
DEGRADATION OF CONTAMINATED AIR STREAMS 

CONTAINING TOLUENE, ETHYLBENZENE 

AND 0-XYLENE BY BIOFILTRATION 

By 

IlNGSHIWU 

Bachelor of Science 
Shanghai Institute of Urban Construction 

Shanghai, China 
1983 

Master of Science, 
Tongji University 
Shanghai, China 

1989 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

DOCTOR OF PHILOSOPHY 
December, 1995 



DEGRADATION OF CONTAMINATED AIR STREAMS 

CONTAININGTOLUENE,ETHYLBENZENE 

AND 0-XYLENE BY BIOFILTRATION 

Thesis Approved: 

Dean of the Graduate College 

11 



ACKNOWLEDGMENTS 

I wish to express my sincere appreciation to Dr. John N. Veenstra, my major 

advisor, for his intelligent guidance, constant inspiration, invaluable assistance, and 

unforgettable friendship throughout my doctoral program. Also, I wish to thank Dr. 

William W. Clarkson, Dr. Arland H. Johannes, Dr. William F. McTeman, and Dr. Gregory 

G. Wilber, for their willingness to serve on my advisory committee, and for their 

invaluable advice, continued encouragement and constructive suggestions on my research. 

Their diverse backgrounds and expertise in various fields have broadened my view and 

helped me in the completion of this dissertation. 

Special thanks go to Dr. Steven Gipson, Dr. Garold Oberlender, and Dr. Mark E. 

Payton for their much helpful advice with the mathematical modeling, economic analysis 

and statistical analysis, respectively. The thanks are also due to Mr. James F. Myers, and 

Mr. Don Spoonemore for their assistance with the maintenance of my laboratory facilities. 

Many thanks also go to my friends, Weiping Xiao, Yanyan Qin, Jiazheng Li, Qin 

Zhao, Holly Powers, Srikanth Mummareddy, and Mansour S. Bader, for their continued 

interest, valuable discussion, and constructive suggestions in my research. 

This research was funded by the Oklahoma State University Center for Water 

Research and the Oklahoma Water Resources Research Institute. Their support has been 

greatly appreciated. 

iii 



I would like to thank my parents, Guzhou Wu and Jieru Liu, whose 

encouragement and support as well as the beliefs in the value of education have helped me 

keep the end goal constantly in sight. I also wish to express my special appreciation to my 

grandmother-in law, Yinzhu Ma; parents-in-law, Xikeng Zhu and Lingxiu Zhu; for their 

invaluable encouragement and support. My appreciation is also extended to my brother, 

Jingping Wu; my sisters, Xiaoru Wu and Xiaonan Wu, for their immeasurable amounts of 

help. 

This dissertation is dedicated to Lei, my wife, and Yang, my son, who not only 

gave me their love, encouragement and assistance, but also exhibited their patience and 

understanding over the entire period of my study at Oklahoma State University, which 

have made my course and research work go smoothly, and finally brought one of my 

dreams, the doctorate, to life. 

lV 



TABLE OF CONTENTS 

Chapter Page 

I. IN1RODUCTION ............................................................................................... 1 

Statement of the Problem ............................................................................... 1 
Objectives of the Project .................................................................................. 3 

II. LITERATURE REVIEW ..................................................................................... 4 

Background of Bioftltration ............................................................................ 4 
Applications in the Control of Voes Using Biofiltration ..............•.................. 5 
Cost of Degradation of voes by Biofiltration ...............•.............................. 16 
Modeling of the Degradation of voes by Biofiltration ................................. 18 
Problems in the Control of VOCs Using Biofiltration .................................... 23 

III. MATERIALS AND ME1HODS ....................................................................... 26 

Description of the Experimental Apparatus ................................................... 26 
Selection of Porous Filtration Materials ........................................................ 29 
Selection of Contaminant Compounds .......................................................... 31 
Preparation of Two Reservoirs ..................................................................... 31 
Acclimation of the Microbial Culture ............................................................ 31 
Preparation of the Mineral Media ................................................................. 33 
Start-up Procedure ....................................................................................... 33 
Analytical Techniques ................................................................................... 35 

Temperature and Humidity .................................................................. 35 
Contaminant Concentrations ................................................................ 35 
Water Content ...................................................................................... 36 
Pressure Drop ...................................................................................... 37 
Protein Content ................................................................................... 37 
Volatile Solids ... : ................................................................................. 37 
Bacterial Population Counts ................................................................. 37 
Total Organic Carbon .......................................................................... 38 
Kjeldahl Nitrogen ................................................................................ 38 
Nitrogen and Phosphorus ..................................................................... 38 
Biofilm Appearance ............................................................................. 39 

Experimental Design ......................................................................•.............. 39 

V 



Chapter Page 

Adsorption Study ................................................................................. 39 
Compost Column Study ........................................................................ 39 
Diatomaceous Earth Column Study ..................................................... 40 
Tracer Study ........................................................................................ 40 

IV. RESULTS AND DISCUSSION ......................................................................... 43 

Adsorption Study ......................................................................................... 44 
Breakthrough Curve for Compost.. ...................................................... 44 
Breakthrough Curve for Diatomaceous Earth ....................................... 44 

Compost Column Study ............................................................................... 47 
Average Gas Influent and Effluent Concentrations ............................... 47 
Records of Column Temperature and Humidity .................................... 47 
Effect of Applied Loading on Elimination Rate .................................... 50 
Effect of Applied Loading on Elimination Efficiency ............................ 53 
Comparison of Average Elimination Efficiencies of Three BTEX 

Compounds ................................................................................. 53 
Effect of Residence Time on Elimination Efficiency ............................. 55 
Effect of Air Flow Rate on Pressure Drop ............................................ 55 
Water Content of Compost Column ..................................................... 59 
Total Organic Carbon of Compost ....................................................... 59 
Protein Content of Compost ................................................................ 62 
Bacterial Population Counts of Compost.. ............................................ 62 
Column Weight Loss During Experiment.. ....................................... ; ... 62 
Separation of Physical Adsorption and Biological Degradation ............. 65 
Biofilm Appearance of Compost .......................................................... 65 

Diatomaceous Earth Column Study .............................................................. 71 
Average Gas Influent and Effluent Concentrations ............................... 71 
Records of Column Temperature and Humidity .................................... 71 
Effect of Applied Loading on Elimination Rate .................................... 7 5 
Effect of Applied Loading on Elimination Efficiency ............................ 77 
Comparison of Average Elimination Efficiencies of Three BTEX 

Compounds ................................................................................. 77 
Effect of Residence Time on Elimination Efficiency ............................. 77 
Effect of Air Flow Rate on Pressure Drop ............................................ 81 
Water Content of Diatomaceous Earth Column .................................... 81 
Biomass on Diatomaceous Earth .......................................................... 84 
Kjeldahl Nitrogen Content of Diatomaceous Earth ................ ; .............. 84 
Column Weight Gain During Experiment.. ........................................... 84 . 
Average Consumption Rates of Nitrogen and Phosphorus .................... 88 
Replacement of Nutrient Solution ........................................................ 88 
Biofilm Appearance of Diatomaceous Earth ......................................... 88 

Tracer Study ................................................................................................ 93 

vi 



Chapter Page 

Dispersion Coefficients of the Compost Column .................................. 93 
Dispersion Coefficients of the Diatomaceous Earth Column ................. 93 
Recovery Efficiency of Tracer .............................................................. 93 

Modeling .................................................................................................... 100 
Development of Models ..................................................................... 100 
Prediction of Experimental Results ..................................................... 107 
Regression Analysis ........................................................................... 123 

Statistical Analysis ...................................................................................... 128 
Analysis of Variance (ANOVA) ......................................................... 128 

Cost Analysis ································'.···························································· 134 
Biofiltration versus Other Alternatives ............................................... 134 
Cost Estimation of Biofiltration ......................................................... 134 

V. CONCLUSIONS ............................................................................................. 154 

VI. RECOMMENDATIONS ................................................................................. 158 

REFERENCES ............................................................................................................. 160 

APPENDIXES ............................................................................................................ 166 

A. Raw Data of Adsorption Study - Compost Medium .................................... 167 
B. Raw Data of Adsorption Study- Diatomaceous Earth Medium ................... 168 
C. Calculation of Physical Adsorption Capacity - Compost and 

Diatomaceous Earth Media ................................................................ 169 
D. Raw Data of Compost Column Study - Daily Contaminant 

Concentrations from Influent and Effluent.. ........................................ 171 
E. Raw Data of Compost Column Study - Average Contaminant 

Concentrations from Other Sampling Ports ........................................ 189 
F. Raw Data of Diatomaceous Earth Column Study - Daily Contaminant 

Concentrations from Influent and Effluent.. ........................................ 192 
G. Raw Data of Diatomaceous Earth Column Study- Average Contaminant 

Concentrations from Other Sampling Ports ........................................ 204 
H. Raw Data of Tracer Study - Compost Column ............................................ 207 
I. Raw Data of Tracer Study - Diatomaceous Earth Column .......................... 208 
J. Calculation of Dispersion Coefficient - Compost and 

Diatomaceous Earth Media ................................................................ 209 
K. Determination of Mathematical Model's Coefficient - Ignoring the Effect 

of Dispersion Coefficient ........................................ ; .......................... 217 
L. Determination of Mathematical Model's Coefficient - Considering the 

Effect of Dispersion Coefficient ......................................................... 223 
M. Prediction of Contaminant Concentrations - Zero-Order and First-Order 

Models .............................................................................................. 229 

Vil 



Chapter Page 

N. Outputs of Statistical Analysis - Regression Analysis .................................. 232 
0. Raw Data of Statistical Analysis - Analysis of Variance (ANOV A) ............. 233 
P. Outputs of Statistical Analysis - Analysis of Variance (ANOVA) ................ 239 

viii 



LIST OFT ABLES 

Table Page 

I. Summary of Degradation of BTEX Compounds by Biofiltration ......................... 24 

IL General Properties of Compost and Diatomaceous Earth Media ......................... 30 

ill. Physical and Chemical Properties of BTEX Compounds ..................................... 32 

IV. Components of Inorganic Mineral Solution ........................................................ 34 

V. Experimental Conditions for Compost Column ................................................... 41 

VI. Experimental Conditions for Diatomaceous Earth Column .................................. 42 

VIL Dispersion Coefficient of the Compost Column .................................................. 96 

VIII. Dispersion Coefficient of the Diatomaceous Earth Column .................................. 98 

IX. Recovery Efficiency of Tracer ............................................................................ 99 

X. Mathematical Models of Biofiltration ............................................................... 108 

XL Summary of Mathematical Model's Coefficients ............................................... 110 

XII. Coefficient of Determination from Regression Analysis .................................... 126 

xm. Effect of Residence Time on Elimination Efficiency .......................................... 131 

XIV. Effect of Air Influent Concentration on Elimination Efficiency .......................... 132 

XV. Effect of Type of Filter Material on Elimination Efficiency ............................... 133 

XVI. Cost Comparison of VOCs Control - Part I .... : ................................................. 136 

XVII. Cost Comparison of VOCs Control - Part 11.. ................................................... 137 

1X 



Table Page 

XVIII. Cost Comparison of VOCs Control - Part III ................................................... 138 

XIX. Costs of Biofiltration for Voes Control - Part I ............................................... 139 

XX. Costs of Biofiltration for voes Control - Part II .............................................. 140 

XXL Capital Cost of the Compost Column ............................ : .................................. 152 

XXII. Capital Cost of the Diatomaceous Earth Column .............................................. 153 

X 



LIST OF FIGURES 

Figure Page 

1. Schematic of the Compost Biofilter Used for Degradation of VOCs ................... 27 

2. Schematic of the Diatomaceous Earth Biofilter Used for Degradation of VOCs .. 28 

3. Breakthrough Curve for Compost ...................................................................... 45 

4. Breakthrough Curve for Diatomaceous Earth ..................................................... 46 

5. Average Gas Influent and Effluent Concentrations of Compost Column .............. 48 

6. Record of the Compost Column's Temperature .................................................. 49 

7. Record of the Compost Column's Humidity, ....................................................... 51 

8. Applied Loading versus Elimination Rate in Compost Column ............................ 52 

9. Applied Loading versus Elimination Efficiency in Compost Column ................... 54 

10. Comparison of Average Elimination Efficiencies of Three BTEX Compounds 
in Compost Column ........................................................................................... 56 

11. Residence Time versus Elimination Efficiency in Compost Column ..................... 57 

12. Air Flow Rate versus Pressure Drop in Compost Column ................................... 58 

13. Water Content of Compost Column ................................................................... 60 

14. Total Organic Carbon of Compost ...................................................................... 61 

15. Protein C·ontent of Compost. ................................................................ · .............. 63 

16. Bacterial Population Counts of Compost ............................................................ 64 

17. Compost Column's Weight Loss During Experiment. ......................................... 66 

xi 



Figure Page 

18. Separation of Physical Adsorption and Biological Elimination ............................ 67 

19. Scanning Electron Micrograph of Compost (Raw Medium) ................................ 68 

20. Scanning Electron Micrograph of Compost (Sample from Column's Top 
Portion) ............................................................................................................. 69 

21. Scanning Electron Micrograph of Compost (Sample from Column's Bottom 
Portion) ............................................................................................................. 70 

22. Average Gas Influent and Effluent Concentrations of Diatomaceous Earth 
Column .............................................................................................................. 72 

23. Record of the Diatomaceous Earth Column's Temperature ................................. 73 

24. Record of the Diatomaceous Earth Column's Humidity ....................................... 74 

25. Applied Loading versus Elimination Rate in Diatomaceous Earth Column .......... 76 

26. Applied Loading versus Elimination Efficiency in Diatomaceous Earth Column .. 78 

27. Comparison of Average Elimination Efficiencies ofThreeBTEX Compounds 
in Diatomaceous Earth Column ............................... : .......................................... 79 

28. Residence Time versus Elimination Efficiency in Diatomaceous Earth Column ... 80 

29. Air Flow Rate versus Pressure Drop in Diatomaceous Earth Column .................. 82 

30. Water Content of Diatomaceous Earth Column .................................................. 83 

31. Biomass on Diatomaceous Earth ........................................................................ 85 

32. Kjeldahl Nitrogen Content of Diatomaceous Earth ............................................. 86 

33. Diatomaceous Earth Column's Weight Gain During Experiment ......................... 87 

34. Average Consumption Rate of Nutrients in Diatorriaceous Earth Column ........... 89 

35. Scanning ~lectron Micrograph of Diatomaceous Earth (Raw Medium) ............... 90 

36. Scanning Electron Micrograph of Diatomaceous Earth (Sample from 
Column's Top Portion) ...................................................................................... 91 

X11 



Figure Page 

37. Scanning Electron Micrograph of Diatomaceous Earth (Sample from 
Column's. Bottom· Portion) ................................................................................. 92 

38. Tracer Study for Compost Column ..................................................................... 95 

39. Tracer Study for Diatomaceous Earth Column ................................................... 97 

40. Distribution of Total VOCs in a Biofilter for Mass Balance .............................. 101 

41. Modeling of Compost Column (Run 1) ............................................................. 111 

42. Modeling of Compost Column (Run 2) ............................................................. 112 

43. Modeling of Compost Column (Run 3) ............................................................. 113 

44. Modeling of Compost Column (Run 5) ............................................................. 114 

45. Modeling of Compost Column (Run 6) ............................................................. 115 

46. Modeling of Compost Column (Run 7) ............................................................. 116 

47. Modeling ofDiatomaceous Earth Column (Run 1) ........................................... 117 

48. Modeling of Diatomaceous Earth Column (Run 2) ........................................... 118 

49. Modeling of Diatomaceous Earth Column (Run 3) ........................................... 119 

50. Modeling ofDiatomaceous Earth Column (Run 5) ........................................... 120 

51. Modeling of Diatomaceous Earth Column (Run 6) ........................................... 121 

52. Modeling ofDiatomaceous Earth Column (Run 7) ........................................... 122 

53. Cost Comparison of Three Technologies (Based on the Data in Table 15) ........ 141 

54. Cost Comparison of Four Technologies (Based on the Data in Table 16) .......... 142 

55. Work Breakdown Structure (WBS) for Compost Column ................................ 143 

56. Work Breakdown Structure (WBS) for Diatomaceous Earth Column ............... 144 

Xll1 



NOMENCLATURE 

ANOV A analysis of variance 

APC air pollution control 

APHA American Public Health Association 

AVG average 

BTEX benzene, toluene, ethylbenzene and xylenes 

BTX benzene, toluene and xylenes 

C carbon 

CAA Clean Air Act 

CFM cubic feet per minute 

COM compost 

DCA 1,2-dichloroethane 

DE diatomaceous earth 

EBCT empty bed contact time 

EPA United States Environmental Protection Agency 

GAC granular activated carbon 

GC gas chromatograph 

GS glass spheres 

HC hydrocarbon 

MEK methyl ethyl ketone 

XIV 



MIBK 

min 

OSHA 

OSL 

OUST 

ppm 

SAS 

SD 

SEM 

SPCs 

SVE 

TCA 

TCE 

TPH 

TOC 

US Ts 

voes 

vs 

WBS 

methyl isobutyl ketone 

minute 

Occupational Safety and Health Administration (U.S. Department of Labor) 

observed significance level 

Office of Underground Storage Tanks 

parts per million 

statistical analysis system 

standard deviation 

scanning electron microscope 

standard population counts 

soil vapor extraction 

trichloroethane 

trichloroethylene 

total petroleum hydrocarbon 

total organic carbon 

underground storage tanks 

volatile organic compounds 

volatile solids 

work breakdown structure 

xv 



CHAPTER I 

INTRODUCTION 

Statement of the Problem 

Groundwater is a valuable, limited resource that serves as a major source of water 

for domestic, industrial and agricultural uses. A major concern exists over the 

contamination of groundwater by synthetic organic compounds. The Central Plains, 

including Oklahoma and Kansas, are dotted with several mid-continent refineries and 

crisscrossed with many pipelines. Benzene, toluene, ethylbenzene and xylene (BTEX) are 

considered the main contaminant compounds in groundwaters and soils due to the leakage 

of gasoline from underground storage tanks (USTs), ruptured refined product pipelines, 

and spills at refineries and pipeline terminals. It was reported that there are approximately 

1.4 million USTs containing gasoline in the United States, and some petroleum experts 

estimate that 75,000 to 100,000 of these tanks are leaking (Feliciano, 1984). According to 

recent information (OUST, 1990), there have been 90,000 confirmed releases reported in 

the last two years among about two million USTs. Gasoline and other fuels contain 

BTEX, which are hazardous compounds regulated by the U.S. Environmental Protection 

Agency (EPA, 1977). Although these aromatic hydrocarbons are relatively water-soluble, 

they are contained in the immiscible bulk fuel phase, which serves as a slow-release 

mechanism for sustained groundwater contamination (Hutchins et al., 1991). 
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During the cleanup of groundwaters and soils contaminated with volatile organic 

compounds (VOCs), air stripping or soil venting is frequently used. With both techniques, 

a contaminated waste gas stream is generated. In many instances this gas stream is allowed 

to escape untreated into the ambient air. 

There are several treatment technologies which are currently used in the control of 

VOCs in air streams. These technologies include thermal or catalytic incineration, carbon 

adsorption, chlorine or ozone oxidation, and biofiltration. Compared to other widely used 

approaches, biofiltration can offer a cost-effective way to destroy many contaminants 

(Rozich, 1995). It is a clean pollution control technology, which reduces organic 

emissions (and some inorganics) to water, carbon dioxide and salts, rather than 

transferring them to another medium (Vembu and Walker, 1995). In Germany, the 

Netherlands and other European countries, biofiltration has been applied to air pollution 

control problems for more than 30 years, and more than 500 biofiltration units currently 

are operating with a range of applications from controlling odors at wastewater treatment 

plants to reducing VOCs from emissions at coating facilities (Vembu and Walker, 1995). 

It is still an emerging technology in the US (Griffin and Paff, 1995). Recent installations in 

the United States include a large system for treating ethanol at a foundry in southern 

California. Several major companies, including DuPont, Monsanto and American 

Cyanamid, are examining the technology's potential (Vembu and Walker, 1995). 

Apparently, biofiltration is attracting interest in the United States. 

With the reauthorization of the Clean Air Act (CAA) in 1990, a new focus has 

been placed on limiting the discharge of toxics into the air especially from treatment 

processes. Obviously it is necessary to find a reasonable, practical and economical 



3 

method for the treatment of contaminated air streams. 

Objectives of the Project 

This project was undertaken to investigate the potential of using biological filters 

as air pollution cleanup technology. The objectives of this study are as follows: 

1) to demonstrate the feasibility of eliminating a selected mixture of BTEX 

compounds by biofiltration; 

2) to provide the data of elimination efficiencies from biofilters for the selected 

mixture of BTEX compounds; 

3) to compare elimination rates of the selected mixture of BTEX compounds 

obtained from biofilters containing two different support media; 

4) to present some design criteria which can be used in a full-scale biofilter; 

5) to develop a model for predicting the elimination of the selected mixture of 

BTEX compounds by biofiltration; and 

6) to estimate the cost of eliminating the selected mixture of BTEX compounds 

by biofiltration. 



CHAPTER II 

LITERATURE REVIEW 

Background of Biofiltration 

Biofiltration is an air pollution control (APC) technology. As early as 1923, Bach 

discussed the basic concept for the control of H2S emissions from sewage treatment 

plants. Reports on the application of this concept dating back to the 1950s were published 

in the U.S. and in West Germany. Pomeroy received U.S. Patent No. 2,793,096 in 1957 

for a soil bed concept and described a successful soil bed installation in California. In the 

U.S., the first systematic research on biofiltration removal of H2S was conducted by 

Carlson and Leiser in the early 1960s (Leson and Winer, 1991). 

During the 1960s and 1970s, biofilters were successfully used in the control of 

odors. Since the early 1980s, a renewed interest in biofiltration as a technology to control 

VOCs and other air toxics emitted from industrial facilities has occurred (Leson and 

Winer, 1991). 

The principle of biofiltration is that when a contaminated air stream containing 

biodegradable volatile organic compounds (VOCs) or inorganic air toxics is vented 

through a biologically active material. The contaminants are adsorbed to the filter medium 

and then biologically destroyed. The by-products in this process, if taken to completion, 

are carbon dioxide, water and new cells. 

4 
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Since it can offer significant economic advantages over other technologies and is 

most effective when applied to dilute, easily biodegradable waste streams, biofiltration has 

been considered one of the most promising APC technologies (Ramaratnam, et al., 1993). 

Environmental benefits associated with this technology include low energy requirements 

and the avoidance of cross media transfer of pollutants (Leson and Winer, 1991). 

Applications in the Control of Voes Using Biofiltration 

The following classification of gases, according to their degradability, was 

presented by Bahn (1992): (1) rapidly degradable voes, i.e. alcohols, aldehydes, ketones, 

etc.; (2) slowly degradable voes, i.e. aliphatic and aromatic hydrocarbons (xylene, 

toluene, benzene, and styrene), phenols and methylene chlori~e; and (3) very slowly 

degradable VOCs: i.e. halogenated hydrocarbons (trichloroethylene, trichloroethane, 

carbon tetrachloride, and pentachlorophenol), polyaromatic hydrocarbons, etc. In most 

APC situations, compounds in categories (2) and (3) are of more concern than those in 

category (1). 

Kampbell and Wilson (1987) evaluated the removal of volatile aliphatic 

hydrocarbons (propane, isobutane and n-butane) from a waste arr stream usmg a 

bench-scale unit and a prototype field-scale soil bioreactor. Laboratory investigations 

indicated first-order kinetics for the removal of total hydrocarbon vapors were followed as 

well as displaying the potential to degrade light aliphatic hydrocarbons and 

trichloroethylene, a compound ordinarily resistant to aerobic biological treatment. The 

predicted behavior (in terms of hydrocarbon removal) of the bioreactor, based on 

laboratory studies, agreed closely with the actual behavior of the field system. When the 
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injected air contained about 2000 ppm (v/v) total hydrocarbons, and the intended flow rate 

was 3.0 cm3 air per cm2 of surface area per min, the prototype bioreactor reduced the 

hydrocarbon concentration in the air by at least 90 percent at a residence time of 15 

minutes and a pressure drop of 85 cm of water. The bioreactor functioned well through a 

range of temperatures, 12 to 24 °C. 

Wilson et al. (1988) performed a laboratory study using fixed-film bioreactors to 

biologically remediate contaminated air streams. In their work, the authors introduced 

vapors of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) into bioreactors 

containing diatomaceous earth on which a biofilm had developed. The headspace of the 

columns was plumbed to receive vapors of TCE and TCA, a mixture of butane and air, 

and a nutrient media solution. Because TCE and TCA can be degraded by a 

monooxygenase enzyme which is produced by butane-oxidizing organisms, butane (8 mg 

butane/L air) was also introduced into the biological reactors to serve as the primary 

substrate. Influent TCE concentration ranged from 90 µg/L to 770 µg/L while the TCA 

concentration ranged from 200 µg/L to 990 µg/L. The maximum removal efficiency 

observed in this work was 94% for TCE and 93% for TCA. The authors did note a drop 

in removal efficiency for both compounds as their influent concentration increased. 

Galaska et al. (1989) designed an upflow bio-airtower to degrade contaminated air 

originating from a gasoline service station soil venting project. High surf ace area inert 

plastic media was used to support the biofilm growth. Water containing inorganic 

nutrients was recirculated over the packing material in order to keep the biofilm moist and 

provide a working medium for biological degradation. The unit was tested at flow rates of 

approximately 10.4 and 17.1 cubic feet per minute (CFM). The percent removal for 
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specific compounds such as benzene, toluene, xylene (BTX) and total petroleum 

hydrocarbons approximately doubled when the air flow rate through the bio-airtower was 

lowered. The authors concluded that the water recirculation rate and the influent 

concentration appeared to have very little effect on either the individual BTX or total 

petroleum hydrocarbons percent removal. The most important variable affecting 

petroleum hydrocarbon removal in this system appeared to be air flow rate. Specifically, 

BTX removal increased from approximately 45.2% to 74.5%, and total petroleum 

hydrocarbon removal increased from approximately 30.6% up to 60.8% after the flow rate 

was lowered from 17.1 to 10.4 CFM. The contact time between the airborne contaminants 

and the biomass was very limited in this type of system. Therefore, it is unreasonable to 

assume that a minimal air residence time would provide optimal effective treatment 

Bioreactors similar to those used by Wilson et al. (1988) were utilized in the work 

of Speitel and Malay (1990). However, these authors fed their system, which was packed 

with diatomaceous earth, a methane mixture instead of butane as the primary substrate. 

Nutrients and influent gas flowed co-currently in the columns. The primary objective of 

their work was to investigate the effect of influent contaminant concentration in the gas 

stream and gas flow rate on the degradation of TCE and 1,2-dichloroethane (DCA). The 

influent concentration of TCE ranged from 273 to 569 µg/L at an average gas flow rate of 

28.9 mIJmin, providing a residence time of 9.6 mins, while the surface loading rates 

varied only slightly from 0.160-0.335 gm TCE/m2·hr. In the two experiments conducted 

using TCE, the average removals were 28 and 57%. The authors also noted reduced TCE 

removal at influent gas concentrations greater than 500 µg/L and speculated that elevated 

concentrations may have been toxic to the organisms. However, they stated that more 
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work is needed to prove this point. The two experiments, conducted with DCA, showed 

an average removal of 20.4% when the average surface loading rate was 0.76 gm 

DCAfm2·hr, and the influent concentration varied from 600 to 1000 µg/L at an average 

gas flow rate of 47.4 mUmin, which provided a residence time of 5.7 mins . However, 

81 % removal was obtained at an average surface loading rate of 0.45 gm DCNm2·hr with 

influent concentrations ranging from 870-1100 µg/L at an average gas flow rate of 22. 7 

mUmin, resulting in a residence time of 12.2 mins. Overall, the authors concluded that 

biofiltration is a viable process for treating gas streams containing chlorinated solvents at 

low concentration levels. 

Douglass et al. (1991) studied the applicability of biofiltration for the treatment of 

contaminated streams typically created in air stripper off gas. The five packing media used 

in their study were native sand with chemical nutrient amendments, saw dust with 

chemical nutrient amendments, peat buffered with calcium carbonate to control pH, a 

mixture of 20% manure and 80% saw dust, and a mixture of 20% aerobically digested 

waste water sludge and 80% vermiculite (or saw dust). In this study, the influent 

concentrations of total gasoline, toluene and benzene were 61.4, 3.6 and 2.8 µg/L, 

respectively. Through their investigation, the authors reported that the maximum 

degradation rates for benzene and toluene were about 53 to 78 mg/m3 ·min while for o

xylene the values ranged from 18 to 28 mg/m3·min. Because the biological rate of 

degradation appeared to be the limiting factor for treatment efficiency, the chemical 

composition of the contaminants could be very important since rates of biodegradation 

varied by substrate. For the design and application of a mobile treatment system, the peat 
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buffered with calcium carbonate medium was selected since it is the lightest, least 

expensive and among the best biological support media. 

