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PREFACE 

In the real world, pattern clustering problems deal with perturbed and imperfect 

data. A machine pattern clustering system is expected to have real-time and unsupervised 

learning ability and be able to represent and manipulate inexact information just like 

human beings. Pattern clustering techniques, based on statistic theory, artificial neural 

network theory, and fuzzy set theory, have been developed in the last few decades. A 

group of artificial neural networks exhibits remarkable properties of self-organization that 

benefit techniques of pattern clustering. The advent of fuzzy set theory has had a positive 

impact on techniques of pattern clustering. We are concerned in this dissertation with 

pattern clustering systems having the adaptive learning ability from clustering neural 

networks and the ability of representing and manipulating imprecise data from fuzzy sets. 

In this study, we develop a new pattern clustering model called the fuzzy 

minimum mean maximum clustering neural network (F3MCNN) that is a synergetic 

combination of a neural network with the fuzzy set theory. Its system architecture and 

clustering algorithm are presented. A famous data set is used in our experiments to 

compare clustering results accuracy and stability with other similar models. From the 

experimental results, the F3MCNN model is superior to the other models. 
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NOMENCLATURE 

mn n-dimensional data space 

.f scaled unit n-dimensional data space 

P input pattern P = (p1,p2,. ··,Pn), where O ::;;p;::; 1 for i = 1, ... , n 

X universe discourse 

F1 the input representation layer in the bottom of the attentional subsystem of the 

F3MCNN system 

Fj thejth sub-layer of the membership calculating layer in the middle of the 

attentional subsystem of the F3MCNN system 

the cluster representation layer in the top of the attentional subsystem of the 

F3MCNN system 

Cj fuzzy central point ofthejth cluster where Cj= (cj1, cj2, .. . , cjn) 

Aj fuzzy variation vector ofthejth cluster whereAj = (ajb aj2, ... , a1n) 

~ minimum point ofthejth cluster's hyper-box where~= (ujb uj2, .. . , u1n) 

"V.i maximum point ofthejth cluster's hyper-box where "V.i= (vj1, vj2, .. . , vjn) 

N total number of patterns presented 

~ fuzzy number of patterns of the jth committed cluster 

H/P) fuzzy hyper-box similarity degree of the input pattern P to the jth cluster 

S/P) fuzzy statistical similarity degree of the input pattern P to the jth cluster 

p user-defined vigilance for the maximum size of the hyper-boxes 

Xl 



CHAPTER I 

INTRODUCTION 

The combination of neural networks and fuzzy set theory develops a synergetic 

system that can handle pattern clustering problems more efficiently and accurately. A 

pattern clustering system, which deals with perturbed and imperfect elements in the real 

world, should have real-time and unsupervised learning ability and be able to represent 

and manipulate inexact information just like human beings. Pattern clustering is an 

unsupervised pattern classification process that assigns a pattern to its proper place. It is 

one of the inexact problems for which mathematical methods have not been defined. 

Human beings handle it subconsciously and without knowing how they really solve it. 

There have been considerable interest and rapid advances in both the development and 

research of pattern clustering in the last decade, but many questions are still open. In this 

study, we develop a new real-time pattern clustering model that can represent and 

manipulate inexact information. 

In the following of this Chapter, we provide the background information related to 

our study for our readers in Section 1.1. Section 1.2 describes problems in neural 

network clustering systems and fuzzy neural network systems. Section 1.3 explains the 



motivation of our study. Section 1.4 provides the objectives of our study. Section 1.5 

outlines the remainder of this dissertation. 

1.1 Background Information 

2 

Although the computing power of digital computers have been improved 

tremendously in the past few decades, a human brain is still more efficient than advanced 

computers in performing complex tasks such as image and speech recognition. A human 

brain performs computation in a different manner from a conventional digital computer 

does. Engineers and scientists have tried to develop intelligent machines that function 

similarly to the human brain. Although the understanding of biological neural systems is 

not developed enough to exploit the function similarity between biological and artificial 

neural systems, there are many artificial neural systems developed to enhance the quality 

of our lives and make many difficult tasks easier to accomplish [McCulloch 43] [Hebb 

49] [Rosenbalatt 58] [Widrow 60] [Widrow 62] [Nilsson 65] [Fukushima 80] [Kohonen 

77] [Kohonen 82] [Kohonen 84] [Kohonen 88] [Anderson 77] [Amari 72] [Amari 77] 

[Grossberg 77] [Grossberg 82] [Hopfield 82] [Hopfield 84] [Rumelhart 86]. Artificial 

neural networks can enhance the enormous processing power of the digital computer with 

the ability to make sensible decisions and learn by ordinary expedence, as humans do. In 

the meantime, the simple and regular architecture of artificial neural systems makes them 

easy to implement. 

Most of human reasoning is approximate rather than exact. Humans have the ability 

to make decisions from uncertain and imprecise information. We can conceive distorted 
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speech, recognize unclear pictures, and drive in tight traffic. In these cases, we 

manipulate approximate and uncertain information differently from how the conventional 

computer does. Usually, the objects of our reasoning are general and imprecise rather 

than precise and sharp. Fuzzy computing attempts to manipulate uncertain information in 

same the way human reasoning does. The rapidly.growing number of applications that 

deal with complex and ill-defined problems suggests that it represents a natural 

development in the evolution of understanding how humans can reason without the use of 

numbers. 

Pattern clustering is a sub-field of pattern recognition that has become a major 

area of research and development activity in the last few decades. The goal of pattern 

clustering is to classify complex patterns of information and to automate these functions 

using computers. Scientists from different areas including statistics, neural networks, and 

fuzzy systems have developed different pattern clustering techniques from each of their 

aspects. We provide the background information for the field of pattern clustering in the 

following subsections. 

1.1.1 Pattern Clustering 

The pattern clustering process can be generally presented in the following way. 

Consider a finite set of unlabeled patterns P = {p 1 , p2 , ••• , Pm } , where each pattern P; is 

an n-dimensional feature vector. The clustering process partitions Pinto c-many classes, 

where c is either predetermined or dynamically determined during cluster learning. As a 

result, similar patterns are classified into the same cluster, and patterns that differ 
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significantly are put into different clusters. How to determine the number of clusters and 

how to choose the proper grouping metric are two major concerns in the research field of 

pattern clustering. Different pattern clustering techniques have been developed to find 

the underlying structure of the patterns, based on statistic theory, fuzzy set theory, and 

neural network theory. 

1.1.1.1. Statistical Clustering Statistical techniques have played a major part in 

pattern clustering in the last few decades. Researchers have developed many clustering 

algorithms, including the nearest mean clustering algorithm [Fukunaga 70] [Hall 65], the 

branch and bound algorithm [Koontz 75a], the maximum likelihood estimate algorithm 

[Day 69] [Wolfe 70], the estimation of density gradient algorithm [Fukunaga 75], the 

normality test algorithm [Fukunaga 86], and the graph theoretic approach [Koontz 75b]. 

Fukunaga classified these clustering algorithms into two approaches [Fukunaga 90]: 

(1) Parametric Approach: In the parametric approach, a clustering criterion is 

defined to minimize an objective function. The given input patterns are 

classified into a number of clusters in order to optimize the clustering criteria. 

Normally, a parametric approach contains an iterative procedure. The 

iterative procedure stops when the objective function converges to a user 

defined criterion during successive presentation of input patterns. Parametric 

approaches suffer several major problems, such as the convergence being not 

guaranteed, the output being always dependent on the sequence of input 

patterns, and the termination being forced. 



(2) Nonparametic Approach: In nonparametric approaches, neither clustering 

criteria nor assumed mathematical forms for the distribution are defined. The 

density function of the input patterns is used to separate patterns. The valley 

of the density function may be considered as the naturally boundary that 

separates the patterns. 

These statistical clustering approaches classify patterns based on statistical 

properties such as mean vectors, covariance matrices, the density function, and the 

distribution function. There are many commercial clustering products available, for 

example, ISODATA, FIRGY, CLUSTER, and WISH [Dubes 76]. 

5 

1.1.1.2 Fuzzy Clustering Fuzzy sets [Zadeh 65] provide a new direction to 

classical clustering systems by allowing a pattern to belong to several clusters in different 

degrees. Usually, people are more interested in the fuzzy representation than the 

statistical representation of a pattern to a class. Because in the fuzzy representation "a 

grade of membership of the pattern to the class ID; is a.", a. indicates how close the 

pattern is to the class ID;. While in the statistical representation "a probability the pattern 

belongs to the class ID; is a.", a. represents the frequency which that pattern belongs to the 

class ID; in repeating experiments. 

One of the widely used fuzzy clustering methods being a fuzzy relative of 

ISODATA and called fuzzy c-means has been introduced by [Dunn 74] and developed by 

[Bezdek 81] in detail. This fuzzy clustering method defines an object criterion function. 

Minimization of the object function is obtained by means of iterative procedure. 
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1.1.1.3 Neural Network Clustering In pattern clustering, neural networks provide 

the remarkable ability to determine the size, number, placement, and shape of pattern 

clusters. The tremendous advantages of a clustering neural network system are its 

adaptive learning and massive parallel processing abilities. The popular clustering neural 

networks can be classified by the learning algorithm as follows: 

(1) Competitive Learning: This class of clustering neural networks uses the c­

means similar algorithm to find the centers of clusters in the pattern space. 

This class of clustering networks uses an unsupervised scheme to find the best 

set of weight vectors for hard clusters in an iterative and sequential procedure. 

A learning rate is defined which decreases with time in order to force 

convergence of the iterative procedure. The Kohonen network [K.ohonen 88] 

is one of the well-known network of this class of clustering network. 

(2) Adaptive Resonance Theory: Adaptive resonance theory (ART) was 

introduced by [Grossberg 76] and [Grossberg 80]. Numerous extensions and 

refinements are found in [Carpenter 87], [Carpenter 90], [Carpenter 91a], 

[Carpenter 91b], and [Carpenter 91c]. The ART type neural networks create 

clusters from the input patterns by themselves. For some applications without 

a pre-specified number of clusters, the ART type neural networks are able to 

classify patterns depending on the natural properties of the applications. The 

ART type neural networks generate new clusters when the presented pattern 

can not be classified into any encoded cluster. The generation of the new 

cluster will not deconstruct any previous encoded cluster. 
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1.1.2 Neural Networks 

The first formal definition of an artificial neuron model was formulated by 

[McCulloch 43]. Every neuron model consists of a processing element with synaptic 

input connections and a single out. The neural network can be defined as an 

interconnection of neurons such that output of neurons is connected to all other neurons 

including themselves. The synaptic connections between neurons are unidirectional. A 

neural network may contain several layers of neurons. Neurons in the same layer perform 

the same activation function. 

There are many artificial neural networks developed in last few decades 

[McCulloch 43] [Hebb 49] [Rosenbalatt 58] [Widrow 60] [Widrow 62] [Nilsson 65] 

[Fukushima 80] [Kohonen 77] [Kohonen 82] [Kohonen 84] [Kohonen 88] [Anderson 77] 

[Amari 72] [Amari 77] [Grossberg 77] [Grossberg 82] [Hopfield 82] [Hopfield 84] 

[Rumelhart 86]. They can be classified as supervised learning, unsupervised learning, 

and recording learning neural networks according to their learning mode. Additionally, 

they can be classified as feedforward or recurrent neural networks. In our study, we are 

interested in the adaptive resonance theory 1 (ART-1) network that is an unsupervised 

clustering network [Carpenter 87] [Carpenter 88]. 

1.1.3 Fuzzy Set Theory 

Fuzzy sets were introduced by [Zadeh 65] to represent and manipulate data that are 

imprecise and fuzzy. Researchers and theoreticians [Kandel 86] [Kosko 92] presented 
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their definitions and representations of fuzzy sets. Zadeh extended the bivalent indicator 

function in traditional set theory to a multi-value indicator called a membership function. 

His extension provided a mechanism to present linguistic constructs such as "tall," 

"short," "many," and "few," and it provided a new tool that can be applied to pattern 

recognition. This new tool can be used to describe the degree to which a pattern is closer 

to a cluster. Traditional set theory uses probability theory to explain whether an event 

will occur. While probability indicates what is the chance an event will occur, fuzzy set 

theory measures the degree to which an event occurs. 

The following definitions related to fuzzy set theory are abstracted from 

[Zimmermann 91]. If X is a collection of objects denoted generically by x, then a fuzzy 

set A in Xis a set of ordered pairs: 

A= {(x, mA(x)) I x e X}, (1.1) 

where the membership function mA (x) describes the degree to which the element x 

belongs to the set A and mA (x) is in the interval [0,1]. When mA (x) equals 0, it represents 

no membership; when it equals 1, it represents full membership. Elements with a zero 

degree of membership are normally not listed. 

The operations on fuzzy sets are extensions of the basic classical set-theoretic 

operations. They constitute a consistent framework for the theory of fuzzy sets. Some of 

the common operations include intersection, union, and complement. With A and B 

being fuzzy sets in X, these operations are defined as follows. 

Intersection: The membership function mc(x) of the intersection C =An Bis 

pointwise defined by 
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(1.2) 

Union: : The membership function me (x) of the intersection C = A u B is pointwise 

defined by 

mc(x) = max{mA(x), mix)}, V x e X. (1.3) 

Complement: The membership function of the complement of the fuzzy set A, A , is 

defined by 

VxeX. (1.4) 

1.2 The Problems 

In neural network clustering, unsupervised and competitive learning algorithms 

adjust the weight vectors to classify input patterns into a number of clusters. There are 

some generic disadvantages in this class of neural networks [Caudill 89]: 

( 1) There is no hierarchical knowledge representation between patterns. Two 

input patterns are either classified to be in the same cluster or not. There is no 

representation of the information among clusters. 

(2) Once an output neuron fails, we lose the representation of a whole category. 

This class of neural networks is not robust enough to prevent degradation or 

failure. 

(3) For a given clustering problem, the choice of the proper clustering metric and 

the different number of clusters will decide the different clustering schemes. 

Which clustering scheme is more appropriate to the clustering problem? The 

answer is not clear; it is fuzzy. 



( 4 ). The crisp membership that represents the belongings of a pattern to a hard 

cluster limits the ability to describe the relationship between two clusters. 

Fuzzy clustering neural networks are introduced to classify patterns into clusters 

that are represented by fuzzy sets. In fuzzy clustering representation, an input pattern 

belongs to numerous fuzzy set clusters in different degrees. This fuzzy membership 

function enables the fuzzy clustering system to describe the relationship among clusters 

for a pattern. There are two categories of fuzzy clustering neural networks; one is based 

on the competitive c-means algorithm and the other is developed from the adaptive 

resonance theory network. 

10 

Our study is focused on the fuzzy ART-type clustering neural networks that 

include the fuzzy ART clustering neural network (fuzzy ART) [Carpenter 91] and the 

fuzzy min-max clustering neural network (fuzzy Min-Max) [Simpson 93]. In the ART­

type fuzzy clustering neural networks, a hyper-box defines a region of the n-dimensional 

pattern space and represent a cluster. There are some flaws in these fuzzy clustering 

neural systems: 

(1) In fuzzy ART, hyper-boxes may overlap with each other. This results in an 

input pattern that may belong to different clusters in full membership. This in 

tum results in the problem of full membership ambiguity and also weakens the 

use of fuzzy sets. 
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(2) In fuzzy ART, although the intersection and union operations are replaced by 

the min and max operations from fuzzy set theory, the relationship to fuzzy 

sets is not suitably identified. 

(3) In fuzzy ART, the cluster choice function does not present any information 

about the degree of an input pattern belonging to a cluster. It is used only to 

select the candidate resonant cluster. 

(4) In fuzzy Min-max, hyper-box overlapping is not allowed. Once a hyper-box 

extension occurs, the tedious work for hyper-box overlap checking and hyper­

box contraction must be performed. 

1.3 Motivation of the Study 

In pattern clustering (unsupervised classification) problems, unlabeled patterns are 

split into a number of classes with respect to a suitable similarity measure. Similar 

patterns are classified to the same cluster, while the patterns that differ significantly are 

put in different clusters. There are many classical clustering techniques developed based 

on the theory of mathematical statistics [Fukunaga 90]. In the past few decades, artificial 

neural networks have become a very popular field of research in cognitive science, 

computer science, signal processing, and neurobiology. Among these artificial neural 

networks, an important group of neural networks can be used to detect clusters of data. 

The most widely used clustering neural networks are the Kohonen network [Kohonen 88] 

and the adaptive resonance theory 1 network [Carpenter 87]. The Kohonen network 
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classifies input patterns into one of the specified number of c categories based on an 

unsupervised and winner-take-all learning technique. In our study, we are interested in 

the ART-type network that creates clusters dynamically and learns new patterns without 

having to be retrained with previously learned patterns. 

