
THEORETICAL INVESTIGATION OF TRANSPORT 

AND REFLECTION OF THERMAL WAVES 

By 

YE TIAN 

Bachelor of Science 
Xi'an Jiaotong University 

Xi'an, China 
1983 

Master of Science 
Xi'an Jiaotong University 

Xi'an, China 
1986 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 
the requirements for 

the Degree of 
DOCTOR OF PHILOSOPHY 

July, 1995 



OKLAHOMA STATE UNIVERSITY 

THEORETICAL INVESTIGATION OF TRANSPORT 

AND REFLECTION OF THERMAL WAVES 

Thesis Approved: 

ii 



ACKNOWLEDGEMENTS 

I wish to express my sincere appreciation to my adviser, Dr. Ronald L. Dougherty 

for his intelligent supervision, constructive guidance, strong encouragement, inspiration 

and friendship. My sincere appreciation extends to my other committee members Dr. 

Bruce J. Ackerson, Dr. Afshin J. Ghajar, Dr. David G. Lilley, and Dr. P. Tong whose 

guidance, assistance, encouragement, and friendship are also invaluable. 

Moreover, I wish to express my sincere gratitude to those who provided 

suggestions and assistance for this study: Dr. Jiaqi Cai, Mr. Lap Mou Tam, Dr. 

Mingchun Dong, Mr. Tzer-Kun Lin, Mr. Wen-Chieh Tang, and many other friends. 

I would also like to give my special appreciation to my wife, Liu Bin, for her 

precious suggestions on my research, her strong encouragement in times of difficulty, 

love and understanding throughout this whole process. Thanks also go to my parents, 

Tian, Jiu-Ting and Zhou, Yi-Xing, my aunt Sarah Chu, my uncle Rommie Chu. my 

brother Yuan Tian, for their support and encouragement. 

Finally, I would like to thank the School of Mechanical and Aerospace 

Engineering for support during my doctoral study. 

iii 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION ... . . . . . . . . .. . . . . .. . . . . . ....... .. . . . . .. . . .. ................ ......................... .. . . . . 1 

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.2 Applications of Thermal Waves in Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
1. 3 Purpose ofthis Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

II. REVIEW OF LITERATURE . . . ... . .. . . . . . . . .. . .. .. . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 6 

2.1 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
2.2 Basic Theory .......................................................................................... 10 
2. 3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

III. ONE-DIMENSIONAL THERMAL WA VE ................................................ 15 

3.1 One-Dimensional Thermal Wave Equations ............................................. 15 
3 .2 Reflection of a Thermal Wave at an Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

IV. TWO-DIMENSIONAL HYPERBOLIC THERMAL WAVES ..................... 28 

4. :t Thermal Wave Equations ....................................................................... 28 
4.2 Reflection and Transmission of a Two-Dimensional Thermal Wave .......... 30 
4.3 Analysis of Wave Front .......................................................................... 38 

V. NUMERICAL METHODS........................................................................... 42 

5.1 Numerical Method for Solving One-Dimensional Thermal Waves ............ 42 
5.2 Numerical Method for Solving Two-Dimensional Thermal Waves ........... 46 

VI. RESULTS OF HYPERBOLIC HEAT CONDUCTION ................................ 59 
6.1 One-Dimensional Thermal Waves ........................................................... 59 
6.2 Two-Dimensional Thermal Waves .......................................................... 73 

VII. PHONON TRANSPORT THEORY ............................................................ 84 

iv 



7. 1 The Phonon and Its Properties..... .. . . .. . . . . . . .. . . . . . .. . .. .. .. . . . . . .. . . . . . .. .. . . . .. . . . . . . . . . . . . 84 
7 .2 The Boltzmann Equation and Thermal Waves .......................................... 90 
7.3 Numerical Solution of Phonon Transport Equation ................................... 99 
7.4 Comparison ofPHC, HHC, and Phonon Transport Theory ..................... 112 
7. 5 Reflection of Thermal Waves at an Interface............... .. .. . .. . .. . . . . . . . .. . . . .. . . . . 122 

VIII. CONCLUSIONS AND RECOMMENDATIONS .................................... 128 

8.1 Conclusions ........................................................................................... 128 
8. 2 Topics for Future Research . . . . . .. . .. .. .. .. . . . .. .. . . .. . . . .. .. .. . .. . . . .. .. . . . .. . . .. .. . . .. . . . . .. . 131 

REFERENCES .................................................................................................. 135 

APPENDIX I ..................................................................................................... 140 

1. PHC Code ............................................................................................... 140 
2. HHC Code - layer 1 ........................ , ......................................................... 141 
3. HHC Code - layer 2 ................................................................................. 142 
4. PTE Code ................................................................................................ 144 
5. Two-Dimensional Thermal Wave Code .................................................... 147 
6. Two-Dimensional HHC Code ................................................................... 150 
7. Contour Code .......................................................................................... 154 

APPENDIX II ................................................................................................... 156 

1. Thermodynamic Analysis ofHyperbolic Heat Conduction ....................... 157 
2. Temperature Discontinuity at an Interface Based on Phonon Theory ....... 163 

V 



LIST OF FIGURES AND TABLES 

Figure ...................................................... ; ............................................................... Page 
1-1 One-Dimensional Heat Conduction by Diffusive, Hyperbolic, 

and Phonon Transport Heat Conduction . ... . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. 2 

3-1 Refractive Index and Extinction Coefficient ................................................. 18 

3-2 Reflection and Transmission of a Thermal 
Wave at an Interface ................................................................................. 20 

3-3 Step Change Thermal Wave ......................................................................... 26 

4-1 Reflectivity as a Function of TD and 0 (11 > 0) .............................................. 35 

4-2 Reflectivity for CifC1 = 1.5 and 11 < 0 .......................................................... 38 

4-3 Wave Fronts for C1 > C2 .............................................................................. 40 

4-4 Wave Fronts for C1 < C2 .............................................................................. 40 

5-1 The Grid System .......................................................................................... 44 

5-2(a) The Hybrid Grid System for T and q ........................................................ 51 

5-2(b) The Geometric Definitions of the Grid System ........................................... 52 

5-3 The Boundary Grid and Control Volume ...................................................... 54 

5-4 One-Dimensional Example Problem ............................................................... 56 

5-5(a) Comparison of Current Method with Characteristic 
Method for a Composite Material ........................................................ 57 

5-5(b) Comparison of Current Method with Characteristic 
Method for a Homogeneous Material .................................................. 57 

5-6 The Effect of Grid Number on the Accuracy of Solution ............................... 58 

vi 



6-1 The Reflectivity at an Interface Inside the Medium ....................................... 60 

6-2(a) Thermal Wave for TD< 1.0 at t = 0.3286 ............................................... 62 

6-2(b) Thermal Wave for TD< 1.0 at Different Times ......................................... 63 

6-3(a) Thermal Wave for TD> 1.0 at t = 0.3286 ............................................... 64 

6-3(b) Thermal Wave for TD> 1.0 at Different Times ......................................... 65 

6-4 Wave Propagation in a Three-Layer Composite Medium ................................ 66 

6-5 Reflectivity of a Thermal Wave at a Convective Boundary ........................... 67 

6-6(a) Reflectivity of a Cosine Thermal Wave as 
a Function of Time ( x = 0.5) ................................................................ 69 

6-6(b) Reflectivity of a Sine Thermal Wave as 
a Function of Time ( x = 0.5 ) ................................................................ 70 

6-7 Comparison ofReflectivities of the Sine Wave 
and Cosine Wave ( x = 0.5 ) .................................................................... 71 

6-8 Effect of Frequency on Reflectivity ( x = 0.5 ) .............................................. 71 

6-9 Reflectivities of Sine and Cosine Waves for Two 
Materials Having the Same Relaxation Time ( x ·= 0.5 ) ........................... 72 

6-10 Initial and Boundary Conditions for Two-Dimensional 
Hyperbolic Heat Conduction in a Rectangular Region ............................ 73 

6-11 Three-Dimensional Temperature Distribution and 
Temperature Contours ........................................................................... 7 4 

6-12 Geometry of Composite Material and Boundary Conditions ....................... 76 

6-13 Contour Plots of Wave Fronts of Reflected Wave 
and Transmitted Wave (TD= C1 I C2 ) ..................................................... 77 

6-14 Reflectivity of an Incident Sine Wave as a Function of Time 
with TD= C1 /C2 , y = 0.25, x = 0.5 .................................................... 78 

6-15 Reflectivity for 0 = rc/8 ............................................................................... 79 

6-16 Geometry of Two-Layer Composite Material ............................................... 80 

vii 



6-17 Two-Dimensional Wave Propagation in a Two-Layer Medium 
with cl> c2 and t = 0.2 ........................................................................ 82 

6-18 Two-Dimensional Wave Propagation in a Two-Layer Medium 
with C1 < C2 and t = 0.2 ........................................................................ 83 

7-1 The.Geometry of q-Space .............................................................................. 88 

7-2 The Boundary Conditions for Thermal Intensities .......................................... 99 

7-3 Intensities(µ= 1.0) at Different Times (x0 = 2.0) .... : ................................... 102 

7-4 Intensities for Different µ at 'f = 1. 5 and x0 = 2. 0........................................ 103 

7-5 Internal Energy and Heat Transfer (x0 = 2.0) .. , ............................................ 104 

7-6 Intensity(µ= 1.0) at an Early Stage and Near the Final Stages 
of the Transient Process (x0 = 1.0) ......................................................... 105 

7-7 Internal Energy and Heat Flux at an Early Stage and Near the Final Stages 
of the Transient Process (x0 = 1.0) ......................................................... 106 

7-8 Intensity Distribution at Different Positions and at Time 'f = 1. 5 . . . . . . . . . . . . . . . . . 108 

7-9 Temperature Distribution Under Steady State Conditions ........................... 109 

7-10 Comparison ofHHC, PHC and PTE for Small Acoustic Thickness ............ 115 

7-11 Comparison ofHHC, PHC and PTE for x0 = 1.0 ....................................... 116 

7-12 Comparison ofHHC, PHC and PTE for X:0 = 5.0 ....................................... 117 

7-13 Comparison ofHHC Waves and PTE Waves ............................................. 118 

7-14 Propagation of Pulsed Incident Intensity in One-Dimensional Medium ....... 119 

7-15 Temperature Change as a Function of Different Positions .......................... 120 

7-16 Comparison of Intensity, Internal Energy and Heat Flux (x0 = 0.1, t = 0.8). 124 

7-17 The Interface and Incident Wave Directions............................................... 125 

11-1 Temperature Distribution in a 1-D Medium ................................................. 162 

viii 



II-2 Control Volume of 1-D Heat Conduction ................................................... 162 

II-3 Interface Reflected and Transmitted Waves ................................................ 163 

II-4 Interface Phonon Intensities ........................................................................ 167 

Table 
1. Previous Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2(a). The Properties of Experimental Materials .................................................... 9 

2(b). Parameters of the Thermal Wave ................................................................. 9 

3. Comparison ofExact E with Numerical E ................................................... 109 

4. Comparison of E(x) by PTE with the Exact Solution ................................... 111 

ix 



NOMENCLATURE 

a(t) function in Eq. (2-1). 

A coefficients in the finite difference Eqs. (5-50)- (5-55). 

[A] matrix defined by Eq. (5-18). 

Bi Biot number defined by Eq. (3-27). , 
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C propagation speed of a thermal wave (mis). 

cP constant pressure specific heat (J/kgK). 

cv constant volume specific heat (J/m3K). 
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E dimensionless internal energy defined by Eq. (7-60). 

F vector of temperature and heat flux (see Eq. (5-16)). 
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G vector of temperature and heat flux (see Eqs. (5-26) and (5-29)). 
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J heat flux (W/m2) (see Chapter VII). 

K thermal conductivity (W /mK). 

k Boltzmann constant (J/K). 

k extinction coefficient ( Chapters II-VI). 

k imaginary part ratio of the complex refractive indexes of two materials. 

k extinction coefficient for two-dimensional reflection (see Eq. (4-28)). 

L reference length, or the thickness of a one-dimensional 

material (m). 
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· n refractive index. 

np,q phonon distribution number in Chapter VII. 

n complex refractive index. 

n real part ratio of the complex refractive indexes of two materials. 

ii refractive index for two-dimensional reflection (see Eq. (4-28)). 

P · variable representing flux at the interface of two control 

volumes (see Eqs. (5-30)-(5-33)). 

p pressure (N/m2). 

PHC parabolic heat conduction. 

PTE phonon transport equation. 

q heat flux (W/m2). 

q heat flux in Chapters I- VI (W/m2), and modulus of wave 

vector in Chapter VII (1/m). 

q wave vector (1/m). 

q heat flux defined by Eq. (5-2) (K). 

Q heat transfer normal to the interface or boundary (W). 

Q heat generation (Eq. (2-1)) (W/m3). 
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R equal to cP - cv in Eq. (2-2) (J/kgK). 
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r0 unit directional vector. 
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S source term in finite difference equation (Eqs. (5-41) and (5-42)). 

S source term vector in Eqs. (5-20) - 5-30). 

sP phase speed of a elastic wave (mis). 

T temperature (K). 

TB boundary temperature (K). 

TD dimensionless parameter defined in Chapter ID. 

TDB dimensionless parameter defined in Chapter III. 

t time (s). 

t dimensionless time (see Eqs. (5-2) and (7-37)). 

Um mth order of moment of phonon intensity (J sterm-1). 

V control volume, or the crystal volume (m3). 

v acoustic velocity (mis). 

v phonon velocity (mis). 

x coordinate (m). 

x dimensionless x coordinate (see Eqs. (5-2) and (7-37)). 

y coordinate (m). 

y dimensionless y coordinate. 

Greek 

a thermal diffusivity (m2 /s). 

~ ratio of thermal capacities of two materials (see Eq. (5-3b)). 

xii 



y ratio of relaxation times of two materials (see Eq. (5-2)). 

r dimensionless parameter defined by Eqs. (3-27) and (5-2). 

o transmission angle. 

60 real transmission angle. 

A parameter defined by Eq. (5-35). 

E angle defined by Eq. (4-14). 
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~ parameter defined by Eq. (5-45). 

Tl parameter defined by Eq. (4-19). 

e Debye's temperature (K). 
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K Boltzmann constant (Chapter VII). 

A wavelength (m). 

A eigen values of the wave equations in Chapters V and VII. 

A phonon mean free path (m). 
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v frequency of phonon wave (1/s). 

E phonon scattering function in the phonon transport equation (Eq. (7-18)). 

p density of the material (kglm3). 
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p reflectivity of a real thermal wave. 
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'C relaxation time (s). 

i'm time-averaged transmissivity. 

xiii 



q> angle defined by Eq. ( 4-17). 

Cl> auxiliary function defined by Eq. (7-54). 
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n solid angle in space (ster). 

0) wave frequency (s-1). 

Subscript 

A node before the central node. 

B node after the central node. 

E node east of the central node. 

e east boundary of control volume. 

incident. 

I imaginary part. 

l longitudinal wave. 

M magnitude. 

m order of moment. 

N node north of central node. 

n north boundary of the control volume. 

0 initial time. 

p central node. 

p polarization mode. 

q wave vector. 

r reflected. 

R real part. 

xiv 



s node south of the central node. 

s south boundary of control volume. 

t transmitted. 

t derivative with respect to time. 

X component on x-axis. 

X derivative with respect to x coordinate. 

y component on y-axis. 

w node west of the central node. 

w west boundary of control volume. 

Q in solid angle d.Q. 

'A. for given wavelength. 

1 material 1. 

2 material 2. 

Superscript 

o represents previous time step in Chapter V, and steady state in Chapter VII. 

n at current time step. 

n+ 1 at next time step. 

xv 



CHAPTER I 

INTRODUCTION 

The classical heat conduction theory (parabolic heat conduction model) has been 

used successfully in most thermal engineering applications. However, in the cases such as 

at extremely low temperature (nearly absolute zero K), or for an extremely short time 

period, or a very thin material, the heat transfer is no longer a diffusion phenomenon as 

described by the classical theory. It is observed that thermal energy then propagates like a 

wave (thermal wave) with a constant speed. Therefore, different heat conduction models 

are used to describe the wave-propagation process of heat conduction. In these models, 

the hyperbolic heat conduction model and phonon transport theory are the two most 

important models with strong physical background and have been studied by many 

investigators. 

In this chapter, we are going to introduce the background and the applications of 

thermal waves which will be studied in this research. 

1.1 Background 

Heat conduction processes based on the classical theory and the wave models are 

very different. In the classical theory, thermal energy is transferred with an infinite 

propagation speed. However, according to the wave models, the propagation speed is 

finite and the thermal energy can be reflected at an interface between two different media. 

In order to understand the differences between· these heat conduction models, we will 

discuss the one-dimensional heat conduction problem as shown in Fig. 1-1. 

According to the classical parabolic heat conduction theory (PHC), the 

temperature and heat flux satisfy the energy conservation equation and Fourier's law 
oq oT - ox= pep at (1-1) 

1 



aT 
q=-Kax 

T 

x=Ct 

Fig. 1-1 The One-Dimensional Heat Conduction by Diffusive, 

Hyperbolic, and Phonon Transport Heat Conduction 

The solution of the temperature field of the problem shown in the Fig. 1-1 is 

-=-[ T_( x_, t_)-_T..--=-b] = 1 _ e,fc{--=x =} 
[T.:- ~] 2Ja-t 

where Tb is the initial temperature of the medium. 

(1-2) 

(1-3) 

From this solution, we find that a thermal disturbance at the boundary x = 0 is 

instantaneously felt at any point in the medium. This result implies that the thermal energy 

is transferred in an infinite speed. Obviously, this is not realistic. Despite its unrealistic 

physical interpretation, this result is a very good approximation for most situations of 

common experience. However, when we study transient heat transfer in extremely short 

time periods (10-10 s), or at extremely low temperatures approaching absolute zero, this 

classical solution breaks down because of the wave behavior of heat propagation. In this 

case, the hyperbolic model of heat conduction is used to describe the heat transfer process. 

The hyperbolic model proposed by Vemotte (1958) is 
aq aT 

q+'t-=-K-at ax (1-4) 
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where 't is the relaxation time. According to this equation, the heat flow does not start 

instantaneously after the temperature gradient has been imposed on the medium, but 

grows gradually with a relaxation time 't after the application of the temperature gradient. 

The temperature profile according to this model is illustrated in Fig. 1-1 by the curve 

labeled HHC. We can see that there is an obvious wave front along the propagation 

direction. The temperature in the region ahead of the front is not affected by the boundary 

condition. The wave front moves forward along the x-axis with a constant propagation 

speed C. This speed is related to the relaxation time and the thermal diffusivity as 

(Baumeister and Hamill, 1969) 

c2 = a. 
't 

(1-5) 

When the relaxation time is very small, the hyperbolic model reduces to the 

classical parabolic model. For most materials, the relaxation time is very small; therefore, 

the parabolic model is accurate enough for engineering applications when a long time 

period of heat conduction is of interest. However, for very short time period processes, 

the hyperbolic model should be used. 

The hyperbolic model, Eq. (1-4), is for isotropic and homogeneous media. For 

anisotropic and non-homogeneous media, the hyperbolic model is not correct because the 

thermal properties and relaxation time may not be constant, and the anisotropic scattering 

of thermal waves by particles, such as the impurities in the materials, should be 

considered. 

The temperature distribution based on the phonon transport theory is different 

from those of PHC and HHC as illustrated in Fig. 1-1. The phonon theory was first 

developed by Debye (Roberts and Miller, 1960) and have been studied by many physicists. 

According to this theory, heat transfer actually is the propagation of elastic waves in 

materials. Therefore, the propagation speed of the thermal wave is the same as the 
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acoustic speed of the material. The energy of an elastic waves is quantized and the 

quantum is called a phonon. Phonon theory has been successfully used to predict the 

thermodynamic properties of a variety materials (Roberts and Miller, 1960). These 

properties include thermal conductivity and specific heat. When the temperature of the 

material is very low, phonon transport process is similar to the photon transport process in 

radiative heat transfer {Bale, 1964). 

1.2 Applications of Thermal Waves in Engineering 

Thermal waves have found many applications in engineering. One important 

application is the heat conduction process encountered in cryogenic engineering (Bertman 

and Sandiford, 1970). The heat transfer in a super-conductor is a kind of thermal wave 

propagation. The manufacturing of very pure materials such as crystals has the same heat 

conduction problems which can be treated with thermal wave theory. The study of the 

propagation of thermal wave in anisotropic materials is useful for the measurement of 

impurities in materials, and the study of physical properties of the impurities. With the 

advent of laser technology, the use of laser pulses of extremely short duration has found 

numerous applications for purposes such as the annealing of semiconductors and surface 

heating and melting of.materials (Hess et al., 1981; Stritzker et al., 1981; Maher and Hall, 

1980). In these situations, the thermal wave plays an important role in establishing the 

temperature field. There are still other applications of thermal waves: in low-pressure 

gases (Chan et al., 1971), nuclear engineering (Hus, 1962), and seismology (Luikov et al., 

1976). It is also suggested that hyperbolic model be used in chemical and process 

engineering (Luikov, 1966). Hyperbolic heat conduction is also found to be useful in 

nuclear engineering. Kazimi and Erdman (1975) studied the temperature change of two 

suddenly contacting materials which is encountered in nuclear reactors. 

Thermal waves may also have important applications in non-destructive testing of 

flaw and corrosion in composite materials and corrosion in metals by thermal imaging. 

4 



One specific use of this technology may be the non-destructive detection of corrosion in 

aircraft (Dougherty and Price, 1994). 

In recent years, as the development of electronic and· computer industry, super

conductive thin films which are a few microns in thickness are applied in many computer 

components. The study of heat transfer in such thin films is of interest and has become an 

important branch of heat transfer called microscale heat. transfer. The phonon transport 

theory has been rapidly developing, and has been applied as the basic theory of heat 

conduction in this field (Ziman, 1960, Bak, 1964, Goodson and Flik, 1993, Klitsner et al., 

1990, Majumdar, .1993 ). 

1.3 Purpose of this Research 

The purpose of this research is to study the propagation of the thermal wave in 

isotropic and non-homogeneous media. To achieve our purpose, we need to develop the 

thermal wave transport equation in such media. The reflection and transmission of the 

thermal wave at an interface of two different media will also be studied. Numerical 

methods will be developed to solve for the thermal waves in one- and two-dimensional 

materials. Based on the numerical solutions of thermal waves in different situations, we 

will study the mechanism of the propagation of thermal waves, and develop thermal wave 

transport theory. We will study the relationship between the different heat conduction 

models (PHC, IIlIC, and PTE). By comparing these models, we will find their similarities 

and differences. 

This thesis includes eight chapters. The study of hyperbolic thermal waves (IIlIC) 

is presented in Chapters ill to VI. Chapter VIl is. the research on phonon transport 

theory, and the comparison of the three heat conduction models. Parabolic heat 

conduction is not discussed unless it is needed. This is because the parabolic heat 

conduction theory has been developed completely elsewhere (Ozisik, 1980). 

5 



CHAPTERD 

REVIEW OF LITERATURE 

The investigation of thermal waves started in the 1940's. However, the problem 

had been proposed much earlier. Many investigators realized that the infinite propagation 

speed implied by the classical theory is unrealistic. But this problem was not considered 

important because most engineering heat conduction processes in our common experience 

can be treated accurately using the classical theory. Also we did not find experimental 

evidence of thermal waves until Peshkov ( 1944) first observed them in super fluid helium. 

Since then, limited studies have been done. Table 1 lists the most important studies in this 

field. These investigations can be classified into three categories: experimental studies, 

basic theory, and applications. 

2.1 Experimental Studies 

A very basic experimental study was the observation of the thermal wave in super 

fluid helium performed by Peshkov in 1944. The experiment showed an oscilloscope trace 

of a pulsed energy source propagating at a constant speed in helium at about lK. Peshkov 

found from his experiment that the propagation speed was 19 mis at 1.4K, an order of 

magnitude smaller than the ordinary magnitude of sound speed in helium. The thermal 

wave in super fluid helium was explained in Bale's book (1964) using phonon and roton 

interaction theory, and it was found that these waves are not pure phonon transport 

processes. The same experiment was also described by Bertman and Sandiford (1970). 

These are the direct proofs of the existence of thermal wave phenomena. 

According to Bertman and Sandiford, the thermal wave cannot be observed in most 

of materials which are not pure enough; because the impurities in the materials scatter the 

thermal wave frequently, and the scattering processes will cause several changes in the 

propagation direction of the thermal wave. At extremely low temperatures, helium is very 
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pure. Therefore, the scattering of the thermal wave by impurities is negligible, and the 

thermal wave becomes important. Most solids have many point defects such as chemical 

and impurities, and they also have many crystal imperfections such as dislocations in the 

crystal lattice. All of these defects scatter the thermal wave strongly. The scattering 

interactions take place much more frequently than the normal (wave propagation) 

processes. However, with the development of the technology for purifying materials, we 

can expect to observe thermal waves in other substances. On the other hand, as the 

increasing applications of very thin films in electronic and computer industry, wave 

behavoir of heat transfer in such thin films is significant. 

An indirect proof of thermal waves was obtained in exothermic catalytic reactions 

in which the maximum temperatures in crystals can occur in extremely short time periods, 

about 10-13 s. Cusumano and Low (1970) have shown experimentally the anomalous 

temperature rise which is caused by the heat of reaction of 0 2 on Si02 supported by Ni. 

Harrington's (1966) experiments show that the temperature rise is in the range from 2000 

to 3000 K. However, the theoretical results based on the classical theory are much smaller 

than the experimental results. Prater's (1958) prediction by using the classic heat 

conduction model (PHC) was 2 K, and Luss and Amundson's (1969) solution by PHC was 

250K. Using the hyperbolic model (HHC), Chan et al. (1971) predicted a temperature rise 

ranging from 1100 to 2500K. These studies demonstrate that the heat conduction in 

extremely short time periods is a wave phenomenon. 

TABLE 1. Previous Studies 

Investigator Results of Study 

Bak (Editor) (1964) Phonon Theory. 

Berkovsky & Bash Derivation of hyperbolic model using kinetic theory. 

(1977) 

Baumeister & Hamill Solution of HHC in semi-infinite 1-D medium. 

(1969) 
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TABLE 1. Previous Studies (Continued) 

Bertman & Sandiford Explained thermal waves in helium as second sound. 

(1970) 

Chan et al. (1971) Solution of HHC in 1-D medium in catalytic supported 

crystallites. 

Chester ( 1963) Discussion of thermal wave. 

Cheng (1989) .Solution of 1-D problem using a discrete microscopic model. 

Curtin & Pipkin (1969) General equations of thermal waves based on 

thermodynamics. 

Frankel et al. (1987) Solution of hyperbolic heat conduction in composite media. 

Goodson & Flik (1993) Study of phonon heat conduction in superconducting film. 

Harrington ( 1966) Surface heating process. 

Hus (1962) Studied the size effect on heat transfer in nuclear system. 

Kaminiski ( 1990) Measurement of relaxation time for non-homogeneous media. 

Kittel ( 1986) Application of phonon theory in solid physics. 

Klitsner et al. (1990) Phonon radiative heat transfer and boundary scattering. 

Luikov (1966) Application ofHHC in chemical and process engineering. 

Luikov et al. (1976) Solved HHC using numerical method. 

Majumdar (1993) Developed phonon transport equation 

Ozisik (1984) Solution ofHHC for 1-D problem in finite medium. 

Peshkov (1944) Observation of thermal wave in helium. 

Roberts & Miller Using phonon theory to predict thermodynamic properties. 

(1960) 

Tzou (1989) Thermal shock wave. 

Tzou (1993) Harmonic analysis of reflection of thermal waves. 

Vick & Ozisik (1993) Solution ofHHC for 1-D problem. 

Yang (1990, 1992) One and two-dimensional numerical solution of HHC. 

Weymann (1967) Discussed wave speed ofHHC using random walk model. 

Wiggert (1977) Early time transient heat conduction by HHC. 

Ziman (1960) Phonon and electron theory. 

Heat conduction in a non-homogeneous medium with inner-structure such as a 

porous material, e.g. sand, can also be treated by the hyperbolic model. Kaminski (1990) 
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explained the physical meaning of the relaxation time 't of such a medium as the time period 

needed for accumulating the thermal energy required for propagative transfer to the next 

nearest element of the inner structure. He measured the relaxation time for several 

materials. The results are listed in Table 2. From these results we find that the relaxation 

times based on Kaminski's definition are very significant. Compared with the relaxation 

times of homogeneous materials (in the range from 10-s to 10-12 s), the wave effect in non

homogeneous media is very important. The propagation speed listed in Table 2 is very 

small. The temperature profile and heat flux predicted using the hyperbolic model agree 

very well with experiment and much better than the results based on the parabolic model 

(Kaminski, 1990). The relaxation times of non-homogeneous materials can range from 10-3 

to 103 s (Luikov, 1966). 

