the esterified ferulates. From a plot of the esterified ferulates and the 

uronic acid (figure 6.4a), it appears there is a strong inverse relationship between these 

components in the full switchgrass population. However, this relationship is not present 

between the unincorporated p-coumaric acid or ferulic acid (figure 6.4b & figure 6.4c). 

The uronic acid may thus be acting as a competitive crosslinker, limiting the 

esterification of the ferulates and thus their contribution to the overall alkyl phenol 

yield.  
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a 

 
b 

 
c 

 
Figure 6.4. Uronic acids vs. esterified ferulates in the association panel. 
In (a), a strong inverse relationship and similar functional role implies a competitive 
relationship between these components of the biomass in crosslinking lignin to 
hemicelluloses. (b) and (c), the unincorporated ferulates, do not show a strong 
correlation with the uronic acids. 
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6.4.7 Bad models – things we couldn’t predict 

The light oxygenate compound lump consists of molecules which result from secondary 

reactions of primary thermochemical products and radical species in the vapors or 

cracking via reactions with inorganics present in char – e.g., a ‘model 2’ relationship 

between the composition and the thermochemical products. As the modeling approach 

used did not consider interaction terms (which would have increased the variables to fit 

from 64 to over 400), the inability to model the response of this lump for pyrolysis and 

for torrefaction is somewhat unsurprising.  Other models which had poor predictive 

ability were the torrefaction methoxyphenols and the pyrolysis furfurals, levoglucosan, 

pyran, and sugars. Further modeling work on these compound lumps may be possible 

by collecting data on more switchgrass samples. 

While the predictive ability of the model with regards to torrefaction & pyrolysis light 

gases and torrefaction sugars was good, the interpretability of the coefficients for these 

models was poor. The coefficients of these three models are shown in 6.5 and 6.6; of 

these, the pyrolysis light gas model is the only one with coefficients which have been 

demonstrated or theorized by other work in the literature to contribute to the product 

lump’s formation; however, it also includes components which do not reflect 

observations extant in the literature. This plus the high number of included predictors 

suggests that this model may be over-fitted to the data and is rejected on those grounds. 

The other two models (torrefaction light gas & torrefaction sugars) do not include any 

relationships suggested by other literature. These are therefore likely non-causal 

correlations, or artifacts of the implemented modeling methodology. Like the light 
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oxygenates above, further data collection to improve the modeling process could shed 

more light on relationships between compound lumps and the biomass composition. 

6.4.8 Prediction of larger association panel population 

Torrefaction predictions 

Following the development and evaluation of the predictive models, the four 

torrefaction models with good predictive ability – acetic acid, alkyl phenols, furfurals, 

and pyrans – were used to predict the yield of 1,096 complete cases (i.e., no missing 

predictor data) from the approximately 1300 member association panel. Histograms 

showing the distributions of the predicted values are shown in figure 6.5. These figures 

indicate that the test samples used captured the predicted diversity of the association 

panel’s thermochemical product distribution well, as the test samples’ observed yields 

span the predicted yield distributions. 
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Figure 6.5. Histograms of the predicted yield values of the indicated compound lumps 
for the 1,096 complete cases of the approximately 1,300 member association panel. 
Red bars indicate the observed values of the test set, with their height increased for 
visibility purposes. The observed values span almost the full range of the predicted 
values for all four models. 
 

To simplify the predicted lumps for further exploration of the predictions (specifically, 

that three-variable graphs are more easily interpretable than four-variable graphs), the 

furfurals & pyrans lumps were combined into a single lump, leaving us with three 

lumps – acetic acid, alkyl phenols, and furfurals/pyrans. These three predicted lumps 

are plotted together in figure 6.6. The predicted yields of these three lumps show some 

mild correlation, with high yields of the alkyl phenols generally correlating with high 

yields of acetic acid and generally higher levels of the combined furfurals & pyrans.  
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Figure 6.6. Predicted torrefaction compound lump yields for the 1,096 complete cases 
of the approximately 1,300 member association panel. 
Pyrans and furfurals have been combined for simplicity.  
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Figure 6.7. Predicted torrefaction compound lump yields for the 1,096 complete cases 
of the approximately 1,300 member association panel, replotted to show only the upper 
quadrant of figure 6.6. 
Pyrans and furfurals have been combined for simplicity.  
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The composition of the switchgrasses in this upper quadrant (figure 6.6) are of 

particular interest for improving the staged thermal fractionation process as discussed in 

chapter 5. Higher yields of acetic acid, furfurals, and pyrans at these torrefaction 

conditions is desirable, as this implies better thermal segregation of these compounds 

into the two lower temperature stages. Figure 6.8 shows the underlying compositional 

features for these four predictive models, with overlaid highlights of the high and low 

phenolics yields for switchgrasses which appear in the upper quadrant plot (figure 6.7). 

From these distributions, it appears that the pCA and esterified ferulates are predicted to 

have the most influence over the yield of the alkyl phenols for the switchgrasses with 

high predicted acetic acid, furfurals, and pyrans yields. In consideration of the optimal 

segregation strategy recommended in chapter 5, switchgrasses with higher amounts of 

esterified ferulates and pCA may be desirable feedstocks for torrefaction.   
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Figure 6.8. Compositional feature distributions from the 1,096 complete cases of the 
approximately 1,300 member association panel which are used in the 4 predictive 
models. 
The colored shaded areas are the panel members predicted to be in the upper quadrant 
of figure 6.6 (e.g., in figure 6.7).  
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Pyrolysis predictions 

In the same fashion, the yields of the 1,096 member association panel are predicted for 

the three pyrolysis models with good predictive ability. Histograms showing the 

distributions of the predicted values are shown in figure 6.9. Similar to the torrefaction 

models, these figures indicate that the test samples used captured the predicted diversity 

of the association panel’s thermochemical product distribution well. 

 
Figure 6.9. Histograms of the predicted yield values of the indicated compound lumps 
for the 1,096 complete cases of the approximately 1,300 member association panel. 
Red bars indicate the observed values of the test set, with their height increased for 
visibility purposes. The observed values span almost the full range of the predicted 
values for all four models. 
 

Similar to the torrefaction models, the two phenolic lumps’ yields are combined and 

plotted against the acetic acid yields in figure 6.10, with the potassium content (the only 

compositional features which promote both phenolics and acetic acid yields) as the 

color axis. These yields show a high degree of correlation and suggest that there are no 

trade-offs between phenolic and acetic acid yields for pyrolysis of switchgrass. 
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Figure 6.10. Predicted pyrolysis compound lump yields for the 1,096 complete cases of 
the approximately 1,300 member association panel.  
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6.5 Conclusions 

As discussed in the experimental section, these models linking compositional features to 

thermochemical product distribution were developed in such a way as to preserve the 

interpretability of the models, and not necessarily to have the best predictive ability. Of 

the ten models with good predictive ability developed (for torrefaction: acetic acid, 

alkyl phenols, furfurals, light gases, pyran derivatives, and sugars; and for pyrolysis: 

acetic acid, alkyl phenols, light gases, and methoxyphenols), seven were found to 

incorporate compositional features whose behavior is in agreement with the literature 

(dis-including torrefaction light gases & sugars, and pyrolysis light gases). This 

combination of good predictive ability and agreement with the literature have led us to 

conclude that these seven models are likely to be modeling actual phenomena, 

especially given the feature elimination steps performed to avoid over-fitting. 

Understanding how biomass compositional features impact the thermochemical product 

distribution is challenging due to a variety of factors. Some thermochemical products 

can be formed by multiple source biopolymers (ex: furfurals from hemicellulose & 

cellulose), obscuring the relative contribution from each (competing schema 1 

relationships). Even the known primary decomposition products (e.g., levoglucosan or 

phenolics) can interact with others, creating secondary reaction products which can be 

similar to other primary products (e.g., schema 2 relationships, such as cellulose 

decomposition intermediates forming furfurals by reacting with inorganics, or calcium 

cracking low molecular-weight species further to light gases). These overlapping 

products and interactions prohibit some of the most straightforward analysis techniques, 

such as direct correlation analysis. Compounding the issue, many studies in the 



140 

literature on this topic have used segregated biopolymers (i.e., extracted 

cellulose/hemicellulose/lignin), which do not reveal the possible interactions between 

these components (e.g., schema 3 relationships) that have been shown to occur in true 

biomass feedstocks (92).  

This screening of a well-characterized single species is the first of its kind in the 

literature to our knowledge. While the aggregate analysis of the products of biomasses 

of known composition can mitigate some of the issues mentioned above, this type of 

approach presents its own set of challenges, primarily related to the amount of 

compositional data involved and the limitations of the thermochemical experimental 

methods. With 64 compositional features which could have been considered, the 

number of observations would ideally be in the hundreds to permit a ‘traditional’ linear 

modeling approach, but time and equipment constraints on the thermochemical data 

collection approach restricted us to 22 samples. This prompted the need for the 

somewhat sophisticated automatic feature selection techniques used, and prohibited the 

development of models which take into account interaction terms between 

thermochemical products and compositional features, limiting the degree to which 

secondary reaction effects can be explored. This is likely the reason that we were unable 

to model the light oxygenates and light gases well, as discussed above. 

The compositional diversity of the switchgrasses was initially hypothesized to result in 

a broad range of outcomes for the thermochemical product distribution; in both the test 

set observations and the predicted association panel yields, we observed this to be 

correct (Figure 6.11). These large differences in the product distributions, attributable to 

differences in the underlying compositions (or structures), suggest that compositionally 
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tuning feedstocks for specific catalytic upgrading strategies could result in greatly 

enhanced process performance, and underscores the need for further research into 

compositional influences on product yields.  

 

 
Figure 6.11. Minimum values of the observation set as a percentage of the maximum 
values of the observation set for torrefaction and pyrolysis thermochemical data. 
Large differences in the yield distributions were observed for most of the compound 
lumps. 
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Chapter 7:  The effect of genetic modification of the lignin biosynthesis 
pathway on low temperature pyrolysis product yields 

Extracted from a manuscript in preparation 

Christopher Waters, Fan Lin, Laura Bartley, Richard Mallinson, Lance Lobban 

7.1 Introduction 

In chapters 5 and 6, we have seen that there are means to exert control over the 

thermochemical degradation products via process and feedstock compositional factors. 

The study in chapter 5 showed that it is possible to achieve segregation of 

thermochemical products into separate product streams, which can then have catalytic 

valorization strategies appropriately tailored in order to improve desirable outcomes 

(e.g., maximizing carbon yield, improving process economics, etc.). Complementing 

this, the study in chapter 6 showed that not only do different organisms within a single 

species have different thermochemical product distributions but also revealed the 

compositional factors which may be responsible for the observable differences. 

However, the role of heritable traits in the biomass was not studied in the previous study 

with switchgrass, and may be another area in which thermochemical biomass feedstock 

improvements may be realized. 

One of the desirable segregations to achieve via staged thermal fractionation was the 

‘clean’ removal of hemicellulose via a low-temperature first stage treatment. At the 

conditions used in that study (270°C, 20 minutes), small amounts of both cellulose and 

lignin were decomposed and volatilized in addition to the hemicellulose. This initial 

low temperature treatment can likely be optimized to minimize cellulose degradation 

using solely time and temperature parameters, but TGA studies of lignin decomposition 

indicate that some lignin decomposition will be unavoidable at conditions which 
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decompose hemicellulose (27-29). While the use of a low-lignin feedstock could help to 

minimize the selectivity to lignin-derived phenolics in a first stage product stream, high 

amounts of lignin-derived phenolics are desirable from a whole-process viewpoint as 

the high C:O ratio and profligate C-C bonds could lead to relatively low-input fuel 

range molecules. However, if the thermal stability of the lignin could be altered to 

suppress decomposition at lower temperatures, especially without reducing the total 

lignin amount, both of these desirable outcomes could be achieved.  

As discussed in section 2.1, lignin is a complex, cross-linked polymer comprised 

primarily of three monomer (H, G, and S) units cross-coupled via oxidative reactions 

during incorporation in the cell wall (55). Figure 7.1 shows an overview of these three 

lignin monomers and their resulting structures in the polymer. The most frequently 

occurring polymer unit is the β–O–4 structure (A), accounting for more than half of the 

inter-unit linkages; other commonly occurring units are β–5 (B), β–β (C), 5–5 (D), 5–

O–4 (E), and β–1 (F) (other units are various special cases, and are included by the 

author for completeness). Increased production of G monomers over S monomers (i.e., 

a lower S/G ratio) leads to an increased prevalence of β–5, 5-5, and 5-O-4 linkages in 

the lignin polymer over β–O–4, β–β, and β–1 linkages due to the increased availability 

of the 5 position as a reaction site (55). Table 7.1 summarizes the results from DFT 

calculations of the enthalpy of dissociation for these six bonds. These suggest that, in 

general, we should expect the initiation of the radical depolymerization reactions of the 

lignin biopolymer to be less favorable at lower temperatures for lower S/G ratios. This 

would result in lower selectivity to lignin decomposition products at lower 

temperatures. As lignin synthesis is a regulated biological process (55), the production 
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of all three monomers has been demonstrated to be impacted by heritable traits. Figure 

7.2 shows an overview of the lignin biosynthesis pathways established and the enzymes 

(when known) that catalyze various steps in the process.  
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Figure 7.1. Lignin monomers and structures in the polymer. From (55).  

17 Apr 2003 18:46 AR AR184-21-COLOR.tex AR184-21-COLOR.SGM LaTeX2e(2002/01/18) P1: GDL

See legend on next page
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Bond Structure ΔHdiss , kcal/mol, 298K Reference 

β-5 

 

101.6 – 107.1 (186) 

5-5 

 

111.8 – 118.1 (186) 

5-O-4 

 

77.7 – 82.5 (187) 

β–O–4 

 

67.7 – 71.3 (186) 

β-β 

 

81.1 – 82.6 (188) 

β-1 

 

64.7 – 69.1 (187) 

Table 7.1. Summarized results from DFT calculations of the enthalpy of dissociation 
for six common lignin crosslinks. 
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Figure 7.2. Phenylpropanoid and monolignol biosynthetic pathways. From (55) 
 

In this study, we compare the low-temperature thermochemical products of a 

genetically modified switchgrass variant to those of the unmodified wild-type. The 

9 Apr 2003 13:48 AR AR184-PP54-21.tex AR184-PP54-21.sgm LaTeX2e(2002/01/18) P1: GJB

526 BOERJAN ⌅ RALPH ⌅ BAUCHER
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genetic modification down-regulates the production of Caffeic acid O-methyltransferase 

(COMT), an enzyme which catalyzes the production of S monomers (figure 7.2) (55). 

This lowers the S/G ratio of the resulting lignin which is incorporated into the cell wall. 

We hypothesize that this modification will result in lower phenolic product yield for the 

down-regulated mutants as compared with their unmodified wild-type. To our 

knowledge, this is the first reported study of the effect of genetic modification to 

modify a major cell wall biopolymer on thermochemical product distributions. 

7.2 Experimental 

C. N. Stewart and associates generously provided eight samples (four wild-types and 

four mutants) from the COMT2-RNAi knock down line of transgenic switchgrass as 

described and characterized in Baxter et. al. (126), along with their corresponding 

biochemical characterization data. Table 7.2 lists the compositional information for 

these samples. The wild-types and mutants exhibit significant differences in their S/G 

ratios, while the total lignin content is only slightly lower in the mutants. The four wild-

types and four mutants are all from cloned plants of their respective category. 