Since the introduction of fuzzy set theory [Zadeh 65], it has been obvious that it has 

a strong impact on techniques of pattern recognition. The fuzzy set representation of 

clusters provides partitioning results with additional information supplied by the cluster 

membership values. Many researchers applied fuzzy sets to pattern clustering and 

yielded an amount ofinteresting and useful results [Backer 76] [Bezdek 81] [Bezdek 92] 

[Carpenter 91] [Choe 92] [Ruspini 72] [Pedrycz 86] [Simpson 93]. Two categories of 

fuzzy clustering neural networks are very popular in the field of research: 

(1) The fuzzy c-means type clustering neural networks (FCM-type): The first 

fuzzy c-means clustering neural network was developed by Dunn [Dunn 74] 

and later generalized by Bezdek [Bezdek 73] [Bezdek 74] [Bezdek 75]. The 

FCM-type neural networks find the optimal cluster centers and membership 

functions that minimize the sum of the weighted squares Euclidean distances 

between patterns and cluster centers. An iterative algorithm ofFCM-type 

clustering neural networks is given in [Bezdek 81 ]. This type of fuzzy 

clustering networks suffers from several major problems, for example, the 

convergence is slow and not guaranteed, the assumption of the number of 

clusters is necessary, and the termination is forced. Recently, several studies 

related to the convergence and optimality of solutions generated by FCM-type 



clustering neural networks are reported in [Bezdek 92] [Choe 92] [Ismail 86] 

[Hathaway 86] [Selim 86]. 
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(2) The fuzzy ART type clustering neural networks (fuzzy ART-type): The first 

work that introduced fuzzy sets into the ART neural network was presented by 

Simpson [Simpson 90]. Since the introduction of the first fuzzy ART neural 

network, there have been other fuzzy ART-type neural networks introduced to 

the field of pattern clustering ( e.g., the fuzzy min-max clustering network 

[Simpson 93] and the fuzzy ART network [Carpenter 91]). The fuzzy ART­

type clustering neural networks use hyper-boxes to represent clusters in the 

pattern space. They use the minimum and maximum points of a hyper-box 

and the hyper-box membership function to define a fuzzy cluster. When input 

patterns are presented, the fuzzy ART-type clustering neural networks create 

and adjust hyper-boxes in pattern feature space to adapt patterns. Although 

these fuzzy ART-type clustering neural networks demonstrate good 

performance [Carpenter 91] [Simpson 93], they still suffer some 

disadvantages. The fuzzy Min-Max system requires a tedious work for hyper­

box overlap checking and contraction when the number of hyper-boxes 

increases. In the fuzzy ART system, overlapped hyper-boxes lead to the 

confusion of pattern belongings. 

In this study, we intend to develop a novel fuzzy clustering neural network system 

that is expected to perform pattern clustering without the shortcomings of the FCM-type 



14 

and the fuzzy-ART-type clustering neural networks. However, we are not trying to 

develop an optimal clustering technique that will out-performed other techniques in every 

application problem, since a caution has been pointed out in [Pedrycz 90] that the 

structure of the data set obtained might be superimposed rather than detected. Usually 

the distance metric used to calculate the similarity degree between patterns determines the 

representation of the structure of clusters, for example, hyper-spherical and hyper­

rectangular representations. In [Dubes 79], they suggest that users of clustering 

algorithms apply several clustering approaches and check for common clusters instead of 

searching the cluster validity in an individual clustering. The details of objectives of the 

study are described next. 

1.4 Objectives of the Study 

In this study, we develop a new pattern clustering model called the fuzzy 

minimum mean maximum clustering neural network (F3MCNN) that is a synergetic 

combination of a neural network with the fuzzy set theory. An F3MCNN system has the 

neural network system architecture that creates pattern clusters in a fashion similar to the 

ART neural network. Moreover, it has the fuzzy set information representation that can 

present and manipulate the inexact information. We expect that the F3MCNN model 

performs pattern clustering without the shortcomings of the FCM-type and the fuzzy­

ART-type clustering neural networks mentioned in the previous section. The proposed 

model will provide the following special features: 
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(1) It is a self-organized pattern clustering neural network. An F3MCNN system 

should be able to create and adapt pattern clusters from input patterns by 

adjusting the size and the shape for clusters that are encoded in the synaptic 

connection weights ofF3MCNN. 

(2) It is a real-time pattern clustering system. An F3MCNN system does not 

assume a pre-defined number of clusters and is adaptive to dynamically 

changing conditions. A user-defined vigilance limits the maximum size for 

fuzzy hyper-boxes and will decide the clustering results. An F3MCNN should 

be able to learn new patterns without having to be retrained with previously 

learned patterns. 

(3) It is able to represent and manipulate inexact information. The F3MCNN 

model should be able to classify both linear separable and non-linear separable 

clusters. 

(4) It is a self-stabilized pattern clustering system. We define cluster stability as 

there being no change in the size of the hyper-boxes during successive 

presentation of the same patterns. An F3MCNN system should achieve the 

cluster stability after one pass of patterns. 

(5) It does not require time-consuming work for hyper-box overlap checking and 

contraction. By providing the extra fuzzy statistical similarity degree, an 

F3MCNN system should be able to handle hyper-box overlapping without the 

tedious work in [Simpson 93]. 
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(6) It does not suffer the problem of full membership ambiguity. Our solution for 

the problem of full hyper-box membership ambiguity should be superior to 

that of fuzzy ART [Grossberg 91]. 

1.5 Organization of the Dissertation 

The remainder of this dissertation is organized as follows. Chapter II provides the 

literature review for the fuzzy set theory, the neural network, and different pattern 

clustering techniques. Chapter III describes the fuzzy similarity used in the F3MCNN 

model in detail, including (1) the hyper-box fuzzy set function and the statistical fuzzy set 

function defined in F3MCNN used to calculate the fuzzy hyper-box similarity degree and 

the fuzzy statistical similarity degree respectively, (2) the pattern similarity selection 

procedure, and (3) an example to show the differences in pattern similarity selection 

among fuzzy ART, fuzzy Min-Max, and F3MCNN. Chapter IV introduces the system 

architecture and the clustering algorithm of the F3MCNN model. Chapter V presents the 

experimental results from the iris flower data by using F3MCNN and compares the 

F3MCNN model with other fuzzy clustering neural networks, including (1) fuzzy c­

means, (2) fuzzy ART, and (3) fuzzy Min-Max. Finally, Chapter VI provides the 

summary and conclusions of our work. 



CHAPTER II 

REVIEW OF THE LITERATURE 

2.1 Introduction 

Many scientists and engineers have dedicated their effort to pattern recognition 

problems, especially clustering procedures. Clustering of a group of patterns forms a 

basic problem in many areas of human activity. It deals with the task of classifying a set 

of patterns into a number of more or less hotnogenous clusters with respect to a suitable 

similarity measure. As a result, patterns that are similar are allocated to the same cluster, 

while patterns that are differ significantly are put in different clusters. 

Scientists and engineers from different fields are concerned with the idea of 

designing and making automata that can carry pattern clustering as we human beings do. 

Statistical approaches to pattern clustering have a highly developed theory and are 

regarded as fundamental to the study of pattern clustering [Fukunaga 90]. An important 

group of neural networks is developed to detect clusters of data [Zurada 92]. The self­

organizing and self-adjusting properties of clustering neural networks have a strong 

impact on techniques of pattern clustering. The application of fuzzy sets to pattern 

clustering has yielded a reasonable amount of interesting and useful results [Pedrycz 90]. 

Moreover, the combination of clustering neural networks and fuzzy set theory has 
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developed an evolutionary process to develop a fast, efficient, and reliable pattern 

clustering neural network system [Simpson 92] [Simpson 93] [Carpenter 91a] [Carpenter 

91b]. 

The following sections provide a review of pattern clustering techniques 

developed from statistical theory, neural network theory, fuzzy set theory, and fuzzy 

neural network theory. Even though the primary focus of this dissertation is on the fuzzy 

neural network clustering, this review includes statistical pattern clustering, neural 

network pattern clustering, fuzzy pattern clustering, and fuzzy neural network pattern 

clustering for completeness. 

2.2 Statistical Pattern Clustering 

The work on statistical pattern recognition which was started in the late fifties 

made use of the statistical decision theory to classify patterns. The list of the most 

commonly used statistical pattern clustering techniques includes: ISODATA [Duda 73], 

the nearest mean clustering algorithm [Fukunaga 70] [Hall 65], the branch and bound 

algorithm [Koontz 75a], the maximum likelihood estimate algorithm [Day 69] [Wolfe 

70], the estimation of density gradient algorithm [Fukunaga 75], the normality test 

algorithm [Fukunaga 86], and the graph theoretic approach [Koontz 75b]. 

ISODATA, the nearest mean clustering algorithm, the branch and bound 

algorithm, and the maximum likelihood estimate algorithm are classified as parametric 

approaches [Fukunaga 90]. In parametric approaches, clustering criteria are defined to 

classify patterns to optimize the criteria. The commonly used criteria are the class 
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separation measures, such as within-class scatter matrix, between-class scatter matrix, and 

mixture scatter matrix in [Fukunaga 90]. Clustering criteria are defined to determine the 

structure of the classification boundary. A clustering algorithm contains an iterative 

procedure to optimize the clustering criteria. In another parametric approach, the 

assumption of distribution of patterns is expressed by a mathematical form. The 

clustering algorithm consists of finding the parameter values to match the distribution of 

the data. This group of parametric approaches suffer several flaws such as there is no 

guarantee of the convergence of the iterative process and the process might stop at a local 

minimum point and fail to find the global minimum point. 

The estimation of density gradient algorithm, the normality test algorithm, and the 

graph theoretic approach are classified as nonparametric approaches [Fukunaga 90]. In 

nonparametric approaches, neither clustering criteria nor assumed mathematical forms for 

the pattern distribution are used. Instead, the valley of the pattern density function is used 

to separate patterns. We may consider the valley as the natural boundary that separates 

the modes of the distributions. Usually; the boundary is complex and not expressible by 

any parametric form. Therefore, most nonparametric approaches are implicitly or 

explicitly based on the estimate of the density gradient to characterize the local structure 

of the valley. Each pattern is moved toward the direction of its gradient in a repeating 

process. The valley becomes wider at each iteration and patterns form compact clusters. 
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2.3 Neural Network Pattern Clustering 

A number of neural architectures and theories are introduced and developed to 

classify input patterns without a priori information from the teacher [Grossberg 74] 

[Grossberg 82] [Kohonen 88]. This class of neural networks is called clustering 

(unsupervised recognition) neural networks. The objective of clustering neural networks 

is to categorize or cluster patterns. Clustering neural networks usually have a simple 

architecture and exhibit remarkable properties of self-organization. The learning in 

clustering neural networks is based on clustering of input patterns. Since no a priori 

information is available regarding a pattern's membership in a particular cluster, the 

similarity of incoming patterns is used as the criterion for clustering. During the training, 

dissimilar clusters are rejected and the most similar one is accepted for cluster learning. 

The similarity measure may be defined by the scalar product or distance between the 

pattern and cluster's weights. Most scientists and engineers developed clustering neural 

networks based on two typical clustering neural networks: the Kohonen network 

[Kohonen 88] and the ART-l network [Carpenter 87]. 

The Kohonen network classifies input patterns into one of the specified number of 

p categories detected in the training set { x1, x2, ... , xN }. The Kohonen network is a 

two-layer feedforward neural network. It uses the winner-take-all strategy for learning 

algorithm. The learning algorithm treats the set of p random initial weight vectors as 

variable vectors that need to be learned. Before the learning, all random initial weight 

vectors are normalized. The scalar products of the pattern and weight vectors are used as 
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the similarity measures to select the winning cluster. The winning cluster is rewarded 

with a weight adjustment, while the weights of other clusters remain unaffected. In 

adjusting the weight of winning cluster, a learning rate is defined which decreases during 

learning to avoid divergence. The Kohonen network suffers from some limitations. One 

obvious deficiency is that linearly non-separable patterns cannot be handled by this 

network. The second limitation is that initial weights may become stuck in isolated 

regions without forming adequate clusters even for linearly separable patterns. One of 

weight selection methods that improves the chances for successful training is presented in 

[Hecht-Nielsen 87]. 

The ART-1 network serves the propose of cluster discovery. The ART-1 network is 

a two-layer network and there are bi-direction connection weights between these two 

layers. The bottom layer is the input fan-out layer and the top layer is the pattern cluster 

layer. The bottom-up connection weights are used to compute the matching score that 

reflects the degree of similarity of the input pattern to previously encoded clusters. The 

winning neuron with the maximum degree of similarity will be the candidate cluster to 

learn the input pattern. The top-down connection weights are used to check the similarity 

of the candidate cluster with the stored cluster reference pattern and compare with a user­

define vigilance. The vigilance is the threshold that sets the degree of required similarity. 

If the degree of similarity is less than the threshold, the input pattern resonates with the 

candidate cluster and the weight vector of the candidate cluster will be adjusted. 

Otherwise, a search will perform along those encoded clusters to find next candidate. If 

no encoded cluster is found, the ART-1 network will create a new cluster for the input 



pattern. The steps of the learning algorithm for cluster discovery can be found in 

[Lippmann 87] [Pao 89]. 

2.4 Fuzzy Pattern Clustering 

Since the development of fuzzy set theory [Zadeh 65] it has been obvious that it 

has a strong impact on techniques on pattern recognition. The question of pattern 

clustering is itself a fuzzy one and the representation of clusters by fuzzy sets may be 

more appropriate. Many researchers have developed different clustering techniques by 

applying fuzzy sets to pattern clustering [Dunn 74] [Bezdek 74] [Bezdek 75] [Bezdek 

77] [Bezdek 78] [Bezdek 80] [Ruspini 69] [Ruspini 70] [Ruspini 72] [Pedrycz 85] 

[Pedrycz 86]. The main advantage of all fuzzy clustering techniques lies in the fact that 

they provide partitioning results with additional information supplied by the cluster 

membership value. 
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One of the widely used fuzzy pattern clustering methods is a fuzzy relative of 

ISODATA and called the fuzzy c-means clustering algorithm. The fuzzy c-means 

clustering algorithm was initially developed in [Dunn 74] and has been further studied 

and developed in [Bezdek 81]. Dunn extended the original objective function in the 

classical c-means clustering network to a fuzzy clustering criterion and developed the 

fuzzy c-means algorithm to minimize the fuzzy objective function through an iterative 

process. Bezdek extended the fuzzy objective function proposed by Dunn to a more 

general form by introducing the weighting exponent into the fuzzy objective function. In 

[Choe 92], a method for determining the optimal weighting exponent was proposed. 
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A general fuzzy c-means algorithm is described as follows. The number of clusters c, 

weighting exponent m, and error tolerance E are specified for a clustering problem in 

fuzzy c-means methods. A set of randomly initialized weight vectors is used to represent 

prototype of clusters in the fuzzy c-means clustering method. In each iteration, the 

membership degree to every cluster of the input pattern is calculated and then the 

clusters' prototypes are updated from the new memberships. The iteration continues until 

the changing of clusters' prototypes is smaller than the pre-defined parameter E. 

2.5 Fuzzy Neural Network Pattern Clustering 

Fuzzy clustering neural networks were developed by combining fuzzy set theory and 

clustering neural networks into an integrated model [Carpenter 91] [Simpson 93] [Bezdek 

92]. They inherit the self-organization property from clustering neural networks and are 

able to represent imprecise information as fuzzy sets. The hard cluster membership value 

which is in { 0, 1} in clustering neural systems is replaced by the fuzzy membership 

value which is in the interval [O, 1]. There are two types of fuzzy clustering neural 

networks; the c-means type fuzzy clustering neural system and the ART type clustering 

neural system. The c-means type fuzzy clustering neural system assumes a fix number of 

clusters and used cluster prototype to represent fuzzy clusters. The mean vector and the 

covariance matrix are used to define a fuzzy cluster. While in the ART-type fuzzy 

clustering system, the number of clusters is dynamically determined during pattern 

learning. A fuzzy cluster in the ART-type fuzzy clustering system is represented by a 

hyper-rectangle, which is presented by its minimum and maximum points. The fuzzy 



cluster's hyper-rectangle is adjusted to include a new pattern when the pattern is 

classified into the fuzzy cluster. Auser-defined parameter will limit the maximum size 

for clusters' hyper-rectangle and also decide clustering result. 
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In [Bezdek 92], Bezdek, Tsao, and Pal propose the fuzzy Kohonen clustering 

network that integrates the fuzzy c-means algorithm into the learning rate and updating 

strategies of the Kohonen network. The fuzzy Kohonen network modifies cluster 

prototypes update rule in [Huntsberger 89] by introducing the learning rate which is 

computed from membership values in the fuzzy c-means algorithm. The fuzzy Kohonen 

network is proved to address some problems of the classical Kohonen clustering network. 