TABLE 2 a. The Pro erties ofEx erimental Materials 
Materials 

HAcid 
NaHC3 

Sand 
Ion exchanger 
Glass Ballotini 

Materials 

HAcid 
NaHC3 

Sand 
Ion exchanger 
Glass Ballotini 

Mean Particle Bulk density 
Diameter mm k m3 

19.3 439 
96.4 1236 

187.0 0.0098 1551 
206.0 0.069 1607 
602.0 0.181 862 

TABLE 2(b). Parameters of the Thermal Wave 
Thermal Propagation Relaxation 
diffusivity (mm2/s) Speed (mm/s) Time (s) 

0.260 0.103 24.5 
0.310 0.104 28.7 
0.408 0.143 20.0 
0.220 0.064 53.7 
0.251 0.152 10.9 
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2.2 Basic Theory 

Since Peshkov's (1944) observation of thermal waves in superfluid helium, the wave 

phenomena was realized to be important in both heat conduction theory and engineering 

applications. It raised two questions that need to be explained theoretically. What actually 

are thermal waves; and how do they propagate in materials? 

Vernotte (1958) suggested the hyperbolic model, (Eq. (1-4)) to explain the second 

question. This model (HHC) is a macroscopic description of thermal waves, and cannot 

explain the microscopic mechanism of thermal wave phenomena. Therefore, this model 

itself may not be correct. Many investigators have attempted to explain this model in 

different ways. Chester (1963) justified the existence of the thermal wave based on the 

results of Maxwell (1867). It was shown that the hyperbolic model is actually a truncated 

form of a more general relation originally derived by Maxwell. Weymann (1967) used a 

random walk model to derive the hyperbolic model. He interpreted the relaxation time as 

the time period needed for a moving point to walk one step in distance ±f. Taitel (1972) 

derived Eq. ( 1-4) using a discrete model. He concluded that Eq. (1-4) is still an 

approximation which is valid for extremely short time periods because Eq. (1-4) is a 

second order approximation. Curtin and Pipkin (1969) obtained a general integro

differential equation for heat conduction of non-linear materials with memory. Their 

equation is hyperbolic and includes the effect of the memory of materials: 

c)2T(x,t) b( =O)c)T(x,t) J-b( ')c}T(x,t-t')d, 
:\,.2 + t :\.. + t t 
OL OL O dt 

-
=a(t = O)AT(x,t)+ f a(t')AT(x,t-t')dt' +Q (2-1) 

0 

The effect of the memory of materials is considered by the function b(t) and a(t) and the 

integrals in the above equation. 

Cheng (1989) solved the Boltzmann transport equation for the propagation of a 

temperature disturbance in a fluid using a discrete velocity microscopic model. He showed 
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that heat conduction indeed possesses wave like properties and a characteristic propagation 

speed. Luikov et al. (1976) used the concept ofisotherms to derive Eq. (1-4). 

The above research has proven that wave behavior is a basic property of heat 

conduction. Although the hyperbolic model was derived by many investigators using 

different methods, the relaxation time is still a problem that has not been solved. Some 

formulas are available to calculate the relaxation times theoretically for some special 

materials, but there is no experimental method to determine this important property for 

homogeneous media because it is so sinall that so far we still have no method to measure it 

accurately. Cheng (1989) has given an equation to calculate the propagation speed C for 

gases. 

(2-2) 

This equation shows that the speed decreases with a decrease in temperature, so the wave 

behavior will be more important at low temperature than at high temperature. 

Besides the HH:C model, other forms of thermal wave models have been developed. 

One such model was developed by Berkovsky and Bashtovoi (1977). They obtained a 

power form heat conduction law using a modified collision term in the Boltzmann equation 

and then calculated the heat flux from the molecular distribution function. However, these 

models are not commonly used. 

Since the hyperbolic heat conduction model (HHC) cannot explain the basic 

mechanism of heat conduction in solid materials, it is believed that this model is still not the 

exact solution of the problem. Heat conduction in solids has been explained by using the 

phonon theory by many physicists (Ziman, 1960, Bak, 1964, Kittel, 1986, Roberts and 

Miller, 1960). From this theory, heat conduction is explained as the propagation of elastic 

waves in a solid. The energy of the elastic waves is quantized and can be treated as a 

phonon gas. By studying phonon transport in solid, heat conduction can be quantitatively 

described. It is believed that the Boltzman transport equation for phonons is the general 
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equation to describe heat conduction in solids. Parabolic heat conduction and hyperbolic 

heat conduction can be derived from the Boltzman transport equation under certain 

assumptions (Ziman, 1960, Majumdar, 1993). The phonon theory can explain both the 

mechanism and the mode of propagation of thermal waves in solid materials. Therefore, 

thermal waves should be correctly predicted by using the Boltzman equation. 

2.3 Applications 

Many studies of hyperbolic heat conduction have been published. It appears that all 

of these studies are limited to one-dimensional problems. Baumeister and Hamill (1969) 

solved the heat conduction problem in a semi-infinite body. His solution shows the 

discontinuous temperature distribution at the front of a thermal wave. There is a significant 

difference between the classical theory and hyperbolic heat conduction. According to the 

classical theory (Fourier's law), the heat flux due to a step change in temperature is infinite 

because of the infinite temperature gradient. However, Baumeister and Hamill's result 

proved that the heat flux calculated using the hyperbolic model is finite. Wiggert ( 1977) 

studied hyperbolic heat conduction in a one-dimensional finite medium by using the method 

of characteristics. He proved that the characteristics method is very accurate for solving 

the hyperbolic heat conduction equations. 

Ozisik (1984) discussed in detail the propagation and reflection of a hyperbolic 

thermal wave produced by a pulsed energy source in a one-dimensional medium. He also 

showed that the temperatures at the boundaries are the superposition of the incident 

temperature wave and the reflected temperature wave. 

Chan et al. (1971) studied hyperbolic heat conduction in catalytic supported 

crystallites. Tzou (1989) studied the thermal shock produced by a moving source. He 

found that the thermal shock is very similar to the sound shock in supersonic flow. Hus 

(1962) developed a semi-infinite conduction model for the inception of nucleate boiling, in 

which times on the order of 1 Q-6 sec need to be considered. 
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There are very limited studies related to two-dimensional thermal waves. Tzou 

(1989) has studied the two-dimensional thermal shock caused by a moving source. Yang 

(1992) has solved several two-dimensional thermal wave problems by using numerical 

methods. 

Ziman (1960) has studied boundary scattering phenomenon using the steady state 

phonon transport equation (Boltzman transport equation). Klitsner et al. (1990) also 

investigated phonon radiation and surface scattering under steady state and at very low 

temperature. Majumdar (1993) solved a steady state transport equation to investigate the 

heat conduction in diamond films. These studies did not discuss the wave properties 

because they were all under steady state. 

From the review of the previous literature, we know that both HHC and PHC 

models are based on particle transport theory ( either atoms for gases or phonons for 

solids). But we still have questions that are not answered by the literature. They are (1) 

are these models correct? (2) if they are correct, what are the conditions for using these 

models? For steady state heat conduction, Majumdar (1993) has shown that HHC is an 

approximation of the phonon transport equation for very thick materials (large acoustic 

thickness). However, for transient heat conduction processes, especially for the process 

during an extremely short time period, the HHC and PHC models still need to be examined 

for their accuracy. 

So far, we have found very limited studies of thermal waves in one-dimensional 

composite materials and non-homogeneous materials (Tzou, 1993, Frankel et al., 1987). 

No study has been found for two-dimensional media. Although Tzou has developed a 

closed form solution for the reflectivity, the solution was not compared with the numerical 

solution of the hyperbolic heat conduction, and therefore, the physical process of reflection 

was not explained very carefully. Since studies of the reflection process for thermal waves 

are very limited, there is not much knowledge about the · wave propagation in non

homogeneous materials in which the thermal waves are scattered by the impurities. 
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Applications of thermal waves in corrosion detection is another important field. 

Thermal imaging technology for non-destructive testing of flaws in solid materials has been 

reviewed by Dougherty and Price (1994). Much research on thermal imaging using the 

PHC model has been published (Maldague et al., 1991, Del Grande et al., 1993). 
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·CHAPTER ill 

ONE-DIMENSIONAL THERMAL WA VE 

A one-dimensional thermal wave is a basic type of thermal wave. Since it has the 

basic wave properties which all kinds of thermal waves have, the study of this special wave 

is very important for the next level of study on multi-dimensional thermal waves. On the 

other hand, the one-dimensional thermal wave has been found to be very useful in 

engineering applications. Therefore, in this chapter, we will study this specific thermal wave 

and its basic properties. 

· 3.1 One-Dimensional Thermal Wave Equations 

We consider one-dimensional hyperbolic heat conduction in an isotropic and 

homogeneous medium. From Eq. (1-1) and Eq. (1-4), we can easily derive the following 

wave equations for temperature T and heat flux q: 

where C2 = ex . 
't 

(3-1) 

(3-2) 

From Eqs. (3-1) and (3-2), we find that the temperature and heat flux are the same 

kind of waves, therefore their properties are similar to each other. The terminology 

"thermal wave" indicates both the temperature wave and the heat flux wave. 

In Eqs. (3-1) and (3-2), the second terms on the right side represent the extinction 

of thermal waves in space during propagation. When the thermal diffusivity is very large 

(due to very large thermal conductivity or very small heat capacity), the extinction term will 

be negligible, so these equations become the standard wave equations (Kreyszig, 1983) 
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(3-la) 

(3-2a) 

The thermal waves described by the above equations do not include extinction 

during the propagation. We call this kind of thermal wave the ideal thermal wave. 

In Eqs. (3-1) and (3-2), it seems that temperature and heat flux are independent. 

However, this is not true. The temperature wave and heat flux wave exist together, and 

they are related to each other according to Eq. (1-1). Therefore, if there is a temperature 

wave, there must be a corresponding heat flux wave. We cannot separate them simply 

according to Eqs. {3-1) and (3-2). This is very important. The relationship between heat 

flux and temperature illustrates the conversion of energy between heat flow and the 

internal energy (temperature) of the material. Therefore, the propagation of a thermal 

wave or heat transfer is realized by a series of energy conversion processes. This heat 

conduction mechanism will be discussed in more detail in the following chapter. 

For one-dimensional thermal waves, the harmonic thermal wave is extremely 

important since all of the other waves can be composed of harmonic thermal waves using 

Fourier transform theory. The harmonic thermal wave of frequency co can be expressed by 

the following equations 

q=qMexp[im(,-:;)] (3-3) 

T=Tuexp[1m(,-:;)] (3-4) 

where co is the frequency and A is the wavelength which is related to the frequency by 

21tC 
a>=--

A 
(3-5) 

In Eqs. (3-3) and (3-4), ii is the complex refractive index of the thermal wave, and it is 

defined as 
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n=n-ik (3-6) 

where n is called the real refractive index (or refractive index) and k is called the extinction 

coefficient. From the thermal wave Eqs. (3-1) and (3-2) and Eqs. (3-3) and (3-4), we can 

obtain 

n': ~ {1+[1+(0:JJ"} 
k': ~ {-1+[1+(.:Jr} 

(3-7) 

(3-8) 

These same equations were also derived by Weymann (1967). Physically, n 

represents the phase change of the harmonic thermal wave, and k represents the extinction 

of the thermal wave during the propagation. When the extinction coefficient is zero, the 

wave is termed an ideal thermal wave. This kind of wave actually does not exist because, 

for all materials, the thermal capacity is not zero and conductivity is finite. When the 

relaxation time is very small, or the wave has a very small frequency, the thermal wave will 

die out very quickly, and in this case, heat conduction is a diffusion process which can be 

predicted by using the classical parabolic heat conduction theory (Weymann, 1967). 

The refractive index and the extinction coefficient are shown in Fig. 3-1 as a 

function of rot. From the figure, we can see that the refractive index and the extinction 

coefficient are significantly different in the region of I/rot less than 1.0. In this region, 

heat conduction is a wave propagation process. When I/rot is very large, the refractive 

index and the extinction coefficient are equal; thus heat conduction is a diffusion process. 

Since for most materials, the relaxation time is very small (I0-13 to 10-8 s) (Ozisik, 1984), 

the thermal wave is important only when heat conduction takes place in an extremely short 

time period, for example, during the initial time to build a temperature gradient. When the 

temperature is extremely low, approaching OK, the relaxation time can be significant and 

thermal waves also become important. 
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Fig. 3-1 Refractive Index and Extinction Coefficient 

The heat flux and temperature waves are not independent of each other. From 

Eqs. (1-1), (3-3) and (3-4), we can obtain 

(3-9) 

Therefore, the heat flux and temperature waves exist simultaneously. This relationship 

shows that the magnitude of temperature is directly proportional to the magnitude of heat 

flux. If we define angle a by 

l:I = exp(-ia) 

then from Eqs. (3-4), (3-9) and (3-10), we can obtain 
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Comparing the above equation with Eq. (3-3), we find that there is a phase difference 

between the temperature wave and the heat flux wave. When the extinction coefficient k 

is zero, or the frequency is very large, the phase difference a is 1t/2. When heat 

conduction is a diffusion process, the phase difference is 1t/4. These solutions can be 

tested by using numerical experiments to solve for the thermal waves for small frequency. 

3. 2 Reflection of a Thermal Wave at an Interface 

Since the one-dimensional thermal wave Eqs. (3-1) and (3-2) have the same form 

as the one-dimensional electromagnetic wave equations (Siegel and Howell, 1981 ), we can 

use the method for deriving the reflection of the electromagnetic wave to derive the 

reflection of a one-dimensional thermal wave at an interface between two materials. 

To study the reflection of a thermal wave at the interface of two different 

materials, we consider an incident plane wave along the x' direction as shown in Fig. 3-2. 

The reflected and transmitted waves are also shown in the figure. Because both the 

incident wave and the reflected wave, as well as the transmitted wave, satisfy the wave 

equations discussed in the previous section, we can express them as harmonic waves, i.e. 

(3-12a) 

(3-12b) 

(3-12c) 

(3-12d) 

(3-12e) 

(3-12t) 
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X 

Fig. 3-2 Reflection and Transmission of a Thermal Wave at an Interface 

From Fig. 3-2, we can see that the coordinates involved in the above equations 

have the following relationships 

y = x' I sin 8 = x" I sin <p = x"' I sin o (3-13) 

At the interface x=O, we have the following boundary conditions: 

1. Energy conservation condition in the direction normal to the interface. 

At the interface, the incident energy, the reflected energy and the 

transmitted energy in the direction normal to the interface must satisfy the energy 

conservation equation as 

[Q; -Qr = Q, ]x=O 

or [qa; cosO-qar cosq, = qai coso]=0 

2. Continuity of temperature at the interface. 

(3-14a) 

(3-14b) 

The temperature at the interface must be continuous. On the left side of 

the interface, the temperature wave is the superposition of the incident wave and 

20 



the reflected wave. On the right side of the interface, the temperature wave is the 

transmitted wave. The continuity condition therefore is written as 

From Eq. (3-11) we can obtain the relationship between heat flux and temperature 

T,. = _!!_qM exp[im(t- iix)] (3-16) 
Cpcp C 

From Eqs. (3-12d-t), (3-13) and (3-14), we derive 

q., cos llexp[im( t - it' sin 11) ]-q.., cos cpexp[im( t- it' sin cp)] 

= q., cos llexp[ im( I - i{ sin ll)] 

Since this equation is true for any y, the following.equation must be satisfied 

·9. 11iC1·~ sm =smq,=--smv 
'1i C2 

(3-17) 

(3-18) 

Therefore, the incident angle 0 is equal to the reflected angle <p. This equation is very 

similar to Snell's law in electromagnetic theory (Siegel and Howell 1981). Actually, the 

thermal wave Eqs. (3-1) and (3-2) have the same form as the electromagnetic wave 

equation (Siegel and Howell 1981 ). The angle 6 is a complex number and it cannot be 

intepreted as the transmission angle for all cases. Substituting Eq. (3-18) into (3-17) we 

obtain 

qiM cos9-qrM cosq, = qtM coso (3-19) 

Substituting Eqs. (3-9), (3-12a-c), (3-13), (3-16), and (3-18) into Eq. (3-15) yields 

(3-20) 
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Eliminating q1MbY substituting Eq. (3-19) into Eq. (3-20), we find that 

(3-21) 

We introduce a dimensionless parameter TD~ which is defined as 
(cpcp) · 

TD- t 

-{CpcP)2 (3-22) 

This parameter can be interpreted as the comparison of the capacity for heat transfer for 

the two materials. Substituting the above equation into Eq. (3-21), we find that Eq. (3-

21) can be written as 
n TD·cos9--1 coso 

q,M = iii 
qiM TD·cos9+ ~ coso 

ii2 

(3-23) 

Then the reflectivity of the thermal wave can be defined as the ratio of the reflected energy 

to the incident energy 

therefore 

TD· cos9- 111 coso 
- ii2 

Par - 11 . 
TD-cos9+-1 coso 

ii2 

(3-24a) 

(3-24b) 

This is the reflectivity of a single wavelength thermal wave. If the thermal wave is normal 

to the interface (0 = 6 = 0, one-dimensional wave), then the above equation can be 

simplified to 

(3-25) 

22 



Equation (3-24) is the general formula for reflectivity of a single wavelength 

thermal wave. Tzou (1993) also developed a similar equation for the reflection at an 

interface of two materials with the same relaxation time. However, he did not discuss the 

reflection processes presented by Eq. (3-25) in detail, for example, the physical meaning of 

positive and negative reflectivity given by Eq. (3-25). For one-dimensional heat 

conduction, Eq. (3-25) should be used to calculate the reflectivity of a single wavelength 

thermal wave. In engineering, the reflection of a thermal wave at the boundaries of the 

materials is also very important. The most often encountered boundary is the convective 

boundary at which convective heat transfer takes place. Assume that the convection heat 

transfer coefficient is h, then the heat transfer at the boundary is 

(3-26) 

For an adiabatic boundary, the convective heat transfer coefficient his zero. Similar to the 

derivation of reflectivity in the previous section, we can obtain the reflectivity for a 

convective boundary condition as follows: 

n 
1-h-· -

Cpc 1-Bi· r 1' 2n 
P - p -----

Ar - n - l+B" rl/2-' 
l+h-- I· n 

Cpcp 

If we define TD8 as 

Bi=hL r= a't' 
K' L2 

TD - h -B· r112 ---- I· 
B Cpcp 

where the subscript B denotes boundary. Then Eq. (3-27) can be rewritten as 

(3-27) 

(3-28) 

(3-29) 

The reflectivities given by Eqs. (3-25) and (3-29) are complex. This is because the 

incident wave (Eqs. (3-12a,d)) is a complex thermal wave. However, in practical 

applications, thermal waves are always real, and therefore, the reflectivity is real. We need 
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to define the real reflectivity which can be used to calculate the reflection of a real thermal 

wave. The complex incident wave and reflected wave are written as 

(3-30) 

Then a real thermal wave can be superposed by the following thermal wave of a single 

wavelength using a Fourier transform 

· n n k 
Re(qiJ = qiR cos(rot-ro-1 x)-qu sin(rot-ro-1 x)exp(-ro-1 x) 

cl c1 cl 

(3-31) 

The magnitudes qiR and qi1 are two arbitrary real constants for the given frequency. Similar 

to the incident wave, the reflected wave is 

Then at the interface (x=O), from Eq. (3-24a), we have 

where 

and 

qu = Puqli = PR[qiR cos(rot)-qil sin(rot)]-p1[qiR sin(rot)+qi1 cos(rot)] 

+ipR[qiR sin(rot)+qi1 cos(rot)]+ip1(qiR cos(rot)-qi1 sin(rot)] 

. TD-(n-ik) 
P1, =PR +1p1 = TD-(n-ik) 

we can solve for PR and p1 as 

TD2 -f,2 -k2 and 2TD·k 
PR= (TD+n)2 +£2, P1 = (TD+n)2 +£2 

The real parts of the incident and reflected waves at the interface x = 0 are 
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(3-33) 

(3-34) 

(3-35) 

(3-36) 



Re( qii) = [ qiR cos( cot )-qi1 sin( rot)] 

Re( qAJ = PR [ qiR cos( cot)-qi1 sin(cot) ]-p1[ qiR sin(cot) + qi1 cos( cot)] 
(3-37) 

Therefore, the real reflectivity for the real thermal wave is 

" Re(qM) [qu cos(cot)+qiR sin(cot)] 
Pi= =pR -pl . 

Re(qiJ [qiR cos(cot)-qi1 sm(cot)] 
(3-38) 

If we introduce 

(3-39) 

then we have 

(3-40) 

This equation shows that the reflectivity of a real thermal wave is time dependent. When 

qiI is zero, the incident thermal wave is a cosine wave, and Eq. (3-40) is 

(3-41) 

When qiR is zero, the incident wave is a sine wave, and Eq. (3-40) becomes 

(3-42) 

The total reflectivity can be defined as the ratio of the reflected energy for all wavelengths 

to the incident energy for all wavelengths 

- -f Re(q,.r)dl f p,. Re(q,.;)dl 
p= ~ _-'--o _____ _ (3-43) 

f Re( q M )dA f Re( q '-i )dA 
0 0 

This is the general equation for calculating the reflectivity of a given thermal wave. There 

are several special cases for which the above equation can be simplified. 

(1). Reflectivity of a step change thermal wave. 
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A step change thermal wave is the wave of which the temperature and heat 

flux have a step change at the front of the wave as shown in Fig. 3-3. For such a 

wave, the frequency is infinite at the wave front, and very small behind the wave 

front. Therefore, we have n = n - ik = I at the wave front. From Eqs. (3-3 5), (3-

36), (3-40) and (3-43) we have 

- .. TD-I 
p=p,. = TD+I 

where TD is defined by Eq. (3-22). 

T 

x=O x=Ct 
X 

Fig. 3-3 Step Change Thermal Wave 

(2). Two materials have the same relaxation time. 

(3-44) 

If two materials have the same relaxation time, then their refractive indexes 

and the extinction coefficients are also the same, as shown by Eqs. (3-7) and (3-8). 

So we have the following relationships from Eqs. (3-35) and (3-36) 

TD-I 
PR= TD+I and P1 =0 

Therefore, from Eqs. (3-40) and (3-43), the reflectivity can be derived as 

_ TD-I 
p=TD+I 

(3). Time-averaged reflectivity for thermal waves with high frequency. 

26 

(3-45) 

(3-46) 



Since the thermal wave is usually important for heat conduction with high 

frequency temperature and heat flux changes (Chester, 1963), the reflectivity for 

this case will be more practical for engineering application than the reflectivity 

given by Eq. (3-40). From Eq. (3-40) we notice that the reflectivity is time 

dependent. However, the time-averaged reflectivity 

. t 

A 1• 1 J A ( ')d / P:Am = lDl- P:A f f =pR 
I-+- f 

0. 

(3-47) 

is not a function of time. Because only the high frequency thermal waves 

contribute to reflection, while the low frequency waves are diffusive and they do 

not contribute to reflection, the above equation can be written as 

A TD-I 
P:Am = TD+I 

We substitute this reflectivity into Eq. (3-43), then we obtain 
_ TD-I 
Pm= TD+I 

(3-48) 

(3-49) 

Therefore, this equation is independent of time and can be used to predict the 

reflectivity for most types of thermal wave reflection. 

For convective boundaries, combining Eq. (3-47) with Eqs. (3-29), and (3-

43), we can obtain 
- _1-TDB 
Pm - I+TD 

B 

where TD8 is defined by Eq. (3-28). 

(3-50) 

From Eqs. (3-49) and (3-50), we find that the reflectivity can be negative when TD 

< 1 for media interfaces and when TD8 > 1 for convective boundaries. The explanation of 

this very significant phenomena will be given by the numerical study of the wave 

propagation process in Chapter VI. 
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CHAPTER IV 

TWO-DIMENSIONAL HYPERBOLIC THERMAL WAVES 

Two-dimensional thermal waves are much more complicated than one-dimensional 

thermal waves because of the interaction and multi-dimensional reflection as well as 

transmission of such waves. In this chapter, we will discuss the theory for two

dimensional thermal waves. 

4.1 Thermal Wave Equations 

The energy conservation equation and the hyperbolic model for multi-dimensional 

heat conduction are given as 

(4-1) 

(4-2) 

From the above equations, we can derive the following wave equations for temperature and 

heat flux 
c>2T ar ( 't-+-=V a.VT) 
dt2 dt 

(4-3) 

(4-4) 

and 

Vxq+'t ! (Vxq) =O (4-5) 

where V2 (= V · V) is the Laplace operator. From Eq. (4-5), the curl of the heat flux can be 

solved as an exponential function of time V x q = ( V x q) t=o e-ttt. Therefore, it will be zero 

if it is initially zero. This means that temperature is the potential function of heat flux, and 
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heat transfer is parallel to the gradient of temperature. However, V x q does not have to be 

initially zero, at least mathematically. Physically, this can happen in a very short time 

period at the beginning of heat transfer because of the delay between formation of a 

temperature gradient and the response of heat transfer due to the relaxation time. However, 

heat flux finally will be in the direction of temperature since the curl of heat flux will decay 

quickly according to Eq. (4-5). If the curl of the heat flux is initially zero, Eq. (4-4) can 

also be written as 

(4-6) 

So Eqs. (4-3) and (4-6) are the wave equations for multi-dimensional thermal waves. The 

heat flux and temperature are not independent of each other. Actually, the heat flux is an 

induced wave of temperature. A two-dimensional harmonic wave of a given frequency can 

be written as 

(4-7) 

where iix and iiy are the refractive indexes along x and y coordinates. They satisfy the 

following equation 

ii2 + if 2 = if 2 
X y (4-8) 

The heat fluxes along the x and y coordinates are obtained from Eqs. ( 4-2) and ( 4-7) 

(4-9) 

and 

(4-10) 

where, subscript x represents the x component and y represents the y component. 
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Assume that the amplitude of the heat flux wave is qM. then we obtain from the above 

equations the relationship between the amplitude of heat flux and the amplitude of 

temperature 

(4-11) 

ny Cpcp 
q =---T. My - - M n n 

(4-12) 

and 

(4-13) 

where 1111 represents the magnitude of a vector. We introduce an angle e which is defined 

as 
ii 

tane=__r_ (4-14) 
iix 

This angle can be real or complex. When it is a real angle, the wave is called a 

homogeneous wave because the plane of its constant amplitude is parallel to the plane of its 

constant phase. When the angle is a complex angle, the wave is inhomogeneous and the 

plane of its constant amplitude is not parallel to the plane of its constant phase. A 

homogeneous wave can become an inhomogeneous wave and vise versa. Inhomogeneous 

thermal waves will be discussed in the following section. 

4.2 Reflection and Transmission of a Two-Dimensional Thermal Wave 

In section 3.2 we have derived the reflection of a plane thermal wave striking an 

interface at angle 0. We obtained two important relationships Eqs. (3-18) and (3-24). 

From Eq. (3-18) 

(3-18) 
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we find that the transmission angle 6 is always a complex angle because the refractive 

indexes are complex. Therefore, this angle is not the angle along which a real thermal wave 

propagates. Because the transmission angle is complex, the transmitted thermal wave is an 

inhomogeneous thermal wave. The transmitted thermal wave can be written as 

lj, = lj Mt exp[i ID( t - iii x cos <5- n; y sin 6)] 
c2 cl 

(4-15) 

From Eqs. (3-6), (3-18), and (3-35), we can derive 

cos&= [J-(,i' -f'{ ~ J Sin' 6+;2,lt( ~ J sin' 6 r (4-16) 

where fi and k are given by Eq. (3-35). Now we introduce a angle cj> which is defined by 

(4-17) 

Then we can obtain 

cos6 =11111' 2 ei' =1111112 [cos<!>+ i sin cl>] (4-18) 

where rt is 

(4-19) 

Using Eq. (4-18), it can be shown that 

iiz x cos6 + iii y sin 0 
c2 c1 

n2 coscj>+k2 sincj>I 11,2 n1 • 0 = 11 x+-ysm 
c2 c1 

·[ n2 sin cj>- k2 coscj> I 11,2 k1 . a] +1 11 x--ysm 
c2 cl 

(4-20) 
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Therefore, the transmitted thermal wave (Eq. (4-15)) has a constant amplitude plane and a 

constant phase plane, respectively 

n sin <j>- k cos<j> I 
1
112 k . 

2 2 Tl x.,.. - 1 y sm 0 = constant 
c2 c1 

(4-21) 

n cos,1,.+k sin,1,. n . 
2 'I' 2 'I' lrtl112 X +-1 y Slll 0 = constant 

c2 cl 
(4-22) 

We can see that these planes are not parallel to each other. Therefore, the transmission 

thermal wave is an inhomogeneous wave. The thermal wave propagates along the 

direction normal to the constant phase plane. From Eq. (4-22), we can derive the actual or 

physical transmission angle as 
~sin0 

tano = ..---c~· ---=-
0 [ n2 cos~k2 sin+ 1111112] 

(4-23) 

Also from Eq. (4-23), we can write the refraction law in the form 

(4-24) 

Note that this is not quite a "Snell-like law", since sin0 also appears in the right side of the 

equation. Comparing Eq. (4-24) with Eq. (3-18), we can introduce the effective refractive 

index of the second material defined as 

(4-25) 

We can see from the above equation that the effective refractive index is dependent upon 

the physical properties of the two materials as well as the incident angle. 

The reflectivity of a plane wave was given in the previous chapter Eq. (3-24b) as 

TD ·cos9- Hi cos8 

Pir = ~ (3-24b) 
TD· cos9+ !i cos8 

fi2 
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Similar to Eq. (3-36), this equation can be rearranged in the following form by using Eqs. 

