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PREFACE 

This study is concerned with the estimate of the mean 

and the standard deviation of the stochastic task times in 

Project Evaluation and. Review Technique (PERT). The primary 

objective is to develop an alternative to the PERT time 

estimate procedure, so that the estimate formulae is valid 

for a wide range of beta distributions, the time elicitation 

is consistent with the probability elicitation literature, 

and the accuracy of the time estimate is improved. An 

alternative is proposed based on theoretical analysis, and 

improvement in accuracy is examined. 
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CHAPTER I 

INTRODUCTION 

Program Evaluation and Review Technique (PERT) is a 

network model widely employed to aid management in planning 

and controlling large-scale projects. Malcolm et al. (1959) 

developed PERT in the late 1950s in an effort to speed up 

the Polaris missile project. PERT stresses probabilistic 

activity time estimates and is suitable for an environment 

typified- by high uncertainty. The PERT technique has 

received widespread interest and has been used for many 

types of projects. 

The PERT is based on a network model with stochastic 

activity times. The basic objective of PERT is to obtain a 

probability distribution of the completion time of a 

specific project, accomplished by breaking the project down 

into sub-parts or activities, estimating their 

distributions, and then summing these smaller distributions 

to obtain the total project distribution. Based on this 

total distribution, the project can be effectively 

monitored, analyzed, and controlled. 
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1.1 Representing Projects as Networks 

A project is represented by a network or by a 

precedence diagram to depict major project activities and 

their sequential relationships. The program is composed of 

arrows, representing project activities, and nodes, 

representing points in_ time when the activities represented 

by incoming arrows are completed and the activities 

represented by outgoing arrows can be started (this is 

referred to as an "event"). There are only one starting node 

and one ending node for a project. The activities and the 

nodes in a network form various paths. A path is a 

continuous chain of activities from the starting node to the 

ending node, via various nodes in the network. The nodes 

linked by the chain of activities also form a chain. Each 

path will then be identified by this chain of nodes. A 

network can have many paths. It is the objective of PERT to 

find the "Critical Path," which is the path with the longest 

duration among all the paths. The activities on such a path 

are called "critical activities." The critical path 

determines the duration of the whole project, and thus 

receives the maximum attention of management. The task of 
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management is to try to shorten activity times of critical 

activities, therefore shortening the duration of the whole 

project. 

A simple example of such a network is shown in Figure 

1-1. 

Figure 1-1 A Simple Network Example 

In the network shown in Figure 1-1, there are five 

activities: activity 1-2, activity 1-3, activity 2-3, 

activity 2-4, and activity 3-4. Denote the stochastic time 

durations of these activities (known as activity times or 

task times) t 1 , t 2 , t 3 , t 4 , and t 5 , respectively. The 

activities, their durations, and their precedence 

relationship are shown in the table below. 
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Table 1-1 Network Activities, Their Durations, 
and Precedence Relationship 

Activity 1-2 1-3 2-3 2~4 3-4 

Duration t1 t2 t3 t4 ts 

Precedes 2-3, 2-4 3-4 3-4 None None 

In the network represented by Figure 1-1 and Table 1-1, 

there are three paths: 1-2-4, 1-3-4, and 1-2-3-4. We denote 

these three paths as P1, P2, and P3, respectively. It is 

intuitively obvious that the three paths have different 

durations. The purpose of network analysis is to determine 

the critical path and its length, and find out ways to 

shorten this path. 

The length of a path is determined by the tasks 

consisting this path. Since task times ti's are stochastic, 

they have mean and standard deviations, which are denoted as 

µ(ti) and a(ti) respectively. Let Pi represent the 

stochastic path time of path Pi, µ(pJ its expected value 

and a(pi) the standard deviation. Then, for this example, 

completion time or the path time of the longest path 
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(ucritical path") will·then be 

Max{p1, P2, p3} = Max{ (t1+t4 ), (t2+t5 ), (t1+t3+t5 )}. 

The project completion time will be, of course, a random 

variable with its own mean and standard deviation. The 

basic OR problems in PERT are: (1) to determine the 

probability distributions of the individual activities; and 

(2) given the distributions of the individual activities, 

find the distribution of the project completion time, its 

mean, and standard deviation. From this we can see that to 

determine the probability distributions of the individual 

activities is the basis of all the further analyses. The 

PERT originators (Malcolm et al.·, 1959) assumed that the 

task times are beta distributed random variables. 

Supposedly based on this assumption (which will be discussed 

in Chapter II), they developed a procedure to elicit several 

time estimates, and to convert these estimates to the most 

useful parameters of a distribution: the mean and the 

standard deviation. This procedure of time estimation has 

been the major interest of many research papers for the past 

thirty years, and it is the focus of the current study. 
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1.2 Basic PERT Methodology 

The PERT procedure begins with eliciting.time estimates 

of an activity. According to the PERT originators, an 

"expert" (such as the project manager or an engineer) will 

be asked to first estimate the "most likely time" (denoted 

as "m"), which the PERT originators believed would be 

perceived by the "expert" as the mode of the distribution. 

The "expert" will then be asked to estimate the "extreme 

times" or the "optimistic time" and the "pessimistic time" 

(denoted as "a" and "b" respectively). 

The PERT originators assumed that the distribution of 

the task times will be uni-modal, with two positive abscissa 

intercepts. They chose the beta distribution to represent 

distributions of the above features (a brief description of 

the beta distribution will be given in Chapter II. More 

detailed discussions can be found in, e.g., Johnson and 

Kotz, 1970). Three examples of the beta distribution are 

illustrated in Figure 1-2 below. They may be symmetrical 

[Figure 1-2 (c)] or skew in either direction [Figure 1-2 (a) 

and (b)]. 
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(a) 
(b) 

(c) 

Figure 1-2 Examples of Beta Distribution 

In the PERT procedure, the mode of the beta 

distribution is equated to the "most likely time" m, and the 

two abscissa intercepts are equated to the optimistic and 

the pessimistic times a and b respectively. 

The PERT originators then developed two formulae to 

convert the a, m, and b to the meanµ and the standard 

deviation a of the distribution: 

µ = (a+ 4m + b)/6 

a= (b - a)/6 

( 1-la) 

( 1-lb) 

PERT then finds the critical path through a network 
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algorithm (which is not our focus in this study), using the 

expected activity time µ(tJ in the algorithm. The mean 

project duration will be the sum of the µ(ti)'s of the 

activities on the critical path, and the variance of the 

project time will be the sum of the [o(ti)] 2 of the 

activities on the critical path. Based on the critical path 

found, together with the mean and standard deviation of the 

duration of the critical path, the project manager can 

control the project more effectively. 

1.3 Problems in the PERT Time Estimation Procedure 
and Our Proposal for Improvement 

Grubbs (1962) studied the PERT formulae (1-1) to 

convert the "optimistic", "most likely", and "pessimistic" 

times a, m, and b to the meanµ and the standard deviation a 

of the distribution, and found that the PERT formulae are 

based on a very restricted subset of beta distribution, 

r.ather than having great versatility as claimed by the PERT 

originators. Since then, many researchers (for example, 

MacCrimmon and Ryavec, 1963; Moder and Rogers, 1968; Swanson 

and Pazer, 1971) studied this problem. Some researchers 

also performed error analyses on the PERT formulae and 
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pointed out the numerical errors they have. A few remedial 

methods were proposed (more detailed discussion can be found 

in Chapter II of this study). Unfortunately, the few 

remedial methods were largely based on experiments only, and 

failed to propose a correct method through theoretical 

analysis. In addition, these remedial methods only 

proposed adjustments in individual stages of the PERT 

procedure, without making corresponding corrections in the 

other stages, thus reducing the significance and weakening 

the justification of these adjustments. Even these to-be­

improved remedial methods, however, have not received 

significant attention in the MS/OR community: numerous OR 

textbooks are still teaching students the incorrect and 

inaccurate PERT formulae. 

Based on the brief discussion above, our objectives in 

the current study are: 

(1) to further point out the logical shortcomings of 

the PERT time estimate procedure (including the elicitation 

of the probabilistic times a, m, and band the conversion 

from a, m, and b toµ and a); 

(2) to develop alternative formulae which are logical 

and accurate, and which are based on the solid ground of 
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probability elicitatio~ literature (see next point); 

(3) to propose the correct method in probability 

elicitation based on existing literature on this issue; and 

(4) to show the extent of improvement the proposed 

method can have over .the PERT procedure in the accuracy of 

activity time estimates. 

The ultimate effort of this study is to raise the 

attention of the MS/OR community on this long-neglected yet 

very important issue, to provide a correct and effective 

tool fo~ activity time estimates, and to provide the project 

network analysis with a solid ground in theory, which will 

finally enable true cost savings. in large-scale projects. 

1.4 Organization of the Dissertation 

The dissertation is organized into six chapters, with 

the first chapter being the introduction. In Chapter II, we 

will perform literature review on the field of the PERT time 

estimates, focusing on two aspects: the definitions and 

estimates of the PERT "basic times" (a, m, and b), and the 

PERT time conversion formulae which converts the basic times 

a, m, and b to the mean (µ) and the standard deviation (a). 

Since the PERT procedure is based on the elicitation of a, 
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m, and b, and our proposed alternative will also be based on 

the elicitation of fractiles of a distribution, we will 

survey the literature on probability elicitation, which is 

the ground of the probabilistic time elicitation. 

In Chapter III, we will further discuss the 

shortcomings of the PERT time estimate procedure (including 

the elicitation of a, m, and band the conversion of a, m, 

and b toµ and cr), and will propose an alternative whose 

conversion formulae will be based on the properties of the 

beta distribution and whose time elicitation will be based 

on the probability elicitation literature. The general 

procedure of mathematical inference leading to our 

alternative formulae and a linear regression to determine 

the coefficients in those formulae will be described. 

Chapter IV is the major part of this dissertation, in 

which the mathematical inference of our alternative formulae 

will be shown, and the linear regression to obtain the 

coefficients for the formulae will be discussed and 

described in details. Results of the linear regression will 

be obtained, and the alternative formulae for time estimate 

will be presented. 

With the results obtained in Chapter IV, we will 
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conduct error analysis ·in Chapter V. Performance of the 

PERT formulae and that of the proposed alternative will be 

compared in terms of accuracy. Numerical examples on the 

discrepancy between the "absolute endpoints" and the "inner 

fractiles" will also be shown, which will support our 

argument that the simple substitution of the "absolute 

endpoints// with the "inner fractiles" can lead to 

substantial errors. 

We will conclude this dissertation in Chapter IV, with 

discussions on some issues emerging in the procedure of this 

study, and on the directions for future studies. 
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CHAPTER II 

LITERATURE REVIEW 

The PERT time-estimate procedure literature is focused 

mainly on the following phases: the PERT formulae to convert 

the "basic times" a, b, and m to mean and standard 

deviation., and the determination of the "basic times" a, b, 

and m. We will survey the literature on these two phases. 

In addition, the probability elicitation literature will be 

surveyed, since this is the theoretical ground of the 

elicitation of the "basic times" on which the conversion is 

based. 

2.1 Errors in PERT Time-Estimate Formulae 

2.1.1 PERT formulae implicitly lead to 
a restricted subset of the beta distribution 

Grubbs (1962) pointed out that the PERT formulae are 

valid only for a small subset of the beta distribution. His 

reasoning is as follows: 

A beta distribution with end points U and Vis defined 

as 

13 



f(t) = (t-u)a(v-t)"l3/[(V-U)<x+l3+1 B(cx+l,13+1)], (U<t<V) 

(2-1) 

f(t) = 0, otherwise 

here ex and J3 are the parameters of the beta distribution 

governing its "shape" (skewness and kurtosis), and B(x,y) is 

the Beta function value given independent variables x and y 

(see, for example, Johnson and Kotz, 1970). 

With the transformation oft= U + (V-U)x, we can 

obtain the standardized beta distribution 

f(x) = xa(l-x)f3/[B(cx+l,J3+1)], 

f (x) = o. 

(O<X<l) 

otherwise 
(2-2) 

The mathematical expectation (mean) and the standard 

deviation of the distribution are (Johnson and Kotz, 1970) 

µx = E(x) = (cx+l)/(cx+J3+2) ,. 

o/ = (cx+l) (13+1) I [ (cx+J3+3) (cx+J3+2) 2 ] • 

(2-3a) 

(2-3b) 

Transforming the x variable back to the t variable, we have 

µt = E (t) = u + (V-U) [ (cx+l) I (cx+J3+2)], 

o/ = (V-U) 2 (cx+l) (l3+l)/[(cx+l3+3) (cx+J3+2) 2 ]. 

(2-4a) 

(2-4b) 

It is also known from properties of the beta distribution 

that the expression form, the mode of the distribution, is 

m = (UJ3+Vcx)/(cx+J3). 

Expressing µtin terms of U, V, and m: 

µt = [U + (cx+J3)m + V]/(cx+J3+2). 