Carpenter and Grossberg incorporated fuzzy set theory into the ART network to 

generate the fuzzy ART neural network (fuzzy ART) [Carpenter 91]. Fuzzy ART is able 

to learn both binary and analog input patterns. Input patterns are scaled into the interval 

[O, 1] and are normalized to prevent cluster proliferation. Intersection and union 

operators in the ART network are replaced by the maximum and minimum operators in 

the fuzzy set theory. Clusters are represented as hyper-rectangles in the pattern space. 

The information about the minimum and maximum points of a hyper-rectangle is 

encoded into the connection weights from the input nodes to the cluster node. 

Simpson proposed a fuzzy min-max clustering network (fuzzy Min-Max) in 

which pattern clusters are implemented as fuzzy sets [Simpson 93]. The membership 

function for a fuzzy cluster is constructed from the minimum and maximum points of a 

hyper-box which represents the cluster. Patterns inside the cluster hyper-box have the 

full membership degree. The membership degree decreases when an input pattern is 



separated from the hyper-box core. In order to avoid the problem of full membership 

ambiguity, the hyper-box overlap is not allowed. A hyper-box overlap checking and 

hyper-box contraction procedure is performed whenever a hyper-box expands. Fuzzy 

Min-Max has the capability to incorporate new data and create new clusters without 

losing encoded clusters. The degree of membership information is useful in the high 

level decision making and information processing. 
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CHAPTER III 

FUZZY SIMILARITY 

3 .1 Introduction 

In this Chapter, we review some background information of fuzzy set functions 

for measuring pattern similarity and define two new fuzzy set functions and a pattern 

similarity selection procedure for the F3MCNN model. These two defined fuzzy set 

functions will be utilized as activation function of neurons in the network ofF3MCNN. 

Also, the defined pattern similarity selection procedure will play a major role in our 

F3MCNN clustering algorithm. The F3MCNN system architecture and clustering 

algorithm are introduced in the next Chapter. 

The relation between the theory of fuzzy sets [Zadeh 65] and the theory of pattern 

clustering rests on the fact that most real-world classes are fuzzy in nature. Therefore, 

given a pattern P and a cluster C, the basic question in most problems related to pattern 

clustering is the degree of P belonging to C instead of whether P is an element in C or 

not. Most practical problems in pattern clustering do not lend themselves to a precise 

formulation. Generally, practical problems in pattern clustering are not linearly 

separable. Consequently, less precise techniques might have solutions to the intrinsic 

imprecision in pattern clustering cases. The representation for clusters using fuzzy sets 
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provides solutions to present and manipulate the intrinsic imprecision in pattern 

clustering. 
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Two fuzzy set functions are defined in the F3MCNN model to measure similarity 

degree of input patterns to clusters, which might be presented in an inexact way. They 

are the hyper-box fuzzy set function and the statistical fuzzy set function used to measure 

the fuzzy Hyper-box Similarity Degree (fuzzy HSD) and the fuzzy Statistical Similarity 

Degree (fuzzy SSD) respectively. In the F3MCNN model, we use both the fuzzy HSD 

and the fuzzy SSD to represent the relationship between patterns and clusters. A 

pattern's fuzzy HSD to a cluster exhibits its geometrical relationship to the cluster's 

learned concept. Meanwhile, its fuzzy SSD to a cluster indicates its statistical 

relationship to the cluster's fuzzy prototype. Since there are two fuzzy similarity degrees 

utilized to measure similarity between input patterns and clusters, we introduce a pattern 

similarity selection procedure into the F3MCNN model to select a cluster for matching 

the input pattern. 

Basically, an F3MCNN system classifies patterns located in the same hyper-box 

to the same cluster. However, a problem of full membership ambiguity occurs when an 

input pattern is located inside a hyper-box overlapped area. We introduce the statistical 

fuzzy set function to classify patterns located inside the hyper-box overlapped area. 

Although a time consuming work for hyper-box overlap checking and contraction is 

introduced in fuzzy Min-Max [Simpson 93] to solve the problem of full membership 

ambiguity. It does not totally solve the ambiguity problem. In contrast, our model is able 

to completely overcome the problem of full membership ambiguity. 
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The contents of this Chapter are organized as follows. First, we review hyper-box 

fuzzy set functions used in previously introduced pattern clustering systems that are 

similar to our model and then present our new hyper-box fuzzy set function defined for 

the F3MCNN model in section 3.2. Secondly, in section 3.3 we review related fuzzy 

membership functions and define a new fuzzy set function to measure the fuzzy SSD of 

input patterns. Finally, in section 3.4, we explain the pattern similarity selection 

procedure defined in the F3MCNN model. Then, we provide an example for pattern 

similarity selection to show the different clustering results of the fuzzy ART, fuzzy Min­

Max, and F3MCNN models, respectively. 

3 .2 Hyper-box Fuzzy Set Functions 

In fuzzy ART-type clustering neural networks, a hyper-box is a geometric 

representation for a cluster in the feature space. A two-dimensional cluster representation 

is illustrated in Figure 3 .1, where R1 is a two-dimensional hyper-box and ~ and ~ are its 

minimum and maximum points respectively. Patterns in then-dimensional data space Rn 

are normalized or scaled to be in then-dimensional unit cube!'. The minimum and 

maximum points define the hyper-box of a cluster. Patterns inside the hyper-box have full 

hyper-box membership degree. In addition, a fuzzy set function is defined to associate 

with the hyper-box for determining the degree to which a pattern is contained within the 

hyper-box. Its hyper-box membership degree decreases to zero when the distance from 

the pattern to the hyper-box increases to a certain value. Patterns inside the same hyper­

box belong to the same cluster. A cluster learns new patterns by adjusting its minimum 
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Figure 3 .1 Two-dimensional cluster geometric representation 
in fuzzy ART-type clustering neural networks 

and maximum points of the hyper-box. In the following sections, we review hyper-box 

fuzzy set functions defined in the previously introduced systems, fuzzy ART and fuzzy 

Min-Max, and reveal their potential problems. Then, we introduce the new fuzzy set 

function defined in the F3MCNN model to measure the fuzzy HSD. 

3.2.1 Review of Hyper-box Fuzzy Set Functions 

The Fuzzy ART [Carpenter 91] and fuzzy Min-Max [Simpson 93] neural 

29 

networks are two typical fuzzy ART-type pattern clustering neural networks. These two 

models use the same hyper-box representation for clusters and assign full membership 

degree to patterns located inside the cluster's hyper-box. However, the fuzzy set 

functions that they use for measuring hyper-box similarity degrees are different. Also, 

they use different strategies to solve the hyper-box overlap problem. 
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3.2.1.1 Fuzzy Set Function in Fuzzy ART In the fuzzy ART model, a geometric 

interpretation of fuzzy ART with complement coding was developed. Thus the 

preprocessed complement coding form for an input pattern P is presented as 

(3.1) 

where Pc= 1 - P. A cluster, j, in fuzzy ART has a geometric representation as a 

rectangle R1, as shown in Figure 3.1. The weight vector associated with the clusterj can 

be written in complement coding form as: 

~=(~, V/), (3.2) 

where ~·and~ are vectors defining two comers of the rectangle R1. The fuzzy set 

function defined in the fuzzy ART system to measure similarity degree is called the 

category choice function Tj. For the fast learning fuzzy ART [Carpenter 91], 1j is defined 

as 

(3.3) 

where the fuzzy AND [Zadeh 65] operator A is defined by 

(x A y); = min(x;, Y;), (3.4) 

and where the norm 1-1 is defined by 

(3.5) 
i=l 

where Mis the dimension of the vector x. The candidate cluster selected from committed 

clusters to best match the input pattern P is the one with the maximum degree calculated 

by Equation (3.3). The fuzzy ART model uses the term 



31 

Ix J\YI 
--

IYI 
(3.6) 

in [Kosko 86] to define the category choice function 1j in Equation (3.3). It represents 

the degree to whichy is a fuzzy subset of x. Therefore, the cluster selected with the 

maximum degree calculated by Equation (3.3) will always be the cluster whose weight 

vector w1 is the largest subset of the input pattern P. When the input pattern Pis located 

inside the jth cluster's hyper-box, the degree of the cluster choice function 1j equals one. 

The degree will decrease when an input pattern is separated from the hyper-box. It is 

possible that an input pattern has the same maximum degree to more than one cluster. 

The fuzzy ART system allows clusters' hyper-boxes to overlap, which results in the 

problem of full membership ambiguity. To solve this ambiguity problem, the fuzzy ART 

system selects the cluster with the smallest index to learn the input pattern. In a fuzzy 

ART system, the smaller the cluster's index, the earlier it was created. 

3.2.1.2 Fuzzy Set Function in Fuzzy Min-Max Simpson introduced a new fuzzy 

set hyper-box membership function in his fuzzy min-max neural network to measure the 

degree to which an input pattern falls within a hyper-box [Simpson 93]. To calculate the 

fuzzy hyper-box similarity degree for the input pattern P to the jth cluster, he defined the 

fuzzy set hyper-box membership function as 

(3.7) 

where j( ) is the two-parameter ramp threshold function 
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f(x, y) = 1 ifxy> 1, (3.8) 

=xy ifO~xy~l, 

= 0 ifxy < 0, 

and where P = (pi,p2, ···,Pn) is the input pattern, "V_; = (vj], vj2, ••• , vjn) is the minimum 

point for thejth hyper-box, and~= (wji, wj2, ... , wjn) is the maximum point for thejth 

hyper-box. The parameter y is the sensitivity parameter that is used to regulate how fast 

the membership degree decreases when the input pattern is separated from the hyper-box. 

When the input pattern is located inside the hyper-box core, the value calculated by the 

fuzzy set hyper-box membership function equals one. The value decreases when the 

input pattern is separated from the hyper-box. 

Simpson introduced the hyper-box overlap checking and hyper-box contraction 

processes into his learning algorithm in order to avoid the problem of full membership 

ambiguity. However, the hyper-box overlap checking and hyper-box contraction 

processes are exhaustive overhead. Besides, the hyper-box contraction process eliminates 

the stable learning advantage in ART-type neural networks, i.e., successive presentations 

of the data set is necessary in the learning process for fuzzy Min-Max neural networks to 

achieve clustering stability. 

3.2.2 Hyper-box Fuzzy Set Function Defined in F3MCNN 

The F3MCNN model is a variant of the fuzzy ART-type pattern clustering neural 

networks. We not only use the hyper-box geometric representation but also introduce the 

statistical characteristic representation to present clusters. We define a new hyper-box 
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fuzzy set function to calculate the fuzzy HSD for an input pattern to a committed cluster. 

This calculated fuzzy HSD represents the geometric characteristic of the input pattern to 

the learned concept of a cluster. In F3MCNN, the hyper-box fuzzy set function to 

calculate the fuzzy HSD of the input pattern P to the jth cluster is defined as 

(3.9) 

where d( ) is the three-parameter distance function 

(3.10) 

=O 

and where P = (pbp2, ···,Pn) is the input vector,~= (u1b u12, ... , u1n) is the minimum 

point vector ofthejth cluster's hyper-box, and~= (v1b v12, ... , v1n) is the maximum point 

vector of the jth cluster's hyper-box. 

The summation part in the hyper-box fuzzy set function defined for F3MCNN 

calculates the d-function distance between the input pattern and the cluster's hyper-box. 

When the input pattern is located inside the cluster's hyper-box, the distance is zero. 

Therefore the value of the hyper-box fuzzy set function equals one. The distance 

increases but the fuzzy HSD of the pattern decreases when the input pattern is separated 

from the cluster's hyper-box. 

The hyper-box fuzzy set function H defined in the F3MCNN model has the 

advantage of simplicity and is a more appropriate interpretation compared with the hyper-

box membership functions defined in the other two models. The fuzzy ART model 
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defines the hyper-box membership function based upon an interpretation of fuzzy sets as 

points in the unit hyper-cube [Kosko 92]. It utilizes the fuzzy subset-hood measure and is 

not appropriate for setting the membership function. Because even though the pattern is 

normalized or scaled to be a point inside the unit cube, it does not make the pattern fuzzy. 

In the fuzzy hyper-box membership function of the fuzzy Min-Max model, a parameter is 

introduced to regulate how fast the membership values decrease when an input pattern is 

separated from a hyper-box. This parameter is defined by users and will decide one 

decreasing rate for all clusters represented by fuzzy sets. It is not reasonable to assume 

that all fuzzy sets representing clusters have the same rate of decrease. 

3.3 Statistical Fuzzy Set Function 

In this section, we introduce two standard fuzzy set functions defined in [Zadeh 

75] as the background information for defining the statistical fuzzy set function in the 

F3MCNN model. Then, we define a new fuzzy set function to calculate the fuzzy SSD of 

input patterns to clusters. 

3.3.1 Background Infonnation 

The fuzzy set theory deals with a subset A of the universe discourse X, where the 

transition between full membership and no membership is gradual rather than abrupt. Let 

X= {x} denote a space of objects. Then a fuzzy set A in Xis a set of ordered pairs 

A= {(x, µA(x)}, x e X (3.11) 
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where µA(x) represents the degree of membership of x in A. For the reason of simplicity, 

we normalize µA(x) to be a number in the interval [O, 1], with the degrees of one and zero 

representing full membership and no membership respectively. There are two standard 

functions defined in [Zadeh 75] to express the membership function of a fuzzy set of the 

real line. They are defined as 

S(x; a, J3, y) = 0 

_ (x-aJ 2 

-2--
y-a 

= 1-2(x'-yJ2 
y-a 

=1 

with f3 =(a+ y)/2 

and n(x; J3, y) = S(x; f3 - y, f3 - y/2, y) 

= 1 - S(x; y, y + f3/2, y + f3) 

for x:::;; a (3.12) 

for X ~y 

(3.13) 

for x~ y. 

In S(x; a, f3, y), the parameter f3 is the crossover point, i.e., S(f3; a, f3, y) = 0.5. In then-

S(x;a,f3,y) 1t{x;f3,y) 

·····························:..;,···--

0.5 ................... . 

a y X y-'3 y-f3/2 y y+f3/2 y+f3 X 

Figure 3.2 Fuzzy S-function and n-function 
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function, P is its bandwidth, i.e., the separation between the crossover points of a 1t­

function, 2P is its support, i.e., the interval that the 1t-function has non-zero value, and y is 

the central point at which 7t is unity. These two fuzzy set functions are illustrated in 

Figure 3.2. Equations (3.12) and (3.13) define the membership function corresponding to 

fuzzy sets 'xis large' and 'xis y' respectively. Let y represent the fuzzy central point for 

a fuzzy cluster, the 1t-function has a basic primitive which is useful in clustering patterns. 

3.3.2 Statistical Fuzzy Set Function Defined in F3MCNN 

We define the statistical fuzzy set function for the F3MCNN model to measure 

the fuzzy SSD of patterns to clusters. The fuzzy SSD of a pattern to a cluster exhibits its 

relation to the statistical characteristic of a fuzzy cluster. The statistical characteristic of a 

fuzzy cluster includes its fuzzy number of patterns, fuzzy central point and fuzzy 

variation vectors, as defined below. We utilize the 1t-function to define our statistical 

fuzzy set function as shown in Figure 3.3. The statistical fuzzy set function is a 

symmetric function. The fuzzy central point is defined as the central point of the 

statistical fuzzy set function. We define the fuzzy central point plus and minus the fuzzy 

variation as the crossover points for the statistical fuzzy set function. Therefore, each 

cluster has its own rate of decrease for its statistical fuzzy set membership function. In 

order to cover the hyper-box of a cluster, the support of the statistical fuzzy set function 

of a cluster is define at least twice the difference of the maximum point minus the 

minimum point. Therefore, the parameters used in the statistical fuzzy set function 

should include the fuzzy central point, the fuzzy variation vector, the fuzzy number of 



Figure 3.3 Statistical fuzzy set function in the ith dimension in 
F3MCNN 
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patterns, and the minimum and maximum points used in the hyper-box fuzzy set function. 

Before introducing the fuzzy set function to measure fuzzy SSD, we need to define the 

parameters used in the statistical fuzzy set function except the minimum and maximum 

points. 

Definition 1: Ci = ( ci1, cj2, ... , cin) is the fuzzy central point for the jth fuzzy 

cluster, where Ci is the average vector of those patterns that have been classified into the 

jth cluster. We define 0 as follows 

(3.14) 

where each input pattern Pk has full fuzzy HSD to the jth cluster and~ is the fuzzy 

number of patterns in the jth cluster as defined next. 
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Definition 2: ~ is the fuzzy number of patterns in the jth cluster, that is, the 

number of patterns that have been classified into thejth cluster. Note that a pattern 

located in the hyper-box of a cluster is not necessarily classified as a pattern in this 

particular cluster in an F3MCNN system. 