(3-35) and (4-18) 

(4-26) 

where 
(TDcosB)2 ..,..;f-P 

PR= -(TDcosB+n)2 +k 2 

2TDcosB·k 
P1 = -(TDcosB+n) 2 +k2 

(4-27) 

and 

ii =11111' 2 (ii coscp + k sin cp) k =11111' 2 (k coscp - ii sin cp) (4-28) 

Then, similar to the development of Eqs. (3-30) to (3-40), a real incident thermal wave 

such as (see Eq. (3-31)) 

0 (- ) -ro!(xcos9+ysin9)[- [ Ill ( 0 • 0)] - • [ Ill ( 0 · 0)] n.e ql..i =e qiR cos ro·t-ro- xcos +ysm -qi! sm ro·t-ro- xcos +ysm 
cl cl 

is reflected with a real reflectivity 

PA =pR -p1tan(ro·t-ro~: ysin0+'1f) 

where tan 'I' = l<L1 I 
l&iRI 

(4-29) 

(4-30) 

(4-31) 

Equations (4-27)-(4-30) reduce to Eqs. (3-35)-(3-40) when the thermal wave is 

one-dimensional where 0 = 0. 

From Eq. ( 4-30), we can see that the reflectivity of a real thermal wave is a function 

of time, the position on the interface and the incident angle. The reflectivity consists of two 

terms, the term PR and term p1. The reflected wave can be considered as the combination 

of two waves, one is the wave from the term PR and the other wave is from the term p1. 

Since the reflectivity is a function of time and frequency, the phase of the reflected wave is 

different from that of the incident wave. The term PR represents the direct reflection of the 

incident thermal wave, the term p1 represents the "induction" of the incident thermal wave, 

this term contributes to the phase change of the reflected wave. The term "induction" 
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stands for the reflected wave from the term p1. Because this wave is not the direction of 

the incident wave, it is a wave that is induced by the incident wave. When the wave 

frequency is very large, or the two materials have the same relaxation time, the term p1 

disappears and the reflectivity is independent of time and location for one-dimensional 

reflection. 

In order to discuss Eq. (4-30), let us consider an ideal plane wave and an interface 

of two materials. The extinction coefficient of the ideal incident wave is zero 

ii=l and k=O (4-32) 

From Eq. (4-19), we obtain 

(4-33) 

The angle cp now depends on Tl according to Eq. (4-17). There are two situations for the 

above equation: 

( 1) O< Tl < 1. Since Tl is positive, from Eq. ( 4-17), we can see that the angle cp is zero, the 

transmission angle is real and it is found as (Eq. (4-18)) 

COSD = TJ112 (4-34) 

In this case, the limits on sin0 are from Oto C/C2 or to 1.0, whichever is smaller. Then, 

from Eqs. (4-26, 27, 28), we obtain the reflectivity which is independent of time and 

location on the interface 

,.. TD cos0 -Tt112 TD cos0- cos6 
Pi= =-----

TDcos0+rt1'2 TDcos0+cos6 
(4-35) 

This equation shows that the reflectivity now is a function of TD, the incident angle, and 

the transmission angle. From Eqs. (4-33) and (4-35), the reflectivity is zero when TD is 

unity and the propagation speeds in the two materials are the same. However, this is not a 
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necessary condition for no reflection. When the incident angle satisfies the following 

equation 

TD' cos' 0 = 1-( ~: J sin' 0 = cos' 6 (4-36) 

the reflectivity will also be zero. This result is completely different from the one

dimensional thermal wave (Eq. (3-25) for which the reflectivity is a function of TD only. 

Equation (4-35) is plotted in Fig. 4-1. We can see from the figure that when C2 I C1 < 1.0, 

the reflectivity decreases with the increase of the incident angle. When C2 I C1 > 1.0, the 

reflectivity increases, and tends to unity with the increase of the incident angle. This is the 

so called total reflection phenomenon. 
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Fig. 4-1 Reflectivity as a Function of TD and 0 (11 > 0) 

In Eq. (4-35), the parameter TD represents the comparison of heat conduction 

abilities of the two materials along the thermal wave propagation direction. In a one-

dimensional situation, since the incident wave and the transmitted wave are always normal 

to the interface, therefore, the comparison of heat transfer abilities of the two materials is 
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based on TD alone. However, in a two-dimensional situation, the wave propagation speed 

normal to the interface depends on the actual wave propagation direction. For the incident 

wave, the propagation speed normal to the interface is C1cos0. For the transmitted wave, 

the speed normal to the interface is C2cos6. Therefore, in this case, the comparison in heat 

transfer of the two materials is 
(pep )1 C1 cos0 = TD cos0 

(pep )2 C2 cos6 cos6 
(4-37) 

When C2 < C1, the transmission angle (6) is always real. As the incident angle is 

increased, Eq. (4-37) decreases, that means the heat transfer in material 2 becomes large 

compared to the heat transfer in material 1. For this reason, the reflectivity decreases with 

an increase in the incident angle, and tends to be negative when Eq. (4-37) is less than 1. 

This situation is similar to the situation of TD < 1 for one-dimensional heat transfer that is 

discussed in Chapter m. 
When C2 > C1, the transmission angle 6 increases quickly with an increase in the 

incident angle 0. This makes Eq. (4-37) increase. In this case, the heat transfer in material 

2 becomes small compared to the heat transfer in material 2. Therefore, the energy from 

the incident wave is reflected, and the reflectivity increases with the increase of incident 

angle. When Eq. (4-37) is infinite (6 = 'lr,/2), the reflectivity is 1, so the energy is totally 

reflected because in this case the heat transfer in material 2 normal to the interface is zero. 

Note that in this case, sin0 is limited from O to C1 I C2 in order to keep the transmission 

angle real. Therefore, the dashed curves shown in Fig. 4-1 are only half of the whole story. 

(2) Tt < 0. In this situation, C2 > C1, and sin0 > C1 /C2 • From Eqs. (4-17, 18, 33, 34) we 

can see that the transmission angle now is a complex value, and cj> = 7r/2 

~ I 1112 • cosu = Tl l (4-38) 

The reflectivity derived from the Eqs. ( 4-27), ( 4-28), and ( 4-30) is 
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(TD cos0)2 2TD cos0 · k 
PR = - and P1 = -

{TDcos0+fi)2 +k2 ' {TDcos0+fi)2+k2 
(4-39) 

where, from Eq. (4-28), 

fi = O and k = -1111112 (4-40) 

(4-41) 

and where (4-42) 

Now the reflectivity again is dependent upon time and location on the interface. It consists 

of two terms PR and p1• These two terms are shown in Fig. 4-2. This figure actually is the 

other half of the situation shown in Fig. 4-1 by the dashed curves. We see from the figure, 

PR and p1 change very quickly in the region near the critical angle when TD is small ( e.g. 

TD = 0.25). The total reflection is not very stable because of this resaon. A little shift of 

incident angle may cause a significant change in reflection. On the other hand, with the 

increase of incident angle, the term PR decreases, and both PR and p1 tend to zero with the 

increase of incident angle. Because of these two terms, the reflection in this situation 

consists of two waves, one is because of PR, and the other is because of p1. The first wave 

can be considered as the direct reflection of the incident wave. The second wave is not 

directly caused by the reflection of the incident wave, but caused by the transmitted wave 

component parallel to the interface. This wave works like an incident wave from material 

2, and its reflection is similar to the previous situation of 11 > 0 discussed before. This is 

the reason that we call the second wave an induced wave. However, the transmitted wave 

that causes the second wave is related to the incident wave and the direct reflection of PR. 

Therefore, this situation is complicated. We will present some numerical results to show 

the physical processes of two-dimensional reflection in Chapter VI. 
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Fig. 4- 2 Reflectivity for C/C1 = 1.5 and Tl< 0 

4.3 Analysis of Wave Front 

The analysis of the previous section is valid for an ideal plane wave. However, an 

ideal plane thermal wave actually does not exist in a two-dimensional heat conduction 

process because of the interaction of thermal waves. Therefore, the actual situation may 

not agree with the theory exactly. 

As we have mentioned before, a thermal wave is actually composed of two waves; a 

temperature wave which represents the internal energy propagation, and a heat flux wave 

which represents the heat flow. These two waves exchange energy with each other during 

the propagation. At any point in a material, when the temperature at this point is 

stimulated by an incident thermal wave, there will be a spherical wave (if the material is 

three-dimensional) or a circular wave (if the material is two-dimensional) emitted by the 

material at that point. A plane wave is the composition of many spherical waves or circular 

waves. 
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Suppose, in a two-dimensional situation, that a plane wave strikes an interface at an 

angle 0. We are interestedin the propagation of the wave fronts of the reflected wave and 

the transmitted wave. Since the incident wave is not normal to the interface, the front of 

the incident wave arrives at the interface at different times for different positions along the 

interface. When the incident thermal wave arrives at the interface, there will be two 

circular waves at the interface as shown in Fig. 4-3, One circular wave, which is the solid 

circle in the figure, propagates in material 1 with propagation speed C1, and another, which 

is the dashed circle in the figure, propagates in material 2 with propagation speed C2. Since 

the propagation speeds of these two waves are different, the diameters of the circles 

corresponding to the same center are different. 

There are two different situations for the wave reflection process. One case is C1 > 

C2. In this case, we can see from Fig. 4-1 that there are obvious tangential lines for the two 

circular waves. In the figure, the solid tangential line represents the wave front of the 

reflected wave, and the dashed tangential line represents the wave front of the transmission 

wave. Therefore, the direction normal. to these tangential lines are the directions of 

propagation for the reflected wave and the transmission wave. If we assume that the 

refractive indexes of the two materials are approximately unity, then from the geometric 

relation of the tangential lines, we can easily derive the relationship between the incident 

angle, the reflection angle and the transmission angle (see Eq. (3-18)) . 

. e . cl . ~ sm =smcp=-smu c2 
(3-18) 

Note that in this case, 6 must be real (not complex). This equation agrees with the 

results derived in the previous section for the waves of very high frequency, e.g. the step 

change thermal wave. 
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Fig. 4-3 Wave Fronts for C1 > C2 

Another case is that the wave propagation speed of material 2 is larger than that of 

· material 1. This situation is shown in Fig. 4-4. We can see from the figure that the wave 

fronts are completely different from the previous situation. Since C 1 < C2, the circular 

wave in material 2 propagates faster than the waves in material 1. 

material 2 
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Fig. 4-4 Wave Fronts for C1 < C2 

In material. 2, the circular wave originating from point A arrives at point B before 

the incident wave arrives at this point because the transmitted wave has a larger 

propagation speed. Therefore, the transmitted wave emitted earlier by the interface will 
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affect the transmitted waves emitted later. On the other hand, the transmitted wave will 

also affect the wave pattern in material 1, actually producing an incident wave from 

material 2 to material 1. Because of this interaction, the wave front of the transmitted 

wave will diverge, and that means that there is not an obvious thermal wave front in 

material 2. The wave front which can be observed will be a circular wave front which is 

actually the wave front of the circular transmitted wave emitted at the earliest time. There 

is an obvious reflection wave front. However, in some situations, such as the incident 

angle being close to 1t/2, this wave front will not be obvious because of the interaction with 

the transmitted wave. According to the above two types of reflection, we can see that total 

reflection, which is true for electromagnetic waves, is not really true for thermal waves 

since in this case, there is still energy passing through the. interface. Because of the 

interchange between internal energy and the heat flux, the reflection process in the case that 

sin 8 = C2 sin 9 > 1 is an interesting process. In this case, the angle o is complex (not real), 
cl 

and 00 is 1t/2. Unfortunately, this special situation cannot be easily illustrated by using 

numerical solution of the hyperbolic heat conduction equation. This is because the total 

reflection is very sensitive to the incident angle, and can be affected significantly by the 

interaction of waves. 
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CHAPTERV 

NUMERICAL METHODS 

Numerical methods for solving thermal wave phenomenon are very limited. 

Difficulties encountered in numerical solution are. the numerical oscillations and the 

representation of sharp discontinuities with good resolution at· the wave front. When the 

thermal wave is in a composite material, the discontinuity in the physical properties of the 

different components of the composite material also causes difficulties in numerical 

solution. Therefore, there is not a single method which is general for different problems. 

Although there are many finite difference schemes available for one-dimensional 

thermal waves, most of them cannot be used for solving heat conduction problems in 

composite materials except the characteristic method. The reason for this is that the 

discontinuity in the physical properties at the interface between two materials cannot be 

handled by these methods. The characteristic method is the basic and the most accurate 

method. 

There is only one method available for two-dimensional thermal waves, it is the 

characteristic-based TVD method (Yang, 1992). This method also cannot be used to solve 

thermal wave problems in composite materials for the same reason as that of the methods 

for one-dimensional problems (we will explain later). Therefore, in this research, we have 

developed a finite difference method which is applicable to one-, two- and three

dimensional thermal wave problems, either in homogeneous materials or in non

homogeneous materials. 

5.1 Numerical Method for Solving One-Dimensional Thermal Waves 

In the previous chapter, we have analyzed the reflectivity. To validate the theory, 

we will solve the thermal wave equation by using numerical methods. The method of 
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characteristics will be used in this study. This method has been proven accurate by 

Wiggert (1977). The governing equations of the thermal wave are 

dq i)T 
r.-+q+K-=0 ldt liJx 

iJT i)q 
(pc ).-+-=0 

P'dt dX 

(5-1) 

where subscript i stands for different materials. Now we introduce the following variables 

A q't - t X f (X.'t 't, 
q = , t = - , x = L, 't = L..J 'ti, ri = L~ , 'Yi =-:; 

(pep )1 L 't i=1 • 

(5-2) 

where L is the reference length which can be the thickness of the composite material. 

Then Eq. (5-1) becomes 

dq A <IT 
Y1 di + q + I'i iJx. = 0 

<JT + <Jq =0 
dt ax. 

i)A i)T 
Y2 ; +q+I;/3 iJx. = 0 

/3 <1T + i)q =O 
dt ax. 

where ~ = (pep )2 I (pep )1 or the equation for material 1 can also be written as 

(5-3a) 

(5-3b) 

(5-4) 

where, the subscripts f and x represent the derivative respect to time and coordinate x. 

The eigenvalues are determined by 

dei[-~r, ~i] = 0, i = ±( ~: r (5-5) 
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Therefore, we have 

( )

1/2 

dx=± ~: di 

Similarly, we can derive the relationship between dx and dt for material 2 as 

dx=±(~:r di 

Now thi discrete grid is shown in Fig. 5-1 

x-dx x+crx 
Fig. 5-1 The Grid System 

Then Eq. (5-3) can be written as 

i)q + ( r,,,)1/2 i)T A = 0 
Y1 dt - _. I. J dt + q 

i)q + ( r. )1/2 A i)T A = 0 
Y2 ai - '- Y 2 JJ iJi +q 

Performing the integration over f we have 

for material 1, and 
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(5-6b) 

(5-7a) 

(5-7b) 



for material 2, where the time step and the discrete distance is chosen according to Eqs. 

(5-6). Notice that the discrete distance is different in different materials because of the 

differences in physical properties of the materials. The above equation causes difficulty 

when we use the characteristic method to solve for the thermal waves in composite 

materials. However, if the composite material is a two layer material, and we are only 

interested in the reflection of the thermal waves at the interface of the two layer, then we 

can set the thickness of one layer of the composite material according to Eqs. (5-6). From 

Eqs. (5-8), we can solve for the heat flux and temperature as 

(5-9a) 

(5-9b) 

for material 1, and 

(5-lOa) 

(5-lOb) 

for material 2. At the interface, from Eqs. (5-8a) and (5-8d), we obtain 

(5-11) 

m( Ai ) ( Ai ) ~ f)-l/2 [· ( Ai )( Ai. ) • ( Ai. )( Ai )] I+- TA+ I+- TB - 1D qA 1-- I+- -q8 I+- l--
2y 2 2y1 y I 2y1 2y2 2y1 2y2 

(5-12) 

where TD is given by Eq. (3-22). 

The boundary conditions are derived from Eqs. (5-8). At x = 0, we have Tp = 

f(t) ~ then we obtain the heat flux from Eq. (5-8b) 

4a(I- Ai) { r.)1/2 {f(i)-Ta) 
A 2Y1 +\.y I 

Qp = I+ Ai (5-13) 
21, 
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At x = 1, the heat flux is given as convective boundary condition qP = hTp, so we have 

the temperature from Eq. (5-8c) 

(5-14) 

where r is defined in Eq. (5-2), and~ is the same as that after Eq. (5-3b). 

Therefore, the thermal wave propagation can be simulated using the above 

equations. From the above discussion, we can see that the characteristic method is an 

implicit method. The temperature and heat flux at the current moment (t + dt) can be 

solved easily using to the values from the previous moment f . The most important feature 

of this method is that it provides two implicit equations for determining the temperature 

and heat flux at the interface· between two materials. These interface equations make it 

possible to apply this method to thermal wave problems in composite materials. However, 

since the time step df and the space increment dx are related by Eqs. (5-6), we have to 

use different space increments for different materials in a composite material. It is 

impossible to satisfy Eqs. (5-6) if the thickness of the composite material is fixed. This is 

the reason that this method cannot be used for all kinds of problems. However, it is a good 

idea to combine this method with other methods which are only applicable to the heat 

conduction in homogeneous materials. For example, we can use the interface equations 

given by Eqs. (5-12) to solve for the temperature and heat flux at the interface, then use the 

other methods to solve for the temperature inside the substances of a composite material. 

5.2 Numerical Method for Solving Two-Dimensional Thermal Waves 

The numerical methods for solving two-dimensional thermal wave problems are 

based on the methods for one-dimensional thermal wave problems. We first introduce the 

TVD method, then will develop the control volume finite difference method. 

46 



5.2.1 TVD Method 

Numerical study of two-dimensional hyperbolic heat conduction is very limited. 

The only study available is Yang's (1992) numerical solution for two-dimensional thermal 

shocks. In his study, the time-splitting technique was used to split a two-dimensional heat 

conduction problem into two one-dimensional heat conduction problems. The TVD 

(Total Variational Diminishing) method was then used to solve the finite difference 

equations. The same method is used in our study. 

Two-dimensional hyperbolic heat conduction is described by the following 

governing equations 
iJT .· 

pcpat+V·q =O 

a-
'r ; +KVT+q = 0 

(5-15) 

For two-dimensional processes, we can introduce the following vectors 

F=[::J md S=[~] (5-16) 

where subscripts x and y represent the components in x and y directions. Then Eqs. (5-

15) can be written as 

where 

[
pep O OJ [o 1 OJ [o O l] [A]= o ,r o, [Bt = K o o, [Bl= o o o 
0 O,r 000 KOO 

Now we define 

[BJ. =[Af'[BJ. =[f /Pel 
0 

0 
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0 

0 

0 

(5-17) 

(5-18) 

/Pel] 
~ (5-19) 



Then Eq. ( 5-17) can be written as 

iJF aF aF 1-
-+[B] -+[B] -+-S=O 
di xdX Y,Jy 1' 

(5-20) 

This is the governing equation that we will use for hyperbolic heat conduction. 

To solve Eq. (5-20) numerically, we will first use the time-splitting method. The 

time step is split into two sub-steps, the first half step from t to t+dt, and the second step 

is from t+dt to t+2dt. The first step only estimates the change along the x axis, the second 

step estimates the change along the y-axis. So Eq. (5-20) can be split into two equations 

(5-21) 

and (5-22) 

where "0 " represents the data at time t, "•" represents the data at time t+dt. 

The eigen equation for Eq. (5-21) is 

{[BL -i[I]}[R] = 0 (5-23) 

Thus Eq. (5-21) is written as 

c)p* +[R] diag(i) [R] -i c)po +.!.s0 = O at X X xax 'C 
(5-25) 

We define 

(5-26) 
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So Eq. (5-25) can be rearranged to become 

c)G: d" (Z) c)G~ 1 s-o _ O --+ 1ag 11., --+- -dt xc)x 'tx 
(5-27) 

Similarly, we can get the following equation from Eq. (5-22) 

c>Gy (-) c>o; 1 -. 
-+diag 11. -+-S =0 

dt Ydy 'ty 
(5-28) 

where 

(5-29a) 

and (-) [CO OJ [Ye O -Ye] diag 11. = 0 0 0 , [R] = 0 1 0 
Y O O -C Y pcP O pep 

(5-29b) 

Now we will discuss the numerical method for solving Eq. (5-27). We will omit 

the subscript x and superscripts"•" and "0 " in the following equations, and use superscripts 

n to represent current time, and n+ 1 to represent the next time step. The equation can be 

written as a finite difference equation 

The variable P here can be calculated by using the following method (Yang, 1992): 

1. Upwind Scheme 

UP i - - Iii' - -
Pi+112 =2(G~+1 +G~)-2(G~+1 -G~) 

2. Lax-WendroffScheme 

LW i (Gn Gn} /l.t~2 (Gn Gn} 
Pi+l/2 =2 i+l + i - 2/l.x i+I - i 

3. TVD Scheme 
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(5-31) 
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where 

Pi~: = Pi!12 + X( ;)(Pi~~2 - Pi!12) 

; = Ai+112-a, and o = sign(i) 
Ai+112 

x(;) = max[O,min(2;,1),min(;,2)] 

(5-33) 

(5-34) 

(5-35) 

Therefore, the temperature and heat flux can be solved using the above equations with an 

explicit time marching technique. 

This method has been proven accurate for solving one- and two-dimensional 

thermal waves in homogeneous materials (Yang, 1990, 1992). However, it is difficult to 

use this method for solving thermal wave problems in non-homogeneous materials. The 

reason is that there are not interface equations, like Eqs. (5-12a,b) for the characteristic 
,· 

method, to describe the relationship between of temperature and heat flux at the interface. 

The interface equations given by the characteristic method cannot be used here because 

the increments in the x direction, dx, and in the y direction, dy, are both different for 

different materials. An idea to improve this method is to consider the variation of the 

physical properties in the equations in the aboved derived equations. However, the vector 

G will be discontinuous at the interface because of the discontinuity of the physical 

properties at the interface. This will cause other numerical problems such as oscillation. 

Therefore, we cannot use it to study the reflection of the thermal waves at the interface 

between two different materials. 

5.2.2 Control Volume Finite Difference Method 

Since the TVD method and the characteristic method cannot be used to solve the 

two-dimensional reflection process, we have developed the another method to meet our 

requirements. This alternate method, a control volume finite difference method, is 

described in this section. 

The governing equations for two-dimensional hyperbolic heat conduction are 
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aT aq aq 
pc -+-x +-Y :0 

Pat ax ay 
(5-36) 

aq aT 
q +'t-x +K-=O 

X at ax 
(5-37) 

aq aT 
q +,:-Y +K-=O 

y at ay 
(5-38) 

Taking the derivatives ofEqs. (5-37) and (5-38) with respect to x and y, respectively, we 

obtain 

(5-39) 

(5-40) 

Substituting Eqs. (5-39) and (5-40) into Eq. (5-36), we obtain 

(5-41) 

To obtain the finite difference equations for numerical solution, we use the hybrid grid 

system as shown in Fig. 5-2. 

N 

w E 

a. main grid for T b. grid for Qy c. grid for qx 

Fig. 5-2(a) The Hybrid Grid System for T and q 

51 



flYs--t---

e 
w E /!,.y 

--LlX 

Fig. 5-2(b) The Geometric Definitions of the Grid System 

If Eq. (5-41) is integrated over the control volume of the main grid, we can obtain the 

difference equation for T at the node P 

(5-42) 

where superscript o means the data at previous time step, and subscripts represent the data 

at the nodes corresponding to Figs. 5-2. Now we need the heat fluxes at the interfaces of 

the control volume Li V (= tixtiy) . The heat fluxes given by Eqs. (5-37) and (5-38) are 

integrated over the control volumes shown in Figs. 5-2 (b) and (c), yielding the finite 

difference equations for heat fluxes 

(5-43) 

and 

(5-44) 

where ~and~ are numerical parameters determining the implicit/explicit weighting. 

(5-45) 
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From Eqs. (5-43) and (5-44), we can obtain the heat fluxes at the interfaces e and n 

(5-46) 

(5-47) 

Similarly, we can derive 

q w = :::: q: + Axw::;At) (Tw -Tp) (5-48) 

t,-i;At o + AIK, (T, L ) qs = t,+;At qs Ay,(t,+;At) S - P (5-49) 

If we substitute Eqs. (5-46)-(5-49) into Eq. (5-42), then we obtain the difference equation 

for temperature 

4~=~~+4~+4~+~~+~ 

where 

A _ AxAt2K); 
N - Ayn('tn +;At) 

As = . AxAt2Ks; 
Ays('ts +;At) 
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(5-51) 

(5-52) 

(5-53) 

(5-54) 

(5-55) 

(5-56) 



Notice that the temperature is stored at the main grid nodes W, E, N, S, and P, and the 

heat fluxes are stored at the interface nodes w, e, n, and s. This is similar to one of the 

techniques used in computational fluid mechanics (Patankar, 1981 ). 

This is an implicit-explicit-mixed scheme. If l; is 1, then it is an implicit scheme; if 

l; is zero, it is an explicit scheme. In most calculations, we will choose l; to be 0.5. The 

scheme can be used to calculate parabolic heat conduction easily by setting the relaxation 

time 't to zero. This method is absolutely stable for l; = 0.5. The boundary conditions can 

be specified by giving the temperature or heat flux. The grid at the boundary is shown in 

Fig. 5-3. The first node (main grid) has zero control volume. 

Fig. 5-3 The Boundary Grid and Control Volume 

If the temperature at the boundary is given, then it can be directly used in Eq. (5-

46). Once the temperature distribution is found, the heat flux can be updated by using 

Eqs. (5-46)-(5-49). If the heat flux is given, we can use the heat flux in Eqs. (5-37) and 

(5-38) directly. When we have solved for the temperature at the inner nodes, then the 

temperature at the boundary nodes can be found using Eqs. (5-46)-(5-49). This scheme 

can produce stable, non-oscillatory solutions. However, the wave front is not very sharp. 

The finite difference scheme given above is stable and convergent. It has many 

advantages over the other methods: 

1. The difference equation is the discretization of a conservation equation (5-36); 
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therefore, the numerical solution should be always conservative. 

2. In addition to two-dimensional problems, the method can be easily used for 

one-dimensional and three-dimensional problems; and the finite difference 

equation keeps its basic form as in Eq. (5-55). 

3. The effects of varying properties can be considered by using appropriate 

interpolation methods. 

4. Since the scheme is partially implicit, the time step can be large as compared 

to the explicit scheme. For the explicit scheme, the time step should be very 

small to ensure the stability and convergency of the solution. 

A numerical example is a one-dimensional heat conduction problem shown in Fig. 

5-4. The initial conditions are given by 

t = 0 T = T andq = 0 
' 0' 

(5-57a) 

where To is the initial temperature, it is set to be equal to 1. 0 for our problem solved 

below. Two situations are considered, one situation is that the material is homogeneous, 

another situation is that the material is composed by two substances (see Fig. 5-4). The 

boundary conditions are given by 

x=O T=2.0 

x=l.0 q=O 
(5-57b) 

The wave speed in substance A is assumed to be 1, and in substance Bit is assumed to be 

0.5 
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X 
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X 
0 

X=O X=1.0 X=O X=1.0 

(a) (b) 

Fig. 5-4 One-Dimensional Example Problem 

The comparison of the current method with the characteristic method is shown in 

Figs. 5-5a and 5-5b. Figure 5-5a shows the temperature waves with reflection and 

without reflection (i.e., with or without an interface at x = 0.5). Figure 5-5b shows the 

temperature at the interface as a function of time. From the figures, we can see that the 

current method can "catch" the wave front and the reflection. However, the wave front is 

not as sharp as that found by the characteristic method. In this calculation for Figs. 5-5a 

and b, we have used 100 grid nodes, and the relaxation times of two materials were set the 

same. We can increase the accuracy of the current method by increasing the grid number. 

The effect of grid number on the accuracy is shown in Fig. 5-6. It can be seen that the 

accuracy is improved when the grid number is larger and the time step is smaller. For 

different TDs and other x/x0 and Atlt values, the accuracy can be improved by using the 

same technique. 

In the next chapter, we will present the numerical solutions of both one

dimensional thermal waves and two-dimensional thermal waves. The numerical solutions 

for reflectivity will be compared to the closed form solutions of Chapters III and IV. 

56 



TD=2.0 

2.0 

1 - with reflection 
1 • 5 2 - without reflection 

I 
I 
I 
I 

Chara ct. 
Finite Diff 

t I 't = 0. 7 

2 

' ' ' I \ 
\ 
I 
\ 

'-
' ,_ 

1.0 ..._ _____ ........ ~--------......... ----~----........ ---~,----........ __ ------
o.o 0.2 0.4 0.6 0.8 1.0 

x/x o 

Fig. 5-5a Comparison of Current Method with Characteristic 

Method for a Composite Material 

2.5 I I 

2.0 .. -- Charact. 
---· Finite Diff. 

I 

/ 
I 

1- with reflection I 
I I 

"" 2 - without reflection I ' 
I 
I/ 

x=0.5 I/ 
) 

E-< 1.5 

/I 
;I 

/I 

1.0 
, / -- -

0.5 
o.o 

I 

0.1 

I 

0.2 

t /'t 

I 

1 
/ -

I 

2 
,,,,. 