Each sample was prepared for thermal decomposition in the method described in 

section 3.2.1. Each biological replicate was run with three technical replicates in the 

pyroprobe apparatus. The average sample size was 1038 mg with a 5.04% standard 

deviation. The pyrolysis temperature was 290°C with a hold time of 120 seconds. 

Vapors were collected & analyzed as described in section 3.2. The identified 

compounds and their lumps as used in this work are listed in table 7.3. 
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Table 7.3. Compounds identified and used in this study.   
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7.3 Results 

The thermochemical products from the 8 samples run are shown in figure 7.3. 

Comparable amounts of methoxyphenols were produced by both the wild-types & 

mutants; however, mutants produced much less alkyl phenols per milligram of 

switchgrass. A paired t-test for means was performed to assess if the differences in the 

means of the normalized yields were significant (p > 0.1). The results are shown in table 

7.4 and indicate that there is not a significant difference in the yields per gram of 

biomass of any of the compound groups except for the alkyl phenols. 
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Figure 7.3. Combined lump yields for all compounds and samples in this study. 
Yield values are (Summed compound peak areas) / (mg of raw switchgrass). All 
samples run at 290°C, 120s. Each value reported is the mean of three technical 
replicates; error bars indicate 95% confidence interval of the mean for these three 
replicates.  
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The two phenolic compound groups (alkyl phenols and methoxyphenols) were summed 

together and the result was normalized per milligram of lignin in the sample; this result 

is shown in figure 7.4. All of the wild-types tested yielded more phenolics per milligram 

of lignin than did the mutants, although the yield of sample SG5 was virtually identical 

to the highest yielding sample of the wild-type (SG7). 

 
Figure 7.4. Wild-type vs. Mutant phenolic compound yields. 
Yield values are (Summed phenolic compound peak areas) / [(mg of raw switchgrass) * 
(wt % lignin)]. All samples run at 290°C, 120s 
 

A paired t-test for means was performed to assess if the differences in the means of 

these lignin-normalized combined phenolics yields were significant (p > 0.1). The 

results are shown in table 7.4 and indicate that there is a significant difference in the 

yields per gram of lignin in the biomass of the phenolics at the conditions tested. 
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t-Test: Paired Two Sample for Means 
  Wild-type Mutant 
Mean 4883371.75 3839352.509 
Variance 4.2142E+11 1.09436E+11 
Observations 4 4 
Pearson Correlation 0.0227  
Hypothesized Mean Difference 0  
df 3  
t Stat 2.8925  
P(T<=t) one-tail 0.0314  
t Critical one-tail 2.3534  
P(T<=t) two-tail 0.0629  
t Critical two-tail 3.1824   

Table 7.4. t-test of sample means of phenolic yields normalized to the amount of lignin 
in switchgrass samples.  
 

Figure 7.5 shows the contributions of each of the identified phenolic compounds to the 

total lignin-normalized yield results, color-coded by the originating monomer unit. 4-

vinyl phenol (H monomer derived) and 4-vinyl guaiacol (G monomers derived) 

dominate the results, and few dimethoxy-substituted phenolic products (S monomer 

derived) are observed. Most of the differences observed in the normalized phenolic 

yields of the mutants and wild-types are due to the difference in the 4-vinyl phenol 

(figure 7.6). 
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Figure 7.5. Yields of all tracked phenolic compounds colored by originating monomer 
Yield values are (Summed phenolic compound peak areas) / [(mg of raw switchgrass) * 
(wt % lignin)]. All samples run at 290°C, 120s  
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Figure 7.6. Yields of two most abundant phenolic compounds in this study. 
Yield values are (compound peak area) / [(mg of raw switchgrass) * (wt % lignin)]. All 
samples run at 290°C, 120s  
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between the wild-types and mutants (table 7.5). For both wild-types and mutants, yield 

of S derived products is minimal (figure 7.8), but the difference is statistically 

significant (p < 0.1) (table 7.6). 

 
Figure 7.7. Yields of phenolic compounds derived from G monomers. 
Yield values are (compound peak area) / [(mg of raw switchgrass) * (wt % lignin)]. All 
samples run at 290°C, 120s 
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  Wild-type Mutant 
Mean 2144057.52 2082788.177 
Variance 19488378847 18828723648 
Observations 4 4 
Pearson Correlation -0.8156  
Hypothesized Mean Difference 0  
df 3  
t Stat 0.4646  
P(T<=t) one-tail 0.3369  
t Critical one-tail 2.3534  
P(T<=t) two-tail 0.6739  
t Critical two-tail 3.1824   

Table 7.5. t-Test: Paired Two Sample for Means – G-unit products only. 
 

 
Figure 7.8. Yields of phenolic compounds derived from S monomers.  
Yield values are (compound peak area) / [(mg of raw switchgrass) * (wt % lignin)].  
All samples run at 290°C, 120s  

1.18E+05

9.23E+04

9.86E+04

1.55E+05

7.88E+04

9.33E+04

7.34E+04

9.25E+04

0.0E+00 5.0E+04 1.0E+05 1.5E+05

SG3

SG5

SG11

SG14

SG4

SG7

SG9

SG10

FID	Area	(µV*s)	/	
(1	mg	biomass	 fed	*	lignin	wt%)

M
ut
an
t	
			
			
			
			
			
			
			
			
			
		W

ild
-t
yp
e

C₁₀H₁₀O₂

Sinapyl	alcohol	(cis)	

Syringyl	acetone	

Syringol,	4-
propenyl- (trans)	

Syringol,	4-
propenyl- (cis)	

Syringol,	4-vinyl-

Syringol	



160 

  Wild-type Mutant 
Mean 115919.7377 84509.69338 
Variance 784382489.7 99189479.33 
Observations 4 4 
Pearson Correlation 0.3368  
Hypothesized Mean Difference 0  
df 3  
t Stat 2.3817  
P(T<=t) one-tail 0.0487  
t Critical one-tail 2.3534  
P(T<=t) two-tail 0.0975  
t Critical two-tail 3.1824   

Table 7.6. t-Test: Paired Two Sample for Means – S-unit products only. 
 

7.4 Discussion 

As hypothesized, statistically significant differences are observed in the lignin-

normalized phenolics product yields between the COMT mutant samples and the wild-

type samples. This could be a result of the decreased abundance of β–O–4 inter-unit 

linkages in the mutants due to the suppression of S monomer formation. The phenolic 

species most responsible for the observed differences is 4-vinyl phenol, a product of H 

monomers and the most abundant single phenolic thermochemical product in all of the 

wild-type samples. The mutants, although enriched in G monomers compared with the 

wild-type, did not produce significantly less G derived phenolic products. 

7.4.1 Alternative hypothesis 

Another possible explanation for the lower yield of the phenolic products could be 

lowered levels of p-coumaric acid (pCA) in the mutant switchgrasses resulting from the 

mutation. Palmer et al. (189) observed lower wall-bound pCA levels across two 

different COMT-deficient sorghum mutants as compared to their wild-types. These 

lower pCA levels were accompanied by higher levels of ferulic acid (FA). It is possible 
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that lower pCA levels in the mutants could be responsible for the observed decrease in 

production of 4-vinyl phenol via torrefaction. However, no increase in 4-vinyl guaiacol 

(a product of the FA) is observed. This could be indicative that incorporation of the 

esterified FA is primarily by the more thermally recalcitrant bonds, or simply that these 

samples do not exhibit higher levels of esterified FA. As no measurement of the 

esterified hydroxycinnamic acids (HCA) is available for the samples used in this study, 

this alternative hypothesis remains untested.  

While this study shows that the COMT deficient switchgrass may be a favorable mutant 

for achieving lower phenolic yields in low-temperature torrefaction, some important 

unanswered questions remain open for investigation, and several are enumerated below: 

1. The alternative hypothesis – that lower pCA levels in the mutant are responsible 

for the observed differences – is untested, as no esterified HCA measurements 

are available for these samples. If pCA levels are no different between the wild-

types and mutants, then the observed differences are more likely due to 

enhanced thermal stability of the lignin polymer backbone, or incorporation of 

the esterified ferulates into the lignin via the more thermally resistant cross-

linkages (β–5, 5-5, etc.). Additionally, pre-treatment of these samples to remove 

HCA esters before torrefaction would help dis-aggregate the impacts of the 

HCA on the observed phenolics products. 

2. The effect of the mutation on the subsequent fast pyrolysis of these samples is 

untested and therefore unknown. If the total phenolic yield across both 

torrefaction and subsequent pyrolysis is much lower for the mutant 

switchgrasses, regardless of the underlying cause, the question of suitability of 
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this mutation for a staged thermal fractionation process becomes more complex, 

for similar reasons as discussed in section 5.5. 

3. Lignin biosynthesis literature indicates that the decreased S/G ratio should result 

in fewer β–O–4 bonds. However, directly quantifying the inter-unit linkages in 

the samples tested here would serve as a more direct confirmation of this 

assumption. The methodology for this quantification is extant in the literature  

and involves NMR characterization of the lignin (190-192). Adding this 

supporting data will strengthen the case made here.  

4. As the differences in phenolic yields are ascribed to differences in bond 

dissociation enthalpies, it is reasonable to conclude that these differences may 

become less apparent or vanish altogether with increasing temperatures at which 

the thermal degradation is performed (the inverse may also be true – the 

differences in yields may increase with even lower temperatures). It may be of 

interest to establish an upper temperature bound at which these differences cease 

to become statistically significant to aid in optimization decision-making. 
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Chapter 8:  Looking ahead 

8.1 Further optimization of staged thermal fractionation 

8.1.1 Stage 1 optimization 

Chapter 5 has dealt with the optimization of the thermal segregation of the cellulose and 

lignin components of the biomass. While there is evidence that the first stage thermal 

treatment used in that work was effective at removing the hemicellulose portion of the 

biomass, establishing the optimal conditions for doing this important step was not 

explored. In the context of the staged thermal fractionation strategy as laid out chapters 

1 and 5, an optimal stage 1 separation should achieve complete degradation of the 

hemicellulose with minimal lignin degradation and at conditions which are not 

detrimental to the total process yield of cellulose-derived products (primarily stage 3 

levoglucosan yields), and at conditions which will minimize the required energy input 

of the stage 1 torrefaction process (i.e., the lowest temperature and shortest time at 

which these objectives can be achieved).  

Starting at the optimal stage 2 conditions as established in chapter 5, untreated red oak 

biomass (the same as used in chapters 4 & 5) should be sequentially torrefied and 

pyrolyzed at successively decreasing torrefaction temperatures until a maximal level of 

levoglucosan production in the pyrolysis step is achieved. This establishes the highest 

temperature possible for the process which will prevent the condensation and 

repolymerization reactions responsible for loss of yield as discussed in section 5.4.2. 

The final hold time for the torrefaction process should be long enough to ensure no 

thermal gradient is present in the biomass particles; 5 minutes is suggested but some 

simple heat transfer calculations may provide a better estimate. 
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Following the establishment of the maximum stage 1 temperature, the final stage 1 hold 

time should be successively reduced until the production of acetic acid in the successive 

pyrolysis step begins to increase. While some acetic acid is produced at higher 

temperatures (likely from lignin, as discussed in section 5.4), increased acetic acid 

production at the pyrolysis stage signals the incomplete conversion of hemicellulose. 

The highest possible temperature at the shortest possible time to achieve breakdown of 

the hemicellulose with no accompanying cellulose degradation should also minimize 

the amount of lignin-derived phenolics products into the first stage thermal products 

stream.  

By determining an optimal stage 1 temperature in this manner and combining with the 

optimal stage 2 conditions as established in chapter 5, a best case for purely thermal 

segregation is established which can then be used as a basis of comparison for other 

segregation strategies (e.g., pre- and post-treatments). 

8.1.2 Optimization with other feedstocks 

All of the optimization of stage 1 and stage 2 as performed and described up to this 

point have used red oak as the feedstock. As discussed in section 5.5, oak is unlikely to 

ever be a major biofuel feedstock and as such it is suggested that the research group at 

the University of Oklahoma establish a better standard feedstock for the 

thermochemical biofuels research efforts. Switchgrass would be an obvious choice as 

the standard feedstock for the research group given its favorable properties as described 

in section 6.3 and the degree to which we understand the thermochemical product 

spectrum as a result of the efforts in chapters 6 and 7. Other suggested feedstocks are 

poplar, one of the only hardwoods in serious consideration as a biofuels feedstock due 
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to its rapid growth rates (2, 193); eastern red cedar (Juniperus virginiana), a pioneer 

invader species which is destructive to grasslands and could be a candidate for blending 

with prairie grass feedstocks (194); and any of the southern yellow pines, as their 

extensive current use in the forest products industries provides readily available 

residues for biofuels production (193). 

Any change in feedstock will necessitate re-optimization of the thermal stage conditions 

due to differences in the hemicellulose and lignin compositions. The stage 1 

optimization as outlined above will need to be repeated to establish the final hold time, 

as the temperature is optimized not for the hemicellulose decomposition but rather to 

avoid any cellulose decomposition. The stage 2 optimization conditions should be re-

examined as well, as the differences in lignin composition may change the distribution 

of the phenolics between stages 2 and 3. For example, oak (a woody dicot) contains H, 

G, and S lignins (section 2.1, (55)); cedar or pine (woody gymnosperms) do not produce 

significant amounts of S lignin and may have more thermally stable lignin as compared 

with oak for the reasons discussed in chapter 7. 

8.2 Further investigation into biomass compositional effects 

8.2.1 Direct analysis of NIR spectra 

The modeling approach used in chapter 6 relies on compositional data which itself is 

derived from several models fitted to predict compositional features from near-infrared 

spectroscopy. At the time of this writing the underlying spectroscopic data remains 

unavailable; however, when it is obtained, it is suggested that the modeling 

methodology be re-factored to improve the predictive ability of the models developed. 

The spectral data for the 22 thermochemically characterized samples can be used to 
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develop a ‘black box’ predictive model using principal components analysis pre-

processing; the application of a model with tunable parameters (tuned via cross 

validation) is suggested (e.g., LASSO (195), or elastic net (196)) to improve their 

predictive ability. In this manner, it should be possible to develop models which have 

good predictive ability for all of the thermochemical lumps, expanding to including 

models which had poor predictive ability and those which were rejected due to 

uninterpretable coefficients using the stepwise OLS approach as applied in chapter 6.  

Once these ‘black box’ models are generated from the 22 characterized samples and 

their spectral data, the complete association panel’s spectral data can then be used to 

predict the entire thermochemical product distribution, beyond just the three or four 

lumps that were predicted in chapter 7. This predicted data can then be combined with 

the available NIRS compositional data to develop interpretable models in the same 

fashion as the work in chapter 6, except that due to the much larger number of 

observations, the feature selection algorithms used can be discarded. Additionally, with 

a much larger set of observations, interactions between thermochemical lumps and 

compositional features can be modeled. Finally, having the predicted thermochemical 

data for the full association panel will allow for the first attempt at mapping trends in 

the product distribution to genotypes. In short, this revised approach which will be 

possible once the spectral data is acquired will allow for more insights and hypothesis 

formation than what has been presented in this work. 
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8.3 Improving data collection 

8.3.1 Optimization of the GC program 

The program used for the GC temperature ramp is detailed in section 3.2.3. The total 

time of this GC program is roughly 99 minutes. As shown below in figure 8.1, it should 

be possible to reduce this program time by as much as 25 minutes without losing any 

data relevant to the research. Peaks after 75 minutes are either too small to matter or 

consist of contamination which has been introduced into the system (e.g., skin oils from 

careless handling). Savings of 25 minutes per analysis over the 132 analyses done in 

chapter 6 results in a net savings of 55 hours of instrument time. 