Definition 3: The deviation vector of the pattern P from the cluster j is defined as 

(3.15) 

where C1 = (c11, cJ2, ... , c1n) is the fuzzy central point for thejth fuzzy cluster. The fuzzy 

variation vector A1 = (a11, a12, ... , a1n) for thejth cluster is defined as 

(3.16) 

where each input pattern Pk is located in the hyper-box of the jth cluster, i.e., Pk has full 

fuzzy HSD to thejth cluster. 

The fuzzy variation vector of a cluster is defined as the average of the deviation 

vector of those patterns that have been classified into the cluster. However, because 

F3MCNN is a real-time learning system, we are not able to calculate the deviation vector 

that runs from each of the previously presented patterns to the most recently updated 

fuzzy central point of a cluster. Therefore, we develop a modified learning rule to allow 

for updating of the fuzzy variation vector. 

For a fuzzy clusterj with C1 = (c11, cJ2, ... , c1n) as its fuzzy central point, 

A1 = (aJJ, aJ2, ... , a1n) as its fuzzy variation vector, and~= (u11, uJ2, ... , u1n) and 
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~ = (v11, v12, ••. , v1n) as its minimum and maximum point vectors for its hyper-box, we 

define the five-parameter fuzzy set function s1i that calculates the fuzzy SSD of the ith 

element of the input pattern P = (p 1, p2, ••• , Pn) to the jth cluster along the ith feature 

dimension as 

1 (P· -c .. J2 
=1-- I JI 

2 aii 

=0. 

s1i(pi; c1i, a1;, u1i, v1i) is a convex fuzzy set function as shown in Figure 3.3. The 

defined statistical fuzzy set function is symmetrical, and c1i is the fuzzy central point for 

the jth fuzzy cluster along ith feature dimension at which si c1;) is unity. As explained 

earlier, we define 2a1; as the bandwidth of the fuzzy set function, i.e., the points cJi - a1i 

and c1i + a1; are cross-over points of the fuzzy set function where si c1i - a1i) = o.5 and 

sic1; + a1i) = 0.5. We define the support of the fuzzy set function s1; as twice the size of 

the interval between the maximum point and the minimum point of the hyper-box for the 

fuzzy cluster. Therefore, 2(v1; - uJi) is the width of the fuzzy set function sJi and the closed 

interval [c1; - (v1; - u1;), c1; + (v1; - u1;)] is its support, i.e., a non-fuzzy subset of X; such that 
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We define the statistical fuzzy set function to calculate the fuzzy SSD to thejth 

cluster for the input pattern P as 

8i{P) = 0 if for some i, sji = 0 (3.18) 

Because there are distinct parameter values for the statistical fuzzy set function along 

each feature dimension, an input pattern has a different fuzzy SSD along each feature 

dimension. The fuzzy SSD to the jth fuzzy cluster for an input pattern is a function of all 

its degrees of fuzzy set function sJ; along each feature dimension. The fuzzy SSD equals 

to zero if any sJ; equals zero in the ith dimension. Otherwise, the fuzzy SSD will be the 

average of all its sji degrees along every feature dimension. 

The statistical fuzzy set function of a cluster represents the statistical 

characteristic of patterns located inside the cluster's hyper-box core. Its output value, the 

fuzzy SSD, exhibits the relation between an input pattern and the cluster's prototype. 

From the definition of statistical fuzzy set function, only the cluster's central point has a 

full fuzzy SSD. The fuzzy SSDs for other patterns decrease when they are separated 

from the central point of the cluster. 

3 .4 Pattern Similarity Selection 

The objective for defining the statistical fuzzy set function in the F3MCNN model 

is to solve the problem of full membership ambiguity that occurs in overlapped hyper-

boxes. The fuzzy ART and fuzzy Min-Max models only use the fuzzy hyper-box 
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similarity degree in pattern matching and learning. Fuzzy ART applies the order of 

committed clusters as the solution to the problem of full membership ambiguity. 

Exhaustive work in the hyper-box overlap checking and contraction is employed in fuzzy 

Min-Max to eliminate any overlapped hyper-boxes. The statistical fuzzy set function is 

introduced into the F3MCNN model to solve the problem of full membership ambiguity 

in overlapped hyper-boxes. The statistical fuzzy set function calculates fuzzy SSDs for 

the input pattern to those overlapped hyper-boxes when the input pattern is located inside 

the overlapped hyper-boxes area. As a result, the cluster with the maximum fuzzy SSD is 

selected as the candidate cluster to match and learn the input pattern. In this section, we 

explain the pattern similarity selection procedure for selecting a candidate cluster to learn 

an input pattern in detail. We then use an example to illustrate the different clustering 

results of the fuzzy ART, fuzzy Min-Max neural network, and F3MCNN model, 

respectively. 

3.4.1 Pattern Similarity Selection Procedure 

The pattern similarity selection procedure of the F3MCNN model is a two-step 

process for selecting a candidate cluster to match and learn the input pattern. When an 

input pattern is presented, the first step is to calculate its fuzzy HSD to every cluster. If 

there is only one cluster with the maximum fuzzy HSD then the pattern similarity 

selection procedure stops and this cluster will be the candidate cluster. Otherwise, if 

there are two or more clusters that have the same maximum fuzzy HSD, the problem of 

full membership ambiguity occurs. The second step of the pattern similarity selection 
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procedure is carried out to calculate the fuzzy SSD of the input pattern to those clusters 

having the same maximum fuzzy HSD. The cluster with the maximum fuzzy SSD is 

selected as the candidate cluster to learn the input pattern; finally, the pattern similarity 

selection procedure stops. 

3 .4.2 Pattern Similarity Selection Example 

In this section, we present an example to illustrate the different clustering results 

among fuzzy ART, fuzzy Min-Max, and F3MCNN. A set of two-dimensional input 

patterns contains five input patterns including P1 = (0.2, 0.7), P2 = (0.6, 0.3), 

P3 = (0.8, 0.2), P4 = (0.4, 0.2), and P5 = (0.8, 0.5) is presented to each model for 

clustering in the order of their subscripts. 

Let us define the maximum hyper-box size allowed as 0.4. All these three models 

have the same hyper-box learning process in their clustering algorithms (see Figure 3.4). 

1.0..-----------, 

R1 

0.5 
R2 

P2 
p 

4 

0 0.5 1.0 

Figure 3.4 Clustering results after one pass of input patterns of fuzzy 
ART, fuzzy Min-Max, and F3MCNN 
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When the first pattern P 1 is presented, the first cluster R 1 is created and it contains only 

the pattern P 1• Then, the second pattern P 2 is presented and R 1 is expanded to include P 2 

since the size of R1 is not great than 0.4 after expansion. When the third pattern P3 is 

presented, the second cluster R2 is created to include P3• Because, the cluster R1 cannot 

be expanded to include P3 due to the limitation for the maximum size of hyper-box. 

When the fourth pattern P 4 is presented, R2 is expanded to include P 4 since the size of R2 
' 

is not great than 0.4 after expansion. Finally, the last pattern P 5 is presented and R2 is 

expanded to include P5 because the size of R2 is still not greater than 0.4 after expansion. 

Therefore, after one pass of the ordered input patterns, all three models learn input 

patterns and classify them into two clusters: R1 and R2• 

For these three models, the clustering stability is defined as there being no hyper-

box change in successive presentations of the same data set. Therefore, only one pass of 

the input patterns is needed to achieve clustering stability in fuzzy ART and F3MCNN. 

1.0.--------------. 

0.5 

0 0.5 1.0 

Figure 3.5 Clustering result after one pass of input patterns and overlapped 
hyper-boxes contraction of fuzzy Min-Max 
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The hyper-box overlapping is not allowed in fuzzy Min-Max. Since hyper-boxes R1 and 

R2 are overlapped in the clustering result of fuzzy Min-Max clustering, the hyper-box 

contraction process needs to be performed to eliminate the hyper-box overlapped area. 

The hyper-box overlapped area has its lower left-hand and higher right-hand comer 

points as (0.4, 0.3) and (0.6, 0.5) respectively (see Figure 3.4). The hyper-box 

contraction process takes the middle point (0.5, 0.4) of the hyper-box overlapped area as 

the place to separate clusters R 1 and R2• The clustering result of fuzzy Min-Max becomes 

different from clustering results of the fuzzy ART and F3MCNN models after hyper-

boxes contraction (see Figure 3.5). 

Moreover,.successive presentations of input patterns in the same order are 

necessary for the fuzzy Min-Max system to achieve clustering stability. This is because 

the clustering stability in the fuzzy Min-Max model is defined as there being no hyper-

box change during successive presentations of input patterns in the same order. In this 

1.0--------------

- Pi 

R, 
0.5 Ps 

R2 
•P2 

P4 P3 

0 0.5 1.0 

Figure 3.6 Clustering result after successively presenting input 
patterns to achieve cluster stability in fuzzy Min-Max 
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example, patterns P4 and P5 are not included in any hyper-boxes after one pass of patterns 

in fuzzy Min-Max clustering (see Figure 3.5). After the second pass of patterns, there are 

changes in the size of hyper-boxes. The hyper-box of cluster R1 shrinks and the hyper-

box of cluster R2 expands. We apply successive passes of the same input until there is no 

hyper-box change in the clustering results of fuzzy Min-Max. Then, the fuzzy Min-Max 

system achieves clustering stability and its clustering result is shown in Figure 3.6. 

The problem of full membership ambiguity is not solved in fuzzy ART nor in 

fuzzy Min-Max. Let us use an example to show the unsolved ambiguity problem. When 

a new input pattern P6 = (0.4, 0.5) is presented (see Figures 3.7, 3.8, and 3.9) to the stable 

clustering result in each model, its membership degree is determined in different ways in 

the fuzzy ART and fuzzy Min-Max systems. 

1.0.------------, 

0.5 

0 0.5 1.0 

Figure 3.7 Clustering result after the pattern P6 is presented for the 
clustering example in fuzzy ART 
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Figure 3. 8 Clustering result after the pattern P 6 is presented for the 
clustering example in fuzzy Min-Max 

First, we perform fuzzy ART pattern clustering and use the category choice 

function in Equation (3.3) to calculate the hyper-box similarity degrees for the input 

pattern P6 to clusters R1 and R2 (see Figure 3.7) respectively. The fuzzy HSDs of the 

input pattern P 6 to the clusters R 1 and R2 are equal, Ti(P 6) = Ti(P 6) = 1. As shown in 
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Figure 3.7, the input pattern P6 is located inside the hyper-box overlapped area (the gray 

rectangle). The new input pattern P 6 is located in the comer of the gray rectangle. As 

shown in this example, the input pattern P 6 has full membership degrees to both clusters 

R1 and R2 in the clustering results of the fuzzy ART model. To solve the problem of full 

membership ambiguity, the index associated with the created order of clusters is used in 

fuzzy ART to select the cluster with the smallest index as the candidate to match the 

input pattern. Therefore in this example, the input pattern P 6 is classified as a pattern in 



the cluster R 1• However, we cannot conceive of any reason for this nor find any 

explanation in [Carpenter 91]. 
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Next, we perform fuzzy Min-Max pattern clustering and use the fuzzy set hyper­

box membership function from Equation (3.7) to calculate the hyper-box membership 

values for the input pattern P6 to clusters R1 and R2 (see Figure 3.8) respectively. The 

hyper-box membership values for the input pattern P6 to clusters R1 and R2 are equal, 

bi(P6) = bi(P6) = 1. Figure 3.8 shows the relative position of the input pattern P6 to 

clusters R1 and R2 in the fuzzy Min-Max clustering result. P6 is exactly the abutting point 

between the cluster R1 and the cluster R2• This is the point that fuzzy Min-Max systems 

allow to have full membership in more than one cluster. Although the fuzzy Min-Max 

neural network utilizes a contraction process to eliminate any hyper-box overlap, the full 

membership ambiguity still occurs along the boundary between two abutting hyper­

boxes. Therefore, the problem of full membership ambiguity is still not solved in the 

fuzzy Min-Max model. 

In F3MCNN, the problem of full membership ambiguity is completely solved by 

introducing the fuzzy SSD into the pattern selection procedure. In this example, not only 

the hyper-boxes learned concept but also the statistical characteristic information are 

encoded into the F3MCNN system. The minimum and maximum points for each cluster 

are adjusted during hyper-box learning. They are U1 = (0.2, 0.3) and Vi= (0.6, 0.7) for 

hyper-box R1 and U2 = (0.4, 0.2) and V2 = (0.8, 0.5) for hyper-box R2• In the mean time, 

the fuzzy central point, the fuzzy variation vector, and the fuzzy number of patterns of 

each cluster are adapted during fuzzy statistical learning. They are C1 = (0.4, 0.5), 
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A 1 = (0.2, 0.2), and N 1 = 2 for hyper-box R1 and C2 = (0.67, 0.3), A2 = (0.2, 0.1), and 

N2 = 3 for hyper-box R2 . We show the hyper-boxes and fuzzy set functions along each 

dimension of the feature space for clusters R1 and R2 in Figure 3.9. 

The pattern similarity selection procedure for classifying the new input pattern P 6 

in the example is explained as follows. In the first step, we calculate the fuzzy HSDs of 

the new input pattern P 6 to clusters R I and R2 from Equation (3 .9). Because P 6 is located 

in the hyper-box overlapped area, it has same fuzzy HSD to clusters R1 and R2, i.e., 

1.0.------------, r: s12(p62) 

1;:------~ 
1.0 

0.5 -Ps----- ------------- ---- ----- ---- --- ---- ---- ---------- - 0.5 

0 0.5 1.0 1.0 0.5 0 

1.0----------------:~ s11(p61) 

0.5-

0 0.5 1.0 X1 

Figure 3.9 Clustering result after the pattern P 6 is presented for the clustering 
example in F3MCNN. P6 has the same fuzzy hyper-box similarity degree to R1 

and R2; but, P6 has different fuzzy statistical similarity degree to R1 and R2. 



49 

Hi(P 6) = Hi(P 6) = 1. As a result, the problem of full hyper-box membership ambiguity is 

faced. Therefore, we need to perform the second step to solve the problem of full 

membership ambiguity in hyper-box clustering. We use the statistical fuzzy set function 

defined in Equation (3 .18) to calculate the fuzzy SSDs of P 6 to clusters R 1 and R2• From 

Equation (3.17), the fuzzy SSDs of P6 to cluster R1 along feature dimensionsx1 andx2 are 

s1i(p61 ) = 1.0 and s1i(p62) = 1.0, respectively. The overall fuzzy SSD calculated from 

Equation (3.18) of P 6 to the cluster R1 is S1(P 6) = 1. The fuzzy SSDs of P 6 to cluster R2 

along feature dimensions x1 and x2 are s2i(p61 ) = 0.222 and s2i(p62) = 0.125, respectively. 

The overall fuzzy SSD calculated from Equation (3.18) of P6 to the cluster R2 is 

Si(P6) = 0.173. Since S1(P6) is greater than Si(P6), we classify the input patternP6 as a 

pattern of the cluster R1• 

3.4.3 Summary 

From the pattern similarity selecting example demonstrated above, we summarize 

the differences among fuzzy ART, fuzzy Min-Max, and F3MCNN. We are concerned 

with two major points: learning stability and full membership ambiguity. 

Both the fuzzy ART model and the F3MCNN model achieve clustering stability 

in one pass of patterns. From the stable category learning defined in [Carpenter 91], a 

fuzzy ART system with complement coding, conservative limits, and fast learning forms 

stable hyper-box categories in one pass of input patterns. In subsequent presentations of 

any input, no reset or additional learning occurs. In hyper-box learning, the F3MCNN 

system is identical to a fast learning fuzzy ART system. The stable hyper-box clusters 
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are constructed within one pass of input patterns. In these two models, hyper-boxes are 

only allowed to expand. While in a fuzzy Min-Max system, hyper-boxes are expanded to 

learn input patterns and are contracted to eliminate overlaps. Therefore, a fuzzy Min­

Max system needs more than one pass of input patterns in order to achieve clustering 

stability. Also, an error parameter must be defined for the fuzzy Min-Max model to 

achieve clustering stability. · 

Only the F3MCNN model completely solves the problem of full membership 

ambiguity. In the F3MCNN model, patterns may have the same partial membership to 

more than one cluster but they will never have full membership to more than one cluster. 

We introduce the statistical fuzzy set function into the F3MCNN model to solve the 

problem of full hyper-box membership ambiguity. The pattern's membership degree to a 

cluster is determined by the pattern similarity selection procedure defined in section 

3.4.1. Both fuzzy HSD and fuzzy SSD are considered in the pattern similarity selection 

procedure. In the fuzzy ART and fuzzy Min-Max models, only the fuzzy HSD is used to 

select a candidate cluster. The order of committed clusters is utilized to resolve the 

problem of full membership ambiguity in the fuzzy ART system. In the example shown 

in Figure 3. 7, patterns located inside the hyper-box overlapped area are classified as 

patterns in the cluster R 1 because R 1 has the smaller index. This regulation rule does 

solve the problem of full membership ambiguity but results in inaccuracy in its clustering 

result. In the fuzzy Min-Max system, hyper-boxes overlap checking and contraction 

processes are used to try to solve the problem of full membership ambiguity. 