Hodge et al. (1991a) investigated the aerobic biodegradation of gas-phase jet fuel 

and diesel by microorganisms supported on four different filter media. The filter media 

used in this work were the following: activated carbon (GAC), diatomaceous earth (DE), 

a soil mixture, and a mixture of activated carbon and diatomaceous earth (50% each by 

volume). For. the GAC and DE columns, a microbial seed culture and nutrients were 

completely mixed throughout the media. Individual components of the jet fuel and diesel 

were not determined and all the degradation rate data were reported in terms of total 

hydrocarbon as methane equivalents. The authors determined that the biodegradation rates 

ranged from 0.3-5.2 gm HC/m3·hr (for jet fuel) and 0.2-1.3 gm HC/m3·hr (for diesel) on 

the four different support matrices. The jet fuel was degraded faster than the diesel in all 

cases. The diatomaceous earth supported the lowest biodegradation rates, and the mixture 

of GAC and DE had the highest biodegradation rates. They also noted the importance of 

relative humidity for operational efficiency of the biofilter. The optimum water content 

levels were different for each filter medium. Overall, they concluded that this technology 

appears to be a viable method for treating hydrocarbon vapors. 

Medina et al. (1992) conducted a bench-scale experiment where granular activated 

carbon (GAC) was used as the microorganism support medium in a biofilter to treat soil 

vapor extraction off-gases. In this study, gasoline vapors were introduced into the column 

in a downflow mode. Nutrients and microbial seed materials were vigorously mixed with 

. the GAC medium. This material was used to fill the column. Excess solution was drained 

and returned to the top of the column. The excess was again drained and discarded. 
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Following the seeding process, no further attempt was made to add nutrients or 

organisms. Initial adsorption provided a high percentage of removal (>85%). However, 

after the adsorption capacity was saturated, the treatment efficiency dropped dramatically 

(down to 7-20%). Later, biological activity increased to the point where effective 

treatment was possible (85-95% of removal efficiency). The main obstacle to effective 

treatment was the slow growth of the biomass in the lower portions of the column. The 

average and maximum elimination capacities of the biofilter were 64 and 119 gm 

HC/m3-hr, respectively. The residence time ranged from 5.9-7.0 mins, averaging 6.4 mins. 

Elimination rates, which ranged from 4 to 119 g HC/m3·hr, were proportional to pollutant 

loadings, which varied from 0.005 to 0.238 g HC/hr. Plate counts showed that both 

bacterial and fungal numbers increased over time as the column operated. 

Vaughn et al. (1993) carried out research on the biodegradation of vapor phase 

p-xylene. Two bioreactors were packed with different media, and operated in a 

countercurrent mode. One contained glass spheres and the other had diatomaceous earth 

(DE) pellets. The process parameters tested were gas and liquid flow rates and influent 

xylene concentration. A sterile liquid medium, which served as a nutrient source, was 

distributed into the columns at a rate of 5-10 mUmin. The concentration of xylene, 

introduced to the two columns, was 150-1500 ppm (v/v) at a gas flow rate of 600-6000 

mUmin. Their results indicated that total mass degradation rates were significantly higher 

in the DE column (1.4-1.8 mg/min) than in the glass sphere column (0.3-0.6 mg/min). 

Protein levels per unit surface area were significantly higher in the DE column. 

Apel et al. (1993) demonstrated the utility of a fixed-film biofilter for removal of 

methane, TCE, and xylene. Comparisons between the gas-phase bioreactors, conventional 
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shaken cultures and sparged liquid bioreactors showed that the gas-phase bioreactors offer 

advantages over the other two systems for the degradation of methane in air. Rates of 

methane removal with the gas-phase bioreactors were 2.1 and 1.6 fold greater than those 

exhibited by the shaken cultures and sparged liquid bioreactors, respectively. The gas 

phase bioreactors were shown to have application for the removal of TCE vapors from air 

with a removal rate of approximately 2.6 mg TCE/m3-day. Xylene vapors were also 

eliminated from air using gas phase bioreactors. When the gas feed stream rate was 

16 mUmin with a xylene feed in the gas stream of 140 µg of xylene per minute (based on 

carbon), approximately 46% of the xylene was mineralized to carbon dioxide in a single 

pass through a bench-scale gas-phase bioreactor. 

Rho et al .. (1993) worked on a demonstration project to study the feasibility of 

biofiltration for the treatment of organic solvents (ethanol, methanol, n-propanol, 

2-butanone, propyl acetate and propanol). Some microbial strains identified as being 

responsible for the degradation of the above VOCs were Pseudomonas sp., Bacillus sp., 

and Klebsiella sp.. In this study, peat was used as a packing material, and nutrients 

(nitrogen source only) were recirculated through the filter with a microbial suspension on 

a weekly basis in a countercurrent mode. The results showed that over a 7-month period, 

when an air flow rate was 475-675 m3/h in an upflow direction through the biofilter, and 

the average inlet concentration was 1000 mg C/m3 gas, the organic load was 100 g C/m3 

bed/hand the residence time was 18 seconds, the maximum elimination capacity was 72 g 

C/m3 bed/h. 

Cox et al. (1993) set up experiments to enrich styrene-degrading fungi in biofilters 

under conditions representative of industrial off-gas treatment. Through each biofilter 43 
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Uhr of a styrene/air mixture with a relative humidity of 80-85% at an initial styrene 

concentration of 290 mg/m3 was passed. From the support materials tested, polyurethane 

and perlite proved to be most suitable for enrichment of styrene-degrading fungi. The 

biofilter with perlite completely degraded styrene when amounts ranging between 290 and 

675 mg/m3 in the influent gas were present. An elimination capacity of at least 70 g 

styrene per m3 perlite per hour was calculated. 

Gregg et al. (1993) used a bench-top bioscrubber testing unit to treat vapor phase 

. toluene. In their work, activated carbon served as packing material. The inlet 

concentration of toluene was 10-20 ppm with an air flow rate of 0.5-2.0 Umin in a co

current mode. Inorganic nutrients, required for biological growth, were fed downflow to 

the column at a 0.1 mUhr rate. The authors reported that the bioscrubber achieved 

effective removal (>95%) of low levels of toluene vapor. Column lengths ranging from 5 

to 10 inches were required to confine the wavefront within the filter yielding empty bed 

contact times ranging from 1 to 4 seconds. 

Zilli et al. (1993) evaluated biofiltration technology for removal of phenol from 

waste gases. The packing material, with a height of 30 cm, consisted of a mixture of peat 

and glass beads in a ratio of 2: 1 v/v and was supported by a sieve plate to allow a 

homogeneous distribution of the gas flow through the filter bed. With more than one year 

of continuous operation of a lab-scale unit at a gas flow rate of 40 Umin, resulting in a 

residence time of 54 seconds, and varying inlet phenol concentration from 50 up to 2000 

mg/m3, a phenol removal efficiency of 93.0-99 .6% was achieved. 

Ergas et al. (1994) performed a study on the efficiency of a compost biofiltration 

system degrading dichloromethane. The column consisted of four sections with an inner 

/ 
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diameter of 15 cm and an overall height of 152 cm. Biofilters were found to be effective in 

degrading low concentrations of dichloromethene in the laboratory studies. Greater than 

98% removal efficiency was obtained at inlet gas concentrations of 3 and 50 ppmv and 

superficial velocities of 1 and 1.5 m3/m2·min corresponding to reactor residence times of 1 

and 0.7 min, respectively. As a result of acidification of the column to a pH of 4.86-6.66, a 

decline of removal efficiency from 95% to 51 % was observed in the first two sections of 

the column closest to the inlet when a 50 ppmv inlet concentration was used. However, 

the overall dichloromethane removal across the bed was still maintained at greater than 

98%. A biofilm model incorporating first order biodegradation kinetics provided a good fit 

to observed concentration profiles, and may prove to be a useful tool for designing 

biofiltration systems for low inlet concentrations of VOCs. 

Hodge and Devinny (1994) conducted bench-scale and continuous flow 

experiments to evaluate biofiltration in the treatment of waste gas streams contaminated 

with ethanol. The efficiency of three different packing materials (granular activated 

carbon, compost, and a mixture of compost and diatomaceous earth) was compared for 

different operating conditions. A mathematical model was developed that described the 

basic transport and biological processes functioning in each biofilter. For each column 

with an influent ethanol concentration of approximately 11,700 µg/L, the model 

predictions were in good agreement with experimental data for the lower loading 

conditions (79-154 g/m2·hr). However, for the higher loading conditions (256-272 

g/m2·hr), possible channeling effects caused variability in terms of ethanol concentration, 

resulting in completely different shapes in the concentration gradient profiles. 
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Social et al. (1994) investigated three microbial attachment media, which were 

channelized and pelletized media as well as a compost mixture medium, in biofilters for the 

treatment of air contaminated with toluene. They found that at an influent toluene 

concentration of 500 ppmv, all the three media achieved more than 95% removal 

efficiencies for toluene at an organic loading of 0.725 kg COD/m3-day with a residence 

time of 12 mins. 

Togna and Skladany (1994) evaluated the treatment of BTEX and petroleum 

hydrocarbon vapors using a field-pilot-scale biofilter. In their work, a biofilter containing 

30 ft3 of packing that had been acclimated for six months to actual SVE vapors was used 

to evaluate the effectiveness of using biofiltration to treat air contaminated with gasoline. 

TPH and BTEX removal efficiencies were determined for a range of TPH concentrations 

up to 4500 ppmv methane equivalents at vapor contact times of 30 seconds to 6 minutes. 

Benzene and BTEX removal efficiencies up to 95 and 90 percent, respectively, were 

observed at vapor contact times as low as 1 minute. TPH removal efficiencies of 75-85 

percent were observed at vapor contact times of 3-6 minutes. Higher removal efficiencies 

are attainable with increased vapor contact times, but may not be economically attractive. 

Apel et al. (1994) developed a biofilter for the biodegradation of gasoline vapors. 

The overall goal of this effort was to provide information necessary for the design, 

construction and operation of a commercial gasoline vapor biofilter. Experimental results 

indicated that relatively high amounts of gasoline vapor adsorption can occur during initial 

exposure of the biofilter bed medium (compost) to gasoline vapors (approximately 60 µg 

gasoline being adsorbed per g of bed medium at a 5 g/m3 gasoline concentration in the 

headspace at 40 °C). Biological removal occurred over a temperature range of 22-44 °C 
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with removal being completely inhibited at 54 °C. At lower gasoline concentrations (100 

ppm gasoline-in-air) the vapor removal rates were considerably lower than those at higher 

gasoline concentrations (15,000 ppm gasoline-in-air), indicating that substrate availability 

(i.e. transport) was limiting in the system. In addition, total BTEX removal over the 

operating conditions employed was 50-55%. Removal of benz:ene was approximately 

10-15%, while removal of the other members of the BTEX group was typically greater 

than 80%. 

Farmer et al. ( 1995) used a bench-scale biofiltration system to study the 

elimination of methyl ethyl ketone (MEK) from a waste air stream and to investigate the 

effects of various parameters on rate of removal. Three columns, packed with 13-mm 

diameter ceramic Berl saddles, were connected to allow the operation in series of desired 

air flow sequence. Through their study, the authors pointed out that using three columns 

in series instead of one column have several advantages, such as the regeneration of the 

column via microbial endogenous decay, and potential elimination of biofilter's plugging. 

Holt and Lackey (1995) conducted a study on the feasibility of using biofiltration 

to treat waste gas streams containing styrene and to determine the critical design and 

operating parameters. In their study, four reactors packed with composted chicken litter, 

pine bark, peat moss, and a combination of pine bark and composted chicken litter (1:1 

v/v) were used. The air stream empty bed contact time (EBCT) in each biofilter was 8 

minutes, with an inlet styrene concentration of 1000 ppmv. Experimental data revealed 

that two of the biofilters, one containing the composted chicken litter and the second 

containing the combination of chicken litter and pine bark, quickly adapted to the presence 
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of styrene and showed greater than 99% removal of the target compound. However, the 

removal efficiency of the peat moss and the pine bark biofilters averaged 27-34 % . 

Kopchynski et al. (1995) investigated the factors affecting the process performance 

of biofiltration in a laboratory study. In their work, MEK, xylene and hexane were selected 

as contaminants. Biofilm accumulation, rates of nutrient addition and chemical properties 

were evaluated. The air flow rate (71 Uhr) which yielded a 1 minute column residence 

time and the contaminant inlet concentration (1 g/L) were kept constant for all runs. The 

authors reported that on average, the fractional removal values for MEK, xylene and 

hexane were 0.68, 0.53 and 0.22, respectively. The fraction of contaminant removed 

decreased as Henry's law constants increased. Hence, the more volatile the compound the 

poorer the removal efficiency. 

Cost of Degradation of voes by Biofiltration 

In general, the total cost of the degradation of VOCs by biofiltration mainly 

depends on the total flow rate of waste gas to be treated, the total pollutants' 

concentration and the nature of the pollutants of concern. Also, there are other factors, 

such as the type of filter material, the regulatory requirements, the energy and manpower 

costs, which will affect the total cost of the degradation of voes by biofiltration. But, as 

mentioned by Leson and Winer (1991), an economic comparison of available air pollution 

control options should always be conducted on a case-by-case basis. 

Bohn (1992) stated that, compared to the overall cost of air pollution control by 

several methods, biofiltration has a considerable advantage. Although the actual costs vary 

with each case, a situation in which biofiltration is more expensive than the other methods 
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would be rare. The author reported that for biofiltration, the total cost per 1Q6 ft3 of air 

was $8, compared to $130 for incineration, $60 for chlorine or ozone oxidation, and $20 

for activated carbon with regeneration. However, the author did not present more specific 

infonnation about pollutants' concentration and the nature of the pollutants of concern. 

Togna et al. (1994) presented the estimated capital and operating costs for the 

treatment of 250 cfm of air containing up to 4000 ppmv (methane equivalents) of 

petroleum hydrocarbon vapors using biofiltration (with a fixed bed volume of 250 ft3), 

catalytic oxidation, or carbon adsorption with off-site carbon disposaVregeneration. 

According to two site-specific scenarios, biofiltration was the second least expensive in 

tenns of capital cost ($34,000 versus $55,000 for catalytic oxidation and $20,000 for 

carbon adsorption) and had the lowest-yearly operating expenses ($6,600-$7,800 versus 

$17,540-$23,240 for catalytic oxidation and $119,825-$174,800 for carbon adsorption 

with off-site disposal) of three technologies evaluated. The authors concluded that on a 

total project basis (considering both capital and operating costs), biofiltration offers the 

potential for significant cost savings, especially if the remediation efforts are expected to 

last for extended periods of time. 

Zurlinden and Cannel (1994) perfonned an economic analysis on biofiltration 

control of VOCs and made a comparison with other air pollution alternatives (catalytic 

oxidation, thennal oxidation, and carbon adsorption). Cost infonnation for biofiltration 

was derived from a pilot-scale study at a petroleum release site and for the other 

alternatives was obtained from equipment vendors or from the practical experience on the 

systems. In this analysis, the authors assumed that (1) flow rate of untreated soil vapor is 

50 cfm, (2) average concentration of TPH in untreated soil vapor is initially 200 ppm and 
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declines to TPH levels that do not need control in three years, (3) soil vapor is 

continuously extracted, (4) removal efficiency of 75 percent is required for regulatory 

compliance, and (5) maintenance cost of the four systems are neglected. Calculated capital 

cost for biofiltration, catalytic oxidation, thermal oxidation and carbon adsorption are 

$30,000, $45,000, $35,000, and $20,000, . respectively. At the projected TPH 

concentration in the soil vapor, the annual operating cost for carbon adsorption was 

estimated to initially be $20,000 and decrease to $15,000 when controls are not needed. 

However, the annual operating costs for biofiltration, catalytic oxidation and thermal 

oxidation of $3,000, $9,000 and $17,000, respectively, are assumed to remain steady 

during the 3-year remediation period. Total capital and operating costs for biofiltration, 

catalytic oxidation, thermal oxidation and carbon adsorption are $39,000, $72,000, 

$86,000, and $72,500, respectively. This cost comparison, as the authors concluded, 

indicates that the use of a biofiltration system in the later stages of remediation may result 

in significant cost savings. 

Modeling of the Degradation of VOCs by Biofiltration 

Speitel and McLay (1990) investigated treatment of gas streams contaminated with 

chlorinated solvents in a biofilter. Based on their research, they estimated the microbial 

kinetic coefficients (pseudo-first-order rate constants) for degradation of methane and 

chlorinated solvents. The authors concluded that the kinetic coefficients cannot be directly 

measured in situ during reactor operation; performance data must be fitted with models to 

indirectly estimate the coefficients. Estimates of the kinetic coefficients (0.0035 Umg VS-
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day for DCA; 0.0009-0.007 Umg VS-day for TCE), which are for the chlorinated 

solvents, are important because they permit comparisons to other work. 

Hodge et al. (1991b) developed two simple mathematical models to describe the 

removal of gaseous hydrocarbons by a biofiltration system. The first model was a 

first-order degradation model while the second one was a zero-order degradation model. 

Data used to test the models included that obtained when gasoline and diesel fuel vapors 

were fed to columns containing microorganisms supported on granular activated carbon 

and ethanol being fed to a column whose support matrix was garden waste compost. The 

ethanol/compost system was determined to be zero-order, while the gasoline and diesel 

fuel systems were better fitted with the first-order model. At an assumed influent 

concentration of 1000 mg/m3, the degradation rates for gasoline and diesel were reported 

to be 3.6 gm/m3/hr and 22 gm/m3/hr, respectively. The authors did note that dispersion 

may be a significant factor in determining the performance of the biofilter; however they 

did not consider it in their models. 

Utgikar et al. (1991) developed a mathematical model to describe the 

biodegradation of VOCs in their biofilter experiments. Numerical solutions of a 

mathematical model describing the steady-state biodegradation of VOCs in the biofilter 

were presented. Preliminary experimental data on the removal of toluene and methylene 

chloride were presented. It was determined that for an inlet gas flow rate of 0.17 5 m3 Is 

(370 ft3/min), a biofilter 3 min diameter and 5.3 min height is required for 90% removal 

of the toluene, methylene chloride and other contaminants of the leachate. 

Diks and Ottengraf (1991) studied the removal of dichloromethane within the 

concentration range of 0-10,000 ppm from waste gases in a biological tricking filter 



20 

experimentally as well as theoretically using a model. The simplified model they 

developed, the "Uniform-Concentration-Model", showed the predicted filter performance 

to be close to the numerical solutions of the model equations. The authors concluded that 

this model gives an analytical expression for the degree of conversion and can thus be 

easily applied in practice. 

Ockeloen et al. (1992) presented a simulation model of a fixed-film bioscrubber 

that may be used to predict the applicability, removal efficiency, operational parameters, 

and design requirements for different gaseous waste streams. The results of the 

simulations with numerical methods revealed that high removal efficiencies can be 

obtained for reasonably soluble compounds, regardless of whether the operation of the 

column is co-current or countercurrent. 

Hodge et al. (1992) presented the theoretical mathematical descriptions for the 

processes important in biofiltration. An explicit, one dimensional, numerical model was 

developed to predict VOC removal by biofiltration. In this model, the change of pollutant's 

concentration in the air phase is assumed to be the results of the processes of dispersion, 

advection, adsorption and biodegradation. First-order kinetics is also assumed in the 

biodegradation term. The model was tested on simplified problems which could be solved 

analytically. 

Shareefdeen et al. (1993) derived a mathematical model of the biofiltration process 

treating methanol vapor for predictive and scale-up calculations. This model was also 

validated by experimental data, which closely fit those predicted by the model. The 

experimental results showed that a methanol removal rate of 65.1-112.8 g/m3·h was 

achieved at an inlet methanol concentration of 6.11-6.57 g/m3 and a superficial velocity of 
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6.42-12.75 m/h. Both experimental data and model predictions suggested that the process 

would be limited by oxygen diffusion and methanol degradation kinetics. 

Schade and Maier (1994) developed a computer model (MBIOAIR) for the 

treatment of methyl ethyl ketone (MEK) in a biofiltration process. The model describes 

rates of removal of organics as a function of rates of transport of chemicals, cell mass 

distribution, kinetics of biodegradation, net cell mass accumulation resulting from the 

combined effects of growth and endogenous metabolism, and -availability of nutrients 

(nitrogen and phosphorus) that are essential for growth and metabolism. An important 

feature of the model is that it tracks the spatial distributions of biomass, nitrogen, and 

phosphate in the reactor train as a function of time. Biomass concentration is a critical 

variable. It dominates rates of biodegradation because cell mass growth is autocatalytic 

and results in exponentially increasing rates of biodegradation. Although the limiting 

substance for cell growth is usually assumed to be carbon, in a closed system such as the 

biofilter, it could also be nitrogen or phosphorus. For this reason the Monod equation was 

modified to include nitrogen and phosphorus as well as carbon as the possible limiting 

substrate. The model gave a reasonably good match to the trends observed in the pilot 

plant using microbial kinetic coefficients that had been measured independently in batch 

reactors and assuming an effectiveness factor of 1.0. The best match was obtained by 

using a very low endogenous rate coefficient. This was consistent with the observation 

that there was excessive accumulation of biomass to the point of partial plugging of the 

reactors when high mass loadings of chemicals were applied. In the pilot plant study, the 

test conditions included an MEK loading of 0.212 g/hr, an inlet MEK concentration of 
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10-320 ppmv, and an air flow rate of 54.0 m3/m2·hr, which corresponds to a residence 

time of 60 seconds. Overall removal of MEK was 97%. 

Deshusses et al. (1995) developed a novel model for the description of gaseous 

waste biofiltration. The model considers the reactor to be comprised of finite sections, for 

each of which transient mass balances are established and solved by numerical simulation. 

The elimination of methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK) vapors 

from air as single and mixed pollutants served as an example to illustrate both the model's 

response and its parametric sensitivity. With an air flow rate of 0.20-0.40 m3 /h, and a 

volumetric loading which varied from 44 to 88 m3/m3-h, the maximum elimination 

capacities were 121 g/m3-h for MEK and 30 g/m3·h for MIBK. Michaelis-Menten 

biodegradation kinetics were assumed to apply in the model. The model proved 

appropriate for describing most of the experiments undertaken and served as a basis for 

comprehensive understanding of biofilter operation. 

Hodge and Devinny (1995) discussed in detailed the model developed by Hodge et 

al. (1992). Several simplifying assumptions were presented for the development of the 

model which can be applied to the biofiltration process. Validation tests were also 

.. 
performed. This included model runs in which advection, dispersion, adsorption, and 

biodegradation each occurred individually while the others were set to zero. Mass 

balances were calculated comparing contaminant input to contaminant output plus 

adsorption and degradation. Both model calculations and experimental column results 

demonstrated that adsorption was the controlling removal mechanism during start-up 

conditions. In later stages of operation, the contaminant removal was dominated by 

biodegradation. Steady-state results were approached when input concentrations were 
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constant, packing material was saturated, and contaminant loading equaled biological 

degradation plus discharge. 

Problems in the Control of VOCs Using Biofiltration 

Although much work has been done on the control of VOCs using biofiltration, 

there are still some problems, listed below, which have not been attacked or addressed 

sufficiently: 

1) For the BTEX compounds, most research has been conducted using a single 

BTEX compound at a time such as toluene, or xylene instead of multiple 

compounds (Table 1). From a practical sense, it is necessary to investigate the 

behavior of all the BTEX compounds and any interactions. 

2) Compared to other filter media, such as GAC and DE, less research work 

regarding compost has been reported, especially concerning BTEX 

biodegradation. In fact, compost has several advantages over other filter 

media. For instance, it is very cheap and no nutrient addition is required. 

3) There has been little research concerning the comparison of a biofilter with a 

nutrient addition and a biofilter without a nutrient addition in the degradation 

of BTEX compounds. 

4) It is also not known what the key design criteria are. Nor is it known what kind 

of model can best be applied to a specific type of biofiltration technique for the 

BTEX compounds. These questions need to be answered in detail. 

5) There were few research papers which provide cost estimates for the 

degradation of BTEX compounds for a specific type of biofiltration technique. 



Table 1. Summary of Degradation of BTEX Compounds by Biofiltration 

Compounds Filter Media Applied Loading 
(mg/cm3-day) 

BTX inert plastic not reported 

gasoline GAC 0.07-3.11 

p-xylene glass sphe. (GS) 0.55-1.29 (GS) 
DE 2.37-3.09 (DE) 

p-xylene Pall rings 0.05 

toluene GAC not reported 

toluene compost not reported 
channelized not reported 
pelletized not reported 

BTEX not reported 0.01-1.30 

gasoline compost 28.8 

* Empty Bed Contact Time (EBCT). 

Inlet Concentration 
(µg/L) 

75-1,850 

705-33,467 

651-6,510 
651-6,510 

8,750 

38-76 

1,888 
1,507 
1,884 

20-450 

65,000 

Residence Time Elimination Efficiency Reference 
(mins) (%) 

not reported 32.6-78.6 Galaska et al. (1989) 

5.9-7.0 85-95 Medina et al (1992) 

5-10 (GS) 43-75 (GS) Vaughn et al. (1993) 
1.7-2.5 (DE) 73-88 (DE) 

not reported 46 Apel et al. (1993) 

0.02-0.07* >95 Gregg et al. (1993) 

12 >99 Sorial et al. ( 1994) 
12 80 
12 99 

0.5-6 90 Togna et al. (1994) 

3.4 50-55 (BTEX) Apel et al. ( 1994) 

N 
.j::.. 
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The above existing questions provide a guide for the objectives of this research 

project. These objectives are as follows: 

• to demonstrate the feasibility of eliminating a selected mixture of BTEX 

compounds by biofiltration, 

• to provide the data of elimination efficiencies from biofilters for the selected 

mixture of BTEX compounds, 

• to compare elimination rates of the selected mixture of BTEX compounds 

obtained from biofilters containing two different support media, 

• to present some design criteria which can be used in a full-scale biofilter, 

• to develop a model for predicting the elimination of the selected mixture of 

BTEX compounds by biofiltration, and 

• to estimate the cost of eliminating the selected mixture of BTEX compounds 

by biofiltration. 



CHAPTER III 

MATERIALS AND METHODS 

Description of the Experimental Apparatus 

In this study, two columns constructed from plexiglas pipes were employed as 

biofilter reactors. The columns, having an inside diameter of 3.1 cm and a length of 119 

cm, were packed with either compost or diatomaceous earth (DE) which served as support 

media for the growth of microorganisms. Seven sampling ports, spaced 18.5-22.5 cm 

apart, were placed along the length of each column. Two separate reservoirs, containing a 

mixture of three pure solvents of selected BTEX compounds (toluene, ethylbenzene, o-

xylene) and distilled water, respectively, were used to create the contaminated air stream 

which was sent to each column. The air flow rate to each column was controlled by 

hosecock clamps on the air inlet, outlet and waste lines. The influent concentration to each 

column was adjusted using the ratio of two air flow rates from the contaminant and distilled 

water reservoirs. Air flow rates were monitored by four air flow meters. The seed bacterial 

culture, which consisted of mixed liquor from the activated sludge system of a refinery 

wastewater treatment plant, was mixed with the compost or diatomaceous earth when the 

medium was packed into each column. Schematic diagrams of these two biofilters are 

shown in Figures 1 and 2. It is noted that the contaminated air stream was passed through ,~ 

the compost column in an upflow mode (Figure 1), but in a downflow mode to the DE 
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column (Figure 2). The countercurrent mode in the DE column would cause the flooding 

of the recirculation nutrient solution because the air flow would hold the liquid up in the 

DE column. 

Selection of Porous Filtration Materials 

In order for a biofilter to operate efficiently; the filter material must meet several 

requirements. First, it must provide optimum environmental conditions for the resident 

microbial population in order to achieve and maintain high degradation rates (Leson and 

Winer, 1991). Second, filter particle size distribution and pore structure should provide 

large reactive surfaces and low pressure drops (Leson and Winer, 1991; Douglass et al., 

1991; Shareefdeen et al., 1993). Third, compaction should be kept to a minimum, reducing 

the need for maintenance and replacement of the filter material (Leson and Winer, 1991). 

Fourth, it should have the characteristics of low energy consumption (Ottengraf, 1987) and 

low cost as well as ready availability (Shareefdeen et al., 1993). 

There are several materials which previous research has demonstrated to be suitable 

as filtration materials. These include granular activated carbon (GAC), compost, 

diatomaceous earth (DE), and soil. Since compost and DE are economical, they were 

selected for use in this study. The compost was obtained from a sample of backyard grass 

clippings, sieved (passed a #4 mesh sieve (4.75 mm), and retained on a #10 mesh 

sieve(2.00 mm)) and then mi?ced with a bulking agent (wood chips) to provide an 

appropriate porosity. The ratio of compost to wood chips was 85% to 15% on a volume 

basis. The DE was obtained from Manville Filtration and Minerals (Denver, CO). The 

general properties of these media are listed in Table 2. 



Table 2. General Properties of Compost and Diatomaceous Earth Media 

Property Compost Diatomaceous Earth 

Particle Size (mm) 2.00- 4.75 3.00- 10.00 

Bed Density (g/cm3) 627 513 

Porosity (%) 0.59 0.69 

Total Organic Carbon(%) 0.46 

Total Nitrogen (%) 0.93 

Total Phosphorus (%) 3.7 

Notes: (1) Data of compost are from experimental measurements. 