/ 

-

-

I 

0.3 0.4 

Fig. 5-5b Comparison of Current Method with Characteristic 
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CHAPTER VI 

RESULTS OF HYPERBOLIC HEAT CONDUCTION 

The reflectivity determined from the numerical solution of the thermal wave 

equations (in Chapter V) is compared with that obtained by theoretical formulas derived in 

previous chapters. The comparison is not only a verification of the theory, but also an 

explanation of the theory. 

6.1 One-Dimensional Thermal Waves 

The characteristics method has been used to get the numerical solutions discussed 

in this section. The grid number was 150, the time step was determined by Eqs. (5-6). 

First, we will consider thermal waves caused by a step change in temperature, then we 

will consider thermal waves caused by sinusoidally varying temperature. 

6.1.1 Step Change Thermal Waves 

The reflection of a step change thermal wave is given by Eq. (3-44). The 

comparison of numerical results of Chapter V with the theory is shown in Fig. 6-1. Since 

TD is related to the properties of the two materials, we have studied the effect of each 

property on the reflectivity. The reason for doing this is because the dimensionless 

parameter TD cannot be obtained naturally by normalizing the thermal wave equations. 

We can see that the numerical results which are given by the symbols agree exactly with 

the theory which is the solid line in the figure. The reflectivity is positive when TD is 

greater than unity. Therefore, part of energy will be reflected at the interface. The 

reflectivity is actually negative when the TD is less than unity. Because the transmissivity 

lS 

1"m = I-pm 

it is greater than unity in this case. This means that the energy passing through the 

interface is greater than the incident energy. From the fiugre 6-1, we can see that we can 
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change the value of TD by changing any one of the physical properties related to TD, and 

obtain the same result of reflectivity. TD is the only parameter to determine the 

reflectivity. Therefore, in the following discussion, we will not study the effect of each 

physical property on the reflectivity, but the effect of TD. This is similar to the Reynold's 

number in fluid dynamics, in that, we do not pay much attention on viscosity and velocity, 

but we concentrate on Reynold's number. 

,...... 
.-1 0.8 
+ 
A 
E-i ........ 
'-.... 0.6 ,...... 
..... 
I 
~ 0.4 
........ 

II 
Q. 0.2 

r2 71 72 
2 0.2 0.8 

... 2 1 0.2 0.8 
0 1 2 0.6 0.4 
V 4 1 0.45 0.55 

-closed form solution 
0.0 '--~---'~....._..._...._~__._~ ................... ~~--'-~ .................... 

0.1 1 10 100 

TD 

Fig. 6-1 The Reflectivity at an Interface Inside the Medium 

The result shown in Fig. 6-1 raises a question when TD < 1 as to where the extra 

energy comes from. The parameter CpcP is a measure of the ability for the material to 

propagate the thermal wave. If the propagation speed C is zero, the material cannot 

transfer thermal energy, and it has no heat transfer ability . If pep of the material is zero, 

there will be no temperature change because the material does not absorb any energy, 

therefore, heat transfer cannot take place in such a material. TD is a comparison of the 
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abilities of the two materials to transfer thermal energy. When TD is less than one, the 

second material has greater ability for heat transfer~ therefore, to transfer a specified 

amount of thermal energy, the temperature gradient in the second material is smaller than 

that in the first material. For this reason, the temperature at the interface will not be as 

large as the value of the incident temperature wave after reflection. This means that the 

temperature of the first material is forced to decrease when the incident wave is reflected. 

Therefore, the material is forced to give up its internal energy to increase the heat transfer 

through the interface. 

This process is shown in Figs. 6-2(a) and 6-2(b). In these figures, the temperature 

and heat flux distribution are presented at different times. Figure 6-2a is the temperature 

and heat flux distribution after the first reflection at the interface (x = 0.5). The 

parameters r, 'Y, heat flux, and TD are defined in Eq. (5-~) and Eq. (3-22). In our 

solution, parameters r and 'Y are also set according to the chosen TD. This is because TD 

is an non-dimensional parameter which is only for the reflection at an interface. For either 

material A or material B, TD does not exist, therefore, we have to give parameters r and 'Y 

for both material A and material B. However, the reflection is affected by TD only. So as 

long as TD is given, the values of r and 'Y are not important. The temperature and heat 

flux are initially zero, and the temperature at the left boundary changes to unity suddenly 

at the begineering of the process. The right boundary is adiabatic, so heat flux at this 

boundary is always zero. 

We can see from Fig. 6-2(a) that the actual temperature T is less than the 

temperature Ts which is the temperature before the reflection. The temperature decrease 

Ts - T is a reflected wave propagating backward to the left boundary. Because of the 

temperature decrease, the internal energy of material A has to be converted to heat 

transferred to material B. So the heat flux q is larger than the incident heat flux &s. From 

the figure, we can see that the energy passing through the interface is larger than the 
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incident energy. The energy increase comes from the decrease of internal energy in 

material A. 
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Fig. 6-2(a) Thermal Wave for TD< 1.0 at f = 0.3286 

Figure 6-2(b) shows the thermal wave propagation at different times in the 

medium. We can see that the waves are reflected many times by the interface and the 

boundaries. An interesting phenomenon shown in the figure is that the temperature inside 

the medium can be larger than the left boundary temperature, for example, the temperature 

shown by curve 3. However, there is no heat generation insider the medium. Does this 

conflict with the second law of thermodynamics? It seems not Actually, the heat transfer 

is always along the direction of decreasing temperature gradient. Inside the medium, heat 

transfer is strongly irreversible. In the figure, the heat flux propagation directions shown 

by the arrows are not always the same as the heat transfer direction, sometimes they are 

opposite. Tzou (1993) discussed the entropy production of hyperbolic heat conduction 
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processes. He claimed that hyperbolic heat conduction satisfies the second law of 

thermodynamics. However, for the case that TD > 1.0, we still do not believe that the 

process can happen. A discussion of the entropy production is given in Appendix II. 

From the discussion, we will see that reflection is conditional. The process with TD> 1.0 

cannot be true because it does not satisfy the second law of thermodynamics. Here, we 

will only discuss the reflection processes based on the energy conservation law. 
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Fig. 6-2(b) Thermal Wave for TD< 1.0 at Different Times 

0.8 1.0 

The temperature and heat flux distribution for TD greater than unity are shown in 

Figs. 6-3(a). In this case, material B does not have the ability to transfer the total incident 

heat flux, so a larger temperature gradient is needed, and the temperature T at the 

interface is larger than the incident temperature Ts· Thus, material A has to absorb more 
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energy to increase its temperature, causing the heat transfer through the interface to 

decrease (q < q5 ). 

Comparing to the situation shown in Fig. 6-2(a), the reflectivity in this situation is 

positive. Because the reflected heat transfer is in the opposite direction of the incident 

heat transfer, the total heat transfer which is equal to the incident heat transfer plus the 
0 

reflected heat flux (it is negative in this situation) will decrease. The temperature then 

increases because ofless heat transfer. This is the physical mechanism shown in Fig. 6-3a. 
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Fig. 6-3(a) Thermal Wave for TD> 1.0 at t = 0.3286 

Fig. 6-3(b) shows the wave propagation in the medium. In this figure, the waves 

are reflected by the interface and boundaries. As time increases, the magnitude of heat 

transfer decreases, and it will become zero when the process becomes steady. As we have 

discussed before, the heat transfer is always in the direction of decreasing temperature 

gradient, and it may not in the same direction as the wave propagation shown by the 

arrows in the figure. Curve 4 in Fig. 6-3(b) is an example. We can see that the 

64 



temperature shown by curve 4 increases in the region from x = 0 to x = 0.4. The 

corresponding heat transfer in this region is negative, although the wave front at x = 0.4 is 

moving along the positive direction. So don't confuse the wave propagation direction 

with the heat transfer direction; they are not always (or necessarily) the same. 
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Fig. 6-3(b) Thermal Wave for TD> 1.0 at Different Times 

From Figs. (6-2) and (6-3), we also find that reflectivity from material A to material B is 

different from the reflectivity from material B to material A. When an incident wave is 

from material A, the parameter is TD (it is 0.5 in Fig. 6-2a). However, when the same 

incident wave is from material B, now the parameter TD is the inverse of the previous TD 

(it will be 2.0 as shown in Fig. 6-3a). From Eq. (3-44), the reflectivity from B to A is the 

negative of the reflectivity from A to B. 
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Fig. 6-4 Wave Propagation in a Three-Layer Composite Medium 

In Fig. 6-4, we show the wave propagation process in a three-layer 

composite material. In this case, there are two interfaces. The incident wave starts from 

the left boundary and propagates in the material. Curve 1 is the temperature distribution 

before the wave arrives at the first interface between material A and material B. Since 

parameter TD is O. 5 for this interface, after reflection, temperature decreases as we have 

discussed before. Curve 2 is the result after the reflection at the first interface. It is 

similar to the situation shown in Fig. 6-2a. Now the wave in material B is an incident 

wave for the interface between material B and material A, the second interface. For this 

interface, the parameter TD is the inverse of the parameter TD for the first interface~ so it 

is 2.0 rather than 0.5. Since now the parameter TD for the second interface is larger than 

unity, the reflection will increase temperature as for the situation shown in Fig. 6-3a. 

Curve 3 in Fig. 6-4 is the temperature distribution after the reflection at the second 

interface. 
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The reflectivity of a step change thermal wave at a convective boundary is shown 

in Fig. 6-5. The theoretical results are solved by using Eq. (3-50). When TD8 < 1.0, the 

reflectivity is positive, and when TD8 > 1.0, the reflectivity is negative. The physical 

meaning of TD8 is similar to Bi, which represents the comparison of the heat transfer 

ability of the environment to the heat transfer ability of the material. So a negative 

reflectivity indicates that the heat transfer ability of the environment is larger than the heat 

transfer ability of the material. From the results, we conclude that the reflectivities given 

by Eqs. (3-49) and (3-50) are exact for the step change thermal waves. As we have seen, 

a significant difference between thermal waves and other kinds of waves, such as sound 

and electromagnetic waves, is that the reflectivity of a thermal wave can be negative. But 

the other kinds of waves always have positive reflectivity, even though the 

electromagnetic formulation has the same form for its one-dimensional wave equations as 

that of the thermal formulation. 
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Fig. 6-5 Reflectivity of a Thermal Wave at a Convective Boundary 
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From thermal wave Eqs. (3-1) and (3-2), we know that a thermal wave consists of 

two energy waves: one is the internal energy and the other is the heat flux. Both waves 

are damping waves during propagation. The extinction of the internal energy contributes 

to the· heat flow, and the extinction of the heat flow contributes to the internal energy. 

However, the total energy is conserved. Since the reflectivity is based only on the heat 

flow without considering internal energy, it is reasonable that thermal reflectivity can be 

negative in some cases, such as cases when TD < 1. 0. 

6.1.2 Monochromatic Thermal Wave 

A monochromatic thermal wave is a wave of a single frequency or wavelength. 

Two types of monochromatic waves are discussed in this section. They are the sine wave 

and the cosine wave. The reflectivities of these waves are given by Eqs. (3-41) and (3-

42). From these equations, we can see that the reflectivity consists of two parts. The first 

part is independent of time, and it can be calculated by 

TD-I 
PAR= TD+l 

for large frequency. The second part is a tangent function of time. Numerical solution of 

the thermal wave equations demonstrates this fact. 

The reflectivity of a cosine wave with frequency ro = 50 is shown in Fig. 6-6(a). 

The top plot presents the numerical solutions of the reflectivities for different TDs, and the 

bottom plot is a closer view of the reflectivity for TD = 2.0. The theoretical results for 

reflectivity are also presented in the bottom plot. We can see that the numerical results 

agree with the theory very well. The reflectivity is zero when time is less than 0.42. This 

is because that the thermal wave has not reached the interface (x = 0.5) before time is 

0.42~ so during this time period, there is no reflection. When time is greater than 0.42, the 

reflectivities are time dependent. From the bottom plot, we can see that the reflectivity 

fluctuates around PR(= 0.3333) which is a function of TD and independent of time (see 
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Eq. (3-40)). The fluctuating part is a tangent function of time. The peaks of the 

theoretical results in the figure do not tend to ±oo periodically because the theoretical 

results were calculated according to the discrete time steps of the numerical solution, and 

these time steps are not continuous. Since the fluctuation is a periodic function of time, 

the average value of the fluctuation in the period is zero. We also found that there is an 

offset between the theoretical solution and the numerical solution. This is caused by the 

error of numerical solution. We found that the numerical solution is always one step (At) 

ahead the theoretical solution. This may be caused by the boundary condition we set in 

the numerical solution. At t = 0, we set the left boundary temperature or heat flux to be 

the given conditions. However, it actually should be the conditions at t = At . 
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Fig. 6-6(a) Reflectivity of a Cosine Thermal Wave as 

a Function of Time ( x = 0.5) 
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The numerical results for the sine wave are presented in Fig. 6-6(b ). Similar to the 

cosine wave, the reflectivity of a sine wave is also a function of time, and it has similar 

properties to those of the cosine wave. The difference between the reflectivities of the 

sine wave and the cosine wave is that their fluctuations are different in phase. According 

to the theory, this phase difference is 1t/2. The numerical results also show this fact. 

In Fig. 6-7, we compare the reflectivities of the sine wave and the cosine wave for 

another set of parameters. From the figure, we can see that the fluctuations of the 

reflectivities of both sine and cosine waves are based on the same constant p,._R (=0.5). 

The phases of those fluctuations are different by 1t/2. This result agrees with the 

theoretical relationships from Eqs. (3-41) and (3-42) for the cosine wave and the sine 

wave. 
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The effect of :frequency on reflectivity is presented in Fig. 6-8 according to the 

numerical solution. From the figure, it is clearly shown that the larger the :frequency, the 

shorter the period of fluctuation. This result also agrees with Eq. (3-42). 
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When the two materials have the same relaxation time, according to the theory 

presented Chapter ill, the reflectivity is independent of time and can be calculated using 

Eq. (3-45). Verification of this is shown in Fig. 6-9. In this figure, the numerical solutions 

of the reflectivities of a sine wave and cosine wave are presented for two materials having 

the same relaxation time. 
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The theoretical results according to Eq. (3-45) are also presented in the figure. 

However, the difference cannot be seen from the figure because the numerical results 

agree with the theoretical results very well (the error is less than 1%). 

From the figure, we can see that the reflectivity is independent of time. It is only a 

function of TD and its value almost exac\ly agrees with Eq. (3-45). The fluctuations have 

disappeared. Frequency does not have effect on the reflectivity in this case. Since sine and 

cosine waves are the basic components which can be used to construct almost any kind of 

wave, the characteristics presented in Figs. 6-7 to 6-9 are common to any other kind of 

thermal wave. 
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6.2 Two-Dimensional Thermal Waves 

Two-dimensional thermal waves are much more complicated than one-dimensional 

thermal waves because of the complex reflection, transmission and interaction. This 

section presents the numerical solution of two-dimensional thermal waves and comparison 

with the theory discussed in the Chapter IV. We will first look at thermal waves 

propagating in a homogeneous medium and then at thermal waves propagating in a two 

layer medium. 

6.2.1 Two-Dimensional Wave Interaction 

To show the complex interaction in two-dimensional wave propagation, we solved 

a heat conduction process in the two-dimensional material shown in Fig. 6-10 by using the 

TVD method. The boundary conditions are also shown in the figure. In the numerical 

solution, 100 x 100 grid nodes were used, and the dimensionless time step was 0.001. 

adiabatic 

To= 1.0 

0;333 --- ------------
T=2.0 adiabatic 1.00 

adiabatic 

1.00 

Fig. 6-10 Initial and Boundary Conditions for Two-Dimensional 

Hyperbolic Heat Conduction in a Rectangular Region 

In Fig .. 6-11, the two-dimensional temperature distribution and temperature 

contours with time are presented. The temperature difference between two adjacent 

contours is 0.025. From Fig. 6-ll(a), we can see that the front of the thermal wave is a 

circularly shaped curve. Along the symmetric line y = 0.5, the wave front is relatively flat.. 

This result shows that the thermal wave emitted from a certain point is a circular 

73 



2 .0 
2.0 

" " ... ... 
" 3 ..., .. 

~ ... , .. 
" " p. p. , .. 
E E 
" " ... ... 

1.0 

y 
y 

o.e 1.0 

X 

a. t = 0.188 b. t = 0.313 

2.0 

2.0 

" ... " :, ... ..., ;:, .. ... 1.5 
..., 

" 
Ill 

p. ... 
1.5 e " p. .. E b 

" E--

1,0 

0.6 

y 
o., 

0.2 0.2 

0.0 "'---'.L.LLLUW...Ll.JJ.J..LLLLL.m-., 
0.2 0.4 0.6 0.6 1.0 0.0 0.2 0.4 0.6 0.6 1.0 

X X 

C. t = 0.438 d. t = 0.562 

Fig. 6-11 Three-Dimensional Temperature Distribution and Temperature Contours 

74 



wave, and the plane wave is the composition of many circular waves emitted by each point 

on a constant temperature line. Figure 6-11 (b) clearly shows the reflection of the thermal 

wave by the top and bottom sides. From the figure, we can see that the reflection angle is 

equal to the incident angle. This agrees with the theory. This fact is also shown by Fig. 6-

11 ( c ). The interaction of the incident wave and the waves reflected by the boundaries are 

shown in Fig. 6-11 ( d). From this figure, we can see that the waves reflected by the top 

and bottom boundaries cross each other, and they interact with the reflected wave from 

the right boundary. 

6.2.2 Reflection and Transmission 

It is difficult to calculate the reflection and transmission of two-dimensional 

thermal waves. First, the reflectivity in this case is much more complicated than that of 

one-dimensional thermal waves. It has been shown in Chapter IV that the reflectivity at an 

interface will be a function of both time and position. The formula for transmission angle 

(the real angle, Eq. (4-24)) is very complicated. Secondly, most of thermal waves in 

actual situations are not plane waves. The reflections from all of the boundaries and the 

interaction of waves make the actual thermal waves complex. Therefore, the theory 

presented in Chapter IV cannot handle such complicated waves. However, basic 

properties of reflection still can be shown by numerical solutions of two-dimensional 

thermal waves in some special situations. One example is two-dimensional heat 

conduction in a composite material shown in Fig. 6-12. The left boundary has a given 

uniform temperature which can be a constant or a sine function of time. Since the upper 

and the bottom boundaries are adiabatic, the thermal wave is one-dimensional before it 

arrives the interface of the two-materials. Although this is a good approximation of the 

heat conduction required by the theory in Chapter IV, it is still very rough because it is 

impossible to avoid the reflection from the top and bottom boundaries when the thermal 

wave strikes the interface. Therefore, the numerical results will not agree very well with 

the theory. 
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Fig. 6-12 Geometry of Composite Material and Boundary Conditions 

The numerical method used here is the control volume finite difference method 

developed in Chapter V, section 5.2.2. The grid was 100 by 50, and the dimensionless 

time step was 0.001. The contours of temperature are shown in Fig. 6-13 . The 

propagation of thermal waves for two different situations is shown in the figure, and the 

wave fronts of the incident waves, the reflected waves and the transmitted waves can be 

seen clearly. From the figure, we can see that the transmitted wave does not have an 

obvious wave front when the propagation speed in material 2 is larger than that in the 

material 1. As we have analyzed in Chapter IV, in this situation, the transmitted waves are 

a series of circular waves with circular wave fronts (see Fig. 4-2). The very front wave is a 

circular wave emitted by the point which is the first point that receives the incident wave. 

In Fig. 6-13(b), both the reflected wave and the transmitted wave have very clear wave 

fronts as in Fig. 4-1, and the propagation direction of the reflected wave is normal to the 

x-axis, and the propagation direction of the transmitted wave is parallel to the interface in 

Fig. 6-13(a), and it is 18.9°. Compared to the theoretical result from Eq. 4-32, which is 

20°, the accuracy is satisfactory. 
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The reflectivity is shown in Fig. 6-14. From the figure we see that the reflectivity 

is a function of time and its trend basically agrees with the theoretical result Eq. (4-30). 

However, because of the effects of the interaction between the reflected waves from the 

bottom boundary and the incident wave, the reflectivity does not agree with the theory 

very well in its magnitude. 

77 



1.00 

,< 
(Q. 

iii,.. 0.75 +I -> -+I 
C) 
Cl) 0.50 -.... Cl) 

~ 

0.25 

I 
I 
I 
I 

@=5 
I 
I 
I 

0.5 0.6 

Time (t.) 

Eq. (4-30), --- Numerical 

Fig. 6-14 Reflectivity of an Incident Sine Wave as a Function of Time 

with TD= C1 I C2 , y = 0. 25, x = 0. 5 

There are several reasons that reduce the accuracy of the theory in this conduction 

process. The most important one is that, in the actual situation such as the heat 

conduction of this example, the incident thermal wave is not really collimated but a 

directionally diffuse wave. As we have seen from Fig. 6-11, the thermal wave at a given 

position is actually a wave composed of many circular waves. Therefore, the incident 

wave at the interface is actually distributed in all the directions in a semi-spherical space 

above the interface. When the incident wave is normal to the interface ( one-dimensional), 

the wave can be treated as a collimated wave, so the theory of Chapter ill can be applied. 

For a two-dimensional thermal wave, this is no longer true. Therefore, the theory is only 

strictly accurate for the directional reflection but not for the total energy reflection. 

Because of this reason, in actual situations, total internal reflection cannot happen. 

However, at the moment when the incident plane wave just arrives at the interface, the 
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reflectivity can be approximated by the theory because at this moment, the incident wave 

is almost collimated, because at this moment the incident wave has not been affected by 

the waves reflected by the other boundaries. Figure 6-15 shows the reflectivities when the 

incident angle is 7t/8. The left plot shows the incident temperature wave and the reflected 

temperature waves as a function of time at the interface. The right plot shows the 

reflectivities. In this plot, the dashed lines are the reflectivities for 0 = 0, and the solid 

straight lines (0.461, 0.217) are the theoretical results for 7t/8. We can see that at the 

moment when the incident wave just arrives at the interface, the reflectivity agrees well 

with the theory. With the increase of time, the reflectivity changes, and it does not agree 

with the theory any more. Now the question is how can a two_;dimensional thermal wave 

be a directionally diffuse wave? 

To explain this question, we need to introduce a new concept: heat conduction 

intensity. The heat conduction intensity is related to Debye's phonon theory. It is 

discussed in the next chapter. 
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Another example is the heat conduction shown in Fig. 6-16. In this case, the incident 

wave is parallel to the interface of two layers, therefore, the incident angle is 1t/2. In our 

numerical solution, we assumed that the two layers have the same relaxation time, both 

equal to unity. However, their wave speeds are different. The grid was 100 by 50 in this 

numerical solution, and the dimensionless time step was O.001 . 

0.50 

adiabatic 

adiabatic 

Fig. 6-16 Geometry of Two-Layer Composite Material 

The temperature distribution for C1 /C2 = 2.0 is shown in Fig. 6-17. In this case, 

according to Eq. (4-32), the transmission angle is real, and it should be 30°. From the 

temperature contours, we can see three wave fronts; one is in the top layer, and the other 

two are in the bottom layer. The wave front in the top layer is the wave front of the 

incident wave. At t = 0.2, it is at x = 0.4 since C1 is 2.0. The wave front around the left 

bottom comer of the bottom layer represents the wave reflected by the bottom boundary. 

The other wave front which is a straight line starting at the interface is the wave front of 

the transmitted wave. The numerical solution clearly shows the transmitted wave and its 

direction. The result is the same as the theory. On the other hand, compared to Fig. 6-

13(b), we find that we can not see the reflected wave in this figure. Actually, the reflected 

wave is parallel to the interface, as predicted by the theory in Chapter IV. We also find 

that the contours in the top layer are almost straight lines perpendicular to the interface. 

From the three-dimensional view of the temperature, we find that the temperature in the 

top layer is fairly one-dimensional, or it does not change very much in the y direction. 
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This is because the reflectivity is minus one according to the theoretical solution shown in 

Fig. 4-1. Since the reflected wave is parallel to the interface, the reflection does not 

change the one-dimensional feature of the incident wave. 

The situation of C1 I C2 = 0.5 is shown in Fig. 6-18. In this figure, there are only 

two obvious wave fronts; one is in the bottom layer, and the other is in the top layer. The 

wave front in the top layer now is not parallel to the interface, but in the direction shown 

by the arrow. This front is ahead the wave front of the incident wave, and it represents the 

transmitted wave caused by the wave from the bottom layer. Because the wave in the 

bottom layer is parallel to the interface, the direction of the wave in the top layer is 30°. A 

large peak is observed in the top layer, and this peak is around the wave front of the 

original incident wave front. Its magnitude is even larger than the boundary temperature 

which is equal to 2.0. The mechanism is that the incident wave in the top layer first causes 

a transmitted wave in the bottom layer, then the transmitted wave again works as an 

incident wave in the bottom layer, and causes a transmitted wave in the top layer. Then 

this transmitted wave accumulates arround the original incident wave front in the top 

layer, and forms a large peak in the temperature. There is also a reflected wave in the 

bottom layer. However, this wave is parallel to the interface, just as we have shown in 

Fig. 6-19; therefore, we cannot see an obvious wave front. 

These results agree with the theory that we have developed in Chapter IV. 

However, as we have said before, the quantitative comparison of numerical solution and 

theory is not very satisfactory. The reason is that the numerical model does not simulate 

the exact situation of theory. 
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CHAPTER VII 

PHONON TRANSPORT THEORY 

In the previous chapters, we have studied hyperbolic thermal waves theoretically 

and numerically. We did not discuss the mechanism for hyperbolic heat conduction 

(HHC) behind the macroscopic hyperbolic equation (Eq. (1-4)). As we have stated in 

Chapter II, the hyperbolic model is still a approximate model for heat conduction, and its 

accuracy is very questionable. In this chapter, we are going to study the heat conduction 

mechanism based on phonon theory. We will explain the hyperbolic model and parabolic 

model based on phonon transport theory. We will also study the relationships among the 

phonon transport theory and the IIBC and PHC models. 

We know that heat conduction in solid materials is based on two mechanisms; one 

is lattice vibration, and the other is the motion of electrons. In conductors such as metals, 

the electrons carry most of the heat flow. In dielectric materials, lattice vibration is the 

dominant contribution to heat transfer. In alloys and semiconductors, lattice vibration and 

electrons have comparable effects on heat transfer. In this chapter, we will show that 

thermal waves actually are acoustic waves in dielectric materials. We will discuss heat 

conduction from the view point of particle motion. Lattice vibration is characterictized by 

a particle called a phonon, which is a quantum of energy in an elastic wave. From the 

discussion on these particles, we will derive the transport equation for phonons, and we 

will explain the thermal wave in more detail. 

7. 1 The Phonon and Its Properties 

Let's first review the physics of phonons, the theory that was first developed by 

Debye, and later enriched by many other physicists. In this section, we will just use the 

conclusions of physics that are to be employed in the following sections, but we will not 

discuss how these conclusions were achieved. We will introduce some new concepts such 
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as phonon intensity, and the relationships between heat transfer, internal energy, and 

phonon intensity. 

The quantum of energy in an elastic wave is called a phonon. The term phonon has 

been created as an analogy with the photon in order to underline the similarities which 

exist, not only between the classical wave theories of sound and light, but also between the 

corresponding quantum theories. Similar to photons, phonons are also Bose particles 

without rest mass and without conservation of particle number. Under thermodynamic 

equilibrium, phonons are distributed over the possible states (frequency or wavelength) 

according to Planck's law which is the same distribution law for photons under 

thermodynamic equilibrium. Therefore, phonons are particularly useful for the treatment 

of transport processes in solids. 

The physical states of phonons are determined by the polarization modes p and the 

wave frequency or wave vector q of the elastic waves. In this chapter, we will use q to 

represent wave vector, and J to represent heat flux. This is because q and J are 

commonly used this way in physics. Therefore, phonons are distributed in a p-q space 

according to their thermal equilibrium states. There are three polarization modes 

(Ziman, 1960), two transverse modes and one longitudinal mode. The wave vector q is a 

vector in a space called reciprocal space. The modulus, q, of wave vector q is related to 

the motion of the wave in a crystal; in a distance 21t/q along the direction of q we pass a 

complete cycle. Thus the wavelength is given by 

t.. =21tl q (7-1) 

Therefore, the modulus q represents the 'distance' in reciprocal space. 'Distances' in 

reciprocal space are measured in m·1 and 'volume' in m·3. The vibration frequency for a 

given polarization mode is vp,q' and the energy of a phonon is 1ivp,q· If we consider a 

small volume dq, which is a small volume around q in reciprocal space, and the 

polarization mode is p, then the energy at a given state (p, q) is (Ziman, 1960) 
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(7-2a) 

where, n;,q is the average number of phonons in this state (i.e. 110 11 indicates equilibrium 

state). The energy for n;,q = 0 is called the zero state energy. If we choose the reference 

state carefully, for example, we choose the zero state energy as the origin, the phonons' 

energy can be written as (Ziman, 1960) 

(7-2b) 

The average number ofphonons is given by a distribution function as (Ziman, 1960) 

1 no=------
p,q exp( hv p,q I kT) -1 

(7-3) 

where k is the Boltzmann constant. 