Nevertheless, patterns along the boundary between two abutting hyper-boxes still have 

full membership in more than one cluster. 
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CHAPTER IV 

SYSTEM ARCHITECTURE AND CLUSTERING ALGORITHM 

4.1 Introduction 

In this Chapter, we introduce the system architecture and the clustering algorithm 

of the F3MCNN model. F3MCNN is a synergetic model of fuzzy set theory [Zadeh 65] 

and a modified adaptive resonance theory neural network [Grossberg 87]. We define two 

fuzzy set functions based on the theory of fuzzy sets to calculate the degree of similarity 

of input patterns to clusters. Meanwhile, the F3MCNN model has the ART-like 

architecture to learn input patterns and create clusters dynamically. The F3MCNN model 

resembles both fuzzy ART [Carpenter 91] and fuzzy Min-Max [Simpson 93], since the 

minimum and maximum points hyper-box methodology also is used as part of the cluster 

representation in our model. However, the F3MCNN model has a significant difference 

from those two systems. The clustering algorithm in F3MCNN is a two-phase clustering 

and learning procedure. We utilize both the learned concept and statistical characteristics 

of pattern clusters in F3MCNN for pattern clustering. While in the fuzzy ART and fuzzy 

Min-Max models, only the learned concept of pattern clusters is used for clustering. We 

expect that the introduction of the statistical characteristics of pattern clusters will 

improve the performance and clustering results of our model. 
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The contents of this Chapter are organized as follows. In section 4.2, we 

introduce the system architecture of the F3MCNN model, which contains the attentional 

subsystem and the selection control subsystem. We will explain the functional purpose 

for each neural node layer and synapse connection between neural node layers in the 

attentional subsystem. Also, the cluster selecting and matching control performed by the 

selection control subsystem is introduced. In section 4.3, we introduce the clustering 

algorithm that performs a two-phase pattern clustering in F3MCNN: hyper-box clustering 

in the first phase and statistical clustering in the second phase. Finally, choice functions, 

expansion criteria, and learning rules in both phases are explained. 

Attentional Subsystem ...................... + .................... ~ 
I _ : Reset/Resonant 

P Cluster Layer .,.-__ . ____ _ 

Similarity Degrees 
Selecting-----,,----,-~---- : 1 ' 

Phase 

- F Membership Calculating Layer 

'' 
F1 Input Layer 

' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
' 
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' 
' 
' 
' 

Selection 
Control 

Subsystem 

: Phase Selecting ' t ' ' ' 
... - - .. - - - • - - - - - - • - - - - - • - .. - - - - - - ...... - - - - - .. - - - - - .I 

Input Pattern 

Figure 4.1 System architecture ofF3MCNN 
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4.2 System Architecture 

The F3MCNN system architecture is illustrated in Figure 4.1. The F3MCNN 

module includes two major parts: the attentional subsystem and the selection control 

subsystem. The attentional subsystem is a modified ART-type neural network. It is a 

three-layer network and is responsible for: (1) encoding clusters' attributes, (2) 

calculating the fuzzy similarity degrees to clusters of an input pattern including the fuzzy 

HSD and the fuzzy SSD, (3) creating new cluster nodes and new sub-layer membership 

calculation nodes, and (4) interacting with the selection control subsystem to reset or 

resonant cluster nodes. The selection control subsystem interacts with the attentional 

subsystem to carry out internal cluster searching and matching processes and issues a 

control signal to change the operation phase of the F3MCNN system. 

The network of an F3MCNN system operates in two different phases. In the first 

phase, the attentional subsystem calculates the fuzzy HSDs of an input pattern to every 

cluster. Then, the selection control subsystem searches for the cluster with the maximum 

fuzzy HSD to learn the input pattern. When there are two or more clusters that have the 

same maximum fuzzy HSD, the selection control subsystem issues a control signal to 

change the F3MCNN system to operate in the second phase. In the second phase, the 

attentional subsystem calculates the fuzzy SSDs of an input pattern to those clusters that 

have the same maximum fuzzy HSD. Then, the selection control subsystem searches the 

cluster with the maximum fuzzy SSD to learn the input pattern. A detailed description of 



P1 P; Pn 

Figure 4.2 The attentional subsystem ofF3MCNN 

the system architecture and the different function corresponding to each phase of these 

two subsystems will be discussed next. 

4.2.1 Attentional Subsystem 
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The attentional subsystem ofF3MCNN is a modified ART-type neural network. It 

is a three-layer neural network (see Figure 4.2). Neurons in each layer receive 

information transmitted from neurons in other layers, perform a function, and then 

generate an output information. The neuron layers contain: (1) the input representation 

layer Fat the bottom, (2) the membership calculating layer Fin the middle, and (3) the 

cluster representation layer F3 on the top. Between neuron layers, there are synaptic 

connections to take care of information transmission and encoding. The synaptic 
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connections between neurons include: (I) the bottom-up connection vectors from F to F 

to encode the hyper-box learned concept and transmit input patterns, (2) the bottom-up 

connection vectors from F to F to encode clusters' statistical characteristics and 

transmit calculated similarity degrees, and (3) the top-down connection vectors to encode 

the number of patterns inside the hyper-box and initiate calculation of the fuzzy SSD. 

4.2.1.1 Activation Function of Neuron Layers The neurons in F perform a linear 

activation function; in contrast, the neurons in F and F perform two different activation 

functions when the F3MCNN system operates in different phases. In our model, we scale 

n-dimensional input patterns from gin to r where n is the dimension of the feature vector 

space. We denote the input pattern as P = (p1,p2, ···,Pn), where O ::;;p;::;; I for i =I, ... , n. 

The input layer F contains n nodes; each node encodes a feature of the input pattern. 

The activation function of nodes in the input layer F is a linear function; the output of 

the activation function for the input layer is the scaled input pattern in both phases. 

A neuron in a sub-layer of F receives only one feature of the input pattern from 

F and calculates its similarity degree in this particular feature dimension. A cluster node 

in F receives the similarity degrees from its corresponding sub-layer in F and calculates 

the overall similarity degree of the input pattern. When the F3MCNN system operates in 

the first phase, neurons in Fj and F calculate the fuzzy HSDs of an input pattern to 

clusters. When the selection control subsystem issues a control signal to make the 

F3MCNN system to operate in the second phase, neurons in F and F calculate the fuzzy 

SSDs of an input pattern to clusters in the second phase. 
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The membership calculating layer F contains one n-node sub-layer for each 

committed cluster; each node inside then-node sub-layer calculates the fuzzy HSD or 

fuzzy SSD of an input pattern in each feature dimension. Therefore, the activation 

function of nodes in a sub-layer in F will be the d-function defined in Equation (3.10) 

when the F3MCNN system operates in the first phase, or the s-function defined in 

Equation (3.17) when the F3MCNN system operates in the second phase. We denote the 

output vector ofthejth sub-layer in membership calculating layer Fj as 

~ = ( zjb zj2, ••. , zjn). When the F3MCNN system is operating in the first phase, zj; 

represents the output of the distance function ~;- Otherwise, zj; represents the output of 

the statistical fuzzy set function sj;· 

The cluster representation layer P contains one node for each committed cluster; 

and each node calculates the fuzzy HSD or the fuzzy SSD of an input pattern to the 

corresponding cluster. When the F3MCNN system is operating in the first phase, the S­

function defined in Equation (3 .18) will be the activation function for the cluster node in 

P. Otherwise, the H-function defined in Equation (3.9) will be the activation function 

for the cluster node in P in the second phase. We denote the output vector of the cluster 

layer Pas Y= (Y1,Yi, ···,Ym), where mis the number of committed clusters. When the 

network is operating in the first phase, yj represents the output of the hyper-box fuzzy set 

function ll.i· Otherwise, yj represents the output of the statistical fuzzy set function 8.i· 

4.2.1.2 Synaptic Connection Vectors The synaptic connection vectors encode the 

attribute of clusters and transmit the output of the activation functions from one neuron 



layer to another. Two bottom-up synaptic connection vectors, ~ and ~' connect from 

nodes in F to nodes in thejth sub-layer in F. We denote the bottom-up synaptic 

connection vectors as~ = (u11, uJ2, ... , u1n) and~= (v11, vJ2, ... , v1n). ~and~ are used 

to transmit the scaled input pattern from F to F in both operation phases of an 

F3MCNN system. We use the synaptic connection vectors ~ and ~ to encode the 

minimum point and the maximum point of the hyper-box ofthejth cluster respectively. 

Elements of the synaptic connection vectors ~ and ~' u1; and v1;, emit from the ith node 

in F to the ith node in thejth sub-layer in F. When a new clusterj is created during 

pattern learning, it contains only the new irtput pattern. Therefore, its minimum point 

vector (~) and the maximum point vector(~) are the same as the new input pattern. 

During pattern clustering, the bottom-up synaptic connection vectors, ~ and ~, are 

updated according to the fuzzy hyper-box learning rule introduced in Section 4.3. 

58 

There are two bottom-up connection vectors, C1 and A1, from the jth sub-layer in 

F to thejth node in P. We denote the bottom-up connection vectors from thejth sub­

layer F to thejth node in F3 as C1= (c11, cJ2, ... , c1n) andA1= (a11, aJ2, ... , a1n). When an 

F3MCNN system is operating in the first phase, these bottom-up connections are used to 

transmit the fuzzy HSDs of an input pattern to the jth cluster along each feature 

dimension. When the F3MCNN system is operating in the second phase, they are used to 

transmit the fuzzy SSDs of an input pattern to the jth cluster along each feature 

dimension. We also use the synaptic connection vectors, C1andA1, to encode the fuzzy 

central point and the fuzzy variation vector for thejth cluster. When a new clusterj is 

created during pattern learning, it contains only the new input pattern. Therefore, its 
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fuzzy central point 0 is same as the new input pattern and its fuzzy variation vector A1 is 

a zero vector. During pattern clustering, the bottom-up synaptic connection vectors, 0 

and A1, are updated according to the fuzzy statistical learning rule introduced in Section 

4.3. 

The top-down connection~ from the jth node in F3 to the jth sub-layer in F 

encodes the fuzzy number of pattern in thejth cluster, i.e., the number of patterns located 

inside the hyper-box ofthejth cluster. It is also used to transmit an activation signal 

whenever an F3MCNN system is operating in the second phase. When a new cluster j is 

created during pattern learning, it contains only the new input pattern. Therefore, its 

fuzzy number of patterns ~ is initialized as one. It is updated during learning. 

4.2.2 Selection Control Subsystem 

The selection control subsystem is responsible for selecting a candidate cluster for 

an input pattern and checking the expansion criterion for the selected cluster during 

pattern learning. It works differently when an F3MCNN system is operating in different 

phases. The selection control subsystem receives the similarity degrees from the 

attentional subsystem then invokes a search procedure to discover the cluster with the 

maximum similarity degree. Then, a matching function is also invoked to check if the 

selected cluster satisfies the expansion criterion. 

When the F3MCNN system is operating in the first phase, the selection control 

subsystem selects the cluster to which the input pattern has the maximum fuzzy HSD. If 

there is only one cluster with the maximum fuzzy HSD, then it invokes the matching 
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function to check whether the expanded hyper-box size of the selected cluster exceeds the 

maximum size or not. If the selected cluster satisfies the expansion criterion, the 

selection control subsystem issues a resonant command to adapt the input pattern to the 

selected cluster. Otherwise, the selection control subsystem resets the selected cluster. 

If there are two or more clusters have the same maximum fuzzy HSD, the 

selection control subsystem issues a control signal to change the operation phase of the 

F3MCNN system. The F3MCNN system changes from the first phase to the second 

phase in order to calculate fuzzy SSDs of the input pattern to solve the tie. The selection 

control subsystem selects the cluster with the maximum fuzzy SSD of the input pattern 

calculated by the attentional subsystem. After the cluster selection, it returns the index of 

the selected cluster for fuzzy statistical learning. 

4.3 F3MCNN Clustering Algorithm 

The clustering algorithm of the F3MCNN model is a two-phase procedure that 

includes fuzzy hyper-box clustering and fuzzy statistical clustering. The learning process 

in the F3MCNN model includes fuzzy hyper-box learning and fuzzy statistical learning. 

Fuzzy hyper-box learning adapts a pattern to the learned concept of the selected cluster, 

and fuzzy statistical learning adapts a pattern into the statistical characteristic of the 

selected cluster. When an input pattern is presented, the F3MCNN system operates in the 

first phase to invoke fuzzy hyper-box clustering. The fuzzy hyper-box clustering process 

begins by selecting the cluster with the maximum fuzzy HSD to the input pattern that can 

be expanded (if necessary) to include the input pattern. When there are two or more 
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clusters have the same maximum fuzzy HSD, the F3MCNN system changes its operation 

phase to the second phase to invoke fuzzy statistical clustering in order to solve the tie. 

The fuzzy statistical clustering process selects the cluster with the maximum fuzzy SSD 

from those clusters with the same maximum fuzzy HSD. If the expansion is necessary 

and the selected cluster meets the expansion criterion, the F3MCNN system invokes 

fuzzy statistical learning and fuzzy hyper-box learning. Otherwise, only fuzzy statistical 

learning takes place since the input pattern is already inside the hyper-box. If there is no 

cluster can be found to meet the expansion criterion, a new cluster is formed and added to 

the F3MCNN system. 

A user-defined parameter is used to limit the maximum size of hyper-boxes. 

During fuzzy hyper-box learning, hyper-boxes may grow to the user-defined maximum 

size. In an F3MCNN system, we use the fast learning strategy in fuzzy hyper-box 

learning, i.e., a hyper-box is expanded to include the input pattern during fuzzy hyper-box 

learning. Therefore, the vigilance parameter p e [O, 1] determines the maximum size for 

the hyper-box of every cluster. Users are allowed to decide the vigilance parameter for 

their applications. However, a large p will result in fewer clusters but bigger sizes of 

clusters in the clustering result. 

We define cluster stability of the F3MCNN model as there being no change in the 

size of hyper-boxes for successive presentations of the same input patterns for clustering. 

The F3MCNN clustering procedure has the advantage of fast attainment of cluster 

stability. After one pass of all input patterns, the learning procedure achieves cluster 

stability. This clustering procedure allows existing clusters to grow in order to adapt new 
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patterns, and it allows new clusters to be added without retraining. We explain the 

clustering algorithm in the following steps and show its flow chart in Figure 4.3. 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7: 

Set up the user-defined vigilance parameters p. 

Read in the first input pattern then set up the first cluster node. 

Read in next input pattern. 

If no more input patterns, then stop. Otherwise, go to next step. 

Use the hyper-box fuzzy set function to calculate the fuzzy HSD of the input 

pattern to every committed cluster. 

Perform the fuzzy hyper-box choice function to select the candidate cluster 

with the maximum fuzzy HSD. 

If there is no cluster with the fuzzy HSD > 0, then use the new input pattern 

to create a new cluster and go to Step 3. 

Otherwise, go to Step 6. 

If there are more than one candidate clusters with the same maximum fuzzy 

HSD, then go to Step 9. 

Otherwise, go to next step. 

If the maximum fuzzy HSD = 1, then perform fuzzy statistical learning for 

the selected cluster and go to Step 3. 

Otherwise, go to next step. 



Step 8: 

Step 9: 
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If the candidate cluster meets the fuzzy hyper-box expansion criterion, then 

perform fuzzy hyper-box learning and fuzzy statistical learning to adjust the 

candidate cluster, then go to Step 3. 

Otherwise, use the new pattern to create a new cluster and go to Step 3. 

Use the statistical fuzzy set function to calculate the fuzzy SSD of the input 

pattern to those selected clusters with the same maximum fuzzy HSD. 

Step 10: Perform fuzzy statistical choice function to select a candidate cluster with 

the maximum fuzzy SSD. 

If the maximum fuzzy SSD = 0, then reset all candidate clusters with the 

same maximum HSD then go to Step 5. 

Otherwise, go to next step. 

Step 11 : If the maximum fuzzy HSD = 1, then perform fuzzy statistical learning, then 

go to Step 3. 

Otherwise, go to next step. 

Step 12: If the candidate cluster meets the fuzzy hyper-box expansion criterion, then 

perform fuzzy hyper-box learning and fuzzy statistical learning to adjust the 

candidate cluster, then go to Step 3. 