(2) Data of DE are from the manufacturer (Manville Filtration and Minerals, 

Denver, CO). 
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Selection of Contaminant Compounds 

BTEX refers to benzene, toluene, ethylbenzene, and xylenes (o-xylene, m-xylene 

and p-xylene). Among these compounds, benzene, toluene, ethylbenzene, and o-xylene are 

usually considered as representatives of gasoline in terms of their mass percent 

(Smoley,1992). Benzene was initially selected for use in this study, however, being the 

most volatile of the BTEX compounds, it was difficult to keep a consistent influent 

concentration during preliminary experiments. Therefore, toluene, ethylbenzene, and o

xylene were selected to be used in this study. The general physical and chemical properties 

of the BTEX compounds are presented in Table 3. 

Preparation of Two Reservoirs 

To create a contaminated air stream, a 400-mL glass bottle with a plastic screw on 

cap was used as the contaminant reservoir. This vessel contained 50 mL each of toluene, 

ethylbenzene and o-xylene (reagent grade, Fisher Scientific, Fair Lawn, NJ). A I-liter 

Erlenmeyer glass flask fitted with a rubber stopper was utilized as the humidification 

reservoir. This reservoir contained 800 mL of distilled water. These reservoirs were 

renewed periodically on an as-needed basis. 

Acclimation of the Microbial Culture 

Six liters of activated sludge from a refinery wastewater treatment plant were 

placed into three 4-liter glass bottles, aerated, supplied with an inorganic mineral solution, 

and injected with stock solutions of toluene, ethylbenzene and o-xylene on a daily basis. 
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Table 3. Physical and Chemical Properties of BTEX Compounds 1•2 

Property Benzene Toluene Ethyl benzene o-Xylene 

Empirical Formula: C6H6 C1Hs CsH10 CsH10 

Formula Weight: 78.11 92.14 106.17 106.17 

Boiling Point (°C): 80.10 92.14 136.20 144.40 

Henry's Law Constant: 0.00548 0.00674 0.00868 0.00535 

(atm·m3/mol, @25 °C) 

Log Koc: 1.69 2.05 1.98 2.11 

Log Kaw: 2.13 2.65 3.13 2.95 

Solubility in Water: 1800 524 206 204 

(mg/L, @25 °C) 

Specific Density: 0.87366 0.86233 0.86250 0.87596 

(@25 °C) 

Vapor Density: 3.19 3.77 4.34 4.34 

(g/L, @25 °C) 

Vapor Pressure: 95.2 22 10 10 

(mm Hg, @25 °C) 

Exposure Limit (ppm): 10 100 100 100 

(8 hour-OSHA Standard) 

Source: (1) Montgomery and Welkom (1990) (2) Nielsen (1980) 
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The flow rate of mineral solution added was about 200 mUday and the amount of each 

organic stock solution (200 µg/mL) added was 200 µg/day, resulting in a total mass 

loading of 600 µg/day. Before introducing the culture into the biofilters, this acclimation 

system was operated for at least one month. 

Preparation of the Mineral Media 

A mineral solution, similar to that selected by Apel et al. (1993), was used for the 

acclimation of the microbial culture and for the nutrient solution pumped through the DE 

column. The components of the mineral solution are listed in Table 4. The mineral solution 

was made up in tap water. All the chemicals (Fisher Scientific, Fair Lawn, NJ) were 

analytical grade or better. 

Start-up Procedure 

The compost column medium was prepared by mixing 530 grams of compost with 

wood chips with a size of 2-4 mm (on a 85% to 15% volume basis) and 20 mL of the 

acclimated bacterial culture. This mixture was placed into the column which was then 

connected to a contaminated air stream. The air flow rate to the column was then adjusted 

to the desired value. Gas phase samples were taken from the 7 sampling ports on the 

column after 30 minutes. 

To initiate the DE column, 482 grams of the Bio-Catalyst Carrier R-635 (Manville 

Filtration and Minerals, Denver, CO) was mixed with 20 mL of the acclimated bacterial 

culture, and the mixture was then placed into the column. A mineral solution was recycled 

through the column for 3 days. During the 3-day period, to supply a carbon source, the 



Table 4. Components of Inorganic Mineral Solution 

Chemical 

KH2P04 

(Nlii)2S04 

MgS04·7H20 

FeCb-6H20 

MnS04 

Concentration (mg!L) 

700 

600 

600 

1 

1 
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three organic stock solutions (200 µg/mL each) were injected into the top of the column 

with a 5-mL plastic syringe at a dose of 1 mUday each. After this period of time, the DE 

column was connected to a contaminated air stream which was adjusted to the desired air 

flow rate. Gas phase samples from the 7 sampling ports on the column were taken after 30 

minutes. 

Analytical Techniques 

Each analytical method discussed below was performed at the end of each 

experimental run (approximately every other week) unless indicated otherwise. The 

compost and DE $amples used in all the analytical procedures were not put back to the 

columns. 

Temperature and Humidity 

Daily temperature and humidity measurements of the influent and effluent from each 

biofilter were performed using a Digital Thermometer/Hygrometer (Model DTHl, Davis 

Instruments, Baltimore, MD) that had effective ranges of -30 to 200 °F and 20 to 90% 

Relative Humidity (RH). There was no effort made to control these parameters over the 

entire experimental period. 

Contaminant Concentrations 

The concentrations of toluene, ethylbenzene and o-xylene from the 7 sampling ports 

on each column were analyzed using an HP 5890 series II gas chromatograph equipped 

with a flame ionization detector and a 60/80 mesh Carbopack C. column (Supelco, 
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Bellefonte, PA). The GC was connected to an HP 3396 series II integrator. Helium was 

selected as the carrier gas and was utilized at a flow rate of 20 mUmin. The oven 

temperature started at 180 °C for 9 minutes, and then increased at a rate of 15 °C/min until 

the final temperature of 195 °C was reached. Under these operating conditions, the 

retention times of toluene, ethylbenzene and a-xylene were about 4.0, 8.0 and 14.0 

minutes, respectively. Each sample was injected into the GC from a 250-µL gas tight 

syringe (Hamilton Company, Reno, NV) using an injection volume of 200 µL. Gas 

standards were prepared through (1) placing 30 µL of each BTEX compound into a 40-mL 

vial filled with acetone (Fisher Scientific, Fair Lawn, NJ), (2) shaking the stock solution for 

15 minutes at room temperature (-25 °C), (3) transferring different volumes of the stock 

solution to a series of 40-mL vials (standard samples) containing 20 mL of distilled water, 

and (4) shaking these standard samples for 2 hours at room temperature (-25 °C). 

Preliminary study has shown that there were no significant differences among the 

equilibrium times of 2, 8 and 24 hours. Henry's law constants (25 °C) of 0.0067 4 

atm·m3/mol for toluene, 0.00868 atm·m3/mol for ethylbenzene and 0.00535 atm-m3/mol for 

o-xylene (Montgomery and Welkom, 1990) were used to calculate the resulting gas phase 

concentrations in each standard sample. The detection limits of these compounds were 

approximately 15 µg/L each. 

Water Content 

The water content of each medium (compost or DE) was measured on 1 gram of 

compost or 10 pieces of DE taken from each biofilter. The procedure followed was that 
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described in section 209F of Standard Methods (APHA et al., 1985). 

Pressure Drop 

Pressure drop across each column was determined with an Air Velocity Meter 

(Model 400, Dwyer Instruments, Inc., Michigan City, IN). This meter can also function as 

a manometer with a range of 0-10 inches of water. 

Protein Content 

Protein content on the compost medium was analyzed using the Bio-Rad Protein 

Assay. The detailed procedure was described in the User's Manual of the Bio-Rad Protein 

Assay (Kit II, Bio-Rad Laboratories). 

Volatile Solids 

The procedure described in section 209F of Standard Methods (APHA et al., 1985) 

was used to determine the volatile solids content of the DE medium. For each measurement 

of volatile solids, 10 pieces of the DE medium was taken from the DE column. 

Bacterial Population Counts 

A standard plate count method presented by Benson (1967) was followed to 

perform the bacterial population counts on the compost medium. The sample's extraction 

. ' 

procedure includes (1) taking about 10 grams of compost from the compost column, (2) 

adding 300 mL of distilled water, (3) mixing the solution in a blender for 3 minutes at a 

high speed (22,000 rpm), (4) settling the solution for 45 - 60 minutes, and (5) taking 1 mL 
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of the supernatant as the sample for the standard plate count. In addition, 20-mL of nutrient 

agar (Difeo Laboratories, Detroit, MI) was poured into each 100x15 mm sterilized

disposable plastic Petri dish (Fisher Scientific, Fair Lawn, NJ), which were incubated at a 

room temperature (-25 °C) for 24-48 hours. 

Total Organic Carbon 

The total organic carbon (TOC) of the compost medium was performed on about 

0.5 gram of compost from the column, using the inexpensive titration method for TOC 

measurement. The analytical procedure was described by Gaudette and Flight (1974). 

Kjeldahl Nitrogen 

Five pieces of DE were taken from the column to determine the kjeldahl nitrogen 

of the DE medium. The analytical procedure was described in section 420B of Standard 

Methods (APHA et al., 1985). After the digestion step all five pieces of DE and the 

residual of the digestion reagents along with 200 mL of distilled water were poured into a 

distillation flask to complete the analysis. 

Nitrogen and Phosphorus 

Inorganic nitrogen and phosphorus in the nutrient solution recirculated through the 

DE column were measured utilizing the procedures described in sections 420B.4d and 

424D of Standard Methods (APHA et al., 1985). In addition, total nitrogen and 

phosphorus of the compost were also analyzed following the same procedures. 
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Biofilm Appearance 

A scanning electron microscope (JSM-35U, JEOL) was used to obseive the 

biofilm's appearance on the compost and DE media. This was done at the beginning and 

end of the study. 

Experimental Design 

Adsorption Study 

To separate the physical adsorption from biological elimination on each medium 

(compost and DE), breakthrough tests were performed using 700 cm3 of compost or DE 

placed into a glass column with a diameter of 5.2 cm and a height of 33.0 cm. The column 

and each medium (compost or DE) were sterilized in an autoclave for 30 minutes before 

use. The autoclave temperature and pressure were 248 °C and 15 psi, respectively. The 

influent concentration of the contaminated air stream was controlled at about 1000 

µg VOCs/L with an air flow rate of 42-48 mUmin, resulting in a residence time of 10 

minutes. The tests were conducted until complete exhaustion of the columns occurred, that 

is, the point where the ratio of influent concentration to effluent concentration was 1.0. 

Compost Column Study 

The compost column was operated at two different influent concentrations (low and 

high) in an upflow mode. There was no nutrient addition to the column. At the low influent 

concentration, the air flow rate was varied from 25 to 200 mUmin, resulting in four 

residence times of 20, 10, 5 and 2.5 minutes. For the high influent concentration, the range 
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of the air flow rates was 25-100 mUmin, corresponding to three residence times of 20, 10 

and 5 minutes. No nutrients were added to the column. These experimental conditions are 

listed in Table 5. 

Diatomaceous Earth Column Study 

Most experimental conditions were the same as for the compost column (two levels 

of influent concentration, 1000 µg VOCs/L and 2000 µg VOCs/L, four levels of residence 

time, 20, 10, 5, and 2.5 minutes at each influent concentration); however, in this study, a 

recirculating nutrient solution at a flow rate of 5 mUmin was added to the top of the 

column. The contaminated air stream was introduced into the top of the column. The two 

flow streams entering the column operated in a co-current mode. The experimental 

conditions are presented in Table 6. 

Tracer Study 

To determine a dispersion coefficient in each biofilter, 30 mL of methane gas (99%, 

v/v) served as a tracer. It was injected into the inlet of each column with a 30 cc syringe 

(Becton, Dickinson & Co., Yale, CT). The carrier gas was clean compressed air with a 

flow rate of 25-100 mL/min. The outlet concentration of each column was monitored using 

an HP 5890 series II gas chromatograph equipped with a flame ionization detector over 

time until the methane was completely flushed from the column. 
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Table 5. Experimental Conditions for Compost Column 

Experimental Run No. 1 2 3 4 5 6 7 

Influent Cone. (µg VOCs/L) 1000 1000 1000 1000 2000 2000 2000 

Air Flow Rate (mUmin) 25 50 100 200 25 50 100 

Residence Time (mins) 20 10 5 2.5 20 10 5 

Applied Loading Rate 0.10 0.20 0.40 0.80 0.20 0.40 0.80 

(mg VOCs/cm3 ·day) 
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Table 6. Experimental Conditions for DE Column 

Experimental Run No. 1 2 3 4 5 6 7 8 

Influent Cone. (µg VOCs/L) 1000 1000 1000 1000 2000 2000 2000 2000 

Air Flow Rate (mUmin) 25 50 100 200 25 50 100 200 

Residence Time (mins) 20 10 5 2.5 20 10 5 2.5 

Applied Loading Rate 0.13 0.26 0.52 1.04 0.26 0.52 1.04 2.08 

(mg V0Cs/cm3·day) 



CHAPTER IV 

RESULTS AND DISCUSSION 

Based on the experimental design described in Chapter III, four individual 

experiments were conducted. These experiments are: 

• adsorption study - to separate the physical adsorption capacity of a filter 

material (compost or diatomaceous earth) from the total elimination capacity in 

a biofilter, allowing the biological elimination capacity of a filter material to be 

determined, 

• compost column study - to investigate the behavior of the compost biofilter at 

two levels of inlet gas concentrations (-1000 and 2000 µg VOC/L), and four 

levels of residence time (20, 10, 5.0 2.5 minutes), 

• diatomaceous earth column study - to investigate the behavior of the 

diatomaceous earth biofilter at two levels of inlet gas concentrations (-1000 

and 2000 µg VOC/L), and four levels of residence time (20, 10, 5.0 2.5 

minutes), and 

• tracer· study - to determine a dispersion coefficient in each biofilter ( compost 

and diatomaceous earth), so that a mathematical model with a dispersion term 

can be used for predicting the behavior of a biofilter. 

In addition, based on the above experimental results, further efforts were placed 

43 
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on the following aspects: 

· • modeling - to develop a model for predicting the elimination of the selected 

mi~ture of BTEX compounds by biofiltration, 

• statistical analysis - to determine the main factors on the degradation of the 

selected mixture of BTEX compounds by biofiltration, and 

• cost analysis - to estimate the cost of eliminating the selected mixture of BTEX 

compounds by biofiltration. 

Adsorption Study 

Breakthrou~h Curve for Compost 

The result of the breakthrough test is illustrated in Figure 3. It can be seen that 

CJCi reached a value of 0.51 in an elapsed time of 3.3 hours, and for samples taken after 

9.6 hours, the value of CJCi was 1.0. Using this breakthrough curve, a physical adsorption 

capacity of 0.032 mg VOCs/gm compost can be determined by the integration of the area 

in front of curve. The raw data and calculation of the physical adsorption capacity of 

compost are listed in Appendix A and C, respectively. 

Breakthrou~h Curve for Diatomaceous Earth 

Figure 4 shows the breakthrough curve of the DE medium. Unlike the compost 

medium, the physical adsorption capacity of the DE was only 0.003 mg VOCs/gm DE 

after the integration of the area in front of curve. The time required before reaching 

breakthrough of the DE was less than 1.0 hour. This result indicates that the physical 
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adsorption capacity of the DE medium is an order of magnitude less than that of the 

compost medium, and the saturated time of the DE medium is also shorter than that of the 

compost medium. The raw data and calculation of the physical adsorption capacity of DE 

is shown in Appendix B and C, respectively. 

Compost Column Study 

Average Gas Influent and Effluent Concentrations 

During the entire period of the compost column study, the influent and effluent gas 

concentrations from the column were monitored on a daily basis, and the air samples taken 

from the other sampling ports were also measured daily. The raw input air was analyzed 

periodically and found no VOCs present in detectable quantities. The order of the 

experimental runs was No. 1, 2, 3, 5, 6, 7, and 4. The average gas influent and effluent 

concentrations are shown in Figure 5. The low influent concentration was controlled at 

approximately 1000 µg VOCs/L for Runs 1 to 4 and the high influent concentration was' 

maintained at about 2000 µg VOCs/L for Runs 5 to 7. Within each experimental run, it 

was difficult to control the gas influent concentration at a constant value, mainly due to 

the variability of the air source pressure. The daily records of gas influent and effluent 

concentrations are provided in Appendix D. The average contaminant concentrations from 

the other sampling ports are listed in Appendix E. 

Records of Column Temperature and Humidity 

The temperature and humidity of the column were also measured daily. Figures 6 
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and 7 are the records of the average temperature and humidity, respectively, of the column 

for the entire experimental run. For the 189-day period, the temperatures and humidities of 

both the influent and effluent air were close, and the average temperature of the column 

was about 70 °F, which is appropriate for the growth of bacteria. The average humidity, 

however, was about 80%, which is a little higher than the optimum range of about 50-

60% given by Ottengraf (1986). 

Effect of Applied Loading on Elimination Rate 

The effect of applied loading on the elimination rate is illustrated in Figure 8. A 

45° line was included as a point of reference. For a given applied loading, a data point 

which is close to the 45° line has a high elimination rate or elimination efficiency. As the 

applied loadings ranged from 0.11 to 0.85 mg V0Cs/cm3 compost·day with the low inlet 

concentration, the elimination rates were 0.11-0.28 mg VOCs/cm3 compost-day. 

However, the elimination rates were 0.08-0.37 mg VOCs/cm3 compost·day at the high 

inlet concentration when the applied loadings varied from 0.22 to 0.88 mg VOCs/cm3 

compost-day. It was found that the higher the inlet concentration, the lower the 

elimination rate, for applied loadings less than about 0.65 mg VOCs/cm3 compost·day. 

The reason could be the toxicity of BTEX compounds to the bacteria. As the applied 

loading was raised above 0.65, however, the elimination rate obtained at the lower inlet 

concentration was less than that of the high inlet concentration. One possibility for this 

phenomenon is when running at the low inlet concentration, a larger air flow rate is 

needed than at the high inlet concentration to maintain the higher applied loading, resulting 
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in a lower residence time for the column. In th.is case, the residence time (2.5 minutes) 

might be too low to achieve the higher elimination rate obtained using the higher inlet 

concentration with a residence time of 5.0 minutes. The maximum elimination rate 

obtained from the compost column was 0.34 mg VOCs/cm3 compost-day, which was 

lower than elimination rates of 0.48-0.72 mg BTEX/cm3 compost-day obtained by 

Kamarthi and Wellington (1994). 

Effect of Applied Loading on Elimination Efficiency 

Figure 9 shows that for applied loadings of 0.11-0.85 mg VOCs/cm3 compost-day, 

the elimination efficiencies of the VOCs were 100-31.4% for the low inlet concentration. 

But, at the applied loadings ranging from 0.22-0.88 mg VOCs/cm3 compost·day, the 

efficiencies were 37.2-41.2%, respectively, when fed the high inlet concentration. This 

revealed that the three VOCs could be more completely removed under the condition of a 

low inlet concentration when the applied loading is less then about 0.70 mg VOCs/cm3 

compost·day. In addition, the error bars in this figure shows that the line depicting the low 

inlet concentration might be still above the line of high inlet concentration after an applied 

loading of 0.70 mg VOCs/cm3• Kamarthi and Wellington (1994) reported an elimination 

efficiency of 70-90% (BTEX) for a compost column, but they did not present the range of 

the applied loading. 

Comparison of Average Elimination Efficiencies of Three BTEX Compounds 

Under the most experimental conditions (Runs 2-7), there were differences in the 

average elimination efficiencies of the three BTEX compounds in the compost column 
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(Figure 10). Ethylbenzene had the highest average elimination efficiency of 47.4-100%, 

and o-xylene had the lowest average elimination efficiency of 12.1-93.8%. The average 

elimination efficiency of toluene was 31.8-96.6%. 

Effect of Residence Time on Elimination Efficiency 

In Figure 11, it is seen that with the residence times varying from 2.5, 5, 10 to 20 

minutes, the resulting elimination efficiencies, in terms of total VOCs, were 31.4, 56.2, 

97.0 and 100% at the low inlet concentration. This means the shorter the residence time, 

the lower the elimination efficiency. But with the high inlet concentration, the elimination 

efficiencies were 37.2, 39.5 and 41.2% at the residence times of 5, 10 and 20 minutes, 

respectively. These values actually are the same statistically. The shortest residence time 

used in the compost column was 2.5 minutes. Togna (1994) reported an elimination 

efficiency of 90% for BTEX at a residence time of 0.5-6.0 minutes. A BTEX removal of 

70-90% was found by Kamarthi and Wellington (1994) at a 1.2-min residence time. 

Effect of Air Flow Rate on Pressure Drop 

The effect of air flow rate on the pressure drop through the column is presented in 

Figure 12. At air flow rates of 25, 50 and 100 mUmin, the pressure drops were 0.05, 0.09 

and 0.11 in. H20, respectively. It is apparent that under the condition of the high inlet 

concentration, the smaller the air flow rate the lower the pressure drop. From a view of 

energy costs, the lower the air pressure the better the system. A filter material with a large 

porosity is usually considered to have the characteristic of low pressure drop. 
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Water Content of Compost Column 

The values of the average water content of the compost column are shown in 

Figure 13. For the column, the water content of the top portion were higher than those of 

the bottom portion over time. This was because the column was operated in an upflow 

mode, and water was one of the end products in the degradation process. During the first 

28 days, the difference in water content between the top and the bottom of the column, 

operated in an upflow mode, was small. However, from day 46 on, the difference 

gradually increased until day 116. After that , the difference seemed to be constant. 

Total Organic Carbon of Compost 

Figure 14 presents the total organic carbon content of the compost medium. 

During the first 28 days, the total organic carbon (TOC) values from both the top and 

bottom of the column were small, and there was little difference between them. This 

implied that the formation of biofilm was small along the length of the column during. this 

period. After day .46, there was a significant increase on the TOC for both the top and 

bottom. This indicated that there was more biofilm formed in the column. Since the 

column was operated in an upflow mode, the bottom portion of the column got more 

substrates than the top portion; therefore the TOC contents (or quantities of biofilm) in 

the bottom portion were larger than those in the top portion. On day 147, the TOC 

difference between the top and the bottom reached its maximum. 
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Protein Content of Compost 

The protein content of the compost medium is provided in Figure 15. In general, 

the greater the protein content, the greater the biofilm in the column. For the bottom 

portion of the column, the protein content increased with time. For the top portion of the 

column, however, the protein content did not increase significantly until day 46, and after 

day 63, it begun to decrease until day 172, and then remained constant. Like the TOC 

content, the protein content also revealed the fact that for the compost column there was 

more biofilm in the bottom portion than in the top portion. 

Bacterial Population Counts of Compost 

The results of the bacterial population counts of the compost medium are plotted 

in Figure 16. During the first 63-day period, the Standard Population Counts (SPCs) from 

the bottom portion of the column were less than those from the top portion. One 

possibility was that the concentration of VOCs in the bottom was higher than that in the 

top, which might inhibit the growth of the bacteria in the bottom portion. However, from 

day 116 through day 189, the SPCs from the bottom were larger than those from the top. 

The explanation might be that during this period, the bacteria in the bottom portion had 

been acclimated, and were able to obtain more substrates than the top portion, which was 

beneficial to the growth of the bacteria. 

Column Weight Loss During Experiment 

It was found that the column weight decreased over the experimental period 
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(Figure 17). For each experimental run, the value of the weight loss varied from 2 to 16 

gm. The reason for the weight loss might be that in the loss rate of CO2 and H20, 

produced in the degradation of the contaminants in the compost biofilter, was higher than 

that of the gain rate of biofilm. 

Separation of Physical Adsorption and Biological Degradation 

Figure 18 shows the separation of the physical adsorption and biological 

elimination capacities of the compost. During the acclimation period (Run No. 0), the total 

elimination capacity was 6.977 mg VOCs/gm·compost, while the physical adsorption 

capacity was only 0.032 mg VOCs/gm compost (based on data from adsorption study). 

Therefore, the biological elimination capacity could be considered the most significant 

portion (6.945 mg VOCs/gm compost) in this period. Throughout Runs 1-3 and 5-7, it 

was assumed that if contaminants were physically adsorbed to the compost medium, they 

would finally be degraded by the microorganisms. Thus, the maximum physical adsorption 

capacity in each of these periods was 0.032 mg VOCs/gm compost, and the total 

elimination capacity can be attributed to the biological elimination capacity during 

subsequent runs on the compost column. 

Biofilm Appearance of Compost 

Figures 19-21 show the electron micrographs ofthe biofilm's appearance in the 

compost. There were no significant differences among the raw compost, the compost from 

the top portion of the column and that from the bottom of the column. 
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Diatomaceous Earth Column Study 

A vera~e Gas Influent and Effluent Concentrations 

As with the compost column, during the period of the DE column study, the 

influent and effluent gas concentrations from the column were monitored daily, and the air 

samples taken from the other sampling ports were also measured on a daily basis. The 

order of the experimental runs was 1, 2, 3, 5, 6, 7, 4, and 8. The average gas influent and 

effluent concentrations are shown in Figure 22. In this portion of the study, the low 

influent concentration was controlled at approximately 1300 µg VOCs/L for Runs 1 to 4 

and the high influent concentration was maintained at about 2200 µg VOCs/L for Runs 5 

to 8. It was difficult to control the gas influent concentration at a constant value through 

each experimental period, mainly due to the variability of the air source pressure. This was 

similar to a problem encountered during the compost system experiments. The daily 

records of the influent and effluent gas concentrations throughout the experimental period 

for the DE system are presented in Appendix F. The average contaminant concentrations 

from the other sampling ports are provided in Appendix G. 

Records of Column Temperature and Humidity 

The temperature and humidity of the column were also measured on a daily basis. 

Figures 23 and 24 are the records of the average temperature and humidity of the column 

for each run. For the entire 97-day period, the temperatures and humidities of both the 

influent and effluent air were fairly close except those on day 62 (for temperature) and day 

18 (for humidity). The average temperature of the column fell within a range of 50-72 °F, 
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which is appropriate for the growth of bacteria. It was noted that the temperature was 

gradually decreased from 72 to 50 °F over time due to the seasonal effect on lab 

temperatures. The average humidity of the column was about 80%. In addition, since the 

DE column was run in a co-current, downflow mode, and because there was a water-seal 

in the bottom of the column for the nutrient recirculation, the values of the humidity in the 

air outlet (bottom part) were higher than those in the air inlet (top part) over the 

experimental period. 

Effect of Applied Loading on Elimination Rate 

The effect of applied organic loading on the elimination rate is shown in Figure 25. 

As the applied loadings varied from 0.20 to 1.29 mg VOCs/cm3 DE·day at the low inlet 

concentration, the elimination rates were 0.20-1.25 mg VOCs/cm3 DE·day. The 

elimination rates ranged 0.30-2.35 mg VOCs/cm3 DE·day under the high inlet 

concentration when the applied loadings varied from 0.30 to 2.39 mg VOCs/cm3 DE·day. 

At any fixed applied loading, there was very little difference in the elimination rates 

between the low inlet concentration and a high inlet concentration. It should be noted that 

the maximum elimination rate obtained in the DE column study was 2.35 mg VOCs/cm3 

DE·day at an applied loading of 2.39 mg VOCs/cm3 DE·day. Vaughn et al. (1993) 

reported that an elimination rate of 1.73-2.72 mg p-xylene/cm3 DE·day was achieved at an 

applied loading of 2.37-3.09 mg p-xylene/cm3 DE·day. 
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Effect of Applied Loading on Elimination Efficiency 

Figure 26 shows that for the applied organic loadings of 0.20-1.29 mg VOCs/cm3 

DE·day, the elimination efficiencies of the VOCs varied from 99.6 to 96.7% while 

operating with the low inlet feed concentration. As the applied loadings increased to 0.30-

2.39 mg V0Cs/cm3 DE·day (high inlet concentration), the elimination efficiencies ranged 

from 100 to 98.6%. As can seen in Figure 25, all of the error bars are very small, and the 

values of elimination efficiency, no matter if at low or high inlet concentration, are the 

same statistically. An elimination efficiency of 73-88% for p-xylene was obtained at an 

applied loading of 2.37-3.09 mg p-xylene/cm3 DE-day (Vaughn et al., 1993). 

Comparison of Average Elimination Efficiencies of Three BTEX Compounds 

There are no significant differences in the average elimination efficiencies of the 

three BTEX compounds in the DE column (Figure 27). From Run 1 through Run 8, the 

elimination efficiencies of toluene were always 100%, and ethylbenzene had a relatively 

lower elimination efficiencies (88.2-100% ), and the range of elimination efficiencies for o

xylene was 92.5-100%. 