 
Figure 8.1. Typical biomass pyrolysis chromatogram. 
 

Additionally, it may be possible to optimize the temperature profile to achieve better 

separation of peaks and improve data quality. Figure 8.2 shows a subsection of the 

chromatogram in figure 8.1, indicating numerous overlapping peaks. In areas of the 

chromatogram with many overlapping peaks, slowing down the temperature ramp or 
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introducing some isothermal sections into the program may assist in reducing the 

overlap and allow for better identification. 

 
Figure 8.2. Subset of biomass pyrolysis chromatogram showing overlapping peaks. 
 

8.3.2 Reducing or eliminating the need for technical replicates in the pyroprobe 

For the studies in chapters 5, 6, and 7, all data points as reported are the mean of three 

observations, with error estimates as appropriate. As discussed in section 3.2.5, yield 

data consists of the integrated peak areas of the chromatography, summed by lump and 

normalized to the amount of the biomass in each sample tube. However, by dividing 

each compound’s peak area by the sum of the total peak areas of the chromatogram (or, 

after applying a carbon conversion as discussed in section 3.2.6) the thermochemical 

product selectivity of each individual experiment can be measured without introducing 

another source of error (the measurement of the mass of the tube). For the torrefied 

switchgrass samples from chapter 7, a comparison of the error estimates (95% 

confidence interval of the mean) as a proportion of the mean value between yield and 

selectivity are shown for each compound lump in figure 8.3. For many of the compound 
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groups tracked, the selectivity error is smaller than the yield error for the same data, and 

for many measurements, the size of the error interval is close to 0% of the mean.  

 

 
Figure 8.3. Comparison of switchgrass torrefaction error estimates for yield and 
selectivity. 
The line through each plot has intercept = 0 and slope = 1. 

While the error estimates of the selectivity are demonstrably improved over those of the 

yields, this is of little use as the knowledge of the yields is most desirable. If the total 

mass loss of a sample due to thermal decomposition was determinable using either 

available instruments (e.g., TGA) or a new instrument acquisition, this data could be 

combined with selectivity measurements from the pyroprobe, which when used with 

compound calibration could be combined to get total compound yields. By combining 

historical data from the pyroprobe apparatus, standard selectivity errors as a percentage 

of each compound lump could be applied to future experiments. By obtaining yield data 
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from mass loss experiments and limiting the pyroprobe to selectivity measurements, the 

need for technical replicates in the pyroprobe would be eliminated, increasing 

throughput by up to 300%. Alternatively, careful design of experiments which would 

rely solely on selectivity metrics could leverage these same savings. 

8.4 Further investigation into catalytic upgrading approaches and requirements 

8.4.1 Switchgrass variants for catalyst deactivation experiments 

In chapter 4, the effects of catalyst & process parameters on the rates of zeolite catalyst 

deactivation during biomass upgrading were explored. For all experiments in that work, 

the starting biomass and thermal conversion conditions were unchanged. In light of the 

results from chapters 5-7, it is suggested that investigations into the catalyst 

performance (especially deactivation rates) be performed in order to demonstrate the 

degree to which different thermochemical product distributions can impact these 

important process parameters. One specific example would be the rates of acidic zeolite 

deactivation upon reaction with a torrefaction product stream from a COMT mutant 

switchgrass vs. a wild-type. Mullen et al. (197) suggests that higher levels of alkyl 

phenols can lead to increased coke formation on acidic zeolites; if that is the case, a 

product stream with lower alkyl phenol yields (as in the mutant) should improve 

catalyst performance, and tying this directly to a specific feedstock genetic modification 

would be a first.  

8.4.2 Torrefaction liquid stability exploration 

The discussion of the study in chapter 5 largely focused on the implications for catalytic 

upgrading of the process streams from staged thermal fractionation. However, an often-

cited problem with bio-oil liquids is the high degree of chemical instability which leads 
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to self-polymerization, making efficient processing a challenging engineering problem. 

Due to the segregation of much of the acetic acid into the first stage product stream, the 

optimized staged thermal fractionation product streams as described in chapter 5 may 

exhibit significantly improved physical properties related to storage, transportation, and 

handling as compared with fast pyrolysis bio-oil. While the pyroprobe apparatus as 

described in chapter 3.2 is unsuitable for generation of liquid samples, the 

micropyrolysis unit as described in chapter 3.1 has previously been used to generate 

liquids which were evaluated for some of these properties including viscosity and 

molecular weight increase upon aging (135). Similar studies evaluating these properties 

for the optimized staged product streams are suggested. 

  



172 

References 

1. A. V. Bridgwater, D. Meier, D. Radlein, An overview of fast pyrolysis of 
biomass. Organic Geochemistry (1999). 

2. R. D. Perlack et al., “Biomass as feedstock for a bioenergy and bioproducts 
industry: The technical feasibility of a billion-ton annual supply” (2005),, 
doi:10.2172/1216415. 

3. NSF, “Breaking the Chemical and Engineering Barriers to Lignocellulosic 
Biofuels: Next Generation Hydroccarbon Biorefineries” (Washington, DC, 
2008),, doi:10.2172/1218335. 

4. C. Somerville, Biofuels. Current Biology. 17, R115–R119 (2007). 

5. C. Somerville et al., Toward a Systems Approach to Understanding Plant Cell 
Walls. Science. 306, 2206–2211 (2004). 

6. G. W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from 
biomass: chemistry, catalysts, and engineering. Chem. Rev. (2006). 

7. M. S. Mettler, D. G. Vlachos, P. J. Dauenhauer, Top ten fundamental 
challenges of biomass pyrolysis for biofuels. Energy Environ. Sci. 5, 7797–13 
(2012). 

8. O. Faix, I. Fortmann, J. Bremer, D. Meier, Thermal degradation products of 
wood (1991), vol. 49. 

9. O. Faix, I. Fortmann, J. Bremer, D. Meier, Thermal degradation products of 
wood. Holz als Roh-und Werkstoff. 49, 213–219 (1991). 

10. A. Oasmaa, S. Czernik, Fuel oil quality of biomass pyrolysis oils state of the art 
for the end users. Energy & Fuels (1999), doi:10.1021/ef980272b. 

11. A. Demirbas, Competitive liquid biofuels from biomass. APPLIED ENERGY. 
88, 17–28 (2011). 

12. P. R. Patwardhan, R. C. Brown, B. H. Shanks, Understanding the Fast Pyrolysis 
of Lignin. ChemSusChem. 4, 1629–1636 (2011). 

13. J. P. Diebold, “A review of the chemical and physical mechanisms of the 
storage stability of fast pyrolysis bio-oils” (1999),, doi:10.2172/753818. 

14. E. Furimsky, Catalytic hydrodeoxygenation (2000). 

15. J. Meng, J. Park, D. Tilotta, S. Park, The effect of torrefaction on the chemistry 
of fast-pyrolysis bio-oil. Bioresource technology. 111, 439–446 (2012). 



173 

16. T. N. Pham, D. Shi, D. E. Resasco, Evaluating strategies for catalytic upgrading 
of pyrolysis oil in liquid phase. Applied Catalysis B: Environmental (2014), 
doi:10.1016/j.apcatb.2013.01.002. 

17. D. E. Resasco, What Should We Demand from the Catalysts Responsible for 
Upgrading Biomass Pyrolysis Oil? J. Phys. Chem. Lett. 2, 2294–2295 (2011). 

18. A. V. Bridgwater, Catalysis in thermal biomass conversion. Applied Catalysis 
A: General. 116, 5–47 (1994). 

19. T. R. Carlson, T. P. Vispute, G. W. Huber, Green Gasoline by Catalytic Fast 
Pyrolysis of Solid Biomass Derived Compounds. ChemSusChem. 1, 397–400 
(2008). 

20. T. R. Carlson, G. A. Tompsett, W. C. Conner, G. W. Huber, Aromatic 
Production from Catalytic Fast Pyrolysis of Biomass-Derived Feedstocks. Top 
Catal. 52, 241–252 (2009). 

21. S. Wan et al., Decoupling HZSM-5 Catalyst Activity from Deactivation during 
Upgrading of Pyrolysis Oil Vapors. ChemSusChem. 8, 552–559 (2014). 

22. D. E. Resasco, S. P. Crossley, Implementation of concepts derived from model 
compound studies in the separation and conversion of bio-oil to fuel. Catalysis 
Today. 257, 185–199 (2015). 

23. V. Srinivasan, S. Adhikari, S. A. Chattanathan, S. Park, Catalytic Pyrolysis of 
Torrefied Biomass for Hydrocarbons Production. Energy & Fuels. 26, 7347–
7353 (2012). 

24. P. de Wild, H. Reith, E. Heeres, Biomass pyrolysis for chemicals. Biofuels. 2, 
185–208 (2011). 

25. S. Chang et al., Effect of torrefaction temperature on product distribution from 
two-staged pyrolysis of biomass. Energy & Fuels (2012), 
doi:10.1021/ef201872y. 

26. A. A. Boateng, C. A. Mullen, Fast pyrolysis of biomass thermally pretreated by 
torrefaction. Journal of Analytical and Applied Pyrolysis (2013), 
doi:10.1016/j.jaap.2012.12.002. 

27. H. Yang, R. Yan, H. Chen, D. H. Lee, C. Zheng, Characteristics of 
hemicellulose, cellulose and lignin pyrolysis. Fuel. 86, 1781–1788 (2007). 

28. M. J. Antal Jr., G. Varhegyi, Cellulose Pyrolysis Kinetics: The Current State of 
Knowledge. Ind. Eng. Chem. Res. 34, 703–717 (1995). 

29. G. Varhegyi, M. J. Antal Jr., E. Jakab, P. Szabó, Kinetic modeling of biomass 
pyrolysis. Journal of Analytical and Applied Pyrolysis. 42, 73–87 (1997). 



174 

30. P. R. Patwardhan, R. C. Brown, B. H. Shanks, Product distribution from the 
fast pyrolysis of hemicellulose. ChemSusChem (2011), 
doi:10.1002/cssc.201000425/full. 

31. P. R. Patwardhan, D. L. Dalluge, B. H. Shanks, Distinguishing primary and 
secondary reactions of cellulose pyrolysis. Bioresource technology (2011), 
doi:10.1016/j.biortech.2011.02.018. 

32. D. Mohan, C. U. Pittman, P. H. Steele, Pyrolysis of Wood/Biomass for Bio-oil:  
A Critical Review. Energy & Fuels. 20, 848–889 (2006). 

33. P. Tanger, J. L. Field, C. E. Jahn, M. W. DeFoort, J. E. Leach, Biomass for 
thermochemical conversion: targets and challenges. Front. Plant. Sci. 4 (2013), 
doi:10.3389/fpls.2013.00218. 

34. M. A. ONeill, W. S. York, in Annual Plant Reviews, J. K. C. Rose, Ed. (John 
Wiley & Sons, 2009), p. 400. 

35. K. P. Vogel et al., Quantifying Actual and Theoretical Ethanol Yields for 
Switchgrass Strains Using NIRS Analyses. Bioenerg. Res. 4, 96–110 (2011). 

36. P. R. Adler, M. A. Sanderson, A. A. Boateng, P. I. Weimer, H. J. G. Jung, 
Biomass yield and biofuel quality of switchgrass harvested in fall or spring. 
Agron J. 98, 1518–1525 (2006). 

37. H. M. El-Nashaar, G. M. Banowetz, S. M. Griffith, M. D. Casler, K. P. Vogel, 
Genotypic variability in mineral composition of switchgrass. Bioresource 
technology. 100, 1809–1814 (2009). 

38. M. P. Singh et al., Mineral composition and biomass partitioning of sweet 
sorghum grown for bioenergy in the southeastern USA. Biomass and 
Bioenergy. 47, 1–8 (2012). 

39. Y. L. Zhao, Y. Steinberger, M. Shi, Han, L. P., G. H. Xie, Changes in stem 
composition and harvested produce of sweet sorghum during the period from 
maturity to a sequence of delayed harvest dates. Biomass and Bioenergy. 39, 
261–273 (2012). 

40. M. Pauly, K. Keegstra, Cell-wall carbohydrates and their modification as a 
resource for biofuels. Plant J. 54, 559–568 (2008). 

41. H. V. Scheller, P. Ulvskov, Hemicelluloses. Annu Rev Plant Biol. 61, 263–289 
(2010). 

42. M. E. Vega-Sánchez et al., Loss of Cellulose Synthase-Like F6 Function 
Affects Mixed-Linkage Glucan Deposition, Cell Wall Mechanical Properties, 
and Defense Responses in Vegetative Tissues of Rice. Plant Physiol. 159, 56–
69 (2012). 



175 

43. J. Vogel, Unique aspects of the grass cell wall. Current Opinion in Plant 
Biology. 11, 301–307 (2008). 

44. P. McKendry, Energy production from biomass (part 1): overview of biomass. 
Bioresource technology. 83, 37–46 (2002). 

45. C. Somerville, Cellulose Synthesis in Higher Plants. Annu. Rev. Cell Dev. Biol. 
22, 53–78 (2006). 

46. R. H. Newman, S. J. Hill, P. J. Harris, Wide-Angle X-Ray Scattering and Solid-
State Nuclear Magnetic Resonance Data Combined to Test Models for 
Cellulose Microfibrils in Mung Bean Cell Walls. Plant Physiol. 163, 1558–
1567 (2013). 

47. F. Shafizadeh, G. D. McGinnis, C. W. Philpot, Thermal degradation of xylan 
and related model compounds. Carbohyd Res. 25, 23–33 (1972). 

48. O. D. Mante, S. P. Babu, T. E. Amidon, A comprehensive study on relating 
cell-wall components of lignocellulosic biomass to oxygenated species formed 
during pyrolysis. Journal of Analytical and Applied Pyrolysis. 108, 56–67 
(2014). 

49. M. E. Vega-Sánchez, Y. Verhertbruggen, H. V. Scheller, P. C. Ronald, 
Abundance of mixed linkage glucan in mature tissues and secondary cell walls 
of grasses. Plant signaling & behavior. 8, e23143 (2013). 

50. M. D. C. Rodriguez-Gacio, R. Iglesias-Fernandez, P. Carbonero, A. J. Matilla, 
Softening-up mannan-rich cell walls. J Exp Bot. 63, 3975–3988 (2012). 

51. M. Pauly et al., Hemicellulose biosynthesis. Planta. 238, 627–642 (2013). 

52. F. Chen, Y. Tobimatsu, D. Havkin-Frenkel, R. A. Dixon, J. Ralph, A polymer 
of caffeyl alcohol in plant seeds. Proc. Natl. Acad. Sci. U.S.A. 109, 1772–1777 
(2012). 

53. F. Chen et al., Novel seed coat lignins in the Cactaceae: structure, distribution 
and implications for the evolution of lignin diversity. The Plant Journal. 73, 
201–211 (2013). 

54. H. Kawamoto, S. Horigoshi, S. Saka, Pyrolysis reactions of various lignin 
model dimers. Journal of Wood Science. 53, 168–174 (2007). 