14 
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Note that the PERT formula of mean is 

µt = (U + 4m + V)/6, (2-7) 

The equivalence between (2-6) and (2-7) means that we must 

have 

a+ 13 = 4, (2-8) 

That is, the PERT mean formula is only valid for those beta 

distributions whose shape parameters (a,13) satisfy (2-8). 

Sasieni (1986) replicated this result. 

It is worth noticing that in the two previous studies 

not much· was said about the cr formula. Actually, when we 

substitute (2-8) into (2-4b), we have 

cr/ = (V-U) 2 (a+l) (13+1) I [7x6 2 ] (2-9) 

Compare (2-9) with the cr formula (1-lb) in PERT (here we use 

U and V to denote the two "endpoints"): 

cr/ = (V-U) 2 /62 (2-10) 

we can see that to equate (2-9) and (2-10), we must have 

(a+l) (13+1) = 7 (2-11) 

Solve for a and 13 by solving the following simultaneous 

equations: 

a+ 13 = 4, 

(a+l)(l3+1) = 7, 

we have 

15 
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(2-12) 

The preceding shows that there are only two points in the a­

~ space which can satisfy both of the PERT formulae. The 

preceding also shows that if we only restrict the a-~ value 

with "a+~= 4", theµ formula of PERT (1-la) is an exact 

relationship (on this very restricted subset) but the a 

formula in PERT is only an approximation (even on this 

already restricted subset). 

Swanson and Pazer (1971) started from a standard beta 

distribution 

f(x) = (l/K)xa(1·-x)13, 0:S:x:S:l (2-13) 

where K = B(a+l,~+l) (see equations (2-1) and (2-2)). 

The meanµ in the above distribution is the same as (2-

3): µ = (a+l)/(a+~+2). But with the PERT formulae, µ = 

(4m+l)/6 (when a=O and b=l). Equate these two expressions 

ofµ: 

(a+l)/(a+~+2) = (4m+l)/6. (2-14) 

The mode of a standard beta distribution is (Johnson and 

Kotz, 1970): 

m = a/(a+~). (2-15) 

From (2-14) and (2-15) they showed that a+~= 4, the same 

16 



result as (2-8) obtained by Grubbs (1962). 

Swanson and Pazer (1971) also studied the a formula of 

PERT. They implied in their paper that when the a formula 

of PERT (1-lb) holds, the relationship between a and~ is 

not exactly "a+~= 4" (Swanson and Pazer, 1971, Figure 3, 

p. 470). This shows that when the a is "fixed" (or 

restricted) at (V-U) /6·, the PERT formula for µ is only an 

approximation, rather than an exact relationship. 

Gallagher (1987) extended Sasieni's work (1986) and 

summariz·ed the new findings and the result of Littlefield 

and Randolph's (1987) as follows: 

The PERT formulae can be obtained in two ways: 

1. restrict the set of possible beta distributions to 

those for which the standard deviation is EXACTLY 1/6 the 

range, then approximate the mean (Gallagher, 1987, p.1360; 

Littlefield and Randolph, 1987, p.1358); or 

2. restrict the set of beta distribution to those for 

which a+~= 4, then approximate the variance (Gallagher, 

1987, p.1360). 

The inference from (2-9) to (2-12) above is a support 

to the conclusion of Gallagher's (1987). 

All of the above studies point out that the PERT 
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formulae are NOT valid·for all beta distributions. It is 

valid for only a very small subset of beta distributions, 

contrary to what is claimed by the PERT originators and what 

is perceived by the PERT users. 

2.1.2 PERT formulae result in gross numerical errors 

MacC.rimmon and Ryavec ( 1963) studied the worst absolute 

errors resulting from the PERT formulae. They expressed the 

mode, the mean, and the standard deviation in terms of a and 

~ based on the properties of the beta distribution, as 

formulae (2-3) and (2-15). They solved for the mean and the 

standard deviation as functions of a and m, and obtained the 

worst absolute error in the mean as 

· I (1/6) (4m+l) - m (a+l) I (a+2m) I, (2-16) 

and the worst absolute error in the standard deviation as 

j 1/6 - Vm2 (a+l) (a-am+m) I [ (a+2m) 2 (a+3m)] I . (2-17) 

They reported that the worst absolute error in the mean can 

be 33%, and in the standard deviation 17%. 

MacCrimmon and Ryavec (1963) also studied the errors of 

mean and standard deviation resulting from PERT formulae 

based on possible errors from the estimates of a, b, and m. 

They suggested that the errors will be substantial for 
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activities with narrower range (i.e., when a is close to b). 

2.2 Questions on the.Meanings and 
Estimates of a, b, and m 

2.2.1 The meaning of a, b, and m 

The PERT originators (Malcolm et al., 1959) did not 

.give explicit definitions for a, b, and m. They named a 

"optimistic time," b "pessimistic time," and m "most likely 

time." But they did imply that a and bare "two extremes," 

that is,· the absolute endpoints. This is implied in Figure 

3 in their paper (1959). 

Swanson and Pazer (1971) did a survey on several 

popular OR textbooks, and found that the definitions of a 

and bare grossly different in those books. In some of the 

textbooks, a and bare defined as "absolute end points," 

while in the others they are defined as the two points 

between which the project has a 98% or 95% probability of 

being finished. This inconsistency ("a and bare endpoints" 

and "a and b embraces 95% of probability") can lead to 

difference in the values of a and b. 

As form, although most of the authors correctly 

defined it as mode, an author defined it as "a figure the 
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planner felt he had a 50-50 chance of hitting," which is not 

consistent with the definition for the mode. Misconceptions 

like this can lead to gross errors. 

2.2.2 The estimate of a, b, and m 

Grubbs (1962) pointed out that "estimating end points 

may be tricky and hazardous business!", suggesting that it 

is very difficult for one to accurately estimate the end 

points of a probabilistic distribution. 

Moder and Rogers (1968) pointed out that it is very 

rare, if not impossible, for a manager to experience the 

"absolute end points". Therefore, it can lead to very 

little reliability to ask managers to estimate a and bas 

"absolute end points". With the erroneous or unreliable a 

and b, one can expect gross errors in estimating mean and 

variance using PERT formulae based on the values of a, b, 

and m. 

Swanson and Pazer (1971) pointed out that "it is 

admittedly easier for the estimator to conceive of a value 

which can be exceeded 1 per cent of the time rather than one 

which cannot be exceeded at all." They pointed out at the 

same time that "the use of the te(i.e., µ) and a formulae 
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will not yield an adequate transformation without a further 

compounding of the errors, and hence a new transformation is 

in order." 

In summary, the PERT procedure of estimating the mean 

and the standard deviation of the task times in a project 

network has the following problems: 

1. The PERT formulae cannot be inferred directly from 

the beta distribution without imposing extra restrictions 

or extra conditions. These extra restrictions or conditions 

make PERT formulae base only on a very small subset of the 

beta distributions, instead of general beta distributions as 

the PERT originators claimed. 

2. Given a, b, and mas defined in PERT, there can be 

gross errors in the estimate of task times. 

3. The meanings of a, b, and m have been ambiguous. 

4. It is difficult, if not impossible, to estimate the 

a and b values. 

2.3 Some Remedial Efforts 

Some efforts have been made to remedy the 

aforementioned problems. 

Moder and Rogers (1968), based on the "adjustmerital" 
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definition of a and bas "near end points (1 and 99 or 5 and 

95 percentiles)" by some of the then practitioners ("Various 

PERT practitioners have taken liberty, and rightly so, with 

these definitions and changed them, for example, to 1 and 99 

or 5 and 95 percentiles," Moder and Rogers, 1968), wisely 

perceived a possible relationship between the differences of 

these "paired percentiles (5 and 95)" and the standard 

deviation. They proposed that there might be a "robust" 

relationship between the differences of the percentiles and 

the standard deviations of the distributions. They studied 

five families of distributions: triangular, beta, uniform, 

normal, and exponential distributions. They found that the 

ratios of the differences between the paired percentiles to 

the standard d~viations of the distributions are relatively 

more "robust" when the pairs of 5 and 95 are used, than when 

the pair of O and 100 are used. They rightly pointed out 

that if the 5 and 95 percentiles are to be used, the PERT 

formulae should be changed. But they failed to propose a new 

set of formulae based on theoretical analysis. Their 

formula for calculatingµ is exactly the PERT version, 

except that they simply substituted the 5th and the 95th 

percentiles for the 0th and the 100th percentiles in the 
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formula. 

Perry and Greig (1975) proposed that the 5 and 95 

percentiles be used instead of O and 100 percentiles. They 

proposed a set of empirical formulae in place of the PERT 

formulae. But their formulae are obtained "by experiments" 

instead of being based on theoretical analysis. 

The studies mentioned above have largely been ignored 

by the textbooks. These studies, however, motivated the 

current research. 

2.4 The Probability Elicitation Literature 

The main logic of PERT formulae is to transform the 

three time estimates (a, b, and m) into the mean and 

standard deviation of the distribution. The first step of 

this procedure is to elicit fractiles for the (subjective) 

probability distribution, so that the values of a and b (no 

matter whether they are defined as the 0th and the 100th 

fractiles or as some "inner fractiles", such as the 5th and 

the 95th fractiles) can then be estimated. Large literature 

exists on this topic. 

There is a key concept in this topic: fractiles. A 

11 fractile" is also known as a "quantile" or a "percentile". 
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For a random variable T (such as the stochastic activity 

times in the PERT), we define Ta as T's a fractile, if 

Prob(T < Ta) = a. 

For example, T0 . 1 is the O .1 fractile of the random variable 

T, i.e., 

Prob ( T < TO •1 ) · = 0 . 1 . 

There are many ways to· estimate a subjective probability 

distribution, among which is the fractile method. In the 

fractile method, a number of required fractile levels ai are 

specified, and a subject is asked to estimate the fractiles 

corresponding to these fractile levels. For example, if ai 

are a set of 0.01, 0.1, 0.9, then the subject is asked to 

estimate T0 . 01 , T0 • 1 , and T0 . 9 • 

Hampton et al. (1973) conducted a comprehensive study 

on the elicitation of subjective prob.ability distributions. 

They studied the following six groups of methods: (1) Direct 

fractile approach, (2) Judgmental curve fitting, (3) 

Smoothing of historical data, (4) Psychometric ranking, (5) 

Hypothetical future samples, and (6) Equivalent prior 

sample. They concluded that, among the six groups of 

methods to elicit subjective probability distributions, the 

direct fractile approach, which is the same as the "fractile 
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method" stated in the previous paragraph, is "the most 

useful method." 

In a survey published in 1975, Chesley (1975) compared 

two groups of techniques: 

(1) Direct Methods: direct estimation, odds estimation, 

graphical, hypothetical future sample, distribution 

parameter estimation, etc. 

(2) Inference techniques: betting. 

The "direct estimation" in the group "Direct Methods" 

is the s-ame as the "fractile method" introduced above. 

Chesley reported that direct estimation (or fractile method) 

is "the simplest technique in view of question construction" 

(among the direct techniques), and he implied that more 

consistent distributions can be expected with this method. 

Winterfeldt and Edwards (1986) also regarded the 

fractile method as the best known method in eliciting 

probability distributions. They further pointed out that 

the fractile method facilitates the consistency check, which 

improves the validity of this method. 

Given its merit, the fractile method has been further 

studied and its operational features probed by later 

researchers. Selvidge (1980) studied the procedure of 
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handling fractile method in probability elicitation, with an 

emphasis on the assessment of the extremes of probability 

distributions, which is one of our major concerns in PERT 

probabilistic activity time estimate. In his study, 

Selvidge compared four procedures with different features: 

number of fractiles asked to assess, order of fractiles 

assessed, and whether or not the assessment procedure is 

divided into stages. Selvidge's study has the following 

findings: 

1. ·The process performs better when the subjects are 

asked to assess seven fractiles than when they are asked to 

assess five fractiles. In the seven-fractile case, in 

addition to the three "central fractiles" T0 •2s, Ta.so, and 

T0 . 7s, the "extremes" T0 . 01 , T0 . 10 , T0 . 90 , and T0 . 99 are assessed; 

while in the five-fractile case, the "extremes" assessed are 

T0 . 10 and T0 . 90 • Selvidge has found that with the seven­

fractile method, the subjects can assess the "extreme" 

fractiles more accurately. 

2. The process performs better when the "central" 

fractiles T0 •2s, Ta.so, and T0 • 7s are assessed first. 

Selvidge's findings provide a strong methodological 

background for the current study at the stage of probability 

26 



elicitation, which is what the converting formulae (from 

fractiles toµ and a) are based on. 
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. CHAPTER III 

RESEARCH METHODOLOGY 

3.1 Objectives of the Current Study 

The PERT procedure has two components: the elicitation 

of subjective estimates related to probabilistic times, and 

the conversion of these estimates to the mean and standard 

deviation of the stochastic activity time. Charles E. Clark 

(1962), one of the PERT originators indicated that the mean 

and standard deviation of a distribution are "too complex 

for immediate appraisal," and proposed that the mode of the 

distribution be first estimated and then the "extreme times" 

are estimated. One can then convert the information 

available (the mode, and the two extreme times) into 

expected value and variance of the stochastic time (Clark, 

1962) . 