Effect of Residence Time on Elimination Efficiency 

In Figure 28, it can be seen that with the residence times of 20, 10, 5 and 2.5 

minutes, the resulting elimination efficiencies were 99.6, 97.8, 99.7, and 96.7% at the low 

inlet concentration and 100, 99.0, 99.0, and 98.6%, respectively, with the high inlet 

concentration. As seen in this figure, a greater than 95% elimination efficiency can still be 
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obtained at a fairly low residence time of 2.5 minutes. According to the data given by 

Vaughn et al. (1993), an elimination efficiency of 73-88% for p-xylene was obtained at a 

residence time of 1.7-2.5 minutes. 

Effect of Air Flow Rate on Pressure Drop 

The effect of air flow rate on the pressure drop across the column is presented in 

Figure 29. While holding the air flow rate at 25, 50 and 100 mUmin, the pressure drops 

were 0.02, 0.03 and 0.30 in. H20 at the low inlet concentration, and 0.80, 4.5 and 3.0 in. 

H20 at the high inlet concentration, respectively. However, the pressure drops in the 

compost column were 0.05, 0.09, and 0.11 in. H20 at the high inlet concentration. This 

indicates that the DE medium has a higher pressure drop compared to the compost 

medium. Most of these values in Figure 29 indicated that the larger the air flow rate, the 

higher the pressure drop. On the other hand, a pressure drop across the column might also 

be increased over the elapsed time due to accumulation of the biomass on the medium. 

Water Content of Diatomaceous Earth Column 

The values of the average water content at the top and bottom of the column are 

shown in Figure 30. During the 94 day experimentation period, the differences in water 

content between the top and bottom of the column gradually increased since one of the 

end products of biodegradation is water. The values from the top samples were higher that 

those from the bottom samples. This was because the DE column was operated in a co

current mode, where the nutrients solution was introduced onto the top of the column. In 

addition, the recycle solution provided a better environment (more water content in the 



,-... 
0 
£ 
d ..... 
'-' 

8 

6-

g. 4 -+· 
i-.. 

Q 

~ 
fZl 
fZl 

~ 
~ 

2 

-.- low inlet cone. 

-a- high inlet cone. 

-----------------------

0 +- -------Jl-~----=A========~=======--=!----~------1 
0 25 50 75 100 125 

Air Flow Rate (mL/min) 

Figure 29. Air Flow Rate versus Pressure Drop in Diatomaceous Earth Column 
00 
N 



100 -

---.- TOP Sample 
80 -

---a- BOTTOM Sample 

,-.., 
'$. 
':;:' 60 -
i:: 

-~ 

~ 
~ 40~ ~~~ 

0 ------- D - D 0 ---------El 

---

20 + 

0 ---j 

0 20 40 60 80 100 

Elapsed Time (days) 

Figure 30. Water Content of Diatomaceous Earth Column 
00 w 



84 

bottom portion of the DE column than that in the compost column) for the transport of 

the contaminants. This may be one of the causes that the DE column had a higher 

elimination efficiency than that of the compost column. 

Biomass on Diatomaceous Earth 

The values of the biomass (as VS) on the DE medium are provided in Figure 31. 

Throughout the experimental period of 96 days, there was only a small increase in biomass 

in the bottom portion of the column; however a general trend of increasing biomass in the 

top portion of the column was observed. The primary reason was that the bacteria in the 

top portion of the column were able to get more substrates and inorganic nutrients than 

those in the bottom portion of the column due to the downflow and co-current flow mode 

of operation. Therefore the majority of the biofilm formed in the top of the column. 

Kjeldahl Nitrogen Content of Diatomaceous Earth 

The kjeldahl nitrogen content of the DE medium is plotted in Figure 32. There was 

a significant increase of the kjeldahl nitrogen content in the top portion of the column 

during the first 18 days, and after that, the kjeldahl nitrogen content gradually decreased 

with elapsed time. Like the biomass content, there was a little increase in kjeldahl nitrogen 

in the bottom portion of the column during the whole 96 day period. 

Column Weight Gain During Experiment 

The column weight gain, using the DE medium, is shown in Figure 33. After each 

experimental run, the column was weighed using a balance. The column weight gain was 



100 

I [ 
-A- TOP Sample 

I I -. 80 ri;i 
I I -s- BOTTOM Sample Q 

$ 
s 
OJ) 60 --.... 

r.l) 

:> 
OJ) 

s --ri;i 
Q 

40 r ~~ s:: 
0 
t'll 
t'll 
~ s 
0 .... 

20 i:Q 

8 D 8 
0~ 0 1 I 8 =t= 8 1 I I I -I 

0 10 20 30 40 50 60. 70 80 90 100 

Elapsed Time (days) 

Figure 31. Biomass on Diatomaceous Earth 
00 
Ul 



0.15 

,.._, 
CZ) 

> 
1 
?2 0.1 _,_ 
bl) s 
~ 
s 
~ 
bl) 
0 

.t:l 0.05 ~z 
~ 
Q) 

~ 

J -.- TOP Sample 

-s- BOTTOM Sample -_ 

,,'--. 

-~ 

0-+--~~-+-~~-+-~---+-~~-+-~~-+--~~--+~~~1--~~+---~~-<-~----< 

0 10 20 30 40 50. 60 70 80 90 100 

Elapsed Time (days) 

Figure 32. Kjeldahl Nitrogen Content ofDiatomaceous Earth 
00 
0\ 



30 -

25 + 

,-.... 

s 
OJ} 20 -'._/ 

~ ·ca 
c., 
~ 

15 -OJ} ..... 
Q) I I ~ -- . 

~ 
Cl) 

-~ 
10 -..... 

0 u 

5 

0 _L_~ __ _L_ ___ +- l ____ J_·-~-+---_J__ __ L._ _____ 4 

1 2 3 5 6 7 

Experimental Run No. 

Figure 33. Diatomaceous Earth Column's Weight Gain During Experiment 
00 
-......) 



88 

assumed to be caused by a biomass gain on the DE medium. A large weight gain was 

measured following Runs 1, 2 and 5, however, a relatively small weight gain from Runs 3, 

6 and 7 was recorded. 

Average Consumption Rates of Nitrogen and Phosphorus 

Figure 34 presents the average consumption rate of nutrients (nitrogen and 

phosphorus) in the recirculation solution. During the entire 96 day experiment, there was a 

higher average consumption rate of total inorganic nitrogen than that of total inorganic 

phosphorus. This revealed that more inorganic nitrogen was required than inorganic 

phosphorus in the degradation process. 

Replacement of Nutrient Solution 

The nutrient solution to the DE column was replaced in a weekly basis. ·None of 

these three BTEX compounds was measured in the used nutrient solution. In addition, no 

major increases in the removal of total VOCs were seen on the day after replacing the 

nutrient solution. 

Biofilm Appearance of Diatomaceous Earth 

Figures 35-37 show the SEM photographs of biofilm's appearance on the 

diatomaceous earth. There was more biofilm on the sample from the top portion of the 

column than that on the sample from the bottom portion of the column. There was no 

significant different between the raw DE medium and the sample from the bottom of the 

column. 
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Tracer Study 

Dispersion Coefficient of the Compost Column 

As shown in Figure 38, when the air flow rate were 25, 50 and 100 mUmin, the 

maximum concentration of methane at the outlet was detected at the 14, 10, and 7 

minutes, respectively. The raw data are presented in Appendix H. Based on these curves, 

the dispersion coefficients of the compost column, shown in Table 7, can be determined. 

The detailed calculation procedure is listed in Appendix J. 

Dispersion Coefficient of the Diatomaceous Earth Column 

From Figure 39, it can been seen that when the air flow rates were 25, 50 and 100 

mUmin, the maximum concentration of methane at the outlet was detected at 9, 7, and 5 

minutes, respectively. The raw data are listed in Appendix I. Similar to the compost 

system, the dispersion coefficients (Table 8) of the DE column can be obtained following 

the detailed calculation procedure shown in Appendix J. 

Recovery Efficiency of Tracer 

To determine the recovery efficiencies of the tracer (methane) in the tracer studies, 

mass balances were performed. The results of the mass balances are listed in Table 9. The 

average recovery efficiencies of methane for the compost and DE columns are 61.0% and 

40.2%, respectively. This reveals that methane is not a completely inert tracer. This may 

call into question the absolute values of the dispersion coefficients calculated in this work. 

Thus, in order to obtain a more accurate value of dispersion coefficient, further effort with 
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a completely inert tracer (i.e. argon) is necessary. 
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Table 7. Dispersion Coefficient of the Compost Column 

Air Flow Rate 

(mUmin) 

25 

50 

100 

Residence Time 

(mins) 

20 

10 

5 

Dispersion Coefficient 

(cm2/sec) 

1.47 

2.08 

7.37 

96 
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Table 8. Dispersion Coefficient of the DE Column 

Air Flow Rate 

(mUmin) 

25 

50 

100 

Residence Time 

(mins) 

20 

10 

5 

Dispersion Coefficient 

(cm2/sec) 

3.85 

7.22 

10.92 

98 



Biofilter: 

Air Flow Rate: 
(mUmin) 

Input (mg CHi) 

Output (mg CHi) 

Recovery (%) 

Table 9. Recovery Efficiency of Tracer 

Compost 

25 50 100 25 

19.31 19.31 19.31 19.31 

7.94 15.21 12.17 6.10 

41.1 78.8 63.0 31.6 

99 

DE 

50 100 

19.31 19.31 

9.33 7.87 

48.3 40.8 
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Modeling 

Development of Models 

To develop a model to simulate the transport and fate of the selected BTEX 

compounds in a biofiltration system, the following assumptions were made: 

• Flow of the waste stream is one-dimensional and steady-state; 

• The porous medium in each biofilter is homogeneous, saturated and isotropic; 

• There is no interaction among the three selected BTEX compounds, and; 

• There is no contaminant in the water effluent in a diatomaceous earth biofilter. 

Figure 40 represents the distribution of the total concentration of VOCs in a 

biofilter as part of a mass balance. A conservation of mass statement for an elemental 

volume is: 

[
mass accumulation] [mass gain rate due to flux] [mass loss rate due to ] 
rate in a segment = coming in to a segment - flux leaving a segment 

[
mass loss rate due to ] [mass loss rate due to ] 

- adsorption in a segment - biodecay in a segment 

The above statement can also be expressed as: 

where, 

Ra = mass accumulation rate of total VOCs in a segment, [M T 1] 

ac 
=eSAz

at 

(1) 

(2) 



Clean Air Outlet 

C + (~~) t,.z 

z /:,.z 

C 

Waste Air Inlet 

Figure 40. Distribution of Total VOCs in a Biofilter for Mass Balance -0 -



£ = porosity of the filter material, dimensionless 

S = cross-sectional area of the column, [L 2] 

z = distance in the air flow direction, [L] 

C = total gas-phase concentration of voes, [M L-3] 

t = time, [T] 

Rm = mass gain rate of total voes due to the flux coming to a segment, 

ac =ESUC-ESD
at 

U = interstitial gas velocity, [L T 1] 

D = dispersion coefficient for total voes, [L2 T 1] 
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(3) 

= mass loss rate of total Voes due to the flux leaving a segment, [M T 1] 

a(c+&ac) 
=esu(c+&ac)-eso az 

dZ dZ 
Rout 

=£SU C+Az- -£SD -+Az-· ( ac) (ac a2cJ 
az dZ dz 2 

(4) 

Roos = mass loss rate of total voes due to the adsorption in a segment, [M T 1] 

= (1-E)SAz(acs) 
dt ads 

Cs = total solid-phase concentration of Voes, [M L-3]; Cs = pbQ 

The adsorption term, (acs) ' has the following three expressions: 
dt ads 

(acs) = (a(pbq)) (ac) = b ~(ac) 
dt ads ac dt p dt 

(5) 

(5a) 
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or (5b) 

or (5c) 

Pb = bulk density of the filter material, [M L-3] 

q = total solid-phase concentration of voes, dimensionless 

~ = linear adsorption coefficient 

n, K = Freundlich adsorption coefficients 

Oo, b = Langmuir adsorption coefficients 

A preliminary isotherm study showed that the Langmuir adsorption kinetics was 

the best for the compost medium. 

Rmo = mass loss rate of total voes due to the biodecay in a segment, [M T 1] 

= (1-e)SAz (acs) 
at bio 

The biodecay term, (acs) ' has the following three expressions: at bio 

(acs) =ko 
at bio 

(Zero-order Model) 

or (First-order Model) 

or (Monod Model) 

ko = zero-order reaction rate constant 

k1 = first-order reaction rate constant 

(6) 

(6a) 

(6b) 

(6c) 
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km, Ks = Monod rate constants 

Substituting Eqs. (2)-(6) into Eq. (1), and rearranging: 

ac =Da 2
; _ 0ac -(1-e)[(oS) +(acs) J 

dt dZ dz E dt ads dt bio 

(7) 

ac (ac) At steady-state, dt = 0 and a/ ads= 0, so Eq. (7) becomes: 

0a2
~.,. 0ac _ (1-e) (acs) =O 

dZ . dZ E dt bio 

(8) 

As mentioned above, the biodecay term, (a;s ) . , has three possible expressions, 
ut b,o 

and for each case, the dispersion coefficient, D, may be considered or ignored. Therefore, 

for Eq. (8), the following three cases are further developed: 

(1) When the biodecay term follows the zero-order kinetics, Eq. (8) becomes: 

• If D = 0, then 

where, 

!~ =-(l~E)(~) 

C = C0 - ( l ~ E) ( ~ ) z 

C0 = total influent gas-phase concentration of VOCs, [M L-3] 

• If D -:I= 0, then 

a2c -(u) ac _ (~) (5-) =O 
dZ 2 D dZ E D 

(9) 

(10) 

(11) 

(12) 
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(13) 

where, 

Q =(1:E)(~) 

p = (~) 

Ce = total effluent gas-phase concentration of voes, [M L-3] 

h = height of biofilter, [L] 

(2) When the biodecay term follows the first-order kinetics, Eq. (8) becomes: 

(14) 

Assume: 

where, 

kp = partition coefficient of total voes between solid-phase and gas-phase 

thus 

(15) 

where, 

• If D = 0, then 

(16) 



• If D :f:: 0, then 

where, 

a2c -(u)ac -(~)(~)c=o oz2 D oz £ D 

-u+.Ju2 -4*v 
ri=------

2 

u =-(~) 

v=-(1:")(~) 
A1 and A2 = constants 
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(17) 

(18) 

(19) 

To determine the values of A1 and A2, the following two boundary conditions are 

considered: 

• z = 0, C = Co = A1 + A2 

• z = h, C =Ce= A1 e"'h + A2 e".}.h 

(3) When the biodecay term follows Monod kinetics, Eq. (8) becomes: 

(20) · 

• If D = 0, then 



ac (1-e) (km) ( c J or az =- -£- U K;+c 

where, 

, K 8 
K =

s k p 

ic ~C + fdC=-(~) (km) J~ 
C0 C C0 £ U o 

• If D:;t: 0, then 

a 2 c _ (u) ac _ (~) (km) ( . c J = 0 az2 D az £ D K. + C 
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(21) 

(22) 

(23) 

(24) 

Because of the complexity of Eqs. (23) and (24), it was difficult to find analytical 

solutions. The solutions of the remaining four equations, Eqs (11), (13), (17), and (19), 

derived from the above development of models are summarized in Table 10. 

Prediction of Experimental Results 

To test and utilize the models shown in Table 10 for the prediction of experimental 

results, the same procedure, reported by Hodge et al. (1991b), was followed. These 

authors determined the degradation rate constants (ko and k1 ') by using all their 
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Table 10. Mathematical Models of Biofiltration 

Reaction Order Dispersion Coef. Mathematical Model 

Zero D=O C = C0 - ( l: £) ( ~ ) z 

Zero D¢0 C =C.- ( Q)z + ( C, + (Qhl P)-C0 )<,l'Z-t) 
p ePh -l 

First D=O C=C0 e 
-(1~£)(i} 

First D¢0 C = A1 e'iZ + A2 e'2z 
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experimental data. They then reapplied these constants to the models to fit the data. For 

the compost column, the average value of ko is 2.1349 µg/L-sec (zero-order kinetics) and 

the average value of k1' is 0.0037 sec·1 (first-order kinetics), while for the DE column 

these values become 4.8157 µg/L-sec (zero-order kinetics) and 0.0203 sec·1 (first-order 

kinetics). A complete list of ko and k1' is presented in Appendix K. Similarly, the values of 

coefficients, P, Q, r1, r2, A1, and A2, summarized in Table 11, were also determined with 

all the experimental data, and then tested with the models using the same experimental 

data. A complete list of the coefficients developed considering dispersion is provided in 

AppendixL. 

Thus, the above four equations can be used to predict the experimental results. 

The experimental data and predicted values from the equations are listed in Appendix M. 

Plots of these results are provided in Figures 41-52. 

It is necessary to point out that some of the plots shown in Figures 44-45 are not 

reasonable. In these cases, those models with a dispersion coefficient are hard to accept, 

where the predicted values go up at the point of 112-cm distance in the compost biofilter. 

Since the two boundary conditions of each column were considered for the development 

of the model (Eq. 13) and determination of A1 and A2 (Eq. 19), which might be the cause 

of the unreasonable prediction. Another possibility is that the values of dispersion 

coefficient are not accurate due to a poor recovery efficiency of tracer so that the models 

in these experimental conditions do not work. 
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Table 11. Summary of Mathematical Model's Coefficients" 

Biofilter Run No. Zero-Order Kinetics First-Order Kinetic 

p Q rl r2 Al A2 

Compost: 

1 0.0639 1.0092 0.0846 -0.0207 -0.0077 1018 

2 0.0899 0.7133 0.1020 -0.0121 -0.0025 1013 

3 0.0507 0.2013 0.0569 -0.0061 -0.1094 1079 

5 0.0639 1.0092 0.0846 -0.0207 0.0886 2155 

6 0.0899 0.7133 0.1020 -0.0121 0.0078 1989 

7 0.0507 0.2013 0.0569 -0.0061 0.2995 2127 

DE: 

1 0.0208. 0.5620 0.0602 -0.0394 -0.0120 . 1489 

2 0.0222 0.2997 0.0483 -0.0262 -0.1812 1338 

3 0.0293 0:1981 0.0471 -0.0178 -0.8022 1168 

5 0.0208 0.5620 0.0602 -0.0394 -0.0317 2199 

6 0.0222 0.2997 0.0483 -0.0262 -0.4436 2230 

7 0.0293 0.1981 0.0471 -0.0178 -1.4130 2195 

" Considering the effect of the dispersion coefficient (D :t:- 0). 
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Regression Analysis 

To determine the best model for each biofiltration system, regression analysis on 

the models in Table 10 was done. The various types of regression analysis used are as 

follows: 

(1) Simple linear regression analysis: 

• For Eq. (11), C = Co - (l~E) (~ )z, calculate the coefficient of determination 

directly using the following formula (Olson, 1987): 

r2 = SS regr = SS regr 

SSC SS regr + SS error 

(25) 

(26) 

(27) 

where, 

r2 = coefficient of determination 

SS c = total variation in C 

SS regr = sum of squares due to regression 

ss error = error sum of squares 

C; = fitted value 

C=meanof C; 

C; = observed value 
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c-E )( k; J 
• For Eq. (17), C = C0 e - -e- U z, make the transformation first, that is: 

(28) 

Then, calculate a coefficient of determination of Eq. (28) using the Eqs. (25)-(27). 

(2) Multiple linear regression: 

(Q) (C +(Qh/ P)-C J • For Eq. (13), C = C0 - p z + ·. e · ePh -I O (epz_l), make the 

where, 

transformation first, that is: 

_ ( Ce + (Qh I P) - C0 J 
a2- Ph 

e -I 

Z1 = z 

Zi = (Ce +(Qh! P)-Co J epz 
ePh -l 

(29) 

Then, calculate a coefficient of multiple determination using the following formula (Olson, 

1987): 

2 SS regr SS regr 
R = -- = ---'--

SSroraz SS,egr + SS,es 
(30) 

(
A -)2 

SS,egr = I. C; - C (31) 
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. ( ,.. )2 SS,es, = I Ci -Ci (32) 

where, 

R2 = coefficient of multiple determination 

SS total = total variation in C 

SS reg, = sum of squares due to regression 

SS ,es = residual sum of squares 

Ci = fitted value 

C =mean of Ci 

Ci = observed value 

• For Eq. (19), C = A1 e'iZ + A2er;z, make the transformation first, that is: 

(33) 

where, 

Ai, A2 = constants 

All the values of r2 and R2 are listed in Table 12. The higher the value of r2 or R2, 

the better the model. It can be seen from Table 12 that the zero-order model with a non-

zero value of dispersion coefficient is the best model for the compost column, and for the 

DE column, the first-order model with a zero value of dispersion coefficient is the best 

model. But, performing ANOVA on these values of r2 and R2, it can be seen that for the 

compost column, there are no significant differences among these models, and for the DE 
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Table 12. Coefficient of Determination from Regression Analysis 

Biofilter: Compost DE 

Model: (1) (2) (3) (4) (1) (2) (3) (4) 

Run No. 

1 0.983 0.958 0.988 0.944 0.691 0.990 0.623 0.774 

2 0.857 0.701 0.877 0.829 0.614 0.988 0.589 0.773 

3 0.765 0.964 0.931 0.986 0.492 0.762 0.529 0.632 

5 0.637 0.556 0.695 0.560 0.620 1.000 0.579 0.825 

6 0.954 0.609 0.979 0.615 0.503 · 0.986 0.556 0.788 

7 0.511 0.832 0.722 0.937 0.468 0.792 0.513 0.649 

AVG.: 0.785 0.770 0.865 0.812 0.565 0.920 0.565 0.740 

Notes: 

Model (1) -- C = C0 - ( l : E) ( ~ ) z 

-(1~E )(j} 
Model (2) -- C = C, e => In C = In C, - (1: £) ( j ), 

Model(3) -- C=C0 -(Q)z+(Ce+(Qh/P)-Co)(epz_l) 
p ePh -1 
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column, there are significant differences among these models. The results of ANOV A are 

presented in Appendix N. 
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Statistical Analysis 

In order to determine what main factors influence the degradation of BTEX 

compounds, one of the SAS (Statistical Analysis System) software, ANOV A (Analysis of 

Variance), was used for the analysis of the experimental data from both biofilters. The 

target items, which include air influent concentration, residence time (or air flow rate), and 

type of filter material, were analyzed against elimination efficiency for each experimental 

run, where the value of ex (significance level) was assumed to be 0.05. 

Analysis of Variance (ANOV A) 

To perform the ANOV A, the experimental data needs to be tabulated as shown in 

Appendix 0. Three factors, residence time, level of influent concentration, and type of 

filter material, were then evaluated individually. 

Generally, ANOV A is a statistical procedure to determine whether means from 

two or more samples are drawn from populations with the same mean. The basic steps for 

performing the ANOV A are as follows: 

• Suppose two hypotheses: 

Ho: U1 = U2 = ••• =Un (i = 1, 2, ... , n) 

where, 

H0 = null hypothesis 

HA = alternative hypothesis if Ho is false 

ui = mean elimination efficiency under i level of an evaluation item 
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n = maximum level number of the evaluation item 

• If the p-value or Observed Significance Level (OSL) is larger than a, then H0 is 

accepted and it can be concluded that there is no effect of the evaluation item 

on the elimination efficiency. 

• If the p-value is less than a, then Ho is rejected (or HA is accepted) which 

means that there is effect of the evaluation item on the elimination efficiency. 

The outputs of ANOVA are listed in Appendix P. These results are summarized in 

Tables 13-15, and show: 

• For the compost and DE columns, residence time has an effect on the 

elimination efficiency under the conditions of low influent concentration but 

there is no residence time effect on the elimination efficiency under the 

conditions of high influent concentration (Table 13). However, checking these 

results with Figures 11 and 28 in Chapter IV, only one of these results, in 

which the test condition was the DE medium with a low influent concentration, 

is not reasonable. In other words, the null hypothesis in this case should be 

accepted and residence time should have no significant effect on the elimination 

efficiency. The reason for getting the result from ANOV A might be that at 

least one of the variance ratios among these data sets is still relatively high (i.e. 

d\!<:l-2.5 = 6.8). Therefore, the null hypothesis is rejected even though the mean 

of each data set is close each other. 

• Air influent concentration has an effect on the elimination efficiency in the 

compost column. But for the DE column, there is no effect of air influent 
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concentration on the elimination efficiency except for a residence time of 2.5 

minutes (Table.14). 

• When running at residence time of 10-20 minutes at the low influent 

concentration, there is no effect of type of filter material on the elimination 

efficiency. But there is an effect of type of filter material on the elimination 

efficiency under the conditions of the low influent concentration with residence 

times of 2.5-5.0 minutes. For the condition of the high influent concentration, 

no matter what the residence time, the type of filter material has an effect on 

the elimination efficiency (Table 15). 



Table 13. Effect of Residence Time on Elimination Efficiency 

. Test Conditions 

Filter Level of Inf. Cone. 

Compost 

Compost 

DE 

DE 

Notes: 

Low 

High 

Low 

High 

P-value 

1.17E-29 . 0.05 

0.0660 0.05 

4.37E-05 0.05 

0.0818 0.05 

1) Low level of influent concentration = - 1000 µg/L 

2) High level of influent concentration = - 2000 µg/L 

3) Residence times = 20, 10, 5.0 and 2.5 mins 

4) H0 : U20 = U10 = U5 = U2.5 

Rejected 

Accepted 

Rejected 

Accepted 

Yes 

No 

Yes 

No 
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Table 14. Effect of Air Influent Concentration on Elimination Efficiency 

Test Conditions P-value 

Filter Residence Time 

Compost 20mins l.79E-25 0.05 Rejected Yes 

Conipost 10mins 3.76E-15 0.05 Rejected Yes 

Compost 5.0mins 0.0026 0.05 Rejected Yes 

DE 20mins 0.3475 0.05 Accepted No 

DE 10mins 0.0693 0.05 Accepted No 

DE 5.0mins 0.0723 0.05 Accepted No 

DE 2.5 mins 0.0319 0.05 Rejected Yes 

Notes: 

1) Low level of influent concentration = - 1000 µg/L 

2) High level of influent concentration = - 2000 µg/L 

3) Ho: Ur.ow = UHigh 

4) HA: = Ho is not true 
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Table 15. Effect of Type of Filter Material on Elimination Efficiency 

Test Conditions P-value H.Q 

Level of Inf. Cone. Residence Time 

Low 20mins 0.2458 0.05 Accepted No 

Low 10mins 0.6032 0.05 Accepted No 

Low 5.0 mins 2.93E-12 0.05 Rejected Yes 

Low 2.5 mins l.26E-11 0.05 Rejected Yes 

High 20mins 6.45E-20 0.05 Rejected Yes 

High 10mins 1.22E-13 0.05 Rejected Yes 

High 5.0 mins 1.04E-23 0.05 Rejected Yes 

Notes: 

1) Low level of influent concentration = - 1000 µg/L 

2) High level of influent concentration = - 2000 µg/L 

3) Ho: Ueompost = UoE 

4) HA: H0 is not true 
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Cost Analysis 

Biofiltration versus Other Alternatives 

Currently there are several technologies which are commonly used for the removal 

of VOCs from the gas-phase. These include: 

• biofiltration 

• activated carbon 

• oxidation 

• incineration 

Information on the capital and operating costs of these technologies gathered from 

the literature is summariz.ed in Tables 16-20 and Figures 53-54. These data show that 

biofiltration can offer a considerably lower total cost compared to the other alternatives, 

especially in terms of operating cost (Tables 17-18). Griffin and Paff (1995) stated that 

from an operational, maintenance, and capital basis, biofiltration is the least expensive 

technology. As mentioned in Chapter II, the actual costs of these technologies are mainly 

dependent on the gas flow rate, the contaminant concentration and nature, the type of 

filter material, the regulatory requirements, and the energy and manpower costs. 

Cost Estimation of Biofiltration 

The exact cost value of biofiltration is difficult to be predicted; however, the total 

cost of biofiltration should include both capital and operating costs, which can be 

expressed in the following equation: 

Ct=Cc +Co 



where, 

Ct = total cost of biofiltration 

Cc = capital cost of biofiltration, including the costs of column's material, 

equipment, filter material, and pipeline system. 
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Co= operating cost of biofiltration~ including the costs of electricity, manpower, 

chemicals, and replacement of filter material. 

To estimate the cost of biofiltration, the technique known as the Work Breakdown 

Structure (WBS) was utilized. Based on the definition of WBS from Oberlender (1993), a 

WBS is a graphical display of the project that shows the division of work in a multi-level 

system. The number of levels in a WBS will vary, depending upon the size and complexity 

of the project. The smallest unit in the WBS is a work package. A work package must be 

defined in sufficient detail so the work can be measured, budgeted, scheduled, and 

controlled. The WBS is the foundation of a project management system. The WBSs of the 

two biofiltration systems are illustrated in Figures 55-56. 