55. W. Boerjan, J. Ralph, M. Baucher, Lignin biosynthesis. Annu Rev Plant Biol. 
54, 519–546 (2003). 

56. D. L. Petrik et al., p-Coumaroyl-CoA:monolignol transferase (PMT) acts 
specifically in the lignin biosynthetic pathway in Brachypodium distachyon. 
Plant J. 77, 713–726 (2014). 



176 

57. F. Lu et al., Naturally p-Hydroxybenzoylated Lignins in Palms. Bioenerg. Res., 
1–19 (2015). 

58. B. Vanholme et al., Breeding with rare defective alleles (BRDA): a natural 
Populus nigra HCT mutant with modified lignin as a case study. New 
Phytologist. 198, 765–776 (2013). 

59. K. V. Sarkanen, H. Chang, G. G. Allan, Species Variation in Lignins .3. 
Hardwood Lignins. Tappi. 50, 587–& (1967). 

60. F. Lu, J. Ralph, Preliminary evidence for sinapyl acetate as a lignin monomer in 
kenaf. Chemical Communications, 90–91 (2002). 

61. M. V. Bule, A. H. Gao, B. Hiscox, S. Chen, Structural Modification of Lignin 
and Characterization of Pretreated Wheat Straw by Ozonation. J. Agric. Food 
Chem. 61, 3916–3925 (2013). 

62. R. D. Hatfield, J. M. Marita, K. Frost, Characterization of p-coumarate 
accumulation, p-coumaroyl transferase, and cell wall changes during the 
development of corn stems. J. Sci. Food Agric. 88, 2529–2537 (2008). 

63. J. Ralph, J. H. Grabber, R. D. Hatfield, Lignin-Ferulate Cross-Links in Grasses 
- Active Incorporation of Ferulate Polysaccharide Esters into Ryegrass Lignins. 
Carbohyd Res. 275, 167–178 (1995). 

64. W. Lan et al., Tricin, a Flavonoid Monomer in Monocot Lignification. Plant 
Physiol. 167, 1284–1295 (2015). 

65. A. A. Tortosa Masiá, B. J. P. Buhre, R. P. Gupta, T. F. Wall, Characterising ash 
of biomass and waste. Fuel Processing Technology. 88, 1071–1081 (2007). 

66. S. V. Vassilev, D. Baxter, L. K. Andersen, C. G. Vassileva, An overview of the 
chemical composition of biomass. Fuel. 89, 913–933 (2010). 

67. M. Dick-Pérez et al., Structure and Interactions of Plant Cell-Wall 
Polysaccharides by Two- and Three-Dimensional Magic-Angle-Spinning Solid-
State NMR. Biochemistry. 50, 989–1000 (2011). 

68. L. Tan et al.,  An Arabidopsis Cell Wall Proteoglycan Consists of Pectin and 
Arabinoxylan Covalently Linked to an Arabinogalactan Protein. The Plant Cell. 
25, 270–287 (2013). 

69. D. Mikkelsen, B. M. Flanagan, S. M. Wilson, A. Bacic, M. J. Gidley, 
Interactions of Arabinoxylan and (1,3)(1,4)-β-Glucan with Cellulose Networks. 
Biomacromolecules. 16, 1232–1239 (2015). 

70. Mirko Bunzel, John Ralph, Fachuang Lu, A. Ronald D Hatfield, H. Steinhart, 
Lignins and Ferulate−Coniferyl Alcohol Cross-Coupling Products in Cereal 



177 

Grains. J. Agric. Food Chem. 52, 6496–6502 (2004). 

71. T.-Q. Yuan, S.-N. Sun, F. Xu, R.-C. Sun, Characterization of lignin structures 
and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D 
HSQC NMR spectroscopy. J. Agric. Food Chem. 59, 10604–10614 (2011). 

72. X. Du et al., Analysis of lignin-carbohydrate and lignin-lignin linkages after 
hydrolase treatment of xylan-lignin, glucomannan-lignin and glucan-lignin 
complexes from spruce wood. Planta. 239, 1079–1090 (2014). 

73. N. C. Carpita et al., Cell Wall Architecture of the Elongating Maize Coleoptile. 
Plant Physiol. 127, 551–565 (2001). 

74. L. V. Kozlova, M. V. Ageeva, N. N. Ibragimova, T. A. Gorshkova, 
Arrangement of mixed-linkage glucan and glucuronoarabinoxylan in the cell 
walls of growing maize roots. Annals of botany. 114, 1135–1145 (2014). 

75. N. Kido et al., The matrix polysaccharide (1;3,1;4)-beta-D-glucan is involved 
in silicon-dependent strengthening of rice cell wall. Plant & cell physiology. 56, 
268–276 (2015). 

76. F.-X. Collard, J. Blin, A review on pyrolysis of biomass constituents: 
Mechanisms and composition of the products obtained from the conversion of 
cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy 
Reviews. 38, 594–608 (2014). 

77. X. L. Zhang, W. H. Yang, C. Q. Dong, Levoglucosan formation mechanisms 
during cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis. 104, 
19–27 (2013). 

78. R. Vanholme, R. Van Acker, W. Boerjan, Potential of Arabidopsis systems 
biology to advance the biofuel field. Trends in Biotechnology. 28, 543–547 
(2010). 

79. U. Räisänen, I. Pitkänen, H. Halttunen, Formation of the main degradation 
compounds from arabinose, xylose, mannose and arabinitol during pyrolysis. 
Journal of Thermal Analysis and Calorimetry. 72, 481–488 (2003). 

80. C. A. Mullen, A. A. Boateng, K. B. Hicks, N. M. Goldberg, R. A. Moreau, 
Analysis and Comparison of Bio-Oil Produced by Fast Pyrolysis from Three 
Barley Biomass/Byproduct Streams. Energy & Fuels. 24, 699–706 (2010). 

81. C. Sáiz-Jiménez, J. W. De Leeuw, Lignin pyrolysis products: their structures 
and their significance as biomarkers. Organic Geochemistry (1986). 

82. M. Li et al., Structural characterization of alkaline hydrogen peroxide 
pretreated grasses exhibiting diverse lignin phenotypes. Biotechnol Biofuels. 5, 
38 (2012). 



178 

83. V. Mendu et al., Identification and thermochemical analysis of high-lignin 
feedstocks for biofuel and biochemical production. Biotechnol Biofuels. 4, 1 
(2011). 

84. I.-Y. Eom et al., Characterization of primary thermal degradation features of 
lignocellulosic biomass after removal of inorganic metals by diverse solvents. 
Bioresource technology. 102, 3437–3444 (2011). 

85. R. Lou, S. Wu, G. Lv, A. Zhang, Factors Related to Minerals and Ingredients 
Influencing the Distribution of Pyrolysates Derived from Herbaceous Biomass. 
Bioresources (2013). 

86. F. Ronsse, X. Bai, W. Prins, R. C. Brown, Secondary reactions of levoglucosan 
and char in the fast pyrolysis of cellulose. Environ. Prog. Sustainable Energy. 
31, 256–260 (2012). 

87. R. Fahmi et al., The effect of alkali metals on combustion and pyrolysis of 
Lolium and Festuca grasses, switchgrass and willow. Fuel. 86, 1560–1569 
(2007). 

88. P. R. Patwardhan, J. A. Satrio, R. C. Brown, B. H. Shanks, Influence of 
inorganic salts on the primary pyrolysis products of cellulose. Bioresource 
technology. 101, 4646–4655 (2010). 

89. M. Müller-Hagedorn, H. Bockhorn, L. Krebs, U. Müller, A comparative kinetic 
study on the pyrolysis of three different wood species. Journal of Analytical 
and Applied Pyrolysis. 68-69, 231–249 (2003). 

90. G. R. Ponder, G. N. Richards, T. T. Stevenson, Influence of linkage position 
and orientation in pyrolysis of polysaccharides: A study of several glucans. 
Journal of Analytical and Applied Pyrolysis. 22, 217–229 (1992). 

91. M. Kleen, G. Gellerstedt, Influence of Inorganic Species on the Formation of 
Polysaccharide and Lignin Degradation Products in the Analytical Pyrolysis of 
Pulps. Journal of Analytical and Applied Pyrolysis. 35, 15–41 (1995). 

92. J. Zhang et al., Cellulose–Hemicellulose and Cellulose–Lignin Interactions 
during Fast Pyrolysis. ACS Sustainable Chem. Eng. 3, 293–301 (2015). 

93. D. Mourant et al., Mallee wood fast pyrolysis: Effects of alkali and alkaline 
earth metallic species on the yield and composition of bio-oil. Fuel. 90, 2915–
2922 (2011). 

94. R. J. M. Westerhof, N. J. M. Kuipers, S. R. A. Kersten, W. P. M. van Swaaij, 
Controlling the Water Content of Biomass Fast Pyrolysis Oil. Ind. Eng. Chem. 
Res. 46, 9238–9247 (2007). 

95. L. Burhenne, M. Damiani, T. Aicher, Effect of feedstock water content and 



179 

pyrolysis temperature on the structure and reactivity of spruce wood char 
produced in fixed bed pyrolysis. Fuel. 107, 836–847 (2013). 

96. R. He, X. P. Ye, B. C. English, J. A. Satrio, Influence of pyrolysis condition on 
switchgrass bio-oil yield and physicochemical properties. Bioresource 
technology. 100, 5305–5311 (2009). 

97. A. Pictet, J. Sarasin, Sur la distillation de la cellulose et de l'amidon sous 
pression reduite. Helvetica Chimica Acta (1918), 
doi:10.1002/hlca.19180010109/abstract. 

98. A. G. W. Bradbury, Y. Sakai, F. Shafizadeh, A kinetic model for pyrolysis of 
cellulose. Journal of Applied Polymer Science. 23, 3271–3280 (1979). 

99. B. W. Penning et al., Validation of PyMBMS as a High-throughput Screen for 
Lignin Abundance in Lignocellulosic Biomass of Grasses. Bioenerg. Res. 7, 
899–908 (2014). 

100. P. R. Patwardhan, J. A. Satrio, R. C. Brown, Influence of inorganic salts on the 
primary pyrolysis products of cellulose. Bioresource technology (2010), 
doi:10.1016/j.biortech.2010.01.112. 

101. I.-Y. Eom et al., Effect of essential inorganic metals on primary thermal 
degradation of lignocellulosic biomass. Bioresource technology. 104, 687–694 
(2012). 

102. Z. Jin, K. S. Katsumata, T. B. T. Lam, K. Iiyama, Covalent linkages between 
cellulose and lignin in cell walls of coniferous and nonconiferous woods. 
Biopolymers. 83, 103–110 (2006). 

103. Y. Zhou, H. Stuart-Williams, G. D. Farquhar, C. H. Hocart, The use of natural 
abundance stable isotopic ratios to indicate the presence of oxygen-containing 
chemical linkages between cellulose and lignin in plant cell walls. 
Phytochemistry. 71, 982–993 (2010). 

104. O. D. Mante, S. P. Babu, T. E. Amidon, A comprehensive study on relating 
cell-wall components of lignocellulosic biomass to oxygenated species formed 
during pyrolysis. Journal of Analytical and Applied Pyrolysis. 108, 56–67 
(2014). 

105. J. G. Pohlmann, E. Osório, A. C. F. Vilela, M. A. Diez, A. G. Borrego, 
Integrating physicochemical information to follow the transformations of 
biomass upon torrefaction and low-temperature carbonization (2014), vol. 131. 

106. A. V. Bridgwater, D. Meier, D. Radlein, An overview of fast pyrolysis of 
biomass (1999). 

107. K. M. Bryden, K. W. Ragland, C. J. Rutland, Modeling thermally thick 



180 

pyrolysis of wood. Biomass and Bioenergy. 22, 41–53 (2002). 

108. K. O. Davidsson, J. Pettersson, Birch wood particle shrinkage during rapid 
pyrolysis (2002). 

109. D. S. Scott, J. Piskorz, The continuous flash pyrolysis of biomass. Can. J. 
Chem. Eng. 62, 404–412 (1984). 

110. H. S. Fogler, Elements of chemical reaction engineering (Prentice-Hall, Upper 
Saddle River, NJ, ed. 4, 2006). 

111. K. B. Hicks, K. P. Vogel, A. A. Boateng, Pyrolysis of switchgrass (Panicum 
virgatum) harvested at several stages of maturity. Journal of Analytical and 
Applied Pyrolysis. 75, 55–64 (2006). 

112. L. Liu, X. P. Ye, A. R. Womac, S. Sokhansanj, Variability of biomass chemical 
composition and rapid analysis using FT-NIR techniques. Carbohydrate 
Polymers. 81, 820–829 (2010). 

113. R. Sykes et al., in Biofuels (Humana Press, Totowa, NJ, 2009), vol. 581 of 
Methods in Molecular Biology, pp. 169–183. 

114. J. L. Wegrzyn et al., Association genetics of traits controlling lignin and 
cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) 
secondary xylem. New Phytologist. 188, 515–532 (2010). 

115. B. W. Penning et al., Genetic Determinants for Enzymatic Digestion of 
Lignocellulosic Biomass Are Independent of Those for Lignin Abundance in a 
Maize Recombinant Inbred Population. Plant Physiol. 165, 1475–1487 (2014). 

116. L. E. Bartley, P. C. Ronald, Plant and microbial research seeks biofuel 
production from lignocellulose. California Agriculture. 63, 178–184 (2009). 

117. F. Yang et al., Engineering secondary cell wall deposition in plants. Plant 
Biotechnol J. 11, 325–335 (2013). 

118. N. D. Bonawitz, C. Chapple, The Genetics of Lignin Biosynthesis: Connecting 
Genotype to Phenotype. Annu. Rev. Genet. 44, 337–363 (2010). 

119. D. Chiniquy et al., XAX1 from glycosyltransferase family 61 mediates 
xylosyltransfer to rice xylan. Proc. Natl. Acad. Sci. U.S.A. 109, 17117–17122 
(2012). 

120. L. E. Bartley et al., Overexpression of a BAHD Acyltransferase, OsAt10, 
Alters Rice Cell Wall Hydroxycinnamic Acid Content and Saccharification. 
Plant Physiol. 161, 1615–1633 (2013). 

121. A. Schultink, D. Naylor, M. Dama, M. Pauly, The role of the plant-specific 



181 

ALTERED XYLOGLUCAN9 protein in Arabidopsis cell wall polysaccharide 
O-acetylation. Plant Physiol. 167, 1271–1283 (2015). 

122. Q. Zhao, R. A. Dixon, Transcriptional networks for lignin biosynthesis: more 
complex than we thought? Trends in Plant Science. 16, 227–233 (2011). 

123. J. F. Ma et al., A silicon transporter in rice. Nature. 440, 688–691 (2006). 

124. N. Yamaji, J. F. Ma, A Transporter at the Node Responsible for Intervascular 
Transfer of Silicon in Rice. Plant Cell. 21, 2878–2883 (2009). 

125. R. Zhong, Z. H. Ye, Secondary Cell Walls: Biosynthesis, Patterned Deposition 
and Transcriptional Regulation. Plant & cell physiology. 56, 195–214 (2015). 

126. H. L. Baxter et al., Two-year field analysis of reduced recalcitrance transgenic 
switchgrass. Plant Biotechnol J. 12, 914–924 (2014). 