We believe that the basic objectives behind a procedure 

like that of PERT are: 

Objective 1, elicit subjective time estimates from an 

"expert" (a manager or engineer, who has the expertise in 

the activities of the project); 
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Objective 2, convert these estimates into the mean and 

standard deviation of the time, recognizing that the 

distribution of the time can have a wide variety of shapes 

(as does the beta distribution). 

Although the PERT originators were aware of the above 

objectives (explicitly or implicitly), the procedure they 

developed does not really achieve the objectives. The 

objectives of the current study are, therefore, to further 

study the PERT procedure and find out the sho~tcomings of 

the existing procedure in handling the above two objectives, 

and to develop an alternative which can effectively achieve 

the objectives. Specifically, the current study will 

1. study and point out the PERT procedure's 

shortcomings in defining, using, and eliciting the values a 

and b; 

2. study and. point out the PERT procedure's 

shortcomings in using and eliciting the value m; 

3. study and point out the PERT procedure's logical 

shortcomings in the conversion formulae; 

4. propose a set of alternative formulae, which are 

valid for a wide range of shapes of beta distributions and 

are more accurate than the PERT conversion formulae 
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(Objective 2), and which are based on the data obtained in 

consistence with the probability elicitation literature 

(Objective 1); 

s. conduct simulations on the PERT formulae and the 

proposed alternative, calculate the mean and the standard 

deviation from the data generated, show the advantage of the 

alternative over the PERT procedure. 

3.2 On Making Subjective Time Estimates 

3.2.1 The fractile method 

Estimating a, m and bin PERT is the initial step for 

obtaining the "subjective probability distribution" of the 

stochastic task time T. A large body of literature exists 

on the elicitation of subjective probability distributions 

(for example, Hampton et al., 1973; Chesley, 1975; Wallsten 

and Budescu, 1983; Winterfeldt and Edwards, 1986). From 

this literature, it is apparent that the most common method 

of eliciting T's subjective probability distribution is the 

"fractile method" as discussed in Section 2.4. 

With reference to the subjective probability 

literature, the PERT procedure of estimating a, m, and b has 
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shortcomings as discussed in the following subsections. 

3.2.2 Ambiguity of defining and 
inadequacy of using "a" and 11 b 11 

According to the original PERT developers (Malcolm et 

al., 1959), a and bare the "absolute endpoints" T0 and T11 

respectively. Many widely used OR/MS textbooks (e.g., 

Hillier and Lieberman, 1980, p.252; Gould, Eppen, and 

Schmidt, 1991, p.444; Taylor III, 1993, p.626) state or 

imply (in graphs) that a and bare the absolute endpoints or 

"upper and lower bounds" of the distributions of the task 

times of interest. However, the probability elicitation 

literature (e.g., Alpert and Raiffa, 1969; Selvidge, 1980) 

indicates that it is difficult for a person to estimate 

accurately the absolute endpoints (T0 and T1 ) of a 

stochastic quantity. Our common sense also suggests that it 

is difficult to locate the two extremes of a stochastic 

quantity. But a and b being the "absolute endpoints" is the 

necessity for the PERT formulae to hold. This is stated by 

the PERT developers, and is studied and confirmed by many 

researchers (Sasieni, 1986; Littlefield and Randolph, 1987; 

Gallagher, 1987). As mentioned in Chapter II, recent 
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studies point out that·PERT formulae hold only for a 

restricted subset of the beta distribution and only when a 

and bare "absolute endpoints" of the distribution. This 

brings up a dilemma: PERT formulae hold only when a and b 

are absolute endpoints, but absolute endpoints cannot be 

actually estimated by human being. 

On the other hand·, many other MS/OR textbooks state 

that a and b should be T's 0.01 and 0.99 fractiles (e.g., 

Buffa and Miller, 1979, p.624; Lee, Moore, and Taylor, 1990, 

p.299). · The probability elicitation literature indicates 

that it is more appropriate for one to estimate the 0.01 and 

the 0.99 fractiles than the absolute endpoints, and a more 

accurate result can be expected from the estimate of the 

"inner fractiles" (i.e., not the extremes T0 and T1 ). 

However, these "inner fractiles" are inconsistent with the 

justifications of the PERT formulae ("PERT formulae are 

valid ONLY when a and bare endpoints") given in Malcolm et 

al. (1959), Littlefield and Randolph (1987) and Gallagher 

(1987), as seen in the previous paragraph. This brings up 

the second dilemma: it is more reasonable to elicit T0 . 01 and 

T0 . 99 from the viewpoint of the probability elicitation 

literature·under the criteria of the ease and the accuracy 
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of the estimate, but the a and b so defined are not 

consistent with the justification of the PERT procedure. 

One might try to overcome the two dilemmas and justify 

the substitution of the inner fractiles into the PERT 

formulae by claiming that T0 •01 (or T0 • 99 ) is very close to T0 

(or T1 ), and therefore the discrepancy is negligible. We 

will illustrate later '(in section 5.1.3) that this 

discrepancy can be very substantial and therefore the 

justification for the substitution is on a shaky ground. 

3.2.3 Shortcomings of using 11m11 

According to the PERT developers, the value mis the 

mode of the time distribution. It is defined as "the most 

likely time" of finishing the activity of interest. We know 

that the mode in different distributions corresponds to very 

different fractiles. On the other hand, a and bare both 

prescribed fractiles, whether they are defined as absolute 

endpoints T0 and T1 or as "inner fractiles" T0 • 01 and T0 . 99 • 

Then we have the following problem: the "expert" (engineer 

or manager) is asked to estimate two fractiles and the mode, 

which is NOT a PRESCRIBED fractile. It is very likely that 

the "expert" will be confused in estimating two prescribed 
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fractiles and another value which is not a prescribed 

fractile. In this case, the "expert" may confuse the mode 

with the median (which is a fractile (T0 . 5 )) • Trout (1989) 

and his reviewer raised a plausible supposition: most 

managers are not clear about the distinction.between a mode 

and a median. Therefore, when a manager is asked to make 

three estimates (i.e., a, b, and m) where two (i.e., a and 

b) are prescribed fractiles but one is not, there is little 

assurance that the manager will not end up with estimating 

the median (a fractile) instead of the mode for "m". 

Actually, we even have a ready example of such an error, 

made not by a manager, but by a person in academia: Timms 

(1966) defined "m" in his textbook as follows: 

" a figure the planner felt he had a 50-50 

chance of hitting" (which is NOT the mode! -­

words between the parentheses are by the author of 

this dissertation) 

The "50-50 chance of hitting (a target due date)" here 

indicates that this is a date which the project will last 

longer with a 50% chance, and which the project will be able 

to be finished on or by with a 50% chance. The above 

definition is an example that there is a good chance for a 

34 



manager to confuse the median for the mode. 

It would not be a big concern in practice if the mode 

and the median were not so far apart (although confusing the 

median for the mode is already not a trivial conceptual 

error). Unfortunately, the actual difference between the 

mode and the median can be very substantial for the type of 

asymmetrical distributions that the PERT and the beta 

distribution are explicitly designed to hanqle. So, asking 

the managers or the "experts" to estimate a, b, and ·m can be 

a major .source of both conceptual and numerical errors. 

Another shortcoming of using the mode is, while the 

existing probability elicitation. literature provides various 

methods to check and adjust the consistency of the estimate 

of fractiles (including the median) (see, e.g., Lichtenstein 

et al., 1982), we have not seen such "check and adjust" 

methods established for estimating the mode of a probability 

distribution. Without a "consistency check", the validity 

of the estimate of the mode and the accuracy of the 

resulting value is in question. 
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3.3 The· Logical Inadequacy of 
the PERT Formulae 

It is widely accepted that the reason of the PERT's 

employing the beta distribution is to convert the three time 

estimates (a, m, and b) to the (supposedly true) mean and 

variance (or standard deviation) of the task time which can 

have a wide range of shapes (e.g., Clark, 1962; Grubbs, 

1962; Swanson and Pazer, 1971). Unfortunately, the PERT 

formulae and their basis on the three time estimates (a, m, 

and b) fail to achieve the above purpose. 

One of the logical shortcomings of the PERT procedure 

is that the PERT formulae are va.lid only for a very 

restricted subset of the beta distribution, which has been 

pointed out by.many researchers (see the related discussion 

in Chapter II). 

In addition to the above shortcoming, the PERT 

procedure actually cannot define a beta distribution. A 

beta distribution with range (U,V) has the following form: 

f(t) = (t-U)P-1 (V-t)q-l/[B(p,q) (V-U)P+q-l] (3-1) 

This distribution has four parameters: U, V, p, and q (in 

comparison with the formula for beta distribution in Chapter 

II, we use (p,q) to denote the beta distribution parameter 
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hereafter, instead of (a+l,~+1) as used in that chapter. 

The transformations between the two are obvious: p =a+ 1, 

and q = ~ + 1). The first two parameters (U and V) 

determine the two endpoints of the distribution, therefore 

determining the "location" of the distribution; while the 

latter two (p and q) determine the skewness and kurtosis 

(the "shape" of the distribution). It is, therefore, 

natural to reason that it takes at least four parameters to 

determine or to specify a beta distribution. But in the 

PERT procedure, only three values (a, m, and b) are 

estimated, and they are then used to "determine" a FOUR­

PARAMETER beta distribution. In this case, with one "free" 

parameter, the beta distribution is actually not determined. 

To determine a four-parameter beta distribution with 

only three parameters is another logical shortcoming of the 

PERT procedure. 

In addition, with the definition of a and b being the 

"absolute endpoints" (which is the condition for the PERT 

formulae to be correct), the PERT procedure does not use all 

the available information about a specific distribution, 

because a and b so defined do not reflect the "shape" of a 

distribution, and the determination of the "shape" of the 
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distribution is solely-on the value of m, which is not the 

case in the beta distribution. This issue will be further 

discussed in Chapter IV. 

3.4 A Logical Alternative 

We discussed above the PERT procedure's shortcomings in 

both the subjective probability elicitation (objective 1) 

and the conversion of a, m, and b to the mean and standard 

deviation of the task time distribution (objective 2). We 

will develop a logical alternative to the PERT time 

estimating procedure, to improve the procedure and to 

achieve both of the objectives. 

3.4.1 Some basic properties 
of the beta distribution 

For the f(t) given in (3-1), t's mean and standard 

deviation are: 

a = 

µ = U + (V-U)p/(p+q), 

(V-U) Vpq/ [ (p+q) 2 (p+q+l)] . 

The parameters(U,V) in f(t) are the distribution's two 

endpoints, and the parameters (p,q) control the 

distribution's "shape" (skewness and kurtosis). The 
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distribution is symmetrical when the ratio p/q = l; its 

skewness and kurtosis increase as the ratio p/q deviates 

from 1. If p<l and/or q<l, the distribution is J- or U­

shaped. Asp and q increase from 1, the distribution 

evolves from a uniform distribution and tends to a normal 

distribution asp and q become large. Therefore, for 

practical purposes we will consider only f(t) with 

l<(p,q)<lOO(say). 

The mean and standard deviation of a beta distribution 

can be calculated using formulae (3-2), once the p and q 

values are known. We will use this property of the beta 

distribution to generate the dat~ sets of mean and standard 

deviation for the linear regression to determine the linear 

expressions of_µ and a as functions of fractiles, which is 

discussed in the next subsection. 

3.4.2 µ and a as linear combination of fractiles 

Moder and Rogers (1968) proposed that the 5 and 95 

fractiles be used in the places of O and 100 fractiles. But 

they did not modify the PERT formulae correspondingly (which 

they should, because the PERT formulae are correct only when 

a= T0 and b = T1 ). Instead, they simply substituted the T0 
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(lower endpoint a, or U) and T1 (upper endpoint b, or V) 

with To.cs and T0 • 9s. As we have pointed out in the previous 

section, To.cs can be far from T0 , and T0 . 9s can be far from T1 • 

The substitution of the "inner fractiles" without changing 

the conversion formulae accordingly can lead to substantial 

errors, as will be illustrated later with numerical 

examples. In addition, the Moder and Rogers' method was 

from experiments and needs theoretical support. 

Pearson and Tukey, in a study not intended for PERT 

(1965),. suggested that a distribution's mean and standard 

deviation may be approximated by linear functions of the 

distribution's fractiles. They suggested the following 

formula as the approximation of the mean: 

µ = T 0 .s + 0.1856, 

where 6 = T0 • 9s + To.cs - 2To.so. 

They also proposed an iterative procedure for approaching 

the value of standard deviation. Their results motivated 

our study to findµ and a as linear combinations of 

fractiles. 

Many of the earlier empirical works on estimating 

subjective probability distributions recommend that, except 

for the median, fractiles should be estimated in symmetrical 
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pairs (e.g., Hampton et al., 1973; Selvidge, 1980; Solomon, 

1982). Pearson and Tukey (1965) also used "paired" 

fractiles in their formulae (T0 . 95 and T0 • 05 ) • It is plausible 

for the symmetrical fractile pairs to be used, since people 

would tend to perceive, for example, T0 . 25 and T0 • 75 (o:t T0 . 20 

and T0 . 80 ) better than they do T0 . 20 and then T0 . 60 , the latter 

two being asymmetrical. All of the above enlightened us to 

employ paired fractiles in our linear functions to estimate 

µ and a. 