Since phonons are due to lattice vibrations, which are acoustic waves of different 

frequencies, the wave propagation speed or the group velocity of phonons is defmed by 

0V v =__M.. 
p,q oq (7-4) 

The frequency of a phonon is related to the wave vector q, for a one-dimensional 

transverse wave (p is fixed), we have (Ziman, 1960, Kittel, 1986) 

v q cc lsintql (7-5) 

This equation shows that the frequency is a periodic function of q, · and its maximum 

value is equal to the frequency when q = 1t. For the one-dimensional situation, q is 

defined in a range from -1t to 1t, so the maximum frequency is called the cut-off 

frequency. In the three-dimensional situation, the wave vector q is limited to a volume 

which is called the first Brillouin zone. Therefore, the first Brillouin zone represents the 

zone in which the phonon's energy is included. 
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We can also define the phase velocity ofphonons as (Ziman, 1960, Kittel, 1986) 

sp.q = vp,q I q (7-6) 

where q is the modulus of q. The phase velocity usually is directionally-dependent for 

most crystals because of their anisotropic structure. 

The flux of energy carried by phonons is (Ziman, 1960, Bak, 1964) 

j P = L hv p,qn;,q v p,q 
q 

(7-7) 

To simplify the above equations, we introduce Debye's theory (Ziman, 1960). 

According to Debye's theory, we assume: 

I. The first Brillouin zone is approximated by a spherical zone which is called a Debye 

sphere with radius R (m·1). Ignore small deviations of the sphere from the actual 

shapes. 

2. The modulus of the wave vector is a function of frequency, and the direction of the 

wave vector is in the spherical-polar coordinates in q-space. 

3. The phase velocity ofphonons is independent of the modulus of the wave vector, so 

we have 

(7-8) 

Now we consider a crystal which has volume V. A unit cell is a cell which 

contains one atom in the crystal. The density of the unit cells in a crystal is N, which is the 

number of unit cells (atoms) contained in a unit volume of crystal. These unit cells 

correspond to different values of q in reciprocal space. Usually, the density of the unit 

cells is very high. If we are dealing with a large enough volume of crystal, then we can 

use f .. dq to represent the summation i.. in the previous equations. Based on these 
q q 

assumptions, each given frequency corresponds to a sphere of radius q. The phonons' 

energy is limited to a small volume q 2 dqdil, where dQ is the solid angle along the 
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direction (0, cl>) as shown in Fig. 7-1. Notice that we use 0 to represent the angle between 

q direction and x-axis rather than z-axis. 

Since the number of phonons in a unit solid angle along (0, cl>), of unit radius q is n;,q, 

we introduce the phonons' intensity (or energy density) at the equilibrium state along the 

direction (0, cl>) that is defined as the energy per unit volume in a unit solid angle 

(7-9) 

where VI 81t3 1s dimensionless and is introduced to take account of the density of the 

unit cells allowed in reciprocal space (Ziman, 1960), and R is the Debye radius. Then the 

total energy is the summation of the energy intensity over all of the directions, from Eqs. 

(7-2) and (7-9), we obtain 

EP = j 1° p,odn 
41t 

X 

Fig. 7-1 The Geometry of q..Space 
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Usually, the intensity given by Eq. (7-9) is directionally dependent because the phase 

speed is directionally dependent for most crystals. However, if, in addition to our first 

assumptions on the previous page, we add: 

4. The crystal anisotropy is ignored, so the phase velocity or the frequency is independent 

of direction. Then we can use Eq. (7-3) and a change of integration variable 

(~ = hvp,q I kT) in Eq. (7-10) to derive (Ziman, 1960, Roberts and Miller, 1960) 

E = 3Nk{..!..J
3 

r®p,r ...f__~ (7-11) 
P 0 Jo e; -1 

p 

hs R 
where 0P = _P_, and the Debye's radius R is related to N and V by R3 = 241t3N IV. 

k 

This is the result of Debye's theory, and 0P is Debye's temperature. When the 

temperature is very low, say 0P>> T, the above equation becomes 

E = .!. Nk1t,4 T4 (7-12a) 
p 5 0 3 

p 

and when T >>0P, Eq. (7-11) is 

E = NkT = .!.c T (7-12b) 
p 3 V 

where N is Avogadro's number (the same as N on the previous pages), and cv is constant 

volume specific heat. 

From the above discussion, we would like to describe the phonons as a kind of energy 

transfer in space. In a dielectric material, for a given temperature T, the intensity (energy 

in a solid angle dn) emitted by the material is given by Eq. (7-9). The energy propagates 

in space with a velocity given by Eq. (7-4). At very low temperature, much smaller than 

the Debye's temperature (0p), the phonon emission Eq. (7-12a) is the same as the photon 

emission law (Boltzmann law or the T4 law) (Siegel and Howell, 1981). Based on this 

reduction, the energy transfer by phonons at very low temperatures is similar to the 

energy transfer by photons, except that the phonons cannot propagate in a vacuum. 
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7. 2 The Boltzmann Equation and Thermal Waves 

When a system has external thermodynamic forces acting on it, for example, a 

temperature gradient or an electric field, the system will not be at an equilibrium state and 

heat conduction will take place, because of the flow and scattering of phonons and 

electrons. Lets take phonons as an example to derive the transport equation. The idea 

can also be directly applied to electrons (Ziman, 1960). The distribution of the particle 

number density can be found at a local point from the solution of the Boltzmann transport 

equation for the distribution function (Ziman, 1960) 

an [ ] ~+v -Vn +Ii =E n dt p,q p,q p,q field scatt p,q (7-18) 

where Iip,q represents the rate of phonon distribution caused by external forces. This is the 

general form of the Boltzmann equation which is applicable to phonons and electrons, 

where Sscan np,q is an integration operator on the distribution function, which represents the 

effects of scattering processes between phonons, electrons, and phonon-electrons as well 

as the scattering between particles and impurities and lattice deformations. This equation 

is an integro-differential equation which cannot be easily solved. 

If n;,q is the local distribution function at thermal equilibrium, then 

- 0 0 
.::.scatt np,q = (7-19) 

However, if external thermodynamic forces act on the particles, then the distribution 

function is not n;,q any more, and the scattering term will be significant to heat transfer. 

Heat current ( or heat flux), which is the energy carried by phonons passing a unit normal 

area in a unit time, can be determined from the distribution function as (Ziman, 1960, Bak, 

1964) 

(7-20a) 

Similar to Eq. (7-9), the phonon's energy in a unit solid angle, and in a unit radius can be 

defined as the phonon's energy intensity under non-equilibrium 
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a1p.o v 2 I =--=-hv n q p,q,O OQ 81t3 p.q p,q (7-20b) 

and the energy in a unit volume is 

Ep = J J Ip,q,Odqdn (7-21a) 
bq 

the heat flux is JP = J J v p,qlp.q,odqdn (7-21b) 
411q 

Now, we can derive the intensity's integro-differential equation by multiplying Eq. (7-18) 

by 8; 3 hv p,qq2 , and neglecting the acceleration term (i.e., the rate of phonon distribution 

by external forces) 
aI V p,q,o - VI .,_ 2 .... at + v p.q. p,q,o = 81t3 riv p.qq .::.scattnp,q (7-22) 

Statistically, the phonon speeds in all the directions are the same and are equal to the 

· mean speed. Therefore, the velocity vector can be written as 

vi>,q = vp.l• lrl = 1 (7-23) 

where v p,q is the average velocity of the phonons at the state p-q; and we will assume 

that it is a constant. So Eq. (7-22) is written as 

(7-24) 

This is the general form of the energy transport equation. The total heat flux is obtained 

from Eq. (7-2lb) and by adding the heat fluxes of the three polarization modes 

] = I,J J Vp,qlp,q,OdQdq (7-25) 
P q 411 

We see that the difficulty in solving the transport equation is the evaluation of the 

scattering term, which is basically an integral operator. The scattering of phonons from 

"collisions" with phonons, electrons, and impurities has been discussed by Ziman (1960), 

Bak (1964), and Roberts and Miller (1960). It was shown that the scattering process is 

very complicated, and so far there is no simple method to calculate this process 

accurately. 
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However, there is an approximate method called the relaxation time approximation 

available to simplify the transport equation (Ziman, 1960, Bak, 1964, Kittel, 1986, 

Majumdar, 1993). In this simple model, only absorption and emission effects in the 

collision term of the transport equation are considered. Consider the atoms of the material 

as the basic material particles. The collision of a phonon with an atom will cause a change 

in the potential energy of the atom. This process can cause the atom to absorb the phonon 

or emit a phonon. The reaction ( collision) can be expressed as 

A(E) + liv H A(E') (7-26) 

where A(E) refers to an atom at energy level E. 

Actually the absorption and emission of phonons can also take place in collisions 

between phonons and electrons or between photons and phonons. Here we will only 

consider the phonon-phonon process. Equation (7-26) indicates that the scattering 

process may create phonons, and also phonons may be absorbed during a collision 

between a phonon and an atom at energy state E, which then changes the atom to another 

energy state E'. Therefore, the scattering term in Eq. (7-24) can be split into two terms, 

the creative term and the destructive term, corresponding to destruction and creation of 

phonons. Based on this idea, the transport Eq. (7-24) now may be written as 

_l_ alp,q,n + f. VI = _l_[ 6Ip,q,n J __ I_[ 6Ip,q,n J 
v p,q at p,q,n v p,q 6t + v p,q 6t _ 

(7-27) 

1 [61 n J 1 [61 n J where =- 5q, and =- 6p,q, are the creative and destructive operators, 
vp,q t + vp,q t _ 

respectively. In this scattering term, [ 61j;;-" J represents the rate of intensity change 

during a collision time 6t, and the subscripts + and - stand for the creative and destructive 

change. Suppose the mean free path that a phonon can travel before it collides with an 
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atom is Ap,q = v p,q 't'p,q, and the relaxation time, which is the time between two collisions, 

is 'tp,q. Then the creation (emission) and destruction (absorption) can be approximated by 

_1 [6Ip,q,OJ __ 1 [6Ip,q,OJ =_1 (1;,q,C-Ip,q,O) 
V p,q 6t + V p,q 6t _ V p,q 't p,q 

(7-28) 

where 1;,q,o is the intensity at the equilibrium state. Therefore, the transport equation can 

be written as 

1 olp,q,n - VI 1 (10 I ) 
_ · :i.. + r • p,q,n = ... · p,q,n - p,q,a 
V p,q ua. V p,q 't'p,q 

(7-29a) 

Now the transport equation is greatly simplified. However, it is still not easy to solve Eq. 

· (7-29a) because the phonon speed vp.q depends on both polariz.ation and wave vector 

modulus q (or frequency, see Eq. (7-6)), and because the equilibrium state intensity 1;q.o 

is directionally dependent for most crystals. Therefore, more assumptions are needed to 

make further simplifications. So let's assume that the crystals are spherical. Then the 

equilibrium state intensity is independent of direction and can be calculated according to 

Debye's theory. The transport Eq. (7-29a) becomes 

I a1p,q.o+r·VI = I (10 -1 ) 
V c3t p,q,O V 't . p,q p,q,O 

p,q p,q p,q 
(7-29b) 

Majumdar (1993) also derived the same form of transport equation as Eq. (7-29b) for 

isotropic crystals. Ifwe multiply Eq. (7-29b) by vp,q• and integrate over solid angle and q, 

we obtain 

(7-30) 

where we have assumed 'tP = tp.q (independent of q). According to the energy 

conservation law, the total energy should satisfy 
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(7-3la) 

and therefore, comparing Eqs. (7-30) and (7-31), we have 

L _!_ J J o;,q - Ip,q,n)dqd!l = 0 
p 'tp 41t q 

(7-3 lb) 

From the transport equation (Eq. (7-29b), we can derive the thermal conductivity 

for the macroscopic heat conduction process. The following is the method described by 

Majumdar (1993) and many other investigators (Ziman, 1960, Bak, 1964, Roberts, 1960) . 

. If the temperature gradient in the material is small and is the only external force, 

and the deviation of the distribution function ( np,q or Ip,q) from equilibrium ( n;,q or 1;,q) is 

small, then we can write approximate expressions for the gradient term and the time 

derivative term of the transport equation as 

- VI -[- dl°p,q] VT r· - r-- · p.q.n - aT ' (7-32a) 

a1p.q = a1;.q aT 
at aT at 

(7-32b) 

So the transport equation (Eq. 7-29b) can be written as 

(7-33a) 

Then, we can obtain Fourier's law by multiplying (dot product of) Eq. (7-33a) by 

v p,q 'tp,q v p,q, integrating over solid angle, integrating over q space, and summing over all 

polarizations (Ziman, 1960) 

(7-33b) 

If relaxation time is independent of q, then the thermal conductivity can be derived as 
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(7-33c) 

where ~ is the mean free path, v P is the phonon speed, and cv is the specific heat. The 

following relationships (Ziman, 1960, Bak, 1964) were also used in writing Eq. (7-33c) 

- -( - ) -2 l _ A vp,q · r 'tP vp,q = 'tP vp,q = 3 vP P 

Note that we have used the statistical physics equation 
-2 l _2 
vp,q =3vP 

The hyperbolic heat conduction equation (Eq. 1-4) can also be derived ifwe apply 

Eq. (7-32a) to the second term of the transport equation (Eq. (7-29b)), but keep the first 

term unchanged (Majumdar,1993), then Eq. (7-29b) becomes 

1 ill ill0 I -r - p,q,O + f -~VT= p,q,ll p,q 
vp.q at · aT vp.q 'tp.q 

(7-34) 

Then, we multiply (dot product) the above equation by vp,q'tp,qvp.q• integrate over solid 

angle and wave vector modulus, and sum over all polarization modes ( also considering 

Eqs. (7-32) and (7-33)), we obtain 
aJ -

't-+J=--KVT 
dt 

(7-35) 

where 't is the average 'tp,q, and this average relaxation time is the same as the relaxation 

time in Eq. (1-4). 

The approximations made in deriving Eqs. (7-33) and (7-35) are valid only when 

the dimensions of the material are much larger than the mean free path of the phonons. In 

this case, the temperature can be well defined and the deviation of the distribution function 

from equilibrium can be small. Therefore, theoretically, both Fourier's law and the 

hyperbolic heat conduction equation (Eq. (7-35)) are valid heat transfer relations in large 
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dimension materials; and they both neglect boundary scattering effects that may be 

important when the characteristic dimension of the material is on the order of the mean 

free path of the phonons. These equations are not very accurate when the boundary 

scattering is significant, for example, considering heat transfer in very thin films or rods 

(Klitsner et al., 1990, Ziman, 1960, Goodson and Flik, 1993). 

Next, we consider one-dimensional heat conduction in an isotropic material. 

Assume that the velocity of the · thermal waves ( acoustic waves) is independent of 

polarization. In this case, the relaxation time and average wave propagation speed are 

independent of wave vector and polarization, then the transport equation, Eq. (7-29b), and 

Eq. (7-3lb) can be written as 

dl(i, x, µ) dl(i, X, µ) I(-t - ) =_!_JI I(-t - ')d ' 
~ +µ ~ + ,x,µ ,x,µ µ 
UL UX 2 _1 

+I 
1° (i, x) = _!_ J I(i, x, µ )dµ 

2_1 

Here, we have used the following relationships to normalize the coordinates 

- t 
t=-

't 
, - X x=-- , 

V't 
µ=cos0 

(7-36a) 

(7-36b) 

(7-37) 

where 0 is the angle the intensity makes with the x-axis, and xis called acoustic thickness 

since the phonon waves are acoustic waves. Now we introduce the mth moment of 

intensity 
I 

Um(i,x) = J µmI(i,x,µ)dµ (7-38) 
-I 

Then the 0th and 1st order moments correspond to the internal energy and the heat 

current (or flux). From multiplying Eq. (7-36a) by µm and integrating over µ, we can 

obtain an equation with these moments 
dUm U dUm+I 1-(-}r+I u· --+ =- +----
di m dX 2(m+l) 0 

(7-39) 
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This wave equation shows that each moment is a wave that is coupled with the other 

moments during propagation. 

Obviously, to solve the above equation exactly, we have to solve all of the moments 

from 0th order to infinite order. However, we can solve Eq. (7-39) approximately by 

neglecting the moments of order higher than m+ 1. Let us consider the second order 

(m=2) approximation. From Eq. (7-39), we have 

(7-40) 

(7-41) 

(7-42) 

Now we neglect the moments of order higher than two and the derivative of the second 

moment with respect to time. Then in Eq. (7-42), the second order moment reduces to 
1 

U2 =-U0 (7-43) 
3 

Equations (7-40) and (7-41) become 

auo =- au! 
at ax 

au!+ u =-! auo 
at 1 3 ax (7-44) 

These are the hyperbolic equations which we have studied in Chapter III. Remember that, 

in these equations, the x coordinate is normalized by v't' (see Eq. (7-37)), so the thermal 

conductivity is 1/3 (see Eq. (7-33c) for cv = 1). This derivation shows that the hyperbolic 

Eq. (7-35) is the second order approximation of the intensity transport equation. 

We can use higher order approximations. Let m be an odd number. If in Eq. (7-39) 

we neglect moments higher than m+ 1 and the derivative of the m+ 1 moment with respect 

to time, then we can approximate the moment of order m+ 1 by 
1 

Um+1 =--Uo 
m+2 
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Therefore, substituting Eq. (7-45) into Eq. (7-39) gives the mth order moment 

aum +U =--1_au0 

at m m+2 ax 
(7-46) 

If we define the vector of moments as 

U=[Uo U1 U2 ··· umf (7-47) 

then we can write the moment equation in the following matrix form 
au au 
-+U=-A-+S at ax (7-48) 

where 

A=[ ij 
I O ... OJ So 
0 1 ... 0 s, 1-(-l)i+l 
0 0 ... 0 and S= S2 ' s. = U0 (7-49) 
0 0 1 I 2(i+l) 

m+2 0 0 0 Sm 

There are two real eigenvalues of the matrix A that are determined by 

-A 1 0 0 
0 -A 1 0 

I 

- ( 1 )m+l 
0 0 -A 0 =O andA=±-- (7-50) 
0 0 0 1 m+2 
I 0 0 -i m+2 

For example, if we choose m = 5, then the real eigenvalues are +0.723, and -0.723. 

Besides the two real eignevalues, there are m-1 complex eigenvalues, as shown in the 

following matrices. These complex eigenvalues represent the complicated interaction of 

the waves that are the components of the intensity wave. When m is very large, the real 

eigenvalues in Eq. (7-50) tend to the limits +l and -1, which correspond to the non-

dimensional acoustic speed of the material. 
0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

A := 0 0 0 0 1 O e :=eigenvals (A) 

0 0 0 0 0 1 

.!.00000 
7 
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e= 

--0.723 

--0.362 + 0.626i 

--0 .. 362 - 0.626i 

0.723 

0.362 + 0.626i 

0.362 - 0.626i 



where eigenvals() is a function ofMathCad (Mathsoft Inc. 1986-1994, v.5.0) for solving 

eigenvalues of a given matrix. 

7.3 Numerical Solution of Phonon Transport Equation 

The one-dimensional transport equation (Eq. (7-36b)) can be written as (Siegel 

and Howell, 1981) 

a1+ (t, x, µ > a1+ (t, x, µ > i+ (-t - > =_!_JI [1+ (-t - ') i-c-t - ')Jd , -"'""--__;_""""+ µ + . , x,µ , x,µ + , x, µ µ 
ot crx 2 0 

(7-51) 

ar(i,x,µ) ar(i,x,µ) i-c-t- )=_!_J1[1+c-t- ') 1-c-t - ')]d , ~ µ :c + ,x,µ ,x,µ + ,x,µ µ 
UL UX 2 O 

(7-52) 

where r and r represent the intensity along the positive and negative directions of the axis 

x (see Fig. 7-2). Since the intensities in the positive and negative directions of the x-axis 

can be two series of waves with propagation speeds equal to µ. along the x-axis, these 

equations are solved numerically by using the TVD method discussed in Chapter V. The 

boundaries are assumed to be "black", and the temperatures at the boundaries are given. 

Such boundary conditions are equivalent to the conditions of specifying intensities at the 

boundaries (see Fig. 7-2). 

T1 -~--t--:=-::~---t-~x=o 
rt 

~ Ii ----+QJ-'-¥'1 '-+-""""""T=2--x = Xo 

Fig. 7-2 The Boundary Conditions for Thermal Intensities 

We introduce two functions, 'P and <I>, which are defined as 

'P(t, x,µ) = 1+(t,x,µ)+ r(i, x,µ) 
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<I>(i, x,µ) = r (i, x,µ)-r (i, x,µ) (7-54) 

These two variables are useful because they are related to the internal energy E and heat 

transfer J. From Eqs. (7-21a,b) we can derive 

l 

E(T) = 21t J 'l'(i, x,µ)dµ 
0 

l 

J = 21t J µ<I>(i, x,µ)dµ 
0 

(7-55) 

(7-56) 

where Eis a function of temperature according to Eqs. (7-12~b), and then temperature is 

a function of time and location due to Eqs. (7-55) and (7-56). A dimensionless energy can 

be defined by 
I 

J'l'(i - )d r 
- E(T)-E(T) ,x,µ µ- 2 
E = 2 =-o _____ _ 

E('fi)-E(T2 ) I~ -I; 
(7-57) 

When the material of interest is at very low temperature (for example, if the temperature is 

less than the Debye's temperature), according to Eq. (7-12a), the above equation becomes 

(Roberts and Miller, 1960, Majumdar, 1993) 

E = E(T)-E(T2 ) ~T4 -Ti 
E(T1) - E(T2 ) Ti4 - T; 

(7-58a) 

When temperature is higher, according to Eq. (7-12b), Eq. (7-52) is (Roberts and Miller, 

1960) 
E = E(T)-E(T2 ) = T-T2 

E(T1)-E(T2 ) T1 -T2 

(7-58b) 

Therefore, it is convenient to use E to express the dimensionless temperature for either 

case. 

The numerical solution of intensity from Eqs. (7-51) and (7-52) in the direction 

along the x-axis(µ= 1.0) for the geometry shown in Fig. 7-2 is presented in Fig. 7-3. 

The boundary conditions and the initial conditions are specified as 
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x = 0 I1{t,x,µ) = 2.0 

x = XO 1; (t, x, µ) = 1. 0 

t=O l{t,x,µ)=0 

(7-59) 

From Fig. 7-3, we can see that the intensities along the positive and negative directions of 

the x-axis are waves with non-dimensional propagation speed equal to one. The two 

waves move in opposite directions with time. The propagation is very similar to the 

thermal waves that are predicted by the hyperbolic heat conduction model (HHC) (see Fig. 

6-2). 

The obvious difference between the intensity waves and the waves according to 

the HHC is that the scattering effect is considered for intensity. This difference is clearly 

shown in Fig. 7-3. At time f = 0.5, for example, the wave front of 1+ arrives at x/x0 = 

0.25, and the wave front of r arrives at x I x 0 = 0. 75. In the region of x I x 0 from 0.25 to 

0.75, both r and r are zero. However, 1+ is not zero in the region from 0.75 to 1.0, 

although the wave front has not reached this region. Similarly, r is not zero in the region 

from Oto 0.25. This is due to the back scattering effect. I+ scatters to contribute to I· and 

vice versa. The scattering effect is the key that couples the positive· and negative 

intensities together. However, this effect is not very strong in this case. This is because 

the value of the back scattering coefficient times intensity is much smaller than the forward 

intensity itself 

From the figure, we also see that the two intensity waves cross each other at time 

f = 1.0. It seems that these two waves do not affect each other significantly when they 

meet each other. This also indicates that the scattering effect is weak. However, the 

scattering effect is important because it makes the two intensity waves depend upon each 

other. In the figure, we can see that there exist small oscillations of intensity at the wave 

fronts. This is numerical error at the wave front. This may be avoided by using smaller 

time steps in the calculation. 
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'X/xo 

Fig. 7-3 Intensities (µ = 1.0) at Different Times (x0 = 2.0) 

The intensities at differentµ values are similar waves, however, the propagation speeds in 

the x-direction are different according to theµ values. Figure 7-4 shows the intensities 

for three typical µ values at time t = 1. 5. It is obvious that the wave fronts of these 

intensities are at different positions. From the transport equations (Eqs. (7-51) and (7-

52)), we find that the non-dimensional propagation speed along the x-axis is µ for the 

intensity in the µ direction. Actually, the propagation speeds of the intensities are the 

same, and equal to 1 (dimensionless) along their propagation directions. The different 

speeds shown in Fig. 7-4 are the x-axis. components of the actual speeds. The 

dimensionless internal energy is found according to the following equation 

I 

J'l'(t - )d 
- E(T)-E(T) ,x,µ µ E- o -~o ____ _ 

- E(T1)-E(T2 ) - It-I; 
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and heat flux is found from Eq. (7-56). To is the initial temperature which is a constant 

(here it is zero). From these equations, we can see that the internal energy and heat flux 

are related to a combination of all of the intensity waves along all of the directions. 

Because the propagation speeds of these intensity waves are finite, the internal energy and 

heat flux are also waves with finite propagation speeds. Although these waves have 

different propagation speeds along the x-axis, the internal energy and heat flux will have 

the maximum propagation speed of the intensity waves, and this non-dimensional speed is 

equal to I. 

-
+ -

2. 5 ----.-------.------.------.-----

2.0 

1.5 

1.0 

0.5 

0.0 

1 
2 
3 

µ = 0.238 
µ = 0.733 
µ = 1.0 

t 
---- I 

-0.5 .__ ________ ___. _____ ___. _____ ___. _____ ___. 

0.0 0.2 0.4 0.6 0.8 1.0 

x/xo 
Fig. 7-4 Intensities for Differentµ at f = 1.5 and XO= 2.0 

The results of internal energy and heat flux are shown in Fig. 7-5. The first 

important fact shown in the figure is that the wave fronts of the internal energy and heat 

flux do not have obvious discontinuous sharp changes, even at short times such as f = 
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o:5. However, the wave fronts can still be distinguished by the slope changes of the 

curves. In Fig. 7-5, the wave fronts can be easily seen on curves 1 and 2. For curve 1, the 

fronts of the waves from the left and right boundaries reach the positions x /x0 = 0.25 and 

x/x0 = 0.75, respectively. For curve 2, the two wave fronts meet each other at x/x0 = 

0.5. However, after the waves from the left and right boundaries cross each other, it is 

difficult to discern the wave fronts, as is shown by curve 3. Curve 3 appears to be more 

like a distribution from the parabolic heat conduction model, but actually it is not the same 

as that from parabolic heat conduction (as will be shown in section 7.4). 

1.5 

E 1 t=0.5 
J/2ri 2 '£=1.0 

1.0 
3 '£= 1.5 

~ 
C\l 

' ~ 
"d 
~ 
«' 0.5 

I r:c:i 

0.0 

-0.5 _________________ ___. ________ ..._ ______ _._ ______ ____. 

0.0 0.2 0.4 0.6 0.8 1.0 
X/X 

0 
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1.0 

The intensity distributions at the early and near the final stages of the transient 

process are shown in Fig. 7-6. Fromthe figure, we can see that at the early stage (f = 

0 .1 ), the wave fronts of the intensities in the positive and the negative directions along the 

x-axis are near the boundaries. The waves have only moved small distances from the 

boundaries. When the process is near steady-state, for example, at 'f = 5.0, the wave 

fronts cannot be seen because they have passed completely through the material, and the 

boundaries were assumed to be completely absorbing boundaries. At this moment, the 

process is still not steady-state, and we can see from the figure that the intensities are two 

different distributions. At 'f = 10.0, the intensities are very similar distributions and they 

are almost parallel to each other. When the process is steady-state, the two curves for the 

two intensities will be similar to each other and exactly parallel to each other. 
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The internal energy and heat flux corresponding to the intensities shown in Fig. 7-6 

are shown in Fig. 7-7. The early stage ofthe process is similar to the situation shown in 

Fig. 7-5. When the process is near steady-state, the heat flux teads to be uniform in the 

material. In the figure, we can see that at t = 5.0, the heat flux is close to a uniform 

distribution, and at t = 10.0, the distribution of heat flux is fairly uniform. The distribution 

of internal energy which is equivalent to temperature distribution is quite interesting. At 

the begining of the process, the internal energy wave is very clearly shown in the figure. 

As the process continues, the internal energy increases at the boundaries, the values of 

internal energy at the bounadries tend to the boundary conditions which are equal to 2. 0 at 
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the left boundary and 1.0 at the right boundary. But the internal energy is not the same as 

the given boundary conditions even at t = 10.0. As shown by curve 3 in Fig. 7-7, at the 

left boundary, the internal energy is less than the boundary value (2.0), and at the right 

boundary, it is higher than the boundary value (1.0). This phenomenon is called the 

boundary slip effect in radiative transfer. We will discuss this later as it applies to 

conduction. 

From Fig. 7-7 and Fig. 7-5, we notice that the internal energy and heat flux waves 

are very different in their forms from the intensity waves shown in Fig. 7-3 and Fig. 7-6, 

especially in the early stages of the process. Now the question is why the waves of 

internal energy and heat flux do not have discontinuous wave fronts like the waves of the 

intensities. The reason is that the internal energy and heat flux are related to a 

combination of all of the intensities in all of the directions by integration. Since these 

intensities have different propagation speeds along the x-axis, their distributions vary for 

different positions, but their integration smooths the discontinuities in the intensities. 