127. H. Baxter et al., Field Evaluation of Transgenic Switchgrass Plants 
Overexpressing PvMYB4 for Reduced Biomass Recalcitrance. Bioenerg. Res., 
1–12 (2015). 

128. L. E. Bartley, X. Tao, C. Zhang, H. Nguyen, in Compendium of Bioenergy 
Plants Switchgrass (… of Bioenergy Plants: …, 2014), p. 109. 

129. C. Lee, Q. Teng, R. Zhong, Z.-H. Ye, The four Arabidopsis reduced wall 
acetylation genes are expressed in secondary wall-containing cells and required 
for the acetylation of xylan. Plant & cell physiology. 52, 1289–1301 (2011). 

130. G. Xiong, K. Cheng, M. Pauly, Xylan O-Acetylation Impacts Xylem 
Development and Enzymatic Recalcitrance as Indicated by the Arabidopsis 
Mutant tbl29. Molecular Plant. 6, 1373–1375 (2013). 

131. A. Zheng et al., Effect of torrefaction on structure and fast pyrolysis behavior 
of corncobs. Bioresource technology. 128, 370–377 (2013). 

132. S. W. Banks, D. J. Nowakowski, A. V. Bridgwater, Fast pyrolysis processing of 
surfactant washed Miscanthus. Fuel Processing Technology. 128, 94–103 
(2014). 

133. M. M. I. Sheikh et al., Effect of torrefaction for the pretreatment of rice straw 
for ethanol production. J. Sci. Food Agric. 93, 3198–3204 (2013). 

134. J. A. Cunha et al., Waste biomass to liquids: Low temperature conversion of 
sugarcane bagasse to bio-oil. The effect of combined hydrolysis treatments. 
Biomass and Bioenergy. 35, 2106–2116 (2011). 

135. S. Wan et al., Direct catalytic upgrading of biomass pyrolysis vapors by a dual 
function Ru/TiO2 catalyst. AIChE J. (2013), doi:10.1002/aic.14038. 



182 

136. P. J. Dauenhauer, A. D. Paulsen, M. S. Mettler, The Role of Sample Dimension 
and Temperature in Cellulose Pyrolysis. Energy & Fuels. 27, 2126–2134 
(2013). 

137. N. Duong, thesis, Norman, OK (2014). 

138. A. Romualdo S Fukushima, R. D. Hatfield, Extraction and Isolation of Lignin 
for Utilization as a Standard to Determine Lignin Concentration Using the 
Acetyl Bromide Spectrophotometric Method. J. Agric. Food Chem. 49, 3133–
3139 (2001). 

139. N. Santoro et al., A High-Throughput Platform for Screening Milligram 
Quantities of Plant Biomass for Lignocellulose Digestibility. Bioenerg. Res. 3, 
93–102 (2010). 

140. K. P. Vogel et al., Quantifying Actual and Theoretical Ethanol Yields for 
Switchgrass Strains Using NIRS Analyses. Bioenerg. Res. 4, 96–110 (2010). 

141. J. A. Guretzky, J. T. Biermacher, B. J. Cook, M. K. Kering, J. Mosali, 
Switchgrass for forage and bioenergy: harvest and nitrogen rate effects on 
biomass yields and nutrient composition. Plant Soil. 339, 69–81 (2010). 

142. G. W. Huber et al., Catalytic pyrolysis of solid biomass and related biofuels, 
Armoatic, and Olefin Compounds. 

143. F. A. Agblevor, S. Beis, O. Mante, N. Abdoulmoumine, Fractional Catalytic 
Pyrolysis of Hybrid Poplar Wood. Ind. Eng. Chem. Res. 49, 3533–3538 (2010). 

144. A. Corma, G. HUBER, L. SAUVANAUD, P. OCONNOR, Processing 
biomass-derived oxygenates in the oil refinery: Catalytic cracking (FCC) 
reaction pathways and role of catalyst. Journal of Catalysis. 247, 307–327 
(2007). 

145. H. Zhang, Y.-T. Cheng, T. P. Vispute, R. Xiao, G. W. Huber, Catalytic 
conversion of biomass-derived feedstocks into olefins and aromatics with 
ZSM-5: the hydrogen to carbon effective ratio. Energy Environ. Sci. 4, 2297 
(2011). 

146. P. T. Williams, N. Nugranad, Comparison of products from the pyrolysis and 
catalytic pyrolysis of rice husks. Energy. 25, 493–513 (2000). 

147. P. A. Horne, P. T. Williams, The effect of zeolite ZSM-5 catalyst deactivation 
during the upgrading of biomass-derived pyrolysis vapours. Journal of 
Analytical and Applied Pyrolysis. 34, 65–85 (1995). 

148. E. F. Iliopoulou, S. D. Stefanidis, Catalytic upgrading of biomass pyrolysis 
vapors using transition metal-modified ZSM-5 zeolite. Applied Catalysis B: 
Environmental. 127, 281–290 (2012). 



183 

149. J. Jae et al., Investigation into the shape selectivity of zeolite catalysts for 
biomass conversion. Journal of Catalysis. 279, 257–268 (2011). 

150. A. N. Mlinar, P. M. Zimmerman, F. E. Celik, M. Head-Gordon, A. T. Bell, 
Effects of Brønsted-acid site proximity on the oligomerization of propene in H-
MFI. Journal of Catalysis. 288, 65–73 (2012). 

151. T. R. Carlson, Y.-T. T. Cheng, J. Jae, G. W. Huber, Production of green 
aromatics and olefins by catalytic fast pyrolysis of wood sawdust - Energy & 
Environmental Science (RSC Publishing) DOI:10.1039/C0EE00341G. Energy 
Environ. Sci. (2011). 

152. D. J. Mihalcik, C. A. Mullen, A. A. Boateng, Screening acidic zeolites for 
catalytic fast pyrolysis of biomass and its components. Journal of Analytical 
and Applied Pyrolysis. 92, 224–232 (2011). 

153. C. Mukarakate et al., Real-time monitoring of the deactivation of HZSM-5 
during upgrading of pine pyrolysis vapors. Green Chem. 16, 1444–1461 (2014). 

154. C. Pereira, R. J. Gorte, Method for distinguishing Brønsted-acid sites in 
mixtures of H-ZSM-5, H-Y and silica-alumina. Applied Catalysis A: General. 
90, 145–157 (1992). 

155. J. Bedard, H. Chiang, A. Bhan, Kinetics and mechanism of acetic acid 
esterification with ethanol on zeolites. Journal of Catalysis. 290, 210–219 
(2012). 

156. T. Q. Hoang, X. Zhu, T. Sooknoi, D. E. Resasco, R. G. Mallinson, A 
comparison of the reactivities of propanal and propylene on HZSM-5. Journal 
of Catalysis. 271, 201–208 (2010). 

157. D. J. Parrillo, C. Lee, R. J. Gorte, Heats of adsorption for ammonia and 
pyridine in H-ZSM-5: evidence for identical Brønsted-acid sites. Applied 
Catalysis A: General. 110, 67–74 (1994). 

158. D. Freude, M. Hunger, H. Pfeifer, W. Schwieger, 1H MAS NMR studies on the 
acidity of zeolites. Chemical Physics Letters. 128, 62–66 (1986). 

159. P. Sazama et al., Effect of aluminium distribution in the framework of ZSM-5 
on hydrocarbon transformation. Cracking of 1-butene. Journal of Catalysis. 
254, 180–189 (2008). 

160. U. Olsbye et al., Conversion of methanol to hydrocarbons: how zeolite cavity 
and pore size controls product selectivity. Angew. Chem. Int. Ed. 51, 5810–
5831 (2012). 

161. R. Gounder, E. Iglesia, Catalytic Consequences of Spatial Constraints and Acid 
Site Location for Monomolecular Alkane Activation on Zeolites. J. Am. Chem. 



184 

Soc. 131, 1958–1971 (2009). 

162. T. R. Carlson, J. Jae, Y.-C. Lin, G. A. Tompsett, G. W. Huber, Catalytic fast 
pyrolysis of glucose with HZSM-5: The combined homogeneous and 
heterogeneous reactions. Journal of Catalysis. 270, 110–124 (2010). 

163. W. H. Chen, P. C. Kuo, Torrefaction and co-torrefaction characterization of 
hemicellulose, cellulose and lignin as well as torrefaction of some basic 
constituents in biomass. Energy (2011), doi:10.1016/j.energy.2010.12.036. 

164. W. H. Chen, P. C. Kuo, Isothermal torrefaction kinetics of hemicellulose, 
cellulose, lignin and xylan using thermogravimetric analysis. Energy (2011), 
doi:10.1016/j.energy.2011.09.022. 

165. P. A. Horne, P. T. Williams, Influence of temperature on the products from the 
flash pyrolysis of biomass. Fuel (1996). 

166. W. J. Grigsby, G. Varhegyi, C. Di Blasi, Thermogravimetric analysis and 
devolatilization kinetics of wood. Ind. Eng. Chem. Res. (2002), 
doi:10.1016/j.carbpol.2014.01.086. 

167. A. Broido, M. A. Nelson, Char yield on pyrolysis of cellulose. Combustion and 
Flame (1975). 

168. T. Melkior et al., NMR analysis of the transformation of wood constituents by 
torrefaction. Fuel. 92, 271–280 (2012). 

169. N. Baccile et al., Structural Characterization of Hydrothermal Carbon Spheres 
by Advanced Solid-State MAS 13C NMR Investigations. J. Phys. Chem. C. 
113, 9644–9654 (2009). 

170. Y.-C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland, G. W. Huber, Kinetics 
and Mechanism of Cellulose Pyrolysis (2009). 

171. J.-L. Wen, S.-L. Sun, T.-Q. Yuan, F. Xu, R.-C. Sun, Understanding the 
chemical and structural transformations of lignin macromolecule during 
torrefaction. APPLIED ENERGY. 121, 1–9 (2014). 

172. S. B. McLaughlin, L. Adams Kszos, Development of switchgrass (panicum 
virgatum) as a bioenergy feedstock in the United States. Biomass and 
Bioenergy. 28, 515–535 (2005). 

173. M. G. Ward, J. K. Ward, B. E. Anderson, Grazing selectivity and in vivo 
digestibility of switchgrass strains selected for differing digestibility. J. Anim 
Sci. (1989). 

174. C. R. Krueger, D. C. Curtis, Evaluation of big bluestem, indiangrass, sideoats 
grama, and switchgrass pastures with yearling steers. Agron J (1979). 



185 

175. J. H. Fike et al., Long-term yield potential of switchgrass-for-biofuel systems. 
Biomass and Bioenergy. 30, 198–206 (2006). 

176. C. L. Porter Jr, An analysis of variation between upland and lowland 
switchgrass, Panicum virgatum L., in central Oklahoma. Ecology (1966). 

177. M. Kuhn, K. Johnson, Applied predictive modeling (New York : Springer, 
2013). 

178. R Core Team, R: A language and environment for statistical computing, 
(available at https://www.R-project.org/). 

179. M. Kuhn, Caret package. Journal of Statistical Software (2008). 

180. L. Breiman, Random Forests. Machine Learning. 45, 5–32 (2001). 

181. A. Liaw, M. Wiener, Classification and regression by randomForest. R news 
(2002). 

182. T. Hastie, D. Pregibon, “Shrinking trees” (AT&T Bell Laboratories, 1990). 

183. J. Fox, S. Weisberg, An R Companion to Applied Regression (Sage, Thousand 
Oaks, CA, 2011; http://socserv.socsci.mcmaster.ca/jfox/Books/Companion). 

184. P. R. Patwardhan, J. A. Satrio, R. C. Brown, B. H. Shanks, Product distribution 
from fast pyrolysis of glucose-based carbohydrates. Journal of Analytical and 
Applied Pyrolysis. 86, 323–330 (2009). 

185. K. Raveendran, A. Ganesh, K. C. Khilar, Influence of mineral matter on 
biomass pyrolysis characteristics. Fuel. 74, 1812–1822 (1995). 

186. S. Kim et al., Computational Study of Bond Dissociation Enthalpies for a Large 
Range of Native and Modified Lignins. J. Phys. Chem. Lett. 2, 2846–2852 
(2011). 

187. R. Parthasarathi, R. A. Romero, A. Redondo, S. Gnanakaran, Theoretical Study 
of the Remarkably Diverse Linkages in Lignin. J. Phys. Chem. Lett. 2, 2660–
2666 (2011). 

188. T. Elder, Bond Dissociation Enthalpies of a Pinoresinol Lignin Model 
Compound. Energy & Fuels (2014), doi:10.1021/ef402310h. 

189. N. A. Palmer et al., Genetic background impacts soluble and cell wall-bound 
aromatics in brown midrib mutants of sorghum. Planta. 229, 115–127 (2008). 

190. K. M. Holtman, H. M. Chang, H. Jameel, J. F. Kadla, Quantitative 13C NMR 
Characterization of Milled Wood Lignins Isolated by Different Milling 
Techniques. Journal of Wood Chemistry and Technology. 26, 21–34 (2006). 



186 

191. Ewellyn A Capanema, A. Mikhail Y Balakshin, J. F. Kadla, A Comprehensive 
Approach for Quantitative Lignin Characterization by NMR Spectroscopy. J. 
Agric. Food Chem. 52, 1850–1860 (2004). 

192. Ewellyn A Capanema, A. Mikhail Yu Balakshin, J. F. Kadla, Quantitative 
Characterization of a Hardwood Milled Wood Lignin by Nuclear Magnetic 
Resonance Spectroscopy. J. Agric. Food Chem. 53, 9639–9649 (2005). 

193. M. Hinchee et al., Short-rotation woody crops for bioenergy and biofuels 
applications. In Vitro Cell.Dev.Biol.-Plant. 45, 619–629 (2009). 

194. Z. Barth, Invasion of the Eastern Red Cedar. Rangelands (2002), 
doi:10.2307/4001794. 

195. R. Tibshirani, Regression shrinkage and selection via the lasso. Journal of the 
Royal Statistical Society Series B ( … (1996), doi:10.2307/2346178. 

196. H. Zou, T. Hastie, Regularization and variable selection via the elastic net. 
Journal of the Royal Statistical Society: Series B (Statistical Methodology). 67, 
301–320 (2005). 

197. C. A. Mullen, A. A. Boateng, Catalytic pyrolysis-GC/MS of lignin from several 
sources. Fuel Processing Technology. 91, 1446–1458 (2010). 