Otherwise, reset the selected cluster and go to Step 10. 
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Figure 4.3 F3MCNN clustering algorithm flow chart 
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There are two sets of clusters in Fused in F3MCNN, the committed set and the 

uncommitted set. We also define two sets of sub-layers in F, the committed sub-layers 

set and the uncommitted sub-layers set. Before any learning has occurred, an F3MCNN 

system has an empty set of committed clusters and undetermined number of clusters in 

the uncommitted set. It also has an empty set of committed sub-layers and undetermined 

number of sub-layers in the uncommitted set. When the first input pattern is presented, 

we create the first sub-layer of nodes in F and a new cluster node in F. The new cluster 

is represented by a single point in the feature vector space. Its fuzzy central point, 

maximum point, and minimum point are all equal to the input pattern and its fuzzy 

variation vector is a zero vector. Because the maximum point and the minimum point of 

the new cluster node are equal, the new cluster has zero support of its statistical fuzzy set 

function. 

The processes in the F3MCNN clustering algorithm include fuzzy hyper-box 

clustering, fuzzy statistical clustering, fuzzy hyper-box learning, and fuzzy statistical 

learning are described in greater detail in the following subsections. 

4.3.1 Fuzzy Hyper-box Clustering 

Whenever an input pattern is presented, the fuzzy hyper-box clustering process 

takes place first in the F3MCNN clustering. In the fuzzy hyper-box clustering process, 

the attentional subsystem uses the hyper-box fuzzy set functions introduced in Eq1µ1tions 

(3.9) and (3.10) to calculate the fuzzy HSD of the input pattern to every cluster. Then the 

selection control subsystem invokes the defined fuzzy hyper-box choice function to select 
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a candidate cluster with the maximum fuzzy HSD. In order to learn the new pattern, this 

selected cluster must meet the fuzzy hyper-box expansion criterion. We define the fuzzy 

hyper-box choice function and fuzzy hyper-box expansion criterion in the following 

subsections. 

4.3.1.1 Fuzzy Hyper-box Choice Function For the input pattern P and clusterj, 

the fuzzy HSD is H.i(P) calculated from Equation (3.9). We define the fuzzy hyper-box 

choice function as 

HJ(P) =max{H.i(P):j= 1, ... ,m}, (4.1) 

where m is the number of committed clusters. The fuzzy hyper-box choice function 

selects a candidate cluster with the maximum fuzzy HSD in fuzzy hyper-box clustering. 

4.3.1.2 Fnzzy Hyper-box Expansion Criterion We set the user-defined vigilance 

parameter p as the threshold to guard the maximum hyper-box size for every cluster. The 

candidate cluster must satisfy the fuzzy hyper-box expansion criterion; that is, 

(4.2) 

where the user-defined vigilance parameter pis in the interval [O, 1]. The hyper-box 

expansion criterion limits the maximum size of the expanded hyper-box. The selected 

cluster can be expanded to include the input pattern if it satisfies the fuzzy hyper-box 

expansion criterion. Otherwise, its fuzzy HSD is reset to zero and loses the competition 

for learning this particular pattern. 
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4.3.2 Fuzzy Statistical Clustering 

The fuzzy statistical clustering in F3MCNN is used to solve the problem ofhyper­

box membership ambiguity. When this problem occurs, the selection control subsystem 

issues a control signal to change the operation phase of the F3MCNN system to the 

second phase. Soon afterward, the attentional subsystem uses the defined Equations 

(3.17) and (3.18) to calculate the fuzzy SSDs of the input pattern to those clusters 

selected in fuzzy hyper-box clustering. We define a fuzzy statistical choice function to 

select a cluster with the maximum fuzzy SSD to be the candidate cluster in fuzzy 

statistical clustering. If the input pattern is located inside the hyper-box of the selected 

cluster, only fuzzy statistical learning is performed without checking the fuzzy hyper-box 

expansion criterion. This is because the input pattern has full fuzzy HSD to the selected 

cluster and there is no need to expand the selected cluster's hyper-box. Otherwise, the 

selected cluster's hyper-box needs to be expanded to include the new input pattern. In 

this case, we need to check the fuzzy hyper-box expansion criterion for the selected 

cluster. If it satisfies the fuzzy hyper-box expansion criterion, fuzzy hyper-box learning 

is performed to expand the hyper-box of the selected cluster and fuzzy statistical learning 

also is performed to adjust the statistical characteristic of the selected cluster. 

4.3.2.1 Fuzzy Statistical Choice Function In F3MCNN, the fuzzy SSD takes 

account of the statistical characteristic of patterns in the fuzzy clusters. The value of the 

statistical fuzzy set function of a cluster shows the degree in which the input pattern is 

related to the corresponding cluster's prototype. The statistical fuzzy set functions 
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defined in Equations (3 .17) and (3 .18) are used as the fuzzy similarity function in fuzzy 

statistical clustering. For each input pattern, we calculate its fuzzy SSDs to candidate 

clusters in fuzzy hyper-box clustering. Then, we use the winner-take-all strategy to select 

the cluster with the largest fuzzy SSD as the candidate in fuzzy statistical clustering. 

Therefore, the fuzzy statistical choice function is defined as 

SjP) = max{~(P):j = 1, ... , m} (4.3) 

and m is the number of the committed clusters. The input pattern will have the maximum 

fuzzy SSD to the selected cluster. At the same time, it will have the maximum fuzzy 

HSD because it is one of the clusters with the maximum degree from the fuzzy hyper-box 

clustering process. 

4.3.2.2 Fuzzy Statistical Expansion Criterion We do not put any limit on fuzzy 

statistical clustering. However, the fuzzy hyper-box expansion criterion still needs to be 

contained in the fuzzy statistical clustering process. Fuzzy statistical clustering is only 

performed to solve the problem of hyper-box membership ambiguity that occurred in the 

fuzzy hyper-box clustering process. 

4.3.3 Fuzzy Hyper-box Learning 

When the selected cluster satisfies the fuzzy hyper-box expansion criterion, its 

hyper-box is allowed to expand to cover the input pattern if necessary. If the expansion is 

necessary, the new pattern is adapted to the learned concept of the selected cluster 

according to the fuzzy hyper-box learning rule defined as follows. 
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For the input pattern P and clusterj, the minimum point ~ of the hyper-box is 

adjusted using the equation 

(4.4) 

and the maximum point T7J is adjusted using the equation 

(4.5) 

where the fuzzy AND operator A is defined as 

(4.6) 

and the fuzzy OR operator v is defined as 

(av b); = max(a; ,b; ). (4.7) 

The fuzzy hyper-box learning rule, Equations (4.4) and (4.5), is fast learning; this means 

the selected cluster's hyper-box is expanded to include the input pattern at once (see 

Figure 4.4). The defined fuzzy hyper-box learning rule is based on the fast learning 

approach defined in [Carpenter 91]. 

(a) 
1 

0 

• (b) 
1 

1 0 

~-------------•P 
~AP 

1 

Figure 4.4 Fast hyper-box learning geometric representation in 
F3MCNN: (a) Before expansion, and (b) After expansion. 
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4.3.4 Fuzzy Statistical Learning 

Fuzzy statistical learning takes place every time an input pattern is presented no 

matter whether the hyper-box of the selected cluster needs to be expanded or not. The 

rules of fuzzy statistical learning include learning for fuzzy central point, learning for 

fuzzy number of patterns, and learning for fuzzy variation vector. We describe them in 

greater detail as follows. 

4.3.4.1 Learning for Fuzzy Central Point For thejth newly created cluster, we use 

the new input pattern to initialize its fuzzy central point. After the initiation, fuzzy cluster 

learning updates the fuzzy central point 0 = (cj], cj2, ... , cjn) according to the defined 

equation 

(new) 
cji 

N _(old) • C __ (old)+ P· 
_ J JI I 

- N _(new) 
J 

where~ is the fuzzy number of patterns ofthejth cluster, i denotes the ith feature 

dimension, i e { 1, 2, ... , n}, and P = (p 1, pi, ... , Pn) is the input pattern. 

(4.8) 

4.3.4.2 Learning for Fuzzy Number of Patterns In Equation (4.8), we use~ as 

the denominator to update the fuzzy central point. We call~ as fuzzy number of patterns 

and define it as the number of patterns that have been classified into the jth cluster. The 

initial value for ~ is one because a newly created cluster is exactly the same as the input 

pattern. When the input pattern is classified into the selected clusterj, the fuzzy number 

of patterns of cluster j is adjusted by using the defined equation 

N _(new) = N.(old) + l 
J - J • (4.9) 
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4.3.4.3 Learning for Fuzzy Variation Vector The fuzzy variation vector reflects 

the spread of patterns that have been classified into a cluster. When the input pattern is 

classified into thejth cluster, we update the fuzzy variation vector A1 = (a1i, a12, ... , a1n) of 

the jth cluster according to the defined equation 

(new) 
a1; 

N (old) • (old)+ I _ (new)I 
1 aJ; P; CJ; - . 

- N _(new) 
) 

where~ is the fuzzy number of patterns ofthejth cluster, i denotes the ith feature 

(4.10) 

dimension, i e {l, 2, ... , n}, and P = (pi,pi, ···,Pn) is the input pattern. The IP1 - c1;1 

represents the absolute distance between the point p1 and c1;. 

4.3.5 Learning in an F3MCNN System 

An F3MCNN system learns new patterns by adapting them into the learned 

concept and the statistical characteristics of clusters. Whenever an input pattern is 

presented, a cluster is selected from either the fuzzy hyper-box clustering process or the 

fuzzy statistical clustering process to adapt the new pattern. There are two cases where 

the selected cluster satisfies the fuzzy clustering expansion criterion. In the first case, the 

input pattern, x, is located inside the hyper-box of the selected cluster (see Figure 4.5(a)). 

While in the second case, the input pattern, x, is located outside the hyper-box of the 

selected cluster (see Figure 4.5(b)). The fuzzy cluster learning in Figure 4.5(a) is simple 

and straightforward. Because the input pattern is located inside the cluster's hyper-box, it 

will satisfy the fuzzy hyper-box expansion criterion automatically. Therefore, learning 
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for the selected cluster includes only fuzzy statistical learning to adjust its fuzzy central 

point, fuzzy variation vector, and fuzzy number of patterns. 

However, fuzzy cluster learning in Figure 4.5(b) is much more complicated. We 

need to introduce the hyper-box expansion criterion to check if the size of the expanded 

hyper-box is smaller than or equal to the user-defined vigilance parameter p. If it meets 

the hyper-box expansion criterion, we need to perform both fuzzy hyper-box learning and 

fuzzy statistical learning. Otherwise, we reset the candidate cluster and search the next 

candidate cluster from the rest of the committed clusters. 

µj(x) 

0.8 ................ . 

0.3 .......................... . 

0 1 0 1 

(b) X 

Figure 4.5. Relative positions for a patternx to a hyper-box in F3MCNN: (a) 
The input pattern, x, locates inside the cluster's hyper-box. (b) The input 
pattern, x, locates outside the cluster's hyper-box. 
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4.3.6 Resonance or Reset 

In the F3MCNN learning process, patterns are adapted into the learned concept 

and the statistical characteristics of clusters. The learned concept is represented by the 

hyper-box and the statistical characteristic is represented by the statistical fuzzy set 

function of each cluster. In the F3MCNN learning process, we proceed with fuzzy hyper­

box clustering first. The attentional subsystem calculates the fuzzy HSD to every cluster 

of the input pattern. Then, the selection control subsystem searches and selects the 

cluster with the maximum fuzzy HSD. If there is only one cluster with the maximum 

fuzzy HSD, resonance occurs when the selected cluster satisfies the fuzzy hyper-box 

expansion criterion. Fuzzy statistical learning then ensues, as described above. 

Mismatch reset occurs if the candidate cluster cannot pass the fuzzy hyper-box expansion 

criterion. Then the value of the fuzzy choice function HJ is reset to zero for the duration 

of the particular input pattern presentation to avoid unnecessary processing during search. 

The search process continues until the selected cluster satisfies the fuzzy hyper-box 

expansion criterion or there are no more committed clusters available. 

Obviously, in the previous discussion about resonance or reset we only considered 

the case where there is only one cluster with the maximum fuzzy HSD in fuzzy hyper­

box clustering. However, it may happen that there are two or more clusters with the same 

maximum fuzzy HSD. In this case, the problem of hyper-box membership ambiguity 

happens. The selection control subsystem detects this ambiguity problem and issues a 

phase-change-signal to the F3MCNN system. Then, the attentional subsystem calculates 
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the fuzzy SSDs of the input pattern to those clusters selected in fuzzy hyper-box 

clustering. Fuzzy statistical clustering invokes the fuzzy statistical choice function to 

select a cluster with the maximum fuzzy SSD. If the input pattern has the full fuzzy HSD 

to the selected cluster, only fuzzy statistical learning is needed to adjust the statistical 

characteristic of the selected cluster and learning stops. If the input pattern is located 

outside the hyper-box of the selected cluster, the fuzzy hyper-box expansion criterion is 

applied to check the size of the expanded hyper-box. Resonance occurs if the selected 

cluster passes the fuzzy hyper-,box expansion criterion. Both fuzzy hyper-box learning 

and fuzzy statistical learning are performed. Otherwise, mismatch reset occurs if the 

selected cluster cannot pass the fuzzy hyper-box expansion criterion. Then the value of 

the fuzzy statistical choice function SJ is reset to zero for the duration of the input pattern 

presentation to avoid unnecessary processing during search. The search process 

continues until one selected cluster satisfies the hyper-box expansion criterion or there are 

no more selected clusters in fuzzy hyper-box clustering available. If there are no more 

selected clusters in fuzzy hyper-box clustering are available, the F3MCNN system 

performs the fuzzy hyper-box choice function again to select another cluster with the 

maximum fuzzy HSD and repeats the process described above. 



CHAPTERV 

EXPERIMENTAL RESULTS AND COMPARISONS 

5.1 Software Simulation and Purposes 

Software simulation is used in our experiments to demonstrate the expected 

improvement in the clustering results of the F3MCNN model. The simulation programs 

were coded under the MATLAB software environment and ran on a 486-33MHz PC. 

Two data sets are utilized in our experiments. The first data set is a two-dimensional 

pattern set example uses to show the different clustering results of the F3MCNN model 

with defined various hyper-box sizes. The second data set is Fisher iris data [Fisher 36]. 

The experiment of the iris data is used to compare the accuracy of clustering results of the 

F3MCNN model with the fuzzy ART and fuzzy Min-Max models. Also, we analyze and 

compare model properties, clustering stability, and the number of epochs to achieve 

clustering stability among these three models. 

5.2 Experimental Results 

In our experiments, we use a two-dimensional pattern set to show how an 

F3MCNN system performs with defined various hyper-box sizes and the iris data to 
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demonstrate the improvement in the F3MCNN clustering results. The reason the two-

dimensional data set was chosen for the first experiment is that it's easier to present data 

points in two-dimensional data space than in higher dimensional data space. From 

clustering results with defined different maximum sizes of hyper-boxes, we show that it 

is important to have a feel for the appropriate hyper-box size for a specific application. 

We choose the Iris data set for the second experiment because it's a very famous data 

sample to the pattern recognition community that allows us to compare the F3MCNN 

clustering results with other similar techniques. 

1 ~-- ---- ---- ,-- -- -- - - --- '------ - -- - -, ----- - - --- ' - - -- - -- - - -- ' 
I I I I I 

' ' . ' ' 
I I • I I 

0.9 ----- - - -- - ~- - -- -- - - - --i--- ----- ---~ ---- ------~------ -----: 
. l ' ' ' ' ' I . . . . . 

::t ::::::::r::: :::::c::::::t ~:: :c :: : : 
0.6r---------··:----------·:-----------?-O-------:-----------: 

. : : : 0 : : 

0.5 ----------r----:----;--------~-r---------r----------: 
0.41- ---------~ -0- -0- - -- ~- - - - - - - - - - -~ - - -- - - - -- - ~- - - - - - - - - - -: 

9 0 0 : 0 : : : 

0.3 ---------- :--------e--~-----------: ----------:-----------: 
: 0 ~ : : : 

:1---- --+ --i- ---- -r ---1---- ----
0 . 0.2 0.4 0.6 0.8 1 

P1 = (0.20, 0.35) P2 = (0.20, 0.40) P3 = (0.30, 0.50) P4 = (0.20, 0.50) 
P5 = (0.25, 0.40) P6 = (0.30, 0.35) P7 = (0.30, 0.40) P8 = (0.30, 0.45) 
P9 = (0.40, 0.40) P10 :;:: (0.35, 0.25) Pu= (0.35, 0.30) Pi2 = (0.35, 0.35) 
P13 = (0.40, 0.25) P14 = (0.40, 0.30) Pis= (0.45, 0.35) Pi6 = (0.55, 0.45) 
P17 = (0.60, 0.60) Pis= (0.70, 0.70) Pi9 = (0.60, 0.70) P20 = (0.65, 0.55) 
P21 = (0.65, 0.60) P22 = (0.65, 0.65) 

Figure 5.1 The data used for the two-dimensional example in F3MCNN 
clustering 
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5.2.1 Two-dimensional Pattern Clustering 

·we construct a two-dimensional data set to show how an F3MCNN system 

performs with different user-defined vigilance parameters. This two-dimensional data set 

contains 22 patterns divided into two primary groups that are linearly separable. 