Table 16. Cost Comparison of VOCs Control - Part I 

Technology 

Incineration 

Chlorine 

Ozone 

Activated Carbon (with regeneration) 

Biofiltration 

Source: Bohn (1992) 

• In 1991 dollars 

Total Cost· 

($ /106 ft3 of air treated) 

130 

60 

60 

20 

8 
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Table 17. Cost Comparison of VOCs Control - Part II 

Technology Capital & Installation Cost Yearly Operating Cost 

Carbon Adsorption $20,000 $119,825 - $174,800 

Catalytic Oxidation $55,000 $17,540 - $23,240 

Biofiltration $34,000 $6,600 - $7,800 

Source: Togna and Skladany (1994) 

Air Aow Rate = 250 cfm 

Concentration of Petroleum Hydrocarbon = 4000 ppmv (methane equivalents) 
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Table 18. Cost Comparison of VOCs Control - Part III 

Technology 

Carbon Adsorption 

Catalytic Oxidation 

Thermal Oxidation 

Biofiltration 

. Source: Zurlinden and Carmel (1994) 

Air Flow Rate = 50 cfm 

Capital Cost Annual Operating Cost 

$20,000 $15,000 - $20,000 

$45,000 $9,000 

$35,000 $17,000 

$30,000 $3,000 

Concentration of Total Petroleum Hydrocarbon = 200 ppmv 
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Table 19. Costs of Biofiltration for VOCs Control - Part I 

Author (Year) 

Liebe (1989) 

Kersting (1992) 

Joziasse (1992) 

Investment Cost 

($ /m3/hr) 

4.3 -4.9 

4.9 - 7.1 

326 - 4,348* 

Source: Groenestijn and Hesselink (1993) 

• $/m3 bed 

Operational Cost 

($ /1000 m3) 

0.27 - 0.97 

0.24- 0.40 

0.27 - 2.72 
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Table 20. Costs of Biofiltration for VOCs Control - Part II 

Country 

Gennany 

Netherlands 

USA 

Source: Leson and Winer (1991) 

Capital Cost 

($ /ft2 filter area) 

25- 95 

25 -95 

55-90 

Operating Cost 

($ /105 ft3 off-gas) 

0.60- 1.50 

0.60- 1.50 

0.30- 0.60 
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In order to establish the work package for each level, the following assumptions 

were made for both systems: 

• Air Flow Rate: Qg = 50 ft3/min = 1,415 Umin 

• Gas Influent Concentration: Ci = 200 ppm = 782 µg/L (Total VOCs) 

= 20 ppm = 78 µg/L (Total VOCs) • Gas Effluent Concentration: Ce 

• Elimination Rate of Compost: NcoM = 0.20 mg/cm3·day (from the compost 

column study) 

• Elimination Rate of DE: 

(1) Compost Column 

Total volume of filter required: 

NnE = 1.00 mg/cm3 -day (from the DE compost 

study) 

Vr= Qg(Ci- Ce)/NcoM = 1415(782 - 78)*60*24/(0.20*1000) = 7,174,138 cm3 

Porosity of compost: 

e = 0.59 (from measurement of compost in a laboratory) 

Total bed volume required: 

V = V rl(l-e) = 717 4138/(1 - 0.59) = 17,497,897 cm3 

Total pore volume in bed: 

V£ = V - Vr= 17497897 - 7174138 = 10,323,759 cm3 

Height of column required: 

H=250cm 

Number of columns required: 

n=4 

Sectional area of column: 



S = (V/n)/H = (17497897/4)/250 = 174,997.9 cm2 

Diameter of column: 

d = sqrt(4*S/7t) = sqrt(4*174997.9/3.14) = 149 cm 

Check: 

Residence time of air: 

t = V JQg = 10323759/1415000 = 7.30 mins 

Lett= tmm = 10 mins (from the compost column study), then 

Ve= t*Qg = 10*1415000 = 14,150,000 cm3 

V = VJE = 14150000/0.59 = 23,983,051 cm3 

Yr= V - Ve= 23983051 - 14150000 = 9,833,051 cm3 (or 12.83 yd3) 

H=300cm 

S = (V/n)/H = 19,985.9 cm2 

d= 160cm 

Applied Loading= Qg*Ci/Vc = 0.16 mg/cm3·day 

Vessels: 

• For the water vessel (as a humidification reservoir), the assumptions were: 

Diameter of the vessel = 50 cm 

Height of the vessel = 100 cm 

• For the BTEX vessel (as a contaminant reservoir), the assumptions included: 

Diameter of the vessel = 50 cm 

· Height of the vessel= 100 cm 

Piping: 

• For water, the assumptions were: 
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Diameter of pipe = 25 mm 

Length of pipe = 10 m 

Material of pipe = PVC 

• For air, the assumptions included: 

Diameter of pipe = 25 mm 

Length of pipe = 50 m 

Material of pipe = PVC 

Sitework: 

• Utilities: 

Number of air compressor = 1 

Number of water pump= 0 

• Valves: 

Number of valve= 10 

Diameter of valve = 25-100 mm 

• Flowmeters: 

Number of flowmeter = 8 

Diameter of flowmeter = 25-100 mm 

(2) DE Column 

Total volume of filter required: 

Vr = Qg(Ci - Ce)/NoE = 1415(782 - 78)*60*24/(1.0* 1000} = 1,434,828 cm3 

Porosity of DE: 

E = 0.69 (from measurement of DE in a laboratory) 

Total bed volume required: 
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V = Vtl(l-£) = 1434828/(1 - 0.69) = 4,628,476 cm3 

Total pore volume in bed: 

VE= V - Vf = 1434828 - 4628476 = 3,193,649 cm3 

Height of columns required: 

H=200cm 

Number of column required: 

n=2 

Sectional area of column: 

S = (V/n)/H = (4628476/2)/200 = 11571.19 m2 

Diameter of column: 

d = sqrt(4*Sht) = sqrt(4*11571.19/3.14) = 121 cm 

Check: 

Residence time of air: 

t = VJQg = 3193649/1415000 = 2.26 mins 

Lett= twin= 2.5 mins (from the DE column study), then 

VE= tQg = 2.5*1415000 = 3,537,500 cm3 

V =VJ£= 3537500/0.69 = 5,126,812 cm3 

Vf = V - VE= 1589312 cm3 (or 56.54 ft3) 

Since the bed density is 32 lbs/ft3 (from the manufacturer's manual of diatomaceous 

earth), the total mass of DE required is: 

Mass= 56.54*32 = 1,809 lbs 

H=225 cm 

S = (V/n)/H = 11,392.91 cm2 
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d = 120 cm 

Applied Loading= Qg*Ci!Vt = 1.00 mg/cm3·day 

Vessels: 

• For the water vessel (as a humidification reservoir), the assumptions were: 

Diameter of the vessel = 50 cm 

Height of the vessel = 100 cm 

• For the BTEX vessel (as a contaminant reservoir), the assumptions included: 

Diameter of the vessel = 50 cm 

Height of the vessel = 100 cm 

• For the nutrient vessel, the assumptions were: 

Piping: 

Diameter of the vessel = 50 cm 

Height of the vessel = 100 cm 

• For water, the assumptions were: 

Diameter of pipe = 25 mm 

Length of pipe = 20 m 

Material of pipe = PVC 

• For air, the assumptions included: 

Diameter of pipe = 25 mm 

Length of pipe = 50 m 

Material of pipe = PVC 

Sitework: 

• Utilities: 
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Number of air compressor = 1 

Number of water pump = 1 

• Valves: 

Number of valve= 14 

Diameter of valve= 25-100 mm 

• Flowmeters: 

Number of flowmeter = 8 

Diameter of flowmeter = 25-100 mm 
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The above design results are listed in Tables 21-22. The capital cost of the 

compost column (-$22,400) is significantly lower than that of the DE column (-$32,200). 

The main reason is that the cost of the DE medium (-$12,200) is very expensive 

compared to that of the compost medium (-$170). 

Since operating costs of the two systems are difficult to predict, referring to the 

values in Tables 17-18, a ratio of 15% of capital cost to operating cost was used to predict 

the operating costs: 

For the compost system, Co= 15%Cc = 0.15*22399 = 3,360 US$ 

For the DE system, Co= 15%Cc = 0.15*32,175 = 4,826 US$ 

Obviously, compared to the compost system, the nutrient recirculation in the DE system 

will cause an increase in the operating cost. 

Thus, the total costs of these two systems are: 

For the compost system, Ct= Cc+ Co= 22,399 + 3,360 = 25,759 US$ 

For the DE system, Ct = Cc+ Co = 32; 175 + 4,826 = 37,001 US $ 
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It is noted that, based on the above calculation, the total cost of the compost 

system (-$26,000) is lower than the value of $40,600-41,800 (Togna and Skladany,1994), • 

and $33,000 (Zurlinden and Carmel, 1994). But, the total cost of the DE system 

(-$37 ,000) is within these literature values. 
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Table 21 Capital Cost of the Compost Column 

Item in WBS Quantity/Capacity Cost (US$) 
Unit Price Total Price 

Biofilter 
Filter 12.83 yd3 13.04/yd3 167 
Column (Steel) 1,500 gallon, n = 4 2,350/ea. 9,400 

Vessels (Steel) 
Water 275 gallon, n = 1 375/ea. 375 
BTEX 275 gallon, n = 1 375/ea. 375 

Piping (PVC) 
Water 1", 30 ft 9.65/ft 290 
Air 1 ", 150 ft 9.65/ft 1,448 

Sitework 
Utilities 

Compressor 50 ft3 /m, n = 1 · 3,760/ea. 3,760 
Valves 1-4", n = 10 480/ea. 4,800 
Flowmeters 1-4",n=8 223/ea. 1,784 

I.= 22,399 

Notes: (1) The unit cost of the compost was from James et al. (1990). 

(2) The unit cost of the air compressor was from Grainger General Catalog: 

Industrial and Commercial Equipment and Supplies, W. W. Grainger, Inc., 

(1991). 

(3) All the other unit costs were from Mossman (1995). 

(4) An inflation rate of 3% per year was used to bring prices up to 1995 level. 
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Table 22 Capital Cost of the DE Column 

IteminWBS Quantity/Capacity Cost (US$) 
Unit Price Total Price 

Biofilter 
Filter 1,809 lbs 6.75/lb 12,211 
Column (Steel) 1,500 gallon, n = 2 2,350/ea. 4,700 

Vessels (Steel) 
Water 275 gallon, n = 1 375/ea. 375 
BTEX 275 gallon, n = 1 375/ea. 375 

Piping (PVC) 
Water 1",60ft 9.65/ft 579 
Air I", 150 ft 9.65/ft 1,448 

Sitework 
Utilities 

Compressor 50 ft3/m, n = 1 3,760/ea. 3,760 
Water Pump 10 gpm, n = 1 223/ea. 223 

Valves 1-4", n = 14 480/ea. 6,720 
Flowmeters 1-4", n = 8 223/ea. 1,784 

I.= 32,175 

Notes: (1) The unit cost of the diatomaceous earth was from Swartz. (1995). 

(2) The unit costs of the air compressor and water pump were from Grainger 

General Catalog: Industrial and Commercial Equipment and Supplies, 

W.W. Grainger, Inc., (1991). 

(3) All the other unit costs were from Mossman (1995). 

(4) An inflation rate of 3% per year was used to bring prices up to 1995 level. 



CHAPIBR V 

CONCLUSIONS 

This project was designed to investigate the degradation of contaminated air 

streams containing a selected mixture of BTEX compounds (toluene, ethylbenzene, and o

xylene) by biofiltration. The objectives of this study included: 

1) to demonstrate the feasibility of eliminating a selected mixture of BTEX 

compounds by biofiltration; 

2) to provide the data of elimination efficiencies from biofilters for the selected 

mixture of BIBX compounds; 

3) to compare elimination rates of the selected mixture of BTEX compounds 

obtained from biofilters containing two different support media; 

4) to present some design criteria which can be used in a full-scale biofilter; 

5) to develop a model for predicting the elimination of the selected mixture of 

BIBX compounds by biofiltration; and 

6) to estimate the cost of eliminating the selected mixture of BTEX compounds 

by biofiltration. 

To achieve the above objectives, two biofilters (compost and diatomaceous earth) 

were built and run at two levels of inlet concentration (-1000 and 2000 µg VOCs/L), and 

four levels of residence time (20, 10, 5.0, and 2.5 minutes) in the Environmental 
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Engineering Laboratory at Oklahoma State University for over two years. Through 

investigation of the biofilters on a lab-scale, the major findings of this research are as 

follows: 

1) The elimination of selected BTEX compounds by biofiltration from a 

contaminated air stream is a feasible and effective method. For the selected 

BTEX compounds, this technology can provide between 31.4-100% 

elimination efficiency in terms of total VOCs at an applied loading of 0.11-0.88 

mg VOCs/cm3 compost-day, and 96.7-100% at an applied loading of 0.20-2.39 

mg VOCs/cm3 DE·day, respectively. 

2) For the selected BTEX compounds, the ranges of the elimination rates were 

0.11-0.37 mg V0Cs/m3-day· for the compost biofilter and 0.20-2.35 mg 

VOCs/m3-day for the DE biofilter. Under the same experimental conditions, 

such as applied loading, residence time ( or air flow rate) and influent gas 

concentration, the DE column offered a higher elimination rate. 

3) The main design criteria for the degradation of selected BTEX compounds 

using biofiltration are gas influent concentration, residence time ( or air flow 

rate), and type of filter material. For the compost column, there are effects of 

residence time (2.5-20 minutes) and gas influent concentration (-1000-2000 

µg VOCs/L) on the elimination efficiency, which for this study ranged from 

31.4-100%. For the DE column, these two parameters have no effects on the 

elimination efficiency when the ranges of residence time and gas influent 

concentration are controlled between 2.5-20 minutes (even though the 2.5-min 

residence time should not be included statistically) and -1000-2000 µg 
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voesJL, respectively, resulting in elimination efficiencies of 96.7-100%. For 

residence times of 10-20 minutes, and gas influent concentration of -1000 µg 

VOCs/L, there was no effect of filter material type (compost or DE) on the 

elimination efficiency. To obtain an -90% elimination efficiency, a residence 

time of IO minutes is required for a compost biofilter at a low inlet 

concentration, and 2.5 minutes for a DE biofilter under low or high inlet 

concentration. 

4) Under the operating conditions, there are no significant differences among four 

mathematical models developed in this study in terms of the best fit for the 

removal of VOCs in the compost column. But, the first-order model with a 

zero value for the dispersion coefficient is the best model for the prediction of 

VOC removal in the DE column. 

5) Compared to other voe control technologies, biofiltration can offer a 

considerably lower total cost. For the selected BTEX compounds, the total 

cost of a compost biofilter will be approximately $26,000, and about $37,000 

for a DE biofilter under the conditions of a 50 ft3/min air flow rate, a 200 ppm 

voe inlet concentration, and a 90% elimination efficiency. 

6) Statistical analysis (ANOV A) revealed that the influent concentration and 

residence time had significant effects on the elimination efficiency for the 

compost column, but no significant effects for the diatomaceous earth column. 

The type of filter material had significant effects on elimination efficiency at a 

high inlet concentration, but no significant effects for a residence time of 10-20 

minutes. 
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7) Biodegradation was the dominant removal mechanism in the biofilters. Physical 

adsorption capacities of the filter media (compost and diatomaceous earth) in 

the biofilters were very small, especially for the diatomaceous earth medium. 

For the compost and DE columns, the elimination capacities of 99.5% and 

99.9%, respectively, were attributed to biological degradation for the selected 

mixture of BTEX compounds. 



CHAPTER VI 

RECOMMENDATIONS 

Although biofiltration technology has been demonstrated as an effective alternative 

in the application of air pollution control, the following aspects are recommended for 

further investigation: 

1) Evaluate the effect of a lower residence time(< 2.5 minutes) on the elimination 

efficiency for a DE biofilter. Compared to other VOC control technologies, 

this might give a more competitive advantage with an acceptable elimination 

efficiency. 

2) Utilize a lower recirculation rate of nutrient solution(< 5 mUmin) on the DE 

biofilter. This could help prevent sampling ports from blocking, and offer a 

better channel for air flow~ 

3) Investigate the effect of other factors, such as moisture, temperature, nutrients, 

pH of filter bed, microorganisms, and interactions of BTEX compounds, on a 

biofilter. This would provide a better understanding of both fundamental and 

applied aspects of biofiltration. 

4) Study the feasibility of two cycle columns for a biofiltration system. One 

column would be regenerating (by endogenous decay) while the other is on 

line. It may prevent the column from the unnecessary accumulation of biofilm. 
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5) Conduct a batch test to measure degradation rate constants for biofiltration. 

This might improve the model's goodness of fit. 

6) Run a tracer test with a completely inert tracer, such as argon, to provide a 

more accurate value of dispersion coefficient. 

7) During further investigation of biofiltration, control experimental conditions as 

a Balance Case which requires the same number of the observed data for each 

experimental run. It will make the data analysis with SAS possible or easier. 

8) Develop solutions (either analytical or numerical) for the Monod equation, 

either with or without considering a dispersion coefficient. This would broaden 

the applicability of biofiltration. 

9) Obtain more detailed cost information of biofiltration, especially for operating 

cost. This would also assist in presenting a relatively accurate cost value during 

an evaluation phase so that a final decision on several alternatives can be easily 

made. 
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Appendix A. Raw Data of Adsorption Study - Compost Medium 

Concentration {µg/L) 

(mins) Toluene Ethylbenzene o-Xylene Total 

Influent: 

0.00 1036 498 398 1932 
0.90 798 377 302 1477 
2.45 626 296 235 1157 
3.32 566 268 103 937 
4.47 527 248 202 977 
5.63 535 270 216 1021 
6.60 553 262 208 1023 
7.42 498 239 191 928 
8.30 494 235 186 915 
8.70 463 217 179 859 
9.62 461 219 174 854 

11.55 439 205 153 797 
12.37 455 210 160 825 

Effluent: 

0.00 0 0 0 0 
0.65 0 0 6 0 
2.33 198 0 0 198 
3.25 431 0 0 431 
4.23 635 40 6 681 
5.17 695 84 9 788 
6.48 697 165 0 862 
7.33 634 212 11 857 
8.17 572 239 50 861 
9.38 537 259 93 889 

10.25 512 255 120 887 
12.23 481 241 155 877 
13.02 462 225 162 849 
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Appendix B. Raw Data of Adsorption Study - Diatomaceous Earth Medium 

Concentration (µg/L) 

(mins) Toluene Ethylbenzene o-Xylene Total 

Influent: 

0.00 451 465 667 1583 
1.12 616 487 688 1790 
1.73 704 523 741 1968 
2.38 515 437 629 1581 
3.03 904 586 826 2316 
3.70 572 509 372 1454 

Effluent: 

0.00 0 0 0 0 
0.20 192 146 69 407 
0.52 541 556 854 1950 
0.82 560 508 733 1801 
1.42 711 501 688 1901 
2.03 756 544 1n 20n 
2.72 717 548 1n 2042 
3.35 820 5n 834 2231 
4.00 755 551 819 2125 



Appendix C. Calculation of Physical Adsorption Capacity 
- Compost and Diatomaceous Earth Media 

(1) Compost Medium: 

--
T Ci Ce Ce/Ci At Ci Ce Ci-Ce 

(hrs) (µg/L) (µg/L) (hrs) (µg/L) (µg/L) (µg/L) 

0.00 1932 0 0.00 0.9 1705 0 1705 
0.90 1477 0 0.00 1.55 1317 100 1217 
2.45 1157 200 0.17 0.87 1047 320 727 
3.32 937 440 0.47 1.15 957 570 387 
4.47 977 700 0.72 1.16 999 750 249 
5.63 1021 800 0.78 0.97 1022 830 192 
6.60 1023 860 0.84 0.82 976 860 116 
7.42 928 860 0.93 0.88 922 863 59 
8.30 915 865 0.95 0.4 887 868 20 
8.70 859 870 1.01 0.92 857 885 0 
9.62 854 900 1.05 1.93 826 895 0 

11.55 797 890 1.12 0.82 811 870 0 
12.37 825 850 1.03 

I. 12.37 4671 

Physical Adsorption Capacity: 

[I, Qg*At*( Ci-Ce )]IM= 0.042*5127.45*60/398.5 = 32.42 µg/gm 

Where, 

Qg = 42 mUmin (air flow rate) 

M = 398.5 gm (mass of compost) 

t = time, hour 

Ci, Ci = influent and average concentrations 

Ce, Ce = effluent and average concentrations 
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--
At( Ci-Ce) 

(hrs-µg/L) 

1534.05 
1886.35 
632.49 
445.05 
288.84 
186.24 
94.71 
51.92 

7.8 
0 
0 
0 

5127.45 
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Appendix C. Calculation of Physical Adsorption Capacity - Compost and 
Diatomaceous Earth Media (Cont'd) 

(2) Diatomaceous Earth Medium: 

-- --
T Ci Ce Ce/Ci At Ci Ce Ci-Ce At( Ci-Ce) 

(hrs) (µg/L) (µg/L) (hrs) (µg/L) (µg/L) (µg/L) (hrs-µg/L) 

0.00 1583 0 0.00 0.20 1602 204 1398 279.55 
0.20 1620 407 0.25 0.32 1648 1179 469 149.97 
0.52 1675 1950 1.16 0.30 1703 1876 0 0.00 
0.82 1730 1801 1.04 0.60 1803 1851 0 0.00 
1.42 1875 1901 1.01 0.61 1838 1989 0 0.00 
2.03 1800 20n 1.15 0.69 1888 2060 0 0.00 
2.72 1975 2042 1.03 0.63 1938 2137 0 0.00 
3.35 1900 2231 1.17 0.35 16n 2203 0 0.00 
3.70 1454 2175 1.50 

I 3.70 1866 429.52 

Physical Adsorption Capacity: 

[I. Qg*At*( Ci-Ce )]/M = 0.048*429.52*60/389.1 = 3.18 µg/gm 

Where, 

Qg = 48 mL/min (air flow rate) 

M = 389.1 gm (mass of diatomaceous earth) 

t = time, hour 

Ci, Ci = influent and average concentrations 

Ce, Ce = effluent and average concentrations 



Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent 

Concentration (µg/L) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 0 (Acclimation Period): 

• Influent: 

10/14/93 0 759 298 262 1319 
10/15/93 1 1051 282 168 1501 
10/16/93 2 1247 304 166 1717 
10/17/93 3 1437 398 209 2044 
10/18/93 4 2284 690 365 3339 
10/19/93 5 2166 686 371 3223 
10/20/93 6 827 · 256 140 1222 
10/21/93 7 1081 327 178 1587 
10/22/93 8 1257 395 220 1871 
10/23/93 9 1157 353 189 1699 
10/24/93 10 1172 367 197 1736 
10/25/93 11 1138 365 203 1705 
10/26/93 12 1373 428 225 2026 
10/27/93 13 1143 359 167 1669 
10/28/93 14 896 301 47 1245 
11/02/93 19 1092 365 199 1656 
11/03/93 20 1210 400 220 1830 
11/04/93 21 1211 431 235 1878 
11/05/93 22 1181 424 233 1838 
11/06/93 23 1170 409 224 1803 
11/07/93 24 1148 415 222 1784 
11/08/93 25 1169 420 230 1819 
11/09/93 26 1130 414 227 1770 
11/10/93 27 1220 455 252 1927 
11/11/93 28 1210 458 250 1918 
11/12/93 29 1069 403 224 1695 

AVG. 1223 400 216 1839 
S.D. 328 100 62 473 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Concentration (µg/L) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 0 (Acclimation Period): 

• Effluent: 

10/14/93 0 0 0 0 0 
10/15/93 l 883 224 154 1260 
10/16/93 2 348 0 114 461 
10/17 /93 3 0 0 41 41 
10/18/93 4 0 0 0 0 
10/19/93 5 0 0 0 0 
10/20/93 6 0 0 0 0 
10/21/93 7 0 0 0 0 
10/22/93 8 0 0 0 0 
10/23/93 9 0 0 0 0 
10/24/93 10 0 0 0 0 
10/25/93 11 0 0 0 0 
10/26/93 12 0 0 0 0 
10/27/93 13 0 0 0 0 
10/28/93 14 0 0 0 0 
11/02/93 19 0 0 0 0 
11/03/93 20 0 0 0 0 
11/04/93 21 0 0 0 0 
11/05/93 22 0 0 0 0 
11/06/93 23 0 0 0 0 
ll/07/93 24 0 0 0 0 
11/08/93 25 0 0 0 0 
11/09/93 26 0 0 0 0 
11/10/93 27 0 0 0 0 
11/11/93 28 0 0 0 0 
11/12/93 29 0 0 0 0 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

(days) Toluene 

Run No. 1 (Air Flow Rate = 25 mUmin): 

• Influent: 

11/12/93 29 554 
11/13/93 30 404 
11/14/93 31 378 
11/15/93 32 341 
11/16/93 33 675 
11/17 /93 34 652 
11/18/93 35 582 
11/19/93 36 717 
11/20/93 37 721 
11/21/93 38 688 
11/22/93 39 783 
11/23/93 40 664 
11/24/93 41 628 
11/25/93 42 550 
11/26/93 43 439 
11/27 /93 44 504 
11/28/93 45 684 
11/29/93 46 682 

AVG. 591 
S.D. 131 

Run No. 1 (Air Flow Rate = 25 mUmin): 

• Effluent: 

11/12/93 
11/13/93 
11/14/93 

29 
30 
31 

0 
0 
0 

Concentration(µg!L) 

Ethylbenzene o-Xylene Total 

218 
157 
142 
130 
243 
278 
224 
303 
315 
293 
349 
296 
283 
249 
204 
234 
330 
342 

255 
67 

0 
0 
0 

146 
107 
91 
89 

162 
165 
143 
204 
212 
197 
238 
205 
186 
165 
143 
160 
233 
240 

171 
47 

0 
0 
0 

918 
668 
610 
560 

1079 
1095 
949 

1224 
1247 
1178 
1371 
1164 
1097 
964 
787 
899 

1247 
1263 

1018 
240 

0 
0 
0 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Concentration (µg/L) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 1 (Air Flow Rate = 25 mUmin): 

• Effluent (Cont'd) 

11/15/93 32 0 0 0 0 
11/16/93 33 0 0 0 0 
11/17 /93 34 0 0 0 0 
11/18/93 35 0 0 0 0 
11/19/93 36 0 0 0 0 
11/20/93 37 0 0 0 0 
11/21/93 38 0 0 0 0 
11/22/93 39 0 0 0 0 
11/23/93 40 0 0 0 0 
11/24/93 41 0 0 0 0 
11/25/93 42 0 0 0 0 
11/26/93 43 0 0 0 0 
11/27 /93 44 0 0 0 0 
11/28/93 45 0 0 0 0 
11/29/93 46 0 o. 0 0 

AVG. 0 0 0 0 
S.D. 0 0 0 0 

Run No. 2 (Air Flow Rate = 50 mUmin): 

• Influent: 

11/29/93 46 596 326 200 1123 
11/30/93 47 576 292 174 1042 

12/1/93 48 618 300. 183 1100 
12/2/93 49 636 298 177 1111 
12/3/93 50 585 268 153 1007 
12/4/93 51 626 290 171 1086 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Concentration {U,g/L} 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 2 (Air Flow Rate= 50 mUmin): 

• Influent (Cont'd): 

12/5/93 52 565 263 155 983 
12/6/93 53 705 328 194 1228 
12/7 /93 54 742 345 198 1284 
12/8/93 55 540 256 148 944 
12/9/93 56 583 269 155 1007 

12/10/93 57 590 282 163 1035 
12/11/93 58 576 270 158 1004 
12/12/93 59 499 239 135 873 
12/13/93 60 494 235 129 858 
12/14/93 61 469 220 122 812 
12/15/93 62 482 245 147 874 
12/16/93 63 475 243 144 862 

AVG. 575 276 161 1013 
S.D. 76 35 23 130 

Run No. 2 (Air Flow Rate = 50 mUmin): 

• Effluent: 

11/29/93 46 0 0 9 9 
11/30/93 47 0 0 0 0 
12/1/93 48 0 0 0 0 
12/2/93 49 69 0 5 75 
12/3/93 50 0 0 0 0 
12/4/93 51 0 0 0 0 
12/5/93 52 0 0 0 0 
12/6/93 53 128 0 72 201 
12/7/93 54 63 0 30 93 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Concentration {µg/L) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 2 (Air Flow Rate= 50mUmin): 

• Effluent (Cont'd): 

12/8/93 55 0 0 0 0 
12/9/93 56 0 0 0 0 

12/10/93 57 0 0 0 0 
12/11/93 58 0 0 0 0 
12/12/93 59 0 0 0 0 
12/13/93 60 0 0 0 0 
12/14/93 61 0 0 0 0 
12/15/93 62 28 0 25 53 
12/16/93 63 88 0 50 139 

AVG. 21 0 11 32 
S.D. 39. 0 21 59 

Run No. 3 (Air Flow Rate= 100 mUmin): 

• Influent: 

*12/16/93 63 568 240 158 966 
*12/17 /93 . 64 275 118 35 428 
*12/18/93 65 466 187 127 781 
*12/19/93 66 468 199 132 799 
*12/20/93 67 449 189 111 749 
*12/21/93 68 526 208 125 859 
*12/22/93 69 871 368 227 1466 
*12/23/93 70 572 262 167 1001 
*12/24/93 71 563 273 181 1017 
*12/25/93 72 548 242 160 950 
*12/26/93 73 724 312 200 1236 
*12/27 /93 74 440 200 130 770 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Concentration (µg/L) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 3 (Air Flow Rate= 100 mUmin): 