Figure 7-8 shows the intensity distributions at t = 1. 5. In this figure, the right boundary is 

set to 1; = 0, and the left b~undary It = 1. 0. From this figure, we can see that the area 

under the intensity curve decreases as the position changes from 0.25 to 0.75 when the 

internal energy and heat current wave fronts are located at t = 1. 5. Since the area under 

the intensity curve changes (decreases) continuously, the wave fronts of internal energy 

and heat flux are not sharply discontinuous, but the slopes of these waves are 

discontinuous at the wave fronts. 

The solution of internal energy ( dimensionless temperature) at steady-state is 

shown in Fig. 7-9 for the boundary conditions given by Eq. (7-59). For this figure, we 

used Eq. (7-58b) to express the internal energy. If the temperature is much lower than 

Debye's temperature, the internal energy should be replaced by Eq. (7-58a). Since the 

phonon transport equation for the steady state process is the same as the radiation 

(photon) transport equation (Siegel and Howell, 1981), the result for the flux is the same 
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as that of the radiation transport equation. Majumdar (1993) also solved the same 

problem. 
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Fig. 7-8 Intensity Distribution at Different Positions and at Time f = 1. 5 

A comparison of our solution with the exact solution at the boundaries is given in 

Table 3. We can see that our numerical solution agrees very well with the exact solution 

for most situations except for x0 = 5.0. In the table, the exact solutions for x0 = 5.0 were 

not really exact because they were calculated using the suggested approximate 

relationships (Siegel and Howell, 1981 ). The approximate relationship is not very 

accurate for x0 = 5. 0 because the acoustic thickness is not large enough for using the 

approximate relationship. This is the reason that the numerical solution in this case does 

not seem very accurate as compared to the exact solution. 
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TABLE 3 Companson of Exact E with Numerical E 

'x0 E (0) exact E (0) num. 

0.2 0.6114 0.6105 0.3886 0.3893 

0.6 0.7051 0.7042 0.2948 0.2957 

1.0 0.7581 0.7567 0.2418 0.2420 

2.0 0.8307 0.8298 0.1692 0.1688 

5.0 0.8935 0.9082 0.1065 0.0866 

From Fig. 7-9, it is found that the temperature distributions for the acoustic thickness 

between 0.1 and infinity are not linear. This is caused by the internal scattering effect. 

When the acoustic thickness is infinite~ the temperature distribution is linear and it is the 

same as the solution of the steady state parabolic heat conduction equation (Fourier's law). 
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The scattering effect is important for small acoustic thickness. From the figure, we also 

find that the temperatures are not continuous at the boundaries. At the left boundary, the 

given temperature is 1.0, but the temperatures inside the medium are less than the 

boundary temperature and the change is not continuous. Similarly, the temperatures are 

not continuous at the right boundary. This is called boundary slip in radiation. The cause 

of this effect is boundary scattering. The physical mechanism of boundary slip has been 

discussed in many radiation text books (Siegel and Howell, 1981, Sparrow and Cess, 

1978). Majumdar (1993) has also discussed boundary slip for the phonon transport 

process. The steady state phonon process is basically the same as the photon process that 

is studied in radiation. 

However, we are not very satisfied with the explanations given by the radiation 

theory. For heat conduction problems, boundary slip occurs only when the acoustic 

thickness of the material is fairly small. In this case, heat conduction is strongly non

equilibrium thermodynamically. We cannot even assume local thermodynamic 

equilibrium. Therefore, the temperature in the material is not well defined, or cannot be 

defined at all. Then what is meant by the temperature shown in Fig. 7-9 for small 

acoustic thickness? Our explanation is that the temperature does not represent the real 

temperature of the material. The temperature shown in Fig. 7-9 represents the local 

thermodynamic equilibrium states which represent the local non-equilibrium states in the 

material. At any local position in the material, if the local non-equilibrium state goes to an 

equilibrium state through an isentropic process, then the equilibrium state can represent 

the non-equilibrium state. Therefore, we can use the temperature for the equilibrium state 

to represent the non-equilibrium state. However, the temperature does not represent the 

real physical state. Based on this explanation, the boundary slip and even the temperature 

distribution for very small acoustic thickness really do not signify real physical states. 
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TABLE. 4 Comparison of E(x) by PTE with the Exact Solution 

Parameters XO= 0.5 XO= 5.0 
x/xo PTE Exact PTE Exact 
0.00 0.6844 0.6868 0.9068 0.9098 
0.10 0.6409 0.6411 0.8093 0.8153 
0.20 0.6043 0.6034 0.7243 0.7350 
0.30 0.5648 0.5626 0.6460 0.6590 
0.40 0.5301 0.5314 0.5611 0.5724 
0.50 0.4987 0.4998 0.4853 0.4994 
0.60 0.4636 0.4625 0.4024 0.4132 
0.70 0.4272 0.4270 0.3283 0.3392 
0.80 0.3951 0.3966 0.2462 0.2567 
0.90 0.3571 0.3574 0.1706 0.1807 
1.00 0.3118 0.3127 0.0851 0.0900 

The numerical solution of PTE for long time period (near steady-state) is 

compared to the exact solution of the radiative transport equation. The boundary 

conditions for the problem are 

i+(x=0,µ)=1.0, and r(x=xo,µ)=0 

The comparison given in Table. 4 shows that the difference between the numerical 

solution of the PTE and the exact solution is less than 5.5%. The accuracy of the 

numerical solution can be improved by solving the PTE for even longer time period so the 

solution is more close to steady-state solution. 
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7 .4 Comparison of PHC, HBC, and Phonon Transport Theory 

We have seen from section 7.3, that the internal energy and heat flux are waves 

that have non-dimensional propagation speeds equal to 1 (dimensionless). These waves 

are completely different from the waves given by the hyperbolic heat conduction model 

(HHC) in Chapter VI. In section 7 .2, we have shown that both parabolic heat conduction 

(PHC) and hyperbolic heat conduction (HHC) can be derived from the transport equation. 

According to Majumdar (1993), the HHC is an approximation of the transport equation 

for large acoustic thickness. Also, according to radiative heat transfer (Siegel and Howell, 

1981 ), and the discussion in section 7 .2, parabolic heat conduction is a good 

approximation of the transport equation for large acoustic thickness. For steady state 

· processes, the PHC is the same as the transport equation for very large acoustic thickness. 

This has been indicated in Fig. 7-7. However, for a transient process, the heat transfer is 

related to both acoustic thickness and time. Therefore, PHC and HHC may not be the 

same as the PTE even for large acoustic thickness. 

In order to show the difference between these models, PHC and HHC will be 

compared with PTE. The PHC artd HHC equations corresponding to transport equations 

(7-51) and (7-52) are 

forHHC, and 
auo - au] 
at -- ax 

u =-.!. auo 
I J dX 

(7-44) 

for PHC. U0 and U1 are the first and second order moments of intensity. From Eqs. (7-

56) and (7-57), these moments represent dimensionless temperature and heat flux 
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J 
and U =-

1 21t 

and the initial temperature T0 is equal to T2• The dimensionless time f and the 

dimensionless coordinate x are defined by Eq. (7-37). 

Figure 7-10 shows the results from the three models for small acoustic thickness 

(x0 = 0.1). At short times (f = 0.05 and 0.5), we can see that the three models are very 

different from each other. Since acoustic thickness is small, the PHC solutions are almost 

steady state even at short time f = 0.05. This is because the speed of heat transfer is 

infinite for the PHC, so it is very quick to get to steady state for small acoustic thickness. 

The HHC solutions are waves with discontinuous wave fronts, and the propagation speed 

is (1/3)112. The magnitudes of the HHC solutions are higher than those of the PHC 

solutions. The solutions of the transport equation (PTE) are also waves. However, these 

waves are continuous at the wave fronts and have unit nondimensional propagation speed. 

The PTE solutions have very strong boundary scattering which is shown by the boundary 

slip in the temperature distribution. At time f = 5, we see that HHC and PHC results are 

very close, except that HHC still shows a wave front. At time f = 8, PHC and HHC are 

almost the same. However, they are very different from PTE. Obviously, both PHC and 

HHC are not accurate for small acoustic thickness. 

Figures 7-11 and 7-12 show the comparison of the three models for acoustic 

thicknesses of x0 = 1.0 and 5.0. Similar to Fig. 7-10, when the time is small, the three 

models are quite different from each other. When the time is large, the PHC and HHC 

results are very close, but they are different from PTE results because of boundary 

scattering (or boundary slip). When the acoustic thickness is very large, and the time is 

very long, the three models will be very close to each other, as shown in Fig. 7-12. In Fig. 

7-12, the PHC results show that at the early time (f = 5), the temperature is not linear, 

the physical process is still transient. Because the acoustic thickness is large, the process 

is still not steady even at f = 15. Therefore, we can see that the PHC curve is not linear. 
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The results show that both PHC and HHC are good approximations for heat transfer for 

large acoustic thickness and long time periods. It was previously believed that the HHC is 

more accurate than the PHC for heat transfer for very small acoustic thickness and in 

extremely short time periods (Ozisik, 1984, Vick and Ozisik, 1983, Luikov, 1976, Taitel, 

1972, Wiggert, 1977). From the results shown in Figs. 7-10, 7-11, and 7-12, we can 

conclude that the HHC is not accurate for small acoustic thickness or short time periods. 

Therefore, it appears that HHC should not be used to predict heat transfer for any 

engineering case .. However, this does not mean that the hyperbolic heat conduction model 

is totally useless to engineering. In Fig. 7-13, we show the comparison of the temperature 

wave and heat flux wave from HHC with the cf>-wave and 'P/2-wave forµ= 1.0 from 

PTE. We can see that these waves are very similar in shape, although the speeds of the 

HHC waves are less than the speeds of the PTE waves. These waves all have 

discontinuous wave fronts, and dissipate during propagation. The waves of T and q from 

HHC are coupled together. Similarly, the waves of cf> and 'P from PTE are also coupled 

with each other. These similarities between HHC waves and PTE waves are important, 

and they will be used to study the reflection properties of PTE waves in the next section. 

Figure 7-14 shows the propagation of intensity waves(µ= 1.0) and dimensionless 

temperature which are caused by a pulsed incident intensity from the left boundary. In this 

problem, the initial intensity was zero, and the magnitude of the pulsed incident intensity is 

1.0, which corresponds to a pulsed temperature ofT8• The width of the pulsed incident 

intensity is At(= 0.025). From the figure, we find that the intensity along the x-axis(µ= 

1.0) is still a pulsed signal propagating in the medium with speed equal to I. However, 

the temperature is not a pulsed wave, and the maximum value of the temperature is not at 

the position of the wave front when the time is large (t > 1.0), but it is behind the wave 

front. 
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Since the intensities in different µ directions have different speeds which are in the range 

from O to 1, at any location behind the wave front, there always exists intensity that will 

contribute to the temperature change at that location. 

The temperature change as a function of time is shown in Fig. 7-15. The results 

from HHC, PHC and PTE are compared with each other in the figure. As we can see 

from Fig. 7-15, the results from the three models are very different at the three different 

locations. The PHC results show that the pulsed change of the left boundary temperature 

can be felt immediately at any location in the medium, even very deep inside. This is 

because the propagation speed for the PHC model is infinite. The results from the 

transport equation (PTE) show that the pulsed change of the left boundary temperature 

cannot be felt at a certain location until the wave front reaches the location. It takes some 

time (f = x/1.0) for the wave front to get to location x. From the figure, we find that the 

temperatures from the transport equation (PTE) are very similar to those from the PHC in 
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their trends. We believe that this is because of the scattering in the transport process. The 

scattering is strongly related to the diffusion process in the PHC model, and physically, the 

diffusion process is a strong scattering process. Therefore, it is not surprising that PHC 

and the transport equation (PTE) have some similar properties~ and as we have discussed 

before, they are the same for large acoustic thickness and long time period processes. 

The results from HHC are totally different from those of PHC and PTE. The 

temperature is a pulsed wave and its magnitude is much larger than those of PHC and 

PTE. This is because the HHC does not consider scattering effects, and thus the pulsed 

incident energy concentrates in a small region during its propagation in the medium. The 

temperature wave from HHC is similar to the intensity wave from PTE shown in Figs. 7-

14 and 7-15. So the waves given by the HHC model are similar to the intensity waves 

given by the phonon transport equation (PTE). 
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From the comparison between HHC, PHC and PTE, we see that these three 

models are very different for heat conduction problems with small acoustic thickness, or in 

very short time periods. We believe that phonon transport heat conduction is the most 

accurate model of these three heat conduction models. As we know, parabolic heat 

conduction was first developed as an empirical law (Fourier's law) based on experimental 

facts. Later, it was explained by using gas dynamics theory (Vincenti and Kruger, 1977, 

Roberts and Miller, 1960) for heat conduction in gases. In solid materials, heat 

conduction is explained successfully using phonon theory for most materials (Roberts and 

Miller, 1964). Both phonon theory and gas dynamics theory use the Boltzmann transport 

equation to derive Fourier's law. 

It is believed that the Boltzmann transport equation is a very basic kinetic equation 

(based on Newton's law) to describe the behavior of all kinds of particles, including 

phonons and photons (Ziman, 1960, Kittel, 1986, Roberts anci Miller, 1960, Bak, 1964). 
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Although the hyperbolic heat conduction model has been explained by many investigators 

using different theories, these explanations are not satisfactory for two reasons. The first 

is a theoretical reason. According to some explanations, thermal waves were assumed to 

be one-dimensional plane waves rather than diffusive waves. In other words, the particles 

were assumed to be moving one-dimensionally rather than randomly in all the directions in 

space. For example, in Weymann's (1967) random walk model, particles are assumed to 

be moving randomly in one-dimension by a step ±.e. Chester (1963) suggested that in the 

classic heat conduction equation 

the derivative with respect to time should be replaced by 
· aT a 2T aT 

-~'C-+-
at at at 

when heat conduction occurs in a very thin material during an extremely short time period, 

because the first order derivative is not accurate enough in this case. Other explanations 

made assumptions to simplify the original complicated Boltzmann transport equation. For 

example, in Cheng's (1989) study, the hyperbolic equation is the second approximation of 

the Boltzmann transport equation using the moment method. This is the same as the 

assumption we made in deriving Eqs. (7-51) and (7-52). 

The second reason for the explanations of hyperbolic heat conduction being 

unsatisfactory is that so far we still do not have direct experimental proof to support the 

hyperbolic heat conduction theory. Although the thermal waves observed in liquid helium 

are very close to hyperbolic waves, they have been explained by using a two-fluid model 

(Bale, 1964) that are considered unique to liquid helium. 

Therefore, due to the fundamental foundation of the Boltzmann equation as 

compared to the approximate treatment by HHC and PHC, we take the Boltzmann 

solutions or the phonon transport model as the benchmark. Both the parabolic model 

(PHC) and the hyperbolic model (HHC) are approximations of the transport theory. The 
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parabolic heat conduction model (PHC) is a good approximation for large acoustic 

thickness and large time scale. Although the hyperbolic model is also good for large 

acoustic thickness and large time scale, it is more complex than the parabolic model; and 

when the time period is not long enough, it is not as accurate as the parabolic model even 

for large acoustic thickness. For transient heat conduction problems, when acoustic 

thickness is very large, and the time period is very long, we can use the parabolic model to 

get good approximate results. This conclusion does not mean that the hyperbolic model is 

totally useless. Actually, the hyperbolic model is a very basic model that describes the 

thermal waves and their physical properties, although it cannot be directly used to predict 

heat transfer. We will discuss its applications in the prediction of reflection properties in 

· the following section. 

7.5 Reflection of Thermal Waves at an Interface 

As we have presented in the previous sections, the temperature ( or internal energy) 

and heat flux are two waves which are very different from the thermal waves according to 

the HHC model. Therefore, the reflection theory derived in Chapter III and Chapter IV 

cannot be applied directly to the waves from the transport theory. However, from section 

7.4, we also notice that the waves from HHC are similar to the intensity waves from PTE 

in their propagation properties. Actually, the intensity waves in different µ directions are 

also hyperbolic waves with different speeds. Since intensity still possesses the features 

that hyperbolic waves have, the reflection theory derived for hyperbolic waves is still basic 

to the understanding of the reflection· of internal energy and heat flux at an interface of 

two different media. 

We have introduced wave functions 'I' and <I> in Eqs. (7-53) and (7-54). Since 

these functions are the basic functions of which internal energy and heat flux are 

composed, we call these two functions directional thermal waves. From Eqs. (7-51) - (7-

54), the governing equations for 'I' and <I> can be derived 
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d'l'(i X µ) d<l>(i X µ) - JI -a-, +µ ax' =-'l'(t,x,µ)+ 'l'(t,x,µ')dµ' 
t X o 

(7-61) 

d<l>(i,x,µ) d'l'(i,x,µ) m(- _ )-0 
dt +µ dX +-v t,x,µ - (7-62) 

The terms on the right hand side of Eq. (7-61) do not make any contribution to the total 

heat transfer because the integration ofEq. (7-61) yields the energy conservation equation 
a I -- . a I --
at J 'l'(t,x,µ)dµ+ ax J µ<l>(t, x,µ)dµ = 0 . (7-63a) 

-1 -1 

and thus 
I I J [-'l'(i, x, µ) + J 'l'(i, X, µ')dµ']dµ = 0 (7-63b) 
0 0 

So these terms only change the directional distribution of 'I' and cl>, and the changes are 

conservative over all directions. For this reason, we may approximate the above equations 

by 
aW(i,x,µ) acb°(i,x,µ) _ 0 

dt +µ dX - (7-64) 

acb°(i,x,µ) d'P(i,x,µ) m(- _ )-0 
dt +µ ax +-v t,x,µ - (7-65) 

Now the hat on the functions means that they are approximations. Equations (7-64) and 

(7-65) are the same hyperbolic wave equations as HHC Eq. (7-44) except that the 

dimensionless thermal conductivity in Eq. (7-65) is µ rather than 1/3. From these two 

equations and Eqs. (7-53) and (7-54), we can obtain the approximate intensity transport 

equations as 

ar+ (i, x, µ) ar+ (i, x, µ) .!. -1+ <-t _ ) = .!. -1_ <-t _ ) - + µ ".:\= + ' x, µ , x, µ 
dt UA 2 2 · 

(7-66) 

a1-(i,x,µ) a1-(i,x,µ)+.!.r-cix )=.!.i+(ix ) 
at µ ax 2 • ,µ 2 ' ,µ (7-67) 

These equations can be solved and the results compared with those from Eqs. (7-51) and 

(7-52). Figure 7-16 shows the comparison of the results for small acoustic thickness (x0 = 

0.1). 
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Fig. 7-16 Comparison oflntensity, Internal Energy and Heat Flux (x0 = 0.1, t = 0.8) 

From the figure, we can see that the solutions from the approximate Eqs. (7-66) and (7-

67) for intensity, internal energy and heat flux agree very well with the solutions from the 

exact Eqs. (7-51) and (7-52). Therefore, Eqs. (7-64) and (7-65) may be good 

approximations ofEqs. (7-61) and (7-62) for small acoustic thickness. For this reason, we 

propose to use Eqs. (7-64) and (7-65) to describe the wave behavior in the very small 

region around the interface between two different media. The reason that we use the 

approximation is that the approximate equations (Eqs. (7-64), (7-65)) are the same as the 

hyperbolic heat conduction equations that have been studied in detail in the previous 

chapters, then we may use the results from the previous chapters to study the reflection of 

phonon intensity. 

As shown in Fig. 7-17, the wave propagating along the x'-axis can be written as 

d'P(i,x',µ) dCP(i,x',µ) _ 0 
dt ' + dX' -

c)Cll(i,x',µ) d'P(i,x',µ) -c- , )-O 
'.:'I + + -v t, X , µ -
at dX' 
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medium 1 medium2 

Fig. 7-17 The Interface and Incident Wave Directions 

Equations (7-66) and (7-67) has the same form as the hyperbolic equations (Eqs. (1-1) 

and (1-4)) that have been studied in Chapter ill and N, except that the thermal capacity 

pep is 1.0 and K is 1.0 for Eqs. (7-66) and (7-67). Therefore, we can directly use the 

conclusions obtained :from those chapters. 

The directional reflectivity for a harmonic wave is given by Eq. (3-24b) 

TD iii ' ·µ-~µ 
n 

P - 2 
M - ii 

TD·µ+ _1 µ' 
n2 

(7-68) 

where, TD is derived :from Eq. (3-22), and is now the ratio of the acoustic speed in 

medium 1 to that in medium 2 since in Eqs. (7-66) and (7-67) the thermal capacity is 

unity, and the wave speed is the acoustic speed 

TD=v1 
V2 

(7-69) 

The incident angle and transmission angle are related to each other by the Snell's law given 

by Eq. (3-18). Then the reflection of the internal energy and heat flux can be found as 

(Eqs. (3-43)) 
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I 

J pM(µ)'P(t,x,µ)dµ 
P -..;:..o ______ _ 

AB - I (7-70) 

J'P(t,x,µ)dµ 
0 

I f PM(µ )µct,(t, x, µ )dµ 

and P -....;;..o ______ _ 
lJ - I (7-71) 

J µct,(t, x, µ )dµ 
0 

where, xis the coordinate at the interface. Actually, when we solve the phonon transport 

equation, we need information about the reflection of intensities. The reflectivities given 

in the above equations are the reflectivities for functions 'P and ct,. They are not the 

reflectivities for intensities which are needed in solving the transport equations. So Eqs. 

(7-70) and (7-71) are not very useful because we can not solve for internal energy and 

heat flux directly. Therefore, we must find the relationships for the intensities at the 

interface. 

When the waves of 'P and ct, strike the interface between two media, the incident 

waves, the reflected waves and transmitted waves are related to each other by the 

reflectivity PAr (see Eqs. (3-14b) and (3-15)) 

and 

'Pl (t, x, µ )[l +PM(µ)] = '1'2 (t, x, µ') 

µct, 1 (t,x,µ)[l-pM(µ)] = µ'ct, 2 (t,x,µ') 

(7-72) 

(7-73) 

These two equations, especially Eq. (7-72) may not true for the actual physical process. 

These two equations seems to conflict each other. Actually, the temperature or 'P will not 

be continuous at an interface of two materials. The discontinuity of interface temperature 

is discussed in Appendix II. Here, we assume that the temperature is continuous at an 

interface. Combining the above equations with Eqs. (7-53) and (7-54), we can obtain 

l+(t x µ')=l+(t x µ)(µ+µ')+pM(µ)(µ'-µ) 
2 • • I • • 2µ' 
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+r(t x µ) (µ' -µ)+p).c(µ)(µ' +µ) 
I ' ' 2µ' 

(7-74) 

r(t X µ')=r(t X µ)(µ+µ')+pM(µ)(µ'-µ) 
2 , , I , , 2µ' 

+I+(t X µ) (µ' -µ)+pM(µ)(µ' +µ) 
I ' ' 2µ' 

(7-75) 

where the subscript I represents the variables on the left side of the interface in medium I, 

and the subscript 2 represents the variables on the right side of the interface in medium 2. 

These equations give the boundary conditions for intensities at an interface. These 

boundary conditions are very important when we solve the transport equations in non

homogeneous medium. The reflectivity can be obtained from Chapter ill and Chapter IV. 

We can see from Eqs. (7-74) and (7-75) that the intensities at the interface are not 

continuous because of reflection. To solve for the four intensities, transport Eqs. (7-51) 

and (7-52) should be combined with the above two equations. Since we have discussed 

the reflection of hyperbolic waves in Chapter ill and Chapter IV, we will not repeat our 

discussion here. However, from the study of this section, we realize that hyperbolic waves 

are the basic waves for intensity. Therefore, they are still very useful for the study of 

phonon transport processes. The hyperbolic model can be used to study the basic wave 

properties which are necessary and important for phonon transport processes. The study 

of reflection presented in this thesis is an example of the application of the hyperbolic heat 

conduction model. 
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

Through the previous study, we have seen that a thermal wave is a special wave 

which is different from other waves suc::h as electromagnetic waves. First, as we have 

mentioned before, a thermal wave consists of two energy waves. One is the internal 

energy of the material, the other is the heat flow in the material. These two waves 

exchange energy during their propagation. Second, the heat flow is a vector, and the 

internal energy is a scalar wave. Therefore, they behave differently during propagation. 

In this chapter, we will draw conclusions on our research. 

8.1 Conclusions 

From the theoretical and numerical study of thermal waves presented in the 

previous chapters, we can arrive at the following conclusions: 

I. According to the review of the previous studies of thermal waves, we realize that the 

reflection process of hyperbolic thermal waves by an interface between two different 

materials, or by the boundary of a material has not been studied very much. The 

knowledge of this important process is still very limited. There is not a formula for 

reflectivity that is readily available for engineering applications. There is not an 

investigation of two-dimensional reflection published in the open literature. Although 

the phonon transport theory has been studied by several investigators, transient 

processes have not been studied. The wave behavior of heat transfer in transient 

processes is very important, especially for small acoustic thickness and short time 

periods. No previous work exists to compare transport theory, hyperbolic heat 

conduction theory and parabolic heat conduction theory and to examine the accuracy 

of these theories. 
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2. The theoretical study of the reflection process of one-dimensional hyperbolic thermal 

waves in this research provides a theory that can be used the explain and calculate the 

reflectivity of a hyperbolic thermal wave which is reflected by either an interface in a 

composite material or at a boundary of a material. We have found that the parameter 

TD ( defined in Chapter 111) is a very important parameter for reflection. Depending 

on the value, the reflectivity can be positive, negative, or zero. Closed form equations 

are presented for the calculation of reflectivity for engineering applications. 

3. The theoretical study of two-dimensional thermal waves provides us with the basic 

theory of the reflection process of a two-dimensional thermal wave at an interface in a 

composite material. The discussion of the mechanism of the reflection process and the 

wave propagation after being reflected at the interface shows that the reflection can be 
J· 

completely different for different situations. Relationships for directional reflectivity 

are presented for engineering applications. 

4. So far, we have not found studies of numerical solutions of thermal waves in composite 

materials, neither for one-dimensional situations nor for two-dimensional situations. 

This research is the first one that has used several numerical methods to solve these 

types of problems. Also, in this research, the control volume finite difference method 

has been developed to solve for one and two-dimensional thermal waves in composite 

materials and homogeneous materials. Although we did not use the control volume 

finite difference method to solve for one-dimensional thermal waves in this study, the 

method can be easily used for 1-D, 2-D, and 3-D problems; and it can also be easily 

used for parabolic heat conduction problems. 

5. The theoretical and numerical results have shown that the theory presented in this 

research can be directly applied to predict the reflection of one-dimensional hyperbolic 

thermal waves. By using the numerical solutions, we have explained the mechanism of 

negative reflectivity. We have seen that the exchange of energy between the internal 

energy (temperature wave) and the heat flow (heat flux wave) is very important 

129 



because it is this exchange that makes it possible for the reflectivity to be negative. The 

numerical solutions of two-dimensional hyperbolic thermal wave problems have shown 

the agreement of the trend in the reflection process between the closed form theory 

and the numerical results. The reflectivity does not agree with the closed form theory 

very well, and this appears to be due to several factors. One is that the numerical 

examples do not exactly satisfy the conditions of the closed form theory. There always 

exist the boundary reflection effects which interfere with the reflection at an interface. 

The closed form theory does not account for these but the numerical solution does. 

Secondly, the incident thermal wave for the two-dimensional situation is not a 

collimated plane wave as for a one-dimensional problem, but it is a directionally diffuse 

wave which arrives at the interface from all directions. Therefore, the reflectivity 

provided by the theory can not handle this wave since the theory treats the incident 

waves as plane waves only along one direction. 

6. Debye's phonon theory is reviewed in this research. The general phonon transport 

equation (Eq. 7-22) has been derived based on Debye's phonon theory. The simplified 

one-dimensional phonon transport equation in an isotropic medium is solved 

numerically by using the TVD method. From the solutions for intensity, the 

temperature ( or internal energy) and heat flux, we found that the intensity is a wave 

with similar wave properties to the hyperbolic waves studied in. Chapters ill, IV and 

VI. However, the temperature and heat flux are quite different from the hyperbolic 

thermal wave studies in those chapters. They do not have sharply discontinuous wave 

fronts, and their speed is larger than the speed of hyperbolic thermal waves. 

7. The relationship between the transport equation, hyperbolic model, and Fourier's law 

is discussed. It is found that HHC and PHC are two different approximations of the 

transport equation (PTE). From numerical solutions for the PHC, HHC and PTE, the 

three models are compared. The comparison shows that the three models are very 

close when the time period and dimensional scales ( acoustic thickness) are very large 
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compared to the relaxation time and the phonon mean free path. For small time period 

and small dimensional scales, the PHC does not have a wave behavior at all; while the 

HHC produces waves, but the wave speed is only (1/3)112 of the actual acoustic speed, 

and the wave front is very sharp. Also HHC can not predict the boundary scattering 

effects. The phonon transport equation is much more realistic, and I believe that it 

accurately predicts temperature and heat flux waves and boundary scattering. 

8. Although the hyperbolic thermal waves are not accurate in most cases, we found that 

the intensity waves from the transport equation are very similar to the hyperbolic 

thermal waves in their behavior. An·approximate transport equation (Eqs. (7-66) and 

(7-67)) is derived for small acoustical thickness; and from this equation, we found that 

the intensity waves are actually the same kind of waves as hyperbolic thermal waves. 

Therefore, we can apply the conclusions for reflectivity obtained for hyperbolic 

thermal waves to phonon intensity reflection. 