We .tried to express the mean of a standardized beta 

distribution as follows: 

µ (t) = a + bt0 . 1 + ct0 . 9 + dt 0 • 5 , 

here a, b, c, and dare constants. 

(3 -3) 

We can similarly obtain the mean for a generalized beta 

distributed random variable T: 

µ (T) = a + bT0 . 1 + cT0 • 9 + dT0 . 5 (3-4) 

Through the transformation T = U + (V-U)t, we can determine 

the value for some of the coefficients. 

Similarly, we can construct the function for estimating 

a, and determine some of the coefficients through the 

comparison of the functions for standardized and general 

beta distributions. 
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To obtain the remaining coefficients of the linear 

combinations, we will conduct linear regression on the means 

(standard deviations) and the fractiles. We will generate 

various p-q values (for various beta distributions) and 

obtain the specified fractiles (say, T0 . 10 , T0 . 25 , T0 . 5 , T0 . 75 , 

T0 . 90 ) for the beta distributions with those various p-q 

values. We will then calculate theµ and a of these 

distributions based on the properties of the beta 

distribution (formulae (3-2)), using the p-q values 

generated. Linear regression will be conducted on the data 

sets (the µ/a data sets and the fractile data set) so 

generated. Coefficients of the linear combination of 

fractiles to estimateµ and a will thus be obtained. 

Since the. simplicity of the PERT formulae (in their 

mathematical form) has been one of the strong arguments of 

the PERT proponents, we will try to find a simple form for 

our improved formulae, so that numerical and logical 

improvements are achieved without incurring an extra 

mathematical difficulty or operational burden. In a similar 

consideration, we try to keep as much as possible the 

fundamental and reasonable PERT assumptions such as the 

stochastic time being beta distributed, so that the improved 
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method will be accepted and implemented with relatively 

little change to the status quo. 

3.4.3 A 11 clean 11 fractile method 

In Section 3.2 we pointed out PERT's shortcomings in 

using a, m, and b, two of them being fractiles and one being 

not (a prescribed fractile). We believe that one should 

employ a "clean" fractile method in which only fractiles 

(that is, To:i' s, e.g. , T0 • 01 , T0 . 1 , T0 . 5 , etc.) are used. In 

such a ~ethod, only fractiles are to be estimated, and the 

fractile levels (i.e., the ai for the To:i's) should be 

clearly specified. 

The next question needs to answer is: how many and 

which fractiles should be estimated? Selvidge (1980) showed 

that the following fractile estimation procedure performed 

best, in terms of the accuracy of the estimates of the 

values of the "extreme fractiles": 

1. Assess seven fractiles. That is, the three central 

fractiles: the 0.25, a.so, and 0.75 fractiles; and the four 

extreme fractiles: the 0.01, 0.10, 0.90, and 0.99 fractiles. 

2. Assess the central fractiles first. 

We will employ this procedure in our study. 
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3.5 Error Analysis to Compare the Proposed Alternative 
against the PERT Procedure 

Error analysis will be conducted to compare the 

performance of the proposed method with that of the PERT 

procedure. The error analysis will be conducted in the 

following four aspects: 

1. Comparison of the accuracy of the proposed 

alternative with the PERT procedure over a wide range of 

beta distribution. Since it is the objective of the PERT 

developers for their method to cover a wide range of shapes 

of the task time distributions, it is reasonable to compare 

the performance of the two methods on a wide range of shapes 

of the beta distributions (i.e., beta distributions with 

wide range of p-q parameters). 

2. Error analysis of the PERT formulae over a specified 

range of shapes of beta distributions. As pointed out by 

the existing studies, the PERT formulae only hold for a 

restricted subset of the beta distributions. Although this 

is already a shortcoming of the PERT formulae, we try to 

further conduct analysis over the cases in which the PERT 

formulae are supposed to be "correct." We will conduct 

error analyses on this already restricted subset, to see 
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whether the PERT formulae can lead to satisfactory accuracy 

over this (restricted) subset. 

3. Comparison of the simplified formulae of the 

proposed alternative with the PERT formulae. As proposed in 

Section 3.4.2, we will try to seek a simple form for· the 

formulae in the proposed alternative to keep the simplicity 

of the time estimating. procedure. We foresee that it may be 

necessary to sacrifice accuracy (to a certain extent) in 

order for this simplicity to be pursued. We will thus 

compare the simplified formulae with the PERT formulae, to 

examine the improvement of (even) the simplified formulae 

over the PERT formulae. 

4. Numerical examples to indicate the discrepancy of 

substitution of the endpoints with the "inner fractiles" in 

the PERT formulae. It has been believed by some researchers 

and practitioners that the "inner fractiles" (e.g. , T0 . 011 

T0 • 99 ; T0 • 05 , T0 • 95 ) are not so far from the "absolute 

endpoints" (T0 and T1 ), and therefore it is acceptable to 

substitute the endpoints with the "inner fractiles." We 

will show that the "inner fractiles" can be very far from 

the endpoints. Gross errors may occur when the "inner 

fractiles" are used in the places of the endpoints. 
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CHAPTER IV 

CONSTRUCTING LINEAR FUNCTIONS OF FRACTILES 
FOR APPROXIMATINGµ AND a 

4.1 Derivation ofµ Function and a Function 

4.1.1 Derivation ofµ function 

Let T be any beta variable with endpoints U and 

t be the corresponding standardized beta variable: 

T = U + (V-U)t 

Let W = V - U, then 

T = U + Wt 

V, and 

(4-1) 

(4-2) 

For simplicity's sake, assume that only the symmetrical 

fractile pair t 0 •1 and t 0 . 9 , and median t 0 . 5 will be used to 

construct a linear function for estimatingµ (as is 

indicated in the probability elicitation literature and the 

study of Pearson and Tukey, 1965. See section 3.4.2 of this 

dissertation). 

Assume that a desiredµ function is of the form 

µ (t) = a + bt0 . 1 + ct0 • 9 + dto.s (4-3) 

where a, b, and care constants, and the tai's are t's ai 

fractiles. 
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For generalized beta variable T, we have 

µ (T) = a + bT0 •1 + cT0 • 9 + dT0 • 5 

Take the mathematical expectation of (4-2), we have 

µ(T) = U + Wµ(t), 

since both U and Ware constants. 

Combining (4-3) and (4-5): 

µ (T) = U + W (a + bt 0 •1 + ct 0 • 9 + dt 0 • 5 ) 

= U + aW + (bto.1 + Cto.9 + dto.s) W 

However, combining (4-2) and (4-4) gives 

µ (T) = a + bT0 •1 + CT0 • 9 + dT0 .s 

= a + b (U+Wt 0 •1) + c (U+Wt 0 •9) + d (U+Wt 0 • 5 ) 

= a + (b+c+d) U + · (bt 0 •1 + ct 0 • 9 + dt 0 • 5 ) W 

Since (4-6) and (4-7) must be equivalent, we must have 

a = o 

b + C + d = 1 

(4-4) 

(4-5) 

(4-6) 

(4-7) 

(4-8) 

In (4-8) we can see that the coefficients of the various 

fractiles must add up to one; or, the "weights" attached to 

the fractiles must add Up to one. Please note that we did 

not pre-specify these as conditions of the linear 

combination; yet they emerged in the procedure of the 

inference as properties of the combination. 

Consider now a special case in which tis symmetric 

47 



with meanµ = t 0 • 5 = 0 .. In (4-3), in order forµ = 0, we 

must have b = c, whereby the two symmetrical fractiles t 0 _1 

and t 0 • 9 (which have same absolute value yet opposite signs) 

can cancel. From this we know thatµ functions should 

contain only the sums of symmetrical fractile pairs.· In the 

case of the general beta distributed random variable T, we 

define the "inter-fractile sum" S10 as: 

S10 = To.10 + To.9o (4-9a) 

We can similarly define other "inter-fractile sums" S01 and 

S25 as f.ollows: 

S01 - To.01 + To.99 

S25 - To.2s. + To.1s 

(4-9b) 

(4-9c) 

With the inter-fractile sums defined above, the linear 

function for t~e µ of the distribution should have the form: 

for seven fractiles: 

µ = k1 {S01) + k2 (S10) + k3 (S25) + k4 {T0 . 5 ) 

for five fractiles: 

µ = C 1 (810) + c 2 (S25) + C 3 (T0 • 5 ) 

(4-10) 

(4-11) 

here the ki's and the ci's are constants to be determined. 
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4.1.2 Derivation of a function 

Apply the precedingµ functio"n logic to the a 

functions. We again start with the standardized beta 

variable t. 

Assume that a desired a function is of the form 

a(t) = a + bt0 • 1 + cta. 9 - (4-12) 

(4-12) should also be valid for T. So a(T) can be computed 

as 

a (T) = a + bT0 . 1 + cTa. 9 

Combining (4-2) and (4-13) gives 

a (T) = a + (b+c) U + (bt0 . 1 + ct0 • 9 ) W 

However, a(T) = Wcr(t) must also hold, because Wis a 

constant. Substituting (4-12) into this gives: 

a (T) = aW + (bt 0 . 1 + Cta_g) W 

(4-13) 

(4-14) 

(4-15) 

Since (4-14) and (4-15) must be equivalent, we must have 

a = O 
(4-16) 

b + C = 0 

Formulae (4-16) indicate that the coefficients of the 

two symmetrical fractiles t 0 . 1 and t 0 • 9 are of opposite 

signs. It is also true for their counterparts T0 • 1 and T0 . 9 

in generalized beta distribution. We can therefore combine 
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T0 • 1 and T0 • 9 into a single term which is referred to as the 

"inter-fractile difference": 

D10 = To.9o - To.10 (4-17a) 

Similarly, we can define other "inter-fractile differences" 

D01 and D25 as follows: 

D01 - T 0 • 99 

D25 - T 0 . 75 

To.01 

To.2s 

(4-17b) 

(4-17c) 

With the inter-fractile differences defined above, the 

linear function for the a of the distribution should have 

the form: 

for seven fractiles: 

a= k5 (D01) + k6 (D10) +k7 (D25) 

for five fractiles: 

here ki's and ci's are constants to be determined. 

We now list the four formulae for theµ and the a 

functions from this and the previous subsections and 

renumber them for clarity's sake as follows: 

for seven fractiles: 

(4-18) 

(4-19) 

µ = k1 (S01) + k2 (S10) + k3 (S25) + k4 (T0 . 5 ) 

a = k5 (D01) + k6 (D10) +k7 (D25) 

(4-20a) 

(4-20b) 

for five fractiles: 
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µ = C 1 (S10) + C 2 (S25) + C 3 (T0. 5 ) 

a = C4 (DlO) + Cs (D25) 

4.2 General Description of Estimating 
the Coefficients ki's and ci's 

4.2.1 The objective 

(4-21a) 

(4-21b) 

Formulae (4-20) and (4-21) have given the general form 

for theµ and the a of a beta distributed random variable to 

be expressed as linear combinations of fractiles of that 

distribution. We still need to know the coefficients ki's 

and ci's, in order to use these formulae to estimate theµ 

and a of the beta distribution. 

The objective can be expressed as: 

To determine the values of the ki's and the ci's in 

formulae (4-20) and (4-21) that will estimateµ and a 

accurately for all beta distributions (i.e., for all 

combinations of "shape parameters" p and q). 

4.2.2 Using standard beta distributions 

In Section 4.1 we showed the derivation ofµ function 

and a function without restricting the value of the 

endpoints U and V. In other words, values of ki and ci 
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applicable for one set of (U,V) should also be applicable to 

all other sets of (U,V). Therefore, we only need to 

consider the standardized beta distributions in which U = O 

and V = 1. This will not only simplify the procedure but 

also make the illustration clearer. 

The following linear regression procedure is used to 

estimate the ki's and ci's. 

4.3 Linear Regression to Determine ki's and ci's 

To determine the coefficients in formulae (4-20) and 

(4-21), we should obtain the data sets of µ•s, a•s, and the 

11 inter-fractile sums" and the "inter-fractile differences", 

or the fractiles. We then perform linear regression on 

these data sets and obtain the coefficients for the linear 

functions with µ/a as dependent variables and the "inter­

fractile sums/differences" as independent variables. The 

following subsection will show the procedure of the linear 

regression. 