• Influent (Cont'd): 

*12/28/93 75 431 182 120 733 
**12/29/93 76 400 176 114 690 
**12/30/93 77 626 265 36 927 

12/31 /93 78 608 279 191 1078 
l /01 /94 79 744 360 245 1349 
1/02/94 80 677 325 215 1218 
1/03/94 81 503 237 149 889 
1/04/94 82 343 165 46 553 
1/05/94 83 547 266 175 988 
1/06/94 84 712 354 245 1311 
1/07/94 85 537 288 191 1017 

**l/08/94 86 497 218 132 847 
1/09/94 87 627 295 99 1020 
1/10/94 88 664 327 109 1101 
l /11/94 89 512 250 171 934 
1/12/94 90 523 280 122 925 

** l /13/94 91 523 182 72 777 
1/14/94 92 482 183 88 753 
1/15/94 93 600 231 43 874 
1/16/94 94 489 204 68 761 
l/17 /94 95 384 159 86 630 
1/18/94 96 556 234 56 846 
1/19/94 97 496 227 135 858 
1/20/94 98 637 294 176 1107 
1/21/94 99 678 336 192 1206 

**l/22/94 100 686 345 4 1034 
**l/23/94 101 704 346 224 1274 
**l/24/94 102 637 329 67 1034 

l /25/94 103 578 295 70 943 
1/26/94 104 748 397 244 1388 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Concentration(µg/L) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 3 (Air Flow Rate= 100 mIJmin): 

• Influent (Cont'd): 

1/27/94 105 7f:/J 408 258 1416 
**1/28/94 106 412 202 131 745 
**1/29/94 107 343 173 118 633 
**1/30/94 108 417 195 62 675 
**1/31/94 109 366 203 61 631 

2/01/94 110 645 361 225 1231 
2/02/94 111 645 371 230 1246 
2/03/94 112 737 459 304 1500 
2/04/94 113 667 405 266 1339 
2/05/94 114 596 389 244 1229 
2/06/94 115 626 407 258 1291 
2/07/94 116 634 443 289 1366 

AVG. 598 308 173 1079 
S.D. 103 83 79 247 

Run No. 3 (Air Flow Rate= 100 mIJmin): 

• Effluent: 

*12/16/93 63 0 0 0 0 
*12/17 /93 64 o. 0 15 15 
*12/18/93 65 0 0 0 0 
*12/19/93 66 8 0 19 27 
*12/20/93 67 104 0 80 184 
*12/21/93 68 63 0 52 116 
*12/22/93 69 145 19 101 266 
*12/23/93 70 264 52 141 456 
*12/24/93 71 2 0 0 2 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Concentration (µg/L) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 3 (Air Flow Rate= 100 mUmin): 

• Effluent (Cont'd): 

*12/25/93 72 0 0 0 0 
*12/26/93 73 0 0 0 0 
*12/27 /93 74 17 0 0 17 
*12/28/93 75 17 0 0 17 
*12/29/93 76 204 68 120 391 
*12/30/93 77 0 0 0 0 
12/31/93 78 233 77 15 325 
1/01/94 79 159 39 147 345 
1/02/94 80 329 16 0 345 
1/03/94 81 290 89 103 481 
1/04/94 82 32 0 68 100 
1/05/94 83 214 48 83 345 
1/06/94 84 379 95 39 514 
1/07/94 85 291 19 4 314 

**1/08/94 86 8 0 19 27 
1/09/94 87 95 36 50 181 
1/10/94 88 332 119 85 537 
1/11/94 89 239 77 65 382 
1/12/94 90 247 120 35 402 

**l/13/94 91 0 0 0 0 
1/14/94 92 248 63 0 311 
1/15/94 93 170 38 10 218 
1/16/94 94 265 87 34 386 
1/17 /94 95 279 100 85 464 
1/18/94 96 197 67 45 309 
1/19/94 97 291 91 73 454 
1/20/94 98 514 185 67 767 
1/21/94 99 394 196 179 769 

**1/22/94 100 41 0 55 96 
**1/23/94 101 0 0 0 0 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Date Time Concentration {µg/L) 

(days) Toluene Ethylbenzene a-Xylene Total 

Run No. 3 {Air Flow Rate= 100 mUmin): 

• Effluent (Cont'd): 

**1/24/94 102 284 54 146 484 
1/25/94 103 218 100 63 382 
1/26/94 104 165 72 127 364 
1/27/94 105 420 175 180 776 

**1/28/94 106 136 0 175 311 
**1/29/94 107 0 0 0 0 
**1/30/94 108 0 0 0 0 
**1/31/94 109 0 0 0 0 

2/01/94 110 149 32 48 229 
2/02/94 111 290 142 170 602 
2/03/94 112 504 271 255 1029 
2/04/94 113 481 280 279 1039 
2/05/94 114 297 174 95 566 
2/06/94 115 284 180 211 674 
2/07/94 116 322 208 226 756 

AVG. 278 107 95 479 
S.D. 113 73 78 234 

Run No. 4 {Air Flow Rate= 200 mUmin): 

• Influent: 

5/23/94 221 548 481 366 1395 
5/24/94 222 515 436 323 1273 
5/25/94 223 433 334 230 998 
5/26/94 224 431 320 212 963 
5/27/94 225 404 298 215 917 
5/28/94 226 430 335 217 983 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Date Time Concentration fl,twL) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 4 {Air Flow Rate= 200 mUmin): 

• Influent (Cont'd): 

5/29/94 227 365 276 188 829 
5/30/94 228 399 316 210 925 
5/31/94 229 416 336 110 862 
6/01/94 230 502 421 284 1207 
6/02/94 231 439 371 242 1052 
6/03/94 232 353 294 201 848 

AVG. 436 352 233 1021 
S.D. 59 63 66 180 

Run No. 4 {Air Flow Rate= 200 mUmin): 

• Effluent: 

5/23/94 221 294 113 213 620 
5/24/94 222 318 190 256 765 
5/25/94 223 339 197 223 760 
5/26/94 224 304 192 238 734 
5/27/94 225 264 149 157 570 
5/28/94 226 299 177 191 667 
5/29/94 227 257 189 215 661 
5/30/94 228 292 177 197 667 
5/31/94 229 291 187 214 692-
6/01/94 230 313 186 202 701 
6/02/94 231 310 207 229 745 
6/03/94 232 254 185 204 643 

AVG. 295 179 212 685 
S.D. 26 25 25 59 
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Date 

Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Time Concentration {µg/L) 

(days) Toluene Ethy lbenzene o-Xylene Total 

Run No. 5 (Air Flow Rate= 25 mUmin): 

• Influent: 

*2/07 /94 116 799 449 401 1650 
*2/08/94 117 958 455 421 1835 
*2/09/94 118 844 388 352 1584 
*2/10/94 119 855 392 356 1603 
*2/11 /94 120 819 382 347 1548 
*2/12/94 121 905 454 411 1770 
*2/13/94 122 685 357 323 1365 
*2/14/94 123 1049 629 588 2266 
*2/15/94 124 380 168 161 709 
*2/16/94 125 513 193 149 855 
*2/17/94 126 1185 542 445 2172 
*2/18/94 127 789 345 268 1403 
*2/19/94 128 865 442 347 1654 
2/20/94 129 1145 573 465 2182 
2/21/94 130 878 461 393 1733 
2/22/94 131 876 443 362 1681 
2/23/94 132 877 492 428 1797 
2/25/94 134 1197 753 705 2656 
2/26/94 135 1112 692 632 2436 
2/27/94 136 1181 717 632 2530 
2/28/94 137 1054 655 612 2321 
3/01/94 138 770 490 450 1710 
3/02/94 139 757 503 455 1714 
3/03/94 140 1313 927 828 3067 
3/04/94 141 863 669 619 2151 
3/05/94 142 812 624 614 2050 
3/06/94 143 844 680 641 2165 
3/07/94 144 786 646 600 2032 
3/08/94 145 913 810 776 2499 
3/09/94 146 765 726 718 2208 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

(days) Toluene 

Run No. 5 {Air Flow Rate= 25 mUmin): 

• Influent (Cont'd): 

3/10/94 

AVG. 
S.D. 

147 644 

933 
187 

Run No. 5 (Air Flow Rate= 25 mUmin): 

• Effluent: 

*2/07/94 116 11 
*2/08/94 117 245 
*2/09/94 118 134 
*2/10/94 119 449 
*2/11/94 120 448 
*2/12/94 121 617 
*2/13/94 122 347 
*2/14/94 123 596 
*2/15/94 124 12 
*2/16/94 125 0 
*2/17/94 126 23 
*2/18/94 127 6 
*2/19/94 128 0 
2/20/94 129 517 
2/21/94 130 424 
2/22/94 131 428 

· 2/23/94 132 481 
2/25/94 134 777 
2/26/94 135 757 
2/27/94 136 847 

Concentration {µ.g/L) 

Ethylbenzene o-Xylene Total 

610 

637 
129 

9 
96 
39 
54 

160 
269 
150 
234 

8 
0 
4 
0 
0 

175 
180 
168 
217 
399 
384 
486 

607 

585 
133 

133 
261 
233 
173 
144 
380 
299 
402 

17 
0 
4 
0 
0 

309 
354 
303 
271 
531 
481 
589 

1862 

2155 
382 

153 
602 
405 
676 
753 

1267 
796 

1232 
38 · 
0 

32 
6 
0 

1001 
958 
899 
969 

1707 
1622 
1923 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Date Time Concentration (µg/L) 

(days) Toluene Ethylbenzeri.e o-Xylene Total 

Run No. 5 (Air Flow Rate= 25 mUmin): 

• Effluent (Cont'd): 

2/28/94 137 685 398 544 1627 
3/01/94 138 408 246 400 1055 
3/02/94 139 407 236 405 1048 
3/03/94 140 917 528 670 2115 
3/04/94 141 706 421 649 1776 
3/05/94 142 380 227 438 1045 
3/06/94 143 568 358 603 1528 
3/07/94 144 464 300 558 1321 
3/08/94 145 564 374 690 1628 
3/09/94 146 402 282 535 1219 
3/10/94 147 349 290 553 1192 

AVG. 560 315 494 1369 
S.D. 177 108 130 377 

Run No. 6 (Air Flow Rate = 50 mUmin): 

• Influent: 

*3/10/94 147 483 669 581 1733 
*3/11/94 148 1133 726 630 2490 
*3/13/94 149 1086 455 406 1947 
*3/14/94 150 848 357 262 1468 
*3/15/94 151 997 424 293 1713 
*3/16/94 153 2696 1221 862 4778 
*3/17 /94 154 1803 841 572 3215 
3/18/94 155 1047 482 352 1882 
3/19/94 156 1183 582 452 2217 
3/20/94 157 1040 495 387 1922 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Date Time Concentration (µg/L) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 6 (Air Flow Rate= 50 mUmin): 

• Influent (Cont'd): 

3/21/94 158 1006 487 356 1849 
3/22/94 159 945 450 329 1723 
3/23/94 160 984 495 398 1877 
3/24/94 161 753 371 272 1395 
3/25/94 162 871 407 305 1583 
3/26/94 163 1180 578 433 2191 
3/27/94 164 942 470 343 1755 
3/28/94 165 733 332 369 1435 
3/29/94 166 1037 559 440 2036 
3/30/94 167 959 627 548 2134 
3/31/94 168 995 604 537 2135 
4/01/94 169 1302 889 819 3011 
4/02/94 170 1069 721 640' 2431 
4/03/94 171 893 636 659 2188 
4/04/94 172 906 628 508 2041 

AVG. 991 545 453 1989 
S.D. 142 133 143 377 

Run No. 6 (Air Flow Rate= 50 mUmin): 

• Effluent: 

*3/10/94 147 262 318 529 1108 
*3/11/94 148 9 16 14 39 
*3/13/94 149 22 24 21 67 
*3/14/94 150 451 113 256 819 
*3/15/94 151 568 132 286 986 
*3/16/94 153 2514 995 905 4414 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

(days) Toluene 

Run No. 6 (Air Flow Rate =50 mUmin): 

• Effluent (Cont'd): 

*3/17/94 154 1430 
3/18/94 155 780 
3/19/94 156 771 
3/20/94 157 500 
3/21/94 158 481 

"3/22/94 159 339 
3/23/94 160 302 
3/24/94 161 257 
3/25/94 162 628 
3/26/94 163 981 
3/27/94 164 811 
3/28/94 165 653 
3/29/94 166 656 
3/30/94 167 593 
3/31/94 168 633 
4/01/94 169 1287 
4/02/94 170 639 
4/03/94 171 423 
4/04/94 172 472 

AVG. 622 
S.D. 251 

Run No. 7 (Air Flow Rate= 100 mUmin): 

• Influent: 

*4/04/94 
*4/05/94 

172 
173 

1057 
1015 

Concentration (µ.g/Ll 

Ethylbenzene o-Xylene Total 

496 
298 
219 
131 
116 
74 
84 
67 

186 
320 
304 
214 
280 
269 
252 
717 
291 
143 
200 

231 
147 

630 
545 

578 
221 
390 
340 
307 
189 
239 
201 
277 
340 
369 
292 
343 
499 
406 
876 
606 
375 
425 

372 
163 

489 
392 

2504 
1299 
1379 
970 
903 
602 
625 
525 

1091 
1640 
1485 
1159 
1279 
1361 
1291 
2879 
1535 
942 

1097 

1226 
523 

2177 
1953 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

(days) Toluene 

Run No. 7 (Air Flow Rate= 100 mUmin): 

• Influent (Cont'd): 

*4/06/94 174 1003 
*4/07/94 175 988 
4/08/94 176 1205 
4/09/94 177 1083 
4/10/94 178 1017 
4/11/94 179 1063 
4/12/94 180 966 
4/13/94 181 940 
4/14/94 182 950 
4/15/94 183 963 
4/16/94 184 1138 
4/17/94 185 1116 
4/18/94 186 1162 
4/19/94 187 1127 
4/20/94 188 1192 
4/21/94 189 1122 

AVG. 1074 
S.D. 92 

Run No. 7 (Air Flow Rate= 100 mUmin): 

• Effluent: 

*4/04/94 
*4/05/94 
*4/06/94 
*4/07/94 
4/08/94 

172 
173 
174 
175 
176 

741 
666 
850 
7r:R 
822 

Concentration (µ~) 

Ethylbenzene o-Xylene Total 

555 
526 
665 
585 
531 
556 
524 
484 
526 
551 
649 
644 
685 
689 
732 
688 

608 
79 

333 
287 
330 
276 
306 

431 
382 
493 
411 
388 
393 
381 
351 
371 
418 
488 
483 
508 
513 
538 
498 

445 
63 

416 
407 
432 
400 
4r:R 

1989 
1895 
2363 
2078 
1937 
2012 
1871 
1774 
1846 
1932 
2275 
2243 
2355 
2329 
2462 
2308 

2127 
230 

1490 
1359 
1612 
1385 
1537 
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Appendix D. Raw Data of Compost Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Concentration {µg/L) 

(days) Toluene Ethylbenzerte o-Xylene Total 

Run No. 7 (Air Flow Rate= 100 mUmin): 

• Effluent (Cont'd): 

4/09/94 177 720 274 395 1388 
4/10/94 178 623 217 320 1161 
4/11/94 179 666 248 355 1268 
4/12/94 180 627 249 374 1250 
4/13/94 181 608 224 339 1171 
4/14/94 182 538 202 343 1084 
4/15/94 183 492 183 338 1013 
4/16/94 184 451 157 305 913 
4/17/94 185 675 253 377 1304 
4/18/94 186 777 299 424 1500 
4/19/94 187 678 280 415 1374 
4/20/94 188 584 241 387 1211 
4/21/94 189 603 256 401 1261 

AVG. 633 242 370 1245 
S.D. 102 42 37 174 

188 

* The data on these dates were not included in the calculation of average (AVG.) and 

standard deviation (S.D.) because the biofilter system had not reached steady-state. 

** The data on these dates were not included in the calculation of average (AVG.) and 

standard deviation (S.D.) because there were some operational problems in the 

biofilter system. 



Appendix E. Raw Data of Compost Column Study - Average Contaminant 
Concentrations from Other Sampling Ports 

Samplin~ Port Concentration (µg/L) 

Toluene Ethyl benzene o-Xylene Total 

• Run No. 1: 

2 459 80 182 720 

3 281 20 139 441 

4 133 8 108 250 

5 27 0 29 56 

6 5 0 7 12 

• Run No. 2: 

2 543 211 16°1 915 

3 501 189 152 843 

4 446 148 137 731 

5 356 101 120 577 

6 273 57 124 454 

189 



Appendix E. Raw Data of Compost Column Study - Average Contaminant 
Concentrations from Other Sampling Ports (Cont'd) 

Samplin& Port Concentration (µg/L) 

Toluene Ethylbenzene o-Xylene Total 

• Run No. 3: 

2 536 253 161 950 

3 517 240 156 914 

4 449 188 114 752 

5 406 159 119 683 

6 363 142 100 605 

• Run No. 5: 

2 829 498 530 1857 

3 779 450 514 1743 

4 739 419 500 1658 

5 677 379 475 1530 

6 627 356 477 1460 
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Appendix E. Raw Data of Compost Column Study - Average Contaminant 
Concentrations from Other Sampling Ports (Cont'd) 

Sampling Port Concentration(µg/L) 

Toluene Ethylbenzene o-Xylene Total 

• Run No. 6: 

2 909 455 417 1780 

3 889 429 419 1737 

4 778 341 384 1504 

5 740 309 387 1437 

6 676 272 376 1324 

• Run No. 7: 

2 972 510 399 1881 

3 902 429 405 1737 

4 826 361 380 1568 

5 775 320 381 1476 

6 731 314 395 1440 
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Appendix F. Raw Data of Diatomaceous Earth Column Study - Daily Contaminant 
Concentrations from Influent and Effluent 

Date Time 

(days) Toluene 

Run No. 1 (Air Flow Rate= 25 mUmin): 

• Influent: 

*8/05/94 0 757 
*8/06/94 1 737 
*8/07/94 2 667 
*8/08/94 3 925 
*8/09/94 4 1218 
*8/10/94 5 24 
8/11/94 6 742 
8/12/94 7 777 
8/13/94 8 634 
8/14/94 9 627 
8/15/94 10 806 
8/16/94 11 860 
8/17/94 12 733 
8/18/94 13 666 
8/19/94 14 599 
8/20/94 15 566 
8/21/94 16 555 
8/22/94 17 517 
8/23/94 18 518 

AVG. 662 
S.D. 113 

Run No. 1 (Air Flow Rate = 25 mUmin): 

• Effluent: 

*8/05/94 
*8/06/94 

0 
1 

660 
14 

Concentration (µg/Ll 

Ethylbenzene 

345 
359 
320 
493 
685 

0 
483 
507 
437 
411 
556 
598 
511 
487 
436 
415 
406 
374 
365 

460 
70 

334 
9 

o-Xylene 

252 
285 
236 
163 
503 

0 
364 
512 
355 
329 
423 
478 
418 
401 
366 
168 
344 
318 
299 

367 
86 

115 
16 

Total 

1353 
1381 
1223 
1581 
2406 

24 
1588 
1797 
1426 
1367 
1784 
1936 
1662 
1554 
1401 
1148 
1304 
1208 
1183 

1489 
254 

1109 
39 
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Appendix F. Raw Data of Diatomaceous Earth Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

(days) Toluene 

Run No. 1 (Air Flow Rate= 25 mUmin): 

• Effluent (Cont'd): 

*8/07/94 2 166 
*8/08/94 3 196 
*8/09/94 4 217 
*8/10/94 5 0 
8/11/94 6 0 
8/12/94 7 0 
8/13/94 8 0 
8/14/94 9 0 
8/15/94 10 0 
8/16/94 11 0 
8/17 /94 12 0 
8/18/94 13 0 
8/19/94 14 0 
8/20/94 15 0 
8/21/94 16 0 
8/22/94 17 0 
8/23/94 18 0 

AVG. 0 
S.D. 0 

Run No. 2 (Air Flow Rate = 50 mUmin): 

• Influent: 

*8/23/94 
8/24/94 
8/25/94 
8/26/94 

18 
19 
20 
21 

771 
597 
538 
544 

Concentration (µg/L) 

Ethylbenzerie o-Xylene Total 

186 
307 
364 

0 
0 
0 
0 
0 

99 
0 
0 
0 
0 
0 
0 
0 
0 

8 
27 

482 
465 
354 
359 

34 
73 

209 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

340 
271 
245 
253 

386 
576 
790 

0 
0 
0 
0 
0 

99 
0 
0 
0 
0 
0 
0 
0 
0 

8 
27 

1593 
1333 
1138 
1157 
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Appendix F. Raw Data of Diatomaceous Earth Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Concentration {µ,g/L) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 2 (Air Flow Rate= 50 mIJmin): 

• Influent (Cont'd): 

8/27/94 22 526 347 201 1074 
8/28/94 23 726 506 \ 368 1600 
8/29/94 24 627 445 318 1390 
8/30/94 25 649 468 346 1462 
8/31/94 26 573 414 293 1280 
9/01/94 27 749 538 386 1673 
9/02/94 28 525 365 238 1127 
9/03/94 29 602 451 327 1380 
9/04/94 30 589 441 326 1357 
9/05/94 31 578 438 315 1330 
9/06/94 32 600 459 334 1393 
9/07/94 33 593 459 340 1392 
9/08/94 34 561 439 329 1330 

AVG. 599 434 306 1338 
S.D. 64 54 51 163 

Run No. 2 (Air Flow Rate = 50 mIJmin): 

• Effluent: 

*8/23/94 18 60 248 125 432 
8/24/94 19 0 16 0 16 
8/25/94 20 0 29 0 29 
8/26/94 21 0 25 0 25 
8/27/94 22 0 1 0 1 
8/28/94 23 0 83 0 83 
8/29/94 24 0 32 23 55 
8/30/94 25 0 46 0 46 
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Appendix F. Raw Data of Diatomaceous Earth Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Date Time Concentration (µg/L) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 2 (Air Flow Rate= 50 mUmin): 

• Effluent (Cont'd): 

8/31/94 26 0 11 0 11 
9/01/94 27 0 38 0 38 
9/02/94 28 0 2 0 2 
9/03/94 29 0 17 6 24 
9/04/94 30 0 11 0 11 
9/05/94 31 0 17 0 17 
9/06/94 32 0 2 0 2 
9/07/94 33 0 58 0 58 
9/08/94 34 0 77 0 77 

AVG. 0 29 2 31 
S.D. 0 26 6 26 

Run No. 3 (Air Flow Rate = 100 mUmin): 

• Influent: 

*9/08/94 34 481 328 291 1100 
9/09/94 35 562 388 354 1303 
9/10/94 36 513 366 327 1206 
9/11/94 37 498 349 307 1154 
9/12/94 38 517 372 333 1222 
9/13/94 39 524 381 347 1252 
9/14/94 40 485 356 316 1156 
9/15/94 41 477 360 332 1170 
9/16/94 42 463 334 310 1107 
9/17/94 43 455 328 308 1091 
9/18/94 44 364 263 241 867 
9/19/94 45 353 260 231 · 843 
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Appendix F. Raw Data ofDiatomaceous Earth Column Study- Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Date Time Concentration {µ,~) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 3 {Air Flow Rate = 100 mUmin): 

• Influent (Cont'd): 

9/20/94 46 547 390 352 1289 
9/21/94 47 586 430 395 1411 
9/22/94 48 526 390 345 1261 

AVG. 491 355 321 1167 
S.D. 67 47 43 156 

Run No. 3 {Air Flow Rate= 100 mUmin): 

• Effluent: 

*9/08/94 34 0 28 0 28 
9/09/94 35 0 4 0 4 
9/10/94 36 0 2 0 2 
9/11/94 37 0 0 0 0 
9/12/94 38 0 0 0 0 
9/13/94 39 0 0 0 0 
9/14/94 40 0 0 0 0 
9/15/94 41 0 0 0 0 
9/16/94 42 0 0 0 0 
9/17/94 43 0 0 0 0 
9/18/94 44 0 0 0 0 
9/19/94 45 0 17 0 17 
9/20/94 46 0 6 0 6 
9/21/94 47 0 6 21 27 
9/22/94 48 0 0 0 0 

AVG. 0 2 2 4 
S.D. 0 5 6 8 
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Appendix F. Raw Data of Diatomaceous Earth Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Concentration (µg/L) 

(days) Toluene Ethylbenzerie o-Xylene Total 

Run No. 4 (Air Flow Rate = 200 mUmin): 

• Influent: 

*12/05/94 122 504 217 220 941 
12/06/94 123 511 238 212 961 
12/07 /94 124 492 283 258 1033 
12/08/94 125 434 344 291 1069 
12/09/94 126 327 430 363 1119 
12/10/94 127 417 274 229 920 
12/11/94 128 1038 413 186 1637 
12/12/94 129 972 293 237 1502 

AVG. 599 325 254 1177 
S.D. 284 73 58 279 

Run No. 4 (Air Flow Rate= 200 mUmin): 

• Effluent: 

*12/05/94 122 0 75 220 295 
12/06/94 123 0 43 0 43 
12/07/94 124 0 31 0 31 
12/08/94 125 0 14 0 14 
12/09/94 126 0 73 0 73 
12/10/94 127 0 27 0 27 
12/11/94 128 0 61 0 61 
12/12/94 129 0 22 0 22 

AVG. 0 39 0 39 
S.D. 0 22 0 22 
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Appendix F. Raw Data of Diatomaceous Earth Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Concentration (µg/L) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 5 (Air Flow Rate= 25 mUmin): 

• Influent: 

*9/22/94 48 780 524 429 1734 
*9/23/94 49 1073 627 513 2212 
*9/24/94 50 964 544 456 1963 
9/25/94 51 921 487 366 1774 
9/26/94 52 1150 645 499 2294 
9/27/94 53 1059 625 498 2182 
9/28/94 54 1119 685 554 2358 
9/29/94 55 991 586 473 2051 
9/30/94 56 1000 609 480 2089 

10/01 /94 57 945 600 481 2027 
10/02/94 58 1056 687 573 2316 
10/03/94 59 1122 732 626 2480 
10/04/94 60 1025 672 561 2259 
10/05/94 61 1014 674 573 2261 
10/06/94 62 1028 689 581 2298 

AVG. 1036 641 522 2199 
S.D. 70 65 70 188 

Run No. 5 (Air Flow Rate - 25 mUmin): 

• Effluent: 

*9/22/94 48 19 147 0 166 
*9/23/94 49 0 85 0 85 
*9/24/94 50 0 49 0 49 
9/25/94 51 .o 0 0 0 
9/26/94 52 0 0 0 0 
9/27/94 53 0 0 0 0 
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Appendix F. Raw Data of Diatomaceous Earth Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Concentration (µg!L) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 5 (Air Flow Rate = 25 mUmin): 

• Effluent (Cont'd): 

9/28/94 54 0 0 0 0 
9/29/94 55 0 0 0 0 
9/30/94 56 0 0 0 0 

10/01/94 57 0 0 0 0 
10/02/94 58 0 0 0 0 
10/03/94 59 0 0 0 0 
10/04/94 60 0 0 0 0 
10/05/94 61 0 0 0 0 
10/06/94 62 0 0 0 0 

AVG. 0 0 0 0 
S.D. 0 0 0 0 

Run No. 6 (Air Flow Rate= 50 mUmin): 

• Influent: 

10/07/94 63 920 614 584 2119 
10/08/94 64 901 593 561 2055 
10/09/94 65 873 580 529 1982 
10/10/94 66 987 658 625 2270 
10/11/94 67 990 679 651 2321 
10/12/94 68 969 650 621 2240 
10/13/94 69 857 574 531 1961 
10/14/94 70 902 622 599 2123 

I 

10/15/94 71 846 575 557 1978 
10/16/94 72 897 618 598 2113 
10/17 /94 73 1021 710 676 2406 
10/18/94 74 1059 781 739 2579 
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Appendix F. Raw Data of Diatomaceous Earth Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Concentration (µg/L) 

(days) Toluene Ethylbenzene o-Xylene Total 

Run No. 6 (Air Flow Rate = 50 mL/min): 

• Influent (Cont'd): 

10/19/94 75 1032 777 725 2535 
10/20/94 76 1044 773 728 2545 

AVG. 950 657 623 2230 
S.D. 73 76 72 218 

Run No. 6 (Air Flow Rate= 50 mL/min): 

• Effluent: 

10/07 /94 63 0 0 0 0 
10/08/94 64 0 35 0 35 
10/09/94 65 0 0 0 0 
10/10/94 66 0 0 ·0 0 
10/11/94 67 0 0 0 0 
10/12/94 68 0 0 0 0 
10/13/94 69 0 123 0 123 
10/14/94 70 0 68 0 68 
10/15/94 71 0 30 0 30 
10/16/94 72 0 15 0 15 
10/17 /94 73 0 0 6 6 
10/18/94 74 0 0 0 0 
10/19/94 75 0 0 0 0 
10/20/94 76 0 0 0 0 