 

  



187 

Appendix A: Source code for implementation of 

torrefaction weight loss model 

## Implementation of oak weight loss model as described in 

## W. J. Grigsby, G. Varhegyi, C. Di Blasi, 

## Thermogravimetric analysis and devolatilization kinetics of wood. 

## Industrial & Engineering Chemistry Research (2002), 

## doi:10.1021/ie0201157. 

## 

## Last Modified March 17, 2016 

## Christopher Waters 

## cwaters@ou.edu 

## University of Oklahoma 

## College of Engineering 

## School of Chemical, Biological, and Materials Engineering 

## Center for Biofuels Refining 

## Pyrolysis Lab Group 

## Script for the R programming language 

 

## Output 10 digits when printing values 

options(digits=10) 
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## Global constants 

R <- (8.314 * 10̂ -3) # kJ/mol * K 

t_0 <- 0 # Initial time, seconds; do not change this 

 

# Wt % of original biomass 

c_ext <- 0.00 #extractives 

c_hc <- 0.3024 #hemicellulose 

c_c <- 0.277 #cellulose 

c_L <- 0.2267 #lignin 

 

## Kinetic constants, found in Table 3 

## Extractives 

A_ext <- 10̂ 10.05 #ŝ -1 

E_ext <- 127 #kJ/mol 

 

## Hemicellulose 

A_hc <- 10̂ 6.84 #ŝ -1 

E_hc <- 100 #kJ/mol 

 

## Cellulose 

A_c <- 10̂ 17.97 #ŝ -1 
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E_c <- 236 #kJ/mol 

 

## Lignin 

A_L <- 10̂ 0.6 #ŝ -1 

E_L <- 46 #kJ/mol 

 

## Kinetic parameters defined as functions of temperature, according to 

## Equation 1 in the Kinetic Modeling section 

k_ext <- function(T) { 

  return(A_ext * exp(-E_ext / (R * T))) 

} 

 

k_hc <- function(T) { 

  return(A_hc * exp(-E_hc / (R * T))) 

} 

 

k_c <- function(T) { 

  return(A_c * exp(-E_c / (R * T))) 

} 

 

k_L <- function(T) { 
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  return(A_L * exp(-E_L / (R * T))) 

} 

 

## This function will numerically calculate the mass loss of the fractions ---- 

runModel <- function(T, t_f, dt) { 

  ## T:   Isothermal temperature at which the model will run. 

  ##      Temperatures must be passed in as Celsius. 

  ##      This could theoretically be passed in as a temperature profile in a 

  ##      more advanced implementation. 

  ## 

  ## t_f: Final time. 

  ##      All time unis in this model are in seconds. 

  ##      This is for how long the mass losses will be calculated. 

  ## 

  ## dt:  Time step for the model 

  ##      This is also in seconds. 

 

  ## Conversion of input temperature to Kelvin 

  T <- T + 273 

 

  ## First, calculate kinetic parameters at the selected temperature 
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  k_ext_i <- k_ext(T) 

  k_hc_i <- k_hc(T) 

  k_c_i <- k_c(T) 

  k_L_i <- k_L(T) 

 

  ## This defines the structure of the data frame where the results go 

  results.frame <- data.frame(t = 0, a_ext = 0, a_hc = 0, a_c = 0, a_L = 0) 

 

  ## Sets up the iteration step limits for the numeric solution. 

  step_0 <- t_0 / dt 

  step_f <- t_f / dt 

 

  ## Initial boundary conditions: No mass loss. 

  a_ext <- 0 

  a_hc <- 0 

  a_c <- 0 

  a_L <- 0 

 

  ## This loop calculates each iteration of the model. 

  for(iteration in step_0:step_f) { 

      if(iteration == 0) { 
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        ## This is the boundary condition and we know the a_'s here (0's) 

        next ## just skip it 

      } 

 

    ## A brief algebraic exposition follows, for clarity 

    ## From equation 1 in the kinetic modeling section: 

    ##                      dαj/dt = kj*(1-αj) 

    ## Applying the fundamental theorem of calculus: 

    ##           dα/dt = lim(dt -> 0) of (α(t+dt) - a(t)) / dt 

    ## Substituting 

    ##      k*(1-α[t]) = lim(dt -> 0) of (α[t + dt] - α[t]) / dt 

    ## Rewriting, as we want to look backwards in time when we iterate 

    ##      k*(1-α[t]) = lim(dt -> 0) of (α(t) - α[t - dt]) / dt 

    ## Dropping the limit 

    ##             k*(1-α[t]) = (α[t] - α[t - dt]) / dt 

    ## Rearranging and solving for current iteration’s α 

    ##             k*(1-α[t]) = (α[t] - α[t - dt]) / dt 

    ##           dt * k * (1 - α[t]) = (α[t] - α[t - dt]) 

    ##         (dt * k) - (dt * k * α[t]) = α[t] - α[t - dt] 

    ##         (dt * k) - (dt * k * α[t]) - α[t] = -α[t - dt] 

    ## Sign flip 
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    ##          -(dt * k) + (dt * k * α[t]) + α[t] = α[t - dt] 

    ##           (dt * k * α[t]) + α[t] = α[t - dt] + (dt * k) 

    ##           (dt * k + 1) * α[t] = α[t - dt] + (dt * k) 

    ## Arriving at the final expression 

    ##          α[t] = (α[t - dt] + (dt * k)) / ((dt * k) + 1) 

 

    ## The a_j variables here will overwrite every time the model iterates. 

    ## R always starts counting at 1, but our model begins at t = 0. Since 

    ## we skip the first iteration (at t = 0), the a_j values stored in 

    ## the results.frame on the row equal to the current value of [iteration] 

    ## are at the time step before the current one being calculated. 

    ## The results are appended to the bottom of results.frame. 

 

    a_ext <- (results.frame$a_ext[iteration] + (dt * k_ext_i)) / 

                                               ((dt * k_ext_i) + 1) 

    a_hc <- (results.frame$a_hc[iteration] + (dt * k_hc_i)) / 

                                             ((dt * k_hc_i) + 1) 

    a_c <- (results.frame$a_c[iteration] + (dt * k_c_i)) /  

                                           ((dt * k_c_i) + 1) 

    a_L <- (results.frame$a_L[iteration] + (dt * k_L_i)) /  

                                           ((dt * k_L_i) + 1) 
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    # Binding to the frame 

    results.frame <- rbind.data.frame(results.frame, c((iteration * dt), 

                                                       a_ext, a_hc, a_c, a_L)) 

   } 

 

  ## The overall mass loss is not part of the converison frame, so we can just 

  ## print it out at the end. 

  final.values <- tail(results.frame, n=1)[2:5] 

 

  mass.loss <- final.values$a_ext * c_ext + 

               final.values$a_hc * c_hc + 

               final.values$a_c * c_c + 

               final.values$a_L * c_L 

 

  print(paste("Mass loss: ", mass.loss * 100, "%", sep="")) 

 

  return(results.frame) 

} 

 

## This function makes a quick & dirty plot of the model  ---- 
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plotModel <- function(T, t_f, dt) { 

  ## Notice that we call the modeling function here. 

  result <- runModel(T, t_f, dt) 

  ## Plot the first component, then overlay the rest on the same plot object. 

  plot(result$t, result$a_ext, type = "l", col="red", 

       xlim = c(0, max(result$t)), ylim = c(0, 1)) 

  points(result$t, result$a_hc, type = "l", col="blue") 

  points(result$t, result$a_c, type = "l", col="green") 

  points(result$t, result$a_L, type = "l", col="brown") 

} 

 

## This function makes a plot of the model using ggplot2  ---- 

ggPlotModel <- function(T, t_f, dt) { 

  require(ggplot2) 

  require(reshape2) 

  result <- runModel(T, t_f, dt) 

  m.result <- melt(result, id.vars = "t") 

 

  p <- ggplot(data = m.result) + theme_bw(base_size = 30) 

 

  p + geom_path(aes(x = t, y = 1 - value, col = variable)) 
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} 

 

ggPlotModel(270, 1250, 1) 

ggPlotModel(350, 300, 1) 

ggPlotModel(500, 60, 1) 
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Appendix B: Source code for linear models data preparation 

# Copyright Statement: 

# This work is licensed under a Creative Commons 

# Attribution-NonCommercial-ShareAlike 3.0 Unported License. 

 

# torrefaction data preparation.r 

# Version 1.0 

# November 14, 2015 

# Christopher Waters 

# cwaters@ou.edu 

# University of Oklahoma 

# College of Engineering 

# School of Chemical, Biological, and Materials Engineering 

# Center for Biofuels Refining 

# Pyrolysis Lab Group 

 

# A collection of utility functions for data preparation written in the R 

# programming language. 

 

rm(list = ls()) #Removes all items from the workspace 
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library(reshape2) 

 

# Association panel load ---- 

sg.comp <- read.csv("original composition data.csv") 

sg.comp <- sg.comp[complete.cases(sg.comp),] 

 

# Compositional subset load - 22 obs. that go with thermochemical samples---- 

sg.comp.sub <- read.csv("original subset composition data.csv") 

 

# Thermochemical data load ---- 

tc <- read.csv("torrefaction switchgrass data.csv") 

tc[which(tc$lumps=="Unid."),]$lumps <- "Unknown" 

 

# Do means of each compound per sample replicate ---- 

tc.c.m <- melt(tc) 

 

# rename samples to just the switchgrass identifier 

 tc.c.m$variable <- as.character(tc.c.m$variable) 

for(i in 1:nrow(tc.c.m)){ 

  tc.c.m$variable[i] <- unlist(strsplit(tc.c.m$variable[i], split="\\_"))[3] 

} 
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tc.c.m$variable <- as.factor(tc.c.m$variable) 

 

# Aggregate the mean & recast, and get rid of stuff we don't need 

tc.c.mean <- aggregate(tc.c.m, by = list(tc.c.m$variable,  

                                         tc.c.m$Name), FUN=mean)[,c(1,2,6)] 

colnames(tc.c.mean) <- c("sample", "compound", "value") 

tc.mean <- dcast(tc.c.mean, compound ~ sample) 

tc.mean <- as.data.frame(t(tc.mean)) 

colnames(tc.mean) <- as.character(unlist(tc.mean[1,])) 

tc.mean <- tc.mean[-1,] 

for(i in 1:ncol(tc.mean)){ 

  tc.mean[,i] <- as.double(as.character(tc.mean[,i])) 

} 

rm(tc.c.mean) 

 

# Dimensionality reduction: Thermochemical data means, combined on lumps ---- 

tc.c.lump <- aggregate(tc.c.m, by = list(tc.c.m$variable,  

                                         tc.c.m$lumps), FUN=mean)[,c(1,2,6)] 

colnames(tc.c.lump) <- c("sample", "lump", "value") 

tc.lump <- dcast(tc.c.lump, lump ~ sample) 

tc.lump <- as.data.frame(t(tc.lump)) 
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colnames(tc.lump) <- as.character(unlist(tc.lump[1,])) 

tc.lump <- tc.lump[-1,] 

# Fix the data to be numeric 

for(i in 1:ncol(tc.lump)){ 

  tc.lump[,i] <- as.double(as.character(tc.lump[,i])) 

} 

rm(tc.c.m) 

rm(tc.c.lump) 

rm(i) 

# Manually assigned "friendlier" names for the columns 

# (should make modeling easier) 

colnames(tc.lump) <- c("acetic", "akph", "furfurals", "lightgas", 

                       "lightoxy", "moxph", "pyran", "sugars", "unknown") 

 

 

# This function combines the TC & Comp data ---- 

combine.datasets <- function(tc = tc.lump, comp = sg.comp.sub) { 

  # Function extracts the order of the rows from tc, then sorts comp by that 

  # order, then appends the data frame. 

  plots <- as.factor(as.numeric(substring(rownames(tc), 3))) 

  comp <- comp[match(plots, comp$Plot),] 
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  return.frame <- cbind.data.frame(tc,comp) 

  return(return.frame) 

} 

sg.combined <- combine.datasets() 
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Appendix C: Source code for torrefaction models 

# Copyright Statement: 

# This work is licensed under a Creative Commons 

# Attribution-NonCommercial-ShareAlike 3.0 Unported License. 

 

# torrefaction modeling for thesis.r 

# Version 1.0 

# April 1, 2016 

# Christopher Waters 

# cwaters@ou.edu 

# University of Oklahoma 

# College of Engineering 

# School of Chemical, Biological, and Materials Engineering 

# Center for Biofuels Refining 

# Pyrolysis Lab Group 

 

## Modeling of torrefaction data for thesis written in the R programming language. 

 

rm(list = ls()) ## This clears out the global environment 

library(stats) 

library(randomForest) 
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library(caret) 

library(MASS) 

library(car) 

library(ggplot2) 

# Be sure you know if you're working with Torr or Pyro! 

setwd("/Users/cwaters/Dropbox/Biomass Pyrolysis/Manuscripts/Switchgrass 

modeling/Data/torrefaction/") 

source("torrefaction data preparation.r") 

 

## Prepare data for modeling ---- 

## These column numbers are hard-coded to sg.combined so be careful. 

tc.columns <- 1:9 

compdata.columns <- c(16:30, 32, 34, 41:43, 45:46, 48, 61:64, 68, 70, 72:76,  

                      78:80, 82:85, 90, 93:96) ## For the 'original' data 

 

## Thermochemical collinearity check 

tclc <- findLinearCombos(sg.combined[,tc.columns]) 

tclc ## no dependent variable suggested for removal 

 

modeldata.acetic <- sg.combined[,c(1, compdata.columns)] 

modeldata.akph <- sg.combined[,c(2, compdata.columns)] 
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modeldata.furfurals <- sg.combined[,c(3, compdata.columns)] 

modeldata.lightgas <- sg.combined[,c(4, compdata.columns)] 

modeldata.lightoxy <- sg.combined[,c(5, compdata.columns)] 

modeldata.moxph <- sg.combined[,c(6, compdata.columns)] 

modeldata.pyran <- sg.combined[,c(7, compdata.columns)] 

modeldata.sugars <- sg.combined[,c(8, compdata.columns)] 

modeldata.unknown <- sg.combined[,c(9, compdata.columns)] 

phenolics <- (modeldata.akph[,1] + modeldata.moxph[,1]) 

modeldata.phenolics <- cbind.data.frame(phenolics,  

                                        sg.combined[,compdata.columns]) 

 

## Clean up stuff from this section 

rm(list = c("compdata.columns", "full.sg.removal", "tc.columns",  

            "tclc", "variables.to.remove")) 

 

## Modeling function ---- 

 

buildModel <- function(modeldata, plots = FALSE, rf.variables = 7,  

                       return.model = "step", custom.call = NULL) { 

  ## The final approach used was random forest -> Top 7 important variables -> 

  ## OLS model -> forward/backward selection -> Test for collinearity -> Final 
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  ## Model 'call' built from the column names of the data passed in 

  ## This makes it easier for our interpretation later 

  dependent <- paste(colnames(modeldata)[1], "~") 

  call.full <- paste(dependent, ".") 