4.3.1 Generating the data sets 

To construct the data sets, we first need to obtain 

various beta distributions. The beta "shape parameters" 
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(p,q) are first generated randomly with a uniform random 

number generator, in the ranges 1 < p < 100 and 1 < q < 100, 

so that the resulting beta distributions are not restricted 

in some specific, biased subset. For each pair of (p,q), 

the required fractiles (e.g., T0 . 01 , T0 . 10 , T0 • 2s, Ta.so, T0 . 7s, 

T0 . 90 , T0 . 99 ) for the standardized beta distribution with these 

(p,q) parameters are computed using subroutine BETIN 

(meaning "beta inverse") in IMSL (1987) Library. For 

example, assume that we randomly generate 

(p,q) ·= (61.98, 20.62). (4-22) 

The fractiles of a standardized beta distribution with this 

pair of (p,q) parameters are then computed by BETIN as: 

T 0 . 01 = 0. 6322, T 0 . 10 = 0. 6882, 

T0 . 2s .= 0.7194, Ta.so= 0.7524, T0 . 7s = 0.7835, (4-23) 

T 0 . 90 = 0. 8098, T 0 . 99 = 0. 8507 

Based on the Tai's above, we can then obtain the 

"inter-fractile sums/differences" through arithmetic 

operations using formulae (4-9) and (4-17): 
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SOl = To.01 + To.99 = 1. 4829 t 

SlO = To.10 + To.9o = 1.4890, 

S25 = To.2s + To.1s = 1.5029, 
(4-24) 

DOl = To.99 - To.01 = 0.2185, 

DlO = T0.90 To.10 = 0 .1216, 

D25 = T0.75 - T0.25 = 0. 0641. 

Repeating (4-22) to (4-24) for, say, 2000 times gives 

2000 sets of values "observations" which are the 

"independent variables" in formulae 

( 4 - 2 o ) and ( 4 - 21 ) . 

We still need the "dependent variables" to perform the 

linear regression. To obtain th_ese "dependent variables" 

(µ'sand cr's), we use formulae (3-2) which is redisplayed 

below: 

µ = U + (V-U)p/(p+q) 
(3 -2) 

a= (V-U)v'pq/[(p+q) 2(p+q+l)] 

Since U = O and V = 1 now, we have 

µ = p/ (p+q) 
(4-25) 

O= v'pq/ [ (p+q) 2 (p+q+l)] 

With the (p,q) randomly generated as described earlier in 

this section, we can then have the corresponding µ'sand cr's 

using formulae (4-25). For our (p,q) = (61.98, 20.62) in 
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(4-22), theµ and a are respectively 

µ = 0.7503, 

a= 0.0473. 

Repeating this procedure for 2000 times, we obtain the data 

sets of the "dependent variables" (µ and a). 

We employ the SAS package to perform the linear 

regression using these 2000 sets of "observations" and the 

models stated in formulae (4-20) and (4-21). The linear 

regression determines the coefficients ci's and ki's. 

4.3.2 Results of the linear regression 

Linear regression is performed on 2000 sets ofµ, a, 

and SOl, S10, S25, D01, D10, D25 obtained from the Tai's 

(seven fractiles). The coefficients for theµ function and 

the a function are obtained as follows: 

Table 4-1. Estimates of Coefficients in (4-20) 

µ. function a function 

R2 

0.0375 0.1187 0.2230 0.2415 1.000 0.1934 -0.5505 1.1227 0.9996 
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From the coefficients obtained above, we have ourµ 

function and a function as follows: 

µ = 0. 0375xS01+0 .1187xS10+0. 2230xS25+0. 2415xT0 . 5 

a= 0.4219xD01-0.4390xD10+1.0341xD25 
(4-26) 

The above regression procedure is repeated with another 2000 

sets of "observations"µ, a, S01, S10, S25, DOl, DlO, D25, 

and T0 . 5 (seven fractiles). The second set of coefficients 

are obtained as follows: 

Table 4~2. Estimates of Coefficients in (4-20} (Data Set 2} 

µ function a function 

0.0384 0.1130 0.2335 0.2301 1.000 0.2047 -0.6321 1.2390 0.9994 

Regression for the five-fractile model are than performed on 

the two data sets. The coefficients obtained are presented 

in the following table. 
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Table 4-3. Estimates of Coefficients in (4-21) 

(Five-fractile Models) 

µ. function CJ function 

C1 C2 C3 R2 C4 Cs R2 

Data Set 1 0.4219 -0.4390 '1.0341 1. 000 0.6819 -0.5532 0.9995 

Data Set 2 0.3945 -0.3429 0.8967 1.000 0.7442 -0.6709 0.9994 

We can see that the R2 values in the above functions 

are all very high (0.9994 to 1.000). This confirms our 

conj ectu.re before that a beta distribution's µ. and a can be 

accurately estimated by linear functions of the 

distribution's fractiles. 

There is a possibility that the high R2 value might be 

coincident with a specific set of data, as illustrated in 

Draper and Smith (1966, P. 63). In our case, however, high 

R2 values were obtained for regressions performed on many 

different sets. This has ruled out the possibility of 

coincidence. We can, of course, find a smaller data set to 

provide a satisfactory confidence interval for the 

regression, but since the computer time spent on our current 

regressions is a matter of a few seconds, we did not 

investigate the question further. 
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4.3.3 Features of the coefficients 

We note that, theµ functions. generated in the linear 

regression are 

for seven fractiles: 
( 

µe = k 1 (S01) + k 2 (S10) + k 3 ($25) + k 4 (T0 •5 ) (4-10) 

for five fractiles: 

(4-11) 

We rewrite formulae (4-10) and (4-11), substituting the 

"inter-fractile sums" S01, S10, and S25 with the sum of 

fractiles T0 . 01 , T0 • 1o, T0 . 25 , T0 . 75 , T0 • 90 , and T0 . 99 explicitly: 

for seven-fractiles: 

(4-27) 

for five-fractiles: 

(4-28) 

According to (4-8) in our inference of theµ functions, we 

expect that the coefficients for the fractiles sum up to 1, 

that is: 

for seven-fractile models: 

(4-29) 

for five-fractile models: 
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(4-30) 

Ourµ functions resulting from the linear regression confirm 

this anticipation: 

from Table 4-1 (seven-fractile model based on Data Set 1): 

2x0.0375 + 2x0.1187 + 2x0.2230 + 0.2415 = 0.9999 

from Table 4-2 (seven-fractile model based on Data Set 2): 

2x0.0384 + 2x0.1130 + 2x0.2335 + 0.2301 = 0.9999 

from Table 4-3: 

2x(0.4219 - 0.4390) + 1.0341 = 0.9999 

2x(0.3945 - 0.3429) + 0.8967 = 0.9999 

Formulae (4-29) and (4-30) and the above example show that, 

theµ functions generated in the linear regression always 

turn out to be a "weighted average" of the fractiles. 

\ 

Interestingly,. this is not pre-imposed when the regression 

is performed. The result confirms the theoretical 

prediction of formulae (4-8). 

4.3.4 Searching for "simple" coefficients 

An observation of the results of the regressions 

performed on the 2000-observation data sets is that the 

coefficients ki's and ci's can be quite different from data 

set to data set. For example, the c2 from data set 1 is -
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0.4390 but the c 2 from data set 2 is -0.3429. In order to 

probe this phenomenon, we generated three more data sets of 

1000, 3000, and 4000 "observations" of fractiles and µ/a, 

respectively, and performed regression on these data sets. 

The results are as follows: 

Table 4-4. Estimates of Coefficients, Seven-fractile Models 

Num. µ function a function 

of obs. k1 k2 k3 k4 R2 ks k6 k7 R2 

1000 0.0388 0.1050 0.2575 o .. 1976 1. 0000 0.3416 -1. 5410 2.4954 0.9996 

3000 0.0388 0.1024 0.2660 0.1855 1.0000 0.2706 -1.1214 1. 9414 0.9995 

4000 0.0388 0.1036 0.2626 0.1901 1.0000 0.2448 -0.8334 1.4863 0.9994 

Table 4-5. Estimates of Coefficients 
(Five-fractile Models) 

µ function a function 

Num.of obs. C1 C2 C3 R2 C4 Cs R2 

1000 0.308 -0.048 0.481 1.000 0.667 -0.530 0.9996 

3000 0.303 -0.033 0.460 1.000 0.810 -0.796 0.9993 

4000 0.368 -0.264 0.792 1.000 0.672 -0.538 0.9994 
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Again, we can see that values for the same coefficients 

are different among data sets. This fact is seemingly 

disturbing. If the models are valid, should the same 

coefficient not have the same (or close) value among 

different data sets? This is a legitimate question. Before 

we performed in-depth study, however, we found that the 

feature found in the previous subsection that "weights for 

fractiles inµ functions sum up to 1" still holds. For 

example, for seven-fractile µ functions: 

1000 ".observations": 

2x(0.0388 + 0.1036 + 0.2626) + 0.1901 = 1.0001 

3000 "observations": 

2x(0.0388 + 0.1024 + 0.2660) + 0.1855 = 0.9999 

4000 observations: 

2x(0.0388 + 0.1049 + 0.2574) + 0.1975 = .09997 

In order to verify the validity of our models, we used 

theµ and a functions developed with data set 1 to estimate 

theµ and a in data set 2, and vice versa, and found that 

the "switched" functions give the same high R2 values with 

the other data set. We also repeated this experiment with 

the data sets with 1000, 3000, and 4000 "observations", and 

obtained the same high R2 values. 
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The fact that (1) ·high R2 values are obtained on the 

"switched" data sets and (2) same coefficient (e.g., c2 ) can 

have different values in the linear functions obtained from 

different data sets suggests that the different sets of the 

values for the coefficients are equally good. In other 

words, the differences in the ki's and ci's between various 

data sets are due to the existence of wide bands of near-

optimal values for the ki's and ci's. The fact that the 

• 
relationship "weights for the fractiles in theµ functions 

sum up to 1" provides a supporting evidence for the 

robustness of the relationship in the models (despite the 

change of values of the coefficients, their relationship 

remains). This feature of the coefficients in the 

regression models will be studied further in the later 

sections. 

The property pointed out above is a very useful one: 

since the regression models with different values for the 

coefficients perform almost equally well, we are given the 

chance to adjust the values of the coefficients, hopefully 

ending up with combinations of some "simpler" or "cleaner" 

coefficients. In other words, the fact that there are wide 

bands of near-optimal values existing for the coefficients 
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encourages us to search for formulae with "simple" or 

"clean" coefficients by testing various round-off 

modifications of the values shown in Tables 4-1 to 4-5. 

After many trials, we obtained the following simple 

formulae: 

for seven fractiles: 

µe = 0. 04xS01 + 0: llxS10 + 0. 23xS25 + 0. 24xT0 • 5 

Oe = 0.2xD01 - 0.6xD10 + 1.2xD25 

.for five fractiles: 

µe = 0. 4x (Sl0-S25) + T0 • 5 

Oe = 0.7xD10 - 0.59xD25 

.A less accurate but simpler alternative to (4-31a) is 

for seven fractiles: 

µe = 0. 05xS01 + 0. 10xS10 + 0. 25xS25 + 0. 2xT0 • 5 , 

which can be written as: 

µe = (S01 + 2xS10 + 5xS25 + 4xT0 • 5 ) /20 

This is a fairly simple formula. 

(4-31a) 

(4-31b) 

(4-32a) 

(4-32b) 

(4-33a) 

(4-33b) 

This section has developedµ and a formulae using 

fractiles at a levels of 0.01, 0.10, 0.25, 0.50, 0.75, 0.90, 

and 0.99 (~even fractiles), and at a levels of 0.10, 0.25, 

0.50, 0.75, and 0.90 (five fractiles). The resultingµ 

functions and a functions are simple linear functions of the 
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fractiles of the distributions. 

Regarding the fractiles used in the functions, we do 

not claim that these seven (five) fractiles are the best to 

use on this purpose based on any mathematical-statistical 

evidence. These fractiles are used because the literature 

(such as Selvidge, 1980, and Solomon, 1982) recommends that 

these fractiles be elicited from human estimators. 

4.4 Explanation of the Power of the Proposed Formulae 
in Estimatingµ and a 

In the previous section we have seen that theµ and a 

of a beta distribution can be expressed as linear functions 

of the fractiles of the distribution. In this section, we 

will provide further theoretical inference for this 

relationship between the fractiles and the mean/standard 

deviation. It will be shown that the power of the proposed 

formulae in estimatingµ and a is based on solid theoretical 

ground. 

4.4.1 S(a)'s as perfect µ-estimators 
for symmetrical distributions 

Define a symmetrical inter-fractile sum for a random 

variable T as 
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S (ex) - Ta + T1-a, 

where Ta is T's ex fractile. 

For any symmetrical distribution (e.g., normal, 

uniform), it is obvious that T's mean is 

µ = S(ex)/2 

Define R(ex) as 

R(ex) - S(ex)/µ, 

then from (4-35), we have 

(4-34) 

(4-35) 

R(ex) = s (ex)/µ= 2 (4-36) 

for a symmetrical distribution at any ex value. Therefore, 

S(ex)/2 is a perfect estimator of µ (at any ex value). 

Naturally, any linear combination of S(exi) 'sis a perfect 

estimator ofµ. Therefore, we have 

(4-3 7) 

where ci can have any value as long as the ci's satisfy 

2 [E0 (ci)] = 1 

We investigate below the behavior of R(ex) = S(ex)/µ for 

asymmetrical beta distribution. We will show that (4-36) 

remains approximately valid for asymmetrical beta 

distributions. 
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4.4.2 R(a) remains approximately 
constant for beta distributions 

We will consider a standardized beta-distributed X with 

(p,q) being in a wide range. Let us first see an example. 