8.2 Topics for Future Research 

As we can see from the present study, there are many important unsolved 

problems for thermal waves. We cannot solve all of these problems in this research. We 

realized from our study that the phonon transport theory is the key to solve heat 

conduction problems in microscale materials. However, this theory is still a framework 

and many details need to be filled in. Our understanding of the phonon transport process 

needs to be expanded. Based on our study, we would suggest several important topics for 

further research. 

8.2.1. Thermal Wave Reflection Process 

The phonon transport theory is especially useful for microscale heat conduction 

problems. One-dimensional heat transfer is very important because most of microscale 

heat conduction problems are one-dimensional. In our study, we have given a quite clear 

description of one-dimensional hyperbolic thermal waves and their reflection processes. 
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We also proved that phonon intensity waves are hyperbolic waves and the reflection of 

phonon intensity waves can be predicted by using the theory for hyperbolic thermal waves. 

However, our study still has not completely solved the phonon reflection problem, it only 

showed a way to approach this problem. Research is needed to determine the more 

general relationship between the reflection of hyperbolic waves and the reflection of 

phonon intensity waves. 

With the study of the reflection of phonon intensity, we can further study the heat 

transfer in multi-layer materials, and predict the apparent physical properties of the 

materials such as apparent thermal conductivity. This is a very important step to put the 

phonon transport theory into engineering applications. 

8.2.2. Phonon Scattering Process 

In our study, we did not discuss in depth the phonon scattering process, for 

example, the collision between phonons and between phonons and other particles. We 

simply used the relaxation time approximation to simplify the scattering term in the 

Boltzmann transport equation and the phonon transport equation. Actually, the phonon 

scattering process is very complicated. There are two basic scattering processes, one is 

called the N-process, or normal process, and another is called the U-process, or Umklap 

process. For the N-process, the wave vectors of the phonons involved in a collision are 

conserved. For the U-process, the wave vectors of the phonons involved in a collision are 

not conserved. These processes are responsible for the heat conduction properties. So 

far, there is not easy way to link the achievements of physics to practical applications. 

These results are so complicated that they are not yet suitable for engineering 

computation. Therefore, there are diverse problems that need to be studied in this field. 

The study of the phonon scattering process probably is the most difficult part in 

the phonon transport theory because it not only requires a strong knowledge of thermal 

science, but also requires strong background in physics, especially in solid state physics 

and in quantum theory. 
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8.2.3. Phonon-Electron Process in Conductors 

Pure phonon heat transfer only occurs in dielectric materials. In conductors or 

semi-conductors, both phonons and electrons are important for heat transfer. Therefore, 

the contribution of electrons to heat conduction should be considered. Now the technique 

to include the electrons in a heat conduction process is to use Mathiessen's law (Ziman, 

1960) to find the equivalent relaxation time for the scattering term in the phonon transport 

equation 
1 1 1 1 -=-+-+--
't 'tph 'tel 'tph-el 

where subscripts ph stands for the relaxation time for phonons, el stands for the relaxation 

time for electrons, and ph-el stands for the relaxation time for phonon-electron collision. 

With this approximation, we can only consider one kind of particle, either phonons or 

electrons, as the dominant particle in heat transfer. This is a very rough treatment. We 

actually should develop the transport equation for electrons ( this is fairly easy after we 

have developed the phonon transport equation). The transport equations for phonons and 

electrons are coupled by the scattering (this is the difficulty). Then the total heat transfer 

is related to both phonons and electrons. 

8.2.4. EtTect of Polarization 

Elastic waves in solids are polarized in three modes, two transverse modes and one 

longitudinal mode. Therefore, the physical states of phonons are related to the 

polarization modes. In our study, we did not consider the effect of polarization on heat 

transfer, but summed over all polarization modes. 

The phonon speeds for different polarization modes are different. The wave 

frequency is also polarization-dependent. Therefore, in the phonon transport equation, the 

intensity will have three components corresponding to the three polarization modes. The 

three components may not be indepentent of each other. The first question that needs to 

be answered is how are the three components related to each other, and how can one 
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consider their relationships in the transport equations for the three components? The 

second step is how to solve the resulting transport equations. 

The above listed topics are only few important ones that could be solved in near 

future. We consider them as the basic topics. With the solutions of these problems, the 

phonon transport theory will be fairly complete and portable for engineering applications, 

and it will be more like an engineering theory which is simple, clear, and practical. Two

and three-dimensional problems may be studied in the future, but these are not very 

significant for engineering because the phonon transport theory is basically applied to 

extremely thin ( one-dimensional) materials. The thermal wave theory is a bright and 

important field in heat transfer. We believe many achievements will be made by many 

research studies in the near future. 
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APPENDIX I 

1. PHC Code: This code was developed to solve one-dimensional diffusive heat 
conduction (PHC) problem using the control volume method. The thermal diffusivity is 
set to be equal to 1/3 (GAM = 1/3.0). The physical dimension is normalized by XL, the 
total thickness of the material. 

C 
C THERMAL WA VE SOLUTION PHC MODEL 
C April 25, 1993 

C ----------------------------------------
DIMENSION AP(lOO),AE(lOO),A W(IOO),B(IOO),X(IOO) 
DIMENSION T(lOO),F(lOO),TO(lOO),P(lOO),Q(lOO) 
OPEN(UNIT=l,FILE='phc.D') 
WRITE(*,10) 

10 FORMAT(2X,'INPUT THE XL,TMAX:') 
READ(*, *)XL,TMAX 
GAM=l/3.0 
N=IOO 
DT=0.001 
DX=XL/FLOAT(N-1) 
TIME=DT 
DO 15 I=l,N 
X(l)=XL*FLOAT(I-1)/FLOAT(N-1) 
AE(I)=GAM*DT/DX 
A W(I)=GAM*DT/DX 
AP(I)=AE(I)+A W(I)+DX 
T(l)=O. 
TO(I)=O. 

15 CONTINUE 
T(l)=l.O 
TO(l)=l.O 
AW(l)=O. 
AE(N)=O. 
iter=O 

50 DO 25 I=2,N-1 
B(l)=TO(l)*DX 

25 CONTINUE 
B(N)=T(N) 
B(l)=T(l) 
AP(N)=l.O 
AW(N)=O.O 
AP(l)=l.O 
AE(l)=O.O 
P(l)=O.O 
Q(l)=B(l) 
DO 301=2,N 
P(I)= AE(I)/( AP(I)-A W (l)*P(l-1)) 
Q(I)=(Q(I-1)* A W(I)+B(I))/(AP(l)-A W(I)*P(I-1)) 

30 CONTINUE 
T(N)=Q(N) 
DO 35 I=2,N-1 
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J=N+l-1 
T(J)=P(J)*T(J+ 1 )+Q(J) 

35 CONTINUE 
001=1,N 
TO(l)=T(I) 
END DO 
DOI=l,N-1 
F(l)=(T(I)-T(I+ 1))/DX*GAM 
END DO 
F(N)=F(N-1) 
TIME=TIME+DT 
IF(TIME.LT.TMAX) GOTO 50 
001=1,N 
XX=X(l)/XL 
WRITE(* ,2)X(l),T(l),F(I) 
WRITE(l,2)XX,T(l),F(I) 
END DO 

2 FORMAT(2X,F6.4,2X,F7.5,2X,F8.5) 
STOP 
END 

2. HBC Code - layer 1: This code was developed to solve one-dimensional 
hyperbolic heat conduction (HHC) problems using the characteristics method. Only one 
layer of material is considered in this problem. Propagation speed is set to be equal to 
(1/3)ll2. Both time and x coordinate are normalized. Total acoustic thickness is xi. 

C 
C 
C 
C 

WA VE BY THE METHOD OF CHARACTERISTICS 
July 15, 1993 

implicit rea1*8 (A-H, 0-Z) 
DIMENSION T(500),T0(500),Q(500),Q0(500),X(500) 
OPEN(UNIT=l,FILE='HHC.D') 
WRITE(*, *)'INPUT xl,TMAX' 
READ(*, *)xl,TMAX 
GAM=l/3.0 
N=200 
BI=O.O 
DX=xl/FLOAT(N-1) 
DO 10 I=l,N 
X(l)=xl*FLOAT(l-1)/FLOAT(N-l) 
TO(l)=O. · 
QO(I)=O. 

10 CONTINUE 
TO(l)=l 
T(l)=l 
DT=DX/GAM**0.5 
DELTA=GAM**0.5 
TI=O. 
ITER=O. 

50 ITER=ITER+ 1 
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TI=TI+DT 
Q(l)=(Q0(2)*(DELTA-DX/2)+(T(l)-T0(2))*DELTA**2)/(DELTA+DX/2) 

c T(l)=T0(2)+(Q(l)*(DELT A+DX/2)-Q0(2)*(DELT A-DX/2))/DELTA **2 
Q(N)=(QO(N-1 )*(DELT A-DX/2)-(T(N)-TO{N-l ))*DELTA **2)/(DELT A +DX/2) 

c T(N)=(TO(N-l)+QO(N-l)*(DELTA-DX/2)/DELTA**2)/(l+BI*(DELTA+DX/2)) 
DO 15 1=2,N-1 
T(l)=(TO(l-l)+TO(l+l)+(QO(l-1)-QO(l+l))*(DELTA-DX/2)/DELTA**2) 
T(I)=0.5*T(I) 
Q(l)=(QO(I-l)+QO(l+l))*(DELTA-DX/2) 
Q(l)=(Q(l)+(TO(I-l)-TO(I+l))*DELTA**2)/(2*(DELTA+DX/2)) 

15 CONTINUE 
T(l)=l. 
T(N)=O. 

c Q(N)=BI*GAM*T(N) 
C IF(TI.GT.TC-5*DT) THEN 
C IF(ITER.GE.M) THEN 

IF(TI.GT.TMAX) THEN 
ITER=O. 
D0201=1,N 
XX=X(I)/xl 
WRITE(l, I )Tl,XX, T(l),Q(I) 

20 WRITE(*, l)Tl,X(I), T(l),Q(I) 
I FORMAT(2X,4(Fl0.5,2X)) 

stop 
END IF 
DO 25 I=l,N 
QO(I)=Q(I) 
TO(l)=T(I) 

25 CONTINUE 
TC=l/DELTA 

c IF(TI.GT.5*DT+TC) STOP 
GOT050 
STOP 
END 

3. HBC Code - layer 2: This code was developed to solve for reflection of one
dimensional hyperbolic thermal waves at an interface of two materials. The characteristics 
method was used to develop the program. 

C 
C 
C 
C 
C 

WA VE BY THE METHOD OF CHARACTERISTICS 
FOR REFLECTION AT AN INTERFACE 

Aug. 20, 1993 

IMPLICIT REAL *8(A-H,0-Z) 
DIMENSION T(lOOO),TO(lOOO),Q(lOOO),QO(IOOO),X(lOOO) 
OPEN(UNIT=l,FILE='D.D') 
WRITE(*, *)'INPUT N,M' 
READ(*, *)N,M 
WRITE(*, *)'INPUT GAM1,GAM2,BI,OMEGA' 
READ(*, *)GAM1,GAM2,Bl,OMEGA 
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WRITE(*,*)'INPUT Rl,TD,TMAX' 
READ(*,*)Rl,TD,TMAX 
DX=0.5/FLOAT(M-l) 
DOI=l,M 
X(l)=O.S*FLOAT(I-1)/FLOAT(M-1) 
TO(I)=l. 
QO(I)=O. 
END DO 
R2=1-Rl 
TO(l)=l 
T(1)=2 
DT=DX*(Rl/GAMl)**0.5 
DELT Al =(GAMI *RI )**0.5 
DX2=DT*(GAM2/R2)**0.5 
DELT A2=(GAM2*R2)**0.5 
BETA=(GAMI*R2/GAM2/Rl)**0.5/ID 
DOI=M+l,N 
X(I)=0.5+DX2*(I-M) 
TO(I)=l. 
QO(I)=O. 
END DO 
TI=O. 
ITER=O. 

50 ITER=ITER+ 1 
TI=Tl+DT 

c T(l )= l+SIN(OMEGA *TI) 
Q(l)=(Q0(2)*(Rl-DT/2)+DELTA1 *(T(l)-T0(2)))/(Rl +DT/2) 
T(N)=BETA*DELTA2*(TO(N-l)+QO(N-l)*(DELTA2-DT/2)) 
T(N)=T(N)/(BETA*(DELTA2+BI*GAM2*(R2+DT/2))) 
Q(M)=DELTAI *(TO(M-1)-TO(M+ l))+(Rl-O.S*DT)*QO(M-1) 
Q(M)=Q(M)+TD*(Rl-0.5*DT*Rl/R2)*QO(M+l) 
Q(M)=Q(M)/((Rl +o.S*DT)+TD*(Rl +o.S*Rl *DT/R2)) 
T(M)=Rl*TD*(R2+0.5*DT)*TO(M-l)+R2*(Rl+o.5*DT)*TO(M+l) 
T(M)=T(M)+Rl *TD*(QO(M-l)*(Rl-DT/2)*(R2+DT/2)-QO(M+ 1) 

1 *(RI +DT/2)*(R2-DT/2))/DELTA1 
T(M)=T(M)/(R2*(Rl +DT/2)+Rl *TD*(R2+DT/2)) 
DO 1=2,M-1 
T(l)=(TO(I-l)+TO(I+ l)+(QO(I-1)-QO(I+ l))*(Rl-DT/2)/DELT Al) 
T(I)=O.S*T(I) 
Q(l)=(QO(I-l)+QO(I+ l))*(Rl-DT/2) 
Q(I)=(Q(I)+DELTAl *(TO(I-1)-TO(I+ 1)))/(2*(Rl +DT/2)) 
END DO 
DO I=M+l,N-1 
T(l)=(TO(l-l)+TO(I+l)+(QO(l-l)-QO(I+l))*(R2-DT/2)/DELTA2/BETA) 
T(l)=O.S*T(I) 
Q(I)=(QO(I-l)+QO(I+ l))*(R2-DT/2) 
Q(I)=(Q{I)+BETA*DELTA2*(TO(I-1)-TO(I+l)))/(2*(R2+DT/2)) 
END DO 
T(1)=2. 
Q(N)=BETA *BI*GAM2*T(N) 

C IF(TI.GT.TC-DT) THEN 
IF(TI.GE.TMAX) THEN 
ITER=O. 
DO 20 I=l,N 
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WRITE{l, l)X(l),T(l),Q(l) 
20 WRITE(*,l)X(l),T(l),Q(l) 
1 FORMAT(2X,3(F10.5,2X)) 

STOP 
END IF 
DO I=l,N 
QO(l)=Q(l) 
TO(l)=T(I) 
END DO 
TC=l/DELTAl 

C IF(TI.GT.DT+TC) STOP 
GOT050 
STOP 
END 

4. PTE Code: · This code was developed to solve one-dimensional phonon 
transport (PTE) problems using the TVD method. Intensities U (forward) and V 
(backward) are solved, and temperature and heat flux are determined from U and V. 

C 
C 
C 
C 
C 

C 
C 
C 

C 
C 

THE PROGRAM FOR THERMAL WA VE 
TRANSPORT EQUATION 

Oct.6, 1994 

IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION U(l 10,50), V(l l0,50),UO{l l0,50),VO(l l0,50),C(50) 
DIMENSION X(l l0),P{l 10),A(50),T(l 10),Q(l l0) 

GRID DISCRETIZATION 

OPEN (UNIT=l,FILE='PTE.D') 
WRITE(*, *)'INPUT THE TIME STEP:' 
READ(*,*) DT 
WRITE(*, *)'INPUT THE MAXIMUM TIME:' 
READ(*,*) TMAX · 
WRITE(*, *)'INPUT THE AUSTICAL TIDCKNESS:' 
READ(*,*) XO 
TIME=O 
ITER=O 
AA=O.O 
BB=l.O 
NM=48 
NX=lOO 
CALL DXA(NM,AA,BB,C,A) 
SUM=O 
DX=XO/NX 
DOI=l,NX 
X(l)=XO*FLOAT(l-1)/FLOAT(NX-l) 
END DO 

INPUT INITIAL AND BOUNDARY CONDITIONS 
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C 

C 
C 
C 
10 

C 

C 

WRITE(*, *)'INPUT THE TOP POSITIVE INTENSITY:' 
READ(*,*) U{l,1) 
WRITE(*,*)'INPUT THE BOTTOM NEGTIVE INTENSITY:' 
READ(*,*) V(l,1) 
WRITE(*,*)'INPUT THE INITIAL INTENSITY:' 
READ(*,*) UO(l,1) 
VO(l,l)=UO(l,1) 
DOI=l,NX 
DOJ=l,NM 
UO(I,J)=UO(l,1) 
VO(l,J)=VO(l,l) 
END DO 
END DO 
DOJ=l,NM 
UO(l,J)=U(l,1) 
VO(l,J)=V(l,l) 
END DO 

SOL VE FOR THE INTENSITIES 

DOI=l,NX 
SUM=O 
SUMQ=O 
DOJ=l,NM 
SUM=SUM+(UO(l,J)+VO(NX + 1-I,J))* A(J) 
SUMQ=SUMQt(UO(I,J)-VO(NX+l-I,J))*C(J)*A(J) 
END DO 
T(I)=O.S*SUM 
Q(I)=SUMQ 
END DO 
--SOL VE FOR U ---------

00 J=l,NM 
DOI=2,NX-1 
PUP=C(J)*UO(l,J) 
PLW=O.S*C(J)*(UO(I+ 1,J)+UO(I,J)) 
PLW=PLW-0.S*C(J)*C(J)*DT/DX*(UO(l+l,J)-UO(I,J)) 
R=(UO{l,J)-UO(I-l,J))/(UO(l+l,J)-UO(l,J)+l.OE-10) 
R1=2*R 
IF(Rl.GT.1.0) Rl=l.O 
IF(R.GT.2.0) R=2.0 
COEF=AMAXI(O, RI, R) 
P(I)=PUP+COEF*(PLW-PUP) 
END DO 
P(l)=C(J)*UO(l,J) 
001=2,NX-l 
U{I,J)=UO(I,J)-DT*(P(I)-P(l-1 ))/DX +DT*(T(l)-UO(l,J)) 
END DO 
U(l,J)=UO(l,J) 
U(NX,J)=UO{NX,J)-DT*C(J)*(UO{NX,J)-UO(NX-l,J))/DX 
U(NX,J)=U(NX,J)+DT*(T(NX)-UO(NX,J)) 
END DO 
---------------- SOL VE FOR V -----------

00 J= l,NM 
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C 

C 
C 
C 

DOI=2,NX-l 
PUP=C(J)*VO(I,J) 
PLW=0.5*C(J)*(VO(I+ l,J)+ VO(I,J)) 
PLW=PLW-0.5*C(J)*C(J)*DT/DX*(VO(I+l,J)-VO(I,J)) 
R=(VO(I,J)-VO(I-l,J))/(VO(I+l,J)-VO{I,J)+l.OE-10) 
Rl=2*R 
IF(Rl.GT.1.0) Rl=l.O 
IF(R.GT.2.0) R=2.0 
COEF=AMAXI(O, RI, R) 
P(l)=PUP+COEF*(PLW-PUP) 
END DO 
P(l)=C(J)*VO(l,J) 
DO 1=2,NX-1 
V(I,J)=VO(I,J)-DT*(P(l)-P(I-1))/DX+DT*(T(NX+l-I)-VO(I,J)) 
END DO 
V(l,J)=VO{l,J) 
V{NX,J)=VO(NX,J)-DT*C(J)*(VO{NX,J)-VO{NX-l,J))/DX 
V(NX,J)=V(NX,J)+DT*(T(l )-VO{NX,J)) 
END DO 
---------- UPDATE U AND V--------

DOI=l,NX 
DOJ=l,NM 
UO(I,J)=U(l,J) 
VO(l,J)=V(I,J) 
END DO 
END DO 

OUTPUT THE RESULTS 

TIME=TIME+DT 
ITER=ITER+ 1 
IF(TIME.LT.TMAX) goto 10 

c IF(ITER.LT.100) GOTO 10 
ITER=O 

·DOI=l,NX 
J=NX+l-1 
XX=X(l)/XO 

C dol=l,NM 
WRITE(* ,20) XX,UO(l,NM},VO(J,NM},T(l),Q(I) 
WRITE(l,20) XX,UO(l,NM}, VO(J,NM), T(I},Q(I) 

C WRITE(l,20) C(I),U0(25,I), V0(75,I),U0(50,I), 
C + V0(50,l),U0(75,I),V0(25,I) 

END DO 
c IF(TIME.GT.TMAX) STOP 
c GOTO 10 
20 FORMAT(2X,7(F8.4,2X)) 

STOP 
END 
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5. Two-Dimensional Thermal Wave Code: This code was developed to solve 
two-dimensional hyperbolic heat conduction (HH:C) problems in homogeneous materials 
using the TVD method. 

C 
C 
C 

TWO-DIMENSIONAL THERMAL WA VE SIMULATION 
SEPT. 7, 1993 

C ----------------------------------------------
DIMENSION X(150),Y(150),C(150,150),T(l50,150) 
DIMENSION GX(150,150),GY(l50,150),QX(l50,150) 
DIMENSION QY(150, 150},P(2, 150) 
OPEN(UNIT=l,FILE='D.D') 

C --------------- DISCRETIZATION -------------
WRITE(*, *)'INPUT N, M,MM,ml,m2:' 
READ(*, *)N,M,MM,ml,m2 
DX=l/FLOAT(N) 
DY=l/FLOAT(M) 
DO 10 I=l,N+l 

10 X(I)=DX*(I-1) 
DO 15 J=l,M+l 

15 Y(J)=DY*(J-1) 
C ---------- INPUT THE PROPERTIES -------------

WRITE(*, *)'INPUT CO,TAU' 
READ(*, *)CO,TAUO 
DO 20 I=l,N+l 
DO 20 J=l,M+l 
C(I,J)=CO 

20 . CONTINUE 
DT=0.25*DX/CO 
DTS=0.25*DY/CO 
IF(DTS.LT.Dn DT=DTS 

C ----------- INPUT J.C. AND BC.S --------
DO 25 I=l,N+ 1 
i:>O 25 J=l,M+l 
T(I,J)=l. 
QX(I,J)=O. 
QY(I,J)=O. 

25 CONTINUE 
TIME=O. 
ITER=O 

130 DO 30 I=l,N+l 
QY(I,1)=0 . 

. QY(I,M+ l)=O. 
T(I,l)=T(I,2)+(QY(I,l)*(l+o.5*DT)-QY(I,2)*(1-0.5*DT))/C(I,1) 

C IF(I.GE.Ml) T(I,1)=2.0 
C QY(I,l)=(QY(I,2)*(1-DT/2.)+C(I,l)*(T(I,l)-T(I,2)))/(l+DT/2) 

T(I,M+l)=(QY(l,M}*(l-0.5*DT)-QY(l,M+l)*(l+o.5*DT))/C{l,M+l) 
T(l,M+ l)=T(l,M+ l)+T(I,M) 

30 CONTINUE 
DO 35 J=l,M+l 
T(l,J)=2.0 
QX(N+ 1,J)=O.O 
QX(l,J)=QX(2,J)*( 1-DT /2. )+C{ 1,J)*(T( 1,J)-T(2,J)) 
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QX(l,J)=QX(l,J)/(l+DT/2.) 
if(J.LT.Ml.0Rj.GT.m2) THEN 
QX(lj)=O. 
T(l,J)=T(2,J)+(QX(l,J)*(l+o.5*DT)-QX(2,J}*(l-0.5*DT))/C(l,J) 
ENDW . 
T(N+ 1,J}=(QX(N+ 1,J)*(l +DT/2.}-QX(N,J)*(l-DT/2.))/C(N+ 1,J) 
T(N+l,J)=T(N,J)-T(N+l,J) 

35 CONTINUE 
C ------------- X DIRECTION ----------------

00 40 I=l,N+l 
DO 40 J=l,M+ I 
GX(l,J)=C(l,J)*T(l,J)+QX(l,J) 
GY (l,J)=-C(l,J)*T(l,J)+QX(I,J) 

40 CONTINUE 
D045J=2,M 
00501=1,N 
P(l ,I)=C(I,J)*GX(l,J) 
P(2,l)=-0.5*C(l,J)*C(l,J)*DT*(GX(I+ l,J)-OX(l,J))/DX 
P(2,l)=P(2,I)+o.5*C(I,J)*(GX(I+ 1,J)+GX(I,J)) 
R=(GX(l,J)-GX(l-1,J))/(GX(l+ 1,J)-GX(l,J)+ 1.0E-0~) 
RT=2*R 
W(RT.GT.1.0) RT=l.O 
W(RGT.2.0) R=2.0 
F=AMAXI(O,RT,R) 
W(I.EQ.1) F=O. 
P(l ,I)=P( 1,I)+F*(P(2,I)-P(l,I)) 

50 CONTINUE 
00551=2,N 
GX(l,J)=GX(l,J)-DT*(P(l,I)-P(l,I-1))/DX-DT*QX(l,J) 

55 CONTINUE 
DO 60 1=2,N+ 1 
P( l,I-1 )=-C(l,J)*GY(I,J) 
P(2,I-1)=-0.5*C(l,J)*(GY(I,J)+GY(l-l,J)) 
P(2,I-l )=P(2,I-1 )-0.5*C(l,J)**2. *DT*(GY(l,J)-GY(I-1,J) )/DX 
R=(GY(l+l,J)-GY{l,J))/(GY(l,J)-GY(l-1,J)+l.OE-08) 
RT=2*R 
W(RT.GT.1.0) RT=l.O 
W(R.GT.2.0) R=2.0 
F=AMAXI(O,RT,R) 
W(I.EQ.N+ 1) F=O. 
P(l,l-l)=P(l,l-l)+F*(P(2,I-l)-P(l,I-l)) 

60 CONTINUE 
00651=2,N 
GY(I,J)=GY(I,J)-DT*(P(l,I)-P(l,I-1))/DX-DT*QX(I,J) 

65 CONTINUE 
45 CONTINUE 

00701=2,N 
D070J=2,M 
T(l,J)=0.5*(GX(l,J)-GY(l,J))/C(I,J) 
QX(I,J)=0.5*(GX(l,J)+GY{l,J)) 
QY(I,J)=QY(I,J)*(l-DT) 

70 CONTINUE 
DO 75 I=l,N+l 
QY(l,l)=O. 
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QY(l,M+l)=O. 
T(l,l)=T(l,2)+(QY(l,l)*(l+o.5*DT)-QY(l,2)*(1-0.5*DT))/C(l,1) 

C T(l,1)=2.0 
C QY(I,l)=(QY(l,2)*(1-DT/2.)+C(l,l)*(T(l,1)-T(l,2)))/(l+DT/2) 

T(l,M+l)=(QY(l,M)*(l-0.5*DT)-QY(l,M+l)*(l+o.5*DT))/C(l,M+l) 
T(l,M+ l)=T(l,M+ l)+ T(l,M) 

75 CONTINUE 
DO 80 J=l,M+ I 
T(l,])=2.0 
QX(N+ 1,J)=O.O 
QX( l,J)=QX(2,J)*( 1-DT /2. )+C( l,J)*(T( 1,J)-T(2,J)) 
QX(l,J)=QX(l,J)/(1 +DT/2.) 
if(J.LT.Ml.OR.j.GT.m2) THEN 
QX(lj)=O.O 
T(l,J)=T(2,J)+(QX(l,J)*(l+o.5*DT)-QX(2,J)*(l-0.5*DT))/C(l,J) 
END IF 
T(N+ 1,J)=(QX(N+ l,J)*(l +DT/2.)-QX(N,J)*(l-DT/2.))/C(N+ 1,J) 
T(N+ l,J)=T(N,J)-T(N+ 1,J) 

80 CONTINUE 

C -------------- Y-DIRECTION ---------.--
DO 85 I=l,N+l 
DO 85 J=l,M+l 
GX(I,J)=C(I,J)*T(I,J)+QY(I,J) 
GY(l,J)=-C(l,J)*T(I,J)+QY(l,J) 

85 CONTINUE 
D0901=2,N 
D095J=l,M 
P(l,J)=C(l,J)*GX(l,J) 
P(2,J)=0.5*C(l,J)*(GX(l,J+ 1 )+GX(I,J)) 
P(2,J)=P(2,J)-0.5*C(l,J)**2*DT*(GX(l,J+ 1 )-GX(I,J))/DY 
R=(GX(l,J)-GX(l,J-1))/(GX(l,J+ 1 )-GX(l,J)+ 1.0E-08) 
RT=2*R 
IF(RT.GT.1.0) RT=l.O 
IF(R.GT.2.0) R=2.0 
F=AMAXI(O,RT,R) 
IF(J.EQ.1) F=O. 
P(l,J)=P(l,J)+F*(P(2,J)-P(l,J)) 

95 CONTINUE 
DO 100J=2,M 
GX(l,J)=GX(l,J)-DT*(P(l,J)-P(l,J-l))/DY-DT*QY(l,J) 

100 CONTINUE 
DO 105 J=2,M+ 1 
P(l,J-1)=-C(I,J)*GY(I,J) 
P(2,J-1)=-0.5*C(l,J)*(GY(l,J)+GY(l,J-1)) 
P(2,J-l)=P(2,J-l)-0.5*C(l,J)**2*DT*(GY(l,J)-GY(l,J-1))/DY 
R=(GY(l,J+ 1)-GY(l,J))/(GY(l,J)-GY(l,J-l)+ 1.0E-08) 
RT=2*R 
IF(RT.GT.1.0) RT=l.O 
IF(R.GT.2.0) R=2.0 
F=AMAXI(O,RT,R) 
IF(J.EQ.M+l) F=O. 
P(l,J-l)=P(l,J-l)+F*(P(2,J-1)-P(l,J-l)) 

105 CONTINUE 
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DO llO J=2,M 
GY(l,J)=GY(l,J)-DT*(P(l,J)-P(l,J-1))/DY-DT*QY(l,J) 

llO CONTINUE 
90 CONTINUE 

DO 1151=2,N 
DO ll5J=2,M 
T(I,J)=O .5 *(GX(l,J)-GY (l,J) )/C(l,J) 
QY(I,J)=0.5*(GX(I,J)+GY(l,J)) 
QX(I,J)=QX(I,J)*(l-DT) 

ll5 CONTINUE 
TIME=TIME+2*DT 
ITER=ITER+ 1 
IF(ITER.GT.MM) THEN 
DO 1201=2,N 
DO 120 J=2,M 
GX(I,J)=-(T(l,J)-T(I-1,J))/DX 
GY(l,J)=-(T(l,J)-T(l,J-1))/DY 
WRITE(*,180)X(l),Y(J),GX(I,J),GY(l,J),QX(I,J),QY(l,J) 
WRITE(l, 180)X(I), Y(J), T(l,J),GY(l,J),QX(I,J),QY(l,J) 

120 CONTINUE 
ITER=l 
stop 
END IF 

C IF(TIME.GE.l.) STOP 
180 FORMAT(2X,6(El 1.5,2X)) 

GOTO 130 
STOP 
END 

6. Two-Dimensional HBC Code: This code was developed to solve two-dimensional 
hyperbolic thermal wave problems in homogeneous or composite materials using the 
control volume finite difference method. 