   

  # Center and scale data 

  # This can help us assess the relative importance of each final model  

  # coefficient. It also prevents us from calculating predicted values by hand  

  # later. It's optional and can be commented out 

  # modeldata <- data.frame(scale(modeldata[,-1]), modeldata[1]) ## scaling 

  modeldata <- data.frame(modeldata[,-1], modeldata[1]) ## For no scaling 

   

  ## Generate the random forest object 

  set.seed(20) 

  model.RF <- randomForest(as.formula(call.full), data=modeldata,  

                           importance=T, mtry=20, ntree=15000) 

   

  if(return.model == "RF"){ 

    return(model.RF) 

  } 
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  ## Pull the top 7 and make the final call for the OLS model 

  var.importance <- as.data.frame(model.RF$importance[,1]) 

  important.variables <- rownames(head(var.importance[order(-var.importance),, 

                                                      drop=FALSE], rf.variables)) 

  independent <- paste(important.variables, collapse=" + ") 

  call.ols <- paste(dependent, independent) 

   

  rm(dependent) 

  rm(independent) 

   

  ## Ordinary least squares using the 7 automatically selected features 

  model.OLS <- lm(as.formula(call.ols), data=modeldata) 

   

  ## This is here in case we want to try some custom calls 

  ##  - e.g., after collinearity checks 

  if(is.null(custom.call) == FALSE) { 

    model.OLS <- lm(as.formula(custom.call), data=modeldata) 

  } 

   

  if(return.model == "OLS"){ 
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    return(model.OLS) 

  } 

   

  ## Original model probably had insignificant features 

  ## Now doing a stepwise selection to try to improve model 

  model.step <- step(model.OLS, direction="both", trace = 0) 

   

  ## Variance inflation score check - prints out 

  print(paste(colnames(modeldata)[ncol(modeldata)],  

              "step model variance inflation scores")) 

   

  if(class(try(vif(model.step)))=="try-error") { 

    print("Only two variables: Nothing to do") 

  } 

  else{print(vif(model.step))} 

   

  if(plots == TRUE) { 

    print("doing plots") 

     

    predicted.var <- colnames(modeldata)[ncol(modeldata)] 
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    print(varImpPlot(model.RF, 

                     main=paste("Random Forest", predicted.var,  

                                "Importance Charts"))) 

    

    ## Value fitting 

    ## Only use this if you're making PDF, otherwise plots won't run 

    par(mfrow=c(1,2)) 

     

    print(plot(modeldata[,1] ~ model.OLS$fitted.values, 

               main=paste("OLS prediction for", predicted.var), 

               xlab = "Predicted", ylab = "Observed")) 

     

    print(plot(modeldata[,1] ~ model.step$fitted.values, 

               main=paste("Stepwise Prediction for", predicted.var), 

               xlab = "Predicted", ylab = "Observed")) 

     

    par(mfrow=c(1,1)) 

     

    ## Bar plots for discussion 

    ##OLS Coefficients 

    barplot(rev(sort(model.OLS$coefficients[-1])), 
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            main=paste("OLS Coefficients for", predicted.var,  

                       "\n (Scaled & Centered)")) 

     

    ## Stepwise coefficients 

    print(barplot(rev(sort(model.step$coefficients[-1])), 

                  main=paste("Stepwise OLS Coefficients for", predicted.var, 

                             "\n (Scaled & Centered)"))) 

  } 

   

  return(model.step) 

} 

 

## Final, "Locked in" calls to avoid high VIF's ---- 

acetic.model <- buildModel(modeldata.acetic, 

                           custom.call = "acetic ~ FEST + Ca + lignin.nrel") 

akph.model <- buildModel(modeldata.akph,  

                         custom.call = "akph ~ pCA + Ash.forage + FEST + UA") 

furfurals.model <- buildModel(modeldata.furfurals, 

                              custom.call = "furfurals ~ GLCS + ARA") 

lightgas.model <- buildModel(modeldata.lightgas) 

lightoxy.model <- buildModel(modeldata.lightoxy,  
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                             custom.call = "lightoxy ~ RHA + C + ARA + HCA + 

                                            Lignin.forage + xylose.nrel") 

moxph.model <- buildModel(modeldata.moxph,  

                          custom.call = "moxph ~  KL + UA + GLCS + FEST +  

                                         PCA + Ash.forage") 

pyran.model <- buildModel(modeldata.pyran,  

                          custom.call = "pyran ~ PENT + GLCS") 

sugars.model <- buildModel(modeldata.sugars,  

                           custom.call = "sugars ~ sgratio.nrel + EE + ASH") 

 

## Print coefficients ---- 

acetic.model$coefficients 

akph.model$coefficients 

furfurals.model$coefficients 

lightgas.model$coefficients 

lightoxy.model$coefficients 

moxph.model$coefficients 

pyran.model$coefficients 

sugars.model$coefficients 

 

## Dump out performance info ---- 
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r2.values <- as.data.frame(rbind(cbind('acetic', summary(acetic.model)$r.squared), 

                                 cbind('akph', summary(akph.model)$r.squared), 

                                 cbind('furfurals', 

summary(furfurals.model)$r.squared), 

                                 cbind('lightgas', 

summary(lightgas.model)$r.squared), 

                                 cbind('lightoxy', 

summary(lightoxy.model)$r.squared), 

                                 cbind('moxph', summary(moxph.model)$r.squared), 

                                 cbind('pyran', summary(pyran.model)$r.squared), 

                                 cbind('sugars', summary(sugars.model)$r.squared))) 

 

r2.values 

 

## Transformed coefficient table ---- 

 

## Let's pull a dataset of all of the 'good' model coefficients together 

coeff.frm <- data.frame() 

coeff.frm <- rbind.data.frame(coeff.frm,  

                              cbind("acetic",  

                                    names(acetic.model$coefficients)[-1],  
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                                    as.numeric(sign(acetic.model$coefficients[-

1])))) 

coeff.frm <- rbind.data.frame(coeff.frm,  

                              cbind("akph",  

                                    names(akph.model$coefficients)[-1],  

                                    as.numeric(sign(akph.model$coefficients[-1])))) 

coeff.frm <- rbind.data.frame(coeff.frm,  

                              cbind("furfurals",  

                                    names(furfurals.model$coefficients)[-1],  

                                    as.numeric(sign(furfurals.model$coefficients[-

1])))) 

coeff.frm <- rbind.data.frame(coeff.frm,  

                              cbind("pyran",  

                                    names(pyran.model$coefficients)[-1],  

                                    as.numeric(sign(pyran.model$coefficients[-1])))) 

 

colnames(coeff.frm) <- c("model", "coefficient", "sign") 

coeff.frm$sign <- as.integer(as.character(coeff.frm$sign)) 

 

## Transforming it 

dcast(coeff.frm, model ~ coefficient) 
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## Residual explorations ---- 

plot(acetic.model$fitted.values, acetic.model$residuals); abline(0,0) 

plot(akph.model$fitted.values, akph.model$residuals); abline(0,0) 

plot(furfurals.model$fitted.values, furfurals.model$residuals); abline(0,0) 

plot(pyran.model$fitted.values, pyran.model$residuals); abline(0,0) 

 

## Predict association panel for reasonable models ---- 

acetic.predict <- predict(acetic.model, newdata = sg.comp) 

akph.predict <- predict(akph.model, newdata = sg.comp) 

furfurals.predict <- predict(furfurals.model, newdata = sg.comp) 

pyran.predict <- predict(pyran.model, newdata = sg.comp) 

 

## Create prediction frame ---- 

pred.frame <- as.data.frame(cbind(plot = sg.comp$Plot, 

                                  acetic = acetic.predict, 

                                  akph = akph.predict, 

                                  furfurals = furfurals.predict, 

                                  pyran = pyran.predict)) 

 

## Changing the scale 
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pred.frame[,2:ncol(pred.frame)] <- pred.frame[,2:ncol(pred.frame)]/1000 

 

m.predict <- melt(pred.frame, id.vars = 1) 

 

## Let's combine furfurals with pyrans 

pred.frame$furf.py <- pred.frame$furfurals + pred.frame$pyran 

 

m.predict.combined <- melt(pred.frame[,c(1,2,3,6)], id.vars = 1) 

 

## Compare observed & predicted data (xy) ---- 

 

## Vector of the plots we actually ran 

run.plots <- as.numeric(c("2", "1055", "1095", "1129", "1347", "170", "207", 

                          "217", "218", "246", "314", "325", "436", "452", 

                          "464", "528", "67", "709", "790", "80", "90", "95")) 

 

tc.lump$furf.py <- tc.lump$furfurals + tc.lump$pyran 

 

observed <- melt(as.matrix(tc.lump)) 

colnames(observed) <- c("plot", "variable", "value") 

observed$plot <- gsub("BS", "", observed$plot) 
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observed$plot <- gsub("000", "", observed$plot) 

observed$plot <- as.numeric(observed$plot) 

observed$value <- observed$value / 1000 

observed$type <- "obs" 

 

predicted.tests <- melt(pred.frame[which(pred.frame$plot %in% run.plots),],  

                        id.vars = "plot") 

 

predicted.tests$type <- "pred" 

 

## Join these two together 

compare.frame <- rbind.data.frame(predicted.tests, observed) 

compare.frame <- dcast(compare.frame, plot + variable ~ type) 

compare.frame <- compare.frame[complete.cases(compare.frame),] 

 

# Basic plot object 

p <- ggplot() + theme_bw(base_size = 24) +  

     guides(color = guide_legend(override.aes = list(size=10,linetype=0))) 

 

## Compare predicted vs. observed 

p + geom_point(data = compare.frame, aes(y = pred, x = obs)) + 
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  geom_abline(data = data.frame(1), slope = 1, intercept = 0) + 

  facet_wrap(~variable, scales = "free") 

 

## Explore association panel for reasonable models ---- 

 

# m.predict[which(m.predict$plot %in% run.plots),] 

 

## First: Simple histograms for values 

## All models 

p + geom_bar(data = m.predict, aes(value)) +  

    facet_wrap(~variable, scales = "free") + 

    geom_bar(data = subset(compare.frame, variable != "furf.py"),  

             aes(obs, y=..count.. * 4), fill = "red") + 

    ggtitle("Predicted Association Panel Yield Distributions\n 

            All Values = (Normalized FID Area Count / 1000)\n 

            Red bars are test set observations") 

 

## Combined models 

p + geom_bar(data = m.predict.combined, aes(value)) +  

    facet_wrap(~variable, scales = "free") + 

    ggtitle("Predicted Association Panel Combined Yield Distributions\n 
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            All Values = (Normalized FID Area Count / 1000)") 

 

## Next: Three-variable showing everything. 

p <- ggplot() + theme_bw(base_size = 16) +  

     guides(color = guide_legend(override.aes = list(size=10,linetype=0))) 

 

p + geom_point(data = pred.frame, 

               aes(x = acetic, y = furf.py, fill = akph),  

               pch = 21, alpha = 1, size = 4) + 

   

  scale_fill_gradientn(colours=rainbow(6, start = 0, end = 0.8),  

                       guide = guide_colorbar(guide_legend(title = "Alkyl\n 

                                                           Phenols\n 

                                                           Yield"))) + 

  ggtitle("Predicted Association Panel Thermochemical Switchgrass Yields\n 

          All Values = (Normalized FID Area Count / 1000)") + 

  xlab("Acetic Acid Yield") + ylab("Furfurals + Pyrans Combined Yield") + 

  ggsave("./Figure xx - Colorful torrefactin prediction.pdf",  

         height = 5.9, width = 8.25) 

 

## This one zooms in on the upper quadrant  
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quadset <- subset(pred.frame, acetic > 486) 

quadset <- subset(quadset, furf.py > 228) 

names(quadset)[1] <- "s.plot" 

 

p + geom_point(data = quadset, 

               aes(x = acetic, y = furf.py, fill = akph),  

               pch = 21, alpha = 1, size = 4) + 

   

  scale_fill_gradientn(colours=rainbow(6, start = 0, end = 0.8),  

                       limits=range(pred.frame$akph),  

                       guide = guide_colorbar(guide_legend(title = "Alkyl\n 

                                                           Phenols\n 

                                                           Yield"))) + 

  ggtitle("Predicted Yields (Upper Right Quadrant)\n 

          All Values = (Normalized FID Area Count / 1000)") + 

  xlab("Acetic Acid Yield") + ylab("Furfurals + Pyrans Combined Yield") + 

  ggsave("./Figure xx - Colorful UPPER QUAD.pdf", height = 5.9, width = 8.25) 

 

## Exploration of labeled upper quadrant plot ---- 

 

## First we will dump out the distributions of the variables NOT in the coefficients 
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dist.sub <- sg.comp[,c(6,match(levels(coeff.frm$coefficient),  

                               colnames(sg.comp)))] 

m.dist.sub <- melt(dist.sub, id.vars = "Plot") 

 

## Now show the distributions for the upper quadrant. 

quad.comp <- sg.comp[match(quadset$s.plot, sg.comp$Plot), 

                     c(6,match(levels(coeff.frm$coefficient),  

                               colnames(sg.comp)))] 

 

high.plots <- quadset[which(quadset$akph > mean(quadset$akph)),]$s.plot 

low.plots <- quadset[which(quadset$akph < mean(quadset$akph)),]$s.plot 

 

m.quad.comp <- melt(quad.comp, id.vars = "Plot") 

 

m.quad.comp.high <- melt(quad.comp[match(high.plots,  

                                         quad.comp$Plot),], id.vars = "Plot") 

m.quad.comp.low <- melt(quad.comp[match(low.plots,  

                                        quad.comp$Plot),], id.vars = "Plot") 

 

p + geom_bar(data = m.dist.sub, aes(value), alpha = 0.5) + 

  geom_bar(data = m.quad.comp.high, aes(y=..count.. * 2, value),  
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           fill = "#5000ff", alpha = 0.7) + 

  geom_bar(data = m.quad.comp.low, aes(y=..count.. * 2, value),  

           fill = "#40ff7c", alpha = 0.7) + 

  facet_wrap(~variable, scales = "free") + 

  ggtitle("Distributions of Model Coefficient Compositional Features") 

ggsave("./Figure xx - upper quad distributions.pdf", height = 5, width = 8.25) 

 

dcast(coeff.frm, model ~ coefficient) 
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Appendix D: Source code for pyrolysis models 

# Copyright Statement: 

# This work is licensed under a Creative Commons 

# Attribution-NonCommercial-ShareAlike 3.0 Unported License. 

 

# pyrolysis modeling for thesis.r 

# Version 1.0 

# April 1, 2016 

# Christopher Waters 

# cwaters@ou.edu 

# University of Oklahoma 

# College of Engineering 

# School of Chemical, Biological, and Materials Engineering 

# Center for Biofuels Refining 

# Pyrolysis Lab Group 

 

## Modeling of pyrolysis data for thesis written in the R programming language 

 

rm(list = ls()) ## This clears out the global environment 

library(stats) 

library(randomForest) 
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library(caret) 

library(MASS) 

library(car) 

library(ggplot2) 

 

setwd("/Users/cwaters/Dropbox/Biomass Pyrolysis/Manuscripts/Switchgrass 

modeling/Data/pyrolysis/") 

source("pyrolysis data preparation.r") 

 

## Prepare data for modeling ---- 

## These column numbers are hard-coded to sg.combined so be careful. 

tc.columns <- 1:10 ## added levoglucosan 

compdata.columns <- -c(11:16, 31:34, 36:38, 60:61, 66:68, 70, 72, 78:80,  

                       82, 87:90, 92:94)  

compdata.columns <- -c(-compdata.columns, 39, 40, 41, 45, 50, 51, 52, 53, 54,  

                       55, 56, 57) ## Known linear combinations 

## Toss out the forage inorganics data in favor of other data 

compdata.columns <- -c(-compdata.columns, 62:65, 71)  

 

## Collinearity checks ----- 

tclc <- findLinearCombos(sg.combined[,tc.columns]) 
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tclc #no dependent variable suggested for removal 

 

## Check full association panel for linear combos, dropping factors 

combo.check <- sg.comp[, names(sg.comp)[sapply(sg.comp,class)!="factor"]] 

combo.check <- combo.check[,-c(1:5, 86)] ## remove stupid stuff like plot number 

full.panel.remove <- findLinearCombos(combo.check) 

vars.to.remove <- colnames(combo.check)[full.panel.remove$remove] 

 

compdata.columns <- -c(-compdata.columns, match(vars.to.remove,  

                                                colnames(sg.combined))) 

compdata.columns <- compdata.columns[!duplicated(compdata.columns)] 

 

sg.combined <- sg.combined[,compdata.columns] 

 

## Put model data together ----- 

modeldata.acetic <- sg.combined[,c(1, 11:ncol(sg.combined))] 

modeldata.akph <- sg.combined[,c(2, 11:ncol(sg.combined))] 

modeldata.furfurals <- sg.combined[,c(3, 11:ncol(sg.combined))] 

modeldata.levogluc <- sg.combined[,c(4, 11:ncol(sg.combined))] 

modeldata.lightgas <- sg.combined[,c(5, 11:ncol(sg.combined))] 

modeldata.lightoxy <- sg.combined[,c(6, 11:ncol(sg.combined))] 
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modeldata.moxph <- sg.combined[,c(7, 11:ncol(sg.combined))] 

modeldata.pyran <- sg.combined[,c(8, 11:ncol(sg.combined))] 

modeldata.sugars <- sg.combined[,c(9, 11:ncol(sg.combined))] 

modeldata.unknown <- sg.combined[,c(10, 11:ncol(sg.combined))] 

 

phenolics <- (modeldata.akph[,1] + modeldata.moxph[,1]) 

modeldata.phenolics <- cbind.data.frame(phenolics,  

                                        sg.combined[,11:ncol(sg.combined)]) 

 

## Clean up stuff from this section 

rm(list = c("compdata.columns", "tc.columns", "tclc", "full.panel.remove",  

            "vars.to.remove", "combo.check", "phenolics")) 

 

## Modeling function ---- 

 

buildModel <- function(modeldata, plots = FALSE, rf.variables = 7,  

                       return.model = "step", custom.call = NULL) { 

  ## The final approach used was random forest -> Top 7 important variables -> 

  ## OLS model -> forward / backward selection -> Test for collinearity -> Final 

   

  ## Model 'call' built from the column names of the data passed in 
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  ## This makes it easier for our interpretation later 

  dependent <- paste(colnames(modeldata)[1], "~") 

  call.full <- paste(dependent, ".") 