When (p,q) = (61.98, 20.62), we have 

To.01 = 0.6322, To.10 = 0.6882, 

To.2s = 0.7194, To.so = 0.7524, To.1s = 0.7835, (4-23) 

To.9o = 0.8098, To.99 = 0.8507 

From the definition of S: 

S(0.01) = 1.4829, S(0.10) = 1.4980, 

S(0.25) = 1.5029. 

We know in section 4.3.1 that for this specific beta 

distribution with (p,q) = (61.98, 20.62), µ = 0.7503. So, 

by definition, 

R(0.01) = S(0.01)/µ = 1.4829/0.7503 = 1.976. (4-38a) 

Similarly, we can obtain the other R(a)'s as 

R(0.10) = 1.997, R(0.25) = 2.003. (4-3 8b) 

The R(a) values remain fairly close to 2. 

We randomly generated 2000 sets of (p,q) in the range 

of l<p<20 and l<q<20; and another 2000 sets of (p,q) in the 

range of l<p<lOO and l<q<lOO. We generated the Tai's of 

these beta distributions and then calculated the S(aJ 's, 
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µ's, and R(ai)'s correspondent to these distributions. The 

results are shown below: 

Table 4-6 Mean and Standard Deviation of R(a) 
for Beta Distributions 

p,q range l<(p,q)<20 l<(p,q)<lOO 

ex Mean of R(ex) . S.D. of R (ex) Mean of R (ex) S.D. of R (ex) 

0.01 2.111 0.355 2.060 0.241 

0.02 2.084 0.269 2.044 0.179 

0.05 2.047 0.151 2.024 0.098 

0.10 2.019 0.062 2.009 0.038 

0.20 1.993 0.022 1. 996 0.015 

0.25 1.986 0.045 1. 993 0.032 

0.30 1.981 0.062 1.990 0.041 

0.40 1.975 0.082 1. 987. 0.053 

From Table 4-6, we can see that R(a) 's means are close 

to 2, and their standard deviations are quite small for all 

a's. Table 4-6 shows that S(0.01), S(0.10), and S(0.25) can 

each individually serve as a very goodµ estimator. 

The above results indicate that equations (4-36) and 

(4-37) hold fairly well for random variables of beta 

distributions, and this explains the phenomenon depicted in 
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Tables 4-1 to 4-5 and formulae (4-31) to (4-33): 

1. Since any single S(a)can serve as a very good 

estimator ofµ, it is a natural consequence that aµ­

predicting formula as linear combinations of S(a) 'swill 

have R2 = 1.000. One should note that R2 = 1.000 does not 

mean that the prediction is error-free; it simply means that 

the errors are small compared to the variation of the 2000 

2. Since the coefficients ci's can have any value·in 

(4-37) as long as they satisfy 2[En(ci)] = 1, we can see the 

reason why ci's can have a wide band of near-optimal values. 
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CHAPTER V 

ERROR ANALYSIS 

We have developed the formulae for estimatingµ and a 

(formulae (4-31), (4-32), and (4-33)) from the fractiles of 

a beta distributed random variable. We will perform error 

analysis on the accuracy of these formulae, in comparison 

with that of the traditional PERT formulae. We will also 

show the difference between T0 . 1 (T0 . 9 ) and T0 . 01 (T0 • 99 ) for 

some beta distributions to support our arguments in Chapter 

III, Section 3. 2 .1 that T0 . 1 (T0 . 9 ) can be very far from T0 . 01 

5.1 Error Analysis for the Proposed Formulae 

5.1.1 Absolute error (AE) and 
absolute percentage error (APE) 

To evaluate the accuracy of (4-31)-(4-33), we will 

employ the criteria "Absolute Error" and "Absolute 

Percentage Error", with the definition of each criterion as 

follows: 

forµ: 
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where 

for a: 

AE = I µ.e - µ. I , 

APE= lOOAE/µ.; 

AE = I Oe - al, 

APE = lOOAE/a, 

(5-la) 

(5-lb) 

(5-2a) 

(5-2b) 

µ.=the true value of the mean of standardized beta 

distribution (with the randomly generated (p,q) 

pair), obtained from (4-25), 

µ.e = the mean of the distribution given by (4-31)-(4-

33) with the fractiles obtained from the same 

(p,q) pair above, 

a= the true value of the standard deviation of 

standardized beta distribution (with the same 

(p,q) pair above), obtained from (4-25), 

ae = the standard deviation of the distribution given 

by (4-31)-(4-33) with the fractiles obtained from 

the same (p,q) pair above. 

5.1.2 Error analysis and its results 

We used the procedure described in Section 4.3.1 

(formulae (4-22)-(4-24)) to generate three new data sets 
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(numbers 3, 4, and 5), -each with 2000 sets of (p,q), the 

corresponding Ta's based on the sets of (p,q), and the 

correspondingµ (actual value) and a (actual value) 

calculated with formulae (4-25) based on the same (p,q) 

values. 

Whereas data sets 1 and 2 were both generated with 

(p,q) in the range of 1 to 100, the (p,q) ranges in data 

sets 3, 4, and 5 are (1,100), (1,50), and (1, 500), 

respectively. This is done to ensure that our study is not 

restricted by the (p,q) ranges and, therefore, our 

conclusions are not dependent on any specific (p,q) ranges 

of the data sets. 

The µe and ae values computed with formulae (4-31)-(4-

33) are compared with the actualµ and a values obtained 

through (4-25). The result of the comparison is listed in 

the following table. 
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Table 5-1. Statistics of Errors 
Incurred by Formulae (4-31)-(4-33) 

Data {p, q) Average Abs. Err. {AE) Abs.% Err. {APE) 
Formula Set Range µ or a 

Avg. 99% Max Avg. 99% Max 
{4-3la) 3 1-100 0.504 0.000027 0.0001 0.0001 0.009 0.03 0.36 
{forµ, 4 1- so 0.498 0.000029 0.0001 0.0001 0.009 0.09 0.23 
7 frac.) 5 1-500 0.497 0.000027 0.0001 0.0001 0.011 0.12 0.80 

{4-3lb) 3 1-100 0.046 0.000451 0.0012 0.0057 1. 035 4.50 6.9 
{for cr, 4 1- so 0.065 0.000640 0.0024 0.0046 1.059 5.61 7.6 
7 frac.) 5 1-500 0.020 0.000229 0.0005 0.0015 1.121 1. 94 6.9 

{4-32a) 3 1-100 0.504 0.000091 0.0004 0.0005 0.041 0.57 1.3 
{forµ, 4 1- so 0.498 0.000141 0.0005 0.0006 0.060 0. 73 1.2 
5 frac.) 5 1-500 0.497 0.000044 0.0001 0.0003 0.020 0.35 1.8 

{4-32b) 3 1-100 0.046 0.000199 0.0016 0.0067 0.571 6.54 9.0 
(for cr, 4 1- so 0.065 0.000383 0.0033 0.0061 0.718 7.41 10.0 
5 frac.) 5 1-500 0.020 0.000056 0.0003 0.0022 0.328 2.71 10.5 

{4-33) 3 1-100 0.504 0.000174 0.0008 0.0029 0.087 1.39 2.6 
{forµ, 4 1- so 0.498 0.000321 0.0016 0.0023 0.143 1.82 2.7 
7 frac.) 5 1-500 0.497 0.000046 0.0002 0.0009 0.027 0.50 2.0 

In the above table, we listed AE and APE data based on 

the three data· sets (data sets 3, 4, and 5). In the columns 

under the header "Absolute Error (AE)", we listed three 

data: the average absolute error, the 99th percentile of the 

2000 AE's in each data set, and the maximum AE in each data 

set. The data in the columns under the header "Absolute 

Percentage Error" have the same interpretations. 

From the table, we can see that the absolute percentage 

errors from all the formulae based on all the data sets are 

72 



lower than 1.2%, with average APE's being lower than 0.8% in 

12 out of the 15 cases. Actually, average APE's are lower 

than or at 0.1% in 9 out of the 15 cases. 

Looking at the maximum APE's, we have maximum APE's 

lower than 3% in 9 out of the 15 cases. We note that there 

are six cases in which the maximum APE's are greater than 

5%, but even in those cases, the 99th percentiles of the 

APE's are only between 2-7.5%. We should note that the 99th 

percentiles of the APE's for the rest of the µ's (or o's) 

are all -below 2% (most of them are FAR BELOW). 

5.1.3 Some numerical examples 

Consider the exact fractiles in (4-23) for a 

standardized beta distribution with (U,V) = (0,1) and (p,q) 

= (61.98, 20.62). For the convenience of comparison, (4-23) 

is redisplayed below: 

Ta.01 = 0.6322, Ta.10 = 0.6882, 

Ta.2s = 0.7194, Ta.so = 0.7524, Ta.1s = 0.7835, (4-23) 

Ta.9o = 0.8098, Ta.99 = 0.8507. 

We have the following observations: 

1. The discrepancy between T0 (T1) and Ta.01 (Ta.99) is 

substantial. From (4-23) we can see that while T0 = 0 and 
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T1 = 1, T0 . 01 = O. 6322 and T0 . 99 = 0. 8507. This illustrates 

our earlier statement: one cannot assume that T0 . 01 (or T0 • 99 ) 

is usually close to T0 (or T1 ). We can also see that one 

cannot assume that T0 •10 (or T0 . 90 ) is usually close to T0 . 01 

(or T0 . 99 ) • The two pairs (T0 . 01 and T0 • 10 ; T0 . 90 and T0 . 99 ) have 

percentage deviations ransing from 5% to 8.8%. 

2. The PERT formulae are very inaccurate while the 

proposed formulae (4-31)-(4-33) are very accurate. Based on 

the data given in (4-23), if one defines a = T0 . 01 , and b = 

T0 • 99 , then the o obtained from the PERT formula (1-lb) will 

be: 

0 1 = (b-a)/6 = (0.8507-0~6322)/6 = 0.0364. 

However, if one defines a= T0 and b = T1 , then 

0 2 = (b-al/6 = (1-0)/6 = 0.1667, 

which differs from 0 1 by 358%. 

From (4-25), the true o value of the beta distribution 

with parameters (p,q) = (61.98, 20.62) will be 

o = /pq/[(p+q)2(p+q+l)] = 0.04734. 

So, both 0 1 and o2 are poor estimates of the correct o. 

In contrast, using (4-3lb) and (4-32b) with the figures 

in (4-23) gives 
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o 3 = 0.2x0.2185 - 0.6x0.1216 + 1.2x0.0641 

= 0.04766 

0 4 = 0.7x0.1216 - 0.59x0.0641 = 0.04730 

o3 is within 1% of the exact o, and 0 4 is practically 

identical to the exact o. 

5.2 Error Analysis for the PERT Formulae 

(5-3a) 

( 5-3b) 

It may be intuitively obvious, from the discussion in 

the previous section, that formulae (1-1) are substantially 

less accurate than (4-31)-(4-33). In order to show this in 

a more systematical way, we present results of an error 

analysis of (1-lb) in Table 5-2, which is a counterpart of 

Table 5-1 for (1-lb). In the analysis leading to Table 5-2, 

two versions of (1-lb) are considered: version A uses T0 and 

T1 ("absolute endpoints") for "a" and "b", whereas version B 

uses T0 • 01 and T0 . 99 ( "inner fractiles") . The results are as 

follows: 
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Table 5-2. Statistics of Errors Incurred by Formula (1-lb} 

Data (p,q) Average 
Formula Set Range µ or cr 

Abs. Err. (AE) 

Avg. 99th Max 
Percentile 

Ver. A 3 1-100 0.046 0.1209 0.150 0.155 

(using 4 1- 50 0.065 0.1020 0.137 0.147 

T0 & T1 ) 5 1-500 0.020 0.1462 0.160 0.162 

Ver. B 3 1-100 O. 046 O. 0106 0. 025 O. 051 

(using 4 1- 5 O O . o 6 5 O . O 15 5 O . O 3 8 O . O 7 6 

1-500 0.020 0.0046 0.010 0.025 

Abs.% Err. (APE) 

Avg. 99th Max 
Percentile 

301.7 880 1304 

178.1 471 731 

61. 8 2504 3697 

23.2 25.2 29.9 

23.7 27.1 34.7 

22.6 23.5 24.6 

In Table 5-2, we can see that the errors of using 

either version are substantial as we anticipated (average 

APE's range from 22.6% to 301.7%). Looking into the data 

more closely, however, we can find that version A is more 

inaccurate than version B: under all the three measurements 

of the APE (average, 99th percentile, and maximum), version 

A performs worse than version B. This may be a little 

beyond expectation at first, because version A uses the 

"correct" interpretation of "a" and "b" ( "absolute 

endpoints"), and one can speculate that version A should not 
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be more inaccurate than version B. This seemingly anti­

intuitive result can be explained as follows: the 

interpretation of a and bas absolute endpoints is "correct" 

only when the restrictive condition of "p + q = 6 11 (or "ex+ 

13 = 4") holds. But in Table 5-2, we have used (1-lb') to 

handle beta distributions in data sets 1 to 3, which contain 

very wide range of bel1-shaped beta distributions; and under 

these circumstances, version A does not have advantage over 

version B. 