However, patterns in one of the primary groups could be considered either one cluster or 

two. We show the pattern values used for this experiment and their scatter plot in Figure 

5.1. 

This two-dimensional pattern set is classified four times with four different 

maximum hyper-box size parameters ranging from 0.5 to 0.15 as shown in Figure 5.2. 

When the maximum hyper-box size parameter is 0.5, the number of clusters created is 

one because all patterns can be included in one cluster as shown in Figure 5.2(a). There 

are two clusters created when the maximum hyper-box parameter is defined as 0.3. Two 

primary groups of patterns are separated as shown in Figure 5.2(b). However, when we 

define the maximum hyper-box parameter as 0.2, the patterns in the primary group on the 

left hand side are divided into two smaller clusters. In Figure 5.2(c), these two clusters' 

hyper-boxes overlap and three patterns, (0.35, 0.35), (0.35, 0.30), and (0.40, 0.30), are 

located in this overlapped area. We apply fuzzy statistical clustering to classify (0.35, 

0.35) to the bigger cluster and (0.35, 0.30) and (0.40, 0.30) to the smaller cluster. When 

the maximum hyper-box size parameter is defined as 0.15, there are four clusters created 

as in Figure 5.2(d). Each primary group is divided into two clusters. As this example 

shows, the clustering results with the maximum hyper-box size defined as 0.3 and 0.15 
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seem to be able to find the underlying structure of the data set. However, the cluster 

arrangement that seems most appropriate is application-oriented. 

1 -----------~-----------; 
I 
I 

0.8 

0.6 

0.4 

0.2 

I I 

-----------r-----------1 
I I 

: 0 
-----------r-80-

, 0 
0 I 

0 'O 
e- o- -;.- - - -
00 0, 

00 I 

I ------, 

I ------i 
I 
I 
I 

___________ I -----------1 
I I 
I I 

I 
I 

0'--~~~~'--~~~----' 
0 0.5 1 

(a) Maximum Hyper-box size = 0.5 

1 -----------~-----------, 

I 

0.8 -----------r-----------1 
I I 

-----------~i~J------i 
---~~--t-----------1 

I I 

I I 

-----------1 ----------- I 
I I 

0.6 

0.4 

0.2 
I 
I 
I 

0'--~~~~'---~~~----' 
0 0.5 1 

(c) Maximum Hyper-box size= 0.2 

0.8 
I 

-----------r-----------
1 

0.6 'G I 0 
-----------~ E)O- ------

' 0 

---~§§~}f-----------0.4 

0.2 ___________ 1 -----------

0'--~~~~'---~~~----' 
0 0.5 1 

(b) Maximum Hyper-box size= 0.3 

0.8 

0.6 

0.4 

0.2 

-----------r-----------
' 

-----------[~------
---~~(-----------
-----------' -----------

' I 
I 
I 

0'--~~~~'--~~~----' 
0 0.5 1 
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Figure 5.2 Two-dimensional clustering example with four different maximum 
hyper-box sizes 
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5.2.2 Iris Flowers Clustering 

The iris data is used for the second experiment in order to compare the F3MCNN 

clustering results with clustering results from the fuzzy ART and fuzzy Min-Max models. 

The original iris flower data are given in [Fisher 36]. There are three classes in the iris 

flower data set: setosa, versicolor, and virginica. The data set consists of 150 four­

dimensional feature vectors, 50 for each class. The four features that describe the shape 

and size of the flower are sepal length, sepal width, petal length, and petal width. In the 

iris data set, the setosa class is linearly separable from the other two, but the other two, 

versicolor and virginica, are not linearly separable from each other. Therefore, the iris 

data set is suitable for evaluating the performance of the F3MCNN model and allows 

performance comparisons between different models. 

In Figure 5.3(a), the iris data are plotted for the petal features. We scale each 

feature vector to lie between O and 1 by dividing each component of each pattern by 8. 

Note that the first class (setosa) appears to be well separated from the other two. Also 

notice that there is overlapping between versicolor and virginica classes. Patterns in the 

overlapping area are the ones that will be difficult to classify unless they are separated on 

other features. We plot the iris data for the sepal features in Figure 5.3(b). Note that 

there is still no apparent separation between versicolor and virginica. 

We use the evaluation method described in [Simpson 93] to evaluate the 

clustering performance of the F3MCNN model. Our experiments and results analysis 

consist of the following steps. In the first step, we classify the iris data into clusters 
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Figure 5.3 Scaled data plots for the three iris classes: setosa, versicolor, and virginica. 
(a) Plot of petal width vs. petal length. (b) Plot of sepal width vs. sepal length. 
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using six differently defined maximum hyper-box size parameters. Secondly, we utilized 

the class information provided in the original iris data set to identify which clusters are 

associated with each assigned class. Class information is not provided until all clusters 

are formed. In the third step, we calculate the accuracy rate that is defined as the ratio of 

the number of the correctly classified patterns to the total number of patterns. Note the 

cluster validity is another research topic that is beyond our current research objectives. 

Class information in the iris data set helps us identify clusters with classes in our 

experiments. However, since pattern clustering is an unsupervised pattern classification 

process, class information is not available for every pattern in practical applications. 

Therefore, there will not be an accuracy rate in pattern clustering defined as the same as 

in the supervised pattern classification. 

TABLES.I 

IRIS DATA CLUSTERING RESULT OF F3MCNN 
WITH VIGILANCE= 0.21 

Accuracy Actual class 
rate= 91.3% I 2 3 Assigned Clusters 
Assigned I 50 0 0 I 

class 2 0 50 13 2 
3 0 0 37 3 

The results of this experiment are shown in Table 5.1 to Table 5.6 for the 

vigilance parameters range from 0.21 to 0.10. The accuracy rate for the clustering results 

range from 91.3% to 97.3 %. When the vigilance is defined as 0.21, three clusters are 

created in F3MCNN clustering result corresponding to three classes, see Table 5.1. 
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Patterns in setosa and versicolor are classified into exactly correct classes; while, 13 

patterns from virginica are misclassified into versicolor. The overall accuracy rate of the 

clustering result is 91.3%. 

TABLE 5.2 

IRIS DATA CLUSTERING RESULT OF F3MCNN 
WITH VIGILANCE= 0.20 

Accuracy Actual class 
rate= 95.3% 1 2 3 Assigned Clusters 

Assigned 1 50 0 0 1 
class 2 0 49 6 2 

3 0 1 44 3, 4 

When the maximum hyper-box size is defined as 0.2, there are four clusters 

created in F3MCNN clustering result. We identify cluster 1 as the first class (setosa), 

cluster 2 as the second class (versicolor), and cluster 3 and 4 as the third class (virginica), 

see TABLE 5.2. Fifty patterns in setosa are classified into the correct class; however, 

misclassification occurs in the patterns from both versicolor and virginica. One pattern 

from versicolor is misclassified as a pattern in virginica and six patterns from virginica 

are misclassified as patterns in vetsicolor. The overall accuracy rate of clustering result is 

95.3%. 

From Tables 5.3 to 5.6, the interpretation of the number of clusters, overall 

accuracy rate, class and clusters assignments, and numbers inside the table are the same 

as we explained previously. The best performance in this experiment is 97.3% with the 
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maximum hyper-box size parameter defined as 0.10, which produces 13 clusters. We 

need only one pass of patterns to achieve the clustering stability in each instance. 

TABLE 5.3 

IRIS DATA CLUSTERING RESULT OF F3MCNN 
WITH VIGILANCE= 0.18 

Accuracy Actual class 
rate= 94% 1 2 3 Assigned Clusters 

Assigned 1 50 0 0 1 
class 2 0 47 6 2, 3 

3 0 3 44 4, 5, 6 

TABLE 5.4 

IRIS DATA CLUSTERING RESULT OF F3MCNN 
WITH VIGILANCE= 0.15 

Accuracy Actual class 
rate= 94.7% 1 2 3 Assigned Clusters 

Assigned 1 49 0 0 1 
class 2 1 43 0 2, 3 

3 0 7 50 4, 5, 6 

TABLE 5.5 

IRIS DATA CLUSTERING RESULT OF F3MCNN 
WITH VIGILANCE= 0.12 

Accuracy Actual class 
rate= 95.3% 1 2 3 Assigned Clusters 

Assigned 1 49 0 0 1,2 
class 2 1 49 5 3, 4, 5, 6, 7 

3 0 1 45 8, 9, 10, 11, 12 



TABLE 5.6 

IRIS DATA CLUSTERING RESULT OF F3MCNN 
WITH VIGILANCE= 0.10 

Accuracy Actual class 
rate= 97.3% 1 2 3 Assigned Clusters 

Assigned 1 50 0 0 1,2,3,4 
class 2 0 47 1 5, 6, 7 

3 0 3 49 8, 9, 10, 11, 12, 13 

5 .3 Comparisons 
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There are many pattern clustering algorithms presented in the pattern recognition, 

neural network, and fuzzy set literature. The proposed F3MCNN is a synergetic model of 

fuzzy set theory and modified ART neural networks. Other interested clustering 

techniques include (1) fuzzy ART, (2) fuzzy Min-Max, and (3) fuzzy c-means clustering 

algorithm. In the comparison of these clustering techniques, we concentrate on the model 

properties, the clustering stability, the number of epochs to achieve clustering stability, 

and the accuracy of clustering results. 

5.3.1 Model Properties Comparison 

The fuzzy c-means clustering technique assumes the number of clusters in the 

data set and then finds the optimal cluster centers and membership functions which 

minimize an objective function. The first fuzzy c-means clustering neural network was 
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developed by Dunn [Dunn 74] and generalized by Bezdek [Bezdek 73] [Bezdek 74] 

[Bezdek 75]. The fuzzy ART model closely resembles the F3MCNN model because they 

both grew out of the fuzzification of the ART-1 neural network. The fuzzy Min-Max 

model is also a fuzzy ART-type pattern clustering technique. Therefore, it closely 

resembles the F3MCNN model in many ways. We compare their model properties based 

on the cluster representation, the way the number of clusters is decided, the learning type, 

and the solution method for hyper-box overlap. 

5.3.1.1 Cluster Representation Both prototype and hyper-box representations are 

used in the F3MCNN model. It utilizes a hyper-box to represent learned the concept of a 

cluster and a statistical fuzzy set function to represent the statistical characteristic of a 

cluster. The fuzzy c-means clustering algorithm utilizes a single point to represent the 

prototype of each cluster. In the fuzzy ART and fuzzy Min-Max models, only the 

minimum and maximum points of a hyper-box are used to represent a cluster. There is 

no information about how patterns behave inside a hyper-box. 

5.3.1.2 Method of Determining the Number of Clusters The fuzzy c-means 

clustering model assumes the number of clusters is known in advance; while, the 

F3MCNN, fuzzy ART, and fuzzy Min-Max models determine the number of clusters 

dynamically. To determine the best clustering result, both algorithms need to cluster with 

different parameters ( e.g., different numbers of clusters for fuzzy c-means clustering 

algorithm and different hyper-box sizes for F3MCNN, fuzzy ART, and fuzzy Min-Max). 
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5.3.1.3 Learning Type The F3MCNN, fuzzy ART, and fuzzy Min-Max models 

are real-time on-line pattern clustering systems. They learn new patterns without having 

to retrain or refer to any of the previous patterns. 

In contrast, the fuzzy c-means clustering model is an off-line pattern clustering 

system. It needs all the patterns before learning. To learn a new pattern, a fuzzy c-means 

clustering system needs to use the previous data set and the new pattern for training. 

However, the on-line F3MCNN, fuzzy ART, and fuzzy Min-Max models are pattern­

order-dependent. It is possible that the same data set will create different clustering 

results if the data are processed in a different order during learning. 

5.3.1.4 Method to Handle Hyper-box Overlap Since the hyper-box representation 

for clusters is not used in the fuzzy c-means clustering model, we compare methods to 

handle hyper-box overlap in the F3MCNN, fuzzy ART, and fuzzy Min-Max models only. 

In the F3MCNN model, we allow hyper-box overlapping and utilize the statistical 

characteristic in hyper-boxes to solve the problem of full hyper-box membership 

ambiguity. Because it is impossible for two clusters to have the same central point, the 

problem of full statistical membership ambiguity never occurs in the clustering results of 

F3MCNN. For the input pattern located inside the hyper-box overlapping area, it is 

reasonable and natural to utilize the statistical characteristic in the hyper-box to select a 

candidate cluster. The results from the iris data clustering example show the 

improvement of F3MCNN clustering. 
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Hyper-box overlapping is allowed in fuzzy ART clustering and it results in the 

problem of full hyper-box membership ambiguity. To solve this problem, fuzzy ART 

utilizes the order of the committed clusters to choose the cluster with the smallest index 

as the candidate for learning. There is no explanation why the cluster with the smallest 

index is chosen in [Grossberg 91]. 

In fuzzy Min-Max, hyper-box overlapping is not allowed. A hyper-box overlap 

checking and contraction procedure is performed after each hyper-box expansion to make 

sure there are no overlapped hyper-boxes. Therefore, hyper-boxes may expand or 

contract during pattern learning. This hyper-box overlap checking and contraction 

procedure is tedious when the number of hyper-boxes increases. After all is done, there is 

still a major problem remaining in fuzzy Min-Max clustering. It is still possible that a 

pattern has full hyper-box membership in more than one cluster when it is a point along 

the boundary between two abutting hyper-boxes. 

5 .3 .1.5 Similarity Measure Two fuzzy set functions are defined to measure the 

fuzzy HSD and fuzzy SSD of an input pattern to clusters respectively in the F3MCNN 

model. The hyper-box fuzzy set function, defined in Equation (3.9), calculates the fuzzy 

HSD that is a complement of the distance between an input pattern and a cluster's hyper­

box. The statistical fuzzy set function, defined in Equation (3.18) is an-function to 

calculate the fuzzy SSD of an input pattern to a cluster's fuzzy prototype. 

There is only one fuzzy set function used in fuzzy ART to measure the similarity 

degree of an input pattern to hyper-box clusters, see Equation (3.3). The fuzzy ART 
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model introduced the fuzzy subset [Kosko 86] into its category choice function. The 

category choice function calculates the degree to which a cluster is a fuzzy subset of an 

input pattern. Also, only one fuzzy set function is defined in the fuzzy Min-Max model 

to measure the hyper-box similarity degree for an input pattern to clusters, see Equation 

(3.7). 

In the fuzzy c-means clustering algorithm, the grade of a pattern associated with a 

cluster is used to represent the fuzzy membership degree. The grade is a fuzzy function 

of the Euclidean distances between the pattern and clusters. 

5.3.2 Clustering Stability Comparison 

The definitions of clustering stability in F3MCNN and fuzzy ART are same. 

They are defined as when there is no change in hyper-boxes during successive 

presentations of the same input patterns in fast learning. Because every pattern is covered 

by one of the clusters' hyper-boxes after clustering, we need only one pass of the data 

patterns to achieve clustering stability. Therefore, there will be no change in hyper-boxes 

after one pass of the input patterns. 

The clustering stability in the fuzzy c-means clustering algorithm is defined as the 

convergence of an iterative procedure in which a defined objective function is minimized. 

A fuzzy c-means clustering system always needs a vast number of iterations to minimize 

an objective function in order to reach stable cluster centers. In addition, the fuzzy c­

means clustering algorithm iteration sequence may converge to either a local minimum or 

stable point of the objective function [Bezdek 87] [Sabin 87]. 
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The clustering stability in the fuzzy Min-Max model is defined as when there is 

no change in hyper-boxes during successive presentations of the same ordered input 

patterns. The fuzzy Min-Max system needs more than one pass of a data set to achieve 

clustering stability in fast learning. Because the hyper-box overlap checking and 

contraction procedure is performed after each hyper-box expansion, hyper-boxes may be 

expanded or contracted during pattern learning. If there is no hyper-box overlap during 

learning, hyper-boxes are expanded to include input patterns. The fuzzy Min-Max 

clustering achieves learning stability in one epoch because there will not be any change in 

the size of the hyper-boxes. Otherwise, the fuzzy Min-Max clustering needs more than 

one epoch to achieve clustering stability. 

In some cases, the hyper-boxes keep on changing very slightly after a large 

number of epochs in fuzzy Min-Max clustering. A stability criterion that is not 
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mentioned in [Simpson 93] needs to be defined in order to decide when to stop pattern 

training. 

We use an example to illustrate the necessity. In this example, we use fuzzy Min­

Max to classify five two-dimensional input patterns. The maximum hyper-box size is 

defined as 0.4. These five input patterns are represented as five points, P 1 to P5, and are 

presented in their index order. In the first epoch. they are clustered into two clusters, R1 

and R2, as shown in Figure 5.4(a). Because these two hyper-boxes overlap, we apply 

hyper-box contraction process defined in [Simpson 93] to contract both hyper-boxes as 

shown in Figure 5.4(b). After the first epoch, the abutting point between these two hyper­

boxes is (0.5, 0.4). 