   

  ## Center and scale data 

  ## This helps us assess  relative importance of each final model coefficient 

  ## It also prevents us from calculating predicted values by hand later 

  ## It's optional and can be commented out 

  # modeldata <- data.frame(scale(modeldata[,-1]), modeldata[1]) ## For scaling 

  modeldata <- data.frame(modeldata[,-1], modeldata[1]) ## For no scaling 

   

  ## Generate the random forest object 

  set.seed(20) 

  model.RF <- randomForest(as.formula(call.full), data=modeldata,  

                           importance=T, mtry=20, ntree=15000) 

   

  if(return.model == "RF"){ 

    return(model.RF) 

  } 

   

  ## Pull the top 7 and make the final call for the OLS model 
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  var.importance <- as.data.frame(model.RF$importance[,1]) 

  important.variables <- rownames(head(var.importance[order(-var.importance),, 

                                                      drop=FALSE], rf.variables)) 

  independent <- paste(important.variables, collapse=" + ") 

  call.ols <- paste(dependent, independent) 

   

  rm(dependent) 

  rm(independent) 

   

  ## Ordinary least squares  using the 7 automatically selected features 

  model.OLS <- lm(as.formula(call.ols), data=modeldata) 

   

  ## This is here in case we want to try some custom calls 

  ##  - e.g., after collinearity checks 

  if(is.null(custom.call) == FALSE) { 

    model.OLS <- lm(as.formula(custom.call), data=modeldata) 

  } 

   

  if(return.model == "OLS"){ 

    return(model.OLS) 

  } 
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  ## Original model probably had insignificant features 

  ## Now doing a stepwise selection to try to improve model 

  model.step <- step(model.OLS, direction="both", trace = 0) 

   

  ## Variance inflation score check - prints out 

  print(paste(colnames(modeldata)[ncol(modeldata)],  

              "step model variance inflation scores")) 

   

  if(class(try(vif(model.step)))=="try-error") { 

    print("Only two variables: Nothing to do") 

  } 

  else{print(vif(model.step))} 

   

  if(plots == TRUE) { 

    print("doing plots") 

     

    predicted.var <- colnames(modeldata)[ncol(modeldata)] 

     

    print(varImpPlot(model.RF, 

                     main=paste("Random Forest", predicted.var,  
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                                "Importance Charts"))) 

     

     

    ## Value fitting 

    ## Only use this if you're making PDF, otherwise plots won't run 

    par(mfrow=c(1,2)) 

     

    print(plot(modeldata[,1] ~ model.OLS$fitted.values, 

               main=paste("OLS prediction for", predicted.var), 

               xlab = "Predicted", ylab = "Observed")) 

     

    print(plot(modeldata[,1] ~ model.step$fitted.values, 

               main=paste("Stepwise Prediction for", predicted.var), 

               xlab = "Predicted", ylab = "Observed")) 

     

    par(mfrow=c(1,1)) 

     

    ## Bar plots for discussion 

    ##OLS Coefficients 

    barplot(rev(sort(model.OLS$coefficients[-1])), 

            main=paste("OLS Coefficients for", predicted.var,  
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                       "\n (Scaled & Centered)")) 

     

    ## Stepwise coefficients 

    print(barplot(rev(sort(model.step$coefficients[-1])), 

                  main=paste("Stepwise OLS Coefficients for", predicted.var,  

                             "\n (Scaled & Centered)"))) 

  } 

   

  return(model.step) 

} 

 

## Final, "Locked in" calls to avoid high VIF's ---- 

acetic.model <- buildModel(modeldata.acetic,  

                           custom.call = "acetic ~ K + Ash + PENT2") 

akph.model <- buildModel(modeldata.akph,  

                         custom.call = "akph ~ pCA + glucose.nrel + K +  

                                       Crude.Protein + Ash + SUC + PENT2") 

furfurals.model <- buildModel(modeldata.furfurals,  

                              custom.call = "furfurals ~ K + GLC + SSE") 

levogluc.model <- buildModel(modeldata.levogluc) 

lightgas.model <- buildModel(modeldata.lightgas) 
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lightoxy.model <- buildModel(modeldata.lightoxy) 

moxph.model <- buildModel(modeldata.moxph,  

                          custom.call = "moxph ~ ARA + lignin.nrel") 

pyran.model <- buildModel(modeldata.pyran) 

sugars.model <- buildModel(modeldata.sugars) 

phenolics.model <- buildModel(modeldata.phenolics,  

                              custom.call = "phenolics ~ FA + lignin.nrel + 

                                             Ash + pCA") 

 

## Print coefficients ---- 

acetic.model$coefficients 

akph.model$coefficients 

furfurals.model$coefficients 

levogluc.model$coefficients 

lightgas.model$coefficients 

lightoxy.model$coefficients 

moxph.model$coefficients 

pyran.model$coefficientst 

sugars.model$coefficients 

 

## Dump out performance info ---- 
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r2.values <- as.data.frame(rbind(cbind('acetic', summary(acetic.model)$r.squared), 

                                 cbind('akph', summary(akph.model)$r.squared), 

                                 cbind('furfurals', 

summary(furfurals.model)$r.squared), 

                                 cbind('levogluc', 

summary(levogluc.model)$r.squared), 

                                 cbind('lightgas', 

summary(lightgas.model)$r.squared), 

                                 cbind('lightoxy', 

summary(lightoxy.model)$r.squared), 

                                 cbind('moxph', summary(moxph.model)$r.squared), 

                                 cbind('pyran', summary(pyran.model)$r.squared), 

                                 cbind('sugars', summary(sugars.model)$r.squared), 

                                 cbind('phenolics', 

summary(phenolics.model)$r.squared))) 

 

r2.values 

 

## Transformed coefficient table ---- 

 

## Let's pull a dataset of all of the 'good' model coefficients together 
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coeff.frm <- data.frame() 

coeff.frm <- rbind.data.frame(coeff.frm,  

                              cbind("acetic",  

                                    names(acetic.model$coefficients)[-1],  

                                    as.numeric(sign(acetic.model$coefficients[-

1])))) 

coeff.frm <- rbind.data.frame(coeff.frm,  

                              cbind("akph",  

                                    names(akph.model$coefficients)[-1],  

                                    as.numeric(sign(akph.model$coefficients[-1])))) 

coeff.frm <- rbind.data.frame(coeff.frm,  

                              cbind("furfurals",  

                                    names(furfurals.model$coefficients)[-1],  

                                    as.numeric(sign(furfurals.model$coefficients[-

1])))) 

coeff.frm <- rbind.data.frame(coeff.frm,  

                              cbind("levogluc",  

                                    names(levogluc.model$coefficients)[-1],  

                                    as.numeric(sign(levogluc.model$coefficients[-

1])))) 

coeff.frm <- rbind.data.frame(coeff.frm,  
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                              cbind("lightgas",  

                                    names(lightgas.model$coefficients)[-1],  

                                    as.numeric(sign(lightgas.model$coefficients[-

1])))) 

coeff.frm <- rbind.data.frame(coeff.frm,  

                              cbind("lightoxy",  

                                    names(lightoxy.model$coefficients)[-1],  

                                    as.numeric(sign(lightoxy.model$coefficients[-

1])))) 

coeff.frm <- rbind.data.frame(coeff.frm,  

                              cbind("moxph",  

                                    names(moxph.model$coefficients)[-1],  

                                    as.numeric(sign(moxph.model$coefficients[-1])))) 

coeff.frm <- rbind.data.frame(coeff.frm,  

                              cbind("pyran",  

                                    names(pyran.model$coefficients)[-1],  

                                    as.numeric(sign(pyran.model$coefficients[-1])))) 

coeff.frm <- rbind.data.frame(coeff.frm,  

                              cbind("sugars",  

                                    names(sugars.model$coefficients)[-1],  
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                                    as.numeric(sign(sugars.model$coefficients[-

1])))) 

coeff.frm <- rbind.data.frame(coeff.frm,  

                              cbind("phenolics",  

                                    names(phenolics.model$coefficients)[-1],  

                                    as.numeric(sign(phenolics.model$coefficients[-

1])))) 

 

colnames(coeff.frm) <- c("model", "coefficient", "sign") 

 

good.models <- 

as.character(r2.values$V1[which(as.numeric(as.character(r2.values$V2)) > 0.41)]) 

coeff.frm <- coeff.frm[!is.na(match(as.character(coeff.frm$model), good.models)),] 

coeff.frm$sign <- as.integer(as.character(coeff.frm$sign)) 

dcast(coeff.frm, model ~ coefficient) 

 

## Residual explorations ---- 

plot(acetic.model, which = 1) 

plot(akph.model, which = 1) 

plot(levogluc.model, which = 1) 

plot(moxph.model, which = 1) 
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plot(pyran.model, which = 1) 

plot(phenolics.model, which = 1) 

 

ncvTest(acetic.model) 

ncvTest(akph.model) 

ncvTest(levogluc.model) 

ncvTest(moxph.model) 

ncvTest(pyran.model) 

ncvTest(phenolics.model) 

 

plot(acetic.model, which = 5) 

plot(akph.model, which = 5) 

plot(levogluc.model, which = 5) 

plot(moxph.model, which = 5) 

plot(pyran.model, which = 5) 

plot(phenolics.model, which = 5) 

 

## Predict association panel for reasonable models ---- 

## Reasonable means r2 >~ 0.5 & at least somewhat interpretable 

acetic.predict <- predict(acetic.model, newdata =sg.comp) 

akph.predict <- predict(akph.model, newdata =sg.comp) 
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levogluc.predict <- predict(levogluc.model, newdata =sg.comp) 

moxph.predict <- predict(moxph.model, newdata =sg.comp) 

pyran.predict <- predict(pyran.model, newdata =sg.comp) 

phenolics.predict <- predict(phenolics.model, newdata =sg.comp) 

 

## Create prediction frame ---- 

pred.frm <- as.data.frame(cbind(plot = sg.comp$Plot, 

                                     acetic = acetic.predict, 

                                     akph = akph.predict, 

                                     moxph = moxph.predict)) 

 

pred.frm$phenolics <- pred.frm$akph + pred.frm$moxph 

 

## Changing the scale, because mallinson 

pred.frm[,2:ncol(pred.frm)] <- pred.frm[,2:ncol(pred.frm)] / 1000 

 

m.predict <- melt(pred.frm, id.vars = 1) 

 

## Compare observed & predicted data (xy) ---- 

 

## Vector of the plots we actually ran 
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run.plots <- as.numeric(c("2", "1055", "1095", "1129", "1347", "170", "207", 

                          "217", "218", "246", "314", "325", "436", "452", 

                          "464", "528", "67", "709", "790", "80", "90", "95")) 

 

 

tc.lump$phenolics <- tc.lump$moxph + tc.lump$akph 

 

observed <- melt(as.matrix(tc.lump)) 

colnames(observed) <- c("plot", "variable", "value") 

observed$plot <- gsub("BS", "", observed$plot) 

observed$plot <- gsub("000", "", observed$plot) 

observed$plot <- as.numeric(observed$plot) 

observed$value <- observed$value / 1000 

observed$type <- "obs" 

 

predicted.tests <- melt(pred.frm[which(pred.frm$plot %in% run.plots),],  

                        id.vars = "plot") 

predicted.tests$type <- "pred" 

 

## Join these two together 

compare.frame <- rbind.data.frame(predicted.tests, observed) 
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compare.frame <- dcast(compare.frame, plot + variable ~ type) 

compare.frame <- compare.frame[complete.cases(compare.frame),] 

 

# Basic plot object 

p <- ggplot() + theme_bw(base_size = 24) +  

     guides(color = guide_legend(override.aes = list(size=10,linetype=0))) 

 

## Compare predicted vs. observed 

p + geom_point(data = compare.frame, aes(y = pred, x = obs)) + 

  geom_abline(data = data.frame(1), slope = 1, intercept = 0) + 

  facet_wrap(~variable, scales = "free") 

 

## Explore association panel for reasonable models ---- 

## Basic plot object 

p <- ggplot() + theme_bw(base_size = 16) +  

    guides(color = guide_legend(override.aes = list(size=10,linetype=0))) 

 

## First: Simple histograms for values 

## All models 

p + geom_bar(data = subset(m.predict, variable != "phenolics"), aes(value)) +  

    facet_wrap(~variable, scales = "free") + 
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    geom_bar(data = subset(compare.frame, variable != "phenolics"),  

             aes(obs, y=..count.. * 4), fill = "red") + 

    ggtitle("Predicted Association Panel Pyrolysis Yield Distributions\n 

            All Values = (Normalized FID Area Count / 1000)\n 

            Red bars are test set observations") 

 

## Next: four-variable showing everything, Addding potassium as color 

 

pred.frm$K <- sg.comp$K[match(pred.frm$plot, sg.comp$Plot)] 

 

p + geom_point(data = pred.frm, 

               aes(x = acetic, y = phenolics, fill = K),  

               pch = 21, alpha = 0.8) + 

  scale_fill_gradientn(colours=rainbow(6, start = 0, end = 0.8),  

                       guide = guide_colorbar(guide_legend(title = "Potassium"))) + 

  # guides(size = guide_legend(title="Levoglucosan\nYield")) + 

  ggtitle("Predicted Association Panel Pyrolysis Switchgrass Yields\n 

          All Values = (Normalized FID Area Count / 1000)") + 

  ylab("Combined Phenolics Yield") + xlab("Acetic acid Yield") + 

  ggsave("./Figure xx - pyrolysis predictions.pdf", height = 5.9, width = 8.25)  