One may argue that since (1-lb) is meant to handle the 

subset of beta distributions in which the relationship "p + 

q = 6" holds, it seems not a reasonable comparison if 

formula (1-lb) is used to handle distributions it is not 

supposed to ha~dle. As pointed out by Gallagher (1987), (1-

lb) is applicable to two types of beta distributions: 

(1) those with a= (b-a)/6, with which (1-lb) is 

supposed to be error-free; 

(2) those with p + q = 6, with which (1-lb) is an 

acceptable approximation. 

To evaluate the accuracy of (1-lb) with distributions 

satisfying "p + q = 6 11 , we consider standardized beta 

distributions with p from 1.01 to 4.99 in steps of 0.01 and 

77 



q = 6 - p; the resultant 399 distributions constitute data 

set 6. The performance of versions A and B of (1-lb) is 

then tested on data set 6 and the results are summarized in 

Table 5-3 below. 

Table 5-3. Statistics of Errors Incurred by Formulae (1-lb), 
on Data Sets Satisfying p + q = 6 

Abs. Err. (AE) Abs.% Err. (APE) 

For- Data (PI q) Average Avg. 99th Max Avg. 99th Max 
mula Set Range µ or o Percentile Percentile 

A 6 1.1-4.9 0.174 0.0141 0.024 0.025 17.85 16.9 17.9 

B 6 1.1-4.9 0.174 0.0525 0.058 0.058 29.05 30.4 30.4 

From Table 5-3, we can see that version A now performs 

better than version B. But they are still much less 

accurate than (4-31)-(4-33), even for this very restricted 

subset of beta distributions on which (1-1) is supposed to 

be applicable. 

Looking back to Table 5-2, it is interesting to note 

that, if one insists on using (1-lb) to estimate a, one 

might as well also use the "wrong" definitions: 

a = T0 _01 and b = T0 . 99 , 

since the accuracy of version A drops sharply when it is 
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applied to beta distributions outside the restricted subset 

(for example, data sets 3 to 5). 

5.3 Conclusions of the Results of the Error Analysis 

From the error analysis conducted in this chapter, we 

can see that the proposed alternative formulae (4-31)-(4-33) 

have outperformed the PERT formulae (1-1) in the following 

aspects: 

1. The general performance of (4-31)-(4-33) is much 

better than that of the PERT formulae (1-1). Table 5-4 on 

the next page shows the comparison of performance of 

formulae (4-31)-(4-33) with that of the PERT formulae (1-1). 

From Table 5-4, we can see that the pe_rformance of the 

proposed alternative formula is 33 to 291 times better than 

the PERT formula in terms of average APE, 3.66 to 1290 times 

better in terms of the 99th percentile, and 2.46 to 536 

times better in terms of the maximum APE. 
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Table 5-4 
Comparison of Performance 

of Formulae (4-31} - (4-33} and Formulae (1-1} 

(p, q) Abs.%- Err. (APE) 
Formula Data Set Range 

Avg. 99th Max 
Percentile 

(4-31b) 3 1-100 1. 035 4.50 6.9· 
(for cr, 4 1- so 1. 059 5.61 7.6 
7 frac.) 5 1-500 1.121 1.94 6.9 

(4-32b) 3 1-100 0.571 6.54 9.0 
(for cr, 4 1- so 0. 718 7.41 10.0 
5 frac.) 5 1-500 0.328 2.71 10.5 
Ver. A 3 1-100 301. 7 880 1304 
(using 4 1- so 178.1 471 731 

To & T1) 5 1-500 61. 8 2504 3697 

Ver. B 3 1-100 23.2 25.2 29.9 
(using 4 1- so 23.7 27.1 34.7 

To.01/To.99) 5 1-500 22.6 23.5 24.6 
Ver.A 6 1.1-4. 9 17.85 16.9 17.9 
Ver.B 6 1.1-4.9 29.05 30.4 30.4 

We should note that the alternative formulae in the 

above comparison are those with rounded coefficients 

("simple" or "clean" formulae). More significant 

improvement in performance can be expected if the before-

rounding proposed alternative formulae are introduced in 

this comparison. 

2. The PERT formulae perform poorly in accuracy. Even 

if the performance is measured on the basis of the 

restricted data sets where the PERT formulae are supposed to 

perform well, the performance of the PERT formulae in these 
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"favorable situations" ·is still lower than that of the 

proposed alternative in general (and "neutral") situations. 
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CHAPTER VI 

CONCLUSIONS AND DISCUSSIONS 

6.1 Conclusions 

This research studies the objectives and the procedure 

of the PERT time estimation, points out the shortcomings in 

the PERT procedure in handling the objective of eliciting 

subjective probabilities and in handling the objective of 

converting the "basic times" a, m, and b to the mean and the 

standard deviation of the distribution of the task times of 

interest. This study, based on the probability elicitation 

literature and the properties of the beta distribution, 

proposes an alternative to the PERT time estimate procedure 

and has accomplished the following: 

1. The proposed alternative is based on the established 

probability elicitation literature, which avoids the 

difficulties (inaccuracy and possible confusion) the PERT 

procedure encounters when the "basic times" a, b, and mare 

to be estimated. The proposed alternative enables the 

researchers and practitioners to take advantage of the 

existing probability elicitation literature and the existing 
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practices in probability elicitation procedure, which 

provides a solid ground for the improvement on the validity 

and accuracy of time estimation. This has accomplished the 

Objective 1 set in Section 3.1 (which the PERT procedure 

failed to) . 

2. The proposed alternative can handle a wide range of 

shapes of beta distributions, therefore avoiding the 

shortcoming of the PERT procedure which is only valid on a 

very restricted subset of the beta distributions. This 

improvement, accordingly, makes the proposed time estimate 

procedure more versatile, "robust", and valid in the real­

world applications of project management. This has 

successfully accomplished the Objective 2 set in Section 3.1 

(which the PERT procedure failed to). 

3. The proposed alternative has improved the accuracy 

of time estimation substantially, in comparison with the 

PERT procedure. This is very important for real-world 

project management tasks, especially where large-scale 

projects are involved. Great economic benefits can be 

expected from the improvement of time estimation in project 

management. 

4. The proposed alternative retains the simplicity of 
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the PERT procedure while accomplishing all of the above. 

After the fractiles are obtained, all the calculations 

needed to be performed are just plain arithmetic operations 

and can easily be performed in a short time, without 

demanding complex computing facilities. In addition, the 

formulae in the proposed alternative are simple enough not 

to intimidate the practitioners. The retention of 

simplicity will be an important feature for this new 

alternative to be accepted by the real-world management. 

In -general, the proposed alternative is a logical, more 

accurate, and simple procedure in estimating the mean and 

the standard deviation of a stochastic time duration, in 

comparison with the traditional PERT procedure. The 

alternative is. free from the restrictions imposed by the 

PERT procedure on the range of shapes the distributions can 

take, and can therefore handle a wider range of beta 

distributions which the PERT originators intended to but did 

not achieve. The proposed alternative is based on 

theoretical inference instead of "trial and error" type of 

experiments. It has its inputs (the fractiles of a 

stochastic time distribution) based on the solid ground of 

the probability elicitation literature. The time estimates 
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obtained from the proposed alternative are much more 

accurate than that from the PERT procedure, which is the 

strongest justification of the introduction of the 

alternative. The proposed alternative is simple, which 

facilitates its acceptance by the practitioners. 

In our research, we also study the shortcomings of the 

PERT procedure, and, specifically, point out and measure the 

inaccuracy of the PERT formulae through numerical examples. 

The results of our study show that PERT formulae are 

inaccurate and should be replaced. Students and 

practitioners in MS/OR should be made aware of the existence 

of better alternative(s) when they are taught or performing 

project management. 

6.2 On the Number of Fractiles Used 
in the Alternative 

A question may arise that if one can elicit sufficient 

number of fractiles, then one can precisely compose the 

whole probability distribution. In that case, one will be 

able to accurately calculate the mean and the standard 

deviation (or median, or any other statistics) and be free 

from the approximation of estimating the mean or the 
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standard deviation. This speculation is theoretically 

correct. But to obtain a satisfactorily accurate 

probability distribution, we may need to elicit, say, 100 or 

more fractiles. This "prelude" to a real-world project 

time analysis (with a project network) can be intimidating 

to the managers and/or engineers working on the project. 

Reluctance or even resistance can be expected if this 

tedious duty is to be imposed on the personnel who are 

responsible for the network analysis for the project 

manageme·nt. We believe that, for a certain new method to be 

accepted by potential users, the (perceived) potential 

workload to be imposed on the concerned parties is an 

important issue to consider before the method is introduced. 

From this point of view, eliciting 100 or more fractiles for 

composing a complete probability distribution function curve 

may impose too much work on the project managers/engineers 

and may not be able to be actually carried out. 

One may be interested in the possibility of a human 

subject's ability to estimate the mean and/or the standard 

deviation directly. This direct estimate is often very 

difficult (as pointed out by Clark, 1962) or even 

impossible. In some cases, the mean of a distribution may 
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have an obvious value when it actually does not even exist! 

A classical example is shown with the Cauchy distribution 

(Zehna, 1970, pp 84-85, p. 100; Mood et al., 1974, p. 117). 

In figure 6-1 below, it seems to be obvious that the mean of 

the distribution shown is zero, yet it does not exist, 

because the integral 

+~ 

f f(x)dx 
-~ 

does not converge. 

I 

Figure 6-1 Graph of the Cauchy Density 
and Distribution Function 
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There may be, on the other hand, another set of 

questions that "Why should we elicit seven fractiles? Isn't 

it too much?" These questions, if asked, would most 

probably come from the practitioners. In answering the 

first question, we would like to note that there are two 

separate issues in the use of fractiles in estimation of the 

mean and the standard deviation of a probability 

distribution: 1. eliciting the fractiles for the 

estimations; and 2. computing the mean and the standard 

deviatio'n with the estimated fractiles. When dealing with 

issue 2, one assumes that the fractiles obtained are error­

free and treats the "inputting" fractiles as perfect. 

However, fractiles usually cannot be estimated error-free. 

Selvidge's (1980) results suggest that when a person is 

required to estimate the seven fractiles (T0 • 011 T0 • 10 , T0 . 25 , 

To.so, T0 •75 , T0 • 90 , and T0 . 99 ) instead of other sets of 

fractiles, the person tends to make more accurate estimates, 

especially those estimates regarding extreme fractiles. 

Thus, the reason for our using seven fractiles is in 

handling issue 1 (accuracy of fractile estimation), but not 

in handling issue 2 (converting fractiles to means and 

standard deviations). 

88 



In answering the second question ("seven fractiles are 

too much"), we are presenting an example of successful usage 

of the seven-fractile method in a field study. Solomon 

(1982) reported his studies on probability assessment 

conducted in seven of the "Big Eight" accounting firms and 

one other large national accounting firm. The subjects in 

his studies were a mix· of audit staff, audit seniors, and 

managers/supervisors. The method he employed was the 

fractile method with seven fractiles, the same method 

studied ·by Selvidge (1980). In his studies, he asked the 

subjects to estimate prior probability distributions (PPDs), 

defined as the quantified subjective beliefs held by an 

individual auditor or team of auditors prior to collecting 

objective evidence through the performance of subjective 

audit tests. His "choice was made because of the simplicity 

of the technique and the ease with which subjects can be 

trained to used it." Solomon's study (1982) provides a 

strong evidence supporting the use of the seven-fractile 

method in eliciting subjective probability from a wide range 

of personnel in the real world. There should not be major 

concern regarding the ease of use of the seven-fractile 

method by managers or professionals, as those "experts" in 
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the PERT. 

In addition, if we look at major projects with a 

perspective expense of millions of dollars, the cost of 

making the estimates of seven fractiles instead of three 

numbers (as in the PERT procedure) will well be offset by 

the great amount of saving one can expect from obtaining a 

much more accurate estimate of the mean and the standard 

deviation of the task times. In this case, making estimates 

of seven fractiles is very well justified by economic 

benefits. 

6.3 One More Advantage of The Alternative 

As we showed in section 4.4, beta distribution has a 

special feature.that 

R(a) = 2, (4-36) 

where R(a) - S(a)/µ, 

S(a) ~ T~ + T1~, 

where a is fractile level of random variable T. 

We have seen that S(a)/2 is a perfect estimator ofµ. 