We need to apply the second epoch to check whether the system achieves 

clustering stability or not. After P 1 and P2 are presented again, the hyper-box R1 is 

expanded to include theses two points. Again, there is hyper-box overlapping as shown 

in Figure 5.5(a). We need to apply the hyper-box contraction again to eliminate the 

hyper-box overlapping, see Figure 5.5(b). In the second epoch, three patterns, P3, P4, and 

P 5, are still not presented for clustering. After these three patterns are presented, the 

hyper-box R2 is expanded again to include these three points as shown in Figure 5.5(c). 

Hyper-box overlapping happens after the expansion of the hyper-box R2. We apply 

hyper-box contraction again to eliminate hyper-box overlapping as shown in Figure 

5.5(d). After the second epoch, the abutting point between these two hyper-boxes is 

(0.475, 0.425). The changing of the abutting point means there is change in the size of 



93 

the hyper-boxes. The difference in these two points is around 10"2. We need to apply the 

input patterns again. 

After the fifth epoch, the change of the abutting point is around 104 . The change 

of the abutting point is around 10"5 after the seventh epoch. The abutting point keeps 

changing after 24 epochs although the diffe.rence is then only around 10·15• 
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Obviously, we need to define a small number to stop pattern clustering in this 

example before the change in the size of the hyper-boxes approaches zero. This topic 

was not mentioned in [Simpson 93]. However, the hyper-box overlap checking and 

contraction procedure is time consuming when the number of hyper-boxes increases or 

when in high dimensional feature space. 

5.3.3 Training Epochs Comparison 

The F3MCNN and fuzzy ART models are superior to the fuzzy Min-Max and 

fuzzy c-means clustering models in respect to the need for training epochs. Hyper-boxes 

in F3MCNN and fuzzy ART are expanded to include a new input pattern and never 

contract. After all input patterns are presented, every pattern should be covered by a 

hyper-box. Therefore, only one epoch is needed in the F3MCNN and fuzzy ART systems 

to achieve clustering stability in fast learning. 

In contrast, even an improved fuzzy c-means clustering algorithm with the 

reduced objective function needs 12 to 83 iterations to converge on experiments of 

different test data sets [Selim 92]. The fuzzy Min-Max model needs more than one pass 

of the same ordered input data to achieve clustering stability in fast learning. In the iris 

data experiments in [Simpson 93], less than 10 passes of the same ordered input data in 

each experiment are required to achieve clustering stability. 
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Comparing the iris data clustering results, the F3MCNN model is superior to the 

fuzzy ART and fuzzy Min-Max models in terms of the evaluation method discussed in 

[Simpson 93] to evaluate the clustering performance among F3MCNN, fuzzy Art, and 

fuzzy Min-Max. The clustering results of the iris data set of the F3MCNN model are 

presented in Section 5 .2.2. The experiment consists of six different vigilance parameters 

defined as 0.22, 0.20, 0.18, 0.15, 0.12, and 0.10 and their resulting accuracy rates are 

91.3%, 95.3%, 94.0%, 94.7%, 95.3%, and 97.3% respectively. 

We also wrote a simulation program for the fuzzy ART model under the 

MATLAB software environment and ran it on a i486-33MHz PC. The same evaluation 

method is applied to evaluate the clustering performance for fuzzy ART. 
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The same six defined sizes of hyper-boxes are also used in the iris data 

experiment with fuzzy ART. Because the resonance is defined as the match function that 

is greater than or equals to the vigilance criterion, high vigilance results in smaller hyper­

boxes and low vigilance results in bigger hyper-boxes in fuzzy ART clustering result. 

These six vigilance parameters are defined as 0.78, 0.80, 0.82, 0.85, 0.88, and 0.90 to 

map the hyper-box size limited by the six vigilance parameters in the iris data experiment 

with F3MCNN. Their accuracy rates are 89.3%, 90.7%, 90.7%, 94.0%, 94.0%, and 

94. 7%, respectively. Also, the number of clusters in the clustering results are 3, 4, 6, 8, 

11, and 14, respectively. The clustering results comparison between fuzzy ART and 

F3MCNN is illustrated in Figure 5.6. The best performance is found with the hyper-box 

size of 0.10 for both fuzzy ART and F3MCNN. The accuracy rates are 94.7% and 

97.3% in the clustering results of fuzzy ART and F3MCNN respectively. There is a 

notable improvement in the clustering result ofF3MCNN over the clustering result of the 

fuzzy ART system for the iris flower data. 

The clustering results of the iris data of the fuzzy Min-Max model with four 

different hyper-box sizes are presented in [Simpson 93]. The accuracy rates of 

experimental results are 86.7%, 88.0%, 90.2% and 92.7% with hyper-box sizes defined as 

0.25, 0,20, 0.15, and 0.10. The number of clusters is 3, 3, 7, and 14 with respect to the 

defined hyper-box sizes. We use the F3MCNN clustering results of the iris data 

experiment with to compare with those of fuzzy Min-Max as shown in Figure 5.7. The 

best performance is found with the hyper-box size of 0.10 for both fuzzy Min-Max and 

F3MCNN. The accuracy rates are 92.7% and 97.3% in the clustering result of fuzzy 
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Min-Max and F3MCNN respectively. Note that there also is an obvious improvement in 

the clustering result of F3MCNN over the clustering result of the fuzzy Min-Max system 

for the iris flower data. 

5.3.5 Summary of Comparisons 

In Section 5.3, we compare the model properties, the clustering stability, the 

number of epochs to achieve clustering stability, and the accuracy of the clustering results 

of fuzzy c-means, fuzzy ART, fuzzy Min-Max, and F3MCNN in detail. We summarize 

our comparisons briefly in TABLE 5. 7. 
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TABLE 5.7 

A SUMMARY OF COMPARISONS AMONG FUZZY C-MEANS, 
FUZZY ART, FUZZY MIN-MAN, AND F3MCNN 

Compared Aspects Fuzzy Fuzzy Fuzzy F3MCNN 
c-means ART Min-Max 

Learning Type Off-line Real-time Off-line Real-time 

Decides number of clusters Yes No No No 
before clustering 

Dynamically determines number No Yes Yes Yes 
of clusters during clustering 

Cluster representation Prototype Hyper-box Hyper-box Hyper-box 
and 

Prototype 

Hyper-box overlap Not Allowed Not Allowed 
applied allowed 

Full membership ambiguity No Yes Yes No 

Result is pattern order dependent No Yes Yes Yes 

Minimize an objective function to Yes No No No 
achieve clustering stability 

Stability defined as no change No Yes Yes Yes 
after successive passes of patterns 

Number of epochs to achieve Vast One epoch More than One epoch 
clustering stability number 10 epochs 

Clustering performance in iris Not Better Good Best 
data experiments available 



CHAPTER VI 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

6.1 Epilogue 

This research was undertaken to develop a real-time and unsupervised pattern 

classification system called the fuzzy minimum mean maximum clustering neural 

network (F3MCNN) to solve inexact pattern clustering problems. Inexact pattern 

clustering problems cannot be fully stated by means of mathematics. Human beings 

handle them subconsciously and without knowing how they really solve them. The 

F3MCNN model is designed to have human-like learning abilities: (1) it learns new 

patterns without needing to be retrained with previously learned patterns, (2) it learns 

pattern clusters without a supervisor, and (3) it can handle ill-separated cluster problems. 

The F3MCNN model is a synergetic combination of a modified ART neural 

network with the fuzzy set theory; therefore, it has learning ability and can represent and 

manipulate inexact information. An F3MCNN system operates in two different phases: 

fuzzy hyper-box clustering and fuzzy statistical clustering. The system architecture of 

F3MCNN contains two subsystems: the attentional subsystem and the selection control 

subsystem. The attentional subsystem is responsible for pattern cluster learning. It is a 

modified version of the fuzzy adaptive resonance theory (ART) neural network 

99 
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[Carpenter 87]. The selection control subsystem issues phase-change-signal and 

cooperates with the attentional subsystem in cluster selection and criterion matching. 

Both the fuzzy hyper-box similarity degree (fuzzy HSD) and the fuzzy statistical 

similarity degree (fuzzy SSD) are utilized in F3MCNN for pattern clustering. When a 

new pattern is presented, the F3MCNN system operates in the fuzzy hyper-box clustering 

phase to perform fuzzy hyper-box learning. If the problem of full hyper-box membership 

ambiguity occurs during hyper-box learning, the selection control subsystem makes the 

F3MCNN system operate in the fuzzy statistical clustering phase. Fuzzy statistical 

clustering eliminates the ambiguity problem and guarantees that no pattern has full 

membership belonging to more than one cluster in F3MCNN clustering results. 

A very famous data set, Fisher's iris data [Fisher 36], is used as an example in our 

experiment to demonstrate the superiority of the F3MCNN model. We use the same 

evaluation method that was applied in the fuzzy min-max clustering neural network 

(fuzzy Min-Max) [Simpson 93] to evaluate the clustering performance of the F3MCNN 

model. We cluster data into clusters and identify each cluster with a class to determine 

how well the F3MCNN model was able to find the underlying structure of the data as the 

method mentioned in [Simpson 93]. The accuracy rates from our iris data experiment 

range from 91.3% to 97.3% with the defined vigilance parameters ranging from 0.21 to 

0.10. Compared to the accuracy rate ranges of 86. 7% to 92. 7% presented in [Simpson 

93] and 89.3% to 94.7% in fuzzy ART from our simulation program, the F3MCNN 

model does improve the clustering results as we expected. Moreover, the F3MCNN 

system achieves cluster stability just after one pass of patterns, but the Fuzzy Min-Max 
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system needs about ten repeated passes of the input patterns in the same order to achieve 

clustering stability. 

6.2 Contribution and Further Research 

The main contribution of the F3MCNN model developed by this work is to 

provide a faster and more accurate pattern clustering technique for inexact pattern 

clustering problems. It provides the fuzzy similarity degree information that is extremely 

useful in higher level decision making applications. Moreover, its system architecture 

can be utilized as the subsystem for a supervised multi-layer pattern classification system. 

We outline the advantages in the F3MCNN model as follows: 

(1) F3MCNN can handle a variety ofreal-world dynamic pattern clustering 

problems. The F3MCNN model creates clusters as needed without assuming 

the number of clusters in advance. 

(2) F3MCNN can handle inexact pattern clustering problems. The F3MCNN 

model can classify both linearly separable and non-linearly separable clusters. 

(3) Learning in F3MCNN is accumulated. The F3MCNN model is able to learn 

new patterns without having to be retrained with the previously learned 

patterns. 

(4) Learning in F3MCNN is self-stabilized. Once the F3MCNN system learns a 

new pattern, it achieves clustering stability since the new pattern is covered by 

one of the hyper-boxes. 
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(5) Learning in F3MCNN is fast. An F3MCNN system achieves clustering 

stability in just one pass of input patterns. The F3MCNN model does not 

require time-consuming work for cluster overlap checking and contraction. 

(6) Learning in F3MCNN is free of membership ambiguity. In an F3MCNN 

system, the fuzzy statistical clustering is activated to solve the problem of full 

membership ambiguity. 

Future research directions include:' developing a technique to measure the cluster 

validity for the F3MCNN model and exploring a method to alleviate the input order 

dependent problem in the F3MCNN model. 



GLOSSARY 

Attentional subsystem. A subsystem of the F3MCNN model, which is a three-layer 
neural network. It is responsible for calculating the fuzzy HSD and fuzzy SSD of 
patterns to clusters and encoding attributes of committed clusters. 

d-function. A three-parameter function, which calculates the distance along one feature 
dimension between an input pattern and the interval of the minimum and maximum 
points of a hyper-box. 

F3MCNN. See Fuzzy minimum mean maximum clustering neural network. 

Fuzzy central point. A fuzzy central point of a cluster is the average of those patterns 
that have been classified into the cluster. It is used as the center of the statistical 
fuzzy set function defined in the F3MCNN model. 

Fuzzy BSD. See Fuzzy hyper-box similarity degree. 

Fuzzy hyper-box choice function. A function used in the fuzzy hyper-box clustering 
process to select a candidate cluster having the maximum fuzzy HSD to the input 
pattern for learning. 

Fuzzy hyper-box clustering. This is the first phase of the F3MCNN clustering process. 
In this clustering phase, the fuzzy hyper-box choice function is applied to select a 
candidate cluster. Then it checks whether the selected cluster meets the fuzzy 
hyper-box expansion criterion. 

Fuzzy hyper-box expansion criterion. A criterion used in fuzzy hyper-box clustering to 
make sure the size of the expanded hyper-box of the selected cluster is not greater 
than the user-defined vigilance. 

Fuzzy hyper-box learning. This is one of the pattern learning processes in the 
F3MCNN model, which adjusts the minimum and maximum points of the hyper­
box when the selected cluster meets the fuzzy hyper-box expansion criterion. In 
fuzzy hyper-box learning, the hyper-box of the selected cluster is expanded to cover 
the input pattern. 
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Fuzzy hyper-box similarity degree (Fuzzy BSD). This is the similarity measure 
between the input pattern and the hyper-box of a cluster. It is a value between O and 
1 calculated by the hyper-box fuzzy set function. 

Fuzzy hyper-box. This is one of the representations for a cluster in the F3MCNN 
system. A fuzzy hyper-box of a cluster covers the patterns that have been classified 
into the cluster and is represented by its minimum and maximum points. 

Fuzzy minimum mean maximum clustering neural network (F3MCNN). This is the 
model we proposed in this study for pattern clustering. It is a synergetic model of 
the fuzzy set theory and a modified ART neural network. In this model, the relation 
between patterns and clusters is represented by the fuzzy HSD and fuzzy SSD. Its 
clustering process contains fuzzy hyper-box clustering and fuzzy statistical 
clustering. 

Fuzzy number of patterns. A fuzzy number of patterns for a cluster is the number of 
patterns that have been classified into the cluster. It is not the number of patterns 
that are located inside a cluster's hyper-box. A pattern does not have to be 
classified into a cluster even if it is located inside the cluster's hyper-box. 

Fuzzy prototype. This is one of the representations for a cluster in the F3MCNN 
system. A fuzzy prototype of a cluster presents the statistical characteristic of 
patterns that have been classified into the cluster. It is defined by the fuzzy central 
point, fuzzy variation vector, minimum point and maximum point of a cluster. 

Fuzzy SSD. See Fuzzy statistical similarity degree. 

Fuzzy statistical choice function. A function used in the fuzzy statistical clustering 
process to select a candidate cluster having the maximum fuzzy SSD to the input 
pattern from the clusters selected in fuzzy hyper-box clustering process. 

Fuzzy statistical clustering. This is the second phase of the clustering process of the 
F3MCNN system. In this clustering phase, a cluster with the maximum fuzzy SSD 
to the input pattern is selected among those clusters selected in the fuzzy hyper-box 
clustering. This clustering process is performed only when the problem of full 
hyper-box membership ambiguity occurs in fuzzy hyper-box clustering. 

Fuzzy statistical expansion criterion. A criterion used in the fuzzy statistical clustering 
process, which performs exactly the same function as the fuzzy hyper-box 
expansion criterion. 
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Fuzzy statistical learning. This is one of the pattern learning processes in the F3MCNN 
model, which adjusts the fuzzy central point, fuzzy variation vector, and fuzzy 
number of patterns of a cluster when the cluster meets the fuzzy statistical 
expansion criterion. 

Fuzzy statistical similarity degree (Fuzzy SSD). This is the similarity measure between 
the input pattern and the fuzzy prototype of a cluster. It is a value between O and 1 
calculated by the statistical fuzzy set function. 

Fuzzy variation vector. The fuzzy variation vector of a cluster is the average of the 
deviation vectors for patterns that have been classified into the cluster. 

H-function. See Hyper-box fuzzy set function. 

Hyper-box fuzzy set function. The hyper-box fuzzy set function calculates the fuzzy 
HSD of a pattern to clusters. Its output value is the complement of the average of 
the d-function distance values. 

s-function. A fuzzy set function, which calculates the fuzzy SSD of an input pattern to a 
cluster along one feature dimension. 

S-function. See Statistical fuzzy set function. 

Selection control subsystem. A subsystem of the F3MCNN model, which is responsible 
for selecting the candidate cluster, checking expansion criteria, and changing 
clustering process phases of the F3MCNN system. 

Statistical fuzzy set function. The statistical fuzzy set function calculates the fuzzy SSD 
of patterns to clusters. Its output value is the average of the s-function output 
values. But its output value will equal O if there is any s-function output value 
equal to 0. 

Vigilance. A user-defined parameter, which limits the maximum hyper-box size of 
clusters in fuzzy hyper-box learning. 
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