AVG. 0 19 0 20 
S.D. 0 36 l 36 
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Appendix F. Raw Data of Diatomaceous Earth Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

(days) Toluene 

Run No. 7 (Air Flow Rate= 100 mL/min): 

• Influent: 

*10/20/94 76 1073 
*10/21/94 77 844 
10/22/94 78 1053 
10/23/94 79 1046 
10/24/94 80 1043 
10/25/94 81 703 
10/26/94 82 1344 
10/27/94 83 1367 
10/28/94 84 1500 
10/29/94 85 1360 
10/30/94 86 840 
10/31/94 87 728 
11/01/94 88 543 
11/02/94 89 569 
11/03/94 90 917 
11/04/94 91 778 
11/05/94 92 437 
11/06/94 93 364 
11/07/94 94 549 

AVG. 891 
S.D. 353 

Run No. 7 {Air Flow Rate= 100 mL/min): 

• Effluent: 

*10/20/94 
*10/21/94 

76 
77 

53 
14 

Concentration (µg/L) 

Ethylbenzene o-Xylene Total 

632 
495 
631 
641 
645 
458 
915 

1015 
1086 
1032 
648 
585 
473 
491 
751 
708 
369 
326 
439 

660 
· 234 

164 
46 

557 
435 
553 
557 
563 
383 
842 
949 

1016 
970 
627 
563 
452 
714 
685 
669 
330 
673 
405 

644 
205 

14 
2 

2262 
1775 
2237 
2244 
2251 
1544 
3101 
3331 
3602 
3361 
2115 
1876 
1467 
1775 
2353 
2155 
1136 
1363 
1393 

2194 
757 

231 
61 
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Appendix F. Raw Data of Diatomaceous Earth Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Date Time 

(days) Toluene 

Run No. 7 (Air Flow Rate= 100 mUmin): 

• Effluent (Cont'd): 

10/22/94 78 0 
10/23/94 79 0 
10/24/94 80 0 
10/25/94 81 0 
10/26/94 82 0 
10/27/94 83 0 
10/28/94 84 0 
10/29/94 85 0 
10/30/94 86 0 
10/31/94 87 0 
11/01/94 88 0 
11/02/94 89 0 
11/03/94 90 0 
11/04/94 91 0 
11/05/94 92 0 
11/06/94 93 0 
11/07/94 94 0 

AVG. 0 
S.D. 0 

Run No. 8 (Air Flow Rate = 200 mUmin): 

• Influent: 

*12/12/94 
12/13/94 
12/14/94 
12/15/94 

129 
130 
131 
132 

1693 
1217 
1792 
1116 

Concentration (µg/L) 

Ethy !benzene 

48 
15 
6 
0 

98 
57 
75 
9 

34 
0 
0 
0 
0 

72 
0 
0 

27 

26 
32 

546 
393 
647 
535 

o-Xylene 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

409 
324 
541 
472 

Total 

48 
15 
6 
0 

98 
57 
75 
9 

34 
0 
0 
0 
0 

72 
0 
0 

27 

26 
32 

2649 
1933 
2980 
2122 
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Appendix F. Raw Data of Diatomaceous Earth Column Study - Daily Contaminant 
Concentrations from Influent and Effluent (Cont'd) 

Date Time Concentration (µg/L) 

(days) Toluene Ethy lbenzene o-Xylene Total 

Run No. 8 (Air Flow Rate= 200 mUmin): 

• Influent (Cont'd): 

12/16/94 133 1080 625 530 2235 
12/17 /94 134 994 972 781 2747 
12/18/94 135 528 681 607 1816 
12/19/94 136 250 571 545 1366 

AVG. 997 632 543 2171 
S.D. 496 177 138 551 

Run No. 8 (Air Flow Rate = 200 mUmin): 

• Effluent (Cont'd): 

*12/12/94 129 0 264 25 289 
12/13/94 130 0 49 0 49 
12/14/94 131 0 91 0 91 
12/15/94 132 0 30 0 30 
12/16/94 133 0 0 0 0 
12/17 /94 134 0 40 0 40 
12/18/94 135 0 23 0 23 
12/19/94 136 0 0 0 0 

AVG. 0 33 0 33 
S.D. 0 31 0 31 

* The data on these dates were not oncluded in the calculation of average (AVG.) and 

standard deviation (S.D.) because the biofilter system had not reached steady-state. 
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Appendix G. Raw Data of Diatomaceous Earth Column Study - Average Contaminant 
Concentrations from Other Sampling Ports 

Samplin& Port Concentration (µg/L) 

Toluene Ethylbenzene o-Xylene Total 

• Run No. 1: 

2 19 23 5 47 

3 0 17 0 17 

4 0 14 7 21 

5 0 12 0 12 

6 35 14 3 52 

• Run No. 2: 

2 77 189 102 368 

3 0 78 4 82 

4 0 58 0 58 

5 0 52 0 52 

6 0 50 0 50 
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Appendix G. Raw Data ofDiatomaceous Earth Column Study -Average Contaminant 
Concentrations from Other Sampling Ports (Cont'd) 

Sampling Port Concentration {l,l:g/L) 

Toluene Ethylbenzene o-Xylene Total 

• Run No. 3: 

2 27 170 45 242 

3 0 54 0 54 

4 0 33 0 33 

5 0 18 0 18 

6 0 11 0 11 

• Run No. 5: 

2 43 176 38 257 

3 0 51 0 51 

4 0 14 0 14 

5 0 6 0 6 

6 0 0 0 0 
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Appendix G. Raw Data of Diatomaceous Earth Column Study -Average Contaminant 
Concentrations from Other Sampling Ports (Cont'd) 

Sampling Port Concentration (µg/L) 

Toluene Ethy !benzene o-Xylene Total 

• Run No. 6: 

2 306 379 245 930 

3 0 102 3 104 

4 0 63 3 65 

5 0 32 3 34 

6 0 37 3 39 

• Run No. 7: 

2 198 233 123 554 

3 10 135 24 169 

4 0 67 0 67 

5 0 31 0 31 

6 0 24 0 24 
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Appendix H. Raw Data of Tracer Study - Compost Column 

Air Flow Rate (mUmin) 

25 50 100 

Time (mins) C (mg/L)* Time (mins) C (mg!L}* Time (mins) C (mg!L)* 

0 0.07 0 0.05 0 0.03 
3 0.06 2 0.04 2 0.03 
6 0.05 5 0.08 5 17.06 
8 11.56 7 19.32 7 22.89 

11 23.80 10 33.59 9 9.67 
14 25.39 12 30.46 11 3.31 
16 20.05 14 19.45 14 1.17 
19 14.00 17 11.36 16 0.36 
21 9.28 19 6.13 18 0.13 
26 4.21 22 3.04 21 0.06 
28 2.60 24 1.59 23 0.04 
31 1.63 27 0.76 26 0.04 
34 0.97 29 0.41 28 0.00 
37 0.60 31 0.23 31 0.03 
40 0.34 34 0.14 37 0.04 
44 0.21 36 0.11 47 0.00 
47 0.13 39 0.07 52 0.02 
51 0.08 42 0.05 61 0.00 
57 0.06 45 0.06 69 0.03 
60 0.07 48 0.04 77 0.00 
64 0.07 51 0.05 83 0.04 
68 0.06 54 0.00 90 0.03 
74 0.05 56 0.05 
80 0.05 58 0.05 
84 0.07 60 0.06 
89 0.08 71 0.04 
92 0.05 80 0.05 

92 0.06 

• . Concentration of Methane in Gas-Phase. 
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Appendix I. Raw Data of Tracer Study - Diatomaceous Earth Column 

Air Flow Rate (mUmin) 

25 50 100 

Time (mins) C (mg!L}* Time (mins) C (mg!L}* Time (mins) C (mg/L)° 

0 0.00 0 0.00 0 0.10 
4 0.00 2 0.36 1 0.12 
7 15.63 4 22.70 3 2.31 
9 30.73 7 22.18 5 8.73 

16 8.40 10 12.94 8 8.02 
19 3.77 13 5.47 11 3.71 
22 1.90 16 1.00 14 1.32 
25 0.37 21 0.32 17 0.42 
28 0.46 25 0.00 21 0.17 
31 0.19 28 0.07 24 0.00 
35 0.11 32 0.02 28 0.12 
42 0.07 39 0.03 32 0.12 
48 0.06 48 0.03 39 0.13 
54 0.05 56 0.03 43 0.12 
62 0.27 61 0.02 49 0.18 
71 0.00 81 0.04 55 0.16 
80 0.03 90 0.02 60 0.22 
92 0.02 90 0.15 

93 0.11 

* Concentration of Methane in Gas-Phase. 



Appendix J. Calculation of Dispersion Coefficient - Compost and 
Diatomaceous Earth Media 

209 

To determine dispersion coefficients for both the compost and diatomaceous earth 

media, six calculation tables are prepared at the end of this Appendix. 

Using the Equations below provided by Levenspiel (1972), the dispersion 

coefficients can be calculated and shown as follows: 

These Equations are: 

• 

t 
• 0 =-= 

t 

2 0'2 
• O'a =-=-

t2 

• 

L 
• U=-=-

t 

The dispersion coefficients for the compost are: 

• Qg = 25 mUmin, D = 1.47 cm2/sec 

• Qg = 50 mUmin, D = 2.08 cm2/sec 

• Qg = lOOmUmin,D = 7.37 cm2/sec 
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The dispersion coefficients for the diatomaceous earth are: 

• Qg = 25 mUmin, D = 3.85 cm2/sec 

• Qg = 50 mUmin, D = 7 .22 cm2/sec 

• Qg = 100 mUmin,D = 10.92 cm2/sec 



Appendix J. Calculation of Dispersion Coefficient - Compost and 
Diatomaceous Earth Media (Cont'd) 

( 1) Compost Column: 

(mins) (µg/L) (mins) (µg/L·min) (min2-µg/L) (min3•µg/L) 

• Qg = 25 mUmin: 

0 0.07 3 0.20 0.00 0.00 
3 0.06 3 0. 17 0.52 1.57 
6 0.05 2 0. 11 0.63 3.80 
8 11.56 3 34.67 277.37 2218.98 

11 23.80 3 71.40 785.40 8639.44 
14 25.39 2 50.78 710.96 9953.46 
16 20.05 3 60.16 962.50 15399.94 
19 14.00 2 27.99 531.89 10105.92 
21 9.28 5 46.41 974.67 20468. 15 
26 4.21 2 8.43 219. 15 5697.95 
28 2.60 3 7.80 218.53 6118.78 
31 1.63 3 4.90 151.91 4709. 16 
34 0.97 3 2.91 98.83 3360.38 
37 0.60 3 1.79 66.23 2450.36 
40 0.34 4 1.37 54.72 2188.87 
44 0.21 3 0.64 28.01 1232.62 
47 0.13 4 0.51 24.08 1131.87 
51 0.08 6 0.51 25.99 1325.66 
57 0.06 3 0.17 9.55 544.56 
60 0.07 4 0.30 17.82 1069.04 
64 0.07 4 0.27 17. 13 1096. 13 

68 0.06 6 0.34 23. 19 1577. 19 
74 0.05 6 0.32 24.01 1776.72 
80 0.05 4 0.20 15.63 1250.78 
84 0.07 5 0.33 27.57 2316.21 
89 0.08 3 0.23 20.88 1858.42 
92 0.05 

SUM: 116 92 322.91 5287.21 106495.97 

211 



Appendix J. Calculation of Dispersion Coefficient - Compost and 
Diatomaceous Earth Media (Cont'd) 

(1) Compost Column (Cont'd): 

1 

(mins) (µg/L) (mins) (µg/L·min) (min2-µg/L) (min3•µg/L) 

• Qg = 50 mUmin: 

0 0.05 2 0.09 0.00 0.00 
2 0.04 3 0.13 0.26 0.52 
5 0.08 2 0.15 0.76 3.78 
7 19.32 3 57.97 405.78 2840.48 

10 33.59 2 67.19 671.90 6718.98 
12 30.46 2 60.93 731.11 8773.30 
14 19.45 3 58.36 817.07 11438.93 
17 11.36 2 22.72 386.28 6566.79 
19 6.13 3 18.39 349.35 6637.58 
22 3.04 2 6.09 133.97 2947.42 
24 1.59 3 4.76 114.22 2741.34 
27 0.76 2 1.52 41.03 1107.75 
29 0.41 2 0.82 23.87 692.16 
31 0.23 3 0.70 21.62 670.34 
34 0.14 2 0.28 9.69 329.36 
36 0.11 3 0.33 12.03 433.11 
39 0.07 3 0.20 7.74 301.82 
42 0.05 3 0.16 6.78 284.70 
45 0.06 3 0.19 8.36 376.38 
48 0.04 3 0.13 6.03 289.61 
51 0.05 3 0.16 8.10 413.25 
54 0.00 2 0.00 0.00 0.00 
56 0.05 2 0.11 5.95 333.22 
58 0.05 2 0.09 5.26 304.83 
60 0.06 11 0.69 41.48 2488.83 
71 0.04 9 0.39 27.56 1956.70 

80 0.05 12 0.59 47.46 3797.09 
92 0.06 

SUM: 127.36 92 303.14 3883.66 62448.28 
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Appendix J. Calculation of Dispersion Coefficient - Compost and 
Diatomaceous Earth Media (Cont'd) 

. (1) Compost Column (Cont'd): 

(mins) (µg/L) (mins) (µg/L-min) (min2-µg/L) (min3•µg/L) 

• Qg = 100 mUmin: 

0 0.03 2 0.06 0.00 0.00 
2 0.03 3 0.08 0.16 0.32 
5 17.06 2 34.13 170.63 853.13 
7 22.89 2 45.79 320.53 2243.69 
9 9.67 2 19.33 173.99 1565.92 

11 3.31 3 9.94 109.31 1202.46 
14 1.17 2 2.35 32.84 459.79 
16 0.36 2 0.73 11.67 186.76 
18 0.13 3 0.39 7.09 127.60 
21 0.06 2 0.12 2.53 53.13 
23 0.04 3 0.12 2.70 62.16 
26 0.04 2 0.07 1.91 49.54 
28 0.00 3 0.00 0.00 0.00 
31 0.03 6 0.18 5.59 173.18 
37 0.04 10 0.40 14.76 546.18 
47 0.00 5 0.00 0.00 0.00 
52 0.02 9 0.20 10.36 538.93 
61 0.00 8 0.00 0.00 0.00 
69 0.03 8 0.28 19.31 1332.42 
77 0.00 6 0.00 0.00 0.00 
83 0.04 7 0.25 20.87 1732.02 
90 0.03 

SUM: 55.00 90 114.42 904.25 11127.25 
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Appendix J. Calculation of Dispersion Coefficient - Compost and 
Diatomaceous Earth Media (Cont'd) 

(2) Diatomaceous Earth Column: 

(mins) (µg/L) (mins) (µg/L·min) (min2-µg/L) (min3-µg/L) 

• Qg = 25 mUmin: 

0 0.00 4 0.00 0.00 0.00 
4 0.00 3 0.00 0.00 0.00 
7 15.63 2 31.26 218.85 1531.96 
9 30.73 7 215.11 1935.99 17423.88 

16 8.40 3 25.20 403.24 6451.92 
19 3.77 3 11.31 214.84 4082.05 
22 1.90 3 5.71 125.64 2764.15 
25 0.37 3 1.12 27.88 697.00 
28 0.46 3 1.39 39.05 1093.47 
31 0.19 4 0.76 23.61 731.96 
35 0.11 7 0.75 26.30 920.60 
42 0.07 6 0.44 18.39 772.48 
48 0.06 6 0.36 17.37 833.67 
54 0.05 8 0.44 23.67 1277.99 
62 0.27 9 2.40 148.68 9218.16 
71 0.00 9 0.00 0.00 0.00 
80 0.03 12 0.35 '27.78 2222.45 
92 0.02 

SUM: 62.08 92 296.60 3251.31 50021.75 
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Appendix J. Calculation of Dispersion Coefficient - Compost and 
Diatomaceous Earth Media (Cont'd) 

(2) Diatomaceous Earth Column (Cont'd): 

(mins) (µg/L) (mins) (µg/L•min) (min2-µg/L) (min3 -µg/L) 

• Qg = 50 mUmin: 

0 0.00 2.00 0.00 0.00 0.00 
2 0.36 2.00 0.73 1.46 2.92 
4 22.70 3.00 68.09 272.35 1089.39 
7 22.18 3.00 66.54 465.77 3260.40 

10 12.94 3.00 38.81 388.10 3881.01 
13 5.47 3.00 16.42 213.41 2774.33 
16 1.00 5.00 5.00 79.96 1279.42 
21 0.32 4.00 1.29 27.03 567.61 
25 0.00 3.00 0.00 0.00 0.00 
28 0.07 4.00 0.28 7.82 219.02 
32 0.02 7.00 0.13 4.03 128.99 
39 0.03 9.00 0.24 9.18 357.89 
48 0.03 8.00 0.20 9.83 471.70 
56 0.03 5.00 0.15 8.59 481.07 
61 0.02 20.00 0.46 27.89 1701.44 
81 0.04 9.00 0.33 26.91 2179.63 
90 0.02 

SUM: 65.22 90.00 198.65 1542.33 18394.82 
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Appendix J. Calculation of Dispersion Coefficient - Compost and 
Diatomaceous Earth Media (Cont'd) 

(2) Diatomaceous Earth Column (Cont'd): 

1 

(mins) (µg/L) (mins) (µg/L•min) (min2-µg/L) 

• Qg = 100 mUmin: 

0 0.10 1 0.10 0.00 0.00 
1 0.12 2 0.24 0.24 0.24 
3 2.31 2 4.61 13.84 41.52 
5 8.73 3 26.19 130.97 654.84 
8 8.02 3 24.05 192.43 1539.43 

11 3.71 3 11.13 122.39 1346.24 
14 1.32 3 3.95 55.34 774.72 
17 0.42 4 1.67 28.41 483.00 
21 0.17 3 0.51 10.72 225.19 
24 0.00 4 0.00 0.00 0.00 
28 0.12 4 0.49 13.76 385.40 
32 0.12 7 0.83 26.61 851.66 
39 0.13 4 0.51 19.90 776.21 
43 0.12 6 0.73 31.32 1346.64 
49 0.18 6 1.10 53.91 2641.51 
55 0.16 5 0.79 43.23 2377.81 
60 0.22 30 6.55 392.90 23574.29 
90 0.15 3 0.44 39.75 3577.77 
93 0.11 

SUM: 26.20 93 83.90 1175.74 40596.48 
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Appendix K. Determination of Mathematical Model's Coefficient 
- Ignoring the Effect of Dispersion Coefficient 

(1) Zero-Order: 

Run No. z (cm) C (µg/L) Curve-Fit 

• Compost Column: 

1 0.0 1018 C = 878 - 9.322 0.911 1.2552 
19.0 720 
37.5 441 
56.0 250 
74.5 56 
93.0 12 

112.0 0 

2 0.0 1013 C = 1096 - 7.932 0.909 2.1376 
19.0 915 
37.5 843 
56.0 731 
74.5 577 
93.0 454 

112.0 32 

3 0.0 1079 C = 1073 - 5.222 0.988 2.8147 
19.0 950 
37.5 914 
56.0 752 
74.5 683 
93.0 605 

112.0 479 

"" 
5 0.0 2155 C = 2044 - 6.462 0.944 0.8705 

19.0 1857 
37.5 1743 
56.0 1658 
74.5 1530 
93.0 1460 

112.0 1369 

6 0.0 1989 C = 1947 - 6.722 0.976 1.8106 
19.0 1780 

217 



Appendix K. Determination of Mathematical Model's Coefficient - Ignoring 
the Effect of Dispersion Coefficient (Cont'd) 

(1) Zero-Order (Cont'd): 

Run No. z (cm) C (µg/L) Curve-Fit 

• Compost Column (Cont'd): 

37.5 1737 
56.0 1504 
74.5 1437 
93.0 1324 

112.0 1226 

7 0.0 2127 C = 2047 - 7.28z 0.963 3.9207 
19.0 1881 
37.5 1737 
56.0 1568 
74.5 1476 
93.0 1440 

112.0 1245 
AVG.: 2.1349 

• Diatomaceous Earth Column: 

1 0.0 1438 C = 690 - 8.25z 0.386 1.4700 
19.0 47 
37.5 17 
56.0 21 
74.5 12 
93.0 52 

112.0 8 

2 0.0 1338 C = 777 - 8.82z 0.546 3.1432 
19.0 368 
37.5 82 
56.0 58 
74.5 52 
93.0 50 

112.0 31 
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Appendix K. Detennination of Mathematical Model's Coefficient - Ignoring 
the Effect of Dispersion Coefficient (Cont'd) 

(1) Zero-Order (Cont'd): 

Run No. z (cm) C (µg/L) Curve-Fit 

• Diatomaceous Earth Column (Cont'd): 

3 0.0 1167 C = 648 - 7.672 0.523 5.4651 
19.0 242 

37.5 54 
56.0 33 
74.5 18 
93.0 11 

112.0 4 

5 0.0 2199 C = 1132-13.772 0.460 2.4533 
19.0 257 
37.5 51 
56.0 14 
74.5 6 
93.0 0 

112.0 0 

6 0.0 2230 C = 1402 - 16.302 0.616 5.8084 
19.0 930 
37.5 104 
56.0 65 

74.5 34 
93.0 39 

112.0 20 

7 0.0 2194 C = 1267- 14.812 0.558 10.5544 
19.0 554 
37.5 169 
56.0 67 
74.5 31 
93.0 24 

112.0 26 
AVG.: 4.8157 
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Appendix K. Detennination of Mathematical Model's Coefficient - Ignoring 
the Effect of Dispersion Coefficient (Cont'd) 
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(2) First-Order: 

Run No. z (cm) C (µg/L) lnC Curve-Fit 

• Compost Column: 

1 0.0 1018 6.93 In C = 7.85 - 0.05962 0.898 0.0080 
19.0 720 6.58 
37.5 441 6.09 
56.0 250 5.52 
74.5 56 4.03 
93.0 12 2.48 

112.0 0 

2 0.0 1013 6.92 In C = 7.45 - 0.02342 0.599 0.0063 
19.0 915 6.82 
37.5 843 6.74 
56.0 731 6.59 
74.5 5n 6.36 
93.0 454 6.12 

112.0 32 3.47 

3 0.0 1079 6.98 In C = 7.02 - 0.00702 0.975 0.0038 
19.0 950 6.86 
37.5 914 6.82 
56.0 752 6.62 
74.5 683 6.53 
93.0 605 6.41 

112.0 479 6.17 

5 0.0 2155 7.68 In C = 7.63 - 0.00382 0.971 0.0005 
19.0 1857 7.53 
37.5 1743 7.46 
56.0 1658 7.41 
74.5 1530 7.33 
93.0 1460 7.29 

112.0 1369 7.22 

6 0.0 1989 7.60 In C = 7.59 - 0.00432 0.985 0.0012 
19.0 1780 7.48 
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Appendix K. Determination of Mathematical Model's Coefficient- Ignoring 
the Effect of Dispersion Coefficient (Cont'd) 

(2) First-Order (Cont'd): 

Run No. z (cm) C (µg/L) lnC Curve-Fit 

• . Compost Column (Cont'd): 

37.5 1737 7.46 
56.0 1504 7.32 
74.5 1437 7.27 
93.0 1324 7.19 

112.0 1226 7.11 

7 0.0 2127 7.66 In C = 7.64 - 0.0044z 0.977 0.0024 
19.0 1881 7.54 
37.5 1737 7.46 
56.0 1568 7.36 
74.5 1476 7.30 
93.0 1440 7.27 

112.0 1245 7.13 
.AVG.: 0.0037 

• Diatomaceous Earth Column: 

1 0.0 1438 7.27 In C = 5.34 - 0.0303z 0.491 0.0054 
19.0 47 3.85 
37.5 17 · 2.83 
56.0 21 3.04 
74.5 12 2.48 
93.0 52 3.95 

112.0 8 2.08 

2 0.0 1338 7.20 In C = 6.39 - 0.0302z 0.807 0.0108 
19.0 368 5.91 
37.5 82 4.41 
56.0 58 4.06 
74.5 52 3.95 
93.0 50 3.91 

112.0 31 3.43 



Appendix K. Determination of Mathematical Model's Coefficient - Ignoring 
the Effect of Dispersion Coefficient (Cont'd) 
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(2) First-Order (Cont'd): 

Run No. z (cm) C (µg/L) lnC Curve-Fit 

• Diatomaceous Earth Column (Cont'd): 

3 0.0 1167 7.06 In C = 6.43 - 0.04672 0.950 0.0333 
19.0 242 5.49 
37.5 54 3.99 
56.0 33 3.50 
74.5 18 2.89 
93.0 11 2.40 

112.0 4 1.39 

5 0.0 2199 7.70 In C = 9.31 - 0.15812 0.853 0.0282 
19.0 257 · 5.55 
37.5 51 3.93 
56.0 14 2.64 
74.5 6 1.79 
93.0 0 

112.0 0 

6 0.0 2230 7.71 In C = 7.12 - 0.04152 0.869 0.0148 
19.0 930 6.84 
37.5 104 4.64 
56.0 65 4.17 
74.5 34 3.53 
93.0 39 3.66 

112.0 20 3.00 

7 0.0 2194 7.69 In C = 7 .03 - 0.04082 0.899 0.0291 
19.0 554 6.32 
37.5 169 5.13 
56.0 67 4.20 
74.5 31 3.43 
93.0 24 3.18 

112.0 26 3.26 
AVG.: 0.0203 



Appendix L. Determination of Mathematical Model's Coefficient 
- Considering the Effect of Dispersion Coefficient 

(I) '.Zero-Order: 
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Run No. z (cm) C (µg/L) ko {µg/L-sec) U (cm/sec) D (cm2/sec) p Q 

• Compost Column: 

1 0.0 1018 2.1349 0.094 1.47 0.0639 1.0092 
19.0 720 
37.5 441 
56.0 250 
74.5 56 
93.0 12 

112.0 0 

2 0.0 1013 2.1349 0.187 2.08 0.0899 0.7133 
19.0 915 
37.5 843 
56.0 731 
74.5 5n 
93.0 454 

112.0 32 

3 0.0 1079 2.1349 0.374 7.37 0.0507 0.2013 
19.0 950 
37.5 914 
56.0 752 
74.5 683 
93.0 605 

112.0 479 

5 0.0 2155 2.1349 0.094 1.47 0.0639 1.0092 
19.0 1857 
37.5 1743 
56.0 1658 
74.5 1530 
93.0 1460 

112.0 1369 

6 0.0 1989 2.1349 0.187 2.08 0.0899 0.7133 
19.0 1780 



Appendix L. Determination of Mathematical Model's Coefficient - Considering 
the Effect of Dispersion Coefficient (Cont'd) 
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(1) Zero-Order (Cont'd): 

Run No. z (cm) C (µg/L) ko (µg/L·sec-1) U (cm/sec) D (cm2/sec) P Q 

• Compost Column (Cont'd): 

37.5 1737 
56.0 1504 
74.5 1437 
93.0 1324 

112.0 1226 

7 0.0 2127 2.1349 0.374 7.37 0.0507 0.2013 
19.0 1881 
37.5 1737 
56.0 1568 
74.5 1476 
93.0 1440 

112.0 1245 

• Diatomaceous Earth Column: 

1 0.0 1489 4.8157 0.080 3.85 0.0208 0.5620 
19.0 47 
37.5 17 
56.0 21 
74.5 12 
93.0 52 

112.0 8 

2 0.0 1338 4.8157 0.160 7.22 0.0222 0.2997 
19.0 368 
37.5 82 
56.0 58 
74.5 52 
93.0 50 

112.0 31 



Appendix L. Determination of Mathematical Model's Coefficient - Considering 
the Effect of Dispersion Coefficient (Cont'd) 
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(1) Zero-Order (Cont'd): 

Run No. z (cm) C (µg/L) ko (µg!L,sec-1) U (cm/sec) D (cm2/sec) P Q 

• Diatomaceous Earth Column (Cont'd): 

3 0.0 1167 4.8157 0.320 10.92 0.0293 0.1981 
19.0 242 
37.5 54 
56.0 33 
74.5 18 
93.0 11 

112.0 4 

5 0.0 2199 4.8157 0.080 3.85 0.0208 0.5620 
19.0 257 
37.5 51 
56.0 14 
74.5 6 
93.0 0 

112.0 0 

6 0.0 2230 4.8157 0.160 7.22 0.0222 0.2997 
19.0 930 
37.5 104 
56.0 65 
74.5 34 
93.0 39 

112.0 20 

7 0.0 2194 4.8157 0.320 10.92 0.0293 0.1981 
19.0 554 
37.5 169 
56.0 67 
74.5 31 
93.0 24 

112.0 26 



Appendix L. Determination of Mathematical Model's Coefficient- Considering 
the Effect of Dispersion Coefficient (Cont'd) 
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(2) First-Order: 

RunNo. z C u D rl r2 Al A2 

(cm) (µg/L) (sec-1) (cm/sec) (cm2/sec) 

• Compost Column: 