Consequently, any linear combination of S(a) is also a 

perfect estimator ofµ. Unfortunately, the traditional PERT 

procedure does not take advantage of this important feature 
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of the beta distribution and totally wastes the information 

contained in the fractiles. When one uses the PERT formulae 

(1-1) to estimateµ with endpoints a=O and b=l, the sum of a 

and bis always 1 regardless of the true mean. In this 

ca~e, a and b do not actually contribute to the 

determination of the mean. Instead, the mean is solely 

determined by the mode· m, which is not correct. This. error 

is obvious when we have a symmetrical bell-shape 

distribution where mean= mode. The mean calculated by the 

PERT formula, however, is (a+4m+b)/6 = (1+4m)/6, which is 

not mas it should be. When one uses the PERT formulae (1-

1) to estimate a with endpoints a=O and b=l, the difference 

of a and bis always 1, and the a will always be 1/6 

regardless of the true a. Therefore, for the standardized 

variates, the meanµ will be determined only by the mode, 

and the standard deviation a will always be the same (=1/6), 

regardless of the actual shape of the distribution of 

interest. 

We can see from the discussion above that the PERT 

procedure has lost some important information which could 

have been included in the time estimation procedure. The 

PERT procedure, therefore, has missed the opportunity of 
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improvement in the accuracy of this estimation which could 

have been achieved. This is a critical shortcoming of the 

PERT procedure. The proposed alternative avoids this 

shortcoming of the PERT and makes full use of the 

information contained in the fractiles in the estimation of 

the mean and the standard deviation of the stochastic time. 

6.4 Recommendations for Future Studies 

6.4.1 On the generation of 
the beta shape parameter (p,q) 

In our study, we generate the beta distribution shape 

parameter (p,q) with a uniform random variable generator. 

This procedure serves to generate the (p,q) pairs randomly 

and "evenly" in ·a wide range of the (p,q) values. But with 

more careful examination, we find that to generate the (p,q) 

pairs uniformly may not be as "evenly" as it seems. 

Referring to the " ( 13 1 -132 ) -diagram" (adapted from Hahn 

and Shapiro 1967) on the following page, where 131 = µ//µi3, 

probabilistic distributions, we can see that it is the (131 -

13 2 ) pair which govern the transformation (or transition) 

from one type of distributions to another, and among the 
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various shapes of distributions within one group or 

category of distributions. Therefore, it will be more 

logical to "evenly" generate the (~1 -~2 )-pair in order to 

cover the beta distributions "evenly". From the above point 

of view, it is advisable to probe in that direction for the 

future research. In that case, different beta distributions 

with various (~1 -~2 )-values will be generated evenly, and 

research can be done on the data sets generated this way. 

6.4.2 Considerations of using distributions 
other than the beta distribution 

Taking one more step from our discussion in the 

previous subsection, based on the (~l-~2)-diagram, we 

further notice that, the bell-shaped beta d·istributions 

consist but one relatively small area in the areas occupied 

by all the bell-shaped distributions on the (~l-~2)-diagram. 

To allow the (~l-~2)-values to vary within the category of 

the bell-shaped beta distributions is nothing but moving 

within the small area standing for, or occupied by, the 

bell-shaped beta distributions, which is just a part of all 

the bell-shaped distributions. Therefore, to truly allow 

the shape of a probabilistic distribution to change in a 
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wide range, one should-allow the (~l-~2)-values to vary in 

the whole bell-shaped area on the (~l-~2)-diagram, instead 

of just changing within a small sub-area. This means that 

different types of distributions should be studied instead 

of just the beta distributions. 
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APPENDEX A: Computer Program for Generating Data Sets for 
Seven-fractile Models 

//U14501AK JOB (*) ,'ZHANG' ,CLASS=3, 
// TIME=(lO,O) ,MSGCLASS=X,NOTIFY=U14501A 
// EXEC VSF2CLG,IMSL=DP 
/*ROUTE PRINT BUS009 
//SYSIN DD* 

C PROGRAM: PERT TIME ESTIMATE, DATA GENERATION 
C FOR SEVEN FRACTILES 

010 REAL PR(7), MU, SIGMA, SOl, SlO, S25, DOl, 
&D25, P, Q, X(7), BETIN, RNUNF 

EXTERNAL BETIN, RNUNF 
C -------------------------

PR(l)=.01 
PR(2)=.1 
PR(3)=.25 
PR(4)=.5 
PR(5)=.75 
PR(6)=.9 
PR(7)=.99 

C -------------------------
I=2000 
DO 350 J = 1, I 
P = 1 + 99 * RNUNF() 
Q = 1 + 99 * RNUNF() 

310 MU= P/(P+Q) 
SIGMA= SQRT (P*Q/((P+Q)**2 * (P+Q+l))) 
DO 330 K = 1, 7 

330 X(K) = BETIN(PR(K) ,P,Q) 
SOl = X(7) + X(l) 
SlO = X(6) + X(2) 
S25 = X(5) + X(3) 
DOl = X(7) - X(l) 
DlO = X(6) - X(2) 
D25 = X(5) - X(3) 
WRITE(15,345) MU,S01,Sl0,S25,X(4) 
WRITE(16,346) SIGMA,D01,D10,D25 

345 FORMAT(2X,F6.4,2X,F6.4,2X,F6.4,2X,F6.4,2X,F6.4) 
346 FORMAT(2X,F6.4,2X,F6.4,2X,F6.4,2X,F6.4) 
350 CONTINUE 

END 

//GO.FT15F001 DD DSN=U14501A.OUT5.DATA,DISP=SHR 
//GO.FT16F001 DD D8N=U14501A.0UT6.DATA,DISP=SHR 
//GO.SYSIN DD* 
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APPENDEX B: Computer program for Determining Coefficients 
for Seven-fractile Models 

//U14501AX JOB (*), 
// 'ZHANG' ,TIME=(S,O),CLASS=3,MSGCLASS=X, 
II NOTIFY=U14501A 
/*ROUTE PRINT BUS009 
II EXEC SAS 
//OPl DD DSN=U14501A.OUTS.DATA,DISP=SHR 
//OP2 DD DSN=U14501A.OUT6.DATA,DISP=SHR 
//SYSIN DD* 

DATA OPl; 
INFILE OPl; 
INPUT MU SOl SlO S25 TSO; 
PROC REG DATA= OPl; 

MODEL MU= SOl SlO 825 TSO; 
DATA OP2; 
INFILE OP2; 
INPUT SIGMA DOl DlO D25; 
PROC REG DATA= OP2; 

MODEL SIGMA= DOl DlO D25; 
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APPENDEX C: Computer Program for Generating Data Sets for 
Five-fractile Models 

//U14501AK JOB (*),'ZHANG' ,CLASS=3, 
// TIME=(lO,O) ,MSGCLASS=X,NOTIFY=U14501A 
II EXEC VSF2CLG,IMSL=DP 
/*ROUTE PRINT BUS009 
//SYSIN DD* 

C PROGRAM: PERT TIME EST I.MATE, DATA GENERATION 
C FOR FIVE FRACTILES 

010 REAL PR(5), MU, SIGMA, SOl, SlO, S25, DOl, 
&D25, P, Q, X(5), BETIN, RNUNF 

EXTERNAL BETIN, RNUNF 

C -------------------------
PR(l)=.1 
PR(2)=.25 
PR(3)=.5 
PR(4)=.75 
PR(5)=.9 

C -------------------------
I=2000 
DO 350 J = 1, I 
P = 1 + 99 * RNUNF() 
Q = 1 + 99 * RNUNF() 

310 MU= P/(P+Q) 
SIGMA= SQRT (P*Q/((P+Q)**2 * (P+Q+l))) 
DO 330 K = 1, 5 

330 X(K) = BETIN(PR(K) ,P,Q) 
SlO = X(5) + X(l) 
S25 = X(4) + X(2) 
DlO = X(5) - X(l) 
D25 = X(4) - X(2) 
WRITE(17,345) MU,S10,S25,X(3) 
WRITE(l8,346) SIGMA,D10,D25 

345 FORMAT(2X,F6.4,2X,F6.4,2X,F6.4,2X,F6.4) 
346 FORMAT(2X,F6.4,2X,F6.4,2X,F6.4) 
350 CONTINUE 

END 

//GO.FT17F001 DD DSN=U14501A.OUT7.DATA,DISP=SHR 
//GO.FT18F001 DD DSN=U14501A.OUT8.DATA,DISP=SHR 
//GO.SYSIN DD* 
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APPENDEX D: Computer program for Determining Coefficients 
for Five-fractile Models 

//U14501AX JOB (*), 
// 'ZHANG' ,TIME=(S,O) ,CLAS8=3,MSGCLASS=X, 
II NOTIFY=U14501A 
/*ROUTE PRINT BUS009 
II EXEC SAS 
//OPl DD DSN=U14501A.OUT7.DATA,DISP=SHR 
//OP2 DD DSN=U14501A.OUT8.DATA,DISP=SHR 
//SYSIN DD* 

DATA OPl; 
INFILE OPl; 
INPUT MU S10 S25 TSO; 
PROC REG DATA= OPl; 

MODEL MU= S10 825 TSO; 
DATA OP2; 
INFILE OP2; 
INPUT SIGMA DlO D25; 
PROC REG DATA= OP2; 

MODEL SIGMA= DlO D25; 
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APPENDIX E: Computer Program to Select "Clean" Coefficients 

REAL*8 FRM,TOL,BV,RV,DV,DFE,SCPE,XMIN,XMAX,FRC,BVA 
DIMENSION FRM(4000,30) ,INDIND(30) ,INDDEP(l) 
DIMENSION BV(30,30) ,RV(30,30) ,XMIN(30) ,XMAX(30) 
DIMENSION SCPE(30,30) ,BVA(30,30),DV(30), 
COMMON FRC(2,4000,30) 
DATA NRU,NCR,NCF,IPDV/4000,9,27,27/ 
DATA IIND,INDIND/4,1,2,4,5,26*0/ 
TOL=100.*AMACH(4) 
WRITE (6,971) TOL 

971 FORMAT (' TOL=' , E15. 5) 
DO 2 I=l,NRU 
FRM(I,IPDV)=l 
READ(ll,*) (FRM(I,J) ,J=l,NCR) 

2 CONTINUE 
970 FORMAT (9F9.4) 

DO 12 I=l,NRU 
FRC(2,I,IPDV)=l 
READ ( 12 , * ) ( FR C ( 2 , I , J) , J = 1 , 9 ) 

12 CONTINUE 
DO 14 I=l,NRU 
FRC(l,I,IPDV)=l 
DO 16 J=l,9 

16 FRC(l,I,J)=FRM(I,J) 
14 CONTINUE 

ESMM=999. 
READ (5, *) (BV(I, 1), I=l, IIND) 
WRITE (6,956) (BV(I,1),I=l,IIND) 

956 FORMAT (' BV=' ,4Fl2.6) 
CALL EVA(IIND,BV,INDIND,1,NRU,IPDV,2,ESM) 
IP=O 
DO 200 IB1=26,30 
BV(l,l)=IBl*l.D-2 
DO 200 IB2=1,5 
BV(2,l)=IB2*1.D-2 
DO 200 IB3=11,15 
IP=IP+l 
BV(3,l)=IB3*1.D-2 
BV(4,l)=(l-BV(l,1))/2 - BV(2,1)-BV(3,1) 
WRITE (6,952) IP, (BV(I, 1), I=l, IIND) 

952 FORMAT (' IP=' ,I5,3X,'BV=' ,4F9.3) 
51 CALL EVA(IIND,BV,INDIND,1,NRU,IPDV,2,ESM) 

IF (ESM.LT.ESMM) THEN 
ESMM=ESM 
IMIN=IP 

END IF 
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C 

200 CONTINUE 
WRITE (6,955) ESMM,IMIN 

955 FORMAT (//' ESMM,IMIN=' ,ElS.5,IS) 
800 STOP 

END 

SUBROUTINE EVA(IIND,BV,INDIND,IPB,IPE,IPDV,IDT,ESM) 
REAL*B BV,FRC,ESTV,BVT 
COMMON FRC(2,4000,30) 
DIMENSION BV(30,30),INDIND(30) ,ESTV(4000) 

951 FORMAT (' BV=' ,6E14.S) 
DO 100 I=IPB,IPE 

100 ESTV(I)=O 
DO 110 J=l, IIND· 
BVT=BV(J,1) 
IT=INDIND(J) 
DO 120 I=IPB,IPE 

120 ESTV(I)=ESTV(I)+BVT*FRC(IDT,I,IT) 
110 CONTINUE 

ESS=O. 
EMX=O. 
EAS=O. 
EV=O. 
DO 150 I=IPB,IPE 
ERR=DABS(FRC(IDT,I,IPDV)-ESTV(I)) 
EAS=EAS+ERR 
ESS=ESS+ERR**2 
IF (ERR.GT.EMX) THEN 

EMX=ERR 
IPMAX=I 

END IF 
972 FORMAT (' ESTV,ERR,BVT,IT=' ,3F10.4,I4) 
150 CONTINUE 

NI=IPE-IPB+l 
EAM=EAS/NI 
ESM=ESS/NI 
WRITE (6,950) EAM,ESM,EMX,IPMAX 

950 FORMAT (' EAM,ESM,EMX=' ,3E14.4,3X,'IPMAX=' ,IS) 
RETURN 
END 

//GO.FTllFOOl DD DSN=U14501A.FRM,DISP=SHR 
//GO.FT12F001 DD DSN=U14501A.FRMH,DISP=SHR 
//GO.SYSIN DD* 
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