C----------------------------------------------------------------
C TWO-DIMENSIONAL THERMAL WAVES IN NON-HOMOGENEOUS 
C MATERIALS USING CONTROL VOLUME METHOD 
C APRIL 10, 1993 

C----------------------------------------------------------------
DIMENSION AE(l05,60),AW(l05,60),AN(105,60),AS(l05,60) 
DIMENSION AP(l05,60),TO(l05,60),TY(l05,60),T(l05,60) 
DIMENSION QXO(l05,60),QYO(l05,60),P(l05),Q(l05),B(l05,60) 
DIMENSION X(l05),Y(60),GAM(105,60),TAU(l05,60),CP(l05,60) 
OPEN(FILE='D.D',UNIT=l) 
open(FILE='dl.d',UNIT=2) 

C---------------------INPUT PARAMETERS ---------------------------
WRITE(*, *)'INPUT GRID NUMBER N AND M' 
READ(*, *)N,M 
WRITE(*,*)'INPUT INTERFACEMl' 
READ(*, *)Ml 
WRITE(*, *)'INPUT TIME STEP DT' 
READ(*,*)DT 
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WRITE(*, *)'INPUT COEFFICIENT F' 
READ(*,*)F 
WRITE(*, *)'RELAXATION TIME Tl AND T2' 
READ(*, *)Tl, T2 
WRITE(*, *)'INPUT Kl AND K2' 
READ(*, *)G 1, G2 
WRITE(*,*)'CPl AND CP2' 
READ(*, *)CP1,CP2 
WRITE(*, *)'INPUT TMAX' 
READ(*, *)TMAX 

C------------ GRID ---------------------------
XL=0.5 
YL=0.25 
TIME=O 
DX=XL/FLOAT(N-1) 
DY=YL/FLOAT(M-1) 
DOI=l,N 
X(l)=XL*FLOAT(l-1)/FLOAT(N-l) 
END DO 
DOJ=l,M 
Y(J)=YL*FLOAT(J-1)/FLOAT(M-l) 
END DO 
DVY=DY*DT*DT/DX*F 
DVX=DX*DT*DT/DY*F 

C------------- CALCULATE AE AW AN AS AP B -------
DO I= l,N 
DOJ=l,M 
GAM(l,J)=G 1 
TAU(I,J)=Tl 
CP(I,J)=CPl 
TO(l,J)=O 
QXO(l,J)=O 
QYO(l,J)=O 
IF(J.GT.Ml) THEN 
TO(l,J)=2.0 
GAM(l,J)=G2 
T AU(l,J)=T2 
CP(l,J)=CP2 
END IF 
T(l,J)=TO(l,J) 
TY (1,J)=T(l,J) 
END DO 
END DO 
DOJ=l,M-1 
DO I=l,N-1 
AE(I,J)=DVY*GAM(l,J)/(T AU(l,J)+F*DT) 
A W(I+ l,J)=AE(l,J) 
AN(I,J)=OVX*GAM(l,J)/(T AU(l,J)+F*DT) 
AS(I,J+ l)=AN(I,J) 
END DO 
END DO 

15 DO 1=2,N-1 
DOJ=2,M-l 
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AP{l,J)=AE(I,J)+ A W(I,J)+AN(I,J)+AS(I,J)+CP(I,J)*DX*DY 
B(I,J)=CP(I,J)*TO(I,J)*DX*DY + T AU(I,J)*DT/(T AU(I,J)+F*DT)* 

+ ((QXO(I-1,J)-QXO(l,J))*DY +(QYO(l,J-1)-QYO(l,J))*DX) 
END DO 
END DO 

C------------------- BOUNDARY CONDITIONS--------------------
DO I=l,N 
AS(l,l)=O 
AN(l,l)=l 
AP(l,l)=l 
B(l,l)=O 
AS(I,M)=l 
AN(I,M)=O 
AP(I,M)=l 
B(l,M)=O 
END DO 
DOJ=l,M 
AE(N,J)=O 
AW(N,J)=l 
AP(N,J)=l 
B(N,J)=O 
AE(l,J)=O 
AW(l,J)=O 
AP(l,J)=l 
B(l,J)=T(l,J) 
IF(J.LE.Ml) THEN 
AE(l,J)=l 
B(l,J)=O 
end if 
END DO 
TIME=TIME+DT 

C-------------- X-DIRECTION TOMA----------------
10 DO J=2,M-l 

P( I)= AE( l ,J)/ AP( l,J) 
Q(l)=B(l,J)/AP(l,J) 
DOI=2,N 
S=B(I,J)+ AN(I,J)*T(l,J+ I)+ AS(l,J)*T(I,J-1) 
IF(I.EQ.N) S=B(I,J) 
P(I)= AE(I,J)/(AP(I,J)-A W (1,J)*P(l-1)) 
Q(I)=(S+Q(I-1)* A W(l,J))/(AP(I,J)-A W(I,J)*P(I-1)) 
END DO 
T(N,J)=Q(N) 
DOK=2,N 
I=N+l-K 
T(l,J)=P(l)*T(I+ l,J)+Q(I) 

END DO 
END DO 

C------------ Y-DIRECTION TOMA ------------------
DO 1=2,N-1 
P(l )= AN(I, 1 )/ AP(I, I) 
Q( 1 )=B(I, 1 )/ AP(I, I) 
DOJ=2,M 
S=B(l,J)+AE(l,J)*T(I+ l,J)+A W(l,J)*T(l-1,J) 
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IF(J.EQ.M) S=B(I,J) 
P(J)= AN(l,J)/(AP(I,J)-AS(I,J)*P(J-1)) 
Q(J)=(S+Q(J-1 )* AS(l,J) )/(AP(I,J)-AS(I,J)*P(J-1)) 
END DO 
T(I,M)=Q(M) 
D0K=2,M 
J=M+l-K 
T(l,J)=P(J)*T(I,J+ 1 )+Q(J) 
END DO 
END DO 
ERR=O 
D01=2,N 
D0J=2,M 
ERRO=ABS(T(l,J)-TY(l,J)) 
IF(ERRO.GT.ERR) ERR=ERRO 
TY(l,J)=T(I,J) 
END DO 
END DO 
WRITE(*, *)'ERR=',ERR 
IF(ERR.GT.0.001) GOTO 10 
DOI=l,N-1 
QYO(l,l)=O 
QYO(I,M)=O 
D0J=2,M-l 
QXO(l,J)=(T AU(I,J)-(1-F)*DT)*QXO(I,J) 
QXO(I,J)=QXO(I,J)+DT*GAM(l,J)*(T(l,J)-T(I+l,J))/DX 
QXO(I,J)=QXO(l,J)/(T AU(I,J)+F*DT) 
QYO(l,J)=(T AU(l,J)-(1-F)*DT)*QYO(l,J) 
QYO(I,J)=QYO(I,J)+DT*GAM(l,J)*(T(I,J)-T(I,J+ 1))/DY 
QYO(I,J)=QYO(l;J)/(T AU(l,J)+F*DT) 
QXO(N,J)=O 
TO(I,J)=T(I,J) 
END DO 
END DO 
IF(TIME.LT.TMAX)GOTO 15 
T(l,l)=0.5*(T(2,l)+T(l,2)) 
WRITE(l,4)N,M 
DOI=l,N 
DOJ=l,M 
WRITE(l,2)X(I), Y(J), T(I,J) 
END DO 
END DO 
DOI=l,N,2 
DOJ=l,M,2 
WRITE(*~2)X(I), Y(J), T(l,J) 
WRITE(2,2)X(I), Y(J), T(I,J) 
END DO 
END DO 

4 FORMAT(2X,14,1X,14) 
2 FORMAT(2X,3(F8.4,2X)) 

STOP 
END 
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· 7. Contour Code: This code was developed to find the points for contour plots 
presented in this thesis. The input data is obtained from the output file of Code #4. · The 
output data is processed using Sigma Plot. 

C 
C 
C 
C 

15 
10 

2 

25 
20 

THIS PROGRAM FINDS CONTOUR POINTS 
(Oct. 5. 1993) 

DIMENSION X(l50),Y(l50),Z(l50,150),XW(40,400),YW(40,400) 
OPEN{UNIT=l,FILE='D.D',STATUS='OLD') 
OPEN(UNIT=2,FILE='DD.D',STATUS='old') 
READ(l, *)N,M 
DO 101=1,N 
DO 15 J=l,M 
READ(l,*)X(l),Y(J),Z(I,J) 
CONTINUE 
CONTINUE 

DX=X(3)-X(2) 
DY=Y(3)-Y(2) 
VMIN=lO. 
VMAX=-10. 
002 I=l,N 
002 J=l,M 
IF(Z(l,J).LE. VMIN)VMIN=Z(l,J) 
IF(Z(l,J).GT.VMAX)VMAX=Z(I,J) 
CONTINUE 
l=l 
VALUE=2.00 
do 101 L=l,39 
V ALUE=V ALUE-0.05 
K=l 
D020J=l,M 
DO 25 I=l,N-1 
VMIN=Z(l,J) 
VMAX=Z(I+ l,J) 
IF(VMIN.GT.VMAX) THEN 
VMAX=VMIN 
VMIN=Z(I+ l,J) 
END IF 
IF(V ALUE.GE.VMIN.AND.V ALUE.LE.VMAX) THEN 
YW(L,K)=Y(J) 
XW(L,K)=(X(I+ 1)-X(l))*(V ALUE-Z(l,J)) 
XW(L,K)=XW(L,K)/(Z(l+l,J)-Z(l,J)+l.e-8)+X(I) 
K=K+l 
END IF 
CONTINUE 
CONTINUE 

DO 301=1,N 
DO 35 J=l,M-1 
VMIN=Z(l,J) 
VMAX=Z(l,J+ 1) 
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IF(VMIN.GT.VMAX) THEN 
VMAX=VMIN 
VMIN=Z(l,J+ 1) 
END IF 
IF(VALUE.GE.VMIN.AND.VALUE.LE.VMAX) THEN 
XW(L,K)=X(I) 
YW(L,K)=(Y(J+ 1)-Y(J))*(V ALUE-Z(l,J)) 
YW(L,K)=YW(L,K)/(Z(l,J+ 1)-Z(l,J)+ l.e-8)+Y(J) 
K=K+l 
END IF 

35 CONTINUE 
30 CONTINUE 

DO 32 I=l,K-1 
WRITE(*,3~)XW(L,l),YW(L,I) 
WRITE(2,33)XW(L,l),YW(L,1) 

32 CONTINUE 
101 continue 
33 FORMAT(2X,2(E12.5,lx)) 

end 
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APPENDIX II 

Appendix II Nomenclature 

CV constant volume specific heat (J/kgK). 

CV constant volume specific heat (J/m3K). 

G(S) entropy production (W /Km3). 

I phonon intensity (J/m3 ster). 

k thermal wave extinction coefficient. 

n thermal wave real refractive index. 

n thermal wave complex refractive index. 

p pressure (N/m2). 

Q heat flow (J/m2). 

q heat flux (W/m2). 

RB boundary resistance (m2KIW). 

s specific entropy (J/Kkg). 

s specific entropy per unit volume (J/Km3). 

T temperature (K). 

TD parameter defined by Eq. (II-43). 

t time (s). 

u internal energy (J/kg). 

u displacement (m). 

u internal energy per unit volume (J/m3). 

V specific volume (m3fkg). 

V acoustic speed (mis). 

X coordinate (m). 

Greek 
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a damping coefficient. 

p density (kg/m3). 

p reflectivity. 

ct,(S) entropy flow (W/Km3). 

µ cosine of the angle between the phonon propagation 

direction and the interface normal direction. 

't relaxation time (s). 

co frequency. 

Subscripts and Superscripts 

1 material 1. 

2 material 2. 

u ii related variable. 

+ the positive direction of x-axis. 

the negative direction of x-axis. 

The two following sections are preliminary analysis that need further investigation 

to validate the ideas presented. 

1. Thermodynamic Analysis of Hyperbolic Heat Conduction 

In Chapters II-IV, we have discussed the thermal wave reflection phenomenon, 

and derived the relationships to predict the reflectivity. Tzou (1993) derived the 

relationships for the special case wherein the relaxation times of the two materials are the 

same. His results are the same as ours for one-dimensional thermal wave reflection when 

the two materials have the same relaxation times. However, he did not show that the 

reflectivity can be time dependent when the two relaxation times of the related materials 

are different, and he did not discuss the physical process of negative reflection. Tzou 

(1994) also presented a discussion of entropy production during the hyperbolic heat 
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conduction process. He claimed that the entropy production is always positive when the 

entropy is considered as a function of temperature, pressure, and heat flux 

Tds(T,p,q) = du(T,p)+pdv (II-1) 

wheres is the specific entropy, pis the pressure, and vis specific volume. Therefore, he 

believes that the hyperbolic heat conduction equations satisfy the requirements of the 

second law of thermodynamics. However, from our study, we have found that hyperbolic 

heat conduction does not always satisfy the second law of thermodynamics, especially 

when reflection takes place during the process. 

A typical example is shown in Fig. II-1. In this figure, a one-dimensional heat 

conduction problem is solved. The right boundary of the material is set to be adiabatic, 

and the left boundary temperature is given(= 2.0). The initial temperature is 1.0. The 

wave speed is 5.0112• The temperature profiles at dimensionless times of 0.2 and 0.9 are 

shown in the figure. From the figure, we can see that at t = 0.2, the thermal wave is 

moving to the right boundary, and its value is decreasing because of attenuation. At t = 

0.9, the wave is reflected by the right boundary, and moving back to the left boundary, but 

it has not arrived at the left boundary. We notice a significant increase in the temperature 

of the material from t = 0.2 tot= 0.9. At t = 0.9, the temperature in the material is larger 

than the left boundary temperature which is set to be 2.0. Suppose that at the moment t = 

0.9, we remove the heat source from the left boundary, and set the left boundary to be 

adiabatic. Then the temperature in the material will finally get to be steady, and it will be 

larger than the temperature (= 2.0) of the heat source. This means that we can heat a 

material to a temperature which is even higher than the temperature of the heat source .. 

We can repeat this process (at least theoretically) to transfer heat from a low temperature 

source to a high temperature material. . This result illustrates that hyperbolic heat 

conduction does not satisfy the second law of thermodynamics in some cases. 

Because of the above discussion, we need to reconsider the irreversibility of 

hyperbolic heat conduction, especially when reflection takes place. We consider a one-
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dimensional heat conduction problem as shown in Fig. 11-2. Because the time period of 

heat transfer is very small, we can use a second order Taylor's series expansion to 

represent the change of physical properties during a small time period ot 

au a2u 
8Udx = [-+ -r-2-]8tdx (11-2) 

at at 

where U is the internal energy per unit volume. The heat transfer through an unit area in 

an unit time is q. Then 

8Q = [ q + -r : ]8t 

and the net heat transfer is 
a a aq 

{6Q+-[6Q]dx}-6Q =-[q +'t-]6tdx ax ax at 

Therefore, the energy conservation equation is 
a 

oUotdx + ax [ oQ]dx = 0 

au a2u a aq 
or ~+-r7+ ax [q+-rat]=O 

Now ifwe use the hyperbolic model 
aq au 

q+-r-=-a--
at ax 

we can obtain the thermal wave equation 

au a2u a2u --+ -r-- = a--
at at2 ax2 

The entropy (per unit volume) change of the material in dx is 

as a2s 
8Sdx = [at+ -r at2 ]8tdx 

This change is caused by the entropy flow <l>(S) and the entropy production G(S) 

8Sdx = [ <l>(S) + G(S)]otdx 

The entropy flow is related to the heat flow by 

<l>(S) = -~[_!_ 6QJ = -~[_!_(q + 't aq )] 
ax Tot axT at 

or <l>(S) = a__E_[-1 au ] 
ax r ax 
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(ll-5a) 

(11-5) 

(11-6) 

(11-7) 

(11-8) 

(11-9) 
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(11-11) 



Then, by substituting Eqs. (11-11) and (II-8) into Eq. (II-9), we can obtain 

as + -r a2s = a~[-1 au J + G(S) 
at at2 iJx T iJx 

(II-12) 

This is the entropy equation. In the equation, the entropy production G(S) should be 

positive if the process satisfies the second law of thermodynamics. Since the entropy S 

and the internal energy U are local thermodynamic equilibrium properties, therefore, they 

satisfy the following thermodynamic relationship for constant specific volume 

TdS=dU (II-13) 

Therefore, we have 
as 1 au as 1 au 
dX = T dX' at= Tat' U=pcvT (II-14) 

Substituting Eq. (II-14) into Eq. (II-7), we can obtain 

~+i-~=aft+_l [,J~)2 _J~)2] 
at at2 iJx2 fJCv v\ iJx '\ at 

(II-15) 

Comparing to Eq. (II-12), we can obtain 

G(S)= ;. H :r-,: n (II-16) 

This equation shows.that the entropy production may be negative if 

a(:J2<{:J (II-17) 

Therefore, hyperbolic heat conduction may not satisfy the second law of thermodynamics. 

This situation occurs when reflection takes place, such as the situation shown in Fig. II-I. 

To discuss the reflection process, we use a harmonic wave as an example. Assume the 

incident internal energy shown in Fig. II-3 is 

Then, the reflected wave is 

Ui = Um exp[iro(t- ii x) 
C 

Ur =i>Umexp[iro(t+ ii x) 
C 

After reflection, the internal energy is 
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U = Um exp(icot)[exp(-ico n x)+pexp(ico n x)] 
C C 

Therefore, we can derive 

au . u (" )[ ( . ii ) A (. ii )] -=1co mexp 1cot exp -1co-x +pexp 1co-x 
~ C C 

and au . ii u (. )[ ( . n ) A (. ii )] - = 1co- m exp 1cot -exp -1co-x +pexp 1co-x ax C C C 

{II-20) 

(II-21) 

(II-22) 

At the interface, x = 0, and we also have the following relationships from Eq. (II-14) 
as 1 au as 1 au ax = pcv U ax , at= pcv U ~ {II-23) 

Therefore, at x = 0 

as . (l ") as . < 1 ") n --;:- = f'Cvlro + p , - = f'Cvlro - + p -
aL . ax c 

From Eq. (II-16), for the harmonic wave, we have 

G(S) = P!. [i1:r -,i:r] 
Therefore, from Eqs. {II-24) and (II-25), we obtain 

n2+k2 
G(S) = f'Cvro2[a(l-j,}2 2 - 'r(l + j,}2] 

C 

In order to ensure that G(S)>=O, the following conditions must be satisfied 

(l-j,)2(n2+k2)-(l+j,)2 ~o 

(II-24) 

(II-25) 

(II-26) 

(II-27) 

where, we have used C2 = alr.. From Chapter II (Eqs. (3-7) and (3-8)), we know that n 

and k have the following relationship 

and 

n2 + k2 = [1 + (1/ roi,21112 

A TD-I 
p= TD+I 

Substituting Eqs. (II-28) and (II-29) into Eq. (II-27), we obtain 

TD S (n2 + k2)112 =[I+ (1 I ro-g2]114 

{II-28) 

(II-29) 

(II-30) 

For thermal waves, usually the frequency is very large. Then the parameter TD is limited 

by Eq. (II-30) as 

TOSI (II-31) 
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This result shows that basically the positive reflection process can not happen because it 

does not satisfy the second law of thermodynamics. The negative reflection is possible. 

However, since the hyperbolic heat conduction model conditionally satisfies the second 

law of thermodynamics, it should not be used to predict the reflection process. 

3.0 

2.5 

2.0 

1.5 -

1.0 -
0.5 

o.o 

-
I I 

I I 

0.2 0.4 

I I 

t - 0.9 

51/2 -
C = 

-t = 0.2 

I I 

0.6 0.8 1.0 

:x 

Fig. 11-1 Temperature Distribution in a 1-D Medium 

oQ 

dx 

doQ 
oQ+ c1xdx 

Fig. 11-2 Control Volume of 1-D Heat Conduction 
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U, 

Fig. 11-3 Interface Reflected and Transmitted Waves 

2. Temperature Discontinuity at an Interface Based on Phonon Theory 

In Chapter III, when we derived the relationship for reflectivity, we made an 

assumption that the temperature is continuous at an interface between two different 

materials. However, many experimental studies of phonon transport heat conduction have 

shown that the temperature is not continuous at the interface when reflection takes place. 

Swartz and Pohl (1989) have reviewed these experimental studies, and discussed the 

models to predict the boundary resistance that causes the discontinuity in temperature. At 

an interface, if the heat flux is q, and the boundary resistance is RB, then 
1 

q=-AT 
RB 

(11-32) 

where, AT is the difference between temperatures on the two sides of the interface. This 

fact cannot be predicted by using the hyperbolic heat conduction model and its reflection 

theory presented in Chapter m. 

From the phonon transport theory, we can predict the boundary scattering (or 

temperature discontinuity) phenomenon. We have shown the boundary scattering process 

in the discussion in Chapter VII. Here, we will derive the temperature discontinuity at an 

interface based on the phonon transport theory. 

Assume that at an interface, the phonon intensities are shown in Fig. 11-4. The 

reflectivity of phonon intensity at the interface is p . The reflectivity may be a function of 

phonon polarization mode, the frequency or wave vector, the incident angle, and the 
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phonon speed. Here, we will not discuss these factors. Then, the intensities satisfy the 

following conservation of energy equations at the interface of Fig. 11-4 

µ{~\I1 (µ1) = µ1viP1-2ItCµ1)+ µ2v20-P2-1)I;-Cµ2) 

µ2v21;(µ2) = µ2v2P2-1I2Cµ2)+ µ1v10-P1-2)1t(µ1) 

The phonon energy conservation through the interface in the µ 1 direction is 

µ1v1[I7 (µi)-I~ (µ1 )] = µ2 v2[1;(µ2)-1; (µ2)l 

According to the Snell's law (Eq. (3-18)), we have 

[1-µp = [~1 ]2 
[l-µ2] V2 

(11-33) 

(11-34) 

(11-35) 

(11-36) 

We add and substract µ 1\\I7(µ 1)to Eq. (11-33) and µ 2v21;(µ2)to Eq. (11-34), then obtain 

µ1v1[It (µ1) + Ij"" (µ1H= µ1v1 (1 + P1-2)1t (µ1) + µ2 v2 O-P2-1)1;-(µ2) (11-37) 

µ2v2[1;cµ2) + 1;-(µ2)l = µ2v20 + P2-1)1;-(µ2)+ µ1v10-P1-2)It(µ1) (11-38) 

From Chapter VII, we know that temperature is related to the phonon intensity by 
I 

cv T = .!. J [1+ (µ') + r (µ') Jdµ' 
2 0 

Then, the temperature difference at the interface is 
I 

cvAT = cv(T1 -T2) = .!_ J {[17 (µ1 )+ 1~(µ1)]-[I; (µ 2)+ 1; (µ 2)]}dµ1 
20 

From Eqs. (11-37) and (11-38), we can obtain 

[It (µ1) + Ij"" (µ1)]-[Ii (µ2)+ 1;- (µ2)] = [(1+ P1-2)- µ 1~1 (1- P1-2)]It (µ1) 
µ2V2 

A µ2V2 A _ 

-[(1 + P2-1)--::-0-p2-1)ll2 (µ2) 
µ1V1 

Substituting Eq. (11-41) into Eq. (11-40), we obtain 

cvAT = cvCI'i -Ti)=..!.. j[(l +P1-2)- µl~I (1-p)_i)]I7(µ1)dµ) 
2 o µ2v2 

-21 j[O+P2-1)-µ 2~2 (1-p2_J]I;(µ2)dµI 
0 µIVI 

(11-39) 

(11-40) 

(11-41) 

(11-42) 

Therefore, at the interface, the temperature is not continuous, and the difference of the 

temperatures on the two sides of the interface is related to the phonon reflectivity. 
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However, the heat transfer is continuous because it must satisfy the energy conservation at 

the interface. 

As we have discussed in Chapter VII, the phonon intensities are also hyperbolic 

waves. However, the phonon reflection cannot exhibit the negative reflection process. 

This is because the phonons represent not only internal energy but also heat transfer, 

therefore, they are the only energy form during reflection. This is different from the 

hyperbolic thermal waves which can exchange energy between internal energy 

(temperature) and heat transfer, although this exchange is not always possible, as we 

discussed in the previous section. To understand phonon reflection, we have to consider 

the physical basis of phonons. Since phonons represent elastic waves in solid materials, 

· the reflection of these elastic waves has to be considered. We may assume that the 

transverse elastic waves satisfy the following hyperbolic wave equation (Bland, 1988) 
1 a2u 1 au a2u 

v2 dt2 + a at"= ax2 (11-43) 

where, a represents the damping of the wave because of the scattering, u is the 

displacement. The phonon energy is the kinetic energy of the wave. The reflection of the 

waves given by Eq. (3-24b) has been discussed in Chapter III, and the reflectivity is 

(11-43) 

Because the phonon intensity or the total energy of a elastic wave is proportional to 

(~)2, ut the reflectivity of phonon intensity is 

2 

(11-44) 

From Eq. (11-44), the reflectivities ofEq. (11-42) satisfy 
A A A 

P1-2 = P2-1 = P (11-45) 

Since the heat flux is related to the intensities by ( see Chapter VII) 
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I 

q = 21t J µ'[i+ (µ')-r (µ')]vdµ' 
0 

from Eqs. (11-46) and (11-33), we can obtain 
1 

q = 21t J (l-p)[µ{v117(µ1)-µ2v2l2(µ2)]dµ1 

0 

where µ1 and µ2 are related by Eq. (11-36). Then, from Eq. (11-42), we can obtain 
I 

cvAT=_!. J (l+p)[17(µ1}-l;(µ2)]dµ1 
20 

_.!. f (1-p}[ µ!~! 17(µ1)- µ 2~2 1;(µ2)]dµ1 
2 o µ2V2 µ1V1 

Then, the boundary resistance can be derived as 
1 q 
-=-
Re AT 

Substituting Eqs. (11-43) and (11-44) into Eq. (11-48), we obtain 

AT=! f µ 2~ 2 -µ1~1 [17(µ1)+1;(µ2)]dµ1 
Cv O µ2 V 2 +µIV I 

(11-46) 

(11-47) 

(11-48) 

(11-49) 

(11-50) 

This result is very interesting. Suppose that the incident wave is collimated, and 17 (µ1) is 

the only incident beam, 12(µ2) = 0. Also assume that scattering near the interface is 

negligible. Then the temperature before reflection is 
I 

cvT= J17(µ)6(µ-µ 1)dµ =17(µ1) 
0 

(11-51) 

(11-52) 

This is the result obtained in Chapter III. The difference is that now the temperature is 

fixed at the interface, and it does not propagate in the material, which is typical of 

hyperbolic heat conduction. The question is how to explain physical meaning of this 

re:fult. This is an interesting topic for future study. 

From Eq. (11-52), we can see that the temperature difference is zero when the Pu is 

zero. The temperature discontinuity always exists at an interface between two different 
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materials, and the temperature difference is directly proportional to the reflectivity. For 

phonon reflection, the reflectivity usually depends on the polarization mode. Since the 

heat transfer considered here is in microscale, the reflectivity will strongly depend on the 

crystal structure. Usually, the diffusive reflection assumption is not reasonable in this 

case. However, it is still a good approximate technique, and it is easy for engineering 

applications when there are not more realistic and more accurate methods to deal with this 

problem. 

Fig. II-4 Interface Phonon Intensities 
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