1 0.0 1018 0.0037 0.094 1.47 0.0846 -0.0207 -0.0077 1018 
19.0 720 
37.5 441 
56.0 250 
74.5 56 
93.0 12 

112.0 0 

2 0.0 1013 0.0037 0.187 2.08 0.1020 -0.0121 -0.0025 1013 
19.0 915 
37.5 843 
56.0 731 
74.5 577 
93.0 454 

112.0 32 

3 0.0 1079 0.0037 0.374 7.37 0.0569 -0.0061 -0.1094 1079 
19.0 950 
37.5 914 
56.0 752 
74.5 683 
93.0 605 

112.0 479 

5 0.0 2155 0.0037 0.094 1.47 0.0846 -0.0207 0.0886 2155 
19.0 1857 
37.5 1743 
56.0 1658 
74.5 1530 
93.0 1460 

112.0 13~9 



Appendix L. Determination of Mathematical Model's Coefficient - Considering 
the Effect of Dispersion Coefficient (Cont'd) 
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(2) First-Order (Cont'd): 

RunNo. z C u D rl r2 Al A2 

(cm) (µg/L) (sec-1) (cm/s~c) (cm2/sec) 

• Compost Column (Cont'd): 

6 0.0 1989 0.0037 0.187 2.08 0.1020 -0.0121 0.0078 1989 
19.0 1780 
37.5 1737 
56.0 1504 
74.5 1437 
93.0 1324 

112.0 1226 

7 0.0 2127 0.0037 0.374 7.37 0.0569 -0.0061 0.2995 2127 
19.0 1881 
37.5 1737 
56.0 1568 
74.5 1476 
93.0 1440 

112.0 1245 

• Diatomaceous Earth Column: 

1 0.0 1489 0.0203 0.080 3.85 0.0602 -0.0394 -0.0120 1489 
19.0 47 
37.5 17 
56.0 21 
74.5 12 
93.0 52 

112.0 8 

2 0.0 1338 0.0203 0.160 7.22 0.0483 -0.0262 -0.1812 1338 
19.0 368 
37.5 82 
56.0 58 
74.5 52 
93.0 50 



Appendix L. Determination of Mathematical Model's Coefficient - Considering 
the Effect of Dispersion Coefficient (Cont'd) 
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(2) First-Order (Cont'd): 

Run No. z C k1 I u D rl r2 Al A2 

(cm) (µg/L) (sec-1) (cm/sec) (cm2/sec) 

• Diatomaceous Earth Column (Cont'd): 

112.0 31 

3 0.0 1167 0.0203 0.320 10.92 0.0471 -0.0178 -0.8022 1168 
19.0 242 
37.5 54 
56.0 33 
74.5 18 
93.0 11 

112.0 4 

5 0.0 2199 0.0203 0.080 3.85 0.0612 -0.0394 -0.0317 2199 
19.0 257 
37.5 51 
56.0 14 
74.5 6 
93.0 0 

112.0 0 

6 0.0 2230 0.0203 0.160 7.22 0.0483 -0.0262 -0.4436 2230 
19.0 930 
37.5 104 
56.0 65 
74.5 34 
93.0 39 

112.0 20 

7 0.0 2194 0.0203 0.320 10.92 0.0471 -0.0178 -1.4130 2195 
19.0 554 
37.5 169 
56.0 67 
74.5 31 
93.0 24 

112.0 26 



• 
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Appendix M. Prediction of Contaminant Concentrations 
- Zero-Order and First-Order Models 

Run No. z (cm) Observed Value (1,L~) 

Compost Column: 

1 0 1018 
19 720 

37.5 441 
56 250 

74.5 56 
93 12 

112 0 

2 0 1013 
19 915 

37.5 843 
56 731 

74.5 5n 
93 454 

112 32 

3 0 1079 
19 950 

37.5 914 
56 752 

74.5 683 
93 605 

112 479 

5 0 2155 
19 1857 

37.5 1743 
56 1658 

74.5 1530 
93 1460 

112 1369 

Predicted Value (1,L~) 

Zero-Order First-Order Zero-Order First-Order 
w=m w=m w¢m w¢m 

1018 1018 1018 1018 
718 605 719 687 
426 365 432 468 
134 220 154 319 

0 133 0 214 
0 80 0 128 
0 48 0 0 

1013 1013 1013 1013 
862 780 862 805 
715 605 715 643 
569 469 568 514 
422 364 419 406 
275 282 258 . 296 
124 217 32 33 

1079 1079 1079 1079 
1004 947 1003 961 
930 834 927 857 
857 734 848 764 
783 647 760 6n 
710 569 651 590 
635 500 479 481 

2155 2155 2155 2155 
1855 1282 1857 1455 
1563 773 1570 994 
1271 466 1297 686 
979 281 1067 509 
687 169 978 546 
387 101 1369 1367 
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Appendix M. Prediction of Contaminant Concentrations 
- Zero-Order and First-Order Models (Cont'd) 

Run No. z (cm) Observed Value {µg/L) Predicted Value {µg/L) 

Zero-Order First-Order Zero-Order First-Order 
(D= 0) (D= 0) (D-:t-0) (D-:t-0) 

• Compost Column (Cont'd): 

6 0 1989 1989 1989 1989 1989 
19 1780 1838 1532 1838 1581 

37.5 1737 1691 1188 1692 1264 
56 1504 1545 921 1545 1012 

74.5 1437 1398 714 1402 823 
93 1324 1251 554 1274 748 

112 1226 1100 426 1226 1227 

7 0 2127 2127 2127 2127 2127 
19 1881 2052 1867 2049 1895 

37.5 1737 1978 1644 1970 1695 
56 1568 1905 1447 1.880 1519 

74.5 1476 1831 1274 1767 1371 
93 1440 1758 1122 1592 1266 

112 1245 1683 985 1245 1250 

• Diatomaceous Earth Column: 

1 0 1489 1489 1489 1489 1489 
19 47 975 171 1056 704 

37.5 17 475 21 673 340 
56 21 0 3 343 164 

74.5 12 0 0 94 78 
93 52 0 0 0 35 

112 8 0 0 8 8 

2 0 1338 1338 1338 1338 1338 
19 368 1081 453 1091 813 

37.5 82 831 158 856 500 
56 58 581 55 628 306 

74.5 52 331 19 411 183 
93 50 80 7 211 101 

112 31 0 2 31 31 
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Appendix M. Prediction of Contaminant Concentrations 
- Zero-Order and First-Order Models (Cont'd) 

Run No. z (cm) Observed Value (µg/L) Predicted Value (µg/L) 

Zero-Order First-Order Zero-Order First-Order 
(D = 0) (D = 0) (D * 0) (D * 0) 

• Diatomaceous Earth Column (Cont'd): 

3 0 1167 1167 1167 1167 1167 
19 242 1039 679 1027 831 

37.5 54 913 401 882 594 
56 33 788 237 723 420 

74.5 18 663 140 539 283 
93 11 538 82 312 159 

112 4 410 48 4 2 

5 0 2199 2199 2199 2199 2199 
19 257 1685 252 1729 1040 

37.5 51 1185 31 1291 502 
56 14 684 4 883 241 

74.5 6 184 0 517 114 
93 0 0 0 214 48 

112 0 0 0 0 0 

6 0 2230 2230 2230 2230 2230 
19 930 1973 755 1940 1357 

37.5 104 1723 263 1641 838 
56 65 1473 92 1318 521 

74.5 34 1223 32 956 333 
93 39 972 11 539 235 

112 20 715 4 20 218 

7 0 2194 2194 2194 2194 2194 
19 554 2066 12n 2025 1562 

37.5 169 1940 753 1830 1118 
56 67 1815 445 1586 790 

74.5 31 1690 262 1257 536 
93 24 1565 155 780 306 

112 26 1437 90 26 23 
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Appendix N. Outputs of Statistical Analysis - Regression Analysis 

• Compost Column: 

SUMMARY: 

Groups Count Sum Average Variance 

Model (1) 6 4.707 0.7845 0.034065 
Model (2) 6 4.62 0.77 0.03066 
Model (3) 6 5.192 0.865333 0.016395 
Model (4) 6 4.871 0.811833 0.033185 

ANOVA: 

Source of ss df MS F P-value F crit 
Variation 
Between Groups 0.031788 3 0.010596 0.37 0.774915 3.10 
Within Groups 0.57153 20 0.028576 

Total 0.603318 23 

• Diatomaceous Earth Column: 

SUMMARY: 

Groups Count Sum Average Variance 

Model (1) 6 3.388 0.564667 0.007977 
Model (2) 6 5.5179 0.91965 0.012322 
Model (3) 6 3.389 0.564833 0.001643 
Model (4) 6 4.441 0.740167 0.006344 

ANOVA: 

Source of ss df MS F P-value F crit 
Variation 
Between Groups 0.518497 3 0.172832 24.44 6.79E-07 3.10 
Within Groups 0.14143 20 0.007072 

Total 0.659927 23 
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Appendix 0. Raw Data of Statistical Analysis - Analysis of Variance 

( 1) Effect of Residence Time on Elimination Efficiency: 

Test Conditions Elimination Efficiency (%) 

Inf. Cone.: Low High 

T (mins): 20 10 5 2.5 20 10 5 

• Compost Column: 

100.0 99.2 69.9 55.6 54.1 31.0 34.9 
100.0 100.0 74.4 39.9 44.7 37.8 33.2 
100.0 100.0 71.7 23.9 46.5 49.5 40.l 
100.0 93.3 45.9 23.8 46. l 51.1 37.0 
100.0 100.0 82.0 37.8 35.7 65.1 33.2 
100.0 100.0 65.1 32.1 33.4 66.7 34.0 
100.0 100.0 60.8 20.2 24.0 62.4 41.3 
100.0 83.7 69.l 28.0 29.9 31.1 47.6 
100.0 92.7 82.3 19.7 38.3 25.1 59.9 
100.0 100.0 51.2 41.9 38.9 15.4 41.9 
100.0 100.0 59.l 29.2 31.0 19.3 36.3 
100.0 100.0 56.5 24.3 17.4 37.2 41.0 
100.0 100.0 58.7 49.0 36.2 50.8 
100.0 100.0 75.0 29.4 39.6 45.4 
100.0 100.0 49.2 35.0 4.4 
100.0 100.0 26.3 34.9 36.8 
100.0 93.9 63.5 44.8 57.0 
100.0 83.9 47.1 36.0 46.3 

30.7 
36.2 
59.6 
73.8 
45.2 
81.4 
51.7 
31.4 
22.4 
53.9 
47.8 
44.6 
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Appendix 0. Raw Data of Statistical Analysis - Analysis of Variance (Cont'd) 

( 1) Effect of Residence Time on Elimination Efficiency (Cont'd): 

Test Conditions Elimination Efficiency(%) 

Inf. Cone.: Low High 

T (mins): 20 10 5 2.5 20 10 5 2.5 

• Diatomaceous Earth Column: 

100.0 98.8 99.7 95.5 100.0 100.0 97.8 97.5 
100.0 97.5 99.9 97.0 100.0 98.3 99.3 97.0 
100.0 97.8 100.0 98.7 100.0 100.0 99.7 98.6 
100.0 99.9 100.0 93.5 100.0 100.0 100.0 100.0 
94.5 94.8 100.0 97.1 100.0 100.0 96.8 98.5 

100.0 96.0 100.0 96.3 100.0 100.0 98.3 98.7 
100.0 96.9 100.0 98.5 100.0 93.7 97.9 100.0 
100.0. 99.1 100.0 100.0 96.8 99.7 
100.0 97.7 100.0 100.0 98.5 98.4 
100.0 99.8 100.0 100.0 99.3 100.0 
100.0 98.3 98.0 100.0 99.8 100.0 
100.0 99.2 99.6 100.0 100.0 100.0 
100.0 98.7 98.1 100.0 100.0 

99.8 100.0 100.0 96.6 
95.8 100.0 
94.2 100.0 

98.1 
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Appendix 0. Raw Data of Statistical Analysis - Analysis of Variance (Cont'd) 

(2) Effect of Influent Concentration on Elimination Efficiency: 

Test Conditions Elimination Efficiency{%) 

T (mins): 20 10 5 

Inf. Cone.: Low High Low High Low High 

• Compost Column: 

100.0 54.l 99.2 31.0 69.9 34.9 
100.0 44.7 100.0 37.8 74.4 33.2 
100.0 46.5 100.0 49.5 71.7 40.l 
100.0 46. l 93.3 51. l 45.9 37.0 
100.0 35.7 100.0 65.l 82.0 33.2 
100.0 33.4 100.0 66.7 65.l 34.0 
100.0 24.0 100.0 62.4 60.8 41.3 
100.0 29.9 83.7 31. l 69.l 47.6 
100.0 38.3 92.7 25. l 82.3 59.9 
100.0 38.9 100.0 15.4 51.2 41.9 
100.0 31.0 100.0 19.3 59.l 36.3 
100.0 17.4 100.0 37.2 56.5 41.0 
100.0 49.0 100.0 36.2 58.7 50.8 
100.0 29.4 100.0 39.6 75.0 45.4 
100.0 35.0 100.0 4.4 49.2 
100.0 34.9 100.0 36.8 26.3 
100.0 44.8 93.9 57.0 63.5 
100.0 36.0 83.9 46.3 47. l 

30.7 
36.2 
59.6 
73.8 
45.2 
81.4 
51.7 
31.4 
22.4 
53.9 
47.8 
44.6 
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Appendix 0. Raw Data of Statistical Analysis - Analysis of Variance (Cont'd) 

(2) Effect of Influent Concentration on Elimination Efficiency (Cont'd): 

Test Conditions Elimination Efficiency(%) 

T (mins): 20 10 5 2.5 

Inf. Cone. Low High Low High Low High Low High 

• Diatomaceous Earth Column: 

100.0 100.0 98.8 100.0 99.7 97.8 95.5 97.5 
100.0 100.0 97.5 98.3 99.9 99.3 97.0 97.0 
100.0 100.0 97.8 100.0 100.0 99.7 98.7 98.6 
100.0 100.0 99.9 100.0 100.0 100.0 93.5 100.0 
94.5 100.0 94.8 100.0 100.0 96.8 97.1 98.5 

100.0 100.0 96.0 100.0 100.0 98.3 96.3 98.7 
100.0 100.0 96.9 93.7 100.0 97.9 98.5 100.0 
100.0 100.0 99.l 96.8 100.0 99.7 
100.0 100.0 97.7 98.5 100.0 98.4 
100.0 100.0 99.8 99.3 100.0 100.0 
100.0 100.0 98.3 99.8 98.0 100.0 
100.0 100.0 99.2 100.0 99.6 100.0 
100.0 98.7 100.0 98. l 100.0 

99.8 100.0 100.0 96.6 
95.8 100.0 
94.2 100.0 

98. l 
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Appendix 0. Raw Data of Statistical Analysis - Analysis of Variance (Cont'd) 

(3) Effect of Type of Filter on Elimination Efficiency: 

Test Conditions Elimination Efficiency (%) 

T (mins): 20 10 5 2.5 

Filter: COM DE COM DE COM DE COM DE 

• Low Influent Concentration: 

100.0 100.0 99.2 98.8 69.9 99.7 55.6 95.5 
100.0 100.0 100.0 97.5 74.4 99.9 39.9 97.0 
100.0 100.0 100.0 97.8 71.7 100.0 23.9 98.7 
100.0 100.0 93.3 99.9 45.9 100.0 23.8 93.5 
100.0 94.5 100.0 94.8 82.0 100.0 37.8 97. l 
100.0 100.0 100.0 96.0 65.1 100.0 32. l 96.3 
100.0 100.0 100.0 96.9 60.8 100.0 20.2 98.5 
100.0 100.0 83.7 99.1 69. l 100.0 28.0 
100.0 100.0 92.7 97.7 82.3 100.0 19.7 
100.0 100.0 100.0 99.8 51.2 100.0 41.9 
100.0 100.0 100.0 98.3 59. l 98.0 29.2 
100.0 100.0 100.0 99.2 56.5 99.6 24.3 
100.0 100.0 100.0 98.7 58.7 98. l 
100.0 100.0 99.8 75.0 100.0 
100.0 100.0 95.8 49.2 
100.0 100.0 94.2 26.3 
100.0 93.9 63.5 
100.0 83.9 47.l 

30.7 
36.2 
59.6 
73.8 
45.2 
81.4 
51.7 
31.4 
22.4 
53.9 
47.8 
44.6 

• 
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Appendix 0. Raw Data of Statistical Analysis - Analysis of Variance (Cont'd) 

(3) Effect of Type of Filter on Elimination Efficiency (Cont'd): 

Test Conditions Elimination Efficiency(%) 

T (mins): 20 10 5 

Filter: COM DE COM DE COM DE 

• High Influent Concentration: 

54.1 100.0 31.0 100.0 34.9 97.8 
44.7 100.0 37.8 98.3 33.2 99.3 
46.5 100.0 49.5 100.0 40.1 99.7 
46.1 100.0 51.1 100.0 37.0 100.0 
35.7 100.0 65.1 100.0 33.2 96.8 
33.4 100.0 66.7 100.0 34.0 98.3 
24.0 100.0 62.4 93.7 41.3 97.9 
29.9 100.0 31.1 96.8 47.6 99.7 
38.3 100.0 25.1 98.5 59.9 98.4 
38.9 100.0 15.4 99.3 41.9 100.0 
31.0 100.0 19.3 99.8 36.3 100.0 
17.4 100.0 37.2 100.0 41.0 100.0 
49.0 36.2 1()0.0 50.8 100.0 
29.4 39.6 100.0 45.4 96.6 
35.0 4.4 100.0 
34.9 36.8 100.0 
44.8 57.0 98.1 
36.0 46.3 



Appendix P. Outputs of Statistical Analysis - Analysis of Variance 

(1) Effect of Residence Time on Elimination (Compost Column): 

• Low Influent Concentration: 

SUMMARY: 

. Groups .............................................. ~.9-.l:.~.! .................. sum ...... Average ..... variance 

T= 20 mins 
T= 10mins 
T= 5.0 mins 
T= 2.5 mins 

ANOVA: 

18 1800 
18 1746.662 
30 1686.259 
12 376.2733 

100 
97.0368 

56.20862 
31.35611 

0 
29.65758 
278.2649 
113.8897 
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Source of Variation SS df MS F P-value F crit ......................................................................................................................................................................................................................... 
BetweenGroups 52698.7 3 17566.23 132.28 l.17E-29 2.73 
Within Groups 9826.649 74 132.7926 

Total 62525.35 77 

• High Influent Concentration: 

SUMMARY: 

. Groups .............................................. gg~D.! .................. Sum ...... Average ..... Variance 

T= 20 mins 
T= 10mins 
T= 5.0 mins 

ANOVA: 

18 669.1486 37.17492 85.56802 
18 711.7439 39.54133 300.3311 
14 576.5176 41.17983 58.5478 

Source of Variation SS df MS F P-value F crit ......................................................................................................................................................................................................................... 
Between Groups 130.6559 2 65.32797 0.42 0.659893 3.20 
Within Groups 7321.407 47 155.7746 

Total 7452.063 49 



Appendix P. Outputs of Statistical Analysis - Analysis of Variance (Cont'd) 

(1) Effect of Residence Time on Elimination (Diatomaceous Earth Column): 

• Low Influent Concentration: 

SUMMARY: 

.Groups .............................................. g.2.~D.! .................. sum ...... Average ..... variance 

T= 20 mins 
T= 10 mins 
T= 5.0 mins 
T= 2.5 mins 

ANOVA: 

13 
16 
14 
7 

1294.457 
1564.583 

1395.21 
676.573 

99.57364 
97.78644 
99.65788 
96.65329 

2.36316 
3.234156 
0.477002 

3.25189 

240 

Source of Variation SS df MS F P-value F crit 
nwo•••••n••••••n•••--•••••••••••••••••••••••n••••••••••••••••••••••••••••••••••••••••••••••••••nO .. ••••••••••••••••••••••••••--•--••--•••••••••--•••••••••••••••••••••••••••••••••••••••••••••------••••••••••••• 

Between Groups 65.09558 · 3 21.69853 9.73 4.37E-05 2.81 
Within Groups 102.5826 46 2.230057 

Total 167.6782 49 

• High Influent Concentration: 

SUMMARY: 

.Groups .............................................. count .................. sum ...... Average ..... Variance_ 
T = 20 mins 12 1200 100 O 
T = 10 mins 14 1386.407 99.02908 3.229858 
T=5.0mins 17 1682.785 98.98733 1.411151 
T = 2.5 mins 7 690.3045 98.61493 1.317765 

ANOVA: 

Source of Variation SS df MS F P-value F crit 
...... •••••••••••••••••----·•--•••••••••••••n••••••••••--••••ao••••••••••••--•••••••••••••••••••••••••HO•••••--••••••••••••••••••••••H••••••••••••••••••••••••••••••••••••••·----··•--•••••••••••••••••••••--••••••••• 

Between Groups 11.24895 3 3.74965 2.38 0.081817 2.81 
Within Groups 72.47317 46 1.575504 

Total 83.72212 49 
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Appendix P. Outputs of Statistical Analysis -Analysis of Variance (Cont'd) 

(2) Effect of Influent Concentration on Elimination (Compost Column): 

• T= 20mins: 

SUMMARY: ......... Groups ............ Count ................. sum ...... Average ... .Yaria~~~. 
Low 18 1800 100 O 
High 18 669. 1486 3 7 .17 492 85.56802 

ANOVA: 
Source of Variation SS df MS F P-value F crit ........................................................................................................................................................................................................................... 
Between Groups 35522.91 1 35522.91 830.28 l.79E-25 4.13 
Within Groups 1454.656 34 42.78401 

Total 36977.57 35 

• T= 10mins: 

SUMMARY: ......... Groups ............. ~~~.i::1.! .................. sum ..... Average ..... Y.g~f9D.~~. 
Low 18 1746.662 97.0368 29.65758 
High 18 711.7439 39.54133 300.3311 

ANOVA: 
Source of Variation SS df MS F P-value F crit 

oOOooHHooo••no•nH•••noouooooo•o••••••••••••••••OOooHhOOo•oooo••••••••••o•no•••n•••••••••••••••••••o•n•ooooo•ooOOOoOooOoooooOoooooooooooo•••••••••••••••••••ooooooooOOOoooOoooooUooooooooooooooo•oooOOoooOo 

BetweenGroups 29751.57 1 29751.57 180.32 3.76E-15 4.13 
Within Groups 5609.808 34 164.9944 

Total 35361.38 35 

• T = 5.0 mins: 

SUMMARY: ......... Groups ............. g.2~D.! .................. sum ..... Average ... .Yariance 
Low 30 1686.259 56.20862 278.2649 
High 14 576.5176 41.17983 58.5478 

ANOVA: 
Source of Variation SS df MS F P-value F crit ........................................................................................................................................................................................................................ 
Between Groups 2155.98 1 2155.98 10.25 0.002601 4.07 
Within Groups 8830.805 42 210.2573 

Total 10986.78 43 
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Appendix P. Outputs of Statistical Analysis -Analysis of Variance (Cont'd) 

(2) Effect of Influent Concentration on Elimination (Diatomaceous Earth Column): 

• T = 20mins: 
SUMMARY: .......... Groups ............ count ................. Sum ..... Average .... Variance 

Low 13 . 1294.457 99.57364 2.36316 
High 12 1200 100 0 

ANOVA: 
Source of Variation SS df MS F P-value F crit ........................................................................................................................................................................................................................ 
BetweenGroups 1.134317 1 1.134317 0.92 0.34745 4.28 
Within Groups 28.35792 23 1.232953 
Total 29.49223 24 

• T= 10mins: 
SUMMARY: .......... Groups ............ count ................. Sum ...... Average .... Variance 

Low 16 1564.583 97.78644 3.234156 
High 14 1386.407 99.02908 3.229858 

ANOVA: 
Source of Variation SS df MS F P-value F crit .......................................................................................................................................................................................................................... 
Between Groups 11.52973 1 11.52973 3.57 0.069332 4.2 
Within Groups 90.5005 28 3.232161 
Total 102.0302 29 

• T = 5.0 mins: 
SUMMARY: .......... Groups ............ count ................. Sum ...... Average .... Variance 

Low 14 1395.21 99.65788 0.477002 
High 17 1682.785 98.98733 1.411151 

ANOVA: 
Source of Variation SS df MS F P-value F crit .......................................................................................................................................................................................................................... 
Between Groups 3.452061 1 3.452061 3.48 . 0.072319 4.18 
Within Groups 28.77945 29 0.992395 
Total 32.23151 30 

• T = 2.5 mins: 
SUMMARY: .......... Groups .count ........... Sum .................. Avera9e ...... variance ... . 

Low 7 676.573 96.65329 3.25189 
High 7 690.3045 98.61493 1.317765 

ANOVA: 
Source of Variation SS df MS F P-value F crit ........................................................................................................................................................................................................................... 
Between Groups 13.46811 1 13.46811 5.89 0.031856 4. 75 
Within Groups 27.41793 12 2.284828 
Total 40.88604 13 
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Appendix P. Outputs of Statistical Analysis - Analysis of Variance (Cont'd) 

(3) Effect of Type of Filter on Elimination (Low Influent Concentration): 

• T = 20 mins: 
SUMMARY: ......... Groups ............ count ................. Sum ...... Average .... Variance 

COM 18 1800 100 0 
DE 13 1294.457 99.57364 2.36316 

ANOVA: 
Source of Variation SS df MS F P-value F crit ........................................................................................................................................................................................................................ 
Between Groups 1.372157 1 1.372157 1.4 0.245802 4.18 
Within Groups 28.35792 29 0.977859 
Total 29.73007 30 

• T= 10mins: 
SUMMARY: .......... Groups ............ count ................. Sum ...... Average .... Variance 

COM 18 1746.662 97.0368 29.65758 
DE 16 1564.583 97.78644 3.234156 

ANOVA: 
Source of Variation SS df MS F P-value F crit ........................................................................................................................................................................................................................ 
Between Groups 4.760076 1 4.760076 0.28 0.603217 4. 15 
Within Groups 552.6912 32 17 .2716 
Total 557.4513 33 

• T = 5.0 mins: 
SUMMARY: ......... Groups ............ g.9.~!Jr ................ Sum ...... Average .... Variance. 

COM 30 1686.259 56.20862 278.2649 
DE 14 1395.21 99.65788 0.477002 

ANOVA: 
Source of Variation SS df MS F P-value F crit 

•••••OOOOOHOOHHHOH••••OOHooooooOoHOHHHH••••n••••H••••••••H••••••••••••••••oo•n••••••••••••••••••••••oo•••••••n••••••••••••n••••••••--••••••••••••••••Hoo•o•oooooOOOOOOOoOOO••••••••••••••••••••••••• 

Between Groups 18020.27 1 18020.27 93.72 2.93E-12 4.07 
Within Groups 8075.884 42 192.283 
Total 26096. 16 43 

• T = 2.5 mins: . 
SUMMARY: .. ....... Groups ............ count ................. Sum ...... Average .... Variance. 

COM 12 376.2733 31.35611 113.8897 
DE 7 676.573 96.65329 3.25189 

ANOVA: 
Source of Variation SS df MS F P-value F crit 

............................................................................................................................................................................................ 0 •••••••••••••••••••••••••• 

Between Groups 18850. 14 1 18850.14 251.87 1.26E-11 4.45 
Within Groups 1272.298 17 74.84108 
Total 20122.44 18 
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Appendix P. Outputs of Statistical Analysis - Analysis of Variance (Cont'd) 

(3) Effect of Type of Filter on Elimination (High Influent Concentration): 

• T=20mins: 

SUMMARY: .......... Groups ............ count.. ............... Sum ...... Average .... Varian'?_~. 
COM 18 669.1486 37.17492 85.56802 

DE 12 1200 100 0 

ANOVA: 
Source of Variation SS df MS F P-value F crit .............................................................................................................................................................................. · ......................................... . 
Between Groups 28418.33 1 28418.33 547.01 6.45E-20 4.2 
Within Groups 1454.656 28 51.95201 

Total 29872.99 29 

• T= 10mins: 

SUMMARY: ......... Groups ............ Count ................. Sum ...... Average .... Variance_ 
COM 18 711.7439 39.54133 300.3311 

DE 14 1386.407 99.02908 3.229858 

ANOVA: 
Source of Variation SS df MS F P-value F crit ........................................................................................................................................................................................................................ 
BetweenGroups 27867.99 l 27867.99 162.41 l.22E-13 4.17 
Within Groups 5147.617 30 171.5872 

Total 33015.61 31 

• T = 5.0 mins: 

SUMMARY: ......... Groups ............ count ................. Sum ...... Average .... Variance. 
COM 14 576.5176 41.17983 58.5478 

DE 17 1682.785 98.98733 1.411151 

ANOVA: 
Source of Variation SS df MS F P-value F crit 

H00000000000000000000000oo000000000000000000000000000000oOOOOOOOOHOOOOOOOOOOOOH••••••••••••••••••••••••••••••••H••••••••••••••••••• .. ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••H•••••• 

Between Groups 25655.69 l 25655.69 949.362 l .04E-23 4.18296 
5 

Within Groups 783.6999 29 27.02413 

Total 26439.39 30 
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